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Local Topological Beautification of Reverse
Engineered Models

C. H. Gao F. C. Langbein A. D. Marshall R. R. Martin

Department of Computer Science, Cardiff University, PO Box916, 5 The Parade, Cardiff,
CF24 3XF, UK

Abstract

Boundary representation models reconstructed from 3D range data suffer from various in-
accuracies caused by noise in the data and by numerical errors in the model building soft-
ware. The quality of such models can be improved in abeautificationstep, where geometric
regularities need to be detected and imposed on the model, and defects requiring topolo-
gical change need to be corrected. This paper considers changes to the topology such as
the removal of short edges, small faces and sliver faces, filling of holes in the surface of
the model (arising due to missing data), adjusting pinched faces, etc. A practical algorithm
for detecting and correcting such problems is presented. Analysis of the algorithm and ex-
perimental results show that the algorithm is able to quickly provide the desired changes.
Most of the time required for topological beautification is spent on adjusting the geometry
to agree with the new topology.

Key words: Beautification; Healing; Topological Modification; Reverse Engineering;
Geometric Modelling.

1 Introduction

Reverse engineering the shape of a 3D object is the process ofreconstructing a
geometric model of an object from measured data [18]. The general procedure con-
sists of measuring surface points on an object, usually witha 3D laser scanner,
merging multiple views into a single registered data set, segmenting the point set,
fitting surfaces to each point subset, and stitching these into a solid model. Our goal
is to create a system that, for simple engineering objects, reconstructs a boundary
representation (B-rep) model from a physical object, with aminimum of human
interaction. It should be usable both by naive users and engineers. In particular,
the generated model should have all the intentionalgeometric regularitiespresent
in the original, ideal, design of the object, to ensure that the model has maximum
utility for manufacturing, redesign, etc. The model shouldalso have the expected



topology—for example, if we reverse engineer a four-sided pyramid, we expect all
four sloping faces to meet at a single vertex.

In reverse engineering, numerical errors occur in the reconstruction algorithms, and
noise is present in the measured data. Improving the sensingtechniques and the re-
construction methods can reduce errors, but some will always remain. Additional
errors may be present due to wear of the object before scanning, and the particu-
lar manufacturing method used to make the object (e.g. if theobject was cast in
a mould, draught angles may have been added). Note that we wish to recover a
geometric model of theidealobject as conceived by the designer. However, reverse
engineering often fits each face individually, and treats itindependently of the other
faces in the model, losing regularities present in the original design. We propose to
improve the reconstructed B-rep model by adjusting it in a separatebeautification
post-processing step. This paper in particular considers the problem of detecting
and making any necessarytopological(and consequent geometric) adjustments to
the model; our earlier work consideredgeometricbeautification without topological
change [6,7,8,9,10,13,14].

For example, if a four-sided pyramid is reverse engineered,and each sloping face
is fitted to data points independently, any three of these faces will intersect in a
point, but it is extremely unlikely all four as fitted will pass through a single point
(see Figure 28 later). Thus, the initial geometric model created will have either a
very short edge or a very small face instead of a vertex at its apex, depending on
exactly how the software produces a B-rep model by intersecting and stitching the
individual faces. The topology of such a model needs to be adjusted, in conjunction
with the geometry of the sloping faces, to produce a new modelin which all four
sloping faces pass through the same point.

1.1 The Topological Beautification Problem

In this paper, we specifically address topological beautification of ‘conventional’
reverse engineered models bounded by planar, spherical, cylindrical, conical, and
toroidal faces. However, the ideas presented are likely to be applicable to mod-
els containing free-form surfaces, too, even if we have not specifically considered
such cases. In particular we consider a specific set of problems listed below, where
beautification requires adjusting the topology of the modelbesides the geometry.
In the following we refer to these astopological problems. Note that this does not
mean that the initial topology is invalid, but rather that changes to the topology are
needed to resolve such problems.

All such problems depend upon a notion of “small”, e.g. we intend to remove only
small, spurious faces. The tolerances employed to decide about this are discussed
in Section 3.1.
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(a) Before modification (b) After modification

Figure 1. Repairing a face gap and an edge gap

B B

(a) Before modification (b) After modification

Figure 2. Repairing a complex multiple face gap

The problems (and their resolutions) listed below have beenidentified as the ones
which can arise from earlier model building processes. Theydo not represent a list
of all possible topological problems, but are problems which are likely to arise dur-
ing reverse engineering of models. The detailed cases whichhave to be considered
to remove such problems are described in Sections 3.2 and 4.

• Removing gaps in a single face:A loop of half-edges may exist in the interior
of a face, with nothing on the other side of the loop. Such a case may arise, for
example, where the scanner did not collect any data from within a deep concavity
in the face. Here the loop of half-edges should be removed, extending the face
(see holeA in Figure 1).

• Removing gaps crossing an edge:A loop of half-edges may span two faces,
with nothing on the other side of the loop. The edge between the faces is di-
vided into two pieces by the gap. The gap should be removed, the existing faces
extended, and the two edge pieces joined (see holeB in Figure 1).

• Removing gaps spanning multiple faces:A loop of half-edges may span mul-
tiple faces, with nothing on the other side of the loop. Existing faces and edges
must be extended to fill the gap, and new vertices and edges must be added as
necessary (see gapB in Figure 2).

• Adjusting pinched faces: If a face narrows to a very thin part it ispinched.
Other parts of the model should be adjusted to remove the thinning, resulting
in a change in connectivity of the face; a face may be split into two faces (see
Figure 3).

• Removing chains of small faces:Faces should meet in an edge, but instead
a chain of small faces may separate them. The chain of small faces should be
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(a) Before modification (b) After modification

Figure 3. Repairing aspikingpinched face

(a) A chain of small faces (b) becomes a chain of short edges (c) and is replaced by an edge

Figure 4. Removing a chain of small faces

A A

(a) Before modification (b) After modification

Figure 5. Replacing a sliver face with an edge
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(a) Before modification (b) After modification

Figure 6. Merging adjacent faces with the same geometry

replaced by an edge (see Figure 4, where the first step is to reduce a chain of
small faces to a chain of short edges).

• Removing sliver faces:Two faces should meet in an edge, but instead a long
very thin face (asliver face) may separate them. The sliver face should be re-
placed by an edge (see Figure 5).

• Removing chains of short edges:Several consecutive short edges may need to
be replaced by a single long edge (again see Figure 4). This isin particular a
problem which may result from repairing some of the other problems listed.

• Merging adjacent faces with the same geometry:Two adjacent faces may
share the same geometry across a contiguous edge sequence. Edges and vertices
as appropriate should be removed, and the faces merged (see Figure 6).

• Removing isolated small faces:Several edges should meet in a single vertex,
but instead they meet at several distinct vertices, joined by multiple short edges
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Figure 7. Removing a small face
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(a) Before modification (b) After modification

Figure 8. Merging faces and edges with the same geometry

(a) Before modification (b) After modification

Figure 9. Removing a short edge

which surround a small face. The small face should be replaced by a vertex
connected to the existing edges (see Figure 7).

• Merging edges:See Figure 8: once facesf1 andf2 have been merged, edgese1

ande2 can also be merged. Essentially this means that we have to merge adjacent
edges with the same geometry. However, each edge should be the complete, con-
nected intersection of two adjacent faces. Hence, we can simply merge each edge
pair connected by a vertex which is attached to no more than two edges (taking
care when handling special cases involving closed curves, where the modeller
may require a vertex).

• Removing isolated short edges:Several edges should meet at a single vertex,
but instead they meet at several distinct vertices, joined by one or more short
edges. These short edges should be replaced by a single vertex (see Figure 9).

