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Approximate Congruence Detection of Model Features for Reverse Engineering

C. H. Gao F. C. Langbein A. D. Marshall R. R. Martin

Department of Computer Science, Cardiff University
PO Box 916, 5 The Parade, Cardiff, CF24 3XF, UK

Abstract

Reverse engineering allows the geometric reconstruction
of simple mechanical parts. However, the resulting models
suffer from inaccuracies caused by errors in measurement
and reconstruction so such models do not have the exact
congruences, symmetries and other regularities the original
designer intended. We wish to impose such regularities in
a beautification process. This paper discusses the particu-
lar problem of detecting approximate congruences between
parts (e.g. a pair of handles) of a reconstructed B-rep
model, so that a subsequent step can enforce them exactly.
A practical detection algorithm is given for models defined
using planes, spheres, cylinders, cones and tori. Analysis of
the algorithm and experimental results show that expected
congruences are detected reasonably quickly.
Keywords: Approximate Congruence Detection; Beautific-
ation; Reverse Engineering; Geometric Modelling.

1. Introduction

Reverse engineering the shape of a 3D object entails re-
constructing a geometric model of the object from meas-
ured data [22, 23]. Our goal is to create a system that re-
constructs B-rep models of simple engineering objects with
a minimum of human interaction, usable by naive users
as well as engineers. For maximum utility, the generated
model should have all the intentional geometric regularities
present in the original, ideal, design of the part.

This paper considers objects made from planar, spher-
ical, cylindrical, conical and toroidal surfaces that either
meet at edges, or are connected by fixed-radius rolling ball
blends. It has been shown [14, 19] that a wide range of
mechanical components can be described solely using these
surfaces; algorithms are available that reliably determine
such faces from point clouds [15]. We assume here that
the blends are represented as edge attributes in the initial
model. Thus, they are derived from primary surfaces in a
final model building step, and so can be ignored in the rest
of the paper.

In reverse engineering, numerical errors occur in the re-
construction algorithms, and noise is present in measured
data. Additional errors may arise due to wear of the object,
and the manufacturing method used to make it (e.g. added
draught angles). Reverse engineering practice usually fits
each face independently of the other faces in the model.
However, we wish to recover a geometric model of the ideal
object that the designer conceived. We propose to improve
the reconstructed B-rep model by adjusting it in a separate
beautification post-processing step [11, 12, 13, 18, 19].

To be able to enforce desired regularities on the model,
they must first be detected. Here, we consider the problem
of detecting approximate congruences between parts of the
object (‘features’). This will allow us to make features ex-
actly congruent where before they were only approximately
congruent, and also align features in special relative orient-
ations where before they were only approximately aligned.

For simplicity, we assume that all faces are of the correct
type, e.g. a large radius cylinder is not mistakenly represen-
ted as a plane. We also assume that the topology of congru-
ent parts is the same (e.g. that one of them does not have
very small faces or edges where the other does not). Al-
lowing for such errors could easily be incorporated into the
framework described here, at a relatively small extra cost.
Merging adjacent points caused by small topological errors
when looking for symmetries is addressed in [19]; a similar
approach is applicable here.

This paper considers detection of congruences; complete
object symmetries are studied elsewhere [18]. A given fea-
ture may be symmetric itself, or a set of congruent features
may be arranged on a symmetric pattern. Sometimes an ob-
ject symmetry may be incomplete, but we still wish to find
congruences between parts. Finding incomplete symmetry
is harder than complete symmetry, but finding congruences
can provide some hints.

When we detect a congruence, we also want the iso-
metry (transformation mapping) relating the congruent fea-
tures, as we not only wish to make each copy of the feature
identical, but we also wish to arrange them in the model in
a beautified relationship.

Our overall strategy is to identify sets of congruent fea-



tures, and the isometries relating them. We also check if
each feature posseses an approximate symmetry, and if the
set of features is related by an approximate symmetry; this
processing is not described further in this paper.

Our problem can be seen as a generalized registration
problem between sets of discrete, identified points. Regis-
tration algorithms in computer vision [5] are related, but op-
erate on large amounts of data. Our models have relatively
few points, so such algorithms are not directly useful. (Also
in computer vision, the correspondences between points to
be registered are generally not known in advance.)

