
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/31786/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Zhu, Xu-Ping, Hu, Shi-Min, Tai, Chiew-Lan and Martin, Ralph Robert 2005. A marching method for
computing intersection curves of two subdivision solids. Presented at: 11th IMA International Conference,

Loughborough, UK, 5-7 September 2005. Published in: Martin, Ralph Robert, Bez, Helmut and Sabin,
Malcolm eds. Mathematics of surfaces XI. Lecture notes in computer science (3604) Berlin Heidelberg:

Springer Verlag, pp. 458-471. 10.1007/11537908_28

Publishers page:

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

A Marching Method for Computing Intersection

Curves of Two Subdivision Solids

Xu-Ping Zhu1, Shi-Min Hu1, Chiew-Lan Tai2, and Ralph R. Martin3

1 Department of Computer Science and Technology, Tsinghua University,
Beijing, China

2 Department of Computer Science, Hong Kong University of Science
and Technology, Hong Kong, China

3 School of Computer Science, Cardiff University, Cardiff, Wales
ralph@cs.cf.ac.uk

Abstract. This paper presents a marching method for computing inter-
section curves between two solids represented by subdivision surfaces of
Catmull-Clark or Loop type. It can be used in trimming and boolean op-
erations for subdivision surfaces. The main idea is to apply a marching
method with geometric interpretation to trace the intersection curves.
We first determine all intersecting regions, then find pairs of initial in-
tersection points, and trace the intersection curves from the initial inter-
section points. Various examples are given to demonstrate the robustness
and efficiency of our algorithm.

1 Introduction

Subdivision surfaces are defined as the limit of repeated refinement of 3D control
meshes using specific subdivision rules [4, 5, 9, 12]. Due to their advantages, such
as being able to handle arbitrary topology and ease of coding, they are widely
used in computer animation and game engines [16], for example. However, appli-
cations of subdivision surfaces to industrial design are still infrequent, one reason
being that is difficult to construct complex subdivision models using the usual
solid operations. This problem is mainly due to the lack of suitable geometric
algorithms for computing intersection curves, offsets, blending, trimming, and
Boolean operations.

Some such algorithms do already exist. Litke et al. [11] introduced a new
method for trimming subdivision surfaces, which is based on the combined sub-
division schemes to guarantee exact interpolation of trim curves. Biermann et
al. [3] presented a method for computing approximate results of Boolean opera-
tions (union, intersection, difference) for free-form solids bounded by multiresolu-
tion subdivision surfaces. Both works cite the problem of computing intersection
curves calculation as an open problem. Nasri [13] presented a general framework
for intersecting two recursive subdivision surfaces based on divide and conquer
methods to process complete surfaces. Instead, our goal is to apply a marching
method with geometric interpretation to trace the intersection curves based on

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 458–471, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Marching Method for Computing Intersection Curves 459

Fig. 1. Intersection curves

an inital intersection point. Grinspun et al. [6] developed an algorithm for de-
tecting interference of subdivision surfaces. He used normal bounds to determine
whether a surface interferes with itself or other surfaces. In this paper, we focus
on computing all intersection curves between two subdivision surfaces.

Computing intersection curves for parametric and implicit surfaces has been
extensively investigated [1, 2, 7, 10]. However, for subdivision surfaces, there are
two main difficulties: analytical representation and parameterization. A break-
through was made by Stam [15, 16], who described an approach for evaluating
subdivision surfaces at arbitrary parameter values in the cases of both Catmull-
Clark [4] and Loop [12] schemes. Building on the results of his work, we show
how traditional algorithms for parametric surfaces can now be applied to sub-
division surfaces. The main contribution of this paper is to extend the moving

affine frame (MAF) marching method [8] to subdivision surfaces. In addition,
we present a complete method to trace all intersection curves. Our approach has
many applications, to trimming and Boolean operations, for example.

An example using our approach is shown in Figure 1 of the intersection be-
tween a Loop sphere and a Catmull-Clark torus. On the left, the two intersection
curves are shown together with the given initial control meshes. The result plus
both limit surfaces is shown in the centre middle, and the right hand figure gives
pre-images of both curves.