Beautification is a final step in producing a solid model from the scanned point set.
We assume that a valid model has already been produced by prior model creation
steps (although it may not have a closed shell, if gaps exist in the scanned point
set). The first step of beautification consists of identifying and correcting the above
topological problems. This process may involve the local addition or removal of
faces, edges and vertices, and other modifications to the existing topological data-
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structure to ensure that a correct, valid model results—forexample, edges may
need to be disconnected from an existing vertex, and connected to a new vertex.
In addition, constraints must be generated and imposed on the geometry supported
by the topological elements to ensure that in the final model,the geometry and
topology are consistent (e.g. to ensure that a given vertex lies on a given surface).
This step can be combined with geometric beautification where desired regularities
which only require adjustments to the geometry of the objectare imposed on the
model.

Detecting geometric regularities is discussed in previouswork [8,9,10,13,14]. We
describe in [6,7] how to select appropriate geometric regularities and impose them
on the model using geometric constraints. The methods presented in this paper
change the topologyprior to these geometric beautification steps. One of the main
sets of geometric constraints used for geometric beautification ensures that the
model’s geometry is consistent with its topology. As topological beautification up-
dates the topology before geometric beautification, these constraints ensure that the
geometry is consistent with the updated topology. It may be the case that a topo-
logy suggested by topological beautification cannot be realised geometrically. This
will become obvious at the constraint solving stage and the reason for the incon-
sistency can be reported via the set of inconsistent constraints and the geometric
objects involved. In such cases, either small faces, etc. can be reinserted to create
a valid model, or it can be reported back to the topological beautification step in
order to try a different topological structure. Note that aswe are only considering
small changes to the topology for typical reverse engineered models, such issues
are unlikely to occur. In this paper we solely describe the methods to detect and ad-
just the above topological problems. In summary, the steps needed for topological
beautification are:

• Detecting topological problems:small faces, sliver faces and short edges are
identified; gaps in the model (in a single or multiple faces) arising from missing
scan data are identified; etc.

• Adjusting the topological structure: isolated small faces and short edges are
replaced by a single vertex, and surrounding topology is adjusted to meet it;
existing faces are extended to cover gaps left by missing data, by removing the
edges and loops bounding gaps; etc.

• Constraining the geometry:geometric constraints are generated to ensure that
in the new structure, the faces, edges and vertices have the desired connectiv-
ity and contact. This usually also involves generating additional constraints for
geometric beautification.

• Regenerating the geometry:the above geometric constraints are solved to pro-
duce the new geometry for the final model.
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1.2 Healing

Topological beautification as outlined above has some similarities to, but also some
differences from, CAD model healing [11,16,17]. Healing isa process that tries to
correct inconsistencies and invalidities in B-rep models.A major application for
healing arises when a model written out by one CAD system is tobe read into an-
other CAD system. If the recipient system works to tighter tolerances or uses differ-
ent a representation from the sending system, a model which the sender considers
to be valid may well be topologically inconsistent according to the recipient—e.g.
edges may not lie on the surfaces which they bound, etc.

Healing, like topological beautification, aims to improve the topology of the model,
but the differences are that (i) it starts withinvalid models, not valid ones, and (ii)
the main aim of the changes is to ensure a valid model is the result. For example,
healing may have to cope with such problems as duplicated geometry, physically
impossible geometry, incorrectly oriented surfaces, faces with no defined geometry,
self-intersecting edges, edges which should meet in one vertex but which end at two
topologically distinct but geometrically coincident vertices, end vertices which do
not lie on the edges they bound, faces whose boundary is not a closed loop, and
incomplete topology even though all individual faces are present. Note that such
problems of validity arenot expected to occur in beautification.

1.3 Outline

In the rest of the paper, we first review previous relevant work. We then specify
in detail the topological changes considered by our algorithm and outline our al-
gorithmic approach to topological beautification. In more detail, we then describe
how we handle the particular problems listed above. The performance of our ap-
proach is then analysed, and finally, we provide the results of some experiments.

2 Previous Work

In our previous work on beautification, we have shown how to find and beautify
approximate geometric regularities [7,8,9,10] and approximately congruent fea-
tures [4] in initial B-rep models produced by reverse engineering; this prior work
assumed that the models already had the desired topology. This work is alsodirectly
relevant here, because as well as modifying the topology, the existing geometry has
to be constrained to fit the new topology. As already noted, weuse the methods
described in [7] to produce new geometry meeting these constraints.
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Much work has been done on healing, although many of the methods are embed-
ded in commercial systems, and have not been openly published. However, for
example, one commercial system [2] uses an approach of (i) re-intersecting higher-
dimensional geometry to get lower-dimensional geometry, (ii) adjusting the shapes
and positions of higher-dimensional geometry to meet otherlower-dimensional
geometry, and (iii) an algorithm to orchestrate (i) and (ii)in the correct order. De-
ciding automatically which faces originally defined as blends may be useful inform-
ation to guide the process. Converting simple faces to analytic surfaces instead of
NURBS also helps.

In a similar vein, Park and Chung present a topology reconstruction algorithm
which starts from a set of unorganised trimmed surfaces [15]. Essentially, any ex-
isting topology is discarded, and rebuilt. They note that the presence of undesirable
elements like short edges, sliver faces, and so on can cause problems, and correct
these as part of the rebuilding process; sometimes user-assistance is needed. Their
approach is based on using vertices which are at the same location to within a small
tolerance to deduce the topology. As the initial topology (if any) is discarded, their
algorithms take more than linear time in model complexity, because geometric sort-
ing must be done.

Butlin and Stops [1] were some of the first to discuss the healing problem, noting
some of the problems in models to be “slivers, crossovers, minute edge lengths,
stray points ‘on the moon’, . . . , patchworks of faces [with] unnecessary elements”.
FEGS CADfix software resolves such problems so that CAD models can be im-
ported into finite element meshing packages. This software solves many of the
problems noted under the description of healing above, as well as other issues de-
scribed in their paper. They classify problems as “geometric sanity” problems, such
as edges of a face not lying in that face, and “topological insanity”, such as neigh-
bouring faces not connected to the same edge. The approach taken by CADfix is
to automatically detect problems whenever possible, but toleave it to the user to
specify what particular steps should be taken to remedy them. Specific algorithms
are not discussed.

Petersson and Chand have also developed tools for the preparation of CAD geo-
metries for mesh generation [16], using a similar approach.Geometries are read
from IGES files and then maintained in a boundary representation. Gross errors
in the geometry are identified and removed automatically, while a user interface
is provided for manipulating the geometry (such as correcting invalid trimming
curves or removing unwanted details). Modifying the geometry by adding or de-
leting surfaces, and sectioning it by arbitrary planes (e.g. symmetry planes) is also
supported. These tools are used to produce robust and accurate geometric models
for initial mesh generation, but, as in CADfix’s approach, they require some user
assistance.

Mezentsev and Woehler [11] also consider mesh generation, and perform separate
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steps to first ensure a correct watertight model (i.e. havinga topologically valid
shell), and then to alter the model in ways which assist meshing algorithms. Again,
they divide the former problem into geometric and topological errors, and suggest a
cyclic process of verification, automatic repair and manualrepair, until a satisfact-
ory model results. The algorithms given are fairly straightforward, but the paper
does contain a useful appendix showing some of the problems which need to be
repaired.

Much work has also been done on simplifying and processing triangulations, and
some of these ideas are relevant to the present problem. For example, Dey et al.
present a method for preserving the topology of simplicial complexes while apply-
ing edge contractions [3]. Guskov and Wood present a topological noise removal
method [5] which processes a triangular mesh and identifies features such as small
tunnels. They then identify the non-separating cuts neededto cut and seal the mesh,
thus reducing the genus and the topological complexity of the mesh. However, we
do not expect such problems to be present in the B-rep models we are processing.

3 Principles of the Topological Beautification Algorithm

Our algorithm aims to improve the model by repairing local topological problems
of the types listed in Section 1. After detecting topological problems and changing
the topology, our overall beautification algorithm takes the corrected topology, gen-
erates geometric constraints from it, combines them with other constraints arising
from geometric beautification, and solves the constraint system [7] to deduce the
geometry for the new model. Topological modification is thusjust one compon-
ent of anoverall beautification system, which also imposes geometric regularities
found in the model.