Our method seeks all sets of approximately congruent
features of a model; a feature is defined as some set of
connected faces. The number of detected congruence sets
should be minimal in the sense that none of the elements of
one set is approximately congruent to an element of another
set. The features should be maximal in the sense that if two
features are congruent, it is not possible to extend them by
adding further connected faces, while retaining congruence.

For example, the model in Plate 1(a) comprises three cu-
bical bosses located on top of a octahedron; the bosses are
identical except that the left hand boss also has a cylindrical
pocket in it. Our algorithm finds the following information:
(i) The approximate congruences between the side faces of
the octahedron—the 8 red faces in Plate 1(a). They posses
8-fold approximate symmetry. (ii) The approximate con-
gruences between the three object parts each composed of
the four side faces of one of the blocks—the 12 red faces
in Plate 1(b). These parts each have a 4-fold approximate
symmetry. (iii) The approximate congruence between the
five faces of the two right-hand bosses—the 10 red faces
in Plate 1(c), also having 4-fold approximate symmetry.

2. Previous work

Exact congruence between polyhedra has been studied
extensively. Alt et al [2] and Atkinson [4] present optimal
O(n log n) algorithms for geometrical congruence (n is the
number of vertices). Akutsu [1] presents a randomised al-
gorithm taking O(n(d−1)/2 log n) time for determining the
congruence of point sets in d-dimensions. The above al-
gorithms calculate the transformation between two point
sets in O(n log n) time, but can be hard to implement.

Checking exact congruence is much easier than checking
approximate congruence, because in the exact case we only
need check if two things are exactly the same. In the ap-
proximate case, two things may match within tolerance, but
this matching is no longer unambiguous: matching cannot
be done sequentially. For example, given lengths 1, 2, 3, 4,
if we try to match them with 2, 3, 4, 1 in turn, with toler-
ance 1.5, then we notice only in the last step that 4 does not
match 1. We must try other matchings to find the solution.

For approximate congruence detection between two sets

of n points, Alt et al. [2] present an O(n8) algorithm.
Schirra’s [20] approximate congruence algorithm takes
O(n4) time to test ε-congruence in the plane, while Hef-
fernan [9] presents an O((ε/δ)6n3) approximate congru-
ence algorithm for point matching, where ε is a tolerance,
δ is a positive real number smaller than ε. Ambuhl et al [3]
describe an O(n8.5) algorithm for computing approximate
congruence of largest point sets. All these algorithms are
based on distance checking using a given tolerance ε.

Our approximate congruence algorithm has O(n4.5)
time complexity, given certain assumptions concerning the
nature of the object being analysed. It finds congruent parts
of a single object, and is capable of handling a wider range
of models than point sets and polyhedral objects. As well
as finding congruences, it also reports the isometric map-
ping(s) relating congruent features. Our algorithm does not
need a predetermined tolerance, but automatically chooses
a tolerance level. The way in which the tolerance is chosen
allows a greedy approach to matching which is the basic
reason for the good performance.

3. Congruence of faces from a set of points

One main step in our algorithm determines if two faces
are congruent. This can be done by ensuring that the faces
are portions of surfaces with the same defining parameters
(e.g. radii) and patch boundaries (edge loops). The bound-
aries can only match if they are made up of correspond-
ing congruent curves. The curves are congruent if and only
if they represent the same portion of the same space curve
with the same parameters.

If the underlying faces are compatible (see Sections 5.3),
then we choose a set of characteristic points according to
the type of face. These are sufficient to guarantee that if the
characteristic points have a given congruence, so do the un-
derlying faces; we must do the same for the curves forming
the face boundaries as part of this process.

In certain special cases, e.g. two complete circles of the
same radius, no points at all are needed to check congru-
ence. However, when we later perform tests on groups of
faces, we still need a representative point for e.g. a circular
face with such a boundary, as described later.

We now consider congruence of edges and faces, ex-
plaining which characteristic points are used, and briefly
justifying that these are sufficient. We first consider edges,
as congruent faces must have congruent edges.

3.1. Congruent edges

For straight line segments, we take both end points as
the characteristic points. For circular arcs of equal radii, we
take end points and the mid-point of the arc. Any 3 points
define a unique circle; the mid-point allows us to choose
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Figure 1. Characteristic points of straight
lines, circular arcs and elliptical arcs

between the longer and shorter arc with given end points.
Complete circles are congruent if they have the same radii;
we use their centres as characteristic points when compar-
ing groups of faces. See Figure 1(a).

