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Abstract An analytical framework is developed for passing to the homogenisa-
tion limit in (not necessarily convex) variational problems for composites whose
material properties oscillate with a small period € and that exhibit high contrast of
order £~ ! between the constitutive, “stress-strain”, response on different parts of
the period cell. The approach of this article is based on the concept of “two-scale
I'-convergence”, which is a kind of “hybrid” of the classical I"-convergence (De
Giorgi, E., Franzoni, T.: Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (8)
58, 842-850, 1975) and the more recent two-scale convergence (Nguetseng, G.:
SIAM J. Math. Anal. 20, 608-623, 1989). The present study focuses on a basic
high-contrast model, where “soft” inclusions are embedded in a “stiff” matrix. It
is shown that the standard I"-convergence in the L”-space fails to yield the correct
limit problem as € — 0, due to the underlying lack of LP-compactness for min-
imising sequences. Using an appropriate two-scale compactness statement as an
alternative starting point, the two-scale I'-limit of the original family of function-
als is determined, via a combination of techniques from classical homogenisation,
the theory of quasiconvex functions and multiscale analysis. Then related result
can be thought of as a “non-classical” two-scale extension of the well-known the-
orem by S. Miiller (Arch. Rational Mech. Anal. 99, 189-212, 1987).

Keywords homogenisation - calculus of variations - high-contrast composites -
I'-convergence - two-scale convergence

M. Cherdantsev

Cardiff University

Tel.: +44-2920-875549

Fax: +44-2920-874199

E-mail: CherdantsevM @cf.ac.uk

K. D. Cherednichenko

Cardiff University

Tel.: +44-2920-875540

Fax: +44-2920-874199

E-mail: CherednichenkoKD @cf.ac.uk



2 M. Cherdantsev, K. D. Cherednichenko

1 Introduction

Recent years have seen a number of advances in the development of various an-
alytical techniques aimed at tackling multi-scale problems where the “classical”
homogenisation theorems fail to hold. One prominent example of a problem of this
sort is the linear periodic second-order elliptic partial differential equation (PDE)
with high-contrast in the coefficients, which was considered by Zhikov [37], see
also [6]. Suppose that the period € and the “contrast” § ~! are scaled so that § ~ &2
as € — 0. A remarkable feature of the behaviour of the families of equations of
this kind is that the two-scale character of the solution persists “in the very limit”
as € — 0. Roughly speaking, in the classical two-scale expansion (see e.g. [4], [3])

e ~ ud (x) + ul (x,x/€) + €%uS (x,x/€) + ..., (1)

where for simplicity we disregard the effects near the boundary', all the terms
become of the same order as € — 0 (and hence & — 0 as well). This leads to the
suggestion that in the expansion (1) g can no longer be assumed independent of
the “fast variable” x/€ and must be expected to capture the leading-order oscilla-
tions on the scale of the small period of size €.

The presence of the small-scale resonances in a system of this type can be
quantified by proving that the spectrum of the associated operator converges in
the sense of Hausdorff to the spectrum of a coupled “two-scale” limiting prob-
lem with respect to both the “slow” and “fast” variables. Further, the spectrum of
this limiting problem is shown to have an infinite set of “band gaps”, or intervals
of frequencies at which wave propagation through the material sample is not al-
lowed. This fact, which at a non-rigorous level had for some years been known
to physicists, has caused an explosion of interest in the applied mathematics com-
munity towards “non-classical” materials, or “metamaterials”, and continues to be
actively explored, both theoretically and experimentally. Among popular applica-
tions of the distinctive properties of such “metamaterials” is the design of photonic
(electromagnetic) and phononic (elastic) band-gap devices, which are capable of
transmitting the corresponding kind of energy at large distances with significantly
reduced losses compared to the usual transmission devices. Another recent trend
is to exploit such materials for purposes of “invisibility”, or “cloaking”, of nearby
objects, see [33], [22], [28].

From the mathematical perspective, the majority of the above developments
has been set in the context of linear PDEs, which is traditionally the first class
of equations to be explored. In many physics applications (such as the electro-
magnetics) the linear theory suffices, in some others (such as the high-frequency
acoustics) it offers a good approximation to the behaviour of realistic objects. In
the present article, however, we aim at the applied contexts that are inherently non-
linear, such as that of finite elasticity. It is well known that not only the linearised
equations of elasticity but also any “elastic” models emerging from variational
integrals with a convex stored-energy function fail to satisfy the principle of ma-
terial frame indifference and hence have to be discarded for purposes of rigorous
analysis.

' One way of making rigorous analysis possible in this setting is to consider a problem on a
fixed-size torus, or “supercell” as numerical analysts would call it
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Most of the methods of classical homogenisation — two-scale asymptotic ex-
pansions [4], [3], Tartar’s “energy method” [31], [19], the method of two-scale
convergence ([1], [26]), I'-convergence ([18], [8], [19]) etc.) — have been ex-
tended to treat a large class of nonlinear problems satisfying a number of tech-
nical constitutive assumptions, which have normally included some sort of “non-
degeneracy” condition and have thus led to “classical” homogenised limits, i.e.
those where the fast, “micro-scale”, variable (represented by x/€ in (1) above) is
not explicitly present. The lack of a coupling effect between the macroscopic and
microscopic length-scales in the limit as € — 0 seems to be inextricably linked to
the fact that the kind of compactness argument that underpins the mathematical
analysis in each of these contexts involves only functions of the macroscopic vari-
able x. For instance, in the context of the two-scale convergence (see i.e. [1], [37])
it can be shown that if an L”-bounded sequence ue = ug(x) weakly two-scale con-
verges to a function u(x,y) of the slow x and the fast y variables and their gradients
Vug are also LP-bounded then the limit function u is in fact independent of y and
the two-scale limit (after passing to a subsequence if necessary) of the gradients
Vu, differs from Vu by the y-gradient of some two-scale function. Similarly, in
the context of the classical I'-convergence one usually deals with W !”-bounded
sequences (more generally, W*”-bounded (k > 1) if one thinks of a higher-order
problem) of “almost minimisers”, which are compactly embedded into L”.

It is possible, however, to envisage practically motivated nonlinear settings
where the stored-energy function is no longer non-degenerate, meaning that dis-
placement fields whose gradient is “large” on a significant part of the material are
compatible with the requirement that the total energy be finite, and can hence be
viable candidates as “almost minimisers”. The context of homogenisation seems
to be a perfect environment for exploring such “nonlinear metamaterials”: on the
one hand, it is a promoted view at the moment that realistic stored-energy func-
tions (and in general, any models) of continuous media are those that are obtained
by some sort of averaging (or “homogenisation”, “coarse graining”) procedure
from a model at a finer length-scale. On the other hand, the idea of introducing
into the equations a high-contrast that is appropriately scaled with the microscopic
size, has been a successful one in a number of physically relevant contexts men-
tioned above. In order to make the two-scale homogenisation work, one then first
of all clearly needs a kind of “two-scale compactness” principle such as that em-
ployed in linear high-contrast problems. This is typically based on the observation
that if an LP-bounded sequence of functions u, weakly two-scale converges to a
function u(x,y) (cf. the above “classical” compactness example), and the sequence
of “non-classical” scaled gradients €Vu is LP-bounded, then the function u(x,y)
is in fact weakly differentiable in y and, up to selecting a subsequence, the scaled
gradients €Vu, two-scale converge to the y-gradient of u. The subsequent passage
to the limit can then be performed in the weak formulation of the problem using
e.g. the definition of the two-scale convergence, see for example a recent work
[41] treating monotonic nonlinear high-contrast problems (i.e. problems whose
stored-energy function has monotonic gradient). This procedure of passage to the
limit, however, is bound to have an ad hoc character in general, since in most
genuinely nonlinear contexts different weakly two-scale convergent subsequences
will have different limits that a priori do not satisfy the same limiting equation.
One of the key difficulties in the related analysis is to demonstrate that the weak
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two-scale limit of the “fluxes” (i.e. the values of the gradient of the stored-energy
function on the solution gradient) is the flux of the weak two-scale limit of the
original sequences, which in the classical context is a key element of the compen-
sated compactness principle of Murat and Tartar ([25], [31]), see also [40], [38],
[11] for recent discussions of the related issues in various PDE contexts.

