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Abstract. Mesh parameterization is a key problem in digital geometry
processing. By cutting a surface along a set of edges (a seam), one can
map an arbitrary topology surface mesh to a single chart. Unfortunately,
high distortion occurs when protrusions of the surface (such as fingers of
a hand and horses’ legs) are flattened into a plane. This paper presents
a novel skeleton-based algorithm for computing a seam on a triangu-
lated surface. The seam produced is a full component Steiner tree in a
graph constructed from the original mesh. By generating the seam so
that all extremal vertices are leaves of the seam, we can obtain good
parametrization with low distortion.

1 Introduction

Due to their flexibility and efficiency, triangle meshes have been widely used
in the entertainment industry to represent arbitrary surfaces for 3D games and
movies during the last few years. Many new mesh techniques have been developed
for different applications. In these techniques, parameterization is a key issue—
surface parameterization is always an important problem in computer graphics.
In this paper, we focus on the parameterization of triangle meshes. In particular,
we wish to establish a mapping between a triangulated surface and a given
domain.

Parameterization methods can be grouped into three categories, depending
on whether the domain is a polyhedron, sphere or plane. Eck et al [6] first used
a polyhedron as the parameter domain for a mesh. They called the domain
polyhedron a base-mesh. A mesh parameterized using the base-mesh is called a
semi-regular mesh; such an approach has been widely applied in multi-resolution
modelling [14], remeshing [2] and morphing [13]. Recently, Khodakovsky et al [12]
presented a globally smooth parameterization algorithm for semi-regular meshes.
In contrast with polyhedral parameterization, there is little work [9,17] on spher-
ical parameterization because of its limited application. Finally, we focus on pla-
nar parameterization. As is done for parametric surfaces, we want to map the
mesh to a bounded region of the plane. This is trivial if the mesh surface is home-
omorphic to a disc. Unfortunately, if the topology of the surface is complex, with
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high genus, the surface is usually separated into several disc-like patches, and
each patch mapped to a chart. This multi-chart method is often used in texture
mapping [15]. Obviously, the more charts into which a surface is separated, the
lower the distortion is, and in the extreme, if each triangle of the mesh has its
own chart, the distortion is zero. Conversely, using fewer charts causes higher
distortion. Hence, there exists a trade-off between the number of charts and the
amount of distortion.

Our goal is to map an arbitrary topology surface mesh to a single chart with
low distortion. Theoretically, any closed surface can be opened into a topological
disc using a set of cut edges making up a seam. Cutting along the seam, we
can get a disc-like patch. Unless the surface is developable, parameterization
using a single chart inevitably creates distortion, which is especially great where
protrusions of the surface (such as fingers of a hand and horses’ legs) are flattened
into the plane. Sheffer [20] and Gu et al [10] have found that to reduce the
distortion, it is important for the seam to pass through the various so-called
“extrema”. Although extrema can be found accurately with their methods, it is
still difficult to guide the seam through these extrema. In fact, it is a tough job
even for human beings to choose an appropriate seam. Piponi et al [16] describe
a system that allows the user to define a seam interactively. In this paper, we
consider this problem as a minimal Steiner tree problem and present a novel
skeleton-based method to approximate the minimal Steiner tree.

2 Related Work

Our goal is to map an arbitrary 2-manifold surface to a planar domain, so high
genus surfaces must be cut by a set of edges or a seam. The problem of min-
imizing the length of the set of cut edges is known to be NP-hard [7]. Gu et
al [10] present a method that approximates such a seam in O(n log n) time.
Once a surface has been cut into a disc, additional cuts are usually necessary to
reduce distortion. Choosing them includes two processes: firstly, all extremal ver-
tices on the mesh must be detected; secondly, a path (always a tree) connecting
all extremal vertices and the surface boundary must be found. Sheffer [20] de-
tects extrema by searching for vertices with high curvature. Unfortunately, this
method only solves problems associated with local protrusions. Gu et al give a
more suitable algorithm for finding extrema which utilizes the shape-preserving
feature of Floater’s parameterization [8]. For each protrusion, he identifies the
triangle with maximum stretch in the parametric domain, and picks one of its
vertices as a new extremal vertex to augment the seam.

