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Abstract

We present efficient and robust algorithms for intersecting a rational parametric freeform

surface with a general swept surface. A swept surface is given as a one-parameter family of

cross-sectional curves. By computing the intersection between a freeform surface and each

cross-sectional curve in the family, we can solve the intersection problem. We propose two

approaches, which are closely related to each other. The first approach detects certain crit-

ical points on the intersection curve, and then connects them in a correct topology. The

second approach converts the intersection problem to that of finding the zero-set of poly-

nomial equations in the parameter space. We first present these algorithms for the special

case of intersecting a freeform surface with a ruled surface or a ringed surface. We then

consider the intersection with a general swept surface, where each cross-sectional curve

may be defined as a rational parametric curve or as an implicit algebraic curve.
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1 Introduction

Surface-surface intersection (SSI) is an important problem in geometric modeling

and processing, particularly for applications in CAD/CAM and solid modeling.

Many different approaches have been proposed. However, it is still a difficult prob-

lem to solve with sufficient accuracy, efficiency and robustness. The main difficulty

lies in analyzing the topological structure of the intersection curve: it is not easy to

determine the exact number of connected components and the correct topological

arrangement of these components.

Because of the difficulty in dealing with general freeform surfaces, considerable

research has been devoted to intersecting surfaces of special types [13]. Martin et

al. [14] and de Pont [3] considered intersection of a cyclide with a quadric, and with

another cyclide. Johnstone [11] proposed an algorithm to intersect a cyclide with

a ringed surface. (The term ‘ringed surface’ was coined by Johnstone [11]; it is a

surface generated by sweeping a circle while changing its size and orientation.) Heo

et al. [8] presented an algorithm for intersecting two ruled surfaces. They reduced

the intersection problem to a search for the zero-set of the function: f(u, v) = 0,

where f(u, v) is a bivariate polynomial of relatively low degree. This approach was

later applied to the case of intersecting two ringed surfaces [7]. In the present paper,

we extend this result to the intersection of a rational parametric freeform surface

with a general swept surface. A swept surface is a one-parameter family of cross-

sectional curves. In this paper, we focus on the case where each curve in the family

is obtained by applying an affine transformation to a template curve. By taking

an affine spline motion applied to a template curve [10], we can generate a swept

surface. Ruled surfaces and ringed surfaces are special types of swept surfaces,

which are constructed by sweeping a line or a circle.

We present two methods for intersecting a freeform surface with a swept surface.

The first approach detects certain critical points on the intersection curve, and con-

nects them in a correct topology; the curve segments connecting each pair of ad-

jacent critical points is generated by a numerical curve tracing technique [1,2,5].

This procedure gives the entire intersection curve. The second approach transforms

the intersection problem into a simple problem of solving a system of (n − 1)

polynomial equations in n variables. (See Elber and Kim [6] or Patrikalakis and

Maekawa [15] for details of solving a system of m polynomial equations in n vari-

ables.)

Kim et al. [12] previously proposed a related topology-construction approach for

intersecting a sphere with a surface of revolution. A surface of revolution is a spe-

cial kind of swept surface which is generated by sweeping a circle of varying radius

along a line. Figure 1(a) shows the silhouette CS of a sphere S and the generating

curve C+
R for a surface of revolution R. Each point p1 (∈ C+

R ) outside the silhouette

CS generates a circle on the surface R that has no intersection with the sphere S.
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Fig. 1. Three different types of intersection between S and the circles of R.

Thus we can completely ignore the curve segments of C+
R that lie outside CS. On

the other hand, each point p2 (∈ C+
R ) inside CS generates a circle that intersects the

sphere S transversally in two distinct points. When we follow the curve C+
R inside

the circle CS, we can trace two branches of the intersection curve S∩R, one on the

front hemisphere and the other on the back hemisphere. The two branches are first

created (starting at the same point) when the curve C+
R enters the circle CS , and

they merge to form a closed loop when the curve C+
R leaves CS. Finally, each point

p3 lying on C+
R and CS (∈ C+

R∩CS) generates a circle that intersects S tangentially.