In this section we discuss the tolerances needed to detect the topological problems
in the model, and the sequence of operations required to change the topology of
the model. We also present an outline of our algorithm, whichwe illustrate with an
example.

3.1 Tolerances

Our algorithm starts with a topologically valid geometric model, which may have
some holes (i.e. may not be a closed shell), but is otherwise correct. In order to
decide whether and where the problems listed above are present, we need a toler-
ance indicating when a face is small or pinched, or when an edge is short, etc. In
our algorithm we use a single tolerance for such purposes, which essentially sep-
arates intentional “features” of the model from artifacts generated by the reverse
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Figure 10. A necessary small face

engineering process.

For simplicity, we assume here that the tolerance is provided either by the user
based on the size of errors expected in the model (for example, from a know-
ledge of the scanner and reverse engineering algorithm characteristics),or by some
method which analyses the raw model. For instance, we can usemethods like those
for detecting approximate symmetries of point sets formed by the vertices in the
model [12,13] to produce a transitive clustering in which all distances between
points in different clusters are larger than distances between points in the same
cluster. Characteristic lengths determined by the clustering can be used to deduce a
suitable tolerance value. Similarly, we could use tolerance levels at which congru-
ent features of the model are detected [4].

When choosing a tolerance, we should be careful that small but significant parts
of the model are not deleted. For example, in Figure 10, facef may be small, but
is necessary, and we should not attempt to remove it. Thus, the length tolerance
should be larger than the size of any small face or short edge which is to be deleted,
but smaller than any part of the model which is to be retained.For simplicity, we
assume here that a single global tolerance value is used satisfying this requirement,
but we note that if, for example, different regions of the object were scanned at
different resolutions, or that large features exist for which the scanner could not
capture high quality data, a more sophisticated approach with an adaptive tolerance
might be needed. Nevertheless, at least in a local sense it still has to be possible to
distinguish between spurious and intended features by a tolerance, otherwise auto-
mated decisions based on tolerances alone are not possible.Normally, we expect
there to be a large size difference between the largest erroneous feature and the
smallest intentional feature, so this is a reasonable limitation.

In the rest of the paper, we implicitly assume that in decisions like “a face is small”,
or “edges have the same geometry”, the tolerance is used in anappropriate way.

3.2 Order of topological beautification operations

In a raw reverse engineered model, multiple topological problems of different types
often coexist. To efficiently solve these problems, we need to detect and modify

10



the problems in the right order. In particular, we wish to avoid having to use a
loop which considers different types of problem repeatedly. This can be done if
we repair some types of problem earlier than others. For example, closing a gap
spanning multiple faces may result in the generation of a sliver face to fill the gap.
But removing a sliver face cannot produce a gap. Thus, we detect and close gaps
before removing sliver faces.

In the following we make the basic assumption that all the problems listed in Sec-
tion 1.1 are local or isolated. This means that they can be corrected without having
to consider the adjacent topological structure beyond the one specified (see be-
low). For instance, when removing a small face we assume thatwe do not have
any small faces adjacent to it which must be considered for removal of the small
face. However, note that we consider chains of small faces atan earlier stage; for
those chains we assume that there are no areas of connected small faces (e.g. a large
surface made of small face patches) which would contain manyambiguous chains
of small faces. This means that there are certain models which cannot be repaired
by our methods. However, rather than considering all possible cases we present an
algorithm which can repair common cases. For models with many non-local prob-
lems, the most appropriate course of action is probably to collect more accurate
data (or improve the earlier reverse engineering stages).

Table 1 lists all the cases in which solving a topological problem of a given type
may create a further topological problem of a different type. The columns are topo-
logical problems to be solved in order, and the rows are new problems which may
arise from solving them,assuming the ordering given. In the following we discuss
the topological operations for repairing each of the problems in turn, justifying the
entries in this Table, by briefly listing the types of changesinvolved, and what sort
of other problems may be introduced by the change. Details ofthe actual operations
are also given in Section 4.

(1) Face gaps.A face gap is a sequence of edges connected by vertices where
exactly two edges meet. Each of the edges is only on the boundary of one face.
Removing this isolated sequence of edges cannot introduce any new face gaps.
The resulting face (without gap) may be pinched, small or a sliver face, but
the face with the gap already had this property, so it is not introduced by the
topological change (it may now be simpler to detect, though). As no additional
faces or edges are introduced, no other problems are created. Fixing face gaps
also decreases the number of edges in the model (seeA in Figure 1), speeding
up subsequent processing.

(2) Edge gaps.An edge gap is a loop of connected edges where each vertex ex-
cept for two lies on exactly two edges of the loop. Each of the edges is only
on the boundary of one face and there are exactly two faces involved. The two
special vertices lie on additional edges. An edge gap is removed by replacing
the loop by a single edge between the two special vertices. This does not cre-
ate new gaps (in particular no face gaps), nor introduce new problems relating
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Modification order 1 2 3 4 5 6 7 8 9 10 11

Fixing → Face Edge Multiface Pinched Small face Sliver Short edge Adjacent Small Merging Short

can cause↓ gaps gaps gaps faces chains faces chains faces faces edges edges

Face gaps No No No No No No No No No No No

Edge gaps No No No No No No No No No No No

Multiface gaps No No No No No No No No No No No

Pinched faces No No Yes No No No No No No No No

Small face chains No Yes Yes Yes No No No No No No No

Sliver faces No No Yes Yes No No No No No No No

Short edge chains No Yes Yes Yes Yes Yes No No No No No

Adjacent faces No Yes Yes Yes Yes Yes Yes No No No No

Small faces No No Yes Yes No No No Yes No No No

Merging edges No Yes No Yes Yes No Yes Yes Yes No No

Short edges No Yes Yes Yes Yes Yes Yes Yes No Yes No

Table 1
Sequence of topological repair

to faces (a small face will remain small independently of theintroduction of
the new edge, etc.). However, the newly introduced edge may be short, and
thus can also be part of a chain of short edges (e.g. consider removing gap
B in Figure 1); it may also connect faces with the same geometryor connect
small faces building a face chain.

(3) Multiple face gaps.A multiple face gap is a loop of connected edges where
each of the edges lies on the boundary of only one face. Each ofthe involved
vertices may lie on an arbitrary number of additional edges.Such gaps are not
removed by the previous steps. We have to distinguish three cases, depending
on the number of vertices theadditionaledges intersect in (within tolerance):
• One vertex: The edge loop is replaced by a single vertex which connects

the additional edges. This vertex may now connect short edges leading to a
chain of short edges.

• Two vertices: The edge loop is replaced by a single edge between the two
intersection vertices. This edge may be short and may also create a chain of
short edges. This edge may also connect two faces with the same geometry
or connect two small faces creating a chain of small faces.

• More vertices: An additional face is added to close the gap. This face may
be pinched, small or a sliver face and it may have the same geometry as an
adjacent face.

Note that this step removes all remaining gaps, and no new gaps are intro-
duced. Also note that none of the following steps are able to introduce new
gaps as in all cases the connectivity between the elements may be changed,
but not eliminated.

