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Abstract. Low-discrepancy point distributions exhibit excellent unifor-
mity properties for sampling in applications such as rendering and mea-
surement. We present an algorithm for generating low-discrepancy point
distributions on arbitrary parametric surfaces using the idea of convert-
ing the 2D sampling problem into a 1D problem by adaptively mapping
a space-filling curve onto the surface. The 1D distribution takes into ac-
count the parametric mapping by employing a corrective approach simi-
lar to histogram equalisation to ensure that it gives a 2D low-discrepancy
point distribution on the surface. This also allows for control over the lo-
cal density of the distribution, e.g. to place points more densely in regions
of higher curvature. To allow for parametric distortion, the space-filling
curve is generated adaptively to cover the surface evenly. Experiments
show that this approach efficiently generates low-discrepancy distribu-
tions on arbitrary parametric surfaces and creates nearly as good results
as well-known low-discrepancy sampling methods designed for particular
surfaces like planes and spheres. However, we also show that machine-
precision limitations may require surface reparameterisation in addition
to adaptive sampling.

1 Introduction

Many applications in geometric modelling and computer graphics require gener-
ation of evenly distributed points on surfaces. An even point distribution is im-
portant for two reasons: (i) to avoid aliasing artefacts which might be caused by
regularly-spaced samples, and (ii) to provide efficiency in surface calculations—if
the distribution is uneven, more samples are needed to guarantee a minimum
point density. We discuss and analyse an efficient, practical algorithm to gener-
ate such point distributions on parametric surfaces in 3D, based on an approach
suggested by [1]. The method also allows the user to control the local point
density and further corrects for handling extreme parametric distortion.

Local density control is useful for applications such as surface triangulation,
where we may want more samples in regions of higher curvature [2]. Existing
applications where stochastic/low-discrepancy distributions are already used in-
clude radiosity [3] and ray tracing [4]. Another application is point-based ren-
dering where surfaces are represented by point sets and are rendered employing
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splats (small discs) which can be quickly generated using hardware shaders [5].
This provides a simple and efficient approach to non-photorealistic rendering
and rendering of complex or dynamic surfaces [6]. Efficiently distributing, re-
sampling and parameterising suitable point distributions on a surface is essential
for interactivity and visible artefact reduction [7]. Stochastic methods are also
widely used for measurement and quality control applications, e.g. to compute
volume integrals and surface curvature of complex shapes. Other examples are
meshfree finite element analysis [8,9], and re-meshing of meshes with a known
parameterisation [10]. Applications based on low-discrepancy sampling typically
require far fewer samples than a random approach, so the effort put into gen-
erating these samples will likely become worthwhile when performing repeated
surface calculations such as physical simulations or when using dynamic surfaces.

We seek an even distribution of points on a surface, perhaps with respect to a
specified density function. In particular we seek a low-discrepancy point set: dis-
crepancy is a measure of the deviation of a point set from a uniform distribution.
It is computed locally for a subset by taking the absolute difference between the
ratio of points lying inside the subset and an area measure of the subset (e.g.
the surface integral over the density function). The discrepancy of a point set
is the supremum of this local discrepancy. A point set is of low-discrepancy if
its discrepancy is minimal. Often the subsets considered are restricted to certain
types such as rectangles [11,12]. A point set of low discrepancy covers the surface
as evenly as possible and often has the desirable property that there are no large
‘holes’ in the distribution, while at the same time avoiding aliasing problems [4].

In this paper we describe an approach to generating low-discrepancy point
distributions on parameterised surfaces by distributing points along a space-
filling curve as suggested by Steigleder and McCool [1]. By generating a space-
filling curve in the parameter domain, the problem of distributing points in 2D
is reduced to sampling a curve appropriately. Sample points are placed along
the space-filling curve using an idea similar to histogram equalisation. Adaptive
generation of the space-filling curve allows us to handle parametric distortions
where, e.g., a small area in the parameter domain is mapped onto a large area
on the surface. However, for parameterisations in which extremely large areas of
the surface are spanned by very small ranges of parameter values, we encounter
limitations caused by the machine precision, as explained in Sect. 5.3.

The space-filling curve not only converts the 2D problem to a 1D problem,
but also provides the additional benefit of good spatial localisation of the points,
in the sense of knowing which points in the output sequence lie near which other
points in the sequence [13]. This is clearly of advantage for problems which
require, for example, rapid determination of the k-nearest neighbours of a given
surface point.

