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Abstract. This paper examines recursive Taylor methods for multivari-
ate polynomial evaluation over an interval, in the context of algebraic
curve and surface plotting as a particular application representative
of similar problems in CAGD. The modified affine arithmetic method
(MAA), previously shown to be one of the best methods for polyno-
mial evaluation over an interval, is used as a benchmark; experimental
results show that a second order recursive Taylor method (i) achieves
the same or better graphical quality compared to MAA when used for
plotting, and (ii) needs fewer arithmetic operations in many cases. Fur-
thermore, this method is simple and very easy to implement. We also
consider which order of Taylor method is best to use, and propose that
second order Taylor expansion is generally best. Finally, we briefly exam-
ine theoretically the relation between the Taylor method and the MAA
method.

1 Introduction

The aim of range analysis is to find the range of a function (usually a polynomial)
in one or several variables over an input interval. In practice, finding an exact
range is difficult, and it is more usual to find a range which includes the actual
range. Information about the range of a function f, and related functions such as
its partial derivatives, inverse, etc. are of considerable interest to people working
in the fields of numerical and functional analysis, differential equations, linear
algebra, approximation and optimization theory and other disciplines [7].
Range analysis has many important applications in CAGD and computer
graphics, including the plotting and localisation of implicit curves and surfaces.
Implicit surfaces are of direct use, for example, in CSG solid modelling, while im-
plicit curves can be used to represent the intersection of two parametric surfaces,
or the silhouette edges of a parametric surface with respect to a given view [10].
Many other geometric operations can also be performed by finding the simul-
taneous solution of a set of non-linear equations in several variables, and range



analysis provides a means of localising such solutions [6]. Both as an interesting
example in its own right, and as a representative problem, we thus consider in
this paper the problem of solving f(z,y) = 0 in a rectangle or f(x,y,2z) =01in a
cuboid, and more particularly the problem of plotting this curve or surface into
a set of pixels or voxels. Clearly, for other problems, e.g. finding the intersection
of two surfaces, producing a pixel or voxel grid may not be appropriate, but our
overall methodology and conclusions concerning localisation of implicit curves
and surfaces remain valid.

Parametric curves or surfaces are very easy to plot. On the other hand,
implicit curves or surfaces can not be plotted so readily. Implicit curve or surface
plotting methods can be classified into two categories. The first are continuation
methods [2—4], which are efficient. They find one or more seed cells (pixels or
voxels) on a curve or a surface, and then trace the curve or surface continuously
through appropriate adjacent cells—only cells containing the curve or surface are
visited. However, continuation methods have one fundamental difficulty, that of
finding a complete set of initial seed cells.

Subdivision methods [5, 8,10-14] make up the second approach. These meth-
ods start with the whole plotting region itself as an initial cell. If a cell can be
proven to be empty, it is discarded; otherwise it is subdivided into smaller cells,
which are then visited recursively, until the cells reach pixel size. All pixels which
contain the curve are thus guaranteed to be retained. In this way large portions
of the plotting region can be discarded quickly and reliably at an early stage,
leading to an efficient method. Such methods are generally based on ideas from
interval arithmetic.

When f(z,y) is a polynomial in two variables x and y, the curve is an algebraic
curve. Similarly when f(z,y, z) is a polynomial in three variables x, y and z, the
surface is an algebraic surface. Algebraic curves or surfaces are a rich family, with
several plotting methods [5, 8, 13] that exploit the properties of polynomials.

Taubin’s method [13] is well known; we have shown in [5] that Taubin’s
method is equivalent to performing interval arithmetic on centered forms but
without consideration of the even or odd properties of powers of polynomial
terms. We have further shown that interval arithmetic on centered forms method
is less accurate than a modified affine arithmetic method (MAA) which does take
into consideration the even or odd properties.

In this paper we propose the use of a recursive Taylor method for function
range evaluation and use it to plot algebraic curves and surfaces. We combine
it with a point sampling technique and a subpixel (or subvoxel) technique to
improve the results.

In our previous papers [5,8] we showed that the modified affine arithmetic
method is one of the best methods for polynomial evaluation over an interval,
for use in recursive subdivision methods for plotting algebraic curves—we thus
compare the Taylor method with that method. Our test results show that, when
used for plotting algebraic curves and surfaces at a given resolution, the recursive
Taylor method can give same or better graphical accuracy as the MAA method,



and needs fewer arithmetic operations in most cases. Furthermore, this recursive
Taylor method is simple and very easy to implement.

We also consider which order Taylor method to use, and show that 2nd order
Taylor expansion seems to be best for general use.

Finally we examine theoretically the relation between the recursive Taylor
method and the modified affine arithmetic method.

As noted above, the recursive Taylor technique presented in this paper is a
general efficient method for computing bounds on a polynomial: its use here for
algebraic curve and surface drawing is just an example application. The recursive
Taylor method presented in this paper can be easily generalized to an arbitrary
number of dimensions.

2 The subdivision algorithm

Subdivision algorithms for plotting implicit curves and implicit surfaces have
much in common. We mainly focus on the case of plane implicit curves in this
section.

In the following we use the standard notation that an interval A represents
a range of real values between ¢ and @ such that ¢ < @ and is written [a, @].

The main idea of subdivision algorithms [11] for plotting implicit curves
over a rectangular array of pixels is to consider various regions, initially the
whole plotting region, [z,Z] x [y,7], and to estimate bounds [f, f] guaranteed
to contain all values of f(x,y) over this region. This is done using some range
analysis method to estimate the range of the function. If 0 ¢ [f, f], this means
that the curve cannot pass through region, which therefore can be discarded.
Otherwise the region is subdivided horizontally and vertically at its mid point
into four sub-regions, and the pieces are considered in turn. The process stops
when any region not yet discarded reaches pixel size.