For elliptical arcs of the same major and minor radii, we
take 5 points which are the end points and points 1

4 , 1
2 , 3

4
of the way around the arc—see Figure 1(b). Five points
define an ellipse, and can disambiguate between the larger
and shorter arc. Complete ellipses of the same radii are con-
gruent; we use the centre and the 4 points where the prin-
cipal axes meet the ellipse as the characteristic points when
comparing groups of faces.

We assume that freeform edges are represented as
NURBS curves. Control points give suitable characteristic
points for matching using algorithms like those in [7, 10,
16]. As the curves may come from different sources, such as
intersection routines or fitting procedures, degree elevation
and / or reparametrisation may be needed before they are
comparable. To match free-form curves with lines, circles,
or ellipses, they must be converted to NURBS form first.

3.2. Congruent faces

For a plane, at least 3 points are needed to uniquely
define it; 4, 5, 6, and 7 points are needed for a sphere, cyl-
inder, cone, and torus respectively [6].

We initially determine possible congruence of any two
faces having matching face types by checking if their
boundary edge loops are congruent. We then compare suf-
ficient identified points to determine the underlying surface
uniquely. These points come from the face boundary, and
in the case of closed underlying surfaces, we also include
a point inside each face: a boundary splits a closed surface
into two finite pieces, and we need to select the correct one.
The inner point is chosen as the centre of the face.

In detail, for planar faces, at least 3 points are needed; we
normally take the end points of each edge in the boundary
of the face. However, if only 1 closed edge bounds the face,
we take points at the start, 1

3 , and 2
3 of the way around the

edge; if 2 edges form the edge loop, we take the end and
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Figure 2. Characteristic points of planar faces

mid-points for each edge. See Figure 2.
For spherical faces, at least 4 points are needed including

the centre of the face. The other 3 are normally the ends of
the edges bounding the patch. If there are less than 3 edges,
we proceed as in the planar case to obtain sufficient points.
For cylindrical, conical and toroidal faces, we use the same
general principles, noting whether they are open or closed
underlying surface types.

Many special cases may arise, and must be carefully
handled. A few examples follow. A further planar case is
a face bounded by two loops, an inner and outer loop, each
having only one edge. Not all 5-tuples of points serve to
define a cylinder, so we must be careful to choose a generic
set of 5 points. Given a circular edge with no vertices on
it, we must be careful to choose three representative points
which are in the same relative positions to the surrounding
faces—we must consider more than just the edge itself.

4. Algorithm outline and example

Our algorithm aims to find approximate congruences
between parts of an input 3D B-rep model; the output is
a list of approximate congruences, together with the iso-
metries which relate the congruent features. A single pair
of features may be related by more than one isometry if
the features themselves have an approximate symmetry [2].
E.g. the two right-hand bosses in Plate 1 may be aligned in
more than one way because of their symmetry.

We look for seed congruences within the model, then
use a region growing approach to grow congruences from
the seeds. The top level of the algorithm checks for
approximate congruence between every compatible face
pair in the model using the congruence method. The
compatible method quickly eliminates pairs which can
not be congruent. For each congruent face pair found and
not already used, the main algorithm calls expand in an
attempt to extend this congruence to include adjacent faces,
then their neighbours, and so on. Again compatible and
congruence are used.

In expand, for each initial pair of congruent faces, two
lists are set up, each containing one of the faces. Further
pairs of faces are then considered, each being a neighbour
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list2=(6)
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list2=(6 8 9)((1 3 4)(6 8 9))

Figure 3. Illustration of finding approximate
congruent faces

of some face in each list respectively. If the two new faces
are congruent, then we try adding them to the lists which
they neighbour, and see if a congruence still exists between
the extended lists. If so, the new lists are retained, otherwise
the new pair of faces is discarded. This process is repeated
until there are no pairs of faces neighbouring the lists left to
consider, resulting in a maximal congruence of two sets of
adjacent faces.

As each such congruence is found, it is entered into a res-
ult list, together with the related mapping(s). After all con-
gruences have been found, this list is rationalised to merge
common congruences.

