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Abstract. Let of be a C*-algebra and 7: G » Aut &f a compact abelian action such
that the fixed point algebra &" is simple. Denote by /¢ the *-subalgebra of G-finite
elements. Let H: ofr > o be a *-operator commuting with 7 such that H|4-=0 and
the matrix inequality
[H(XX)]=[H(X)*X;+ X H (X))

holds for all finite sequences X1, ..., X, in & Then H is closable, and the closure
H is the generator of a strongly continuous semigroup {exp (—tH): t =0} of com-
pletely positive contractions. Furthermore, there exists a convolution semigroup
{w.: t =0} of probability measures on G such that

exp (—tI-_I)(X)=J’G du.(g)r(g)(X), t=0, Xed.

This result has various extensions and refinements.

1. Introduction

In (1, appendix C] a theorem called Robert’s version of Tannaka duality is proved.
A special case of this, which could be called Roberts’s version of Pontryagin duality,
reads as follows:

Let G be a compact abelian group and T an automorphic action of G on a von
Neumann algebra M, such that the fixed point algebra M is a factor. Let « be an
automorphism of M such that

(1.1) ar(g)=1(g)a forallgin G,
(1.2) a(X)=X forall X in M".
Then there exists a g € G such that « = 7(g).

In this paper we replace the automorphism a with a general completely positive
map § satisfying (1.1) and (1.2). It turns out that the extremal such maps are just
the automorphisms 7(G), and in general § has the decomposition

s=[ duerrie),
G

where u is a probability measure on G. This result remains true if 4 is replaced
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by a C*-algebra & such that " is simple. With somewhat less restrictive assump-
tions on 7, the measure w is replaced by a measure taking values in the centre of
the multiplier algebra of &f". These results are contained in § 4.

In § 5 we study generators of dynamical semigroups of completely positive maps.
This paper was in part inspired by [9] where it was proved that if G is a compact
abelian group acting ergodically on a simple C*-algebra of, and § is a derivation
defined on the C™-vectors, then § has a unique decomposition

8 =580+6,

where 8, is the generator of a one-parameter subgroup of G, and 5 is approximately
inner. The derivation 8 is nothing but the invariant part of §,

8o= J dgt(g)ér(—g).

That 8, generates a one-parameter subgroup of 7 is then closely related to Roberts’s
version of Pontryagin duality. In order to establish analogous decompositions for
generators of completely positive semigroups, we first need to characterize those
generators commuting with the ergodic actions, and this is done in corollary 5.8.
It is a remarkable consequenice of complete positivity that such a generator has
the same form whether the C*-algebra & is abelian or not. If G = T, it is a sum
of three terms: the first is a linear combination of the elements in a basis

d
—, i=1,2,...,d,
at;
for the action of the Lie algebra of G on & ; the second, the negative of an elliptic
operator in 0/dt;, i =1,2,...; and the third a bounded superposition of operators
of the form
d 3 )
—ex xi—),
p (igl at,‘

given by the Lévy-Khinchin formula.

Ideally, one would like to characterize generators of actions

{S, =exp (—tH): t =0}

on a C*-algebra & with the properties

(1.3) S, is (completely) positive for all 1 =0;

(1.4) S7(g)=1(g)S, forallt=0,ginG.

(1.5) S, X)=X, for all X in the fixed point algebra &f".
It has recently been proved that a closed derivation é satisfying

or(g)=7(g)8, and 8|4 =0,

is automatically the generator of a one parameter group of *-automorphisms [6];
see [17], [18], [20], [22], [27], [28] for related results. However there does not
seem to be a simple algebraic condition replacing the derivation property which
characterizes the generators of completely positive semigroups, since the domain
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D(H) of such an operator is not necessarily an algebra [8]. One can replace algebraic
properties with analytic ones, and the following result is true for rather trivial
reasons.

Let 7 be an action of a compact (abelian) group G on a C*-algebra sf. Suppose
H is an operator on o such that D(H )= oAF, the G-finite elements of A, satisfying:

(1.6) H is dissipative, i.e. if X € oA, there exists a non-zero n € A *, such that

n(X) = nllIX|,
and

Re n(H(X))=0;
(1.7) Hr(g)=1(g)H forall gin G;
(1.8) HX)=0  forall XinA".
Then H is closable, and the closure generates a semi-group of positive maps.

The proof follows in part an argument from [17]. As H is dissipative it is closable,
and its closure H is dissipative [7, lemma 3.1.14]. Condition (1.7) ensures that H
maps the spectral subspace

A (y)={Xed: 7(g)X =(v,8)X, forall ge G}

into itself, for any y € G. The closed graph theorem shows that the restriction of
H to & (y) is bounded, and so the elements of &f"(y) are analytic vectors for H.
By [7, lemma 3.1.15, theorem 3.1.19], H generates a semigroup of contractions

{S,=exp (—tH), t =0}.

The semigroup S acts trivially on &¢” and by the first lemma of § 4, any approximate
identity for of" is also an approximate identity for &. Since this approximate identity
converges to 1 in the universal enveloping algebra & **, it follows that

S§¥*1=1, for each r = 0.

But each §¥* is a contraction, and so is positive [7, corollary 3.2.6], and hence
each S, is positive.

In § 5 we prove versions of this result where (1.6) is replaced by the algebraic
condition:

[H(XTX)]<[H(X)*X; + X FH (X))]

for all finite sequences X, X, .. ., in the linear span of the spectral subspaces. We
have to impose some restrictions on the action 7 in order to make our proofs work,
but these situations include the ergodic actions. Other results have been obtained
in [21] when the algebra is abelian.

If of is a C*-algebra on a Hilbert space %, it is known [11] that the bounded
generator H of a norm-continuous semigroup of completely positive maps can be
expressed as

H(X)=-K(X)+LX +XL*,

where L € &f", and K is completely positive. In the last remark in § 5, we establish
an analogous decomposition for the semigroups we consider, but K (X) may be
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unbounded for all X # 0 in D(H ). Finally § 6 contains some examples; in particular
the ergodic action of Z, X Z, on M, is analysed in detail.

2. Preliminaries

If G is a compact abelian group, an action 7 of G on a C*-algebra & will be a
homomorphism 7 from G into Aut(sf), the group of all *-automorphisms of «f,
which is strongly continuous in the sense that

g ~>1(g)(X)
is norm continuous for each X in . If y € G, the dual group of G, P, denotes the
norm one projection

[ ds oo

on ¢ so that

PP, =0 ify#y,
and

Sp(r)={yeG: P, #0}.
The ranges are denoted by

A" (y) =P,
the spectral subspace corresponding to v, and we often write P for P, and
A =4"(0)
for the fixed point algebra. Then
A (y)={Xed: 1(g)X)=(v,8)X, VgeG},
and
A"y (v (vityl), A (¥)*=L"(-v).

An element X € & lies in the linear span {#f"(y): y € G} if and only if the linear
span {7(g)(X): g € G} is finite dimensional. Such elements are called G-finite, and
the G-finite elements

drp = &4}-‘
form a dense *-subalgebra of .

For a von Neumann algebra & =/, the functions g » 7(g)}(X) are only required
to be o-weakly continuous. The set of X € # such that g > 7(g)(X) is strongly
continuous form a o-weakly dense norm-closed *-subalgebra #, of # which is
called the strong continuity subspace of 7. #, is the norm closure of #g, [7], [26].

If o is a C*-algebra, M(s{) will denote its multiplier algebra, and K () the
Pedersen or minimal dense ideal [26, 3.12, 5.6].