We first review previous work and describe the algorithm. Then we briefly
demonstrate the technique in the plane directly following [1], and evaluate the
results obtained. Comparing the generated point sets to known low-discrepancy
distributions indicates that they are close to the best, known low-discrepancy dis-
tributions, with consistently good results for various test shapes used to measure
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discrepancy, and varying numbers of points. Most low-discrepancy sequences are
optimised for discrepancy measures based on rectangular subsets, and while the
approach is not quite as good as some other low-discrepancy methods for rectan-
gular discrepancy, for the other-shaped discrepancy measures tested, it is better.
We next demonstrate the effectiveness of the approach for sampling arbitrary
parametric surfaces by computing discrepancy on the unit sphere with respect
to spherical triangles. This provides strong evidence that this approach is a fast
and effective way of low-discrepancy sampling on the sphere. Estimating the
discrepancy for general surfaces in R

3 is rather harder as it not only requires the
calculation of exact surface areas, but also choice and construction of sampling
shapes (such as a triangles) to assess the distribution on each particular surface.
However, we give visual examples showing our methods applied to more general
surfaces, with and without explicit user-provided density control functions. We
then demonstrate how adaptive curve generation helps considerably on shapes
with extreme parameterisations, but that it is ultimately not always sufficient,
and that surface reparameterisation may also be required.

2 Previous Work

In this section we discuss previous approaches to generating low-discrepancy
distributions in the plane and on parametric surfaces. We start by briefly re-
viewing general work that prompted our research, and then then discuss work
more specifically related to our approach.

Niederreiter and Sobol sequences have been theoretically shown to produce an
optimal low-discrepancy sequence [14] for rectangular subsets of 2D manifolds
with discrepancy varying as O(N−1 log2 N) for N points. They have been shown
to be considerably better than random sampling in Monte-Carlo techniques both
theoretically [15] and in practice for various geometric problems [16] and have
also been applied to problems such as rendering [17]. In order to evaluate the
quality of the point distributions generated by the current algorithm, we com-
pared our results to low-discrepancy distributions generated by ACM TOMS
Algorithms 738 [18] and 659 [19]. We also compared the results to a random dis-
tribution and a jittered distribution on the plane [20]. Generating independent
pairs of random numbers gives a random distribution in the unit square [21]
with expected discrepancy O(N−1/2) [22]. Base-2 Hammersley distributions on
the unit sphere were generated using the algorithm described in [23].

Our approach uses an adaptive version of an algorithm suggested by Steigleder
and McCool [1] to generate density-controlled stratified samples in n-dimensions
and employ them to sample surfaces. In this paper we provide experimental
evidence that this approach allows the user to generate high quality, density-
controlled distributions on arbitrary surfaces, correcting for parameteric distor-
tions by adaptively generating the curve in the parameter domain. However, if
the parametric distortion is too great, reparametrisation of the surface may also
be required, as we discuss later. The sample points are produced along the curve
using a technique similar to histogram equalisation.
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Our algorithm uses a method similar to histogram equalisation to distribute
points along a space filling curve lying in a surface to achieve the desired den-
sity distribution based on approximating the area of small surface patches (see
Sect. 3). Other 1D inversion methods exist, such as the one presented in [24],
but they do not generalise to arbitrary surfaces or provide the same utility as a
space-filling curve.

Although algorithms such as [18] are available for generating low-discrepancy
point sets in n-dimensional parallelpipeds starting from given seeds, we are not
aware of methods specifically for generating low-discrepancy point sets on arbi-
trary surfaces in 3D, and which also allow the user to control the point density
via a function. However, methods for generating such point-sets are known for
specific surfaces. For example, [25] uses lines between low-discrepancy points on
the surface of a sphere to calculate mass properties of objects, and [23] demon-
strates the generation of Halton and Hammersley low-discrepancy sequences on
the sphere. A similar approach using intersecting lines is used by [26] to generate
a point cloud from a mesh. The first two papers use specific methods to generate
points on the sphere, and do not readily generalise. The third provides no evi-
dence that the point distribution generated from the mesh is of low discrepancy
on the surface. Hartinger [27] describes a generalisation of a quasi-Monte Carlo
technique originally proposed by [28] to generate points in the plane with an
arbitrarily chosen distribution for computing integrals.

3 Point Distribution Algorithm

In this section we describe how to generate a low-discrepancy point set on a
parametric surface S. Given a surface parametrisation f : [0, 1]2 → R

3 of S
with the unit square as normalised parameter domain, a non-negative bounded
density function δ : S → R

+
0 , and a desired number of points N , our algorithm

generates a set of points pl, l = 1, . . . , N , distributed on S according to the
density δ. More precisely, we generate a set of parameter values representing
these points. We desire that, for each subset A of the surface S, the fraction of
points pl lying inside A should be as close as possible to the ratio between the
surface integrals

∫
A

δ ds/
∫

S
δ ds to ensure that the point set has low discrepancy

(with respect to the desired density). For the special case δ ≡ 1, the points are
uniformly distributed with respect to surface area.

The basic idea of Steigleder and McCool’s algorithm [1] is to convert the 2D
distribution problem into a 1D distribution problem, by placing points along a
space-filling curve that covers a square, which for our application is the parameter
space. An approximation to a space-filling curve is generated in the unit square,
and mapped onto S. This approximation can be described by a sequence of
vertices vl, l = 0, . . . , M , lying on the curve in the surface. We then create a 1D
point distribution qk, k = 1, . . . , N in [0, 1] where the distances between these
points indicates some desired initial distribution in the unit square (choices for
this distribution will be discussed later, but, for example, we could use equal-
distance points). This distribution is then mapped onto the 2D surface using
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similar ideas to histogram equalisation: points pl, l = 1, . . . , N are distributed
on the curve in the surface so that they have approximately the same distances
as the ql in [0, 1] in the plane. However, to ensure that fractional arc-lengths are
preserved on the curve in the surface (rather than the parameter domain), we
must measure the distances according to the local surface geometry. At the same
time, we add a further factor to produce the desired point density function δ on
the surface, by further adjusting the distance measure.