In this paper, we assume all extremal vertices are already given and concen-
trate on determining the layout of the seam. We pose the problem as a network
(weighted graph) Steiner tree problem. A Steiner tree for a set of vertices (termi-
nals) in a graph is a connected sub-graph spanning all terminals. Here terminals
include all extremal vertices, and the boundary (the whole boundary is regarded
as a terminal, but only one point on the boundary is required to be connected
to the seam). Naturally, we want to minimize the length of the seam because it
will eventually be added to the boundary of the parameterization. The problem
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of finding the minimal Steiner tree in a graph is NP-complete [11]. Sheffer [20]
approximates it by the minimum spanning tree (MST). The Euclidean MST
is never more than 2/

√
3 times the length of the Euclidean Steiner minimal

tree; but in a graph the corresponding worst-case approximation ratio is 2, not
2/

√
3 [11]. Gu et al use a greedy approximation method: when a new extremal

vertex is detected, the shortest path between the current seam and the new ex-
tremal vertex is added to the seam. This incremental method depends heavily
on the sequence of adding extremal vertices; choice of the sequence is not dis-
cussed in his paper. Consider the model of a horse in Fig. 1. The most obvious
extrema are located at the ends of the four legs and the head, and can be de-
tected by Gu’s method. The seam computed using the MST method is poor (See
Fig. 1(a)), as the MST passes through most extrema more than once. However,
extremal vertices are always at the ends of protrusions, and so it is reasonable
to require that the seam should pass through each extremal vertex as few times
as possible. It will be best if all extremal vertices are leaves on the seam.

a b c

Fig. 1. Seam computed by: (a) Sheffer’s method (seam length = 7.99), (b) Gu’s method
(seam length = 7.07), (c) our method (seam length = 5.97).

For this reason, we constrain the Steiner tree to be a full component of the
mesh. (A full component is a subtree in which each terminal is a leaf). Robins [18]
gives a method for constructing an approximation to a minimum Steiner tree in
a weighted graph, with length approaching 1+(ln 3)/2 ≈ 1.55 times the minimal
length. However, his method is not efficient if the Steiner tree is constrained to
be a full component. Thus, in this paper we suggest a new method to compute an
approximation to the minimal full component Steiner tree, deriving it from the
straight skeleton. It produces good results in practice: comparisons with previous
methods are given in Fig. 1.
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The rest of this paper is organized as follows. In Section 3, we introduce
the definition of straight skeleton. Our novel seam computation algorithm is
presented in Section 4. Section 5 shows some experimental results of applying
our new method to different models. Conclusions and future work are given in
Section 6.

3 The Straight Skeleton

The straight skeleton of a planar straight-edged graph G is obtained as the
interference pattern of certain wavefronts propagated from the edges of G [1]. If
G is a simple polygon, the part of the straight skeleton interior to G is a tree
whose leaves are the vertices of G (see Fig. 2). If all vertices of the polygon
are terminals, the interior straight skeleton must be a full component Steiner
tree. Thus, the main idea of our method is to extend the concept of straight
skeleton from the plane to a 3D triangle mesh. To do this, we must solve two
problems. First, a shortest tour that visits all terminals is found. (Of course,
one can also use other heuristics—see the discussion in Section 6). Secondly, the
tour is shrunk to produce the skeleton which is a full component Steiner tree of
terminals.

In the plane, the straight skeleton is found by shrinking a polygon via inward,
uniform speed parallel movement of all edges, and finding where they intersect.
On a triangle mesh, we analogously treat the part of the tour between two
neighbouring terminals as an “edge” and shrink all “edges” inward in a uniform-
speed way, as explained in Section 4.3.

Fig. 2. The straight skeleton interior to a simple polygon.

4 Seam Computation

Before going into details of our algorithm, we now restate the problem. Given an
arbitrary 2-manifold triangulated surface (closed or open) and several extremal
vertices on it, we seek a minimum length seam connecting all extremal vertices
which opens the surface into a disc. In practice, better results are obtained if all
extremal vertices are leaves on the seam, so in principle we wish to compute a
minimal full component Steiner tree. Because this is expensive, we approximate
it using our new skeleton-based algorithm, which is explained in the following
section.
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4.1 Overview of the Algorithm

We carry out the following preprocessing before computing the seam:

• For surfaces of genus greater than zero, we use Gu’s algorithm to compute
an initial seam. Cutting along the initial seam, the surface is opened into a
disc. After this process, the surface is either a closed genus-0 surface or a
disc-like patch with one boundary loop.

• We find the shortest path between each pair of terminals, i.e. the shortest
path between each pair of extremal vertices and the shortest paths between
each extremal vertex and the boundary loop (if any). To compute the short-
est paths, a modified Dijkstra’s algorithm is used, as in [20].

• Our algorithm assumes that there are at least two terminals. If there are
only two terminals, we just use the shortest path between them as the seam.

The Algorithm for computing the seam can be divided into three steps. Fig. 3
shows the results of each step.

• Find the shortest tour that visits all terminals.
• Shrink the tour to a skeleton.
• Straighten the skeleton.

(a) (b) (c)

Fig. 3. Results after each step of seam computation.