If o is a C*-algebra, % a Hilbert space and

Q=s->B(¥X)

a completely positive linear map, then the Stinespring decomposition of Q consists
of a triple (m, %, V) where 7 is a representation of & on a Hilbert space #,
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V.9% -> X is a bounded linear operator such that
O(X)=V*r(X)V Xed,
and V¥ is cyclic for m, [3], [16].

3. Centre-valued measures

In order to formulate our main theorems, we need some results on vector valued
measures, which are straightforward, but do not seem easily available in the
literature. We must make sense of expressions like

[ awxe),
G

when G is a compact Hausdorff space, X is a continuous function from G into a
C*-algebra &f, and w is a measure on G taking values in an abelian C*-algebra
% which is a subalgebra of the centre of the multiplier algebra M (&) of &, such
that € contains the identity of M (/).

We define a €-valued probability measure u on G to be a positive, unital, linear
map from C(G) into €. Such a measure is completely positive and

fleefl = lle (DI =1,

[16, § 4). Let C(G, o), (= C(G) ® «), denote the C*-algebra of continuous func-
tions from G into &, containing the algebraic tensor product C(G)O & as a
dense *-subalgebra. The linear map

C(G, st)3 X i (X) = L du(g)X (g)e o

is defined as follows. By [32, prop. 4.7] and nuclearity of ¥, there is a unique
*.homomorphism & of € ® of onto &f such that

elc®a)=ca, ceb,aecsd.
Define 4: C(G, d) >« by
A=ew®1):CG)XA->€0A>A.
Then £ is completely positive, and
A(f®a)=n(fa,
for fe C(G) and a e 4. We write | du(g)X (g) for 4 (X) if X € C(G, ).
We need the following version of Bochner’s theorem:

LEMMA 3.1. Let G be a compact abelian group and € a unital abelian C*-algebra,
and Z a function from G into € which is positive definite in the sense that the n X n
matrix

[Z('Yi - 'Yi)]i,j
is positive for all y1,...,v. € G, n=1, and Z(0)=1. Then there exists a €-valued
probability measure u on G such that

Zy) =ply, ) = L du(8), g),
forallyin G.
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Proof. If K is the spectrum of € and w € K| then y » w(Z (v)) is a positive definite
function in the usual sense, and by Bochner’s theorem there is a probability measure
o on G with

Z(y)w)= L o (8)7, 8). See [5]
If h e C(G), define

filw)= L () (8).

Since A can be approximated uniformly by linear combinations of characters on
G, it follows that / is continuous on K, and so can be identified with an element
w(h), say, in 6. Clearly u(1)=1, and u is a positive linear map from C(G) into
%, and so is a $-valued probability measure on G. Since

Z()w)= [duut)r.),

we have

Zy)=u(y, ). O

Remark 3.2. If u is a €-valued probability measure on G, and w € K = Spectrum
of ¢, then an ordinary probabiity measure u,, on G is determined by

() (w)= L du(g)h(g),

for all A € C(G). Thus u determines a bundle u,, of ordinary probability measures
over K, and conversely the bundle (u,) determines u. Since we will use €-valued
probability measures only to formulate resuits, and not as a technical tool in the
arguments, this bundle structure will not be emphasised except in the trivial case
€ =C.

4. Completely positive maps

In this section we consider the case of a single completely positive map commuting
with a compact action. The following lemma is needed to make one of the hypotheses
in theorem 4.2 meaningful (see [23, lemma 4.2] for a related result):

LEMMA 4.1, Let G be a compact abelian group and r an action of G on a C*-algebra

A. Any approximate identity for the fixed point algebra " is also an approximate

identity for of, and the multiplier algebra M (L") is contained in M ().

Proof. Let E, be an approximate identity for ™. If X c of"(y), then XX *e &, and
(E.X —X)EX - X)*=EXX*E,—EXX*-XX*E, +XX*

SXX*-XX*-XX*+XX*=0
as a - o0, Thus

E.X > X,
for all X in ofF, and hence for all X in of. Let Y e M (") and X €. «, then
YX =lim Y(E.X)=1lim (YE,)X)e A.

The second remark is now clear. O
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THEOREM 4.2, Let G be a compact abelian group and T an action of G on a
C*-algebra . Assume that the ideals A" ()AL (y)* in A" are either dense or zero
for each v in G, and that the centre of M(A7) is contained in the centre of M ().
If S: A » o is a linear map, then the following two conditions are equivalent:
(4.1) () S is completely positive ;
(b) St(g) =7(g)s, forallgin G,
() SX)=2X, forall X in A",
(4.2) There exists a centre M (A" ))-valued probability measure u on G such that

S(X)=J' du(g)r(g)(X), forall X in oA.

Proof. That (4.2) implies (4.1) is trivial. Suppose that (4.1) holds. Let & denote
the Pedersen ideal of &". If y; and v, are contained in the Arveson spectrum Sp (1)
then

H oA (vi)* L™ (vi) fori=1,2
since ¥ is the minimal dense ideal in &¢” [26, theorem 5.6.1]. Thus

Hed (y)*A (y1)AL (y2)*A™ (v2),
and so
A (y)L (y2)*#{0} and vy;—7y.€Sp (7).

Thus Sp (7) is a subgroup of é. By going to the quotient G/(Sp (7)), we may assume
that the action 7 is faithful, and & (y)&f" (y)* is dense in &« for all y in G.

LeMMA 4.3, If S: A > is a linear map satisfying (4.1)(c), and the Kadison
-Schwarz inequality S(X*X)=8(X)*S(X) holds for all X in o, then
S(XY)=X5(Y) S(YX)=S(Y)X
forall X insd" and Y in A.
Proof. Following [14], put
DX, Y)=¢(S(X*Y)-S(X)*S(Y)),
for X and Y in &, where ¢ is a state on . Then D is a non-negative sesqui-linear

form. If X € ", then X* and XX * e ", and (4.1)(c) implies that D(X™*, X*)=0.
Hence the Cauchy-Schwarz inequality, applied to D, gives

D(X*, Y)=0

for all X in & and Y in . Since S(X) =X, for X in &’, this implies S(XY)=
X5(Y). O
LEMMA 4.4. Assume that ™ (y)d™(y)* is dense in o for all y in G, and assume

that $: 4 > A is a linear map satisfying (4.1). Then for each vy in G, there exists an
element Z (y) in the centre of M(A") such that

SX)=Z(y)X
for all X in oA (v).
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Proof. As " (y)sf™ (y)* is a dense ideal in of", it follows from [10] and lemma 4.1,
or from [23, lemma 4.3], that &/ has an approximate identity of the form

E.=TATAT*
where A{ € " (y) and each sum is finite. Define
Za =}:S(A§-")A§-’*.
If X e /" (y), we have by lemma 4.3
S(EaX):ZS(A?IA?*X)=ZS(A?)A?*X=ZO‘X-
Hence

S(X)=IlimZ.X.

Next we derive a uniform estimate on ||Z,|. As S is positive we have by (4.1)(c) that
IS1|=lim [|S (E.)l| = lim |[Eo]| = 1.
If I, is the identity map on M, = M, (C), then it follows from complete positivity

that |S ® L,||=1.
Let
AT ... A;
0o ... 0
A%=1 . .
o ... 0
Then
E, 0 ... 0O Z, 0 ... 0
0 0 0
ASAS* = . < S RLYAMAF=| . ..
o o0 ... o0 o 0 ... 0

In particular, |A%||< IIEa||%S 1, and so
1Z=<ls ® LjllA**=1.
This is the desired uniform estimate. We now show that Z, converges in the strict
topology on M (&f") to an element Z(y) in M(«{") (i.e. Z, X > Z(y)X and XZ, >
XZ (y) in norm for each X € &f7). First, we have
ZEs=YZ APA%* 5Y S(ADHAP*,  asa-co.