(4) Pinched faces.Topologically the boundary of a pinched face contains two
sequences of edges whose geometry is in some sense closer than the tolerance.
It is repaired by combining the edge sequences. The two sequences may be
joined at a single vertex or both edge sequences may be replaced by a single

12



e1

f1

f2

e1 e2

f1

f2

f3

(a) Before modification (b) After modification

Figure 11. Fixing a pinched face creates a small face

edge sequence. There may or may not be a loop which contains both edge
sequences, and combining the edges thus may or may not split aface into
two faces. This means that either a new vertex or a new edge sequence is
introduced. The new vertex may result in the creation of a short edge or a
chain of short edges. The new edge sequence may result in adjacent faces
having the same geometry, or a chain of small faces, or a chainof small edges.
Furthermore, if the two close edge sequences are part of the same loop, then
a new face is generated. This may be a sliver face, be adjacentto a face with
the same geometry, or a small face. For instance, see the small face f3 in
Figure 11(b), the short edgee2 in Figure 11(b), adjacent facesf1, f2 with
the same geometry in Figure 3(b), and adjacent edgese1, e2 in Figure 3(b).
However, repairing pinched faces cannot introduce any gaps. Thus, we fix
pinched faces after removing gaps, but before fixing other problems.

(5) Chains of small faces.Chains of small faces should be processed as a whole,
rather than face by face. A chain of small faces is a sequence of small faces
pairwise connected by edges. No face in this sequence is connected to more
than two other small faces in the sequence and the sequence has at least two
faces. To repair this, each face is replaced by a vertex and the vertices are
connected in the same sequence as the faces. Additional edges connected to
vertices on the small faces are connected to the new vertex closest to their
connection with the old vertex. This results in a chain of edges, as shown in
Figure 4. It is very likely that this chain of edges is a chain of short edges,
processed below. But it may also lead to isolated short edgesand faces with
the same geometry connected by the newly introduced edges. We also need to
remove chains of small faces before single small faces to simplify detection.
Thus, chains of small faces are handled at this early stage.

(6) Sliver faces.Topologically a sliver face is an ordinary face of the model,but
its geometry is long and thin. It is replaced by one or more edges depend-
ing on the number of adjacent faces. We assume that there is nosliver face
adjacent to another sliver face to avoid cases where we have many long thin
faces which may really represent a different face geometry (e.g. a cylinder
replaced by many adjacent long thin planes, due to inadequate data or earlier
reconstruction algorithms). The introduction of new edgescan lead to adja-
cent faces with the same geometry. The new edges may be short,and lead to a
chain of short edges. Note that as a sliver face is long (if it were not, it would
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(a) Before modification (b) Final result

Figure 12. Replacing a chain of small faces

be a small face), the new edge cannot lead to a new chain of small faces (it
may be part of such a chain for ambiguous cases of sliver / small faces, but
then it would have been removed earlier).

(7) Chains of short edges.Chains of short edges are sequences of connected
edges, where each vertex between two edges of the sequence connects exactly
two edges. The vertices at the start and the end of the sequence can lie on
any number of other edges not part of the sequence. A chain of short edges is
replaced by a single edge between the start and the end vertex. If there is no
start and end vertex we can simply replace it by an edge representing a closed
curve. Chains of short edges should be processed as a whole, rather than edge
by edge, as shown in Figures 4 and 12. This means we can later replace short
edges by a single vertex and do not have to consider any other cases. Replacing
the chain by a single edge can introduce a short edge, or adjacent edges with
the same geometry.

(8) Adjacent faces with same geometry.Adjacent faces with approximately the
same geometry are merged by removing all edges between them.This may
create adjacent edges with the same geometry. It may also result in new small
faces and edges. Thus, we fix adjacent faces with the same geometry at this
stage.

(9) Small faces.Topologically a small face is an ordinary face of the object,but
with a small geometry. It cannot be adjacent to any other small faces (such
cases have already been handled by small face chains). Here small geometry
essentially means thatall distances between the vertices of the face are smal-
ler than a tolerance. Hence, all edges connected to the face intersect in a single
vertex within this tolerance and we can replace the small face by a single ver-
tex. (Note that small faces which may have to be replaced by edge sequences
are considered to be sliver faces—see above). Introducing anew vertex may
require us to merge edges.

(10) Merging edges.Some of the previous steps may create isolated vertices which
only connect two edges. These vertices have to be removed resulting in a
single intersection edge between two faces. As this can result in short edges
(merging two short edges may result in a new short edge), thisis done before
removing short edges.

(11) Short edges.First consider a short edge not connected to any other short
edges. In this case we simply replace the short edge by a vertex, which cannot
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introduce any other problems. Now consider short edges which are connec-
ted to other short edges. As we have already processed chainsof short edges,
these other short edges have to be between different face pairs. If the vertices
of all connected short edges are within tolerance, they can be replaced by a
single vertex connecting all edges adjacent to the group of short edges. In this
case all short edges are removed and we have a single vertex which cannot
introduce any new problems. However, if the vertices are further apart, we do
not change anything. There is no obvious way in which to replace such a se-
quence. If it has not been processed earlier in the context ofchains of small
faces, etc., this indicates that the data or methods used to construct the raw
model need to be improved (as discussed under adjacent sliver faces above).

Items above the diagonal in Table 1 are all “No”. Thus if problems are fixed in
the sequence given, no repair later in the sequence can causea problem of a type
already fixed earlier in the sequence. Note carefully the logic. Giventhisparticular
ordering, certain types of problem are known not be present at each stage, having
been fixed earlier. Thus, certain potential complex interactions between multiple
types of topological problem need not be considered, as theycannot arise, simpli-
fying the analysis. Table 1 shows just one self-consistent ordering in which prob-
lems of the various types can be solved sequentially. Other orderings may also be
possible. We thus carry out topological beautification of the various problems, as
explained in further detail below, in this order.

3.3 Algorithm Outline

In the following we give a brief overview of our topological beautification al-
gorithm. The details are provided in Section 4. The input to our algorithm for de-
tecting and modifying topological problems is a (reverse-engineered) B-rep model,
together with a tolerance value. The output is a B-rep model with modified topo-
logy. The tolerance is used as described in Section 3.1. Pseudocode for the main
algorithm is given in Figure 13; the problems are detected and corrected in the order
justified in Section 3.2.

We start by detecting and removing from the model the gaps of various types (lines
2 to 6). This is done by detecting edges which are part of gap boundaries using
thefind halfedges method. To find the three different gap types the edges in
the list are clustered into lists of connected edges using the find gaps method.
If there is no edge adjacent to a cluster, the cluster forms a face gap. If there are
only two edges connected to the cluster, we have an edge gap. Any other cluster
has to represent a multiple face gap. Three lists, one for each gap type, are returned
by find gaps (for details see Section 4.1). Thenremove facegaps removes
a gap in a face, such asA in Figure 1;remove edgegaps removes gaps lying
across an edge as shown forB in Figure 1;remove multiplefacegaps re-
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00: INPUT: body, tolerance
01: OUTPUT: modified body

02: halfedges list = find halfedges(body, tolerance)
03: (facegap list, edgegap list, multiplefacegap list) = find gaps (halfedges list)
04: remove facegaps (body, facegap list)
05: remove edgegaps (body, edgegap list)
06: remove multiplefacegaps (body, multiplefacegap list)

07: WHILE ((face = find pinchedface (body, tolerance)))
08: modify pinchedface (body, face)

09: smallfaces list = find smallfaces (body, tolerance)
10: facechains list = find facechains (smallfaces list)
11: FOREACH facechain IN facehains list
12: remove facechain (body, facechain)

13: WHILE ((face = find sliverface (body, tolerance)))
14: remove sliverface(body, face)

15: shortedges list = find shortedges (body, tolerance)
16: edgechains list = find edgechains (shortedges list)
17: FOREACH edgechain IN edgechains list
18: remove edgechain (body, edgechains)

19: WHILE ((twofaces = find adjacentfaces (body, tolerance)))
20: merge adjacentfaces (body, twofaces)

21: WHILE ((face = find smallface (body, tolerance)))
22: remove smallface (body, face)

23: WHILE ((vertex = find adjacentedges (body, tolerance)))
24: merge adjacentedges (body, vertex)

25: WHILE ((edge = find shortedge(body, tolerance)))
26: remove shortedge (body, edge)

27: RETURN body

Figure 13. The main topological beautification algorithm

(a) Before modification (b) After modification

Figure 14. Repairing a simple multiple face gap

moves gaps which span several faces, as seen in Figures 2 and 14.

