
RESTRICTION MAPS IN EQUIVARIANT KK-THEORY.

OTGONBAYAR UUYE

Abstract. We extend McClure’s results on the restriction maps in
equivariant K-theory to bivariant K-theory:

Let G be a compact Lie group and A and B be G-C∗-algebras. Sup-
pose that KKH

n (A,B) is a finitely generated R(G)-module for every
H ≤ G closed and n ∈ Z. Then, if KKF

∗ (A,B) = 0 for all F ≤ G finite
cyclic, then KKG

∗ (A,B) = 0.

0. Introduction

One of the basic facts about the representation theory of a compact Lie
group is that any virtual representation which restricts trivially to every
finite cyclic subgroup is itself trivial.

McClure studied how far this generalizes to equivariant K-theory and
proved the following. Recall that a finite group is called elementary if it is
a direct product of a cyclic group and a p-group.

Theorem 0.1 (McClure [McC86]). Let G be a compact Lie group and let
X be a finite G-CW-complex.

(a) If K∗F (X) = 0 for all F ≤ G finite cyclic, then K∗G(X) = 0.
(b) If x ∈ KG(X) restricts to zero in KH(X) for every finite elementary

subgroup H of G, then x = 0.

Remark 0.2. (i) Theorem 0.1(a) was proved by Jackowski for G finite
(cf. [Jac77, Corollary 4.3]) and McClure proved the general case by
reducing to the finite case using Theorem 0.1(b).

(ii) Theorem 0.1(b) cannot be strengthened by replacing “finite elemen-
tary” by “finite cyclic” (cf. [Jac77, page 89] and [McC86, page 404]).

We extend these to bivariant K-theory as follows. Let R(G) = KG(∗)
denote the representation ring of G.

Theorem 0.3. Let G be a compact Lie group and A and B be G-C∗-
algebras.1 Suppose that KKH

n (A,B) is a finitely generated R(G)-module
for every H ≤ G closed and n ∈ Z.

(a) If KKF
∗ (A,B) = 0 for all F ≤ G finite cyclic, then KKG

∗ (A,B) = 0.
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(b) Suppose, in addition, that KKF
n (A,B) is a finitely generated group

for all F ≤ G finite and n ∈ Z. Then, if x ∈ KKG(A,B) restricts
to zero in KKH(A,B) for all H ≤ G finite elementary, then x = 0.

Remark 0.4. If A and B are both KKG-equivalent to the algebra of contin-
uous functions on a G-CW-complex, then the finite generation assumptions
in Theorem 0.3 are automatic. Hence Theorem 0.3 extends Theorem 0.1.

In fact, we prove the following. This is done mainly for clarity, but as
an added bonus, we see that Theorem 0.3 holds for equivariant E-theory as
well.

Theorem 0.5. Let G be a compact Lie group and let Ẽ∗G be an RO(G)-

gradable module theory over K̃∗G. Suppose that ẼnH(S0) is a finitely generated
R(G)-module for every H ≤ G closed and n ∈ Z. Let X be a finite based
G-CW-complex.

(a) If Ẽ∗F (X) = 0 for all F ≤ G finite cyclic, then Ẽ∗G(X) = 0.

(b) Suppose, in addition, that ẼnF (S0) is a finitely generated group for

all F ≤ G finite and n ∈ Z. Then, if x ∈ Ẽ∗G(X) restricts to zero in

Ẽ∗H(X) for all H ≤ G finite elementary, then x = 0.

The proof follows [McC86] rather closely. In Section 1, we show that
Theorem 0.5 implies Theorem 0.3. In Section 2, we extend the generalized
Atiyah-Segal completion theorem of [AHJM88a] to modules over K-theory.
Using the completion theorem, we prove Theorem 0.5 in Section 3. However,
unlike [McC86], we prove part (a) of Theorem 0.5 directly in order to avoid
the additional finite generation assumptions of part (b). In the final section,
we apply Theorem 0.3 to prove a variation of [MN06, Theorem 9.3].

Remark 0.6. (i) Chris Phillips extended the Atiyah-Segal completion
theorem to C∗-algebras in [Phi89]. See also the comments at the end
of Section 2 of loc.cit.

(ii) Michel Matthey and Guido Mislin obtained results dual to McClure’s
theorem, for restriction maps in K-homology of spaces with proper
actions of discrete groups (cf. [MM04]).

(iii) Heath Emerson studied C∗-algebras with a circle action and showed
that there are many C∗-algebras that are not equivariantlyKK-equivalent
to a commutative C∗-algebra, even though they and their crossed
products are KK-equivalent to commutative C∗-algebras (cf. [Eme10]).
Hence Theorem 0.3 covers many more examples than just the commu-
tative ones.