4.2 Constructing a Tour with MST

For convenience, we use a half-edge data structure to describe the triangle mesh,
i.e. we replace each edge with two opposed half-edges; the three half-edges inside
a triangle are ordered anticlockwise (see Fig. 4(a)). With this data structure, the
mesh can be represented by a directed weighted graph G where the weight is
the length of the path between terminals (see Fig. 4(b)). A directed tour must
be found in G which satisfies two requirements.
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• The tour must visit all terminals exactly once.
• The tour must not self-intersect, i.e. the tour must separate the graph into

two regions.

(a) (b)

e

e.Twin

e.Next

Fig. 4. Half-edge data structure and the corresponding directed weighted graph.

Since the tour is directed, we define the region on the right hand side of
the tour to be the interior of the tour. The first requirement is straightforward.
Consider the second requirement. Fig. 5 shows two directed tours. They both
satisfy the first requirement. We say that the tour on the left-hand side of the
Figure is self-intersecting while the tour on the right-hand side is not. In the
Figure, nodes marked “◦” are terminal nodes, while nodes marked “•” are non-
terminals. We may decide whether a tour is self-intersecting by the following
algorithm.

Algorithm 1 (Tour Self-intersection Test).

For each half-edge ei on a directed tour T
{

Let ej be the next adjacent edge to ei in T
ek = ei.Next; // Next half-edge in the data structure (see Fig. 4)
While (ek �= ej ) // If ek is not the next edge of the tour
{

If ek is a half-edge in T
return; // T is self-intersecting

Else
{

ek = ek.Twin;
ek = ek.Next;
// Move to the next half-edge around the vertex
// at the end of ei (see Fig. 6)

}
}

}
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(a) (b)

Fig. 5. Self-intersecting and non-self-intersecting tours.

ei ej

ek

ek

Fig. 6. Tour self-intersection testing.

We wish to find the shortest tour which satisfies the two requirements above.
This is similar to the classic traveling salesman problem (TSP) which asks for a
shortest tour that visits all nodes of a graph. Here we only restrict the tour to
visiting all terminals. Since the part of the shortest tour between two terminals
must be the shortest path between them, we can construct a complete graph
GT based on all terminals. The weight of each edge in GT is the length of the
shortest path between each pair of corresponding terminals. Thus we can reduce
the problem to a traveling salesman problem in GT . Unfortunately, TSP is also
NP-Hard [11]. Thus we use an approximate method, to be able to handle a large
number of terminals. Christofides’s algorithm [3] for TSP approximation starts
by computing a minimum spanning tree. Using the MST alone gives a tour with
length no more than twice the minimal answer. To improve the approximation,
Christofides [3] uses minimum-length matching on the odd-degree vertices of the
MST . Although this method improves the approximation ratio to 3/2, it can
not guarantee the tour is not self-intersecting.

Thus, we use the basic MST method together with a heuristic which not only
approximately minimizes the tour, but also avoids self-intersections of the tour.
The idea is as follows. Firstly we compute the minimal spanning tree of GT . If
we simply walk around the tree in half-edge order, we can obtain a directed tour
which is not self-intersecting in G (See Fig. 6(b)). However, this tour does not
satisfy the requirement of visiting each terminal only once, and repeated visits
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to terminals must be eliminated from the tour. Starting from this initial tour,
we remove repeat visits to terminals one-by-one, until all terminals appear in
the tour only once. Let t be a terminal visited more than once in the current
tour, t → Pre be the terminal before t in the tour and t → Next be the
following terminal in the tour. When a visit to t is removed, the part of the tour
from t → Pre to t → Next is replaced by the shortest path from t → Pre to
t → Next. This operation may produce a self-intersection in the tour. Thus, each
time we remove a visit to a terminal, we must check whether the resulting tour
is self-intersecting. To decide which terminal to update, a heuristic rule is used.
We choose the terminal t, and its Pre and Next, with minimal shortest path
between t → Pre and t → Next. We now give the pseudocode of the algorithm
as follows; Fig. 3(a) shows the resulting tour produced for the horse model.

Algorithm 2 (Computing a Tour Using MST).

Use Kruskal’s algorithm [4] to compute the MST of GT .
Walk around the tree starting at any terminal.
Record the sequence of terminals in a circular list TourList.

While (size of TourList > number of terminals)
//Repeated terminals remain in the tour
{

For each repeated terminal t in TourList
{

If the tour is not self-intersecting when the appropriate visit
to t is removed

t.priority = Length of the shortest path between
t → Pre and t → Next

Else
t.priority = ∞

}
Remove the visit with minimum priority from TourList

}

4.3 Shrinking the Tour to a Skeleton

As outlined in Section 3, we treat the part of the tour between two neighbouring
terminals as an “edge” and shrink all “edges” inward in a uniform-speed way
across the triangulation. The skeleton is the interference pattern of wavefronts
propagated from these “edges”. To carry out this idea, we mark each “edge” with
a different number and propagate these numbers stepwise to the triangulation
of the interior of the tour. Places where two different “edge” numbers meet are
parts of the skeleton. Pseudocode for the algorithm for doing this follows; q is
a queue and all variables are explained in Fig. 7. The principle is to process all
half edges adjacent to the tour first by placing them in a queue. Then, as their
neighbours are processed, they are also added to the end of the queue, then their
neighbours are processed in turn, and so on. Eventually, edges both of whose
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e

eTwin

e1e2

Fig. 7. Mark propagation in skeleton computation.

half-edges have already been marked with different numbers are encountered:
these are parts of the skeleton (see Fig. 3(b)).