Following this unoptimistic observation, one is led to review the averaging
tools mentioned above and notice that the abstract I'-convergence approach, be-
ing an “ansatz-free” method, does not suffer from the lack of a compensated com-
pactness argument. In its standard form, see [8], it does require the usual LP-
compactness principle but it seems to be extendible, however, to situations where
a kind of non-classical “two-scale compactness” holds instead, as outlined above.
It is the aim of the present work to provide such an extension. More precisely, con-
sider a bounded domain (i.e. a connected open set) 2 C R", n > 2, the “unit cell”
Y :=[0,1)", and a Y-periodic domain E; C R". Let € > 0, denote by Ef = €E;
the “e-contraction” of Ey, and set Eg := R\ E|, E§ = €Ey (see the next section for
the precise definition of these sets). We study “high-contrast” variational integrals
of the form

19) = [ (W1 (V0 2 3) -+ Wo (€V00) 5 () — Fl0) ) e, (2)

defined on weakly differentiable vector functions u from the space [L? (Q)]", m >
2. Here the functions Wy, W, represent the constitutive response of the material in
question and f € [L9(Q)]™ is the density of the body force, p~! +¢~ ' =1, f-uis
understood as the usual scalar product of vectors f and u. We shall show that under
some technical growth and continuity assumptions on the stored-energy functions
Wi(e), i = 0,1, the functionals I converge as € — 0 in an appropriately defined
sense of “strong two-scale I"-convergence” to the functional (cf. (46))

WW@—L(PmWMmW+Ap%Wwwwﬂwﬁwﬂww>m
3)

defined on a certain “two-scale” space of functions u(x,y). Here Wf'°™ is the clas-
sical homogenised stored-energy function (see e.g. [19]) for the “perforated” ma-
terial with the stored-energy function W occupying the domains Q NEY and QWy
is the quasiconvex envelope (see e.g. [17]) of the function Wj. This is the main
result of the paper, which we formulate in Theorems 24 and 26.

Remark 1 The functionals (2) can be considered in conjunction with various bound-
ary conditions on the function u. In what follows, we carry out our analysis for
the case of “Neumann”, or “traction-free” equilibrium configurations, where no
boundary conditions on d€ are additionally specified in (2), thus implying the
widest possible underlying function space. This kind of setting is often referred
to as the “analysis of arbitrary sequences”. It may be pointed out however, that
most of other common boundary conditions are also accounted for via a standard
procedure (see e.g. [8]).

Further details of the problem we investigate are given in Section 2 of the
present work. Before proceeding to the two-scale analysis of the functionals (2),
in Section 3 we recall the standard definitions of I'-convergence for sequences of
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functionals defined on L” () and two-scale convergence of function sequences in
L?(£). We also provide a version of the “continuous extension lemma in Sobolev
spaces on perforated domains, which we use in the subsequent analysis. In Sec-
tion 4 we demonstrate via a simple example that the usual I"-convergence does not
suffice to obtain a proper variational limit of the functionals (2), and in Section 5
we introduce the notion of two-scale I"-convergence, which later on is shown to
yield the correct (two-scale) limit functional. Sections 6, 7, 8 contain the main
technical component of the work, where we prove a statement (Theorem 24) re-
garding the two-scale I'-convergence of the sequence (2) as € — 0 to a functional
1™ In Sections 9 and 10 we prove the existence of a minimiser for /"™ and the
convergence of the infima of the functionals (2) to the minimum of /™™, Finally,
Section 11 contains a discussion of the relationship between our results and other
topics in applied analysis and of future extensions of our approach.

In conclusion to this introductory section we ought to point out that the tech-
nique we present here can be compared against that of the work [9]. The latter
considers sequences of high-contrast functionals that are different from (2) in the
way the contrast enters the stored-energy function. This difference between the
two modelling approaches leads in the case of [9] to somewhat more restricted
homogenisation theorems involving limit functionals with respect to the slow vari-
able x only, compared to our results, which provide a “full” two-scale limit (3).

2 Problem setup

We make the following assumptions regarding the functionals (2). The stored-

energy functions Wi and Wy are continuous and satisfy standard growth condi-

tions?:

a(—c+lef”) <Wi(e) < B(1+]ef”),

a(—c+ [e?) < WE(e) < B(1+]e]?). @

We assume throughout the paper that f > o >0, ¢ > 0, p > 1. (More generally, we
will henceforth say that W (e) satisfies the standard growth conditions if a(—c +
le|P) <W(e) < B(1+|e|?), where the exponent p is the same as in (4).) Functions
W are assumed to converge pointwise to some continuous Wy as € — 0,
W5 (e) = Wo(e) 4)

for all e as € — 0. In addition W;; must satisfy the following regularity property,

W (e1) = Wg (e2)] < B(1+er]™! + e )|er e ©)
for all ey, ey, which, if W is smooth, is equivalent to

VWG (o) < C(1+ 1),

Obviously, due to the convergence (5), Wy possesses the same regularity property:

(Wole1) —Wolez)| < B(1+]er|”~" +e2]”1)|er — e (7
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Fig. 1 Periodic composite.

Let ©Q be a bounded domain in R"?, n > 2, with a Lipschitz boundary. Let
Y :=[0,1)" be a reference cell, ¥, be a Lipschitz domain such that Y C (0,1)",
and Y; :=Y\Y. Denote by Ey a Y-periodic set gczn (Yo + k) and E; := R"\E).
We describe the “soft” component E§ of an elastic composite as the union of all
small sets €(Yy+z), z € Z", such that (Y 4+ z) N (R"\Q) = @. Further, the “stiff”
component is defined as Ef = Q\E,. Denote by x¢(x) the characteristic functions
of the sets Ef, i = 1,2. We will study the asymptotic properties of the following
high-contrast sequence of integral functionals (cf. (2)):

I (u) = /Q (W1 (Fu)) 25 () + W (V) 65 () i ®)

Notice that we can drop the body force term — [, u(x) - f(x)dx in (2), due to the
obvious additivity property of I '-convergence with respect to the linear terms.

It is clear from the form of the functionals I* that as € — 0, on the set E§
much larger values of the gradient Vu are allowed than on E}. If we speak about
elasticity (n x m = 3 x 3) this means that the elastic material in E§ is much softer
(allows larger deformations) than the material in Ef. Therefore we will use the
terms “soft component” and “stiff component” (the latter is often termed “matrix”’
in the literature on high-contrast problems) when referring to the sets E§ and EY
respectively.

We reserve the notation C for a generic positive constant independent of &,
whose specific value may change from one place to another within the paper or
even within a single sequence of relations. Throughout the paper we assume that
any function of two variables f(x,y) defined on  x Y is extended periodically
with respect to y into 2 x R”, so that the formal substitution y = x/& will make
sense for any x € Q.

By OW, we denote the quasiconvex envelope of Wy, see e.g. [17]. If V| >V,
then for their quasiconvex envelopes the inequality is preserved, QV; > QV,. Since

2 A slightly more general growth condition from below than putting, for example, |e|”, is
used in order to accommodate some natural physical requirements, such as frame indifference
and zero elastic energy density for a “rigid motion” regime (when one has to take ¢ > n), cf.
Remark 2 below.
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the functions o|e|?” and B(1+ |e|?) are quasiconvex and the quasiconvex envelope
of a quasiconvex function equals itself, the quasiconvex envelope QW) satisfies
the standard growth conditions.

Remark 2 There is a reason for taking a sequence W rather than a fixed Wy
for describing the soft component of the material. Two natural physical require-
ments for the stored-energy function is that it must be frame indifferent and at-
tain its minimum value at ¢ = Vu = I. However, in the case of a soft-component
stored-energy function Wy that is independent of € these requirements would im-
ply Wo(€R) = 0= minW, for any € > 0 and any rotation R, which is too restrictive,
while our setting can easily accommodate these assumptions. For instance, if W
is given by the formula

W (e) =W ((1- &)1+ VeTe),

which for the scaled gradient takes the form
WE(eVu) =W (1+g ( (Vu)TVu —1>> :

where W(e) is a continuous function satisfying the standard growth conditions
and attaining its minimum at e = I, W(I) = 0, then W7 (¢Vu) is frame indiffer-
ent (W; (eRVu) = W5 (¢Vu) for any rotation R) and attains its minimum value at

~

Vu =1, W§(el) = W(I) = 0. Note that for any sequence e, — e as € — 0 there is
convergence

W5 (ee) — w (I—i— V eTe> 9)

as € — 0, in particular, (5) is satisfied with Wy(e) = w (I +V eTe).

3 Preliminaries: I"(L?)-convergence, two-scale convergence and an extension
lemma

In what follows (see Section 4) we discuss the standard I" (L?)-convergence, see
[8], applied to the present high-contrast setting. Here we recall its definition and
its most important property implying convergence of the infima of I"-convergent
functionals to the minimum of their I'-limit and convergence of an infimising
sequence to a minimiser of the I'-limit. We also give a definition of two-scale
convergence and formulate an extension lemma, which we make use of in the
subsequent sections.

Definition 3 Let F; : LP(2) — R be a sequence of functionals and F.. : LP(2) —

R, where € R" is bounded and open, and R := R U +o0. We say that F; I"(L?)-
converges to F.,, and write I"(L?)-lim; F; = F., if for all u € L”(Q) we have

1. for every sequence u; — u in L”(Q) one has

Foo(u) <liminfFj(u;);
J
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2. there exists a sequence u; — u in LP(Q) such that

J

Remark 4 As is customary in the theory of I'-convergence, whenever there is a se-
quence of functionals F; parametrised by a “continuous” parameter € € (0, &), we
write I' (L?)-limg_,0 Fe = F) if for any sequence €; — 0 one has I" (L”)-lim Fe; =
Fy. .