Acknowledgments. This research is supported by the Danish National
Research Foundation (DNRF) through the Centre for Symmetry and Defor-
mation at the University of Copenhagen.
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1. RO(G)-graded cohomology theories

Let G be a compact Lie group. A based G-space is a G-space with a G-
fixed base point. In the rest of the paper, we assume that all G-spaces are
G-CW-complexes and all cohomology theories are equivariant and reduced
cohomology theories.

For a finite-dimensional representation V of G, we write SV for the one-
point compactification of V , considered a based G-space with base point the
point at infinity.

1.1. RO(G;U)-gradable theories. We fix a complete universe U . (cf.
[May96, Definition IX.2.1]).

Definition 1.1. An RO(G)-graded cohomology theory is an RO(G;U)-
graded cohomology theory in the sense of [May96, Definition XIII.1.1]. A
Z-graded cohomology theory is an RO(G;UG)-graded cohomology theory
(any trivial universe would work). We say that a Z-graded cohomology
theory is RO(G)-gradable if it is the Z-graded part of an RO(G)-graded
theory.

Let Ẽ∗G be a Z-graded cohomology theory. For a closed subgroup H ≤ G
and a based H-CW-complex X, we define

(1.1) Ẽ∗H(X) := Ẽ∗G(G+ ∧H X).

Then Ẽ∗H is a Z-graded cohomology theory on based H-spaces. If X is ac-
tually a based G-CW-complex, then we have a natural G-equivariant iden-
tification

(1.2) G+ ∧H X ∼= G/H+ ∧X
and the collapse map G/H → ∗ gives rise to a natural transformation

(1.3) resGH : Ẽ∗G → Ẽ∗H

called the restriction map.

1.2. Bivariant K-theory. The following is the main example we have in

mind. First note that K̃∗G is an RO(G)-graded commutative ring theory

with K̃V
G (X) = KKG(C0(S

V ), C0(X)) and R(G) ∼= K̃G(S0).

Proposition 1.2. Let G be a compact Lie group and let A and B be G-C∗-
algebras. For a finite based G-CW-complex X and finite-dimensional real
representation V of G, we define

(1.4) ẼVG (X) := KKG(A⊗ C0(S
V ), B ⊗ C0(X)).

Then the following holds.

(i) Ẽ∗G defines an RO(G)-graded cohomology theory on the category of
finite based G-CW-complexes.

(ii) Ẽ∗G extends to an RO(G)-graded cohomology theory on the category of
based G-CW-complexes.
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(iii) Ẽ∗G is a module theory over K̃∗G.

Proof. (i) See [Kas88].

(ii) By Adams’ representation theorem [May96, Theorem XIII.3.4], Ẽ∗G is
represented by an Ω-G-prespectrum, hence extends to an RO(G)-graded
cohomology theory on the category of G-CW-complexes. See [Sch92].
(iii) The module structure

(1.5) ẼVG (X)× K̃W
G (Y )→ ẼV+W

G (X ∧ Y ).

is given by the Kasparov product

KKG(A(SV ), B(X))×KKG(C0(S
W ), C0(Y ))(1.6)

→ KKG(A(SV+W ), B(X ∧ Y )).(1.7)

�

It is well-known that for H ≤ G,

(1.8) KKG(A,B ⊗ C0(G/H+)) ∼= KKH(A,B)

and the restriction map is induced by G/H+ → S0. Hence we obtain the
following corollary.

Corollary 1.3. Suppose that Theorem 0.5 holds. Then Theorem 0.3 holds.
�

2. Atiyah-Segal Completion

First we abstract the main finiteness condition from Theorem 0.5.

Definition 2.1. Let R be a unital commutative ring and let Ẽ∗G be a Z-

graded cohomology theory with values in R-modules. We say that Ẽ∗G is

finite over R if ẼnG(X) is a finitely generated R-module for every finite based
G-CW-complex X and n ∈ Z.

Clearly, this is equivalent to asking that Ẽk−nH (S0) ∼= ẼkG(G/H+ ∧ Sn) is
a finitely generated R-module for H ≤ G.

Lemma 2.2. Let G be a compact Lie group and let R be a unital commuta-

tive ring. Let Ẽ∗G be a Z-graded cohomology theory with values in R-modules.

Suppose that R is Noetherian and Ẽ∗G is finite over R. Then for any family
I of ideals in R, the following defines a Z-graded cohomology theory with
values in pro-R-modules:

(2.1) Ẽ∗G(X)∧I := {Ẽ∗G(Y )/J · Ẽ∗G(Y )}.
where Y ⊆ X runs over the finite based G-CW-subcomplexes of X and J
runs over the finite products of ideals in I.