Algorithm 3 (Skeleton Computation).
Order all terminals according to their sequence in the tour.
For each terminal ti,

For each triangulation half-edge e on the shortest path
between ti and ti+1,

e.mark = i; q.append(e);
//Shrink the tour
While (q is not empty)
{

e = q.takefirst();
If (e is a boundary edge)

continue; // Ignore it. Otherwise
eTwin = e.Twin;
If (eTwin is not marked)
// Then propagate the mark to the twin half-edge
{

e1 = eTwin.Next;
e2 = e1.Next;
eTwin.mark = e1.mark = e2.mark = e.mark;
q.append(e1);
q.append(e2);

}
Else If (eTwin.mark �= e.mark)

Export e; // This edge is part of the skeleton
}

4.4 Straightening the Skeleton
The skeleton as produced above is always jagged and should be smoothed to
produce a better result. As intended, the skeleton is a tree spanning all terminals.
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Fig. 8. Computed seam on an open model (a bunny head).

While all terminals are leaves of the tree, some interior vertices have valence
greater than two. Such vertices are called Steiner points. We fix the positions
of all Steiner vertices and all extremal vertices, and replace the skeleton path
between each pair of such vertices by the shortest path connecting them in the
triangulation (see Fig. 3(c)).

Finally, the set of smoothed paths is output as the seam.

5 Results

The following examples show seams computed by our method. Fig. 8 shows a
bunny head model (with boundary). In this example, the three terminals include
two extremal vertices at the tops of both ears, and a boundary loop. The seam
computed by our method is almost the shortest path.

In Fig. 9, we demonstrate seams on a complex model produced by manually
adding increasing numbers of extremal vertices. The model has 10062 facets. It
only takes 1.6 seconds to compute the final seam (Fig. 9(f)). The bottleneck in
our algorithm is computing the shortest path between any two terminals, which
takes O(E log N) time [20], where E is the number of edges and N is the number
of vertices in the mesh.

In Fig. 10(a), we can see the result is good even if the selected extremal
vertices are not on protrusions. For such a head model, it is not appropriate
for the seam to pass through the face. By using other heuristic rules when we
construct the tour, the user can interactively guide seam generation (see the
discussion in Section 6).

6 Conclusion and Future Work

The motivation for this paper was to reduce distortion when a 2-manifold tri-
angulated surface is mapped to a single chart in the plane. Most previous ap-
proaches reduce distortion by optimizing an energy function [5,19]. Unlike these
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Fig. 9. Seams found by interactively adding new extremal vertices.

methods, we achieve the goal by finding an additional seam. Through experi-
ence, we have found that to get a good mapping, it is important for the seam
to pass through all extrema just once. Such a seam is a constrained Steiner tree
in which all terminals are leaves. Inspired by the straight skeleton of a simple
planar polygon, we have presented a novel method for computing the seam.
From Fig. 1, we can see that our method leads to shorter seams than previous
methods. Furthermore, seams computed with our method treat extrema in a
more-or-less symmetrical way, and produce seams similar to those produced by
human intuition when mapping textures to a surface.

In Section 4.1, a heuristic rule was used to determine the seam: minimize
the tour length. Now, the seam definitely lies on the part of the triangulation
surrounded by the tour, and so we can use other heuristics based on this to find
the seam. For example, we could minimize the total energy of all triangles interior
to the tour, where the triangle energy may be defined in terms of area of triangle,
or in terms of “visibility” [21]. Fig. 10 is the result when we define triangle energy
as the dot product between the normal vector and the viewing direction. Using
such a rule, the user can control the position of the seam according to the desired
viewing direction.

Our method relies on correctly knowing all extremal vertices. If extremal
vertices are found corresponding to all large protrusions, we can obtain very
good results, as illustrated in Fig. 9. It is less important whether further extremal
vertices corresponding to small protrusions are also provided. If not, the results
are usually still acceptable (see Fig. 10). However, if an extremal vertex for some
large protrusion is not provied, the seam may pass through it, resulting in a bad
seam. Thus, in future work, we hope to develop a multi-resolution algorithm for
selecting extremal vertices more carefully. We hope to first find all big protrusions
at low resolution and then locate extremal vertices precisely at high resolution.
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Fig. 10. Seams computed for different view points.
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