A simple example is used to demonstrate the algorithm.
Suppose there are two cubical features at either end of an
object (see Figure 3(a)). Suppose the front faces (1, 6) of
the two cube features (see Figure 3(b)) are considered as a
pair. Firstly, we call compatible to check whether con-
gruence of the two faces is possible. They are both planar
faces with one external edge loop comprising four straight
edges of unit length, so compatible returns true for this
pair of faces. This causes a call to congruence using the
coordinates of the characteristic points of each face. These
faces are congruent, so the algorithm calls expand to ex-
tend the congruence to neighbouring congruent face pairs.

In expand, from the initial face pair, we put face (1) in
list1 and face (6) in list2. Suppose we next find that
bottom face (0) is adjacent to list1, and bottom face (5)
is adjacent to list2. We call compatible to check pos-
sible congruence of the faces (0 5). They can not be congru-
ent because the circle radii of their internal edge loops are
not equal. These two faces are ignored. We might then find
face (2) to be adjacent to list1 and face (7) to be adjacent
to list2. They are also not compatible and are ignored.

Continuing, we might find that face (4) is adjacent
to list1 and face (9) is adjacent to list2. The
compatible and congruencemethods show that faces

00: find congruences(body)

01: INPUT: body

02: OUTPUT: list of congruence lists,

03: list of mapping lists

04: integer n = number of faces(body)

05: global array of faces f[n]

06: f[1..n] = get faces(body)

07: array of integers checked[n, n]

08: checked[1..n, 1..n] = 0

09: //-1 means not congruent

10: // 0 means not checked

11: // 1 means congruent

12: // 2 means already added

13: list of congruence lists = {},

14: list of mapping lists = {},

15: FOR i = 1 to n

16: FOR j = i + 1 to n

17: IF checked[i, j] != 2 THEN

18: IF checked[i, j] == 0 THEN

19: checked[i, j] = compatible(f[i], f[j]) &&

20: congruence(f[i], f[j])

21: IF checked[i, j] == 1 THEN

22: result = expand(i, j)

23: congruence lists = append(result.face lists)

24: mapping lists = append(result.map list)

25: END FOR

26: END FOR

27: rationalise(congruence lists, mapping lists)

28: RETURN congruence lists, mapping lists.

Figure 4. The main algorithm

(4 9) are congruent. We add face (4) to list1 and face (9)
to list2. We then call congruence on the two lists,
list1 = (1 4) and list2 = (6 9). They are congruent
(see Figure 3(c)), so faces 4 and 9 are kept in these lists.
In a similar way, faces (3) and (8) are added to list1 and
list2 (see Figure 3(d)).

No further adjacent congruent face pairs can be found
for those faces in the face lists. Thus, the faces (1 3 4)
in list1 form a feature which is congruent to the feature
comprising faces (6 8 9) in list2. This fact is then stored
in the result list as ((1 3 4) (6 8 9)); the corresponding iso-
metry is also stored.

The algorithm continues processing all further face pairs.
Any other congruent face groups are also found.

5. Algorithm details

5.1. The main algorithm

The main algorithm is shown in Figure 4. The top level



of the algorithm finds congruent face pairs as seeds, and
then tries to expand them to congruent adjacent face groups.

First, the array f collects all faces of the B-rep model
(line 6). A global integer array, checked (line 8), is set
up to describe the congruence state of each possible pair of
faces (see later). Then (lines 15–26), in two FOR loops,
the algorithm checks all face pairs. Any pair which has
already been output as part of a congruent group of faces
(checked = 2) is skipped.

If congruence has not yet been decided for the pair
(checked = 0), we check if the pair is potentially con-
gruent using the compatible method. If so, we call
congruence to decide if they are related by an approx-
imate congruence. If this face pair is congruent and has not
yet been used (line 21), we call expand to expand this pair
to include congruent adjacent face pairs, which gives two
lists of congruent adjacent sets of faces which are as large
as possible (line 22). Two face lists (face lists) repres-
enting the two congruent features, and a list giving their iso-
metric mapping(s) (map list), are returned by expand.
These are added to the list of congruences found, and the
list of mappings (lines 23–24).