The rest of the paper is organized as follows. Section 2 gives a brief review
of parameterization of subdivision surfaces. In Section 3, we review the MAF
marching method for tracing intersection curves for parametric surfaces, and
extend it to subdivision surfaces. Section 4 presents an algorithm for calculating
all intersection curves of subdivision surfaces. Section 5 shows various results
and conclusions are given in Section 6.

2 Local Parameterization of Subdivision Surfaces

A subdivision surface is defined by an initial control mesh and a set of subdivi-
sion rules. As the control mesh is successively refined according to the rules, a
sequence of meshes with an increasing numbers of faces is obtained. In the limit,
a smooth surface is obtained (Figure 2). Intuitively, the initial control mesh can
be considered the domain of the limit surface; each initial face of the control
mesh is mapped to a patch on the limit surface. We call these faces the domain

faces and denote the map as: (i, u, v) → (x, y, z) where i indexes the domain

460 X.-P. Zhu et al.

Fig. 2. Mapping a domain face to its corresponding patch. The extraordinary vertex

(blue) has parameter (0,0) in all three surrounding extraordinary domain faces

faces, u, v ∈ (0, 1) are parameter values on the i-th domain face, and (x, y, z)
are 3D coordinates of the corresponding limit point on the surface. As in Stams
work, we make two assumptions

– The initial control mesh has already been subdivided once so that each
domain face of the control mesh contains at most one extraordinary vertex.
For a quadrilateral (or triangular) mesh, a vertex having a valence not equal
to four (or six, respectively) is called an extraordinary vertex. A domain
face with an extraordinary vertex is called an extraordinary domain face.
For example, the blue extraordinary vertex in Figure 2 belongs to three
extraordinary domain faces.

– The parameterization is organized so that each extraordinary vertex has
parameters (0, 0) in all the extraordinary domain faces containing it.

3 Tracing a Branch of an Intersection Curve

3.1 MAF Marching Method for Parametric Surfaces

We first introduce the moving affine frame marching method [8] for parametric
surfaces. Assume we are given two parametric surfaces r1 and r2, and an initial
intersection point M. Let (ui, vi), i = 1, 2 be the parameter values of M on
each of the two surfaces. The goal is to step along the intersection curve and
find the next intersection point. The MAF method gives a stepping size for
finding the next intersection point. Let the desired stepping distance be δ. The
stepping direction is along the tangent vector to the intersection curve, which
is given by T = N1 × N2, where Ni is the normal vector of ri at M, i.e.
Ni = ∂ri/∂ui × ∂ri/∂vi, i = 1, 2. Thus, the target point is H = M + δT. Since
H lies on the tangent planes of both surfaces, which are defined by the affine
frames {M; ∂ri/∂ui∂ri/∂vi}, i = 1, 2, the vector H − M can be written as:

H − M = δT = (∂ri/∂ui)∆ui + (∂ri/∂vi)∆vi, i = 1, 2 (1)

Thus, the parameter increments, ∆ui,∆vi, can be calculated as using the fol-
lowing triple products:

∆ui = [H − M, ∂ri/∂vi,Ni]/[∂ri/∂ui, ∂ri/∂vi,Ni]

∆vi = [H − M, ∂ri/∂ui,Ni]/[∂ri/∂vi, ∂ri/∂ui,Ni] (2)

A Marching Method for Computing Intersection Curves 461

With these increments, two new points can be computed as Pi = ri(ui+∆ui, vi+
∆vi), i = 1, 2. This procedure of computing Pi from a target point H is called a
sphere transformation.

If P1 and P2 are sufficiently close, i.e. ||P1P2|| < ǫ, the MAF algorithm
outputs (P1+P2)/2 as the next intersection point. Otherwise, it performs a mid-

point transformation on Pi as follows. Let πi be the tangent plane of ri at Pi.
If πi, i = 1, 2 are not parallel, they must intersect in a line l. We project each Pi

to the line l to get new points Ri, and compute the mid-point S = (R1 +R2)/2.
By applying a sphere transformation to S, we obtain two new points Pi and

repeat the above process of testing ||P1P2|| < ǫ and, if again failing the test,
performing the mid-point transformation, until ||P1P2|| < ǫ.

