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Abstract

The Schwinger functions of the thermal P (φ)2 model on the real line and the vacuum P (φ)2
model on the circle are equal up to interpretation of their time and space coordinates.
This is called Nelson symmetry. In the present work this correspondence is exploited
to construct and prove results for the thermal P (φ)2 model. The results are existence
of the thermal Wightman functions, the relativistic KMS condition, verification of the
Wightman axioms and spatial exponential decay.

A Hölder inequality for general KMS states is proven, employing non-commutative
Lp-spaces. This inequality is key in the proof of the existence of the thermal Wightman
functions.

For the vacuum P (φ)2 model on the circle a version of the Glimm-Jaffe φ-bound is
proven. Furthermore the Källén-Lehmann representation for general vacuum two-point
functions are proven and general facts about the damping factor are established. The
consequences for the damping factor in the thermal case are briefly discussed.
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Chapter 1

Preliminaries

1.1 Introduction

The present work can topically be decomposed into two blocks. The construction of the

thermal P (φ)2 model on the one hand, and the investigation of properties of the same

model, especially particle aspects, on the other hand. The original motivation was the

latter, but certain subtleties in the construction of the thermal Wightman functions made

the former necessary.

In order to convey the motivation behind this investigation, the following questions

should be answered - at the very least from the personal point of view of the author: Why

constructive quantum field theory? Why thermal quantum field theory? Why the P (φ)2

model? Why is it important to contemplate the particle content of a thermal theory?

Constructive quantum field theory is concerned with the axiomatisation of quantum

field theory and with the mathematically rigorous construction of interesting models.

Interesting models are in general those, which arise in Lagrangian quantum field theory

in theoretical physics. This is justified by the in general very good and in some cases

amazing agreement of these models with high energy collider experiments. Yet, as most

physicists will agree, the prediction of mentioned measurements has gotten along very well

without the heavy mathematical machinery, that constructive theory seems to necessitate.

But what have we learnt, if we do not break a verified theory down into its properties

and foundations, compare them with other theories and in doing so gain insight into its

fundamental properties. Put differently, from the author’s point of view the answer to

the first question is the following. Only through axiomatisation and mathematical rigour

can physics claim to give a view of the world, a Weltbild. This discussion is of course a
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philosophical one and will not be pursued any further.

A second argument comes from the realisation, that the advent of quantum theory

has made it difficult to gain intuitions for microscopic physical processes. Pursuers of the

constructive approach feel, that the danger of going wrong, when not employing math-

ematical rigour, is too great. And the difficulties which arise treating thermal quantum

fields perturbatively might serve as an example.

The interest in thermal quantum field theory stems mainly from the discovery of the

Quark Gluon Plasma - a strongly interacting matter state in which neither effects of

special relativity nor thermal properties can be neglected in its scientific description. The

Quark Gluon Plasma is believed to have appeared shortly after the Big Bang as well

as in some heavy neutron stars and it has been reproduced in several heavy ion collision

experiments. Furthermore the ease with which path integral techniques have been applied

to many body systems/quantum statistical mechanics certainly instigates further study

towards thermal and special relativistic theories from the constructive point of view.1

At first the choice of a scalar, polynomially interacting equilibrium theory in two space-

time dimensions seems a poor choice when the physical system one is interested in, is the

Quark Gluon Plasma in a collider experiment. However, the mathematical difficulties

arising already in such a comparatively simple model, warrant the lower dimensionality

and simpler field structure. It is in the tradition of constructive quantum field theory

to start with a simple model and to proceed stepwise to more involved models. As the

P (φ)2 model without temperature, i.e. the vacuum P (φ)2 model, is the best understood

theory of the desired complexity, the choice is natural. Since the same model has also

been constructed in three space-time dimensions it is furthermore safe to assume, that

many results presented in this thesis can be proven in that case as well. Another strik-

ing argument for the P (φ)2 model is the availability of Nelson symmetry. In general the

correlation functions in quantum field theory have analytic continuations in the time vari-

able, called Schwinger functions. Nelson symmetry states, that the Schwinger functions

of the thermal theory on R2 and the Schwinger functions for the vacuum model, where

the space-time manifold is a cylinder, are the same, albeit with exchanged meanings of

space and time coordinate. For the vacuum theory on the cylinder the slices, which are

considered to be spatial, are circles. Therefore this model is also often referred to as the

vacuum P (φ)2 model on the circle.

With regards to the particle interpretation the first observation to be made is, that

1It should be mentioned here, that such connections have been investigated already some time ago
in [32, 33].
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viewing particles as irreducible representations of the Poincaré group according to Wigner

does not work in the thermal case [55]. This is not surprising as a thermal equilibrium state

distinguishes a rest frame. Yet one does not want to abandon the particle interpretation

as crutches to the intuition. The only attempt to give a precise mathematical meaning

to the notion of a particle so far comes from Bros & Buchholz [15]. In their work they

derive Källén-Lehmann and Jost-Lehmann-Dyson type representations for thermal fields,

that is the 2-point functions are given as an integral over free correlators with differently

weighed masses. They argue, that stable particles are to be identified with Dirac delta

contributions to the integral, while short lived thermal excitations belong to the absolutely

continuous part of the involved weights. The ultimate goal of this work is to confirm or

disconfirm this claim. Unfortunately the question could not be resolved in the given time

frame but partial results are presented. Further discussion is given in Chapter 5.

The present work builds directly on the three papers [21–23]. The first two works

contain a construction of the thermal P (φ)2 model in the Haag-Kastler framework, i.e. a

corresponding algebra of observables, interacting dynamics and KMS-state are provided.

In the third one the Wightman two-point function has been constructed and the relativistic

KMS condition has been proven for it.

Doubtlessly the main new result in this thesis is the existence of the general n-point

functions for the thermal P (φ)2 model as tempered distributions. Another result is a

Hölder inequality for KMS states, which forms one of the two main pillars of the proof of

the existence theorem, the other being Nelson symmetry. The Hölder inequality has its

roots in non-commutative Lp spaces and modular theory. Further results are proofs of the

relativistic KMS condition as well as spatial exponential decay of the thermal correlation

functions - also derived with the help of Nelson symmetry - and the Källén-Lehmann

representation for the vacuum theory on the circle. Since in this case some information

about the common spectrum of the Hamiltonian and the momentum operator is available,

some basic statements can readily be made about the weights.

The remainder of this chapter contains an introduction to several approaches to quan-

tum field theory and a treatment of the free fields corresponding to the models of interest.

Chapter 2 is devoted to the statement and proof of the Hölder inequality for KMS states.

Chapter 3 treats the construction of the two models and the proofs of the existence of

the Wightman functions as well as the relativistic KMS condition. The proofs of the

Wightman axioms, the exponential decay of correlation for the thermal field as well as

the Källén-Lehmann representation for the vacuum model are contained in Chapter 4.

Chapter 5 presents a short conclusion and a conjecture on the mass gap for the thermal
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P (φ)2 model.

This thesis is a result of close collaboration between the supervisor C. Jäkel the author.

The following lists which of the original proofs in this work are results of the supervisor’s,

the student’s and common work. The proofs of Lemma 2.3.1 and Lemma 3.2.2 are due to

C. Jäkel. The proofs of Lemma 2.3.2, Theorem 2.1.1, Proposition 3.3.1, Theorem 3.4.1,

Lemma 3.4.2, Proposition 3.4.3, Lemma 3.4.4, Theorem 3.4.6, Lemma 4.1.1 and Lemma

4.1.2 are due to C. Jäkel and the author. The proofs of Lemma 3.3.5, Proposition 4.1.4,

Lemma 4.2.1, Lemma 4.2.2, Theorem 4.2.4, Theorems 4.3.1 and 4.3.5 and Proposition

4.3.6 are due to the author.

1.2 Three Approaches to Quantum Field Theory

It is the purpose of this section to give an introduction to the different approaches to

quantum field theory employed in this work. From a mathematical physics point of view

the respective axiom sets are at the heart of the approaches. These are

• the Wightman axioms in the Hamiltonian approach [60, 65],

• the Osterwalder-Schrader and Nelson axioms in the Euclidean approach [29, 64],

• and the Haag-Kastler axioms in Algebraic Quantum Field Theory (AQFT) [34].

It is the goal of Chapter 3 to construct the thermal P (φ)2 model in the sense of Wightman.

For technical reasons, however, it is not possible to dispense with either of the other

approaches. While the Wightman axioms best capture what one wants in a fully fledged

quantum field theory useful to physicists, the Euclidean approach is best suited for the

technical construction of such. The basic idea behind it is to solve an elliptic equation

instead of the hyperbolic Klein-Gordon Equation and obtain the desired solutions by

analytic continuation. Since the corresponding elliptic equation is in general easier to

solve, this is a technical simplification. AQFT is based on the idea to shift the main

focus of the description away from computational devices (Lagrangian QFT) to the basic

physical concepts of observables and states. This naturally leads to an operator algebraic

formulation, which in turn makes powerful technical tools available. The exploitation of

these tools is not even finished yet, as the Hölder inequality presented in Chapter 2 shows.

Since a thorough exhibition of the three approaches is beyond the scope of this thesis, the

reader is referred to the standard textbooks [29, 34, 60, 64, 65].
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It should be mentioned, that originally the axiom sets were intended to capture field

theories, which transform covariantly under Lorentz transformations, i.e. vacuum theories

on Minkowski space. Presently the situation is different - none of the considered models

is Lorentz invariant. Therefore the axiom sets have to be modified in the appropriate

manner. They will still be called by their respective original names, as the spirit and

mathematical tools are in essence unchanged. Tightly associated with these axiom sets

are reconstruction theorems, which show under what circumstances the different axiom

sets are equivalent - both for different formulations inside their respective approaches and

across the different approaches. As they are too great in number, the analogs of these

reconstruction theorems will not be given here, except for those, which are relevant for

the present work.

1.2.1 Some Notation

Since the technical part starts here, some comments on notation seem in order. Sβ denotes

a circle of circumference β. The coordinates (α, x) ∈ Sβ × R of a point in the cylinder

will refer to either one of the charts [−β/2, β/2)×R or [0, β)×R and addition as well as

subtraction of the angular coordinates are always understood modulo β.

Definition 1.2.1. Let X be either R, Sβ or any finite Cartesian product thereof. The

Schwartz functions S(X) (SR(X)) are defined as the (real-valued) functions f on X ful-

filling

sup
x∈X

|(1 + |x|)γ ∂γxf(x)| ≤ Cγ , (1.1)

where γ is a multi-index and Cγ is a constant. The space of tempered distributions

S ′(X) is defined as the (topological) dual space of S(X). S ′
R
(X) is defined as the real-

linear subspace of real valued tempered distributions in S ′(X). C∞(X) (C∞
0 (X)) is defined

as the space of infinitely often continuously differentiable functions (of compact support)

on X.

Remark 1.2.2. (i) S(X) is a Fréchet space.

(ii) For X = Sβ the Schwartz functions coincide with C∞(Sβ).

In the context of this work two important space-times are R2 and2 R × Sβ. For a

space-time X and fj ∈ S(X), j ∈ {1, . . . , n}, the Wightman distributions W (n) are given

2R× Sβ is called the Einstein cylinder in physics.
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as continuous functionals3

W (n)(f1, . . . , fn) = (Ω, φ(f1) · · ·φ(fn) Ω) . (1.2)

The Nuclear Theorem [65] guarantees, that W (n) can also be viewed as a tempered

distribution of one argument taking values in the n-fold tensor product of X , that is

W (n) ∈ S ′(Xn). W (n) will be decorated with a sub-index β for the thermal theory and

a sub-index C for the vacuum theory. All the occurring Wightman distributions will be

translation invariant. Therefore [60, p.66] there exists a distribution W(n−1), such that

W (n)(f) =

∫

X

W(n−1)(f(x)) dx , (1.3)

where f ∈ S(Xn) and f(x)(ξ1, . . . , ξn−1) = f(x, x − ξ1, x − ξ1 − ξ2, . . . , x − ξ1 − . . . ξn−1).

Heuristically this can be written as

W (n)(x1, . . . , xn) = W(n−1)(x1 − x2, . . . , xn−1 − xn) . (1.4)

In general Wightman distributions W(n−1) are boundary values of analytic functions on

various domains. These analytic functions will typically be denoted by W(n−1). In rare

cases the notation W(n)(t1, x1, . . . , tn, xn) for purely real t and x will be used. On such

occasions, the distributional character of W(n) will be explicitly mentioned. For W(n−1)

and W(n−1) the same sub-script conventions will be used as for W (n).

Furthermore the following conventions and notations will be used throughout:

(i) The forward and backward light-cones are defined by

V + := {(t, x) ∈ R
2 | t > |x|} , (1.5)

and by V − := −V +, respectively.

(ii) The following intersection of light-cones will play an important role,

Vβ := V + ∩ (βe− V +) , (1.6)

where e is the unit vector in time direction.

(iii) Units are chosen such, that all physical constants are one, i.e. kB = ~ = c = 1. The

3For the definition of the involved objects cf. Subsection 1.2.2 on the Wightman axioms.
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temperature parameter β = 1
kBT

= 1
T
> 0 as well as the mass parameter m > 0 will

be fixed but arbitrary positive constants throughout.

(iv) Defining Dx = −i∂x the Laplace operator on Sβ × R and the d’Alembert operator

on R2 are defined as

−△ := D2
α +D2

x and � := −D2
t +D2

x . (1.7)

(v) As approximations of the Dirac delta on Sβ and R, respectively,

δk(α) := β−1
∑

|n|≤k

eiνnα and δκ(x) := κχ(κx) , (1.8)

will be used, where k ∈ N, κ ∈ R+, νn = 2πn/β, n ∈ N, and χ is a function4 in

C∞
0 (R) with

∫
χ(x) dx = 1.

(vi) Translations on X = R2 or X = Sβ × R are denoted by t and are written

ty : x 7→ x+ y . (1.9)

On Sβ×R two reflections are defined as r : (α, x) 7→ (−α, x) and r′ : (α, x) 7→ (α,−x).
The pull-backs

(ty∗f)(x) := f
(
t−1
y (x)

)
= f(x− y)

acting on the test functions f ∈ S(X), induce actions on the tempered distributions

q ∈ S(X)′:

(tyq)(f) := 〈q, (ty∗)−1f〉, (rq)(f) := 〈q, r∗f〉, and (r′q)(f) := 〈q, r′∗f〉.

For f ∈ S(Xn) define

(ty∗f)(x1, . . . , xn) := f(t−1
y x1, . . . , t

−1
y xn) . (1.11)

1.2.2 Hamiltonian and Algebraic Approach

As they are closely related, the Hamiltonian and the algebraic approach will be presented

in parallel. Usually the Wightman and the Haag-Kastler axioms demand a representa-

4Independently of the choice of χ the limit of δκ in S ′(R) is the Dirac delta.
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tion of the Poincaré group acting on the respective objects. But neither of the models

considered in this work, has Lorentz invariant correlation functions. Therefore this re-

quirement will be omitted where necessary and the Wightman reconstruction theorem

will be re-proven for the present case.

Let X be a space-time - in this case either R2 or R×Sβ . The Wightman axioms below

are formulated in terms of the correlation functions. The equivalent formulation in terms

of field operators is recovered by the Reconstruction Theorem 1.2.4.

Axiom W1 (Wightman Distributions). There exists a sequence of tempered distri-

butions W (n) ∈ S ′(Xn), n ∈ N.

Axiom W2 (Hermiticity). For f ∈ S(Xk) and g ∈ S(Xn−k) there holds

W (n)(f ⊗ g) = W (n)(g ⊗ f) . (1.12)

Axiom W3 (Locality). For fj ∈ S(X), j ∈ {1, . . . , n}, such that supp fj and supp fj+1

are space like with respect to each other there holds

W (n)(f1 ⊗ . . .⊗ fn) = W (n)(f1 ⊗ . . .⊗ fj−1 ⊗ fj+1 ⊗ fj ⊗ fj+2 ⊗ . . .⊗ fn) . (1.13)

Axiom W4 (Positive Definiteness). For all sequences (fj)j∈J , where fj ∈ S(Xj) and

where J is a finite index set, there holds

∑

j,k∈J
W (j+k)(f j ⊗ fk) ≥ 0 . (1.14)

Axiom W5 (Translation Invariance). For all n ∈ N and any translation ty in X

there holds

W (n)(f) = tyW
(n)(f) . (1.15)

Remark 1.2.3. If spontaneous symmetry braking takes place, it is possible, that transla-

tion invariance W5 in spatial directions is broken. However, in the models in this work

this is not the case. W5 might also fail on general curved space-times.

In space-times which have infinite spatial slices it is reasonable to require the following

axiom.
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Axiom W6 (Space-like clustering). For all f ∈ S(Xk), g ∈ S(Xn−k), 0 < k < n,

and a space like vector y there holds

lim
|s|→∞

W (n)(f ⊗ tsy∗ g) =W (k)(f)W (n−k)(g) . (1.16)

The next theorem is the Wightman reconstruction theorem without Lorentz covari-

ance. Naturally the statement and proof thereof are very similar to the vacuum case

presented in [65, Theorem 3-7].

Theorem 1.2.4. Assuming Axioms W1 to W4 there exists

(i) a separable Hilbert space H,

(ii) a unit vector Ω ∈ H,

(iii) and a hermitian operator φ(f) for every f ∈ S(X),

such that

W (n)(f1 ⊗ . . .⊗ fn) = (Ω, φ(f1) . . . φ(fn) Ω), (1.17)

for fj ∈ S(X), j ∈ {1, . . . , n}. Furthermore, if f, g ∈ S(X) have space-like separated

supports, then for every Φ and Ψ in the domain of both φ(f) and φ(g), there holds

(φ(f) Φ, φ(g) Ψ) = (φ(g) Φ, φ(f) Ψ) . (1.18)

Assuming Axioms W1 to W5 there exists a strongly continuous group of unitary operators

U(y) implementing the space-time translations:

φ(ty∗f) = U(y)φ(f)U(y)∗ . (1.19)

Assuming Axioms W1 to W6 the vector Ω ∈ H is the unique vector satisfying (1.17).

Remark 1.2.5. As is shown in [6] and [7], one can always find self-adjoint extensions of

the hermitian field operators, although it might be necessary to enlarge the Hilbert space.

Proof. Consider the Borchers-Uhlmann algebra, which is the tensor algebra over the space

of test functions:

S .
=

∞⊕

k=0

Sn , (1.20)
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with S0 = C and Sn = S(X)n. The elements of S are linear combinations of finite

sequences

f
.
= {f0, . . . fN , 0, . . .} , N <∞ , (1.21)

with fk = f
(1)
k ⊗ . . .⊗ f

(k)
k and f

(j)
k ∈ S(X). The product in S is the tensor product

(f ⊗ g)n(x1, . . . , xn) :=
n∑

k=0

fk(x1, ..., xk)gn−k(xk+1, . . . , xn) . (1.22)

For g ∈ S(X) define φ(g) : S → S by

φ(g){f0, f1, . . . , fn} .
= {0, gf0, g ⊗ f1, . . . , g ⊗ fn} . (1.23)

Now define a sesquilinear form 〈f, g〉 for two terminating sequences f = {fk}k∈N0 and

g = {gj}j∈N0 in S by

〈f, g〉 =
∞∑

j,k=0

W (j+k)
(
f j ⊗ gk

)
. (1.24)

The sesquilinear form 〈· , ·〉 fulfils

(i) 〈f, g〉 = 〈g, f〉 (by Axiom W2);

(ii) ‖f‖ .
= 〈f, f〉1/2 ≥ 0 (by Axiom W4).

Let N be the kernel of ‖ · ‖. The quotient space S/N is a pre-Hilbert space with inner

product 〈· , ·〉. Its completion is denoted by H. As S has a countable dense subspace, H
is separable. H being a space of equivalence classes of Cauchy sequences with values in

S/N , Ω is identified with the equivalence class of the constant sequence {a, a, . . .} where

a = {1, 0, . . .} ∈ S.
By definition, φ(g) is symmetric. The kernel N of 〈· , ·〉 is invariant under the appli-

cation of φ(g): if ‖f‖ = 0, then

‖φ(g)f‖ = 〈f, φ(g)φ(g)f〉 ≤ ‖f‖ ‖φ(g)φ(g)f‖ = 0 , (1.25)

as a consequence of the Cauchy-Schwarz inequality. Thus the action of φ(g), g ∈ S(X),

on S/N is well-defined and φ(g) can be lifted to a densely defined hermitian operator
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φ(g) on H. Equ. (1.17) is a consequence of Equ. (1.24) and the identification

|f〉 =
N∑

k=0

φ(f
(1)
k ) · · ·φ(f (k)

k ) Ω . (1.26)

(1.18) is a direct consequence of Axiom W3.

For a translation y define U(y) : S → S by

U(y)f
.
= {f0, ty∗f1, ty∗f2, . . .} . (1.27)

Thus, using the definition (1.23),

U(y)φ(f)U(y)∗ = φ(ty∗f) . (1.28)

〈· , ·〉 is invariant under space-time translations by Axiom W5:

‖f‖ = 0 ⇒ ‖U(y)f‖ = 0 . (1.29)

Thus the actions of U(y), on S/N are well-defined. Because of (1.29) the space-time

translations (1.27) extend to unitary operators U(y) on H by the B.L.T. Theorem [59,

Theorem I.7]. Strong continuity of U(y) follows from the strong continuity of the map

y 7→ U(y) on S (see (1.27)).

Axiom W6 implies that Ω is the unique (up to a phase) translation invariant unit

vector in H: suppose there was another translation invariant unit vector Ω′ ∈ H. Let

(Ω′
n) be a sequence of vectors in S/N approximating Ω′ in H. Then, for y a translation

in space-like direction,

〈Ω′
n,Ω

′
n〉 = lim

λ→∞
〈Ω′

n, U(λy)Ω
′
n〉 = 〈Ω′

n,Ω〉 〈Ω,Ω′
n〉 . (1.30)

The second equality follows from Axiom W6. In the limit n→ ∞ the l.h.s. in Equ. (1.30)

equals ‖Ω′‖2 = 1, while the r.h.s. is equal to |〈Ω′,Ω〉|2, which is less then 1, unless Ω′ and

Ω are equal, up to a phase.

It remains to show that axiom W6 implies uniqueness up to unitary equivalence. For

this purpose assume that there exists a second set of objects (Ĥ, Ω̂, Û(·), φ̂), which satisfies
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(1.17)-(1.19). Then define V : S → Ĥ by linear extension of the map

f 7→ |̂f〉 ≡
N∑

k=0

φ̂(f
(1)
k ) · · · φ̂(f (k)

k ) Ω̂ . (1.31)

As the expectation values remain unchanged, i.e.

〈̂f | ĝ〉 = 〈f |g〉 , f , g ∈ S/N , (1.32)

the equivalence class |̂f〉 remains unchanged, if f is changed by an element of N . Hence V

lifts to a map V : S/N → Ĥ. Moreover, Equ. (1.32) implies that V is an isometry and

therefore continuous. Thus we can extend V to a unitary operator from H to Ĥ. One

easily verifies that V Ω = Ω̂,

φ̂(g) = V φ(g)V −1

and

Û(a) = V U(a)V −1 .

Remark 1.2.6. (i) The reconstruction theorem implies that in the translation invari-

ant case the vectors

|f1, . . . , fk〉 .= φ(fk) . . . φ(f1)Ω ∈ H . (1.33)

transform under translations as

U(y)|f1, . . . , fk〉 = |ty∗f1, . . . , ty∗fk〉 . (1.34)

Note that at positive temperature the existence of state vectors, which obey such a

simple transformation law, is not obvious from the outset.

(ii) Translation invariant Wightman distributions W (n) can be viewed as distributions

in n− 1 coordinates, cf. (1.3). The resulting distributions are denoted by W(n−1).

The following are the axioms of AQFT. They encode, what can reasonably be assumed

about the observables, without any further specification of the physical system one is

interested in. For more details the reader is referred to [34].
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Axiom HK.1. For every open, bounded O ⊂ X there exists a von Neumann algebra5

A(O).