All tangential intersections between the sphere S and the cross-sectional circles of

R can be detected by computing C+
R ∩ CS, which can be reduced to solving a uni-

variate polynomial equation. We will use similar principles in the first approach

presented in this paper.

Here, we consider the intersection between a rational parametric freeform surface

and a general swept surface. The topology of the intersection curve is in this case

determined by certain critical points where cross-sectional curves of a swept surface

intersects a freeform surface tangentially. The geometric condition of tangential in-

tersection can be formulated as a system of n polynomial equations in n variables,

which in general produces discrete solutions. The tangential condition is formulated

as one of these equations. By deleting this equation, we obtain a system of (n − 1)

equations in n variables, the solution of which generates a 1-manifold in the pa-

rameter space of the given freeform surface and the swept surface. The intersection

curve is then constructed by projecting the 1-manifold into the uv-parameter plane

of the freeform surface S(u, v).

We first consider the problem of intersecting a freeform surface with a ruled surface

or a ringed surface. We then consider the case of intersecting a freeform surface

with a general swept surface. Each cross-sectional curve of the swept surface may

be defined as a rational parametric curve or as an implicit algebraic curve that
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moves under a rational affine spline motion [10].

The rest of this paper is organized as follows. In Section 2, we discuss how to

construct the correct topology of an intersection curve based on detecting certain

critical points on the curve. In Section 3, we give a simple technique for reducing

the intersection problem to that of computing the simultaneous zero-set of (n − 1)

polynomial equations in n variables. Section 4 presents some experimental results.

Finally, in Section 5, we conclude this paper.

2 Topology Construction

We will first present an algorithm that detects critical points on the intersection

curve and constructs the correct topological structure of the curve. The critical

points are tangential intersection points between the freeform surface and the cross-

sectional curves of the swept surface. The basic idea of this approach is first ex-

plained using an illustrative example for a simple case where a freeform surface is

intersected with a general cylindrical surface (i.e., a linear extrusion surface). Then

we proceed to the cases where a freeform surface is intersected with a ruled surface,

or a ringed surface. Finally, we show algorithms for intersecting a rational freeform

surface with a general swept surface.

2.1 Intersection with a Cylindrical Surface

For the sake of simplicity, we first consider the case of intersecting a freeform

surface with a cylindrical surface. We may assume that the cylindrical surface is

generated by extruding a plane curve C(t) = (x(t), y(t), 0) along the z-direction.

Let L(p) denote a line passing through a point p in the xy-plane and parallel to the

z-axis. The line L(C(t)) intersects a freeform surface S(u, v) = (x(u, v), y(u, v),
z(u, v)) tangentially if and only if the point C(t) = (x(t), y(t), 0) is located on the

silhouette of S(u, v) when viewed along the z-direction. The silhouette curves and

the boundary curves of S(u, v) subdivide the xy-plane into several regions. Figure 2

shows some such surface S(u, v) and its silhouette and boundary curves projected

on to the xy-plane. Also shown are the corresponding six regions A0, · · · , A5 on

the plane.

The location of a point p (in the xy-plane) leads to the following relation between

a line L(p) and the surface S(u, v):

(1) If p is on the silhouette curve of S(u, v), the line L(p) intersects S(u, v)
tangentially at some location.
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Fig. 2. Regions on the xy-plane delimited by the silhouette curves and the boundary curves

of S(u, v).

(2) If p is inside a region Ai, then L(p) intersects S(u, v) transversally at each

intersection point.

(3) If p and q are in the same region Ai, then L(p) and L(q) have the same

number of intersections with S(u, v).

For points pi, (0 ≤ i ≤ 5), located in the region Ai (Figure 2), the intersection

between L(pi) and S(u, v) is classified as follows:

(1) L(p0) ∩ S(u, v) consists of one transversal intersection point.