By repeatedly finding the next intersection point from a given intersection
point, we can trace an entire intersection curve. But when should we stop tracing?
If the initial surfaces are closed, their intersection curves are also closed. Hence,
we use the distance between the current intersection point and the starting point
to decide when to stop tracing. If the distance is decreasing and is less than a
threshold, such as 2δ, we replace the stepping size δ by a smaller one. If the
distance continues to decrease and fall below a smaller threshold, we shorten
the stepping size once again and terminate tracing if the distance is less than a
prescribed tolerance ǫ. If the initial curves are open, tracing terminates either on
forming an intersection loop as above, or when reaching the boundary of either
surface. In the latter case we again are using a decreasing step size near the
boundary.

3.2 Extending the MAF Method to Subdivision Surfaces

The MAF method is an efficient iterative method with the benefit of a clear
geometric interpretation; furthermore it is easy to implement, and it only requires
evaluation of points and first-order derivatives. In order to extend the MAF
method to subdivision surfaces, we need to resolve two issues:

– How to evaluate the surface and its first-order derivatives efficiently.
– How to find parameter values when updates move outside a domain face,

given that we have a local piecewise parameterisation.

The first problem has already been solved by Stam, who has presented an efficient
method to evaluate Catmull-Clark and Loop surfaces and all their derivatives at
arbitrary parameter values [15, 16]. Hence, we just consider the second problem.

We deal with the quadrilateral mesh case first; we will then look at the
triangular mesh case. Assume that the current parameter is (i, u, v). The sphere
transformation step computes parameter increments, ∆u,∆v, according to a
target point H. The new parameter values are then computed as u = u + ∆u,
v = v + ∆v. If u /∈ [0, 1] or v /∈ [0, 1], the parameter will move out of the current
domain face into an adjacent domain face. Hence, we must replace the computed
parameter (i, u, v) by some (j, u′, v′), where j is the index of the target domain
face and (u′, v′) are the new parameter values in that domain face.

If the current domain face is not extraordinary, the target domain face must
be one of the eight domain faces around it as depicted in Figure 3a. It is trivial

462 X.-P. Zhu et al.

Fig. 3. Identifying parameter values when moving out of the current domain face

(quadrilateral case): (a) regular domain face; (b) extraordinary domain face

to find the target domain face from u and v, and to calculate the new parameter
values (u′, v′) according to the u and v directions in that domain face.

If the current domain face is extraordinary, we know that it has only one
extraordinary vertex, denoted P. By assumption, P has parameter (0, 0) in all
extraordinary domain faces containing it. Since the other three vertices of the
current domain face are all regular, if u > 0 or v > 0, we can always find a
target domain face according to the u and v directions as we do above for the
regular case. If u < 0 and v < 0, the target domain face must be one of the other
extraordinary domain faces containing P (red faces in Figure 3b). We need to
determine to which in which candidate domain face the parameter values lie, and
compute the new parameter values (u′, v′) in that face. Since u, v < 0 and P has
parameter (0, 0) in all domain faces containing it, we can calculate the distance
between (u, v) and P in parametric space, d =

√
u2 + v2. We estimate the new

parameter values by u′ = v′ =
√

d2/2 and evaluate the corresponding points at
(u′, v′) for all the candidate domain faces. Finally, we select that point nearest
to the target point H and let its parameter values and domain face determine
the new parameter values (j, u′, v′).