In a basic version of the algorithm, we may just plot this pixel as if it did
contain the curve. This can result in a “fat” curve if the bounds on the function
obtained by range analysis method are too conservative, i.e. extra pixels which
are actually not on the curve are plotted. Later, we will consider how to process
the pixel-sized regions further to remove some, but not all, of the extraneous
pixels. The basic procedure is summarized in Figure 1.

The key step in subdivision algorithms of this type is to estimate the bounds
[f,f] on f(x,y) over the region [z,Z] x [y,7]; this is done using some range
analysis method. Different range analysis methods for computing the bounds
have different effects on accuracy and efficiency of the plotting algorithm [5].
Generally, the more accurate the estimate is, the better the graphical result will
be, and also less subdivision will be required. However, more accurate estimates
usually need more arithmetic operations, which reduces the efficiency of the
plotting algorithm. Obviously, accuracy and efficiency are to some extent trade-
offs. In the next Section we will present a Taylor method for computing these
bounds.



PROCEDURE Plot_Curve(z,T,y,7) :
[f, f] = Bound({,z,7,y,%) ;
IF f <0< f THEN
IF T —xz < Pixel_size AND Yy —1y < Pixel_size THEN
Plot_Pixel(z,T,y,J) B
ELSE Subdivide(z,Z,y,7) .

PROCEDURE Subdivide(z,T,y, ) :
zo = (z+7T)/2;

Yo = (Q+y)/25

Plot_Curve(z, zo, ¥y, Yo) ;
Plot_Curve(z, zo, Yo, T) ;
Plot_Curve(zo, T, Y0, 7) ;
Plot_Curve(zo,T, Y, Yo) -

Fig. 1. Subdivision algorithm for curve plotting

In order to reduce the uncertainties associated with the regions remaining
at pixel level, which may or may not contain the curve, as noted above, we use
two further techniques. Point sampling [12] is done for regions of pixel size by
evaluating the values of f(x,y) at the four corner points of the pixel. If they do
not all have the same sign (or zero), then the pixel must be include the curve
(as f is a continuous function); otherwise, the pixel may or may not be on the
curve. Thus, after point sampling, all pixels in the plotting region belong to one
of three classes: (i) pixels discarded by the basic subdivision method, which are
surely not on the curve, (ii) pixels accepted by the point sampling technique,
which are surely on the curve, and (iii) pixels whose status is still not clear, and
may or may not be on the curve. We now further attempt to discard as many
pixels as possible in the third class. To this end we use a subpixel technique [14].
We subdivide pixels in the third category into four subpixels. If all four subpixels
can be discarded by the range method, we discard this pixel, otherwise we keep
the pixel.

A major advantage of the subdivision algorithm presented above is that it
finds all points on the curve, and can handle singularities with no special pro-
cessing. Thus, it can handle problems where continuation methods may typically
fail, including curves with multiple components, cusps, self-intersections, touch-
ing components, and isolated points.

The subdivision algorithm for plotting implicit surfaces is a direct generali-
sation to three variables of the planar implicit curve algorithm. Plotting implicit
space curve cases can also readily be done by finding regions simultaneously
containing zeros of two implicit functions in three variables.

3 Taylor method for bounds

Constructing the natural inclusion function [10] giving the exact range of a
function over an interval is often not easy, and may be impossible for general



functions f(z,y). Here we use a simple Taylor method [1] for computing bounds
of f(x,y) over [z,Z] X [y,7], which can be combined with point sampling and
subpixel techniques to solve the implicit curve plotting problem in a reliable,
accurate and efficient way. For now, we assume the choice of a second order
Taylor method, but we will return to the choice of order later. Suppose f(x, y) has
continuous second derivatives on [z, Z] X [y,7]. In many practical applications in
CAGD and computer graphics, the functions encountered satisfy this condition,
at least piecewise. To estimate the bound of f(z,y) on [z,Z] X [y, 7], we expand
f(z,y) at the mid point (z¢,yo) of the region [z, T] X [y, 7] using Taylor’s formula:

F(,9) = F(0,90) + hf(0,50) + kfy (0,50) + 5H2 Fra(o + 01, yo + 6F)

1
*%§Wﬂw@o+9hy0+9m*Jmﬁw@o+9hyo+9m,

where
_ z+7T y+y
(z7y)€[£7x]x[g7y]7 Zo = 2 ayO*_Q ) 0<9<17
T—2 T—X Tr—x
hea— oL ro L gy
T SC()E[ 5 2 ] 2 [ a]a
Y=y Y-y, Y-y
k=y— S A N
Yy yoe[ 9 ) 2 ] 2 [ a]

Suppose we know the interval bounds Bg;, Byy, By, of the three second
derivatives foz (2, v), fyy(z,y), foy(z,y) of the function f(z,y) over the region
[Qaf] X [g@] such that fzz(xvy) € Bz, fyy(xvy) E_Byyv fzy(xvy) S Bzy- Let

1 = (T—2)/2,y1 = (¥ —y)/2. Then the bounds [f, f] of f(z,y) over the region
[,7] X [y,7] can be expressed as

[Lﬂ = f(®0,y0) + 21 fx(%0,y0)[=1, 1] + y1 fy (z0, y0)[-1,1]

+ %xmeH, 1]+ %nyyyH, 1]+ 2191 Byy[—1, 1],

(To apply interval computation to the above formula, real numbers are con-
verted where necessary to intervals with equal lower and upper bounds.)

