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Abstract 
 

The notch signalling pathway is essential for the development and growth of 

all mammalian cells. The canonical pathway works by cell to cell 

communication and influences gene expression directly. Notch signalling plays 

an important role in cell differentiation processes in the embryo as well as in 

adult tissues. In Drosophila, signalling requires a single notch receptor and 

two ligands (delta and serrate). However, in mammals signalling is more 

complex and there are four notch receptors (NOTCH1-4), three delta like 

ligands (DLL1, DLL3, DLL4) and two jagged ligands (JAG1, JAG2). The 

interaction between a notch receptor at the cell surface and its ligand on a 

neighbouring cell, leads to sequential proteolytic cleavages which release the 

notch intracellular domain (NICD) from the cell surface receptor (Estrach et 

al., 2008). The NICD enters the nucleus and forms a complex with CSL and 

Mastermind to activate target genes (HES and HEY family members). Notch 

receptors have modified EGF-like repeats where fucose has been added to a 

serine or threonine residue and this O-linked fucose can be elongated by the 

action of an enzyme (fringe), enhancing or blocking ligand binding. There have 

been extensive studies on notch signalling in embryos but less is known in 

adult tissues, especially with regard to non-canonical pathways. 

 

The aim of this project was to examine the expression of notch receptors, 

ligands and specific target genes during epidermal differentiation in human 
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skin. This was examined both in human epidermis (in vivo) as well as in culture 

models using HaCaT, a keratinocyte cell line. Examining notch signalling 

activity at different stages of keratinocyte differentiation could help to 

understand the precise role of notch signalling in cell fate determination 

during normal cutaneous epithelial cell growth and development, and may 

indicate what role, if any notch signalling might play in the pathology of skin 

disease.  

 

Most of the work on delta ligands has been done in embryonic tissues with 

little work on adult skin. Thus, our approach focused on expression of DLL1, 

DLL3 and DLL4 in human epidermis and cultured HaCaT cells. DLL1 expression 

was confirmed (mRNA and protein level including sequence) but no convincing 

evidence of DLL3 or DLL4 expression was found. Evidence was also obtained 

for JAG1 and JAG2 expression in human epidermis and cultured cells, and 

there was some indication that differential expression might occur during 

terminal differentiation.  

 

RT-PCR results indicated possible changes in notch ligand levels with calcium-

induced differentiation in HaCaT cells and these were quantitated by real time 

PCR (qPCR). Expression levels could not be normalised to a housekeeping gene 

(β-Actin, human ARP, human TF2H, GRP58, B2H, RPL13 and TBP) as all those 

tested were not stable enough. Thus, cDNA probes for two notch receptors 

(N1 and N3), three ligands (DLL1, JAG1 and JAG2), six responsive genes (HES1, 
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HES5, HES7, HEY1, HEY2 and HEYL) and two keratin genes (KRT14, KRT10) 

were cloned and used to construct standard curves. This allowed quantitative 

estimation of expression levels in terms of copy number and fold change in 

both HaCaT cells and human epidermis. K14, Notch1 and DLL1 changed very 

little in HaCaT cells but K10, Notch3, JAG1, JAG2 and HES1 levels increased 

with differentiation. It was also concluded that signalling via Notch3 and JAG1 

may influence the progress of terminal differentiation in human keratinocytes. 
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1 CHAPTER 1: Introduction 

1.1 Human Skin  

1.1.1 Skin Structure  

Skin is the largest organ system in the human body and has three main 

components: an outer protective layer (epidermis), a central connective tissue 

matrix (dermis) and an inner subcutaneous layer of fat (adipose). Human 

epidermis is a keratinized stratified squamous epithelium that forms a semi-

permeable physical barrier to the environment (Hall and Watt, 1989; Watt, 

1989). Thickness varies according to body site, and epidermis is thickest on 

the palms of the hand and soles/heels of the feet (1.5 – 4.0 mm) but much 

thinner at other body sites (0.4- 1.5 mm).  

 

A complex programme involving cell cycle arrest and terminal differentiation 

controls epidermal homeostasis, a process that involves complex co-ordinated 

changes in gene expression (Chuong et al., 2002). It is important to mention 

that the epidermis is a continuously self renewing stratified squamous 

epithelium and the stems cells that generate this tissue, reside in the basal 

layer. The skin appendages (pilosebaceous unit, nails and sweat glands) are 

epithelial structures that arise from the epidermis during embryonic 

development and are contiguous with the epidermis. They maintain their own 
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stem cell populations and have their own specialised differentiation 

pathways. 

1.1.2 Stem Cells and Transit Amplifying (TA) Cells 

In 1961, Till and McCulloch reported the first evidence of adult cells that can 

act as stem cells. This was identified after irradiation of the hematopoietic 

system and since this time, stem cells have been identified in many other 

tissues, including epidermis and the bulge area of hair follicles (Potten and 

Loeffler, 1990). The bulge stem cells can produce all the types of epithelial cell 

required to form all the different layers of the complex hair follicle including 

the hair shaft (Taylor et al., 2000). In the same way, the epidermal stem cell 

population produces the entire interfollicular epidermis that is necessary to 

maintain skin integrity.  

 

Epidermal stem cells are considered a small undifferentiated cell population 

of self renewing basal keratinocytes. They can produce a population of transit 

amplifying (TA) cells that account for the majority of basal cells (Bickenbach 

and Grinnell, 2004).  The relatively minor population of resident stem cells 

produce an impressive cell turnover rate to form this highly organized 

stratified tissue (Mackenzie, 1970; Potten & Bullock, 1983; Morris et al., 1985). 

Stem cells respond to multiple signalling networks that control their division, 

migration, proliferation and differentiation but precise mechanisms within 

human epidermis are not yet clear (Fuchs and Horsley, 2008). Moreover, 
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differences have been observed in relation to rates of basal cell proliferation 

versus stratification and differentiation, which vary considerably between 

embryonic and adult epidermal cells (Fuchs and Horsley, 2008). This can most 

easily be explained by the asymmetric division of stem cells and TA cells, a 

theory supported by in vivo cell kinetic assays (Potten 1974; Mackenzie 1975; 

Jones et al., 1995 and Clayton et al., 2007).  

 

It has been known for several years that stem cells provide the proliferative 

potential of adult human epidermis and this small cell population resides in 

the basal cell layer (Fuchs, 2008). Several studies have estimated that basal 

cells are a mixture of stem cells (~10%) and TA cells (~90%). However, stem 

cells are difficult to define precisely and difficult to isolate for study. They are 

said to have the capacity to self renew indefinitely and to generate large 

numbers of proliferative basal cells (transit amplifying or TA cells) and this 

extensive capacity for cell renewal has been demonstrated in vivo (Jones & 

Watt, 1993; Gambardella & Barrandon, 2003; Gallico et al., 1984 and 

Compton et al., 1989).  

 

In the mid 1970’s, three different cell sub-populations were identified in the 

epidermal basal layer: stem cells, TA cells and cells committed to 

differentiation (Potten, 1974; Christophers et al., 1974; Mackenzie, 1975, 

Potten and Morris, 1988).  In 1974, Potten introduced an idea about 
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epidermal stem cell units of specific structure and he defined a group of 

tightly packed proliferative cells (about 10) as an epidermal proliferative unit 

(EPU). The architecture of the epidermis was observed and this gave rise to 

the central stem cell theory, the need for TA cells, and the observation that 

daughter cells become committed to terminal differentiation as they move 

through the stratified epidermis as a vertical column. This architecture 

established the idea that stem cells sit at the centre of the EPU and 

continually renew themselves as well as producing sufficient daughter (TA) 

cells (Potten, 1974; Mackenzie, 1997; Fuchs, 2008). Meanwhile, stem cells also 

have a remarkable ability to give rise to differentiating cells (Fuchs, 2008). 

Based on previous observations in vitro, it was concluded that basal cells are 

likely to divide symmetrically giving rise to equal sized daughter cells (Lowell 

et al., 2000; Lowell and Watt, 2001). However, this debate carries on and 

more recent studies have suggested that basal cells divide asymmetrically in 

vivo (Clayton et al., 2007). 

 

More recent research has been dedicated to identifying epidermal stem cells 

with molecular markers. Lowell and colleagues pointed out that the level of 

β1 integrin (used as a cell surface marker) can distinguish stem cells from TA 

cells, as stem cells express 3-5 fold more than TA cells (Lowell et al., 2000 and 

Kaur et al., 2004). This was demonstrated earlier by Jones and Watt (1993) 

where β1 integrin levels in cultured human foreskin determined over 2 weeks 

in culture were also found to be high. In addition, other investigators have 
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used different cell surface markers in an attempt to locate stem cells in situ. 

These include a small keratin (K19) which has been used as a stem cell marker 

in hair follicles (Michel et al., 1996; Lyle et al., 1998), whereas, p63 was used 

as a marker for interfollicular epidermis (Pellegrini et al., 2001). According to 

Kaur et al (2004), there are no current assays that can adequately distinguish 

stem cells from their more committed progeny (TA cells), and that 

measurement of stem cell activity requires long-term assays to measure 

sustained epithelial regeneration.  Nevertheless, researchers have so far failed 

to unequivocally establish if all the cells in the basal layer are stem cells or 

whether only a small number of stem cells exist (Fuchs, 2008). Although, 

distinct stem cells do serve different regions of skin, some do have the 

capacity to regenerate other regions when necessary. Thus, hair follicle bulge 

cells can regenerate interfollicular epidermis as well as the hair follicle, under 

the right conditions. However, it is not yet fully understood how stem cells are 

controlled so they can contribute to different levels of cell renewal at 

different times (Kaur and Potten, 2011). 

  

It is important to point out that stem cells are regulated by signals from 

surrounding keratinocytes. This behaviour is defined by an orchestrated 

interaction between intrinsic transcriptional programmes and external signals 

from local tissues (Fuchs et al., 2004; Watt and Driskell, 2010; Collins et al., 

2011). To execute different programmes of terminal differentiation, stem cells 

must be instructed by signal transduction at an early stage. However, the 
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nature of these signals remains unclear and the mechanism by which stem cell 

activity is regulated during tissue regeneration is still poorly understood 

(Lowell et al., 2000; Fuchs et al., 2004; Collins et al., 2011). However, an 

emerging network of signalling pathways has established that one gene (p63) 

controls stem cells at a certain stage in their development and their later 

commitment to differentiation of the epidermis (Koster and Roop, 2008). This 

was proven by Lechler and Fuchs (2005) where the data suggested that p63 

and β1α-catenin have a role in directing asymmetrical cell division in the 

epidermis. In addition, c-Myc also has an influence on stem cell fate where it 

stimulates stem cells to generate TA cells (suggested by Gandarillas and Watt, 

1997). 

 

1.1.3 Epidermal Differentiation (Keratinisation) 

Keratinocytes are the most abundant cell type in the epidermis and 

considered to represent 80% of the total cell population. They are highly 

specialized epithelial cells that perform specific functions required for 

epidermal renewal, cellular cohesion, and barrier formation (Gambardella et 

al., 2003). They are organized as four different layers (see Figure 1.1): basal, 

spinous, granular and corneum (Eckert and Rorke, 1989; Lee et al., 2010). In 

thicker skin at some locations, a fifth layer (stratum lucidum) can also be seen. 

Other minor cell types are also present in the epidermis such as Merkel cells 

(associated with sensory nerve endings), Langerhan’s cells (dendritic cells for 



22 

 

immune surveillance) and melanocytes (produce melanin to protect against UV 

damage).  

 

Keratinocytes are attached to each other by adhesive intercellular junctions 

known as desmosomes. These structures can bind intermediate filaments to 

an inner plaque at the plasma membrane and adhere to each other using 

intercellular proteins, desmocollins and desmogleins, which are members of 

the cadherin super family of calcium dependent adhesion molecules (Garrod 

and Chidgey, 2008). The term was introduced by Josef Schaffer in 1920 and is 

derived from a Greek word (desmo) meaning bond and (soma) meaning body 

(Delva et al., 2009). Interestingly, they were first observed under the 

microscope by Bizzozero (1846-1901) and his insightful interpretation defined 

them as adhesive cell-cell contacts (Matoltsy, 1975; Amagai and Stanley, 

2011). In the 1960’s, Odland and his colleagues revealed that desmosome 

organization was more complex. Furthermore, Matoltsy (1974) isolated 

desmosomes from bovine nose epidermis using biochemical methods and 

defined several proteins.  

 

As the epidermis endures many mechanical stresses, it is crucial for 

desmosomes to form strong anchoring junctions between keratinocytes. As 

intermediate filaments also attach to the inner plaque, these sites of 

intercellular adhesion form a supra-cellular network of scaffolding that can 

http://en.wikipedia.org/wiki/Melanin
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facilitate and distribute mechanical forces throughout the epidermis (Green 

and Simpson, 2007).   

 
Figure ‎1.1: Schematic Illustration of the Structure of Human Epidermis. 

Epidermis has four major layers: basal layer attached to the basement 

membrane, spinous layer, granular layer and the upper stratum corneum 

(adapted from Zouboulis et al., 2008). 

 

This dynamic structure is critical for maintaining keratinocyte stability. In 

addition, there is evidence that desmosomes play a role in cellular process 

beyond that of cell adhesion (Delva et al., 2009). In fact, desmosomes appear 

to contribute to cell signalling, development and differentiation in various 

tissues including the skin (Garrod and Chidgey, 2008; Petrof et al., 2011). This 

means, they can participate in fundamental processes such as cell 

proliferation, differentiation and morphogenesis. In particular, desmosomal 

cadherins modulate intracellular signalling, control differentiation and may 

induce a switch from proliferation to differentiation upon stratification (Ishii 

et al., 2001; Garrod and Chidgey, 2008; Petrof et al., 2011). A similar related 
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structure, the hemidesmosome, anchors epidermal basal cells to the 

basement membrane zone. As the name suggests, this is a half-desmosome 

on the baso-lateral surface of the basal keratinocyte and a different set of 

specialised adhesion proteins connects this structure to the collagen fibres of 

the underlying dermis.   

      

As cells move from the deeper basal layer outwards to form the spinous, 

granular and cornified layers, they become specialized and this is reflected by 

alterations in specific mitotic and synthetic properties as well as obvious 

changes in morphology.  Early efforts by Epstein and Maibach (1965) 

calculated an accepted value of 28 days for normal human epidermis to turn 

over (from stem cell division to desquamation). This time includes stem cell 

division, TA cell amplification, programmed terminal differentiation, granular 

cell apoptosis, cornification and corneocyte desquamation.  

 

A series of genetic changes accompanied by specific metabolic events occur as 

the state of keratinocyte differentiation changes, a process called terminal 

differentiation or keratinisation (see Figure 1.2). Thus, keratinocytes have a 

relatively short life span in which they undergo a specific cycle of programmed 

cell death with rapid metabolism, growth and differentiation (Schallreuter and 

Wood, 1995). This process maintains structural stability of the epidermis and 
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is dynamic so that epidermal cell renewal is balanced by cell removal at the 

skin surface to maintain a constant thickness (homeostasis).  

 

It is important to point out that during keratinisation, keratinocytes change 

size and shape accordingly. As soon as keratinocytes move into the supra-

basal layer, the nucleus and cell body become larger and progressively assume 

a more flattened shape. In the granular layer below the stratum corneum, the 

nucleus breaks down, and organelles are removed. Lamellar bodies secreted 

by keratinocytes migrate towards the cell periphery, where they release their 

content of specialised lipids into the intercellular space in the form of 

hydrophobic cement. Finally, at the base of the stratum corneum, the “living” 

keratinocyte loses its nucleus and organelles to become a “dead” corneocyte. 

Corneocytes are not totally dead cells but they are unable to undergo any 

further gene transcription. However, the cells are full of structural proteins 

and have the enzymes required for desquamation. The epidermis therefore 

provides a waterproof barrier that is constantly renewed from the basal layer 

stem cells below. 

 

At each stage of differentiation, epidermal cells become more specialized and 

alter both in structure and function. These changes in cellular differentiation 

are controlled by both extrinsic and intrinsic factors determined mainly at the 



26 

 

gene level, so studying the detailed molecular changes that occur will allow a 

more detailed understanding of the process of epidermal keratinisation. 

 

 

 
Figure ‎1.2:  Organization of Keratinocytes and Corneocytes in the 

Epidermis. Keratinocytes at the basal layer are Hemidesmosomes 

anchor basal cells to BMZ (Basal Lamina) while desmosomes anchor 

basal cells (and suprabasal cells together). Keratinocyte structural 

stability is maintained by desmosomes in all living cells. They are 

replaced by corneodesmosomes in cells of the stratum corneum 

(adapted from Blanpain et al, 2006; Denecker et al., 2008).    

 

1.1.4 Keratin Expression in the Epidermis 

Intermediate filaments (IF) in epidermal keratinocytes are composed of 

keratin protein subunits. They form a 3D filament network around the cell and 

hold major organelles in place. However, there are several keratin proteins 

that form IF in the epidermis and their expression alters as cells proliferate 



27 

 

and differentiate (Bowden et al., 1987). The filaments in basal cells are 

constructed from two keratins, K5 (a larger basic type II keratin) and K14 (a 

smaller acidic type I keratin). In addition, smaller amounts of K15 and K19 

have also been reported in basal cells. However, as keratinocytes commit to 

terminal differentiation and move to a supra-basal position, they change their 

gene expression (Eckert and Rorke, 1989). K5 and K14 are specifically down-

regulated and differentiation related keratins (K1 and K10) are up-regulated. 

