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Abstract

A sensor network often consists of a large number of sensing devices of different
types. Upon deployment in the field, these sensing devices form an ad hoc network
using wireless links or cables to communicate with each other. Sensor networks are
increasingly used to support emergency responders in the field usually requiring many
sensing tasks to be supported at the same time. By a sensing task we mean any job that
requires some amount of sensing resources to be accomplished such as localizing per-
sons in need of help or detecting an event. Tasks might share the usage of a sensor, but
more often compete to exclusively control it because of the limited number of sensors
and overlapping needs with other tasks. Sensors are in fact scarce and in high de-
mand. In such cases, it might not be possible to satisfy the requirements of all tasks
using available sensors. Therefore, the fundamental question to answer is: “Which
sensor should be allocated to which task?", which summarizes the Multi-Sensor Task
Allocation (MSTA) problem.

We focus on a particular MSTA instance where the environment does not provide
enough information to plan for future allocations constraining us to perform instantan-
eous allocation. We look at this problem in both static setting, where all task requests
from emergency responders arrive at once, and dynamic setting, where tasks arrive and
depart over time. We provide novel solutions based on centralized and distributed ap-
proaches. We evaluate their performance using mainly simulations on randomly gener-
ated problem instances; moreover, for the dynamic setting, we consider also feasibility
of deploying part of the distributed allocation system on user mobile devices. Our
solutions scale well with different number of task requests and manage to improve the
utility of the network, prioritizing the most important tasks.
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Chapter 1

Introduction & Motivation

A sensor network often consists of a large number of sensing devices of heterogen-

eous types. These can vary from very simple sensors with limited capabilities such as

motes, to very complex platforms such as Unmanned Aerial Vehicles (UAV) on which

many sensors can be mounted1. Upon deployment in the field, these sensing devices

form an ad hoc network using wireless links or cables to communicate with each other

and with data processing centres. Simple sensors are in general very resource con-

strained, mainly in terms of lifetime and computational power. For instance, sensing

motes are usually equipped with a small processor, a wireless communication antenna

and are battery powered. Platforms instead can be equipped with a battery or with a

fuel/propulsion engine, but also in this case we need to be careful not to shorten their

lifetime as they might be required to operate for a very long time2. Considering these

limitations it is clear that sensor networks — for simplicity we use the term sensors

for both simple sensors and platforms — are extremely resource constrained environ-

ments.

Sensor networks are increasingly used to support emergency responders in the field

usually requiring many sensing tasks to be supported at the same time [6, 87, 88, 117].

By sensing task we mean any job that requires some amount of sensing resources to

be accomplished, such as video monitoring a collapsing building, tracking persons in

1See Glossary for a full definition of both.
2E.g., a long endurance UAV is usually expected to fly for over 30 hours, even if the maximum flight

duration varies widely based on the type of aircraft [23].
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need of help or localizing an event. As an example of such usage, consider the recent

case of the Haiti earthquake3, the Hurricane Katrina disaster in New Orleans4 and the

latest Japan Nuclear crisis 5. In all these cases military forces used sensing platforms

(UAVs) and various seismic, video and acoustic sensors to scan the disaster areas and

organize humanitarian relief operations.

We model sensing tasks and sensors considering domain expertise from emergency

operation specialists, intelligence analysts and military advisors reported in [87, 88,

117, 118]. We represent each sensing task with a demand which measures its need for

sensing resources, a profit which represents its importance or priority over other tasks

and a location in the field. In certain cases tasks can be divided into multiple sub-

tasks, so for example monitoring a large field can be divided into monitoring multiple

smaller areas. Each sensor or group of sensors, which we call sensor bundles, can

provide a different utility (or amount/quality of information) to each task depending on

several factors. These include the type of sensors, their sensing ranges, their geographic

locations relative to the task location and their current operational status, such as if they

are already serving another task.

1.1 The Multi-Sensor Task Allocation Problem

Sensing tasks might share the usage of a sensing resource, but more often they compete

to exclusively control it because of the limited number of sensors and overlapping

needs with other tasks [87, 88]. Sensors are in fact scarce and in high demand by

tasks which users might request in the field. In such cases, it might not be possible

3http://www.af.mil/news/story.asp?id=123185754 - “Global Hawk collects reconnaissance data dur-

ing Haiti relief efforts”, last visited December, 2011.
4http://www.nsf.gov/news/news_summ.jsp?cntn_id=104453 - “Small, Unmanned Aircraft Search

for Survivors in Katrina Wreckage”, last visited December, 2011.
5http://online.wsj.com/article/SB10001424052748704530204576232881053381842.html - “U.S.

Military Deploys Drones Above Fukushima, Libya”, last visited December, 2011.
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to satisfy the requirements of all sensing tasks using available sensors. Therefore we

need schemes to automatically decide which sensors should be allocated to which task,

maximizing the utility of sensors to tasks. In general there might be many different

problem settings, sensors might be assigned to one or multiple tasks and tasks might

require one or multiple sensors, but the fundamental question which we need to answer

is: “Which sensor should be allocated to which task?". This summarizes the problem

that we call Multi-Sensor Task Allocation (MSTA).

Consider for example the search-and-rescue scenario of Figure 1.1, where the sensor

network has to support an identification task of people in need of rescue, and at the

same time a wide area surveillance task to detect possible threats to the life of the

injured people. If only one UAV is available to be allocated to a task, the question to

answer is: “Where is it better to send that particular UAV?". To answer this question,

where the implied conflicting need is spatial, we should consider the estimated utility

(or amount/quality of information) that the UAV can provide to each different task and

their profits (or importance). Our aim is to assign the UAV to the task which can serve

best (i.e. with highest utility) and which is most important (i.e. with highest profit).

The problem of course becomes hard to solve in the presence on the field of hundreds

of sensors supporting tens of sensing tasks, which might be competing for the usage of

the same sensing resources.

TASK 1

X
Injured 

people to 
identify

Area to 
surveil
(possible 

avalanche)

TASK 2Alpine UAV

Figure 1.1: Example of Multi Sensor-Task allocation problem.

Note that from the perspective of a potential mobile user who is moving on the field

and needing different sensing tasks, there would be no time to manually decide what
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is the best set of sensors to use for each task, as highlighted in [87]. In addition, a

user might not have the expertise to decide what type of sensors could best match each

task’s sensing requirements. Moreover, if they were to manually choose the sensors,

they would consider only a subset of the sensor and task parameters. For this reason,

we need to develop schemes to automatically allocate each sensor to the task they best

serve.

The MSTA problem can arise not only in emergency response scenarios but also in

many humanitarian relief operations requiring a multi-agency international response.

In this coalition context the multi-sensor task allocation problem is even more evid-

ent; because users will have little idea of what sensor assets are available across the

coalition, or what their ownership and access rights might be [88]. Hence the need to

develop automatic mechanisms to solve the MSTA problem in such scenarios, in which

it is extremely important to consider the requirements and priorities of different tasks

with the capabilities and current status of each sensor, in order to decide which task

should be supported.

MSTA is in general related to the Multi-Robot Task Allocation problem, the sensor

selection problem and the multi-agent coalition formation problems, all addressing

intelligent resource allocation in different environments. The Multi-Robot Task Alloc-

ation (MRTA) problem [40] aims to allocate robots to sensing and actuating tasks in a

generic Multi-Robot System (MRS), here instead we focus on sensing devices with no

actuator capabilities. Given that sensors can be seen as resource constrained robots,

as suggested by [73, 130], MSTA can be considered a constrained version of MRTA.

In fact, when supporting users in the field, sensors form ad-hoc networks which re-

quire more energy-aware approaches in the allocation mechanisms [86, 132], moreover

sensors might be deployed in dangerous locations where it might be difficult to replace

batteries. Given that network communication is usually the most expensive operation

in terms of energy consumption, it follows that automatic allocation mechanisms need

to minimize the number of messages exchanged to find a feasible solution. Another
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important reason for limiting the traffic generated by the allocation mechanism is to

reserve bandwidth and battery for retrieving and delivering sensor data.

MSTA is also related to the general problem of sensor selection in which we usually

need to choose a set of “active” sensors to achieve a particular objective. This has re-

ceived considerable attention lately in the wireless sensor network research community.

For example, in [89, 116] the authors focus on the coverage problem with the goal to

select the least number of sensors while monitoring an area and conserving overall the

largest energy quantity. Another sensor selection problem, related to MSTA, is to ef-

ficiently locate and track targets such as in [59, 60, 133]. The problems considered in

this thesis differ from these as we consider multiple tasks possibly competing for the

exclusive usage of the same sensing resources, while instead in sensor selection the

focus is usually on supporting single tasks or in some cases multiple tasks of the same

type (i.e. all monitoring tasks) which can share sensor usage.

Finally, the Multi-Sensor Task Allocation problem instances that we consider can be

modeled as a multi-agent coalition formation problem which has been extensively stud-

ied in [109, 115], where autonomous entities (“agents”) can form a coalition to achieve

one common goal. Agents are equivalent to sensors with regards to MSTA, which

grouped into sensor bundles can satisfy a particular sensing task. In recent works

[24, 70, 100], multi-agent coalition formation techniques were applied to resource al-

location in sensor network. In this thesis, we also experiment on applying such a tech-

nique (among others) to solve a particular instance of MSTA. With respect to previous

works in this area, we propose a novel integration of both qualitative (i.e. knowledge

based) and quantitative measurements (i.e. based on numerical utility values) to eval-

uate the fitting of a particular sensor bundle for a certain task. We also include users’

mobile devices as part of the allocation mechanism.
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1.2 Research Question

In this thesis, we focus on a particular scenario motivated by emergency response op-

erations. Such an environment does not usually provide enough information to plan

for future allocations, in fact there might be frequent changes in the plan of a particular

operation and usually no detailed unified plan of action is available if a multi-national

coalition is involved [88, 117]. For this reason, we focus on Instantaneous Alloca-

tion (IA), as opposed to a time extended allocation of sensors to tasks, meaning that

we must allocate sensing resources instantaneously without scheduling or reserving

them for future allocation. In fact, if an unexpected more important and critical task

needs to be supported, we should assign to it the largest number of sensing resources

without saving such resources for future tasks which might be dropped (e.g. because

of a change in the plan due to an unexpected event).

Considering this scenario, we mainly study two MSTA problem instances: for a static

environment, in which all task requests from emergency responders arrive at once,

and for a dynamic environment, in which tasks arrive and depart over time. In the static

setting, the information about all tasks, including their profits and demands, is available

at once when making the allocation decisions. This problem setting is useful when

the system has a set of long-lived tasks such as perimeter monitoring applications. It

can also be useful in systems where sensing tasks requested at different times may be

batched together and start at a single point in time. In a dynamic setting, instead, the

system is expected to respond promptly to incoming tasks and should be able to adapt

to changes. In such setting, tasks start at different times and have different durations.

We assume that tasks are independent from each other by not allowing for ordering

constraints among tasks. This is a strong assumption but, as noted in [40], in principle

every interconnected task may be expressed as a single larger task with more complex

aggregated sensing requirements. This shifts the difficulty from reasoning about task

constraints, to estimating the utility of sensor bundles for a single task. Therefore,

each task might have complex sensing requirements, especially if it is the result of
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the merging of multiple interconnected different tasks in the field. Given that each

task might require a group of sensors to satisfy its complex information requirements,

as also highlighted in [87], we then consider Multi-Sensor tasks (MS) in our MSTA

problem instance, as opposed to Single-Sensor tasks requiring just one sensor. Given

the potentially complex task requirements, we may need to analyze which sensor types

(or combination of types) could potentially satisfy each task. In addition, we might

need to use both additive and non-additive functions to estimate the sensor utilities to

each task, as for example the utility of each sensor might not sum-up linearly with the

individual utilities of other sensors allocated to the same task.

Another important feature of the MSTA problem studied in this thesis is the focus on a

heterogeneous sensor network; i.e., a network composed of two or more sensors with

different sensing capabilities [123, 130]. Although homogeneous sensor networks can

offer support to different operations, often users on the field request tasks with a wide

variety of sensing requirements which can be better satisfied by groups of cooperat-

ing sensors with heterogeneous capabilities [87, 88]. For example, while a “vehicle

tracking” task might be achieved only through acoustic sensors by triangulating their

bearings and distances from the target, for an “event detection” task we might instead

use both acoustic and video sensors to maximize the detection probability. Therefore

our focus is on heterogeneous sensors, i.e. devices with different sensing capabilities,

and heterogeneous tasks, i.e. tasks which have different sensing requirements. In this

heterogeneous environment we assume that a sensor network middleware [20] allows

different sensors to seamlessly exchange messages by simply specifying the recipient,

taking care of the lower layers in the OSI model and allowing us to focus on applic-

ation layer mechanisms. We consider a particular subset of heterogeneous sensors

which can serve exclusively one task at a time, like directional sensors – we refer to

these as Single-Task sensors (ST). Note that although in this work we limit sensors

to performing one task at a time, this limitation is not applicable to all emergency re-

sponse domains. For some sensing data types, e.g. ambient temperature, a sensor may

be able to serve all tasks within its sensing range. In a given problem instance, there
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may, in fact, be sensors of both types (Single-Task and Multi-Task). In this thesis, we

focus on the restricted type of Single-Task sensors since this is the more restrictive

problem.

Given that MSTA can be seen as a constrained version of the Multi-Robot Task Alloc-

ation problem, we can adopt the taxonomy proposed in [40] to classify it with a triple

of two letter abbreviations6: ST-MS-IA, i.e. Single-Task sensors serving Multi-Sensor

tasks where the environment allows only for Instantaneous Allocation. In this thesis,

our goal is to find an optimized solution to this Multi-Sensor Task Allocation problem

instance in both static and dynamic settings in a heterogeneous sensor network. For

this reason, we further refine the label with which we identify our problem instance as

ST-MS-IA-HE7, where HE stands for heterogeneous sensor network opposed to homo-

geneous (i.e. sensors exclusively of a single type). In order to find a solution for this

problem we need to decide what exactly needs to be optimized. If we were to choose to

directly optimize the overall performance of a real system solving MSTA, that quantity

would be very difficult to measure. To address this issue, we use utility as performance

estimation. Utility is a widespread concept in economics, game theory, and opera-

tions research. A utility based approach allows us to evaluate the “optimality” of the

algorithms proposed in this dissertation to solve MSTA problems. By “optimal” we

mean that given all the available information in the system, it is impossible to con-

struct a solution with higher utility. This is similar to the concept of “optimality” in

[15, 40] and originally to [30].

In this thesis, we refer to utility as the expected quality of task execution, that is the

quantity/quality of useful information that a sensor node (or group of them) is expec-

ted to provide to each task. This is very similar to the concept of utility which has

been adopted in sensor selection works, such as [15, 106], and the choice of using the

6Note that differently from [40], we use the term “sensor” instead of “robot” given our problem

settings.
7We refer to Chapter 2 for a more detailed explanation of this extended classification scheme for

MSTA problems, i.e. MSTA taxonomy.
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same notion of utility was motivated by the wish to align our work to the sensor net-

work research field. Therefore, the concept of utility in this dissertation differs slightly

from other formalizations, such as the one adopted in the Multi-Robot Task Allocation

framework [40] in which the utility is defined as the difference between the expected

quality of task execution and the expected resource cost. From this point of view, it is

important to note that we also consider in our MSTA problems the notion of cost but

we keep it distinct from the concept of utility, again to remain aligned with the termin-

ology used in previous works on sensor selection. In particular, for the static settings,

we associate to each sensor a cost and to each task a budget, e.g. in terms of energy, to

constrain the usage of sensing resources by the set of active tasks on the field. For the

dynamic settings, where tasks appear over time, we consider a cost associated to each

sensor bundle which represents the operational cost associated with the reassignment

of already allocated sensors to newly generated tasks; basically penalizing new tasks

which require sensing resources currently supporting other tasks, following directions

outlined by emergency operation specialists reported in [87, 88, 117, 118]. Note that

in this setting, we assume there are no budgets associated to tasks as these may be too

restrictive in a dynamic environment where we must react to new tasks and in which

condition of sensors will change over time. Finally, the concept of profit associated to

each task is of core importance in our models: it represents the importance or priority of

supporting a particular task, independently from the utility which could be potentially

allocated to them. This is an additional problem parameter compared to [40] which in

its general framework does not consider an absolute importance or priority metric as-

sociated to each task. This notion of profit is instead again very similar to some works

in the sensor selection field, such as [106, 114], but most importantly the introduction

of profit in MSTA (e.g. compared to [40]) is motivated by the wish to model a typical

emergency response scenario in a coalition environment following recommendations

by domain experts [87, 88]. Provided that sensing resources are scarce, we will not be

able to support all tasks on the field which implies the need to drop (i.e. let unsatis-

fied/unsupported) a subset of tasks. Tasks in this subset should ideally have minimal
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potential sensor utilities and be the least important. Therefore, our goal is to design

automatic allocation mechanisms which maximize overall sensor utilities and also pri-

oritize the most important tasks.

Given these assumptions, our research question can be stated as following:

Research Question: “To what extent and how is it possible to develop automatic mech-

anisms for Instantaneous Allocation (IA) of Single-Task (ST) sensors to Multi-Sensor

(MS) tasks in a Heterogeneous sensor network (HE) which can maximize the over-

all sensor utilities and prioritize the most important tasks, in both static and dynamic

settings?”

This can be split into two sub-questions, describing in particular what we are going

address in the rest of this thesis:

Research Question 1: Considering a static setting, with a simplified additive sensor

utility model and task requirements based only on each task’s utility demand and en-

ergy budget, to what extent and how is it possible to find a scalable solution which

maximizes the sensor utilities and prioritizes the most important tasks?

Research Question 2: Considering a dynamic setting, with general (possibly non-

linear) sensor utility models and richer knowledge-based task requirements, to what

extent and how is it possible to find a scalable solution which maximizes the sensor

utilities and prioritizes the most important tasks?

Note that these two questions gradually address a harder version of the ST-MS-IA-HE

problem. We start from a relatively simplified static setting using an additive utility

model to estimate “how good” is a particular sensor bundle for serving a task, and

considering exclusively a quantitative metric based on the sensor utility values for a

particular task. We then address ST-MS-IA-HE in a dynamic scenario where we allow

for general non-linear utility functions and more complex sensing requirements for

each task considering also qualitative metrics based on the fitting of sensor capabilities
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with task requirements, which are knowledge-based.

Finally, it is worth noting that by scalable we mean a solution whose performance in

terms of allocation quality does not drastically decrease in the presence of a large num-

ber of tasks in the field or a high task arrival rate in the dynamic setting. Although in

this dissertation the focus is on instantaneous allocation, mechanisms designed for our

MSTA instance need also to provide timely solutions. In particular, we will see how

our MSTA instance in both static and dynamic settings contains NP-hard problems.

This implies that the computational time required to find an optimal solution is always

likely to grow exponentially with the size of the problem instance in terms of the num-

ber of sensors and tasks on the field (unless P = NP). Therefore, although our focus

remains on designing automatic allocation mechanisms able to find an approximated

optimized solution in terms of the sensor utility provided to the most important tasks

on the field, we also consider the time aspects for each of the mechanisms presented.

In particular, for the static environment we consider the computational time required to

find a solution, while for the dynamic setting we study the number of important tasks

on the field which are kept waiting (on average) for a decision to be reached by the

dynamic allocation protocol.

1.3 Thesis Contributions

We propose a variety of centralized schemes for the static setting, and a distributed

mechanism for the dynamic setting, both aiming at maximizing the overall utility of

the network which we evaluate mainly using simulations on randomly generated prob-

lem instances. A centralized approach typically collects all the information in a single

node, for example a base station, where all assignment decisions are made by an al-

gorithm having a global view of the network. Due to its global view of the field, this

approach can provide high quality solutions, but can be expensive in terms of com-

munication overhead and introduces a single point of failure. Distributed approaches
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instead require just local knowledge about the surroundings of sensors and sensing

tasks, being therefore more suitable for actual implementations.

For static and dynamic problem setting, we address different constraints and design

specific solutions for each. In particular for the static case, we consider tasks with a

budget (e.g. monetary or energy) and a threshold on the utility demand, that is a task is

allocated sensors only if the total sensor cost (monetary or energy) does not exceed its

budget and a minimum utility (expressed as a threshold on its demand) is reached. In

this setting, we assume additive sensor utilities, i.e. utilities of sensors contributing to

the same task add up linearly. For the dynamic settings instead, we allow for non-linear

sensor utilities, and we integrate these with knowledge-based metrics about sensor cap-

abilities and task requirements in order to better deal with heterogeneous sensors and

tasks. We do not constrain the budget of tasks, considering that in a dynamic environ-

ment we need more flexibility in the allocation of resources to each task, because we

lack exact information about what will happen in the future. We also formalize two

examples of non-linear utility models for event detection and 2D localization tasks.

For both the static and dynamic MSTA problems, our practical algorithms manage to

improve the utility of the network and in many cases achieve near optimal performance.

We summarize our research major contributions in the following list:

1. We formalize the ST-MS-IA-HE instance of the MSTA problem in static settings.

We explore a simplified model in which sensor utilities are additive; i.e., they

sum up linearly if sensors are allocated to the same task. We also constrain

each task usage of sensing resources by assigning them a budget (e.g. energy or

monetary). Each task is characterized by a demand of utility and a threshold on

its demand to be reached in order to be satisfied. For this setting we use only a

quantitative utility measurement, based only on physical attributes of the sensor

instance (such as distance from a task).

2. We propose a variety of centralized algorithms for our ST-MS-IA-HE model in

static settings. We evaluate the different algorithms on randomly-generated prob-
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lem instances. In particular, the experiments show that the best performance are

offered by our novel MRGAP algorithm, which uses a Generalized Assignment

Problem (GAP) algorithm extended with a Multi-Round heuristic.

3. We formalize ST-MS-IA-HE in dynamic settings, allowing for more general sub-

additive or super-additive sensor utilities; i.e., which might not sum up linearly

when contributing to the same task. We assume unlimited budget for each task,

and we allow for re-allocation of already assigned sensors to newly generated

more important tasks. We limit the preemption of sensors from ongoing tasks

through defining a re-allocation cost which we want to minimize.

4. Finally, we present a novel distributed architecture to solve ST-MS-IA-HE in dy-

namic settings, which uses both knowledge-based metrics and numerical utility

functions to deal with knowledge rich task requests. We extend a pre-existing

distributed coalition formation protocol and deploy part of the architecture on

mobile devices showing that it is feasible to do knowledge based sensor-task

matching on such devices. We evaluate the performance of our architecture in

two ways. First, we implement a prototype mobile application which contains a

knowledge-based component and we measure its performances on a real device.

In addition, we run simulations and evaluate the total sensor utility over time

on randomly generated scenarios with users moving on the field and requiring

sensing tasks to be satisfied by the sensors composing the network.

In addition, we also list two minor contributions which are related to the above major

contributions:

(A) We formalize from the literature two non-additive sensor utility models, with the

aim of showing how it is necessary to consider non-linear utility functions. We use

these as motivations to allow for non-linear sensor utilities in our dynamic MSTA

model (Contribution 3); we also adopt these as examples of utility functions to

evaluate the performance of the distributed mechanism for ST-MS-IA-HE in the
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dynamic setting (Contribution 4). For event detection, we propose a model based

on cumulative detection probabilities; for 2D localization tasks, we propose a

model based on the distance and bearings of a pair of sensors to a task.

(B) We propose a conceptual architecture to solve ST-MS-IA-HE in dynamic settings

for generic sensor utility models which uses a combination of qualitative (i.e.

knowledge based) and quantitative (i.e. numerical utility based) metrics to drive

the allocation of sensors to tasks. We identify the necessary and sufficient com-

ponents for this architecture, which we then implement as a distributed system

(Contribution 4). We describe how mobile smart-devices could be used to deploy

components of such an architecture and, in particular, allow a user to submit tasks

to the system through a mobile app.

Below we list the papers in which we have previously published parts of these con-

tributions. We include a brief summary of each publication, together with the role of

the author of this thesis in each of them with respect to the other co-authors. We also

include a reference to the chapters in which each publication is contained.

• D. Pizzocaro & A. Preece, Towards a taxonomy of task allocation in sensor net-

works. In Proceedings of the 28th IEEE international conference on Computer

Communications (INFOCOM 2009) Workshops, pages 413–414, Rio de Janeiro,

Brazil, April 2009. IEEE.

In this refereed short paper, we propose an initial taxonomy of MSTA prob-

lems as an extension of a pre-existing MRTA taxonomy, in order to identify

the most relevant features of the MSTA problem instances analyzed in this dis-

sertation. The taxonomy focuses on the issue of homogeneous versus hetero-

geneous sensor networks. We use this taxonomy in Chapter 2 to highlight that

MSTA in heterogenous sensor networks requires knowledge-based matching to

deal better with sensor and task heterogeneity. In other words, to evaluate the

utility of sensors we need a knowledge repository containing information about
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which sensor types (and therefore sensor capabilities) or combinations of them

can serve a particular task type. This work led eventually to the novel concep-

tual architecture described in Contribution B which integrates knowledge-based

measures with numerical sensor utilities. This paper was also an important step

in order to formally model ST-MS-IA-HE in both static and dynamic settings, it

therefore spans both Contribution 1 and 3.

• M. P. Johnson, H. Rowaihy, D. Pizzocaro, A. BarNoy, S. Chalmers, T. La Porta,

and A. Preece. Sensor-Mission assignment in constrained environments. IEEE

Transactions on Parallel and Distributed Systems, 21(11):1692–1705, Novem-

ber 2010.

In this journal article, we address ST-MS-IA-HE in static settings with budget

constraints for tasks. Note that in this publication we use the word mission to

refer to sensing tasks. The author of this thesis contributed mainly to form-

ally model the instance of MSTA in the static setting (Contribution 1) with lin-

ear sensor utilities and budget constraints, and in developing the centralized al-

gortihms (Contribution 2) to solve it. This work is contained in Chapter 3.

A preliminary version of this work appeared also as

M. P. Johnson, H. Rowaihy, D. Pizzocaro, A. Bar-Noy, S. Chalmers, T. La Porta,

and A. Preece. Frugal sensor assignment. In Proceedings of the 4th IEEE in-

ternational conference on Distributed Computing in Sensor Systems (DCOSS

2008), pages 219–236, Berlin, Heidelberg, 2008. Springer-Verlag.

• D. Pizzocaro, A. Preece, F. Chen, T. La Porta, A. Bar-Noy, System Architectures

for Multi-Sensor Task Allocation, Proceedings of the 4th Annual Conference of

the International Technology Alliance (ACITA 2010), Imperial College, London,

UK, 2010

In this refereed conference paper, we propose a conceptual architecture to solve

ST-MS-IA-HE in dynamic settings (Contribution B), describing how we can carry

out knowledge based allocation decisions and the different implementation strategies



1.3 Thesis Contributions 16

for such architecture. We identify the necessary and sufficient components and

we discuss a centralized, distributed and hybrid implementation by highlighting

pros and cons of each. This work is mainly reported in Chapter 4, and inspired

the distributed implementation of the system in Chapter 5.

• H. Rowaihy, M. P. Johnson, D. Pizzocaro, A. Bar-Noy, L. Kaplan, T. La Porta,

and A. Preece. Detection and localization sensor assignment with exact and

fuzzy locations. In Proceedings of the 5th IEEE International Conference on

Distributed Computing in Sensor Systems (DCOSS 2009), pages 28–43, June

2009.

In this conference paper, we study two non-additive sensor utility models for

event detection and target localization sensing tasks (Contribution A). We de-

velop formal models for both, taking inspiration from pre-existing literature with

the help of a sensor analyst advisor (Dr. Lance Kaplan). The main contribution

of the author to this paper was in the formalization of the three models and in co-

ordinating the efforts of the other co-authors. This material is mainly contained

in Chapter 4.

• D. Pizzocaro, A. Preece, F. Chen, T. La Porta, and A. Bar-Noy. A distributed

architecture for heterogeneous multi sensor-task allocation. In 2011 Interna-

tional Conference on Distributed Computing in Sensor Systems and Workshops

(DCOSS 2011), pages 1–8. IEEE, June 2011.

In this refereed conference paper, we formalize ST-MS-IA-HE in dynamic set-

tings (Contribution 3) allowing for more general sensor utilities, i.e. sub-additive

or super-additive. We assume unlimited budget for each task, and we allow

for re-allocation of already assigned sensors to newly generated more important

tasks. We present a distributed implementation (Contribution 4) of our con-

ceptual architecture (Contribution B), proposing an extension of a pre-existing

protocol and developing a prototype mobile app on a real device as part of our

distributed architecture. We report the content of this paper in Chapter 4 and
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Chapter 5.

A live demo of the distributed system was presented at the IEEE DCOSS 2011

conference, and published as a short paper in the proceedings as:

D. Pizzocaro, A. Preece, F. Chen, T. La Porta, and A. Bar-Noy. A distributed

architecture for heterogeneous multi sensor-task allocation: demo. In 2011 In-

ternational Conference on Distributed Computing in Sensor Systems and Work-

shops (DCOSS 2011). IEEE, June 2011.

Various versions of this demo were performed for audiences including UK Min-

istry of Defence and US Department of Defense directors, senior NATO (North

Atlantic Treaty Organization) scientists and sensor analysts, as well as UK &

US industry and academia. Finally, a video of this demo can be found at the

following URL: http://www.youtube.com/watch?v=QzrpKRhGFRU

1.4 Thesis Structure

The rest of this dissertation is divided as follows. Chapter 2 provides an overview of

research related to the Multi-Sensor Task Allocation problem and in particular to the

ST-MS-IA-HE problem instance. Chapter 3 introduces ST-MS-IA-HE in a static envir-

onment focusing on additive sensor utilities and budget constraints for tasks, where

we also propose and evaluate three novel centralized algorithms. Chapter 4 proposes

a formal model for ST-MS-IA-HE in a dynamic environment with general non-linear

sensor utilities and a re-allocation mechanism, generalized starting from two case stud-

ies for event detection and two-dimensional localization tasks. We also describe a

conceptual architecture which can solve the dynamic ST-MS-IA-HE problem using

both quantitative and qualitative measures. Chapter 5 then focuses on a distributed

implementation of such architecture, which combines an allocation protocol with a

knowledge-based component deployed on users’ mobile devices. Chapter 6 concludes

this dissertation summarizing the contributions and future research directions.

http://www.youtube.com/watch?v=QzrpKRhGFRU
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Following we provide a brief overview of the core chapters of this thesis.