Next, we consider the case of triangular mesh. Assume that the current
parameter is (i, v, w), and that for symmetry we add an auxiliary parameter
u = 1 − v − w. In the sphere transformation step, we obtain the parame-
ter increments as before, ∆v,∆w, and compute the new parameter values as
v = v + ∆v,w = w + ∆w. If v /∈ [0, 1] or w /∈ [0, 1] or u /∈ [0, 1], the parametric
point lies in an adjacent domain face, and we must find new parameters (j, v′, w′)
as before. The target domain face is one of the domain faces in the 1-ring sur-
rounding the current domain face, i.e. those which share at least one vertex with

A Marching Method for Computing Intersection Curves 463

Fig. 4. Identifying parameter values when moving out of the current domain face (tri-

angular case): (a) regular domain face; (b) extraordinary domain face

the current domain face (see Figure 4a). Thus, if u < −1 (i.e. v + w > 2), we
recalculate the values (v, w) using v = 2v/(v +w), w = 2w/(v +w), and if u > 2
(i.e. v + w > −1), we calculate v = v/|v + w|, w = w/|v + w|, so that in each
case −1 ≤ u ≤ 2. Let P be the parametric point (0, 0) in the current domain
face. Regardless of whether P is regular or extraordinary, the other two vertices
of the current domain face, Q and R, are both regular. Hence, if −1 ≤ u ≤ 1,
we can easily find the target domain face from u, v and w (see Figure 4a) and
calculate the new parameter (j, v′, w′) using the v and w directions in that do-
main face. For example, if −1 < u < 0 and 0 < v,w < 1, the target domain
face is the triangle QSR. If 1 < u < 2, we must consider whether P is a regular
or extraordinary vertex. If P is a regular vertex, we can still find the target
domain face easily and calculate the new parameter values. If P is extraordinary
(see Figure 4b), since v, w < 0 and P has parameter (0, 0) in all domain faces
containing it, we can calculate the distance between (v, w) and P in parametric
space, d =

√

min(1, v2 + w2). Next, we compute v′ = w′ =
√

d2/2 and evalu-
ate the surface points corresponding to (v′, w′) for all candidate domain faces.
Finally, we select the point nearest to the target point H and use it to give the
new parameter values (j, v′, w′).

4 Surface-Surface Intersection Algorithm

As mentioned in Section 2, each patch in the limit surface corresponds to a
domain face in the initial mesh. If X denotes the set of all patches for a given
subdivision surface, its union gives the limit surface. When a domain face is

464 X.-P. Zhu et al.

Fig. 5. Subdividing a domain face locally (top row), and splitting its sub-patches ac-

cordingly (middle row). The bottom row shows the domains of the sub-patches

subdivided into four sub-faces (using Catmull-Clark or Loop subdivision), the
corresponding patch is also split into four sub-patches (see Figure 5). Henceforth,
we refer to the elements of X as sub-patches (Figure 5, middle row), each having
a corresponding sub-face as its domain face (Figure 5, top row), and having a
parametric domain that is a subset of its parents parametric domain (Figure 5,
bottom row). Additionally, when a face is subdivided locally, in order to be able
to continue subdividing its four sub-faces, all the neighbouring faces that share
at least a common vertex with those sub-faces (the green faces in the top middle
and right of Figure 5) should be computed too.

4.1 Algorithm Overview

We now consider the overall algorithm. It finds starting points for tracing, and
then march along the intersection from those starting points.

There are three main steps to this process; in the below, by interfering, we
mean potentially but not necessarily intersecting:

A Marching Method for Computing Intersection Curves 465

– Split interfering sub-patches until they are approximately flat, and record
all interfering sub-patch pairs.

– Find all pairs of intersecting sub-patches from the interfering pairs, and find
an intersection point for each pair.

– Trace all intersection curves from these initial intersection points.