Spinous cells contain all four keratins (K1, K5, K10 and K14) but as further 

growth and differentiation occurs, granular cells contain more K1 and K10 as 

K5 and K14 are progressively diluted out. 

 

In addition, the cells of the upper spinous and granular cell layers express an 

additional keratin, K2. This is a marker of late differentiation and is believed to 

play a role in cornification. However, the precise role of K2 during late 

differentiation remains poorly understood (Collin et al., 1992; Bikle, 2004; 

Sporl et al., 2010).  

 

No additional keratin gene expression occurs in the stratum corneum at the 

skin surface. However, the keratins here do not show the same biochemical 

profile as those in the lower living layers due to post-translational 

modification that removes the basic terminal sequences from these 
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differentiation-related keratins (K1, K10). This renders the proteins smaller 

and more acidic than the original gene products (Bowden et al., 1984). 

 

Keratin filaments terminate at desmosomes and anchor into the desmosomal 

plaque on the inner plasma membrane. They do not pass through the 

desmosome, the two halves of which are held together by intracellular 

interactions between desmocollins and desmogleins. 

 

In addition to alterations in keratin gene expression, many other specific 

proteins are required for successful terminal differentiation and to hold the 

epidermis together. A few are synthesised in spinous cells (e.g. involucrin) but 

the majority are products of the granular cell (e.g. loricrin and filaggrin). 

Granular cells contain two types of keratohyalin granule (KHG): L-granules 

contain and release loricrin, a major component of the cornified envelope 

while F-granules contain and release filaggrin, essential for the close packing 

of keratin filaments in corneocytes. Granular cells also contain lamellar bodies 

(“membrane coating granules” or “Odland bodies”) which were first described 

by George Odland in 1964 (Ro et al., 1964). Lamellar bodies contain various 

types of complex lipid including ceramides (Blanpain and Fuchs, 2006). These 

form complex intracellular lipid bilayers that fill the space between 

corneocytes with a lipid rich environment that prevents the passage of 
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aqueous molecules. This lipid barrier also prevents water getting out so 

prevents dehydration via the skin.    

 

The other important part of the barrier is the cornified cell envelope. This is 

made by cross-linking a number of specialised proteins (e.g. loricrin, 

involucrin, envoplakin, periplakin, small proline-rich proteins, etc) to the 

transmembrane integrins of the granular cell by the action of 

transglutaminase. In this way, the cell membrane is significantly thickened 

and made impervious to water and small molecules. The envelope fills in the 

plasma membrane between the desmosomes and these are further modified 

to form corneodesmosomes so that the corneocytes and held firmly together 

at the skin surface. This protects the human body from external 

environmental factors (Chu and Morris, 2005). Once the cells reach the outer 

surface of the skin, the corneodesmosomes break apart under the influence 

of proteolytic enzymes and the outermost corneocytes are shed in a process 

called desquamation (Hoath and Leahy, 2003;  Barai et al., 2008).  

 

The integrins form another important family of structural molecules in the 

epidermis. Integrins are transmembrane proteins that act as cell surface 

receptors to transfer information between the outside and inside of the cell. 

They are very important for regulating epidermal growth, development and 

wound repair. They consist of two different glycoprotein subunits (alpha and 
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beta chains). Basal cells have a very specific profile of integrins (α2β1, α3β1 

α5β1 and α6β4) and these alter with epidermal differentiation (Jones et al., 

1995; Deyrieux and Wilson, 2007).  The α6β4 integrins occur on the baso-

lateral surface and form part of the hemidesmosome. This keeps the basal cell 

firmly anchored to the basement membrane zone (BMZ). During epidermal 

differentiation α6β4 integrin distribution becomes more diffuse and is part of 

the mechanism that releases cells from the BMZ. Suprabasal cells express 

α2β1 and α3β1 which are involved in sticking epidermal cells together in 

addition to the desmosomes. Interestingly, their function switches from 

contact between cells to contact with wound matrix molecules during wound 

repair. Finally, α5β1 is expressed only in migrating cells shortly after wounding 

(De Luca et al., 1994; Ginsberg et al., 2005).    

 

1.1.5 Calcium Regulation of Keratinocyte 

Differentiation 

During migration of cells from the basal layer to the stratum corneum, 

keratinocytes change dramatically both in terms of morphology and cellular 

biochemistry. In recent years, much progress has been made in relation to 

understanding some of the detailed molecular mechanisms behind this 

process.  
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Calcium is critical for controlling the balance of proliferation and 

differentiation in epidermal keratinocytes (Eckert and Rorke, 1989). 

Extracellular calcium suppresses proliferation and promotes differentiation of 

keratinocytes (Yuspa et al., 1989). Other studies have also shown that calcium 

signalling is important and a sustained increase in calcium levels is necessary 

for induction and maintenance of terminal differentiation (Oda et al., 2000; Tu 

et al., 2001). Pillai et al (1990) have shown that extracellular calcium can also 

act as a modulator and activator keratinocyte differentiation. This was 

examined by a comparative study with cultured keratinocytes, using both the 

HaCaT cell line (Boukamp et al., 1988) and normal human keratinocytes 

(NHK). Increasing the extracellular calcium concentration from 0.09 mM to 1.2 

mM could induce morphological and biochemical changes in keratinocytes 

similar to those observed during differentiation in vivo (Micallef et al., 2009).  

 

The effect of extracellular calcium on the induction of terminal differentiation 

in cultured keratinocytes can be followed using markers of differentiation 

such as keratins K1 and K10. These are only found in the spinous layer in vivo 

and are only expressed by differentiating cells in culture. The same is true for 

other markers of differentiation such as involucrin and filaggrin, which are 

localized to the upper spinous and granular cell layers in vivo and again only 

found in the more mature “differentiated” cells in culture (Yuspa et al., 1989). 
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Keratinocytes cultured in low calcium medium (0.05-0.20 mM) grow as a 

monolayer and exhibit properties of basal cells including continuous 

proliferation and expression of basal type keratins (K5 and K14). Adding 

calcium to the medium induces these cells to undergo terminal 

differentiation. A sudden increase in calcium concentration in the culture 

medium arrests cell growth and switches cells into terminal differentiation. 

The morphological and biochemical changes that occur in these cultured cells 

resemble those occurring in suprabasal cells in vivo. This is also accompanied 

by the expression of terminal differentiation markers such as K1, K10 and 

involucrin (Bikle et al., 1996). There have been many studies of both primary 

keratinocytes (mouse and human) and various cell lines (e.g. HaCaT, Ntert) 

and a useful comparison illustrated below in Table 1.1 was published recently 

(Micallef et al., 2009).   

 

Table 1.1: Characteristics of Immortalized and Normal Human 

Keratinocytes. A number of measures of proliferation and 

differentiation are compared (data from Micallef et al, 2009). 

Immortalized Human 
Keratinocytes 

Normal Human 
Keratinocytes 

↑ in proliferation at 20-30% in 
high Ca 

↓ in proliferation at 20-30% in 
high Ca 

Accumulation of S+G2 cells in high 
Ca 

↓ S+G2 cells in high Ca 

Delay in K1, K10, Involucrin in low 
and high Ca 
K1, K10 expressed on day 3 low 
and high Ca 
Involucrin expressed on day 6 low 
and high Ca 

K1, K10, Involucrin expressed from 
day 1 (low Ca) 

K1, K10 and Involucrin ↑ gradually 
in high Ca 
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Organotypic cultures can also be used and here keratinocytes are grown at an 

air-liquid interface. These undergo more extensive differentiation and have 

been successfully used to study various aspects of keratinocyte growth and 

differentiation in the laboratory.   

 

1.2 Notch Signalling Pathway 

1.2.1 Historical Background 

Notch was first described as a genetic trait in the fruit fly (Drosophila 

melanogaster) by an American geneticist and a Nobel Laureate (TH Morgan) in 

the early 20th century (Morgan, 1917). He described a mutated strain of fruit 

fly which had notches in the wing blades and attributed this to a lack of gene 

function (haploinsufficiency). However, the gene involved was not isolated, 

analysed and sequenced until the 1980s.  

 

The initial characterization of notch mutants in Drosophila was done by 

Poulson while describing drosophila gut formation in the embryo (Poulson, 

1945). During that time (1937-1945), he examined embryological effects of an 

extensive series of notch locus deficiencies and managed to identify several 

other defects in embryonic and adult tissues. Later work showed that the 

Notch pathway was not only essential for Drosophila development but was 

necessary for all animal tissues (Wharton et al., 1985; Kidd et al., 1986; Fior 
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and Henrique, 2009). Furthermore, this work indicated that notch mutants 

were not only involved in the development of the nervous system but also in 

many cell fate decisions that take place in other animal tissues (Atravinas-

Tsakonas, 1999). 

 

Interestingly, the observations by Poulson helped to clarify the importance of 

notch activity, and how the absence of notch genes can lead to hyperplasia of 

neural tissue at the expense of epidermis (Lehmann et al., 1983; Fior and 

Henrique, 2009). Also, the notch pathway was identified as a cascade of 

interacting neurogenic genes that function to control the formation of the fly 

nervous system (Vassin et al., 1985). The molecular analysis and sequencing of 

notch homologues was independently undertaken by Wharton and colleagues 

in the 1980’s (Wharton et al., 1985). In the early 1990s, the four mammalian 

homologues of notch (Notch 1–4) were identified (Hansson et al., 2004).  

Ligands and co-receptors have now been identified in several species (Table 

1.2).  
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Table 1.2: Notch Receptors, Ligands and Co-activators in Different Species 

(data summarised from Fior and Henrique, 2009)  

Species  Drosophila C. elegans Chick Mammals 

Receptor Notch 
Lin-12      
glp-1 

Notch1 
Notch2 

Notch1 
Notch2 
Notch3 
Notch4 

Ligands 
Delta 

Serrate 

Lag-2      
Apx-1      
arg-2 

f16b122 

Delta1 
Delta4 

Jagged1 
Jagged2 

Dll-1         
Dll-3         
Dll-4 

Jagged1  
Jagged2 

CSL Su(H) Lag-1 
CBF1/ 

RBPJK 

CBF1/ 

RBPJK 

MAM Mam Lag-3 
Mam1  
Mam2  
Mam3 

Mam1  
Mam2  
Mam3 

 

1.2.2 Notch Signalling in Epidermal Development 

Normal epidermal homeostasis requires a tight control of proliferation and 

differentiation programs within the epidermis. It is well known that notch 

signalling regulates epidermal cell adhesion and all the necessary components 

are expressed in epidermal keratinocytes (Panelos and Massi, 2009) 

 

In recent years, there has been considerable progress in identifying the 

signalling pathway that regulates epidermal differentiation. It is important to 
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point out that movement of signals from outside to inside the cell is 

fundamental to many biological processes that take place in the skin and 

other tissues. This requires an interaction between two cells (a sending cell 

and a receiving cell) where specific signal transduction takes place. This 

means, cell growth or differentiation in the skin is somehow functioning in an 

integrative manner in which cellular processes are controlled (Lefort and 

Dotto, 2004).  

 

However, signal transduction can also be mediated by several other factors 

such as ion movements into and out of the cell and by modifying proteins by 

phosphorylation (Iversen et al., 2005). Thus, multiple signals from surrounding 

keratinocytes are involved in inducing the maturation of an individual 

epidermal cell. Several important signalling cascades have been implicated in 

the control of keratinocyte differentiation. These include the Wnt/β-Catenin 

pathway (Huelsken et al., 2001), Sonic Hedgehog (Shh) (Fan and Khavari, 

1999; Hurlbut et al., 2007), NF-Κappa B (Seitz et al., 1998; Nickolof et al., 2002) 

and c-Myc (Gandarillas et al., 1997). Homeobox (HOX) genes are also 

considered as a critical player in the embryologic development of skin (Scott 

and Goldsmith, 1993). In addition, bone morphogenetic protein (BMP) 

signalling is expressed throughout most of the developing skin epithelium and 

this appears to inhibit the early stages of hair follicle morphogenesis (Andle et 

al., 2004; Blanpain and Fuchs, 2006). Notch signalling has now been added to 
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the list of intercellular communication pathways that are involved in cell fate 

determination within the skin.  

 

A broad spectrum of developmental processes is regulated by notch signalling 

(Artavanis-Tsakonas et al., 1999). There are a number of core players that 

participate and the initial interaction requires contact between two 

transmembrane proteins, a notch receptor on one cell and a delta-jagged 

family ligand on an adjacent cell (Fortini, 2001). However, there are 4 different 

notch receptors and 5 different ligands in human cells making interactions 

complex. Differential expression of notch receptors and ligands can vary in 

interfollicular epidermis and skin appendages, correlating with distinct cell 

fates and the control of different programmes of differentiation.  

 

Several studies have established a dual role for notch-mediated changes in 

some cells. For example, Notch 1 allows basal cells to detach from the BMZ by 

down regulating integrins but at the same time, it promotes early up-

regulation of differentiation markers such as keratins (K1 and K10) and 

involucrin. It also prevents the induction of loricrin and filaggrin in the lower 

epidermis so these molecules are only expressed in the granular layer.  
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Recently, it was shown by Moriyama et al (2008) that notch signalling induces 

granular cell differentiation and, simultaneously, prevents premature 

differentiation of spinous cells due to the simultaneous existence of both a 

transcriptional activator and repressor downstream of notch during epidermal 

development (Figure 1.3). 

 
Figure ‎1.3: Expression of Notch Receptors, Ligands and Target 

Genes in Human Epidermis (adapted from Watt et al., 2008). 

 

The original notch signalling pathway components (e.g. delta (DLL) and 

mastermind (MAM) genes) were isolated from neurogenic tissues of 

Drosophila (Egan et al., 1998). The notch signalling pathway is a process of cell 

to cell communication that mediates short signals that are able to regulate 

cell fate decisions and maintain stem cell populations.  
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The notch gene encodes a single transmembrane receptor protein (Figure 1.4) 

that contains many EGF repeats and three membrane-proximal repeats 

(Lin12/Notch/Glp-1). The intracellular domain also has four distinctive 

regions: a RAM domain, ankyrin repeats, TAD and PEST domains (Baron, 

2003). This polypeptide is synthesised in the endoplasmic reticulum, cleaved 

into two portions and these are linked in a non-covalent manner by the 

heterodimerization region.  
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Figure ‎1.4: Schematic Structure of Notch receptor. The extracellular region 

of the Notch receptor in Drosophila has 36 EGF-like repeats (coloured in 

purple) but fewer in mammals (29-36, differ in Notch1, 2, 3 and 4). This 

region is where Notch interacts with the ligand and EGF repeats 11 and 12 

are essential for binding. The adjacent  domain, known as a Lin-12 repeat 

(coloured in blue), is rich in cysteine and lies in close proximity to the 

heterodimerization domain (coloured in pink), responsible for binding the 

two portions of the notch receptor together. The intracellular part of Notch 

has four domains: a RAM (RBPjk Associated Molecule) domain (coloured in 

green) that enhances CSL (CBF1/Su(H)) binding, an adjacent series of 

Ankyrin repeats (coloured in orange) that mediate CSL binding and a 

transactivation domain (TAD, coloured in yellow) necessary for DNA 

binding. Finally, the PEST domain (coloured in red) which is rich in proline, 

glutamate, serine and threonine, targets Notch for degradation (adapted 

from Radtke et al., 2005; Fiuza and Arias, 2007). 

 

In Drosophila, notch signalling only requires three gene products: a single 

notch receptor and two ligands (delta and serrate). In contrast, mammals 

have four different notch receptors (NOTCH1, NOTCH2, NOTCH3 and 

NOTCH4), three delta-like ligands (DLL1, DLL3 and DLL4) and two jagged 

ligands (JAG1 and JAG2). The number of notch receptors and ligands also 
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varies with species but despite this variation, notch signalling plays an 

essential role in several developmental processes common to all vertebrates 

(Louvi and Artavanis-Tsakonas, 2006) as shown in Figures 1.5 and 1.6.  

 

 
Figure ‎1.5: Schematic Diagram of Notch Signalling Pathway in 

Drosophila. Notch receptors are single-pass membrane molecules 

activated by Delta-like and Serrate family membrane-bound ligands. 

Notch is transported to the plasma membrane as two cleaved but 

otherwise intact polypeptides. Interaction with ligand leads to two 

proteolytic cleavages that free the intracellular domain (NICD). The NICD 

translocates to the nucleus, where it forms a complex with DNA binding 

proteins (CSL) and displaces a histone deacetylase (HDAc)-co-repressor 

(CoR) complex. Components of an activation complex, such as MAML1 

and histone acetyltransferases (HATs), are recruited to the NICD-CSL 

complex and activate Notch target genes. Note: CBT and SMRT are not 

involved in target gene activation (adapted from the following website; 

http://www.genome.jp/keggbin/show_pathway?org_name=dme&mapno

=04330). 

http://www.genome.jp/keggbin/show_pathway?org_name=dme&mapno=04330
http://www.genome.jp/keggbin/show_pathway?org_name=dme&mapno=04330
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Figure ‎1.6: Schematic Diagram of Notch signalling Pathway in Mammals. 