Axiom HK.2. For two bounded, open regions O1 ⊂ X and O2 ⊂ X there holds6

A(O1) ∨ A(O2) = A(O1 ∪O2) . (1.35)

Axiom HK.3 (Locality). If two bounded, open O1 ⊂ X and O2 ⊂ X are space-like

with respect to each other, there holds

∀A ∈ A(O)1, ∀B ∈ A(O)2 : [A,B] = 0 . (1.36)

Axiom HK.4 (Isotony). For two bounded, open regions O1 ⊂ O2 ⊂ X there holds

A(O1) ⊂ A(O2) . (1.37)

The map O → A(O) is a net. The C∗-inductive limit7 of

⋃

O⊂X

A(O)

is called the algebra of local observables - or observable algebra for short - and it is denoted

by A.

Axiom HK.5. The space and time translations in X are implemented by a group of

automorphisms α on A,

∀y ∈ X : αy

(
A(O)

)
= A(tyO) . (1.38)

For X = R2 the following additional Axiom is to be expected8.

Axiom HK.6. If X = R2, the net O → A(O) is Lorentz covariant, i.e. for every

bounded, open O ∈ R2 there is an action αΛ ∈ Aut(A) of O(1, 1) on A(O) such that

∀Λ ∈ O(1, 1) : αΛ(A(O)) = A(ΛO) . (1.39)

5The references for basic notions of operator algebras are [9, 44].
6A1 ∨ A2 denotes the von Neumann algebra generated by the algebras A1 and A2.
7For this construction the reader is referred to [45, Proposition 11.4.1].
8The cylinder R× Sβ is not invariant under Lorentz transformations. Hence no such axiom will hold

there.
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Notice that, if the field φ from the Reconstruction Theorem is self-adjoint - in the

present work this will always be the case - a Haag-Kastler net is simply obtained by

passing to the Weyl algebra

A(O) := {eiφ(f) | supp f ⊂ O}′′ . (1.40)

Axioms HK.1 to HK.5 formalise the notion of observables of a theory. Taking measure-

ments of these observables results in numbers. In the algebraic approach these numbers

are given as states evaluated on elements of the observable algebra. Hence the Wightman

functions in the Hamiltonian approach and the states in AQFT are analogous concepts.

This claim is supported by the next theorem [9, Theorem 2.3.16], which puts the Wight-

man and the algebraic approach in line.

Theorem 1.2.7 (Gelfand-Naimark-Segal (GNS) Construction). Let ω be a state

on a C∗-algebra A. Then there exists a Hilbert space Hω, a vector Ωω ∈ Hω and a

representation πω of A on B(H), such that

(i) ∀A ∈ A : ω(A) = (Ωω, πω(A) Ωω),

(ii) Ωω is cyclic for πω(A).

(Hω, πω,Ωω) is unique up to unitary equivalence.

The next task is to characterise “interesting” states. The first of which are positive

energy states [5] characterised by the spectrum condition.

Definition 1.2.8 (Spectrum Condition). (i) Let ω be a state on a Haag-Kastler

net A. Let the space and time translations be unitarily implemented on the GNS

Hilbert space, i.e. there are d-parameter groups of unitaries U(y) such that for all

A ∈ A and all y ∈ X

πω(αyA) = U(y)πω(A)U(y)
∗. (1.41)

(d is the dimension of X.) ω is called a positive energy state, if the generators of

U(y) have common spectrum in the forward light cone V +.

(ii) A quantum field theory, satisfying Axioms W1 to W5, fulfils the spectrum condition,

if the unitaries U(y) in equation (1.19) have generators with common spectrum in

the forward light cone V +.
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The Spectrum Condition can be translated into analyticity properties of the Wightman

distributions or of the functions

y 7→ ω
(
Aαy(B)

)
, (1.42)

where A,B ∈ A. Wightman distributions W (n), which fulfil the spectrum condition, are

boundary values of analytic functions on X− iV + and their Fourier transforms W̃ (n) have

support in the forward light cone [60, Theorem IX.32].

Requiring invariance under Lorentz transformations in addition to the Spectrum Con-

dition defines vacuum states. But since none of the states considered in this work will be

Lorentz invariant, these will be omitted here.

The next class of states are thermal equilibrium states, which are characterised by the

KMS condition.

Definition 1.2.9 (KMS Condition). (i) Let ω be a state over a von Neumann alge-

bra or a C∗-algebra A and let (τt)t∈R be a strongly continuous automorphism group

of A. ω is called a KMS state with inverse temperature β > 0, if there exists for

every A ∈ A and B ∈ A an analytic function FA,B, which is analytic in the strip

R+ i (0,−β), continuous on the closure thereof, and which fulfils

FA,B(t) = ω
(
τt(A)B

)
and FA,B(t− iβ) = ω

(
B τt(A)

)
, (1.43)

for all t ∈ R.

(ii) Wightman distributions W (n) satisfying Axioms W1 to W5 satisfy the KMS condi-

tion, if for every (f1, . . . , fn) ∈ S(X)n there exists an analytic function F(f1,...,fn) on

the strip R+ i (0,−β) such that

F(f1,...,fn)(t) = (Ω, φ(f1) · · ·φ(fk)U((t, 0))∗ φ(fk+1) · · ·φ(fn) Ω) , (1.44)

and

F(f1,...,fn)(t− iβ) = (Ω, φ(fk+1) · · ·φ(fn)U((t, 0))φ(f1) · · ·φ(fk) Ω) . (1.45)

Remark 1.2.10. (i) In thermal systems the generator of time translations - generally

called Liouvillean L - has all of R as spectrum9 [67]. Therefore the KMS Condition

9The given reference actually treats the simpler case of fixed particle number. There is no reason why
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is defined in terms of analyticity properties of correlation functions and not spectral

properties of operators.

(ii) For the connection to Gibbs states and how to directly derive the KMS condition,

using notions like passivity and stability, the reader is referred to [34, V.1 and V.3].

If a thermal state is defined on a local algebra satisfying axioms HK.1 to HK.5, it is

expected to obey the stronger Relativistic KMS Condition [14].

Definition 1.2.11 (Relativistic KMS Condition). (i) Let ω be a state over a von

Neumann algebra or a C∗-algebra A, let (α(t,x))(t,x)∈R2 be a strongly continuous au-

tomorphism group of A and let β > 0. ω satisfies the Relativistic KMS Condition,

if it is a β-KMS state with respect to α(·,x), for all x ∈ R, and if FA,B, defined by

FA,B(t, x) := ω(αt,x(A)B) ,

has an analytic continuation to R2 − iVβ.

(ii) Wightman distributions W (n) satisfying Axioms W1 to W5 satisfy the Relativis-

tic KMS Condition, if they satisfy the KMS condition, and if there exist analytic

functions F (n) on a domain

λ1Tβ × · · ·λn−1Tβ , (1.46)

where 0 < λj < 1, j ∈ {1, . . . , n − 1}, ∑j λj = 1, where Tβ = X − iVβ and such

that the associated Wightman distributions in relative coordinates, W(n−1), are the

boundary values of F (n) in the sense of distributions.

Definition 1.2.12 (Commutant). Let H be a Hilbert space and let M ⊂ B(H). The

commutant M′ is defined as

M′ := {A ∈ B(H) | ∀B ∈ M : [A,B] = 0} . (1.47)

In thermal quantum field theory it is the case that the commutant of the algebra of

observables is not trivial [34, Section V.1.4], i.e. it is bigger than C 1l. This fact has many

consequences. In order to exhibit these, one passes10 on to the weak closure of πω(A),

the Liouvillean should have simpler spectral properties for theories with non-fixed particle number.
10The reason why this is done is simply, that in the theory of von Neumann algebras more technical

tools are available than for the C∗ counterpart.
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denoted by M, where ω is the KMS state. By von Neumann’s Theorem the resulting

von Neumann algebra can be written as the double commutant of πω(A); M = πω(A)′′.

According to [9, Chapter 5.3] the state ω can be lifted to M. Furthermore Ωω is not only

cyclic but also separating for M [9, Corollary 5.3.9]. A cyclic and separating vector for a

von Neumann algebra is the starting point of Tomita-Takesaki Modular Theory. Chapter

2 contains a short introduction into relative modular theory.

1.2.3 Euclidean Approach

Historically, the vacuum P (φ)2 theory was investigated before its thermal version. Since,

in the vacuum case, the Hamiltonian - for this subsection denoted by H - is a positive

operator, the semi-group {e−tH | t > 0} is well-behaved and therefore amenable to direct

construction. The desired real-time correlation functions can then be recovered as analytic

continuations of the Schwinger Functions. That is, it is possible to construct the vacuum

vector Ω and the field φ, such that the Schwinger functions are

S(t1, x1, . . . , tn, xn) =
(
Ω, φ(x1) e

−(t2−t1)H φ(x2) · · ·φ(xn−1) e
−(tn−tn−1)H φ(xn) Ω

)
, (1.48)

for tj− tj−1 > 0. For the precise definitions of these objects in the vacuum case the reader

is once more referred to [64]. In the thermal case, however, the Liouvillean is not bounded

from below - as pointed out before (cf. [67]). That the Euclidean approach works despite

this fact can be understood by viewing the field as weak operator valued solution of the

Klein-Gordon Equation11,

(�+ κ2)φ(x) = − :P ′(φ(x)) : , (1.49)

where � is the Klein-Gordon operator in two dimensions, x is a space-time point in R2,

:P ′(φ) : is a Wick-ordered interaction polynomial in the field φ and κ is a mass parameter.

This equation alone does not fix the solutions. The choice between these different fields

is made by imposing analyticity properties on the resulting correlation functions (i.e. the

Spectrum and the KMS Condition). The elliptic equation, which corresponds to (1.49)

(i.e. (1.49), where t is replaced by it), is

(−△+ κ2)φ(x) = − :P ′(φ(x)) : , (1.50)

11Of course the field should not be evaluated at a point x. Instead a test function should be used. But,
for this introduction, heuristic considerations will suffice.
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△ being the Laplace operator in two dimensions. In order to achieve the mentioned

analyticity properties, equation (1.50) must be solved in different geometries. For the

vacuum case the correct geometry is R2. In the thermal case the KMS condition demands

analyticity in a time strip and equation (1.43). These can be realised by solving (1.50) on

the cylinder Sβ ×R. Accordingly β will become the inverse temperature parameter from

the KMS condition.

In Euclidean geometry there is of course no distinction between time or space coor-

dinates. Therefore reconstructing the same solutions of (1.50) on Sβ × R, and instead

of choosing R in Sβ × R as spatial slices, interpreting the angular coordinate on Sβ as

the position, results in the vacuum P (φ)2 model on the circle Sβ . Hence the Schwinger

functions of the thermal model on R and the vacuum model on Sβ are the same, but with

interchanged interpretations of the coordinates. This is Nelson symmetry.

Although there is a construction of the vacuum P (φ)2 model on R, which uses solely

the Hamiltonian approach [24–27]12, the Euclidean construction [29, 64] is certainly sim-

pler. Furthermore certain techniques, which give information about the spectrum of the

Hamiltonian, are restricted to the Euclidean Approach. In the thermal case the situation

seems to be slightly more complicated. There is no direct Hamiltonian construction of

the interacting model as of yet. Furthermore, as pointed out before, the spectrum of the

Liouvillean is unbounded in both directions - even in the free case.

For the vacuum case there are several different Euclidean axiom sets and reconstruc-

tion theorems. Most notably Nelson’s Axioms and the Osterwalder-Schrader Axioms and

the corresponding reconstruction theorems. Furthermore there is a version [47] of the

Euclidean Approach, which incorporates the technical power of Nelson’s formulation in

terms of stochastic processes, the technical simplification the Osterwalder-Schrader recon-

struction represents and the technical simplification, which comes from the use of bounded

observables as in AQFT. Only this version of the Euclidean Approach has been gener-

alised to the thermal case ( [49] is a self-contained, complete review.). In what follows

this thermal reconstruction theorem will be briefly recalled. Before the statement of the

theorem a few notions have to be introduced.

Let ω = (Ω, · Ω) be a KMS state on a C∗-algebraM with respect to the automorphism

group (αt)t∈R. For A1, . . . , An ∈ M define the functions

ΓA1,...,An(t1, . . . , tn) = (Ω, αt1(A1) · · ·αtn(An) Ω). (1.51)

12A self-contained construction can be found in the thesis [71] (German language).
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According to [49, Theorem 2.1 & Equation (3.1)]13 ΓA1,...,An has an analytic continuation

to

{(t1 + is1, . . . , tn + isn) ∈ C
n | −β/2 ≤ s1 ≤ · · · ≤ sn ≤ β/2} .

Definition 1.2.13 (Stochastically Positive KMS Systems [49]).

A stochastically positive KMS system (M,A, (αt)t∈R, ω) at inverse temperature β > 0

consists of

(i) a C∗-algebra M,

(ii) a one-parameter group of automorphisms (αt)t∈R of M,

(iii) an Abelian sub-C∗-algebra14 A of M, such that the C∗-algebra generated by

⋃

t∈R
αt(A)

is equal to M,

(iv) a faithful state ω on M satisfying the KMS condition at inverse temperature β,

relative to (αt)t∈R;

such that

(v) for all A1 . . . An ∈ A+ there holds stochastic positivity, i.e. for 0 < sj < β/2,

j ∈ {1, . . . , n},

ΓA1,...,An(is1, . . . , isn) ≥ 0 . (1.52)

Let (Xt)t∈T be a stochastic process indexed by the set T with values in the compact

Hausdorff space K. The underlying probability space is denoted by (Q,Σ, µ) and the

expectation of a function F ∈ L1(Q,Σ, µ) is denoted by

〈F 〉 :=
∫

Q

F dµ . (1.53)

In what follows the notations, definitions and results of [49, Sections 4 and 5] are used

freely.

13The multiple-time analyticity theorem is due to Araki.
14This algebra is to be thought of as the algebra of time-zero observables.
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Theorem 1.2.14 (Klein & Landau [49]). Let
(
M,A, (αt)t∈R, ω

)
be a stochastically

positive KMS system at inverse temperature β. Then there exists a stochastic process

(Xt)t∈R with values in the spectrum of A, which is periodic with period β, stationary,

symmetric, weakly stochastically continuous, faithful, and Osterwalder-Schrader positive

on Sβ, such that

〈A1(Xt1) · · ·An(Xtn)〉 = ΓA1,...,An(it1, . . . , itn) . (1.54)

Conversely, let (Xt)t∈R be a stochastic process with values in a compact Hausdorff space

K, periodic with period β, stationary, symmetric, weakly stochastically continuous, faithful

and Osterwalder-Schrader positive on Sβ. Then there exists a stochastically positive KMS

system
(
M,A, (αt)t∈R, ω

)
at inverse temperature β such that A ∼= C(K) and (1.54) holds.

Such a KMS system is unique up to isomorphism.

For the current purpose the second part of the theorem is important. The proof

of the theorem is not given here as the construction of the stochastic process and the

reconstruction of the real time correlations will be done explicitly in Chapter 3.

1.3 Free Fields

Since the free field is the starting point for the construction of the interacting field, the

necessary essentials about it will be treated here.

1.3.1 The Free Euclidean Field

The first step for constructing the free Euclidean field is to procure a measure on the

chosen path space. The correlation functions are then defined as the moments of the

measure.

In this work the (generalised) path space Q is defined as Q := S ′
R
(Sβ × R). This

is of course not a space of one-parameter paths in some manifold. Here the paths are

indexed by the infinite dimensional set of Schwartz functions. The choice of Q is different

compared to [49]. This is done because in the present formulation the construction of

the quantum field as an operator valued distribution - something with which [49] is not

concerned - is especially simple.

In the free case the existence of an appropriate measure on Q is guaranteed by Minlos’
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theorem15. Before stating it, a few things should be introduced. The evaluation map φ(f),

f ∈ SR(Sβ × R),

φ(f) : Q→ R, q 7→ 〈q, f〉 , (1.55)

is defined in terms of the duality bracket 〈 . , . 〉. In the present context φ is called the

Euclidean quantum field. The Borel σ-algebra Σ on Q is the minimal σ-algebra containing

all open sets in the σ(S ′,S)-topology.

Remark 1.3.1. Every function F̃ : R → C gives rise to a function F on (Q,Σ, µ).

F : Q→ C, q 7→ F (φ(f))(q) := F̃ (〈q, f〉),

for every f ∈ SR(Sβ × R). Expressions like eiφ(f) in (1.57) below are to be understood in

this way.

The translations t(α,x) and reflections r and r′ of distributions q ∈ Q (defined in

subsection 1.2.1) lift to translations U(α, x) and reflections R and R′ of functions F on

Q via

(U(α, x)F ) (q) = F (t−1
α,xq) , (RF )(q) = F (rq) and (R′F )(q) = F (r′q) .

(1.56)

Theorem 1.3.2 (Minlos [8, 20, 29, 53, 64]). Let S be a linear topological space and let

E be a functional on S such that

(i) E(0) = 1,

(ii) S ∋ f 7→ E(f) ∈ C is continuous,

(iii)
∑n

i,j=1 ziz̄jE(fi − fj) ≥ 0 for all fi, fj ∈ S, zi, zj ∈ C, i, j ∈ {1, . . . , n}.

Then there exists a probability measure µ on S ′ such that

E(f) =

∫

S′

eiφ(f) dµ , (1.57)

for every f ∈ S.
15Minlos’ theorem can be viewed as a generalisation of Bochner’s theorem for infinite dimensional

spaces.
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Let C be the covariance

C(f1, f2) :=
(
f1, (D

2
α +D2

x +m2)−1f2
)
, f1, f2 ∈ S(Sβ × R) , (1.58)

where m > 0 is the mass parameter and Dα = −i∂α, Dx = −i∂x. The scalar product

( . , . ) in (1.58) is the one in L2(Sβ × R). The generating functional

E(f) = e−C(f,f)/2, f ∈ SR(Sβ × R) , (1.59)

satisfies the conditions of Minlos’ theorem. The resulting measure dφC on Q is called the

Gaussian measure with mean zero and covariance C.

The moments of dφC can be computed explicitly, cf. [64, Theorem II.16] and [64,

Theorem III.1].

Theorem 1.3.3. For n ∈ N and for a Gaussian measure dφC with mean zero and

covariance C there holds

∫
dφC φ(f1) · · ·φ(f2n−1) = 0 , (1.60)

and

∫
dφC φ(f1) · · ·φ(f2n) =

∑

pairs

C(fi1 , fj1) · · ·C(fin , fjn) , (1.61)

where the sum16 is over all (2n)!/2nn! ways of writing {1, . . . , 2n} as n distinct (unordered)

pairs (i1, j1), . . . , (in, jn).

The Euclidean two-point function (n = 1) is therefore just the covariance C. Observe

the following properties of the covariance [22, p. 131]:

(i) for h1, h2 ∈ SR(R) and 0 ≤ α1, α2 ≤ β,

lim
k,k′→∞

C
(
δk(.− α1)⊗ h1, δk′(.− α2)⊗ h2

)

=
(
h1,

e−|α1−α2|ǫ + e−(β−|α1−α2|)ǫ

2ǫ(1− e−βǫ)
h2

)
L2(R, dx)

, (1.62)

with ǫ := (D2
x +m2)

1
2 ;

16 [64, Proposition II.1] is also helpful.
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(ii) for g1, g2 ∈ SR(Sβ) and x1, x2 ∈ R,

lim
κ,κ′→∞

C
(
g1 ⊗ δκ(.− x1), g2 ⊗ δκ′(.− x2)

)
=
(
g1,

e−|x1−x2|ν

2ν
g2

)
L2(Sβ ,dα)

, (1.63)

with ν := (D2
α +m2)

1
2 .

Definition 1.3.4 (Free Schwinger Functions). The free Schwinger functions S
(n)
free ∈

S ′ ((Sβ × R)n) are defined by

S
(n)
free(f1 ⊗ · · · ⊗ fn) :=

∫

Q

dφC φ(f1) · · ·φ(fn) . (1.64)

In (1.62) and (1.63) it is possible to take the limits of approximations of Dirac Delta

functions δ(· − yj) also in the remaining test functions gj and hj as long as yi 6= yj, i 6= j,

resulting in the free non-coincident Schwinger functions, denoted by the same symbol

S
(n)
free, such that17

S
(n)
free(x1, . . . , xn) = S

(n)
free(δ

(2)(· − x1), . . . , δ
(2)(· − xn)) , (1.65)

where xj ∈ Sβ × R, xi 6= xj for i 6= j and where δ(2) is the two-dimensional Dirac Delta

on Sβ × R.

1.3.2 The Free, Scalar Vacuum Field on the Circle Sβ

A pedagogic introduction to the free, scalar bosonic field can be found in [60, Section

X.7]. Here the free fields are introduced in a slightly different manner, so as to make the

identification of Euclidean and Fock fields easy.

The Sobolev space H−1/2(Sβ) over Sβ is equipped with the inner product

(g1, g2) 7→
(
g1, (2ν)

−1g2
)
L2(Sβ ,dα)

, ν =
(
D2

α +m2
) 1

2 . (1.66)

Define H(0)
C as the bosonic Fock space over H−1/2(Sβ),

H(0)
C :=

∞⊕

n=0

H−1/2(Sβ)
⊗sn, (1.67)

17No Confusion will arise from this abuse of notation, as it will always be clear whether the entries of

S
(n)
free are functions or points.
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where ⊗s denotes the symmetric tensor product and where H−1/2(Sβ)
⊗s0 := C. The

vacuum vector for the free field is denoted by Ω
(0)
C := (1, 0, 0, . . .) ∈ H(0)

C . On each level

of H(0)
C let a∗(g) act as

a∗(g) (gn,1 ⊗s · · · ⊗s gn,n) :=
√
n+ 1 g ⊗s gn,1 ⊗s · · · ⊗s gn,n , g ∈ H−1/2(Sβ). (1.68)

Denote the closure of a∗(g) by the same symbol and denote the adjoint of a∗(g) by a(g),

such that a(g)∗ = a∗(g). These are used to define the time-zero field operator. Denote the

subspace of real-valued elements of the Sobolev space by H
−1/2
R

(Sβ) ⊂ H−1/2(Sβ). For

real-valued g ∈ H
−1/2
R

(Sβ) define

φ
(0)
C (g) :=

1√
2

(
a(ν−1/2g) + a∗(ν−1/2g)

)−
. (1.69)

φ
(0)
C (g) is unbounded and self-adjoint [60, Theorem X.41 (a)]. The free Hamiltonian is

defined as

H
(0)
C = dΓ(ν), (1.70)

where dΓ is the second quantisation. On each level H−1/2(Sβ)
⊗sn of H(0)

C the action of

dΓ(A) for an operator A on H−1/2(Sβ) is given by

A⊗ 1l⊗ · · · ⊗ 1l + 1l⊗A⊗ · · · ⊗ 1l + 1l⊗ · · · ⊗ 1l⊗ A . (1.71)

The free Wightman distributions W
(n)
C,free are defined by

W
(n)
C,free(t1, g1, . . . , tn, gn)

=
(
Ω

(0)
C , φ

(0)
C (g1)e

−i(t1−t2)H
(0)
C · · ·φ(0)

C (gn−1)e
−i(tn−1−tn)H

(0)
C φ

(0)
C (gn) Ω

(0)
C

)
. (1.72)

A simple calculation establishes the following proposition.

Proposition 1.3.5. (i) The free two-point function

W
(2)
C,free :

(
R× SR(Sβ)

)2 → C (1.73)
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for the free scalar field on the circle is given by

W
(2)
C,free(t1, g1, t2, g2) :=

(
g1,

e−i(t1−t2)ν

2ν
g2

)
. (1.74)

(ii) For n ∈ N the Wightman distributions

W
(n)
C,free :

(
R× SR(Sβ)

)n 7→ C (1.75)

for the free scalar field on the circle are given by W
(2n−1)
C,free := 0 and by

W
(2n)
C,free(t1, g1, . . . , t2n, g2n) :=

∑

pairs

∏

il,jk

W
(2)
C,free(til , gil, tjk , gjk) , (1.76)

where the sum is over all (2n)!/2nn! ways of writing {1, . . . , 2n} as n distinct (un-

ordered) pairs (i1, j1), . . . , (in, jn).