(2) L(p1) ∩ S(u, v) consists of two transversal intersection points.

(3) L(p2) ∩ S(u, v) consists of three transversal intersection points.

(4) L(p3) ∩ S(u, v) consists of one transversal intersection point.

(5) L(p4) ∩ S(u, v) consists of two transversal intersection points.

(6) L(p5) ∩ S(u, v) has no intersection point.

For points qj , (0 ≤ j ≤ 2), on the silhouette or boundary curves, the intersection

between L(qj) and S(u, v) is classified as follows:

(1) L(q0)∩S(u, v) consists of one tangential intersection point and one transver-

sal intersection point.

(2) L(q1) ∩ S(u, v) consists of one boundary point of S(u, v).
(3) L(q2)∩S(u, v) consists of one tangential intersection point and one boundary

point of S(u, v).

As one can notice from the above example, the number of intersections between

the line L(p) and the surface S(u, v) changes when the point p passes across the

silhouette or boundary curves of S(u, v). When the point p traces a continuous

curve C(t) in the xy-plane, this observation leads to a classification of the topology

of the intersection curve between a surface S(u, v) and a cylindrical surface. Let

R(s, t) denote the cylindrical surface generated by extruding C(t) = (x(t), y(t), 0)
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Fig. 3. Topological structure of the intersection curve between R(s, t) and S(u, v).

along the z-direction, where we take s = z. That is, the curve C(t) in Figure 3(a)

is the projection of the cylindrical surface R(s, t) on to the xy-plane. For a fixed

t0, each ruling line R(s, t0) is projected on to a curve point C(t0). The topological

structure of the intersection curve between S(u, v) and R(s, t) is completely de-

termined by the intersection between C(t) and the silhouette and boundary curves

of S(u, v). By subdividing S(u, v) and C(t) if necessary, we may assume that the

curve C(t) does not pass through any of the self-intersection points of the silhou-

ette or boundary curves of S(u, v); that is, it does not pass through points such as

q2 in Figure 2. Moreover, we assume that the surface S(u, v) and the curve C(t)
have no self-intersection.

Figure 3(a) shows a sequence of points C(ti), for i = 0, · · · , 10, where the even-

indexed curve points C(t0), C(t2), · · · , C(t10) are located on the silhouette or bound-

ary curves of S(u, v). On the other hand, the odd-indexed curve points C(t1), C(t3),
· · · , C(t9) lie inside the regions Ai; the ti satisfy ti−2 < ti−1 < ti. Now, in Fig-

ure 3(b), the curve C(t) is stretched out along its parameter line, which is the t-

axis. Each dotted line (parallel to the z-axis) corresponds to a ruling line L(C(ti))
of the cylindrical surface R(s, t). The correct topology of the intersection curve is

completely determined by the discrete set of intersection points L(C(ti))∩S(u, v),
for i = 0, · · · , 10. The intersection points on each line L(C(ti)) are sorted along

the z-direction. We connect discrete points on two adjacent vertical lines according

to their z-order. Each tangential intersection point is connected to two transversal

intersection points on an adjacent vertical line; or it is an isolated point.

Three cases where the number of points on L(C(ti+1)) is larger than on L(C(ti))
are shown in detail in Figure 4. In Figure 4(a) there is a tangential intersection point

(marked with a filled circle) on L(ti+1), whereas in Figure 4(b) there is a boundary

point (marked by a square) on L(ti+1). In these cases, a new component starts at
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Fig. 4. Three cases where there are more points on L(ti+1) than on L(ti).

the point, and the other remaining transversal intersection points are connected as

usual. Figure 4(c) shows the case where L(ti) contains a tangential intersection

point, which may be considered as a double point and is thus connected to two

transversal intersection points. In the opposite case, where the number of points on

L(ti) is larger than the number on L(ti+1), we apply a similar rule. In this case, two

branches may meet at a tangential intersection point, where the corresponding loop

is closed.