The main potential limitation of this method is that we need estimates for
the bounds Bgs, Byy, Bzy of the three second derivatives feoz(x,v), fyy(z,y),
fwy(z,y) of f(z,y) on the region [z,7] x [y,7]. (Note that the first derivatives
required need only be computed at a specific point, and thus can readily be
found.) For general implicit curves, finding bounds on the second derivatives is a
difficult problem. However, as we show in the next Section, they can be readily
computed for algebraic curves.

Similarly, for surface plotting, to estimate the bound of f(z,y, z) on [z,T] X
ly, 7]  [2,Z], we may expand f(x,y, z) at the mid point (o, yo, 20) of the region



[x,7] X [y,7] X [z,Z] using Taylor’s formula:

f('rvyvz ) = f(z07y0;20) + hfx(l'o,yo,ZO) + kfy('r()vyo;zo) + lfz(zO;yOVZO)

1 1
+§h2fmx(1'0 +0h,yo + 0k, z0 + 01) + §k2fyy($o +0h,yo + Ok, zo + 01)

1
512 a0 + Oh, o + Ok, 20 + 01) + bk fa (w0 + 0, yo + Ok, 20 + 61)
+hlfor(xo + Oh,yo + Ok, 20 + 01) + Kl fy.(xo + Oh, yo + Ok, 2o + 01)

where
= _ = z+7T y+y z2+7Z
(z,y,z)G[Lx]x[g,y]x[g,z], Zo = 2 ;y0:_2 y R0 = 2 70<9<15
rT—x T—Z Tr—x
X -TOE[ 2 ) 2 ] 2 [ a]a
Y-y y-y Y-y
k=y— — = =| = =—1,1].
Yy yoe[ 9 ) 2 ] 2 [ a]
zZ—2 Z—2z zZ—2z
l=2— e T
z ZOE[ ) ) 9 ] 2 [ a]

Suppose we know the interval bounds B, Byy, B.., Bzy, Byz, By. of the six
second derivatives fu.(x,v,2), fyy(2,y,2), f22(2,¥,2), fay(z,y,2), faz(x,y, 2),
Jy=(x,y,2) of the function f(z,y,z) over the region [z,T] x [y,7] x [z,Z] such
that fze(2,y,2) € Bag, fyy(®,Y,2) € Byy, f22(2,Y,2) € B.s, faoy(2,y,2) € Bay,
Joe(2,y,2) € Baz, fy=(2,y,2) € By.. Let 11 = (T —2)/2, 1 = T —y)/2,, 21 =
(Z—2)/2,. Then the bounds [F, F] of f(z,v, z) over the region [z, Z] x [y, 7] x [z, Z]
can be expressed as B

[F, F] = f(z0,%0, 20) + T1.fz(T0, Yo, 20)[~1, 1] + y1 fy (0, Y0, 20)[~1, 1]
1 1 1
+2z1f2 (%0, Y0, 20)[—1,1] + ixmec[*lv 1]+ iy%Byy[*la 1]+ §Z%B22[*17 1]
+$llemy[_1; 1] + xllezz[_la 1] + ylleyz[_la 1]

As above, again we need estimates for the bounds By, Byy, Bz, By, Bz,
By..
Yz

4 Finding bounds on derivatives

When f(z,y) = 0 represents an algebraic curve, f(x,y) is a polynomial function
of two variables. In this case the three second derivatives fyz(x,v), fyy(z,y),
fwy(z,y) are themselves also polynomials in two variables with lower degrees
in x or y or both. Therefore we can use a recursive technique to estimate the
bounds of the second derivatives, as given by the algorithm in Figure 2. Here,
“IF f =c RETURN Intervallc,c|” tests if f is a constant, and if so terminates
the recursion—the bound on a constant can be trivially computed. (Recursion



Bound(f,z,7,y,y) :
IF f =c RETURN Intervallc, (]
ELSE
ro=(z+7)/2 yo=w+9/2 1=T—-2)/2 yi=T-y)/2;
[f, f] = f(zo,90) + 21 fe(z0,y0) [ 1, 1] + y1 fy (0, yo) [—1,1]
—&—%x% [0, 1]Bound( fou, 2, Z, Y, Y) + %y% [0, 1]Bound( fyy,x, 7, y,7)
+z1y1[—1, 1]Bound(foy, 2,7, y, %) ;
RETURN Intervallf, f].

Fig. 2. Recursive Taylor algorithm for polynomial bounding

could also be stopped one step earlier, as it is easy to compute exact bounds for
linear functions.)

Note that only in the case that f is a polynomial can we guarantee that
such recursion will terminate. For polynomials, successive differentiation must
eventually result in a constant, which is not true for other functions.

A similar recursive technique can be used for trivariate polynomials.

5 Examples

In the above Sections we proposed a recursive Taylor method combined with
point sampling and a subpixel technique for plotting algebraic curves and sur-
faces. In this section we give some examples demonstrating the accuracy and
efficiency of these methods.

Most of the examples we give involve low degree polynomials. While it is
conceivable that somewhat different conclusions might be drawn for the cases
of higher degree polynomials, other tests we have done on further higher degree
polynomials support the conclusions here. Furthermore, in most CAGD appli-
cations, the polynomials used are generally of a low degree, justifying our choice
of low degree test cases.

5.1 Algebraic curves

Examples 1 to 10 are the same examples for plotting algebraic curves given in
a recent survey of methods [5], with plotting region [0, 1] x [0, 1] and resolution
256 x 256 pixels. They were designed to test the efficiency and accuracy of range
evaluation methods on a variety of problem cases, including curves with cusps,
self-intersections, closely adjacent loops, and so on.