Since Eg forms an approximate identity for o, and |Z,|| < 1, it follows that lim, Z, Y
exists for all Y in s, and the limit has norm not greater than || Y||. Thus Z,, converges

strongly to an element Z (y) in the universal representation of . Hence Z (y) € of **,
the bidual of &, and

Z(y)Y =limZ,Y € A, for all Y in &;

i.e. Z(v) is a left multiplier of of. Also
S(X)=limZ.X =Z(y)X, for all X in o™ (v).
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If XesA (y)and Y e then YX €47 (y), and so S(YX)=Z(y)YX. But lemma
4.3 shows that

S(YX)=YSX)=YZ(y)X,
and hence
Zy)YX =YZ(y)X.
But then
Z(y)YE, =§ (Z(y)YAD)AT*

=Zi. (YZ(y)ADAT*
=YZ(y)E.,
and as E, converges strongly to 1 in the universal representation we get
Z(yv)Y =YZ(y),
for all Y in &/". This shows Z(y)e «™’, and since Z(y) is a left multiplier,

XE,Z(y)=XZ(y)E,€ A,
for all a. But then

XZ(y)=lim XE,Z (y)e A,

and so Z (y) is also a right multiplier. O
LEMMA 4.5. Adopt the assumptions of lemma 4.4, and also assume that the centre
of M (A7) is contained in the centre of M (). Then

ye G > Z(y)ecentre M(A")
is positive definite.

Proof. Take X;e " (y:)fori=1,...,n.Thenthe n X n matrix [S (X ¥X;)]is positive
since § is completely positive. But

XiXjesd (—y)d" (v A (v;~ V1),

and so
SX¥X))=Z (v —v)X¥X; = XFZ (v —v) X
and hence
[X¥Z (v —v)X;]=0.

But then

X, 0 ... 0 X¥ 0 0

0 X, ... 0 0 X*¥ ... 0

: ’ : [X?(Z('Yj_'y:‘)le] : 2 . =0

0 ... ... X, 0 ... ... X¥
ie.

[(XXFZ (v, — Y)XXF1=0.


http://journals.cambridge.org

196 O. Bratteli and D. E. Evans

We next show that if X e of"(y;),fori=1,...,n,andk =1,...,m, thenthe n xn
matrix

[(ZX?XE‘*)Z(%-—vi)(ZXfo*)]
is positive. Let ‘ ‘
A=A @M, §$=S®ILn, ZW)=Z(Y)®Olp, TFo=1,Ou
Then one easily verifies that
A (y) =" (¥) ® M,

and hence that S(X)=2 (y))f for all X ed ’.(y). Furthermore Z (v) is contained
in the centre of M (.9.7( )=M(4)®M,, and S is completely positive. The above
reasoning applied to S then implies that for X, e # " (y,) =4 () @ M, i=1,...,n
we have L. ..

[(XXEZ (v, —y)XXF]=0, in M, ().

Now make the special selection

X! Xi ... X7
X, = O 0 , where X¥ et (v1).
0 0 0
Then
(TxX)zm-w(EXX*) 0 Lo
XXFZ(vi—v)X X} = ? 0 ?
0 0 0

and going to a submatrix, this implies
[ xix )z -vo (L xEx ) | =0,
k K

As in the proof of lemma 4.4, we can find an approximate identity for &/ consisting
of elements of the form ¥, X * X {*, where X{ € #"(y;), which converge strongly to
1 in the universal representation. Hence we get from the above relation that
[Z(yi—vd]l=0. )
End of proof of theorem 4.2. By lemmas 4.4 and 4.5, there exists a positive definite
map y € G > Z(y)ecentre M (") such that S(X)=Z(y)X, for X in & (y). By
lemma 3.1, there exists a centre (M (sf"))-valued probability measure u on G such
that
Zy)=py, ).
If [du(g) is the associated positive map from C(G, &) into «, we have for
Xed (y):
f du(g)r(@)(X) = du(g)y, 8)X
=u((y, DX
=Z(y)X =S(X).
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Hence by linearity §(X) =IG du(g)m(g)(X), for all X in &fF, and hence for all X
in & by continuity. O

COROLLARY 4.6. Let G be a compact abelian group and T an action of G on a
C*-algebra oA such that A" is simple. If S: sf - o is a linear map, then the following
two conditions are equivalent:
(4.3) (a) S is completely positive ;
(b) S7(g)=1(g2)S, forallgin G,
(c) SX)=X, forall X in ",
(4.4) There exists a probability measure u on G such that

S(X)=J du(g)T(g)X, forall X in A.

Proof. When &7 is simple, the ideals o™ (y)sf " (y)* are either zero or dense. The
Dauns Hofmann theorem states that the centre of M(sf") is isomorphic to the
C*-algebra Cp(Prim &{") of all continuous bounded functions on the primitive ideal
space of &7, and hence the centre of M (&f7) is trivial, when &" is simple [26]. Thus
theorem 4.2 applies and w is an ordinary probability measure on G in this case. O
We next consider a single completely positive map commuting with a compact
action on a von Neumann algebra.

PROPOSITION 4.7. Let G be a compact abelian group and t an action of G on a
von Neumann algebra M. Let §: M ~ M be a linear map such that

(a) S is completely positive ;

(b) Sr(g)=1(g)s, forallgin G;

(c) S(IX)=2X, forall X in M.
Then S is normal.

Proof. The linear space 4" (y)#"(y)* is an ideal in 4", and hence there exists a
projection E(y) in M7 nM"" such that M (y)M" (y)* =M E(y), where the bar
denotes o-weak closure. By minor modifications to the proof of lemma 4.4 we can
produce an element

Z(y)ecentre(H"E(y))= (M~ ~M")E(y)

such that S(X') = Z(y)X for all X in 4" (y).
The expression on the right makes sense since the range of X is contained in
E(y), and we may extend Z (y) to an operator in #{" "M’ by requiring

Z(y)1-E(y)=0.
The identity $(X)=Z{y)X is then still valid. If X e #, we let
{X(v)}yes,
denote its Fourier components relative to 7, i.e.

X(y)=P,X.
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Let 7, be the dual action of 7 on #,. The convex set of G-finite elements M .
for the action is weakly dense, hence norm dense in A .. If n € M *(v) then

n(X)=n(X(y)) for all X in .
Since § commutes with 7 one deduces further that

nSX)N=n XN =1Z ()X ¥) =z X (¥)) = zum(X)

where z,)m is the left translate of n by Z(v), and the last identity follows from
the fact that Z(y)e#". Hence

S*n =z,

and as z,n €., it follows that

S*Mor)S M or S My
But # . is norm dense in # , s0O

S* M, My
and hence § is normal. O

We are now ready to state a von Neumann version of theorem 4.2.

CoROLLARY 4.8. Let G be a compact abelian group and T an action of G on a von
Neumann algebra M such that the ideals M (y)H (v)* in M" are either zero or
o-weakly dense, and M ~M"' is contained in M NM'. Then there is a bijection
between :
(4.5) Linear maps S: M > M such that
(a) S is completely positive ;
(b) S7(g)=1(g)s forallgin G;
(c) $SX)=X forall X in M7,
and
(4.6) (M ~AM"")-valued measures u on G.
The correspondence is given by

S(X)= L du (g)7(g)(X)

for all X in the strong continuity subspace M for .