Chaper 3: Static MSTA with Additive Sensor Utilities & Budget Constraints

In Chapter 3, we focus on an initial static MSTA problem instance (ST-MS-IA-HE)

where all the tasks arrive at once. We assume that the utility of sensors to tasks is addit-

ive; i.e., utilities of sensors contributing to the same task add up linearly. This problem

can be modeled as a bipartite semi-matching problem. More specifically, each task is

associated with a demand value and a profit value; each sensor-task pair is associated

with a utility offer. We assume that the utility provided by the sensors assigned to a

task needs to be greater than a threshold for the task to be successful. To include real-

istic features of an emergency response scenario, we assume there is a limited number

of sensors that can contribute to a task. We use a simple function to evaluate the sensor

utility which models the real degradation of the sensing performances with the varying

of the distance between sensor and task. We associate each task with a budget to limit

the number of sensors they can use; in this case, sensors will have associated cost.

We therefore consider both packing (i.e. budget) and covering (i.e. demand threshold)

constraints, which make our static MSTA problem non-trivial to solve. As discussed

in Chapter 2, our problem model differs from previously addressed resource allocation

problems in sensor networks (e.g. [106]) as their assumption is usually to consider

either packing or covering constraints separately.

For this static setting, we propose three centralized algorithms to address the problem.

The first algorithm we consider is a simple centralized greedy algorithm that repeatedly

attempts to satisfy the tasks with the highest potential profit. The second algorithm,

Multi-Round GAP (MRGAP), is a novel algorithm that treats tasks as knapsacks that

together form an instance of the Generalized Assignment Problem (GAP). The third

algorithm is instead an adapted combinatorial auction algorithm. Through simulations

we find that in dense networks the three algorithms perform well, with the GAP-based

algorithm outperforming the greedy and the combinatorial auction based algorithm.
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We also study how tasks spend their budgets and how increasing the budget affects the

overall profit of the network. We find that in most cases giving tasks higher budgets

does not help since what limits the amount of achievable profits is competition and

not the amount of budget provided. Finally, we show that the three algorithms provide

timely solutions to the static MSTA problem. We find that the combinatorial auc-

tion based algorithm requires the longest time to converge and the time grows with a

steeper slope compared to MRGAP and Greedy when increasing the problem instance

size. MRGAP displays a longer convergence time compared to the greedy algorithm,

but a much slower increase in the computational time when the instance size grows

compared to the auction based approach.

Chapter 4: Dynamic MSTA with Generic Sensor Utilities

In Chapter 4, we develop a formal model for the dynamic MSTA problem instance

(ST-MS-IA-HE) where the tasks arrive and depart at different times. In this formulation,

we allow for the utility of sensors to tasks to be non-additive; i.e., utilities of sensors

contributing to the same task could be for example sub-additive or super-additive. We

first formalize two particular static MSTA problems with non linear utilities, for event

detection and two-dimensional localization tasks. We then generalize these two prob-

lems into a more abstract static MSTA problem, in which we allow for any non-linear

utility function and for any task/sensor type to be used.

We then extend this into a dynamic MSTA problem including the time dimension in

the problem formulation. This problem can be modeled as a tripartite semi-matching

problem. As in Chapter 3, we associate each task with a demand value and a profit

value; however, we now instead associate each sensor bundle-task pair with a joint

utility offer. So we first need to group sensors into bundles, evaluate their joint utility

using a (possibly non-additive) function, and finally we need to decide which one is the

best assignment of sensor bundles to tasks. In this version of the problem, we assume

there are no budget constraints for each task, and we allow for re-allocation of sensors
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to newly created tasks. In order to avoid preemption of sensors from ongoing tasks

to happen too often, we include a re-allocation cost in the formal model which we

minimize while maximizing the total utility.

Finally, we propose a conceptual architecture to solve step-by-step the dynamic MSTA

problem, using both qualitative (i.e. knowledge based) and quantitative (i.e. numer-

ical utility based) metrics to evaluate how fit is a sensor bundle for a task. We also

discuss the trade-offs related in choosing different implementations of this conceptual

architecture, in particular as a centralized or distributed system.

Chapter 5: A Distributed System for Dynamic MSTA

In this chapter, we describe in detail how we implement the conceptual architecture

as a distributed system. In particular, we describe how a knwoledge-based compon-

ent combined with a distributed allocation mechanism could address the problem of

joint utility evaluation in the case of heterogeneous sensors and tasks. We assume that

sensor types and task types can be modelled using formal tools, such as ontologies, to

express sensing capabilities and task requirements. We extend a pre-existing coalition

formation protocol to implement our allocation mechanism and we show that it is feas-

ible to do knowledge-based sensor-task matching on the user device. We also develop

a prototype mobile app to show how a user could interact with the sensor network, re-

questing sensing tasks from the distributed system. Note that such “smart” devices are

an integral part of our distributed architecture, thereby part of our distributed solution

to the dynamic MSTA problem.

To evaluate the performance of our architecture, we first measure the performance of

the knowledge-based component on a real mobile device (an Apple iPod Touch 2nd

generation), as part of the mobile app which we developed to allow users to submit

tasks to the system. Secondly, we measure the performance of the extended allocation

protocol and we run simulations on randomly generated problem instances using the

two non-linear utility models presented in Chapter 4 as an example of task types. Our
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simulation results show that it is feasible to do sensor-task matching on the mobile

device and that the distributed protocol is scalable, performing well in terms of over-

head traffic and allocation quality when increasing the task arrival rate (i.e. the rate at

which tasks are generated by users on the field).
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Chapter 2

Background

Multi Sensor Task Allocation is in general related to the Multi-Robot Task Allocation,

the sensor selection, the multi-agent coalition formation problems, all addressing intel-

ligent resource allocation in different environments. The Multi-Robot Task Allocation

(MRTA) problem [40] aims to allocate robots to sensing and actuating tasks in a gen-

eric Multi-Robot System (MRS), here instead we focus on sensing devices with no

actuator capabilities. Given that sensors can be seen as resource constrained robots,

as suggested by [73, 130], MSTA can be considered a constrained version of MRTA.

In this chapter, we use the MRTA taxonomy proposed in [40] to identify some of the

main features of the MSTA problem instance discussed in this thesis. In relation to this

instance we analyze some of the formal models and techniques proposed for it. We

look in particular at bundling mechanisms which have been previously used in order

to allocate groups of resources to tasks; e.g., combinatorial auctions and multi-agent

coalition formation problems.

MSTA is also related to the general problem of sensor selection in which we usually

need to choose a set of “active” sensors to achieve a particular objective. This has re-

ceived considerable attention lately in the wireless sensor network research community.

Similar to [104], we survey some of these problems and divide them using the criteria

of purpose of allocation. In particular we consider three categories: coverage schemes,

target tracking/localization schemes and application-level task assignment schemes.

MSTA is in particular related to this last group of sensor selection schemes and there-

fore can be considered a subset of the sensor selection problems where multiple-tasks
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need to be satisfied simultaneously.

Finally, we propose a MSTA taxonomy, extending the MRTA taxonomy in [40], as a

new way of looking at part of the literature in sensor selection. The extended taxonomy

is based on the main issue of dealing with task allocation in heterogeneous and homo-

geneous sensor network. Looking at the papers surveyed in sensor selection, it seems

almost taken for granted that matching the capabilities required by tasks and provided

by sensors is straightforward, therefore the mechanisms developed consider most of

the time an implicit representation of sensor capabilities and task requirements. We

survey some of the work in sensor selection with focus on homogeneous vs heterogen-

eous sensor networks. Moreover, we analyze some of the architectures and modular

approaches proposed for allocating sets of heterogeneous resources, in the field of

MRTA, multi-agent and sensor selection schemes.

The rest of this chapter is organized as follows. Section 2.1 summarizes the MRTA

taxonomy and discusses models and techniques for the ST-MR-IA problem. Section

2.2 covers some of the works in sensor selection and categorizes them based on the

purpose of selection. Section 2.3 proposes an extension of the MRTA taxonomy for

Multi-Sensor Task Allocation problems, mainly considering issues related to task al-

location in a heterogeneous environment. Finally, Section 2.4 concludes the chapter

highlighting the differences and similarities with the works discussed and this thesis.

2.1 Multi-Robot Task Allocation & Taxonomy

The Multi-Sensor Task Allocation problem is closely related to the Multi-Robot Task

Allocation (MRTA) problem [40] which consists of answering the question “Which

robot should execute which task?" in a generic Multi-Robot System (MRS); i.e., a

system composed by autonomous robots with both sensing and actuator capabilities.

Early work on MRTA has been empirical and ad hoc, experimentally evaluated and

infrequently formally analyzed. Gerkey et al [40] offered a framework to categorize
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different instances of the MRTA problem, proposing a domain-independent taxonomy

of problems. They showed how many such problems can be viewed as instances of

other well-studied optimization problems. The taxonomy of MRTA problems is organ-

ized on three axes:

• Single-task robots (ST) vs. multi-task robots (MT): in ST each robot is cap-

able of executing at most one task at a time; in MT a robot can execute multiple

tasks simultaneously.

• Single-robot tasks (SR) vs. multi-robot tasks (MR): SR means that each task

requires exactly one robot to accomplish it; MR means that some task requires

multiple robots.

• Instantaneous assignment (IA) vs. time-extended assignment (TE): IA means

that the information concerning the robots, the tasks, and the environment does

not permit planning for future allocations, but only instantaneous allocation; in

TE information is available to plan future allocations; e.g., a model of how tasks

are expected to arrive over time.

To categorize MRTA problem instances it is enough to identify the corresponding triple

of two-letter abbreviations from the list. For example, the label ST-MR-IA identifies

Single-Task robots supporting Multi-Robot tasks in an environment which allows only

for Instantaneous Allocation. Gerkey et al [40] propose to formally model this problem

as a Set Partitioning Problem (which we also discuss in Section 2.1.1). The purpose of

this formal analysis is that we could then apply techniques similar to the ones already

designed for that well known optimization problem, or in general we could compare a

more specific version of the model with the one proposed in the taxonomy.

The MSTA problem instance which we consider in this dissertation in both static and

dynamic settings can be categorized as ST-MR-IA, with the caveat that instead of gen-

eric robots we consider sensors. Given our environment we use therefore the identifier
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S (sensor) instead of R (robot), thus the problem instance which we consider in this

dissertation can be identified by the label ST-MS-IA. The main difference here is that

robots usually have both sensing and actuator capabilities, while instead sensors by

definition are provided only with sensing capabilities and can therefore be seen as

“resource constrained robots” as noted in [73, 130]. This has an impact on both the

optimization problems to which we can reduce our MSTA problem instances, which

will have necessarily more resource constrained features; e.g., budget or allocation

costs. The second consequence of this is that the mechanisms developed to solve these

problems should be computationally cheap and distributed, or alternatively they should

move any expensive computation away from sensors to more computationally capable

entities in the network; e.g., base stations or user devices. In this disseration, we con-

sider these issues with a focus on the ST-MS-IA problem in its static and dynamic

settings, proposing centralized and distributed algorithms and architectures. As dis-

cussed this problem is essentially a special case of the ST-MR-IA problem, in the next

sections we present some of the related formal models and techniques proposed for it.

2.1.1 ST-MR-IA & MT-MR-IA

Below we discuss two instances of MRTA problems: the ST-MR-IA problem which is

the one studied in this dissertation, and then as a comparison the MT-MR-IA problem

which is related to the previous one and more general as robots might be shared among

different tasks. Note that both problems involve allocating groups or bundles of robots

to tasks (i.e. Multi-Robot tasks); these require bundling mechanisms which we discuss

in Section 2.1.2.

ST-MR-IA considers Single-Task robots supporting Multi-Robot tasks. This problem is

referred to as the disjoint coalition formation in the multi-agent community and it has

been formally studied in [109] and [115]. Following [40], ST-MR-IA can be modeled

as a Set Partitioning Problem (SPP) [9] in which is given a set of robots R and a family

F of acceptable subsets of R and a utility function u : F → R. The objective is to find
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a maximum-utility family X of elements in F such that X is a partition of R. Note that

F represents the set of all feasible robot bundle-task pairs and the utility u represents

the utility estimate for each pair. It is clear that for each different type of task we

could evaluate utility in different ways, therefore using different estimation functions

for example based on the distance of the robot or the energy required to accomplish the

task. Finally note that casting the ST-MR-IA problem as an instance of SPP does not

imply that all robots should be allocated to at least one task or that all the tasks should

be assigned at least a bundle of robots, in fact the family F includes all the subsets of

R where for some the utility might be zero.

If we restrict our attention to linear utilities, i.e. the utility of robots contributing to

the same task adds up linearly with the others, then we can model ST-MR-IA as a

Bipartite Weighted Semi-Matching problem [83]. Given a weighted bipartite graph

G = (R ∪ T,E) where R is the set of robots, T the set of tasks and E is a set of

edges. An edge (Ri, Tj, eij) indicates that robots Ri is capable of serving task Tj with

weight eij (which in our case represents utility). Then we seek a max-weight semi-

matching, i.e. a subset of edges of maximum combined weight under the restriction

that no two chosen edges share an endpoint in R. This is similar to the formal models

and algorithms presented for sensor selection problems in [106]. Clearly, the difference

with SPP is that, in such a problem, the utility of a group of robots is calculated as the

sum of the individual utilities of each robot assigned to that task, i.e.
∑
∀Ri→Tj eij .

The model we present in Chapter 3 adopts a similar approach but adds also budget

constraints to each task and, in addition, it considers a utility demand and a threshold

on that to be surpassed in order for the task to be satisfied.

SPP and Bipartite Weighted Semi-Matching mainly consider a static setting, where the

set of tasks is known at once. For many real-life MRTA problems and also sensor net-

work deployments, however, tasks arrive at different points in time, and each time a

task arrives, we must assign robots or sensors to it (dynamic settings). In some environ-

ments this happens knowing what is going to happen next, such as when we know the



2.1 Multi-Robot Task Allocation & Taxonomy 27

plan of a particular mission (Time-Extended assignment); in others instead we have to

take allocation desicions without knowledge of future tasks or energy constraints (In-

stantaneous Assignment). So we could have a dynamic setting where we can achieve

a time-extended allocation or, alternatively, one where we can only perform instantan-

eous allocation due to the lack of information about the future, which is our case in

Chapter 4 and 5. Note that instead in Chapter 3 we focus on the static setting, where

we also assume instantaneous assignment.

Let us consider the dynamic settings, in the case in which these decisions are irrevoc-

able, meaning that once a sensor is assigned, it cannot be reassigned to any future task.

Authors studied different versions of this problem and in [58] such problems are re-

ferred to as online assignment problems. These problems could be modeled in general

by the online versions of bipartite matching problems (like the one discussed previ-

ously) where nodes in T arrive over time. The performance of an online algorithm is

evaluated by analyzing its competitive ratio, defined as the ratio between its worst per-

formance and the performance of the best offline algorithm. In [58], the authors study

weighted versions of the online exact matching problem (i.e. where each task is alloc-

ated exactly one robot). In particular, they study Online Min-Matching (minimizing

edge weight) and Online Max-Matching (maximizing edge weight), in metric spaces,

where edge weights are computed based on the metric distance between nodes from

the two sets, e.g. tasks and robots/sensors. We need to match n robots to m tasks such

that the total distance between them is minimized. Note that the difference between

these problems and our dynamic MSTA problem in Chapter 4 is that in general we

consider non-linear utilities which could be proportional or not to the distance of the

sensor from the task. In addition, we allow for reallocation of sensors to newly arrived

more important tasks.

In the case in which a robot can be shared among different tasks, the problem becomes

the MT-MR-IA instance. Of course each robot will have a limited maximum number of

tasks it is able to serve; in the case of sensors this might be due to sensory limitations.
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For example, a camera could be able to detect up to a certain number of suspicious

objects in a certain area, given that the camera might miss out-of-focus objects (as

in [54]). MT-MR-IA has also been studied by the multi-agent community and it is

referred to as the overlapping coalition formation problem [115]. Such a problem can

be cast as a variant of the Set Covering Problem (SCP) [122] as follows: Given a set

of robots R forming the network, a family F of acceptable subsets of R representing

possible overlapping coalitions, and a utility function u : F → R as an estimate of the

utility of assigning a subset of robots to a task, the objective is to find the maximum-

utility family X ∈ F such that X is a cover of R. Note that also in this case casting

the MT-MR-IA problem as an instance of SCP does not enforce that all robots should

be allocated to at least one task and vice versa; in fact by definition the family F

includes also subsets of R for which the utility is zero (representing unassigned robots

or unsupported tasks). If full coverage of the tasks is required there could be several

ways to include it in the problem formulation, but in our case we would allow for tasks

being dropped due to the features of our environment in which sensing resources are

scarce and in high demand. Note that we focus on Single-Task sensors which is the

most restrictive scenario where sensors cannot be shared and need to either satisfy one

task or the other. As discussed in Chapter 6 we propose to explore Multi-Task sensor

problems as part of possible future work.

2.1.2 Bundling Mechanisms

Given our interest in the ST-MR-IA we look at various mechanisms proposed for similar

problems dealing with coordination among different agents in order to form coalitions

to achieve a common subgoal in a system. We can refer to this broad range of problems

as bundling problems which basically involve Multi-Robot (or Multi-Sensor) tasks;

i.e., they require a bundle of resources to be satisfied. We focus on problems which

are motivated by resource allocation in either sensor networks or robot systems. Below

we survey some of these in relation to ST-MR-IA, the MRTA taxonomy and the type of
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mechanism proposed (e.g. distributed or centralized).

The mediation algorithm in [101] is an anytime algorithm that enables agents to in-

crementally reveal their information in order to achieve a common goal. The author

describes how to apply this algorithm to a task allocation problem in a multi-sensor

intruder tracking scenario, where each sensor might be assigned to one or multiple

tasks and where each task might require many sensors. The mechanism assumes the

presence of a central mediator agent which first collects all the proposals of utility that

each sensor is able to provide individually to each task and then after evaluation of

these (which could be achieved with any function, linear or non-linear), it tries to find

a better allocation value by considering subsets (i.e. coalitions) of sensors of increas-

ing size. The algorithm goes on until a stop signal is received. Clearly the downside

of this approach is the assumption of a central mediator agent (which makes the alloc-

ation effectively centralized), but also the high communication cost connected to the

hill climbing behaviour. In addition this algorithm is not designed for dealing with a

set of dynamic tasks.

In [106] the authors developed an alternative proposal-based algorithm for allocating

Single-Task sensors to Multi-Sensor tasks, where the utility of each sensor for a par-

ticular task sums up linearly. Compared to the algorithm in [101], the authors in this

paper allow for multiple mediation agents (which they call mission leaders), making

the algorithm more decentralized. Each mission leader receives the proposals of differ-

ent sensors in terms of utility contributions and then selects the best set of proposals,

therefore deciding a coalition of sensors able to support a particular task (which they

call mission). The authors study also a distributed proposal algorithm for a dynamic

environment, which avoids performing multiple rounds in order to arrive at a decision

to lower the communication cost. Similarly to the approach that we adopt in Chapter

4 and 5, sensors can be preempted from ongoing tasks if they can better serve another

task with higher profit. Although, in this work the authors do not consider explicitly

the problem of matching heterogeneous sensors to different types of tasks consider-
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ing qualitative measurements (e.g. semantic-based), similarly to our assumption in

Chapter 3. In the same way, they consider that the utilities of sensors contributing to

the same task sum up linearly, not allowing for non-linear utility functions.

As noted in [47], distributed agent-based bundling mechanisms deliver a greater por-

tion of bidder requirements (i.e. task requests, in our scenario) to be satisfied and con-

sistent runtimes, but potentially less optimal bundle solutions compared to centralized

systems. In [47] the authors empirically compared the centralized CASS algorithm

[38], which we also used in Chapter 3, with two market-based distributed mechanisms

(Multiple Distributed Auction and Quote Driven Market). Both of these distributed al-

gorithms are developed for a static setting with objective functions different from ours,

in addition these do not adapt well to our dynamic setting. Interestingly, they observe

that utility values in a bundling mechanism should include both qualitative and quant-

itative measurements about the degree at which an agent is able to perform a task.

In Chapter 5, we follow this direction by considering both knowledge-based match-

ing for sensor and task types (qualitative), and numerical utility functions considering

physical attributes of sensor and task instances in the field (quantitative). Instead in

Chapter 3 we take the assumption that utility values could be simply set to zero in

the case a sensor cannot serve the task. Note that, in Chapter 3, similar to [47] we

use combinatorial auctions as one of the ways to solve our static MSTA problem in-

stance. A combinatorial auction is a silent auction in which bidders (tasks) can express

preferences on bundles or combinations of items (sensors) [1]. Given a fixed supply

of goods, the goal of the winner determination problem [103] is to maximize revenue

earned from the sale of disjoint item combinations.

[78] proposes distributed algorithms for allocating resource bundles to bidders finding

a solution to what they call the distributed winner determination problem. They present

a set of distributed search-based algorithms for solving this problem, eliminating the

need for a centralized auctioneer, differently from [47]. This work relates to ours, espe-

cially to Chapter 5, as it proposes a variation of the protocol for coalition formation in
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[115], which they call individual hill climbing algorithm. The issue with this algorithm

is that it considers a set of tasks in a static setting, which we address in Chapter 5 by

extending the algorithm in [115] to our dynamic scenario.

The problem in [100] is probably the closest to our dynamic MSTA problem instance.

In this paper, the authors propose an algorithm for coalition formation with spatial and

temporal constraints motivated by a disaster scenario where a team of both responders

and robots must undertake a number of tasks. Similar to the problem and distributed

mechanisms described in Chapter 5, they consider a dynamic scenario where coalitions

can be formed, disbanded and reformed. They also consider deadlines associated to

each task (by when they need to be completed) and their aim is to maximize the number

of tasks completed over time. The authors propose an anytime centralized heuristic that

produces a schedule of mobile agents, essentially addressing a variant of the ST-MS-TE

problem instance. The heuristic achieves a time-extended (TE) allocation utilizing

information about tasks and agents (e.g. location, travel time and task duration) to plan

for future allocations, differently from our instantaneous allocation (IA) approach.

Within agent-based approaches, the problem of decentralized coordination of groups

of agents (i.e. bundles) is often modelled as a multi-agent distributed constraint optim-

ization problem (DCOP). In this problem a set of agents control the value of variables

in a system and they collaboratively aim at optimizing the global reward. The goal is to

find the assignment of such set of variables that optimizes the aggregation of payoffs

(or conversely costs) over a set of constraints defined on the values of the variables

[102]. This is also our aim in Chapter 5 where we propose a distributed approximate

solution to the dynamic MSTA model formalized in Chapter 4. The DCOP formaliz-

ation has recently received a sizeable amount of attention from the multi-agent com-

munity and different authors have proposed both complete algorithms which always

find an optimal solution, such as ADOPT [76] and DPOP [90], and approximate al-

gorithms, such as DSA [34] or the Max-sum algorithm [102]. Given that DCOP is

in general NP-hard, as for the static and dynamic MSTA problems in this disserta-
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tion, complete (or exact) algorithms require an exponentially increasing coordination

overhead in terms of messages exchanged and/or convergence time [33]. For example,

ADOPT and DPOP arrange the constraint graph into a Depth First Search (DFS), and

then exchange messages over this tree. The number of messages exchanged by these

algorithms grows exponentially with the height of the DSF tree. Improvements on

such algorithms have been proposed to reduce computational time and communica-

tion overhead. For example, BnB-ADOPT [131] uses a branch and bound depth first

strategy instead of a best search, which improves the computational time of the AD-

OPT algorithm; MB-DPOP [91] instead improves the DPOP algorithm by offering a

linear overhead on the number of message exchanged with polynomial message size.

Also considering such improvements, complete mechanisms are still in general too

computationally expensive to consider for our scenario, where sensors have limited

computational resources, limited energy and constrained communication capabilities.

DCOP approximation algorithms require a less expensive local computation and keep

the number of messages exchanged low, therefore being more applicable to our do-

main. In particular, in this dissertation we also propose approximate centralized and

distributed algorithms which sacrifice the optimality of the solution in favour of compu-

tational and communication efficiency. An example of DCOP approximate algorithms

is provided by the Distributed Stochastic Algorithm (DSA), where the agents randomly

change the value of the variables which they control in the system. DSA adopts a local

hill climbing optimization strategy, which is implemented by agents varying the value

of variables based on a stochastic distribution. This algorithm was designed for achiev-

ing decentralized coordination in sensor networks and therefore is more apt for use in

our environments (although considering different constraints and problem settings). A

drawback of DSA and other similar stochastic based algorithms for DCOP is that in

general the approximate solutions found have scarce quality and potentially long con-

vergence time (given their probabilistic behaviour). More applicable to our domain,

providing solutions closer to those of DPOP than DSA and with a lower communic-

ation overhead is the distributed approximate algorithm called Max-sum algorithm.
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First presented in [33] and then refined in [102], the Max-sum algorithm is a mes-

sage passing algorithm which relies on the generalized distributive law (GDL) [5]. In

their work, the authors propose a novel representation of the DCOP problem as a cyc-

lic bipartite factor graph, composed of variable and function nodes which represents

agents and utilities respectively. Such representation allows them to use the GDL to

break down the objective function into a set of factors which can then be calculated

and optimized locally by each agent through communication with their neighbours.

The drawback of this approach is that the convergence time varies with the structure

of the problem, in particular with the type of utility function used. For this reason in

Chapter 5 we decided to adapt the coalition formation algorithm in [115] rather than

the Max-sum algorithm as although providing a greedier approach which is likely to

output lower quality solutions, our extension of [115] is ensured to converge in a fi-

nite number of steps independently from the shape of the utility function. Although,

considering the latest refinements of the Max-sum algorithm [102] and its recent ap-

plications to MSTA problems, e.g. in [29] for assigning UAVs to live aerial imagery

collection, the Max-sum algorithm offers a very promising direction for developing

more efficient techniques for MSTA problems.

In multi-robot systems the problem of forming coalitions of robots to serve different

tasks has been addressed both with emergent coordination and intentional cooperation

mechanisms. An example of the first approach is provided by [69], where the focus

is to achieve task allocation with limited or no explicit communication among robots.

In the proposed mechanism, which considers a set of homogeneous robots with the

same capabilities, each robot decides which task is better to join based on observations

about which tasks are being served and which other robots in their surroundings are

currently performing each task. The same authors note that the downside of emer-

gent approaches is that they can be difficult to design and usually provide sub-optimal

solutions, although allowing for low communication overhead. The second approach

assumes instead intentional cooperation among robots [84]. Here robots cooperate

explicitly to achieve the common goal of maximizing the total utility of a multi-robot
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system, explicitly communicating to each other information about tasks. An example

of a dynamic mechanism for task allocation for the case of intentional cooperation is

provided by all the bundling mechanisms discussed above (except [69]). Additionally,

we can consider [120] which focuses on the MRTA problem instance identified by

ST-MR-TE. Differently from the problem instance in this dissertation, [120] focuses

on time-extended assignment which involves task scheduling and planning. Note that

intentional cooperation is also assumed in this thesis, and it is particularly evident in

the distributed mechanism proposed in Chapter 5 where sensors communicate to each

other information about tasks. On a side note, in a sensor network environment it is

difficult for a sensor to “observe” which tasks are being carried on by other sensors

and take decisions only based on that. In fact, sensing tasks do not usually have a

tangible impact on real world differently from robot tasks which include an actuating

component, therefore making it difficult to use an emergent approach.

2.2 Sensor Selection

MSTA is related to the general problem of sensor selection in which we need to choose

a set of “active” sensors to provide accurate information about a sensing field for an ex-

tended period of time. The best performance is ideally achieved by collecting measure-

ments from as many sensors as possible. Although, as noted in the introduction, many

sensors are heavily constrained by battery limitations and, in addition, are required to

remain active for a prolonged operational time. The aim is therefore to keep minimum

the number of selected sensors while maximizing the utility of the data collected by

the network. This problem has received considerable attention in these last years by

the wireless sensor network (WSN) research community, with alternate bursts of in-

terest depending on the applications of such technology and advancements in sensor

hardware.

The problem of sensor selection is defined in [104] as follows: Given a set of sensors
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S = {S1, . . . , Sn}, we need to determine the “best” subset S ′ of k sensors to satisfy the

requirements of one or multiple tasks. The “best” subset is defined as the one which

provides a certain required quality of information to a task, while meeting the energy

constraints of the sensors. The aim is therefore to collect information of high qual-

ity and, at the same time, to lower the cost of operating the sensors. This tradeoff is

usually modelled with the concepts of utility and cost, similar to MRTA. The first (util-

ity) represents the quality (or accuracy) of the gathered information and its usefulness

to a task, while the second (cost) usually consists of the energy spent activating and

operating the sensors (often directly proportional to the number of selected sensors k).

The aim is to select the best subset S ′ such that the total utility of sensors is maximized,

usually while keeping the overall cost under a certain budget (e.g. a total energy which

is considered acceptable for the network to consume). For many utility models, this

problem is at least as hard as the Knapsack problem as noted in [52], which is NP-

complete. This means that there is no polynomial-time algorithm, and for this reason

realistic restrictions of the problem have received attention. For example, [52] has

considered utilities with geometric structure (e.g. based on the distance of the sensors),

and assumed that the cost of the selection is either zero or infinity.

This “packing” aspect is indeed highlighted in the sensor selection work, compared to

MRTA, and the energy conservation issue is considered of central importance. For this

reason, we model both our MSTA problem instances considering packing constraints.

In particular, for MSTA in static environment, in Chapter 3, we consider budget con-

straints for each task; while instead in the dynamic environment in Chapter 5, we

evaluate the traffic generated by our distributed approach and we consider it as an ap-

proximate measure of battery consumption, provided that the most expensive operation

for sensors is to send/receive messages.

In sensor selection tasks can be general and related to the function of the network such

as monitoring the whole field by ensuring complete coverage, or more specific and

application-oriented, such as tracking and target’s movement. At a given time, the
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system might be required to do multiple tasks such as monitoring an event and, at the

same time, track a single or multiple moving objects. In general sensor selection has

been used in previous work to achieve three major purposes, as noted by [104]:

1. Coverage schemes: where sensor selection is used to ensure coverage of areas

(or targets) of interest.

2. Target tracking and localization schemes: where sensors are selected for achiev-

ing the best performance in target tracking and localization.

3. Application-level task assignment schemes: where sensors are selected for achiev-

ing single or multiple application-level tasks, i.e. not at a basic functionality level

like the previous two categories (e.g. identify a target).