The corresponding figures produced by the new recursive Taylor (RT) method
(including the use of point sampling and subpixel techniques, denoted RT++)
are shown in Figures 3 to 12. The survey [5] showed that the modified affine
arithmetic method (MAA) is one of the best methods for plotting algebraic
curves. Therefore we have compared the recursive Taylor method with the MAA
method. A detailed quantitative comparison of the MAA and RT methods, and
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o.sJ 0.8
0.6 0.6
0.4 0.4
0.2 F 0.2
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Fig.3. Example 1. 2 + 8z — 162> +  Fig. 4. Example 2. 201602° — 30176z +
8y — 112xy + 12822y — 16y* + 128zy> — 141562 —2344a> + 1512 +237—480y = 0,
1282z2y% = 0, plotted by RT++ method plotted by RT++ method (432 pixels) .
(522 pixels).

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Fig.5. Example 3. 0.945zy — Fig. 6. Example 4. 2° —z"y+32%y® —¢° +
9.43214x%y> + 7.4554x3y% +y* —2® =0,  y® + yiz — 4y*z® = 0, plotted by RT++
plotted by RT++ method (601 pixels). method (774 pixels).

also their variants MAA++ and RT++ which include point sampling and sub-
pixel techniques, is given in Table 1 for these examples.

Table 1 shows, for each example, how many pixels are plotted by the different
methods (the fewer, the more accurately the method has found the curve), the
number of subdivisions used in the computation (the fewer, the better, as less
stack operation overheads result), and the number of addition and multiplication
operations used overall (the lower, the better).



0.2 0.4 0.6 0.8 1

Fig.7. Example 5. —23 + 280z —
8162” +10562° — 5122 + L0y — 5123y +
153622y —2048z3y+1024z*y = 0, plotted

by RT++ method (456 pixels).

0.2 0.4 0.6 0.8 1

Fig. 9. Example 7. —13 4 32z — 28822 +
5122% — 2562 + 64y — 112y* + 256xy> —
25622y = 0, plotted by RT++ method
(460 pixels).

0.2 0.4 0.6 0.8 1

Fig. 8. Example 6. % - %x + 54422 —
512x3+256x47%y+ %xy7768x2y+
% z_ %xzf + 768z%y? — 512y° +
256y* = 0, plotted by RT++ method
(456 pixels).

0.2 0.4 0.6 0.8 1

Fig. 10. Example 8. —% + %x— 1122+
83 + 9y — 8xy — 9y? + 8zy? = 0, plotted

by RT++ method (808 pixels).

The recorded number of additions and multiplications in Table 1 does not
include the arithmetic operations used to differentiate the polynomial. An im-
plementation of the recursive Taylor method should calculate all necessary co-
efficients of the derivatives of the polynomial just once at the beginning, and
store them in an array, to avoid differentiation of the polynomial during the
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0.2 0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Fig.11. Example 9. 47.6 — 220.8z + Fig. 12. Example 10. %—x+2x2—2x3+
476.82% —5122° 425621 —220.8y+5120y— ' — By + 22y — 227y + H2y® — 22y +
512z%y + 476.8y% — 512xy? + 512x%y2 — 2a2y% — 2% + y* = 0, plotted by RT++
512y% + 256y* = 0, plotted by RT++ method (772 pixels).

method (1088 pixels).

subdivision process every time a derivative is needed. The number of arithmetic
operations used to differentiate the polynomial once only is relatively small and
can be neglected.

From Table 1 we can see that in one case out of ten (Example 4), the recur-
sive Taylor method produced better graphical quality than the modified affine
arithmetic method (fewer pixels were plotted). The corresponding graphical out-
put for the RT method is shown in Figure 14, where 801 pixels were plotted,
and for the MAA method in Figure 13, where 816 pixels were plotted. (These
two figures only differ in the lower left corner). In the other nine test cases the
recursive Taylor method produced the same graphical quality as the modified
affine arithmetic method.

In seven out of ten cases, the recursive Taylor method needed fewer arithmetic
operations in total (the number of additions plus the number of multiplications)
than the modified affine arithmetic method (Examples 2,4,6,7,8,9,10). In Exam-
ples 2,6,9,10 the number of arithmetic operations needed by the recursive Taylor
method was much fewer than (less than half of) those for the modified affine
arithmetic method. Although the recursive Taylor method needed more arith-
metic operations than the modified affine arithmetic method for Examples 1,3,5,
we note that the numbers of arithmetic operations needed by both methods for
these examples were very similar.

One minor disadvantage of the recursive Taylor method is that it often needs
a few more recursive operations than MAA.

Point sampling and subpixel techniques further improved the graphical qual-
ity achieved by RT and MAA methods, especially for Examples 4,7,9 where the