Remark 4.9. The two conditions
(a) M (y)HM (y)* is either dense in M or zero for each y € G,
by MM MM,
are equivalent to the single condition
(ab) I'(r) =Sp (1),
where I'(1) denotes the I'-spectrum of 7 and Sp (r) is the spectrum of r (at least
when A is separable). We give a crude outline of the argument.
Assume first that 7 is centrally ergodic, i.e.

M N MM =CL.


http://journals.cambridge.org

Dynamical semigroups 199

This is equivalent to the fact that # has no non-trivial o-weakly closed 7-invariant
ideals. In this situation one has that #" is a factor if and only if I'(r) =Sp (7), 26,
Proof of theorem 8.10.4.], i.e.
M AMT MM

if and only if ['(r) = Sp (7).

In the general case, decompose ./ over the abelian von Neumann sub-algebra
M A(MAM). As

M AM S MAM
if and only if
MM M ~NMAM),
it follows from the above that this condition holds if and only if I'=Sp on each of
the minimal components of the decomposition. But condition (a) ensures that the
spectrum is constant on almost all components, and hence (a) and (b) imply (ab).
Conversely (ab) implies that
I'=Sp=Sp(7)
on almost all components, and hence (b) holds. But if I'(+) =Sp () and y € Sp (r),
and E € #" is a projection, then y € ['(7) and hence E#" (y)E # {0}, thus
EM’ (y)M (y)*E 2EM™ (y)EM (v)*E # {0}

and thus 4" (y)# " (y)* is dense in A", i.e. (a) holds. This shows (a) & (b)<> (ab).
Proof of corollary 4.8. 1f § satisfies (4.5), then it is normal by proposition 4.7. By

(4.5)(b), S maps the C*-algebra ., the strong continuity subalgebra, into itself,
and theorem 4.2 applies to show that S| 4, is given by

S(X)= j du (g)r(g)(X),

where u is an M ~M"'-valued probability measure. (Actually the ideals
M7 {y)M (y)* are only o-weakly dense in 4", but by modifying the proof of theorem
4.2 as indicated in the proof of proposition 4.7, one can produce the elements
Z (v) as before and use lemma 3.1 to construct the measure w.) Since S is normal,
it is uniquely determined by its restriction to the o-weakly dense subalgebra /(.
Conversely, if u is given, it defines a completely positive map S on ., by

)= [ du(@)r(@)X).
If X e 4" (y) one has
SX)=Z(y)X,
where
Zy)=u(y, el M.

Using this, as in the proof of proposition 4.7, it follows that § extends by o-weak
continuity to /. O

The hypothesis of the following corollary is often satisfied when &" is not simple
but prime.
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COROLLARY 4.10. Let G be a compact abelian group and T an action of G on a
C*-algebra . Let

P(X)= [ dgr(g)(X)

be the canonical projection of of on ”. Assume that there exists a faithful representa -
tion o of A" such that w(A")" is a factor, where m is the Stinespring representation
associated to the completely positive map wooP. If S: o - o4 is a linear map, then the
following two conditions are equivalent:
(4.7) (a) S is completely positive ;
(b) St(g)=1(g)S forall g in G;
(¢) SIX)=X forall X in oA".
(4.8) There exists a probability measure u on G such that

SX) =I du (g)r{(g)(X) forall X in .

Remark 4.11. The assumptions on the dynamics in this corollary imply that &f" is
prime. Conversely, if &f” is prime, are the assumptions fulfilled? If s is G-prime,
then &” being prime is equivalent to I'(r) = Sp (7), ([26, theorem 8.10.4]), and the
problem would have a positive solution if o/ has a faithful G-invariant factor
representation with I'(7) =I'(7), where 7 is the extension of 7 to the weak closure
in this representation.
Proof. Suppose (4.7) holds, and assume that & is realised in the Stinespring
representation. Since the completely positive map mq° P is G-invariant, there is a
canonical strongly continuous unitary representation U of G such that
T(8)(X)=U(g)XU(g)*
for all X in &f. Then 7 extends to an action of G on the von Neumann algebra
M =". Moreover,

P(X)= L dg +(g)(X)

defines a o-weakly continuous projection from # onto the minimal spectral sub-
space ", and using this projection, it follows that &¢" is o-weakly dense in #", or
M" =(A"Y". In particular A" is a factor. The map S extends by o-weak continuity
to a completely positive map of . This follows from the proof of proposition 4.7,
or more directly as follows: as the projection P:.# ».#" is faithful, the subspace
¥ of the representation Hilbert space 7 of .# corresponding to m, ° P is separating
for # and hence cyclic for #'. Thus any positive normal linear functional on .#
can be approximated in norm by linear combinations of functionals of the form

Yed > (£ X*YX'E)
where £ X, X'e M'. But if Y =0 we have
& X*S(Y)X'6)=|XI(£ S(Y)¢)
=[Ix"I*(¢, PS(Y)€)
=[IX"I*(& P(Y)€)
=X Yé),
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and hence Y - (¢, X'™*S(Y)X'¢) is normal. It follows that the transpose of § maps
mw-normal states into w-normal states and hence § extends to # by o-weak
continuity. Applying corollary 4.8 on this extended S, corollary 4.10 is immediate,
because the ideals # " (y)# " (y)* in #™ are either zero or o-weakly dense as M is
a factor. The factoriality of /" also implies that the measure u is an ordinary
probability measure.

The converse is trivial. O

The prototype for the following can be found in [15] and [1], [29], [33].

PROPOSITION 4.12. Let M be a von Neumann algebra and N a von Neumann
subalgebra of M with the same identities. Let P: M > N be a normal faithful projection
of M onto N, and T : M > M a completely positive normal map such that

PT =P

Assume that N is realised on a Hilbert space X, and (w, %, V) the Stinespring
decomposition of

P. M ->B).

Then there exists an unique bounded operator W on ¥ such that

Wr(X)V=a(T(X))V forall X e M,
and the map
X->w(T(X)-Wr(X)W*

from M into B(3) is completely positive.
Proof. W is well defined as a contraction on ¥ because

¥ m(TX) Vel = X (VE, 7(TXHTOG)VE)
=X (V&, m(T(XIX)VE)
=L & V*n(TXTX)VE)
=Z (& PT(XTX)E)
=1 (& PIXTX)))
= IfZ m(X)VEI

for any X; in M, & in #. Next, to any Y' in 7 (#)" we shall associate an element
T'(Y') in w (M) with the property that

(VE m(T(X)NY' V) =(VE w(X)T'(Y') V)

for all X in A, £ and n in . Assume first that Y'=0.
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Ifé,...,6e¥, X,,..., X, eM we have
0=T(Y"2VE, m(T(XEX) Y VE)
Ly
= Z (VE, m(T(X X)) Y'VE)
LI
=Y Z (V& m(T(XTX))VE)
1)
1)
as before. If ¢, ¢ are linear maps between C*-algebras, we write
P <
if ¢ — ¢ is completely positive. Then the above shows that
0« V*r(T()Y'V<YPC) =Y |V*=(-)V.
By [3, theorem 1.4.2], there exists a T'(Y') in 7 (#)’ such that
V¥*(T()Y'V=V*r()T'(Y"V.
In fact, T'(Y") is the operator on  such that

5 (Ve m(X2Z)Y' V) = (L m(X) Ve, T(Y) L m(Z) Vi),

iy i
and existence and uniqueness follows from Riesz’s representation theorem.

