GARDY ORCA - Online Research @
CARDY® Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/31747/

This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:

Gao, C. H., Langbein, Frank Curd , Marshall, Andrew David and Martin, Ralph Robert 2004. Local
topological beautification of reverse engineered models. Computer-Aided Design 36 (13), pp. 1337-1355.
10.1016/j.cad.2004.02.004
Publishers page: http://dx.doi.org/10.1016/j.cad.2004.02.004
Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may

not be reflected in this version. For the definitive version of this publication, please refer to the published
source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made
available in ORCA are retained by the copyright holders.

Local Topological Beautification of Reverse
Engineered Models

C. H. Gao F. C. Langbein A. D. Marshall R. R. Martin

Department of Computer Science, Cardiff University, PO 8b&, 5 The Parade, Cardiff,
CF24 3XF, UK

Abstract

Boundary representation models reconstructed from 3Derdatp suffer from various in-

accuracies caused by noise in the data and by numericas énrtre model building soft-

ware. The quality of such models can be improvedlieautificationstep, where geometric
regularities need to be detected and imposed on the modetefects requiring topolo-

gical change need to be corrected. This paper considergebda the topology such as
the removal of short edges, small faces and sliver faceggdfitif holes in the surface of
the model (arising due to missing data), adjusting pinclaedd, etc. A practical algorithm
for detecting and correcting such problems is presentedlyais of the algorithm and ex-
perimental results show that the algorithm is able to gyigkbvide the desired changes.
Most of the time required for topological beautification st on adjusting the geometry
to agree with the new topology.

Key words: Beautification; Healing; Topological Modification; Rever&ngineering;
Geometric Modelling.

1 Introduction

Reverse engineering the shape of a 3D object is the processafstructing a
geometric model of an object from measured data [18]. Themgé¢procedure con-
sists of measuring surface points on an object, usually &i8D laser scanner,
merging multiple views into a single registered data sejpsmting the point set,
fitting surfaces to each point subset, and stitching theseaisolid model. Our goal
is to create a system that, for simple engineering objeet®nstructs a boundary
representation (B-rep) model from a physical object, wittmiaimum of human
interaction. It should be usable both by naive users andneegs. In particular,
the generated model should have all the intentige@imetric regularitiepresent
in the original, ideal, design of the object, to ensure thatmodel has maximum
utility for manufacturing, redesign, etc. The model shoailsb have the expected

topology—for example, if we reverse engineer a four-sided pyramelexpect all
four sloping faces to meet at a single vertex.

In reverse engineering, numerical errors occur in the reitoation algorithms, and
noise is present in the measured data. Improving the setesthgiques and the re-
construction methods can reduce errors, but some will aweasnain. Additional
errors may be present due to wear of the object before sagnaunal the particu-
lar manufacturing method used to make the object (e.g. ibtiject was cast in

a mould, draught angles may have been added). Note that Wetwviecover a
geometric model of theleal object as conceived by the designer. However, reverse
engineering often fits each face individually, and treatsdépendently of the other
faces in the model, losing regularities present in the nabilesign. We propose to
improve the reconstructed B-rep model by adjusting it in@asatebeautification
post-processing step. This paper in particular considerptoblem of detecting
and making any necessagpological(and consequent geometric) adjustments to
the model; our earlier work considergdometridoeautification without topological
change [6,7,8,9,10,13,14].

For example, if a four-sided pyramid is reverse engineeaxad,each sloping face
is fitted to data points independently, any three of thesesfadll intersect in a
point, but it is extremely unlikely all four as fitted will pashrough a single point
(see Figure 28 later). Thus, the initial geometric modeatzée will have either a
very short edge or a very small face instead of a vertex apis,adepending on
exactly how the software produces a B-rep model by inteirsgeind stitching the
individual faces. The topology of such a model needs to bhesseljl, in conjunction
with the geometry of the sloping faces, to produce a new miodehich all four
sloping faces pass through the same point.

1.1 The Topological Beautification Problem

In this paper, we specifically address topological beaatifimn of ‘conventional’
reverse engineered models bounded by planar, spheridialdiegal, conical, and
toroidal faces. However, the ideas presented are likelyetaiplicable to mod-
els containing free-form surfaces, too, even if we have pet#ically considered
such cases. In particular we consider a specific set of prablisted below, where
beautification requires adjusting the topology of the mdmides the geometry.
In the following we refer to these dspological problemsNote that this does not
mean that the initial topology is invalid, but rather thahnbes to the topology are
needed to resolve such problems.

All such problems depend upon a notion of “small”, e.g. weimt to remove only
small, spurious faces. The tolerances employed to decidet &lhis are discussed
in Section 3.1.

°
N

(a) Before modification (b) After modification

Figure 1. Repairing a face gap and an edge gap

(a) Before modification (b) After modification

Figure 2. Repairing a complex multiple face gap

The problems (and their resolutions) listed below have he@entified as the ones
which can arise from earlier model building processes. Tdwegot represent a list
of all possible topological problems, but are problems Wiz likely to arise dur-

ing reverse engineering of models. The detailed cases wiach to be considered
to remove such problems are described in Sections 3.2 and 4.

e Removing gaps in a single faceA loop of half-edges may exist in the interior
of a face, with nothing on the other side of the loop. Such & caay arise, for
example, where the scanner did not collect any data frommatkdeep concavity
in the face. Here the loop of half-edges should be removeadnéding the face
(see holed in Figure 1).

e Removing gaps crossing an edgéeA loop of half-edges may span two faces,
with nothing on the other side of the loop. The edge betweerfahes is di-
vided into two pieces by the gap. The gap should be removediisting faces
extended, and the two edge pieces joined (see BolteFigure 1).

e Removing gaps spanning multiple facesA loop of half-edges may span mul-
tiple faces, with nothing on the other side of the loop. Brgfaces and edges
must be extended to fill the gap, and new vertices and edgeshawslded as
necessary (see gdpin Figure 2).

e Adjusting pinched faces: If a face narrows to a very thin part it {gnched
Other parts of the model should be adjusted to remove thaitignresulting
in a change in connectivity of the face; a face may be spld tnto faces (see
Figure 3).

e Removing chains of small facesfFaces should meet in an edge, but instead
a chain of small faces may separate them. The chain of sntaé fahould be

/fz fa
! /U/ vy g

b
€1 €1
j %

s
(a) Before modification (b) After modification

()

[y

Figure 3. Repairing apikingpinched face

P vavivaV S S

(a) A chain of small faces (b) becomes a chain of short edgeangtis replaced by an edge

Figure 4. Removing a chain of small faces

i

(a) Before modification (b) After modification

Figure 5. Replacing a sliver face with an edge

P @

(a) Before modification (b) After modification
Figure 6. Merging adjacent faces with the same geometry

replaced by an edge (see Figure 4, where the first step is tweem chain of
small faces to a chain of short edges).

Removing sliver faces:Two faces should meet in an edge, but instead a long
very thin face (asliver face) may separate them. The sliver face should be re-
placed by an edge (see Figure 5).

Removing chains of short edgesSeveral consecutive short edges may need to
be replaced by a single long edge (again see Figure 4). Tlsgarticular a
problem which may result from repairing some of the othebfams listed.
Merging adjacent faces with the same geometryTwo adjacent faces may
share the same geometry across a contiguous edge sequeges.aad vertices
as appropriate should be removed, and the faces mergedi¢see).

Removing isolated small facesSeveral edges should meet in a single vertex,
but instead they meet at several distinct vertices, joinechbltiple short edges

S

(a) Before modification (b) After modification

Figure 7. Removing a small face

<3

(a) Before modification (b) After modification

Figure 8. Merging faces and edges with the same geometry

<] X

(a) Before modification (b) After modification

Figure 9. Removing a short edge

which surround a small face. The small face should be reglhgea vertex
connected to the existing edges (see Figure 7).

e Merging edges:See Figure 8: once facgs and f, have been merged, edges
ande; can also be merged. Essentially this means that we have teradfacent
edges with the same geometry. However, each edge should bertiplete, con-
nected intersection of two adjacent faces. Hence, we cgplygimerge each edge
pair connected by a vertex which is attached to no more tharetiges (taking
care when handling special cases involving closed curvhsrevthe modeller
may require a vertex).

e Removing isolated short edgesSeveral edges should meet at a single vertex,
but instead they meet at several distinct vertices, joinedre or more short
edges. These short edges should be replaced by a single (saéeFigure 9).