Below we briefly survey these three sensor selection categories and we highlight differ-

ences and similarities with our work. We show that the MSTA problems considered in

this thesis differ from these as we consider multiple tasks competing for the exclusive

usage of the same sensing resources, while instead in sensor selection the focus is usu-

ally on supporting single tasks. Although in some cases multiple tasks have been ad-

dressed, these often do not explicitly compete for exclusive usage of sensing resources,

or alternatively use additive functions to evaluate the utilities of sensors contributing to

the same task.

2.2.1 Coverage Schemes

Coverage schemes have probably received the largest attention in the sensor selection

literature. They aim at selecting sensors to ensure complete coverage of the field, where

every point in the field must be covered by at least one sensor. The works surveyed

here can be divided into sensor selection for static sensors and for mobile sensors.

In [17, 74, 89, 116] the authors focus on the coverage problem using static sensors,

with the goal of selecting the least number of sensors and conserving overall the largest
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energy quantity to monitor the field. Specifically, [89] divides the sensors into sets,

such that each set is capable of providing complete coverage of the field and only

one set is active at a time. Their objective is to obtain an optimal scheduling of these

sets such that the lifetime of the sensor network is maximized and a minimum level of

quality of service is achieved. In [17] sensors are divided into disjoint sets, so that every

set completely covers all the targets and only one set is active at a time. Differently

from [89], the authors schedule the sets in a round-robin order and the focus is to find

the maximum number of disjoint sets, which they prove to be NP-complete. Both

[89] and [17] focus on centralized schemes. Differently, [116] proposes to achieve

full coverage with a minimum number of sensors by identifying redundant sensors and

turning them off, in a distributed fashion. Voronoi diagrams [8] are used to identify

such sensors. The proposed algorithms plan for future allocations by considering the

residual energy of sensors to balance the energy consumption and extend the network

lifetime. Another distributed protocol is given in [74], where the authors aim to provide

k-coverage, that is every location on the field is covered by at least k sensors. This

improves the fault-tolerance of the network and often also the quality of the final sensor

readings (e.g. through sensor data fusion). Their goal is to determine a schedule which

activates the least number of sensors.

Differently from the work surveyed above, [113, 124] assume that sensors are mobile;

i.e., they can be moved in order to cover a particular area. In [113] the authors pro-

pose different schemes (which could be executed distributely) for Dynamic Coverage

Manteinance (DCM), i.e. schemes for deciding which sensors should be moved in

order to fill a hole in the coverage. The heuristics used to achieve this vary from se-

lecting the sensor with maximum residual energy, to minimizing its travel distance and

combinations of both. Similarly, in [124] the authors propose a bidding protocol for

deciding which sensors should be moved to cover holes in the coverage. They con-

sider a mixed network of mobile and static sensors, where mobile sensors are initially

redundant. When static sensors discover holes in the coverage of the field (using Voro-

noi diagrams), they bid for mobile sensors based on the size of the detected hole, and
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also on the size of the hole that the sensor will leave after having moved. The mo-

bile sensors choose the bids which minimize the size of the hole left uncovered, and

maximize the size of the holes they could cover.

2.2.2 Target Tracking and Localization Schemes

In this section we present a brief overview of selection schemes for the purpose of

target tracking and localization. Similar to [104], we categorize some of these works

with the type of solution proposed. In particular, we provide an example for each of

the following categories, (i) Entropy-based solutions, where the selection schemes aim

to minimize the entropy of measurement, (iii) Dynamic information-driven solution,

where the aim is to maximize the information gain based on the dynamic information

gathered, and (iii) Mean Squared Error-based solutions, where the aim is to minimize

the mean squared error of measurement. We denote that the common feature among

these works is that they usually focus on single target tracking or localizing problems.

Thus basically the number of tasks (i.e. track or localize) is essentially equal to 1, and

therefore there is no competition for resources among different tasks.

In [125], the authors consider an entropy-based scheme for sensor selection to achieve

target localization. Entropy is a measure of uncertainty, and a low entropy entails a

high accuracy in the target localization. The authors propose a heuristic which aims at

minimizing the entropy. The centralized scheme proposed, greedily selects one sensor

in each step, without retrieving any sensor observation. Given the a prior probability of

the target location and the location and sensing model of candidate sensors, the heur-

istic selects the most informative sensor such that the collection of previously gathered

measurements of the selected sensors and the prior target location distribution would

yield the lowest entropy in the target location distribution.

In [133], the authors propose a dynamic information-driven scheme to select sensors

for target tracking. Their aim is to select at each step of the tracking the sensor which
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provides the best improvement on the estimate of a target location at the lowest cost.

The improvement on the estimate is formalized as information gain defined based on

distance measure. The proposed protocol starts by selecting a single sensor (leader),

considering the predicted starting position of the target. After having collected inform-

ation about the target, the sensor then elects a new leader among the sensor candidates

ranked using the concept of information gain.

Finally, in [59] the author proposes a sensor selection scheme with the aim of minim-

izing the mean squared error (MSE) on the target estimated location. An assumption

here is that each sensor can estimate the direction of arrival (DOA) of the target by us-

ing acoustic properties. The centralized sensor selection scheme proposed here, starts

by selecting (and activating) two sensors which are not collinear with the target. This

initial set of two sensors is chosen by using global information about the locations of

all the sensors on the field, and by evaluating all the possible pairs of these (i.e. of

complexity n2). Sensors are then added one at a time using a greedy approach, with

the goal of minimizing the MSE of the target position. This work, similarly to the two

previously considered, focuses on a single target localization task, and therefore does

not take into account any competition among different tasks.

2.2.3 Application-level Task Assignment Schemes

In this section we present a brief overview of selection schemes for achieving both

single and multiple tasks which have to be supported collectively. Differently from

the sensor selection schemes covered before, we discuss works which consider tasks

at an “application-level”, and not at a basic functionality level such as coverage or

single-target tracking. In this more general framework, approaches discussed usually

propose more generic measurements to drive allocation such as a “utility” value. This

is more similar to the MRTA and MSTA problems, which consider a generic utility to

drive the allocation of robots/sensors to tasks. Although some of these works address

the issue of tasks competing for resources (i.e. Single-Task sensors), our static and



2.2 Sensor Selection 40

dynamic scenarios have still not been addressed. For the static setting, tasks with

both a threshold on utility demand and budget constraints have still to be considered;

while in the dynamic setting, addressing tasks and sensors with different capabilities

(i.e. heterogeneous sensors and tasks) and allowing resource re-allocation still require

exploration.

Single Task Assignment

In [15] the authors consider the problem of selecting sensors with the aim of satisfying

a single generic application-level task. They provide as an example the general task

of aggregating sensory information from multiple sources and more in particular they

point at “beamforming” algorithms which combine a set of acoustic signals into a

single signal without loss of relevant information. They focus on satisfying a single

task repeatedly over time in the most efficient manner. The aim in this case is to

select sensors using the general notion of “usefulness” which is quantified through

a utility value. In this work, the authors propose a scheme to select sensors based

on a utility function and a cost model for energy consumption (due to sensing or data

dissemination). The utility of a set of sensors is computed based on the sensor locations

and on the cardinality of the sensor set.

Another example of application-specific single task assignment which uses utility-

based metrics is discussed in [12]. Also here the authors focus on satisfying a single

task repeatedly over time, but differently from [15] they provide a more general frame-

work in which the application can specify the utility values of the sensors. They argue,

in fact, that which sensor collected data is useful depends heavily on the specific ap-

plication aim. For example, in some cases reading from a group of sensors may be

considered redundant while in others it could be considered as necessary (e.g. in the

beamforming algorithms). The objective in their schemes is to select a sequence of

sensor sets such that the total utility overtime is maximized, while not exceeding the

available energy.
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Finally, in [2] the authors focus on the single application-level task of monitoring

the entire field by selecting a subset of the sensors using the concept of relationship

between sensor data. They, in fact, highlight that sensor readings are often related,

for example in the case of redundant sensors covering the same area or that are close

to each other. In many cases, these relationships among sensors can be predicted and

used to select the sensors to approximate the stream of others. The idea is based on

the concept of information networks, through which each sensor is seen as a data ob-

ject and the relationships among them modelled as logical links. The authors propose

an integer programming formulation and a greedy approximation algorithm to select

the best subset of sensors with the objective to minimize the error in the sensor data

collected by using such sensors rather than all of them.

Multiple Task Assignment

Below we give some examples of multiple-task assignment schemes, in which different

tasks need to be accomplished simultaneously. The presence of multiple tasks often

entails competition for sensing resources and, since resources are usually scarce (e.g.

in terms of quantity of sensors or energy constraints), completion of one task means

that others will not be accomplished. Note that we always refer to specific application-

level tasks, and that these are actually MSTA problems.

In [54], the authors aim at providing multiple target coverage configuring cameras.

They formally introduce the pan and scan problem where each camera can observe

multiple targets. They consider a set of static cameras (fixed positioned), where for

each one they are allowed to choose its orientation and its zoom factor or field of view

(in two dimensions). The aim is to maximize the quality of target’s reading by the set

of cameras. The sensors here are directional and covering each target can be viewed

as a different task. They consider two variants of the problem: an easier one in which

each target accumulates measurement qualities additively from all cameras observing

it, and a more difficult one where each target obtains only the best measurement. They
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propose an optimal and an approximation algorithm for a geometrically constrained

and an unconstrained version of the problem.

Similarly to [54] in [4] the authors study a more restricted version of a similar problem

where, always given a set of deployed directional cameras, the aim changes to maxim-

ize the number of targets covered with the minimum number of active sensors (while

instead in [54] the objective is to maximize the quality of the sensor readings). In both

[4] and [54], sensors are directional and therefore covering each target can be viewed as

a different task. Note that covering one task might mean leaving unmonitored another

one, and from this point of view they are multiple task assignment schemes which are

clearly instances of the MSTA problem.

In [77] the multiple-task assignment problem is modelled as a market, and the au-

thors discuss the advantages of incorporating e-commerce concepts to sensor manage-

ment. The basic intuition here is to introduce in sensor management the competition

aspect typical of markets, where a customer usually competes with others for buying

“goods”. The authors argue that so far sensor management have been approached as

a relatively uncompetitive problem. The model proposed is composed of two main

components: the task manager and the sensor manager, which are implemented using

genetic algorithms (GA). The task manager allocates budgets to the application (con-

sumer), based on the different tasks involved in the application and their requirements.

Using these budget values, the consumer places bids to the sensor manager. Based on

these bids, the sensor manager allocates sensors to tasks. The scheme proposed here is

a centralized system and it is not trivial to implement in a distributed way because of

the complexity of the model and the GA computation involved.

In [106], the authors consider the problem of assigning directional sensors to multiple

generic tasks (which they call missions) using the concept of profit as a function of the

utility that each sensor can provide, therefore identifiable as a utility-based selection

scheme. They call this problem Semi-Matching with Demands (SMD), and they model

it as a bipartite semi-matching problem. More specifically, each task is associated with
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a demand value and a profit value; each sensor-task pair is associated with a utility

offer. The utility of sensors allocated to the same task adds up linearly. This is similar

to our assumption in Chapter 3, although this problem differs from the one we analyze

in the static settings because here tasks are not given a particular budget. The goal

is to decide which sensors should be assigned to which task in order to maximize the

profit of the satisfied tasks. They prove that this problem is NP-hard and investigate

other two versions of SMD. One where the number of sensors which can contribute

to a task is bounded (δ-SMD), and another where sensors and tasks are deployed on

a 2D field (GeoSMD). They also introduce a generalization of the problem using a

threshold (Threshold-SMD), where they assume that the utility provided by sensors to

a task needs to be greater than a threshold on the task demand for it to be successful,

similar to what we do in Chapter 3. They propose solutions to these problems in both

static and dynamic settings, always considering additive sensor utilities. In particu-

lar, for the static setting, they discuss a centralized greedy algorithm for δ-SMD and

a polynomial-time approximation scheme (PTAS) for GeoSMD. They then propose

a distributed solution which consists in a novel multi-round proposal algorithm, for

both static and dynamic settings. They also provide an energy-aware extension to the

distributed algorithm to prolong the network lifetime, which we could classify as time-

extended assignment. These algorithms performed near-optimally in their experiments

for both the static and dynamic settings. Furthermore, they prove that distributed al-

gorithms are competitive with the centralized algorithms, especially in networks with

high node density. Clearly, this work is the one that is the closest to this thesis, and

we will note in the next chapters that the models presented for both static and dynamic

settings are extensions of the SMD model, and therefore still NP-hard.

In our previous work [94], we also addressed assignment of directional sensors to

multiple tasks (which we also used to call missions). In this paper, we characterized

tasks with uncertain demands for sensing resource capabilities, differently from [106].

We modelled this assignment problem by introducing the Sensor Utility Maximization

(SUM) model, where each sensor-task pair is associated with a utility offer and each
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task with a profit and an uncertain demand of utility. Utilities of sensors contributing to

the same task adds up linearly. The goal is to find a sensor assignment that maximizes

the total profit, while ensuring that the total utility cumulated by each task does not

exceed its uncertain demand. SUM is a special case of the well known Generalized

Assignment Problem (GAP) [22].

Finally, in [82], multi-modal sensors (radars) are used and multiple areas need to be

monitored simultaneously. The authors create a bid for each task considering the pos-

sible sensor configurations (which sensor operates in which mode) and the task utility

value. They then solve the winner determination problem using a modified combin-

atorial auction algorithm and thus a sensor is allocated to the task, and an operation

mode is selected for the sensor. Note that we can also consider the bidding scheme

presented in [124] as a multiple-task assignment scheme, if we consider that each hole

to be covered represents a task. In fact, in [124], the task competition aspect is included

in the objective function of the problem which considers also the task (or areas to be

covered, in this case) which will be left unsatisfied (i.e. uncovered) when the sensor

moves to the new hole to be covered.

2.3 Multi Sensor Task Allocation & Taxonomy

The Multi-Sensor Task Allocation problem can be seen as a subclass of the sensor

selection schemes previously surveyed. It, in fact, focuses on multiple-task assign-

ment schemes where tasks are usually considered at an application-level. Similarly to

MRTA [40], we assume that each task can be either discrete (e.g. localize vehicle) or

continuous (e.g. monitor an area), and that it is independent from any other task. Task

independence is a strong assumption, as in MRTA, we in fact require that each task

can be considered and assigned resources independently from the others. By impos-

ing this limitation, we can avoid to consider at the allocation stage the dependencies

between tasks which generally increase the problem difficulty. This would oblige us
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to impose additional constraints on the problem instance which in general might not

ensure a good solution quality and a sufficient flexibility/scalability of the system [40].

In principle, as also noted in the introduction, each set of tasks with sequential or par-

allel constraints could be merged and presented as input to the problem as a single

monolithic task, although this shifts the difficulty from the problem of reasoning about

task constraints to the problem of reasoning about aggregated task requirements and

estimating a joint utility value.

As in [40], we assume that the objective of the MSTA problem is in general to max-

imize the “usefulness” of sensors to tasks by choosing which sensors should execute

which tasks. From this perspective MSTA considers a subset of MRTA problems in

sensor network environments. In the MRTA taxonomy [40] the distinction between

a MRS composed by homogeneous devices versus one composed by heterogeneous

devices does not represent one of the main axes. This distinction is instead relevant

when considering solutions for the sensor selection problem. For example, in [77] the

authors suggest that the heterogeneity could be used to improve the flexibility of the

sensor selection, by choosing alternative resources in case the ones requested are un-

available. A similar argument is given in [130], although the focus is on link and energy

heterogeneity in the sensors, rather then heterogeneity in the type of sensing capabil-

ities provided. In Section 2.3.2, we highlight the need of a formal representation of

task requirements and sensor capabilities when we are in the presence of a heterogen-

eous sensor network supporting different types of sensing tasks. In Section 2.3.3, we

discuss different architectures proposed for dealing with heterogeneous resource alloc-

ation. Following (Section 2.3.1), we introduce the MSTA taxonomy which provides a

new perspective inspired by the MRTA problem on sensor selection problems.

2.3.1 MSTA Taxonomy

Given the differences highlighted between MSTA and MRTA, we are aware that these

two general problems still remain strongly connected. Nonetheless, our aim is to in-
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crease the awareness of the MRTA framework advertising it to the Wireless Sensor

Network research community, by referring to a particular subset of the sensor selection

problems as MSTA. In particular, provided that the WSN community has started to

address both homogeneous and heterogeneous environments, we propose a prelimin-

ary MSTA taxonomy as an extension of the MRTA taxonomy with a new axis which

addresses this distinction. MSTA is therefore an alternative way of looking at the liter-

ature in the sensor selection field, adopting the same point of view taken in MRTA by

Gerkey et al [40]. In addition, this hopefully could help to identify new opportunities

for problem instances which have not yet been explored in the sensor selection field.

Looking at the papers surveyed above proposing sensor selection schemes, it seems

almost taken for granted that matching the capabilities required by tasks and provided

by sensors is straightforward. This is due to the focus on cheap wireless sensors with

low processing power, limited battery and sensing capabilities. As highlighted in the

introduction, this is now changing especially in military and emergency response oper-

ations, which increasingly make use of heterogeneous sensing platforms able to mount

multiple different sensors, providing aggregated complex sensing capabilities and a

wide variety of computational power and autonomy levels throughout the network.

From a certain point of view MRSs, and in particular MRTA problems, include already

this aspect, because of the assumed heterogeneity of robots in the environment and

their wide range of capabilities.

In order to provide an alternative framework to look at sensor selection works, we sug-

gest therefore to extend the MRTA taxonomy as follows and to adopt the name MSTA

for the particular subset of sensor selection focussing on application-level multiple task

assignment schemes. Moreover, we consider also problems related to matching het-

erogeneous sensor capabilities to different task types. We basically extend the MRTA

taxonomy with an additional dimension through which we can classify MSTA prob-

lems also based on the type of sensor network considered. The MSTA taxonomy is

therefore identified by the following four axes:
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• Single-task sensors (ST) vs. multi-task sensors (MT)

• Single-sensor tasks (SS) vs. multi-sensor tasks (MS)

• Instantaneous assignment (IA) vs. time-extended assignment (TE)

• Homogeneous sensor network (HO) vs heterogeneous sensor network (HE):

HO means that the network is composed only by sensors with the same sensing

capabilities and usually provides support to a set of tasks of the same type (e.g.

all monitoring tasks). HE represents the case in which the sensor network con-

sists of sensing devices of different types each with different sensing capabilities,

often providing support to different task types (e.g. both monitoring and target

identification tasks). Note that, in the second case, we need an either an impli-

cit or explicit representation of the sensor capabilities and task requirements in

order to find a matching among those.

To categorize MSTA problem instances by using this taxonomy, we need to identify the

corresponding quadruple of two-letter abbreviations. In this thesis we study the ST-MS-

IA-HE problem in both static and dynamic settings. As previously highlighted, in our

work we address first a simple quantitative based framework to explore initial matching

schemes for a static problem without explicitly considering the problem of fitting the

capabilities of sensors to task requirements, and simply setting the utility to zero if

resource types are not compatible with a task. We then explicitly introduce a semantic-

based component which shows how we could integrate sensor-task capability fitting in

the problem of allocating heterogeneous sensor resources to different types of tasks in

a dynamic setting. We note, in fact, that usually a heterogeneous environment implies

some kind of representation of the capabilities provided by sensors and required by

tasks.

It is important to note that utility is a very flexible measure of fitness that, in particular

in heterogeneous environments, should include both quantitative measurements about

the sensor performance on the field (based on location, signal quality, etc.), but also
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qualitative measurements such as the fitness of a particular sensor type for a particular

task type, as also highlighted by [47]. The only constraint on utility estimators is

that they must produce a single scalar value that can be compared for the purpose of

ordering sensors (or group of sensor canditates) for the task, as noted in [40].

2.3.2 Homogeneous vs Heterogeneous Sensor Networks

Following we provide a brief survey of sensor selection schemes which we divide into

schemes for homogeneous (HO) and heterogeneous sensor networks (HE). Our aim is

to highlight that the works in HE adopts either an implicit or explicit representation

of sensing capabilities and task requirements, differently from HO which do not con-

sider this problem. An implicit representation means, for example, that we can simply

set utility values to zero when the sensor types are not compatible with a task. An

explicit representation instead is for example achieved using formal tools to represent

knowledge, such as ontologies.

For the case of heterogeneous sensor networks, examples are provided by [77, 110,

126]. In [77], previously surveyed, the authors assume that each user could create a

task with different requirements for resources such as a “search for target” or “monitor

person in danger”. They therefore consider the problem of matching different types

of sensors to various task types. In order to match different task requirements with

different sensing capabilities, in the task manager component of their architecture they

maintain a knowledge base which contains the type of resources required for a par-

ticular task, together with the utility that each of these resources can provide to the

task. The knowledge base is represented using a simple description language which

explicitly describes the requirement of each task in terms of plan, and the capabilities

provided by sensors.

The same process is described in more detail in a paper by the same authors in [126],

where they extend the sensor selection problem to a more general scenario in which
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any type of task (not only sensing task) competes for the exclusive usage of scarce

resources. In Figure 2.1, we show an example of how the authors explicitly describe

a task for an emergency response scenario in which resources are represented also by

vehicles and human operators. They propose a multi-agent approach in which each

agent contains a knowledge base of the task required to accomplish a general mission

and the resources required by each task (as in Figure 2.1). Differently from [77], the

authors propose a combinatorial auction approach in which each agent bids for a bundle

of resources compatible with the task, then the winner determination problem is solved

by an auctioneer agent running the CABOB algorithm [108] in a centralized fashion.

Figure 2.1: Example of a task resource requirements used in [77, 126].

Finally, [110] proposes an allocation scheme for heterogeneous tasks to heterogeneous

team members. They focus on providing support in emergency response scenarios

with “extreme teams”, including mobile sensors but also human operators. Each team

member has a capability to perform a particular task, which they represent as a numer-

ical value in the range [0, 1]. If this value is greater than 0 this means that the team

member has enough resources to perform the task and they assume that in extreme

teams this is true for a really large number of tasks. They model this problem ex-

tending the generalized assignment problem and they propose a distributed constraint

optimization (DCOP) algorithm to maximize the team reward. If we constrain the

team members only to sensing devices, this problem considers heterogeneous sensor
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networks. Although the difference of this work with [77, 126], is that they do not con-

sider explicitly the issue of matching different capabilities with different requirements.

Their assumption is that extreme teams could achieve any task type, and therefore they

use an implicit representation of sensor capabilities which simply sets the utility value

to 0 when the resources are not compatible with the task, similar to our approach in

Chapter 3.

For the case of homogeneous sensor networks, examples are provided by [24, 54, 82].

In particular, in [24] the authors study the problem of forming coalitions of mobile

autonomous sensors to optimize the total utility of the ad-hoc network formed by these

mobile sensing entities while performing exclusively wide area surveillance tasks. The

authors focus on overlapping coalitions in which sensors can sometimes perform mul-

tiple tasks. They assume that all the sensors in the network are able to satisfy wide area

surveillance tasks with different degree of utility, and for this reason they do not con-

sider the problem of representing different sensor capabilities with task requirements.

In [54], the focus is on selecting camera sensors to monitor multiple targets, and [82]

focuses only on sensor networks composed by radar arrays accomplishing exclusively

weather monitoring tasks, thus again not needing to represent different capabilities and

requirements.

2.3.3 Architectures for Heterogeneous Resource Allocation

Different modular approaches and architectures have been proposed for allocating het-

erogeneous resource bundles to different tasks. In this section we present how many

of these split the allocation process in two parts, by first considering the type(s) of

resources required (i.e. qualitative), and then the actual resource instances matching

the type(s) required (i.e. quantitative). We highlight similarities and differences with

the architecture in Chapter 5, which in general adopts the same approach to divide

the allocation process in qualitative-based matching, through explicit representation

of sensing capabilties and task requirements, followed by quantitative-based matching
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using the features of sensor instances (e.g. distance or energy remained).

In [81], the authors propose an agent-based architecture for dynamic formation of vir-

tual organizations, which are composed of a number of individuals, departments or

organizations each having a range of capabilities and resources at their disposal. This

problem is related to our dynamic MSTA problem in heterogeneous environments,

where also each sensor has a different range of capabilities. The mechanism delegates

each task request to a Requirements Agent (RA), similar to the mission leader concept

in [106], that then has the role to form the virtual organization by choosing the best

Service Providers (SP), i.e. sensors in our case. The RA uses a Yellow Pages (YP)

agent to match the type of service provided by each SP, e.g. movies or text messaging;

it then sends a request for proposals to this subset of SPs, which then answer with the

actual cost of the service provided (e.g. £25 per month). The SPs could decide also

to partner together and send a joint proposal. The RA then decides which one is the

best bundle of SPs to accept. This is similar to the problem and conceptual architec-

ture proposed in Chapter 5, in fact we also use a knowledge-based component in order

to find which type of sensor can potentially match the requirements of a certain task

type. Differently although, given our distributed sensor network environment, we do

not assume a central yellow pages agent like the authors do, and instead deploy this

component in each of the users’ mobile devices. In the already cited [77], the archi-

tecture proposed is essentially centralized and considers also a “yellow pages” central

component similar to [81].

Closer to our approach, [32] proposes an ontology-based mechanisms for coalition

formation in heterogeneous multi-robot systems. Their aim is to solve the MT-MR-IA

problem for a multi-robot system for the USAR (Urban Search and Rescue) scenario

[64]. The scheme they propose is similar to our conceptual architecture, and it is

composed of three main components: an ontology-based reasoner, a search for “useful

coalitions” and a coalition instantiation algorithm. The first is implemented using the

Pellet reasoner which uses the task and robot ontology in [19] to find which kinds of
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robots are able to accomplish a certain task type. Then, given its recommendations,

the mechanism searches for useful coalitions of robots which could potentially satisfy

each tasks requirements. Finally, the coalition instantiation algorithm finds a feasible

allocation of robot coalitions to tasks, extending the algorithm in [85]. Although this

algorithm could be implemented in a distributed fashion, the authors in [32] propose

an essentially centralized architecture. In addition, they do not explore the dynamic

setting considering, instead, a static set of tasks on the field. Their approach confirms

that in heterogeneous environments it is convenient to split the allocation process in at

least two steps: one based on capability matching followed by one based on physical

features of the robots in the field.

Similarly to [32], in one of our previous works [44], we investigated how to integrate an

ontology-based reasoning component with an allocation algorithm supporting sensing

tasks in a heterogeneous sensor network. We described a preliminary version of the

architecture proposed in Chapter 5, discussing how the components might be integrated

and work together. As in the different architectures surveyed above, we distinguish

mainly two operations: first, sensor-task fitting based on capabilities provided and

required, second, the actual allocation of sensor instances to tasks. Our distributed

architecture extends the ontology-based reasoner with a bundle generator component

which given the recommendation of the reasoner looks for feasible sensor coalitions,

this idea is similar to the “search for useful coalitions” step in [32]. Note that differently

from our distributed mechanism in Chapter 5, the architecture in [44] does not offer

the possibility of using different utility models (e.g. non-additive) to evaluate different

sensor bundle utilities, in general considering only individual sensor utility offers to

tasks. From this point of view, the architecture discussed in Chapter 5 can be seen as

an evolution of the one proposed in [44].

Finally, [114] is closely related to the architecture proposed in this thesis for the dy-

namic settings. The authors consider both the ST-MS-IA-HE and MT-MS-IA-HE prob-

lems for which they suggest a distributed agent-based approach. They develop an
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extension of the semantic reasoner in [44] and integrate that with an extended distrib-

uted version of our MRGAP algorithm, presented in Chapter 3. The extended reasoner

is able to consider links among different tasks while instead the allocation algorithm

considers both budget and threshold constraints being an extension of the MRGAP

algorithm. The downside of this allocation system is that it considers only individual

sensor utility offers, and combines those additively for sensors contributing to the same

task. The distributed mechanism which we propose for the dynamic MSTA problem,

instead, allows for both linear and non-linear utilities, although being limited to Single-

Task sensors and not considering budget and threshold on demand constraints (which

we instead consider only in the static setting in Chapter 3).

2.4 Conclusion

Sensor selection and MRTA problems have received a sizeable amount of attention

lately, although they have been considered separately. In this chapter, we proposed to

look at a subset of the sensor selection work as problems similar to MRTA, which we

call Multi-Sensor Task Allocation problems to highlight the link with MRTA [40]. We

proposed to extend the MRTA taxonomy in order to classify different MSTA problem

instances based on features of sensors, tasks, assignment and sensor network.

In sensor selection, the issue of handling multiple tasks that might compete for the

usage of sensing resources and with different priorities has started to receive increas-

ing attention. We think that this is due to sensor networks now being composed of

heterogeneous sensors, able to support a larger number of application-level tasks sim-

ultaneously. We believe that going in this direction, sensor selection problems will face

the same issues that the Multi-Robot System community has already faced in MRTA,

although with a different perspective. Sensors, in fact, can be seen as resource con-

strained robots and therefore still require more conservative approaches, for example

in terms of energy, processing power or bandwidth.
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For example, an issue common in sensor selection is that there are few works address-

ing estimation of sensor utilities taking both quantitative and qualitative metrics into

account (similar to [77]). Currently, most sensor selection schemes determine the util-

ity of a sensor by its physical attributes, using numerical utility functions based on

sensor location. The need here is to develop utility estimator mechanisms which con-

sider not only physical attributes, but also some sort of semantics. For example, a video

sensor which is close to a target might not perform well during night because it cannot

provide nightvision. In general, the problem becomes even more complex when con-

sidering groups of sensors where we have to consider aggregated sensor capabilities.

This has been addressed in some of the MRTA literature [32] but it still needs to be

explored in the sensor selection field. In particular, we address this in Chapter 4 and

5 where we propose a distributed architecture which allows to include both numerical

utility values and semantic based metrics to evaluate the performance of a group of

sensors to a particular task.

The idea of allocating sensor bundles to tasks, instead of individually selecting sensors,

has not yet received much attention in sensor selection schemes (e.g. [24, 54]). Dif-

ferently, the work in MRTA has already considered tasks requiring multiple robots and

referred to these as Multi-Robot tasks; in addition, formal models together with well

known bundling techniques were proposed to address these [40]. This relates to the is-

sue of conditional utilities which has been embedded in some information-gain sensor

selection schemes [133]. By conditional utilities we mean how would the utility of one

sensor for a task change if other sensors are allocated simultaneously to the same task

(similar to [104]). For example, if we consider the task of localizing a particular object

on a two-dimensional field using directional acoustic sensors, then we will require at

least two of them in order to obtain the target location, therefore the utility of allocat-

ing just one sensor will be zero while instead allocating two or more might fully satisfy

the task requirements. We refer to these as non-linear utility models and we explore

them in Chapter 4, where we develop sensor allocation schemes in which we allow for

evaluation of joint utilities rather then considering each individual sensor utilities as
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in Chapter 3, which are commonly assumed by many other works in sensor selection

(e.g. [37, 106]). Finally, in Chapter 5, we apply techniques already proposed in the

MRTA field (i.e. multi-agent coalition formation protocols [109, 115]) in the context

of allocating groups of sensors with non-linear utilities to tasks.