4.2 Convex Hull and Flatness Condition

From the subdivision rules, it can be shown that both Catmull-Clark and Loop
surfaces possess the convex hull property, which means that each sub-patch is
within the convex hull of its control vertices. A sub-patch has 2N + 8 control
vertices for a quadrilateral mesh and N + 6 control vertices in the case of a
triangular mesh, where N is the valence of a regular vertex or, if present, of
the only extraordinary vertex in the domain face. For simplicity, we use an
axis-aligned bounding box (AABB) of the convex hull of each sub-patch as its
bounding volume. This is used to detect interference between two sub-patches. If
two bounding volumes intersect, we split both sub-patches by subdividing their
domain faces, until all sub-patches are considered flat. To measure the flatness
of a sub-patch S, we use the variable f = 1−min(N0 ·Ni), where N0 is the unit
normal of Ss domain face and Ni is the unit normal of each of the neighbouring
1-ring faces of Ss domain face. (We estimate the normal of a quadrilateral face
as the cross product of the two vectors connecting opposite vertices.) When the
flatness f is less than a threshold Tf , the sub-patch is considered to be flat.

Fig. 6. Flat sub-patches during intersection between a cube and a cone

466 X.-P. Zhu et al.

Additionally, if Ss domain face is quadrilateral, we must first ensure that the
domain face is approximately planar by checking if Na ·Nb < Tf , where Na and
Nb are the normals of the two triangles comprisong domain face. If the domain
face is not planar, we consider the sub-patch not to be flat.

When a sub-patch is sufficiently flat, we take the average parameter values for
its parametric domain and evaluate the limit point Pa at the average parameter.
Instead of the original bounding volume, we then use the AABB of the convex
hull formed by Pa and all the corner points of the sub-patch. We also evaluate
the limit normal vector Na at Pa, to be used as the normal of that sub-patch
while finding an actual intersection point, as described in Section 4.3.

By detecting interference and splitting sub-patches, all interfering flat sub-
patches are found, as illustrated in Figure 6. This example shows intersection
between a cube and a cone. In this case, all interfering sub-patches are flat within
tolerance after three levels of subdivision (see Figure 6 from left to right). The
top row shows the domain faces of all flat sub-patches, and the bottom row
shows the domain faces of all interfering sub-patches.

During this step, for each sub-patch on one surface, we record all the inter-
fering sub-patches from the other surface. Thus, we obtain all pairs of interfering
sub-patches. Most of these pairs of interfering sub-patches, however, do not truly
intersect. In the next section, we identify those pairs that truly intersect and find
an initial intersection point for each pair.

4.3 Intersection Between Two Sub-patches

If the flatness threshold Tf is sufficiently small, we can approximate all sub-
patches by polygons and find all intersecting polygon pairs. However, using a
small Tf is undesirable, as it leads to more levels of subdivision, incurring con-
siderable cost. Hence, we prefer a patch-patch intersection method.

Inspired by the MAF method, given two sub-patches, we use the average pa-
rameters of their respective domains as their initial parameters and iterate the
mid-point transformation and sphere transformation to search for an intersec-
tion point in their respective domains. If we find an intersection point within
a prescribed number of iterations, n, we say that the sub-patch pair intersect.
Their intersection point and the sub-patch pair are then added to a set of can-
didate intersecting pairs. If no intersection point is found after n iterations, it is
still possible that the two sub-patches intersect. Such tricky cases are illustrated
in Figure 7 for the simpler problem of curve-curve intersection in the plane:
if we perform mid-point transformation on the two initial points (blue), both
cases will search for the intersection point in the wrong direction and miss the
intersection point in the domain of each curve.

To avoid such cases, it would suffice to ensure that for any point of the first
curve, it is impossible to find a point in the second curve with parallel normal
vector. But for surfaces, the above condition cannot eliminate such cases. Since
our purpose is to approximately find initial intersection points for tracing, we
simply try to avoid these cases by taking a hint from the following observation: in
practice, such cases usually appear when the normal vectors of two sub-patches

A Marching Method for Computing Intersection Curves 467

Fig. 7. Two cases which miss the intersection point when doing midpoint transforma-

tion

Fig. 8. Interference detection between two sub-patches

are almost parallel. Thus, before checking whether two sub-patches intersect, we
estimate if their normals, Nm1

,Nm2
(computed as in Section 4.2), are almost

parallel as follows. Let m = 1 − |Nm1
· Nm2

|. If m < f1 + f2, where f1, f2 are
the flatnesses of the two sub-patches, we say that Nm1

and Nm2
are approxi-

mately parallel. If so, we use a tighter bounding volume to more strictly decide
interference as follows. Consider two sub-patches A and B. If they are flat, their
corner points and two further points PmA

, PmB
would have been calculated as

described in Section 4.2. We project all the corner points to the line l connecting
PmA

and PmB
, and obtain two maximal intervals on l (shown in red in Figure 8).