Secondly, we detect pinched faces (lines 07 to 08). Thefind pinchedface
method detects a pinched face in the body and themodify pinchedfacemethod
modifies the model accordingly. We repeatedly look for, and remove pinched faces,
until no more remain in the model.

The next step detects and removes chains of small faces by detecting small faces
with find smallfaces, combining them into face chains usingfind facechains,
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and finally removing each chain withremove chainsmallfaces (lines 09 to
12).

Afterwards, we detect and remove any sliver faces with thefind sliverfaces
andremove sliverface methods respectively, until no more sliver faces can
be found (lines 13 to 14). An example is faceB shown in Figure 5.

The methodsfind chainshortedgesandremove chainshortedgesare
used to detect and remove chains of short edges analogously to chains of small faces
(lines 15 to 18).

We next usefind adjacentfaces andmerge adjacentfaces to detect
and merge any adjacent faces with the same geometry (lines 19to 20). The former
method compares each face with its adjacent faces in the bodyand decides if any
two such faces have the same geometry. If so, the two faces aremerged into a single
face bymerge adjacentfaces, as shown in the example in Figure 8. Note that
when faces (such asf1 andf2 in Figure 8) are merged by this method, we do not
immediately consider merging adjacent edges (likee1 ande2 in this example): these
will be processed by the edge merging process later. A marking process is used to
avoid reconsidering the same face repeatedly [4].

Next, we repeatedly detect and remove small faces usingfind smallface and
remove smallface methods until no more small faces can be found in the
model (lines 21 to 22). A simple example is shown in Figure 7. Note that we have
already detected small faces in line 09 when finding chains ofsmall faces. Small
faces which did not form part of a face chain can be cached for the small face
removal step.

We now merge adjacent edges connected by a vertex which only lies on these two
edges (see Figure 8). This is done by running thefind adjacentedges and
merge adjacentedges methods (lines 23 to 24). The former method checks
the number of edges at each vertex and reports those which only lie on two edges.
The merging method has to take care not to remove all verticesfor a closed loop
edge, in case the modeller requires such vertices.

Finally, we detect and remove any short edges usingfind shortedge and then
remove shortedge repeatedly (lines 25 to 26).

Some of the loops are shown asWHILE loops above, rather thanFOR loops. This
allows for possibilities such as the merging of two faces with the same geometry
producing a new face which also has the same geometry as further faces. In fact,
to avoid reconsidering already processed items (e.g. faces) repeatedly inWHILE
loops, we use a slight variation of the simplified algorithm given, which builds
queues of items to be processed, and adds any relevant newly created items to
the ends of the queues (e.g. for removing small faces). The queues can then be
processed in order in linear time.
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3.4 Example

An example is now given to illustrate the overall algorithm.A model before beau-
tification is shown in Figure 15(a). In this model, cylindrical boss1 is close to the
edge of facef , causing it to be pinched. Problems2, 3, 4 and5 are gaps of various
kinds. Problem6 is a chain of several small faces.7 is another small face, while the
faces adjacent to edge8 have the same geometry.

As described earlier, we first detect gaps in the body by finding edges which lie
on only one face and putting them into a list. We then cluster the edges in this
list to give four clusters which surround gaps2, 3, 4 and5 respectively, as shown
in Figure 15(a). There are no edges adjacent to cluster2 so it is put into the face
gap list. There are two edges connected to cluster3, so it is put into the edge gap
list. The other clusters,4 and5, are put into the multiple face gap list. Each gap in
the face gap list is removed by extending the face. Each edge gap is removed by
extending the faces and connecting the edges meeting the gap. For each member of
the multiple face gap list, we extend faces adjacent to the gap and intersect them
as appropriate, possibly adding a new face as well as new edges and vertices, as
explained in Section 4. For gap4, such a new face is created. This new face is long
and thin (a sliver face). For gap5, the faces intersect in a single point, so we simply
insert a new vertex, as shown in Figure 15(b).

Next, we detect and remove the chains of small faces,6, as shown in Figure 15(d).
Sliver faces are now processed. The only sliver face found isthe sliver face arising
from gap4. We replace it by an edge as shown in Figure 15(e). The chain ofshort
edges arising from the chain of small faces6 is next replaced by a single edge: see
Figure 15(f). We now seek adjacent faces with the same geometry. Adjacent faces
to edge8 are found to have the same geometry within tolerance and are merged, as
shown in Figure 15(g). Remaining isolated small faces, in this case face7, are now
detected and removed. See Figure 15(h).

Afterwards, we merge edge pairs connected by a vertex only lying on the two in-
volved edges. Edges which belong to the new face produced by merging the edges
on either side of edge8 are found and are merged, as shown in Figure 15(i).

Finally we detect and modify short edges. No short edges needfixing in this case.
The updated topology is now returned.

4 Algorithm Details

In this Section, we give further details of the methods called by the main algorithm.
The discussion essentially follows the sequence they are used by the main al-
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(a) Initial model (b) After removing gaps

(c) After fixing pinched faces (d) After fixing chain of small faces

(e)After removing sliver face (f) After fixing chain of shortedges

(g) After merging faces (h) After removing small faces

(i) After merging edges

Figure 15. Modifying a complex model
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gorithm.

4.1 Removing Gaps

In the initial B-rep model, each “proper” edge is a boundary element of two faces.
We refer to an edge which only lies on one boundary as a half-edge (slightly ab-
using the normal terminology). These edges can easily be detected in a B-rep data
structure as edges associated with a single loop where this association is repres-
ented by a coedge. Gaps are surrounded by edges which only have one associated
coedge, and belong to one loop. All edges having a single coedge are collected into
a list byfind halfedgeswhich is used as the input to thefind gapsmethod.

The main task offind gaps is to determine groups of connected half-edges
which are not connected to any other half-edges outside the group. This can be
done by initially creating a table associating the involvedvertices with the half-
edges they lie on. Then we start with the first vertex in the table and mark it as
used. We add the associated half-edges to a new group and fromthe new half-edges
we collect the second vertices. If these vertices are in the vertex table and are not
already marked as used, we mark them as used in the table and add their half-edges
to the group (if they are not already in it). This is continueduntil no more vertices
like this are detected. Then we form the next group with the next vertex in the table
not marked as used until all vertices are marked as used.

This results in groups of connected vertices which now have to be classified ac-
cording to the gap type they bound. A group with a single half-edge cannot arise
assuming the input is a valid model. Thus, we first count the number of faces ad-
jacent to the gap by counting the number of distinct loops to which the involved
coedges belong. Depending on whether there are one, two or more faces involved
we get the following three cases respectively:

Face Gaps: Here the one-sided edge loop lies entirely within one face. This cor-
responds to a face with a gap or hole in it (see Figure 16). A typical example
causing such a problem arises when there is a deep cylindrical hole or pocket in
some face, inside which the scanner has been unable to collect data.
We do not attempt to recognise and insert a hole, but merely repair the model
to a consistent state by deleting the gap, which can easily bedone by removing
the complete loop and all its associated edges and vertices from the model. The
existing geometry of the face then naturally covers the gap.

Edge Gaps: Here the one-sided edge loop lies across an edge, i.e. acrossa pair of
faces, as shown in Figure 17. This kind of problem is most likely to occur for
concave edges, where internal reflections may cause scanning to fail.
As in the previous case, the one-sided hole loop is removed, but a new edge (like
e3 in Figure 17) is also inserted to join the two edges meeting the loop. The
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(a) Before modification (b) After modification

Figure 16. Repairing a gap in a single face
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Figure 17. Repairing an edge gap
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Figure 18. Repairing a multiple face gap

geometry of the inserted edge is immediately found by intersecting the faces on
either side of it.