Another issue in current sensor selection schemes is lack of schemes taking advantage

of node re-assignment (like in [106, 124]). Especially in a dynamic environment, with

different tasks appearing on the field over time, we need to be able to re-allocate sensors

to higher priority tasks or to the task to which they could contribute the most. This

entails pre-empting resources from ongoing tasks, and therefore might have a negative

effect on others. Effects of such node reassignment and its associated cost need to be

studied more deeply. In Chapter 5, we study the effects of preemption and we show

how this is actually beneficial towards the overall satisfaction of the tasks over time.

Finally, in sensor selection there has been some work in defining frameworks for single

task assignment problems defining models using the notions of utility and cost, in

which the goal is to find a solution that maximizes the utility while staying under a

predefined budget (e.g. [12, 15]). In these works, however, the sensors are work-

ing cooperatively on a single large task, such as monitoring toxicity levels in an area,

and therefore do not consider multiple tasks in competition for the same resources.

In Chapter 3, we address this issue by considering multiple tasks competing for the

same resources and associated to different utility demands and budgets. In that work,

we aim at maximizing the profit of the satisfied tasks while staying under the budget

constraints, therefore addressing the lack in the literature of sensor selection schemes

considering multiple tasks in competition under demand and budget constraints. We

believe instead that budget constraints in a dynamic setting are too restrictive (espe-

cially considering instantaneous allocation) and therefore in Chapter 4 and 5 we only

consider utility demands for each task.
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Chapter 3

Static MSTA with Additive Sensor

Utilities & Budget Constraints

In this chapter, we examine the MSTA problem in a static setting where all the tasks

arrive at once. The static setting is motivated by situations in which different users are

granted control over the sensor network at different times. During each time period, the

current user may have many simultaneous tasks. While the current user will want to

satisfy as many of these as possible, sensing resources may be limited and expensive,

both in terms of equipment and operational cost. In some environments, replacing

batteries may be difficult, expensive, or dangerous. Furthermore, a sensor operating

in active mode (i.e. assigned to a task) may be more visible than a dormant sensor,

and so in greater danger of tampering or damage. Therefore, we give each task in the

static problem a budget so that no single user may overtax the network and deprive

future users of resources. This budget serves as a constraint in terms of the amount of

resources that can be allocated to a task regardless of profit; in this case, sensors will

have associated cost.

As noted in Chaper 1, we focus on Single-Task sensors supporting Multi-Sensor tasks,

in an environment where we do not have enough information to plan for future al-

location allowing only for instantaneous allocation in heterogeneous sensor networks

(i.e. ST-MS-IA-HE according to the MSTA taxonomy in Chapter 2). Although some

sensors, such as seismic sensors, can receive data from their surroundings as a whole,

other sensor types, such as cameras, are directional and therefore Single-Task. In these
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cases, the direction of each sensor, and thus the task it serves, must be chosen appro-

priately.

A given sensor may offer different tasks varying amounts of information (because of

geometry, obstructions, or utility requirements), or none at all. We assume that the util-

ity of sensors to tasks is additive, i.e. utilities of sensors contributing to the same task

add up linearly. We use a simple function to evaluate each sensor utility which mod-

els the real degradation of the sensing performances with the distance between sensor

and task. Tasks, on the other hand, may vary in importance (or profit), and amount of

resources they require (or demand). More specifically, each task is associated with a

demand value and a profit value; each individual sensor-task pair is associated with

a utility offer. In some but not all applications, it may be more beneficial to do one

thing well than to do many things badly; that is, to fully satisfy one task rather than

give a small amount of utility to several. We model this with a threshold on the utility

demand which needs to be surpassed in order for the task to be successful. Note that

we therefore consider both packing (i.e. budget) and covering (i.e. demand threshold)

constraints which make the problem non-trivial to solve.

Contributions. We model the static ST-MS-IA-HE problem with additive utilities, de-

mand threshold and budget constraints as a bipartite semi-matching problem. We pro-

pose three centralized algorithms to address the problem. We give an efficient greedy

algorithm and a multi-round proposal algorithm whose subroutine solves a Generalized

Assignment Problem (GAP), as well as an adapted Combinatorial Auction algorithm.

Through simulations we find that in dense networks the three algorithms perform well,

with the GAP-based algorithm outperforming the greedy and the combinatorial auction

based algorithm. We also studied how tasks spend their budgets and how increasing

the budget affects the overall profit of the network. We find that in most cases giving

tasks higher budgets does not help since what limits the amount of achievable profits

is competition and not the amount of budget provided.

The rest of this chapter is organized as follows. Section 3.1 presents some related
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work. In Section 3.2 we present our network model and then propose the formal model

for ST-MS-IA-HE in static settings. In Section 3.3 we propose schemes for this static

problem, whose performance we evaluate in Section 3.4. Finally, Section 3.5 concludes

the chapter.

3.1 Related Work

Sensor networks. Assignment and selection problems have received significant atten-

tion, in both experimental and theoretical communities. The authors of [74, 89, 116],

for example, solve the coverage problem, which is related to our static MSTA prob-

lem. They try to use the smallest number of sensors in order to conserve energy. The

techniques used range from dividing nodes1 in the network into a number of sets and

rotating through them, to activating one set at a time [89], to using Voronoi diagram

properties to ensure that the area of a node’s region is as close to its sensing area as

possible [116]. Sensor selection schemes have also been proposed to efficiently locate

and track targets. For example, [133] uses the concept of information gain to select

the most informative sensor to track a target. [59] attempts target localization using

acoustic sensors. The goal is to minimize the mean squared error of the target loca-

tion as perceived by the active nodes. In these works, however, sensors are typically

being chosen to work together to perform a single large task, such as covering an area

or tracking a target, whereas our work here is essentially concerned with competition

among many simultaneous missions.

In wireless sensor networks, there has been some work in defining frameworks for

single and multiple task assignment problems. For example, [15, 12] defines a frame-

work for modeling the assignment problem by using the notions of utility and cost. The

goal is to find a solution that maximizes the utility while staying under a predefined

budget. Here again, though, the sensors are working cooperatively on a single large

1We use the terms node and sensor interchangeably.
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task, such as monitoring toxicity levels in an area. In [77], a market-based modeling

approach is used, with sensors providing information or “goods”. In this case, how-

ever, the motivation is more about testing auction mechanisms than in optimization

algorithms.

Algorithms. The Generalized Assignment Problem (GAP) [22] is a generalization of

the Multiple Knapsack Problem, in which the weight and value of an item may vary

depending on the bin in which it is placed. There is a classical Fully Polynomial-Time

Approximation Scheme (FPTAS) [122] for the core Knapsack problem which performs

a dynamic programming (DP) procedure on a discretization of the problem input. If

the knapsack budget value is not too large, then the DP can find the optimal solution

in polynomial time. A stricter version of the static MSTA problem was formalized

as Semi-Matching with Demands (SMD) in [106]. In that formulation, profits are

awarded only if a certain utility threshold is met but no budgets are considered. The

static problem we study here is a common generalization of this previous problem,

incorporating both budgets and a profit threshold.

Although we use the terminology of sensors and tasks for concreteness, the problem

we are considering can be viewed as a more general problem of resource allocation. An

alternative interpretation regards scheduling jobs on unrelated parallel machines. As in

other (maximization) scheduling problems [119], the goal is a schedule that maximizes

profit earned from jobs completed, subject to certain constraints. The twist is that each

job specifies not the set of machines that can perform it, but the set of families of

machines that can perform it. (A job may be too difficult to be performed by any single

machine.) The feasibility constraint is that no machine can be assigned more than one

“sub-job”.

Our problem also relates to other optimization problems, such as the Bin Covering

problem, in which the goal is to use a set of items to fill completely as many bins as

possible. The static MSTA instance that we study is a generalization of (weighted) Bin
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Covering in that an “item” may take up different amounts of space in different “bins”.

In this way, an analogy can be seen between our static MSTA instance, Bin Covering,

Multiple Knapsack and the Generalized Assignment [35] problems.

Many weaker and often fractional models of sensor-task assignment can be reduced

to maximum matching or network flow problems, and thus can be solved optimally in

polynomial time [11].

Combinatorial Auctions. Another way of understanding our problem is as a combin-

atorial auction, that is a silent auction in which bidders (tasks) can express preferences

on bundles or combinations of items (sensors) [1]. Given a fixed supply of goods, the

goal of the winner determination problem [103] is to maximize revenue earned from

the sale of disjoint item combinations. Given that there may be exponentially many

bids, this is a difficult problem to solve and therefore much of the research focus has

been on AI or algorithm-engineering approaches [28].

A view expressed in the literature is that combinatorial auctions can in practice provide

good approximate solutions within reasonable time for problem instances of reason-

able size (in terms of number of bids) [28]. To test if this was the case for the static

MSTA problem, we modeled it using the combinatorial auction formalism and we

used a well-known existing algorithm for general combinatorial auctions called CASS

(Combinatorial Auctions Structured Search) [38] to solve it.

3.2 Static MSTA Problem Definition

With multiple sensors and multiple tasks, sensors should be assigned in the “best” way.

This goal is shared by all the both static and dynamic settings we consider in the rest

of this thesis. There are a number of attributes, however, that characterize the nature

and difficulty of the problem. In this section, we start by defining our network model.
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Then, we propose a formal model for the MSTA problem identified by ST-MS-IA-HE

in static settings.

3.2.1 Network Model

In our network model, we assume a set of static sensors pre-deployed in a field in a

uniformly random manner. Task requests arrive all at once. By a task, we mean a

sensing task that requires information of a certain type, which may be contributed by

one or more deployed sensors. Each task is defined by a specific geographic loca-

tion. (While task locations could be chosen from any distribution in principle, in the

simulation described below task locations are chosen uniformly at random.) An ex-

ample of a task is video monitoring an area of interest. General tasks that cover large

areas, such as perimeter monitoring, can be decomposed into multiple subtasks, each

with its own (discrete) location. The deployed sensors are directional in nature, and

hence can be assigned to tasks individually. Sensors have limited sensing range Rs; a

sensor provides no utility to any task that is located beyond this distance. The sensors

are equipped with wireless communication equipment and have limited communica-

tion range Rc. The communication range is defined as the maximum distance over

which two sensors can directly communicate. Note that in this chapter we consider

a simple utility function based on signal strength, and we do not consider qualitative

semantic-based measures such as if a particular type of sensor can match the sens-

ing requirements of a particular task. These will instead be included and discussed in

Chapter 4 and 5.

3.2.2 Static MSTA Problem Model

The static MSTA problem on which we first focus can be represented as a complete

weighted bipartite graph, shown in Figure 3.1, where the vertex sets are composed of

a set of sensors S = {S1, ..., Sn} and a set of tasks T = {T1, ..., Tm}. Each task Tj is
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Sensors

Tasks
(e11, c11)

(p1, d1, b1)
(e

12, c
12)

(p2, d2, b2)

e = utility of sensor to a task

c = cost of a sensor to a task

      p = task priority

      d =  task utility demand

      b =  task budgetFigure 3.1: Static MSTA problem as a bipartite graph.

associated with a utility demand dj , indicating the amount of sensing resources needed,

and a profit pj , indicating the importance of the task. Each sensor-task pair is associated

with a utility value eij that task Tj will receive if sensor Si is assigned to it. This can

be a measure of the quality of information that a sensor can provide to a particular

task. To simplify the problem, we assume that the utility values eij received by a task

Tj are additive. While this may be realistic in some settings, in others it is not. For

example, in a localization application, the utility provided by sensors is not additive

as it depends on the relative angles by which they view the target. For our purpose

of comparing the different centralized algorithms for the static setting, however, this

utility model is sufficient for now. In Chapter 4 we will extensively address this issue,

exploring more sophisticated utility models. Finally, a budgetary restriction is given in

some form, either constraining the entire problem solution or constraining individual

tasks as follows: each task has a budget bj , and each potential sensor allocation has cost

cij . All the aforementioned values are positive reals, except for costs and utility, which

could be zero. The most general problem is defined by the following mathematical

program (MP) P:
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maximize:
∑m

j=1 pj(yj)

such that:
∑n

i=1 xijeij ≥ djyj , ∀ Tj ∈ T,∑n
i=1 xijcij ≤ bj , ∀ Tj ∈ T,∑m
j=1 xij ≤ 1, ∀ Si ∈ S,

xij ∈ {0, 1}, ∀ (Si, Tj) ∈ S× T,

yj ∈ [0, 1], ∀ Tj ∈ T,

A sensor can be assigned at most once (
∑m

j=1 xij ≤ 1). Profits are received per task,

based on its satisfaction level yj . Note that yj corresponds to the fraction of utility

demand met by the sensors assigned to it, i.e. uj/dj within the range [0,1] where uj

is the utility cumulated by the task. With strict profits, a task receives exactly profit pj

iff uj ≥ dj , that is iff yj = 1 (provided that yj ∈ [0, 1]). With fractional profits, a task

receives a fraction of pj proportional to its satisfaction level yj and at most pj . More

generally, profits can be awarded fractionally, after reaching a fractional satisfaction

threshold T :

pj(yj) =

pj · yj, if yj ≥ T

0, otherwise

For simplicity in the later description of our algorithms and to make more explicit the

dependency of this profit function on uj , we express pj(·) as a function of uj which

maps directly to the values of pj(yj). As a matter of fact, what really varies in yj is

the absolute utility cumulated by the task (uj) while instead the demand of utility (dj)

does not vary per task in our model. Therefore using pj(yj) is effectively the same as

adopting pj(uj), but the second definition allows us to explicitly indicate that allocating

an amount of utility which exceeds the task demands, i.e. uj > dj , does not benefit the

task as it would obtain the same amount of profit pj . We therefore express the function

pj(·) with respect to the variable uj:

pj(uj) =


pj, if uj ≥ dj

pj · uj/dj, if Tdj ≤ uj < dj

0, otherwise
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When T = 1, program P is an integer program; when T = 0, it is a mixed integer pro-

gram with the decision variables xij still integral. Note that if we impose no restriction

on T , an alternative way of expressing our mathematical program P as a mixed-integer

linear program is to use the method in [112] which allows the inclusion of step and

ramp functions into a linear programming model. However, it is non-trivial to express

our model through the use of that technique, in particular considering that our object-

ive function is a sum of ramp and step functions. This would imply including 3 ×m

extra constraints and 2×m extra variables, therefore increasing the cost associated to

implementing such a model. Since our focus in this thesis is on timely solutions, this

approach has not been pursued further.

The edge values eij may be arbitrary non-negative values, or may have additional struc-

ture. If sensors and tasks lie in a metric space, such as the line or plane, then edge

values may be based in some way on the distance Dij between sensor Si and task Tj .

In the binary sensing model, eij is equal to 1 if distance Dij is at most the sensing

range RS , and 0 otherwise. In another geometric setting, eij may vary smoothly based

on distance, according to a function such as 1/(1 +Dij).

Similarly, the cost values cij could be arbitrary or could exhibit some structure: the

cost could depend on the sensor involved, or could e.g. correlate directly with distance

Dij to represent the difficulty of moving a sensor to a certain position. It could also be

unit, in which case the budget would simply constrain the number of sensors.

Even if profits are unit, demands are integers, edge values are 0/1 (though not necessar-

ily depending on distance), and budgets are infinite, then this problem is NP-hard and

as hard to approximate as Maximum Independent Set [106]. If we also add the restric-

tion that sensors and tasks lie in the plane and that 0/1 edge utility depends on distance

(i.e., the edges form a bipartite unit-disk graph), then solving the problem optimally

remains NP-hard [106].
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Algorithm 3.1: Greedy

1: while true do

2: for each available task Tj do

3: uj ←
∑

Siunused eij

4: j ← argmaxj pj(uj)

5: if pj(uj) = 0 then

6: break

7: uj ← 0

8: cj ← 0

9: for each unused Si in decreasing order of eij/cij do

10: if uj ≥ dj or eij = 0 then

11: break

12: if cj + cij ≤ bj then

13: assign Si to Tj

14: uj ← uj + eij

15: cj ← cj + cij

3.3 Algorithms for the Static Setting

In this section we describe two algorithms to solve the static MSTA problem instance:

Greedy and Multi-round Generalized Assignment Problem (MRGAP). The former re-

quires global knowledge of all tasks to run and hence is considered centralized, whereas

the latter can be implemented in both centralized and distributed environments, a be-

nefit in the sensor network domain. We also consider solving the problem as a com-

binatorial auction.
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3.3.1 Greedy

The first algorithm we consider (Algorithm 3.1) is a greedy algorithm that repeatedly

attempts the highest-potential-profit untried tasks. Because fractional profits are awar-

ded only beyond the threshold percentage T , this need not be the task with maximum

pj . For each such task, sensors are assigned to it, as long the task budget is not yet

violated, in decreasing order of cost-effectiveness; i.e., the ratio of edge utility for that

task and the sensor cost. The running time of the algorithm is O(mn(m+ log n)). No

approximation factor is given for this efficiency-motivated algorithm since, even for

the first task selected, there is no guarantee that a feasible solution will be found. This

by itself is, after all, an NP-hard 0/1 Knapsack problem.

3.3.2 Multi-Round GAP (MRGAP)

The idea of the second algorithm (shown in Algorithm 3.2) is to treat the tasks as knap-

sacks that together form an instance of the Generalized Assignment Problem (GAP).

The strategy of this algorithm is to find a good solution for the problem instance when

treated as a GAP instance, and then to do postprocessing to enforce the lower-bound

constraint of the profit threshold, by removing tasks whose satisfaction percentage is

too low. Releasing these sensors may make it possible to satisfy other tasks, which sug-

gests a series of rounds. In effect, tasks not making good progress towards satisfying

their demands are precluded from competing for sensors in later rounds.

Cohen et al. [22] give an approximation algorithm for GAP which takes a knapsack

algorithm as a parameter. If the knapsack subroutine has approximation guarantee

α ≥ 1, then the Cohen GAP algorithm offers an approximation guarantee of 1+α. We

use the standard knapsack FPTAS [122], which yields a GAP approximation guarantee

of 2 + ε. Because GAP does not consider lower bounds on profits for the individual

knapsacks, which is an essential feature of our sensor allocation problem, we enforce

it using the postprocessing step.
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Algorithm 3.2: Multi-Round GAP (MRGAP)

1: while true do

2: initialize set of remaining tasks T ← {T1, . . . , Tm}

3: initialize global threshold T (in our case T ← 0.5)

4: for t = s to T , step s (in our case s = 0.05) do

5: run the GAP algorithm of [22] on T and the unassigned sensors

6: in the resulting solution, release any superfluous sensors

7: update the tasks’ demands and budgets accordingly

8: if Tj’s satisfaction level is < t (temporary threshold), for any j then

9: release all sensors assigned to Tj

10: T ← T − {Tj}

11: if Tj is completely satisfied OR has no remaining budget, for any j then

12: T ← T − {Tj}

13: if T = ∅ or all sensors have been assigned then

14: break

Both the knapasck FPTAS and GAP alogithms are reported in Appendix A for com-

pleteness. In the same section, we also describe in detail the specific implementation

improvements we used, which allowed our implementation to run in reasonable time

on the static MSTA instances of the size we will consider in our experiments (e.g. 500

sensors and 100 tasks).

The algorithm works as follows. A temporary threshold is initialized to a small value;

e.g. 5%. In each round, a GAP solution is found based on the remaining sensors and

tasks. After each round, tasks not meeting the threshold are removed, and their sensors

are released. Any sensors assigned to a task that has greater than 100% satisfaction,

and which can be released without reducing the percentage below 100%, are released.

Such sensors are in fact superfluous and different strategies might be adopted to release

those; in our implementation of MRGAP sensors are released in order of decreasing

utility value. Sensors assigned to tasks meeting the threshold remain assigned to those



3.3 Algorithms for the Static Setting 68

tasks. These sensors will not be considered in the next round, in which the new de-

mands and budgets of each task will become the remaining demand and the remaining

budget of each one of them. Finally, the temporary threshold is incremented, with

rounds continuing until all sensors are used, all tasks have succeeded or been removed.

The GAP instance solved (to within 1 + α of the optimal) at each round is defined by

the following linear program:

maximize:
∑

j

∑
i pijxij (with pij = pj · eij/d̂j)

such that:
∑

Siunused xijcij ≤ b̂j , for each remaining Tj ,∑
Tj remaining xij ≤ 1, for each unused Si, and

xij ∈ {0, 1} ∀i, j

Here d̂j is the remaining demand of Tj , that is, the demand minus utility received from

sensors assigned to it during previous rounds. Similarly, b̂j is the remaining budget

of Tj . The concepts of demand and profit are encoded in the GAP model as pij =

pj · eij/d̂j . This parameter represents the fraction of demand satisfied by the sensor,

scaled by the priority of the task. In each GAP computation, we seek an assignment of

sensors that maximizes the total benefit brought to the demands of the remaining task.

One advantage of MRGAP is that it can be implemented in a distributed fashion. For

each task there can be a sensor, close to the location of the task, that is responsible

for running the assignment algorithm. Tasks that do not contend for the same sensors

can run the knapsack algorithm simultaneously. If two or more tasks contend for the

same sensors, i.e. they are within distance 2Rs of one other (where Rs is the sensing

range of a sensor), then synchronization of rounds is required to prevent them from

running the knapsack algorithm at the same time. To do this, one of the tasks (e.g. the

one with the lowest id) can be responsible for broadcasting a synchronization message

at the beginning of each new round. However, since Rs is typically small compared

to the size of the field, we can expect many tasks to be able to do their computations

simultaneously. As noted in Chaper 2, the authors in [114] implemented in a distributed

fashion this algorithm extending it to their problem settings.
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The total running time of the algorithm depends on the threshold T and the step value

chosen, as well as on the density of the problem instance, which will determine to what

degree the knapsack computations in each round can be parallelized.

3.3.3 Combinatorial Auctions

The sensor allocation problem in its static settings can be formulated as a combinatorial

auction in which the bidders are tasks T1, ..., Tm , the items are sensors S1, ..., Sn, and

each task places a bid, equal to its own profit, for any set of sensors which satisfy

the task’s demand and respect the task’s budget constraint. Formally, we compute the

value that bidder Tj obtains if he receives the bundle B of sensors using the following

valuation function:

vj(B) =


pj, if uj ≥ dj , wj ≤ bj

pj · uj/dj, if T ≤ uj/dj , wj ≤ bj

0, otherwise

where uj =
∑

Si∈B eij represents the joint utility of the sensor bundle B, and wj =∑
Si∈B cij its total cost to the task Tj .

We list all the bids for each task Tj as pairs (B, vj(B)) and we use the OR* bidding

language [80] to explicitly introduce mutual exclusion between bids placed by the same

task. The CASS anytime algorithm then conducts a structured depth-first search on the

list of all bids trying to find the subset of bids which maximize the total revenue under

the constraint that each item can be allocated to at most one bidder, i.e. a solution to

the classic winner-determination problem [103].

The number of bids is potentially exponential if we adopt the naive approach of enu-

merating all nonzero-value bids containing bundles respecting the tasks’ demand and

budget constraints (O(m · 2n) bids in the worst case, but lower in practice). In the

experiments in Section 3.4, we adopt this naive approach to test if the number of bids
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generated within our scenario is computationally tractable. As a comparison, we also

consider a constrained version in which the number of bids is not exponential. In this

particular case we assume that tasks behave as single-minded bidders, i.e. each task

bids only for the bundle of sensors which evaluates to be the best bundle it can obtain

(using the valuation function vj(B)), therefore in total there will be at most m bids.

Each “optimal" bid is generated using the standard knapsack FPTAS (adopted also to

implement MRGAP in Section 3.3.2): for each task we solve the knapsack problem

of finding the subset of sensors which maximizes the total task profit using the profit

function pj(uj) (defined in Section 3.3), while respecting the task’s budget constraint.

Finally we post-process the sensor bundle generated by this algorithm by removing

any superfluous sensors, obtaining what can be considered the best sensor bundle for

each particular task.

3.4 Performance Evaluation

In this section we present the results of the simulations we performed. We implemented

the schemes in Java and tested them on randomly generated problem instances. We

evaluate the algorithms proposed for the static setting, which we implemented in a

centralized fashion. For clarity’s sake, we present a sampling from our comprehensive

series of experiments, evaluating the behavior of the schemes on a variety of problem

input types.

3.4.1 Simulation Setup

Recall the model outlined in Section 3.2. Each task Tj has a demand, which is an

abstract value of the amount of sensing resources it requires, and is awarded profit

pj(uj), based on its importance and its satisfaction level. Each sensor can only be

assigned to a single task. Once assigned, the full utility of the sensor is allocated to
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support the task. We consider a task to be successful if it receives at least 50% of its

demanded utility from allocated sensors (i.e. T = 0.5).

Task demands are chosen from an exponential distribution with an expected value of 2

and a minimum of 0.5. Profits for the different tasks are also exponentially distributed

with an expected value of 10, a minimum of 1 and a maximum of 100. To enforce

a minimum on the distribution we simply sum the minimum value to the numbers

sampled from the exponential distribution. Instead to enforce the maximum value, we

flatten the tail of the distribution (towards infinity), i.e. for any generated number which

is greater than the maximum we impose it to be equal to the maximum value. Using

an exponential distribution to generate task demands simulates realistic scenarios in

which many tasks demand few sensing resources and a smaller number demand more

resources. The same applies to profit. The simulator filters out any task that is not in-

dividually satisfiable; i.e., satisfiable in the absence of all other tasks. For a sufficiently

dense network, however, we can expect there to be few such impossible tasks.

The utility of a sensor Si to a task Tj is defined as a function of the distanceDij between

them. Many sensor types exhibit some kind of quality deterioration or signal attenu-

ation based on distance. In order to evaluate their utilities to tasks, we assume that all

sensors know their geographical locations. Formally, the potential utility contribution

is:

eij =


1

1+D2
ij/c

, if Dij ≤ Rs

0, otherwise

where Rs is the global sensing range. This follows typical signal attenuation models

in which signal strength decays inversely with distance squared [66]. Note that this

utility function is only used for testing in our experiments and is not a property of

our algorithms; it is not meant to model the exact behaviour of any sensor. In our

experiments, we set c = 60 and Rs = 30m.

Nodes are deployed in uniformly random locations in a 400m × 400m field. Tasks

are created in uniformly random locations in the field. The communication range of
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all sensors is Rc = 40m, and we ensure that the sensor network is connected. (If a

randomly created instance in our simulation is not connected, it is discarded and we

repeat, until a connected instance is produced.) We do not consider communication

overhead other than noting the fact that in a static setting, a centralized approach will

typically collect all task requests and all information about sensors (in our case, sensor

locations) in a base station and then communicate all the allocation decisions back to

the sensors. The communication overhead remains therefore constant with the static

number of sensors and tasks on the field, differently from the dynamic scenario where

tasks appear over time and in which the communication overhead depends therefore on

the task arrival rate. For this reason, while in static settings the centralized approach

is feasible, as all tasks arrive at once, in a dynamic environment a distributed approach

(as in Chapter 5) is more desirable, as resilient to loss of connectivity with a central

node due to spikes in the number of task requests over time (as discussed in Chapter

4).

3.4.2 Static Setting Results

In this experiment, all tasks occur simultaneously. We fix the number of sensors in

the field and vary the number of tasks from 10 to 100. Each sensor has a cost, chosen

uniformly at random from [0, 1], which does not depend on the task it is assigned to.

This can represent the sensor’s actual cost in real money, the energy spent to operate

the sensor or, e.g., a value indicating the risk of discovery if the sensor is activated.

Each task has a budget, drawn from a uniform distribution with an average of 3 in

the first experiment and varying from 1 to 10 in the second. As mentioned in Sec-

tion 3.3.3, the static problem can be modeled as a combinatorial auction. The general

CASS algorithm is not computationally tractable in our scenarios as the number of

bids grows exponentially. Even for smaller scenarios its performance was inferior to

the greedy and MRGAP algorithms. So, in the following results we only show the

CASS algorithm with single-minded bidders which is more tractable. In the following
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results, we show the average of 20 runs, which we found experimentally were neces-

sary in order to get significative comparable results. In particular, by running each of

the experiments 20 times we ensured a low standard deviation error (i.e. around±2%).
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Figure 3.2: Fraction of maximum profit achieved (250 nodes)
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Figure 3.3: Fraction of maximum profit achieved (500 nodes)

The first series of results show the fraction of the maximum task profits (i.e., the sum of

all task profits) achieved by the different schemes. We show the profits for the greedy

algorithm, MRGAP, single-minded CASS, and an upper bound on the optimal value,
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running on two classes of sensor networks, sparse (250 nodes) and dense (500 nodes)

(Figures 3.2 and 3.3, respectively). The upper bound on the optimal is obtained by

solving the LP relaxation of program P, in which all decision variables are allowed to

take on fractional values in the range [0, 1], and the profit is simply fractional based on

satisfaction fraction; i.e., pjyj for task Tj with no attention paid to the threshold T . The

actual optimal value will be lower than the fractional one.

The MRGAP scheme, which again can be implemented in a distributed fashion, achieves

higher profits in all cases than does the greedy scheme, which is strictly centralized (be-

cause tasks have to be ordered in terms of profit). The difference, however, is not very

large. The single-minded CASS algorithm achieves lower profits in both settings. We

note that with 500 nodes the network achieves higher profits, which is to be expected.
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Figure 3.4: Fraction of spent budget (250 nodes)

Figure 3.4 shows the fraction of the total budget each scheme spent to acquire the

sensing resources assigned to it, in a network with 250 nodes. The MRGAP scheme

achieves more profit than the greedy algorithm and spends a modest amount of addi-

tional resources. The single-minded CASS algorithm spends the smallest fraction of

the budget. The fraction of remaining budget is significant (more than 60% in almost

all cases), which suggests either that successful tasks had higher budgets than they
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Figure 3.5: Varying the average budget (250 nodes)

could spend on available sensors or that unsuccessful tasks had lower budgets than

necessary, preventing them from reaching the success threshold, and so their budgets

were not spent. When the number of tasks is large, the unspent budget can be attrib-

uted to the fact that there simply were not enough sensors due to high competition

between tasks. We found that with 250 sensors and 30 tasks, on average about 82% of

the tasks succeed and the remaining 18% fail. The successful tasks spend only 50% of

their budget. Among the failed tasks, 50% fail because there are not enough resources

for the tasks to reach the success threshold. In this case, on average, the available

sensors provide only 24% of the demand, whereas 50% is needed for a task to be suc-

cessful. The other 50% of the tasks fail because their budgets do not allow them to

allocate enough resources to reach the success threshold. When the number of tasks is

increased to 60, we found that on average 74% of the tasks succeed and the remaining

26% fail. Again, the successful tasks spend only 50% of their budget but we found that

a higher percentage of the failed tasks, 67%, fail because there is not enough resources,

i.e. due to competition.