Congruences may be related. For example, suppose that
face set A is congruent to face set B, and furthermore that
face set B is congruent to face set C. We should merge the
congruence pairs (A, B) and (B, C) to give the overall con-
gruence list (A, B, C), and the mapping list must also be
kept in step. Line 27 carries out this merging. Finally, line
28 returns the list of congruences and associated mappings.

In the main algorithm, and in expand, checking con-
gruence of two faces is done frequently, and the result for
any face pair may be needed repeatedly. To avoid repeat-
ing the computation, the results are cached. A global array
checked is used to mark the status of each face pair; it
is used by both the main algorithm and expand. A value
of −1 means the two faces are not congruent. 0, the initial
value for all face pairs (line 8), means the face pair has not
yet been checked. 1 means the two faces have been checked
and are congruent. 2 means the two faces are congruent and
they have already been used as part of some face group in
a congruence. Only if a face pair has not already been con-
sidered (line 18), is it checked: if the checked value is
still 0, the congruence of the face pair is determined and
the result is written to the checked array (line 19). If the
checked value of the face pair is 1, i.e. the face pair is
congruent but not yet used, we call expand to expand this
congruent face pair to adjacent congruent face pairs. If the
checked value of the face pair is −1, this pair is ignored
and is not processed by expand.

The expandmethod is shown in Figure 5. The input is a
congruent face pair and the output comprises two approxim-
ately congruent features, as face lists, and a list of isometric
mappings relating them. The initial face pair is expanded

00: expand(i, j)

01: INPUT: face pair indices i, j,

02: OUTPUT:face lists and mapping list

03: list of faces list1 = list(f[i])

04: list of faces list2 = list(f[j])

05: list of faces list3 = f-f[i]-f[j]

06: WHILE an unused neighbour f[m] of list1 remains

07: list3 = list3 - f[m]

08: WHILE an unused neighbour f[n] of list2 remains

09: IF checked[m, n] == 0 THEN

10: checked[m, n] = compatible(f[i], f[j]) &&

11: congruence(f[i], f[j])

12: IF checked[m, n] == 1 THEN

13: list of faces lista = list1 + f[m]

14: list of faces listb = list2 + f[n]

15: IF congruence(lista, listb) THEN

16: checked[m, n]=2

17: list1 = list1 + f[m]

18: list2 = list2 + f[n]

19 list3 = list3 - f[n]

20: BREAK

21: END WHILE

22: END WHILE

23: result.face lists = list(list1, list2)

24: result.map list = map list

25: RETURN result

Figure 5. The expand method

to include all their neighbours which preserve congruence,
then the neighbours’ neighbours, and so on.

5.2. The expand method

The two initial faces are put into two separate lists (lines
3–4), and these lists are expanded. Faces are added to each
of the two lists such that (i) each list is a connected group of
faces, (ii) each list is related by a congruence to the other,
and (iii) each list is as large as possible.

The two WHILE loops process all congruent face pairs
(lines 9–11) neighbouring each list, as each list grows.
If face f[m] is adjacent to list1, f[n] is adjacent to
list2, and f[m] and f[n] are related by an unused ap-
proximate congruence (line 12), we create two temporary
lists: lista = f[m] + list1 and listb = f[n]
+ list2 (lines 13–14). We then call congruence to
determine if lista and listb are congruent (line 15).
If so, we permanently add f[m] and f[n] to list1 and
list2 respectively (lines 17–19). We repeatedly add fur-
ther such pairs to list1 and list2 until no more ad-
jacent congruent face pairs exist in the face list (lines 6–
22). The checked array is used for efficiency as explained
earlier. As face pairs are added to list1 and list2, their



checked values are set to 2 to avoid being considered fur-
ther (line 16). list1 and list2 are returned in a res-
ult list (line 23). The list of isometries is also returned;
it comes from a global variable set by the congruence
method (line 24).

5.3. The compatible method

Both the main algorithm and expand call
congruence to find an approximate congruence between
two sets of points if any exists. The congruence method
is expensive, especially for complex faces. Thus, we
use the compatible method to decide quickly if a
pair of faces can potentially be congruent before we run
congruence. For example, if one face is planar and the
other face is cylindrical, the two faces cannot be congruent.
The principles used by the compatible method are that
faces can only be congruent if they satisfy the following
requirements (within tolerances where appropriate):

Faces must have the same face type (planar, cylindrical,
etc.). Cylinders, cones, spheres and tori must have the same
convexity or concavity. Radii of cylinders, cones, spheres
and tori must agree. Semi-angles of cones must agree.
Faces must have the same number of edge loops. Corres-
ponding loops must agree in type (loops may be external,
internal or end loops). Corresponding loops must have the
same number of edges. Corresponding edges must agree
in length. Corresponding vertices must have the same num-
ber of edges around them. Face types around corresponding
vertices must be consistent.