Multiple Face Gaps: Here the one sided edge loop lies across several faces (see
Figures 18 and 19). Such problems typically arise at concavecorners of the ob-
ject.
To remove these gaps, firstly, the intersection edges of the faces adjacent to the
gap are found by intersecting neighbouring faces pairwise.We then compute
the intersection points, where they exist, of these intersection edges. If all inter-
section edges meet at a single point (within tolerance), we replace this gap by
a vertex (see Figure 19(a)). If the intersection edges intersect in two points, as
shown in Figure 19(b), we replace the gap with two vertices and a new edge. If
the intersection edges intersect in three or more points, asin Figures 19(c) and
(d), we add a new face as well as new vertices and edges. The geometry of the
new face is constrained to interpolate the new vertices.

So far we have ignored the case of adjacent gaps where two gapsshare a single
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(a) (b) (c) (d)

Figure 19. Cases of multiple face gap modification

vertex. These would be combined to form a single group by the above method.
In order to handle such cases we need to process the groups of connected edges
further. A simple tree-growing algorithm can be used to detect the fundamental
cycles in the groups. Each fundamental cycle represents a gap. This is relatively
inexpensive as the groups are small for models with localised topological problems
and it only has to be done for groups with at least one vertex having more than two
half-edges.

4.2 Modifying Pinched Faces

In general, detecting and correctly handling all cases of pinching is problematic.
Here, we only attempt to identify and fix in a straightforwardway a range of fre-
quently occurring simple cases. Further discussion is given in Section 7.

To identify pinched faces, we compute the (minimum) distance between each pair
of non-consecutive edges of the face. If the distance is smaller than the tolerance,
the face is potentially a pinched face. However, it could also be a sliver face, or
a small face. These cases must be detected separately, usingthe methods given
later, and removed from consideration. (The information that such faces are small
or pinched is cached, however, to save time later.)

To remove the pinching, we identify and treat subcases differently. We handle each
occurrence of pinching independently—multiple occurrences of pinching in the
same face are resolved sequentially. To fix the pinching, twopieces of informa-
tion are needed: where the pinching occurs, and the kinds of edges adjacent to the
pinching.

In terms of location of pinching, we identify three cases which we have named as
follows:

• Necking. The pinching almost cuts the pinched face into two large pieces. See
the faces markedf3 in Figure 20(b).

• Spiking. The pinching is adjacent to a short edge (or several making a short
chain) in the outer boundary of the face, as shown in Figure 3(a): the pinching
causes a “spike” to stick out of the main portion of the face.
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Figure 20. Aneckingpinched face withstraightpinching
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Figure 21. Abossingpinched face
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Figure 22. Abossingpinched face withcomplexpinching

• Bossing.The pinched face has an outer loop and an inner loop adjacent to the
place where pinching occurs. For example, facef3 has an outer loop, which is
adjacent tof1, and an inner loop, adjacent tof2, in Figures 21(a) and 22(a).

These cases can easily be distinguished. If edges on either side of the pinching be-
long to different edge loops, we havebossing, as shown in Figure 21 (the inner loop
could actually surround a pocket instead of a boss). Otherwise, the edges on either
side of the pinching belong to the same outer edge loop (see Figures 3 and 20).
Ignoring the edges taking part in the pinching, the other edges in the loop form two
connected sequences at either end of the pinching. We measure the lengths of these
sequences (as the sum of the respective edge lengths). If both sequences are long,
we have aneckingcase (see Figure 20). If one sequence is short, we havespiking
(see Figure 3). (Both cannot be short, as this would imply a sliver face).

Next, we also identify two possible configurations of edges adjacent to the pinch-
ing. These configurations can arise independently of the location of the pinching.
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Note that several consecutive faces may exist on each side ofa single area where
the face is pinched. Furthermore, the other faces next to thepinching may be planar
or curved.

• Straight. A single edge exists on either side of the pinched area, and both are
straight lines (see Figure 20).

• Complex. A single edge exists on either side of the pinched area, and atleast
one is curved, or multiple edges are present on at least one side of the pinched
area (see Figure 22).

To modify pinched faces, in each case we attempt to close the gap. The method
of closing the gap depends on the configuration. Forstraight cases, the pinched
part of the face is replaced by a new straight edge, and other topology is adjusted
according to the location. An example is shown in Figure 21. For complexcases,
the pinching is closed by finding the narrowest gap across thepinching, and making
the appropriate pair of edges next to it, one from either side, meet in a new vertex
(see Figure 22). Again, other topology is adjusted according to the location case.
The other changes made to the topology are as follows:

• Necking. To correct necking, the single edge loop is split into two loops at the
position where the pinching occurs. Depending on whether wehave the straight
or the complex case, either a single vertex or an edge is inserted. For example,
see Figure 20. The original facef3 is cut into two, one piece remainingf3, and
the other becoming a new face. Old edges off3 are put into face loops off3 and
f4, or removed, as needed. The new edge and its end vertices, or the new vertex,
according to configuration, are incorporated into the face loops of the facesf1

andf2 on either side of the pinching.
• Spiking. Irrespective of whether we have astraightor complexcase, we replace

the pinched part by an edge. In thestraightcase, this is simple. Thecomplexcase
is handled in an analogous way, where (after splitting certain edges if necessary)
some existing edges are kept and others deleted to give the new loop for facef3.
We now proceed as fornecking, except that facef3 is not split, and there is no
f4 to consider; however, we also have to adjust the face loops ofthe end face or
faces (see Figure 3).

• Bossing.We have two edge loops, one inside the face of the other one. Both
loops are split in a similar way to the necking case, but instead of splitting the
face in two, the two loops are combined to give a single loop atthe newly inserted
vertex (or vertices). The loops of adjacent faces have to be adjusted accordingly.
See Figure 22. Loops of facesf1 and f2 are adjusted as in theneckingcase.
Appropriate edges from the inner and outer loops off3 are merged to give a new
outer loop forf3.
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4.3 Removing Chains of Small Faces and Short Edges

In the following we first describe how to detect and remove chains of small faces.
Detecting and removing short edges is done in a very similar way so we describe
both here. However, note that removing chains of short edgesis done laterafter
removing sliver faces.

Chains of small faces are shown in Figures 4(a) and 12(a). To detect such chains,
we first detect all small faces in the model. This informationis also cached for later
use when removing isolated small faces (which do not belong to chains). To detect
the chains in the set of small faces, we employ thefind facechains method
which returns a list of chains.

This method works in similar way tofind gaps described in Section 4.1. In
each chain, each element is connected to other elements of the chain, and each
element has only two adjacent elements, except for the elements at the ends of the
chain. Thus, if a member has more than two adjacent elements,the chain is divided
here into multiple chains. Note that this means that we cannot have surface areas
partitioned into small faces (which should be replaced by a single face). Again, we
consider that such problems can only arise due to problems indata acquisition or
earlier model building processes.

In order to find the chains, we first set up a table of edges connecting small faces.
For each such edge we store the two small faces it connects. This table can easily
be set up by traversing the list of unique edges connecting small faces. Starting at
an arbitrary small face, we can then collect the small faces connected to it over its
edges. If there are none, or more than two small faces connected to it, we do not
have part of a chain. Otherwise we follow either one or two paths from the original
face using the edge table until we reach a face with more than two neighbours. By
keeping track of already processed faces, we avoid considering the same chains
more than once. This also avoids infinite iteration in the case of closed loops.

After detection, each chain of small faces (with at least twoelements) is partially
repaired by replacing it by a chain of short edges, as shown inFigure 4(b). This is
done by joining mid-points of edges shared by small faces in the chain.