By linearity, there exists for all Y’ in 7(#)' an unique operator T'(Y"') in 7 {#)
such that

'

(VE m(TX))Y' V) =(VE, 7 (X)T'(Y') V),

for all X in A, £ and n in . T' is clearly positive, and by a matrix argument, it
is completely positive. The subspace V¥ is separating for 7 () since P is faithful,
and so it is cyclic (and separating) for 7 (#)'. Thus as in the first part of the proof,
a contraction W' on # is uniquely defined by the requirement

wyYy'v=rTy"hv forall Y'in ().
Then
(Wa(X)VE Y' V) =(m(T(X))VE, Y'Vn)

={m(X)VE T(Y)Vn) =(m(X)VE W'Y'Vn)

forall X in 4, Y'in w(#) and & n in . Hence W* = W', This shows finally that

”Zkl<Yt{iV§ii’ m(T(X X)) Y V)
= Z;,I (V& m(TXEXO)) Y Y aVE)
= Hkl<V§ij, T XEX)T'(Y Y ) VE)

=Y (V& 7 (XEXOT' (Y T'(Y 1) V)

ikl
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= % (T'( Y.{,‘)thij, W(X:ka)T'( Y;cl)vfkl)
if

=Y (W'Y Vg, m(XIXOW'Y uVEw)

ijkl

= Z <Y|{;‘V§ii, WW(X?:/\",)W* YL1V§k1>

ijkl
forall X;e M, Y;cm(M), & €H. Hence the map
XeM>m(TX)-Wr(X)W*
is completely positive. Od

Remark 4.13. Adopt the hypothesis of corollary 4.10 and let S: s >sf be a
completely positive map commuting with 7 and which is the identity on &f". Then
there exists a probability measure « on G such that

S(X)=L du(g)r(g)X), for all X in &f.

Let U(g) be the canonical unitary representation of G implementing  in =, i.e.
U)n(X)V =n(r(g)( X))V,

for all X in . The action 7 extends to a o-weakly continuous action of # = ()",

and

PX)= [ dgU@XU ()"

is a o -weakly continuous faithful projection from # onto #™ = 7 (s ")". The proof
of corollary 4.10 shows that S extends by normality to a completely positive normal
map T:.4 > M such that

TAAU@g)=AdUENT, TX)=X
for all g in G, X in M™ = P(#). This entails PT =T and hence proposition 4.12
applies, to give
X->7(SX)-Wr(X)W*

is completely positive with

wrOV = ([ dui@rr@x) v

=_[ du(g)U(g)m(X)V

ie.
W[ dueUe).
: G
See also [13, § 5]. |
S. Dynamical semigroups

In this section we analyse dynamical semigroups which commute with a compact
action.

THEOREM 5.1. Let G be a compact abelian group and 1 an action of G on a
C*-algebra oA, such that the ideals A" (v)d" (y)* in A" are either dense or zero, for
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each v in G, and such that the centre of M(A") is contained in the centre of M ().
Let H : dr > oA be a *-linear map satisfying
(5.1) [H(X{X)]=[H(X:)*X; + X FH(X;)]
for all finite sequences X1, . .., X, .in AF.
(5.2) Hr(g)=r(g)H  forallginG.
(5.3) HX)=0 forall X in oA".
Then H is closable, the closure H generates a Cy-semigroup of completely positive

maps, and for each t =0, there is a centre (M (A"))-valued probability measure u,
on G such that

exp (—tH)(X) = L du,(g)r(g)(X),

forall X in oA.

Remark 5.2. Conversely, if H is the generator of a Cp-semigroup of completely
positive maps which commute with 7 and restrict to the identity map on &”, then
H trivially satisfies (5.2) and (5.3). But &fF is not necessarily contained in the
domain D(H) of H ([6, example 6.2]). The generator H will satisfy the inequality
in (5.1) for all finite sequences X1, . .., X, in D(H) such that X} X; e D(H), for all
i,j=1,...,n, but the domain D(H) is not a *-algebra in general.

Proof. We follow closely the proof of theorem 4.2, and, as the;e, we may assume
that 7 is faithful, and o "(y)sf " (y)* is dense in &f" for all y in G.
LEMMA 5.3. Adopt the hypothesis of theorem 5.1. Then
H(XY)=XH(Y), H(YX)=H(Y)X

forall X in d" and Y in A.
Proof. Condition (5.1) implies that

DX, Y)=¢(HX)*Y +X*H(Y)-H(X*Y))
is a non-negative sesquilinear form on /¢ for each state ¢ on . If X € /", then
X* XX*e " and (5.3) implies that

D(X* X*) =0.
As in lemma 4.3, we deduce
HX)Y+XH(Y)-H(XY)=0,
forall X in ", Y in &fF, and hence
H(XY)=XH(Y). O

LEMMA 5.4. Adopt the hypothesis of theorem 5.1, and let o be faithfully and
non-degenerately represented on a Hilbert space . Then there exists a closed, possibly
unbounded operator L(y) on ¥ such that

(5.5) A" (y)¥ =D(L(y)), and H(X)=L(v)X, forall X in A (y).

(5.6) L(v) is dissipative, i.e. Re(¢, L(y)¢) =0, for all £ D(L(v)).

(5.7) L(v) is affiliated with the abelian von Neumann algebra (47Y n(A")'.
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Proof. As in the proof of lemma 4.4, let E, be an approximate identity for &f of
the form
E.=Y APAT*,
where A € o7 (y), and each sum is finite. Define
L, =ZH(A§")A?*.

If X e £ (y), then by lemma 5.3:
LX =Y HADAT*X =Y H(ATAT*X)
=Y ATAT*H(X) = E.H(X),
and so lim, L, X = H(X) for X e " (y). Define Lo(y) on D(Lo(y)) =" (y)¥ by
Lo(y)é= liin L.£

where the limit exists by the above reasoning. Then Lo(y) is densely defined because
A" (y)€" (y)* contains an approximate identity for &. If X; e (y), n; €% and
£=Y Xm; then
2Re (€, Lo(y)é)=(& Lo(y)é) +(Lo(v)¢, &)
= Z {{(Xmi, Lo(y)Xm;) +{(Lo(y)Xmi, Xmj)}
L

= Z (i, {XTH (X)) + H (X:)* X }m;)

where we have used (5.1) and (5.3). Thus Ly(vy) is dissipative, hence closable, and
its closure L(y) is dissipative [7, lemma 3.1.14].
Next we show that L(vy) is affiliated with («7)". Let

D=A"(y)d* (y)*¥# =D (L(v)).
If X, Yesd (y), n €, then
L(y)(XY*n)=H(X)Y*n.