If two faces meet all the above requirements, they may
be a congruent face pair. If any one of the above tests fails,
we do not continue checking the others, and mark the face
pair as non-congruent.

5.4. The congruence method

The congruence method decides if two sets of faces
are congruent. Its input comprises two face lists. Its output
is a boolean variable indicating whether the two face sets are
congruent or not. If they are, the global variable map list
is set to the list of isometries relating the two face sets.

First, the characteristic points are collected from each
face. If there is at least one transformation which maps the
corresponding characteristic points in the two face sets, the
two face sets are congruent. A pair of corresponding tet-
rahedra are sufficient to determine an isometry. Thus, to
try to find the transformation, we compute a special tetra-
hedron from each point set, and find the mapping relating
the tetrahedra, if it exists—if not the sets are not congruent.
We then simply have to test if this mapping correctly maps
the rest of the points in the two sets. This is much quicker
than using all points to find the isometry; a similar method

00: congruence(ls1, ls2)

01: INPUT: two face lists

02: OUTPUT: boolean congruent and mapping(s)

03: list p = get characteristic points(ls1)

04: list q = get characteristic points(ls2)

05: integer n = length(p)

06: bool congruent = false; global list map list = {}

07: point cp = centroid(p); point cq = centroid(q)

08: real tol = min(mini6=j(d(pi, pj)), mini6=j d(qi, qj ))/2

09: real max length = 0; point t1

10: FOR i = 1 to n

11: IF max length < d(cp, pi) THEN

12: max length = d(cp, pi); t1 = pi

13: END FOR

14: real max area = 0; point t2

15: FOR i = 1 to n

16: IF max area < area(cp, t1, pi) THEN

17: max area = area(cp, t1, pi); t2 = pi

18: END FOR

19: real max volume = 0; point t3

20: FOR i = 1 to n

21: IF max volume < volume(cp, t1, t2, pi) THEN

22: max volume = volume(cp, t1, t2, pi); t3 = pi

23: END FOR

24: IF max volume ≈ 0 THEN return plane cong(ls1,ls2);

25: map list = {}

26: FOR i =1 to n

27: IF |d(cpt1) − d(cqqi)| < tol THEN

28: FOR j = 1 to n, j != i

29: IF |d(cpt2) − d(cqqj )| < tol &&

30: |d(t1t2) − d(qiqj )| < tol THEN

31: FOR k = 1 to n, k != i, k != j

32: IF |d(cpt3) − d(cqqk)| < tol &&

33: |d(t1t3) − d(qiqk)| <tol &&

34: |d(t2t3) − d(qjqk)| < tol THEN

35: transf = calculate matrix(cp, t1, t2, t3, cq, qi, qj , qk)

36: IF pointset isometric(transf) &&

37: face mapping(transf) THEN

38: append(map list, transf)

39: congruent = true;

40: END FOR

41: END FOR

42: END FOR

43: RETURN congruent

Figure 6. The congruence method

is used in Mills’ symmetry algorithm [17]. (The tetrahedra
may not be unique, leading to multiple mappings, as noted
earlier.) See Figure 6.

Lines 3–4 get the characteristic points for the faces in
each face set. We then compute the special tetrahedron for
one point set (lines 7–23). Ideally we would like to use the



largest non-degenerate tetrahedron formed by the point set.
This is expensive to compute, so instead we find the tetra-
hedron with initial vertex the centroid of the point set (line
7), together with those points in the set which maximise the
length (lines 9–13), area (lines 14–18) and volume (lines
19–23) of the simplices formed as the second, third and
fourth points are added. Line 8 sets the tolerance for match-
ing points after transformation to half the smallest distance
between any pair of points in either set; this ensures that the
wrong points are not matched.

The whole point set is two dimensional if the com-
puted tetrahedron volume (line 24) is approximately zero, in
which case we call a similar plane congmethod (omitted
here) to return the congruence of the two planar faces.