Beautification is a final step in producing a solid model fréna $canned point set.
We assume that a valid model has already been produced bynpoiel creation
steps (although it may not have a closed shell, if gaps exidte scanned point
set). The first step of beautification consists of identifyamd correcting the above
topological problems. This process may involve the localitah or removal of
faces, edges and vertices, and other modifications to tlséirexitopological data-

structure to ensure that a correct, valid model results—ekample, edges may
need to be disconnected from an existing vertex, and coatéota new vertex.
In addition, constraints must be generated and imposedeogebmetry supported
by the topological elements to ensure that in the final matiel,geometry and
topology are consistent (e.g. to ensure that a given velgexoh a given surface).
This step can be combined with geometric beautification edesired regularities
which only require adjustments to the geometry of the olgeetimposed on the
model.

Detecting geometric regularities is discussed in previwosk [8,9,10,13,14]. We
describe in [6,7] how to select appropriate geometric ragfigs and impose them
on the model using geometric constraints. The methods miexten this paper

change the topologgrior to these geometric beautification steps. One of the main

sets of geometric constraints used for geometric beautditansures that the
model’s geometry is consistent with its topology. As togidal beautification up-
dates the topology before geometric beautification, thessttaints ensure that the
geometry is consistent with the updated topology. It mayheecase that a topo-
logy suggested by topological beautification cannot besedigeometrically. This
will become obvious at the constraint solving stage and éasan for the incon-
sistency can be reported via the set of inconsistent conttrand the geometric
objects involved. In such cases, either small faces, etcbeaeinserted to create
a valid model, or it can be reported back to the topologicaliéication step in
order to try a different topological structure. Note thatnasare only considering
small changes to the topology for typical reverse engirtearedels, such issues
are unlikely to occur. In this paper we solely describe théhogs to detect and ad-
just the above topological problems. In summary, the stepsied for topological
beautification are:

e Detecting topological problems:small faces, sliver faces and short edges are
identified; gaps in the model (in a single or multiple face®iag from missing
scan data are identified; etc.

e Adjusting the topological structure: isolated small faces and short edges are
replaced by a single vertex, and surrounding topology issdfl to meet it;
existing faces are extended to cover gaps left by missirg égtremoving the
edges and loops bounding gaps; etc.

e Constraining the geometry:geometric constraints are generated to ensure that

in the new structure, the faces, edges and vertices haveetheed connectiv-
ity and contact. This usually also involves generating @olaial constraints for
geometric beautification.

e Regenerating the geometrythe above geometric constraints are solved to pro-
duce the new geometry for the final model.

1.2 Healing

Topological beautification as outlined above has some aritiés to, but also some
differences from, CAD model healing [11,16,17]. Healingiprocess that tries to
correct inconsistencies and invalidities in B-rep modAlsnajor application for
healing arises when a model written out by one CAD system lieteead into an-
other CAD system. If the recipient system works to tightégrtances or uses differ-
ent a representation from the sending system, a model whé&kender considers
to be valid may well be topologically inconsistent accogdin the recipient—e.g.
edges may not lie on the surfaces which they bound, etc.

Healing, like topological beautification, aims to improfae topology of the model,
but the differences are that (i) it starts wittvalid models, not valid ones, and (ii)
the main aim of the changes is to ensure a valid model is thétr&éor example,
healing may have to cope with such problems as duplicatechgey, physically
impossible geometry, incorrectly oriented surfaces,dad¢h no defined geometry,
self-intersecting edges, edges which should meet in otiexeut which end at two
topologically distinct but geometrically coincident veds, end vertices which do
not lie on the edges they bound, faces whose boundary is nosadcloop, and
incomplete topology even though all individual faces arespnt. Note that such
problems of validity areot expected to occur in beautification.

1.3 Outline

In the rest of the paper, we first review previous relevantkwiive then specify
in detail the topological changes considered by our aligoriand outline our al-
gorithmic approach to topological beautification. In moetail, we then describe
how we handle the particular problems listed above. Theopsidnce of our ap-
proach is then analysed, and finally, we provide the restiisme experiments.

2 Previous Work

In our previous work on beautification, we have shown how td &nd beautify
approximate geometric regularities [7,8,9,10] and apionaxely congruent fea-
tures [4] in initial B-rep models produced by reverse engiimgy; this prior work
assumed that the models already had the desired topoloigywdlk is alsairectly
relevant here, because as well as modifying the topologyexisting geometry has
to be constrained to fit the new topology. As already noteduse the methods
described in [7] to produce new geometry meeting these @nt.

Much work has been done on healing, although many of the rdetace embed-
ded in commercial systems, and have not been openly publist@vever, for

example, one commercial system [2] uses an approach ofifijeesecting higher-
dimensional geometry to get lower-dimensional geomei)yadjusting the shapes
and positions of higher-dimensional geometry to meet oltwer-dimensional

geometry, and (iii) an algorithm to orchestrate (i) andi@iyhe correct order. De-
ciding automatically which faces originally defined as lbemay be useful inform-
ation to guide the process. Converting simple faces to &éinayrfaces instead of
NURBS also helps.

In a similar vein, Park and Chung present a topology recoastm algorithm
which starts from a set of unorganised trimmed surfaces H&gentially, any ex-
isting topology is discarded, and rebuilt. They note thatghesence of undesirable
elements like short edges, sliver faces, and so on can caolkems, and correct
these as part of the rebuilding process; sometimes usistaags is needed. Their
approach is based on using vertices which are at the sant®lotawithin a small
tolerance to deduce the topology. As the initial topolo@wfly) is discarded, their
algorithms take more than linear time in model complexiggduse geometric sort-
ing must be done.

Butlin and Stops [1] were some of the first to discuss the hgglroblem, noting
some of the problems in models to be “slivers, crossoversutaiedge lengths,
stray points ‘on the moon’, ..., patchworks of faces [withhecessary elements”.
FEGS CADfix software resolves such problems so that CAD nsocdah be im-
ported into finite element meshing packages. This softwahees many of the
problems noted under the description of healing above, dsagether issues de-
scribed in their paper. They classify problems as “geomstnity” problems, such
as edges of a face not lying in that face, and “topologicalmitg”, such as neigh-
bouring faces not connected to the same edge. The apprdeahlig CADfix is
to automatically detect problems whenever possible, blgadwe it to the user to
specify what particular steps should be taken to remedy tlsgracific algorithms
are not discussed.

Petersson and Chand have also developed tools for the ptigmaof CAD geo-
metries for mesh generation [16], using a similar appro&#ometries are read
from IGES files and then maintained in a boundary representaross errors
in the geometry are identified and removed automaticallylendn user interface
is provided for manipulating the geometry (such as comegctnvalid trimming
curves or removing unwanted details). Modifying the geaynby adding or de-
leting surfaces, and sectioning it by arbitrary planes. &g metry planes) is also
supported. These tools are used to produce robust and sege@metric models
for initial mesh generation, but, as in CADfix’'s approacteytlequire some user
assistance.

Mezentsev and Woehler [11] also consider mesh generathpearform separate

steps to first ensure a correct watertight model (i.e. hawirtgpologically valid
shell), and then to alter the model in ways which assist nmgsdligorithms. Again,
they divide the former problem into geometric and topolagi&rors, and suggest a
cyclic process of verification, automatic repair and mamepair, until a satisfact-
ory model results. The algorithms given are fairly strafigiward, but the paper
does contain a useful appendix showing some of the problenshweed to be
repaired.

Much work has also been done on simplifying and processiagdulations, and
some of these ideas are relevant to the present problemxgorpée, Dey et al.
present a method for preserving the topology of simplicishplexes while apply-
ing edge contractions [3]. Guskov and Wood present a topedbgoise removal
method [5] which processes a triangular mesh and identditsifes such as small
tunnels. They then identify the non-separating cuts netmegt and seal the mesh,
thus reducing the genus and the topological complexity @intiesh. However, we
do not expect such problems to be present in the B-rep modetsevprocessing.

3 Principles of the Topological Beautification Algorithm

Our algorithm aims to improve the model by repairing locgdimgical problems
of the types listed in Section 1. After detecting topologmablems and changing
the topology, our overall beautification algorithm takes¢brrected topology, gen-
erates geometric constraints from it, combines them witleiotonstraints arising
from geometric beautification, and solves the constraiatesy [7] to deduce the
geometry for the new model. Topological modification is thwst one compon-
ent of anoverall beautification system, which also imposes geometric regeta
found in the model.

In this section we discuss the tolerances needed to detettplological problems
in the model, and the sequence of operations required togehtdn@ topology of
the model. We also present an outline of our algorithm, whiehllustrate with an
example.