As space-filling curves map a 1D line onto a 2D surface, measuring distances
as lengths along the curve is ill-defined. Instead, we approximate the area of
the surface that is covered by a certain fraction of the space-filling curve, and
use this as the distance measure on the curve which indicates how many points
should be distributed on a segment of the curve. Each of the points vl can
be associated with a small patch Al of the surface for which we approximate
the ratio sl =

∫
Al

δ ds/
∫
S δ ds. The sl together with the vl form a discrete

distribution which indicates the desired local density of points. By calculating the
cumulative sum of sl as we move along the curve, we integrate over the discrete
distribution indicating how the number of the points we wish to distribute has to
be increased. This allows us to estimate the distances between the points on the
curve in the surface and distribute them according to the distances between the
ql in [0, 1]. The rest of this section presents the main algorithm in more detail,
especially concerning measuring distance on the curve. Then we describe various
options for generating initial point distributions and the histogram equalisation.

Pseudocode for the overall point distribution algorithm is given in Fig. 1. It
consists of the following main components: a space-filling curve generator, Fig. 2,
that computes a set of vertices lying on an approximation to a space-filling curve
for the unit-square; a generator which computes a 1D sequence of real numbers
in the unit interval [0, 1] indicating how the points are to be distributed on
the curve; and an equalisation method to distribute points on the surface along
the space filling curve by measuring distances along the curve based on the
local surface area and the density function. First, the curve is generated, the
parameterisation is applied and surface area is calculated along the curve. We
then generate a 1D sequence of points, and map them to the curve, according to
the integral of the surface area, taking into account a surface density function
and the level of recursion of the curve.

First we call a recursive function PopulateCurveTree to generate an ap-
proximation of a space-filling curve in the unit square. A tree is generated using
this method according to a specified curve type C (different space-filling curves
can be used in principle, such as the Hilbert Curve, the Hilbert II Curve, etc.).
We use a tree to facilitate the subdivision of the unit square, and after all sub-
division, the final curve vertices are generated and stored in the leaf nodes.

The unit square is subdivided into a number of cells centred around each curve
vertex (dependant on the curve). The method AssessSubdivision applies the
supplied parameterisation f to each cell, and calculates the distances from the
centre point to the corners and half-way points along each side. The maximum
distance is taken, and compared to the supplied cell size a. If the value is greater
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Algorithm. DistributePoints (f , δ, r, N , C)
Input: f—parametrisation f : [0, 1]2 → R

3 for surface S
δ—density function δ : S → R

+
0

r—maximum recursion depth for space-filing curve approximation
a—parameter for the minimum required area associated with a curve vertex v
N—number of points that should be distributed on S
C—type of space-filling curve

Output: A low-discrepancy point distribution on S according to δ, given as a list
of parameter values for f

1. n ← GenerateRootNode(C)
2. T ← PopulateCurveTree (n, r, a, 0)
3. [v1, . . . , vM ] ← Output(T )
4. S0 ← 0
5. for l ← 1, . . . , M do
6. Sl ← Sl−1+Density (f , δ, vl)
7. [q1, . . . , qN ] ←Create1DPoints(N)
8. [p1, . . . , pN ] ←Equalise([q1, . . . , qN ], [v1, . . . , vM ], [S1, . . . , SM ])
9. return [p1, . . . , pN ]

Fig. 1. Point Distribution Algorithm

than a and the current depth g is less than the recursion cap r, a true result is
returned and GenerateChildren is called on the node. r should be set accord-
ing to machine precision, or as a limit on the maximum memory requirements
of the process. GenerateChildren subdivides the cell, generating the num-
ber of children required according to the space-filling curve C, and applies the
appropriate permutation. Permutations represent an ordering of the vertices in
a given cell, and are calculated according to a set of simple rules based on the
ordering of the parent cell and which child the current cell is.

If no subdivision is required, a final index, representing the cell’s position along
the curve is computed from the permutation and stored. When all subdivision
is complete, a method Output is called which scales the cell indices to the
maximum level of curve recursion used and hashes the values stored in the leaf
nodes of the tree to a set of vertices vl, l = 1, . . . , M indicating the line segments
(see Fig. 1, line 3). In order to accurately estimate the distances between points
on the curve in the surface for the distribution, M has to be sufficiently large (see
Sect. 5.3). A suitable value for a can be chosen as half the required maximum
distance between vertices of the space-filling curve on the surface. Appropriate
choice of space-filling curve is discussed later in this section.