We performed another set of experiments, in which the number of tasks was fixed at

50 and the average task budget varied from 1 to 10. Figure 3.5 shows the results for
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a network with 250 sensors. We observe that the achieved profit initially increases

rapidly with budget size but slows as the influence shifts from budget limitations to

competition between tasks. We observe the same pattern: MRGAP achieves highest

profits followed closely by the greedy algorithm. The single-minded CASS algorithm

comes in third.

Figures 3.6 and 3.7 show the same results when 500 nodes are deployed in the same

area. We notice that more of the budget is spent in this case. Since there are more

sensors, tasks are able to spend more of their budget and reach higher profits than

when 250 sensors are deployed. We also note that the achieved profits are higher when

we vary the amount of budget given to tasks. Again, this is because there are more

sensors on which the tasks’ budgets could be spent.
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Figure 3.6: Fraction of spent budget (500 nodes)

As noted in Section 3.3, the static MSTA problem is NP-Hard and therefore it is worth

considering also the performance of the allocation mechanisms in terms of computa-

tional time. In Figure 3.8, we show that both MRGAP and Greedy provide timely

solutions to our static MSTA problem model, while instead the combinatorial auction

approach (Single-Minded CASS) displays the worst computational-time performance.

These benchmarks are consistent with the theoretical computational time of the al-
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Figure 3.7: Varying the average budget (500 nodes)

gorithms presented and were measured on a Macbook Pro with a 2.4 GHz Intel Core 2

Duo processor and 4GB 667 MHz DDR2 SDRAM, running Mac OS X Snow Leopard

(version 10.6.8). It is important to note that in the implementation of these algorithms

we did not focus on optimizing the code in terms of computational runtime, and there-

fore implementation improvements may be possible although the general trend should

not change. In these experiments, we fix the number of sensors on the field to 250 and

we increase gradually the number of tasks from 10 to 100; locations of sensors and

tasks on the field, profits, utility demands and budgets were randomly generated with

the same parameters and distributions used in the first set of experiments (shown in

Figure 3.2 and Figure 3.4). The time performance displayed by the greedy algorithm

is the most desirable, being almost constant in the range of 10-20 ms. Instead, the

computational time for MRGAP grows sub-linearly with the number of tasks on the

field and falls in the range from 300 ms (10 tasks) to 1300 ms (100 tasks). Although

MRGAP takes longer than Greedy to converge to a solution, its performance is still

very desirable compared to the Single-Minded CASS approach, which stays within the

range from 400 ms (10 tasks) to 3400 ms (100 tasks) and grows with a steeper inclina-

tion. Note that the standard deviation for the time measurements taken is around±7 ms
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for the Greedy, among ±150 and ±220 ms for MRGAP and finally for Single-Minded

CASS varies from ±150 to ±400 ms. These results indicate that MRGAP, although

showing a higher computational time than Greedy, scales well with the number of tasks

on the field, still providing the highest profit and making the best use of the assigned

budget.

Figure 3.8: Computational time (250 nodes)

3.5 Discussion & Conclusion

In this chapter, we defined the MSTA problem instance ST-MS-IA-HE in a static setting

where all tasks arrive at once. This scenario is motivated for example by situations in

which different users are granted control over the sensor network at different times.

Sensing resources may be limited and expensive, both in terms of equipment and op-

erational cost. To limit the request for sensing resources of the current user who will

want to satisfy as many of these tasks as possible, we assign a budget to each task. This

serves as a constraint in terms of the amount of resources that can be allocated to it re-

gardless of profit, each sensor is therefore associated to a cost when serving a particular

task. We assume that the utility of sensors to tasks is additive; i.e., utilities of sensors
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contributing to the same task add up linearly. We use a simple function to evaluate

the sensor utility which models the real degradation of the sensing performances with

the varying of the distance between sensor and task. This problem can be modeled as

a bipartite semi-matching problem and we provide a formal mathetical model clearly

defining our optimization objective.

We proposed three algorithms to solve this problem and evaluated these through sim-

ulations. We found that in dense networks the three algorithms perform well, with our

novel Multi Round GAP algorithm outperforming the greedy and the combinatorial

auction based algorithm in terms of profit achieved. We also study how tasks spend

their budgets and how increasing the budget affects the overall profit of the network.

We found that in most cases giving tasks higher budgets does not help since what limits

the amount of achievable profits is competition and not the amount of budget provided.

We showed that the three algorithms provide timely solutions to the static MSTA prob-

lem. In particular, MRGAP takes longer to converge to a solution compared to the

greedy algorithm, but the quasi-logarithmic increase in runtime when the instance size

grows makes of it a very desirable alternative to the combinatorial auction algorithm

which displays the worst computational time performance.

Moreover, we observe that Multi Round GAP is a novel algorithm that treats tasks

as knapsacks that together form an instance of the Generalized Assignment Problem

(GAP) and it could be implemented in a distributed fashion. We therefore answered Re-

search Question 1, modelling the static ST-MS-IA-HE problem and exploring different

scalable algorithms able to find a solution which is reasonably close to the optimal in

both sparse and dense sensor networks considering different amounts of task requests.

It is worth reminding that, as mentioned in Chapter 1, by scalable we mean a solution

whose performance in terms of allocation quality (i.e. overall sensor utility allocated to

most important tasks) does not drastically decrease in the presence of a large number

of tasks in the field, and that is able to provide timely solutions considering that the

static MSTA problem is NP-Hard.
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Although we do not consider them in this chapter, there are many other profit functions

that may warrant study. Obviously zero utility should yield zero profit, and full utility

full profit. For the shape of the profit curve lying between these two extremes, natural

options include: linear, full profit only for fully met demands, linear only after crossing

a threshold, smooth convex (often difficult to maximize) and smooth concave (often

easier to maximize) [83]. In the next chapter (Chapter 4), for the dynamic setting, we

choose to use a profit model which includes both linear and non-linear utility functions

between zero profit and full profit. In the static MSTA model we consider a simple

additive utility function and therefore we limit the heterogeneity of tasks able to be

supported by these mechanisms to the ones that do not require non-additive utility

evaluations.

More sophisticated utility models, taking into consideration not just physical attributes

such as distance but also some sort of semantics, could be developed. Recent work

by Bisidikian [13], for example, considered the effects of sensor sampling models

and quality of information. In this chapter, we based the potential utility of a sensor-

task pairing on their separating distance. However, in the case of video sensors, for

example, the closest sensor to an event might not be the best candidate for selection

because its view of the field is obstructed or it cannot provide sufficient frame rate.

In this chapter, we take the simplistic assumption that all sensors provide the same type

of information, possibly with varying quality. This is reasonable when we do not have

enough knowledge about the task types which need to be supported and sensors which

are deployed on the field. In this case, a simple utility function based for example on the

degradation of the sensing capabilities with the distance could provide a fair approx-

imation to evaluate the goodness of a sensor compared to others. Although, in more

realistic scenarios tasks may have complex requirements which might require sensors

with specific capabilities (e.g. infrared or acoustic sensor). In these cases, we might

consider task requirements and sensor capabilities be defined using explicit represent-

ation tools, such as ontologies (e.g. [19] for the robotics field). In the next chapters, we
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include therefore in the utility estimation both a quantitative measurement, e.g. based

on the distance separating sensors and tasks, but also qualitative measurements, e.g.

based on semantic matchmaking of heterogeneous sensor capabilities provided and

required.

Finally, in this chapter, we focused on MSTA in a static setting for which we propose

centralized solutions (although MRGAP could be implemented distributely). In a more

realistic emergency response scenario, however, we cannot expect that all task requests

will be generated at the same time and collected in a single node, e.g. a base station.

The natural organization of such operations is indeed distributed and usually the in-

formation is collected in multiple distributed nodes. In the next chapter (Chapter 4),

we therefore focus on the dynamic MSTA problem instance ST-MS-IA-HE for which a

distributed solution (described in Chapter 5) is more appropriate. The sensor network

should, in fact, support tasks also in the case of no connectivity with a base station,

e.g. in the case of heavy network traffic or events which might cause the collapse of

communication with the central node. Moreover, in Chapter 4, we observe that moving

to MSTA in a dynamic setting, obliges us to include the time dimension in the prob-

lem formulation, to consider the duration over time of each task. Therefore, differently

from the static setting, the goal of the dynamic model in the next chapter is to maximize

the support of tasks over time.
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Chapter 4

Dynamic MSTA with Generic Sensor

Utilities

In this chapter, we propose a formal model for the dynamic MSTA problem instance

ST-MS-IA-HE where the tasks arrive and depart at different times, generalising it from

two specific sensor allocation problems. We allow for the utility of sensors to tasks

to be non-additive; i.e., utilities of sensors contributing to the same task could be for

example sub-additive or super-additive.

In Chapter 3 we studied a version of ST-MS-IA-HE with a simplified model in which

utility from multiple sensors is assumed to combine additively. Here we study more

complex utility models, starting from two particular applications: event detection and

two-dimensional localization tasks. We formalize these two problems as static MSTA

instances with non-additive utilities, considering restricted scenarios in which we know

in advance that all the tasks consist of just a single type; i.e., only event detection or

only 2D localization tasks.

We then generalize these two problems into a more abstract dynamic MSTA problem,

in which we allow for any non-additive utility function and include the time dimension

in the problem formulation. We now first need to group sensors into bundles, and then

evaluate their joint utilities using either an additive or a non-additive utility function.

Finally, we must decide which is the best assignment of sensor bundles to tasks. We

model this problem as a tripartite semi-matching problem. As in Chapter 3, we asso-
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ciate each task with a demand value and a profit value; but in this case we associate

each sensor bundle-task pair with a joint utility offer, whereas in the previous chapter

we associated each sensor-task pair with an individual utility offer. Given our dynamic

setting, we assume there are no budget constraints for each task as these may be too re-

strictive because we must react to new tasks given our current operating environment;

that is, the condition of the sensors will change over time. For this reason, we allow

also for re-allocation of sensors to newly-created more important tasks which means

sensors could be preempted from ongoing tasks. We also include a re-allocation cost

in the formal model to avoid preemption happening too often.

The dynamic setting is useful in an emergency response scenario where we need to

adapt to changes and respond promptly to tasks, while instead the static one was mo-

tivated by scenarios with a set of long-lived tasks. The emergency response environ-

ment is, in fact, more often highly dynamic with users moving and generating tasks

at different rates. The model presented in this chapter provides more flexibility for

heterogeneous sensors and tasks allowing for both additive and non-additive utility

functions. Users in the field typically lack the time and expertise to manually decide

which are the best sensors for their tasks, therefore solving the Multi-Sensor Task Al-

location problem is even more relevant. A dynamic allocation mechanism is presented

in the next chapter (Chapter 5) where we also discuss how we use the two models de-

veloped in this chapter for event detection and 2D localization as examples to evaluate

our distributed system performance.

As already noted, the dynamic MSTA problem studied in this chapter considers Single-

Task sensors supporting Multi-Sensor tasks. Although we focus on a dynamic setting,

we assume that we still do not have enough information about the future, given that

the operation plan might change as unexpected events may happen. For this reason

we do not use, for example, information about the task duration to drive our allocation

mechanisms; this therefore constrains us to perform instantaneous allocation, without

the possibility to schedule sensor allocation for future tasks. Therefore our focus still
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remains on the ST-MS-IA-HE problem instance. The difference here, compared to the

previous chapter, is that we allow for non-additive utilities and dynamic re-allocation

of sensing resorces. In Chapter 5, we show that the first helps us to deal better with

heterogeneous sensors and tasks, while the second improves the quality of support to

high priority tasks over time.

Finally, in this chapter we propose a conceptual architecture to solve step-by-step the

dynamic MSTA problem, using both qualitative (i.e., semantic based) and quantitat-

ive (i.e., numerical utility based) metrics to evaluate sensor bundle utilities. We de-

scribe how our conceptual architecture combines a knowledge-based component with

an allocation mechanism to address the complex problem of evaluating heterogeneous

sensor bundle utilities. Given the flexibility of the dynamic MSTA model, we allow for

any heterogeneous sensor types and task types in the field, with the only assumption

that we can model explicitly their sensing capabilities and requirements; e.g., using the

ontologies in [44]. In fact, as highlighted in Chapter 2, our approach follows the ex-

ample of other modular solutions for heterogeneous resource allocation (e.g. [77, 32]),

which explicitly model resource capabilities and task requirements in order to split

the allocation process in two parts. First, it considers the type of resources required

by each task, using explicit capabilities/requirements representations (e.g. ontologies),

and then it decides the allocation of the actual resource instances (of that particular

type) to each task which might be competing for their exclusive usage.

The rest of this chapter is organized as follows. In Section 4.1, we cover some related

problems to event detection, 2-dimensional localization problems and then the more

abstract dynamic MSTA model. In Section 4.3, we then study in detail event detection

and 2D-localization MSTA instances with non-additive sensor utilities in a static set-

ting. We generalize them in Section 4.4 as a dynamic MSTA problem which allows for

both additive and non-additive sensor utilities. In Section 4.5 we provide an overview

of our conceptual architecture, and discuss central and distributed implementations of

such architecture, highlighting how the centralized is unrealistic in our dynamic set-
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ting. Finally, Section 4.6 concludes the chapter with additional discussion about the

formalized problems.

4.1 Related Work

In the past, sensor-task assignment problems in wireless sensor networks have been

studied mainly using simplified models in which utility from multiple sensors is as-

sumed to combine additively. For example, [37] uses distributed approaches to assign

individual sensors to tasks, assuming additive utility and no competition for the same

sensing resources between tasks. [106] analyzes a variant of the problem, considering

competition between different tasks for the exclusive usage of sensors. A richer prob-

lem motivated by conservation of resources in the static setting is addressed in Chapter

3. In this chapter, we consider more complex models to evaluate the utility of a bundle

of sensors and describe a conceptual architecture able to address this issue.

As noted in Chapter 2, directional sensors with tunable orientations have recently been

addressed for coverage [4] and target tracking [16] problems separately. For non-

directional sensors, both [3] and [49] propose algorithms to provide a certain level of

(cumulative) detection probability over a certain area. Target localization problems

have also been previously considered (e.g., in [125]) which develops a centralized

solution using a prior distribution of target location and sensor locations. A distrib-

uted solution for the localization problem is proposed in [60], but it does not consider

competition on resources between multiple simultaneous tasks.

Similarly to our hypothesis of non-additive utility of sensor bundles, in the MRTA

framework [40] where the authors study the ST-MR-IA problem instance, they make

no assumptions on the combined utilities of a group of robots. They model this problem

as a Set Partitioning Problem, proposing to solve it using pre-existent approximation

algorithms [7]. These algorithms do not scale well to large numbers of sensors and

tasks, which are instead features of our application domain, and they are not easily
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extensible to a dynamic environment, as noted in [40]. The algorithms proposed refer

to an entire sub-class of problems all having the same high level features, thus not

taking advantage of the specific characteristics of the problem instance. In Chapter 5,

we exploit features of the dynamic MSTA problem defined in this chapter to design a

scalable distributed system.

Event Detection. Our MAXCDP problem (defined below) lies within a family of

submodular combinatorial auctions. Guaranteed approximation algorithms are known

for this class of problems (see for example [68] and references therein). Our focus

here, however, is in the design of a model for the specific Multi-Sensor Task Allocation

problem where all tasks are exclusively of the “event detection” type. The aim of our

model is in fact to give an example of how non-linear utility functions are necessary

to evaluate the usefulness of sensors for particular task types. Some related problems

involving cumulative probabilities are considered in [36], but those problems involve

the product of task success probabilities instead of the sum. MAXCDP is a simplified

version of a much more complicated event detection problem defined in [121]. In

both problems, the underlying detection probabilities, which depend on the strength of

the event and the relative geomemtry, are given part of the problem input, and so the

calculation of them is beyond the scope of this thesis. A typical model, however, is

that detection likilhood falls like 1/rα based on distance r, for some α > 2 [31].

2D Localization. Problems related to the localization problem we study below, in

which pairs of sensors are assigned to targets, have recently received attention. [42]

studied what have been called Focus of Attention problems, with the objective func-

tions of (1) minimizing the sums of aspect ratios (i.e., the ratio of distance of sensors

to target and distance between sensors) or (2) minimizing (the sum of) the deviation of

the angle formed by sensor-target-sensor from ninety degrees. (These problems were

previously considered by [53] and [41], respectively. [46] gives hardness results for

a generalization of the formulation from [53].) [42] proposes a solution for similar

problems, but only for restricted settings, such as a deployment in which all sensors
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lie on a base line. Our problem differs in that both angle and distance from target are

incorporated into a single objective function, and in that both sensors and targets lie in

the plane.

The MSTA problems studied here, in which sensors are partitioned among multiple

tasks, are distinct from problems of sensor selection, in which a subset of sensors is

chosen typically to optimize for a single task, e.g. [12, 26], or where if multiple tasks

are considered then often individual utilities are assumed to combine additively, as

noted in Chapter 2. Finally, distributed coordination among different entities (agents)

in order to form coalitions to achieve a common subgoal in a system has been ex-

tensively studied by the multi-agent community and is referred to as coalition form-

ation problem; e.g., in [109, 115]. Different distributed and centralized architectures

have also been proposed in order to allocate heterogeneous resources to tasks in both

sensor networks and multi-robot system environments, e.g. [32, 114]. See references

in Chapter 2 for an in depth discussion of these.

4.2 Network Model

We consider a network consisting of static sensors of different types. The deployed

sensors are directional in nature. Examples of such sensors include imaging sensors,

which can be used for event detection, and directional acoustic sensor arrays. The

latter can be used both for event detection and, when directed in pairs towards an

estimated location, to accurately localize a target. Such sensors cannot be used to

perform multiple tasks unless these tasks are all in the same locality. Thus, we assume

that a sensor or a bundle of sensors can be assigned to at most one task at a time. We

also assume that sensors know their location.

In our model, a task is specified by a geographic location and a task type, for example,

detecting events occurring at location (x, y) or accurately localizing a target within a

small area known to contain the target’s estimated location. A larger-scale task, such as
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field coverage or perimeter monitoring, can be divided into a set of tasks, each having

its own location. Examples of such larger-scale tasks we envision include coverage of

a strategically important intersection, say, or of major crossing points along a border.

In such a case, the larger task would be divided into a not-unreasonable number of

independent (sub)tasks.

In the network, there may be multiple types of tasks, each having different sensing

requirements. In many scenarios, a task will require more than one sensor in order to

satisfy its requirements. Some task types may only require that the assigned sensors

are close to the task location, others may require that the collection of sensors form a

specific shape. For example, a larger number of sensors given to a detection task will

increase the detection probability, but even a single sensor may provide some help. For

other tasks, such as localization, there may be a minimum number of sensors required

to obtain any benefit, and the collection of chosen sensors must form a specific shape.

Task requirements are therefore complex and usually require a non-additive function to

evaluate the utility of a particular sensor bundle. The specific characteristics of a given

task’s requirements naturally allow us to restrict our attention to just the applicable

sensors. These characteristics are: (1) the type of sensor compatible with the task,

i.e. can a sensor type (or collection of sensor types) potentially satisfy the information

requirements of a task, (2) the utility value of a sensor or group of sensors to a particular

task, i.e. how well a sensor bundle might perform. The utility estimate can depend for

example on the distance from the task location, or relative angles between sensors and

in general can be either additive or non-additive.

As an example, we consider below two types of tasks incorporating these two require-

ments. The first task we consider is an event detection task in which the goal is to

detect activity at a specific location. This task can be accomplished using one or more

sensors. Each sensor has a detection probability that depends on its type and distance

from the target. A collection of sensors can be combined together to improve the de-

tection probability. Usually such tasks can use any sensor type that can detect activity;
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e.g., acoustic or seismic [129] and imaging sensors [75].

The second task type we consider is target localization or in general two-dimensional

localization, where the goal is to precisely localize a target within the small area where

it is expected, perhaps prompted by the detection of an event in this area or by some

prior knowledge. This type of task requires at least two sensors to triangulate the

location of the target on the field. An interesting property of this task type is that

assignment quality depends not only on sensor type and separating distance but also

on the angle between the selected sensors. In the model of [63], for example, two

sensors perform optimally if they are separated by a 90◦ angle and are as close to the

target as possible. Usually such tasks can be satisfied by acoustic or radar sensors [50],

or more in general phased (acoustic) arrays [48].

Note again that we first formalize both event detection and 2D localization MSTA

instances in a static setting in which all task requests arrive at the same time. We

then generalize these into a more abstract sensor-task allocation problem in a dynamic

setting which allows for both additive and non-additive sensor utilities in Section 4.4.

4.3 Two Non-Additive Sensor Utility Models

In this section, we study two particular MSTA problems, for event detection and two-

dimensional localization tasks in a static setting. We assume that all the tasks in each

problem instance are going to be of a single type, and we use this information to re-

fine the formulation of each problem. We explore these as examples of non-additive

sensor utility models to show that considering such utility schemes is necessary when

supporting sensing tasks in heterogeneous sensor networks, such as in an emergency

response operation. Below we provide a formal definition of both event detection and

2D-localization MSTA problems in a static setting.
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4.3.1 Event Detection

The goal of the detection task is to detect events in a specific location with the highest

probability. [121] gives a complex model of sensor assignment, with an objective

function based on the probability of detecting certain kinds of events, conditioned on

the events occurring and the number of sensors assigned to detect the event in a given

location.

We extract the kernel of this problem as follows. Given are collections of sensors and

tasks. Each task is to monitor and detect events, if they occur, in a certain location.

The utility of a sensor to a task is the detection probability when the event occurs. Let

Si → Tj indicate that sensor i is assigned to task j and let pj indicate Tj’s profit. Sensor

detection events are assumed, for simplicity and concreteness, to be independent, under

the assumption that false negatives are the result of random failure of the individual

sensor components. The objective is then to maximize the sum of cumulative detection

probabilities for tasks (weighted by task profits), given the probability eij that a single

sensor Si detects an event for Tj:

∑
Tj∈T

pj(1−
∏
Si→Tj

(1− eij)) (4.1)

Equation 4.1 is based upon the model that the responses of sensors are statistically

independent of one other. This is based upon the reasonable assumption that the ran-

dom fluctuations measured by the sensors are statistically independent given that the

sensors are either disparate over space and/or modality. We call the resulting prob-

lem the Cumulative Detection Probability maximization problem (MAXCDP). Here

the utilities are monotonic increasing but nonlinear, as sensors are assigned. [107]

proves that MAXCDP is strongly NP-Hard and that the hardness result remains even

for geometric instances, even if sensors and tasks lie on a line.



4.3 Two Non-Additive Sensor Utility Models 91

4.3.2 Two Dimensional Localization

For target localization through triangulation of the bearing measurements, two or more

sensors that are not collinear with the target are necessary to ensure full observability of

the target’s location. The expected mean squared error when incorporating imperfect

bearing measurements is well understood [57, 61]. Specifically, it can be shown that

when the bearing measurements are modeled as the true bearings embedded in additive

white Gaussian noise (AWGN) of mean zero and variance σ2, then the error covariance

of the (x, y) location of the target is approximately:

R =

[
n∑
i=1

1

σ2d2i

(
cos2 θi − cos θi sin θi

− cos θi sin θi sin2 θi

)]−1

where di and θi are the distance and bearing, respectively, from the target event to the

i-th sensor. We choose to model the uncertainty in the calculated target location, U ,

as a function of the expected mean squared error (MSE), which is U = trace{R}.

Alternatively, the uncertainty could be U = det{R} as described in [63]. We prefer

the trace because of its physical interpretation as the MSE and because it bounds the

determinant. As noted in [61], the error covariance R is related to the inverse of the

Fisher Information Matrix. Therefore, clearly this approach relates to the ones covered

in Section 4.1 and Chapter 2 as it uses the inverse of maximum-likelihood estimates of

target locations as an uncertainty measurement. Such uncertainty estimates are, in fact,

the common trait of most of the localization schemes, which as discussed are based on

entropy, mean squared error and information-gain approaches.

We consider the case in which only two sensors are used for each localization task,

which in most cases provides enough accuracy. More sensors lead to better accuracy

but for the purpose of analyzing a non-additive utility problem two sensors are suffi-

cient. As before, a sensor may not be assigned simultaneously to more than one task.

For the case of sensors 1 and 2 assigned to task j, the uncertainty of the localization
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computation is given by:

Uj = σ

√
D2

1,j +D2
2,j

| sin(θ1,j − θ2,j)|
(4.2)

We refer here to the localization problem as L. In this problem, (disjoint) pairs of

sensors are assigned to tasks, in order to minimize the sum of all tasks’ uncertainty

values; i.e., to minimize
∑

j Uj . (Note that σ is simply a scaling constant that without

loss of generality we ignore by setting to 1.) We may also define the quality Qj of

a task’s assignment as Qj = 1/Uj , in which case we may give a dual formulation

L’ of the problem where the goal is to maximize the total assignment quality; i.e., to

maximize
∑

j Qj . With the objective thus defined, task j’s quality Qj is maximized

(and its uncertainty Uj is minimized) when the separating angle is 90◦ and the distances

are minimal.

In the expression above, D1,j and D2,j are the distances between the target and two

sensors and θ = θ1,j − θ2,j is the smaller angle formed by the three points. Note that

expression 4.2 incorporates two incentives. First, the sensors should ideally be as near

to the target as possible; second, the ideal angle formed by the points is 90 degrees.

If there happens to be a minimum separating distance between any sensor-target pair

(say
√

1/2), then there is a minimum possible uncertainty value (in this case, 1).

The problem with the weights described is a special case of the NP-hard MAXIMUM

3D MATCHING problem [39]. In a weighted version of that problem, we are given

finite element sets X , Y , and Z and weights for the triples in a set T = X × Y × Z,

and the task is to choose a maximum-weight subset of T such that no element is used

more than once.
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4.4 Dynamic MSTA Problem Definition

We now generalize the two examples of non-additive utility MSTA problems into a

more generic environment in which we do not know a priori which type of sensing

tasks will need to be supported. Therefore, we need to allow for both additive and

non-additive functions to be used in order to estimate utilities of groups of sensors

(i.e. bundles) for each task. Note that in the static MSTA model in Chapter 3, sensors

were individually allocated and the utility of a bundle was calculated by simply adding

up the contributions of each single sensor allocated to a task. Therefore no benefit

would have come from explicit inclusion of the “bundle” concept in the static model.

Now instead, given that in the dynamic MSTA problem settings we allow for non-

additive sensor utility functions, including explicitly the bundle construct within the

model formulation gives the advantage of being able to associate non-linear utility

values directly to groups of sensors. An alternative approach to including explicitly

bundles in the model could have been to adopt the cyclic factor graph representation

proposed in [33, 102], where bundles are implicitly represented in the formalization

through the concept of factor. Our choice to explicitly include bundles in the model

has also driven the architecture conceptualization in Section 4.5. Such architecture

proposes to solve the dynamic MSTA model in two separate steps, where the first is

substantially based on the concept of bundles and in particular on the bundle utility

computation. This eventually led to the novel distributed allocation mechanism in

Chapter 5.

We first model this problem in a static setting and then we extend this to a dynamic

setting, by adding the time dimension in the problem formulation. We consider the

same network model in Section 4.2 with the variant that we now allow for tasks to

arrive and depart overtime and have different utility demands which need to be met by

the sensor bundle in order to satisfy a task. Unlike the MSTA problem presented in

Chapter 3 we do not consider a threshold on the utility demand, we in fact assume that

if the utility demand is not met then the task remains unsatisfied.
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Figure 4.1: Dynamic MSTA problem as a tripartite graph.

Given that tasks can vary in importance, in a dynamic setting we allow for a sensor

to be reassigned from a task with lower profit (which represents importance) to a task

with a higher profit. However, since some tasks are more sensitive to interruption in

service, preemption should be limited to tasks that can tolerate such interruption. For

example, localization is very sensitive to interruption whereas event detection is less

so. In the following problem formulation we allow for this behaviour by forcing a large

reassignment cost in case resources cannot be preempted from an ongoing task.

4.4.1 Dynamic MSTA Problem Model

Our dynamic MSTA problem can be modelled as a tripartite graph whose vertices

consist of a set of sensors S = {S1, . . . , Sn}, a set of bundles B = {B1, . . . , Bl} and a

set of tasks T = {T1, . . . , Tm} as represented in Fig. 4.1.

Each task Tj is associated with pj , representing the priority and/or importance of the

task. For each task Tj , we are given a set of sensor bundles, each of which would

at least minimally satisfy the task’s utility demand dj . Each possible assignment of a

bundle Bk to a task Tj is associated with a joint utility value ekj , which is an estimate

of how well a bundle of sensors is able to satisfy the sensing requirements of a task.

We make no assumptions on the utility function: it could be for instance subadditive,
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superadditive or linear. We assume that each of the bundle utilities would at least

minimally satisfy the task’s utility demand; i.e., ekj ≥ dj . Instead, if bundle Bk has a

joint utility smaller than the demand or it cannot serve task Tj at all, we set ekj = −1.

We describe more in detail how these values are computed in Section 4.4.2.

We define the profit as the utility ekj of a sensor bundle Bk allocated to the task Tj

scaled by the priority pj . Therefore the goal in this problem is to maximize the profits

of the satisfied tasks, subject to the constraint that no sensor or task is used more than

once. This problem is essentially the NP-hard SET PACKING problem [39], and an

offline1 version of it can be formulated as the following integer program (IP):

Maximize:
∑l

k=1

∑m
j=1 pjekj · ykj

Such that:
∑l

k=1 ykj ≤ 1, for all Tj ∈ T,

∑l
k=1

∑m
j=1 Iikykj ≤ 1, for all Si ∈ S

ykj ∈ {0, 1}, for all (Bk, Tj) ∈ B× T

The decision variables ykj indicate whether bundle Bk is assigned to task Tj . The first

set of constraints prevents more than one bundle from being assigned to any one task.