3.1 Tolerances

Our algorithm starts with a topologically valid geometriodel, which may have
some holes (i.e. may not be a closed shell), but is othervasea. In order to
decide whether and where the problems listed above arenpyese need a toler-
ance indicating when a face is small or pinched, or when ae elghort, etc. In
our algorithm we use a single tolerance for such purposesivdssentially sep-
arates intentional “features” of the model from artifacengrated by the reverse

Figure 10. A necessary small face

engineering process.

For simplicity, we assume here that the tolerance is pravether by the user
based on the size of errors expected in the model (for exarfrol® a know-
ledge of the scanner and reverse engineering algorithnacteaistics)pr by some
method which analyses the raw model. For instance, we camet®ds like those
for detecting approximate symmetries of point sets formgdhle vertices in the
model [12,13] to produce a transitive clustering in whichdastances between
points in different clusters are larger than distances eebtnpoints in the same
cluster. Characteristic lengths determined by the cligjeran be used to deduce a
suitable tolerance value. Similarly, we could use toleedeeels at which congru-
ent features of the model are detected [4].

When choosing a tolerance, we should be careful that smaBiguificant parts
of the model are not deleted. For example, in Figure 10, faneay be small, but
is necessary, and we should not attempt to remove it. Thedetigth tolerance
should be larger than the size of any small face or short edhgehvis to be deleted,
but smaller than any part of the model which is to be retaifed.simplicity, we
assume here that a single global tolerance value is usefysagithis requirement,
but we note that if, for example, different regions of theeabjwere scanned at
different resolutions, or that large features exist for efthihe scanner could not
capture high quality data, a more sophisticated approatthamiadaptive tolerance
might be needed. Nevertheless, at least in a local senskliestto be possible to
distinguish between spurious and intended features byeeatate, otherwise auto-
mated decisions based on tolerances alone are not pogsditmally, we expect
there to be a large size difference between the largestesusnfeature and the
smallest intentional feature, so this is a reasonablediioi.

In the rest of the paper, we implicitly assume that in decisiike “a face is small”,
or “edges have the same geometry”, the tolerance is useddp@opriate way.

3.2 Order of topological beautification operations

In a raw reverse engineered model, multiple topologicadblemms of different types
often coexist. To efficiently solve these problems, we needetect and modify

10

the problems in the right order. In particular, we wish toidvieaving to use a
loop which considers different types of problem repeated@lys can be done if

we repair some types of problem earlier than others. For pignalosing a gap
spanning multiple faces may result in the generation of\@sface to fill the gap.
But removing a sliver face cannot produce a gap. Thus, wectatal close gaps
before removing sliver faces.

In the following we make the basic assumption that all théjems listed in Sec-
tion 1.1 are local or isolated. This means that they can bectad without having
to consider the adjacent topological structure beyond tie specified (see be-
low). For instance, when removing a small face we assumevibado not have
any small faces adjacent to it which must be considered fooval of the small
face. However, note that we consider chains of small faces &arlier stage; for
those chains we assume that there are no areas of connectibthses (e.g. a large
surface made of small face patches) which would contain mamyiguous chains
of small faces. This means that there are certain modeldwdaonot be repaired
by our methods. However, rather than considering all ptessidises we present an
algorithm which can repair common cases. For models withyman-local prob-
lems, the most appropriate course of action is probably tlecomore accurate
data (or improve the earlier reverse engineering stages).

Table 1 lists all the cases in which solving a topologicalgtem of a given type

may create a further topological problem of a different tyfige columns are topo-
logical problems to be solved in order, and the rows are n@blpms which may

arise from solving themgssuming the ordering givein the following we discuss
the topological operations for repairing each of the praitdén turn, justifying the

entries in this Table, by briefly listing the types of change®Ilved, and what sort
of other problems may be introduced by the change. Detailsxdictual operations
are also given in Section 4.

(1) Face gapsA face gap is a sequence of edges connected by vertices where

exactly two edges meet. Each of the edges is only on the bopatiane face.

Removing this isolated sequence of edges cannot introchyoeeav face gaps.
The resulting face (without gap) may be pinched, small oieeisface, but

the face with the gap already had this property, so it is nimbduced by the
topological change (it may now be simpler to detect, thou8eno additional

faces or edges are introduced, no other problems are cré&atety face gaps
also decreases the number of edges in the mode{se&igure 1), speeding
up subsequent processing.

(2) Edge gapsAn edge gap is a loop of connected edges where each vertex ex-

cept for two lies on exactly two edges of the loop. Each of tihges is only
on the boundary of one face and there are exactly two facet/ed. The two
special vertices lie on additional edges. An edge gap is veohby replacing
the loop by a single edge between the two special verticas.dides not cre-
ate new gaps (in particular no face gaps), nor introduce metgms relating

11

Modification order

3

4

5

6

7

8

10

11

Fixing — Face | Edge | Multiface | Pinched | Small face | Sliver | Short edge| Adjacent | Small | Merging | Short
can cause gaps | gaps gaps faces chains faces chains faces faces edges | edges
Face gaps No No No No No No No No No No No

Edge gaps No No No No No No No No No No No

Multiface gaps

No

No

No

No

No

No

No

No

No

No

No

Pinched faces

No

No

Yes

No

No

No

No

No

No

No

No

Small face chains

No

Yes

Yes

Yes

No

No

No

No

No

No

No

Sliver faces

No

No

Yes

Yes

No

No

No

No

No

No

No

Short edge chains

No

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Adjacent faces

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

Small faces

No

No

Yes

Yes

No

No

No

Yes

No

No

No

Merging edges

No

Yes

No

Yes

Yes

No

Yes

Yes

Yes

No

No

Short edges

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

Table 1

Sequence of topological repair

to faces (a small face will remain small independently ofititeoduction of

the new edge, etc.). However, the newly introduced edge maghbrt, and

thus can also be part of a chain of short edges (e.g. consdeyving gap

B in Figure 1); it may also connect faces with the same geonmtopnnect

small faces building a face chain.

(3) Multiple face gaps.A multiple face gap is a loop of connected edges where

each of the edges lies on the boundary of only one face. Eaitte afivolved

vertices may lie on an arbitrary number of additional ed§esh gaps are not
removed by the previous steps. We have to distinguish trages; depending
on the number of vertices ttaglditionaledges intersect in (within tolerance):

e One vertex: The edge loop is replaced by a single vertex which connects
the additional edges. This vertex may now connect shortegeling to a
chain of short edges.

e Two vertices: The edge loop is replaced by a single edge between the two
intersection vertices. This edge may be short and may atsdeca chain of
short edges. This edge may also connect two faces with the gaometry
or connect two small faces creating a chain of small faces.

e More vertices: An additional face is added to close the gap. This face may
be pinched, small or a sliver face and it may have the same ggepas an
adjacent face.

Note that this step removes all remaining gaps, and no new gagintro-

duced. Also note that none of the following steps are ablat@duce new

gaps as in all cases the connectivity between the elementdeahanged,
but not eliminated.

(4) Pinched faces.Topologically the boundary of a pinched face contains two

sequences of edges whose geometry is in some sense clostrdlalerance.

It is repaired by combining the edge sequences. The two segqaemay be

joined at a single vertex or both edge sequences may be eeplgca single

12

h h fs

o ap @

(a) Before modification (b) After modification

Figure 11. Fixing a pinched face creates a small face

edge sequence. There may or may not be a loop which contathsedge
sequences, and combining the edges thus may or may not dplieanto
two faces. This means that either a new vertex or a new edgesseg is
introduced. The new vertex may result in the creation of atsbdge or a
chain of short edges. The new edge sequence may result iceatjiaces
having the same geometry, or a chain of small faces, or a cfiaimall edges.
Furthermore, if the two close edge sequences are part ofithe foop, then
a new face is generated. This may be a sliver face, be adjararface with
the same geometry, or a small face. For instance, see thé famalf; in
Figure 11(b), the short edge in Figure 11(b), adjacent face§, f; with
the same geometry in Figure 3(b), and adjacent edges in Figure 3(b).
However, repairing pinched faces cannot introduce any.gapss, we fix
pinched faces after removing gaps, but before fixing otheblpms.

(5) Chains of small facesChains of small faces should be processed as a whole,
rather than face by face. A chain of small faces is a sequeinemall faces
pairwise connected by edges. No face in this sequence ictathto more
than two other small faces in the sequence and the sequescd least two
faces. To repair this, each face is replaced by a vertex amddltices are
connected in the same sequence as the faces. Additionad edgeected to
vertices on the small faces are connected to the new vertsest to their
connection with the old vertex. This results in a chain ofesjgs shown in
Figure 4. It is very likely that this chain of edges is a chaifrsbort edges,
processed below. But it may also lead to isolated short edgédaces with
the same geometry connected by the newly introduced edgealdtneed to
remove chains of small faces before single small faces tplgyrdetection.
Thus, chains of small faces are handled at this early stage.