Note that, using (1.63), there holds

(
Ω

(0)
C , φ

(0)
C (g1) e

−tH
(0)
C φ

(0)
C (g2) Ω

(0)
C

)
=

(
g1,

e−tν

2ν
g2

)

=

∫
dφ

(0)
C φ(g1 ⊗ δ)φ(g2 ⊗ δ(· − t)) , (1.77)

as long as t > 0 and g1, g2 ∈ H
−1/2
R

(Sβ). Evidently the analytic continuations in the

time variables of W
(n)
C,free coincide with the Schwinger functions S

(n)
free for gj ∈ SR(Sβ) and

tj − tj+1 > 0, j ∈ {1, . . . , n},

W
(n)
C,free(−it1, g1, . . . ,−itn, gn) = S

(n)
free(g1 ⊗ δ(· − t1), . . . , gn ⊗ δ(· − tn)) . (1.78)

The free scalar field on Sβ ×R is a weak operator-valued solution to the Klein-Gordon

equation. This follows either from [60, Theorem X.42] or by simply noting that the two-

point functionW
(2)
C,free is a weak solution of the Klein-Gordon equation and using Definition

1.3.5.

Instead of the fields one can regard the Weyl-operators eiφC(g) as the principal objects.

This is more in the spirit of AQFT. The advantage of the Weyl-operators is their bound-

edness, their drawback is the non-continuity (in operator norm) in the test function g.
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1.3.3 The Free, Scalar Thermal Field on R

In contrast to the free vacuum field the free, thermal field is constructed using two copies

of Fock space. In physics literature, this is known as “doubling of degrees of freedom”.

Some terminology has to be fixed before the thermal field can be defined. Let h be

a complex vector space. Then the conjugate vector space h is defined as the real vector

space h equipped with the complex structure −i. If h is in h, the corresponding element

in h is denoted by h. If a is a linear operator on h, then a denotes the operator on h,

which acts as ah := ah.

The Sobolev space H−1/2(R) is equipped with the inner product

(h1, h2) 7→
(
h1, (2ǫ)

−1h2
)
, ǫ = (D2

x +m2)
1
2 . (1.79)

The Araki-Woods Hilbert space HAW is defined as the Fock space over H−1/2(R) ⊕
H−1/2(R),

HAW :=
∞⊕

n=0

(
H−1/2(R)⊕H−1/2(R)

)⊗sn

, (1.80)

with the same conventions for the symmetric tensor product as in the preceding subsection.

Define ΩAW := (1, 0, 0, . . .) ∈ HAW and set ρ := (eβǫ − 1)−1. The next task is to define

the annihilation and creation operators for the thermal case. On each level of HAW let

a∗(h1, h2) act as

a∗(h1, h2)
(
(hn,1 ⊕ hn,1)⊗s · · · ⊗s (hn,n ⊕ hn,n)

)

:=
√
n+ 1 (h1 ⊕ h2)⊗s (hn,1 ⊕ hn,1)⊗s · · · ⊗s (hn,n ⊕ hn,n) . (1.81)

Denote the closure of a∗(h1, h2) by the same symbol. Denote the adjoint of a∗(h1, h2) by

a(h1, h2), such that a(h1, h2)
∗ = a∗(h1, h2). Furthermore let the Fock field and the Weyl

operators be defined by

φF (h1, h2) := (a∗(ǫ−1/2h1, ǫ
−1/2h2) + a(ǫ−1/2h1, ǫ

−1/2h2))/
√
2 (1.82)

and byWF (h1, h2) = eiφF (h1,h2), respectively. The Araki-Woods representation of the Weyl

relations is given by

WAW (h) := WF ((1 + ρ)1/2h, ρ1/2h) . (1.83)
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It is possible to define an Araki-Woods field operator

φAW (h) := φF

(
(1 + ρ)1/2h, ρ1/2h

)
= −i d

ds
WAW (sh)

∣∣∣∣
s=0

. (1.84)

φAW (h) is the free thermal time zero field for h ∈ H
−1/2
R

. φAW (h) is unbounded and

self-adjoint, the proof of which is similar to the one of [60, Theorem X.41 (a)]. The free

Liouvillean is defined as

LAW := dΓ(ǫ⊕−ǫ) . (1.85)

( dΓ as in (1.71).) The free thermal Wightman distributions are defined by

W
(n)
β,free(t1, h1, . . . , tn, hn) :=

(
ΩAW , φAW (h1)e

−i(t1−t2)LAW · · ·
· · ·φAW (hn−1)e

−i(tn−1−tn)LAWφAW (hn) ΩAW

)
. (1.86)

Proposition 1.3.6. (i) The free two-point function

W
(2)
β,free :

(
R× SR(R)

)2 → C (1.87)

for the free scalar field on the circle is given by

W
(2)
β,free(t1, h1, t2, h2) :=

(
h1,

e−i(t1−t2)ǫ + e−(β−i(t1−t2))ǫ

2ǫ(1− e−βǫ)
h2

)
. (1.88)

(ii) For n ∈ N the Wightman distributions

W
(n)
β,free :

(
R× SR(R)

)n 7→ C (1.89)

for the free scalar field on the circle are given by W
(2n−1)
β,free := 0 and by

W
(2n)
β,free(t1, h1, . . . , t2n, h2n) :=

∑

pairs

∏

il,jk

W
(2)
β,free(til , hil, tjk , hjk) , (1.90)

where the sum is over all (2n)!/2nn! ways of writing {1, . . . , 2n} as n distinct (un-

ordered) pairs (i1, j1), . . . , (in, jn).
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Now for h1, h2 ∈ H
−1/2
R

(R) and 0 < t < β there holds

(
ΩAW , φAW (h1) e

−tLAW φAW (h2) ΩAW

)
=

(
h1,

e−tǫ + e−(β−t) ǫ

2ǫ(1− e−βǫ)
h2

)

=

∫
dφC φ(δ ⊗ h1)φ(δ(· − t)⊗ h2) (1.91)

by (1.62). Again the free Schwinger functions S
(n)
free are the analytic continuations of the

free Wightman functions W
(n)
β,free,

W
(n)
β,free(−it1, h1, . . . ,−itn, hn) = S

(n)
free(δ(· − t1)⊗ h1, . . . , δ(· − tn)⊗ hn) (1.92)

for tj ∈ (0, β), tj − tj+1 > 0 and hj ∈ SR(R), j ∈ {1, . . . , n}.
As the two-point function W

(2)
β,free is a weak solution to the Klein-Gordon equation, so

is the free, scalar, thermal field.

It is also possible to define two operators a∗AW (h) and aAW (h) by

φAW (h) =
1√
2
(a∗AW (h) + aAW (h)) (1.93)

and by

πAW =
i√
2
(a∗AW (h)− aAW (h)) . (1.94)

This results in

aAW (h) = a
(
(1 + ρ)1/2h, 0

)
+ a∗

(
0, ρ1/2h

)
(1.95)

and

a∗AW (h) = a∗
(
(1 + ρ)1/2h, 0

)
+ a

(
0, ρ1/2h

)
. (1.96)

However, these cannot be considered as true ladder operators as aAW (h)ΩAW 6= 0.



Chapter 2

The Hölder Inequality for KMS

States

2.1 The Inequality

The starting point of this chapter is a KMS state ωβ on a C∗-algebra A. The KMS-

condition implies that ωβ is invariant under τ [10, Proposition 5.3.3] and therefore the

latter can be unitarily implemented in the GNS representation (π,H,Ω) associated to the

pair (A, ωβ). Weak continuity of τ ensures the existence of a generator L, the Liouvillean,

such that π(τt(A))Ω = e−itLπ(A)Ω and LΩ = 0.

As the vector Ω is cyclic and separating for the von Neumann algebra M .
= π(A)′′,

the algebraic operations on M define maps on the dense set MΩ ⊂ H. Tomita’s idea to

study the ∗-operation on M turned out to be especially fruitful. It leads to an anti-linear

operator S◦,

S◦ : AΩ 7→ A∗Ω , A ∈ M ,

which is closable, and thus allows a polar decomposition for the closure S = J∆1/2.

The anti-linear involution J is called the modular conjugation and the positive albeit in

general unbounded operator ∆ is called the modular operator. The modular conjugation J

satisfies J∗ = J and J2 = 1l, and induces a ∗-anti-isomorphism j : A 7→ JA∗J between the

algebra M and its commutant M′ (Tomita’s theorem). For an introduction to modular

theory the reader is referred to [9, Section 2.5] or [34, Section 5.2].

More generally, an arbitrary normal faithful state over a von Neumann algebra M
is a (σ,−1)-KMS state with respect to the modular automorphisms σ given by A 7→
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∆isA∆−is, A ∈ M, s ∈ R, at temperature1 β = −1 (see, e.g., [10]). To be precise, the

strong continuity assumption, which is part of Definition 1.2.9, holds on the restricted C∗-

dynamical system [62, Proposition 1.18] associated to the W ∗-dynamical system (M, σ).

Uniqueness of the modular automorphism ensures that ∆1/2 = e−βL/2.

The standard positive cone P♯ ⊂ H is defined as

P♯ .= {JAJAΩ : A ∈ M} = {∆1/4AΩ : A ∈ M+} ,

where the bar denotes norm closure [2]. Consequently, a KMS state on a C∗-dynamical

system (A, τ) gives rise to a von Neumann algebra in standard form, namely a quadruple

(H,M, J,P♯), where H is a Hilbert space, M is a von Neumann algebra, J is an anti-

unitary involution on H and P♯ is a self-dual cone in H such that:

(i) JMJ = M′;

(ii) JAJ = A∗ for A in the centre of M;

(iii) JΨ = Ψ for Ψ ∈ P♯;

(iv) AJAP♯ ⊂ P♯ for A ∈ M.

The vector state induced by Ω extends the KMS state ωβ from A to M, and we denote

this state by the same symbol. Now set, for even p ∈ N and a positive operator A

|||A|||p :=
(
(e−βL/2pA e−βL/2p)p/2Ω, (e−βL/2pA e−βL/2p)p/2Ω

)1/p
, (2.1)

if the r.h.s. exists. The rest of this chapter is devoted to the proof of the following

theorem [42]. It will be used in Subsection 3.4.3 to prove the existence of the Wightman

distributions for the thermal P (φ)2 model.

Theorem 2.1.1 (Hölder inequality). Consider a (τ, β)-KMS state ωβ over a C∗-dy-

namical system (A, τ). Let (z1, . . . , zn) ∈ C
n and 1 ≤ m ≤ n be such, that 0 ≤ ℜzj,∑m

j=1ℜzj ≤ 1/2 and
∑n

j=m+1ℜzj ≤ 1/2. Furthermore let pj be the smallest, positive,

even integer such that

1

pj
≤ min{ℜzj+1,ℜzj} , (2.2)

1Any KMS state with parameter β can be transformed into one with parameter −1 by rescaling
time [10, p. 77]. Since it is customary to work with temperature β = −1 in mathematics literature, this
convention will be adopted for this chapter.
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with zn+1 = zn and z0 = z1. Then

∣∣(e−zm+1LAm+1 · · · e−zn AnΩ, e
−zmLAm · · · e−z1 A1Ω

)∣∣ ≤ |||A0|||p0 · · · |||An|||pn (2.3)

for all A1, . . . , An ∈ M+.

Remark 2.1.2. (i) Although the multi-boundary Poisson kernels [62, Lemma 4.4.8] for

the domain I
(n)
β/2 (defined in (2.5) below) can be computed explicitly (the computation

can be traced back to Widder [70]), it seems unlikely that the Hölder inequality (2.3)

can be derived using only methods of complex analysis (unless n = 2).

(ii) Let M0 denote a weakly dense sub-algebra of entire analytic2 elements in M. It

follows that, for p ∈ N and A ∈ M+
0 ,

|||A|||p = ωβ

(
τiβ/2p(A) · · · τi(2p−1)β/2p(A)τiβ(A)

)1/p
. (2.4)

Thus Theorem 2.1.1 is a generalisation of the Hölder inequality for Gibbs states, as

stated, for example, in [51,52].

(iii) Fröhlich conjectured an inequality similar to (2.3) in [19].

Two more aspects of Theorem 2.1.1 are notable. Firstly, it estimates a non-commu-

tative expression in terms of essentially commutative ones, which can be evaluated using

spectral theory, and secondly, the bounds are uniform in ℑzj , j ∈ {1, . . . , n}. The proof

of Theorem 2.1.1 relies on the theory of non-commutative Lp-spaces, but the appeal of

the theorem may well be that knowledge of non-commutative integration theory is not

required in order to apply the inequality.

In quantum statistical mechanics the uniformity in imaginary time is useful for estab-

lishing the existence of real time Greens functions from the Schwinger functions. A direct

application of (2.3) is given in the next chapter. Additionally, in a forthcoming work

by M. Rouleux and C. Jäkel, the Hölder inequality is used to show that the Wightman

distributions of the P (φ)2 model on the de Sitter space satisfy a micro-local spectrum

condition.

2An element A ∈ M is called analytic for τt if there exists a strip Iλ = {z ∈ C : |ℑz| < λ} in C,
and a function f : Iλ 7→ M, such that (i) f(t) = τt(A) for t ∈ R, and (ii) z 7→ φ(f(z)) is analytic for all
φ ∈ M∗ [9, Definition 2.5.20].
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2.2 Non-commutative Lp-spaces

Normal states over von Neumann algebras provide a non-commutative extension of clas-

sical integration theory, i.e. commutative Lp-spaces, and one recovers the latter in

case the algebra is Abelian [54]. Among the many approaches to non-commutative Lp-

spaces [16, 35, 39, 50, 57, 63, 68], Araki’s and Masuda’s approach [4] is best suited for the

present purpose. The next two subsections contain short introductions to relative modular

operators for weights and non-commutative Lp spaces, respectively. A complete treatment

of relative modular operators can be found in [66]. Relative modular operators for finite

dimensional Hilbert spaces are laid out in Appendix A.

2.2.1 Relative Modular Operators

Let M be a σ-finite von Neumann algebra. Furthermore let φ be a normal semi-finite

weight on M, i.e. φ : M+ → [0,∞] such that [66, Definition 1.1]

(i) for A and B in M+ and λ ≥ 0 there holds φ(A + B) = φ(A) + φ(B) and φ(λA) =

λφ(A), where the convention 0(+∞) = 0 is used;

(ii) {A ∈ M+ | φ(A) <∞} generates M;

(iii) and for every bounded increasing net (Aj) inM+ there holds φ(supAj) = supφ(Aj).

The semi-cyclic representation3 [66] makes it possible to define an anti-linear operator

Sφ,Ω by

Sφ,ΩAΩ := ξφ(A
∗) , A ∈ N ∗

φ ,

where Nφ
.
= {A ∈ M : φ(A∗A) < ∞}, and ξφ(A) is the semi-cyclic representation of

A ∈ Nφ in

Hφ := Nφ/kerφ .

Sφ,Ω is closable and the closure Sφ,Ω has a polar decomposition Sφ,Ω
.
= Jφ,Ω∆

1/2
φ,Ω. It is

noteworthy that

∆φ,Ω = S∗
φ,ΩSφ,Ω ,

is a positive, in general unbounded, operator on the original Hilbert space H. If φ is a

vector state associated to ξ ∈ H such that φ(x) = (ξ, xξ), then ξφ(A) = Aξ and we denote

3The semi-cyclic representation is a generalisation of the GNS representation to weights.
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∆φ,Ω by ∆ξ,Ω and Jφ,Ω by Jξ,Ω. In order to keep the notation simple, e−βL/2 will from now

on be written as ∆1/2 ≡ ∆
1/2
Ω,Ω.

A key role in the proof of Theorem 2.1.1 will be played by the following estimate:

define, for any α > 0, a set

I(n)α
.
= {(z1, . . . , zn) ∈ C

n :
n∑

j=1

ℜzj ≤ α, 0 ≤ ℜzj} . (2.5)

Let z ∈ I(n) ≡ I
(n)
1 and z′m, z

′′
m ∈ C be such that ℜz′m,ℜz′′m > 0, z′m + z′′m = zm and

ℜz1 + . . .ℜzm−1 + ℜz′′m ≤ 1/2 , (2.6)

ℜzn + . . .ℜzm+1 + ℜz′m ≤ 1/2 . (2.7)

Under these conditions, Araki [4, Lemma A] has shown4 that for φ1, . . . , φn ∈ M+
∗ and

X0, . . . , Xn ∈ M
∣∣∣
(
∆

z̄′m
φm,ΩX

∗
m ∆

z̄m+1

φm+1,Ω
. . .∆z̄n

φn,Ω
X∗

nΩ,∆
z′′m
φm,ΩXm−1∆

zm−1

φm−1,Ω
. . .∆z1

φ1,Ω
X0Ω

)∣∣∣

≤
( n∏

j=0

‖Xj‖
)
(Ω, 1lΩ)z0︸ ︷︷ ︸

=1

( n∏

j=1

φj(1l)
ℜzj
)
, (2.8)

with z0 = 1 − ∑n
j=1ℜzj . This inequality is the direct generalisation of the finite-

dimensional case (A.10).

2.2.2 Positive Cones and Lp-Spaces for von Neumann Algebras

Consider a general (σ-finite) von Neumann algebra M in standard form with cyclic and

separating vector Ω. For 2 ≤ p ≤ ∞, Araki and Masuda define [4, Equ. (1.3), p. 340]

Lp(M,Ω)
.
=
{
ζ ∈

⋂

ξ∈H
D
(
∆

1
2
− 1

p

ξ,Ω

)
: ‖ζ‖p <∞

}
,

where

‖ζ‖p = sup
‖ξ‖=1

‖∆
1
2
− 1

p

ξ,Ω ζ‖ .

4Note that, in contrast to [4], the inner product here is linear in the second entry.
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For 1 ≤ p < 2, Lp(M,Ω) is defined as the completion of H with respect to the norm

‖ζ‖p = inf{‖∆
1
2
− 1

p

ξ,Ω ζ‖ : ‖ξ‖ = 1, sM(ξ) ≥ sM(ζ)}.

Here sM(ξ) denotes the smallest projection in M, which leaves ξ invariant. The cones [4,

Equ. (1.13)]

Pα .
= {∆αAΩ : A ∈ M+} , 0 ≤ α ≤ 1/2 ,

can be used to define the positive part of Lp(M,Ω) [4, Equ. (1.14), p. 341]:

L+
p (M,Ω)

.
= Lp(M,Ω) ∩ P1/(2p)

Ω , 2 ≤ p ≤ ∞ . (2.9)

Note that these are not operator spaces. The connection to the operator algebra M is

made through auxiliary spaces Lp(M,Ω), which consist of formal expressions A = u∆
1/p
φ,Ω

with φ ∈ M+
∗ and u a partial isometry satisfying u∗u = s(φ) (the support projection of

φ). Furthermore, denote the set of formal products

X0∆
z1
φ1,Ω

X1 · · ·∆zn
φn,Ω

Xn, (2.10)

by L∗
p(M,Ω). Here is Xj ∈ M, φj ∈ M+

∗ , j ∈ {1, . . . , n} and ~z = (z1, . . . , zn) ∈ I
(n)
1−(1/p).

On the subset L∗
p,0(M,Ω) ⊂ L∗

p(M,Ω), characterised by the condition
∑n

j=1ℜzj = 1 −
(1/p), it is possible to implement the star operation. The adjoint of a generic element

(2.10) in L∗
p,0(M,Ω) is defined to be

X∗
n∆

zn
φn,Ω

· · ·X∗
1∆

z1
φ1,Ω

X∗
0 . (2.11)

As shown in [4], the spaces Lp(M,Ω) and Lp(M,Ω) are isomorphic. For p ≥ 2 the

isomorphism is given by u∆
1/p
φ,Ω 7→ u∆

1/p
φ,ΩΩ. Thus a multiplication in the Lp(M,Ω) spaces

can be defined, using the product of operators to connect the formal expressions BC ∈
L∗

r,0(M,Ω) for B ∈ L∗
p,0(M,Ω), C ∈ L∗

q,0(M,Ω) and r−1 = p−1 + q−1 − 1.

Araki’s inequality (2.8) now entails a Hölder inequality: let ζ1 ∈ Lp(M,Ω) and ζ2 ∈
Lp′(M,Ω) for p−1 + p′−1 = r−1, then

‖ζ1ζ2‖r ≤ ‖ζ1‖p ‖ζ2‖p′. (2.12)

Thus the product ζ1ζ2 is in Lr(M,Ω) and, as the case p−1 + p′−1 = 1 suggests, the

topological dual Lp(M,Ω)∗ of Lp(M,Ω) is Lp′(M,Ω). For A ∈ Lp(M,Ω) and B ∈
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Lp(M,Ω)∗, the corresponding duality bracket is given by

〈A,B〉 = (AΩ, BΩ) , (2.13)

if Ω is in the domain of A and B. According to [4, Notation 2.3 (4)] A and B in L∗
p(M,Ω)

are said to be equivalent, if (i) 1 ≤ p ≤ 2 and AΩ = BΩ; (ii) if 2 ≤ p ≤ ∞ and

〈C,A〉 = 〈C,B〉 (2.14)

for all C in Lp(M,Ω).

Another important property is, that for 1 ≤ p ≤ ∞, x ∈ M and ζ ∈ Lp(M,Ω), the

following inequality holds:

‖xζ‖p ≤ ‖x‖ ‖ζ‖p. (2.15)

It is evident from the definition of the Lp-spaces, that H and L2(M,Ω) are equal. It is

proven in [4] that M ∼= L∞(M,Ω) as well as M∗ ∼= L1(M,Ω).

2.3 Proof of the Inequality

The following two lemmas are necessary for the subsequent proof of Theorem 2.1.1.

Lemma 2.3.1. Let A1, . . . , An ∈ M+. Then there exist unique φj ∈ M+
∗ such that for

0 ≤ p−1
j ≤ 1/2

∆
1/pj
φj ,Ω

Ω = ∆1/2pjAjΩ , j ∈ {1, . . . , n} , (2.16)

and φj(1l)
1/pj = ‖∆1/2pjAjΩ‖pj . If also

∑n
j=1 1/pj = 1/2 holds, then

∆
1/pn
φn,Ω

· · ·∆1/p1
φ1,Ω

Ω = ∆1/2pnAn∆
1/2pn · · ·∆1/2p1A1Ω ∈ H. (2.17)

Proof. Let A1, . . . , An ∈ M+ and 0 ≤ p−1
j ≤ 1/2, j ∈ {1, . . . , n}. Then, by definition

ζj := ∆1/2pjAjΩ ∈ P1/2pj
Ω . An application of inequality 2.8 yields

‖ζj‖2pj = sup
‖ξ‖=1

‖∆(1/2)−(1/pj )
ξ,Ω ζj‖2 (2.18)

= sup
‖ξ‖=1

(
∆

(1/2)−(1/pj )
ξ,Ω ∆1/2pjAjΩ,∆

(1/2)−(1/pj )
ξ,Ω ∆1/2pjAjΩ

)
(2.19)

≤ sup
‖ξ‖=1

(ξ, 1lξ)1−(2/pj)ω(1l)2/pj‖Aj‖2 = ‖Aj‖2 <∞ , (2.20)
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which establishes, that ζj ∈ Lpj (M,Ω). Thus, according to (2.9), ζj ∈ L+
pj
(M,Ω). By [4,

Theorem 3 (4), p. 342] there exists a unique φj ∈ M+
∗ such that ζj = ∆

1/pj
φj ,Ω

Ω and

φj(1l)
1/pj = ‖ζj‖pj = ‖∆1/2pjAjΩ‖pj .