This last expression and the fact that of " (y)*s¢" (y) contains an approximate identity
for of shows that @ is a core for Lo(y), and so for L(y). As " (v)A (y)* < A, it
follows that @ is invariant under (7). If €€ 9 and X' e ("), then

L X'¢=X'L£
as L, e’ Since X'¢ € @, we may deduce
L(y)X'¢€ =X'L(y)§
and so L(y)X'2X'L(vy) since L(y) is closed with core 9. Thus L(y) is affiliated
with (£7)".
Finally we show that L(y) is affiliated with (/™)' (and hence with ™" ~of™"). If
Xed, Yed (y), ne ¥, then Y and X (Yn)e D(Lo(y)) and

Lo(y)X(Yn)=H(XY)n =XH(Y)n =XLo(y)(Yn),
and by taking closures, L(y)X 2 XL(y), for all X in " d
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Remark 5.5. Multiplication on the left with L(y) determines a (possibly unbounded)
multiplier on &f" and also on centre (£7), (but this does not seem useful unless
centre (&f") contains an approximate identity of &¢7). To see this, note that the ideal
A7 (v)sf" (v)* must contain the minimal dense ideal K (") of &, [26, 5.6]. If
f:10, )~ [0, )
is continuous with f(x) =0 for small x, and X = X *e /" then
fX) A ()AL (V) f(X)e K(AT)
and as L(y) commutes with f(X) it follows that K{«/") is a core for the operation
of left multiplication by L(v), on " (y)s{f" (y)*. As L(y) commutes with all elements
in 7 it follows that
XL(y)Y =L(y)XY forall X and YeK (7).
As

L) (X)L (7)™ (y)*f(X) = F(X)L(y)L™ ()€ (v)*f(X)
when f, X are as above, it follows easily that
Ly)KA)sK ().
By [4, 2.5], L(y) is an unbounded multiplier of &¢". Now it follows immediately
from [26, 5.6.1] that
K (centre(sf”)) < centre(K (&£7))

Then as centre K (&f") is contained in the domain of the multiplier defined by L(y),
and L(y) commutes with &¢’, it follows that

L(y)K (centre (7)) < K (centre(«"))
and hence L(y) defines an unbounded multiplier on K (centre(s/")).

LEMMA 5.6. Adopt the hypothesis of theorem 5.1. In any faithful non-degenerate
representation of s on a Hilbert space 3, the operator L(y) of lemma 5.4 has the
properties :

(5.8a) L(v) is the generator of a Co-semigroup exp (—tL(y)) on ¥.

(5.8b) exp (—tL(y)) is contained in centre M (") for all t = 0.

Proof. By lemma 5.4, L(y) is dissipative, and L(y) is affiliated with the abelian von
Neumann algebra of ""nsf ™', and so L(y) is the generator of a contraction semigroup
ind™ n™,[30],[31]. Toshow thatexp (—tL(y)) & < &, andexp (—tL(y)) " = A",
we will produce a dense set of analytic elements for the unbounded multiplier
defined by L(y) on . Let Ay,...,A, € (y), and f:[0, 00) [0, ) a bounded
continuous function such that for some ¢ >0, f(x) = 0 if x <e. We show that

a=1(% Aat) L aares

is analytic for the left multiplier defined by L(y). Let E. be the spectral projection
of Y[, A/A¥ corresponding to [g, ). As

L)( £ aar)=§ HAAT
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is a bounded operator and

it follows that L(y)E, is bounded, i.e.
IL(Y)E.| =K <co.
Now E. e 4™, and so L(y) and E. commute and hence
ILy)"E.||=K™,  for all m.

But
(£ Aar) =IflE.,
and so
”L(Y)MA”S"L('y)"‘f(i:ilAI_A;k) »% élA'A:k\
=IflK"| £ AAT|.

Thus A is entire analytic for the multiplier defined by L(vy).
Now &7, (and hence &), has an approximate identity consisting of elements of
the form

oy

where A7 e (y), and f, is a continuous positive function which is zero on an
interval [0, €, ), one on an interval [2¢,, ), for some ¢, > 0. Each E, is then entire
analytic for both the left and right multiplier defined by L(y). Thus if X e ", one
has:

© _L n
exp (-L(y)EX =( T ZET)

n=0

E)X ed’ (A)
and as exp (—tL(y)) is bounded and E,, is an approximate identity, one deduces
exp (—tL(y)X e .
Similarly
X exp (—tL(y))=1lim XE, exp (—tL(y)) e€”
i.e. exp (—tL(v)) is a multiplier of /", Finally as L(y) is affiliated with o™, we

have exp (—tL(y))€ o™ and as & is dense in M (£7) in the strict topology, it follows
that

exp (—tL(y)) € centre(M(A")). O
LEMMA 5.7. Adopt the hypothesis of theorem 5.1. For each t =0, the function
ye G- exp (—tL(y))ecentre(M (£7))
is positive definite.
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Proof. As all the L(y)’s are affiliated with /""", the L(y) can be thought of
as functions in a common spectral representation. We first show that L is negative
definite in the sense that the n X n matrix

[L(y;—v:)—L(y;)—L(y:)*]
is negative for all y; - - - y, € G, and all n =1, [5, definition 7.1].
If X;esd (y;)fori=1,...,n, then by (5.1)

[H(X7X)—HX)*X; - X H(X))]=0

[L(y; =) XX, ~ X FL(v)*X; - X FL(y) X;1=0.
By lemma 5.6, exp (—tL(y)) € centre M ({7), and so exp (—tL(y)) € centre M (sf) by

the hypotheses of theorem 5.1. Thus exp (—tL(y)) commutes with X} for i =
1,...,n, and so L(y) commutes strongly with X ¥ for all v, i.e.

L(y;— 7’:’)X>‘k QX?kL(‘Yi —¥i).
Thus
[XEL(y; =) X; = X FL(v:)*X; ~ X FL(v,)X;]1=0.
Using the same matrix tricks as in the proof of lemma 4.5, we now deduce
[(£xtxt) @ =y~ Low* - Lo (T X1x*) | =0
for all finite sequences X Led "(v;), and the matrix operator has finite norm if
YXIX{*eK(«(™) foralli.
k
Letting ¥, X {X* run through an approximate identity we deduce
[L(yj=v)—L(y)*-L(y)]=0,

i.e. L is negative definite. As L(0) =0, it follows from Schoenberg’s Theorem that
exp (—tL(")) is positive definite for all ¢ =0, [5, theorem 7.8].

End of proof of theorem 5.1. By lemmas 5.7 and 3.1, there exists for each t =0, a
centre(M (&£ "))-valued probability measure u, on G such that

exp (L (y) =y, N = | (@) 0
By § 3, there exists a family {S,: t = 0} of completely positive maps on o defined by
500 = [ duferre)X),  Xed.
For X € " (y), we have
5:%)= [ i)y, )X =exp (LX),

Thus ¢ - S, is a semigroup on &fr, and since each S, is a contraction it follows by
continuity that ¢ > S, is a semigroup on &. That § is strongly continuous follows
from eq. (A).
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Furthermore, if X e 7 (y), £ € %, then X¢ € D(L(v)) and hence
S/(X)¢ - XE =exp (—tL(y))XE - X¢

- j ds exp (—sL(y))L(y)XE.

But L(y)X =H(X)esf (y), and s > exp (-sL(y))H (X)) is continuous. Hence X
lies in the domain D (H) of the generator of S, and

H(X)= lim %(S,(X) -X)=H(X).

Thus H I-?, and H is closable. Since &/ is invariant under S, it forms a core for
H [17, corollary 3.17], and so H is the closure of H. This completes the proof of
theorem 5.1. ad

COROLLARY 5.8. Let G be a compact abelian group and T a faithful action of G
on a C*-algebra . Assume either

(5.9) A’ is simple
or

(5.10) There exists a faithful representation o of A" such that w(4")" is a factor,
if m is the Stinespring representation of wq° P.
Let H:D(H)< of - oA be a densely defined closed *-linear map. Then the following
four conditions (5.11)-(5.14) are equivalent:

(5.11) (a) gr=D(H), Aris a core for H, and

[HXFXP]=[H(X)*X; + X (X))]

for all finite sequences X1, ..., X, in AF;
(b) Hr(g)=1(g)H forallgin G,
(¢ HX)=0 forall X in oA".
(5.12) ofr = D(H), Aris a core for H, and there exists a negative definite function
A from G into C such that A(0)=0 and H(X) =A(y)X for all X in A" (y), v in G.
(5.13) H is the generator of a strongly continuous semigroup on A such that
(a) exp (—tH) is completely positive for each t = 0;
(b) 7(g) exp (—tH)=exp (—tH)7(g), forallt=0, gin G;
(©) exp(—tH)(X) =X, forallt=0,Xin A"
(5.14) There exists a convolution semigroup {i.: t =0} of probability measures on
G such that H is the generator of the strongly continuous semigroup S given by

S.(X)= L din(g)7(2)(X)

fort=0,XinA.
Furthermore, if G is the d-dimensional torus T¢ and {8/0t}-, are the generators of
the actions of the canonical one-parameter subgroups of T% on s, then conditions
(5.11)-(5.14) are also equivalent to

(5.15) e < D(H), oAF is a core for H, and there is a triple (b,a, ) where
b=(by,...,ba)is a d-tuple of real numbers, a =[a;) is a real positive d X d matrix,
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and w is a non-negative bounded measure on
TNO} ={x = (x;): —7 <x; <, x #0},
such that

00-{ £ o2 -Sa ] 1 pat-em (5]

KS1oon G ok ot \{0} x|

where |x|? =3¢, xZ.