(6) Sliver faces.Topologically a sliver face is an ordinary face of the modelt,
its geometry is long and thin. It is replaced by one or moreesddepend-
ing on the number of adjacent faces. We assume that there sbveo face
adjacent to another sliver face to avoid cases where we hawy tang thin
faces which may really represent a different face geometny. @ cylinder
replaced by many adjacent long thin planes, due to inadealza or earlier
reconstruction algorithms). The introduction of new edgas lead to adja-
cent faces with the same geometry. The new edges may beahadiead to a
chain of short edges. Note that as a sliver face is long (ieiteanot, it would

13

(7)

(8)

(9)

(10)

(11)

Ay

(a) Before modification (b) Final result

Figure 12. Replacing a chain of small faces

be a small face), the new edge cannot lead to a new chain of faoes (it
may be part of such a chain for ambiguous cases of sliver /I $atas, but
then it would have been removed earlier).

Chains of short edges.Chains of short edges are sequences of connected
edges, where each vertex between two edges of the sequemEztoexactly
two edges. The vertices at the start and the end of the segwamclie on
any number of other edges not part of the sequence. A chalmoof edges is
replaced by a single edge between the start and the end viértiegre is no
start and end vertex we can simply replace it by an edge reptieg a closed
curve. Chains of short edges should be processed as a wdtthley, than edge
by edge, as shown in Figures 4 and 12. This means we can lptaceeshort
edges by a single vertex and do not have to consider any aikescReplacing
the chain by a single edge can introduce a short edge, oreadjadges with
the same geometry.

Adjacent faces with same geometryAdjacent faces with approximately the
same geometry are merged by removing all edges between frfesmmay
create adjacent edges with the same geometry. It may alslb ireeew small
faces and edges. Thus, we fix adjacent faces with the sameegygoan this
stage.

Small faces.Topologically a small face is an ordinary face of the objéedt,
with a small geometry. It cannot be adjacent to any other Isiaeés (such
cases have already been handled by small face chains). mafegeometry
essentially means thatl distances between the vertices of the face are smal-
ler than a tolerance. Hence, all edges connected to therfeersect in a single
vertex within this tolerance and we can replace the smadl kgca single ver-
tex. (Note that small faces which may have to be replaced bg sdquences
are considered to be sliver faces—see above). Introducireyvavertex may
require us to merge edges.

Merging edges.Some of the previous steps may create isolated verticedwhic
only connect two edges. These vertices have to be removadingsin a
single intersection edge between two faces. As this cartriesshort edges
(merging two short edges may result in a new short edge)isidsne before
removing short edges.

Short edges.First consider a short edge not connected to any other short
edges. In this case we simply replace the short edge by ayeitéch cannot

14

introduce any other problems. Now consider short edgeshndrie connec-
ted to other short edges. As we have already processed dfahert edges,
these other short edges have to be between different faxe [fdhe vertices
of all connected short edges are within tolerance, they eareplaced by a
single vertex connecting all edges adjacent to the groupat £dges. In this
case all short edges are removed and we have a single vertelk ednnot
introduce any new problems. However, if the vertices arth&rrapart, we do
not change anything. There is no obvious way in which to @pkuch a se-
guence. If it has not been processed earlier in the contesthans of small
faces, etc., this indicates that the data or methods usedntstract the raw
model need to be improved (as discussed under adjacentfslogs above).

Items above the diagonal in Table 1 are all “No”. Thus if pesbt are fixed in
the sequence given, no repair later in the sequence can agusblem of a type
already fixed earlier in the sequence. Note carefully theeldgiventhis particular
ordering, certain types of problem are known not be presesaeh stage, having
been fixed earlier. Thus, certain potential complex int&was between multiple
types of topological problem need not be considered, asdhegot arise, simpli-
fying the analysis. Table 1 shows just one self-consistesgring in which prob-
lems of the various types can be solved sequentially. Otttiarimgs may also be
possible. We thus carry out topological beautification @f wiarious problems, as
explained in further detail below, in this order.

3.3 Algorithm Outline

In the following we give a brief overview of our topologicaé#utification al-
gorithm. The details are provided in Section 4. The inputuoagorithm for de-
tecting and modifying topological problems is a (reveragieeered) B-rep model,
together with a tolerance value. The output is a B-rep modidl modified topo-
logy. The tolerance is used as described in Section 3.1.dBsede for the main
algorithm is given in Figure 13; the problems are detectetcanrected in the order
justified in Section 3.2.

We start by detecting and removing from the model the gapambus types (lines

2 to 6). This is done by detecting edges which are part of gamdaries using
thef i nd_hal f edges method. To find the three different gap types the edges in
the list are clustered into lists of connected edges usiad itmd_gaps method.

If there is no edge adjacent to a cluster, the cluster fornmeca §ap. If there are
only two edges connected to the cluster, we have an edge ggpothAer cluster
has to represent a multiple face gap. Three lists, one fdr gap type, are returned
by fi nd_gaps (for details see Section 4.1). Theenove_f acegaps removes

a gap in a face, such asin Figure 1;r enove_edgegaps removes gaps lying
across an edge as shown Brin Figure 1;r enove_nul ti pl ef acegaps re-

15

00: I NPUT: body, tolerance
01: OUTPUT: nodified body

02: hal fedges.list = findhal fedges(body, tolerance)

03: (facegap-ist, edgegap.list, multiplefacegaplist) = findgaps (hal fedges.ist)
04: renove_facegaps (body, facegap.ist)

05: renove_edgegaps (body, edgegap.list)

06: renpve_nul ti pl ef acegaps (body, nmultipl efacegap.ist)

07: WHI LE ((face = find_pi nchedface (body, tolerance)))
08: nmodi f y_pi nchedf ace (body, face)

09: smallfaceslist = findsmallfaces (body, tolerance)
10: facechains.list = findfacechains (smallfaces.ist)
11: FOREACH facechain IN facehains._li st

12: renmove_facechai n (body, facechain)

13: WHILE ((face = findsliverface (body, tol erance)))
14: renovesliverface(body, face)

15: shortedges.list = findshortedges (body, tolerance)
16: edgechains.ist = find-edgechains (shortedges.ist)
17: FOREACH edgechain I N edgechai ns.i st

18: renpove_edgechai n (body, edgechai ns)

19: WHI LE ((twofaces = find.adjacentfaces (body, tolerance)))
20: nmer ge_adj acent f aces (body, twofaces)

21: WHILE ((face = find_smal | face (body, tolerance)))
22: remove_snul | face (body, face)

23: WHILE ((vertex = find.adj acent edges (body, tolerance)))
24: ner ge_adj acent edges (body, vertex)

25: WHI LE ((edge = find-shortedge(body, tolerance)))
26: renmove_shortedge (body, edge)

27: RETURN body

Figure 13. The main topological beautification algorithm

(a) Before modification (b) After modification
Figure 14. Repairing a simple multiple face gap

moves gaps which span several faces, as seen in Figures 2and 1

Secondly, we detect pinched faces (lines 07 to 08). fThed_pi nchedf ace
method detects a pinched face in the body anartiéi f y _pi nchedf ace method
modifies the model accordingly. We repeatedly look for, amdave pinched faces,
until no more remain in the model.

The next step detects and removes chains of small faces bgtihgt small faces
withfi nd_smal | f aces, combining them into face chains usihgnd_f acechai ns,

16

and finally removing each chain witrenove_chai nsmal | f aces (lines 09 to
12).

Afterwards, we detect and remove any sliver faces with thed_sl i ver f aces
andr enove_sl i ver f ace methods respectively, until no more sliver faces can
be found (lines 13 to 14). An example is faBeshown in Figure 5.

The method$i nd_chai nshort edges andr enove_chai nshort edges are
used to detect and remove chains of short edges analogowsigins of small faces
(lines 15 to 18).

We next usd i nd_adj acent f aces andner ge_adj acent f aces to detect
and merge any adjacent faces with the same geometry (lines2®. The former
method compares each face with its adjacent faces in the dadlyglecides if any
two such faces have the same geometry. If so, the two faceseaged into a single
face bymer ge_adj acent f aces, as shown in the example in Figure 8. Note that
when faces (such a§ and f, in Figure 8) are merged by this method, we do not
immediately consider merging adjacent edges dikande, in this example): these
will be processed by the edge merging process later. A mgukiocess is used to
avoid reconsidering the same face repeatedly [4].

Next, we repeatedly detect and remove small faces dsimgl smal | f ace and
remove _smal | f ace methods until no more small faces can be found in the
model (lines 21 to 22). A simple example is shown in Figure @teNthat we have
already detected small faces in line 09 when finding chairsddll faces. Small
faces which did not form part of a face chain can be cachedhiersmall face
removal step.