The fundamental requirement for a proper variational convergence is that it
must provide the convergence of infima and infimising sequences for F; to the
minimum and a minimiser of the limiting functional F... The I"-convergence pro-
vides the desired goals given that an additional condition is fulfilled, namely, an
appropriate compactness property of infimising sequences. This observation is for-
mulated in the following statement, which is a simple consequence of the defini-
tion of I" (L?)-convergence.

Theorem 5 Let Fj be a sequence of functionals on LP () and suppose that there
exists a compact set K € LP(Q) such that infyp o) F; = infg F; for any j. Let
F. = F(Lp)-liijj then
d min F. =1lim inf Fj.
1r(Q) j L(Q)
Moreover, if u; — uw and lim; Fj(u;) = lim;inf;p o) Fj, then uw is a minimum
point for F.

The requirement of the existence of a compact K on which the infima for all j
are attained (“mild equicoercivity” condition in [8]) can be replaced by a weaker
one, namely that there exists a compact sequence u; such that liminf; Fj(u;) =
liminfj (il’lpr(Q) Fj) .

Next, we give the definition of two-scale convergence of functions. Using the
latter will simplify some of the reasoning below. Two-scale convergence will also
be essentially employed in the subsequent sections when dealing with two-scale
I'-convergence.

Definition 6 We say that a bounded in L”(£2) sequence v weakly two-scale con-

verges to a function v € LP(Q2 x Y), ve(x) 2 v(x,y), if

tim [ve(0p(p () = [ [v(e)p(0p() dyds
Q QY

for all ¢ € C5 () and all b € Cy;

per(Y) (wWhere Ce, (Y) is the set of Y-periodic
functions from C*(R")).

Definition 7 We say that a bounded in L?(Q) sequence u, strongly two-scale

converges to a function u € LP (2 X Y), ug(x) EN u(x,y), if

tim [ ue(@ve(x) dv = [ [utxyviey) dy s
Q0 QY

for all ve(x) KN v(x,y) from L7(Q) and LI(Q x Y) respectively.
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Two-scale convergence, unlike the usual L”-convergence, allows one to pre-
serve information about the behaviour of a sequence of functions at the &-scale
when passing to the limit. In this paper we will use some well-known properties
of two-scale convergence. The related statements as well as some deeper results
can be found e.g. in [37].

Finally, throughout the paper we make use of the following extension lemma

(cf [81%)

Lemma 8 There exists a linear continuous extension operator Ty : W'"P(E€) —
WP (Q) and a constant C > 0 such that

Teu=uinEy,

/ |Tgu|”dx§C/ lul? dx,
Q E¢

/ |V(Tgu)|f"dx§C/ IVul? dx,
o E¢

where the constants C does not depend on € or £2.

4 I'(L?)-compactness and its failure in high-contrast homogenisation

In the present section we discuss compactness of the sequence of high-contrast
functionals (8) in the sense of I"(L?)-convergence, providing an explicit formula
for the limit functional in a concrete but quite general case. At the end of the
section we will give a simple example illustrating that the lack of compactness
for infimising sequences leads to the failure of I'-convergence to provide a proper
variational limit for the related functionals.

It is well known that the I"-compactness result (i.e. existence of a I'-convergent
subsequence) holds for integral functionals of the form

Folu) = /Q Folx, Vu)d
with a positive stored-energy function f; satisfying the growth estimate
alel” < fe(x,e) < B(1+]e|”), (10)

see e.g. [8]. It can also be shown that the result holds* for functionals (8). We
formulate it in the following statement.

3 Lemma 8 provides somewhat stronger estimates than the extension result of [8], due to the
restrictions we impose on the geometry of the set E near the boundary of £, and is derived
directly from Lemma B.6 of [8].

4 By a slight variation of the proof of Proposition 12.2 in [8] one can see that the class (10)
can be widened to include f; that satisfy o (x)(—c+ |e|?) < fe(x,e) < Be(x)(1+ |e|?), where

positive functions o, Bz € L™ () are such that 1 < g—z < C pointwise.
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Theorem 9 Let I be given by (8). For every positive sequence € — 0 there exists
a subsequence &; and a measurable function @ > 0 such that

1) = /Q (Vi) dx = T(LP)- lim I% (u)

k—roo
forallu € W' (Q) and all open subsets U of 2.

Given an additional assumption on Wj it is even possible to write an explicit
formula for 19, as follows.

Theorem 10 Let Wy(e) in (5) be such that it attains its minimum at e = 0. Then

Io(u):r(L")-limIS(u):/lehom(vu)dxﬂgxYo\Wo(()), (11)

£—0
where
1
wiene = timine {3 [ Wiles Vo) g ew (0} 2
=00 " J(0,0)"NE;

Proof Notice that the “stiff part” of the I'-limit (11) is exactly the I'(L)-limit
for a non-high-contrast integral functional defined on the perforated domain E¥
(“connected media”, see [8, Part IV]),

() = /Q Wi (Vu(x)) 6 (x) .

Let us fix some u € W!?(Q) and consider an arbitrary sequence u; € W' (Q)
converging to u in L” (). There are two possibilities:

1. there exists C > 0 such that ||Vuex{|1r(0) + [|EVue x5 || 1r(@) < C for small
enough &;
2. up to a subsequence ||Vue X7 [|1r(@) + [[€Vue X5 |Lr (@) — < as € = 0;

Clearly, in the latter case (case 2) we have I¢(ug) — oo due to the standard growth
conditions. Let us consider the first possibility (case 1). For any € there exists an
extension i, of the function ue ¥} to the whole Q such that

[Vite|| (@) < ClIVuexillr @) (13)

where C does not depend on &, see Lemma 8. Then Vi, is bounded in L”(€Q).
Hence i, is weakly compact in W!”(Q) and strongly compact in L”(£2), and
there exists € W'?(Q) such that zz; — u in L”(£) up to a subsequence. By the
properties of two-scale convergence we have

eyt 5 w0 0),
uexf 2 u(x) ().

Since ug Xt = uexf by definition, we conclude that #(x) = u(x). Due to estimate
(13), eVue — 0 in LP(Q). This implies the convergence of the soft component
integral on ug:

lim/QW(f(sVﬁg(x))xgdx: 12 % Yo |Wo(0). (14)

£e—0
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Equality (14) follows from the dominated convergence theorem in view of the
standard growth conditions. Thus we have shown that for any sequence us — u© in
LP(Q) possessing the property 1 there exists a sequence #; — u in LP(Q) such
that, firstly,
liminf7® (i) < liminf1® (ue),
£—0 e—0
limsup /¢ (ug) < limsupZ®(ug),
£—0 e—0

and, secondly,

liminf/* (ig) = liminf If (iie) +|€2 x Yo|Wo (0).

£—0
limsup 7% (i) = limsup I (ig) + |2 x Yo|Wo(0).
£—0 £—0

This, using the definition of I'-convergence, implies that
[(LP)-1im I® = ['(LP)-lim I + | x Yo|Wy(0).
e—0 e—0
Combined with the known result (see e.g. [8]) on the I'(L”)-convergence of the

sequence /7 this yields
r(LP)-lim ¢ = I°.
=0

O

The I'-convergence itself without an appropriate compactness property of in-
fimising sequences does not imply the desired convergence of infima of I¢ to the
minimum of the I"(L”)-limit. We illustrate this observation in the following ex-
ample.

Example 11 Let Wi (e) = W (e) = |e|” and consider a one-dimensional minimi-
sation problem for the functional

1) = [ (0§ + 7 0l 1) de— [ pua
Q Q

where f € L(Q) (recall that p~' +¢~! = 1) is positive and Y = (1/4,3/4). Then
the I"(L?)-limit for /¢ is given by

) =[] [ 10w dx— [ fuds

Consider also the functional

io(u)=|Y1|/ |axuo\1’dx+/ / |8yv|pdydx—//fudydx,
Q JalJy oJy

acting on functions of the form u(x,y) = uo(x) + v(x,y), where uy € W'»(Q),
ve LP(Q,W,"(Y))®. Next we will show that

infI° < inf1°.

> By LP(Q, Wol’p (Yp)) we denote the space of functions defined on £ with values in WO1 ?(Yo)
equipped with the L”-norm.
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Since I°(u) = I°(ug) + G(v), where G(v) = [ fy, |9yv|P dydx — [ fy, fvdydx,
we only need to show that minG(v) < 0. Consider the following function w €
W, ? (o) extended by zero in ¥;:

1

w(y) = 4=

X — —

ik

:
Straightforward calculations show that for f > 0

[ 1B as—p | a(Bway=~cpr <o

where [3 -
(B)—<8p> ,
_ I=p
= 28py
Then

infG() < Gl f(W)w(y)) = ~C [ () dr <0,

since f(x) is positive by the assumption. Hence there exists a function u = ug(x) +
v(x,y) such that
I°(u) < infI°. (15)

In particular, this function can be chosen such that it is Carathéodory (that is mea-
surable with respect to x and continuous with respect to y) and v(x,y) is differen-
tiable in x.