The triple in condition (5.15) is arbitrary within the constraints given there and is
uniquely determined by H.

Proof. Assume first that of" is simple so that as in corollary 4.6, & ()" (y)* is
dense for each y € G, and the centre of M (") is trivial. Thus theorem 5.1 applies,
the function Z of lemmas 4.4 and 4.5 must be scalar-valued as well as the measures
w.. This establishes (5.11)<(5.12)=(5.14). The equivalence of (5.14) with (5.13)
is a consequence of corollary 4.6. To show (5.14) =>(5.12), suppose the convolution
semigroup w, is given, so that by [5, theorem 8.3] there is an unique negative
definite function A on G such that

exp(~1A(y)) = f dui(g)y, g)-
Then
5 = [ du(g)y, X =exp (AKX for X et ().

If H is the generator of S it follows that X e D(H), and H(X)=A(y)X. Hence
Ar < D(H) and as &fF is S-invariant, it is a core for H, and so (5.12) holds.

To prove (5.12)¢>(5.15), we use the Lévy-Khinchin representation of a negative
definite function [5], [25]. If G is a compact abelian group, and A is a negative
definite function from G into C, then A has a unique representation

Ay)=c +i1(y>+q<y)+L\m du (&)1 +i6 (v, 8)— (v, 2))

where
(5.16) ¢ =0 is a constant.

(5.17) [ is an additive linear functional from G into R.
(5.18) g is a non-negative quadratic form on G, ie.
q(y1+v2) +q(y1—v2) =2[q(y1) +q{v2)], Y1, Y2€ G,
q(v)=0, yed.
(5.19) ¢ is a fixed (independent of u) function on G x G with the properties:
g > (v, g) is continuous, y > ¢ (v, g) is an additive character on G for each fixed
g€ G, and
If C is a finite subset of G, there is a neighbourhood N, around 0 in G such that
(v, g)=exp (ig (v, ),
forallyeC,geN..
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(5.20) u is a positive measure on G\{0} such that for all vy in G,
[ dutor1-Re g1 <,
G

and u is finite outside every neighbourhood of 0.
In the case G = T%, one has G = Z%, and if G is identified with Rd/(27rZ)d one has

d
<‘)’, g}=(n1, A (2. S I ,xd)=expi(kz nkxk),
=1

when —7 <x, =<m. (¢ is then not continuous nor antisymmetric in g but these
properties are not essential for the Lévy-Khinchin representation, only the
asymptotic properties of ¢ for g near 0, and the fact that (-, g) is an additive
character are essential.) Thus an arbitrary negative definitive function on T¢=2z
has the form

Ay)=A(ny, ..., ng)
d d

=c+i Z bknk+ z a;nin;
k=1 ihj=1

d d
+I du,(x)[1+i Y nex, —exp [i y nkxk}],
T4\{0} k=1 i=1
where ¢ =0,b=(by,...,bs)eR%, a= [a;] is a positive matrix in My(R), and i is a

positive measure on G\{0} such that y is finite outside every neighbourhood of 0,

and
2

0 >j du(x)[1-Re(y, g)]= 'f du (x)[%(z n,-x,-)) + higher order terms].
G G
Thus replacing du (x) by du (x)/||x|* we may write

d d
Aly)=c+i Y b+ Y aynin;
k=1

Lj=1
d d
+j dﬂ(’;)[1+i Y nxe —exp {i Yy nkxk}]
T4\{0} [l k=1 k=1

where the condition on u is now that it is a finite positive measure.
IfXed (v)=A"(ny,...,nq) we have:

d .
—1(g)X =inr(g)X.
o0l

Thus
Hr(g)(X)=A(y)r(g)X

d 0 d d
={c+ 2 bi—— ag——
{ kz=:1 katk i,i2=;1 lat,- ot;

* J’T“\(ox dlll:h);) [1 * kzi‘l xki— xp (k‘; x"gf_k)] } T(g)(X).

Finally, the condition H|f” =0 means A (0)=0, and this is equivalent to ¢ =0 in
the Lévy—Khinchin representation for A. This establishes the equivalence of (5.12)
with (5.15).

2
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In the case that there exists a faithful representation 7 of &” such that 7 («")"
is a factor, where 7 is the Stinespring representation associated to ¢ ° P, corollary
5.8 is proved from a von Neumann version of theorem 5.1, using the same techniques
as in proving corollary 4.10 from corollary 4.8. This von Neumann version is:

Remark 5.9. Let G be a compact abelian group, and 7 an action of G on a von
Neumann algebra 4 such that #" is a factor. Let

H:DH)cHM->M
be a o-weakly densely defined, o-weakly-o-weakly closed operator. Then the
conditions (5.11)—(5.15) of corollary 5.8, with the obvious modifications, are again

equivalent.
The modifications in the proof are the same as in the proof of corollary 4.8. 0

By using the concepts introduced prior to theorem 5.1 in [9] and the general
Lévy-Khinchin formula one can formulate an analogue of condition 5 for a general
compact abelian group G. We omit the details.

REMARK 5.10. Let &f be a C*-algebra on a Hilbert space 9. It is known [11] that
if H is the bounded generator of a norm continuous semigroup of completely
positive maps on &/, then

H=-K+L(-)+(-)L*,
where K is completely positive from & into ", and L € «". Equivalently, there
exists L € &f”, such that
X »>exp (—tH)(X)—exp (—tL)(X) exp (—tL¥)

is completely positive from & into &f”, for all ¢ = 0.

Now suppose 7 is an action of a compact (abelian) group G on a C*-algebra &,
and let S, be a Cy-semigroup on & such that

(5.21) S, is completely positive for each t =0;

(5.22) Sir(g)=7(g)S, forall g in G, t=0;

(5.23) $;:(X)=X forall X in &7, t=0.
Let 7, be a faithful representation of .«¢/" on a Hilbert space %, and (m, #, V) the
Stinespring decomposition of 7 ° P, where P: & -« is the canonical projection.
By the proof of proposition 4.12, there is a contraction W, on # given by

W (X)V == (S(X)V, Xed t=0,
and there is a unitary representation U of G on 3 given by
Ug)mr(X)V =m(r()(X)V

such that (s, U) is T-covariant. Then 7 extends to an action 7 of G on # = 7 ()",
and the projection P extends to .# through the formula

ﬁ=j dg 7(g).