We now merge adjacent edges connected by a vertex whichieslgh these two
edges (see Figure 8). This is done by runningfthe@d_adj acent edges and
nmer ge_adj acent edges methods (lines 23 to 24). The former method checks
the number of edges at each vertex and reports those whighi®win two edges.
The merging method has to take care not to remove all vertores closed loop
edge, in case the modeller requires such vertices.

Finally, we detect and remove any short edges ukingd_shor t edge and then
remove _short edge repeatedly (lines 25 to 26).

Some of the loops are shown ¥kl LE loops above, rather thafOR loops. This
allows for possibilities such as the merging of two faceswiite same geometry
producing a new face which also has the same geometry aefdates. In fact,
to avoid reconsidering already processed items (e.g. faepeatedly inAHI LE
loops, we use a slight variation of the simplified algorithimeg, which builds
gueues of items to be processed, and adds any relevant nesdied items to
the ends of the queues (e.g. for removing small faces). Teeiegican then be
processed in order in linear time.

17

3.4 Example

An example is now given to illustrate the overall algorittnmodel before beau-
tification is shown in Figure 15(a). In this model, cylindridossl is close to the
edge of facef, causing it to be pinched. Problers3, 4 and5 are gaps of various
kinds. Problent is a chain of several small facésis another small face, while the
faces adjacent to ed@gehave the same geometry.

As described earlier, we first detect gaps in the body by fopdidges which lie
on only one face and putting them into a list. We then cludierddges in this
list to give four clusters which surround gaps3, 4 and5 respectively, as shown
in Figure 15(a). There are no edges adjacent to cl@sserit is put into the face
gap list. There are two edges connected to cluitep it is put into the edge gap
list. The other clusters] and5, are put into the multiple face gap list. Each gap in
the face gap list is removed by extending the face. Each edgesgremoved by
extending the faces and connecting the edges meeting thEgagach member of
the multiple face gap list, we extend faces adjacent to tipeaga intersect them
as appropriate, possibly adding a new face as well as newsegkvertices, as
explained in Section 4. For gapsuch a new face is created. This new face is long
and thin (a sliver face). For gdp the faces intersect in a single point, so we simply
insert a new vertex, as shown in Figure 15(b).

Next, we detect and remove the chains of small faGeas shown in Figure 15(d).
Sliver faces are now processed. The only sliver face foutitkisliver face arising
from gap4. We replace it by an edge as shown in Figure 15(e). The chahat
edges arising from the chain of small fades next replaced by a single edge: see
Figure 15(f). We now seek adjacent faces with the same gepmetjacent faces
to edges are found to have the same geometry within tolerance and arget, as
shown in Figure 15(g). Remaining isolated small faces, im¢hse fac&, are now
detected and removed. See Figure 15(h).

Afterwards, we merge edge pairs connected by a vertex oy lgn the two in-
volved edges. Edges which belong to the new face producecdebging the edges
on either side of edg&are found and are merged, as shown in Figure 15(i).

Finally we detect and modify short edges. No short edges figed in this case.
The updated topology is now returned.

4 Algorithm Details

In this Section, we give further details of the methods chltlg the main algorithm.
The discussion essentially follows the sequence they aed by the main al-

18

(g) After merging faces (h) After removing small faces

)

7

&/

(i) After merging edges

Figure 15. Modifying a complex model

19

gorithm.

4.1 Removing Gaps

In the initial B-rep model, each “proper” edge is a bounddeyreent of two faces.
We refer to an edge which only lies on one boundary as a hgké-éslightly ab-

using the normal terminology). These edges can easily lexet in a B-rep data
structure as edges associated with a single loop where shaci@tion is repres-
ented by a coedge. Gaps are surrounded by edges which omyhavassociated
coedge, and belong to one loop. All edges having a singlegmark collected into
alistbyf i nd_hal f edges whichis used as the input to thé nd_gaps method.

The main task off i nd_gaps is to determine groups of connected half-edges
which are not connected to any other half-edges outside ritngpg This can be
done by initially creating a table associating the involwedtices with the half-
edges they lie on. Then we start with the first vertex in théetaimd mark it as
used. We add the associated half-edges to a new group anthieamew half-edges
we collect the second vertices. If these vertices are in éntex table and are not
already marked as used, we mark them as used in the table digeschalf-edges

to the group (if they are not already in it). This is continwedil no more vertices
like this are detected. Then we form the next group with the wertex in the table
not marked as used until all vertices are marked as used.

This results in groups of connected vertices which now haveet classified ac-
cording to the gap type they bound. A group with a single lkdi}e cannot arise
assuming the input is a valid model. Thus, we first count thalmer of faces ad-
jacent to the gap by counting the number of distinct loops lictv the involved

coedges belong. Depending on whether there are one, two rer faxes involved

we get the following three cases respectively:

Face Gaps: Here the one-sided edge loop lies entirely within one fates €or-
responds to a face with a gap or hole in it (see Figure 16). Acyexample
causing such a problem arises when there is a deep cylihddt=or pocket in
some face, inside which the scanner has been unable totatdiec
We do not attempt to recognise and insert a hole, but mereliréghe model
to a consistent state by deleting the gap, which can easitiohe by removing
the complete loop and all its associated edges and verticesthe model. The
existing geometry of the face then naturally covers the gap.

Edge Gaps: Here the one-sided edge loop lies across an edge, i.e. apassof
faces, as shown in Figure 17. This kind of problem is mostyike occur for
concave edges, where internal reflections may cause scgtoniail.

As in the previous case, the one-sided hole loop is removgd bew edge (like
ez in Figure 17) is also inserted to join the two edges meetirgltiop. The

20

(a) Before modification (b) After modification

Figure 16. Repairing a gap in a single face

oy P b
Yt
(] €o €1 €3 €9
L L
(a) Before modification (b) After modification
Figure 17. Repairing an edge gap
€2 €9
€1 €1
U1
€3 €3
(a) Before modification (b) After modification

Figure 18. Repairing a multiple face gap

geometry of the inserted edge is immediately found by ietdisg the faces on
either side of it.

Multiple Face Gaps: Here the one sided edge loop lies across several faces (see
Figures 18 and 19). Such problems typically arise at concauers of the ob-
ject.

To remove these gaps, firstly, the intersection edges ofatesfadjacent to the
gap are found by intersecting neighbouring faces pairwée.then compute
the intersection points, where they exist, of these intdi@e edges. If all inter-
section edges meet at a single point (within tolerance),epéace this gap by
a vertex (see Figure 19(a)). If the intersection edgessatarin two points, as
shown in Figure 19(b), we replace the gap with two verticasanew edge. If
the intersection edges intersect in three or more points) Bggures 19(c) and
(d), we add a new face as well as new vertices and edges. Theetyyoof the
new face is constrained to interpolate the new vertices.

So far we have ignored the case of adjacent gaps where twosgaps a single

21

Figure 19. Cases of multiple face gap modification

vertex. These would be combined to form a single group by Hwv@ method.

In order to handle such cases we need to process the groupsméaed edges
further. A simple tree-growing algorithm can be used to cetke fundamental
cycles in the groups. Each fundamental cycle representp.algps is relatively

inexpensive as the groups are small for models with loadliggological problems
and it only has to be done for groups with at least one verteibganore than two

half-edges.

4.2 Modifying Pinched Faces

In general, detecting and correctly handling all cases oéhng is problematic.
Here, we only attempt to identify and fix in a straightforwavdy a range of fre-
guently occurring simple cases. Further discussion isgivé&ection 7.

To identify pinched faces, we compute the (minimum) distalbetween each pair
of non-consecutive edges of the face. If the distance islentalan the tolerance,
the face is potentially a pinched face. However, it could de a sliver face, or
a small face. These cases must be detected separately,tisimgethods given
later, and removed from consideration. (The informaticat #uch faces are small
or pinched is cached, however, to save time later.)

To remove the pinching, we identify and treat subcasesrdifity. We handle each
occurrence of pinching independently—multiple occuresnof pinching in the

same face are resolved sequentially. To fix the pinching,d@oes of informa-

tion are needed: where the pinching occurs, and the kinddg#sadjacent to the
pinching.

In terms of location of pinching, we identify three casesathive have named as
follows:

e Necking. The pinching almost cuts the pinched face into two largeqse&ee
the faces markegs in Figure 20(b).

e Spiking. The pinching is adjacent to a short edge (or several makingpe s
chain) in the outer boundary of the face, as shown in Figuag: 3fe pinching
causes a “spike” to stick out of the main portion of the face.