In the same way, chains of short edges are detected by finding short edges using
find shortedges and combining these in to chains usingfind edgechains.
The latter works in a similar way tofind facechains, where short edges con-
nected by vertices to one or two other short edges are detected. Each chain in the
edge list is replaced by a single edge, as shown in Figure 4(c), joining the ends of
the chain. Note that there can only be a single face on either side of the chain, be-
cause of the way a chain is defined. The geometry of the edge is set to the geometry
of the intersection of the adjacent faces. See also Figure 12(b).
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(a) Before modification (b) After modification

Figure 23. Replacing a sliver face by edges

4.4 Removing Sliver Faces

A sliver face is a long thin face. To decide if a face is a sliverface, we compute its
area, and the diagonal length of its bounding box. If the ratio of these two numbers
is smaller than the length tolerance, the face is consideredto be a sliver face.

Each “long side” of the sliver face can be bounded by one or more edges, as shown
in Figure 23. Each sliver face is replaced by an edge sequence. The vertices used
in the edge sequence are those vertices of the sliver face which are also connected
to some other edge. These vertices are joined by a chain of edges, as shown in
Figure 23. The two closest vertices are first connected by an edge. The remaining
vertices are joined one by one to the ends of the growing edge sequence in such
a way that the next vertex added is always the one which is closest to one end or
the other of the sequence. We finally update the face loops adjacent to the edge
sequence.

4.5 Merging adjacent faces and edges

Two adjacent faces with the same geometry (to within a tolerance) can arise in
a reverse engineered model, as shown in Figure 6(a). The edge(s) between them
should be removed and the two faces should be merged, as shownin Figure 6(b).

To detect such faces, the method considers each edge of the model. If the two faces
on either side of the edge are of the same type and have the samesurface parameters
(e.g. have the same normal vector and distance from the origin if planar) then the
two adjacent faces are merged. The method removes all commonedges between
the two faces. Vertices which only belong to a common edge andother edges of
the faces to be merged are also removed (seev2 andv5 in Figure 24(a)), and the
adjacent edges are merged (such ase1 ande2 in Figure 24(a)). If there is more than
one common edge between adjacent faces with the same geometry, all such edges
are removed, as shown in Figure 25.

Adjacent edges which are connected by a vertex only lying on two edges may also
exist. If just two edges meet at any given vertex, the vertex may be removed and
the edges may be merged. All vertices in the model are considered in turn to find
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Figure 24. Merging two faces
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Figure 25. More than one common edge between two faces with the same geometry

such cases. After removing the vertex, the face loops of the faces on either side of
the new edge are updated.

4.6 Detecting and removing small faces and short edges

The aim of this part of the processing is to discard small faces. Small faces are
detected by computing the area of each face. If the area of theface is smaller than
the square of the length tolerance, it is a small face. We remove a small face by
replacing it with a new vertex at the centroid of its vertices. Edges adjacent to the
small face are connected to this vertex. Edge loops of faces adjacent to the small
face are also updated. Note that small faces have already been determined earlier
and cached for this step.

Similarly short edges are detected easily as edges whose length is smaller than a
given tolerance. Each short edge is replaced by a vertex at its mid point, and the
surrounding topology is updated. Short edges were also detected and cached for
processing here by earlier steps.

5 Algorithm Analysis

Our algorithm runs the steps in the sequence explained in Section 4 on the initial B-
rep model. To simplify the discussion, we loosely usen to interchangeably denote
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the number of faces, edges, or vertices; doing so is justifiedby Euler’s formula
which is a linear relation between these quantities. Furthermore, while it is possible
to construct mathematical objects where a few faces have many vertices, and most
faces have just a small number, such objects are uncommon in engineering practice,
so we also assume that the number of vertices and edges for each face is no more
than a small constantm, and that each face has no more thanm neighbours. We
note that the number of gaps, small faces, short edges, and soon, must all be less
thann. We analyse each stage as follows.

Finding all edges belonging to gaps takes timeO(n). Thefind gaps method
first constructs a table linking the vertices with the half-edges they lie on. This can
be done inO(n) time. Then, using this table, groups of connected half-edges are
determined. Each edge belongs to only one such group. So an edge is considered
once as a seed (and ignored if it has already been added to another group) and
once to build up the sequence for the group. Thus, gap finding takes timeO(n).
Processing each gap requires the edges in the gap to be removed, and adjacent
topology to be updated. In the worst case, faces have to be intersected pairwise,
taking timeO(nm2).

Pinched face detection considers each face in turn, and makes a comparison of dis-
tances between each pair of edges of that face, taking timeO(nm2). Each pinched
face is modified in timeO(m). Thus the pinched face methods take timeO(nm2).

Assuming the area of each face can be computed in timeO(m), the time required
to detect small faces isO(nm). Chains of small faces are detected using a similar
approach to thefind gaps method. Again using a table, each face is at most
considered twice, so the time taken isO(n). Each face in a chain is replaced by an
edge, and the adjacent faces to the chain must be updated, which also takes time
O(nm).

AssumingO(m) time computation for area and bounding box for a face, sliver
faces are detected in timeO(nm), as each face must be processed. They are also
modified by theremove sliverfacemethod in timeO(nm), giving an overall
time ofO(nm).

Chains of short edges can be detected in timeO(n), as the length of each edge can
be found in constant time. Chains are replaced by a single edge, and the loops of
adjacent faces are also updated, also taking timeO(n).

Finding adjacent faces with the same geometry is done by comparing each face
with neighbouring faces, taking timeO(nm). Merging adjacent faces with similar
geometry takes timeO(n).

Finding small faces takesO(n) time; this is already done during the detection of
chains of small faces. When removing small faces, there may be m faces to adjust
around each problem. Hence, removing small faces can take timeO(nm). Simil-
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arly, finding and fixing short edges can take timeO(nm).

Merging edges which are connected by a vertex only lying on two edges requires
O(n) time for detection andO(n) time to repair.

Strictly, further justification is needed that when new topology is created, it does
not increase the size of the problem for later stages in some way. This is not dif-
ficult to see informally, as in no case is a problem resolved byadding more than
a local amount of new topology, and we have already assumedm to be a small
constant. This is also further justified by being able to fix the problems in sequence
as discussed in Section 3.2.

Each of the steps takes linear time with respect ton, given our assumptions above,
and so the algorithm for adjusting the topology is expected to take linear time for
realistic engineering objects.

However, in addition, a suitable new geometry must be generated which is consist-
ent with that topology. This is done as described in our earlier work [7]. Regener-
ating the geometry takes much longer than finding and correcting the topological
problems. For example, for Object8 described in our experiments later, the topo-
logical problem detection and repair process takes under 2 seconds (on a 450MHz
Pentium III computer running Linux); running our geometricreconstruction al-
gorithm (on a 700MHz Pentium III computer) to detect geometric regularities in
this model and choose an overall set of constraints coming from both topological
and geometric beautification takes50 seconds. Numerical constraint solving and
generating the final geometry for the new model takes148 seconds.

6 Experiments

This section describes a number of practical tests which demonstrate the capabilit-
ies and speed of our topological beautification algorithm.

6.1 Test objects

Various test objects were used to verify that our topological beautification algorithm
produces the expected results. Objects1 to 7 are simple models exhibiting only a
single problem. Objects8 to 10 are complex models which contain more than one
problem.

Objects1 to 4 are derived from cubes. Object1 has a face gap in the top face, as
shown in Figure 26(a). Object2 has a multiple face gap, as shown in Figure 26(b).
Object3 has an edge gap on the top right edge, as shown in Figure 26(c).Object4
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Figure 26. Objects1, 2 and3 before and after modification

before after

(a) (b) (c)

Figure 27. Objects4 and5 before and after modification

before after before after

(a) (b)

Figure 28. Objects6 and7 before and after modification

is a cube with a sliver face on the top left side, as shown in Figure 27(a). Object5
illustrates a pinched face, and is composed of two blocks whose top two faces have
almost the same geometry: see Figure 27(b); results of modifying it are shown in
Figure 27(c). Objects6 and7 are based on four-sided pyramids. Object6 has a
small face in place of the apex, as shown in Figure 28(a). Object 7 has a short edge
in place of the apex, as shown in Figure 28(b).