In the above discussion, we considered the case where the curve C(t) intersects

the silhouette or boundary curves of S(u, v) transversally. The case of tangential

intersection is more involved. When the curve C(t) intersects the silhouette curve of

S(u, v) tangentially at p, we may consider it as a double intersection. The tangential

intersection point at L(p) ∩ S(u, v) becomes a singular point where two different

loops meet and the intersection curve self-intersects. In the case where the curve

C(t) touches the silhouette curve of S(u, v) externally, the tangential intersection

point may be an isolated intersection point.

Once the topological structure has been determined, the intersection curve itself can

be constructed by numerically tracing the intersection curve using a conventional

technique [1,2,5].

In some degenerate cases, the curve C(t) may also intersect the silhouette curves

of S(u, v) along some curve segments C(t), (ta ≤ t ≤ tb), not just at discrete

points. The surface-surface intersection then includes some tangential intersection

curves, or even some cylindrical surface patches. Such degenerate singular inter-

sections are extremely difficult to deal with using conventional techniques. Nev-

ertheless, in our approach, the problem is reduced to a simpler problem of ex-

tracting the silhouette curve segments or the silhouette surface patches of S(u, v)
that project on to the corresponding curve segments C(t), (ta ≤ t ≤ tb). Let

N(u, v) = (nx(u, v), ny(u, v), nz(u, v)) denote a normal vector field of the surface

S(u, v). We can construct the silhouette curve or the silhouette surface patch of

S(u, v) along the z-direction by solving: nz(u, v) = 0. When the function nz(u, v)
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vanishes over certain open regions in the uv-plane, the surface S(u, v) will inter-

sect the cylindrical surface R(s, t) in some surface patches, not just in 1-manifold

curves.

2.2 Intersection with a Ruled Surface

Now we consider the more general problem of intersecting a freeform surface

S(u, v) with a ruled surface R(s, t). A ruled surface is defined by connecting two

space curves C1(t) and C2(t) by a line:

R(s, t) = C1(t) + s(C2(t) − C1(t)).

The ruling direction is no longer fixed, but is a function of t, namely C2(t)−C1(t).
Nevertheless, we can apply a similar argument to the one used in the previous

section to classify the critical points on an intersection curve. So, we need to detect

the values of t that correspond to the ruling lines (in R(s, t)) that intersect S(u, v)
tangentially or at its boundary curves S(u0, v) or S(u, v0). Figure 5 shows a loop in

the intersection curve. The loop is delimited by two tangential intersections of the

moving line with the surface S(u, v).

Fig. 5. An intersection curve. Two ruling lines intersect tangentially with a freeform surface

and delimit a loop on the intersection curve.

When a ruling line is tangent to the surface S(u, v), the surface point S(u, v) is on

the line. Moreover, the ruling line is contained in the tangent plane of S(u, v) and

thus it is orthogonal to the normal vector N(u, v). (See Figure 6(a) for a configu-

ration where a ruling line touches the surface S(u, v).) From these conditions, we

obtain the following system of three constraint equations:

f1(u, v, t)=〈S(u, v)− C1(t), N1(t)〉 = 0, (1)

g1(u, v, t)=〈S(u, v)− C1(t), N2(t)〉 = 0, (2)

h1(u, v, t)=〈C2(t) − C1(t), N(u, v)〉 = 0, (3)
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Fig. 6. A line (a) or a circle (b) touches the surface S(u, v).

where N1(t) and N2(t) are two non-parallel vectors which are orthogonal to the rul-

ing direction C2(t)−C1(t). Hughes and Möller [9] proposed an elegant method for

the construction of such vectors N1(t) and N2(t), which have degree no higher than

that of C2(t)−C1(t). When the ruling direction C2(t)−C1(t) = (dx(t), dy(t), dz(t))
has its first component as the one with largest magnitude: |dx(t)| ≥ |dy(t)|, |dz(t)|,
we can take N1(t) = (dy(t),−dx(t), 0) and N2(t) = (dz(t), 0,−dx(t)). Other cases

can be handled in a similar way.