This formula shows that P is a faithful positive map with range #™ = m(s{")". The
representation 7, of &¢” is unitarily equivalent to the restriction of 7 to «” on V¥,
using the isometry V between % and V. It follows that the identity representation
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of # on ¥ identifies with the Stinespring representation associated to 7 ° P, where
#o is the extension of m to 4, defined by the above unitary equivalence. But P
is faithful and so V¥ is separating for ., and hence cyclic for .#'. Then
7S X)V=Wm(X)V
implies that §7 maps the normal states in the representation 7 into normal states,
and so 8, extends by o-weak continuity to §. on J, such that
(5.24) S, is completely positive for each t = 0;
(5.25) #(g)S, =S#(g) forallgin G,t=0;
(5.26) PS,=P  forall t=0.
Moreover
WXV =8(X)V, Xed,t=0,
and by proposition 4.12 it follows that
XeM->S(X)—-WXWF
is completely positive. In particular the map
Xed->m(S(X)—Wa(X)W¥
is completely positive. Let L denote the generator of the Co-semigroup, W, so

that L* is the generator of the Cy-semigroup W*. If x e D(H), we may define a
bilinear form K (X) on D(L*)x D(L*) by

1
(6 K (X)) =Tim (&, {m($.(X)) ~ War (X)W ¥ }n)

=— (& 7 (H (X)) +{L*¢, 7(X)n) + (£ m(X)L*n).
So, suppressing the symbol 7,

HX)=-K(X)+LX +XL*
as bilinear forms, and K is a completely positive map from D (H) into unbounded
bilinear forms in an obvious manner.

In many cases, the above form identity makes sense as an operator identity on
a dense subspace of #. Assume for example that & is unital,
AT (V)L (y)* =",
for each vy in G, and ¢ < D(H). Then since &/" is unital, the multipliers L(y) in
the proof of theorem 5.1 must be bounded. If X € of"(vy), then
exp tL)m(X)V =m exp (tL(v))X)V,

and so
Ho=m(A (y)VH <D(L),

and
LX)V =m(L(y)X)V.
Hence L, L* map ¥, into itself and
HX)=-K(X)+LX +XL*
makes sense as an operator identity on 3, when X € off.

That K (X') really can be unbounded is illustrated by the following example: let
G =T, o = C(T), 7 be translation, and H = —d*/dx? the generator of the diffusion
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semigroup. Then &f” =C, and & has a unique G-invariant state given by Haar
measure on T. If 7 is the one-dimensional representation of &f”, then # =L*(T),
and if ¢ € L?,
Ly=—y"=L*y.
If feC*(T), fe D(H) and Hf = —f". If $ € C*(T) then y e D(L¥), feD(L) and
(Lf +fL¥W = ~f"0 =2f 0’ = 214"
Thus
K (g ==-2fy' -2fy",

which shows that K (f) is unbounded for any f # 0. That Kf is positive for positive
[, follows from the general theory outlined above, and also from:

W, K (f)p)=2 j £l 0P dx.

6. Examples

Example 6.1. If G =T, o is the CAR algebra and 7 is the gauge action, then if
w is a Powers’ state, m,,(&f")" is a factor and corollary 5.8 applies.

Example 6.2. If G=T,o =0,, and r is the gauge action, then &/ is UHF, hence
simple [12], and so corollary 5.8 applies.

Example 6.3. If G=T", o/ =0, and 7 is the gauge action, then &" is isomorphic
to the fixed point algebra of ® M, under the canonical action of T"~* (c.f. example
6.1 for n =2). Then by the natural extension of ‘Powers’ states’ (indexed by the
interior of the n-simplex instead of (0, 1)), from ® M, to @,, we can easily find a
state w of 0, such that 7,,(sf")" is a factor. Thus corollary 5.8 applies.
Example 6.4. We analyze in detail ergodic actions of G =7Z,%XZ, on a simple
C*-algebra of. This example will show that one-parameter semigroups of positive
maps, commuting with an ergodic compact abelian action, are not necessarily
completely positive.

Up to isomorphism, there is only one action of the stated type: o/ =M, and if
g1, g2 are the canonical generators of G, define

1 0] [O 1]
= A = A .
m(g)=Ad [o _pfr TE=AAL
The dual group G is isomorphic to G, and generated by the two characters v, y»,
given by
(v g)=(-1)".

Put vo=0, y3=vy1+7v2. The spectral subspaces &/ (y) are one dimensional, and
spanned by the unitaries U (y) given by

S (R A

vow=[] . ve=[_] ;]

—
<
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If exp (—tH) is a semigroup commuting with 7, the generator H must map the
spectral subspaces into themselves, i.e., there exist constants A, such that

HU(‘Y,.)=A"IJ'(‘Y"), for n =O, 1,2,3.
The action of exp (—tH ) is then given by

exp(—tH)[z 3]
TN e la @ T i)
+(b+c)[exp(()_A2t) e"p(;“’)]+(b—c)[_exp?_A3t) (RO,

To check when exp (—tH) is positivity preserving, it is enough to check when
exp (—tH)E = 0 for one-dimensional projections E, i.e. it is enough to verify that

Tr (exp (—tH) [; ];/12]) =0, Det (exp (—tH) [; IJF]) =0

for all y € C, t>0. This gives the result that exp (—tH) is positivity preserving if
andonly if A;eR, fori=0,1, 2,3 and
Ai = Ao, i=1,2,3.
Next we determine when exp (—tH ) is completely positive. By [19], [24] this is the
case if and only if H has the form
—~-H(A)=K(A)-LA—-AL*, AeM,,

where K is completely positive, L € M,. If H is r-invariant, we may, by applying
a mean, assume that K and L are r-invariant, and so L is a scalar. If we normalize
H so that H(1) =0, we have

-H(A)=K(A)-K(1)A, where K (1)e R1.

As K is completely positive, it has the form
3

K(A)= Y aoic,

i,j=0
where oo =1, 0y, 02, 3 are the Dirac matrices, and [«;] is a positive matrix. As K
commutes with G, it actually has the form
K(A)=Y awv:Aa;
ie.
3 3
~H(A)= ¥ agdoi—( ¥ a)a.
i=1 i=1
Now H (o) =A; fori =1, 2, 3. This leads to the relations
2a,»=Z)t,~—)‘,- forj=l,2,3,

i#j
and the summation index i runs through 1, 2, 3. As exp (—tH ) is completely positive
if and only if a; =0 for j=1,2,3, this leads to the result that exp (—tH) is a
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completely positive semigroup if and only if

Z A,’ZA]', forf=1, 2, 3.

i#f
(Here Ao =0as H (1) = 0). Thus the set of completely positive semigroups commuting
with G is a proper subset of the positive semigroups commuting with G in this
case. See [19] for a related result.

7. Final remarks
We expect that results similar to those in this paper should be true also for
non-abelian compact groups G, but in this setting the requirement

S7(g)=1(g)$
is too strong. It has been suggested to us by M. Takesaki that the two conditions
St(g)=7(g)S and S|4-=id

could possibly be replaced by the single condition that each G-invariant closed
subspace of & is S-invariant, see [1, appendix C]. However, the results do not
extend to non-compact G because the action of such groups does not in general
have the correct smoothness properties. One simple example is G = R acting as an
ergodic Kronecker flow on C(T?), where T? is the 2-torus. Then any element in
T? defines a completely positive map S by transposition of the corresponding left
translation on T2, and this map § satisfies the requirements (4.1) in theorem 4.2.
However, S will only satisfy (4.2) if the element in T? lies in the R-orbit through
0. Thus non-compact G would require more hypotheses on S.

We are indebted to George A. Elliott for several enlightening remarks.
O. Bratteli was a Science and Engineering Research Council Senior Visiting
Fellow during this research.
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