Thus, by definition [4, Notation 2.3 (4)], ∆1/2pjAj∆
1/2pj ≡ ∆

1/pj
φj ,Ω

as elements in

L∗
p′j ,0

(M,Ω), where p−1
j + p′−1

j = 1. Even though ∆
1/pj
φj ,Ω

and ∆1/2pjA∆1/2pj may not

be equal as operators, Lemma 7.7 (2) in [4] ensures, that their composition as elements of

the spaces L∗
p is well-defined: setting B1 = ∆

1/p2
φ2,Ω

, B2 = −∆1/2p2A2∆
1/2p2 and C2 = ∆

1/p1
φ1,Ω

,

there holds
∑2

i=1Bi = 0 as elements in Lp2(M,Ω), and therefore, using the lemma cited,

∆
1/p2
φ2,Ω

∆
1/p1
φ1,Ω

Ω ≡ ∆1/2p2A2∆
1/2p2∆

1/p1
φ1,Ω

Ω (2.21)

as elements in Lr1(M,Ω) = Lr′1
(M,Ω)∗, where r−1

1 + r′−1
1 = 1, r′−1

1 = p′1
−1 + p′−1

2 − 1 and

1 ≤ r′1 ≤ 2 (in comparison to [4] indices and primed indices have swapped places). Note

that this means r−1
1 = p−1

2 +p−1
1 . Using the same lemma once more (with the appropriate

choices of C2 and B3, B4) gives

∆1/2p2A2∆
1/2p2∆

1/p1
φ1,Ω

Ω ≡ ∆1/2p2A2∆
1/2p2∆1/2p1A1Ω (2.22)

as elements in Lr′1
(M,Ω)∗. Together (2.21) and (2.22) imply

∆
1/p2
φ2,Ω

∆
1/p1
φ1,Ω

Ω ≡ ∆1/2p2A2∆
1/2p2∆1/2p1A1Ω (2.23)

as elements in Lr′1
(M,Ω)∗. Consequently,

∆
1/p2
φ2,Ω

∆
1/p1
φ1,Ω

≡ ∆1/2p2A2∆
1/2p2∆1/2p1A1∆

1/2p1 , (2.24)

as elements in L∗
r′1,0

(M,Ω). Iteration of this procedure results in

∆
1/pn
φn,Ω

· · ·∆1/p1
φ1,Ω

Ω ≡ ∆1/2pnAn∆
1/2pn · · ·∆1/2p2A2∆

1/2p2∆1/2p1A1Ω (2.25)

as elements in L2(M,Ω)∗, because of
∑n

j=1 1/pj = 1/2. But since H = H∗ = L2(M,Ω)∗

the proof is finished.

Lemma 2.3.2. Let p ∈ N be even and A ∈ M+. Then there exists φ ∈ M+
∗ such that

‖∆1/2pAΩ‖p = φ(1l)1/p = |||A|||p (2.26)
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Proof. As proved in Lemma 2.3.1, there exists φ ∈ M+
∗ , such that‖∆1/2pAΩ‖pp = φ(1l),

and ∆1/2pA∆1/2p ≡ ∆
1/p
φ,Ω as elements in L∗

p,0(M,Ω). Thus, by (2.17) and (2.8), and

because p is even,

|||A|||pp =
(
(e−βL/2pA e−βL/2p)p/2Ω, (e−βL/2p A e−βL/2p)p/2Ω

)

= (∆
1/p
φ,Ω · · ·∆1/p

φ,ΩΩ,∆
1/p
φ,Ω · · ·∆1/p

φ,ΩΩ)

≤ φ(1l) = ‖∆1/2pAΩ‖pp . (2.27)

(The scalar product contains p/2 factors of ∆
1/p
φ,Ω in each of its entries.) Since φ ∈ M+

∗ ,

there exists [9] a vector ξ ∈ P♯ such that φ(X) = (ξ,Xξ) for X ∈ M. Using ξ =

Jφ,Ω∆
1/2
φ,ΩΩ = Jξ,Ω∆

1/2
ξ,ΩΩ, there holds

φ(X) = (ξ,Xξ) = (∆
1/2
φ,ΩΩ, J

∗
φ,ΩJφ,Ω∆

1/2
φ,ΩX

∗Ω) ,

where J∗
φ,ΩJφ,Ω = sM(ξ) sM′(Ω) is a projection [4, p. 396]. Therefore

φ(1l) ≤ (∆
1/2
φ,ΩΩ,∆

1/2
φ,ΩΩ) =

(
(e−βL/2pA e−βL/2p)p/2Ω, (e−βL/2pA e−βL/2p)p/2Ω

)
= |||A|||pp ,

which finishes the proof.

Proof of Theorem 2.1.1. Assuming the requirements of Theorem 2.1.1, Lemma 2.3.1 to-

gether with inequality (2.8), relation (2.26) and wj = zj − (2pj)
−1 − (2pj−1)

−1 imply

∣∣(e−zm+1L Am+1 · · · e−zn AnΩ, e
−zmLAm · · · e−z1 A1Ω

)∣∣

=
∣∣∣
(
∆wm+1∆1/2pm+1Am+1∆

1/2pm+1 · · ·∆wn∆1/2pnAn Ω,

∆wm∆1/2pmAm∆
1/2pm · · ·∆w1∆1/2p1A1Ω

)∣∣∣

=
∣∣∣
(
∆wm+1∆

1/pm+1

φm+1,Ω
· · ·∆wn∆

1/pn
φn,Ω

Ω, ∆wm∆
1/pm
φm,Ω · · ·∆w1∆

1/p1
φ1,Ω

Ω
)∣∣∣

≤ ωβ(1l)
1−

∑n
j=1(pj)

−1
n∏

j=1

φj(1l)
1/pj =

n∏

j=1

|||Aj|||pj ,

where the pj are chosen according to (2.2). For the second equality ∆wj is to be understood

as ∆wj/21l∆wj/2 and (2.17) is to be applied.



Chapter 3

Construction of the Thermal P (φ)2

Model

3.1 Euclidean Fields on the Cylinder

In 1974 Høegh-Krohn [40] discovered that the Euclidean field theory on the cylinder allows

to reconstruct two distinct quantum field theories. The vacuum model on a circle and -

more importantly - the thermal model on the real line. This chapter is a streamlined,

rigorous version of this construction based on the works [21, 22, 43]. Furthermore the

relativistic KMS condition for the thermal model is proven at the same time.

The strategy for proving the above mentioned results is the following. At first an

interacting measure on the cylinder is provided. Then the two different quantum field

models are reconstructed and Nelson symmetry in the interacting case is established.

Finally, information readily available for the vacuum model on the circle is carried over

to the thermal model via Nelson symmetry.

3.1.1 The Interacting Measure on the Cylinder

The relevant measure for the interacting case is non-Gaussian. It formally results from

adding a polynomial of the form P (φ), where P (λ), λ ∈ R, is a polynomial which is

bounded from below, to the Hamiltonian of the free massive boson field.

In two dimensions, the singularities, which arise from taking powers of the Euclidean

field φ at a point (α, x) ∈ Sβ×R, can be removed by first normal ordering : · :c (see [29,64])
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the monomials φ(f)n, n ∈ N,

:φ(f)n :c :=

[n/2]∑

m=0

n!

m!(n− 2m)!
φ(f)n−2m

(
−1

2
c(f, f)

)m
(3.1)

with respect to a covariance c, and then taking appropriate limits. [ . ] denotes taking the

integer part. We will normal order with respect to different covariances c, some of them

being limiting cases of the covariance C defined in (1.58).

Normal-ordering of point-like fields is ill-defined (i.e. one cannot replace the test

function f ∈ SR(Sβ × R) in (3.1) by a two dimensional Dirac δ-function), but integrals

over normal-ordered point-like fields can be defined rigorously:

Theorem 3.1.1 (Ultraviolet renormalisation [22, 29]). For

f ∈ L1(Sβ × R) ∩ L2(Sβ × R) ,

the following limit1 exists in
⋂

1≤p<∞
Lp(Q,Σ, dφC):

lim
k,κ→∞

∫

Sβ×R

f(α, x) :φ
(
δk(.− α)⊗ δκ(.− x)

)n
:C dα dx. (3.2)

We denote it by
∫
Sβ×R

f(α, x) :φ(α, x)n :C dα dx.

Remark 3.1.2. This theorem, which follows from exactly the same arguments as in the

vacuum case analysed by Glimm and Jaffe [29], establishes a crucial step forward in the

construction of the P (φ)2 model in finite volume, as it takes care (see Eq. (3.3) below) of

the ultraviolet renormalisation.

Let P (λ) =
∑

j cjλ
j be a real valued polynomial, which is bounded from below.

Replacing the function f in (3.2) by the characteristic function of the set Sβ × [−l, l],
l ∈ R+, and applying [64, Lemma V.5], we deduce that

e−
∫ β/2
−β/2

∫ l
−l :P (φ(α,x)):C dαdx ∈ L1(Q,Σ, dφC). (3.3)

The Euclidean P (φ)2 model on the cylinder with a spatial cut-off l ∈ R+ is specified by

the measure

dµl :=
1

Zl

e−
∫ β/2
−β/2

∫ l
−l :P (φ(α,x)):C dαdx dφC . (3.4)

1The approximations of Dirac deltas have been defined in (1.8).
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The partition function Zl is chosen such that
∫
Q
dµl = 1. By the Radon-Nikodym the-

orem, the measure dµl is absolutely continuous with respect to the Gaussian measure

dφC , as long as l < ∞. The limit of the functions in (3.3) fails to be in L1(Q,Σ, dφC)

as l → ∞, and therefore the formal limiting measure cannot be absolutely continuous

with respect to the Gaussian measure. In fact, in order to show that a countably additive

Borel measure exists in the limit l → ∞, one has to show (see Theorem 3.1.4 below) that

lim
l→+∞

∫

Q

eiφ(f) dµl =: EP (f), f ∈ SR(Sβ × R), (3.5)

defines a generating functional on S ′
R
(Sβ×R), which gives rise to a probability measure dµ

via Minlos’ Theorem 1.3.2.

3.1.2 Sharp-time Fields, Existence of the Euclidean Measure in

the Thermodynamic Limit and Nelson Symmetry

Nelson symmetry results from replacing the product measure dα dx in the exponent in

(3.4) by iterated integrals with respect to the two measures dα and dx, in different orders.

The delicate point, which will now be addressed in some more detail, is that the integrand

in (3.2) is rather singular in nature. In order to convey an intuitive understanding, the

key steps for proving Nelson symmetry are shown in the sequel.

By (1.62), (1.63) and Theorem 1.3.3 the sequences of functions

{
φ
(
δk(· − α)⊗ h

)}
k∈N and

{
φ
(
g ⊗ δκ(· − x)

)}
κ∈N , (3.6)

for h ∈ SR(R), g ∈ SR(Sβ) and α ∈ Sβ, x ∈ R fixed, are Cauchy sequences in

⋂

1≤p<∞
Lp(Q,Σ, dφC) .

Therefore sharp-time fields can be defined by

φ(α, h) := lim
k→∞

φ
(
δk(· − α)⊗ h

)
, φ(g, x) := lim

κ→∞
φ
(
g ⊗ δκ(· − x)

)
. (3.7)

Note that both φ(α, h) and φ(g, x) belong to
⋂

1≤p<∞ Lp(Q,Σ, dφC).

Lemma 3.1.3 (Integrals over sharp-time fields [22]). (i) For h ∈ L1(R)∩L2(R)
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and α ∈ [0, 2π) the limit

lim
κ→∞

∫

R

h(x) :φ(α, δκ(· − x))n :C0 dx (3.8)

exists in
⋂

1≤p<∞Lp(Q,Σ, dφC). Denote it by
∫
R
h(x) : φ(α, x)n :C0 dx. Normal

ordering in (3.8) is done with respect to the temperature β−1 covariance on R: for

h1, h2 ∈ S(R)
C0(h1, h2) :=

(
h1,

(1 + e−βǫ)

2ǫ(1− e−βǫ)
h2

)
L2(R,dx)

. (3.9)

(ii) For g ∈ L1(Sβ) ∩ L2(Sβ) and x ∈ R the limit

lim
k→∞

∫

Sβ

g(α) :φ(δk(· − α), x)n :Cβ
dα (3.10)

exists in
⋂

1≤p<∞ Lp(Q,Σ, dφC). Denoted it by
∫
Sβ
g(α) : φ(α, x)n :Cβ

dα. Normal

ordering in (3.10) is done w.r.t. the covariance2

Cβ(g1, g2) :=
(
g1,

1

2ν
g2

)
L2(Sβ ,dα)

, g1, g2 ∈ S(Sβ). (3.11)

The covariances C0 and Cβ are time zero limiting cases of the covariance C, cf. equa-

tions (1.62) and (1.63).

Returning to the integral in (3.2), we let f be the characteristic function on Sβ×[−l, l].
This enables us to rewrite (3.2) as limk,κ→∞ F (k, κ), where

F (k, κ) =

[n/2]∑

m=0

n!
(
− 1

2
C(δ

(2)
k,κ, δ

(2)
k,κ)
)m

m!(n− 2m)!

∫

Sβ×[−l,l]

φ
(
δk(· − α)⊗ δκ(· − x)

)m
dα dx, (3.12)

and δ
(2)
k,κ(α, x) := δk(α) ⊗ δκ(x). Interchanging integrals and limits is permitted by the

existence of (3.2), (3.8) and (3.10). Performing the two limits in different orders results

in

lim
k,κ→∞

F (k, κ) = lim
κ→∞

[n/2]∑

m=0

n!
(
− 1

2
C0(δκ, δκ)

)m

m!(n− 2m)!

∫

Sβ

∫

[−l,l]

φ
(
α, δκ(· − x)

)m
dx dα

2As mentioned in the introduction the inverse temperature β is strictly positive. Hence no notational
clash between C0 and Cβ can arise.
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and

lim
k,κ→∞

F (k, κ) = lim
k→∞

[n/2]∑

m=0

n!
(
− 1

2
Cβ(δk, δk)

)m

m!(n− 2m)!

∫

[−l,l]

∫

Sβ

φ
(
δk(· − α), x

)m
dα dx.

Note that in the latter expression normal ordering is done w.r.t. the covariance Cβ, whilst

in the former normal ordering is done with respect to the temperature β−1 covariance C0

on R. It follows that the L1-function (3.3) equals (U(α, x) has been defined in (1.56))

e
−

∫ l
−l

U(0,x)
(

∫ β/2
−β/2

:P (φ(α,0)):Cβ
dα

)

dx
= e−

∫ β/2
−β/2

U(α,0)(
∫ l
−l :P (φ(0,x)):C0

dx) dα. (3.13)

A proof of this identity can be found in [22, Lemma 5.3]. The analog of (3.13) in the

case β = ∞ is known as Nelson symmetry (see e.g. [64]). Interpreting x in (3.13) as

imaginary time dµ = liml→∞ dµl is the Euclidean measure of the vacuum P (φ)2 model

on the circle, while interpreting α as the imaginary time dµ is the Euclidean measure for

the corresponding thermal model on R. This argument can be made rigorous (see [22,

Theorem 7.2], [40]) by exploiting various properties of a time dependent heat equation

(see [22, Appendix A]).

Theorem 3.1.4. Consider sharp-time fields as defined in (3.7), and integrals over nor-

mal ordered products as defined in (3.8) and (3.10).

(i) (Thermodynamic limit of Euclidean measures). The limiting generating functional

EP (f) defined in (3.5) exists, satisfies the conditions of Minlos’ theorem and thus

defines a probability measure dµ. For f ∈ C∞
0R(Sβ × R)

EP (f) = lim
l→+∞

1

Zl

∫

Q

eiφ(f) e
−

∫ l
−l U(0,x)

(

∫ β/2
−β/2

:P (φ(α,0)):Cβ
dα

)

dx
dφC . (3.14)

(ii) (Nelson symmetry). For f ∈ C∞
0R(Sβ × R)

EP (f) = lim
l→+∞

1

Zl

∫

Q

eiφ(f) e−
∫ β/2
−β/2

U(α,0)(
∫ l
−l :P (φ(0,x)):C0

dx) dα dφC . (3.15)

The map f 7→ EP (f) is continuous in some Schwartz semi-norm and thus extends to

S(Sβ × R) [22, Theorem 7.2 (ii)].

Remark 3.1.5. This result solves the infrared problem for the thermal field theory under

consideration.
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As they will be needed at a later stage, two results [22, Propositions 7.3 and 7.5],

regarding the Lp-spaces for the interacting measure dµ are recalled:

Lemma 3.1.6. (i) (Sharp-time fields are in Lp(Q,Σ, dµ)). Let h ∈ SR(R) and α ∈ Sβ.

Then the sequence φ
(
δk(· − α)⊗ h

)
is Cauchy in

⋂
1≤p<∞ Lp(Q,Σ, dµ) and hence

φ(α, h) := lim
k→∞

φ
(
δk(· − α)⊗ h

)
∈

⋂

1≤p<∞
Lp(Q,Σ, dµ).

Moreover, the map

Sβ → ⋂
1≤p<∞ Lp(Q,Σ, dµ)

α 7→ φ(α, h)

is continuous for h ∈ SR(R) fixed.

(ii) (Convergence of sharp-time Schwinger functions, Part I). Let hi ∈ C∞
0 R

(R) and

αi ∈ Sβ, 1 ≤ i ≤ n. Then

lim
l→∞

∫

Q

n∏

j=1

eiφ(αj ,hj) dµl =

∫

Q

n∏

j=1

eiφ(αj ,hj) dµ.

In Section 3.4.2 it is proven that products of Euclidean sharp-time fields are also

elements of
⋂

1≤p<∞ Lp(Q,Σ, dµ).

3.2 The Osterwalder-Schrader Reconstruction

In this section the two models under consideration are explicitly reconstructed from the

measure dµ by providing a Hilbert space, time-zero field operators, a generator of time

translations and a distinguished vector for each model.

The invariance of dµ under rotations and translations t(α,x) as well as the reflections

r and r′ (as defined in subsection 1.2.1) entails the following facts about U(α, x) as well

as R and R′.

(i) U(α, x) defines a two-parameter group of measure-preserving ∗-automorphisms of

L∞(Q,Σ, dµ), strongly continuous in measure, and to a strongly continuous two-

parameter group of isometries of Lp(Q,Σ, dµ) for 1 ≤ p <∞.

(ii) R and R′ extend to two measure preserving ∗-automorphisms of L∞(Q,Σ, dµ) and

to isometries of Lp(Q,Σ, dµ) for 1 ≤ p <∞.
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(iii) U(α, x) is unitary on the Hilbert space L2(Q,Σ, dµ).

Definition 3.2.1. For 0 ≤ γ ≤ β (resp. 0 ≤ y ≤ ∞) the sub σ-algebra of the Borel

σ-algebra Σ generated by the functions eiφ(f) with supp f ⊂ [0, γ] × R (resp. supp f ⊂
Sβ × [0, y]) are denoted by Σ[0,γ] (resp. Σ

[0,y]).

Next define two scalar products:

∀F,G ∈ L2(Q,Σ[0,β/2], dµ) : (F,G) :=

∫

Q

R(F )G dµ , (3.16)

and

∀F,G ∈ L2(Q,Σ[0,∞), dµ) : (F,G)′ :=

∫

Q

R′(F )G dµ . (3.17)

The measure dµ is Osterwalder-Schrader positive with respect to both reflections R and R′

[36, 49]:

∀F ∈ L2(Q,Σ[0,β/2], dµ) : (F, F ) ≥ 0

and

∀G ∈ L2(Q,Σ[0,∞), dµ) : (G,G)′ ≥ 0.

Let N ⊂ L2(Q,Σ[0,β/2], dµ) be the kernel of the positive quadratic form ( . , . ) and N ′ ⊂
L2(Q,Σ[0,∞), dµ) the kernel of the positive quadratic form ( . , . )′. Set

Hβ := L2(Q,Σ[0,β/2], dµ)/N and HC := L2(Q,Σ[0,∞), dµ)/N ′.

The completions of the pre-Hilbert spaces are taken w.r.t. the norms induced by ( . , . )

and by ( . , . )′, respectively. The canonical projection from L2(Q,Σ[0,β/2], dµ) to Hβ and

from L2(Q,Σ[0,∞), dµ) to HC are denoted by V and V ′, respectively. The distinguished

vectors

Ωβ := V(1), ΩC := V ′(1),

arise as the image of 1, the constant function equal to 1 on Q.

The Abelian algebra

(i) L∞(Q,Σ{0}, dµ) preserves L2(Q,Σ[0,β/2], dµ) and N . Thus a representation πβ of

L∞(Q,Σ{0}, dµ) on the Hilbert spaces Hβ is given by

πβ(A)V(F ) := V(AF ), F ∈ L2(Q,Σ[0,β/2], dµ), A ∈ L∞(Q,Σ{0}, dµ);
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(ii) L∞(Q,Σ{0}, dµ) preserves L2(Q,Σ[0,∞), dµ) and N ′. Thus one obtains a represen-

tation πC of L∞(Q,Σ{0}, dµ) on HC , specified by

πC(B)V ′(G) := V ′(BG), G ∈ L2(Q,Σ[0,∞), dµ), B ∈ L∞(Q,Σ{0}, dµ).

The von Neumann algebras πβ(L
∞(Q,Σ{0}, dµ)) and πC(L

∞(Q,Σ{0}, dµ)) can be inter-

preted as the algebras generated by bounded functions of the thermal time-zero fields on

the real line and the vacuum time-zero fields on the circle, respectively.

Using Stone’s Theorem [59] the representations πβ and πC are used to define the

time-zero fields of the respective theories. For real-valued h ∈ C∞
0 (R) define

φβ(h) := −i d

ds
πβ
(
eiφ(0,sh)

) ∣∣∣
s=0

. (3.18)

And for real-valued g ∈ SR(Sβ) define

φC(g) := −i d

ds
πC(e

iφ(sg,0))
∣∣∣
s=0

. (3.19)

Both φβ and φC are self-adjoint operators on Hβ and HC , respectively.

The reconstruction of the dynamics requires a more pronounced distinction of the two

cases under consideration, which in the thermal case relies on a remarkable result on local

symmetric semi-groups by Fröhlich [19] and, independently, Klein and Landau [48]:

(i) The semi-group {U(α, 0)}α>0 does not preserve L2(Q,Σ[0,β/2], dµ). But setting, for

0 ≤ γ ≤ β/2,

Dγ := VMγ , with Mγ := L2(Q,Σ[0,β/2−γ], dµ),

one can define, for 0 ≤ α ≤ γ, a linear operator P (α) : Dγ → Hβ with domain Dγ

by setting

P (α)Vψ := VU(α, 0)ψ, ψ ∈ Mγ.

The triple (P (α),Dα, β/2) forms a local symmetric semi-group (see [19] [48]):

(a) for each α, 0 ≤ α ≤ β/2, Dα is a linear subset of Hβ such that Dα ⊃ Dγ if

0 ≤ α ≤ γ ≤ β/2, and

D :=
⋃

0<α≤β/2

Dα
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is dense in Hβ ;

(b) for each α, 0 ≤ α ≤ β/2, P (α) is a linear operator on Hβ with domain Dα;

(c) P (0) = 1, P (α)Dγ ⊂ Dγ−α for 0 ≤ α ≤ γ ≤ β/2, and

P (α)P (γ) = P (α+ γ)

on Dα+γ for α, γ, α+ γ ∈ [0, β/2];

(d) P (α) is symmetric, i.e.,

(Ψ, P (α)Ψ′) = (P (α)Ψ′,Ψ), 0 ≤ α ≤ β/2,

for all Ψ,Ψ′ ∈ Dα and 0 ≤ α ≤ β/2;

(e) P (α) is weakly continuous, i.e., if Ψ ∈ Dγ , then

α 7→ (Ψ, P (α)Ψ)

is a continuous function of α for 0 ≤ α ≤ γ and 0 ≤ γ ≤ β/2.

By the results cited [19, 48] there exists a self-adjoint operator L on Hβ such that

for 0 ≤ α ≤ γ

V(U(α, 0)F ) = e−αLV(F ), F ∈ L2(Q,Σ[0,β/2−γ], dµ). (3.20)

The self-adjoint operator L is said to be associated to the local symmetric semi-group

(P (α),Dα, β/2).

Lemma 3.2.2. Dγ is dense in Hβ for 0 < γ < β/2.

Proof. Assume that

∀Φ ∈ Dγ : (Ψ,Φ) = 0 . (3.21)

Now consider, for h1, h2 ∈ DR(R) fixed, the analytic function

z 7→ (Ψ, eiφβ(h1)e−zLeiφβ(h2)Ωβ), {z ∈ C | 0 < ℜz < β/2}. (3.22)

Clearly eiφβ(h1)e−ℜzLeiφβ(h2)Ωβ ∈ Dγ for 0 < ℜz < γ and consequently, because of

(3.21), the analytic function (3.22) vanishes on an open line segment in the interior
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of its domain, and is therefore identical zero. It follows that

(Ψ, eiφβ(h1)e−
β
2
Leiφβ(h2)Ωβ) = 0 ∀h1, h2 ∈ DR(R). (3.23)

The set {eiφβ(h1)e−
β
2
Leiφβ(h2)Ωβ | h1, h2 ∈ DR(R)} is dense in Hβ [49, Theorem 11.2],

and therefore (3.23) implies Ψ = 0. In other words, Dγ is dense in Hβ.