22

f2 f2

N1

U1 (%) U1

fi
3 /3 D Ja

(a) Before modification (b) After modification

(%)

Figure 20. Aneckingpinched face witlstraight pinching

h

(a) Before modification (b) After modification

Figure 21. Abossingpinched face

f2 f2
%1
fi fi
(@) (b)
(a) Before modification (b) After modification

Figure 22. Abossingpinched face witttomplexpinching

e Bossing.The pinched face has an outer loop and an inner loop adjac¢hét
place where pinching occurs. For example, f@ggdas an outer loop, which is
adjacent tof;, and an inner loop, adjacent fg, in Figures 21(a) and 22(a).

These cases can easily be distinguished. If edges on eidleenfsthe pinching be-
long to different edge loops, we haleessingas shown in Figure 21 (the inner loop
could actually surround a pocket instead of a boss). Otlsexwihe edges on either
side of the pinching belong to the same outer edge loop (spads 3 and 20).
Ignoring the edges taking part in the pinching, the otheesdg the loop form two
connected sequences at either end of the pinching. We negthguiengths of these
sequences (as the sum of the respective edge lengths)hiEbquences are long,
we have aneckingcase (see Figure 20). If one sequence is short, we $pakeng
(see Figure 3). (Both cannot be short, as this would implyvarsface).

Next, we also identify two possible configurations of edg#jse@ent to the pinch-
ing. These configurations can arise independently of thatilme of the pinching.

23

Note that several consecutive faces may exist on each sideiofjle area where
the face is pinched. Furthermore, the other faces next tpitfehing may be planar
or curved.

e Straight. A single edge exists on either side of the pinched area, atiddre
straight lines (see Figure 20).

e Complex. A single edge exists on either side of the pinched area, atehst
one is curved, or multiple edges are present on at least deeosithe pinched
area (see Figure 22).

To modify pinched faces, in each case we attempt to closedpe The method
of closing the gap depends on the configuration. $taaiight cases, the pinched
part of the face is replaced by a new straight edge, and atpeidgy is adjusted
according to the location. An example is shown in Figure 2&.ddomplexcases,

the pinching is closed by finding the narrowest gap acrosgittehing, and making
the appropriate pair of edges next to it, one from either,siket in a new vertex
(see Figure 22). Again, other topology is adjusted accgrtinthe location case.
The other changes made to the topology are as follows:

e Necking. To correct necking, the single edge loop is split into twopleat the
position where the pinching occurs. Depending on whethehawe the straight
or the complex case, either a single vertex or an edge istatsdfor example,
see Figure 20. The original fagk is cut into two, one piece remainingy, and
the other becoming a new face. Old edgegiadire put into face loops of; and
f1, or removed, as needed. The new edge and its end verticés oew vertex,
according to configuration, are incorporated into the faog$ of the faceg;
and f, on either side of the pinching.

e Spiking. Irrespective of whether we havesaraightor complexcase, we replace
the pinched part by an edge. In thieaightcase, this is simple. Treomplexcase
is handled in an analogous way, where (after splitting aegeges if necessary)
some existing edges are kept and others deleted to give whioap for facefs.
We now proceed as farecking except that facg; is not split, and there is no
f4 to consider; however, we also have to adjust the face loofiseoénd face or
faces (see Figure 3).

e Bossing.We have two edge loops, one inside the face of the other on. Bo
loops are split in a similar way to the necking case, but exbtef splitting the
face in two, the two loops are combined to give a single lodpanhewly inserted
vertex (or vertices). The loops of adjacent faces have talpested accordingly.
See Figure 22. Loops of facg$ and f, are adjusted as in theeckingcase.
Appropriate edges from the inner and outer loopg;adre merged to give a new
outer loop forfs.

24

4.3 Removing Chains of Small Faces and Short Edges

In the following we first describe how to detect and removarchaf small faces.
Detecting and removing short edges is done in a very simiér so we describe
both here. However, note that removing chains of short edgdsne laterafter
removing sliver faces.

Chains of small faces are shown in Figures 4(a) and 12(a)efectsuch chains,
we first detect all small faces in the model. This informaisalso cached for later
use when removing isolated small faces (which do not beloripins). To detect
the chains in the set of small faces, we employfthe@d_f acechai ns method
which returns a list of chains.

This method works in similar way tbi nd_gaps described in Section 4.1. In
each chain, each element is connected to other elementg ahtin, and each
element has only two adjacent elements, except for the elsnaé the ends of the
chain. Thus, if a member has more than two adjacent elentbetshain is divided
here into multiple chains. Note that this means that we cahaee surface areas
partitioned into small faces (which should be replaced biyngls face). Again, we
consider that such problems can only arise due to problerdatanacquisition or
earlier model building processes.

In order to find the chains, we first set up a table of edges atimgesmall faces.

For each such edge we store the two small faces it connedtstalile can easily
be set up by traversing the list of unique edges connectiradl $ates. Starting at
an arbitrary small face, we can then collect the small facesiected to it over its
edges. If there are none, or more than two small faces cogohéatit, we do not

have part of a chain. Otherwise we follow either one or twdp&tom the original

face using the edge table until we reach a face with more tmameighbours. By

keeping track of already processed faces, we avoid comsgddre same chains
more than once. This also avoids infinite iteration in theea#sclosed loops.

After detection, each chain of small faces (with at least &leanents) is partially
repaired by replacing it by a chain of short edges, as showgiare 4(b). This is
done by joining mid-points of edges shared by small facekarchain.

In the same way, chains of short edges are detected by findorng edges using
fi nd_short edges and combining these in to chains usirignd_edgechai ns.
The latter works in a similar way toi nd_f acechai ns, where short edges con-
nected by vertices to one or two other short edges are ddtdeseh chain in the
edge list is replaced by a single edge, as shown in Figure jé{(o)ng the ends of
the chain. Note that there can only be a single face on eittierad the chain, be-
cause of the way a chain is defined. The geometry of the edgéts thhe geometry
of the intersection of the adjacent faces. See also Figui®.12

25

(a) Before modification (b) After modification

Figure 23. Replacing a sliver face by edges

4.4 Removing Sliver Faces

A sliver face is a long thin face. To decide if a face is a slfa=e, we compute its
area, and the diagonal length of its bounding box. If theratithese two numbers
is smaller than the length tolerance, the face is considerbd a sliver face.

Each “long side” of the sliver face can be bounded by one oeredges, as shown
in Figure 23. Each sliver face is replaced by an edge sequé&heevertices used
in the edge sequence are those vertices of the sliver faahwangé also connected
to some other edge. These vertices are joined by a chain @sedg shown in
Figure 23. The two closest vertices are first connected bydge.€rhe remaining
vertices are joined one by one to the ends of the growing eelgeesnce in such
a way that the next vertex added is always the one which igstds one end or
the other of the sequence. We finally update the face loo@cext to the edge
sequence.

4.5 Merging adjacent faces and edges

Two adjacent faces with the same geometry (to within a talspcan arise in
a reverse engineered model, as shown in Figure 6(a). Thédgsween them
should be removed and the two faces should be merged, as shévgure 6(b).

To detect such faces, the method considers each edge of tted.ffiahe two faces
on either side of the edge are of the same type and have thessafaee parameters
(e.g. have the same normal vector and distance from thendfiglanar) then the
two adjacent faces are merged. The method removes all coreages between
the two faces. Vertices which only belong to a common edgeddiner edges of
the faces to be merged are also removed {seend v in Figure 24(a)), and the
adjacent edges are merged (such;a@nde, in Figure 24(a)). If there is more than
one common edge between adjacent faces with the same ggpatietuch edges
are removed, as shown in Figure 25.

Adjacent edges which are connected by a vertex only lyinguaneidges may also
exist. If just two edges meet at any given vertex, the vertay tve removed and
the edges may be merged. All vertices in the model are comeside turn to find

26

U
€4 6

U3
(a) Before modification (b) After modification

Figure 24. Merging two faces

O T

(a) Before modification (b) After modification

Figure 25. More than one common edge between two faces vétbaime geometry

such cases. After removing the vertex, the face loops ofabesf on either side of
the new edge are updated.

4.6 Detecting and removing small faces and short edges

The aim of this part of the processing is to discard smallda&mall faces are
detected by computing the area of each face. If the area datleels smaller than
the square of the length tolerance, it is a small face. We venaosmall face by
replacing it with a new vertex at the centroid of its verticédges adjacent to the
small face are connected to this vertex. Edge loops of fadgsent to the small
face are also updated. Note that small faces have alreadydstermined earlier
and cached for this step.