Consider now the sequence ug(x) = up(x) + v(x,€'x). It follows from the
properties of the two-scale convergence, see e.g. [37] , that

U EN u,
[Oe|”f 2> |Suatol 21,
€7 (Qute P 1§ 2 |9,V xo-
This implies the convergence
I (ug) — I°(u)
as € — 0. Then from (15) it follows that
lim inf /% < inf1°. (16)

The above example® indicates that the appropriate type of variational conver-
gence in the high-contrast setting would have to be capable of accounting for rapid

6 Strictly speaking, the example does not satisfy the connectedness condition on the stiff
component Ef. However, its multi-dimensional analogue, whose construction is clearly similar
while somewhat more cumbersome, would comply with all the requirements of Sections 1 and
2 and would still lead to (16), i.e. to the failure of the usual I"(L?)-convergence to pick up the
behaviour of minimising sequences for I°.
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oscillations on the soft inclusions “in the very limit” as € — 0. At the same time,
we aim at making sure that the requirement of convergence of infima and of min-
imising sequences is satisfied. As was discussed in Section 3 in the L? () setting,
one way to ensure this is to ask for these sequences to be compact with respect to
the convergence in the underlying function space. It is well-known that the limit-
ing behaviour as € — 0 of sequences u, satisfying an a priori bound on €Vu, can
be characterised using the notion of two-scale convergence (see Definitions 6 and
7 and [39]). Hence, we extend the usual notion of I'-convergence to enable one
to handle such sequences within the new framework. The result of this extension
is the “two-scale I"-convergence”, which we introduce in the next section. Some
ideas in the direction of such an extension have appeared in the literature in other
contexts, see [21], [34], [35]. Our main objective is to describe the behaviour of
high-contrast functionals of the form (2), so we focus on those properties of the
two-scale I"-convergence that are relevant in our setting.

5 Two-scale I'-convergence

The definition of the two-scale I"-convergence (for which we use the shorthand
Is(LP)-convergence) is very similar to the definition of the standard I"-convergence
with the only difference that instead of using the L”-topology we use the two-scale
convergence of functions.

Definition 12 Let F¢ : LF(Q) — R be a sequence of functionals and Fy : L (£ x
Y) — R. We say that F; I's(L?)-converges to Fy and write Fy = I's(LP)-limg_,0 F¢
if for all u € LP(Q x Y) we have

1. for every sequence LP(Q) > ug 2 u one has

Fo(u) < liminf Fg (ug); (17)
e—0

. 2
2. there exists a sequence L”(Q) 3 ug — u such that

Fo(u) :gig(l)Fg(ug). (18)

One of the important properties of the usual I"-convergence is that the I"-limit
is lower semicontinuous with respect to the topology of the underlying function
(or, more generally, metric) space. The proof of this fact is simple and based
on use of the first property in the definition of I'-convergence and the method
of extraction of a diagonal subsequence, see e.g. [8, Chapter 7]. In the present
scope of the two-scale I"-convergence the limit functional also possesses the lower
semicontinuity property. However, the proof of this fact is not so obvious due
to the lack of metric properties for the two-scale convergence. When u; — u

in LP (L) one can measure “closeness” of ug to u by |[ue — ul|1p(q). If ue(x) N
u(x,y) and u is a Carathéodory function, then one can measure the closeness by
||ue (x) — u(x,s_lx)HLp(Q), but if u is not Carathéodory, i.e. u(x,e~'x) behaves
“badly”, then there is no obvious way of doing this. Next we address the problem
of extracting a diagonal sequence in the scope of two-scale convergence and prove
the lower semicontinuity of a two-scale I"-limit.
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Whereas the correct passage from the space of two variables to the space of
one variable by change y = x/¢€ requires some regularity properties of function and
not possible in general, the unfolding method (see e.g. [14]) allows the passage in
the opposite direction while preserving convergence properties. Below we give the
definition of the unfolding operator and its weak convergence property from [14].
We denote by [y] the integer part of the vector y (that is each component of [y]; is
the largest integer such that [y]; <y, thus y—[y] € Y).

Definition 13 For Lebesgue-measurable functions ¢ on €2, the unfolding opera-
tor 7 is defined as follows:

Te(9)(x,y) = @ (s [ﬂ +8y) for (x,y) € Q x V.

Proposition 14 Let we be a bounded sequence in LP(Q2). The following state-
ments are equivalent:

1. we iwEL”(Q xY),
2. Te(weg) =winLP(Q xY).

The above proposition immediately implies equivalence of the strong convergence
properties.

Proposition 15 A sequence we from LP(Q) strongly two-scale converges to w €
LP(Q XY), we Sw, if and only if Tg(we) = win LP(Q XY).

Proof Let we 2 w. Then we = w, [wellr(@) = IwllLr(@xy) by the properties of
the two-scale convergence, in particular w, is bounded in L”(£2). By Proposition
14

Te(we) =win LP(Q xY). (19)
Also, by properties of the unfolding operator [|[we||1p(@) = || Ze(We)||Lr (@ <) hence
we have the convergence of norms ||.J%(we)|lrr(@xy) — [WllLr(@xy)- Together
with weak convergence (19) the latter implies Jz(we) — w in LP(Q2 x Y). The
proof of the opposite statement is analogous. O

Remark 16 The above proposition ensures the metric properties of the strong two-

scale convergence. Namely, we % wifand only if limg 0 || 7z (We) =Wl 1r(@xy) =
0. Thus || ¢ (we) —w/|r( xy) indeed measures a “distance” between w, and w at
least to the extent to which a distance between elements of different spaces can be
measured.

Proposition 17 Ler u*(x,y) — u(x,y) in LP(Q x Y) and let for any k € N a se-
quence vk € LP(Q) be such that v (x) 3k (x,y) as € — 0. Let €, be some given
positive sequence. Then there exists a sequence & — 0, with the property &, < g,

and such that v'ék (x) N u(x,y).

Proof Proposition 15 makes the proof elementary. Let us apply the unfolding op-
erator to the sequences v&. We have .7 (v€) — u*(x,y) in L?(Q x Y) for any k. One
can extract a diagonal subsequence %k(vlgk) (with & — 0 and g < &) converging

to u in L”(Q x Y). Then by Proposition 15 we obtain v’ék (x) N u(x,y). O
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Theorem 18 Let Fy = Iis(L?)-limg_,o Fz. Then Fy is lower semicontinuous with
respect to the strong convergence in LP (Q X Y).
Proof Let u* — uin LP(Q x Y). By (18) for each k € N there exists a sequence

vE(x) e (x,y) such that limg_ Fz (V%) = Fy(uX). Let a sequence & be chosen
such that for every k
[Fe(ve) — Fo(ul) < 1/k (20)

as soon as € < 8,,2. By Proposition 17 there is a sequence &, & < 8]2, with the

property that v’gk 2 4. Then by (17) and (20) we have

Fo(u) < liminfFp, (vf ) = liminf Fy (u*).
k—soo k k—soo

O

The definition of Ij(L”)-convergence is quite general, it gives no information
even on the structure of the function space on which the limit functional is de-
fined (i.e. attains finite values). In order to understand this we need to consider a
sequence of functions with bounded energy and pass to the limit. Let a sequence
ug be bounded in LP () and be a bounded energy sequence for the sequence of
functionals I¢, i.e. such that I? (ug) < C. The standard growth conditions (4) imply
that

Vuexi o) + 1€VuexGllr(@) < C- 21
By the compactness property of two-scale convergence (see e.g. [39]7) we have
2
ug = u(x,y) € L”(Q,Wple’r”(Y)),
2
eVug = Vyu(x,y),

where Wple"f (Y) is the Sobolev space of functions periodic on Y. Clearly, the char-
acteristic function x{ (x) strongly two-scale converges to x;(y). Hence, by prop-
erties of two-scale convergence

2
%18’/{8 _\%1 (y)u(xvy), (22)
eX{Vie = 31(y)Vyu(x,y).

Then from || Ve 1r(q) — 0 (¢f. (21)) in follows that x1(y)Vyu(x,y) = 0, that
is u(x,y) does not depend on y when y € Yy,

2 ()ulx,y) = 21 (y)uo(x). (23)
This observation allows to represent the limit function in the form
u(x,y) = uo(x) +v(x,y),
where v(x,y) € LP(2,W, " (Yo)).