|Example| Meth0d|Pixels plotted|Subdivisions|Additions|Multiplications|

1 RT 526 571 415688 343892
1 MAA 526 563| 404262 171226
1| RT++ 522 575 436316 385080
1IMAA++ 522 567 421448 207820
2 RT 433 461 241581 205717
2 MAA 433 459 601510 407812
2| RT++ 432 462 253193 234577
2IMAA++ 432 460, 611148 434354
3 RT 608 637 1116344 936757
3 MAA 608 634 1178329 646933
3| RT++ 601 653 1143206 992682
3IMAA++ 601 650 1202312 694836
4 RT 801 845| 4662221 4461229
4 MAA 816 857| 6773822 6302500
4 RTH++ 774 876| 4844054 4748416
4MAA++ 774 903| 7139018 6757864
5 RT 464 627 664231 575815
5 MAA 464 611 599656 339853
5| RT++ 456 635 690161 630353
5 MAA++ 456 619 621248 387781
6 RT 460 567 442025 414092
6 MAA 460 560 1329630 788830
6| RT++ 456 573 469450 478064
6|MAA++ 456 566 1362826 853306
7 RT 512 629 445039 386359
7 MAA 512 627 873923 476708
7| RT++ 460 719 512886 472534
TIMAA++ 460 717) 986288 569061
8 RT 818 829 563844 422917
8 MAA 818 827 855337 397078
8| RT++ 808 843 595997 476088
8 MAA++ 808 841 886530 444873
9 RT 1144 1281 998825 935312
9 MAA 1144 1269| 3012696 1787102
9] RT++ 1088 1351| 1106039 1131219
9MAA++ 1088 1339 3214325 2018571
10 RT 784 849 662153 609761
10 MAA 784 845 2006376 1190110
10| RT++ 772 861 710484 710732
10|MAA++ 772 857 2068693 1294219

Table 1. Comparison of RT, MAA, RT++, MAA++ methods

improvements are significant. However, for Examples 1,2,3,5,6,8,10 the improve-
ments only affected a few pixels and insignificant. Of course, the price to pay for
these improvements is an increase in arithmetic operations: every pixel which
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Fig. 13. Example 4, plotted by the MAA Fig. 14. Example 4, plotted by the RT
method (816 pixels). method (801 pixels).

cannot be discarded by the basic subdivision process needs to be examined fur-
ther. We can however see from Table 1 that the increased number of arithmetic
operations is not greatly significant. This is because the RT and MAA methods
already provide close to the best possible graphical quality at the given res-
olution, and thus the numbers of pixels left to be examined further by point
sampling and subpixel techniques are relatively small.

5.2 Algebraic surfaces

We have also experimented with algebraic surface plotting, as outlined below.
Note that our main purpose in this paper is to compare our new range analysis
method with existing methods, in this case for localising the surface to specific
regions (voxels). We only use voxel plotting as a representative application; the
graphical results of surface plotting shown at a resolution of 32 x 32 x 32 are
clearly crude. Such an approach is not meant to be a useful surface rendering
algorithm in itself. A realistic surface plotting algorithm would, for example,
attempt to find a linear fit to the surface and estimate its normal in each region
where the surface has been localised.

Example 11: this plots the plane f(z,y,2) = 2+ 2y + 3z — 2 inside the box
box [—1,1] x [-1, 1] x [-1, 1], with resolution 32 x 32 x 32 voxels. Figure 15 shows
the plane plotted by the 3D recursive Taylor method using point sampling and
subpixel techniques. A total of 1791 voxels were plotted.

Example 12: this plots the sphere f(z,y,2) = 10022 + 100y? + 10022 — 81
inside the box [—1,1] x [-1,1] x [—1,1], with resolution 32 x 32 x 32 voxels.
Figure 16 shows the sphere plotted by the recursive Taylor method using point
sampling and subpixel techniques. A total of 3952 voxels were plotted.



Fig. 15. Example 11: The plane plotted Fig. 16. Example 12: The sphere plotted
by 3D RT++ method (1791 voxels). by 3D RT++ method (3952 voxels).
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Fig.17. Example 13: The cylinder plot- Fig. 18. Example 14: The cone plotted
ted by 3D RT++ method (3712 voxels). by 3D RT++ method (3176 voxels).

Example 13: this plots the cylinder f(x,y,2) = 10022 + 100y* — 81 inside
the box [—1,1] x [-1,1] x [-1, 1], with resolution 32 x 32 x 32 voxels. Figure 17
shows the cylinder plotted by the recursive Taylor method using point sampling
and subpixel techniques. A total of 3712 voxels were plotted.

Example 14: this plots the cone f(z,y,2) = 10022+ 100y% — 8122 inside the
box [—1,1] x [—1, 1] x [-1, 1], with resolution 32 x 32 x 32 voxels. Figure 18 is the
cone plotted by the recursive Taylor method using point sampling and subpixel
techniques. A total of 3176 voxels were plotted.



Fig. 19. Example 15: The torus plotted Fig. 20. Example 16: The cyclide plotted
by 3D RT++ method (1904 voxels). by 3D RT++ method (2148 voxels).

Example 15: this plots the torus f(z,y, z) = 64 — 50022 + 6252* — 500y% +
125022y2 4 625y* + 40022 + 12502222 + 1250y%22 + 62524 inside the box [—1,1] x
[—1,1] x [-1, 1] with resolution 32 x 32 x 32 voxels. Figure 19 is the torus plotted
by the recursive Taylor method using point sampling and subpixel techniques.
A total of 1904 voxels were plotted.

Example 16: this plots the cyclide f(x,y,z) = —459 + 156002 — 5500022 +
900002* —45000y2 41800002232 +90000y*+ 1260022 +1800002222 +180000y22> +
90000z* inside the box [~1,1] x [~1,1] x [~1,1], with resolution 32 x 32 x 32
voxels. Figure 20 is the cyclide plotted by the recursive Taylor method using
point sampling and subpixel techniques. A total of 2148 voxels were plotted.

Example 17: this plots a self-intersecting surface f(z,y,z) = 16 — 32z —
2522 + 5023 — 25y2 + 50ay? — 2522 + 50222 inside the box [—1,1] x [-1,1] x
[—1,1], with resolution 32 x 32 x 32 voxels. Figure 21 is the self-intersecting
surface plotted by the recursive Taylor method using point sampling and subpixel
techniques. A total of 4896 voxels were plotted.