(ii) The semi-group U(0, x), x ≥ 0, preserves the half-space L2(Q,Σ[0,∞), dµ) as U(0, x)

maps L2(Q,Σ[0,∞), dµ) into itself. Following [46] one can therefore define a self-

adjoint positive operator HC on HC such that for G ∈ L2(Q,Σ[0,∞), dµ)

V ′(U(0, x)G) = e−xHCV ′(G), x > 0. (3.24)

The operators e−xHC , x > 0, form a strongly continuous semi-group of contractions

on HC .

The next step in the reconstruction program is to define non-Abelian von Neumann

algebras Rβ ⊂ B(Hβ) and RC ⊂ B(HC), generated by the operators

τt(πβ(A)) := eitLπβ(A)e
−itL, t ∈ R, A ∈ L∞(Q,Σ{0}, dµ),

and

τ ′s(πC(A)) := eisHCπC(A)e
−isHC , s ∈ R, A ∈ L∞(Q,Σ{0}, dµ),

respectively. τt and τ
′
s extend to *-automorphisms of Rβ and RC , respectively.

The algebra Rβ ⊂ B(Hβ) has a cyclic and separating vector, namely Ωβ [49, Lemma

8.1]. The time-translation invariant state ωβ (a normalised positive linear functional)

on Rβ defined by

ωβ(a) := (Ωβ, aΩβ), a ∈ Rβ , (3.25)

is invariant under the spatial translations induced by t(0,y), y ∈ R. Furthermore, it satisfies

the KMS condition [49]: the functions

Fh1,...,hn(t1 − t2, . . . , tn−1 − tn) :=
(
Ωβ , τt1(e

iφβ(h1)) . . . τtn(e
iφβ(hn))Ωβ

)
(3.26)
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extend to analytic functions in the domain

{
(z1, . . . , zn−1) ∈ C

n−1 | ℑzk < 0, −β <∑n−1
k=1 ℑzk

}
(3.27)

and satisfy the KMS boundary condition: for each 1 ≤ k < n

Fh1,...,hn(t1 − t2, . . . , tk−2 − tk−1, tk−1 − tk − iβ, tk − tk+1, . . . , tn−1 − tn)

= Fhk,...,hn,h1,...,hk−1
(tk − tk+1, . . . , tn−1 − tn, tn − t1, t1 − t2, . . . , tk−2 − tk−1)

(3.28)

for all t1, . . . , tn ∈ R and h1, . . . , hn ∈ C∞
0R.

The algebra RC ⊂ B(HC) has a cyclic vector, namely ΩC . The state ωC on RC ,

ωC(a) := (ΩC , aΩC), a ∈ RC ,

is invariant under the rotations induced by t(γ,0), γ ∈ [0, 2π), and satisfies the spectrum

condition (see Theorem 3.3.2 below). Since ωC is the unique vacuum state (see below),

the commutant R′
C of RC equals C · 1 and therefore RC = B(HC).

3.3 The Wightman Functions on the Circle

In this section the vacuum theory on the circle as defined in the previous section and as

defined in the Hamiltonian approach will be identified and the relevant information on

this theory will be collected.

Starting from the same Hilbert space H(0)
C and time zero field φ

(0)
C as in the free

case (Subsection 1.3.2), the interaction is introduced through a perturbation of the free

Hamiltonian H
(0)
C . Define

V :=

∫

Sβ

: P (φC(α)) :Cβ
dα . (3.29)

The operator sum

dΓ(ν) + V −EC (3.30)

is essentially self-adjoint on its natural domain D( dΓ(ν)) ∩ D(V ) and bounded from

below [56]. Its closure defines the Hamiltonian H ′
C of the P (φ)2 model on the circle

Sβ. The additive constant EC is chosen such that zero is the lowest eigenvalue, i.e.
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inf σ(H ′
C) = 0. Denote the corresponding unique [64, Theorem V.17] eigenvector by Ω′

C .

The identification of this model with the one constructed in the previous section is

done via the Gell’Mann-Low formula [64, Theorem V.19], which yields the equality of the

Schwinger functions of the two models,

(
Ω′

C , φ
(0)
C (g1)e

−s1H′
C · · ·φ(0)

C (gn−1) e
−sn−1H′

C φ
(0)
C (gn) Ω

′
C

)

=

∫
dµφ(g1 ⊗ δ)U(0, s1) · · ·φ(gn−1 ⊗ δ)U(0, sn−1)φ(gn ⊗ δ)

=
(
ΩC , φC(g1) e

−s1HC · · ·φC(gn−1) e
−sn−1HC φC(gn) ΩC

)
.

Because of the uniqueness of the analytic continuation and in view of the uniqueness part

of Theorem 1.2.4 it follows that (H(0)
C ,Ω′

C , φ
(0)
C , H ′

C) and (HC ,ΩC , φC , HC) are unitarily

equivalent. Henceforth there will be no notational distinction between the two theories,

i.e. only (HC ,ΩC , φC, HC) will be used.

The rest of this section gives all the results on the vacuum model, which are used at

a later stage.

At first there are the Glimm-Jaffe φ-bounds [17, 27, 31] (the employed version can be

found in [22, Proposition 5.4]): for c >> 1 and some C ∈ R+ there holds

±φC(g) ≤ C ‖g‖
H−1

2 (Sβ)
(HC + c)1/2 , g ∈ H− 1

2 (Sβ) , (3.31)

and

±φC(g) ≤ C ‖g‖H−1(Sβ)(HC + c) , g ∈ H−1(Sβ) . (3.32)

In Subsection 3.4.3 a φ-bound will be used, which interpolates between (3.31) and (3.32).

Proposition 3.3.1. For 0 ≤ ǫ ≤ 1 fixed there exist constants c1, c2 > 0 such that

±φC(g) ≤ c1 ‖g‖H−1
2− ǫ

2 (Sβ)
(HC + c2)

1
2
+ǫ (3.33)

for all g ∈ H− 1
2
− ǫ

2 (Sβ).

Proof. Recall H
(0)
0 = dΓ(ν). It is sufficient to prove that

A(g) := (H
(0)
C + 1)−

1
4
− ǫ

2φC(ν
1
2
+ ǫ

2 g)(H
(0)
C + 1)−

1
4
− ǫ

2 (3.34)

is a bounded operator on Fock space, uniformly bounded for ‖g‖2 ≤ 1. The first order
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estimate (see, e.g., [61, Equ. (2.21)])

(H
(0)
C + 1) ≤ c3(HC + c2) for c2, c3 ≫ 1. (3.35)

and operator monotonicity of the map λ 7→ λα for 0 ≤ α ≤ 1 (see, e.g.. [44, Example

4.6.46]) then ensure the fractional φ-bound (3.33).

Following ideas of Rosen (see, e.g. [61, Proof of Lemma 6.2]), it is shown in the sequel,

that A(g) is a bounded bilinear form in Fock space. The desired operator extension then

follows from the Riesz representation theorem. It is sufficient to show that for ‖g‖2 ≤ 1

|(Φ, A(g)Ψ)| ≤ c4‖Φ‖ · ‖Ψ‖ , (3.36)

for Φ,Ψ arbitrary vectors on Fock space and c4 > 0 a constant. Now

|(Φ, A(g)Ψ)| ≤ 1√
2

(
|(a∗(ν ǫ

2 g)(H
(0)
C + 1)−

1
4
− ǫ

2Φ, (H
(0)
C + 1)−

1
4
− ǫ

2Ψ)|

+|((H(0)
C + 1)−

1
4
− ǫ

2Φ, a∗(ν
ǫ
2 g)(H

(0)
C + 1)−

1
4
− ǫ

2Ψ)|
)
. (3.37)

Since H
(0)
C commutes with the number operator, and both terms are of the same structure,

it is sufficient to prove that for Φn ∈ H(n)
C and Ψn−1 ∈ H(n−1)

C with ‖Φn‖ ≤ 1 and

‖Ψn−1‖ ≤ 1 one has that

|((H(0)
C + 1)−

1
4
− ǫ

2Φn, a
∗(ν

ǫ
2 g)(H

(0)
C + 1)−

1
4
− ǫ

2Ψn−1)|
≤ ‖(n+ 1)−

1
4Φn‖ · ‖a∗(ν

ǫ
2g)(H

(0)
C + 1)−

1
4
− ǫ

2Ψn−1‖ (3.38)

is uniformly bounded in n. For simplicity it is assumed that the mass m ≥ 1, so that

1 ≤ ν(kj); otherwise one is left with yet another n-independent constant. Now

(n + 1)−1/2 ‖Φn‖2 ‖a∗(ν
ǫ
2g)(H

(0)
C + 1)−

1
4
− ǫ

2Ψn−1‖2

≤ n

(n+ 1)1/2
‖Φn‖2

∫ n∏

j=1

dkj
ν(kj)

∣∣∣∣∣
ν(kn)

ǫ
2 g(kn)(∑n−1

i=1 ν(ki) + 1
)1/4+ǫ/2

Ψn−1(k1, k2, . . . kn−1)

∣∣∣∣∣

2

≤ n

n + 1
‖Φn‖2

∫ n∏

j=1

dkj
ν(kj)

∣∣∣∣∣∣

(
ν(kn)∑n−1

i=1 ν(ki) + 1

) ǫ
2

g(kn) Ψn−1(k1, k2, . . . kn−1)

∣∣∣∣∣∣

2

≤ ‖g‖22 ‖Φn‖2 ‖Ψn−1‖2 , (3.39)
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which establishes the claim.

Denote the generator of space-translations in HC by PC . The following remarkable

result is due to Heifets & Osipov [36].

Theorem 3.3.2 (Spectrum Condition [36]). The joint spectrum of HC and PC is

purely discrete and contained in the forward light cone {(E, p) | |p| < E}.

The unitary operators UC(α, s) ∈ B(HC) given by

UC(α, s) := ei(sHC−αPC), α ∈ [0, 2π), s ∈ R, (3.40)

implement the two parameter group of automorphisms τ ′α,s of RC on the Hilbert space

HC . Let gi ∈ S(Sβ), si ∈ R, i ∈ {1, . . . , n} and set

φC(gi, si) := eisiHCφC(gi)e
−isiHC . (3.41)

By Stone’s theorem, the map s 7→ UC(0, s) is strongly continuous. Together with the

bound (3.31) this implies that

W
(n)
C (g1, s1, . . . , gn, sn) :=

(
ΩC , φC(g1, s1) · · ·φC(gn, sn)ΩC

)
(3.42)

exists and is a separately continuous multi-linear functional of the arguments (gi, si),

i ∈ {1, . . . , n}, as they vary over SR(Sβ) × R. It follows from the nuclear theorem that

W(n)
C can be viewed as a continuous multi-linear functional on (SR(Sβ)× R)n. Sometimes

it will sloppily be denoted by

W
(n)
C (α1, s1, . . . , αn, sn) =

(
ΩC , φC(α1, s1) · · ·φC(αn, sn)ΩC

)
. (3.43)

Translation invariance implies (cf. equations (1.3) and (1.4)) that there exists a multi-

linear continuous functional W
(n−1)
C on (SR(Sβ)× R)n−1 such that on a formal level for

coordinates

ξi = (αi − αi+1, si − si+1) , i ∈ {1, . . . , n− 1} ,

there holds

W
(n−1)
C (ξ1, ξ2, . . . , ξn−1) =W

(n)
C (α1, s1, α2, s2, . . . , αn, sn) . (3.44)

W
(n−1)
C is interpreted as a periodic generalised function. Consequently its continuous

Fourier transform is a tempered distribution, which is a sum of point measures. The
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coefficients thereof can be identified with the discrete Fourier transform of W
(n−1)
C . No

notational distinction will be made between these two points of view.

The above definitions seem unusual as the space and time entries are not in the

common order. This choice is made so as not to have two different coordinate orderings

appear for the cylinder Sβ × R. Consequently, for the rest of this subsection only, the

forward light cone V + on the cylinder will be {(α, s) ⊂ (−β/2, β/2)× R | s > |α|}.
The following lemma is required for the next theorem, which provides analytic con-

tinuations of W
(n−1)
C .

Lemma 3.3.3. Let W̃
(n−1)
C denote the Fourier transform of W

(n−1)
C . Then

W̃
(n−1)
C

(
(E1, p1), (E2, p2), . . . , (En−1, pn−1)

)
= 0 , (3.45)

if (Ei, pi) /∈ Sp(HC , PC) for some i ∈ {1, . . . , n− 1}.

Proof. The Fourier transform of W
(n−1)
C is3

W̃
(n−1)
C

(
(E1, p1), (E2, p2), . . . , (En−1, pn−1)

)
=

=
∫

dξ1 · · · dξn−1 e
i
∑n−1

j=1 ξj ·(Ej ,pj) W
(n−1)
C (ξ1, . . . , ξn−1) ,

where heuristically

W
(n−1)
C (α1 − α2, s1 − s2, . . . , αn−1 − αn, sn−1 − sn) =

=
(
ΩC , φC(α1)e

i(s2−s1)HC · · ·φC(αn−1)e
i(sn−sn−1)HCφC(αn)ΩC

)
.

Next insert, as suggested in [65], a basis of common eigenfunctions Ψǫ,k of the operators

HC , PC : for all Φ ∈ HC the unitary operators UC(α, s) defined in (3.40) can be expressed

as

UC(α, s)Φ =
∑

(ǫ,k)∈Sp(HC ,PC)

ei(sǫ−αk) (Ψǫ,k,Φ)Ψǫ,k .

3The earlier mentioned ordering conventions entail, that ξj ·(Ej , pj) = (αj , sj) ·(Ej , pj) = Ejsj−pjαj .
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Now consider, for Φ,Φ′ ∈ HC fixed, the map

(E, p) 7→
∫ 2π

0

dα

∫

R

ds e−i(Es−pα)(Φ′, U(α, s)Φ)

=
∑

(ǫ,k)∈Sp(HC ,PC)

∫

R

ds e−i(E−ǫ)s

∫ β/2

−β/2

dα ei(p−k)α(Ψǫ,k,Φ)(Φ
′,Ψǫ,k)

=
∑

(ǫ,k)∈Sp(HC ,PC)

δǫ,E δk,p (Ψǫ,k,Φ)(Φ
′,Ψǫ,k) ,

where the Kronecker deltas δǫ,E and δk,p appear due to the discreteness of the spectrum.

The sum on the r.h.s. vanishes, if (E, p) /∈ Sp(HC , PC). This implies (3.45) unless each

(Ei, pi) lies in the forward light cone.

Theorem 3.3.4. For each n ≥ 1, W̃
(n−1)
C has support in (V +)n−1 and W

(n−1)
C is the

boundary value of a polynomially bounded function W(n−1)
+ analytic in the forward tube

(Sβ × R− iV +)n−1.

Proof. The support property of W̃
(n−1)
C was established in Lemma 3.3.3. By the Bros-

Epstein-Glaser Lemma [60, Theorem IX.15] there exists a polynomial P and a polynomi-

ally bounded function G(n−1) : (Sβ × R)(n−1) → C obeying

supp G(n−1) ⊆ (V +)(n−1),

such that W̃
(n−1)
C = P (D)G(n−1), with D a partial differential operator. Consequently an

analytic continuation W(n−1)
+ of W

(n−1)
C to (Sβ × R− iV +)n−1 can be defined:

W(n−1)
+ (ξ1 − iη1, . . . , ξn−1 − iηn−1) = (2π)−

n−1
2 P

(
−i(ξ1 − iη1, . . . , ξn−1 − iηn−1)

)
×

×
∫

R2(n−1)

n−1∏

j=1

dEj dpj e
−i(ξj−iηj)·(Ej ,pj)G(n−1)

(
(E1, p1), . . . , (En−1, pn−1)

)
. (3.46)

If ηj ∈ V + for all j ∈ {1, . . . , n− 1}, this integral exists. Furthermore its boundary value

for (η1, . . . , ηn−1) ց 0 is W
(n−1)
C . Polynomial boundedness of the analytic function W(n−1)

+

results from the following inequality [60, Theorem IX.16]:

∣∣∣W(n−1)
+ (ξ1 − iη1, . . . , ξn−1 − iηn−1)

∣∣∣

≤ C
∣∣P
(
−i(ξ1 − iη1, . . . , ξn−1 − iηn−1)

)∣∣ (1 + d((η1, . . . , ηn−1))
−N
)
.
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C is a constant, d((η1, . . . , ηn−1)) is the distance of (η1, . . . , ηn−1) to ∂(V
+)n−1 and N is a

positive integer.

The next lemma provides the germ for the analyticity domain of the relativistic KMS

condition. It is a consequence of locality on the circle Sβ ≡ [0, 2π). Define W as the

wedge {(α, s) ∈ [0, β)× R | α > |s|} and Gβ := {(α, s) ∈ W | |α|+ |s| < β}.

Lemma 3.3.5. Let λi > 0, i ∈ {1, . . . , n − 1} and
∑n−1

i=1 λi = 1. The tempered distri-

butions W
(n)
C (α1, s1, . . . , αn, sn) defined in (3.43) are real valued for (α1, s1, . . . , αn, sn) ∈

J (n), where

(α1, s1, . . . , αn, sn) ∈ J (n) ⇔





(αi, si) ∈ Sβ × R ,

(αi+1 − αi, si+1 − si) ∈ λiGβ .
(3.47)

Proof. Assume that the space-time points (αi, si) and (αj , sj) are space-like to each other

for all choices of i 6= j and i, j ∈ {1, . . . , n}. Then, as a consequence of locality, all

the field operators φC(αi, si) commute (as quadratic forms) with each other. Therefore

W
(n)
C (α1, s1, . . . , αn, sn) equals

(
ΩC , φC(α1, s1) · · ·φC(αn, sn)ΩC

)
=
(
ΩC , φC(αn, sn) · · ·φC(α1, s1)ΩC

)

=W
(n)
C (α1, s1, . . . , αn, sn).

In other words, the tempered distributions W
(n)
C (α1, s1, . . . , αn, sn) are real valued. Thus

the lemma follows, once it has been shown that the set J (n) consists of points, which are

pairwise space-like to each other.

A point (α, s) on the cylinder is space-like to the origin (0, 0) iff (α, s) ∈ Gβ. Space-

likeness is a symmetric relation and therefore it suffices to prove that (αi, si) is space-like

to (αj , sj) for i > j, i.e.

(αj , sj)− (αi, si) ∈ Gβ for i > j. (3.48)

Note that, for 0 < λ, there holds λGβ = Gλβ . The map n : [0, β)× R → R+,

(α, s) 7→ |α|+ |s|,

defines a norm. Denote its restriction to the wedge W by n|W . Equ. (3.48) now follows
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from the triangle inequality:

n|W ((αj , sj)− (αi, si)) = n|W
(
(αj − αj−1, sj − sj−1) + . . .+ (αi+1 − αi, si+1 − si)

)

≤ n|W ((αj − αj−1, sj − sj−1)) + . . .+ n|W ((αi+1 − αi, si+1 − si))

< λj−1β + λj−2β + . . .+ λiβ ≤ β
n−1∑

k=1

λk = β,

and therefore (3.47) implies (3.48).

The following is an immediate consequence of the preceding results. Because the

tempered distributions W
(n)
C (α1, s1, . . . , αn, sn) defined in (3.43) are real valued for

(α1, s1, . . . , αn, sn) ∈ J (n) ,

the Schwarz reflection principle can be applied. The function

W(n−1)
− (ξ1 + iη1, . . . , ξn−1 + iηn−1) := W(n−1)

+ (ξ1 − iη1, . . . , ξn−1 − iηn−1) (3.49)

is analytic on (Sβ×R+ iV +)×· · ·× (Sβ×R+ iV +) and polynomially bounded as ηi ց 0.

Furthermore, its boundary value for (η1, . . . , ηn−1) ց 0 is W
(n−1)
C . Accordingly there exist

functions W(n−1)
± , which are holomorphic on

(λ1Gβ × . . .× λn−1Gβ)∓ i(V + × . . .× V +) ,

and which coincide on (λ1Gβ × . . .× λn−1Gβ) + i{0}. Since V + is a cone, V + × . . .× V +

is a cone (by definition). Applying the Edge-of-the-Wedge Theorem [65, Theorem 2-16]

results in an analytic function W(n−1)
C on

(
(λ1Gβ × . . .× λn−1Gβ) + i((V +)n−1 ∪ (−V +)n−1)

)
∪ N ,

where N is a complex neighbourhood of (λ1Gβ × . . .× λn−1Gβ) + i{0}. With this infor-

mation W(n−1)
C can be analytically continued to a larger domain.

Theorem 3.3.6. There exists a function W(n−1)
C defined and analytic in

C(n−1) :=
(
(λ1Gβ × . . .× λn−1Gβ) + i (V − ∪ V +)× . . .× (V − ∪ V +)

)
∪ N , (3.50)

where λj > 0 and
∑n−1

j=1 λj = 1, which coincides with W
(n−1)
C on λ1Gβ × . . .× λn−1Gβ.
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Proof. In order to show that W(n−1)
C has an analytic continuation to (3.50) it will be

shown that W(n−1)
+ has an analytic continuation to

(λ1Gβ × . . .× λn−1Gβ)− i(V + × . . .× (−V +)× . . .× V +) , (3.51)

i.e. with the light-cone flipped in the k-th coordinate pair. In the following calculation

only the ξj = (αj − αj+1, sj − sj+1) ∈ λjGβ for j ∈ {k − 1, k, k + 1} will be shown as the

other coordinates stay unchanged.

W(n−1)
C

(
(αk−1 − αk, sk−1 − sk), (αk − αk+1, sk − sk+1), (αk+1 − αk+2, sk+1 − sk+2)

)

= (ΩC , φC(α1, s1) · · ·φC(αn, sn) ΩC)

= (ΩC , φC(α1, s1)

· · ·φC(αk−1, sk−1)φC(αk+1, sk+1)φC(αk, sk)φC(αk+2, sk+2)

· · ·φC(αn, sn) ΩC)

= W
(n−1)
C

(
(αk−1 − αk+1, sk−1 − sk+1), (αk+1 − αk, sk+1 − sk), (αk − αk+2, sk − sk+2)

)
,

which can be written as

W(n−1)
C (ξk−1, ξk, ξk+1) = W

(n−1)
C (ξk−1 + ξk,−ξk, ξk + ξk+1) .

But the right hand side clearly has an analytic continuation to (3.51). Hence W(n−1)
+ has

an analytic continuation to (λ1Gβ× . . .×λn−1Gβ)− i(V +× . . .× (V +∪−V +)× . . .×V +).

Here it is used that (λ1Gβ × . . . × λn−1Gβ) + i{0} is in the interior of N . Since this

procedure can be repeated for any coordinate pair, the domain of analyticity of W(n−1)
C

can be extended to (3.50).

3.4 The Thermal Wightman Functions

In order to explore Nelson symmetry in its most concise form, interacting thermal Wight-

man functions and their analytic continuations have to be defined. Subsection 3.4.1 deals

with analytic continuations of the Schwinger functions. The final two subsections deal

with the domain of the thermal time-zero field and with the boundary values of the

analytic functions constructed in Subsection 3.4.1, respectively.
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3.4.1 An Application of the Strong Disk Theorem

In the previous section it has been shown that the Wightman functions on the circle are

the boundary values of a function W(n−1)
C holomorphic in the region C(n−1). For αj > 0

and
∑

j αj < β a new function can be defined by

W(n−1)
β

(
−iα1, y1, . . . ,−iαn−1, yn−1

)
:= W(n−1)

C

(
α1,−iy1, . . . , αn−1,−iyn−1

)
, (3.52)

or alternatively by W(n−1)
β := W(n−1)

C ◦ Ξ−1, where Ξ is the coordinate transformation

(z1, w1, . . . , zn−1, wn−1) 7→ (iz1,−iw1, . . . , izn−1,−iwn−1)

on C2(n−1). Note that under Ξ the Gβ in the real part of the domain become the Vβ in the

imaginary part of the new domain. Similarly, the light cones in the imaginary part become

space-like wedges. That is, W(n−1)
β is analytic in the domain ((Q− ∪Q+)− iVβ)

n−1 ∪ΞN ,

where the right and left wedges are

Q± =
{
(τ, y) ∈ R

2 | ±y > |τ |
}
.

For mutually space-like points (ti, xi), i ∈ {1, . . . , n}, equation (3.52) defines the thermal

Wightman functions (as analytic functions)

W(n−1)
β

(
t1 − t2, x1 − x2, . . . , tn−1 − tn, xn−1 − xn

)
. (3.53)

This is not significant for the rest of the construction, but will be proven in Section 4.2.