Note that in this lemma, it is enough to have Ẽ∗G to be a cohomology
theory on finite based G-CW-complexes (only finite wedges are considered
in the additivity axiom).
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Proof. Exactness follows from the Artin-Rees lemma. See the proof of
[AHJM88b, Lemma 2.1]. �

2.1. Bott Periodicity. Let V be a complex G-representation. By Bott pe-

riodicity [Ati68, Theorem 4.3], K̃0
G(SV ) is a free K̃0

G(S0)-module generated

by the Bott element λV ∈ K̃0
G(SV ). The Euler class of V is defined to be

χV := e∗(λV ) ∈ K̃0
G(S0), where e : S0 → SV is the obvious map.

Lemma 2.3. Let Ẽ∗G be an RO(G)-graded module theory over K̃∗G. Then
for any complex representation V , multiplication by the Bott element λV ∈
K̃0
G(SV ) gives an isomorphism

(2.2) Ẽ0
G(S0) ∼= Ẽ0

G(SV ).

If V ⊆ W are complex representations and i : SV → SW is the inclusion,
then the following diagram commutes

(2.3) Ẽ0
G(S0) //

·χW−V

��

Ẽ0
G(SW )

i∗

��

Ẽ0
G(S0) // Ẽ0

G(SV )

.

Proof. Let λ−1V ∈ K̃V
G (S0) denote the inverse Bott element: it has the prop-

erty that

(2.4) λV · λ−1V = λ−1V · λV = 1 ∈ K̃V
G (SV ) ∼= K̃0

G(S0).

Then multiplication by λ−1V gives the inverse map

(2.5) Ẽ0
G(SV )→ ẼVG (SV ) ∼= Ẽ0

G(S0).

The second statement is shown for Ẽ∗G = K̃∗G in [AHJM88a, page 4]. The
general case follows by functoriality. �

2.2. Completion. A class of subgroups of G closed under subconjugacy is
called a family. A family C of subgroups of G determines a class, again
denoted C, of ideals of R(G) by the kernels of the restriction maps:

(2.6) ker(resGH : R(G)→ R(H)), H ∈ C,

hence a topology on any R(G)-module.
The following is a straightforward generalization of [AHJM88a, Theorem

3.1].

Theorem 2.4. Let G be a compact Lie group and let Ẽ∗G be an RO(G)-

gradable module theory over K̃∗G, which is finite over R(G).
Let C be a family of subgroups of G. For any based G-CW-complex X, if

Ẽ∗H(X)∧C|H = 0 for all H ∈ C, then Ẽ∗G(X)∧C = 0.
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Proof. By [Seg68, Corollary 3.3], R(G) = K̃0
G(S0) is Noetherian. Hence, by

Lemma 2.2, Ẽ∗G(X)∧C is a cohomology theory.
Now the proof of [AHJM88a, Theorem 3.1] carries over ad verbatum, once

we extend Bott periodicity to Ẽ∗G as in Lemma 2.3. �

Corollary 2.5. Let EC denote the classifying space of C. For any finite
based G-CW-complex X, the projection map EC+ → S0 gives completion

(2.7) Ẽ∗G(EC+ ∧X) ∼= lim Ẽ∗G(Y ∧X) ∼= lim Ẽ∗G(X)∧C ,

where Y runs over finite based subcomplexes of EC+.

Proof. The inverse system Ẽ∗G(X)∧C satisfies the Mittag-Leffler condition and

Ẽ∗G(Y ∧ X) is C-complete for any finite based subcomplex Y ⊂ EC+ (cf.
[AHJM88a, Corollary 2.1]). �

3. Proof of Theorem 0.5

3.1. F-spaces. Let F be a family of subgroups of G. We say that a based
G-CW-complex X is an F-space if all the isotropy groups, except at the base
point, are in F . The following lemma says that in the proof of Theorem 0.5,
we may assume that X is an F-space, for any F containing all finite cyclic
subgroups of G.

Lemma 3.1. Let G be a compact Lie group and let Ẽ∗G be an RO(G)-

gradable module theory over K̃∗G, which is finite over R(G).
Let F be a family containing all finite cyclic subgroups of G. Then for any

finite based G-CW-complex X, the top horizontal map in the commutative
diagram

(3.1) Ẽ∗G(X) //

��

limY⊂EF+ Ẽ
∗
G(Y ∧X)

��∏
F∈F Ẽ

∗
F (X) // limY⊂EF+

∏
F∈F Ẽ

∗
F (Y ∧X)

,

is injective. Here Y runs over the finite based subcomplexes of EF+, the
horizontal maps are induced by the projections Y ∧X → X and the vertical
maps are restrictions.