Example 18: this plots a pair of parallel surfaces f(z,y, z) = 1296 —36252%+
25002* —3625y2 +50002%y2 +2500y* — 362522+ 50002222 + 5000y 22 +25002* in-
side the box [—1,1] x [—1, 1] x[—1, 1] with resolution 32 x 32 x 32 voxels. Figure 22
is the pair of parallel surfaces plotted by the recursive Taylor method using point
sampling and subpixel techniques. A total of 7236 voxels were plotted.

Example 19: this plots a pair of just-touching surfaces (two tangent spheres)
f(x,y,2) = —162% + 252* + 502%y? + 25y* + 502222 + 50y°22 + 252% inside the
box [—1,1] x [-1,1] x [—1, 1], with resolution 32 x 32 x 32 voxels. Figure 23 is
the pair of tangent spheres plotted by the recursive Taylor method using point
sampling and subpixel techniques. A total of 1572 voxels were plotted.

Example 20: this plots a cone-like surface with a line singularity f(z,y, z) =
—1+ 4z — 4%+ 2y* — 8zy® + 8x%y? + 822 inside the box [—1,1] x [-1,1] x [-1,1],



Fig.21. Example 17: The self- Fig. 22. Example 18: The pair of paral-
intersecting surface plotted by 3D lel surfaces plotted by 3D RT++ method
RT++ method (4896 voxels). (7236 voxels).

J
iy
Q0
ST
Nl

N
N

0

NS

Pl
W,

N
i
N
0

Q
Q

BN
{0
0
>

3
%
&

I
s

0
K

o] 0','.
NN

Fig. 23. Example 19: The pair of just Fig. 24. Example 20: The cone like sur-
touching surfaces plotted by 3D RT++ face with a line singularity plotted by 3D
method (1572 voxels). RT-++ method (3288 voxels).

with resolution 32 x 32 x 32 voxels. Figure 24 is the cone-like surface plotted by
the recursive Taylor method using point sampling and subpixel techniques. A
total of 3288 voxels were plotted.

Table 2 gives a detailed quantitative comparison for these surface examples
of the 3D MAA and 3D RT methods, and also of their improvements which
include point sampling and subpixel techniques, 3D MAA++ and 3D RT++.
From Table 2 we can see that:



|Examples| Methods|Voxels plotted|Subdivisions|Additions|Multiplications|

11 RT 1791 592 397403 229152
11 MAA 1791 592 326348 110727
11 RT++ 1791 592 432100 278177
11{MAA++ 1791 592| 361045 159752
12 RT 3992 1353| 918367 588609
12 MAA 3992 1353| 3289042 1476259
12| RT++ 3952 1401] 1163930 953372
12|MAA++ 3944 1401| 3513741 1733406
13 RT 3712 1433| 958102 589014
13 MAA 3712 1433| 1084217 692199
13| RT++ 3712 1433| 1023606 713910
13|MAA++ 3712 1433| 1149721 817095
14 RT 3272 1129| 756950 491169
14 MAA 3272 1129| 2735177 1231875
14 RT++ 3176 1249| 1145079 1038878
14| MAA++ 3192 1249| 3048966 1515888
15 RT 2192 985| 4455080 3265689
15 MAA 2144 985 13108130 11792931
15| RT++ 1904 1337] 5603358 4948007
15|MAA++ 1920 1289| 16804088 15499281
16 RT 2376 1153| 5232146 3831834
16 MAA 2344 1121] 14953054 13456863
16| RT++ 2148 1497) 6291409 5435377
16| MAA++ 2104 1433| 18908261 17434612
17 RT 5276 1841| 7081323 4483139
17 MAA 5256 1837) 6948311 5854917
17\ RT++ 4896 2265| 8662097 6658461
17 MAA++ 4976 2241 8576707 7662017
18 RT 9424 2865| 12975392 9497889
18 MAA 9376 2769 36866234 33149195
18| RT++ 7236 5313| 21000658 20340451
18| MAA++ 7792 5169| 64451180 59649509
19 RT 1832 961| 4290881 3139995
19 MAA 1816 961| 12656417 11259579
19| RT++ 1572 1249| 5248699 4536725
19|MAA++ 1624 1233| 15851779 14407101
20 RT 3428 1197) 3139078 2100954
20 MAA 3416 1169| 3739482 4352652
20| RT++ 3288 1425| 3913112 3195292
20|MAA++ 3288 1385| 4474204 5400382

Table 2. Comparison of 3D RT, MAA, RT++, MAA++ methods

— In 4 out of 10 cases (Examples 11-14) the RT method plotted the same
number of voxels as the MAA method. In the other 6 cases (Examples 15—
20) the RT method plotted slightly more voxels than the MAA method.



— In 9 out of 10 cases (all but Example 11) the RT method needed fewer
arithmetic operations than the MAA method.

— In 5 out of 10 cases (Examples 14,15,17-19) the RT++ method plotted fewer
voxels than the MAA++ method. In 3 cases (Examples 11,13,20) the RT++
method plotted the same number of voxels as the MAA++ method. In the
other 2 cases (Examples 12,16) the RT++4 method plotted slightly more
voxels than the MAA++ method.

— In 9 out of 10 cases (all but Example 11) the RT++ method needed fewer
arithmetic operations than the MAA++ method.

Overall we may probably conclude that the 3D RT++ method is the best
choice in terms of accuracy and efficiency.