7 The corresponding statement in [39] is proven for the case L?. However, it remains valid for
the general L”, the related proof being identical.
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Next we show that uo(x) € W!»(Q). We denote an extension of ue by Lemma
8 by ug, let also v = uez — ue. Lemma 8 and (21) imply that the sequence u; is
bounded in W!7(Q), and, hence, converges to some iy € W!?(Q) strongly in
LP(Q) (at least up to a subsequence). By the properties of two-scale convergence
we have

~ 2 -
Xiue = Xite = X1 (y)to(x).
Comparing the latter to (22), (23) we conclude that ug = 1ig € W7 (Q).

We next split the functional /¢ in two terms corresponding to the stiff and soft
components,

() = IE + I = / Wi (Vi) g dx+ / WE (eVu) 28 dx, (24)
Q Q

and consider each term separately when passing to the limit as € — 0. Finding
the I{s(LP)-limit of the “stiff” component I{ is straightforward due to the fact
that its I;s(L?)-limit coincides with the I"(L”)-limit of the perforated media func-
tional studied in [8]. On the contrary, derivation of the I{s(L”)-limit of the “soft”
component I is non-trivial, it involves using properties of two-scale convergence,
periodic unfolding method, properties of quasiconvexity and multi-scale analysis.
The basic idea is that the argument €Vu, of IS can be written as eViug + €Vvg,
where the first term converges to zero in the L”-norm (cf. the discussion above), it

allows us to consider I§ on the family of sequences v, € WO1 P (EE) strongly two-

scale converging to elements of L? (€2, WO1 ?(Yp)). Then we will show that passing
to the limit on the stiff and soft components separately and then summing up the
limits yields the correct I'ts(LP)-limit for the full problem. In the next section we
implement the first step in the described strategy.

6 Two-scale I"-limit of the stiff component

Our focus in the present work is on extending the results of [37], [9], [41], in terms
of deriving two-scale limit problems (as € — 0) for a general class of high-contrast
integral functionals. An essential element of the related settings is the presence of
a main, “matrix”, material, whose properties retain the classical, non-contrast be-
haviour in all directions at each point of the ambient space. This implies, in partic-
ular, that, once a certain extension procedure is carried out, the passing to the limit
can be treated separately on the “matrix” (“stiff””) and on the “inclusions” (“soft”).
In the present section we determine the “stiff”” part of the two-scale limit, which
does not present any substantial technical challenges, apart from the need to jus-
tify the procedure of splitting the functional into the “stiff”” and “soft” components
(see Section 8).

We consider the stiff part of the functional, I7 = [, Wi (Vu)x{ dx, defined on
functions from W17 (E¥). Let a bounded in LP (Ef) sequence u, € WP (Ef) be a
bounded energy sequence for /7. Analogously to the above, one can show that its

extension iz by Lemma 8 converges to some u € W17 (Q) strongly in LP(Q) up
to a subsequence. At the same time, ug X7 = e X} EN u(x)x1(y). Thus the I'ts(LP)-

convergence of I{ is equivalent to its I"(L”)-convergence in the sense of [8], and
the following theorem ([24], [7]) is valid.
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Theorem 19 Let the stored-energy function Wy satisfy the conditions of Section
2. Then the two-scale I'-limit of the functional I is given by

15om (y) := (1P hmll / whem(v (25)
where
whom () = 11m1nf{ ! / Wi(e+Ve)dx: @€ Wol’p((O,t)")},
10 " Jo,0)mnE,

andu € WHr(Q).

7 Two-scale I"-limit of the soft component
7.1 Lower semi-continuity type result

In this section we will consider the “soft inclusions functional” (cf. (24))
— [ W eV o 26)
Ja

defined on functions from WO1 P(E§). We will need the following auxiliary lemma,
which is very similar to the one in [17] where it serves as a key step for the proof of
the lower semicontinuity property of quasiconvex functionals. (We use the nota-
tion “— " and “ — ” for weak and strong convergence in corresponding functional
spaces.)

Lemma 20 Let D,G € R" be cubes with edges parallel to the axes, e € R"™
and f(e) be quasiconvex in e and satisfy the standard growth condition. Let a
sequence zg = z¢(x,y) € LP(D,W'P(G)) be such that Vyze(x,y) — 0 and z¢ — 0
in LP(D X G). Then

liminf fle+Vyze)dydx > / f(e)dydx (27)
=0 JDxG DxG
Proof Let K be an integer and let Gy C G| C ... C Gg C G be cubes such that the
centres of Gy and G coincide for any k =0,1,...,K, and
1
Edist(Go, JdG)=R

k
diSt(Go, 8Gk) = ER’

for some R > 0. Let ¢ (y) € C*(G) be scalar cut-off functions:

1 ifye Gy,
0<@ <1, \V<Pk|<C*’ P(y) = {o 1f§eGk ]Gk>

with some C > 0 independent of K and R. Denote

k
Zg = Ze Q-
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Then z£ € L7 (D, Wol "(G)) and we can use quasiconvexity of f to obtain

/f(e)d)’dXS /f(e+Vyz]§)dydx

DXG DXG

< [ r@aas [ flervid)dvds

Dx(G—Gy) Dx(Gy—Gy-1)

+ / fle+Vyze)dydx.
DXGk_|

The last estimate immediately implies that
/ fle)dydx < / fle+Vyze)dydx + / fle+V,z)dydx. (28)
DXGk DxG DX(Gk—Gk_|)

We estimate the last term in (28) using the growth assumptions on f and the prop-
erties of ¢, as follows:

[ flervidbawsp [ (e VP dvds

Dx(Gy—Gy_1) Dx(Gr—Gy-1)
SCB [ (el 1Yy + Vi 9zl dyd
Dx(G—Gy—1)
<CB [ (el +Vyzel + (CK/RY o) dyd,
Dx(G—Gy-1)

Let us take a sum of inequalities (28) for k from 1 to K,

K
FOYIDXG <K [ fle+Vyze)dyds
k=1 DXG
+C / (14 [e” + |Vyzel? + (CK/R)P|z¢|”) dy .
DX(kaG())

Using the fact that zz — 0 in LP(D x G) yields

K .
£(e) Y |Dx Gy| < Kliminf / Fle+Vyze) dydx
=1 e—0

DxG (29)
+limsup C / (1+e|” 4 |Vyze|P) dydx,

=0
Dx(Gk—Gy)

where the second term on the right hand side is bounded uniformly in K, R. Hence
dividing (29) by K and letting K — oo and R — 0 we obtain (27). O
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In what follows we will prove the lower semicontinuity type inequality (17)
for the soft inclusions functional .

Lemma 21 Let ve be such that €Vve = Vyv(x,y) and ve N v(x,y), where ve €
W, P(EE) and v € LP(Q,W, " (Yp)). Then

timinf | W (eVve)z§ dv > / / OWo(Vyv) dyd,

where QW denotes the quasiconvex envelope of Wy, i.e. the supremum of all qua-
siconvex functions not exceeding Wj.

Proof In this proof we mainly follow [17], essentially employing, however, the
multi-scale analysis. First we use the unfolding operator .7, see Definition 13, in
order to pass to the space of two variables. As it was pointed out in Section 5, an
important property of 7 is that it preserves the convergence properties of function

sequences. Namely, let w, be bounded in LP(£), then wg (x) N w(x,y) if and only
if Z¢(we) — w(x,y) in LP(Q x Y) and analogously for the strong convergence.
T, transforms derivatives with respect to x into the derivatives with respect to y:

Te(£VW(x)) = V(7% () (x.3). ) )
Let us denote ve(x,y) = Z¢(ve). Then ve — v, Vyve — Vv, It is easy to see
by a direct calculation that

/ WE (£Vve) 28 dx = / / WE (V7 ) dydr.
Q aJy,
Since W (e) > QW (e), Ve, and hence,
[ wievvaxsax= [ | ows(vi)avax
Q e Jy

it suffices to show the lower semicontinuity property for the two-scale integral of
a quasiconvex function:

liminf QWOS(V,,Vg)dyde/ / OWo(Vyv)dydx.
’ QJYy

=0 JQJy,

To this end we cover 2 by a (finite) union of disjoint cubes D; whose edge
length is i, h > 0, so that Q C |J, D, and 2 N D, # 0, Vs. We cover Y by a union
of disjoint cubes G; with the analogous properties. Let us denote by Kj; the part
of Dy x Gy lying in 2 x Yy, Ky := (D5 X G;) N (2 x Yp). We then take the average
of V,v over each Ky,

Cst =

1
— V,vdydx. 30
Kol Ji, Y G0

Notice first that

2/ |Vyv — e, [P dydx — 0, as h — 0. (31)
K
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Let us denote
JE(w) = / / OWE (Vyw) dydx,
JalJy,

a0 = [ [ oWo(¥,w)dva,
o Jy,
and consider
Je(Ving) —J(Vyv)

=X | QW (7,04 (9,7 = V1) = O (ex + (V7 = Vo)) dyde

@/@ (OW (ess + (Ve — V1)) — OWE (es,)) dydx

Kst

—|—Z;/KST(QW§(6§,1) - QWO(es,t))dde-l-;/ (OWo(e5) — OWo(Vyv)) dydx
= Ji+h+J3+Js.