Notch proteins (Notch 1-4 in vertebrates) are single-pass membrane 

receptors activated by Delta and Jagged families of membrane-bound 

ligands. Notch is transported to plasma membrane as two polypeptides 

bound together at the cleavage site. Ligand interactions lead to two more 

proteolytic cleavages that release the intracellular domain (NICD). The NICD 

translocates to the nucleus, forms a complex with a DNA binding protein 

(CSL) and displaces the histone deacetylase (HDAc)-co-repressor (CoR) 

complex. Components of the activation complex, such as MAML1 and 

histone acetyltransferases (HATs), are recruited to the NICD-CSL complex, 

leading to activation of notch target genes. Note: Hairless and Groucho are 

not involved in target gene activation (adapted from  

http://www.genome.jp/kegg/pathway/hsa/hsa04330.html). 

  

 

1.2.3 Structure of Notch Receptors and Ligands  

There are two main differences in structure between delta and jagged (Figure 

1.7). Firstly, jagged has 18 epidermal growth factor (EGF) repeats while delta 

only has 9. Secondly, the cysteine rich region within the extracellular portion 

of jagged is absent in delta (Fiuza and Arias, 2007). However, both are 

transmembrane receptors and have a cysteine rich called DSL (Delta-serrate-

lig2). This is considered the most interesting region for notch signalling as it 
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mediates the interaction with the notch receptor EGF repeats (11-12 regions 

associated with ligand binding). Moreover, the N-terminal region is crucial for 

this interaction. The structure of the notch receptor and both ligands (delta 

and jagged) is shown in Figure 1.7 below (Fiuza and Arias, 2007). 

 
Figure ‎1.7: Schematic illustration of Notch Receptor and Ligand (Delta, 

Jagged) Structure. Notch ligands (delta, jagged and serrate) are composed 

of a DSL region containing several EGF repeats responsible for receptor 

interactions Jagged (and serrate) also contain an extracellular cysteine-rich 

region but delta does not. Notch has up to 36 EGF-like repeats (in mammals 

varies between 29-36 EGF repeats depending on Notch 1, 2, 3 or 4). EGF 

repeat sites 11 and 12 are sufficient to mediate the interaction. Notch also 

contains a cysteine rich region (Lin-12 repeats) in close proximity to the 

heterodimerization domain that non-covalently tethers the extracellular 

domain to prevent ligand independent signalling. Notch intracellular 

domains have four specific regions: RAM (RBPjk Associate Molecule), 

Ankyrin repeats (mediate the interaction between Notch and CBF1/Su (H)), 

a transactivation domain (TAD) and a PEST domain (involved in notch 

degradation). PM: plasma membrane (adapted from Fiuza and Arias, 2007).  

 



44 

 

1.2.4 Notch Signalling Pathways 

Notch signalling can occur via canonical or non-canonical pathways 

(Figure 1.8). The canonical pathway is notch cleavage dependent while 

non-canonical pathway does not require cleavage of the receptor. 

 

 
Figure ‎1.8: Schematic of Canonical and Non-Canonical Notch Signalling 

Pathways. Canonical notch signalling requires an interaction between 

receptor and ligand that releases the intracellular domain (NICD) by a 

series of proteolytic cleavages. This domain translocates to the nucleus, 

dislodges transcriptional co-repressors and enables gene activation. Non-

canonical signalling does not require intra-membrane cleavage and 

interaction between the receptor and ligand signals via NICD, Trib/Dab or 

other signalling pathways can influence tissue development (adapted 

from Talora et al, 2008). 
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In 2002, Okajima and Irvine suggested that notch signalling via its ligands is 

positively regulated by a trans-golgi protein called OFUT1. However, when 

OFUT1 is over-expressed, it appears to inhibit notch signalling. This 

paradoxical effect was apparently due to increased removal of notch 

molecules from the cell surface (plasma membrane) and their entry into one 

of the protein degradation systems (e.g. the ubiquitin proteasome). This 

mechanism prevents excessive accumulation of notch receptors at the cell 

surface (Sasamura et al., 2007). Thus, how OUFT1 contributes to higher levels 

of notch activation during development is still not clear.  

 

In general, notch signalling is triggered by cell to cell contact and this 

communication is essential for the correct patterning of animal tissues. 

Interestingly, the interaction between the notch receptor and its ligands is 

complex and both serrate and delta can act as signal activators or inhibitors in 

a concentration-dependent manner (Fiuza et al., 2010). The notch receptor is 

presented on the surface of one cell where it can then interact with ligands on 

neighbouring cells. The signalling pathway has several stages (Figure 1.9) and 

these can be defined according to a series of proteolytic cleavages (labelled S1 

to S4). 

 

S1 cleavage takes place in the trans-golgi in mammals during the transport of 

the notch receptor to the plasma membrane but that does not appear to be 
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the case in Drosophila. A study by Kidd and Lieber (2002) using a furin 

resistant receptor showed that S1 cleavage was not required for notch 

function in Drosophila.  

 

However, there is still no consensus concerning the role of S1 cleavage in 

notch function in mammals. Additionally, S1 cleavage appears to have 

different effects on the surface expression of N1 and N2 but is not required 

for pathway activation. Another observation was that ligand binding makes a 

conformational change in the NRR (negative regulatory region) and then 

metalloproteinase cleavage (S2) can remove the extracellular domain (Gordon 

et al., 2009).  

 

The S1 cleavage site acts as a negative regulator of the receptor (NRR) to 

prevent notch activation in the absence of ligand (Kopan and Ilagan, 2009). 

This cleavage is done by an enzyme known as furin convertase within the 

Golgi complex during transport to the plasma membrane. This cleavage of 

mammalian notch receptors yields a non-covalently associated extracellular 

domain and transmembrane subunit which form a hetero-dimeric unit (Rand 

et al., 2000).  

 

The second proteolytic cleavage (S2) takes place at the cell surface after an 

interaction between the receptor on one cell and a ligand (delta or jagged) on 
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a neighbouring cell. This cleavage is mediated by members of the ADAM 

family of metalloproteinases (Gordon et al., 2009). The interaction between 

receptor and ligand exposes an extracellular metalloproteinase sensitive site 

and the cleavage is done by an ADAM metalloproteinase such as TACE. This 

releases the extracellular domain (ECD) but the NICD still remains membrane 

tethered as this cleavage occurs external to the cell membrane. The cell 

membrane tethered NICD is the substrate for the next proteolytic step (S3 

and S4).  

 

In vivo studies in drosophila have shown that these two consecutive cleavages 

(S3 and S4) require presenilin proteins in order to release the NICD and 

activate notch signalling by translocation to the nucleus. In mammals, 

presenilin is associated with a large number of other proteins that make up 

the γ-secretase complex. S3 cleavage takes place within tethered NICD where 

presenilin and nicastrin release a soluble NICD. Interestingly, a recent report 

by Taniguchi et al (2002) suggests that presenilin may not be the protein that 

directly cleaves notch (Baron, 2003). The notch intracellular domain (NICD) 

once released from the plasma membrane can move to and enter the 

nucleus. A repression complex consisting of CSL and co-repressor proteins 

binds to DNA and keeps gene expression levels low (see Figure 1.9).  
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Figure ‎1.9: Schematic Illustration of Notch Signalling Pathway in Mammals. 

Notch receptors on cell surface interact with ligand on a neighbouring cell. 

Receptor-ligand binding triggers notch signalling via a series of proteolytic 

cleavages. The first cleavage by furin convertase (S1) occurs before ligand 

triggering while the second cleavage by a transmembrane metalloproteinase 

(ADAM) termed TACE (transactivation converting enzyme) removes the 

extracellular domain. The final cleavage (S3 & S4) by a γ-secretase complex 

releases the notch intracellular domain (NICD). This can then enter the nucleus 

and displace gene co-repressors. NICD binds to mastermind (MAM) and CSL 

(CBF1, Su(H) or LAG-1) to form a complex that can activate target genes HES 

and HEY family (adapted from Bianchi et al., 2006; Tien et al., 2009;  Yin et al., 

2010). 
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Therefore, in the absence of signalling, transcriptional repression of notch 

target genes occurs in the nucleus. However, once NICD is translocated to the 

nucleus, the RAM domain triggers structural changes in the co-repressor and 

this is displaced. RAM is an essential structure for the association of NICD and 

CSL. In mammals, C-Promoter binding factor 1 (CBF1) functions as the CSL unit 

and once the co-repressor has been displaced, MAM can bind to form a 

ternary complex that acts as a transcriptional activator. The MAM co-factor is 

very important in organizing this complex as it can recruit other proteins that 

play a role in the transcriptional up regulation of target genes (e.g. HES and 

HEY). However, it also recruits cyclin C and cyclin-dependent kinase 8 (CycC: 

CDK8) which can hyperphosphorylate the NICD so that it becomes a target for 

PEST-dependent degradation by Sel10 ubiquitin ligase (Fryer et al., 2004). This 

reduces nuclear levels of NICD and terminates activation of transcription, 

allowing a tight control of notch signalling (Fior and Henrique, 2008).  

 

Notch receptors contain three highly conserved Lin12/Notch repeats and a 

heterodimerization domain (HD) that interacts to prevent premature 

signalling in the absence of ligand (see Figure 1.10). The EGF repeats can also 

be modified by adding various sugars and this allows enzymes such as Fringe 

to modulate receptor activity.  
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Figure ‎1.10: Domain Structure of Notch Receptor Proteins. Notch ligands 

bind to the extracellular domain (EGF repeats 11-12) of the receptor in a 

non-covalent manner. The intracellular domain detaches after a series of 

proteolytic cleavages that releases the NICD. LIN12 repeats modulate 

interactions between extracellular and intracellular domains. RAM 

(CBF1/RBPJ kappa (RBPJΚ) associated molecule in mammals and the 

transactivation domain (TAD) aid release of NICD and allow activation of 

target genes in the nucleus. PEST = Proline-, Glutamic Acid-, Serine-, 

Threonine-rich and NLS = Nuclear Localisation Signal. Transcriptional 

activation domain (TAD) differs among the four notch receptors (adapted 

from Haltiwanger and Stanley, 2002; Wu and Griffin, 2004; Radtke et al., 

2005). 

 

1.2.5  Notch Transcriptional Regulation 

Although the NICD is a short-lived transcription factor, it is possible that some 

notch target genes encode stable transcription factors that could produce a 

sustained activity of the pathway. Signalling depends on the amount of NICD 

inside the nucleus and this only appears to require a low concentration. 

However, in the absence of NICD, CSL will bind to co-repressors (e.g. SMRT, 

SPEN) and these will keep transcription silent.  
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Several mechanisms can regulate the notch signalling pathway. One 

important factor is the presence of the delta ligand. If there is cis interaction 

between the notch receptor and a delta ligand within the same cell, this can 

block interaction of the receptor with a ligand on a neighbouring cell. As a 

result, cis interactions down regulate notch signalling in cells where high 

levels of delta ligand occur on the cell surface (Heitzler and Simpson, 1993). A 

decade later, Baron (2003) showed biochemical data to suggest that delta has 

a direct inhibitory effect on notch receptors and can actively down regulate 

notch signalling in cells.  

 

Another important factor is endocytosis of notch receptors or ligands. There is 

a strong possibility that NICD degradation keeps levels in the nucleus low. This 

mechanism is controlled by two domains: TAD (transactivation domain) and 

PEST (proline, glutamic acid, serine and threonine-rich) domain. The C-

terminal region of the PEST domain is phosphorylated by CDK8, a cyclin-

dependent kinase (Fryer et al., 2004) and such terminal phosphorylation 

targets the NICD for Fbw7/Sel10 ubiquitin ligase, a PEST-dependent 

degradation mechanism in vivo, that maintains low NICD levels in the nucleus. 

 

Endocytosis is considered a major player in enhancing signalling between 

notch receptors and its ligands. In particular, notch receptor activation where 

ligand endocytosis is provoked by mono-ubiquitination which is mediated by 
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E3 ubiquitin ligases, neurilized and mindbomb (Le Borgne et al., 2005 and 

Chitnis, 2006). In addition, Heuss et al (2008) proposed that endocytosis is not 

only required for ligand binding but also for recycling back to the plasma 

membrane and generating a new active ligand. Interestingly, it was found that 

endocytosis in other species is not always the same as in Drosophila. For 

example, endocytosis of DSL ligands is essential for notch signalling in 

mammals but not in C. elegans (Fortini, 2009). 

  

In order for the ligand to be active, neurilized and mindbomb are required and 

work in close association with endocytosis, and are helped by the ubiquitin 

binding protein, epsin (Wang and Struhl 2004; Wang and Struhl, 2005; Bray, 

2006).  

 

It was found that notch signalling can be suppressed by high levels of ligand. 

In other words, the same ligand which interacts with notch in trans (cell to 

cell) in order to get activate signalling are also capable of interacting in cis to 

cause inhibitory effects (Del Alamo and Schweisguth, 2009; Fortini, 2009). 

Although the mechanism is not completely understood, this can be explained 

by a negative feedback loop in which cells receiving the signal down regulate 

ligand expression, thus reducing their ability to signal back, known as trans 

inhibition (Bray, 2006). Moreover, Miller and his colleagues presented new 

evidence suggesting that cis (within the cell) inhibition of Notch pathway by 
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delta in signal sending cells play a role where removal of E3 ubiquitin ligase is 

required for delta signalling at least during eye development (Miller et al., 

2009). In addition, the inhibitory effect can potentially take place at any 

membranous compartment that contributes to developmental changes in the 

tissues and is not restricted to the cell surface. 

 

Glycosylation was also found to play an important role in notch signalling. The 

extracellular domain of notch receptors and the DSL ligands contain a few 

potential sites for N-linked and O-linked glycosylation involving fringe 

glycosyltransferases, such as O-fucosyltransferase (O-fut1 in Drosophila and 

Pofut-1 in mammals) and Rumi (Acar et al., 2008; Fortini, 2009). These 

glycosyltransferases catalyse the elongation of O-fucose by adding N-acetyl-

glucosamine to specific EGF-like repeats in the notch extracellular domain 

(Bruckner et al., 2000). This has a complex effect on notch signalling. Fringe 

increases the affinity between notch and its ligands and at the same time has 

an inhibitory affect on other ligands. For example, O-linked sites on the notch 

extracellular domain are more sensitive to delta than to serrate in the dorsal 

compartment of the Drosophila wing, so notch signalling will be higher via 

delta than via serrate. 

 

The fringe family is more complex in mammals. There are three types of fringe 

proteins known as Manic, Radical and Lunatic. They are all notch signalling 
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modulators and are expressed in various restricted patterns but were found 

to have different effects. For example, delta induces notch 1 activity but 

jagged inhibits notch activity according to studies done in vitro and in vivo 

(Haines and Irvine, 2003; Fortini, 2009).  

 

O-fucosyl-transferases also have an important role in notch signalling. Adding 

fucose to the EGF-like extracellular repeats of the notch receptor allows 

further modification and extension by fringe. In mammals, it was found that 

Pfout-1 is required for the generation of notch receptors as it a requirement 

for transport of the notch receptors to the cell surface (Okajima et al., 2005). 

On the contrary, Rumi was recently identified in Drosophila and it catalyzes 

the addition of O-glucose to specific residues of the notch extracellular 

domain in the endoplasmic reticulum. Its absence may lead to normal notch 

receptor transportation to the cell surface but receptor proteolysis failed in all 

tissues examined causing a severe notch signalling defect (Acar et al., 2008). 

 

Hubbard et al (1997) also suggested that other down regulators of notch 

signalling such as ubiquitin ligase play a significant role. Originally identified in 

C. Elegans, an E3 ubiquitin ligase component known as Sel-10 was found to 

interact with the NICD. It is thought that it may stimulate and trigger 

phosphorylation of the NICD and this consequently increases NICD turnover in 

the nucleus. On the other hand, it regulates the presence of notch receptors 
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on the cell surface. For example, E3 ubiquitin-ligase (Nedd4 in Drosophila) 

targets notch molecules to the late endosome and subsequent degradation. 

Interestingly, Deltex (an E3 ubiquitin-ligase in Drosophila) is considered a 

positive regulator of notch but in mammalian cells it down regulates notch 

activity (Izon et al., 2002; Le Borgne, 2006). Thus, ubiquitin appears to control 

the availability of notch receptors at the cell surface as well as subsequently 

affecting signal strength and the duration of the signal (Fior and Henrique, 

2008). 

 

1.2.6 Target Genes of Notch Signalling 

The main notch targets activated by the ternary nuclear complex belong to 

the HES and HERP gene families. These encode basic helix-loop-helix (bHLH) 

transcriptional repressors whose main function is to implement cell fate 

decisions mediated by notch signalling. In fact, HES and HERP families directly 

affect cell fate decisions as primary notch effectors (Figure 1.11).  