Next we compute the desired cumulative density of the point distribution by
mapping each vl onto the surface and estimating the ratio sl =

∫
Al

δ ds/
∫

S
δ ds

for a small surface patch Al, using a method explained shortly. The sl are ap-
proximated by the function Density (Fig. 1, line 6). For each point f(vl) on the
surface we get a cumulative density Sl =

∑l
k=1 sl, l = 1, . . . , M (Fig. 1, lines 4–

6). As we have an approximation of a space filling curve, we have SM ≈
∫

S
δ ds,

if we choose suitable Al. This means that the overall surface integral of δ is a
scaling factor that can be ignored for distributing points as we know the number
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Algorithm. PopulateCurveTree (n, r, a, g)
Input: n—root node for the specified curve

r—max space-filling curve recursion depth
a—parameter for the minimum required area associated with a curve vertex v
g—current depth of recursion

Output: A space filling curve defined by n, in a tree structure

1. b ← AssessSubdivision(a)
2. if b is true and g < r
3. [c1, . . . , cN ] ←GenerateChildren(n)
4. for c ∈ [c1, . . . , cN ] do
5. PopulateCurveTree(c, r, a, g + 1)
6. else
7. Curve Index Stored in Node

Fig. 2. Curve Generation Algorithm

of points we intend to distribute. Hence, to approximate sl we only approximate∫
Al

δ ds.
We have considered several different methods to approximate this integral:

(a) compute the area of the triangle f(vl−1), f(vl), f(vl+1) and multiply this
area by the value of the density function at the centroid of this triangle; (b)
use a small square centred at f(vl) instead of a triangle, constructed from extra
vertices generated in the parameter domain with a size equal to a line segment of
the curve; and (c) use δ(f(vl))

√
det fI(vl) where fI is the first fundamental form

of the surface, as ds =
√

det fI du dv. In general all three approaches work well,
although (b) and (c) produced slightly superior results to (a), as demonstrated
in Sect. 5.1. This may be partly due to the fact that for (a) the triangles overlap.
For the examples reported in this paper we demonstrate results for (a) and (c).
However, note that, ideally, the first fundamental form of the surface should be
used and calculated automatically [29]. Also note, that for approach (c), we have
to scale the results using: A′

l = Al(wkmax−kcurrent), where kmax is the maximum
and kcurrent the current depth of the space-filling curve recursion and w is the
number of vertices in a curve ‘cell’ (i.e. the number of curve vertices where
k = 1). This enables us to normalise the area value for the non-uniform curve.

After we have computed the cumulative density distribution Sl over the vl,
we generate a set of 1D points qk, k = 1, . . . , N in [0, 1] to provide some chosen
initial distribution in the unit square (as explained later) by mapping these
points on the space-filling curve in the parameter domain (Fig. 1, line 7). The
Sl over the vl describe how to find arc-lengths along the curve: the distance
between f(vl) and f(vl+1) on the curve in the surface is given by Sl+1 − Sl (the
desired density). Thus, in the next step we map the distances between the qk

according to the the cumulative density distribution Sl over the vertices f(vl),
l = 1, . . . , M on the curve in the surface via an equalisation approach (Fig. 1, line
8): a subset pl, l = 1, . . . , N of the vl is chosen such that the distances between
the pl correspond to the distances between the ql.
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Fig. 3. The first two iterations of the Hilbert, Hilbert II and Peano curves

We now briefly describe in greater detail the space-filling curve approxima-
tions used in the first step of our algorithm. Various space-filling curves were
investigated, including the Peano, Hilbert and Hilbert II curves [30] (see Fig. 3).
Our adaptive sampling algorithm was used to generate these curves. However,
as results in Sect. 4 demonstrate, the Hilbert curve is the space-filling curve of
choice. If a uniform Hilbert curve is required, for use with very simple parame-
terisations, the algorithm described by Butz [31] and expanded by Lawder [32]
can be used: it provides a very efficient way of generating points on the Hilbert
curve using bit operations. In [1], Jittered equally-spaced points in the unit inter-
val [0, 1] were mapped onto the Hilbert curve. We generalised this technique and
tested various methods for generating the 1D point sequences in the unit interval,
mapped as fractional arc-lengths: 1D low-discrepancy sequence, Equally-spaced
points, Jittered equally-spaced points and Randomly spaced points. We expected
the Jittered and Uniform points to demonstrate the best results, although one
drawback to placing evenly spaced points on the curve is that if the number of
points is commensurate with the number of vertices on the curve, we may get
aliasing artefacts. Jittering the points removes the possibility of this occurring.
For this reason, and because of the results discussed in Sect. 4, the third method
is the method of choice for our final algorithm.

4 Experiments in the Plane

We performed some initial experiments in the plane to determine whether the
choice of space-filling curve had a significant effect on the point distributions
produced—even though Steigleder and McCool[1] suggest the use of a Hilbert
curve, other space filling curves can also be used. These expand on the experi-
mental results in [1] which showed how the star discrepancy scales for point sets
of varying size, by comparing the point distributions generated in the unit square
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Fig. 4. Hilbert Curve ‘Gaps’

with the reference point distributions listed in Sect. 2, determining the variation
of discrepancy with number of sample points in each case. The star discrepancy
is the most commonly employed measure due to its simplicity; it computes the
discrepancy of a point set in the unit square based on axis-aligned rectangular
subsets with one corner fixed to the origin. We also investigated generalisations
of the star discrepancy, more specifically using triangles and quarter-circles, as
in many applications, portions of surfaces of interest need not simply be rectan-
gular.