6 Why use order two Taylor expansion?

In Section 4 we proposed an order 2 recursive Taylor method for finding the
bound of a polynomial, and in Section 5 we gave some examples to show that
this method works well. Clearly, however, we could have chosen to use some
other order for our Taylor expansion, so we will now justify why we use a second
order expansion rather than some other order, particularly order 1, 3 or 4. To
do so we give an experimental comparison between recursive Taylor methods of
orders 1-4.

We first begin by explicitly stating order 1, 3 and 4 recursive Taylor algo-
rithms for evaluating a bivariate polynomial f(z,y). An order 1 recursive Taylor
algorithm is given in Figure 25, while an order 3 recursive Taylor algorithm is
given in Figure 26, and an order 4 recursive Taylor algorithm is given in Fig-
ure 27.

Bound(f7 £7E7 :%g):
IF f=c RETURN Intervallc,d],
ELSE
o= (2+7)/2; yo=y+y)/2% =21=T-2)/2, y=F-y/2%

[i7 f] = f($07 y0)+x1Bound(f$7£7§7g7g)[_17 1]+y1B0und(fy7£7 T, Y, ?)[—17 1];
RETURN Intervallf, f].

Fig. 25. Order 1 recursive Taylor algorithm

Using the same curves from Examples 1-10 as before, we compared the ac-
curacy and efficiency of order 1, 2, 3 and 4 recursive Taylor methods, using the
same criteria of assessment as before. The test results are shown in Table 3.
From Table 3 we can see that:

— The order 1 recursive Taylor method is less accurate than order 2, 3 and 4
recursive Taylor methods.



Bound(f, z, T, y,¥) :
IF f =c RETURN Intervallc, |,
ELSE
o= (2+7)/2; yo=u+9)/2 ©1=@-2)/2, ypn=0T-y/%
[f, f1 = f(zo,90) + x1 fa(z0,Y0)[=1, 1] + y1 fy (w0, yo)[~1, 1]
+223(0, 1] faa (20, Y0) + 39710, 1 fyy (20, yo) + z1y1[~1, 1] fay (x0, yo)
+1 3[-1, 1)Bound( foss, 2, T, Y, Y+ 6yl[ 1, 1]Bound( fyyy, Z, T, ¥, J)
+%x1y[ 1:1]B°und(fzzy7£7-’”:yvy)+2-’”12/1[ 171]B0und(fzyy7£7f7g7y);
RETURN Intervallf, f].

Fig.26. Order 3 recursive Taylor algorithm

Bound(f,z,T,y, ) :
IF f=c RETURN Intervallc, (],
ELSE

To = (

[/, /]

1=

Z)/2; yo=(y+y)/2 wi=T-2)/2, n=U—-y/2

f(@o,y0) + 21 fz (0, yo)[—1, 1] + y1 fy (0, yo)[-1, 1]
lx%[07 1]f5€90(x07y0) 2y1[0 1]fyy(x07y0)+x1y1[ 171]f5€y(x07y0)

+523 [~ 1,1 faza (20, 0) + 47 [ 1, 1] fyyy (20, v0)

+12ty1[—1, 1] faay (w0, yo) + §x1y1[ 1 1]fﬂcyy(m07y0)

+i$411[07 1]B°und(facwxx7£7§7gv g) + 4yl [0 1]B°und(fyyyy7 y y)

+éxi’y1[ 1, 1]Bound( fozay, 2, %, Y, Y)

+1x1y1[ 1, 1]Bound(fayyy, Z, T, ¥, J)

+1x?yf[0 1|Bound( frayy, Z, T, ¥, 7) 5
RETURN Intervallf, f].

Fig. 27. Order 4 recursive Taylor algorithm

— Usually, but not always, the order 1 method needs more arithmetic opera-
tions than order 2, 3 and 4 methods (Example 2 is a counterexample).

— In 9 out of 10 cases the order 2 recursive Taylor method has the same accu-

racy as order 3 and 4 methods. In the other case (Example 4) the order 2

method is more accurate than the order 3 and 4 methods.

In 6 out of 10 cases, the order 2 recursive Taylor method needs fewer arith-

metic operations than the order 3 method (Examples 1,2,6,7,9,10).

In all cases the order 4 recursive Taylor methods has the same accuracy as

the order 3 method.

In 6 out of 10 cases order 4 recursive Taylor method needs fewer arithmetic

operations than the order 3 method (Examples 1,4,6,7,9,10).

Obviously the order 1 recursive Taylor method is not as good as the order
2, 3 or 4 methods in accuracy or speed. On the other hand, we note that the
order 3 and 4 recursive Taylor methods are not always at least as accurate as
the order 2 method (see Example 4), or as efficient (see Example 2). While it is
clear that the order 1 method can be rejected on grounds of poor performance,
choice amongst the higher order methods is less clear-cut. Unsurprisingly, in
most cases, using higher-order recursive Taylor methods leads to fewer recursive