The intersection between a boundary curve S(u, v0) and a ruling line can be com-

puted by solving the following system of two equations:

f2(u, t)=〈S(u, v0) − C1(t), N1(t)〉 = 0,

g2(u, t)=〈S(u, v0) − C1(t), N2(t)〉 = 0.

The intersection between S(u0, v) and a ruling line can be computed in a similar

way.

After all critical points have been detected by solving the above systems of polyno-

mial equations, their t-values are sorted in ascending order and given even indices:

t0 < t2 < · · · < t2m. Now take t2k−1 = t2k−2+t2k

2
. For each ti, (0 ≤ i ≤ 2m), we

intersect the freeform surface S(u, v) with a ruling line

R(s, ti) : C1(ti) + s(C2(ti) − C1(ti)).

Let R(sj, ti), (1 ≤ j ≤ ni), denote the intersection points sorted along the ruling’s

s-direction. We can now apply the topology construction scheme previously illus-

trated in Figure 3; in this case the s-axis is used instead of the z-axis. Once the
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topology has been determined, each segment of the intersection curve is again gen-

erated by numerical curve tracing along the intersection between two surfaces [1,2,5].

In some degenerate cases, the ruled surface may intersect the surface S(u, v) tan-

gentially along curve segments or even on surface patches. Equations (1)–(3) will

then produce a set of 1-manifold curve segments or 2-manifold surface patches in

the uvt-space as their solution set. We can distinguish the two cases by check-

ing the dimensionality of the solution set. Whenever S(u, v) and R(s, t) inter-

sect tangentially, the implicit surfaces f1(u, v, t) = 0 and g1(u, v, t) = 0 also

intersect tangentially on their common solution set since in this case the equa-

tion f1(u, v, t) − g1(u, v, t) = 0 has multiple roots. Moreover, the implicit surface

h1(u, v, t) = 0 becomes singular on the common zero-set since the tangential con-

dition is almost satisfied in the region close to tangential intersections. When the

zero-set includes 2-manifold surface patches, the surfaces S(u, v) and R(s, t) also

intersect tangentially over surface patches. This observation also applies to other

types of surface-surface intersections to be discussed in later sections.

2.3 Intersection with a Ringed Surface

A ringed surface is a one-parameter family of circles, where the generator cir-

cle moves in space while continuously changing its position, size and orientation.

Given a freeform surface S(u, v) and a ringed surface R(s, t) = ∪Ot, their inter-

section curve can be computed by characterizing the intersection points between

each circle Ot and the surface S(u, v).

Let C(t) denote the center of the circle Ot; and assume that the circle has radius

r(t) and is contained in a plane with normal D(t). When the circle Ot intersects the

surface S(u, v), the surface point S(u, v) is contained in the circle Ot:

f3(u, v, t)= 〈S(u, v) − C(t), D(t)〉 = 0, (4)

g3(u, v, t)= ‖ S(u, v) − C(t) ‖2 −r2(t) = 0. (5)

Equation (4) implies that S(u, v) is contained in the plane of the circle Ot; and

Equation (5) means that the circle Ot has radius r(t). Moreover, when the circle Ot

intersects the surface S(u, v) tangentially, the three vectors S(u, v) − C(t), D(t)
and N(u, v) become coplanar. (See Figure 6(b) for a configuration where a circle

touches the surface S(u, v).) Consequently, we have

h3(u, v, t) = 〈(S(u, v) − C(t)) × D(t), N(u, v)〉 = 0. (6)

The intersection between a boundary curve S(u, v0) and a circle Ot can be com-

puted by solving the following system of two equations:
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f4(u, t)= 〈S(u, v0) − C(t), D(t)〉 = 0,

g4(u, t)= ‖ S(u, v0) − C(t) ‖2 −r2(t) = 0.

The case of S(u0, v) ∩ Ot can be computed similarly.