Similarly short edges are detected easily as edges whogthlensmaller than a
given tolerance. Each short edge is replaced by a verteg atid point, and the
surrounding topology is updated. Short edges were alsactéeteand cached for
processing here by earlier steps.

5 Algorithm Analysis

Our algorithm runs the steps in the sequence explained tmo&eton the initial B-
rep model. To simplify the discussion, we loosely ust® interchangeably denote

27

the number of faces, edges, or vertices; doing so is justifie@uler’s formula

which is a linear relation between these quantities. Funtlbee, while it is possible
to construct mathematical objects where a few faces have n&tices, and most
faces have just a small number, such objects are uncommaginering practice,
so we also assume that the number of vertices and edges fofagacis no more
than a small constant, and that each face has no more thameighbours. We
note that the number of gaps, small faces, short edges, amal, soust all be less
thann. We analyse each stage as follows.

Finding all edges belonging to gaps takes time:). Thef i nd_gaps method
first constructs a table linking the vertices with the halfes they lie on. This can
be done inO(n) time. Then, using this table, groups of connected half-sedge
determined. Each edge belongs to only one such group. Sogani€donsidered
once as a seed (and ignored if it has already been added toeargybup) and
once to build up the sequence for the group. Thus, gap findikesttimeO(n).
Processing each gap requires the edges in the gap to be mnzowk adjacent
topology to be updated. In the worst case, faces have to besétted pairwise,
taking timeO (nm?).

Pinched face detection considers each face in turn, andswas@emparison of dis-
tances between each pair of edges of that face, taking®tne:?). Each pinched
face is modified in time& (m). Thus the pinched face methods take tithg:m?).

Assuming the area of each face can be computed in @), the time required

to detect small faces 19(nm). Chains of small faces are detected using a similar
approach to thé i nd_gaps method. Again using a table, each face is at most
considered twice, so the time taker(i$n). Each face in a chain is replaced by an
edge, and the adjacent faces to the chain must be updatezh alsb takes time
O(nm).

AssumingO(m) time computation for area and bounding box for a face, sliver
faces are detected in tim@(nm), as each face must be processed. They are also
modified by the enove_sl i ver f ace method in timeD(nm), giving an overall
time of O(nm).

Chains of short edges can be detected in tinie), as the length of each edge can
be found in constant time. Chains are replaced by a single,edd the loops of
adjacent faces are also updated, also taking €irpre).

Finding adjacent faces with the same geometry is done by aomgpeach face
with neighbouring faces, taking tim@(nm). Merging adjacent faces with similar
geometry takes timé(n).

Finding small faces take®@(n) time; this is already done during the detection of
chains of small faces. When removing small faces, there reay faces to adjust
around each problem. Hence, removing small faces can tade(d{nm). Simil-

28

arly, finding and fixing short edges can take timewm).

Merging edges which are connected by a vertex only lying anedges requires
O(n) time for detection an@(n) time to repair.

Strictly, further justification is needed that when new tiogy is created, it does
not increase the size of the problem for later stages in soaye This is not dif-
ficult to see informally, as in no case is a problem resolve@dging more than
a local amount of new topology, and we have already assumed be a small
constant. This is also further justified by being able to fexpioblems in sequence
as discussed in Section 3.2.

Each of the steps takes linear time with respeet,tgiven our assumptions above,
and so the algorithm for adjusting the topology is expectethke linear time for
realistic engineering objects.

However, in addition, a suitable new geometry must be géeerahich is consist-
ent with that topology. This is done as described in our eavliork [7]. Regener-
ating the geometry takes much longer than finding and cangethe topological
problems. For example, for Objegtdescribed in our experiments later, the topo-
logical problem detection and repair process takes undec@sls (on a 450MHz
Pentium Il computer running Linux); running our geometreconstruction al-
gorithm (on a 700MHz Pentium Il computer) to detect geomatgularities in
this model and choose an overall set of constraints comong fsoth topological
and geometric beautification tak&8 seconds. Numerical constraint solving and
generating the final geometry for the new model tak&sseconds.

6 Experiments

This section describes a number of practical tests whiclhodeirate the capabilit-
ies and speed of our topological beautification algorithm.

6.1 Test objects

Various test objects were used to verify that our topolddieautification algorithm
produces the expected results. Objdcts 7 are simple models exhibiting only a
single problem. Object8 to 10 are complex models which contain more than one
problem.

Objectsl to 4 are derived from cubes. Objetthas a face gap in the top face, as
shown in Figure 26(a). Obje@thas a multiple face gap, as shown in Figure 26(b).
Object3 has an edge gap on the top right edge, as shown in Figure Zi{gct4

29

before after before after before after

NS \ L/

(a) (b) (c)
Figure 26. Objects, 2 and3 before and after modification

before after

\

(a) (b) (©)
Figure 27. Objectd and5 before and after modification
before after before after

NSNS

(@) (b)

Figure 28. Objects and7 before and after modification

is a cube with a sliver face on the top left side, as shown inféi@7(a). Object
illustrates a pinched face, and is composed of two blockssethap two faces have
almost the same geometry: see Figure 27(b); results of yindift are shown in
Figure 27(c). Object$ and7 are based on four-sided pyramids. Objédtas a
small face in place of the apex, as shown in Figure 28(a).@0bjeas a short edge
in place of the apex, as shown in Figure 28(b).

Object8 is a plate with blocks and pyramids on top (see Figure 29{&p.boss at

the top left has an edge gap on its top right edge. The leftfamkeof this boss and
the left side face of the plate produce a pinched face. Thelmlabss at the back of
the plate has a small sliver face on its top front side. Thedieitoss at the front of
the plate has a vertex gap on the top left front side. On the afthe plate, there
are two pyramids. The front pyramid has a small face in pldds@pex and the

other pyramid has a short edge in place of its apex. Betweetwit pyramids, the
top face of the plate has a small cylindrical gap.

30

(@) (b)

Figure 29. Objects 8 and 9 before modification

7

S —
9 E—
0 =~
11 .

DO =TT O

A

1

Figure 30. Objeci0 before modification

Object9 is prism with a pyramid on top and bottom (see Figure 29(bhe Top

pyramid has a short edge at its apex and the bottom pyramid tamll face at its
apex. On the top left of the prism, there is a vertex gap. Ondpeight side of the
prism, there is small sliver face. On the bottom front sitlere is an edge gap.

Object10 is a complex model, shown in Figure 30, which contains piddlaees
(2 and9), a chain of small faces3], an edge gap4, two face gapsi and7), two
small faces and11) and a sliver faceg). In the model,l is a conical boss and
10 is a spherical boss. Note that sliver feks adjacent to multiple face gdpand
small facel 1.

6.2 Topological Beautification Results

Table 2 shows the results of running the algorithm on thegecth Columng
and3 are the number of faces and edges of each model before topallbgauti-
fication. Columnst and5 are the number of faces and edges of each model after
beautification. Columi® is the time taken to run the algorithm, and includes to-
pological problem detection and topological repair timéyo®ur algorithm was
implemented on a 450MHz Pentium Ill computer, using Linud &CIS as the
core modeller. Each of the test objects was successfullyfradds expected.

31

Test Before modification After modification Time
object Number Number Number Number (seconds)
of faces of edges of faces of edges
1 6 16 6 12 0.89
2 6 15 6 12 0.95
3 6 19 6 12 0.87
4 7 15 6 12 0.90
) 11 24 10 24 0.95
6 6 12 5 8 0.85
7) 9) 8 0.78
8 31 83 28 64 1.61
9 17 51 15 31 1.22
10 21 40 10 15 1.59
Table 2

Topological modification results for Objectgo 10

.51 t=0.0237n + 0.7386

Time (Seconds)

0 T T T T T T
0 5 10 15 20 25 30 35
Faces

Figure 31. Algorithm performance

6.3 Running time

To evaluate the performance of our algorithm, we ran it orrgelavariety of ob-
jects, including those shown earlier and others. Runnimgsiwere averaged over
several runs for each test object. The times taken and sesuthodification are
summarised in Table 3. A linear analysis was performed totfiedbest fit to the
timing data of the fornt = a x n+b, wheret was the time takem, was the number
of faces and:, b were constants to be fitted. The results gave an empiricednper
ance for the algorithm of time= 0.0237 x n + 0.7386. A plot of this fit is shown
in Figure 31; good agreement is obtained with the predictezhl performance for
the topological beautification algorithm.

32

7 Discussion

Some steps of the algorithm we present are computationaiysive, and were
used with the aim of demonstrating an overall working sysieia research con-
text, rather than making each component individually asdagossible. One such
case is the need to calculate the area and bounding box of &dfalecide if it is a
sliver face. Undoubtedly some components could be tunedpmaced with more
efficient methods. Nevertheless, our methods are already @icceptable speed,
taking just a few seconds, especially when placed in theesbwif an overall re-
verse engineering system where data acquisition aloneakamtany hours.