The second set of constraints prevents any sensor from being used more than once,

in multiple chosen bundles. Matrix I specifies the membership relationship between

sensors and bundles; i.e., Iik = 1 iff sensor Si appears in bundle Bk. We assume

that we are given this matrix as an input to the problem, this could for example be set

using knowledge of which sensor type is compatible with which task. In Chapter 5,

we analyze a method to compute both the elements of matrix I and the ekj joint utility

values, using knowledge based metrics combined with numerical utility functions.

Here our main interest lies in a dynamic (i.e., online) scenario. We include the time

dimension in the previous static IP formulation, in order to model tasks arriving over
1Note that with “offline” we refer to the static settings, where all the tasks arrive at the same time.
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time and having different durations. We adopt a discrete model of time in which we

have discrete timeslots t. Tasks might arrive at the start of any timeslot and may last

for any discrete duration. We assume that the profit for a task that lasts for multiple

timeslots is the sum of the profits earned over all timeslots during the task’s lifetime.

In such a dynamic scenario, we consider the possibility of preempting sensors already

serving other tasks in the case these might be more useful for satisfying newly arrived

higher priority tasks. Of course we want to avoid preempting sensors too often from

ongoing tasks otherwise the allocation strategy could interrupt the support of a task

too frequently, quite literally making sensors undecided as to which task they should

contribute. We express this by including in the objective function a cost cijj′ subtracted

from the profits for each individual preemption event; i.e., a sensor assigned to an

ongoing task Tj at time t− 1 which at time t is reassigned to a different task Tj′ . Thus

the goal in this problem is to maximize the profits of the tasks and minimize the cost

of the sensor-task allocation over all the timesteps. We formalize the dynamic MSTA

problem as the following IP:

Maximize:
∑

t(
∑

kj pjekjykjt −
∑

ijj′ cijj′zijj′t)

Such that:
∑

k ykjt ≤ 1, for all Tj ∈ T, t ≥ 0

∑
kj Iikykjt ≤ 1, for all Si ∈ S, t ≥ 0

ykjt ≤ Cjt, for all Bk ∈ B, Tj ∈ T, t ≥ 0

zijj′t ≥ yk′j′t + yk,j,t−1 − 1,

for all Si ∈ S, t > 1, Tj 6= Tj′ , Bk ∧Bk′ ∈ B

such that Iik = Iik′ = Cj,t−1 = Cjt = 1

ykjt, zijj′t ∈ {0, 1} for all Tj ∧ Tj′ ∈ T, Bk ∈ B, t ≥ 0

Similar to the offline formulation above, the decision variables ykjt indicate whether

bundleBk is assigned to task Tj at time t. The first set of constraints prevents more than
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one bundle from being assigned to any one task at each timestep. The second set of

constraints prevents any sensor from being used more than once at the same timestep,

in multiple chosen bundles. We introduce a third set of constraints which prevents a

bundle from being assigned to an inactive task; for this we define a matrixC asCjt = 1

if task Tj is active at time t and 0 otherwise. Additionally, we use a decision variable

zijj′t which is 1 if sensor Si was assigned (within some bundle Bk) to one ongoing task

Tj at time t − 1 but is then reassigned (within some bundle Bk′) to another task Tj′ at

time t. The fourth set of constraints forces zijj′t to be 1 if both yk′,j′,t and yk,j,t−1 are

equal to 1. These constraints apply only if sensor Si appears in bundlesBk andBk′ (i.e.

Iik = Iik′ = 1), and task Tj is active at both times t − 1 and t (i.e. Cj,t−1 = Cjt = 1).

Note that no reassignment cost is charged when a sensor switches from a task that is

ending.

As a generalization of the static MSTA problem in Chapter 3, the offline version of this

dynamic problem is again NP-hard. For small instances of the dynamic MSTA prob-

lem, optimal solutions can be obtained by solving this IP; given the problem hardness,

larger instances require to be solved with heuristics, which in our case are implemented

by the distributed system architecture in Chapter 5.

4.4.2 Computing Sensor Bundle Utilities (ekj)

In the IP formulation for the dynamic MSTA problem, we do not explicitly include

each task’s demand dj . The reason is that, differently from Chapter 3, we assume that

all the joint utilities ekj are already expressed with respect to each task’s utility demand.

We formalize the utility ekj with the following expression:

ekj =

ukj, if ukj ≥ dj

−1, otherwise
(4.3)

It is clear that we cannot compare directly raw utilities computed with different func-
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tions, as these usually have different meanings. For example, one might represent a

probability of detection and another a localization uncertainty, based on the task being

served and the types of sensors. Therefore we need to normalize those values (between

0 and 1) to represent the percentage of satisfaction of each task with a particular sensor

bundle assigned. We call this normalized value ukj , and since this represents the per-

centage of satisfaction for each task, this is also comparable among different task types.

The ukj values are computed using a joint utility function compatible with a particular

task type (e.g., event detection) and bundle type (e.g., acoustic arrays). The matching

process which is necessary to find which utility function is compatible with which task

type and bundle type is described in detail in Chapter 5. In particular in Section 5.3, we

describe as an example two joint utility models to compute the ukj bundle utilities for

both event detection and 2D-localization tasks. We extract the core of the static MSTA

problems described in Section 4.3 by restricting the evaluation of the utility to a group

of sensors (i.e., sensor bundle Bk) for just a single task Tj , without taking into account

competition. In fact, the issue of solving the competition among tasks requiring the

same sensors is included and resolved in the IP formulation of the dynamic MSTA

problem.

Each of the bundle utilities ekj ranges between dj and 1 if bundle Bk can serve task

Tj (with dj ∈ [0, 1]); i.e., the sensor type or the combination of sensor types in the

bundle can potentially satisfy the information requirements of that task. If the bundle

normalized utility ukj is smaller than the task’s demand dj or it cannot serve the task

Tj , i.e. the combined sensor capabilities do not match the task requirements, then we

set ekj = −1. This is to avoid that the IP may assign a bundle to a task that does not

need it, as the maximization optimization will force it not to use negative utilities.

By including the demand constraints in the calculation of the constant values ekj , the

IP problem formulation is easier to understand and provides a more flexible definition

of ekj . In fact, if necessary, we may remove the demand constraint completely or add

more constraints in the calculation of the utility (such as a minimum threshold as in
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Chapter 3). The alternative to this approach would have been to include the demand

constraints directly in the IP. We can achieve this by defining a 0-1 matrix G where

each element Gkj is 1 if and only if bundle Bk can serve task Tj with enough utility

(ukj ≥ dj). In addition it would be necessary to add a new set of constraints to the IP, so

that each bundle-task pair respects the demand constraints, i.e. ykjt ≤ Gkj . It is clear

from the alternative IP briefly outlined that this formulation would have deeply tied the

problem to the demand of each task. Our approach instead provides more flexibility in

dealing with the demand and an easier to understand IP formulation.

4.5 Conceptual Architecture

KB
Bundle 

Generator

Allocation
mechanism

Sensor
Network

User agent

Figure 4.2: Conceptual architecture for the dynamic MSTA problem.

In this section, we give an overview of a conceptual architecture which highlights the

steps necessary to find a solution to the dynamic MSTA problem. Such architecture is

comprised of four main components as shown in Figure 4.2: a mobile user in the field

(user agent), a Knowledge based (KB) bundle generator, an allocation mechanism,

and the sensor network. The user agent represents the point of entry of tasks into the
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system: it allows a mobile user to express their sensing requirements through a mobile

app interface, defining the task location in the field and the type of task required (e.g.

“localize vehicle”). The user also specifies its priority (pj), together with the utility

demand (dj) and the required duration of the task. Note that we assume the users on

the field are provided with mobile devices (such as smartphones, PDAs or tablets) to

access the system, and that a task might end before or last longer than its expected

duration.

The second component is the Knowledge-based bundle generator which recommends

bundles of sensors that are known to be “fit-for-purpose" for each particular task spe-

cified by the user agent. In terms of the dynamic MSTA problem it basically computes

the values of matrix I , generating all the possible bundles which could satisfy the

requirements of the task and computing the sensor bundle utilities ekj . This compon-

ent uses explicit representations of sensing capabilities and task requirements, such

as ontologies, which allows for an expressive and logically-sound way to represent

knowledge and reason with it. This is similar to the work which addresses allocation in

heterogeneous environments surveyed in Chapter 2 (Section 2.3.2). For example, [32]

uses the ontology in [19] to explicitly represent the capabilities of robots, while instead

[77, 126] use a knowledge-base implemented with a simple description language where

they include both information about resource type and quantity required for each. Also

our KB bundle generator uses both qualitative (i.e. knowledge-based) and quantitative

(i.e. numerical utility based) measurements in order to generate bundles compatible

with the task and evaluate their joint utilities. We describe in detail how we integrate

both of these metrics in Chapter 5 (Section 5.3).

The third component is the allocation mechanism which finds a solution to the dy-

namic MSTA problem, considering the output of the KB bundle generator for each

task generated. This consists of a set of coalitions of sensors that, if allocated to the

task, would satisfy the sensing requirements demanded by the user (i.e. ekj 6= −1).

Note that a single sensor bundle recommended by the KB bundle generator is enough
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to satisfy the sensing requirements of the task; therefore we will have a one-to-one

relationship between sensor bundles and tasks, as in the dynamic MSTA model in the

previous section. Finally, the sensor network, i.e. the last component of the conceptual

architecture, is configured according to the output of the allocation mechanism, and

begins serving the tasks by delivering sensor data to the user. Note that in our system,

this last component has the only purpose of allowing each sensor to present itself to

the other components, providing a description of its capabilities, physical attributes

and current status (e.g. currently serving a task).

The conceptual architecture described above formalizes the steps adopted in many

other works to achieve heterogeneous resource allocation. In Chapter 2 (Section 2.3.3),

we in fact highlighted how it is common to split the allocation process in two parts (e.g.

[32, 77]), by first considering the type(s) of resources required (i.e. qualitative match-

ing), and then the actual allocation decisions on resource instances matching the type(s)

required for each task (i.e. quantitative matching). The KB bundle generator and the

allocation mechanism components basically implement these two steps which are ne-

cessary and sufficient to automatically allocate sensors to tasks in our heterogeneous

environment.

For example, consider [32] where, first, an ontology-based reasoner is used to find

which kinds of robots are able to accomplish a certain task. This component then

provides such recommendations to a mechanism called “search for useful coalitions”,

which searches for groups of robots matching the “kind” recommended, able to po-

tentially satisfy the task through collaboration. These two mechanisms are included in

our KB bundle generator which similarly uses an explicit knowledge-based matching

process (e.g. ontology-based) followed by the computation of all the possible sensor

bundles matching the type recommended by the KB (i.e. implementing the “search

for useful coalitions”). Moreover similarly to the “coalition instantiation algorithm”

in [32], our conceptual architecture uses an allocation mechanism to solve the dy-

namic MSTA problem, sorting out the contention among different tasks with overlap-
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ping requests (i.e. requesting the same sensing resources). The solutions proposed in

[77, 126], also assume a component similar to the KB bundle generator which they call

“task manager”; such component contains a knowledge-base of resource types com-

patible with each different task, including information about the cardinality of each

resource. Both works then implement an allocation mechanism for finding a solution

to the competing needs of different tasks with the aim to maximize the “welfare” of

the set of tasks (one using a genetic algorithm and the other a combinatorial auction).

For other examples we refer to Section 2.3.3, which highlights that our conceptual ar-

chitecture includes the necessary and sufficient steps for solving our dynamic MSTA

problem.

The novelty of our conceptual architecture consists mainly in describing explicitly a

modular approach to solve the ST-MS-IA-HE dynamic problem step-by-step, formal-

izing what had been adopted in previous approaches for both MRTA and multi-agent

coalition formation problems. Such architecture integrates, a knowledge based mod-

ule with an allocation mechanism and includes the user agent in the mechanism as

the point of entry of tasks in the system. These components offer flexibility in the

automatic choice of sensors while also hiding the complexity of this choice from the

user. Below we also describe how mobile smart-devices could be used to deploy com-

ponents of such an architecture and, in particular, can allow a user to submit tasks to

the system through a mobile app (i.e. implementing the user agent). This conceptual

architecture could be implemented as either a centralized or a distributed system. In

a centralized system we collect all the task requests in a central node such as a base

station, while in a distributed approach we process the task requests distributedly. In

the next sections, we consider the fundamental issues with a centralized approach in

our dynamic environment; this pushes us in Chapter 5 to focus on the evaluation of a

distributed implementation of our conceptual architecture.

Note that the user agent and the sensor network components are always “distributed”:

in fact, the first resides on the user mobile device where its only role is to allow users
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to state sensing tasks and submit them to the system; while the second allows sensors

(which are intrinsically distributed) to present their features and status to the allocation

system. Below we therefore analyze the possible choices that we could make for the

remaining two components, i.e. KB bundle generator and allocation mechanism. We

describe two types of architectures, one where the allocation mechanism is centralized

and one where it is distributed.

4.5.1 Centralized Allocation Mechanism

In many emergency response and military operations, we might assume the presence of

one or more base stations collecting information about the environment, thereby having

a global view of the ongoing tasks. Moreover the mobile devices used in the field

are usually provided with cellular/GPRS/3G connection and therefore could use these

technologies to remotely communicate with a base station. As a consequence we might

be able to implement both the KB bundle generator and the allocation mechanism on a

central server (as shown in Figure 4.3) and use mobile devices only to create new tasks

and submit them to the system; i.e., each mobile device exclusively contains the user

agent. The base station could then continuously execute a centralized online allocation

algorithm receiving task requests over time and providing feasible allocation decision

for each task, sorting out the competition for sensing resources with other tasks and

maximizing the utility.

In [47], surveyed in Chapter 2, the authors showed that centralized bundling mechan-

isms in static settings usually deliver the best performance in terms of solution quality

given their global view of tasks and resources. However in a dynamic scenario using

a centralized allocation mechanism is unrealistic, first of all because information flow

from the edges of the network to the central base station is prone to disruption. For

example, if a certain area becomes “hot”, due to an explosion and/or a collapsed build-

ing, and suddenly many mobile users (military or emergency responders) occupy the

same area, this often leads to an overload of the mobile telecommunication network
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Figure 4.3: Centralized system architecture.

and therefore to a loss of connectivity with the base station. Given that we need to en-

sure support to sensing tasks requested by mobile users also when there is no satellite

connectivity with the base station, as a backup in such situations we could redirect the

communications to/from the central base station via the sensor network. However, this

would reduce the lifetime and capacity of the sensor network and therefore it is not

desirable.

Moreover, in a dynamic setting, a centralized system will not have a complete picture

of what is happening at the edges of the network, considering that once the information

arrives at the base station it might already provide an out-of-date picture of the field.

Therefore, trying to accumulate data on task requests and sensor statuses in a central

node in order to optimize the allocation decisions is flawed from the start. Finally, note

that another option is to deploy the KB bundle generator on the user mobile devices

together with the user agent, while still keeping the allocation mechanism centralized;

however, also this variant of the centralized architecture would have the same issues

discussed above.
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4.5.2 Distributed Allocation Mechanism

Given that using a centralized allocation mechanism is unrealistic in our dynamic set-

tings, in this section we briefly describe a distributed approach, shown in Figure 4.4,

which we then implement and evaluate in Chapter 5. This system is able to work

autonomously without the presence of a base station, thus addressing the main prob-

lem with the centralized approach. This architecture moves the KB bundle generator

on the users’ mobile devices and the allocation mechanism on both mobile devices and

the sensors composing the network.

Note that the user devices communicate directly (e.g. using WiFi or Bluetooth) the

requests for bundles generated by the KB bundle generator to the sensors composing

the network; then the sensors are able to autonomously negotiate through a distributed

allocation mechanism which is the best task to serve as part of a bundle and communic-

ate back the decision directly to the user agents on the mobile devices. This addresses

the main concern of the centralized architecture, which is that we can avoid collect-

ing all of the information in a central base station by taking decisions using only local

knowledge, thus always using an up-to-date picture of what is happening in the vicinity

of each node.

Note that another option could have been to move the KB bundle generator to the

sensors, leaving only the user agent on the mobile device. This architectural choice

is not ideal given the possibly limited computational power and the valuable battery

lifetime of sensors. Finally, the downside of the distributed architecture discussed

above, compared to the centralized, is that it does not offer a global view of what is

happening on the field. Although this might be desirable, e.g. for command and control

purposes, it is not as important as providing support to task requests also in the case of

loss of connectivity with the base station, and therefore it does not justify the use of a

central allocation mechanism.
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Figure 4.4: Fully distributed system architecture.

4.6 Conclusion

In this chapter, we presented a formal model for a dynamic MSTA problem (ST-MS-

IA-HE) supporting tasks which might require non-additive functions to evaluate the

utilities of sensors. We extended this problem to include a reallocation cost in or-

der to minimize as much as possible the preemption of sensors from ongoing tasks.

This model was developed by generalizing two specific MSTA static problems for

event detection and 2D localization tasks, which we used to show the need to consider

non-additive sensor utility models when dealing with task allocation in heterogeneous

sensor networks. This led us to include support for both additive and non-additive util-

ity functions in our more general dynamic MSTA problem formulation. In addition, in

Chapter 5, we use the core of the two static problems, for event detection and target

localization, as examples of non-linear sensor utility functions in order to evaluate our

distributed solution.

As already mentioned in Chapter 1, the dynamic setting is a better fit for emergency
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response scenarios which typically require to respond promptly to tasks and to react

to changes in the environment. In addition allowing for non-additive sensor utilities

in our model adapts well to the complex task sensing requirements and the many dif-

ferent sensor types which are available in such environments. For these reasons, we

considered the problem of assigning groups of sensors (i.e. bundles) to tasks, allowing

that different combination of sensors might provide different usefulness to each task.

Moreover, each task type (e.g. detect vehicle) is allowed to use a different utility func-

tion to evaluate such groups of sensors, which makes the model flexible enough to be

used with potentially any kind of tasks and sensors (although limited to Single-Task

sensors).

On a side note, the two static MSTA problems formalized for event detection and

2D-localization tasks can be helpful also in developing ad-hoc solutions. In [107] we

proposed a variety of algorithms for these specific problems2. From those algorithms

and their evaluation, we note that formalizing MSTA problems in such restricted scen-

arios, where we know in advance that we need to provide support exclusively to a

single type of task, can be used to develop ad-hoc solutions with good approximation

results. However, modelling a sensor-task allocation problem for support to a single

type of task necessarily ties us to that specific scenario, and the solutions developed for

such problems are usable only in those environments. The dynamic MSTA problem

formulation, instead, allows for potentially any task and sensor types. In fact, it allows

for both additive and non-additive utility functions to be used to evaluate “how good”

is a sensor bundle. Mechanisms designed to solve this more general problem can there-

fore better support scenarios in which there are multiple task types and heterogeneous

sensors. It follows that mechanisms developed for solving the dynamic MSTA problem

can be designed without apriori knowledge of which task and sensor types will appear

in the field.

Finally, in the dynamic MSTA problem presented, one of the most challenging parts

2As explained in Chapter 1, these algorithms were not included in this dissertation because the core

contribution of the thesis author is in the formulation of these problems.
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is the actual computation of the inputs to the model; in particular, the joint utility ekj

of a sensor bundle and the computation of the membership matrix I , which defines

the allowed bundle members. In fact, as observed already, sensing tasks usually re-

quire complex sensing capabilities which can be only provided by a combination of

sensors, like, for example, an infrared camera working together with an acoustic array.

Our model assumes that for each particular bundle we can compute these parameters.

In the last part of this chapter, we proposed a conceptual architecture which is able to

tackle the complexity of the dynamic MSTA problem, addressing separately the bundle

formation and the actual allocation issues. The approach adopted by this architecture

is similar to others in the literature, it is mainly composed of a knowledge-based com-

ponent and an allocation mechanism. The first one integrates qualitative measurements

(e.g. semantic based) by establishing which sensor types could potentially serve each

task type, with qualitative measurements, such as both linear and non-linear utility

functions to calculate the joint utility of feasible sensor bundles. The allocation mech-

anism then sorts out the competition among tasks requiring the same sensing resources.

We discussed the pros and cons of choosing different strategies for implementing the

conceptual architecture, in particular as a centralized and distributed system, highlight-

ing how the distributed implementation is a more desirable choice.
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Chapter 5

A Distributed System for Dynamic

MSTA

In this chapter we propose a distributed system to solve the dynamic MSTA prob-

lem presented in Chapter 4. As already noted, we focus on a more realistic scenario

compared to the one in Chapter 3 where we deal better with heterogeneous sensors,

providing support to richer knowledge-based task requests expressed by emergency

responders in the field.

We focus on the implementation of our conceptual architecture as a distributed system.

To implement such a system, we develop a protocol (allocation mechanism) for both

sensors and user devices by extending a pre-existing coalition formation mechanim

[115]. Through this protocol sensors and user devices can autonomously negotiate

which tasks should be served. We show that it is feasible to do part of the sensor-task

matching on the user device by developing a knowledge-based component (KB bundle

generator) as part of a prototype mobile app. The purpose of such a prototype is also

to demonstrate how a user could interact directly with the sensor network, in particular

submitting sensing tasks to our distributed system (used agent). Note that the “smart”

devices are an integral part of our distributed architecture, thereby essential to find a

solution to the dynamic MSTA problem.

To evaluate our distributed architecture, we first measure the performance of the know-

ledge based component on a real mobile device (an Apple iPod Touch 2nd generation)
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implemented as part of our prototype mobile app which provides a user interface to

the system. Then, we measure the performance of the allocation protocol by running

simulations on randomly generated problem instances using the two non-linear utility

models presented in Chapter 4 as a way to evaluate sensor bundles for two particu-

lar task types (i.e. event detection and 2D-localization). Our simulation results show

that it is feasible to do part of the sensor-task matching on the mobile device and that

our architecture is scalable, performing well in terms of overhead traffic and allocation

quality when increasing the task arrival rate over time.

The main contribution of this chapter is the distributed system which implements our

conceptual architecture, addressing the dynamic MSTA problem using both qualitative

(i.e. knowledge based) and quantitative (i.e. numerical utility based) metrics. Its

novelty consists in the interaction between mobile devices and sensor nodes formalized

in both our distributed protocol and knowledge based component. We therefore answer

to Research Question 2 by developing a scalable solution for the MSTA problem (ST-

MS-IA-HE) in a dynamic setting which maximizes sensor utilities and prioritizes the

most important tasks, allowing for both additive and non-additive sensor utility models

and richer knowledge-based requirements for each of the user generated tasks.

The remainder of this chapter is organized as follows. In Section 5.1 we analyze which

features we need to add to the allocation protocol chosen as a skeleton for our architec-

ture and discuss some related works. In Section 5.2 we give an overview of the distrib-

uted system based on the conceptual architecture solving the dynamic MSTA problem

in Chapter 4. We describe the Knowledge-based bundle generator component of our

system in Section 5.3 which supports the allocation protocol described in Section 5.4.

In Section 5.5 we show the performance of our distributed system implemented in a

discrete time event simulator. We also include the benchmarks of a prototype mobile

app integrating the KB bundle generator, and showing the user interface which allows

a user to submit tasks to the system (user agent). Finally, Section 5.6 concludes the

chapter outlining some future work.
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5.1 Background

The MSTA problem instance in this chapter is again identified by ST-MS-IA-HE and

specifically is the dynamic MSTA problem formulated in Section 4.4. A version of the

ST-MS-IA-HE is referred to as the disjoint coalition formation problem in the multi-

agent community in [40] and it has been formally studied in [109] and [115]. A well

known efficient allocation protocol has been proposed in [115] for the static setting

in generic multi-agent systems. We therefore adapt it to deal with our problem, in

particular by extending it with four main features to deal with a dynamic setting and to

take advantage of the mobile user devices in the field.

5.1.1 Protocol Extensions

First, the original protocol assumed the presence of a central “matchmaker” agent to

which the other agents would have asked if their capabilities were a fit for the task’s

requirements — we instead take advantage of the user’s mobile devices which can

host such a “matchmaker” which we call Knowledge-based bundle generator. We also

completely move the calculation of the joint utility values of sensor bundles to the

user devices, whereas in [115] it was carried out distributedly on the sensors with a

preliminary protocol stage aimed at the calculation of the “coalitional value”.

The second feature which we introduce is the ability for a task to request a different

bundle of sensors in case the resources requested the first time were not available – we

call this the rebid mechanism. There are in fact multiple ways of satisfying a task, as

stated in [126] which considers alternative coalitions for satisfying a rescue task if the

first attempt to get those resources fails. In general this extension is inspired by the

concept of substitute goods widely used in economics [10].

The third extension consists of making more explicit the preemption mechanism which

is mentioned in [115] when the authors describe the protocol implementation in the

RETSINA agent system. We allow preemption of sensors which are already serving



5.1 Background 112

a task, whereas the original protocol allows only preemption of sensors which have

already committed to a task but have not already started to serve it. Our approach is

similar to the multi-robot system architecture proposed in [18] which assigns tasks to

robots with first-price auctions but allows (in some circumstances) later reassignment.

Finally, in a dynamic setting where each task lasts for a different time interval, provid-

ing support to the task too late might be useless for a user. We therefore extend the

protocol by considering deadlines or expiration time before which we need to decide if

we can serve the task. Although we consider this feature of the dynamic problem, we

keep our focus on maximizing the overall user/task “happiness”, without trying to re-

duce the tasks’ waiting time. We achieve this by using the rebid mechanism mentioned

above, which in the case of failure of the first request for sensors allows the protocol to

request another bundle if there is still time to satisfy the task.

5.1.2 Architectures & Techniques

Various modular approaches and architectures have been proposed for allocating het-

erogeneous resource bundles to different tasks. These often adopt a similar approach

to ours where they split the allocation process into two parts: resource-task capabil-

ity fitting, followed by the actual evaluation of utility based metrics using information

about the actual resource instances. Some examples include [81] which considers the

problem of forming virtual organizations by aggregating multiple service providers,

[77] proposing an economic based approach to solve sensor management and finally

[32, 114] performing ontology-based allocation of heterogeneous robots/sensors to het-

erogeneous tasks. We refer to Chapter 2 for a more detailed overview of other archi-

tectures, we note that many of these architectures assume a central knowledge-based

matchmaker to recommend which type of resources should be used. Our system dif-

fers from those as instead we deploy the matchmaker component on the user “smart”

devices, making thus the system fully distributed.
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Similarly many techniques have been proposed for coordination among different entit-

ies (agents) in order to form coalitions to achieve a common subgoal in a system. For

example, the mediation algorithm [101] which allows agents to achieve a common goal

while gradually revealing their information (e.g. utility). Such an algorithm considers

the presence of a central mediator agent and therefore it is not fully distributed. An-

other example is provided by [100] which proposes a centralized heuristic to achieve

coalition formation with spatial and temporal constraints. Finally, [106] provides a

proposal-based algorithm for allocating directional sensors to tasks but assumes ad-

ditive utilities. We chose to adapt the disjoint coalition formation protocol in [115]

because of its fully distributed features, given that it does not assume a central medi-

ator agent, and it is prone to be easily extensible to our dynamic settings. For a more

extended discussion of different techniques and architectures we refer to Chapter 2.

5.1.3 Mobile Device & Simulation Environment

Recent work has addressed how mobile devices could be used as a repository of large

quantities of semantic data, such as triple stores expressing relationships between ob-

jects, and how retrieving this data can be made efficient. In [127], for example, the

authors propose a conference guide implemented as a mobile app on iPhone and iPod

Touch. They show that by using the Hexastore indexing technique [128], it is feas-

ible to efficiently query and store large amount of semantic data on mobile devices.

Another example is provided by [25] which studies how much semantic data can be

stored and processed on small devices (in their case the ASUS EEE PC 700 netbook),

so that they could also evaluate how much of the data have to be processed remotely

on a server. The authors developed a set of benchmarks to evaluate the performance of

existing semantic web tools (e.g., query engines, triple stores and reasoners) in terms

of disk space and query response. They argue that current semantic web tools are de-

veloped mainly for large-scale applications and that more work is needed to develop

semantic software infrastructures dedicated to small-scale applications running with
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limited hardware resources. Similarly to [127, 25], in our distributed architecture we

store semantic data about which different set of sensor types can fit different task types.

In order to efficiently store this data, in Section 5.3, we adopt a much more trivial ap-

proach by simply flattening the knowledge base into a look-up table, and we then study

the performance of querying such data and storing it in the optimized database engine

in iOS (SQLite). Note that it is out of the scope of this dissertation to develop efficient

semantic web based techniques to store and query data on a mobile device, thus our

choice of using a standard look-up table.

We use the REPAST Simphony agent-based simulation environment1 to evaluate the

distributed allocation protocol component of the architecture proposed in this chapter.

This tool has been used in recent works [72, 111] to simulate protocols for wireless

sensor networks and emergency response scenarios. For example, [72] describes a

simulation platform specifically designed to support the development of sensor net-

work middleware services. The authors use REPAST as a base for developing this

platform, but unfortunately this tool was not publicly released. In Section 5.5, to eval-

uate our distributed allocation protocol, we implement a REPAST simulation whose

design was largely inspired by [72]. Finally, note that we chose REPAST over other

simulators commonly used in WSN research such as NS22 or TOSSIM [71], because

REPAST provides a fast-development infrastructure for implementing and evaluating

distributed collaborative behaviour of sensor nodes. As noted in [72], NS2 provides

support for many low level communication protocols (e.g. TCP, routing, multicast) but

lacks tools for fast implementation and evaluation of node collaboration protocols at

the OSI application layer (which is our case); TOSSIM instead is focused on emulating

low-level operations of TinyOS-based WSNs.

1http://repast.sourceforge.net/
2http://isi.edu/nsnam/ns/
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5.2 Distributed System Overview

The distributed system moves the KB bundle generator and the allocation mechanism

onto the users’ mobile devices and the sensors comprising the network. This is based

on the idea that nowadays the computational power and storage on a mobile device,

such as a smartphone, is comparable to that of an average personal computer, albeit

with more limited running time due to the limited battery life. It is therefore more

convenient to deploy as many components as possible on those devices rather than on

sensors, which might also be difficult to access and even more energy constrained.

Below we propose how we may adapt the protocol for the disjoint coalition formation

problem [115] to solve our dynamic MSTA problem, through which the sensors are

able to autonomously negotiate which is the best task to serve as part of a bundle.