 

Until recently, the HES gene family were the only known effectors of notch 

signalling in mammals.  However, a new understanding of the notch signalling 

pathway was identified with the discovery of the HERP gene family. This 

discovery pointed out similarities between HES and HERP as transcriptional 

repressors. In particular, some amino acid sequences of HERP were closely 

related to those of HES family members (Iso et al., 2003). Despite the 
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similarity in the function of HES and HERP as transcriptional repressors for 

notch signalling, HERP family members employ a different repression 

mechanism (Iso et al., 2002). Interestingly, HERP expression is detected in 

both HES expressing and non-HES expressing tissues (Iso et al., 2003). 

 

 
Figure ‎1.11: Notch1 Function in Epidermis. The epidermis is composed 
of several layers, each in different stages of differentiation. Specific 
proteins are expressed in each cell layer. Notch1 enhances the 
expression of keratin1 and involucrin, and prevents the induction of 
filaggrin and loricrin, which are induced in much later stages (adapted 
from Okuyama et al., 2008). 

 

 

1.2.7 HES and HERP Gene Families 

In Drosophila, Hairy and Enhancer of Split (E(spl)) genes are the primary 

targets of delta-notch signalling but in mammals, the target gene are termed 

HES. The HES family is a basic helix-loop-helix (bHLH) type C protein that can 
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modulate the transcriptional activity of target genes. A decade ago, another 

bHLH family member was identified and named HERP (HES-repressor protein) 

and this family had three members: HERP1, 2 and 3. However, the names 

have changed more recently: HEY (HEY2, HEY1, and HEYL), HESR (HESR2, 1 

and 3), CHF (CHF1 and 2), HRT (HRT2, 1 and 3) and Gridlock. These are all 

crucial elements for the development of segmentation, myogenesis and 

neurogenesis and directly affect cell fate decisions in many tissues (Iso et al., 

2003; Fischer and Gessler, 2007).  

 

Interestingly, HERP was found to have similar domain characteristics to HES as 

well as a related amino acid sequence. Added to that, they are part of the 

larger family of basic helix–loop-helix (bHLH) proteins that regulate 

transcription by acting as repressors. They have a distinct domain structure 

including a specific hydrophobic domain that can form homo- or 

heterodimers. To date, more than 240 bHLH proteins have been identified in 

different species including many in man (Massari and Murre, 2000). They have 

a distinctive function that requires interaction with a specific DNA binding 

site. This interaction is closely mediated by contact between each basic 

domain and a specific half site of DNA consensus sequence (Murre et al., 

1994).  
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Due to the bHLH structural and biochemical characteristics, they can be 

divided into three groups (A, B and C) as illustrated below (Table 1.3). Group C 

are characterized by an invariant proline residue at a specific site in the basic 

domain. Usually, they bind to class C sites (CACGNG) as well as N-box 

sequences (CACNAG). They are also known to bind class B sites to some 

extent but not to class A sites (Fisher and Caudy, 1998; Iso et al, 2003).  

 

Table 1.3: Classification of Basic Helix-Loop-Helix (bHLH) Proteins. 

 
Fisher & Caudy 

(1998) 
 

Massari & Murre 
(2000) 

Protein Type/Function 

Class A 
MyoD, 
Mash1 

Transcriptional Activators 

Class B Myc, Max 
 

bHLH-Leucine Zipper 
 

Class C 

HES, HERP 
 

VI 
 

VII 

 
Transcriptional Repressors 
HLH Proteins lacking basic 

region 
bHLH-PAS Proteins 

 

 

 

A major difference between HES and HERP is a specific proline residue in the 

basic helix-loop-helix region of HES and HERP has a glycine residue in the 

corresponding location. All HES members share the WRPW motif where as the 

HERP family has a YRPW motif or one of its variants: YQPW or YHSW (Figure 

1.12). Additionally, the HERP family has an extra carboxyl terminal region 
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which is absent in HES family. Another difference is that the HERP gene plays 

a critical role in mediating notch effects in both HES and non-HES expressing 

tissues (Iso et al., 2003). The structural similarities and differences among HES 

and HERP protein families are shown below (Figure 1.12). 

 

 
Figure ‎1.12: Schematic of Notch Target Genes (HES, HERP and DEC). 
Conserved domains are marked by distinct colours: The basic domain 
coloured in blue, the helix-loop-helix domain coloured in purple, the 
Orange domain coloured in orange, and the tetra peptide motif coloured 
in red. Potential target genes of Notch are listed on the right. DEC is 
shown because of its similarity to HES and HERP but there is no data 
supporting DEC as a Notch target (adapted from Iso et al., 2003). 

 

1.2.8 Regulation of HES and HERP Gene Families in 

the Epidermis 
 

Seven HES family members (HES1 to HES7) and three HERP family members 

(HERP1 to HERP3) have been described in mammals (Zhong et al, 2000; Iso et 

al, 2002). However, evidence has suggested that only three HES genes (HES1, 

HES5, HES7) but all three HERP genes are potential targets of the notch 

signalling pathway. However, this work was conducted in tissue culture 
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models that do not always reflect the situation in vivo (Iso et al, 2003). Also, 

while strong evidence that HES1, HERP1 and HERP2 were primary targets of 

notch in cultured cells was provided, only HES1 and HES5 are known to be 

true effectors of notch in vivo (Ohtsuka et al, 1999). 

 

Furthermore, experiments in mice showed that notch signalling could affect 

HES and HERP genes differently. Some target genes appear to be 

independent, while a lack of notch signalling can cause a decrease in the 

expression of other target genes. This observation supports the supposition 

that HERP may be a physiological notch effector. Another observation is that 

HERP1 (also called HEY2, HESR2, CFH1 or HRT2) has intrinsic transcriptional 

effector activity and forms a heterodimer with HES1. However, these 

physiological observations still need to be tested directly on target gene 

promoters (Iso et al., 2003). 

 

Another study showed that HES1 expression was not affected in the absence 

of notch. This raises a question as to whether there is an alternative pathway 

that can lead to target gene expression in the absence of notch signalling. 

According to Moriyama et al (2008), HES1 was expressed in undifferentiated 

embryonic stem cells, in foetal tissues, endothelial cells and regenerating liver 

(Katoh and Katoh, 2007). 
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An in vivo study using mice suggested that only HES1 plays an important role 

in the development of the epidermis. Nevertheless, it did show how crucial 

HES1 was for the generation and maintenance of spinous cells during 

epidermal development but the situation in postnatal tissues was not clear. At 

the same time, this indicates how important notch signalling is in the 

development of the nervous system and pancreas. While it is clear that HES1, 

HES5, and HES7 can be induced by notch signalling, it appears that HES2, HES3 

and HES6 expression can be induced independent of notch signalling 

(Moriyama et al., 2008). However, the situation with HES4 is not clear as there 

is still insufficient data available. Other studies, suggested that HERP family 

members can be induced by notch signalling but results are also inconclusive.  

 

 

1.2.9 Role of Notch Signalling in Epidermal 

Development: 

 

Notch signalling is considered a highly conserved pathway essential for cell 

fate determination in embryonic development but less is known about the 

function in adult tissues.  Human epidermis is regulated by notch signalling 

and this is required for the maintenance of stem cells, for proliferation and for 

differentiation into mature keratinocytes (Blanpain et al, 2006). However, 

some details of how this complex terminal differentiation programme is 

regulated in keratinocytes still remain unclear (Nickoloff et al., 2002). While 
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notch signalling in human epidermis may initially promote differentiation, loss 

of notch signalling in the skin may potentiate skin tumour development or 

result in a defect of interfollicular epidermal differentiation (Rangarajan et al., 

2001 and Nicolas et al., 2003).  It is important to point out that notch 

signalling is critically dependent of specific interaction with other signalling 

pathways with possible opposite roles in growth and development of different 

cell types. 

 

It is now well demonstrated that notch signalling plays an important role in 

promoting human T-cell leukaemia. In fact, the proto-oncogenic function of 

notch signalling is also considered in human breast, ovarian cancer and 

melanoma. This was proven experimentally by Lefort and his team where 

suppression of notch signalling by either genetic or pharmacological 

manipulation was sufficient to observe oncogenic changes in primary human 

keratinocytes. Also, gene knockdown of ROCK1/2 and MRCK α in vivo showed 

that those kinases are critical targets in controlling human keratinocyte 

tumour formation through negative regulation by Notch1, and p53 which 

controls the expression of Notch1 in keratinocyte cell lines and tumours 

(Lefort et al., 2007).  

 

In addition, suppression of Notch1 in primary human keratinocytes with 

activated ras causes aggressive squamous cell carcinoma (SCC) formation. A 
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major consequence of Notch1 deletion is impairment of skin barrier integrity 

and the defective barrier may promote tumorigenesis. According to Demehri 

et al (2008), a reduction in notch signalling within keratinocytes impairs the 

ability to execute the terminal differentiation programme resulting in a 

defective skin barrier and death, if areas involved were large. Another 

observation was proposed using reduced notch expression as an experimental 

model suggested that the main effect of Notch1 loss is to provide a 

proliferative signal to initiated cells which can then form tumours and may 

even proceed to invasive carcinomas (Demehri at al., 2009). 

 

Although, most SSCs harbour p53 mutations, additional tumour suppressors 

have been reported such as Notch1 mutations. It is well documented that 

Notch1 mutations occur in majority of T-cell lymphoblastic 

leukaemias/lymphomas. Yet, loss of Notch1 can produce basal cell carcinoma 

like cells or SCCs in mice. In, fact current models suggest that Notch1 can act 

as a transcriptional down regulator due to p53 loss of function, which 

subsequently causes human epithelial malignancies. In addition, there is 

genetic evidence that non-canonical notch function in the skin may also 

contribute to carcinogenesis. Wang et al identified the presence of Notch1 

and Notch2 mutations in 75% of cutaneous SCCs. This observation suggests 

that targeted inhibition of the notch pathway may induce squamous epithelial 

malignancies (Wang et al., 2011). 
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Several studies have examined notch signalling in human epidermis at the 

protein level. Lowell et al (2000) suggested that Notch1 was expressed in all 

living epidermal cells throughout differentiation but DLL1 was confined to the 

basal layer. On the other hand, Wilson and Radtke (2006) provided evidence 

that mRNA encoding Notch1-3 was expressed in the basal layer of human 

epidermis. Estrach et al (2008) also detected suprabasal expression of JAG1 

and JAG2. In addition, Powell et al (1998) detected expression of Notch1 and 

JAG1 at the protein level in hair follicles with Notch1 expression in the bulb 

and ORS while JAG2 was restricted to the bulb and basal layer of the ORS.  

 

A new insight presented by Moriyama et al (2008) suggested that the role of 

notch signalling was to either inhibit or promote differentiation depending on 

the exact cellular circumstances in which it was acting. This was proven in 

another study that highlighted a crucial role for notch signalling in the 

inhibition of epidermal development (Blanpain et al., 2006). 

 

For example, absence of Notch1 in postnatal tissues causes hyperproliferation 

of basal keratinocytes. In contrast, absence of Notch1 during certain stages of 

epidermal development can result in hypoproliferation of the basal layer and 

loss of the granular layer (Blanpain et al., 2006). These contradictory functions 

of the notch signalling pathway in regulating keratinocyte proliferation and 
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differentiation raises questions about the precise role of notch signalling in 

embryonic development and in post-natal adult tissues. In addition, which 

notch signalling pathway (canonical or non-canonical) is active during the 

control epidermal keratinocytes (Rangrajan et al., 2001). However, there is 

still very little evidence of any dynamic regulatory function of notch signalling 

in terms of epidermal differentiation. In order to clarify some of these issues 

with regard to notch signalling and epidermal differentiation, a series of 

experiments have been conducted based on the HaCaT cell culture model of 

calcium-induced keratinocyte differentiation.  
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2 CHAPTER 2: Materials and 

Methods 

Studying the expression of notch receptors, ligands and target genes and the 

control of the signalling pathway in vivo (i.e. in human skin) is not realistic, so 

it is important to have a model that resembles the skin as closely as possible. 

As we have focused on epidermal differentiation, a HaCaT cell culture model 

appeared to be the best option for conducting experiments that can mimic 

the differentiation-related changes observed in human epidermis.  A number 

of different culture experiments were done as only a limited amount of 

material in terms of protein and total RNA can be produced per experiment 

and there is a need to test the reproducibility of such models. Also, in order to 

examine cultures using different techniques such as immunofluorescence 

(IMF), protein electrophoresis (SDS-PAGE) and western blotting, polymerase 

chain reaction (PCR and RT-PCR) and real time quantitative PCR (QPCR), more 

than one set of cultures would be required. Thus, cultures were set up in 

duplicate and sometimes triplicate so that total RNA could be extracted from 

one set, protein from another and IMF done on another so they all used the 

same cells. In addition, specific DNA probes of each signalling pathway 

intermediate were made from isolated total RNA and cloned into pGEM 

vectors to act as quantitation controls for QPCR.  
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2.1 Keratinocyte Cell Culture Models 

Cell culture models are a valuable basic research tool and they have 

significantly helped molecular investigations into the structure and function of 

many different human tissues. For instance, in skin biology, studies of 

keratinocytes in monolayer culture have elucidated many functional and 

structural characteristics of the epidermis.  These cells can stratify to produce 

the typical cell layers found in vivo and allow the study of keratinocyte 

differentiation and production of the cornified envelope (skin barrier). 

Furthermore, if used in raised organotypic cultures, differentiation proceeds 

even further and these models are now considered as an alternative to the 

use of laboratory animals, especially in the pharmaceutical and cosmetic 

industry. 

 

2.1.1 HaCaT Cells 

HaCaT cells are immortalized human keratinocytes that replicate indefinitely 

at low density but are able to differentiate at high density. Furthermore, high 

concentrations of calcium in the culture medium can increase the potential of 

these cells to differentiate. In low calcium (0.06 mM) medium, the cells are 

flat and spindle like with an absence of cell to cell adhesion. However, when 

the cells are exposed to high calcium levels (1.8 mM), they switch from 

proliferation to differentiation. The cells become cuboidal in shape and form 

compact organised groups with strong cell to cell adhesion via desmosome 
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junctional complexes. In addition, once they become confluent, they can also 

stratify forming several vertical layers of cells.  

 

One advantage of using a HaCaT cell model is that these cells retain most of 

the features of normal epidermal cell morphogenesis and differentiation. At 

the same time, they can be encouraged to enter differentiation in a co-

ordinate manner upon stimulation with calcium. Furthermore, these cells 

express markers appropriate to their state as well as undergoing noticeable 

structural changes as differentiation proceeds. This allows investigation of the 

signalling that underlies the calcium induced-differentiation in a laboratory 

setting. However, as these cells are immortalized, they can vary in growth rate 

and may respond to stimuli in a different way to normal keratinocytes, which 

can affect the validity of the experimental results obtained.  

 

The HaCaT cell line was provided by Prof. N.E. Fusenig (Deutches 

Krebsforschungszentrum [DKFZ], Heidelberg, Germany). Frozen HaCaT cells 

were stored in cryogenic ampoules in liquid nitrogen and the current research 

project used cells from passage 39-41. Stock cells were stored in a cryo-

protective medium containing foetal bovine serum (FBS from Lonza, Slough, 

UK) and 10% dimethylsulphoxide (DMSO, Sigma Aldrich, Gillingham, UK). An 

aliquot of cells was thawed at room temperature (RT) and then re-suspended 

in 10ml of pre-warmed Dulbecco’s Modified Eagle’s Medium (DMEM from 
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Invitrogen, Paisley, UK) containing 10% FBS and antibiotics (100 units/ml of 

penicillin and streptomycin from Lonza, Slough, UK). All cell manipulations 

were performed under sterile conditions in an aseptic environment within a 

class 1 containment cabinet. HaCaT cells were grown in 75cm2 culture flasks 

(Corning flasks supplied by Western Laboratory Solutions, Horndean, UK) with 

vented caps and incubated at 37:C in air containing 5% CO2 (MCO-17AIC 

incubator, Sanyo, Loughborough, UK) until they reached 70-80% confluence. 

The DMEM medium was changed every other day and cells were passaged 

every 5-6 days.  

 

In order to passage the HaCaT cells, they were detached from the surface of 

the culture flask using trypsin. Initially, the cells were washed three times with 

sterile phosphate buffered saline (1x stock PBS from Lonza, Slough, UK) and 

then 5 to 10ml Trypsin-EDTA solution (0.5 mg/ml Trypsin, 0.2 mg/ml EDTA 

from Lonza, Slough, UK) was added to the culture flask. This was placed in an 

incubator at 37°C for 5-15 minutes depending on cell density. The cells were 

dislodged from the flask base by tapping the sides and then transferred to a 

50 ml polypropylene tube containing 15ml of DMEM supplemented with 10% 

FBS. The tubes were centrifuged at 1500 rpm for 5 minutes at RT (Centra-4B 

centrifuge from IEC, Massachusetts, USA), the medium was carefully poured 

off and the cells were re-suspended in 5ml DMEM supplemented with 10% 

FBS and antibiotics (as detailed above). Three new flasks each containing 10 

ml of DMEM containing 10% FBS and antibiotics were prepared and 1ml of the 
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re-suspended cells added to each flask to provide sub-cultures for subsequent 

experiments. The new flasks were labelled with the passage number and date, 

and then incubated for 3-5 days at 37 °C in 5% CO2. Some of the generated 

HaCaT cultures are then frozen down for future use. 