|Examples| Order | Pixels plotted | Subdivisions | Additions | Multiplications|

1 1 550 631 795049 536562
1 2 526 571 415688 343892
1 3 526 567 460441 429975
1 4 526 563| 252186 287257
2 1 438 497 248387 191938
2 2 433 461] 241581 205717
2 3 433 460| 246584 240250
2 4 433 459 334228 357296
3 1 619 681| 1771000 1265762
3 2 608 637| 1116344 936757
3 3 608 636 793926 808037
3 4 608 634| 887844 1000846
4 1 843 952| 12534981 9330145
4 2 801 845| 4662221 4461229
4 3 816 860| 3767717 4179094
4 4 816 857| 2149817 3043237
5 1 484 803| 1171467 869116
5 2 464 627| 664231 575815
5 3 464 615 518665 535267
5 4 464 611| 691345 764062
6 1 492 710 1053137 762808
6 2 460 567 442025 414092
6 3 460 560 743610 707035
6 4 460 560 281964 357439
7 1 562 755 990114 684256
7 2 512 629 445039 386359
7 3 512 627| 644351 600905
7 4 512 627 273019 327424
8 1 846 895 612153 402862
8 2 818 829 563844 422917
8 3 818 827 258064 246520
8 4 818 827| 337480 352408
9 1 1336 1625| 2410713 1745518
9 2 1144 1281 998825 935312
9 3 1144 1269| 1685062 1601793
9 4 1144 1269| 639200 809781
10 1 844 997| 1479305 1059079
10 2 784 849 662153 609761
10 3 784 845| 1122246 1056562
10 4 784 845 425760 529126

Table 3. Comparison of order 1, 2, 3 and 4 RT methods under resolution 256 x 256

operations, but the decrease between using orders 1 and 2 is much greater than
between using orders 2 and 3, and between higher orders. Overall the above



results suggest using an order 2 recursive Taylor method as the best compromise
between accuracy and efficiency, and ease of implementation.

However, a word of warning is necessary. This judgement strictly applies only
to 256 x 256 resolution. If we reduce the resolution to 16 x 16 we get the results
shown in Table 4. This Table shows that under these conditions, a second order
expansion need neither be most accurate (see Examples 1,4,5,6,10), nor most
efficient. (The accuracy of the second order method is still quite close to that of
the third and fourth order methods in all cases, however). Clearly, these results
show that a theoretical proof that any particular order expansion is the best
choice is not possible.

7 Theoretical connection between Taylor method and
MAA

In this section we briefly consider a theoretical relation between the Taylor
method and the modified affine arithmetic method. It only concerns the inter-
vals output by a direct (i.e. non-recursive) Taylor method and the MA A method;
furthermore, it does not say how many operations are needed by each method.

Theorem 1 Given a degree n polynomial, suppose m > n, and we perform an
order m Taylor method. The output interval is equivalent to that produced by the
modified affine arithmetic method.

Proof We only prove the theorem here in the univariate case. The proofs for
multivariate cases are similar.

Let f(z) = Z?:o a;xz" be the degree n polynomial in one variable whose range
we wish to estimate over [z,7Z]. Let z9 = (2 +)/2, and 21 = (T — 2)/2 > 0.
Then the centered form of f(z) on [z,7] is

") (p |
£(@) = f(ao) + 3 T (1)

It is known that the modified affine arithmetic method produces the same results
as carrying out interval arithmetic on the centred form method with proper
consideration of even and odd properties of polynomial terms [9]. If we evaluate
f(z) on [z,Z] using the modified affine arithmetic method we get

@ () if 7 is even
favaalz, @) = f(xo) + Z fli('o)le x { [[_01,11]], 1ffz issi)ded } )
,L_l . b )

On the other hand, when m > n, the degree m Taylor form of f(x) on [z,T] is
the same as Equation 1, because for any integer i > n, f()(x) = 0 when f(z) is
a degree n polynomial. Therefore if we evaluate f(z) on [z, ] using a degree m
Taylor method, we get the same interval as in Equation 2.

More work is needed to compare theoretically the intervals produced by the
recursive Taylor method with those from MAA, and also to compare the numbers
of operations. We intend to study these issues in the near future.



|Examples| Order | Pixels plotted | Subdivisions | Additions | Multiplications|

1 1 58 57 72137 48662
1 2 48 49 35848 29648
1 3 44 49 39969 37331
1 4 44 45 20266 23077
2 1 36 52 26059 20168
2 2 32 36 18977 16167
2 3 32 34 18348 17878
2 4 32 33 24200 25868
3 1 55 57| 148840 106370
3 2 43 48 84512 70927
3 3 43 47 58950 60007
3 4 43 45 63340 71404
4 1 76 68| 898473 668713
4 2 63 53| 293765 281053
4 3 63 52| 228897 253830
4 4 62 50| 126073 178387
5 1 156 85| 124747 92240
5 2 88 7 81927 70915
5 3 84 7 65225 67207
5 4 82 7 87465 96562
6 1 100 84| 125089 90484
6 2 57 74 57845 54202
6 3 55 72 95878 91179
6 4 55 72 36344 46095
7 1 80 67 88282 60928
7 2 58 51 36311 31467
7 3 58 49 50663 47181
7 4 58 49 21507 25708
8 1 64 59 40545 26662
8 2 58 51 34876 26137
8 3 58 49 15400 14676
8 4 58 49 20128 20980
9 1 108 85| 126601 91558
9 2 88 73 57193 53472
9 3 88 69 92038 87393
9 4 88 69 34976 44181
10 1 92 85| 126537 90535
10 2 68 65 50905 46849
10 3 64 65 86646 81562
10 4 64 65 32880 40846

Table 4. Comparison of order 1, 2, 3 and 4 RT methods at resolution 16 x 16

8 Conclusions

From the above experiments we can see that recursive Taylor methods can pro-
duce at least as good graphical results as the modified affine arithmetic method,



and often need fewer arithmetic operations. Furthermore, the recursive Taylor
method is simple and very easy to implement. One minor disadvantage of the
recursive Taylor methods are that they often need a few more recursive oper-
ations than MAA. Repeating our earlier conclusions, overall we suggest using
the second order recursive Taylor method as the best compromise (in terms of
order) between accuracy and efficiency, and ease of implementation.
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