In lines 25–42, we try to map the tetrahedron of the first
point set to all suitable tetrahedra from the second point set
(there may be more than one), and then check if the dis-
tances between all corresponding points between the two
point sets are preserved. If they are, we also check that the
transformation has mapped the correct face types into each
other to guarantee this is a correct congruence.

Lines 26–34 identify points from the second set which
form a tetrahedron matching the tetrahedron from the first
set. Line 35 determines the transformation by solving a
linear system relating the mapped points of the tetrahedra.
Lines 36–37 check that the mapping preserves distances
from centroids for corresponding points in the two sets, and
preserves face types. If so, lines 38–39 add the transforma-
tion matrix for the congruence to the list of mappings, and
set the result to true.

6. Algorithm analysis

We now consider the running time of the algorithm. For
simplicity, we use n to interchangeably denote the number
of faces, edges, and vertices; doing so is justified by Euler’s
formula which is a linear relation between these quantities.
Furthermore, while it is possible to construct objects where
a few faces have many vertices, and most faces have just a
small number, such objects are uncommon in engineering
practice, so we will also assume that there is approximately
a limited number (i.e. bounded by a constant) of vertices
and edges per face. This assumption means that n is pro-
portional to the number of characteristic points for the ob-
ject. It also means that each face has a bounded number of
neighbours. Thus, each face has at most m characteristic
points, and each face has at most j neighbours where m
and j are small constants. While it is possible to construct
objects which do not meet these assumptions, many objects
which are being reverse engineered will meet them, at least
approximately. Thus, what follows is not an analysis of the
worst case performance of our algorithm, but a discussion
of how well it might perform in practice.

The main algorithm runs over all face pairs, and tests if
the pair is congruent using the congruence method. For
each congruent face pair, it calls expand to expand the pair
to a list of adjacent congruent faces.

Suppose the congruence checker is called on two sets
of p points. Lines 3–23 take time O(p2) because of line
8. Lines 26–35 find mapped tetrahedra, taking O(p3) time.
However, there are no more than O(p1.5) matches pos-
sible [8]. Lines 36–37 call pointset isometric and
compatible; each takes time O(p2). Thus overall, the
congruence method takes time O(p3.5).

Let us now examine the overall algorithm. We will do so
by considering three cases, the third of which is worst.

Case one: the object has no congruent features. Only
O(n2) pairs of faces with m points each are checked for
congruence; no expanding of lists occurs. Each call to the
congruence checker takes time O(m3.5) = O(1). Thus the
overall algorithm is O(n2).

Case two: there are n/2 separate congruences, and each
congruent face pair has no neighbouring congruent faces.
Each call to the congruence checker takes time O(m3.5),
as no face pairs are expanded; there are n/(2m) such calls.
Again, in this case, the algorithm takes time O(n2).

Case three: there is a single congruence between the
two halves of the object. Starting with a candidate face pair,
expand is only called once. There are many repeated calls
to congruence as the face lists are expanded. We make j
calls at each stage, on sets of m, 2m, . . . , n/2 points. This
takes time O(n2) + j

∑n/2−1
i=1 O((mi)3.5) = O(n4.5)

Case three is the worst case under the assumptions
we have made, which may not hold in practice—for ex-
ample, if the object parts have a lot of symmetries, then
the congruence checker may be called more often. How-
ever, such are not normally likely to arise. Thus, overall, we
expect the running time to be somewhere between O(n2)
and O(n4.5), assuming that each face has a bounded num-
ber of neighbours.

7. Experimental results

7.1. Test objects

Various objects were used to validate the congruence de-
tection algorithm. Objects 1 to 4 are simple models with a
variety of features. Although Tate’s algorithm was designed
to detect partial symmetry rather than feature congruence,
we also compare some of our results with hers. Objects 5
and 6 are two models from her thesis [21].

Object 1 is a hexagonal block with a cubic pocket
(Plate 2(a)). Object 2 is a hexagonal block with two con-
gruent toroidal “handles”, two congruent cylindrical faces,
two congruent hexagonal bosses, a cubical boss, two con-
gruent spherical bosses and a spherical pocket, as shown in



(Plate 2(b)). Object 3 is an octahedral block with three cu-
bical bosses, one of which has a cylindrical hole (Plate 1).
Object 4 is an octahedral block with two congruent cyl-
indrical faces, two congruent hexahedral bosses, one cu-
bical boss, two congruent spherical bosses, and a spher-
ical pocket (Plate 3(a)). Object 5 is a cylinder with a
hole (Plate 4); it is symmetric. Object 6 is a piston head
(Plate 3(b)).