 

To freeze down HaCaT cells, they should initially be grown as usual in DMEM 

medium with 10% FBS until they are 80% confluent. Then the medium was 

poured off leaving the cells adhering to the plastic dish. The cells were then 

washed three times with 1ml of sterile 1x PBS and then incubated in Trypsin-

EDTA (0.25% of Trypsin with 1mM EDTA) solution at 37°C for 5 minutes. Cells 

were dislodged from the flask by tapping the sides gently and then transferred 

into a 50ml tube containing 15ml DMEM + 10% FBS. The tubes were 

centrifuged for 5 minutes at 1500 rpm (RT) in a Centra-4B (IEC, 

Massachusetts, USA). The supernatant was removed and the cells re-

suspended in 10 ml of freezing medium (FBS + 10% DMSO). The re-suspended 

cells were pipetted into a series of 1ml cryovials (Corning, NY, USA) labelled 

with the cell line, passage number and date. These were initially frozen in a -

85°C freezer for 1-2 days and then transferred into a liquid nitrogen storage 

container (BIO36, Statebourne, Washington Tyne & Wear, UK) for long term 

storage.  

 



71 

 

2.1.2 Calcium-Induced Differentiation 

When HaCaT cells growing in DMEM reached 70-80% confluence, they were 

transferred to keratinocyte growth medium (KGM). Cells were washed with 

PBS and trypsinized as detailed above then centrifuged (1500 rpm, 5 mins, RT) 

and re-suspended in 5ml of KGM medium (Lonza, Slough, UK) containing 

0.06mM CaCl2 (low calcium medium), bovine pituitary extract (BPE), hEGF, 

insulin, hydrocortisone, genatmicin sulphate and amphotericin B. The cell 

density was assessed using a haemocytometer under a light microscope and 

the cell density of the original sample calculated as described below (See 

Figure 2.1).  

 

 
Figure ‎2.1: Counting cells under Light Microscope using a 
Haemocytometer. Add cell suspension to haemocytometer and 
seal with cover slip.  Count living cells (bright and round) in 4x4 
grid (16 squares) but not cells outside the blue line. Total 
number of cells counted in a 4x4 grid x104 equals cell count/ml 
(e.g. if 82 cells were counted then there were 8.2x105 cells/ml).    
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Culture experiments required 7 large (10cm) petri dishes which were plated at 

a density of 4.5x105 cells per dish (in 6ml of medium), requiring a total of 

3.15x106 cells (7 x [4.5x105]) in 42 ml (7 x 6ml) of medium. For one 

experiment, cell counting results gave a density of 8.2x105 cells/ml so for 

seven dishes the total volume of cell suspension needed would be 3.84ml 

(31.5x105 divided by 8.2x105). This was then diluted to a total of 42.0 ml by 

adding 38.16 ml low calcium medium, mixing gently and then, adding 6ml of 

the cell suspension to each dish. 

 

The larger 10cm dishes were seeded at a density of 450,000 (4.5x105) cells for 

RNA/protein extraction while smaller 3.5 cm dishes containing four cover slips  

used for IMF were seeded with 100,000 (1x105) cells, both in low calcium KGM 

medium. In order to assess HaCaT cells that were still proliferating and 

actively growing, one dish of cells was harvested at 3 days (about 30% 

confluent) and another dish at 5-6 days after plating (70-80% confluent). At 

this point, terminal differentiation was induced in the cells by altering the 

calcium level to 1.8 mM. A third dish was kept in low calcium medium for 

another 6 (or 10) days and then left to grow until the end of the experiment 

(harvested on day 12 or 16 depending on the experiment). Three sets of 

plates (four in some experiments) were grown for 5-6 days in low calcium 

medium and then switched to KGM medium containing high calcium (1.8 

mM). These were also harvested at intervals (see Figure 2.2). 
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Figure ‎2.2: HaCaT Calcium Shift Assay. Cells initially grown in 

DMEM with 10% foetal calf serum until confluent. Trypsinized and 

re-suspended in low Ca KGM medium then transferred to 7 

dishes, one for each time point. A sample was taken on day 3 

(about 30% confluent) and another on day 6 (70-80% confluent). 

At this stage, 4 dishes of cells were shifted to High Ca KGM 

medium while one dish was kept in low Ca KGM throughout the 

experiment. Cells were then grown in high calcium medium for up 

to 10 days (harvest after +1, +3, +6, +10 days). Cells in low Ca 

medium for 16 Days were also collected.   

 

2.2 Immunofluorescence (IMF) 

Proteins (or antigens) can be detected in tissues and cells using a technique 

called immunofluorescence (IMF) microscopy. There are two general 

approaches, direct or indirect. Direct immunofluorescence requires a 

fluorescent dye that is attached to the primary antibody, which can then be 

used to localize the respective antigen in a tissue or cell by fluorescence 

microscopy. Indirect immunofluorescence is more sensitive because this 

involves a three step rather than a two step method. Here, the fluorescent 
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dye is linked to a secondary antibody that is used to detect the primary 

antibody in a species specific manner (see Figure 2.3). 

 

 
Figure ‎2.3 : Schematic Representation of Two Immunofluorescence 

Methods. Direct immunostaining (usually a two step method) requires a 

fluorophore that is attached to the primary antibody (usually by biotin-

streptavidin) and the complex is directed towards the tissue antigen. 

Indirect immunostaining (usually a three step method) requires unlabelled 

primary antibody that is used to detect the tissue antigens of interest and 

then the primary antibody is labelled with a species specific secondary 

antibody linked to the appropriate fluorophore.  

 

One advantage of immunofluorescence is that the technique can also be used 

to visualize two or more antigens within the same tissue or cell sample at the 

same time using different colour fluorescence. However, this requires that the 

primary antibodies are derived from different species and the secondary 

antibodies are species-specific so that no cross-reactivity occurs. A different 
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fluorescent dye can then be attached to each secondary antibody and so two 

different antigens can be localised in different colours (see Figure 2.4). 

 
Figure ‎2.4: Schematic of Double Immunofluorescence. A labelled 

secondary antibody raised against mouse IgG (Rabbit anti-mouse) and 

conjugated to a fluorescent probe (e.g. green) can specifically detect any 

primary antibody raised in mouse. Another secondary antibody raised 

against goat IgG (Rabbit anti-goat) and linked to a different fluorescent 

probe (e.g. red) can specifically detect any primary antibody raised in 

goat. Thus, in the tissue section one antigen is decorated green and the 

other red while yellow denotes the presence of both in the same place.  

 

2.2.1 Tissue and Cell Preparation 

Cultured cells grown on glass cover slips were treated with specific rabbit 

polyclonal or mouse monoclonal antibodies (see Table 2.1). For double 

immunofluorescence, the primary antibodies were either added as a mixture 

or added sequentially. However, each primary antibody should be used at its 

optimal concentration (usually diluted in 1x PBS). The primary antibodies were 

then detected by species-specific secondary antibodies (see Table 2.2) which 

are bound to a fluorescent dye: Alexa 488 (green) or Alexa 594 (red). These 
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dyes can be visualised under a fluorescence microscope and the location of 

antigens within the cells can be observed and digitally recorded. 

2.2.2 Antibodies   

Polyclonal and monoclonal antibodies are widely used in research as well as in 

medical diagnostics. They detect the presence of antigens in tissues or cells by 

reacting to various epitopes or regions of a specific antigen to which they 

were originally raised. They are also species specific and generally antibodies 

to human antigens are raised in mice, rabbits or goats. The epitopes can be 

linear or have a requirement for three-dimensional structure, characteristics 

that can limit their use. The optimum concentration for each antibody was 

established by testing serial dilutions. Despite polyclonal antibodies being 

sensitive, they are not always monospecifc. This depends on the purity of the 

original antigen used and the response of the animal in which they were 

raised. Therefore, cross-reactivity can be experienced and is especially 

apparent in closely related antigens of the same protein family. 

 

Keratin 10 is well documented as a marker of differentiation and expressed 

predominantly in suprabasal epidermal cells in vivo. A mouse polyclonal 

antibody (Ab24638-50) was commercially available from Abcam (Table 2.1). A 

keratin 14 (K14) mouse monoclonal antibody (LL002) was used as a marker of 

the proliferative compartment as K14 was expressed specifically in basal cells 

of epidermis in vivo.  This antibody (LL002) was originally made in the London 
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Hospital by Prof. Irene Leigh but can now be purchased from Abcam. In 

addition, a rabbit polyclonal antibody to a nuclear marker found in dividing 

cells (Ki67) was purchased from Abcam (Table 2.1).  

 

In order to detect Notch1 receptor expression in basal and/or suprabasal 

epidermal cells in vivo and in cultured keratinocytes, a rabbit polyclonal 

antibody (Ab5702) that was commercially available from Chemicon was 

purchased (Table 2.1). Jagged1, a Notch ligand was detected in human 

epidermal cells in vivo and in cultures with a goat polyclonal antibody (C-20) 

that was purchased from Santa Cruz (Table 2.1). 

 

Table 2.1: Primary Antibodies used for IMF. The species, catalogue 

number, source company and working dilution are listed for each primary 

antibody. 

Antibody Species Cat # Company Dilution Amount 

K14 Mouse LL002 Abcam 1:5 10 µl in 50 µl 

K10 Rabbit Ab24638-50 Abcam 1:25 2 µl in 50 µl 

Notch 1 Rabbit Ab5702 Chemicon 1:25 2 µl in 50 µl 

Ki67 Rabbit Ab16667 Abcam 1:25 2 µl in 50 µl 

Jagged 1 Goat C-20 Santa Cruz 1:25 2 µl in 50 µl 

 

   

There were two different Alexa Fluorescent dyes used in the IMF experiments. 

For instance, Alexa (type 594) which gives red fluorescence was used for the 

keratin 14 mouse antibody. On the other hand, Alexa (type 488) which gives a 

green fluorescence was used for Keratin 10, Ki67, Notch1 and Jagged1 
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antibody detection. Keeping in mind that this fluorescence depends on the 

species of the primary antibody whether it is a goat, rabbit or a mouse (see 

Table2.2). 

Table 2.2: Secondary Polyclonal Antibodies used in IMF. Two different types 

of Alexa fluorescent secondary antibody were used: Alexa 594 (red 

fluorescence) and Alexa 488 (green fluorescence). These also differed in the 

species detected (use mouse, rabbit or goat depending on the species of 

primary antibody). 

 Primary Antibody Secondary  Species Type Dilution Amount 

1 K14 Alexa Mouse 594 1:500 2 µl in 1ml 

K10, Ki67, Notch1 Alexa Rabbit 488 1:500 2 µl in 1ml 

2 K14 Alexa Mouse 594 1:500 2 µl in 1ml 

Jagged1 Alexa Goat 488 1:500 2 µl in 1ml 

 

 

2.2.3 Labelling Procedure 

Cultured cells (HaCaT) were grown on cover slips in 35mm petri dishes and 

were fixed using a mixture of ice-cold methanol/acetone (1:1). The fixed cells 

were then washed with 1x PBS and either processed directly for single or 

double immunofluorescence or left in 1x PBS overnight in the fridge (4°C).  

 

Several 100µl aliquots of blocking solution (TBS + 5% BSA) were pipetted onto 

a piece of parafilm (Nescofilm, KARLAN Research Products, Arizona, USA). 

After fixation, cover slips were removed from the dish, dabbed on filter paper 

to remove excess liquid and then inverted (surface containing cells facing 
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down) onto an aliquot of blocking solution. These were incubated for 30 

minutes at RT after which the cover slips were gently tapped on tissue to 

remove excess liquid. They were then placed face down on a 90 µl aliquot of 

primary antibody diluted in PBS + 0.6% bovine serum albumin (see Table 2.1 

for list of primary antibody working dilutions). The cover slips were incubated 

overnight at 4°C in a humidified dish.  

 

Secondary antibodies were diluted in PBS + 0.6% BSA (see Table 2.2 for 

details) and 100 µl aliquots added to a sheet of parafilm. The cover slips were 

washed three times with PBS (phosphate buffered saline) and after excess 

liquid had been removed, they were placed face down on the secondary 

antibody and allowed to incubate for 30 minutes at RT. 

 

Finally, the cover slips were washed three times in PBS, dabbed dry and 

placed face down on a 70 µl aliquot of DAPI solution (diluted to 1:1000 with 

PBS) for 5-10 seconds. Excess DAPI was removed and the cover slip placed 

face down on a 10 µl aliquot of hydromount placed on a glass microscope 

slide.  These were left for one hour until they were dry and then the cover 

slips were sealed onto the slide with clear nail polish. The slides were stored in 

the fridge at 4°C in the dark until examined under a fluorescent microscope 

with the appropriate filter.  
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2.2.4 Assessment of Results 

A high resolution fluorescence microscope with a digital capture photographic 

system (Nikon Optiphot EFD-3 with Zeiss Axiocam system) was used to view 

the samples and provide images of the specimens studied. This microscope 

has a mercury light source, specific fluorescence optics (x20 and x40) and 

filters for FITC (green), TR (red) and DAPI (blue). These filters also work with 

the green (488) and red (594) Alexa dyes.  

 

HaCaT cells were stained with selected pairs of primary antibodies linked to 

two different coloured fluorescent dye complexes (red or green) and 

counterstained with DAPI (stains nuclei blue). Each slide represents a different 

stage of HaCaT cell growth and differentiation. Individual images were taken 

for each cover slip under red, green or blue filters and recorded using the 

Zeiss Axiocam HRc system. Later, these images can be viewed by Axiovision 

software either as the individual colour images or any combination of the 

images (e.g. red and green, red and blue, green and blue or all three). These 

images were stored on a computer hard drive as both tiff and jpeg files. 

 

2.3 Total Protein Extraction and Analysis 

Total protein extraction is a method where the protein components of 

cultured cells or tissues (human, animal or plant) can be isolated from the 
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other macromolecules in the cells. As total RNA was also sought, a kit that was 

able to isolate both total protein and total RNA from the same sample was 

used (Norgen Biotek RNA/Protein purification kit, Norgen Biotek Corporation, 

Thorold, Canada). This made it possible to isolate both RNA and protein from 

a very small sample and use these extracts to study gene expression in a 

reliable way from a single sample of cells. 

  

2.3.1 Extracting Proteins from Cultured Cells  

Total RNA was extracted from HaCaT keratinocytes grown in 10cm petri 

dishes. The medium was removed from the dish and the cells were washed 

with 2ml PBS at RT. A 700µl aliquot of lysis solution supplied in the 

RNA/protein purification kit (Norgen Biotek Corporation, Thorold, Canada) 

was added to cells in the petri dish and a 1ml syringe was used to mix the cells 

and lysis buffer. The mixture was then placed in a sterile 1ml tube labelled 

with the extraction date and the tubes placed in a -80:C freezer until 

extracted.    

 

In order to extract protein from the stored samples, they were first thawed on 

ice and then an equal volume of isopropanol was added and mixed. An aliquot 

of the lysate/alcohol mixture (up to a maximum of 600 µl) was applied to a 

separation column (from the Norgen Biotek RNA/Protein purification kit) and 

centrifuged (Sigma1-13, Buckinghamshire, UK) at 11,000 rpm for 1 minute at 
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RT.  At this stage, the material eluted from the column can be used for protein 

extraction. The eluate (100µl) was placed into a fresh microcentrifuge tube 

(supplied in kit) and 475µl of molecular biology grade water containing 24µl of 

pH binding buffer was added. The contents of the tube were mixed well and 

up to a maximum of 600µl of pH adjusted protein was transferred into a new 

spin column with a new collection tube attached. This was centrifuged at 

8,000 rpm for 2 minutes at RT. The spin column was inspected after 

centrifuging to ensure that the entire sample had passed into the collection 

tube. Then, flow through was discarded. Once the entire protein sample has 

been loaded onto the spin column, 500µl of protein wash buffer (supplied in 

the kit) was applied to the column and centrifuged at 8,000 rpm for 2 minutes 

at RT. The flow through was discarded and the spin columns were inspected 

for any residual liquid that did not pass into the collection tube. Neutralizer 

(9.3µl) was added to a 1.7ml elution tube (both supplied in the kit) and the 

spin column was transferred into this elution tube. Finally, 100µl of protein 

elution buffer was added to the spin column and centrifuged at 8,000 rpm for 

2 minutes at RT to elute the bound proteins. The columns were discarded and 

the eluate in the collection tubes were transferred to new labelled  1.5ml 

tubes and stored at -20:C (short term) or -80:C for long term storage. 
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2.3.2 SDS-Polyacrylamide Gel Electrophoresis 

Polyacrylamide gel electrophoresis in the presence of sodium dodecyl 

sulphate (SDS-PAGE) is a method of separating a protein mixture into its 

component polypeptides according to size. Separation of proteins of average 

size requires a gel of about 10% but resolving gels in the range of 7.5% to 

17.5% can be used.  

 

Gels were prepared in a plastic cassette held together with bulldog clips and 

sealed at the bottom. This was set up on a tray and the necessary reagents for 

two 10% resolving gels were mixed together (see Table 2.3) and pipetted into 

the cassette. This was filled to a point about 2 cm from the top and a layer of 

water was carefully applied to ensure a flat surface while the gel sets (takes 

about 30 minutes).  