4.1 Evaluation of Space-Filling Curves

Various choices exist for the space-filling curve. To determine the impact of this
choice on the quality of the point distribution, we initially assessed the generated
point sets both visually, and using experimentally measured discrepancy. Visu-
ally we aimed to ascertain any obvious regularities which might cause aliasing
problems, or obvious gaps indicating high discrepancy—the human eye is very
good at recognising patterns and holes in data.

Hilbert curve: The Hilbert curve showed large vertical and horizontal gaps
in the distribution (see Fig. 4) when evenly-spaced or low-discrepancy 1D
sequences were used. Aliasing could become a serious problem with such
large holes in the distribution. Note in the example shown, the left half of
the curve is identical to the right half with a big gap in the middle. Such gaps
could cause visual and numerical problems. With a jittered 1D sequence, the
curve did not exhibit these problems.

Hilbert II + Peano: Both the Hilbert II and Peano curves produced high
quality results visually and in terms of measured discrepancy. Note that the
Hilbert II curve does not have an axis of symmetry, unlike the Hilbert curve,
and as a result does not suffer from the same aliasing problem.

The Hilbert II curve gave promising visual results as well as numerical discrep-
ancy results and was hence chosen for further evaluation. Although the Hilbert
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curve performed poorly in the visual evaluation for certain 1D sequences, its
numerical discrepancy results were also good and scale well according to [1].
Furthermore, existing algorithms exist to generate it quickly, and previous re-
sults suggest that the Hilbert curve has the best locality properties (see Sect. 2).
Hence, it was also chosen for further evaluation.

Although the Peano curve gave promising preliminary results, we discarded it
for two reasons: firstly, its natural orientation is not aligned with the sides of the
reference square, making its construction more complex to implement. Secondly,
its constructor is self-intersecting: multiple vertices lie on the same point. Points
in the square therefore may be covered more than once by the curve, increasing
the likelihood of clumping. The converse is true for the other space-filling curves,
as shown by the following argument. As the curve completely traverses the unit
square and comes within a definite maximum distance of every point of it, if
points are placed evenly along the curve, clumping cannot occur provided that
any one segment of the curve has a minimum distance from other segments of
the curve (apart, of course, from the ones preceding and following it). Hence, if
no clumping can exist on the line, for a particular 1D sequence, the quality of the
distribution would appear to be entirely due to the structure of the curve. This
explains how space-filling curves, although always completely filling a space, can,
and do, distribute the same sequence of points differently.

From now on, we will refer to the Hilbert curve sampled using a jittered 1D
sequence as Hilbert-Jittered.

4.2 Evaluation of Numerical Discrepancy

Following the preliminary tests in the previous section, we investigated in de-
tail the discrepancy properties of 2D point distributions generated by our im-
plementation using the Hilbert and Hilbert II curves, sampled using random,
evenly-spaced, jittered and low-discrepancy 1D point sequences. We found that
the Jittered-Hilbert approach demonstrated the most consistent results, and so
we only compare these with 2D point distributions produced at random, and us-
ing Niederreiter’s method, Sobol’s method and jittering. Note that when testing
on the plane, even with adaptive curve generation, the curve would in fact be
uniform, as the area is constant.

All of the tests were performed for point sets of size N = 2l and N = 2l+2l−1,
for l = 0, . . . , m. Setting m to 19 gives 40 distribution sizes varying from 2 points
to 1572864 points, resulting in a logarithmic range of data. Note that the number
of vertices on the curve vl generated from the recursive approximation depth
k and the sizes of N were non-commensurate. However, testing with a uniform
curve (a curve with a constant recursive depth) showed that even with the largest
N and k set to 12 for the Hilbert curve and 8 for the Hilbert II curve, the curves
consist of enough vertices such that the distance along the curve between each
point placed is large enough to achieve the upper bound of the discrepancy of
the set for each geometric subset.

Results are shown using graphs displaying discrepancy versus the logarithm
of the number of points. Although theoretical discrepancy results are
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Fig. 5. Rectangular discrepancy compari-
son
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Fig. 7. Triangular discrepancy comparison
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characterised by a power law times a logarithmic factor, the logarithmic factor
is hard to determine experimentally due to its minor numerical effect. As can be
seen in our graphs, on a double-logarithmic scale the experimentally determined
discrepancy can be well approximated by a straight line. Thus, computing the
slope of this line gives us an adequate way of comparing the behaviour of the
different approaches.