The intersection curve itself is constructed by a numerical curve tracing. However,

in the case of intersection with a ringed surface, the intersection points along the

s-axis repeat themselves with a period of 2π. Thus, matching between two adjacent

ti-circles becomes slightly more complicated. Given a set of discrete intersection

points R(sj, ti), (0 ≤ i ≤ 2m; 1 ≤ j ≤ ni), on the ringed surface, we start a nu-

merical curve tracing from a point R(sj, ti), with an even index i, and continue the

tracing until we reach an adjacent circle R(s, ti±1), where we find a mate R(sj , ti±1)
from ni±1 possible candidates of transvesal intersection points. Once this connec-

tion has been made, the matching becomes straightforward for other intersection

points on the two adjacent circles R(s, ti) and R(s, ti±1).

2.4 Intersection with a Swept Surface

Now we consider the intersection of a freeform surface with a swept surface. A

swept surface may be generated by sweeping a rational parametric curve in space or

by sweeping an implicit algebraic curve. In the previous two cases of intersection

with a ruled surface or a ringed surface, we represented the moving line or the

moving circle as the intersection of two planes or as the intersection of a plane and

a sphere. The same approach can be applied to a general cross-sectional curve that

is defined as the intersection of two implicit surfaces. The curve can move under an

affine spline motion [10] by making the two implicit surfaces move under the same

motion. The cross-sectional curves may also be defined as the result of a rational

affine spline motion applied to a template rational spline curve K(s). In this case,

the curve parameter s also appears in the characterizing equations for tangential

intersections.

2.4.1 Sweeping an Implicit Algebraic Curve

We consider a general swept surface where each cross-sectional curve is defined as

an intersection of two time-dependent implicit algebraic surfaces: F t(x, y, z) = 0
and Gt(x, y, z) = 0. The intersection curve between a rational freeform surface

S(u, v) and the swept surface can be computed by solving

f5(u, v, t)=F t(S(u, v)) = 0, (7)

g5(u, v, t)=Gt(S(u, v)) = 0. (8)
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Moreover, when the cross-sectional curve intersects the surface S(u, v) tangen-

tially, we have

h5(u, v, t) =
〈

∇F t(S(u, v))×∇Gt(S(u, v)), N(u, v)
〉

= 0, (9)

where ∇F t is the gradient of F t and ∇Gt is the gradient of Gt.

When two algebraic surfaces F (x, y, z) = 0 and G(x, y, z) = 0 are under the same

affine spline motion, the two time-dependent algebraic surfaces are given as follows

F t(x, y, z) = F
(

[(x, y, z) − T (t)]L−1(t)
)

= 0,

Gt(x, y, z) = G
(

[(x, y, z) − T (t)]L−1(t)
)

= 0,

where T (t) represents a rational translational motion and L(t) is a non-singular

3×3 matrix with rational spline functions as its entries. Note that the inverse matrix

L−1(t) also has rational spline functions as its entries (as can be seen from Cramer’s

rule). Figure 7 shows an example of a swept surface, where each cross-sectional

curve is defined as the intersection of two quadrics.

(a) (b)

Fig. 7. (a) A cross-sectional curve is represented as an intersection of two quadrics; and (b)

A swept surface is generated by sweeping the intersection of two quadrics.

The intersection between a boundary curve S(u, v0) and the swept surface can be

computed by solving

f6(u, t)=F t(S(u, v0)) = 0,

g6(u, t)=Gt(S(u, v0)) = 0.