Table 2.3: Preparation of 10% Resolving Gels (SDS-PAGE). 

Stock Components Volume Final Concentration 

1.5M Tris pH 8.8  3.75 ml 0.375M 

30% gel solution  5.00 ml 10% 

dH2O  6.025 ml Not applicable 

10% SDS 150 µl 0.1% 

10% Ammonium persulphate 75 µl 0.05% 

TEMED 7.5 µl 0.05% 

Total Volume 15ml  

 

 



84 

 

A stacking gel is added to the top of the resolving gel and this requires 5ml of 

a 4% gel mix prepared as shown below (Table 2.4). Once the resolving gel was 

set, the water was removed from the top and replaced with the stacking gel 

solution. A comb was then carefully placed into the top of the stacking gel 

mixture which was allowed to set for about 20-30 minutes.  

 

Table 2.4: Preparation of 4% Stacking Gel (SDS-PAGE). 

Stock Components Volume  Final Concentration 

0.5M Tris  pH 6.8   1.25ml  0.125M 

30% gel solution 0.66ml  3.9% 

dH2O 2.98ml  Not applicable 

10% SDS 50µl  0.1% 

10% Ammonium Persulphate 50µl  0.1% 

TEMED 10µl  0.02% 

Total Volume  5ml   

 

 

The sealing strip was removed from the bottom of the gel cassette (prevents 

liquid gel leaking from the cassette before setting occurs). However, the strip 

must be removed to allow the current to flow through gel. The two cassettes 

are placed onto the XCell II™ Module apparatus (Invitrogen, Paisley, UK) with 

the wells facing inwards and the gels locked into place. 

  

Running buffer (80ml of 10x running buffer stock mixed with 720ml dH2O) was 

poured into the apparatus and the protein samples and molecular weight 
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markers were carefully added to the wells. A sample of MagicMark™ XP 

Protein Standard (Invitrogen, Paisley, UK) and low molecular weight range 

marker were loaded first then the samples (15 µl of protein marker mix plus 5 

µl 4x buffer was loaded per well).  

 

Finally, the chamber between the gels was filled up to a point about half a 

centimetre above the wells. The gels were run at 150V (constant voltage) until 

the marker dye reached the bottom of the separating gel. At this point the 

power was turned off and the gels were unlocked. A novex spatula was used 

to crack the cassettes open from the sides and bottom. The stacking gel was 

removed from the cassette and one of the bottom edges of the resolving gel 

cut diagonally for identification. One gel was then stained with Coomassie 

blue R250 (Proteabio Europe, Nimes, France) and the duplicate gel was stored 

in the fridge (2°C) for western blotting.  

 

 

2.4 RNA Extraction 

Total RNA was extracted from HaCaT keratinocytes grown in 10cm petri 

dishes. The medium was removed from the dish and the cells were washed 

with 2ml PBS for few seconds at RT. The PBS was removed and 600µl lysis 

solution (RLT Plus buffer) from the RNeasy Plus Mini Kit (Qiagen Ltd., Crawley, 
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UK) was added to the petri dish and swirled around for about 1 minute to fully 

lyse the cells. A 1 ml syringe with 1” needle (25G) attached was used to 

extract cells from the dish and transfer them to a sterile 1ml tube. The cells 

were then passed through syringe needle 5-10 times to further lyse the cells 

and reduce the viscosity. Tubes were labelled with the extraction date and 

placed in a -80:C freezer until extracted. It is important to point out that the 

volume of RLT Plus required in the step above depends on the size of dish 

used in the tissue culture. For example, a petri dish smaller than 6 cm will 

need 350µl but more than 6 cm will need 700µl buffer. 

 

In order to extract total RNA from the stored samples, they were first thawed 

on ice and then the tubes were placed in a bench centrifuge (Sigma Model 1-

13, Newport Pagnell, UK) at maximum speed (13,000 rpm) for 3 minutes at 

RT. The homogenized lysate was then transferred to a gDNA Eliminator spin 

column fitted with a 2ml collection tube (Qiagen, Crawley, UK). The spin 

column was centrifuged at 11,000 rpm for 30 seconds at RT (Sigma 1-13, 

Newport Pagnell, UK). The column was discarded and 600µl of 70% ethanol 

was added to the eluate in the collection tube. The tube was mixed well by 

pipetting up and down. This eluate of the lysate/alcohol mixture (up to a 

maximum of 700 µl) was transferred to an RNeasy spin column fitted with a 

new 2ml collection tube (supplied in the kit) and centrifuged at 11,000 rpm for 

15 seconds at RT (Sigma 1-13). An aliquot (700 µl) of RW1 buffer was added to 

the RNeasy spin column and this was centrifuged at 11,000 rpm for 15 
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seconds at RT. The eluate (flow through) was discarded and 500µl of RPE 

buffer was added to the column. This was centrifuged at 11,000 rpm for 15 

seconds at RT and the eluate was again discarded. Another 500µl of RPE was 

added to the column which was centrifuged at 11,000 rpm for 2 minutes at RT 

and the eluate discarded. Finally, the RNeasy spin column was placed in a new 

1.5ml collection tube (from the mini kit) and 50µl of RNase-free water (from 

the mini kit) was added directly to the spin column membrane. The column 

and collection tube were centrifuged at 11,000 rpm for 1 minute at RT and the 

total RNA in the labelled collection tubes were placed on dry ice before 

storage in a  - 80°C freezer.  

    

2.5 Polymerase Chain Reaction (PCR) 

Polymerase chain reaction (PCR) is one of the fundamental methods in 

modern molecular biology. The PCR technique was developed in 1983 by Kary 

Mullis. He developed a method by which a desired gene or part of a gene can 

be amplified from a mixed DNA sample by adding a pair of short 

complimentary DNA oligonucleotides known as primers. They bind specific 

regions of cDNA or gDNA and DNA polymerase can copy the region between 

the primers. This enables researchers to produce millions of copies of a 

specific DNA sequence in few hours.  
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The major feature in PCR reactions is the temperature change during the 

reaction, which controls the annealing of the two DNA strands, the activity of 

the DNA polymerase and the binding of primers. However, in the early 

experiments, due to the use of high temperatures, the DNA polymerase had 

to be renewed at every cycle. This is expensive and time consuming. However, 

the discovery of a thermo-stable DNA polymerase (known as Taq polymerase) 

in hot spring bacteria such as Thermus aquaticus revolutionised the 

technique, as a single aliquot of Taq polymerase could be used for the whole 

process (up to 40 cycles).  

 

PCR reactions have three major steps: denaturation of double stranded DNA, 

annealing of the primers to each single strand of DNA and extension of the 

sequence from the primer by Taq polymerase (copies single strand). These 

three operations are done at three different temperatures and are repeated 

for 30-40 cycles (outlined in detail below). 

  

2.5.1 Reverse Transcription PCR (RT-PCR) 

The process of RT-PCR requires two steps: reverse transcription of poly A+ 

mRNA to produce total cDNA and specific PCR amplification of a specific cDNA 

defined by the primers. This can be done separately or as a continuous 

reaction in a single tube. A dilution of isolated RNA was initially measured on a 

spectrophotometer (Pharmacia Gene Quant pro from Pharmacia GE 
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Healthcare, Little Chalfont, UK) to determine the concentration. The RNA 

concentration for each sample was equalised by adjusting the total volume to 

10µl with sterile water. This mixture was then heated at 65:C for 10 minutes 

(hot start) in a PCR machine (ABI Gene Amp PCR System 9700 from Perkin 

Elmer, Norwalk, USA).  

 

A master mixture of five reagents (Oligo dT, reverse transcriptase, dNTPs, 

RNase inhibitors) was prepared in nuclease free (NF) water (see Table 2.5). 

Immediately after the hot start reaction, 20 µl of the reagent master mixture 

was added to the mRNA in each tube.  This was heated at 37:C for one hour 

allowing oligo dT to bind to the poly A tail of the mRNA templates. This 

initiates copying of the mRNA by reverse transcriptase (RT) to make the first 

single strand copy of DNA. 

 

Table 2.5: RT2 COMPONENTS. Illustrates 

the second part of reverse transcription 

reaction mixture component where each 

sample of RNA (10µl) is mixed with 20 µl of 

mixture above post RT1. Note: all the 

reagents are placed on ice at all times. 

Components RT2 Mix 20µl Total  

Oligo dT (Qiagen) 1µl  

RNAse (Qiagen) 0.2µl 

dNTPs (Qiagen) 5µl 

RT (Qiagen) 1µl 

RT buffer (Qiagen) 6µl 

dH2O  6.8µl 
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The RT enzyme also displaces and digests the mRNA template (see Figure 2.5). 

Second strand synthesis then occurs using the first strand as a template to 

produce double stranded DNA. After one hour, the temperature was raised to 

95:C to deactivate the RT enzyme and stop any further copying. Finally, the 

total cDNA concentration was quantified by spectrophotometer and then 

stored at -20:C for later experiments. 

Double 

strand 

cDNA

AAAAA

TTTTTRT

AAAAA

TTTTT
RT

RTAAAAA

TTTTT

Oligo dT primer is 

bound to mRNA

Reverse 

transcriptase 

(RT) copies first 

cDNA strand

Reverse 

transcriptase 

digests and 

displaces mRNA 

and copies 

second strand of 

cDNA

 
Figure ‎2.5: Diagram Illustrating Oligo dT Primed Reverse 

Transcription of Poly A+ mRNA. The oligo dT primer binds to each 

poly A+ mRNA and reverse transcriptase (RT) makes a cDNA copy 

(First Strand) of each mRNA. The enzyme (RT) also digests and 

displaces the original mRNA and then copies the first strand to 

produce a double strand of cDNA.  

 

2.5.2 Standard PCR 

Polymerase chain reaction (PCR) is a method of amplifying a defined section 

of DNA to produce a specified gene, cDNA or exon in huge copy numbers. 
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During the reaction, DNA polymerase activity and primer binding are 

controlled by changes in temperature. A heat-stable DNA polymerase is 

required (e.g. Taq polymerase) that can function at much higher temperatures 

(72:C) than normal (37:C optimum). PCR amplifies the target DNA over 30-40 

cycles. The end point products can then be analysed by agarose gel 

electrophoresis and observed after staining with ethidium bromide (DNA 

intercalating agent that causes DNA to fluoresce under UV light). 

 

PCR is a very sensitive technique so the risk of contamination while carrying 

out these experiments is high. Therefore, care must be taken to avoid 

contamination with other templates (RNA or DNA from the operator, from 

dust particles in the laboratory or contaminants in the reagents). Thus, when 

preparing a PCR master mixture, certified reagents were used including high 

quality nuclease free sterile water. The PCR master mix should be prepared in 

a single tube by mixing together sufficient reagents for the number of DNA 

templates to be amplified in the experiment (see Table 2.6). An aliquot (19µl) 

of the master mix was placed into each individual PCR tube and then 1µl of 

each different DNA template can be added. This makes all of the reactions 

identical apart from the differing DNA template. However, if the target gene 

differs in the experiment, individual master mixes containing the correct 

primers must be made. All manipulations must be carried out on ice and 

followed by gentle mixing (Vortex Genie 1 touch mixer from Scientific 

Industries, New York, USA) and centrifugation (Sigma1-13, Newport Pagnell, 
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UK). Each tube was then placed in the PCR machine (ABI Gene Amp PCR 

System 9700 from Perkin Elmer, Norwalk, USA) and the appropriate pre-

programmed conditions for each specific gene selected for the run.  

 

Table 2.6: Typical PCR Reaction Mixture. The level of template 

DNA varies according to the concentration so the water added is 

varied to always make a total of 20 µl. 

Components Volume per 
20µl 

Reaction 

Water, nuclease free 9.9µl 
(Variable) 

10X Hot Start PCR Buffer (Qiagen) 2µl 

dNTPs (Qiagen) (200‎μM) 1µl 

Q solution (Qiagen) 4µl 

Hot Start Taq DNA 
Polymerase(Qiagen) 
 (0.5‎units/20‎μl‎reaction) 

0.1µl 

Primer Forward (0.05–1.0‎μM) 1µl 

Primer Reverse (0.05–1.0‎μM) 1µl 

Template DNA 1µl 
(Variable) 

 

 

PCR has three main stages in each cycle. The first stage is denaturation, a 

process where the temperature is raised to 95:C to melt all double stranded 

DNA into single strands. This takes 2-4 minutes in the first cycle but only 1 

minute in all subsequent cycles. In the second stage (annealing), the 

temperature is reduced to 55:C - 60:C depending on the primers used (see 

Text box below). As the reaction cools, the primers bind to the specified gene 

of interest. This binding can be weak or strong depending on the primer 
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sequence (particularly the GC content) and this affects the optimum 

temperature. Annealing proceeds for 45 seconds and during this time some 

DNA polymerase molecules may start copying a new DNA strand. Finally, the 

extension stage requires a temperature of 72:C, the optimum working 

temperature for Taq polymerase and the enzyme synthesizes a copy of each 

complementary strand (base for base) to generate two new single DNA 

strands (see Table 2.7). 

 

 

 

 

 

 

 

 

Table 2.7: Stages in PCR Reaction and Timing. Three main stages: 

denaturation, annealing and extension. Initial denaturation at 95°C 

takes 2-4 minutes (one cycle) with subsequent denaturation only 

taking 1 minute. Annealing at 55-60°C (depending on primers) takes 

45 seconds and then extension at 72°C for 1 minute. Repeat for 35 

cycles (standard PCR) and then allow a final extension at 72°C for 10 

minutes (one cycle). 

Stage Temperature Time Cycles 

Initial Denaturation 95°C 2-4 minutes 1 

Denaturation 95°C 1 minute 35  

Annealing 55-60°C 45 seconds 

Extension 72°C 1 minute 

Final Extension 72°C 10 minutes 1 
 

Guidelines for Primer Design 

 15-30 nucleotides long 

 Rich in GC content (40-60%) distributed 
uniformly 

 Avoid placing more than 3 G‎or‎C‎at‎3’‎end 

 Place 3 conservative‎nucleotides‎at‎the‎3’end 

 Avoid primer dimers (binding to themselves) 
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By the end of first cycle, there is one copy of each DNA strand. The PCR 

machine then runs a further 35 cycles and at each new cycle more DNA copies 

are produced. The number of cycles used in each PCR experiment depends on 

the amount of DNA template at the start and the efficiency of the reaction. 

Generally, starting with less than 10 copies of original template DNA requires 

approximately 40 cycles but as the amount of original template increases then 

fewer cycles (25-35) are sufficient (see Figure 2.6).  

 

 
Figure ‎2.6:  Chart of Temperature Cycles during PCR. Initial 

heating from RT (20˚C) to 95˚C can be done without Taq 

polymerase (Hotstart). Typical values for the main stages in a 

standard PCR are shown but actual values used can vary 

depending on the template DNA and primers. 

 

As mentioned above, PCR is a technique that amplifies a single (or a few 

specific regions of DNA in multiplex reactions) to generate huge copy 



95 

 

numbers. However, standard PCR has limitations in terms of quantitating 

levels of gene expression. A graph of the PCR reaction can be divided into 

three regions (see Figure 2.7). The exponential portion of a PCR reaction is 

considered relatively low copy number and not ideal for measurements. Once 

copy numbers are increased, the PCR reaction becomes linear with time 

(cycles 15-30). At this stage, copies produced are proportional to the starting 

concentration. Later, PCR reaction then plateaus off and is again non-linear.  

 

 
Figure ‎2.7: Graph of Three Stages in Standard PCR. The initial portion 
of a PCR reaction (Exponential) is relatively flat due to low copy 
number and not accurate for measurements. Once there is an 
increase in copy number become linear with time (cycles 15-30) then 
you can use this to quantitate as the copies produced are 
proportional to the starting concentration. Reaction then plateaus off 
and is again non-linear. 

   

 

However, as the PCR reaction goes on, variability occurs and reagents are 

consumed at different rates. This slows down the reaction and causes a 
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plateau with a specific endpoint. Eventually, given enough time, the plateau 

area endpoint is reached in all reactions independent of the starting template 

concentration. Thus, this is good for generating material for further analysis 

(cloning, sequencing, etc) but not good for quantitating the level of gene 

expression in cells. An aliquot of the PCR reaction products can be analysed by 

agarose gel electrophoresis (0.7% - 1.5% gels) and visualised under UV light 

after treatment with an intercalating agent such as ethidium bromide (1µl of 

ethidium bromide for each 4µl of PCR sample). The rest of the sample can 

then be used for further analysis (cloning, sequencing, etc). 

 

2.5.3 Agarose Gel Electrophoresis 

PCR products are analysed by gel electrophoresis (horizontal quick screen gel 

electrophoresis unit from International Biotechnologics Inc., Iowa, USA). An 

aliquot of PCR product is combined with 5x Ficoll Tris-Acetate-EDTA (FTAE) 

buffer (Sigma-Aldrich, Gillingham, UK) at a ratio of 4:1 and run on a 1.5% 

agarose gel (Sigma-Aldrich, Gillingham, UK) for large (150-500 bp) products, a 

1% agarose + 3% NuSieve (Lonza, Slough, UK) gel for medium-sized (100-300 

bp) products or a 4% NuSieve (Lonza, Slough, UK) gel for small (50-150 bp) 

products (Figure 2.8). 