As a next step the strong disk theorem [11–13,69] is applied to W(n−1)
β , which results in

an extension of W(n−1)
β into its holomorphic envelope. For the convenience of the reader,

the strong disk theorem is stated in Appendix B.

Theorem 3.4.1. The thermal Wightman functions W(n−1)
β introduced in (3.52) are an-

alytic in the product of domains

(λ1Tβ)× · · · × (λn−1Tβ), Tβ := R
2 − iVβ ,

n−1∑

j=1

λj = 1, (3.54)

and λj > 0, j ∈ {1, . . . , n− 1}.
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b b

b b

yj

τj

Z(smax
0 )

Z(s < smax
0 )

Figure 3.1: Geometric situation in the proof of Theorem 3.4.1. Only the real section is
depicted. The grey area corresponds to Gj .

Proof. Let Gj := (Q−∪Q+− iλjVβ)∪ Πj(ΞN ), j ∈ {1, . . . , n−1}, with Πj the projection

onto the j-th coordinate pair. Define maps W(n−1)↾j
β : Gj → C,

(zj , wj) 7→ W(n−1)
β (z1, w1, . . . , zn−1, wn−1) . (3.55)

Since Πj(ΞN ) is an open set in C2 containing the subset {0} − iλjVβ, the domain Gj

contains an open ball of radius4 r(α,x) > 0 centred at

oj := (0, 0)− i(α, x) ∈ Gj , (3.56)

where (α, x) is an arbitrary point in λjVβ. In order to apply the strong disk theorem fix

the curve γ in C defined by γs = s− iα for s ≥ 0 and the disks

D(s) := {w ∈ C | −2s < ℜw < 2s, x− ǫ < ℑw < x+ ǫ}

for some sufficiently small ǫ to ensure that {(α, x′) | x − ǫ < x′ < x + ǫ} ⊂ λjVβ . The

4Contrary to what was implicitly stated in [23], the radius of the open ball depends on the point
(α, x). In fact, the radius r(α,x) > 0 has to shrink to zero as (α, x) → ∂λjVβ . Otherwise the edge of
the wedge theorem would imply the existence of an open ball centred at the origin (which clearly would

include both light-like and time-like points) for which the function W(n−1)↾j
β would be analytic.
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disks fulfill the conditions of the strong disk theorem. Define the sets

Z(s) := {(γs, w) ∈ C
2 | w ∈ D(s)} .

There exists a maximal smax
0 > 0 such that W(n−1)↾j

β is analytic at all the points of the set⋃
0<s<smax

0
Z(s) ⊂ Gj and some points of the set Z(smax

0 ). Thus the strong disk theorem

implies that W(n−1)↾j
β can be analytically continued to all points of the set Z(smax

0 ) and

consequently to an open neighbourhood of
⋃

0<s≤smax
0

Z(s). There now exists a smax
1 > smax

0

such that W(n−1)↾j
β is analytic at all of the points of

⋃
0<s<smax

1
Z(s) and at some of the

points of Z(smax
1 ). Thus the strong disk theorem can be applied again.

Iterating this procedure results in an increasing sequence of positive numbers {smax
n }n∈N.

Now assume for the sake of contradiction that this sequence converges to some positive

real number. Then the strong disk theorem can immediately be applied again, falsifying

the assumption that the sequence converges and in every step smax
n was maximal. Thus

the sequence of positive numbers {smax
n }n∈N is divergent. By the same line of arguments

one constructs a decreasing, divergent sequence of negative numbers {smin
n ∈ R−}n∈N.

Consequently W(n−1)↾j
β is analytic in R2∪ Πj(ΞN ), for each j ∈ {1, . . . , n−1} separately.

Applying Hartogs’ theorem [69, p. 30] one concludes that W(n−1)
β is analytic in the

domain

(
(R2)n−1 − i(λ1Vβ × . . .× λn−1Vβ)

)
∪ (ΞN ) ⊃ (R2)n−1− i (λ1Vβ × . . .× λn−1Vβ) , (3.57)

which equals the open set described in (3.54).

The open set Vβ does not include the origin, and thus R2(n−1) + i{0} is not a subset

of the open set (3.54). Thus it will be the main task of the proof of Theorem 3.4.6, to

show that the boundary values of the analytic functions W(n−1)
β as ℑ(zj , wj) ց 0 yield

tempered distributions.

3.4.2 Products of Sharp-time Fields and their Domains

In (3.18) the thermal time-zero field φβ(h) has been defined via Stone’s theorem. This

provides little control on its domain. The results in this subsection provide the information

about the domain of φβ(h), which is necessary for the proof of Theorem 3.4.6.
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Lemma 3.4.2. (i) (Products of sharp-time fields). Let hi ∈ SR(R) for i ∈ {1, . . . , j},
j ∈ N, and 0 ≤ α1 ≤ . . . ≤ αj < β. Then

φ(αj, hj) · · ·φ(α1, h1) ∈
⋂

1≤p<∞
Lp(Q,Σ[0,αj ], dµ) , (3.58)

(ii) (Convergence of sharp-time Schwinger functions, Part II). Let hi ∈ C∞
0 R

(R) and

αi ∈ Sβ, 1 ≤ i ≤ n. Then

lim
l→∞

∫

Q

φ(αn, hn) · · ·φ(α1, h1) dµl =

∫

Q

φ(αn, hn) · · ·φ(α1, h1) dµ .

Proof. (i) Consider an approximation of the Dirac δ-function: δκ(x) := κχ(κx), with χ

a function in C∞
0 (R) and

∫
χ(x) dx = 1. It has been shown in [22, Proposition 7.3]

that

lim
k→∞

φ (δk( . − αi)⊗ hi) ∈
⋂

1≤p<∞
Lp(Q,Σ, dµ), hi ∈ SR(R).

As similar techniques are used in the proof of Lemma 3.4.4 it is sensible to recall

the proof5:

∫
Q

(
φ (δk( . − αi)⊗ hi)

)p
dµ

= (−i)p dp

dλp

(
ΩC , W[−∞,+∞]

(
λ
(
δk( . − αi)⊗ hi

))
ΩC

) ∣∣∣
λ=0

,

where W[a,b](f) is a solution of the heat equation

d

db
W[a,b](f) = W[a,b](f)

(
−HC + iφC(fb)

)
, a ≤ b,

with the boundary condition W[a,a](f) = 1l and with fb( . ) := f( . , b) ∈ SR(Sβ) for

f ∈ SR(Sβ × R). Now if f = δk(.− αi)⊗ hi, then the function fx ∈ SR(Sβ) is equal

to δk( . −αi)hi(x). It follows from (3.32), i.e. estimate (5.9) in [22, Proposition 5.4],

that hi ∈ C∞
0R(R) implies

±φC (δk( . − αi)hi(x)) ≤ c ‖δk( . − αi) hi(x)‖H−1(Sβ)
(HC + 1)

≤ c |hi(x)| ‖δk‖H−1(Sβ)
(HC + 1).

5The equation corresponding to this one in the proof of [22, Proposition 7.3] is written only for even
p. This is not necessary as is evident from [22, Lemma A.8]
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Set rk(x) := c |hi(x)| ‖δk‖H−1(Sβ)
and apply [22, Lemma A.8] to obtain

∥∥∥∥
dp

dλp
W[−∞,+∞] (λ (δk( . − αi)⊗ hi))

∥∥∥∥ ≤ p! ‖rk‖p∞ e‖rk‖1‖rk‖
−1
∞ . (3.59)

Since δk( . −αi) converges to δ( . −αi) in H
−1(Sβ) and hi ∈ C∞

0R(R) for i = 1, . . . , j,

we see that limk→∞ ‖rk‖1 <∞ and limk→∞ ‖rk‖∞ <∞. Thus

∫

Q

(φ(αi, hi))
p dµ <∞ . (3.60)

For p ∈ N, part (i) then follows from the Hölder inequality

∫

Q

|φ(αj, hj) · · ·φ(α1, h1)|p dµ ≤
j∏

i=1

(∫

Q

|φ(αi, hi)|pj dµ

)1/pj

.

Σ[0,α]-measurability follows from the fact that (a) for all k there is an ǫk (the δk were

chosen to have compact support) such that

φ (δk( . − αi)⊗ hi) ∈
⋂

1≤p<∞
Lp(Q,Σ[0,αi+ǫk], dµ)

and (b) the upper continuity of µ.

The general result follows from the Hölder inequality and the fact, that dφC is a

probability measure.

(ii) Now let hi ∈ C∞
0 R

(R) and αi ∈ Sβ , 1 ≤ i ≤ n. Part (ii) follows the proof of [22,

Proposition 7.5]. Differentiating equation (7.5) in [22] yields

lim
l→∞

∫

Q

φ(αn, hn) · · ·φ(α1, h1) dµl

= lim
k→∞

dj

dλ1 · · · dλj

(
ΩC ,W[−a,a]

(∑j
i=1 λi (δk( . − αi)⊗ hi)

)
ΩC

) ∣∣∣
λi=0

=

∫

Q

φ(αn, hn) · · ·φ(α1, h1) dµ ,

for supp δk( . − αi) ⊗ hi ⊂ Sβ × [−a, a], i ∈ {1, . . . , j}, as for s ≤ −a ≤ a ≤ t the

map (s, t) 7→ (ΩC ,W[s,t](f)ΩC) is constant.
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Taking advantage of their Euclidean heritage now allows for an investigation of the

domain of the time-zero fields φβ(h).

Proposition 3.4.3. Let hi ∈ C∞
0 R

(R), 1 ≤ i ≤ n. Then

(i) Ωβ ∈ D(L) and LΩβ = 0;

(ii) If α1, . . . , αn ≥ 0 and
∑n

j=1 αj ≤ β/2, then

e−αn−1Lφβ(hn−1) · · · e−α1Lφβ(h1)Ωβ ∈ D
(
φβ(hn)

)
(3.61)

and

φβ(hn)e
−αn−1Lφβ(hn−1) · · · e−α1Lφβ(h1)Ωβ ∈ D

(
e−αnL

)
. (3.62)

Moreover, the linear span of such vectors is dense in Hβ and

e−αnLφβ(hn)e
−αn−1Lφβ(hn−1) . . . e

−α1Lφβ(h1)Ωβ =

= V
(
U(αn, 0)φ(0, hn)U(αn−1, 0)φ(0, hn−1) · · ·U(α1, 0)φ(0, h1)

)
;

(iii) If 0 ≤ α1 ≤ · · · ≤ αk ≤ β/2 and β/2 ≤ αk+1 ≤ . . . ≤ αn ≤ β, then

∫

Q

n∏

j=1

φ(αj , hj) dµ

=
(
e(αn−β)Lφβ(hn)e

(αn−1−αn)Lφβ(hn−1) · · · e(αk+1−αk+2)Lφβ(hk+1)Ωβ ,

e−α1Lφβ(h1)e
(α1−α2)Lφβ(h2) · · · e(αk−1−αk)Lφβ(hk)Ωβ

)
. (3.63)

(iv) ‖e−(β/2)Lφβ(hn) · · ·φβ(h1)Ωβ

∥∥ = ‖φβ(hn) · · ·φβ(h1)Ωβ

∥∥.

Proof. At first note that (3.63) formally results from differentiating the following identity,

which is a consequence of eiφ(0,hj) ∈ L∞(Q,Σ{0}, dµ) for hi ∈ C∞
0 R

(R) and the Osterwalder-

Schrader reconstruction outlined in Section 3.2, in particular (3.16) and (3.20):

∫

Q

n∏

j=1

eiφ(αj ,hj) dµ =

∫

Q

R

(
U(β, 0)

n∏

j=k+1

e−iφ(−αj ,hj)

)
k∏

j=1

eiφ(αj ,hj) dµ

=
(
V
(
U(β, 0)e−iφ(−αn,hn) . . . e−iφ(−αk+1,hk+1)

)
,V(eiφ(αk ,hk) · · · eiφ(α1,h1))

)

=
(
e(αn−β)Le−iφβ(hn)e(αn−1−αn)Le−iφβ(hn−1) · · · e(αk+1−αk+2)Le−iφβ(hk+1)Ωβ ,

e−α1Leiφβ(h1)e(α1−α2)Leiφβ(h2) · · · e(αk−1−αk)Leiφβ(hk)Ωβ

)
, (3.64)
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for 1 ≤ i ≤ n, and 0 ≤ α1 ≤ · · · ≤ αk ≤ β/2 and β/2 ≤ αk+1 ≤ . . . ≤ αn ≤ β. It has to

be ensured, however, that (3.63) is well-defined.

(i) From [48, Lemma 8.4]: 1 ∈ Mα. (As before Mα = L2(Q,Σ[0,β/2−α], dµ).) Thus

Ωβ ∈ Dα and e−αLΩβ = P (α)Ωβ = Ωβ as U(α, 0)1 = 1 for 0 ≤ α ≤ β;

(ii) The case n = 1, namely Ωβ ∈ D (φβ(h1)) and

e−α1Lφβ(h1)Ωβ ∈ Hβ for 0 ≤ α1 ≤ β/2

was proven in [23, Lemma 2]. Alternatively, it is a direct consequence of Lemma

3.1.6. In fact,

e−α1Lφβ(h1)Ωβ ∈ D(φβ(h2)) ,

as φ(0, h2) acts as a multiplication operator on φ(α1, h1) and

φ(0, h2)φ(α1, h1) ∈ Mβ/2−α1

by Lemma 3.4.2 (i). As P (α)Dγ ⊂ Dγ−α, it follows that

e−α2Lφβ(h2)e
−α1Lφβ(h1)Ωβ ∈ Dβ/2−α1−α2

and φ(0, h3)φ(α2, h2)φ(α1 + α2, h1) ∈ Mβ/2−α1−α2
implies

e−α2Lφβ(h2)e
−α1Lφβ(h1)Ωβ ∈ D(φβ(h3)) .

Iterating this argument it follows that

V
(
φ(αk, hk) · · ·φ(α1 + . . .+ αk, h1)

)
∈ Dβ/2−γ,

if
∑k

i=1 αk ≤ γ ≤ β/2. Thus (3.61) and (3.62) follow.

Next it has to be proven that vectors of the form

e−αnLφβ(hn)e
−αn−1Lφβ(hn−1) . . . e

−α1Lφβ(h1)Ωβ

are dense in Hβ for α1, . . . , αn ≥ 0 and
∑n

j=1 αj ≤ β/2. Assume that for some

Ψ ∈ Hβ,

∀m,n ∈ N : (Ψ, φβ(f)
ne−βL/2φβ(g)

mΩβ) = 0. (3.65)
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(Note that (3.65) is well-defined as a consequence of (3.62).) Then

(Ψ , eiφβ(hi)e−βL/2eiφβ(hj)Ωβ) = 0 . (3.66)

But vectors of the form eiφβ(hi)e−βL/2eiφβ(hj)Ωβ are dense [49, Theorem 11.2] in Hβ,

and therefore (3.66) implies Ψ = 0, establishing the claim.

(iii) If 0 ≤ α1 ≤ . . . ≤ αk ≤ β/2 and β/2 ≤ αk+1 ≤ . . . ≤ αn ≤ β, then according to (ii)

(
e(αn−β)Lφβ(hn)e

(αn−1−αn)Lφβ(hn−1) . . . e
(αk+1−αk+2)Lφβ(hk+1)Ωβ ,

e−α1Lφβ(h1)e
−(α2−α1)Lφβ(h2) . . . e

−(αk−αk−1)Lφβ(hk)Ωβ

)

is well-defined and equals

(
V
(
φ(β − αn, hn) . . . φ(β − αk+1, hk+1)

)
,V
(
φ(αk, hk) · · ·φ(α1, h1)

))
=

=
∫
Q
R
(∏n

j=k+1 φ(β − αj , hj)
)∏k

j=1 φ(αj , hj) dµ

=
∫
Q
R
(
U(β, 0)

∏n
j=k+1 φ(−αj , hj)

)∏k
j=1 φ(αj, hj) dµ

=
∫
Q
R
(∏n

j=k+1 φ(−αj , hj)
)∏k

j=1 φ(αj, hj) dµ

=
∫
Q

(∏n
j=k+1 φ(αj , hj)

)∏k
j=1 φ(αj , hj) dµ

=
∫
Q

∏n
j=1 φ(αj, hj) dµ .

(3.67)

It was used, that U(β, 0) = 1l, which holds by periodicity.
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(iv) By (ii) we have φβ(hn)φβ(hn−1) · · ·φβ(h1)Ωβ ∈ D
(
e−βL/2

)
. Now

∥∥e−βL/2φβ(hn)φβ(hn−1) · · ·φβ(h1)Ωβ

∥∥2 =

=
∥∥V
(
U(β/2, 0)φ(0, hn) · · ·φ(0, h1)

)∥∥2

=
∫
Q
U(β/2, 0)φ(0, hn) · · ·φ(0, h1) RU(β/2, 0) φ(0, hn) · · ·φ(0, h1) dµ

=
∫
Q
φ(0, hn) · · ·φ(0, h1) U(−β/2, 0)RU(β/2, 0) φ(0, hn) · · ·φ(0, h1) dµ

=
∫
Q
φ(0, hn) · · ·φ(0, h1) RU(β, 0) φ(0, hn) · · ·φ(0, h1) dµ

= ‖V (φ(0, hn) · · ·φ(0, h1))‖2 = ‖φβ(hn)φβ(hn−1) · · ·φβ(h1)Ωβ‖2 ,

again using U(β, 0) = 1.

The extension of these results to real times is the next objective. Given the self-adjoint

operator φβ(h), h ∈ C∞
0R(R), set

φβ(t, h) := eitLφβ(h)e
−itL, t ∈ R . (3.68)

The domain of the self-adjoint operator φβ(t, h) is eitLD(φβ(h)). That products of field

operators smeared out in time can be applied to the distinguished vector Ωβ will be shown

in the final subsection.

3.4.3 Temperedness of the Thermal Wightman Distributions

In this subsection the main theorem of this chapter is stated and proven. For the proof

one more lemma is required.

Lemma 3.4.4. For h ∈ SR(R) and even p ∈ N the expressions

||| h|||p := max±

[ ∫
Q

∏p
k=1 φ±

(
kβ
p
, h
)

dµ
] 1

p (3.69)

are bounded from above by p
√
p! · |h|S, for some Schwarz norm | . |S. φ±(α, h) denotes the

positive and negative part6 of φ(α, h), respectively.

6That is, φ(α, h) = φ+(α, h) − φ−(α, h) such that both φ±(α, h) are positive. φ±(α, h) necessarily
have disjoint supports.
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Proof. Let p ∈ N be even, α ∈ Sβ and h ∈ SR(R). By the Hölder inequality on

Lp(Q,Σ, dµ) there holds

||| h|||pp ≤ max
±

p∏

k=1

∫

Q

φ±

(
δ( . − kβ

p
)⊗ h

)p
dµ . (3.70)

Since

∫

Q

φ(α, h)p dµ =

∫

supp φ+(α,h)

φ+(α, h)
p dµ +

∫

supp φ−(α,h)

φ−(α, h)
p dµ

≥
∫

supp φ±(α,h)

φ±(α, h)
p dµ , (3.71)

it will be sufficient to prove the estimate for the l.h.s. of (3.71).

Taking advantage of the fractional φ-bound (3.33) the estimate [22, Lemma A.7,

p. 167], for R1 = 0 and R2 = φC (δ( · − kβ/p)h), can now be applied, which states

that there is a constant c′ > 0 such that

∣∣∣∣
∫

dµ eiλφ(δ( · −
kβ
p
)⊗h)

∣∣∣∣ ≤ ec
′|ℑλ|γ‖r‖γγ (3.72)

for λ ∈ C, γ = (1
2
− ǫ)−1, 0 ≤ ǫ < 1/2, and r(x) = limℓ→∞ rℓ(x), with

rℓ(x) := c |h(x)| ‖δℓ‖H− 1
2− ǫ

2 (Sβ)
, c > 0 . (3.73)

This limit ℓ→ ∞ exists, as the Dirac δ-function is in all Sobolev spaces Hq for q < −1/2.

From Proposition A.6 (i) and Theorem 7.2 (i) in [22] it follows that λ 7→
∫
dµ eiλ φ(δ⊗h)

is entire (Note that W[a,b](λf) = Uλ(a, b)
∗). Applying Cauchy’s formula on the circle of

radius R centred around λ ∈ R yields

∫

Q

φ±

(
kβ

p
, h

)p

dµ ≤
∫

Q

φ

(
kβ

p
, h

)p

dµ ≤ p!R−pec
′Rγ‖r‖γγ , (3.74)

which can be improved by optimising with respect to R,

∣∣∣∣
∫

Q

φ±

(
δ( . − kβ

p
)⊗ h

)p
dµ

∣∣∣∣ ≤ p!

(
cγe

p

)p/γ

‖r‖pγ
≤ p! |h|pS . (3.75)
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Two things have been used here: supp∈N

(
cγe
p

)p/γ
<∞ and the fact that

‖r‖γ = c ‖δℓ‖H−1/2−ǫ(Sβ)

(∫
|h(x)|γ dx

)1/γ

(3.76)

can be estimated by a Schwartz norm, if h ∈ S(R) and γ > 2. Finally, putting (3.70),

(3.71) and (3.75) together results in

||| h|||pp ≤ p! |h|pS , (3.77)

which establishes the lemma.

Remark 3.4.5. Making use of the φ-bound (3.31) one can use the equation preceding [22,

Equ. (A.9)] to arrive at Fröhlich’s bound

∫
e±φ(g⊗h) dµ ≤ ec

∫

R
dx |h(x)|2Cβ(g,g) , g ∈ H−1/2(Sβ) , h ∈ L2

R(R) , (3.78)

stated (for the special case g = 1l[0,l] a characteristic function) in [18, Equ. (7)]. However,

using only this bound, the author was unable to establish the existence of the products

estimated in Lemma 3.4.4.

Theorem 3.4.6. (i) The boundary values of the functions W(n−1)
β , which are analytic

in

(λ1Tβ)× · · · × (λn−1Tβ), Tβ := R
2 − iVβ, (3.79)

where λi > 0, i ∈ {1, . . . , n − 1} and
∑n−1

i=1 λi = 1, exist as tempered distributions

denoted by

W
(n−1)
β ∈ S ′(R2) . (3.80)

The W
(n−1)
β are called thermal Wightman distributions of the P (φ)2 model.

(ii) The W
(n−1)
β satisfy the KMS boundary condition: set sk = tk − tk+1 and yk =

xk − xk+1, 1 ≤ k < n. In addition, set sn = tn − t1 and yn = yn − y1. Then

W
(n−1)
β

(
s1, y1, . . . , sk−1, yk−1, sk − iβ, yk, . . . , sn−1, yn−1

)
=

= W
(n−1)
β

(
sk, yk, . . . , sn, yn, s1, y1, . . . , sk−2, yk−2

) (3.81)
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for all (s1, y1 . . . , sn−1, yn−1) ∈ R
2(n−1).

Remark 3.4.7. For two space-time dimensions it is expected, that the Wightman dis-

tributions only have to be smeared out in the space coordinate, i.e. that W
(n−1)
β is a

continuous map on (R× S(R))n−1.