The quasiconvex envelope QW satisfies the same growth conditions as W and
is rank-one convex (see e.g. [17]). Hence it satisfies the same regularity property
(see [17, Prop. 2.32]),

QW (e1) = QWG (e2)] < B(1+er”™" +[ea”™")]er e (32)

for any e, e; € R™™ and analogously for QW;. Now we estimate the term J; as
follows. Using (32) and the Holder inequality yields

Vil < Z/K B(1+ |Vy‘7€|p71 +ess + (Vyve *Vyv)|pil)|vy"*es7r|dydx
st/ Kse

p—1

<CB (Z/K (14 [Vyvel? +[ess + (Vyve —Vyv)p)dydx>
s,’t' st

1

P

X (Z/K |Vyv—ew|pdydx> .
S,t St

Let us fix some 8 > 0. Since Vv, converges weakly in L”(Q x Yp) to Vyvitis a
bounded sequence, hence, the first factor in the last inequality is bounded and (31)
yields

1] <6

for small enough 4. Analogously,
|Ja| <8
for small enough 4. Now applying Lemma 20 we conclude that

liminfJ, > 0.
£—0
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The term J3 vanishes as € — 0 due to the pointwise convergence of QW to OW,
which clearly follows from the convergence of W to Wy and the definition of the
quasiconvex envelope. Hence we obtain that

liminfJ¢(V,ve) —J(V,v) > —28,
e—0

where d > 0 is arbitrary small. The statement of the lemma then follows immedi-
ately. a

7.2 Existence of a recovery sequence

Lemma 22 Let v(x,y) € LP (Q,WO1 P(Yy)). Then there exists a sequence ve(x) €
W, P (EE) such that ve > vand

lim | WE(eVve)x§ de = / / OWo(Vyv)dydx. (33)
e—=0J0Q QJyy

Proof Assume first that v € C™(Q2 x Yp). As in Lemma 21 for each € we cover the
sets £ and Y by finite unions of disjoint cubes Dy and G; respectively, with edge
length equal to €. For each € we introduce the function

_ {IY J WCdE  xeD, C B,
VS(xvy) = Dy>x B
0 ,X€Ds: D,NRN\Q # &,

i.e. for each x we take the mean of v over the cube D, that contains x. The restric-
tion of V¢ (x,y) to each Dy is a function of y only. Clearly

HES_VHU’(.QXYO) — 0, (34)

[Vyve = Vyv[| o (@xyy) — O

Notice that the function Vg (x,x/€) is a well-defined measurable function which

belongs to® WO1 7(Ef). In the context of the unfolding method (see Definition 13)
one has Z; (Ve(x,x/€)) = ve(x,y). Thus we have

[ et dyar= [ FeCe/e)p s,

QxYy Eg
35)
[ Feteytey) dyds= [Felrx/edge/e)d,
.QXYO Eg

for any smooth function g. This and (34) implies that

Ve (x.x/€) % v(x,)
as € — 0.
Further, we approximate the function v by a piecewise constant function eg, =
es; given by (30) with h = €. It is well know, see e.g. [17, Theorem 6.9], that for

8 In the above construction, the cover of € needs to be taken to consist of the cubes D, =
€(Y +zy), where z is an integer vector.

9 Obviously, e, in (30) depends on &, but there we dropped it in the notation. Now, however,
we would like to emphasise the dependence of the approximation e¢, from &.
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any 6 > 0 (in particular for 6 = €) and any ef, there exists ¢, € WO] (Y) such
that

QW (ef) — [ Wi (e5, + Vl, (2))dz| < 6 =e. (36)
/

Notice that due to the smoothness of v the means ef, are bounded uniformly in
g,s and t. Hence the values QW (ef,) are uniformly bounded as well. Therefore
the functions @Z, are uniformly bounded in leP(Y), which follows from (36),
the growth conditions on W and the Poincaré inequality. A change of variables
z=y/¢€ yields

J WS+ Vo Nde = [WEel +ev,05, /ey (3,
Y eY

Let us denote by y¥(x,y) € L”(Q,WO1 "?(Yy)) the function whose restriction to a
set Dy X G equals €Qf,(v/e+&F) if Dy x G; C  x Y and zero otherwise, where
the constant vector &€ is chosen so that G; 4 &f = €Y in order to have £¢f, (y/€ +

&) e WO1 ?(G;). Obviously w® — 0 in L (L x Yp). The fact that ¢f, € Wol’m(Y)
and the boundedness of V,y* in LP(2 x Yy) imply V,y® — 0 in LP(Q X Yj).
From (36) and (37) it follows that

Y [ (QW(e5,) W e, + V,¥)) dvx| < Ce, (38)
Ky

where the constant C depends on the function v and the sets 2 and ¥j. Clearly the
function y*(x,x/¢) € WO1 P(E§) is measurable and satisfies equalities analogous

to (35). Hence y*(x,x/€) 30.
Consider the function ve (x) = Ve(x,x/€) + W& (x,x/€). We claim that it satis-

fies the lemma. Indeed, the conditions v (x) € WO1 P(E§) and ve 2 vare obviously
fulfilled. In order to prove (33) we notice first that

| W evvzsan— [ | owo(v,)dyax
Q JalJy,

— [ Wi (evveyzsar— X [ W (e, +V,yF)dyds
Q I, '
’ Kst

+ T [ W (5, V,9) - OWE (€5, dyde
Ky (39)

+ X [ (W (e5,) — 0 (V) dvd
stg

£ [ QW) - W (V) dydx
QxYp
= Ji+h+J3+Js.
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Further, since
/ WE (€Vve) € dx — / WE (Ve + V, ) dydx,
@ Qx Yo
and due to (6) we can estimate the first term in (39) as follows:
IS L [ W (9,7 V0) = W ek, + ¥, ) | dyds
st
" Kyt

<X B (14 Ve + Vo e 4 V) [V et | v
s.'let

(40)

Hence
Ji—0

as € — 0, due to boundedness of Vv, Vyy®, et  in LP and the convergence
properties (31), (34). The second term J; in (39) is already estimated, see (38).
The third term J3 can be shown to converge to zero analogously to (40). Finally,
J4 — 0 due to the pointwise convergence of QW to OW,. Hence (33) holds true.

In the general case of v(x,y) € L? (Q,WO1 ?(Yy)) we approach v by a sequence
of C* functions: v; — v and Vyv; — Vv in LP(Q X Yj). For each v; we can apply
the lemma as shown above. Then using the continuity property of the integral
functional we can find the required sequence by the method of extraction of a
diagonal subsequence via Proposition 17.

O

Combining the results of Lemma 21 and Lemma 22 we arrive at the following
statement.

Theorem 23 Suppose that the family of stored-energy functions W5, € > 0, sat-
isfies the conditions of Section 2. Then the two-scale I'-limit of the functional I§
(see (26)) is given by

I (L")- lim E(v) =12 (v) := ( /Q /Y O OWo(V,v)dydx. (41)

8 Splitting the functional into the stiff and soft components

In previous sections we studied two-scale I"-limits of two integral functionals, I{
and I, corresponding to the stiff and soft components of the elastic body. In what
follows we demonstrate that the full functional /¢ can by presented as a sum of /7
and 5 and an asymptotically small term. Consequently, the two-scale I"-limit of
I¢ can be obtained as a sum of the two-scale I'-limits of /] and I§.

Consider the integral functional I¢ (cf. (8)) with the potential energy of applied
forces included:

) = [ VW Vi) di— [ fude @)
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Let a sequence u, be such that I (ug ) < C. Then || Vue x{ || 1r(0) < C, [[€Vue x§ | 1r(0) <
C and hence the following representation is valid:

Ug = Ug + Ve,

where ||Vite||r(q) < C and ve € W0 P(EE) (see Lemma 8). We split the value of
the functional I‘S on ug into the sum of two terms involving functionals /7 and I§
(cf: (24)) that correspond to the stiff and soft components and some small term (as
e—0):

I% (ue) :ils(ﬁE)+jg(Ve)+Re(“£), (43)
where

@) = [ Wi(Viie)zfde— | foeds
Bve) = [ Wi (evelasdx— | fovedr, (@)
RE(ue) = [ (W (£Vue) = W (e9ve) 25 v

Note that the functionals IAf, IA(‘)‘: differ from I7, I§ only by a linear term due to the
applied forces density f. The regularity property (6) yields

R () <C [ (1+[eVuel™" + Vvl ) Ve 15 dx

Then, via the Holder inequality,
Rf(ug) —0ase—0, (45)
since the sequence Vi is bounded in LP. This immediately implies that

liminfinf€ () = liminfinf? (&) 4+ liminfinfI§ (v).
=0 u e—=0 v

e—0 u

In other words one can deal with the functionals Tf and fg separately in the context
of minimising sequences. We will employ this observation in the argument of
Section 10.