Proof. The F-topology on Ẽ∗G(X) is Hausdorff by [McC86, Corollary 3.3].
Hence, the claim follows from Corollary 2.5. �

Let C denote the family of finite cyclic subgroups of G.

Proof of Theorem 0.5(a). By assumption, Ẽ∗F (X) = 0 for all F ∈ C. Let Y
be a finite based G-CW-complex, which is a C-space. Then the zero skeleton
Y 0 and the skeletal quotients Y n/Y n−1 are finite wedges of G-spaces of the

form G/F+ ∧ Sn with F ∈ C. It follows that Ẽ∗G(Y ∧ X) = 0. Hence by

Lemma 3.1, Ẽ∗G(X) = 0. �
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3.2. Induction. We write OG for the category whose objects are orbit
spaces G/H, where H ≤ G is a closed subgroup, and whose morphisms
are homotopy classes of G-maps.

Recall that a compact Lie group is said to cyclic if it has a topological
generator (an element whose powers are dense) and hyperelementary if it is
an extension of a cyclic group by a finite p-group.

We write H for the class of hyperelementary subgroups of G and let OH
denote the full subcategory of OG of orbits G/H with H subconjugate to a
subgroup in H.

Lemma 3.2. Let G be a compact Lie group and let Ẽ∗G be an RO(G)-

gradable module theory over K̃∗G. Then, for any based G-CW-complex, the
restriction maps induce an isomorphism

(3.2) Ẽ∗G(X) ∼= lim
OH

Ẽ∗H(X).

Proof. Follows from Propositions 2.1 and 2.2 of [McC86]. �

For any abelian group M , let M∧Z denote its adic completion limnM/nM .

Proof of Theorem 0.5(b). Let F denote the family of finite subgroups of G.
By Lemma 3.2, we may assume that G is a hyperelementary group and

by Lemma 3.1, we may assume that X an F-space.
Let G be a hyperelementary group and X an F-space. Then the restric-

tion map

(3.3) Ẽ∗G(X)∧Z → lim
F∈OF

Ẽ∗F (X)∧Z.

is an isomorphism by [McC86, Theorem 1.1]. By [McC86, Corollary 3.3],

the adic topologies on Ẽ∗G(X) and Ẽ∗F (X) are Hausdorff. This reduces the
problem to the case G is finite. Now an application of [McC86, Proposition
2.1] to the class of elementary subgroups finishes the proof. See the proof of
[McC86, Corollary B]. �

4. An application

The following is a variation of [MN06, Theorem 9.3].

Theorem 4.1. Let G be a Lie group (not necessarily compact) and let A and
B be G-C∗-algebras. Suppose that the following finiteness condition holds:
for any closed subgroups H ⊆ K ⊆ G with K compact, KH

n (A) and KH
n (B)

are finitely generated R(K)-modules.
Let x ∈ KKG(A,B) be an element with the property that for any finite

cyclic subgroup F ⊆ G,

(4.1) resGF (x)∗ : KF
∗ (A) ∼= KF

∗ (B).

Then x induces an isomorphism Ktop
∗ (G;A) ∼= Ktop

∗ (G;B) of the topological
K-groups (in the sense of [BCH94]).
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Proof. By [CEOO04], it is enough to prove that for any compact subgroup
K ⊆ G, the restriction resGK(x) induces an isomorphism KK

∗ (A) ∼= KK
∗ (B).

For this we use the triangulated category structure of equivariant KK-
theory developed by Meyer-Nest (cf. [MN06]). Let C denote a mapping cone
of x so that we have a distinguished triangle

(4.2) ΣB // C // A
x // B .

in KKG. For any closed subgroup H ⊆ G, since restriction resGH is a trian-
gulated functor and equivariant K-theory KH

∗ is homological, we see that x
induces an isomorphism on KH

∗ if and only if KH
∗ (C) = 0.

Let K ⊆ G be a compact subgroup. Since G is a Lie group, so is K. More-
over, the assumptions on A and B imply that KH

n (C) is a finitely generated
R(K)-module for any closed subgroup H ⊆ K and n ∈ Z. Applying Theo-
rem 0.3(a) to K acting on (C, C), we see that KK

∗ (C) = 0. This completes
the proof. �

Remark 4.2. (i) For G discrete, compare [MM04, Theorem 1.1].
(ii) It would be interesting to understand how much of the finiteness as-

sumptions in Theorem 0.3 and Theorem 4.1 are really necessary.
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