Proof. At first it is proven that the thermal Wightman functions are tempered distribu-

tions. Let {φℓ(h) ∈ Rβ}ℓ∈N be a sequence of bounded elements approximating φβ(h) in

the strong topology. Denote the positive and negative parts7 of φℓ(h) by φℓ(h)±. Then

Theorem 2.1.1 and the linearity of ωβ implies, that each of the 2n terms arising from the

linear polar decomposition of the φℓ(h) can be estimated by

lim
ℓi→∞

∣∣(Ωβ , φℓ1(h1)± e−(α1+it1)L · · ·φℓn−1(hn−1)± e−(αn−1+itn−1)Lφℓn(hn)±Ωβ

)∣∣

≤ |||φβ(h1)±|||p1(α1) · · · |||φβ(hn)±|||pn(αn) (3.82)

≤ p1(α1)

2
· · · pn(αn)

2
· |h1|S · · · |hn|S , (3.83)

for 0 < αj, j ∈ {1, . . . , n−1},∑αj < β/2 and with pi ≡ pi(αi) the smallest even natural

number such that

1

pi(αi)
<

1

β
min {αi−1, αi} , i ∈ {1, . . . , n− 1} . (3.84)

(Setting α0 = α1.) Lemma 3.4.4 as well as Proposition 3.4.3 (iii) have been used in (3.82)

to conclude that for p even and sufficiently large8 there holds

|||φβ(h)±|||p =
( ∫

Q

p∏

k=1

φ±

(
kβ

p
, h

)
dµ

) 1
p

≤ ||| h|||p ≤ p
√
p! · |h|S <

p

2
· |h|S . (3.85)

It will now be shown, following ideas in [60, p. 24], that this bound ensures that the

boundary values exist as tempered distributions as αj ց 0: let t = (t1, . . . , tn−1) and

α = (α1, . . . , αn−1), and set

W(t− iα) := lim
ℓi→∞

∣∣(Ωβ , φℓ1(h1)e
−(α1+it1)L · · ·φℓn−1(hn−1)e

−(αn−1+itn−1)Lφℓn(hn)Ωβ

)∣∣

7In the sequel it will be important that for real A ∈ L∞(Q,Σ{0}, dµ) there holds πβ(A±) = πβ(A)±.
8Recall that p! < (p/2)p for p ≥ 6.
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Now define, for λ ∈ (0, 1] fixed, a tempered distribution Tα(λ) ∈ S ′(Rn−1) by

Tα(λ)(g) :=

∫

Rn−1

dtW(t− iλα) g(t) , g ∈ S(Rn−1) . (3.86)

Let T
(k)
α (λ), k = 1, 2, . . ., denote the k-th distributional derivatives

T (k)
α (λ)(g) :=

∂k

∂λk
Tα(λ)(g) =

∫

Rn−1

dtW(t− iλα)

(
iα · ∂

∂t

)k

g(t) . (3.87)

Thus, by the fundamental theorem of calculus,

Tα(λ) = Tα(1) +

k−1∑

j=1

Qj(λ) T
(j)
α (1)

−
∫ 1

λ

dλk

∫ 1

λk

dλk−1 · · ·
∫ 1

λ2

dλ1 T
(k)
α (λ1) . (3.88)

The Qj ’s in (3.88) are suitable polynomials. The limit λ ↓ 0 in (3.88) can be taken,

provided that

lim
λ↓0

∣∣∣∣
∫ 1

λ

dλk

∫ 1

λk

dλk−1 · · ·
∫ 1

λ2

dλ1 T
(k)
α (λ1)

∣∣∣∣ <∞ . (3.89)

This is done by estimating T
(k)
α (λ) as given in (3.87): choose some m ∈ N large enough

so that
∫
Rn−1 dt (1 + |t|)−m <∞. Then, for λ ∈ (0, 1],

∣∣T j
α(λ)(g)

∣∣ = C sup
t∈Rn−1

|(1 + |t|)m|
∣∣∣∣∣

(
iα · ∂

∂t

)j

g(t)

∣∣∣∣∣ p1(λα1) · · ·pn(λαn) · |h1|S · · · |hn|S

≤ C ′ · λ−n , C, C ′ > 0 . (3.90)

Note that

lim
λ↓0

∣∣∣∣
∫ 1

λ

dλk

∫ 1

λk

dλk−1 · · ·
∫ 1

λ2

dλ1 λ
−n
1

∣∣∣∣ <∞ (3.91)

for k sufficiently large, i.e. k > n+2. Combining (3.89), (3.90), and (3.91) one concludes

that the limit of Tα(λ) exists as λ ↓ 0 and that each term in the limit is less than or equal

to a constant times an S(Rn−1)-semi-norm of g. Thus W(s− iα) converges in S ′(Rn−1)

as α ↓ 0 to a tempered distribution, denoted by W
(n)
β (h1, t1, h2, t2, . . . , tn−1, hn). The
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limit does not depend on the direction at which the imaginary part goes to zero. This is

completely analogous to the proof of [60, Theorem IX.16; p.25]

Translation invariance implies, that there exists a tempered distribution W
(n−1)
β such

that

W(n)
β (x1, t1, x2, t2, . . . , tn−1, xn) = W

(n−1)
β (t1, x1 − x2, . . . , tn−1, xn−1 − xn) . (3.92)

The analyticity property stated in (i) equal those stated in Theorem 3.4.1. The KMS

boundary condition follows by differentiating (see (3.18)) the boundary condition of the

corresponding Weyl operators given in (3.28).



Chapter 4

Properties of the Thermal P (φ)2

Model

4.1 Verification of the Wightman Axioms

For f = g ⊗ h ∈ S(R2), h real-valued, define1

φβ(f) :=

∫
dt g(t)φβ(t, h) . (4.1)

(φβ(t, h) has been defined in (3.68).) As a direct consequence of Theorem 3.4.6 the

following limit exists for fk ∈ S(R2), k ∈ {1, . . . , n} and αj > 0 small enough,

W
(n)
β (f1 ⊗ · · · ⊗ fn) := lim

αj→0

(
Ωβ, φβ(f1) e

−α1L · · ·φβ(fn−1) e
−αn−1L φβ(fn) Ωβ

)

= (Ωβ, φβ(f1) · · ·φβ(fn) Ωβ) . (4.2)

By nuclearity it defines a distribution W
(n)
β ∈ S ′(R2n). It is the purpose of this section to

establish, that the Wightman functions W
(n)
β satisfy the Wightman axioms.

Axioms W1 (Wightman Distributions), W2 (Hermiticity) and W4 (Positive Definite-

ness) are a direct consequence of (4.2) (for positive definiteness cf. [65, Proof of Theorem

3-3]). Axiom W5 is a consequence of the translation invariance of the state ωβ defined in

(3.25). The remaining axioms are treated in the following two lemmas.

At first, some notation has to be introduced. For an interval I ⊂ R, let UAW (I) be

1There is a notational collision with the thermal time-zero field. This will not be a problem since it
will always be clear whether the test function is in S(R) or S(R2).
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the Abelian algebra generated by

{eiφβ(h) | h ∈ C∞(R), supp h ⊂ I, h real-valued} ,

and let Bα(I) denote the von Neumann algebra generated by

{τt(A) |A ∈ UAW (I), |t| < α} .

Define

hI := {h ∈ H−1/2(R) | supp h ⊂ I} , (4.3)

and let RAW (I) be the von Neumann algebra generated by

{eiφAW (h) | h ∈ hI} ,

where φAW (h) is defined as in (1.84). RAW (I) can be thought of as the algebra of observ-

ables of the free field in the double-cone with base I [1].

Lemma 4.1.1 (Locality). The thermal Wightman functions W
(n)
β of the P (φ)2 model

satisfy Axiom W3.

Proof. It has been shown in [22, p.146], that Bα(I) ⊂ RAW (I+]−α, α[). Let f1 = g1⊗h1

and f2 = g2⊗h2 both in S(R2) such that h1 and h2 are real-valued and such that supp f1

and supp f2 are space-like separated with respect to each other. Then there holds for all

A and B in Rβ

∫
dt1 dt2 g1(t1) g2(t2)ωβ

(
A eiφβ(t1,h1) eiφβ(t2,h2)B

)

=

∫
dt1 dt2 g1(t1) g2(t2)ωβ

(
A eiφβ(t2,h2) eiφβ(t1,h1)B

)
. (4.4)

Denote the algebra generated by elements of the form τt(e
iφβ(h)) by C ⊂ Rβ . Let now

B ∈ C. Then BΩβ ∈ D(φβ(f1)φβ(f2)) ∩ D(φβ(f2)φβ(f1)). Since there holds

(
Ωβ , A φβ(f1)φβ(f2)BΩβ

)

= ∂s1∂s2 ωβ

(
A

∫
dt1 g1(t1) e

is1φβ(t1,h1)

∫
dt2 g2(t2) e

is2φβ(t2,g2)B

)∣∣∣∣
s1=s2=0

, (4.5)
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equation (4.4) implies

(Ωβ, A [φβ(f1), φβ(f2)]B Ωβ) = 0 . (4.6)

Since A and B can be freely chosen in C, Axiom W3 can be proven by differentiating

these Weyl operators.

Lemma 4.1.2 (Space-like clustering). The Wightman functions W
(n)
β of the thermal

P (φ)2 model fulfil Axiom W6.

Proof. In [22, Lemma 7.7] it has been shown that the state ωβ is space-like clustering:

∀A,B ∈ A : lim
x→∞

ωβ(Aσx(B)) = ωβ(A)ωβ(B) . (4.7)

Invoking the cyclicity of Ωβ for Rβ, elements of the form

φβ(f1) · · ·φβ(fn) Ωβ , (4.8)

where fj ∈ S(R2), j ∈ {1, . . . , n}, can be approximated by sequences in Rβ Ωβ. The

result follows.

By Theorem 3.4.6 and the results of this section the following theorem is established.

Theorem 4.1.3. The thermal Wightman distributions W
(n)
β satisfy the Wightman ax-

ioms W1 to W6 and the relativistic KMS condition 1.2.11.

At this stage it would be very satisfying to prove both equations of motion (1.50) and

(1.49) in the infinite volume limit2. For Minkowski signature such proofs are conspicuously

absent from the text books. The reason might be, that there is no control on the domain

of the interaction, viewed as unbounded operator on Hβ . In the Euclidean measure space,

however, the verification of the equation of motion is manageable.

Proposition 4.1.4 (Euclidean equation of motion). For h1 and h2 both in SR(R),

define3

A(h1, h2) := eiφ(δ⊗h1)
(
U(β/2, 0)eiφ(δ⊗h2)

)
. (4.9)

2For the vacuum field on the cylinder cf. [60, pp 224].
3The existence of functions of this form follows from Lemma 3.1.6. Recall that they are dense in Hβ.
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For all f ∈ SR ((0, β/2)× R) there holds

∫
dµA(h1, h2)

(
φ
(
(−△+m2)f

)
+

∫
dα dx f(α, x) :P ′(φ(α, x)) :C

)
= 0 . (4.10)

Proof. At first observe that

C
(
(−△+m2)f, g

)
= (f, g)L2(Sβ×R) . (4.11)

For a function g on Sβ × R, which implements the spatial cutoff in the interaction, set

V (g) =

∫

Sβ×R

dx g(x) :P (φ(x)) :C . (4.12)

For l > 0 let χl be the characteristic function on Sβ × [−l, l]. Then dµl = Z−1
l e−V (χl) dφC

(as in (3.4)). By the general integration by parts identity [29, 9.1.32],

∫
Aφ(f) dµl =

∫
C

(
f,
δA

δφ
−A

δV

δφ

)
dµl , (4.13)

for A ∈ L2(Q,Σ, dµl), there holds

∫
dµlA(h1, h2)φ

(
(−△+m2)f

)
=

∫
dµl

(
f,
δA

δφ
− A

δV (χl)

δφ

)
, (4.14)

for f ∈ S(Sβ × R), supp f ⊂ (0, β/2) × [−l, l]. Because of the support properties of A

and f

(
f,
δA

δφ

)
= 0 . (4.15)

The remaining term can be calculated,

(
f,

δ

δφ
V (χl)

)
=

∫
dx f(x)

δ

δφ(x)

∫
dy χl(y) :P (φ(y)) :C

=

∫
dx f(x)

∫
dy χl(y) δ(x− y) :P ′(φ(y)) :C

=

∫
dx f(x)χl(x) :P ′(φ(x)) :C

=

∫
dx f(x) :P ′(φ(x)) :C , (4.16)
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which is precisely the second term in equation (4.10). Since the right hand side of (4.16)

is independent of l, taking the limit l → ∞ establishes equation (4.10).

4.2 Exponential Decay of Correlation Functions

Lemma 4.1.2 can be strengthened by exploiting basic properties of the vacuum model on

the circle and Nelson symmetry. Denote the right space-like wedge by Q := {(t, x) ∈ R2 |
|t| < x} and let (τj , ξj) ∈ Q, j ∈ {1, . . . , n} as well as αj ∈ Sβ. By Nelson symmetry

(3.52) there holds (at first formally)

W(n)
β (−τ1 − iα1, ξ1, . . . ,−τn − iαn, ξn) = W(n)

C (α1 − iτ1,−iξ1 . . . , αn − iτn,−iξn)
= (ΩC , φC(δ) e

−(ξ1HC−(τ1+iα1)PC) . . . φC(δ) e
−(ξnHC−(τn+iαn)PC) φC(δ)ΩC) . (4.17)

As Lemma 4.2.1 below shows, (4.17) exists and it is possible to take the limit limαj→0 in

this equality.

Lemma 4.2.1. For (τj , ξj) ∈ Q and sj ∈ Sβ, j ∈ {1, . . . , n}, there holds

‖e−(ξ1HC−(τ1+is1)PC) φC(δ) . . . e
−(ξnHC−(τn+isn)PC) φC(δ) ΩC‖

≤ D1 ‖δ‖nH−1(Sβ)

n∏

j=1

(
(ξj − |τj |)−1 + 1

)
, (4.18)

where D1 is a constant independent of (τj , ξj).

Two ingredients are necessary for the proof of this lemma. Firstly the fact, that the

Dirac delta is an element in the Sobolev space of order −1 over Sβ , which is denoted by

H−1(Sβ). And secondly the H-bounds

‖(HC + 1)−1/2φC(f)(HC + 1)−1/2‖ ≤ C
′ ‖f‖H−1(Sβ) , (4.19)

‖e−ǫHC(HC + 1)‖ ≤ ǫ−1 + 1 , ǫ > 0 , (4.20)

for the vacuum model on the circle. Inequality (4.19) is a consequence of the φ-bound

(3.32). (The constant c can be removed, by substituting a larger constant C
′ for C.)
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Inequality (4.20) follows from continuous functional calculus and the estimate4

e−ǫx(x+ 1) ≤ ǫ−1 + 1 , ǫ > 0, x ≥ 0 . (4.21)

Proof. At first use the spectrum condition [36], |PC | ≤ HC , to get

−ξHC + τPC ≤ −ξHC + |τ | |PC| ≤ −ξHC + |τ |HC ≤ −(ξ − |τ |)HC . (4.22)

Then, inserting (HC + 1)1/2(HC + 1)−1/2 between the fields on the l.h.s. of (4.18), the

H-bounds are sufficient to prove the lemma.

Taking the limit in (4.17) therefore results in

W
(n)
β (τ1, ξ1, . . . , τn, ξn) = W

(n)
C (iξ1, iτ1, . . . , iξn, iτn)

= (ΩC , φC(δ) e
−(ξ1HC−τ1PC) . . . φC(δ) e

−(ξnHC−τnPC) φC(δ)ΩC) , (4.23)

for (τj , ξj) ∈ Q, j ∈ {1, . . . , n}, not only as distributions but also as smooth functions.

The following lemma is a technical result for the vacuum theory on the circle. (4.23) will

subsequently be used to carry it over to the thermal case, yielding an exponential decay

result.

Lemma 4.2.2. Let m > 0 denote the mass-gap of HC. Then, for x ≥ 0 and (τj , ξj) ∈ Q,

j ∈ {1, . . . , n},
∣∣∣∣∣
(
(ΩC , φC(δ) e−(ξ1HC−τ1PC) · · ·φC(δ) e

−((ξk+x)HC−τkPC) φC(δ) · · ·φC(δ) ΩC

)

−
(
ΩC , φC(δ) e

−(ξ1HC−τ1PC) φC(δ) · · · e−(ξk−1HC−τk−1PC) φC(δ) ΩC

)

×
(
ΩC , φC(δ) e

−(ξk+1HC−τk+1PC) · · ·φC(δ) ΩC

) )
∣∣∣∣∣

≤ D2 e
−mx , (4.24)

where D2 is dependent on (τj , ξj) but independent of x.

4There holds

sup
x≥0

e−ǫx(x+ 1) =

{
eǫ−1/ǫ , 0 < ǫ ≤ 1

1 ǫ > 1
.
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Remark 4.2.3. As was proven in [36] the spectrum of HC is discrete so HC has a mass-

gap. To the knowledge of the author there are no rigorous results on whether the size of

this mass-gap is comparable to the mass parameter of the theory. But in view of the result

by Glimm and Jaffe for the vacuum theory on R2 [28, Theorem 1.1.2], that the mass

gap approaches the free one for small couplings, this is also to be expected for periodic

boundary conditions.

Proof. Let PλE
denote the spectral projection onto the eigenspace corresponding to the

eigenvalue λE of HC . Then the left hand side of (4.24) yields,

∣∣∣∣∣∣


 ΩC , φC(δ) e

−(ξ1HC−τ1PC) · · · e−(ξk−1HC−τk−1PC) φC(δ) e
−(ξkHC−τkPC)/2

∑

λE∈σ(HC )\{0}
e−λE xPλE

e−(ξkHC−τkPC)/2φC(δ)e
−(ξk+1HC−τk+1PC) · · ·φC(δ) ΩC



∣∣∣∣∣∣
.

By an application of the Cauchy-Schwarz inequality this can be estimated by

∥∥∥ e−(ξkHC−τkPC)/2 φC(δ) . . . e
−(ξ1HC−τ1PC) φC(δ) ΩC

∥∥∥

×

∥∥∥∥∥∥
∑

λE∈σ(HC )\{0}
e−λE xPλE

e−(ξkHC−τkPC)/2φC(δ) · · · e−(ξknHC−τknPC) φC(δ) ΩC

∥∥∥∥∥∥
. (4.25)

Since the PλE
are orthogonal projections summing to 1l, there holds

∥∥∥∥∥∥
∑

λE∈σ(HC )\{0}
e−λE x PλE

∥∥∥∥∥∥
≤ e−mx (4.26)

as a bounded operator. Therefore (4.25) can be estimated by

e−mx
∥∥e−(ξkHC−τkPC)/2 φC(δ) . . . e

−(ξ1HC−τ1PC) φC(δ) ΩC

∥∥

×
∥∥e−(ξkHC−τkPC)/2φC(δ) · · · e−(ξknHC−τknPC) φC(δ) ΩC

∥∥ , (4.27)

which, together with (4.18), implies the desired result.

Nelson symmetry (4.23) and the preceding lemma directly imply the following result.
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Theorem 4.2.4 (Exponential decay). Let m > 0 denote the mass-gap of HC and let

(τj , ξj) ∈ Q, j ∈ {1, . . . , n}. Then there holds for x ≥ 0

∣∣∣W(n)
β (τ1, ξ1, . . . , τk, ξk + x . . . , τn, ξn)

−W
(k−1)
β (τ1, ξ1, . . . , τk−1, ξk−1) ×W

(n−k)
β (τk+1, ξk+1, . . . , τn, ξn)

∣∣∣

≤ C e−mx . (4.28)

Remark 4.2.5. (i) There is no information on whether the parameter m in Theorem

(4.2.4) is related to any notion of mass in the thermal theory.

(ii) Since W
(n)
β is symmetric under spatial reflections, the conditions of the theorem can

be replaced by: (τj , ξj) ∈ −Q, j ∈ {1, . . . , n}, and x ≤ 0.

(iv) The constant C is independent of m and x but dependent on the initial configuration

(τj , ξj). With the presently used techniques this is unavoidable, as W
(n)
β ceases to be

a function, if for any j the relative coordinates (τj , ξj) tend to zero. However, from

a physical point of view, the requirement that only space-like initial configurations

are allowed seems superfluous.

(v) In [36, Lemma 3.2] it is proven that the Lorentz rotated Hamiltonian HC(β) :=

β0HC + βPC, β
2
0 − β2 = 1, is bounded below and has discrete spectrum. Therefore

it is possible to derive an exponential decay result like (4.28) for every space-like

direction. However, there do not seem to be any results on the dependence of the

mass gap of HC(β) on β. Accordingly the rate of decay a priori depends on β and

may therefore be different for different space-like directions.

4.3 On the Källén-Lehmann Representation

It is the purpose of this section to give some partial results on the damping factor in the

Källén-Lehmann representation in both models. Naturally, the same strategy of deriving

results for the vacuum model and then using Nelson symmetry will be employed.

For the proof of the Källén-Lehmann representation of either of the models the com-

mutator function is an important object. For any two-point function W it is defined

by

C(f) := W(f)−W(fr), f ∈ S(X), fr(x) = f(−x) . (4.29)
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Locality implies, that the support of C is contained in the closure of the union of the

forward and backward light cones (For the vacuum model on the cylinder the light cones

are defined in (4.30) below.).

In the next two subsections the Källén-Lehmann representation for a general vacuum

two-point function on the circle will be proven and some elementary properties of the

damping factors will be derived. The consequences thereof in the present situation will

be laid out in Subsection 4.3.3.

4.3.1 The Källén-Lehmann Representation for Vacuum Models

on a Circle

As this and the next subsection treat vacuum models on a circle only, some special con-

ventions will be used. Because it is customary in Quantum Field Theory to have the time

coordinate as the first entry of functions of space time, the cylinder will here be viewed

as R × Sβ . The circle Sβ will always be parametrised by the interval (−β/2, β/2]. Note

that only then the time-like and space-like regions w.r.t. the origin are characterised by

t2 − α2 > 0 and t2 − α2 < 0, respectively. And only then the definitions,

V + := {(t, α) ∈ R× Sβ | t2 − α2 > 0} and V − := −V + (4.30)

of the light-cones on the cylinder make sense. The partial Fourier transformation in the

angular coordinate

f̃(n) :=
1

β

∫ β/2

−β/2

dα f(α) e−inα (4.31)

and its inverse

f(α) =
∑

n∈2πZ/β
f̃(n) einα (4.32)

are indicated by tildes. The Fourier transformation in both variables is indicated by a

hat,

F (t, α) =
1√
2π

∫

R

dω
∑

n∈2πZ/β
e−i(ωt−nα) F̂ (ω, n) . (4.33)

The Fourier transform of the commutator function of the free scalar field with mass
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m on the cylinder is given by

ĈC,m(ω, n) =

√
2π

β
ǫ(ω) δ(ω2 − n2 −m2) , n ∈ 2πZ

β
, (4.34)

where ǫ(ω) = Θ(ω)− Θ(−ω). This can be verified easily with the explicit expression for

the free two-point function WC,free. The next theorem is the analog of [15, Section 4] for

the vacuum case on R× Sβ.

Theorem 4.3.1. For any odd (w.r.t. the chart R × (−β/2, β/2]) tempered distribution

F on the cylinder R× Sβ there exists a distribution DF (α,m) such that F̂ and F can be

represented as

F̂ (ω, n) =

√
2π

β
ǫ(ω)

∫ ∞

0

ds
∑

n′∈2πZ/β
δ
(
ω2 − (n− n′)2 − s

)
ρ̃F (n

′, s) , (4.35)

where

ρ̃F (n
′, s) =

1

2β
√
s

∫ β/2

−β/2

dα e−in′αDF (α,
√
s) , (4.36)

and

F (t, α) =

∫ ∞

0

dmCC,m(t, α)DF (α,m) , (4.37)

respectively.

Remark 4.3.2. (i) Equation (4.35) is a Jost-Lehmann-Dyson integral representation.

Its Fourier transformation (4.37) is called the Källén-Lehmann representation.

(ii) The proof of the theorem only makes use of the anti-symmetry of F . Support prop-

erties are not needed.

Proof. The method of the proof is essentially the one from [15] with a minor adjustment

necessitated by the altered geometry. The functions Ψ and Φ, which will be defined in

this proof, are all to be viewed as distribution-valued analytic functions in λ for ℜλ > 0.

Ψ(α, λ) := i

∫

R

dt e−
t2

4λ t F (t, α) , (4.38)

Ψ̃(n, λ) = (2λ)3/2
∫

R

dω e−λω2

ω F̂ (ω, n) . (4.39)
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Equation (4.39) can be interpreted as a Laplace transformation in the variable ω2. The

assumption, that F is antisymmetric enters here [15, p. 507], [58, Theorem A.3]. Now let

f(α, λ) be such, that its Fourier series f̃(n, λ) is

(2λ)3/2 e−λn2

.