For a random sequence the expected slope of a least-squares fitting line is
−1/2. Clearly, we hope our point distributions to scale better than a random
distribution. For N points in the unit square, the expected best relative error
in area which can be achieved is O(N−1 log2 N) [16], giving a lower bound of
approximately −1 for the slope of the best-fit straight line, which we hope the
method should approach as closely as possible.
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Table 1. Gradients of least-squares best-fit discrepancy lines for distributions on the
plane

1D Sequence Rectangular Circular Triangular
2D Random -0.49 -0.5 -0.49

Sobol -0.90 -0.70 -0.58
Niederreiter -0.90 -0.69 -0.57
2D Jittered -0.75 -0.74 -0.72

Hilbert Jittered -0.73 -0.73 -0.72

Figure 5 shows scaling of rectangular discrepancy for the 2D random, Nieder-
reiter, Sobol, 2D jittered and Hilbert-jittered distributions. It is clear that the
slopes for the Niederreiter and Sobol distributions are the steepest, outperform-
ing the other distributions. The Hilbert-Jittered and two-dimensional jittered
distributions performed very similarly; not as well as the Niederreiter and Sobol
sequences, but closer to them than to the random sequences. Figure 6 makes
a similar comparison using a circular discrepancy measure. The Niederreiter,
Sobol, Hilbert-jittered and 2D Jittered sequences perform similarly. Figure 7
makes a further comparison using the triangular discrepancy measure. In this
case, the 2D jittered and Hilbert-jittered sequences outperform the Niederreiter
and Sobol sequences, which perform closer to the random sequence. The ran-
dom sequence is worst, as expected, throughout all three tests. The slopes of the
best-fit straight lines in each case are listed in Table 1.

4.3 Discussion

When considering rectangular discrepancy, the Niederreiter and Sobol sequences
perform better than the Hilbert space-filling curve. We also note that the dis-
tribution generated performs similar to the 2D jittering technique as might be
expected, probably due to the grid-like structure of the curves. When considering
circular and triangular discrepancy, however, the picture is quite different. The
Niederreiter and Sobol sequences perform considerably worse in these tests, espe-
cially the triangle test where they perform only slightly better than the random
sequence, suggesting little robustness. The two best performing distributions for
these two tests were the jittered 2D and Hilbert-jittered curve distributions. It
appears that the Sobol and Niederreiter methods are too specialised to rectan-
gular discrepancy, and the jittered methods are better for all-round usage. The
curve method is also consistently superior to using a random distribution.

In [1] the star discrepancy is briefly investigated. Expanding on this, our
experiments strongly suggest that the space-filling curve approach gives distrib-
utions in the plane with a low-discrepancy behaviour. We also demonstrate the
robustness of the technique when testing the star-discrepancy with different geo-
metric subsets. While we do not have a rigourous theoretical proof for this, [1]
suggests that the approach is very similar to regular stratified sampling, only
with irregularly shaped strata and, hence, has the same discrepancy.
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5 Experiments with Surfaces in 3D

In this section, we test point generation on 3D parametric surfaces. We first com-
pare the point distributions generated on the unit sphere with certain reference
point distributions listed in Sect. 2. To do so we employ the spherical discrep-
ancy measure described using spherical triangles. We compare results using the
Hilbert-jittered space-filling curve approach with the spherical-Hammersley and
spherical-random 2D point distributions. We end this section by demonstrating
sampling of various surfaces generated by our algorithm using uniform and non-
uniform density. Finally we consider the utility of adaptive space-filling curve
generation, and its limitations, and show how reparametrisation may also be
required.

5.1 Numerical Experiments

To assess the quality of techniques for generating point distributions on surfaces
or volumes in 3D, their properties with respect to measuring areas or volumes
are often employed. Computing a measure on surfaces equivalent to the star dis-
crepancy is non-trivial and alternative approaches such as techniques described
in [33] may be more suitable to compare the quality of the distributions. Hence,
in the following we only compare numerical results for point distributions on the
unit sphere.

We generated points on the sphere using the spherical Hammersley distribu-
tion, a spherical random distribution and our method based on Steigleder and
McCool’s algorithm. We assessed how the spherical discrepancy varied with point
set size, for point sets of size N = 2l and N = 2l + 2l−1 for l = 0, . . . , 19. Sect. 3
gives three techniques for approximating the local surface area at a point on the
Hilbert curve, based on triangles, rectangles and infinitesimal area elements us-
ing the first fundamental form of the surface: dA =

√
EG − F 2 du dv. We show

results of variation in discrepancy with number of points, as before, for the trian-
gular and first fundamental form methods, denoted by Hilbert-jittered-triangle
and Hilbert-jittered-fff, to demonstrate the difference in quality of distribution
between the least and most exact area approximation methods.

When the adaptive curve generation algorithm is used on the sphere, there is
little variation in curve recursion depth across the surface of the sphere, resulting
in a nearly uniform curve recursion level. However, for the purpose of these tests,
we disabled the adaptive sampling, leaving us with a completely uniform curve
recursion so that results are consistent.