In addition, as was shown in Section 5, if ug N u(x,y) then either the energies
I£(ug) converge to infinity or u(x,y) = ug(x) + v(x,y), where uy € WP (Q) and
Ve L”(.Q,Wol’p(Yo)). In the latter case one has, in view of (43), (45),

11m1(1)1f] (ug) > hmlnfll (utg) +11m1nf10 (ve)
E—
> [1OM (4y0) + I8 (v / / S+ (uo+v)dydx,

where I{“’m, I(})“’”[1 are defined by (25), (41).

Further, suppose that ug € W' (Q), v € LP(.Q,Wol’p(Yo)) are given. Let ve be
the sequence from Lemma 22, and u, be such that itz — ug in L”(2) as € — 0 and
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limg_0 I (tte) = I{“’m(uo), see Theorem 19. Then, clearly, u; := ug + ve 2 uy+v
and (cf. (43), (49))

lim 7% (ue) = hml1 (ug)—i—hmlo (vg)—l—hmR (ue)

£—0
= 11O (340) + 18O (v //f up +v)dydx.

Hence, we have proved the following theorem.

Theorem 24 The two-scale I -limit of the functional IE, see (42), is given by

I (LP)- lim 1€ () = 1™ (u)

e—0
L™ (o) + 157" (v) — [q Jy, f-u dydx,
= ifu=uo+veWh(Q)+L\(Q,W,"(Y)),
+oo, otherwise.
(46)

Minimisation problem for an integral functional is not fully defined without in-
troducing some boundary conditions. Let y be a measurable subset of the boundary
of 2, and ¢ € W''P(Q). Let as define a new functional I)f_ o satisfying boundary

conditions ¢ on ¥ as

I (1) = {Is(u) ifu=¢ony,

+o0, otherwise,

and analogously

1hom () = "™ (u) if ug = ¢ on v,
.9 ' +oo, otherwise.

Then Theorem 24 is also valid with functionals /¢ and /™™ replaced by their
counterparts IZ 1.6 and Ih?pm subject to boundary conditions. This result follows from
Proposition 11 7 and Remark 11.8 in [8].

While the above two-scale I'-convergence statement fully characterises the
two-scale behaviour as € — 0 of the functionals /¢ given by (2), it is worth pointing
out that at the moment there is no statement available about a priori compactness
of minimising sequences for /¢, and so the two-scale analogue of Theorem 5 does
not apply. This implies that: 1) There is no automatic attainability of the infinum
of the limit functional 7hom; 2) As far as the infima of I¢ are concerned, only the
inequality limsup,_,,inf/¢ < inf/"™ is guaranteed, and further study is needed
regarding the convergence of infI¢ to inf/"™ as £ — 0. In the next two sections
we demonstrate that both these issues are resolved positively for the functionals

Q).
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9 Existence of minimum of the limit functional

In the next two sections we assume that the functionals /¢ and /™™ are subject
to boundary conditions u = ¢, up = ¢, on y C Q, ¢ € W'P(Q), as described at
the end of Section 8. In this section we prove that the limit functional /"™ attains
its minimum. Consider the part of the limit functional corresponding to the soft
component (cf. (41))

j}}"m(v):/Q/YOQWO(Vyv)dydx—/_Q/YOﬂvdydx,

definedon v € L? (Q,WOl ?(Yp)). Since f depends only on x, we can consider x as
a parameter in the problem of minimisation of the functional. Thus we consider
the minimisation of

F(w) = [ oWo(Vw)dy—1- [ way.

where w € WO] ?(Yp) and ¢ € R™ represents f(x). It is well known that for any ¢ this
functional attains its minimum. Let us denote by #/(¢) the set of all minimisers
of F;. Thus we are dealing with a set-valued function defined on R™ with values
being subsets of [L? (Yy)]", # (¢) C [LP(¥y)]™. We need to show the existence of a
selection w : R™ — [LP(Y,)]™, w(t) € # (t), which is measurable as a function of
two variables (¢,y) € R™ x Yp. To this end we will employ the measurable selection
theorem, but first we would like to introduce a few definitions.

Definition 25 Let X be a topological space, Z(X) be the c-algebra of Borel sets
of X, f:R" - X, F:R" — {A:A C X}. For A C X we define its inverse image
F~(A)={t:F(t)NA # @}. We say that f is measurable if f~!(B) is measurable
for B € #(X). We say that F is weakly measurable (as a set-valued map) if F~ (B)
is measurable for all open B C X. A map f : R” — X is called simple if it has
finitely many values.

Let us show that # defined above is weakly measurable as a set-valued func-
tion. The topology in the space L?(Yp) is determined by the underlying norm. Let
B C LP(Yp) be closed. Let {t,} C # ~(B) be an arbitrary converging sequence,
t, — t. For every n there exists a minimiser w, of F;, which belongs to B. The
sequence w, is bounded in W!?(Yp) as it follows from the standard growth con-
ditions for QW,. Then there exists a converging strongly in L”(Yp) and weakly
in WI*P(Y()) subsequence w,, — w (not relabelled). It is easy to see that the se-
quence F; I'-converges to F; as n — oo, where the I'-convergence is understood
with respect to the convergence in L?(Y)) (see Definition 3). Indeed, the lower
semicontinuity type inequality follows from quasiconvexity of the integrand OW,
and the fact that the integral functionals with quasiconvex integrand are lower
semicontinuous with respect to weak convergence in W' (Yy). Existence of the
recovery sequence is trivial. So by Theorem 5 the limit function w is a minimiser
of F;, and, hence w € #/(¢t). On the other hand w € B since B is closed set. We
conclude that ¢ € #~(B), that is %~ (B) is closed set. Any open set A in LP(Yp)
can be presented as a countable union of closed sets A = U;B;. Hence its inverse
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image #~(A) is measurable as a countable union of closed sets # ~ (B;). This
proves that the map 7 is weakly measurable.

By the well-known measurable selection theorem (see e.g. [36, Theorem 3.1],
[20]) # has a selection, which is measurable (in the sense of Definition 25), and
we denote this selection by w = w(t). By the well-known measurability criterion
(see e.g. [16, Proposition E.2]) there exists a sequence w,, of measurable simple
maps such that

w(t) = lijgown(t) (47)
and
W ()] r (v5) < W) |2 () - (48)

The relations (47) and (48) hold for all ¢ and the limit in (47) is understood with
respect to the convergence in L” (Yy)-norm. The key point here is that every simple
map wy, is Lebesgue measurable as a function of two variables w,(z,y) : R™ x ¥y —
R™. Using the standard growth conditions and the Poincaré inequality it is easy to
obtain the following estimate for w(¢) (as a minimiser of £):

) < IO 30y < CU 1), (49)
Indeed,
Vw7, < [ OWo(Vw(t))dy = minF, +¢- [ wdy
LP(Yp) Yo Yo
< C(L+[tflw(t)llLr(v)) < CA+ ][V (E)[|2r(xy))
from which (49) follows.

Then from (48) and (49) it follows that wy,(¢,y) € LP(I x ¥y) for any bounded
set I C R™. Moreover, from (47) we see that w,, is a Cauchy sequence in L” (I x Yp),
and hence its limit in L”(I X ¥p) coincides with w. Hence we conclude that the
mapping w is measurable as a function of two variables w(z,y) and belongs to

1,
l:)c(Rmvwo p(YO))'
Substituting 7 with f(x) we obtain v(x,y) = w(f(x),y), v € LP(Q, W, (Yo)),
¢f. (49). Obviously v is a minimiser of 75°™.10

10 Convergence of infima of the functionals /¢

Next, as was outlined at the end of Section 8, we prove that
liminfinf 7€ (u) > min /"™ (1), (50)
e—=0 u u

where (cf. (46))
hom _ hom _ .
I (u)_/QWl (Vuo)dx+/Q/Y0QWo(Vyv)dydx /Q/ny udydx,

whom () = liminf{]/ Wi(e+Ve)dx : (pGWOI”’((O,t)”)}, D
(0.})"0[’?1

t—ro0 t

u=uo(x) +v(x,y) € WP (Q) + L7 (Q,W, " (Yp)).