(For the properties of f cf. Appendix C.) Then set

Φ(α, λ) := f(α, λ)−1Ψ(α, λ) . (4.40)

This is possible since f has no zeros (Appendix C). As Ψ and f are analytic for ℜλ > 0,

so is Φ. Then, since the convolution theorem also holds for Abelian groups [38, Theorem

19.6],

Ψ̃(n, λ) = (2λ)3/2
∑

n′∈2πZ/β
e−λ(n−n′)2 Φ̃(n′, λ) . (4.41)

Φ(α, ·) can be represented as the Laplace transform of some function ρF (α, ·), here dis-

played in Fourier space,

Φ̃(n, λ) =

∫ ∞

0

ds e−λs ρ̃F (n, s) , (4.42)

with the inverse given by

ρF (α, s) =
1

2π

∫

R−iǫ

dν eiνsΦ(α, iν), ǫ > 0 . (4.43)

Due to the analyticity of Φ the left hand side is independent of ǫ. While these results

are well-known for functions [70], the generalisation to distributions can be found in [58,

Appendix A]. Now (4.41) and (4.42) together imply

Ψ̃(n, λ) = (2λ)3/2
∫ ∞

0

ds
∑

n′∈2πZ/β
e−λ
(
(n−n′)2+s

)
ρ̃F (n

′, s) (4.44)

= (2λ)3/2
∫ ∞

0

e−λω2

dω2

∫ ∞

0

ds
∑

n′∈2πZ/β
δ
(
ω2 − (n− n′)2 − s

)
ρ̃F (n

′, s) . (4.45)
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Comparing (4.39) and (4.45) establishes, that Θ(ω)F̂ (ω, n) and

∫ ∞

0

ds
∑

n′∈2πZ/β
δ
(
ω2 − (n− n′)2 − s

)
ρ̃F (n

′, s)

have the same Laplace-transform and are thus equal. Setting DF (α,m) = 2mρF (α,m
2),

(4.37) follows as the Fourier series of (4.35).

There also holds an inversion formula akin to [15, Equation (20)]. Equations (4.43),

(4.40) and (4.38) together imply

ρF (α, s) =
i

2π

∫

R

dt F (t, α) t

∫

R−iǫ

dν
e−

t2

4iν
+iνs

f(α, iν)
. (4.46)

The r.h.s. is again independent of ǫ due to analyticity.

Definition 4.3.3. A distribution W ∈ S ′(R × Sβ) is called a local, spectrally positive

two-point function on R× Sβ, if

(i) W(−t,−x) = W(t, x) for t2 − x2 < 0 (space-like points), and

(ii) supp Ŵ ⊂ V +.

Remark 4.3.4. Any quantum field theory satisfying Axioms W1 to W5 and the Spectrum

Condition 1.2.8 has a local, spectrally positive two-point function. But Axioms W2 and

W4 are not needed for Theorem 4.3.5 below.

A local, spectrally positive two-point function is connected with its commutator func-

tion by Ŵ(ω, n) = Θ(ω)Ĉ(ω, n) [15, Equation (6)]. Denote ŴC,m(ω, n) = Θ(ω)ĈC,m, i.e.

WC,m is the two-point function of the free scalar field on R × Sβ. Since C associated to

any W is anti-symmetric, Theorem 4.3.1 immediately implies

Theorem 4.3.5. Let W ∈ S ′(R × Sβ) be a local, spectrally positive two-point function

on R× Sβ. Then there exists a distribution DC(α,m) such that it can be represented by

Ŵ(ω, n) =
1

2π
Θ(ω)

∫ ∞

0

ds
∑

n′∈2πZ/β
δ
(
ω2 − (n− n′)2 − s

)
ρ̃C(n

′, s) , (4.47)

and by

W(t, α) =

∫ ∞

0

dmWC,m(t, α)DC(α,m) , (4.48)
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where ρC and DC are connected by (4.36).

4.3.2 Properties of Weight Functions for Vacuum Models on the

Circle

From the discreteness of the spectrum and locality for a vacuum theory on the circle some

basic conclusions can be drawn. This is the content of the following proposition.

Proposition 4.3.6. Let W ∈ S ′(R×Sβ) be a local, spectrally positive two-point function

on the cylinder R × Sβ, for which supp Ŵ ⊂ V + is a discrete set and C its associated

commutator function. Then

(i) DC(α,m) dm is a sum of point measures in m;

(ii) for a fixed n ∈ 2πZ/β the summation over s and n′ in (4.35) only includes values

satisfying n′2 − 2n′n+ s ≥ 0;

(iii) for (ω, n) ∈ supp Ĉ fixed the summation over s and n′ in (4.35) only includes values

n′ ∈ [n− ω, n+ ω].

Remark 4.3.7. Next to the P (φ)2 model discreteness of the spectrum has been shown for

the Yukawa2 model in [37].

Proof. (i) If Ŵ has discrete support this is also true for Ĉ. From equation (4.35)

it follows5, that Ĉ(ω, n) is discrete in ω, if and only if the solutions for ω of the

equation ω2 = l2 + s, where l ∈ Z and s ≥ 0, form a discrete set. This is only

possible if s is restricted to a discrete set, which implies that ρ̃C(n, s) ds is a sum

of point measures in s.

(ii) Using the result (i) the Jost-Lehmann-Dyson representation can be rewritten as

Ĉ(ω, n) =
1

2π
ǫ(ω)

∑

s∈S

∑

n′∈2πZ/β
δ
(
ω2 − (n− n′)2 − s

)
ρ̃C(n

′, s), (4.49)

where S is some discrete subset of R
+
0 , the δ is now a Kronecker-Delta and ρ̃C

now denotes the coefficients of the point measure sum ρ̃C(·, s) ds. Furthermore,

5For a technically impeccable version of this argument the notation of [58, Section 3.1] should be used.
In particular consider equation (3.2) therein.
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evaluating the δ, equation (4.49) becomes

Ĉ(ω, n) =
1

2π
ǫ(ω)

∑

(n′,s)∈I(ω,n)

ρ̃C(n
′, s), (4.50)

where I(ω,n) := {(n′, s) ∈ 2πZ
β

× S | ω2 = (n − n′)2 + s}. Since the support of

Ĉ is characterised by ω2 − n2 ≥ 0, only values (n′, s) ∈ 2πZ/β × S which satisfy

(n− n′)2 + s ≥ n2 can contribute.

(iii) Consider again the equation ω2 = (n − n′)2 + s which characterises I(ω,n). Since

s ≥ 0, there must hold ω2− (n−n′)2 ≥ 0. This inequality can be solved for n′ with

solutions n′ ∈ [n− ω, n+ ω].

In the situation of item (ii) of the preceding proposition, if there exists an M > 0,

such that the support of Ĉ is contained in ω2 ≥ n2 +M2, then the excluded regions are

n′2 − 2n′n+ s < M2. (4.51)

This is evident from the proof. In the following figures the excluded regions of I(n′,s) are

depicted for various values of the parameters ω, n andM . As can be seen from Figure 4.3

only for |ω| = n a mass gap of size M in DC(α,m) can be guaranteed. For (ω, n)-values

away from the boundary of the light cones the excluded mass range shrinks to zero.

4.3.3 Ramifications for the Thermal P (φ)2 Model

In this subsection the mass parameter m will be reflected in the notation for the free

two-point functions,

Wβ,m := W
(1)
β,free and WC,m := W

(1)
C,free , (4.52)

whereW
(1)
β,free andW

(1)
C,free are the distributions in relative coordinates, which are associated

to W
(2)
β,free and W

(2)
C,free, respectively (cf. equations (1.3) and (1.4)). For (αj, xj) ∈ Sβ × R,

j ∈ {1, 2},

Sm(α2 − α1, x2 − x1) = S
(2)
free ((α1, x1), (α2, x2)) (4.53)
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Figure 4.1: The regions excluded by Proposition 4.3.6 (ii) for |n| = 1, 2, 3 (|n| = 1 darkest,
positive n-values on the right, negative n-values on the left, the maxima of the respective
curves are at n).
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Figure 4.2: The regions excluded by Equation (4.51) for mass M and |n| = 1, 2, 3 (|n| = 1
darkest, positive n-values on the right, negative n-values on the left, the maxima of the
respective curves are at n).
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Figure 4.3: The regions excluded by Proposition 4.3.6 for massM , n = −2 and |ω| = 2, 3, 4
(|ω| = 2 narrowest).

defines the free Schwinger two-point function in relative coordinates. The Fourier trans-

form of the free commutator function on R2 is given by

Ĉm(ω, k) =
1

2π
ǫ(ω) δ(ω2 − k2 −m2) . (4.54)

In [15] Bros and Buchholz have proven the following representation for thermal two-

point functions.

Theorem 4.3.8. Let a quantum field theory on R2 satisfy Axioms W1 to W5 as well as

the KMS condition 1.2.9. There exists a distribution Dβ(x,m) such that the corresponding

thermal commutator function Cβ and its Fourier transformation can be represented by

Cβ(t, x) =

∫ ∞

0

dmDβ(x,m)Cm(t, x) , (4.55)

and

Ĉ(ω, p) =
1√
2π

ǫ(ω)

∫

R

du

∫ ∞

0

ds δ
(
ω2 − (p− u)2 − s

)
ρ̃β(u, s) , (4.56)
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where

ρ̃β(u, s) =
1

2
√
2πs

∫

R

dx e−iuxDβ(x,
√
s) . (4.57)

For thermal theories Cβ and Wβ are connected by (1− e−βω) Ŵβ(ω, p) = Ĉβ(ω, p) [15,

Equation (33)]. Therefore the additional assumption of time-like clustering carries this

theorem over to the Wightman function. Time-like clustering, however, has not been

proven for the thermal P (φ)2 model, yet6. Therefore the corresponding Källén-Lehmann

representation receives an additional term [15, p. 500].

Theorem 4.3.9. There exists a distribution Dβ(x,m) and a distribution ∫ such that the

two-point function of the thermal P (φ)2 model can be represented by

W
(1)
β (t, x) =

∫ ∞

0

dmDβ(x,m)Wβ,m(t, x) + ∫ (x). (4.58)

In both (4.48) and (4.58) all the objects can be analytically continued in the respective

time variable. Using Nelson symmetry,

W
(1)
β (iα, x) = W

(1)
C (ix, α) (4.59)

results in the following equation,

∫ ∞

0

dmDC(α,m)Sm(α, x) =

∫ ∞

0

dmDβ(x,m)Sm(α, x) + ∫ (x). (4.60)

It has been used, that Nelson symmetry holds in particular for the free fields,

Wβ,m(iα, x) = Sm(α, x) = WC,m(ix, α) . (4.61)

Unfortunately it does not seem straightforward to extract information about Dβ(x,m)

from equation (4.60).

6It should be pointed out, that time-clustering would follow from the uniqueness of the KMS state.
The exponential decay result in Section 4.2 is a strong indicator in favour of uniqueness.
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Conclusion

In the present work the thermal Wightman functions of the P (φ)2 model have been

constructed and it has been shown, that they satisfy the relativistic KMS condition. The

Hölder inequality for KMS states (proven in Chapter 2) and Nelson symmetry were the key

tools for the construction. While Nelson symmetry allows to exploit information available

for the relatively simpler vacuum P (φ)2 model on the circle, the Hölder inequality is a

basic, new inequality for thermal systems. Further results on the P (φ)2 model include

the verification of the Wightman axioms and a spatial exponential decay result for the

thermal model.

Additionally the Källén-Lehmann representation for commutator functions on the cir-

cle is proven. Like in the thermal case, the weight function therein is space dependent.

Some basic conclusions for the weight function can be drawn from the requirement of

locality. Suppose a quantum field theory on the Einstein cylinder has a mass gap in the

common spectrum of time and space generators. Then, for energy-momentum on the

boundary of the light-cones, the weight function in the Jost-Lehmann-Dyson representa-

tion exhibits the same mass gap. For energy-momentum away from the boundary this

gap cannot be guaranteed only by the requirement of locality and of having a mass gap.

It has been attempted to gain information on the thermal damping factor Dβ using

the available information on the weight function DC and Nelson symmetry. The resulting

equation (4.60) looks promising. However the author was yet unable to exploit this

equation in a proper way.

Another open problem is the proof of the time-like clustering property. It is connected

to the aforementioned one as it would simplify (4.60) by eliminating the additional term

∫ . A slightly weaker general result can be found in [41].
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Lastly there is the question of uniqueness of the KMS state. The spatial exponential

decay of the Wightman functions are a strong indicator, that the KMS state constructed

here, is in fact unique. In this context it seems worth to mention the work of Araki [3]

on the uniqueness of KMS states for lattice systems. There is no principle obstruction to

generalising the techniques developed therein to prove the uniqueness in the continuous,

relativistic case. The uniqueness of the KMS state would imply the time-like clustering

property.

From the author’s point of view the problem of gaining rigorous information on the

damping factor Dβ in the Källén-Lehmann representation for the thermal field is the

most important one. This is the most promising way of concepting a notion of particle in

thermal field theories. The first result, which seems to be within reach, is the existence of

a mass gap in the Källén-Lehmann representation. The mass gap can be made plausible

by the following piece of heuristics.

For time 0 the free, thermal two-point function can be calculated explicitly. For x > 0

there holds [30, 8.432 9.]

Wβ,m(0, x) = (Ω
(0)
C , φC(δ)e

−xH
(0)
C φC(δ)Ω

(0)
C ) =

∫

R

dk
e−x

√
k2+m2

2
√
k2 +m2

= K0(mx) . (5.1)

Kn denotes the modified Bessel functions of the second kind. Their asymptotic behaviour

is (for all n)

Kn(x) =

√
π

2x
e−x

(
1 +O

(
1
x

))
. (5.2)

Now for 0 < m < mβ Theorem 4.2.4 yields

lim
x→∞

Wβ(0, x)

Wβ,m(0, x)
≤ const. lim

x→∞

e−mβx

e−mx/
√
x
≤ const. lim

x→∞

√
xe−(mβ−m)x = 0 , (5.3)

i.e. the interacting two-point function decays faster than the free one of mass m, even

though it should contribute to the Källén-Lehmann representation (4.58). This is impos-

sible unless Dβ(x,m) decays exponentially in x or is rapidly oscillating in m. This seems

unlikely, and thus it can be conjectured that the interval [0, mβ) is excluded from the

integral (4.58):
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Conjecture (Mass gap at positive temperature).

Wβ(t, x) =

∫ ∞

mβ

dmDβ(x,m)Wβ,m(t, x), (5.4)

where mβ > 0 is the rate of exponential decay appearing in Theorem 4.2.4.



Appendix A

Relative Modular Theory in Finite

Dimensions

The purpose of this appendix is to exhibit relative modular operators in finite dimensions

and to show, that (2.8) is the natural generalisation of the finite-dimensional case. A more

elaborate introduction for modular theory in finite dimensions can be found in the lecture

notes1 by Jaksic, Ogata, Pautrat and Pillet entitled “Entropic Fluctuations in Quantum

Statistical Mechanics”.

Consider the space of complex n× n-matrices Mn(C) = B(Mn(C)), which is a Hilbert

space with scalar product

(ξ, η) = Tr ξ∗η , (ξ, η) ∈ (Mn(C))
2 . (A.1)

Define D := {ω ∈ Mn(C) | ω > 0, Tr ω = 1} and let ω ∈ D. The corresponding

expectation (state) is denoted by

〈A〉ω := Tr ω A = Tr ω1/2Aω1/2 = (ω1/2, A ω1/2) , (A.2)

for A ∈Mn(C). For a second matrix ν ∈ D define the relative modular operator by

∆ν,ω ξ = ν ξ ω−1 , ξ ∈Mn(C) . (A.3)

Proposition A.10. Let ω and ν be in D.

(i) ∆ν,ω is positive self-adjoint.

1Available online under http://pillet.univ-tln.fr.
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(ii) For p ∈ N there holds

∆1/p
ν,ω ξ = ν1/p ξ ω−1/p . (A.4)

(iii) For A ∈Mn(C) there holds

〈A〉ν = 〈∆1/2
ν,ω A∆1/2

ν,ω〉ω . (A.5)

Proof. Let ω ∈ D and ν ∈ D.

(i) For ξ ∈Mn(C) and η ∈Mn(C) there holds

(ξ,∆ν,ωη) = Tr ξ∗νηω−1 = Tr ω−1ξ∗νη = Tr (νξω−1)∗η = (∆ν,ωη, ξ) .

Let eλ, λ ∈ σ(ν) denote the eigenvectors of ν. Then, because ξω−1ξ∗ is positive,

(ξ,∆ν,ω ξ) = Tr ξ∗ ν ξ ω−1 = Tr ν ξ ω−1 ξ∗ =
∑

λ∈σ(ν)
λ e∗λ ξ ω

−1 ξ∗ eλ

≥
(

inf
λ∈σ(ν)

λ

)
Tr ξ ω−1 ξ∗ > 0 .

(ii) For p ∈ N define ∆
(1/p)
ν,ω ξ := ν1/pξω−1/p. Then for ξ ∈Mn(C),

(
∆(1/p)

ν,ω

)p
ξ =

(
∆(1/p)

ν,ω

)p−1
ν1/p ξ ω−1/p =

(
∆(1/p)

ν,ω

)p−2
ν2/p ξ ω−2/p

= . . . = ν ξ ω−1 = ∆ν,ω ξ .

But roots of positive operators are positive and unique.

(iii) For A ∈ Mn(C)

〈A〉ν = (ν1/2, Aν1/2) = (ν1/2ω1/2ω−1/2, Aν1/2ω1/2ω−1/2)

= (∆1/2
ν,ωω

1/2, A∆1/2
ν,ωω

1/2) = 〈∆1/2
ν,ω A∆1/2

ν,ω〉ω .

The modular conjugation on Mn(C) is the anti-linear involution defined by

J : ξ 7→ ξ∗ . (A.6)
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Theorem A.11. For A ∈Mn(C) there holds

J ∆1/2
ν,ω Aω

1/2 = A∗ ν1/2 . (A.7)

Furthermore

JMn(C)J =Mn(C)
′ . (A.8)

Proof. For A ∈Mn(C) there holds

J∆1/2
ν,ωAω

1/2 = Jν1/2Aω1/2ω−1/2 = A∗ν1/2 .

If also B ∈Mn(C),

(JAJ)Bξ = (A(Bξ)∗)∗ = (Aξ∗B∗)∗ = BξA∗ = B(JAJ)ξ ,

which implies (A.8).

Define ‖A‖pω,p
.
= Tr (ω1/2p|A|ω1/2p)p for 1 ≤ p < ∞. The following Hölder trace

inequality has been proven in [52],

|Tr (ωAB)| = ‖AB‖ω,1 ≤ ‖A‖ω,p ‖B‖ω,q , p−1 + q−1 = 1 . (A.9)

Calculate the p-norm of a p-root of a relative modular operator,

‖∆1/p
νj ,ω

‖ω,p = Tr (∆1/p
νj ,ω

ω1/p)p = Tr (∆1/p
νj ,ω

ω1/p)p−1ν
1/p
j ω1/pω−1/p = Tr ν1/p(∆1/p

νj ,ω
ω1/p)p−1

= Tr ν1/p(∆1/p
νj ,ω

ω1/p)p−2ν
1/p
j ω1/pω−1/p = . . . = Tr ν = 〈1l〉ν .

For ω, ν1 and ν2 in D, matrices Aj ∈ Mn(C), j ∈ {0, 1, 2} and for 1/p + 1/q = 1,

1 ≤ p <∞, there holds

|〈A2∆
1/p
ν2,ω

A1∆
1/q
ν1,ω

A0〉ω| ≤
( 2∏

j=0

‖Aj‖∞
)
‖∆1/p

ν2,ω
‖ω,p ‖∆1/q

ν1,ω
‖ω,q

=
( 2∏

j=0

‖Aj‖∞
)
〈1l〉1/pν2 〈1l〉1/qν1 , (A.10)

which is completely analogous to Araki’s proto-Hölder inequality (2.8).



Appendix B

The Strong Disk Theorem

The strong disk theorem is attributed to Bremermann (see also [13]). For the convenience

of the reader the theorem is restated here in a version similar to [69, p. 151].

Theorem B.12. Consider a Jordan curve in Cn−1 of the form

(z2(t), . . . , zn(t)) = (z2(0), . . . , zn(0)) + λ(t) · (b2, . . . , bn), 0 ≤ t ≤ 1, (B.1)

where (b2, . . . , bn) ∈ Cn−1 and λ(t) ∈ R with λ(0) = 0. Suppose also that the family of

domains D(t) ⊂ C, 0 ≤ t ≤ 1, lying in the z1-plane, possess the property that for every

compact set K ⊂ D(0), there exists a number η ≡ η(K) ∈ (0, 1] such that K ⊂ D(t) for

all t in [0, η).

If the function f(z) is holomorphic at all points of the disks

{(z1, z2(t), . . . , zn(t)) ∈ C
n | z1 ∈ D(t)}, 0 < t ≤ 1, (B.2)

and at least at one point of the limit disk

{(z1, z2(0), . . . , zn(0) ∈ C
n | z1 ∈ D(0)}, (B.3)

then this function is holomorphic at all points of the limit disk.



Appendix C

An Auxiliary Function

This appendix is devoted to the following function on Sβ × C+ defined in terms of its

Fourier series

f(α, λ) := (2λ)3/2
∑

n∈2πZ/β
e−λn2

einα, (C.1)

so that

f̃(n, λ) = (2λ)3/2 e−λn2

. (C.2)

(C.1) can be rewritten as

f(α, λ) = (2λ)3/2
∑

n∈Z
e−λ( 2π

β )
2
n2

ei
2πn
β

α. (C.3)

The sum converges, iff ℜλ > 0. Accordingly f(α, ·) is holomorphic on C+ for every α; and

f(·, λ) is a C∞ function. Furthermore f can be expressed in terms of the Theta function

ϑ3, which is defined as [30, p. 877]

ϑ3(u, q) =
∑

n∈Z
qn

2

e2nui = 1 + 2
∞∑

n=1

qn
2

cos 2nu . (C.4)

Thus

f(α, λ) = (2λ)3/2 ϑ3

(
πα

β
, e−λ

(
2π
β

)2)
. (C.5)
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Figure C.1: A plot of f(α, 1) for β = 2π.

This can be used to show, that f has no zeros.

Lemma C.13. The equation f = 0 has no solutions.

Proof. Only the ϑ3-term in (C.5) can have zeros in the domain of f . The zeros of ϑ3(u, q)

are given by [30, p. 879]

u = (2m− 1)
π

2
+ (2n− 1)

πτ

2
, (C.6)

where m and n are integers and where q = eiπτ . In the present case

u =
πα

β
and τ = i

λ

π

(
2π

β

)2

.

Plugging this into equation (C.6) and solving for λ gives

λ = i β
(2m− 1)β − 2α

4π(2n− 1)︸ ︷︷ ︸
∈R

,

which is not in the domain of f .
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[23] C. Gérard and C. D. Jäkel. On the relativistic KMS condition for the P (φ)2 model.
Prog Math., 251:125–140, 2007.

[24] J. Glimm and A. Jaffe. The λφ4
2 quantum field theory without cutoffs. I. Physics

Review, 176(5):1945–1951, 1968.

[25] J. Glimm and A. Jaffe. The λφ4
2 quantum field theory without cutoffs: II. The field

operators and the approximate vacuum. The Annals of Mathematics, 91(2):362–401,
1970. Second Series.

[26] J. Glimm and A. Jaffe. The λφ4
2 quantum field theory without cutoffs: III. The

physical vacuum. Acta Mathematica, 125:203–267, 1970.

[27] J. Glimm and A. Jaffe. The λφ4
2 quantum field theory without cutoffs. IV. Pertur-

bations of the Hamiltonian. J. Math Phys., 13:1568–1584, 1972.



BIBLIOGRAPHY 101

[28] J. Glimm and A. Jaffe. The Wightman axioms and particle structure in the P (φ)2
quantum field model. Ann. Math., 100(3):585–632, 1974.

[29] J. Glimm and A. Jaffe. Quantum Physics, A Functional Integral Point of View.
Springer, 1981.

[30] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products. Academic
Press, seventh edition, 2007.

[31] F. Guerra, L. Rosen, and B. Simon. Nelson’s symmetry and the infinite volume
behavior of the vacuum in P (φ)2. Comm Math. Phys., 27:10–22, 1972.

[32] F. Guerra, L. Rosen, and B. Simon. The P (φ)2 Euclidean quantum field theory as
classical statistical mechanics, Part 1. The Annals of Mathematics, 101(1):111–189,
Jan 1975. Second Series.

[33] F. Guerra, L. Rosen, and B. Simon. The P (φ)2 Euclidean quantum field theory as
classical statistical mechanics, Part 2. The Annals of Mathematics, 101(2):191–259,
Mar 1975. Second Series.

[34] R. Haag. Local Quantum Physics. Springer, second edition, 1993.

[35] U. Haagerup. Lp-spaces associated with an arbitrary von Neumann algebra. In
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