468 X.-P. Zhu et al.

If the intervals do not overlap, then A and B do not intersect. Otherwise we split
the sub-patch whose domain face has a lower subdivision level and recursively
check if the resulting new pairs of sub-patches intersect. If both domain faces
has reached the maximum subdivision level, since they are very close to each
other and their normal vectors are almost parallel, we conclude that the two
subdivision surfaces sharing a region. Perturbation schemes [14] may be used to
resolve such degeneracies. For reasons of space, we do not consider this problem
further here, and instead focus on presenting the efficient marching method.

We now have all the intersecting sub-patch pairs and an initial intersection
point for each. Next, we trace all intersection curves.

4.4 Tracing

We now have all intersecting sub-patch pairs in the candidate set. For each
pair, both sub-patches are flat and their normals are not parallel. Hence, we can
reasonably assume that each intersecting sub-patch pair has only one intersection
curve. Based on this assumption, we present the following tracing algorithm.

First, we randomly select an intersecting sub-patch pair from the candidate
set and invoke the MAF procedure with the intersection point of the pair. When
the algorithm marches to a new intersection point, it obtains a parameter for
each of the two surfaces. For each parameter, we then find the sub-patch whose
domain contains that parameter. This new sub-patch pair should also appear in
the candidate set. Since there is only one intersection curve for each sub-patch
pair, we mark that new sub-patch pair with the index of the current intersection
curve and remove it from the candidate set. After tracing a curve, all the sub-
patch pairs it has encountered by will have been marked, and thus will not be
selected for initiating further curve tracing. If the step size is too large, the
tracing curve may skip some pairs. However, tracing from these skipped pairs
would result in a situation where most sub-patch pairs on the current curve
already belong to another curve; the two curves obviously are identical and thus
tracing is terminated. Starting points are selected from the candidate set and
each time a corresponding intersection curve is traced. This is repeated until the
candidate set is empty.

While we calculate all intersection curves between the two subdivision sur-
faces, we also record the parameter values of all the intersection points to obtain
the pre-images of the intersection curves.

4.5 Parameter Settings

First, we consider the step size δ. We would like |δu| and |δv| both to be lass
than 1 in the sphere transformation step. To achieve this, we estimate the step
size according to the scale of the two meshes and adaptively adjust it according
to the domain face containing the current tracing point.

In the first step of our algorithm, a sub-patch is considered to be sufficiently
flat when its flatness is less than a threshold: f < Tf . We find a choice of Tf = 0.1
works well in practice. Usually, all sub-patches are found to be flat after two or
three levels of subdivision, and for sub-patches with large curvature, six levels are

A Marching Method for Computing Intersection Curves 469

sufficient. Hence, we conservatively set the maximum subdivision level to be 10.
In the second step, if two sub-patches really intersect, in practice we always find
an intersection point within three iterations; again to be safe, we set the number
of iterations n = 5. Since most intersecting pairs do not actually intersect, the
average number of iterations used is close to 5.

4.6 Remarks

Since our method is an extension of a known marching method for parametric
surfaces to subdivision surfaces, we can handle all special cases that it can also
cope with for parametric surfaces. For the same reason, our method faces the
same kinds of degeneracy problems as do traditional surface-surface intersection
methods.

5 Results

We show some results of calculating intersection curves between subdivision
solids using our algorithm. All the examples in Figure 9 were calculated within
10 seconds on a PC with 900 MHZ CPU. More complex examples are shown in
Figure 10.