10 perhaps a person more familiar with measure theory might suggest a shorter proof of the
existence of a measurable minimiser or even claim that this fact is “obvious”.
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In combination with the inequality limsup,_,,inf7¢ < min /"™ (which is a conse-
quence of (46)), this will imply the equality limg_,qinf/¢ = min /"™,
Aiming to get a contradiction with (50) we assume the contrary, i.e.

liminfinf€(u) < min /™™ (u).
e—>0 u u

Then, by the virtue of the procedure described in Section 8, there exists a sequence
Ueg = ﬁg + Ve SuCh that

lim 7% (4 ) = liminfinf 7% (u)

e—0 =0 u

o o . h (52)

= liminfinf/} (&) + liminfinfI§ (v) < minI"™ (u),
e—=0 u e—=0 v u

where IAf and IAg are as defined in (44), and v EN v(x,y), EVve EN Vv(x,y), e — ug
strongly in LP(£2) and weakly in W!?(Q) for some uo and v as in (51). Notice
that, by the construction of Section 8, u; and ve are infimising sequences for /7

and IAS, respectively. It is well known from the classical theory of I'-convergence,
see [8], that

r-lim FF(y) = 1(y) ~ [ - ydvs
£—0 Q
— [ Wiy [ oyayar yew'r (@)

Moreover,

lim 7¥ (i) = lim inf 7% (4) = min (I?Om(u) - / f-udydx)
e—0 e—0 u u Q

(53)
zz?om(uo)_/gf-uodydx.

Further, denote the unfolding of ve by Vg, i.e. Ve(x,y) = Z&(ve)(x,y) (see Defini-

. . 2 ~ .
tion 13). Since v = v and hence v — v in LP(Q), one has

ii_r}r(l){léf-vsdx—léi/lfof-ﬁgdydx}:0. (54)

Notice also, that 7 € L(2, W, ”(¥p)), and

[wsvozsar=[ [ wivgodarz [ [ owiws)ads 6s)
Q QJY QJYy

Clearly, from (46), (52), (53), (54) and (55) it follows that for sufficiently small €
one has
"™ (g + V) < min /"™,
u

which is a contradiction. Hence (50) is valid. This, together with Theorem 24,
implies the following statement
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Theorem 26 For the functionals I¢ defined by (2) under the conditions of Section
2, one has

lim inf 7% (1) = min "™ (u),
=0 u u

where I"°™ is defined by (46). For any minimiser u of I"®™ there exists a sequence

2
ug such that ug = u and

lim 7% (ug ) = 1™ ().
£—0

11 Concluding remarks

Here we offer a discussion of our results hoping to place them better in the context
of the existing literature, and suggest possible avenues for further development.

It may be worth highlighting first the synergy of several known analytical
methods within our approach, notably the two-scale convergence, periodic un-
folding method and the concept of I'-convergence. There is a number of previ-
ous works where these methods have been used in treating what we would like
to refer to as “classical” models, whereby the macroscopic, homogenised, solu-
tion depends only on the slow variable. Importantly however, these approaches
have a multi-scale character in that a priori they may assume a two-scale nature
of the leading order term in the behaviour of the solutions as € — 0. For ex-
ample, the two-scale convergence, either on it own or in combination with the
procedure of unfolding, leads in the limit to functions that in general depend
both on the slow and fast variable, and it is only by virtue of the standard W!7-
compactness that the single-scale structure of the limit is inferred a posteriori. The
I"-convergence method can then be viewed as a complementary tool that allows to
deal with problems that may not have a weak formulation, in particular problems
with non-convex energies. From this perspective our work fills an existing gap
in the mathematical theory of homogenisation by demonstrating how the method
of I'-convergence can be used to analyse problems where the two-scale structure
of the solution persists “to the very limit” as € — 0. A basic example of such a
setting is that of high-contrast composites, which fail to satisfy the property of uni-
form coercivity as € — 0, and hence do not possess the usual W!”-compactness
property. Prior to our work such problems had only been studied within settings
that are amenable to direct treatment via the definition of the two-scale conver-
gence (confusingly enough, this would correspond to what is referred to as the
indirect approach in the calculus of variations). In view of the fundamental im-
portance of those physical settings that are underpinned by some kind of energy
minimisation principle, as e.g. the setting of static nonlinear elasticity, one is led
to asking whether “non-classical” non-convex problems, in particular those that
exhibit high-contrast in the constitutive response at different material points, can
be analysed by combining the two-scale and variational approaches. Thus one ar-
rives at the concept of “two-scale I'-convergence”, which we define in Section
5 and which exploits two-scale, rather than one-scale, compactness properties of
variational integrals.

It is perhaps appropriate to note here that as an abstract concept, the two-scale
I'-convergence is not new: some elements of it have appeared, e.g., in the works
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[34], [35], [21]. The rationale leading up to the related theory becomes transpar-
ent when one notices that the usual LP-norm convergence and the strong two-
scale convergence are equivalent under the unfolding transformation, and hence
the “two-scale” I'-convergence can be defined using the standard I"-convergence
in two-variable L? spaces. While this approach yields the desired effective mate-
rial description and is a convenient tool of studying solutions to those problems
where lack of compactness is not an issue, in the non-classical settings a more
direct approach may be preferable where one deals with sequences of functions in
the original function space (L” () in our case) rather than those that are the result
of unfolding. Convergence statements for oscillating sequences of a given two-
scale functional are then formulated in terms of the sequences themselves and not
in terms their “unfolded” counterparts whose limits would require “folding back”
to the original variables.

The technique presented in this paper is aimed at treating high-contrast func-
tionals of the “double-porosity” type, in that the underlying periodic composite is
made of two types of materials, “stiff” and “soft”, whose individual constitutive
relations exhibit a high degree (of order €) of contrast between each other and
which occupy certain domains within the unit cell. While the individual stored-
energy function for each of these two contrasting material types may vary “mod-
erately” over the unit cell leaving the mathematical statements within our work
essentially unchanged, large (i.e. tending to infinity as € — Q) variations within
each type are not covered by our theory. This restriction is manifested by the fact
that the stored-energy functions W¢ = W¥(y, e) for the composite family in ques-
tion are postulated to have the form W¢(y,e) = Wo(y,e)x0(y) + Wi (y, €€)x1(»),
which corresponds to the strict separation between the “stiff” and “soft” materi-
als. Another limitation of our results is that at present they only apply to materials
that are either isotropic or at worst weakly anisotropic at each point in space, i.e.
the contrast in their constitutive response in different spatial directions does not get
large as € — 0. Extending the two-scale I '-convergence to highly anisotropic (or
“partially degenerate”) materials (see the works [12], [30] in the linearised setting)
would be an important step forward, in our opinion, both from the mathematical
and the applied perspective, in view of their potential for applications as nonlin-
ear metamaterials. The key difficulty in doings so within the present framework
is posed by the inability to consider the stiff and soft parts of the related inte-
gral functional separately from each other when treating such partially degenerate
situations.

From the point of view of the mathematical theory of nonlinear elasticity, there
is one significant drawback of the our technique as described, namely the fact that
the growth condition (4) is incompatible with the requirement that W¢(y,e) — oo
as det(e) — 0+ . The associated technical difficulties, however, are present even
in the “moderate contrast” setting of the standard mathematical elasticity, see [2].
In particular, even the issues of the existence of minimisers and the validity of the
weak Euler-Lagrange equation are known to be open for non-polyconvex func-
tionals of this kind even in the absence of periodic microstructure. Hence, in our
work we feel justified to restrict ourselves to the case of the usual global growth
condition (4), awaiting further progress on these problems elsewhere. It should
perhaps be mentioned, however, that the theory we propose allows for minimis-
ing sequences that are “discontinuous at the microscale”: an example of these is
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obtained by taking e.g. a cavitating minimiser of the “soft” part of the limiting
functional. This feature seems to be inherently out of reach by the “classical” the-
ories.

One general analytical issue that is raised by our theory is whether one can
strengthen Lemma 21 (Section 7.1) by proving the inequality 7™ (1) < liminfe_,o I (u¢)
with respect to the weak two-scale convergence. A simple example showing that
the answer to this question is negative, is via a “checkerboard” sequence ug con-
structed by taking a functional /™™ whose soft component admits two different
global minimisers y; and v, setting u, = W;(x/€) within the soft part of each pe-
riodicity cell of size € so that the values of the index i in any two neighbouring cells
are different, and extending u, to zero elsewhere. The possible non-compactness
of a minimising sequence for /¢ is illustrated using the same example: clearly the
sequence u, weakly two-scale converges to xo(y) (w1 (y) + y2(y))/2 but it fails to
converge in the strong two-scale sense. Clearly, in the case when the stored-energy
function Wy is convex, this kind of counterexample is not possible, and for such
functionals we expect a two-scale analogue the Mosco convergence to hold (see
e.g. [23])

Our technique calls for an extension in various directions. In addition to the
case of partially degenerate composites already mentioned, one could consider
classes of stored-energy functions with different growth exponents for the “stiff”
and “soft” components, as well as combinations of high-contrast periodic with
“thin” structures, where the volume fraction of the stiff component vanishes in
the limit as € — 0. The technique of “I"-developments”, which can be thought of
as an analogue of the method of asymptotic expansions in the nonlinear setting
(see [10] and references therein), should also be amenable to an extension using
the two-scale I"-convergence approach presented here, to the contexts where the
two-scale behaviour persists to the limit as € — 0. We plan to address these issues
elsewhere.
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