Note that this protocol was designed for generic multi-agent systems, so we need to

adapt it in order to include the mobile device as a “task entry point" and as the only

entity able to generate a list of sensor bundle candidates for each task. In addition, this

protocol was designed for static settings while instead here we deal with a dynamic

setting. The adapted protocol runs on the two main entities composing our distributed

system: sensors and user devices. When the user creates a task (through the user agent

implemented as the mobile app in Figure 5.1) the KB bundle generator on the same

device then computes feasible sensor bundles (setting the values of matrix I) and their

joint utilities (ekj), we call these pairs bids. These are then sent to the sensors which,

using the extended disjoint coalition formation protocol, choose greedily the task to

serve based on the average contribution of utility per sensor until there are no more

bids.

Thanks to the layered approach derived from the conceptual architecture in Chapter

4 which integrates a knowledge-based component with an allocation protocol, we

provide flexibility in the choice of sensors to use in order to satisfy the users’ task

requirements. Providing a step-by-step solution to the dynamic MSTA problem, using

both qualitative (knowledge based) and quantitative (numerical utility based) meas-
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Figure 5.1: Fully distributed system architecture.

ures. In the next sections, we describe in detail the Knowledge-based bundle generator

and the allocation protocol.

5.3 Knowledge-Based Bundle Generator

Task allocation in heterogeneous sensor networks requires knowledge of which sensor

types are applicable to which kinds of task. We separate two issues: whether a type

(or combination of types) of sensor can potentially satisfy a task, and how well might

particular sensor instances perform on a given task. We encode this knowledge in a

knowledge base (KB). The KB stores, for each kind of task, each type (or combination

of types) of sensor that can theoretically achieve that task, and a joint utility model that

allows us to compute the utility of particular sensor instances for that task. We refer

to the types of applicable sensors as bundle types (because they determine the types of

sensors that form our allocated bundles). These types may be defined using a sensor

ontology, such as the one described in [44].

Figure 5.2 shows the reasoning process enabled by the KB in more detail. For each
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newly created task Tj at time step t the KB recommends a Joint Utility Model (JUM)

to compute the sensor bundle utility and a Bundle Type (BT) to select the sensor types

compatible with the task. The identification of Bundle Types was originally implemen-

ted as described in [44], by dynamically matching the sensing capabilities provided by

each single sensor and the capabilities required by each task type. Sensor and task

features were defined using ontologies expressed with the Web Ontology Language

(OWL); the matching process was implemented using the Pellet open source OWL

reasoner3. The output of this step is a set of Bundle Types, where each of the entries

is composed of a set of sensor types which all together would satisfy the informa-

tion requirements of the sensing task. The BTs recommended at this stage are just

sets of sensor types, and they do not contain any information regarding the number of

instances to choose for each sensor type in the BT.

To determine the number of instances of each sensor type assigned to a task we use a

Joint Utility Model. Such a model consists of a suggested maximum, minimum or exact

number of sensor instances for each of the sensor types forming a BT (e.g., exactly

two sensors for 2D localization tasks using acoustic arrays). Moreover it includes

a utility function which is used to compute the estimated value ekj for a group of

sensor instances implementing the recommended BT. The KB indicates which JUMs

are appropriate for each task type. Each JUM is only compatible with certain sensor

types (or combinations of these), so the final step in the reasoning procedure is to match

applicable JUMs with BTs.

To illustrate the above, consider two task types: “event detection” and “target local-

ization”. As result of the first reasoning stage the reasoner suggests to use BT1 =

{V ideoCamera,AcousticArray} for “event detection”, i.e. we can use both video

cameras and acoustic sensors; instead BT2 = {AcousticArray} for “target localiza-

tion”. Later on it associates one or more JUMs to each recommended BT by searching

the knowledge base. In this case we assume that in the knowledge base there are

3http://pellet.owldl.com/
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Figure 5.2: Reasoning procedure.

just two utility models compatible with either of the two BTs. Based on the models

proposed in Section 4.3 we associate to the event detection task a variant of the Cumu-

lative Detection Probability model (which we call CDP) and to the target localization

the 2D-localization function (referred to as 2D-Loc) based on the distance and angle

from the target. Therefore for the event detection task the reasoner will recommend

({V ideoCamera,AcousticArray}, CDP); instead for target localization it will out-

put ({AcousticArray}, 2D-Loc). Note that this allows us to be very flexible in terms

of allocation as the same task could be satisfied using different combinations of BTs

and JUMs, and therefore would increase the chances of satisfying that task.

Below we list the JUMs mentioned above which will be also used in Section 5.5 for

evaluation of the allocation protocol. Note that these functions have been chosen as

examples and are extensively discussed in Section 4.3. In specific, we extract the core

of the static MSTA problems described in that section by restricting the evaluation of

the utility to a group of sensors (i.e., sensor bundleBk) for just a single task Tj , without

taking into account competition. In fact, the issue of solving the competition among

tasks requiring the same sensors is included and resolved in the IP formulation of the

dynamic MSTA problem which is implemented by the allocation protocol in Section

5.4:
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CDP Given a set of candidates of size l for a single task, this model chooses the k

sensors maximizing (1 −
∏

Si→Tj(1 − eij)), where eij is the probability that a single

sensor Si detects an event for Tj . Here the joint utility is monotonically increasing as

sensors are assigned but non-linear. Note that in Section 5.5 for our simulations we will

choose k = 10, and as an example of detection probability eij we use the same formula

described in Chapter 3 which follows typical signal attenuation models in which signal

strength decays inversely with distance squared: eij = 1
1+D2

ij/c
if Dij ≤ Rs (with

c = 60) and 0 otherwise.

2D-Loc Given a set of candidates of size l for a single task, this model chooses the

best pair of sensors which maximize 1/Ui,i′ , where U represents the uncertainty of the

target localization provided by the pair (Si, Si′). The uncertainty is given by Ui,i′ =√
D2

i+D
2
i′

| sin(θi−θi′ )|
; where Di and θi are the distance and bearing, respectively, from the task

location to the i-th sensor. This function is maximized when the angle separating the

sensors is 90◦ and the distances are minimal. It is clear that also in this case the joint

utility is non-linear.

Note that, as noted in Section 4.4.2, we cannot directly compare utilities computed

with the first and with the second JUM because the objective function values have dif-

ferent meanings: CDP computes the cumulative detection probability, and 2D-Loc the

opposite of the uncertainty of the target localization. Therefore we need to normalize

those values (e.g. between 0 and 1) to obtain the percentage of satisfaction of the task

with a particular utility value generated with one of the two models.

5.3.1 Lightweight KB Bundle Generator

The original implementation of the reasoning process is computationally expensive [44]

due to the exponential-time complexity of the classification algorithm used by the Pel-

let reasoner. However, because the task types and sensor types are relatively stable (it

is rare for new kinds of sensor or task to become available during an operation) it is
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Figure 5.3: Lightweight KB bundle generator.

feasible to pre-compute the results of the reasoner and store these in a look up table;

such an implementation is more suitable for deployment on a mobile device, to avoid

wasting battery life on expensive computation. The only assumption that this approach

makes is that the device will have a sufficiently large storage capacity, which is reas-

onable for modern mobile devices. The structure of the look up table is represented in

Figure 5.3. Note that each row of the table is a tuple composed of a Task Type (e.g.,

represented as an ID), a Bundle Type and a JUM.

5.4 Allocation Protocol

In this section we describe how we have extended the disjoint coalition formation

protocol in [115] to solve the MSTA problem instance. The protocol runs on sensors

and user devices. When a task is created by a user, the KB bundle generator computes

the feasible sensor bundles and sends the request to the involved sensors. These, then,

greedly decide which task to serve using the allocation protocol.

The protocol, therefore, consists of two main stages: in the preliminary stage – which

we call initial negotiation – the user devices compute and distribute the bids to the

sensors by first discovering which sensors are good candidates for each task; in the

main stage — called bundle formation — the sensors decide upon which bundle to join
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in order to serve a particular sensing task. The initial negotiation, which we illustrate

in Figure 5.4 using an example, works as follows:

1. At time t the users create tasks on their devices, characterized by a task type,

a priority, an expected duration, a deadline to be satisfied, a utility demand and

a geographical area of interest — representing the entire geographical area on

which the sensing task will take place. E.g., “event detection” at (lat1, long1)

within a circular area of radius 50 meters.

2. The user devices query the sensors in the geographical area of interest, asking

for their location, sensor type and current status (unallocated or already allocated

to another task).

3. The user devices then generate bids of the type bidα = 〈Uα : (Tj, Bk, vα,t)〉,
where Uα is a user, Tj is a task generated by Uα, and Bk is the bundle of sensors

with highest value vα,t computed as:

vα,t(Tj , Bk) =


pj · ekj − ckj,t if ekj ≥ dj ,

0 otherwise

where ekj is calculated by the Knowledge-based bundle generator using the

recommended Joint Utility Model and considering only the sensor instances of

the types specified in the Bundle Type which is instantiated byBk. Also note that

we subtract from the profit the cost ckj,t proportional to the number of sensors

that are already tasked and that we would need to preempt from other tasks at

time t, as discussed in Section 4.4; i.e., ckj,t =
∑

ijj′ cijj′ · zijj′t with Si ∈

Bk. We calculate the cost cijj′ of switching each sensor by halving the average

contribution of sensor utility to the new task scaled by its priority; i.e., cijj′ =

pj
ekj

2|Bk|
.

4. Finally the user devices send to all the sensors included in the bundle Bk the bid

bidα.
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Sensor 2 User B

Request-Info-For(B)

Sensor 1

A.Post-Info(S1)

Request-Info-For(B)

User A

Request-Info-For(A)

Request-Info-For(A)

S2.Post-Bid(bid2)

S2.Post-Bid(bid1)

bid 2 

B: {T2, (S1, S2), 0.8}

bid 1 

A: {T1, (S1, S2), 0.9}

S1.Post-Bid(bid1)

S2.Post-Bid(bid2)

B.Post-Info(S1)

A.Post-Info(S2) B.Post-Info(S2)

Task T1 created Task T2 created

Figure 5.4: Example for the initial negotiation protocol.

In the protocol we do not specify any particular discovery mechanism. In the simula-

tions instead we use a very simple device discovery policy based on the communication

range of sensors and users. We do not consider the overhead generated by the discov-

ery process; i.e., step (2) of the initial negotiation. This will depend highly on the

discovery mechanism which will be implemented on the nodes, e.g. [65], therefore we

leave this choice to the reader.

The main stage of the protocol is represented by the bundle formation part which

mainly resides on the sensors, and for which we provide an example in Figure 5.5:

1. Each sensor node keeps a list of bids in which it is involved sorted by decreasing

average value uij,t = vα,t/|Bk| where |Bk| is the cardinality of bundle k (which

follows the heuristic suggested in [115]) .
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2. If the sensor is currently not serving any task, it chooses the bid to which it can

contribute the most, i.e. with the highest uij,t. It then sends an ACCEPT message

to the sensors that are present in this bid (i.e. to all Si ∈ Bk).

3. The sensor clears this bid (i.e. it officially commits to that task) only when it

receives an ACCEPT message from all the sensors involved in the bid. This

ensures that a bid is cleared if and only if all the sensors in the bid agree to clear

it.

4. When a sensor node clears a bid, it sends a CLEARED to all its neighbors — the

set of sensors with which it shares some bids and the users who generated those

— notifying them that it has cleared (i.e. it was allocated to task Tj) and all bids

including that sensor should be dropped from consideration.

5. The sensors that receive a CLEARED message from another sensor, delete from

their bid list all the bids in which the sender sensor is included. The sensors stop

the execution when they clear a bid, when their list of bids is empty or when

an ACCEPT timeout for receiving all the ACCEPTs from the sensors in Bk is

expired. If a sensor remains unallocated, it sleeps until it receives the next bid

starting again from step 1.

6. The users that receive a CLEARED message from a sensor assigned to another

user’s task, delete the sensor from the set of neighbor sensors and recompute a

new bid with the remaining sensors through the KB bundle generator. The users

stop execution when they obtain a CLEARED message from a sensor assigned to

one of their tasks or when a convergence timeout for satisfying the created task

is expired since the beginning of the negotiation.

Note that if a task is not satisfied, the user device generates a new bid asking for an

alternative sensor bundle to the KB bundle generator until a convergence timeout to

satisfy the task expires (Step 6). This extends the original protocol in [115] with a

rebid mechanism including an expiration time for the task, as discussed in Section
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Sensor 2 User B

S2.Accept(S1, bid1)

Sensor 1User A

Task satified

S1.Accept(S2, bid1)

S1.Cleared(S2, bid1)

S2.Cleared(S1, bid1)

A.Cleared(S1, bid1)

A.Cleared(S2, bid1)

bid 3 
B: {T2, (S3, S4), 0.7}

B.Cleared(S1, bid1)

B.Cleared(S2, bid1)

Task unsatisfied

Figure 5.5: Example for the bundle formation protocol

5.1. We also introduced an ACCEPT timeout which expires if sensors have waited too

long for an ACCEPT, allowing the user to rebid before the task’s convergence timeout

expires. In fact a sensor might be stuck in the “waiting-for-accepts” state if at least

one sensor involved in the bid had previously committed to another task (sending a

CLEARED before the arrival of the new task). This previously allocated sensor might

not be freed by its current task before the expiration of the newly generated task’s

convergence timeout. Therefore the other sensors which accepted the new task would

be stuck in a waiting for accepts state. The ACCEPT timeout allows the sensors waiting

for an ACCEPT to drop the bid in case of a long wait and start from Step 1; allowing

the user device to generate a new bid for the task thus improving the chances to satisfy

the task thanks to the use of the rebid mechanism.
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5.4.1 Preemption Mechanism

The bid valuation function vα,t already considers the cost of reassigning sensors from

an ongoing task to a newly arrived one. Preempting sensors is important to increase

the likelihood of satisfying higher priority tasks appearing overtime as discussed in

Section 5.1. We describe the preemption steps that we add after Step (2) of the bundle

formation stage, as follows:

2.a When a sensor receives a bidα′ and is currently allocated, it will only be pree-

mpted from the current task j — and therefore it will send an ACCEPT — if the

average contribution to the new task j′ is strictly greater than the previous one;

i.e., uij′,t > uij,t (where uij,t = vα,t/|Bk|).

2.b When a sensor is preempted, it sends a PREEMPTED message to all the sensors

participating in the current bundle and to the user device owning the task. The

sensors receiving this message will stop serving the current task, and the user

device will drop it (setting the task to inactive).

2.c If instead a sensor is not preempted (i.e. uij′,t ≤ uij,t) it will keep serving the task

for all its duration, after which all the sensing resources assigned to the task will

be released.

5.4.2 Computational complexity

As proved in [115] the original disjoint coalition formation protocol has a computa-

tional complexity of order O
(
nh · |T|

)
to arrive at a decision where n is the number

of sensors in the network, h is the maximum size allowed for a sensor bundle and |T|

is the number of tasks (which in our model is equivalent to m). In the protocol exten-

sion presented in this section, the computational complexity is even better due to the

sparseness of the problem instance and to the dynamic settings where tasks arrive over

time.
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In more detail, let us briefly consider the number of computations required in the two

main stages of the algorithm, and for each of those consider the operations performed

by both user and sensor agents. In the first stage (i.e. initial negotiation) a user agent

needs to compute all the possible sensor bundles from the set of sensor candidates

on the field for each task generated. If we assume that in the worst case all sensors

in the field might potentially be sensor candidates for a task, then each user agent

performs
∑h

i=1

(
n
i

)
operations in order to evaluate all the possible bundles; as noted

in [115] this summation is O
(
nh
)
. Given that these operations needs to be performed

for each task, in total the set of user agents delivers a computational complexity of

O
(
nh ·m

)
. Due to the sparseness of our problem instance, the cardinality of the set of

sensor candidates on the field is much lower in practice. In fact, if we assume that the

number of candidates is for example twice the maximum size of the sensor bundle (h),

the computations required are
∑h

i=1

(
2h
i

)
which is O

(
hh
)
. Note that in our scenario

usually h << n, because there is a limited number of sensors which can contribute

to each task due to location and sensing range constraints. Therefore for the set of

user agents we will have a computational complexity of O
(
hh ·m

)
. Considering our

dynamic scenario where tasks arrive over time, the number of operations per timestep is

in the order ofO
(
hh · m

tmax

)
with tmax representing the entire duration of the operation

on the field. Sensor agents at this stage do not require to perform any computation and

therefore they do not count towards the total computational complexity of the initial

negotiation protocol stage.

In the second stage (i.e. bundle formation), each sensor keeps a list of bids and selects

the bid to which it can contribute the most (i.e. with the highest average utility for the

most profitable task). In order to find this bid the sensor needs to perform O (m) com-

parisons, basically finding the maximum profitable bid to join in the list. Considering

the dynamic arrival of tasks in the field, as before, this operation yields a computational

complexity of O
(

m
tmax

)
per sensor in the field, which therefore is in total of the order

of O
(
n · m

tmax

)
. Finally, if we assume as in [115] that each assignment operation per

sensor is O (1), we have O (h) assignment operations for each task. Therefore in total
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the computational complexity is of the order of O (h ·m) as, potentially, each task

generated on the field might be satisfied by allocating it a bundle. Considering again

the dynamic aspect of our problem instance, the computational complexity in this case

is O
(
h · m

tmax

)
. If we take into account also preemption, then each sensor might need

to perform in addition a comparison between its own current utility contribution to an

ongoing task with its contribution to the newly generated task. Therefore each sensor

performs in the worst casem−1 comparisons with other bids (i.e. O (m)), which leads

to a complexity of O (n ·m). Although in practice it is more likely to be O (n), as it

is rare for a sensor to receive more than one preemption request at the same time due

to the sparseness and dynamic nature of our scenario. User agents in this bundle form-

ation stage might have to rebid for a task which was unsuccessful, as noted above this

has a theoretical computational complexity of O
(
nh ·m

)
which in practice becomes

O
(
hh · m

tmax

)
.

In conclusion, both the set of user and sensor agents yield for the protocol a theoretical

computational complexity of O
(
nh ·m

)
, which due to the sparseness and dynamic

settings of our scenario becomes in practice of the order of O
(
hh · m

tmax

)
. Therefore,

the protocol presented in this section has effectively a better computational complexity

than the one discussed for the original protocol in [115], which considers a generic

multi-agent system scenario.

5.5 Implementation and Performance

In this section we describe the implementation and performance of our fully distributed

system. We include benchmarks of the KB bundle generator which we implemented

on an Apple iPod Touch. We also show the performance of the proposed allocation

protocol implemented in the REPAST Symphony4 Java simulation environment.

4http://repast.sourceforge.net/ - checked 10th December 2011.
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5.5.1 Mobile Device

As mentioned in previous sections, we implement a prototype app on an Apple iPod

Touch 2nd Generation device5, which represents the user agent in our architecture al-

lowing a user to state their tasks and submit them to the system. A screenshot of the

user interface is reported in Figure 5.6, which allows the user to set the task type, task

priority and expected duration of the task. We also allow to define the radius of the area

of interest of the task, the user is then allowed to move the task to the desired location

on the map by dragging the center of the area of interest defined. Finally the task’s

utility demand is randomly generated by the prototype, but we could allow a user to

determine the degree of task satisfaction desired. Highly positive feedback was ob-

tained through various demos to US Department of Defence, UK Ministry of Defense,

and NATO senior members and surveillance/reconnaissance specialists. Especially, it

was appreciated the usability and simplicity of the mobile version in terms of how one

can request complex information through a simple task creation form. Moreover it

was appreciated that low level details of both sensors and tasks (e.g. particular sensor

capabilities required to satisfy a task) can remain hidden to a user – thanks to the KB

bundle generator – and therefore making the system accessible also to non-expert users.

In addition, we tested if it was feasible to implement the Lightweight KB bundle gen-

erator on a modern mobile device, given that the lookup table size could be very large

and therefore computationally expensive to use. We implement the table showed in

Figure 5.3 as a combination of four tables using the standard ER concept of foreign

keys. We implement this ER schema using SQLite which is the integrated database

engine in iOS (the OS installed in the Apple iPod Touch), and as a consequence the

measured performance will be related to the chosen database engine. We run exper-

iments first using a Synthetic KB filling the tables with synthetically generated data.

Then we use a Prototype KB containing real knowledge from the literature regarding

sensor/task types and the sensing capabilities required and provided by both. We then

5http://www.apple.com/ipodtouch/
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Figure 5.6: User agent implemented as a mobile app interface on iOS devices.

measure the size of the full KB stored on the iPod Touch flash memory (summing

up the sizes of the four tables), and the time to retrieve all the (BT, JUM) entries

associated with a single task type.

To generate a Synthetic KB we randomly generate 1000 task types, each consisting

of an integer ID and a string of random characters of length 50 representing the task

type description (e.g. “event detection”). We then generate a constant number of BTs

descriptions with a length of 100 characters and we do the same with the JUM table

generating random utility functions represented by strings of source code. We then fill

the relationship table associating every task type with all the possible combinations of

(BT, JUM). Keeping constant the number of randomly generated task types — 1000

task types — we increase the number of (BT, JUM) per task type and we measure the

memory usage and the time to retrieve all the (BT, JUM) entries related to a particular

task type. As shown in Figure 5.7 and 5.8 we run the experiments generating first 10,

then 50 and finally 100 (BT, JUM) per task type. This leads to an increase in the size

of the relationship table respectively containing 10000, 50000 and 100000 entries.
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Figure 5.7: Memory usage of Lightweight KB on a mobile device.

Figure 5.8: Query time for Lightweight KB on a mobile device.

We also carry out benchmarks on a KB filled with realistic data from the literature; we

refer to this as Prototype KB. To generate these realistic task types and sensor types we

use openly available information about sensor devices/platforms and military sensing

tasks mainly using the Missions and Means Framework as described in [44]. More in

detail, we use the knowledge base described in [27] and compute all the reasonable task

types selecting the appropriate detectable, identifiable and distinguishable elements of

the ontology. We feed this realistic data to a reasoning process like the one described

in Section 5.3 implemented on a laptop computer, and we then generate all the possible

outputs given all the possible inputs. We store these results on the iPod Touch using
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the previously mentioned ER schema. We provide 4424 task types as an input to the

user. Two examples of realistic task type descriptions are: Detect_NonMilitaryVessel,

Identify_RefuelingEquipment. On average the reasoning process generates five differ-

ent (BT, JUM) per task. Note that all the benchmarks conducted in this section are

repeated for 20 times and then averaged to get significant values also with randomly

generated entries/queries.

We summarize the experiments in Figure 5.7 and Figure 5.8, which show three main

results. First, the storage space occupied by the KB seems to grow linearly with the

number of entries in the relationship table. Second, the query time seems to increase

logarithmically with the size of the relationship table. This is mainly due to the data-

base engine used. More precisely, SQLite uses an R*-Tree which is a refinement of the

R-Tree6. The search time complexity in an R*-Tree is basically the same as a B-Tree:

O(log(n)) as it performs a binary search. Finally, the last and most important result is

that with a realistic knowledge base the memory requirements and lookup performance

on the mobile device are acceptable. In fact, our realistic knowledge base with 21378

entries occupies 12 megabytes in the flash memory of the iPod Touch – which con-

sidering the synthetic results is expected to grow linearly with the number of entries

in the table. Most importantly, the time required to retrieve an entry from this lookup

table is around 20 milliseconds, which is expected to increase logarithmically with the

number of entries. The Apple iPod Touch which we used as an example of a mobile

device has the following technical specifications7: iOS 4.1, CPU ARM11 620 MHz

(underclocked to 533 MHz), 128 MB DRAM, and 8GB of storage on flash memory.

Note that in both memory and query time benchmarks, the data points reported in the

graphs are sufficient to verify that the theoretical performances of the database engine

are consistent with its implementation in the iOS environment. These results, in fact,

6http://www.sqlite.org/rtree.html – checked on 10th of December 2011
7http://daringfireball.net/linked/2008/11/25/new-touch-cpu – checked on 10th of December 2011.

Apple does not officially publish full tech specs of its devices, these where obtained using a tool based

on Unix sysctl() call.
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confirm that growing linearly the size of the KB produces a non-exponential increase

in the storage space and time required to interact with it. In this support, we also found

that the standard error on the average time for querying entries from the synthetic

KB is in the range of ±5 ms. Instead, the error on the memory benchmarks of the

synthetic KB is in the range of±8 kilobytes due to the slight differences in size of each

of the randomly generated entries, but also related to the indexes and other metadata

generated by the SQlite implementation in iOS. For the realistic KB instead, memory

usage is basically constant among the different benchmarks due to the fact that the KB

is always generated using the same data from the literature. The query time varies in

the range of ±5 ms like in the case of the synthetic KB, due to the granularity of time

measurements that the iOS APIs and hardware allow to perform. Finally, we highlight

that the realistic KB benchmarks diverge slightly from the values projected by the

synthetic KB data points collected. The reason for this is that in a realistic KB the

number of (BT, JUM) associated to each task type and their size in terms of bytes is

not constant, as it is instead for the case of the synthetic KB. Therefore, we necessarily

have a slight variation from the projected values of the measurements taken for both

storage space and time required to retrieve an entry.

5.5.2 Distributed Protocol

We implement the distributed protocol in Java using REPAST Simphony — an open

source agent-based discrete time simulation environment8 — as a platform to simulate

a sensor network composed of static wireless sensors of different types and mobile

users on the field. The simulation design was inspired by the simulation tool described

in [72]. In particular, we have implemented the Global Messenger component in [72]

which functions as our message passing infrastructure, receiving and forwarding mes-

sages to different nodes in the network. Each node agent in the simulation (i.e. sensors

and user devices) interacts with the Global Messenger by (1) fetching all messages re-

8http://repast.sourceforge.net/ - checked 10th December 2011.
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lated to itself (2) processing this messages (3) uploading the outgoing messages to the

global messenger. We have released the source code for both the Global Messenger

and the node agents under the MIT license9. A screenshot of the simulation environ-

ment developed is shown in Figure 5.9, where dots represent users moving on the field,

sensors are represented by triangles and squares represent tasks generated by users.

Note that sensors are linked in the network if they are within the communication range

of each other, and tasks are instead linked to the candidate sensors which could serve

each task. A video of the demo which we published in [98] can be found at the fol-

lowing URL: http://www.youtube.com/watch?v=QzrpKRhGFRU – here the user agent

which is implemented as a mobile app (in this case on a tablet) interacts with the RE-

PAST simulation environment, a screenshot of the demo (with the iPhone interface) is

shown in Figure 5.10.

Using this simulation environment, we tested the distributed architecture on randomly

generated problem instances in which tasks arrive over time without warning, and de-

part after spending a certain amount of time being active. In our simulation setup

we deploy 250 sensor nodes with a uniform random distribution on a 2D grid of

500m×500m, randomly generating two sensor types: acoustic and video. Each sensor

node has a Sensing Range (SR) and a Communication Range (CR), which in our sim-

ulation are SR = 30m and CR = 60m. We randomly deploy 50 user nodes on the

field, each moving with a random-waypoint model and having a CR = 60m. Every 3

timesteps, 5 randomly selected users create a new sensing task in their surroundings

with a uniform distribution (i.e., arrival rate = 5/3 tasks per timestep), with a maximum

distance of the task from the user node equal to CR. Each task is owned by a single user

and is characterized by a location (x,y) on the 2D grid, a task type and expected dur-

ation (randomly chosen between 10 and 20 timesteps). Each task’s priority and utility

demand are generated with a uniform random distribution between 0 and 1. We discard

a-priori tasks for which there are not enough sensors to be satisfied. Finally each task’s

expiration time is equal to half of its expected duration. In the simulation we use the

9The source code can be downloaded from: http://github.com/diegopizzocaro/GlobalMessenger/.

http://www.youtube.com/watch?v=QzrpKRhGFRU
http://github.com/diegopizzocaro/GlobalMessenger/
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Figure 5.9: The simulation environment implemented in REPAST Simphony.

two task types described in Section 5.3: “event detection” and “2D localization”. The

type is chosen on the task’s creation with a uniform random distribution among these

two types. We implement CDP and 2D-Loc with a brute force approach enumerating

and evaluating all the possible subsets of the candidates, which in the worst case is

2l (where l is the number of sensor candidates). A brute force approach to be imple-

mented on a user device is computationally efficient by assuming that in an emergency

response scenario the number l of sensors surrounding the user is on the order of tens.

We ran simulations for the full version of our protocol which includes both the rebid

and preemption mechanisms (referred to as Cost-driven Preemption approach in the
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Figure 5.10: A screenshot of our demo in [98] showing how a user can submit tasks

to the REPAST simulated environment implementing our distributed system.

graphs), and we compare this with 3 other versions of our protocol to analyze the com-

munication overhead and the benefit of using the preemption and rebid mechanisms.

We consider a version without rebid and preemption (No Rebid), a version which uses

our rebid mechanism but no preemption (No Preemption) and a variant in which we use

both rebid and preemption but we directly limit a sensor to be consecutively preempted

only once (Preemption = 1). We repeat each simulation 10 times for 10000 timesteps

and we average all the measurements. To compare the quality of the allocation achieved

by each version of the protocol we consider the profit calculated at each timestep us-

ing the objective function in Section 4.4.1. In Figure 5.11 our experiments show that

the Cost-driven preemption protocol offers higher profit at each timestep, achieving

on average 60% of the total profit. Note that the total profit is obtained by summing

at each timestep the profit of all the tasks being served by a sensor bundle (satisfied

tasks), all the tasks which were not allocated a sensor bundle (unsatisfied tasks) and all

the tasks which were previously preempted (preempted tasks). We keep the unsatisfied

tasks and preempted tasks in the field for their remaining duration, so that the total
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Figure 5.11: Total Profit (5/3 tasks per ts).

Figure 5.12: Waiting Tasks Priorities (5/3 tasks per ts).

profit represents the total potential task allocation quality. Note that this is a really

loose upper bound as in general we usually cannot satisfy every task on the field. The

Preemption = 1 version has performance close to the Cost-driven preemption, while

the No Preemption and No Rebid reach less than 50% of the total profit on average. In
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Figure 5.13: Network Traffic for Cost-driven Preemption (5/3 tasks per ts).

Figure 5.14: Average Messages (5/3 tasks per timestep).

Figure 5.12 we show the fraction of waiting task priorities over the total task priorities

— calculated as the sum of the priorities of the satisfied, unsatisfied, preempted and

waiting tasks — for each timestep. This graph shows that the Cost-driven preemption
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Figure 5.15: Total Profit varying task arrival rate.

Figure 5.16: Average Messages varying task arrival rate.

version keeps only 26% on average of the most important tasks waiting for a decision.