Fig. 9. Intersection curves between two subdivision solids

6 Conclusions

In this paper we have presented an efficient method to calculate intersection
curves between two subdivision solids. We continued earlier work and have made
a contribution that will extend subdivision surfaces to new applications. Our
ultimate intention is to construct complex models from simple primitives using
solid modelling operations, and so future works will include:

470 X.-P. Zhu et al.

Fig. 10. (a) Intersecting a Venus (Loop surface) and a torus (Catmull-Clark) surface;

(b) intersecting two Venuses (Venus model courtesy of the NYU Media Research Lab)

– Designing more robust algorithms that can better handle degeneracies and
numerical instabilities.

– Extending our method to piecewise smooth subdivision solids using Zorin’s
work as a basis [18].

– Developing a CAD system based on subdivision and CSG representation
by integrating a wide range of geometric computing algorithms, such as
offseting, blending, trimming and Boolean operations.

Acknowledgements

This work was supported by the Natural Science Foundation of China (Project
numbers 60225016, 60273012, 60333010).

References

1. R. E. Barnhill, G. Farin, M. Jordan, B. R. Piper (1987) Surface/surface intersec-
tion. Computer Aided Geometric Design, 4, 3–6

2. R. E. Barnhill, S. N. Kersey (1990) A marching method for parametric sur-
face/surface intersection. Computer Aided Geometric Design, 17, 257–280

3. H. Biermann, D. Kristjansson, D. Zorin (2001) Approximate Boolean operations
for subdivision surfaces. Proc. SIGGRAPH 2001, 185–194

4. E. Catmull, J. Clark (1978) Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer Aided Design, 10 (6), 350-?55

5. D. Doo, M. Sabin (1978) Analysis of the behavior of recursive division surfaces
near extraordinary points, Computer Aided Design, 10 (6), 257–268

A Marching Method for Computing Intersection Curves 471

6. E. Grinspun, P. Schröder (2001) Normal bounds for subdivision-surface interference
detection. Proc. IEEE Scientific Visualization

7. M. Hohmeyer (1991) A surface intersection algorithm based on loop detec-
tion. International Journal of Computational Geometry and Applications, 1 (4),
473–490

8. S. M. Hu, J. G. Sun, T. G. Jin, G. Z. Wang (2000) Computing the parameters of
points on NURBS curves and surfaces via moving affine frame method. Journal of

Software, 11 (1), 49–53
9. L. Kobbelt (2000)

√

3 subdivision. SIGGRAPH 2000 proceedings, 103–112
10. S. Krishnan, D. Manocha (1997) An efficient surface intersection algorithm based

on lower dimensional formulation. ACM transactions on Graphics 16 (1)
11. N. Litke, A. Levin, P. Schröder (2000) Trimming for Subdivision Surfaces. Techni-

cal report, Caltech
12. C. T. Loop (1987) Smooth Subdivision Surfaces Based on Triangles. M.S. Thesis,

Department of Mathematics, University of Utah
13. A. H. Nasri (1987) Polyhedral Subdivision Methods for Free-form Surfaces ACM

Trans. Graphics 6 (1), 29–73
14. R. Seidel (1998) The nature and meaning of perturbations in geometric computing.

Discrete and Computational Geometry, 19 (1), 1–17
15. J. Stam (1998) Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary

parameter values. Proc. SIGGRAPH 1998, 395–404
16. J. Stam. (1999) Evaluation of Loop subdivision surfaces. SIGGRAPH’99 Course

Notes

17. D. Zorin, P. Schröder (2000) Subdivision for modeling and animation, SIGGRAPH

2000 Course Notes

18. D. Zorin, D. Kristjansson (2001) Evaluation of piecewise smooth subdivision sur-
faces. Visual Computer

	Introduction
	Local Parameterization of Subdivision Surfaces
	Tracing a Branch of an Intersection Curve
	MAF Marching Method for Parametric Surfaces
	Extending the MAF Method to Subdivision Surfaces

	Surface-Surface Intersection Algorithm
	Algorithm Overview
	Convex Hull and Flatness Condition
	Intersection Between Two Sub-patches
	Tracing
	Parameter Settings
	Remarks

	Results
	Conclusions