The case of intersecting S(u0, v) and the swept surface can be handled in a similar

way.
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2.4.2 Sweeping a Rational Parametric Curve

Let K(s) = (x(s), y(s), z(s)) denote a rational spline curve. Now we apply a time-

dependent non-singular linear transformation L(t) to K(s) and then a translation

T (t) = (α(t), β(t), γ(t)) to the result K(s)L(t), where L(t) is a 3 × 3 matrix

with each entry as a rational spline function of t, and α(t), β(t), and γ(t) are

also rational functions of t. Then a rational swept surface R(s, t) is defined as

R(s, t) = ∪[K(s)L(t) + T (t)]. The intersection between R(s, t) and a freeform

surface S(u, v) is characterized by the following vector equation:

f7(u, v, s, t) = S(u, v) − K(s)L(t) − T (t) = 0. (10)

At a tangential intersection point, the tangent vector K ′(s)L(t) of a cross-sectional

curve K(s)L(t) + T (t) should be orthogonal to the normal vector N(u, v) of the

freeform surface S(u, v):

h7(u, v, s, t) = 〈K ′(s)L(t), N(u, v)〉 = 0. (11)

The intersection between a boundary curve S(u, v0) and the swept surface R(s, t)
can be computed by solving

f8(u, s, t) = S(u, v0) − K(s)L(t) − T (t) = 0.

The case of intersecting S(u0, v) and R(s, t) can be handled in a similar way.

3 Reduction to Parameter Space

We now go on to present an alternative approach that reduces the intersection prob-

lem to that of computing the zero-set of (n−1) polynomial equations in n variables.

When the cross-sectional curves are defined as the intersection of two implicit sur-

faces, the problem is formulated with n = 3, i.e., we need to solve two equations

in three variables. On the other hand, when the cross-sectional curves are rational

parametric curves, the problem is formulated with n = 4. In either case, the result

is a 1-manifold in the parameter space. (In some degenerate cases, we may also

produce some 2-manifold surface patches in the solution set.) By projecting the

1-manifold on to the uv-parameter plane of S(u, v), the intersection curve can be

constructed.

In the case of intersection with a ruled surface, we may represent each ruling line

R(s, t) = C1(t) + s(C2(t) − C1(t))
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Fig. 8. A ruled surface as a one-parameter family of lines, where each line is defined as the

intersection of two non-parallel planes.

as the intersection of two non-parallel planes with normal vectors N1(t) and N2(t)
(Figure 8). The intersection between a freeform surface S(u, v) and a ruling line is

characterized as follows:

f1(u, v, t)=〈S(u, v)− C1(t), N1(t)〉 = 0,

g1(u, v, t)=〈S(u, v)− C1(t), N2(t)〉 = 0,

which are two polynomial equations in three variables u, v, t.

Fig. 9. A ringed surface as a one-parameter family of circles, where each circle is defined

as the intersection of a sphere and a plane.

Figure 9 shows a ringed surface as a one-parameter family of circles, where each

circle is defined as the intersection between a sphere and a plane. The intersection

condition between a freeform surface S(u, v) and a circle Ot is given as follows:

f3(u, v, t)=〈S(u, v)− C(t), D(t)〉 = 0,

g3(u, v, t)=‖ S(u, v) − C(t) ‖2 −r2(t) = 0,
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which are two polynomial equations in three variables u, v, t.

We can represent a swept surface as a one-parameter family of cross-sectional

curves. For a swept surface generated by a one-parameter family of implicit al-

gebraic curves, each defined by two algebraic surfaces, the intersection curve is

constructed by solving

f5(u, v, t)=F t(S(u, v)) = 0,

g5(u, v, t)=Gt(S(u, v)) = 0,

which are two polynomial equations in three variables u, v, t. When a swept sur-

face is generated by a rational parametric curve K(s) under a rational affine spline

motion, the intersection curve can be constructed by solving

f7(u, v, s, t) = S(u, v) − K(s)L(t) − T (t) = 0,

which is a vector equation and represents three polynomial equations in four vari-

ables u, v, s, t.

Now we have reduced the intersection problem to that of computing the zero-set

of (n − 1) polynomial equations in n variables. The result is a 1-manifold. By

projecting this zero-set on to the uv-plane, the intersection is generated as a curve

embedded in the freeform surface S(u, v).