7.2. Congruences detected

Table 1 shows the algorithmic results. Column 3 is the
number of approximate congruences detected between parts
of the object. Column 4 is the time taken by our algorithm
in seconds. Column 5 lists the number of partial symmetries
detected by Tate’s algorithm. Column 6 is the time taken by
Tate’s algorithm in seconds.

In tests 1 to 5 our algorithm found all congruences which
we expected from a manual analysis. For object 1, two
congruent sets of side faces were found. For object 2, the
congruences found were: the two hexagonal bosses, two
toroidal surfaces, two cylindrical surfaces, two spherical
bosses, and the sides of the cubical boss. For model 3,
the congruences found are shown in Plate 1. For model
4, some of the congruences found are shown in Plate 3(a).
Altogether they were: two hexagonal bosses, two spherical
pockets, the side faces of the cubical boss, the side faces of
the main octahedron, and the faces of the two cylindrical
bosses. For test object 5, three congruences were found, re-
lating planes 1 and 3, planes 6 and 7, and cylindrical faces
2 and 4 (Plate 4). For object 6, twenty approximate con-
gruences were found. (Some congruent features containing
freeform surfaces, were not found, as these were outside the
scope of our algorithm.)

7.3. Running time

We performed further tests on the time taken by the al-
gorithm on a 450MHz Pentium III GNU/Linux machine
with 256Mb of RAM, using ACIS as the modeller, to ana-
lyse a variety of objects, including Objects 1–6 and others;
some are shown in Plate 5.

The averaged timings for several runs in each test case,
and the number of approximate congruences found, are
given in Table 2. A nonlinear analysis was then performed
to find the best fit to the timing data of the form t = k×nx,
where t was the time taken and n was the number of faces.
This gave an empirical performance for the algorithm of
time O(n3.24), see Figure 7.

This experimental performance lies between the sugges-
ted limits of O(n2) needed to consider all pairs of faces,
and the limiting case suggested of O(n4.5). More data is
needed before final conclusions can be drawn about the time
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Figure 7. Algorithm performance

Number of Number of Time taken
faces congruence groups (seconds)

7 3 1.30
10 3 4.00
13 2 2.40
14 5 8.00
14 3 2.09
14 3 1.98
18 3 2.13
18 3 2.63
19 23 2.95
23 3 2.61
28 5 4.62
28 4 6.32
33 7 6.81
33 10 10.40
50 8 18.55
66 3 26.11
68 10 34.52
70 20 21.19
87 10 109.31
93 8 81.11

Table 2. Test results

needed in ‘typical’ cases. However, we observe from our
testing that: (i) For objects with similar numbers of faces,
objects with a large number of small congruences are usu-
ally analysed more quickly than those with a small number
of large congruences. This is because of the repeated calls
to compatible and congruence in expand in the lat-
ter cases. (ii) The time taken increases as the objects get
larger, but not as badly as our limiting case analysis would
suggest. Although it is hard to claim that our small test set
are representative of ‘typical’ engineering objects, they do
illustrate some congruences which might be found in prac-
tice. The times taken for these test objects are low, lead-
ing us to conclude that the algorithm can analyse moder-
ately complex objects (of say 200 faces, such as might be
encountered in practical reverse engineering) within a few
minutes.



Test Number Our algorithm Tate’s algorithm
object of faces Detected con-

gruences
Time
(seconds)

Detected sym-
metries

Time
(seconds)

1 13 2 2.20
2 38 5 9.88
3 33 5 10.40
4 27 3 5.45
5 7 3 1.43 4 3
6 70 20 21.19 14 25

Table 1. Algorithm results on test objects
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Plate 1. Test object 3 and its approximate con-
gruences

Plate 2. Test objects 1 and 2 and some of
their congruences
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Plate 3. Test objects 4 and 6 and some of their
congruences

Plate 4. Test object 5 and some of its con-
gruences

Plate 5. Sample test models used in the experiments