Object8 is a plate with blocks and pyramids on top (see Figure 29(a)).The boss at
the top left has an edge gap on its top right edge. The left sideface of this boss and
the left side face of the plate produce a pinched face. The middle boss at the back of
the plate has a small sliver face on its top front side. The middle boss at the front of
the plate has a vertex gap on the top left front side. On the right of the plate, there
are two pyramids. The front pyramid has a small face in place of its apex and the
other pyramid has a short edge in place of its apex. Between the two pyramids, the
top face of the plate has a small cylindrical gap.
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Figure 29. Objects 8 and 9 before modification
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Figure 30. Object10 before modification

Object9 is prism with a pyramid on top and bottom (see Figure 29(b)). The top
pyramid has a short edge at its apex and the bottom pyramid hasa small face at its
apex. On the top left of the prism, there is a vertex gap. On thetop right side of the
prism, there is small sliver face. On the bottom front side, there is an edge gap.

Object10 is a complex model, shown in Figure 30, which contains pinched faces
(2 and9), a chain of small faces (3), an edge gap (4), two face gaps (5 and7), two
small faces (6 and11) and a sliver face (8). In the model,1 is a conical boss and
10 is a spherical boss. Note that sliver face8 is adjacent to multiple face gap5 and
small face11.

6.2 Topological Beautification Results

Table 2 shows the results of running the algorithm on these objects. Columns2
and3 are the number of faces and edges of each model before topological beauti-
fication. Columns4 and5 are the number of faces and edges of each model after
beautification. Column6 is the time taken to run the algorithm, and includes to-
pological problem detection and topological repair time only. Our algorithm was
implemented on a 450MHz Pentium III computer, using Linux and ACIS as the
core modeller. Each of the test objects was successfully modified as expected.
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Test Before modification After modification Time

object Number Number Number Number (seconds)

of faces of edges of faces of edges

1 6 16 6 12 0.89

2 6 15 6 12 0.95

3 6 19 6 12 0.87

4 7 15 6 12 0.90

5 11 24 10 24 0.95

6 6 12 5 8 0.85

7 5 9 5 8 0.78

8 31 83 28 64 1.61

9 17 51 15 31 1.22

10 21 40 10 15 1.59

Table 2
Topological modification results for Objects1 to 10

t = 0.0237n + 0.7386
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Figure 31. Algorithm performance

6.3 Running time

To evaluate the performance of our algorithm, we ran it on a larger variety of ob-
jects, including those shown earlier and others. Running times were averaged over
several runs for each test object. The times taken and results of modification are
summarised in Table 3. A linear analysis was performed to findthe best fit to the
timing data of the formt = a×n+b, wheret was the time taken,n was the number
of faces anda, b were constants to be fitted. The results gave an empirical perform-
ance for the algorithm of timet = 0.0237 × n + 0.7386. A plot of this fit is shown
in Figure 31; good agreement is obtained with the predicted linear performance for
the topological beautification algorithm.
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7 Discussion

Some steps of the algorithm we present are computationally intensive, and were
used with the aim of demonstrating an overall working systemin a research con-
text, rather than making each component individually as fast as possible. One such
case is the need to calculate the area and bounding box of a face to decide if it is a
sliver face. Undoubtedly some components could be tuned or replaced with more
efficient methods. Nevertheless, our methods are already ofan acceptable speed,
taking just a few seconds, especially when placed in the context of an overall re-
verse engineering system where data acquisition alone can take many hours.

Our algorithm does not handleall possible cases of topological beautification.
Firstly, it is only intended to handle those cases which we believe will arise in
raw B-rep models coming from our approach to model building in reverse engin-
eering. Secondly, some of our algorithms make assumptions about the kinds of
defect expected, and it is certainly possible that cases could arise which break these
assumptions. While it is not too difficult to generate such examples by hand with a
little thought, it is not clear whether such cases can occur in real reverse engineer-
ing. A much more substantial research and development project would be needed
to rigorously analyse and demonstrate which cases could andcould not occur, and
to ensure that a beautification algorithm handles all of the possible cases correctly.
However, we believe that our algorithm is of practical use, and can automatically
correct many problems, while acknowledging that user assistance might be needed
in certain cases. This is in line with the experience of research into development of
related algorithms for CAD model healing.

Three specific problems are noted which our algorithm cannotcurrently handle,
and for which further research is needed:

• Sliver faces.We have assumed all sliver faces are unbranched. However, itis
possible to have branched sliver faces such as the one shown in Figure 32(a).

• Networks of connected faces and edges.When detecting chains of faces and
edges, we always assume that there is only a single chain, andnot a more com-
plicated branched or closely connected area of small elements. This is justified
by observing that if an original natural face has been split into many small faces,
then the original data is too noisy to reconstruct the model properly and should
be improved. However, at least in some cases it may be possible to detect these
defects and correct them in a beautification step. Note that this may also need
us to consider the global structure (e.g. a network of small faces along a large
number of natural edges of the object).

• Unrealisable topology.As the new topology is constructed, geometric con-
straints are generated to enforce that topology. It may be possible that constraints
describing the topology cannot be realised due to the natureof the geometry, es-
pecially if the user has chosen an inappropriate tolerance value. For example,
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(a) A branched sliver face (b) Multiple pinching

Figure 32. Problem cases

consider the cylinder atop a block shown from above in Figure32(b). If we were
to try to fix all instances of pinching here, the new vertices produced would im-
pose four positional constraints on the circular cross-section of the cylinder—but
a given circle is completely determined by three points.

More consideration is also needed of how robust some of the ideas are when ap-
plied to extreme or unusual cases. The method given to detecta sliver face clearly
makes sense for nearly planar, approximately straight sliver faces, but could give
questionable results for long thin helical surfaces, for example. Overall, there is a
trade-off to be made between speed, robustness, and generality of methods which
would need to be carefully addressed in a commercial implementation of topolo-
gical beautification.

Further investigation is also needed to determine to what extent the proposed ap-
proach is applicable to reverse engineered objects having free-form surfaces, and
whether other specific kinds of topological beautification may be needed in such
cases.

8 Conclusions

We have presented an efficient topological beautification algorithm for use in re-
verse engineering. It can detect and modify many topological defects of reverse en-
gineered models including gaps, short edges, small faces, pinched faces, and sliver
faces. Our experiments show that the algorithm produces theexpected corrections.
The algorithm takes approximately linear time to detect andcorrect topological
errors in realistic engineering objects. Modifying the accompanying geometry, as
described in [6,7], takes much longer. We note that in this paper we assume that
an appropriate tolerance is provided by the user or some other mechanism such
as a transitive clustering of involved positions. In many cases this tolerance can
be found easily, but more research is required to devise an adaptive method for
detecting appropriate local tolerances automatically.

34



9 Acknowledgements
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Before modification After modification Time

Number Number Number Number (seconds)

of faces of edges of faces of edges

5 9 5 8 0.78

5 9 5 8 0.93

6 12 5 8 0.85

6 15 6 12 0.95

6 16 6 12 0.87

6 19 6 12 0.93

7 15 6 12 0.87

7 15 6 12 0.83

7 15 6 12 0.90

8 16 7 15 0.94

8 28 7 15 0.97

8 28 7 15 0.99

9 21 6 12 0.89

11 24 10 24 0.95

11 24 6 12 0.89

16 32 15 31 1.08

17 49 15 31 1.24

17 49 15 31 1.15

17 51 15 51 1.22

21 40 10 15 1.59

22 57 6 12 1.08

26 71 28 64 1.36

27 69 18 40 1.35

29 80 23 52 1.41

31 81 23 52 1.49

31 83 28 64 1.48

32 81 28 64 1.39

33 84 28 64 1.50

33 84 28 64 1.61

Table 3
Test results for further objects 37