4 Discussion and Experimental Results

The polynomial equations for constructing topology have one more equation (for

the tangential condition) than those for the problem reduction approach. Moreover,

we have to solve n polynomial equations for topology construction, but one less

equation for the reduction approach. However, the solutions of n equations are

discrete points in general, whereas the zero-sets of (n−1) equations in the reduction

approach are 1-manifolds. It is computationally more efficient to compute discrete

solutions than to construct 1-manifolds. Therefore, it is worthwhile to solve the n

polynomial equations in n variables needed for topology construction.

Topology construction requires a second stage of numerical tracing that generates

segments of the intersection curve. This can be achieved using conventional tech-

niques for numerical tracing along intersection curves. Alternatively, we can solve

(n − 1) polynomial equations in n variables, which have been formulated for the

problem reduction approach. These equations define (n − 1) implicit surfaces in

an n-dimensional space, which is yet another surface-surface intersection problem

when n = 3. The two approaches proposed in this paper are thus closely related to
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each other. The user may choose either one of them or combine both depending on

applications and tools available.

Figure 10(a) shows the result of intersecting the Utah teapot with a ruled surface

using the topology construction scheme. Figure 10(b) shows the same teapot in-

tersected with a ringed surface. Results based on the simple reduction scheme are

shown in Figure 11. A result for intersection with a general swept surface is shown

in Figure 12, where the intersection curves are shown in bold lines. The compu-

tation time for these results are about the same, all within one or two seconds on

2GHz Pentium IV machine.

(a)

(b)

Fig. 10. Intersection between the Utah teapot and (a) a ruled surface or (b) a ringed surface.
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Fig. 11. Intersection based on the problem reduction scheme.

Fig. 12. Intersection between a freeform surface and a swept surface.

Figure 13(a) shows a degenerate case where a cylinder and a torus intersect tan-

gentially along a circle. The cylinder is given as a freeform surface S(u, v) and

the torus is represented as a ringed surface. Figure 13(b) shows the zero-sets of

f3(u, v, t) = 0, g3(u, v, t) = 0 and h3(u, v, t) = 0 in red, magenta and yel-

low, respectively. The common zero-set of these three equations includes two dis-

crete points (in green) and one line (in cyan). Along the cyan line, the two sur-

faces f3(u, v, t) = 0 and g3(u, v, t) = 0 meet tangentially, and the other surface

h3(u, v, t) = 0 is singular. On the other hand, at two green isolated intersection

points, the three surfaces intersect transvesally. Figure 14(a) shows another exam-
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(a) (b)

Fig. 13. Degenerate tangential intersection along a curve.

(a) (b)

Fig. 14. Degenerate tangential intersection on a surface patch.
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ple of degenerate intersection where two surfaces intersect tangentially on a surface

patch. In Figure 14(b), the two surfaces of f3(u, v, t) = 0 and g3(u, v, t) = 0 also

meet tangentially on a surface patch (in cyan). Since the surface h3(u, v, t) = 0 is

singular over this area, the result of applying a marching cube algorithm generates

a large volumetric solution set for −ǫ < h3(u, v, t) < ǫ, even for a small value

of ǫ > 0. Since h3(u, v, t) = 0 is singular around this region, it is numerically

unstable to compute its zero-set or to evaluate its normal direction. Thus we have

constructed the common zero-set of f3(u, v, t) = g3(u, v, t) = 0 on a tangential

surface patch by checking whether their gradients ∇f3(u, v, t) and ∇g3(u, v, t) are

also collinear.

5 Conclusion

We have introduced two approaches to the problem of intersecting a freeform sur-

face with a swept surface. Our first scheme was based on detecting critical points

and constructing the intersection curve with a correct topology based on the critical

points. Our second scheme reduces the surface-surface intersection problem to a

zero-set finding in the parameter space. These two schemes are closely related to

each other. Working in the parameter space, the proposed algorithm can also deal

with degenerate singular intersections such as tangential intersection along a curve

or overlap on a surface patch.
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[9] J. Hughes and T. Möller, Building an orthonormal basis from a unit vector. Journal of
Graphics Tools, Vol. 4, No. 4, pp. 33–35, 1999.
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