Our algorithm does not handi@l possible cases of topological beautification.
Firstly, it is only intended to handle those cases which wigete will arise in
raw B-rep models coming from our approach to model buildmgeverse engin-
eering. Secondly, some of our algorithms make assumptibastahe kinds of
defect expected, and it is certainly possible that casdsl esise which break these
assumptions. While it is not too difficult to generate suchregles by hand with a
little thought, it is not clear whether such cases can oatueal reverse engineer-
ing. A much more substantial research and developmentgirajeuld be needed
to rigorously analyse and demonstrate which cases could@uld not occur, and
to ensure that a beautification algorithm handles all of thesible cases correctly.
However, we believe that our algorithm is of practical used aan automatically
correct many problems, while acknowledging that user tssie might be needed
in certain cases. This is in line with the experience of redemto development of
related algorithms for CAD model healing.

Three specific problems are noted which our algorithm cacoaiently handle,
and for which further research is needed:

e Sliver faces.We have assumed all sliver faces are unbranched. Howeuvsr, it
possible to have branched sliver faces such as the one shdvigure 32(a).

e Networks of connected faces and edge®¥hen detecting chains of faces and
edges, we always assume that there is only a single chaimaralmore com-
plicated branched or closely connected area of small elne&his is justified
by observing that if an original natural face has been spiit many small faces,
then the original data is too noisy to reconstruct the modaperly and should
be improved. However, at least in some cases it may be pedsiloletect these
defects and correct them in a beautification step. Note Hiathhay also need
us to consider the global structure (e.g. a network of snaakk$ along a large
number of natural edges of the object).

e Unrealisable topology. As the new topology is constructed, geometric con-
straints are generated to enforce that topology. It may Bsiple that constraints
describing the topology cannot be realised due to the nafube geometry, es-
pecially if the user has chosen an inappropriate toleraabgey For example,

33

(a) A branched sliver face (b) Multiple pinching

Figure 32. Problem cases

consider the cylinder atop a block shown from above in Fi@2@). If we were
to try to fix all instances of pinching here, the new verticezdpiced would im-
pose four positional constraints on the circular crossiseof the cylinder—but
a given circle is completely determined by three points.

More consideration is also needed of how robust some of tasidre when ap-
plied to extreme or unusual cases. The method given to detditer face clearly
makes sense for nearly planar, approximately straighersfaces, but could give
guestionable results for long thin helical surfaces, farmgle. Overall, there is a
trade-off to be made between speed, robustness, and ggnefahethods which
would need to be carefully addressed in a commercial imphatien of topolo-
gical beautification.

Further investigation is also needed to determine to whianéxhe proposed ap-
proach is applicable to reverse engineered objects haweagférm surfaces, and
whether other specific kinds of topological beautificatioaynbe needed in such
cases.

8 Conclusions

We have presented an efficient topological beautificatigorithm for use in re-

verse engineering. It can detect and modify many topolddefects of reverse en-
gineered models including gaps, short edges, small faceshqd faces, and sliver
faces. Our experiments show that the algorithm producesxpected corrections.
The algorithm takes approximately linear time to detect aodect topological

errors in realistic engineering objects. Modifying the @opanying geometry, as
described in [6,7], takes much longer. We note that in thjgepave assume that
an appropriate tolerance is provided by the user or some atkehanism such
as a transitive clustering of involved positions. In mangesathis tolerance can
be found easily, but more research is required to devise aptizd method for

detecting appropriate local tolerances automatically.

34

9 Acknowledgements

The authors wish to thank Tamas Varady of the Hungariard@egy of Sciences
and CADMUS Ltd. for providing reverse engineering softwanel for many help-
ful discussions. This research was funded by EPSRC granviG#267.

References

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

G. Butlin, C. Stops. CAD data repair. IRroc. 5th Int. Meshing Roundtable, Sandia
National Laboratories7-12, 1996.

P. Campbell-PrestorRersonal communicatiori998.

T. K. Dey, H. Edelsbrunner, S. Guha, D. Nekhayev. Topyglggyeserving edge
contraction.Publications de I Institut Mathematique (Beogra@(80):23—-45, 1999.

C. H. Gao, F. C. Langbein, A. D. Marshall, R. R. Martin. Apgimate congruence
detection of model features for reverse engineering. IRSMKim (ed),Proc. Shape
Modeling International [IEEE Computer Society, Los Alamos, CA, 69-77, 2003.

I. Guskov, Z. J. Wood. Topological noise removal. Rroc. Graphics Interface
19-26, 2001.

F. C. Langbein Beautification of Reverse Engineered Geometric ModRH® Thesis.
Department of Computer Science, Cardiff University, Ju@@3 ht t p: / / www.
| angbei n. org/ research/ BoRG t hesi s. htm .

F. C. Langbein, A. D. Marshall, R. R. Martin. Choosing swtent constraints for
beautification of reverse engineered geometric modeBmputer-Aided Design
36(3):261-278, 2004.

F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Martin. gproximate geometric
regularities.Int. J. Shape Modeling’(2):129-162, 2001.

F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Martin. ifkding approximate
shape regularities in reverse engineered solid modelsdealiby simple surfaces. In:
D. C. Anderson, K. Lee (edsProc. 6th ACM Symp. Solid Modeling and Applications
ACM Press, New York, 206215, 2001.

[10] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. MartinRecognizing geometric

patterns for beautification of reconstructed solid modéts.Proc. Int. Conf. Shape
Modelling and ApplicationsIEEE Computer Society Press, Los Alamitos, CA, 10—
19, 2001.

[11] A. A. Mezentsev, T. Woehler. Methods and algorithms atoanated CAD repair for

incremental surface meshing. IAroc. 8th International Meshing Roundtablgouth
Lake Tahoe, 299-309, 1999.

35

[12] B. I. Mills, F. C. Langbein. Determination of approxitegasymmetry in geometric
models — an exact approach. Submitted @G@mmputational Geometry and
Applications 2002.

[13] B. I. Mills, F. C. Langbein, A. D. Marshall, R. R. MartinApproximate symmetry
detection for reverse engineering. In: D. C. Anderson, Ke [&xs),Proc. 6th ACM
Symposium on Solid Modelling and Applicatip&M Press, New York, 241248,
2001.

[14] B. I. Mills, F. C. Langbein, A. D. Marshall, R. R. MartinEstimate of frequencies
of geometric regularities for use in reverse engineering sghple mechanical
components Technical Report GVG 2001-1, Geometry and Vision Group,
Department of Computer Science, Cardiff University, 200tLt p: / / r al ph. cs.
cf. ac. uk/ paper s/ Geonetry/ survey. pdf.

[15] J. C. Park, Y. C. Chung. A tolerant approach to recowstiapology from unorganized
trimmed surfacesComputer-Aided Desigrd5(9):807-812, 2003.

[16] N. A. Petersson, K. K. Chand. Detecting translatioroesrin CAD surfaces and
preparing geometries for mesh generation. Rroc. 10th Int. Meshing Roundtable
Sandia National Laboratories, 63-371, 2001.

[17] A. E. Uva, G. Monno. A new method for the repair of CAD dati¢zh discontinuities.
In: Proc. Convegno Italo-Spagnolo — Progettazione e Fattibildei Prodotti
Industriali, June, 1998.

[18] T. Varady, R. R. Martin. Reverse Engineering. In: Grikal. Hoschek, M. S. Kim
(eds), Handbook of Computer Aided Geometric Desifitsevier Science, Ch. 26,
2002.

36

Before modification After modification Time
Number Number Number Number (seconds)
of faces of edges of faces of edges

) 9) 8 0.78
) 9) 8 0.93
6 12) 8 0.85
6 15 6 12 0.95
6 16 6 12 0.87
6 19 6 12 0.93
7 15 6 12 0.87
7 15 6 12 0.83
7 15 6 12 0.90
8 16 7 15 0.94
8 28 7 15 0.97
8 28 7 15 0.99
9 21 6 12 0.89
11 24 10 24 0.95
11 24 6 12 0.89
16 32 15 31 1.08
17 49 15 31 1.24
17 49 15 31 1.15
17 o1 15 ol 1.22
21 40 10 15 1.59
22 o7 6 12 1.08
26 71 28 64 1.36
27 69 18 40 1.35
29 80 23 52 1.41
31 81 23 52 1.49
31 83 28 64 1.48
32 81 28 64 1.39
33 84 28 64 1.50
33 84 28 64 1.61
Table 3
Test results for further objects 37