 

All gels contained 0.0004% ethidium bromide (Sigma-Aldrich, Gillingham, UK) 

and were run in Tris-Acetate-EDTA (1x TAE) buffer (Sigma-Aldrich, Gillingham, 
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UK) at 90V and 50mA until the blue marker dye was in the centre of the gel 

(takes 30-45 minutes depending on several factors: gel density and ionic 

content of TAE buffer). The size marker used was φX174 phage DNA cleaved 

with Hae III (New England Biolabs (UK) Ltd., Hitchin, UK) mixed with 5x FTAE 

buffer (4:1). 

  

 
Figure ‎2.8: Analysis of PCR Fragments by Agarose Gel 

Electrophoresis. PCR products (4µl) were loaded on a 1.5% agarose 

gel containing ethidium bromide (1µl) and visualised under UV light. 

Lane 1: PCR fragment from genomic DNA (C19, 1:10) was 508 bp. 

Lanes 2-7: RT-PCR fragments of DLL1 (p1, p2R) were 382 bp (PCR over 

intron so that gDNA product larger). Samples from HaCaT cells grown 

in low calcium (D1, D4 and D14) or high calcium (D4+3, D4+6 and 

D4+10). Gel calibrated with a standard DNA marker (φx174 +HaeIII), a 

mixture of DNA fragments of known size. 
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2.5.4 Quantitative Real Time PCR (QPCR) 

Quantitative polymerase reaction (qPCR) measures PCR amplification in real 

time as it occurs. In other words, the data is collected during the PCR reaction 

as DNA copies are being produced. The technique is very sensitive and can 

detect a 2 fold change in original template level. However, the products must 

be kept small, so it is important to have a product size between 80 and 120 

base pairs and not more than 150 base pairs. 

 

Real time PCR is monitored by a laser and fluorescence detector after binding 

a fluorescent marker such as SYBR green (2x Brilliant II SYBR Green QPCR 

Master Mix from Agilent Technologies Inc, Edinburgh, UK) to the DNA. This 

marker emits fluorescence when bound to double-stranded DNA. The 

intensity of fluorescence increases as more copies are created as SYBR green 

has more double stranded DNA to bind. However, SYBR green dye does not 

bind to a specific gene product but will bind to any double stranded DNA 

including any primer dimers or secondary PCR products. Thus, it allows 

detection of DNA being amplified in real time. 

 

SYBR green is considered one of the main fluorescent markers used to 

perform real time PCR analysis. It is a non-specific double stranded DNA 

binding dye so it is important that primer and DNA template levels are 

thoroughly optimized and that a single well defined product is produced. 
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During denaturation, the DNA template within the sample is melted into two 

single strands. SYBR green dye molecules do not bind to single-stranded DNA 

so they only fluoresce weakly and produce minimal background 

fluorescence. Once annealing begins, a few dye molecules start binding to 

double stranded DNA. Eventually, as more double stranded DNA is 

produced, the Syber green fluorescence signal increases proportionately. 

During extension the SYBR green dye binds to all the newly formed double-

stranded DNA and so levels of fluorescence increase further as cycling 

continues. SYBR green fluorescence is measured at the end of each cycle and 

the intensity of the fluorescence above background level estimated. The 

point at which fluorescence increases above background is called the 

threshold cycle (known as Ct) and this point can be used to quantitate the 

starting amount of double-stranded DNA. Later, on completion of the 

extension phase, more dye binding to the newly synthesized DNA occurs and 

greater signals are apparent (see Figure 2.9). 
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Figure ‎2.9:  Binding of SYBR Green to DNA in Real Time PCR. Denatured single 

stranded DNA does not bind SYBR green dye well. During annealing, SYBR green 

binds to the DNA-oligo complex and shows some fluorescence. As extension 

begins from the primers more double-stranded DNA is formed and more SYBR 

green binds and fluoresces as cycling continues. 

 

 

A SYBR green master mix (Stratagene, Agilent Technologies, Edinburgh, UK) 

was used in each qPCR experiment and reagents were added in a specific 

order (see Table 2.8 for details). 

 

In addition, if there was more than one primer set required in an experiment, 

then a separate master mix was made up for each primer pair. Then, 21µl of 

master mix was added to a sufficient number of wells on a 96-well plate 
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(Qiagen Ltd., Crawley, UK) for the experiment. However, the first well should 

contain 25µl sterile water as a negative control. 

 

Table 2.8: Reaction Mixture for qPCR Experiment (25 µl total). 

Component Volume for 
25 µl Mix 

Water (nuclease free) 6.5µl 

SYBR green master mix  12.5 µl 

Primer Forward (200nM-400nM) 1 µl 

Primer Reverse (200nM-400nM) 1 µl 

DNA Template (low and high Ca HaCaT cells) 4 µl each 

 

 

 

A no template control (NTC), to determine if any primer dimers or secondary 

PCR products are produced, for each primer pair was also included and this 

contained 21µl of master mix plus 4µl of sterile water (instead of DNA 

template). The master mix was added to the other wells and 4µl of each DNA 

template was added to the sample wells but not to the water or NTC control 

wells. Later, the 96-well plate was placed in a centrifuge (Mistral 3000 from 

MSE (UK) Ltd., London, UK) and spun at 1,000 rpm for 5 minutes at RT.   
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The Mx3000P real time PCR machine was allowed to warm up for 20 minutes 

before use to attain the correct starting temperature. The correct settings 

must be selected on the menu at start up. Initially, a SYBR green assay was 

selected and then each well for the experiment was assigned the correct well 

label (e.g. water control, no template control or sample well). SYBR green dye 

was chosen as the fluorescence type.  

 

To minimize error, each sample was run in triplicate and these were grouped 

together in the software. The thermal profile was then set up before initiating 

the run. The annealing temperature was selected depending on the primers 

used and the size of target gene product (generally <150 bp). The SYBR green 

assay contained 3 segments: an initial hot start, standard cycle, and finally a 

dissociation cycle e (see Table 2.9). A dissociation curve is obtained by heating 

the products to 95°C for 1 minute, cooling to 55°C and then increasing the 

temperature incrementally by 1°C back up to 95°C. As the temperature rises 

the double-stranded DNA melts into single stranded DNA causing the SYBR 

Green to dissociate and decrease the fluorescence. The change in 

fluorescence is plotted against temperature and the resulting graph can be 

used to determine if any primer dimers or secondary PCR products are 

present as each product will have its own melting point.  
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Finally, all the experimental data was saved on the attached PC (hard drive). 

Run times are typically two and half hours and results can be viewed and 

analysed on any PC using MXPro software.  

Table 2.9: Typical Segment Settings for Real Time PCR.  

Initial denaturing occurs at high temperature for 1 cycle and 

then the standard cycle of denaturing, annealing and 

extension runs for 40 cycles.  The final cycle is used to 

generate a dissociation curve. 

Segment Temperature Duration Cycles 

Segment 1 95°C 10 minutes 1st cycle 

Segment 2 95°C 
60°C 
72°C 

30 seconds 
One minute 
30 seconds 

40 cycles 

Segment 3 95°C 
55°C 
95°C 

One minute 
30 seconds 
30 seconds 

One cycle 

 

 

Rea-time qPCR is more sensitive, accurate and quantitative than standard 

PCR. All samples run to the same end point in standard PCR (plateau 

generated as materials become exhausted) and differences between initial 

DNA concentrations cannot be detected. However, with qPCR, product levels 

are measured continuously in the exponential and linear phases giving data 

that is proportional to the DNA concentration at the start.  The graph below 

shows an example in terms of four samples representing a serial dilution 

which gave very different levels of product in the early stages but eventually 

all attain the same plateau end point as in a standard PCR. Thus, qPCR 

detected the purple sample first at 20 cycles in the exponential phase while 

the green sample (with less starting DNA) was not detected until 25 cycles 
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were reached. Similarly, the pink sample was not detected until 30 cycles 

were completed and the blue sample required 35 cycles. This data can then 

be used to construct a standard curve of DNA starting concentration versus 

the initial point of detection or threshold, called the Ct value (see Figure 2.10).  

 

Standard curves should include at least five points using a serial dilution of 

pure DNA or cloned plasmid DNA. Each point should be run in triplicate. The 

MXPro software can then produce a graph of the log of each known 

concentration against the Ct to produce a standard curve determining the 

efficiency, linearity and sensitivity of qPCR assay. Using the standard curve the 

DNA concentration (or copy number) in unknown samples run under the same 

conditions can be calculated from their Ct values and this can produce data on 

the level of gene expression in cells and tissues. 

 

 



105 

 

 
Figure ‎2.10: Graph of DNA Copy Number versus Cycle Number (qPCR). 

Purple increase above background at 20 cycles, green at 25 cycles, pink 

at 30 cycles and blue at 35 cycles. Eventually, all four samples reach a 

plateau where no further DNA copies are produced. qPCR can show 

precisely when each DNA sample was detected and this is proportional 

to the starting DNA concentration.  

 

2.6 Cloning and Plasmid Extraction 

Cloning is a way of producing large quantities of a single gene product and this 

can be achieved using genomic DNA or cDNA depending on the subsequent 

experimental requirements. Generally, a purified PCR product is used and this 

is inserted into carrier DNA, called a vector. For amplification in a bacterial 

host a number of bacterial plasmids have been constructed and we have used 

pGEM-T Easy (Promega, Southampton, UK) as the vector system in our 

experiments. The host bacterial cells used were a competent strain of E. coli 

(Stratagene Top10 cells from Agilent Technologies UK Ltd, Stockport, UK). 
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The human cDNA or gDNA (insert) must be ligated into a vector and the whole 

plasmid inserted into host bacterial cells. The plasmid is then replicated as the 

bacteria divide, and thousands of identical copies are produced. Generally, 

vectors smaller than 10 kb in size are cloned in bacterial plasmids while larger 

vectors that contain inserts up to 20 Kb in size, require different host systems 

such as bacteriophages or mammalian viruses. Bacterial plasmids consist of a 

circular molecule of DNA with a transcription initiation site, known primer 

binding sites and a multiple cloning site. They are able to multiply 

independently inside the host bacterial cells (see Figure 2.11).   

 

 
Figure ‎2.11: Schematic of Cloning a PCR Fragment into pGEM-T Easy. The 

PCR fragment is ligated into the vector at specific restriction enzyme sites 

(e.g. EcoRI) and then inserted into E. coli by bacterial transformation. 
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The pGEM-T Easy vector carries an ampicillin resistance gene and a lac Z gene 

required for clone selection. It is 3,015 bp in size and has binding sites for SP6 

and T7 promoter primers on either side of a multiple cloning site (a string of 

restriction enzyme sites). Both the vector and the insert of interest must have 

the same restriction endonuclease sites at the ends in order to be successfully 

ligated into the cut plasmid. Also, it is an advantage to use different enzyme 

sites at each end and then the orientation of cloning can be controlled rather 

than being random.  

 

Furthermore, the insert and vector must not contain an internal restriction 

enzyme site the same as that used for cloning. In other words, the vector 

must be cleaved at a single position in the circular DNA molecule. An example 

is shown below (see Figure 2.12) where a restriction enzyme called EcoR1 has 

been used for cloning. This enzyme produces sticky ends on the vector and 

insert which promote ligation. 

 

Once the insert has been ligated into the bacterial vector then the plasmid 

must be inserted into Top 10 cells, a process known as transformation. Lauria 

broth (LB) plates containing ampicillin were prepared in advance. A premix of 

LB already containing agar (LB Agar Powder from Invitrogen, Paisley, UK) was 

used (10g Peptone 140, 5g Yeast extract, 5g Sodium Chloride and 12g Agar). 
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LB Agar mix (3.2 g) was mixed into 100 ml of dH2O and autoclaved for two 

hours at 120°C. 

 

 
Figure ‎2.12: Diagram to Illustrate DNA Cleavage by EcoR1. The 

palindromic recognition site in both the vector and insert are cut 

with the enzyme (EcoRI) which cleaves DNA to produce a 5’ 

overhang (sticky end). This facilitates ligation of the insert into the 

vector. 

 

The medium was then cooled down to about 50°C prior to adding 200µl of 

ampicillin (50mg/ml stock diluted 1:500 giving final concentration of 100µg). 

The medium was then poured into 10 cm petri-dishes making sure that the 

bottom of the dish was completely covered and the lids were placed at an 

angle leaving an air gap so condensation does not form. The plates were 

allowed to set and then were stored up-side-down at 4˚C until used.  
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For blue-white colony selection, indicator plates must be made by adding 4µL 

IPTG (Isopropyl-thiogalactoside) (0.1mM) and 40µL X-Gal (5-bromo4-

chlor3indoylβ-D galactopyranoside) (300µg/ml) to the LB Amp plates. This was 

spread over the agar surface and the plates were then placed in a 37°C 

incubator (Weiss-Gallenkamp, Leicestershire, UK) for 15 minutes. The plates 

were then stored in the fridge until used to grow the cloned bacteria. 

 

The PCR products were cleaned by precipitation with polyethylene glycol 

(PEG). Initially, PEG solution (26% PEG 8000, 6.6mM MgCl2, 0.6M NaOAc, pH 

5.2) was mixed by inversion and then 20µl was added to remaining PCR 

product (16 µl) and the DNA allowed to precipitate at RT for 10 minutes. The 

tubes were centrifuged at 13,000 rpm for 25 minutes at RT (Heraeus Biofuge 

13 from Fisher Scientific Loughborough, UK) during which time 

oligonucleotide dilutions were made (7µl of stock primer at 10pmol/µl plus 

13µl of dH2O giving 3.5 pmol/µl final).  

 

The supernatant was carefully pipetted off and 200µl of ice cold 70% ethanol 

was added. The tubes were mixed by careful inversion and then centrifuged at 

11,000 rpm for two minutes at 4°C (Microfuge R from Beckman Coulter Inc., 

High Wycombe, UK). The ethanol wash was repeated, the supernatant 

pipetted off and the sample left to dry on the bench (invert on clean tissue). 

Later, the dried sample was re-suspended in 16µl nuclease free water (store 



110 

 

at 4˚C). The cleaned DNA was added to a reaction tube containing T4 DNA 

ligase (Invitrogen, Paisley, UK), 2x rapid ligation buffer (Invitrogen, Paisley, 

UK), pGEM-T easy vector and nuclease free water (see Table 2.10). 

 

Table 2.10: Ligation Reaction Component. Composition of a standard 

ligation reaction using cleaned PCR products and pGEM vector. 

Reaction Component Standard Reaction Volumes 

2X Ligation Buffer 5 µl 

pGEMT-Easy Vector 1 µl 

PCR product 3 µl 

T4 DNA Ligase 1 µl 

Total Volume 10 µl 
 

 

The reaction components were gently mixed and incubated overnight at 4°C. 

The ligation mix can then be used immediately or stored at -20°C for future 

use. One vial of Top 10 cells was thawed on ice and divided into two (1.5 ml) 

tubes (25µl in each tube). An aliquot (5µl) of the ligation mix was added to the 

cells, gently mixed and incubated for 30 minutes on ice. The cells were then 

given heat shock treatment by heating in a 42°C water bath (Grant 

Instruments Ltd, Cambridge, UK) for 30 seconds and then returned to ice for 2 

minutes. An aliquot (250µl) of SOC medium (2% (w/v) Tryptone (pancreatic 

digest of casein), 0.5% (w/v) Yeast extract, 8.6mM NaCl, 2.5mM 

KCl, 20mM  MgSO4 and 20mM Glucose from Sigma-Aldrich, Gillingham, UK) 

was brought up to RT and then added to the cells. Samples are mixed gently 

and then placed in an orbital incubator for one hour at 37°C (set shaking at 
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230 rpm). After incubation, the whole mixture was added to an 

LB/Amp/IPTG/X-Gal plate and spread over the agar surface using sterile 

spreader. The plates were then incubated at 37°C overnight after which blue 

and white colonies should appear (blue colonies contain empty vector while 

white colonies contain vector plus insert). Bacteria that have no vector cannot 

grow because of the ampicillin (vector contains an ampicillin resistance gene).  

 

After overnight incubation, a colony selector was used to pick a single white 

colony from each plate which was placed into 3 ml LB medium plus 6 µl 

ampicillin (50 mg/ml) in a sterile 15 ml plastic tube. The tubes were incubated 

at 37°C overnight (shaking set at 230 rpm). The following day, 500 µl of each 

culture was added to a labelled cryovial containing 0.5 ml of 80% glycerol and 

stored at -85°C (stock culture). The rest was transferred into 1.5ml tubes and 

centrifuged at 13,000 rpm for 5 minutes (Sigma 1-13). The supernatant was 

removed (dispose as biological waste) and the pellets (containing the 

bacteria) were extracted using a Qiaprep Spin Miniprep kit protocol for 

plasmid DNA purification (QIAprep®Miniprep Handbook, Qiagen Ltd., Crawley, 

UK). 