Figure 8 shows the variation of discrepancy with point set size on a logarith-
mic scale. The spherical Hammersley sequence performs the best by a small mar-
gin, very closely followed by the Hilbert-jittered-fff and Hilbert-jittered-triangle
methods, while the random distribution performs considerably worse than the
other methods.The gradients of the best fit lines of the various distributions are
given in Table 2, where we can see that the Hammersley sequence performs in
a similar way to the Niederreiter and Sobol sequences in the plane when mea-
suring discrepancy using quarter-circles. The gradient for the Hilbert-jittered-fff
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Table 2. Gradient of least squares fit line of distributions on the sphere

Sequence Spherical
Random -0.49

Hammersley -0.75
Hilbert-jittered-fff -0.73

Hilbert-jittered-triangle -0.71

approach is similar to that of the spherical Hammersley sequence, closely fol-
lowed by the Hilbert-jittered-triangle approach. The spherical random sequence,
however, performs poorly.

From the results, we can see that the best fit lines for the spherical Ham-
mersley point set have very slightly better slopes than our approach. The ran-
dom distribution on the sphere, however, performed considerably worse than
the other three approaches; similar to the 2D random distribution. Hence, us-
ing the Hilbert-jittered distribution and our surface equalisation technique, we
can produce a low-discrepancy distribution on the unit sphere comparable to
other low-discrepancy sequences that have been specifically designed to work
with a sphere. Our algorithm, however, works for any parameterised surface and
attempts to correct for severe stretching of the parameter domain. In addition
it allows the user to adjust the point distributions with a density-function and
maintains a consistent localised ordering of points.

5.2 Visual Demonstrations

We provide visual results to show the method being applied to sample various
surfaces, both to produce a uniform density, and a controlled density of points.
We show points distributed on the unit square, on a Monkey Saddle, an Eight
Surface and a Whitney Umbrella.

Figure 9 shows three images of 3, 000 points distributed in the unit square.
The image on the left shows a uniform unit density δ. The middle image shows
δ(u, v) = u and the image on the right shows δ(u, v) = u + v, where u and v are
coordinates in the unit square.

Figures 10, 11 and 12 show three images of the Monkey Saddle, the Eight
Surface and half of the Whitney Umbrella respectively using the Hilbert-jittered-
fff approach. Each figure shows a parametric mesh visualisation of the surface,
two images demonstrating point distributions generated using our approach, and
the adaptive Hilbert curve mapped onto the surface. Each middle image shows
points with uniform density whilst the right-hand images show a distribution
density proportional to the Gaussian curvature of the respective surface. The
Monkey Saddle is sampled with 3, 000 points, the Eight surface with 10, 000
points and the Whitney Umbrella with 6, 000 points.

Note that even on the images with uniform density, some areas appear darker
than others. This is a visualisation problem, rather than a fault in the distrib-
utions, depending on the angle of viewing of the surface. Due to the severity of
this problem on the Whitney Umbrella near the central singularity, only half of
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Fig. 9. Distribution in the unit square: uniform density; density = u; density = u + v

Fig. 10. The Monkey Saddle: parametric mesh; uniform density; curvature controlled
density; adaptive Hilbert curve according to curvature

Fig. 11. The Eight Surface: parametric mesh; uniform density; curvature controlled
density; adaptive Hilbert curve according to curvature

the surface has been drawn. Also note that the images of the adaptive curves
were simplified in terms of recursive depth to make it easier to see the curve.

Our Java implementation on a 3Ghz Intel Pentium 4 with 1GB RAM takes
about a second to generate the images shown above, with the curve generated
adaptively according to surface curvature. For these examples, the recursive
curve depth used was: 8 < k < 15. In this context, where the surface can be
parameterised straightforwardly, using the adaptive curve generation technique
simply allows us to have far fewer curve vertices in order to sample at the required
density. The extra computation involved in deciding whether to subdivide the
curve at every branch in the tree, however, increases the algorithm complexity,
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Fig. 12. Half of the Whitney Umbrella: parametric mesh; uniform density; curvature
controlled density; adaptive Hilbert curve according to curvature

and thus runtime. However, if we have a non-uniform density (as in the examples
shown in this section), runtime actually scales much better using the adaptive
method as far less curve has to be generated in areas with a low density. The
adaptive method also requires considerably less memory in this type of situation.

Showing that the approach given produces the same quality of distribution
on any parametrically described surface is hard, but the visual results obtained
above are plausible. Unlike earlier surface point distribution algorithms, this
method can sample arbitrary surfaces, whilst providing direct sampling density
control.

One limitation of our results is the reliance on the approximation of discrep-
ancy as the only real quality measure of a distribution. This is accentuated by
the number of test cases used: the plane and the sphere. However, as briefly
discussed in Sect. 1, measuring the discrepancy on general surfaces robustly is
a hard problem. We also demonstrate our results visually, but one can only
garner so much from this. Essentially, it would be desirable to have another
quantifiable metric by which we could compare results for various distributions
tailored specifically for rendering and engineering applications. There are various
options for application specific measures, and while none are perhaps quite as
generically applicable as discrepancy, for the specific applications we intend to
explore in the future, they might be of considerable use. Another possibility is
Mitchell’s [34] Blue Noise criterium: the sampling spectrum should be noisy and
have few spikes, with a deficiency of low-frequency energy. The fulfilment of this
criterium might be measured for the distributions.