The worst waiting task rate is offered by the No Preemption (36%), while No Rebid

(32%) performs a bit better because it sets the tasks to unsatisfied or satisfied just after

the first bid.
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Figure 5.13 shows the network traffic generated by the Cost-driven preemption pro-

tocol described in Section 5.4. Our version exchanges the highest number of messages

compared with the other three versions as highlighted in Figure 5.14. Nonetheless the

maximum number of messages exchanged every timestep is around 220 messages with

a much lower average of 96 messages per timestep, and with an acceptable variance

around ±50 messages. Figure 5.14 confirms that the three other variants of the pro-

tocol provide similar network traffic levels and that the least overhead is provided by

the No Rebid variant. The number of messages exchanged on average at each time step

is highly dependent on the maximum size k allowed for each bundle, which is stored in

the KB bundle generator. We limited this number to 10 sensors for CDP, while instead

2D-Loc is already limited to exactly 2 sensors. Finally, in Figure 5.15 we vary the task

arrival rate showing the total profit achieved overtime by the Cost-driven preemption

version. We run simulations with 1/3, 3/3, 5/3 and 7/3 tasks per timestep and the results

show that the performance of our allocation protocol decreases sub-linearly by increas-

ing linearly the task arrival rate. Figure 5.16 shows how the traffic load generated by

the protocol increases linearly arriving at a maximum of 120 messages per timestep on

average which is much less than the total number of nodes (i.e. 300). This shows that

the allocation protocol is scalable and resilient to high task arrival rates.

5.6 Conclusion

In this chapter, we implemented a distributed system based on the conceptual archi-

tecture for the dynamic MSTA problem proposed in Chapter 4. The main novelties of

such a system are the use of both qualitative (i.e. knowledge based) and quantitative

(i.e. numerical utility based) metrics to allocate sensors to tasks, and the interaction

between sensors and mobile devices which we use to deploy part of the allocation

mechanism.

We showed that it is feasible to implement a knowledge-based component able to deal
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with knowledge-rich task requirements on a mobile device. This component – the

Knowledge-based bundle generator – generates the best feasible sensor bundle for

satisfying each task requirements using an explicit representation of those (such as

an ontology) and semantically matches them with different sensing capabilities. We

implemented the knowledge-base (KB) on a real mobile device (Apple iPod Touch)

as a relationship table in the database engine. We considered both a “Synthetic KB”,

containing synthetically generated data, and also a “Prototype KB”, containing realistic

examples of sensor/task types from previous literature. Our experiments on the Apple

iPod Touch showed that the storage space seems to grow linearly with the number of

entries in the relationship table, while the query time seems to increase logarithmically.

This is due to the optimized database engine used in the mobile device. In addition we

proved that the Prototype KB, containing 4424 different task types, occupies 12 MB in

the flash memory and delivers a query time of 20 ms. These results prove the feasibility

of implementing the KB bundle generator on a modern mobile device.

The allocation protocol which we propose is an extension of a well known pre-existing

disjoint coalition formation protocol proposed in [115], which was originally developed

for the static settings in a generic multi-agent system. We adapted it in order to deal

with our dynamic problem setting, to take advantage of the user devices as an entry

point for tasks in the system and to generate sensor bundle requests (which we call

bids) through the KB bundle generator component. The bid generated for each task is

broadcasted by the user mobile device to the sensors included in the bundle, then each

sensor greedily decides which one is the best task to serve as part of a bundle, calcu-

lating the average contribution that the sensor could provide to the task if the bundle is

formed. Before effectively starting to serve a task as part of a bundle, each sensor first

“agrees” to serve the bundle and then it is effectively allocated to the task only if all

the sensors in that bundle agreed to join it. If one of the sensors does not agree to join

a particular bundle we then use a rebid mechanism, going back to the KB bundle gen-

erator and demanding for another feasible bundle until a convergence timeout expires.

Finally, we also allow sensors to be preempted from ongoing tasks, in the case a more
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profitable task appears on the field; i.e., if a sensor receives a bid for a task to which it

can provide a higher average contribution of utility then it decides to switch to the new

task and it drops the support to the task which was previously serving.

We implemented the distributed system in a discrete time simulation environment and

we ran experiments for a network of static sensors and mobile users moving on the

field and generating tasks at different rates. We used as an example the two types of

tasks with non-additive sensor utility models defined in Chapter 4 for event detection

and 2D localization tasks. We considered two simple different types of sensors: video

and acoustic, where only the second was able to serve both tasks. We evaluated the

total utility (scaled by the task profits) provided over time to the set of satisfied tasks

by the bundles formed using both the KB bundle generator and the allocation protocol.

We found that using a rebid mechanism, taking advantage of the KB bundle generator,

offers flexibility in terms of allocation and as a consequence it increases the total profits

of the task satisfied over time. We also showed that the overall profit of the satisfied

tasks over time increases if we allow for sensors to be preempted from ongoing tasks in

the case a more profitable task appears on the field. Finally, we showed that by linearly

increasing the task generation rate, the overhead traffic generated by the mechanism

grows linearly, and that the quality of allocation decreases sub-linearly. We therefore

answered Research Question 2 by developing a scalable solution for the ST-MS-IA-HE

problem in a dynamic setting, with both linear and non-linear sensor utility models and

richer knowledge-based requirements for each task.

Although the dynamic MSTA model is not constrained to static sensors, as we could

for example include the cost of moving a sensor from one location to another in the

calculation of the bundle utility, our experiments are instead focused on a network of

static sensors and therefore we do not have a considerable evaluation of how the system

would perform in the case of mobile sensors. This is an interesting direction for future

work, which might also consider extending the dynamic MSTA model to include more

explicitly spatial and temporal constraints when deciding to move a sensor from one
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location to another, using a time-extended allocation mechanism similar to [100]. We

are also aware that limiting our attention to Single-Task sensors restricts the scope of

applicability of our system and therefore we propose to explore a variant able to deal

with the MT-MS-IA-HE problem, where sensors can serve multiple tasks at the same

time. We note that the distributed system architecture proposed in this chapter could

be adapted to solve the MT-MS-IA-HE problem by extending the overlapping coalition

formation protocol described also in [115].
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Chapter 6

Conclusion & Future Work

In this thesis, we considered the problem of allocating sensors to multiple sensing

tasks in an environment that does not provide enough information to plan for future al-

location, such as emergency response or military operations, therefore constraining our

mechanisms to perform instantaneous allocation (IA). We considered a sensor network

consisting of a large number of sensing devices of different types, which we referred to

as heterogeneous sensor network (HE). These are increasingly used to support emer-

gency responders in the field usually requiring many sensing tasks to be supported

at the same time. By a sensing task we mean any job that requires some amount of

sensing resources to be accomplished such as localizing persons in need of help or de-

tecting an event. We considered the most general case where each task usually requires

a group of sensors (sensor bundles), and we called these Multi-Sensor tasks (MS) as

opposed to tasks which require just a single sensor to be accomplished. We associated

to each task a demand for sensing capabilities and a priority (or importance). Tasks

might share the usage of a sensor, but, more often in this scenario, they compete to

exclusively control it because of the limited number of sensors and large number of

tasks. Sensors are in fact scarce and in high demand. We considered a particular sub-

set of sensors which can serve exclusively one task at a time, like directional sensors,

we referred to these as Single-Task sensors (ST). Each sensor bundle can offer a cer-

tain utility (or amount/quality of information) to each task, given that the aggregated

capabilities match the task sensing requirements.

In such cases, it might not be possible to satisfy the requirements of all tasks us-
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ing available sensors, and therefore we need to answer the question “Which sensor

should be allocated to which task?”, which summarizes the Multi-Sensor Task Alloca-

tion (MSTA) problem. In particular, considering the assumptions above we identified

our MSTA problem with the label ST-MS-IA-HE. We studied this problem in both a

static setting, in which all task requests from emergency responders arrive at once,

and a dynamic setting, where tasks arrive and depart over time. The static setting is

motivated by a scenario in which we have to support a set of long lived tasks (e.g. peri-

meter monitoring) or in general when tasks requested at different times can be batched

together. The dynamic setting, instead, is the more common scenario for an emer-

gency response operation, where we need to provide fast-response to tasks and adapt

quickly to changes. We considered different constraints for each of these problems and

we provided novel solutions based on centralized and distributed approaches. These

schemes aimed at maximizing the overall utility of the network and we evaluated their

performance using mainly simulations on randomly generated problem instances. Our

practical algorithms scale well with different number of task requests and manage to

improve the utility of the network, prioritizing the most important tasks. Therefore, we

answered our two research questions showing at what degree we can provide a scal-

able and optimized solution to our ST-MS-IA-HE problem in both static and dynamic

settings. Below, we summarize our novel research contributions and discuss future

directions.

6.1 Summary of Contributions

In this section, we summarize our research contributions highlighting the features of

the static and dynamic MSTA models proposed for ST-MS-IA-HE, and the central-

ized and distributed approaches proposed for each. We summarize our research major

contributions in the following list:

1. In Chapter 3 we formalized the ST-MS-IA-HE in static settings. We explored
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a simplified utility model in which utilities of sensors contributing to the same

task are additive; i.e., they sum up linearly. We constrained each task usage of

sensing resources by assigning them a budget (e.g. energy or monetary). Each

task is characterized by a demand of utility and a threshold on its demand to

be reached in order to be satisfied. For this setting we used only quantitative

utility measurements, based on physical attributes of the sensor instance as an

example. We considered a utility value inversely proportional to the degradation

of the radio signal with the sensor-task distance. We modelled this problem as a

bipartite semi-matching problem with both packing (i.e., maximum budget) and

covering constraints (i.e., minimum threshold on demand).

2. In Chapter 3 we proposed three centralized algorithms for the ST-MS-IA-HE

model in static settings. The first algorithm is a simple centralized greedy al-

gorithm that repeatedly attempts to satisfy the tasks with the highest potential

profit. The second algorithm, Multi-Round GAP (MRGAP), is a novel algorithm

that treats tasks as knapsacks that together form an instance of the Generalized

Assignment Problem (GAP) and uses a multi-round heuristic for dealing with the

threshold on task demands. The third algorithm is instead an adapted combinat-

orial auction algorithm where tasks bid for groups of sensors. We evaluated the

different algorithms on randomly generated problem instances. In particular, the

experiments showed that the best performance in terms of profit of task satisfied

and fraction of budget spent are offered by our MRGAP algorithm, outperform-

ing the greedy and the combinatorial auction based algorithm. We also found that

by giving higher budgets to tasks does not help since what limits the amount of

achievable profits is competition and not the amount of budget provided. Finally,

we showed that the three algorithms provide timely solutions by benchmarking

their computational runtime. We noted that the greedy algorithm offered the best

time performance, and MRGAP displayed a much slower increase in the compu-

tational time compared to the auction based approach when growing the problem

instance size.
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3. In Chapter 4, we formalized ST-MS-IA-HE in dynamic settings, allowing for

more general sub-additive or super-additive sensor utility models; i.e., utility

from sensors contributing to the same task might not sum up linearly. Given that

each task now has a duration, we include the time dimension in the problem for-

mulation. This problem can be modeled as a tripartite semi-matching problem.

As in Chapter 3, we associate each task with a demand value and a profit value;

although differently we now associate each sensor bundle-task pair with a pos-

sibly non-additive utility offer. So we first need to group sensors into bundles,

evaluate their joint utilities, and finally decide which one is the best assignment

of sensor bundles to tasks. In this version of the problem, we assume there are

no budget constraints for each task motivated by the fact that in a dynamic envir-

onment we need more flexibility in the allocation of resources because we lack

of exact information about what will happen in the future. Finally, we allow for

re-allocation of sensors to newly created tasks, and in order to avoid preemption

of sensors from ongoing tasks to happen too often, we include a re-allocation

cost associated to each sensor which we aim at minimizing while maximizing

the total profit.

4. Finally, in Chapter 5, we presented a novel distributed architecture to solve

ST-MS-IA-HE in dynamic settings, which uses both knowledge-based match-

ing (i.e., qualitative metrics) and numerical utility functions (i.e. quantitative

metrics) to better deal with heterogeneous sensors networks. We extended a

pre-existing distributed coalition formation protocol and deployed part of the ar-

chitecture on mobile devices showing that it is feasible to do knowledge based

sensor-task matching on such devices. Our approach utilizes formal tools, such

as ontologies, to explicitly represent sensing capabilities and task requirements

in order to reason with these; the aim is to be able to find which individual

or group of sensor types matches the sensing capabilities required by a certain

task type. We evaluated the performance of our architecture in two ways. First,

we implemented a prototype mobile application which contains the knowledge-
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based component and we measured its performances on a real device in terms of

memory usage and query time. In addition, we ran simulations and evaluated the

total sensor utility over time on randomly generated scenarios with users moving

on the field and requiring sensing tasks to be satisfied by the sensors compos-

ing the network. In these simulations, we used the two non-linear utility models

which we proposed for event detection and 2D localization tasks in Chapter 4,

and we showed that by allowing for preemption and a rebidding mechanism in

the protocol we achieve a higher total profit over time. Our simulation results

showed also that the distributed protocol is scalable, performing well in terms of

overhead traffic and allocation quality when increasing the task arrival rate (i.e.

the rate at which tasks are generated by users on the field).

In addition, we also summarize two minor contributions which are related to the above

major contributions:

(A) In Chapter 4, we formalized from the literature two non-additive sensor utility

models, with the aim of showing how it is necessary to consider general non-linear

utility functions. We use these as examples to evaluate the performance of distrib-

uted mechanisms for ST-MS-IA-HE in dynamic settings. For event detection, we

propose a model based on cumulative detection probabilities; for two-dimensional

localization tasks, we propose a model based on the distance and bearings of a pair

of sensors to a task. We formalize these two problems as static MSTA problems

with non-linear utilities, in restricted scenarios where we only have event detec-

tion or two-dimensional localization tasks. We then generalize these two problems

into a more abstract static MSTA problem, in which we allow for both linear and

non-linear utility functions and for any task/sensor type to be used. We then use

this problem as a base for the dynamic MSTA problem in Contribution 3.

(B) In Chapter 4, we proposed a conceptual architecture to solve ST-MS-IA-HE in dy-

namic settings with generic sensor utility models (Contribution 3), using a com-

bination of qualitative (i.e., knowledge based) and quantitative (i.e., numerical
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utility based) metrics to drive the allocation. Our architecture is therefore com-

posed mainly by two components: the first is a Knowledge-based bundle gener-

ator which recommends sensor bundles fit for purpose for a particular task com-

bining semantic matching between the capabilities provided and required, with

(possibly non-linear) utility functions. The second component is an allocation

mechanism which given these recommendations sorts out the competition for ex-

clusive usage of sensing resources among multiple tasks. We also include the

users in the loop, by allowing them to submit tasks to the system through a mobile

app. We describe how mobile smart-devices could be used to deploy components

of such an architecture, discussing the trade-offs related in choosing different im-

plementations, as a centralized or distributed system. In particular, given that a

centralized approach is unrealistic in our dynamic setting, we focus on a distrib-

uted implementation of such architecture contained in Contribution 4.

6.2 Future Research Directions

Although our focus in this dissertation has been on the ST-MS-IA-HE problem instance,

some interesting research directions are represented by exploring other problem in-

stances relevant for certain emergency response scenarios. For example, as proposed

in [114], we could consider Multi-Task sensors; i.e., where sensors are able to provide

information to multiple tasks at the same time. Some seismic and ambient temperat-

ure sensors, in fact, are able to serve potentially multiple tasks in different locations,

although each sensor will still have a maximum number of tasks which it could serve

provided bandwidth or energy constraints and sensing limitations. Directional sensors

could also serve multiple tasks as suggested in [54], where cameras are optimally con-

figured for capturing the largest number of targets (i.e. tasks). In such cases, MSTA

mechanisms are still required in order to decide which tasks should be served, and to

optimize the utility of the network under those constraints.
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Our assumption of instantaneous allocation is sound, but in certain cases we might be

provided with enough information about the future to schedule sensor allocations in

a time-extended fashion. For example, we might be provided with a certain level of

confidence in the plan of a mission, which we could model as a graph of tasks with

temporal and probabilistic relations. Missions could be compatible with each other

if their needs do not exceed the limits of the sensors, e.g. in terms of bandwidth or

energy; otherwise, we could send feedback to the responder in the field, indicating

which information requirements need to be adjusted. The decision loop should even-

tually converge and the utilization of the resources maximized. This is similar to tasks

precedence links and goal lattices studied for example in [77, 114].

Another venue for research is to study how we could close the loop between data

requested and data delivered in systems solving MSTA problems by developing dis-

semination and delivery mechanisms. For example in [105] we have explored ways

of integrating allocation schemes with sensor data rate optimization for a variant of

the ST-MS-IA-HE problem in static settings. The main result is that the convergence

time and overall utility may be improved by sharing information across allocation and

rate adaptation (i.e., dissemination) mechanisms. In [21] we studied instead, inde-

pendently from MSTA mechanisms, how to efficiently deliver information bundles to

mobile users in the field, where by information bundles we mean correlated data items

to be delivered as a package to users, such as a map bundled with a set of geotagged

pictures. Such works point at the interesting challenge of adapting MSTA systems to

include dissemination mechanisms. These as suggested should be able to exchange as

much information as possible with both the allocation algorithms and the knowledge

based component (as in [105]); moreover, we think they should focus on delivery of

information packages (i.e. data bundles) rather than single data items to mobile users

([21]). Other works addressed different instances of sensor selection with data dissem-

ination aspects, such as in [2, 15], but we think that the focus should shift to include

mobile user devices in the delivery mechanisms, perhaps with the use of opportunistic

routing techniques [79].
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Including dissemination and delivery of sensor data, in response to task requests, offers

also the opportunity for a user to share this data with other users who might be inter-

ested in the same task, thus giving the opportunity to include social network ideas in

such MSTA systems. Namely, we think that if a user could see sensing tasks generated

by other users currently being served by sensors in the field; e.g., using the mobile app

interface in Chapter 5, then we might push them to subscribe to such tasks instead of

creating new ones, so that the information collected will also be delivered to them. We

hypothesize that by providing the users with enough trust in the information generated

by other users’ tasks, this would yield to a decrease in the new tasks generated over

time (i.e. task arrival rate) and therefore an effective decrease in the competition for

sensing resources with an overall higher utility.

It is therefore clear that data and sensor privacy concerns in our distributed system

exist because sensitive information about users, sensors and tasks could be collected,

stored and shared. By data and sensor privacy we mean that data generated by sensors

and metadata about these (e.g. sensing capabilities) should be securely shared only

with selected users. To ensure data privacy we are planning to explore how to integrate

data/sensor sharing policies, similar to the ones proposed in [62, 92], with our alloca-

tion mechanisms; so that within the system we might securely share information about

sensors, tasks and users.

Another research opportunity lies in the study of the effects of mobility on our solu-

tions. In fact, even if our schemes are quite general and could include the mobility

inside the cost parameter in both static and dynamic settings, this approach is far from

optimal. It would be interesting to evaluate how we can design better solutions taking

advantage of mobility. We can see two types of mobility: controlled and uncontrolled.

Controlled mobility is the ability to move all or some of the sensing resources in or-

der to achieve better assignments to tasks. In uncontrolled mobility the sensing re-

sources might be mounted on people (for example, helmets of emergency responders)

or vehicles in which case the system has no control on where the sensors are to be
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moved. Examples of the first are given in [100, 113, 124], which consider both travel

time and distance as a parameters in the allocation of sensors (or autonomous agents)

to different tasks.

The case of uncontrolled mobility offers probably the most exciting research oppor-

tunities, in particular if we look at this with the more general perspective of utilizing

people as an extension of the sensor network. In such a scenario, in fact, people could

be wearing sensors or reporting observations about the real world, while at the same

time requesting data from the sensor network or from other people. In this thesis,

we showed that smart devices provide a handy access point to our allocation system,

through which users can generate sensing task requests; moreover these can be used

to deploy part of the architecture. We think that smart devices have the potential to be

used as tools to integrate eyesight witnesses with data coming from the sensor network,

e.g. users could use such mobile interfaces to report observations about the real world.

Moreover, we could think of using the sensors integrated in such devices (e.g. light

sensor, microphone or camera) to extend the sensor network, effectively considering

people as “uncontrolled” mobile sensors. This has very recently been defined as “mo-

bile phone sensing” in [43], which proposes an opportunistic computing approach to

the problem of collecting sensing data exclusively using the user mobile devices.

We think that by going a step further and actually integrating mobile phone sensing

with an already deployed sensor network could provide extremely interesting research

opportunities. We foresee three main research themes in this direction: (1) people as

sensors, (2) social sensing and (3) app-centric architectures. As recently noted in [45],

people can be seen as “intelligent sensors” since they can share their observations about

real world or also actual sensor data generated with their mobile devices. It would be

interesting to explore if we can “task allocate” humans, e.g. by asking them to take

a picture of something we are interested in; alternatively, if a user shares eye witness

information we could explore how to combine this with real sensor data. The second

theme we propose is social sensing, i.e. the integration of sensor networks with mobile
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social networks. Some examples lies in the exploration of which sensing data we can

crowdsource from the users in the field, or alternatively which real sensor data we can

improve by using social information filters (e.g. rating or review mechanisms). Re-

searchers have started to address these issue, for example in [14, 67, 99], however we

think these problems still need to be studied from a distributed optimization and op-

portunistic computing point of view. Finally the third theme, app-centric architecture,

covers how we could use mobile devices, and in general systems centered around the

mobile app paradigm, to deploy different parts of architectures on top of heterogeneous

networks of sensors and mobile devices. In Chapter 4, we have explored how we could

achieve this in a centralized or distributed system but this needs more investigation,

especially for the case of a hybrid system where cloud services, local mobile and sens-

ing devices might collaborate to achieve higher network utilities for a particular set of

tasks.
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Appendix A

Appendix: (2 + ε)-approximation

algorithm for GAP

In Chapter 3 we showed that the MRGAP algorithm uses the Generalized Assignment

Problem (GAP) algorithm as a subroutine to find a solution to the static MSTA prob-

lem. Here we describe how we combined the approximation algorithm in Cohen et al

[22] with the algorithm in Ibarra & Kim [51] obtaining a (2 + ε)-approximation al-

gorithm for GAP. This work derives in part from the master thesis [93] by the same

author of this dissertation, however the remarks on implementing the combination of

Knapsack and GAP are entirely new to this thesis and were published in [94].

An algorithm is an α-approximation algorithm if |OPT | ≤ α · |ALG| for α ≥ 1,

where |ALG| is the value of the objective function for the feasible solution returned by

the approximation algorithm, and |OPT | is the value of the objective function for the

optimal solution1.

(α+1)-Approximation Algorithm for GAP

Given any other α-approximation algorithm for the knapsack problem, Cohen et al’s

algorithm (Algorithm A.1) is an (α+1)-approximation algorithm for the Generalized

Assignment Problem. The main idea of the algorithm is to iteratively solve the knap-

1It is probably easier to understand the definition of α-approximation algorithm if we consider

α ≤ 1, then we have that the condition is: α · |OPT | ≤ |ALG| ≤ |OPT |.
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sack problem, each time selecting only one of the bins of the GAP model as a knapsack,

and considering as items to insert into the knapsack all the items given as input to the

GAP. During each iteration, the knapsack problem will use as size for each item the

size that each of them has for the current bin, and as profit the residual profit. The

residual profit pRESi of an item i for bin j is defined as: pRESi = pij if i is not selected

for any other bin, otherwise pRESi = pij − pik if i is selected for bin k.

This algorithm has complexity O (m · f(n) +m · n), where n is the number of items

(sensors), m is the number of bins (tasks) and f(n) is the running time of the α-

approximation algorithm for the knapsack problem.

Algorithm A.1: Cohen et al’s (α+1)-Approximation Algorithm for GAP

1: for each sensor Si do

2: T [i] = −1

3: for each task Tj do

4: Call α-Approximation Alg. for Knapsack to find a solution to task Tj using the

residual profit function PRES
j

5: for each Si scheduled by the α-Approximation Alg. to Tj do

6: T [i] = j

α-Approximation Algorithm for Knapsack Problem

Ibarra & Kim’s algorithm (Algorithm A.2) is an efficient (1+ε)-approximation algorithm

for an arbitrary ε > 0, so if we set α = (1+ε) we can use the notation α-approximation

algorithm. This algorithm is an FPTAS (Fully Polynomial Time Approximation Scheme)

i.e. its time and space complexity grows polynomially with n (number of items) and

exponentially with 1/ε (both space and time complexity are O (n/ε2)).

This is a dynamic programming algorithm which defines the elements of a matrix A

with n rows (one for each item) and |ALG| columns (one for each possible value of

the objective function). Since the value of |ALG| is unknown, the matrix A is defined
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on U column where U is any upper bound on the value of the optimal solution |OPT |.

In particular, for l = 1, . . . , n and v = 1, . . . , U the element A[l, v] represents the

minimum capacity required to obtain a value for the objective function that at least

equals v using only the first l items. If it is impossible to get v for the objective function

using only the first l items then the rule is to set A[l, v] = +∞. Formally:

A[l, v] = min{q :
l∑

i=1

pixi ≥ v,

l∑
i=1

wixi ≤ 1, xi ∈ {0, 1}, i = 1, . . . , l}

Once all the elements of the matrix A are defined, the value of the optimal solution is:

|ALG| := max{v : A[n, v] ≤ c}

The Ibarra & Kim’s algorithm is shown in Algorithm A.2 for completeness.

Since this algorithm requires that each profit value is an integer, and since the time

complexity depends strongly on the maximum item profit, we need to use scaled integer

profits different from original item profits. Formally stated, we will use p′i = bpi/δc for

i = 1, . . . , n , where δ depends on the required approximation error ε in the returned

solution (δ := εp̃
n

, where p̃ = maxi{pi}).

Finally, to find the real value of the objective function we will have to backtrack on

which items are chosen to be inserted into the knapsack and then use the non-scaled

profits to compute the original value of the objective function. Therefore, as in all the

dynamic programming algorithms, we also need to have another matrix of pointers that

will let us backtrack the solution, i.e. to understand which items were inserted in the

knapsack. This matrix of pointers will have the same dimensions as the matrix A used

to compute the optimal value of the objective function.
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Algorithm A.2: Ibarra & Kim’s α-Approximation Algorithm for Knaspack (with

α = ε+ 1).

1: for v = 1, . . . , p′1 do

2: A[1, v] := w1

3: for v = p′1 + 1, . . . , U do

4: A[1, v] := +∞

5: for l = 2, . . . , n do

6: for v = 1, . . . , p′l do

7: A[l, v] := min{A[l − 1, v], wl}

8: for v = p′l + 1, . . . , U do

9: A[l, v] := min{A[l − 1, v], A[l − 1, v − p′l] + wl}

Combining GAP and Knapsack algorithms

Combining the GAP (α+1)-approximation algorithm with the Knapsack α-approximation

algorithm where α = 1 + ε, leads to a (2 + ε)-approximation algorithm where ε > 0

is the maximum error in the returned solution (which in our case will be ε = 0.005).

As stated previously the time complexity of this algorithm is a function of the time

complexity of the Knapsack α-approximation algorithm used (that is O
(
n
ε2

)
), and in

particular it will be O
(
mn
ε2

)
where m is the number of tasks and n is the number of

sensors.

Although the FPTAS has a good asymptotic performance guarantee, when the input

values are scaled to a not-unreasonable precision (e.g. with ε = 0.005) and a naive

implementation is used, the running time can actually become significant. This is es-

pecially so in our setting, which involves solving a knapsack problem for each task.

Various coding tricks and improvements have been discovered (and rediscovered) for

the basic knapsack algorithms since they appeared in the 1970s. Following, we de-

scribe in detail the specific implementation improvements we used, which allowed our

implementation to run in reasonable time on static MSTA problem instances of the size
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we considered in our experiments in Chapter 3 (e.g. 500 sensors and 100 tasks).

Implementation of GAP and Knapsack Algorithms

As a matter of note, the Knapsack algorithm requires a lot of memory, since it generates

two matrices (one to compute the objective function and the other to backtrack the

solution) of dimension n×U , where both n and U are fairly large. The number of items

n is the number of sensors generated and in our experiments this is a fairly large number

(in fact, we want to be able to deal with large sensor networks composed by hundreds of

nodes). The upper boundU is large since in the classic implementation of the Knapsack

algorithm this upper bound is computed by: U := p̃ ·n (where p̃ = maxi (pi)); such an

upper bound is not beneficial, especially if we give as input to the knapsack algorithm

a large number of items and the knapsack has a small capacity (which is the case of

the static MSTA problem, when in the presence of dense sensor networks and low

budget). The fact that the dimensions of the matrices are very large also has strong

consequences on the effective computational time of the Knapsack algorithm, since

it will have to fill a large matrix to find the solution. We solved this issue related to

memory usage and computational time using three techniques. The first technique is

to reduce the number of items n given in input at each round of the GAP algorithm to

the Knapsack subroutine. We delete from the input those items that have zero profit for

that specific bin j, and also items that are too large to fit into the bin (i.e. in terms of

the static MSTA problem cij > bj , and in terms of the Knapsack problem wi > c). In

this way we obtain a reduction of n, that in our specific test cases are from hundreds

of sensors (all the sensors) to tens (only the ones with non-zero utility); drastically

reducing the number of matrix rows created by the Knapsack subroutine.

The second technique applied was to reduce the number of columns of the matrices

(U ) used in the Knapsack subroutine. We first solve the knapsack problem using the

FPTAS with U =
∑

i pi and without creating the matrix of pointers. We then find

the value of |ALG| (the optimal value of the objective function). This computation

requires much less memory, since it uses a closer upper bound and it does not create
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the matrix of pointers. We then rerun the Knapsack subroutine with U = |ALG|

and this time generate the matrix of pointers. Therefore the algorithm will generate

two matrices with a minimal number of columns. These two techniques improve both

memory usage and effective computational time, since they reduce the dimensions of

the matrices used. Simply stated they limit the search space by reducing the number of

possible states.

The third technique improves the memory usage but not the effective time spent to

compute the solution in the Knapsack subroutine. It consists of substituting the n× U

matrix used to compute the value of the objective function with a 2 × U matrix (the

matrix of pointers remains n × U ). This idea derives from the dynamic programming

implementation of the knapsack algorithm (Algorithm A.2), requiring only the value

contained in the previous row l − 1 to compute the value of row l. Making use of this

we can generate just a 2 × U matrix, and we can compute the value of the cells of a

row by keeping only the previous row and overwriting with the new computed values

the current row (that contain older values no longer required).
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