5.3 Limitations of Adaptive Curve Generation

In this section, we discuss the limitations of adaptive curve generation technique.
Figure 13 shows the Hilbert space-filling curve mapped onto the surface of a
superellipsoid x(u, v) = (cos1/3u cos1/3v), y(u, v) = (cos1/3u sin1/3v), z(u, v) =
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Fig. 13. A superellipsoid: without (262,000 vertices) and with (91,000 vertices) adap-
tive sampling

sin1/3u) with and without adaptive curve generation. The non-adaptive curve
consists of approximately 262, 000 vertices, whilst the adaptive curve consists of
only 91, 000. It is clear that although there are still gaps between curve vertices
when using the adaptive technique, they are far smaller than when using a
uniformly generated curve.

This example also shows that there is a maximum density that can be reached
for a given parametrisation due to machine precision limits. When generating the
Hilbert curve we map 1D points to 2D points via bit indices using 2 algorithm.
Thus, a 1D point represented by b bits, is mapped onto a 2D point where for each
of its coordinates we only have b/2 bits. Thus, two distinct, computed points in
the parameter domain differ in at last one coordinate by at least e = 1/(2b/2−1).
Hence, to reach a minimum density of 1 point per surface area a, squares of the
size e2 in the parameter domain should be mapped to areas on the surface of at
most size a. Or if we estimate the area in our algorithm via the first fundamental
form, the norm of the first fundamental form should be smaller than a/e2. Note
that this ignores any numerical problems in evaluating the parametrisation.

To handle parameterisations which do not allow us to reach a certain density,
an alternative to using multi-precision arithmetic is to reparameterise the surface
locally or globally using polynomials. E.g. for the superquadric above, we can
reparameterise it piecewise with a simple power law. In the interval [0, π/2] we
use u = u′3π/2 to replace sin1/3(u) with sin1/3(u′3π/2) for u′ ∈ [0, 1] and similar
for the other intervals and for the cosine.

Figure 14 shows one corner of the superquadric shown in Fig. 13, with three
curves mapped onto the surface. The image on the left shows a uniform Hilbert
curve of depth k = 7. The middle image shows an adaptive Hilbert curve with
6 < k < 14, and the image on the right shows a cubed reparameterisation of a
uniform Hilbert curve of depth k = 7.

Generating the space-filling curve adaptively allows us to achieve localised
higher densities on surfaces for a similar or lower memory requirement. The ap-
proach also allows us to correct for extreme parameterisations. However, Fig. 14
shows the limitations of this for an extreme parameterisation. To improve this
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Fig. 14. One corner of a superellipsoid: normal distribution, uniform curve (left); nor-
mal distribution, adaptive curve (middle); cubed distribution, uniform curve (right)

situation for specific parameterisations, an alternative to using multi-precision
arithmetic is to reparameterise the surface, either locally or globally. We have
demonstrated that in the case of the superquadric, we can reparameterise it us-
ing a global power law (a simple polynomial fitted to part of the parameter to
alter the distribution to better adapt to the sine or cosine terms). Future work
will involve automating this reparameterisation approach, possibly on a per-cell
basis during subdivision to take advantage of adaptive technique.

6 Conclusions

We have discussed the generation of density-controlled low-discrepancy distribu-
tions on arbitrary parametric surfaces employing a method due to Steigleder and
McCool [1]. It allows us to map a 1D point sequence onto a surface via an adap-
tively generated space-filling curve. We have examined various choices for the
1D point distribution and space-filling curve. We found that both evenly-spaced
and low-discrepancy 1D point sequences perform well when used with Hilbert
and Hilbert II curves, where the Hilbert II curve is superior to the Hilbert curve.
However, using a jittered evenly-spaced 1D point sequence in combination with
adaptive generation of the Hilbert curve produces good point distributions in a
short time for general surfaces and density functions.

Comparing the approach with other known low-discrepancy sequences in 2D
and for special surfaces in 3D showed that specialised methods may perform
better for some particular surface or discrepancy measure. However, the pre-
sented method is only slightly worse the specific distributions and outperforms
these distributions if considered for general use. Overall this approach robustly
generates low-discrepancy point distributions on surfaces, although reparame-
terisation may be needed to overcome limitations of the method arising from
machine precision limits. We note that the use of the space-filling curve provides
many inherent advantages, such as locality and connectivity.

One area of future work involves applying our method to a particular appli-
cation and comparing how well it solves the problem to other approaches. Such
problems include the computation of surface integrals of geometric models using
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the Crofton formula [25], and other multivariate integration problems such as a
Monte Carlo approach to computational fluid dynamics [35] and finite element
analysis [8,9]. We may also test the approach with a ray-tracing or radiosity sim-
ulator to visually asses the distributions. These results would allow us to gauge
the quality of various distributions in real-world problems.

One limitation of the method given is its reliance on a fully generated and
stored adaptive Hilbert curve. We believe the method could be accelerated
greatly if it were implemented to run directly on a GPU. [36] describes an al-
gorithm to generate L-system subdivision curves using 32-bit precision pixel
shaders. This technique maps well to programmable GPUs, and if further par-
allelised, could considerably increase the speed of space-filling curve generation.
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