 

All plasmid DNA purification was done at room temperature as stated in the 

manufacturers guide (QIAprep®Miniprep Handbook, Qiagen Ltd., Crawley, 

UK). Initially, the pellets were re-suspended in 250µl P1 buffer using vortex 
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(Vortex Genie 1 from Scientific Industries, New York, USA) and transferred 

into a microcentrifuge tube supplied in the kit. An aliquot (250 µl) of P2 buffer 

was added and mixed thoroughly by inverting the tube 4 to 6 times. Then, 

350µl of N3 buffer was added and mixed immediately by tube inversion. This 

was followed by centrifugation at 13,000 rpm for 10 minutes at RT (Sigma 1-

13 Centrifuge). The supernatants were added to a QIAprep spin column 

(supplied in the kit) by pipette and this was centrifuged at 13,000 rpm for 60 

seconds at RT. The flow-through (eluate) was discarded and the spin column 

was washed by adding 0.5ml PB buffer and centrifuged at 13,000 rpm for 

60seconds at RT. Again, the spin column flow-through was discarded and 

further washed with 0.75ml PE Buffer and centrifuged at 13,000 rpm for 60 

seconds at RT. An additional centrifuge step for 1 minute at the same speed 

was recommended after discarding the flow through to remove any residual 

wash buffer. The QIAprep spin column was then placed in a clean 1.5ml 

microcentrifuge tube (supplied in the kit) and 50µl of EB Buffer was added to 

the centre of each spin column, allowed to stand for 1 minute and then 

centrifuged at 13,000 rpm for 1 minute at RT.  

 

Once plasmids were extracted, inserts were checked by digesting with EcoR1, 

the insert enzyme (New England Biolabs (UK) Ltd., Hitchin, UK) and analysing 

the fragments on an agarose gel (for details of digest see Table 2.11). 
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Table 2.11: Reagent List for Restriction 

Enzyme Digest of Cloned Plasmids. . Plasmid 

was treated with EcoRI to cleave the insert 

DNA from the pGEM-T vector. 

Component Volume Added 

Plasmid DNA 3 µl 

EcoRI (NEB) (1Unit/20µl) 1 µl 

EcoRI 10x Buffer (NEB) 2 µl 

dH2O (not available) 14 µl 

Total volume 20 µl 

 

 

All digests were incubated in a 37°C water bath (Grant Instruments Ltd., 

Shepreth, UK) for 1 hour. Later, the samples were moved to a 70°C water bath 

(Grant Instruments Ltd., Shepreth, UK) for another 20 minutes to denature 

the enzyme and stop digestion. The digests were then loaded on a 1.5% 

agarose gel with a low molecular weight marker to verify the presence of 

inserts. As EcoRI was used to cut the original plasmid for ligation of the insert, 

the digest should then release the insert from the vector.  Each lane on the 

agarose should have two bands, the top band is the vector and the bottom 

band theoretically represents the released insert (see Figure 2.13). To ensure 

that inserts were the gene of interest, all inserts were sequenced. It is 

important to point out that pGEMT vector has a multiple cloning site (see 

Figure 2.14 ) and all inserts were sequenced using  the SP6 promoter primer.  
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Figure ‎2.13: Analysis of Housekeeping Gene (hARP) Insert by 

Agarose Gel (1.5%) Electrophoresis. The larger bands represent 

pGEMT Easy vector while the smaller bands at the bottom of the 

gel represent the released inserts. Plasmids 1-6 all contained the 

correct insert and this was confirmed by sequencing (M= low 

molecular weight marker). 

 

This was followed by preparing serial dilutions of each insert with the correct 

sequence. For example, plasmid 3 containing a Notch 1 insert (N1plas3) was 

selected for preparing serial dilutions. The concentration of the stock plasmid 

DNA was determined by spectrophotometric analysis (580 ng/µl or 5.8e-7 

g/µl). Initially, this stock was diluted serially (3 x 1in 100) down to a more 

manageable 1 in 106 giving a concentration of 5.8e-13 g/µl. In order to 

calculate the dilution required to produce 300,000 copies in 5 µl, a series of 

calculations were performed. 
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Figure ‎2.14: Structure of pGEM-T Vector. A: pGEM-T Vector Map B: Multiple 

Cloning Site Sequence. 

 

Initially, the mass of a single plasmid molecule (vector plus insert) was 

calculated from the following equation: 

m (mass) = n (vector + insert bp) x 1.096e-21g       

n = Total bp (pGEM-T easy + probe insert size) 

  = 3,015 bp + 142 bp 

  = 3,257 bp 

 Thus, 

 m = 3,157 x 1.096e-21 g 

     = 3.46e-18 g 

 

The calculated mass of a single molecule of N1plas3 (3.46e-18 g) was then 

used to determine the mass equivalent of the number of desired copies (from 
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300,000 to 30), a product of the mass of a single molecule and the copy 

number required (see Table 2.12).   

 

Table 2.12: Mass of Notch 1 Plasmid 3 equivalent to Specific Copy 

Number 

Copy # 

X 3.46e-18 g 

Mass of N1 Plasmid (g) 

300,000 1.038e-12 

30,000 1.038e-13 

3000 1.038e-14 

300 1.038e-15 

30 1.038e-16 

 

 

As the plasmid is dispensed in a 5µl volume per PCR reaction then the 

concentration of the solution required (g/µl) was calculated by dividing the 

mass equivalent of plasmid by 5 (see Table 2.13). 

 

Table 2.13: Concentration of Notch 1 Plasmid 3 DNA required to achieve Copy # 

Stated. 

Copy # Mass of N1 
Plasmid DNA (g) 

Divide by 5 

Final Concentration of 
N1 Plasmid DNA (g/µl) 

300,000  1.038e-12 2.076e-13 

30,000 1.038e-13 2.076e-14 

3000 1.038e-14 2.076e-15 

300 1.038e-15 2.076e-16 

30 1.038e-16 2.076e-17 

 

 

As the plasmid concentration equivalent to a fixed number of vector copies 

has been calculated and the stock plasmid concentration known, the required 



117 

 

dilution to make 500 µl of standard containing 300,000 copies can be 

calculated as follows: 

  

 C1V1 = C2V2 

 

V1 =  C2 x V2  =  2.076e-13 x 500 = 179µl stock N1plas3 
           C1                           5.8e-13 
 
Volume of Diluent= 500µl- 179µl = 321 µl Sterile Water 
 

This example showed how to prepare a standard solution containing 300,000 

copies of the N1plas3 vector and insert. All manipulations were done under 

sterile conditions and making sure that pipetting was precise. All the plasmids 

obtained from cloning including the ones used for making serial dilutions were 

stored at -20°C. 

 

A full range of serial dilutions for the N1plas3 cloned insert are shown below. 

Initially, the stock was diluted from 5.8e-7 g/µl down to a more manageable 

5.8e-13 g/µl by three serial dilutions of 1:100 (total 1 in 106). The calculated 

dilution (described above) was then used to derive a standard working 

solution containing 300,000 copies of the plasmid and all other working 

solutions made from this by serial 1:10 dilutions (Table 2.14).  

 

Where  C1 =  Initial concentration of stock used (g/µl) 
               V1 = Volume of stock plasmid DNA needed (µl) 
               C2 =  Final concentration of plasmid required (g/µl) 
               V2 =  Final Volume of plasmid DNA solution (µl) 
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Table 2.14: Dilution Series for N1plas3 Stock. Sterile nuclease free water was 

used as the diluent and dilutions 4-8 were used for qPCR.  

 Source of 
plasmid 
DNA for 
dilution 

Initial 
Conc. 
(g/µl) 

 
 C1 

Volume of 
Plasmid 
DNA (µl) 

 
V1 

Volume 
of Diluent 

(µl) 

Final Vol. 
(µl)  

 
 

V2 

Final conc. 
(g/µl) 

 
 

C2 

Copy #  

1 Stock 5.8e-7 10µl 990µl 1000µl 5.8e-9 N/A 
2 Dilution1 5.8e-9 10µl 990µl 1000µl 5.8e-11 N/A 
3 Dilution2 5.8e-11 10µl 990µl 1000µl 5.8e-13 N/A 
4 Dilution3 5.8e-13 179 321 500µl 2.076e-13 300,000 
5 Dilution4 2.076e-13 10µl 90µl 100µl 2.076e-14 30,000 
6 Dilution5 2.076e-14 10µl 90µl 100µl 2.076e-15 3000 
7 Dilution6 2.076e-15 10µl 90µl 100µl 2.076e-16 300 
8 Dilution7 2.076e-16 10µl 90µl 100µl 2.076e-17 30 

 

 

 

2.7    Sequencing 

Automated sequencing used Big Dye v3.1 chemistry followed by 

analysis on an ABI310 DNA analyzer (Cardiff University, School of 

Medicine, Central Biotechnology Services).  

  

To confirm that the inserts were correct, the isolated plasmids were 

sequenced using an SP6 primer in one direction and a T7 primer in the 

opposite direction.  A 4µl aliquot of the plasmid mix, 1µl primer (1µM), 2µl Big 

Dye v3.1, 2µl of 5x Big Dye buffer and 1µl of sterile H2O were mixed together 

and placed in the PCR machine (ABI 9700 Gene Amp PCR system from Perkin 

Elmer Norwalk, USA). The Big Dye programme (25 cycles at 96 °C for 10 sec, 

50°C for 5-10 sec, 60°C for 4 min, then ramp down to 4°C and hold) was used 

(two and a half hour run). The tubes were removed from PCR machine, 1 µl of 
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3M NaOAc added followed by 25µl ice cold 95% ethanol. Mix and then leave 

on dry ice for 10 minutes. The tubes were then centrifuged at 13,000 rpm for 

30 minutes at 4˚C (Microfuge R, Beckman Coulter Inc., High Wycombe, UK) 

and then carefully decant the supernatant.  Add 180µl of ice cold 70% ethanol 

and mix by inversion. The tubes were then centrifuged at 11,000 rpm for 2 

minutes at 4˚C and the supernatants were removed with a pipette without 

disturbing the pellet. Another 180µl ice-cold 70% ethanol was added the 

tubes centrifuged again at 11,000 for 2 minutes at 4˚C. The supernatant was 

removed by pipette and 10µl ice cold 70% ethanol was added. All samples 

were then taken to CBS (Central Biotech Services) for sequence analysis on an 

ABI 310 DNA Sequencer (Life Technologies Ltd., Paisley, UK).This was repeated 

for several other inserts required for this research project as shown below 

(See Table 2.15). 

 

Finally, standard dilutions of each plasmid covering the range from 300,000 

copies to 30 copies were prepared and 20 µl aliquots of each dilution were 

stored at -20°C (freezer) for use in real time PCR experiments.  
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Table 2.15: Different Primers used for Cloning by Inserting a DNA 

Fragment into a Bacterial Cell Plasmid (Vector).   

Primers PCR CLONING SEQUENCE No. PLASMIDS 

HK14 (p55, p57R) Good Done Correct 3 

HK10 (p22, p5R) Good Done Correct 3 

DLL1 (p7, p8R) Good Done Correct 3 

NOTCH1 (p7, p6R) Good Done Correct 3 

NOTCH3 (p1, p4R) Good Done Correct 3 

JAG1 (p11, p12R) Good Done Correct 3 

JAG2 (p14, p11R) Good Done Correct 3 

HES1 (p1, p2R) Good Done Correct 3 

HES5 (p1, p2R) Good Done Correct 3 

HES7 (p1, p2R) No Band Failed Not Done Not Done 

HEY1 (p3, p4R) Weak Failed No Good Not Done 

HEY2 (p3, p4R) Weak Failed No Good Not Done 

HEYL (p1, p2R) Weak Failed No Good Not Done 

 

 

A number of commercial and non-commercial software packages to analyse 

sequencing were available. Some had advantages in which they could trim 

low-quality DNA traces automatically. For that reason, resulting sequence 

chromatograms of the genes were first displayed using Finch TV (Free 

Download: Software Version 1.4.0, Geospiza Inc., Washington, USA). This 
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application was used to easily view, define and edit sequences 

chromatograms. 

  

The sequencing data was returned as two files per sample (an 

electophoretagram and a linear sequence as text). Finch TV software can 

display the sequence electophoretagram either as a single panel (requires 

continuous scrolling) or in a multiple panel view where the chromatogram is 

wrapped round (see Figures 2.15 and 2.16). 

 

 
Figure ‎2.15: Standard View of a Sequence Chromatogram (displayed as a 

continuous strip). 
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Figure ‎2.16: Multi-Panel View of Sequence Chromatogram (sequence wrapped 

around). 

 

 

The sequencing data was viewed as a group of fluorescent peaks 

(chromatogram) representing the four DNA bases (Adenine, Thymine, 

Guanine, and Cytosine) in four different colours (Green = A, Blue = C, Black = G 

and Red = T) the single letter base code is given above the trace and all bases 

are numbered from the start. For better visualization of peaks, the 

chromatogram can be scaled vertically and horizontally. At each point there is 

only a single clean peak with no overlap of the other bases (low noise 

baseline) meaning the sequencing chemistry is very clean (see Figure 2.17). 

http://en.wikipedia.org/wiki/Chromatogram
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Figure ‎2.17: Sequencing Chromatogram of Data from a Typical Sample. 

 

In addition, the peaks should be spaced evenly. Sometimes artefacts and 

errors are present on a chromatogram. For instance, misplaced peaks where a 

real gap is misinterpreted as a real nucleotide. Also, if the error rate becomes 

higher, the data is considered not reliable and the sequence should be 

repeated using different primers if necessary. Chromatograms can also be 

displayed as a text sequence (Figure 2.18). 

 

Figure ‎2.18: Sequence of Notch 3 Insert.  The insert is 102 bp and flanked 

by a forward primer (N3p1 shown in red) and a reverse primer (N3p4R 

shown in blue). 
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The text sequences can then be further analysed by other software packages 

such as Geneious version 4.8.3 (Figure 2.19).  They can also be matched 

against a reference database from National Center for Biotechnology 

Information using the Blast feature available at the following web address 

(http://www.ncbi.nlm.nih.gov/nuccore). 

 

 

 

Figure ‎2.19: Sequencing Chromatogram of pGEM-T vector and JAG2 insert. The 

JAG2 insert size is 168bp (shown in green) and lies within the pGEM-T vector 

(3015 bp). The insert was flanked by the forward primer (JAG2p14 shown in red) 

and the reverse primer (JAG2p11R shown in blue). TT and AA (shown in black) 

represent the partial EcoR1 sites in pGEM-T where the JAG2 probe was inserted. 

 

 

http://www.ncbi.nlm.nih.gov/nuccore
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In summary, a wide variety of methodologies were included in this chapter. 

This range of research tools may be considered descriptive in a way. In 

addition, it includes statistics of data collected throughout the experiments. In 

other words, it covers different aspects of research topic by using different 

methods to see if it will be similar or not. For instance, testing the expression 

of gene of interest by optimizing it and processing through PCR and qPCR is 

considered informative. The following chapters will demonstrate results in 

two parts (3, 4). It will also outline the main component of each Notch 

receptors, ligands and target genes expression in cultured models. This will be 

followed up by discussion which will compare findings in the research and 

whether it agrees or disagree with other research work done earlier. 
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3 CHAPTER 3: Expression of 

Keratin Genes (KRT14 and 

KRT10) in HaCaT Cell 

Culture Model 
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3.1 Introduction 
 

Examining notch signalling in human skin (in vivo) was proving to be difficult 

so a model system was required where the signalling process and its response 

to the differentiation status of the cell could be assessed. The HaCaT tissue 

culture model was chosen because this was already established in the 

laboratory and terminal differentiation could be induced using a calcium shift 

technique. Thus, a number of experiments were set up to examine cells 

growing over a 4-7 day period, altering the calcium levels to induce terminal 

differentiation and allowing further growth for another 6-10 days. Sufficient 

numbers of HaCaT cells were then produced so that total RNA and total 

protein could be extracted for analysis of both the state of proliferation and 

differentiation as well as investigating the level of notch signalling. In order to 

assess gene expression levels, both standard and real time PCR were done 

using various primer combinations (see Table 3.1 below). Where possible, 

primers pairs were designed over intron boundaries so that the genomic PCR 

product (amplicon) was approximately 500 bp larger than the cDNA amplicon, 

providing an internal control for genomic contamination. 

 

A set of HaCaT cells that had been cultured for different lengths of time in low 

calcium medium and then shifted to high calcium medium (see Methods 

Chapter for details) were prepared. Total RNA was extracted from the cultures 



128 

 

at each time point and stored at -85˚C. A small aliquot was subjected to a 

standard PCR with genomic DNA (gDNA) primers (intron primers do not bind 

to RNA or cDNA) to detect gDNA contamination. If no bands were detected on 

the agarose gel, this would suggest that the total RNA preparation from the 

HaCaT cells was not contaminated with gDNA. This screen was also repeated 

after reverse transcription of HaCaT total RNA to total cDNA, and if gDNA 

products were found in anything other than trace amounts, the cDNA was 

discarded. It is important to point out that approximately 21 days were 

required to collect a complete set of HaCaT cell cultures at all time points, 

assuming the cultures grew as expected.   

 

Table 3.1: Table of Primers for Standard PCR and qPCR with cDNA. 

Gene Primers for 
Standard PCR 

Primers for Q-
RT-PCR 

Human Keratin 14 
(KRT14) 

p55, p56R  
(Product = 266bp) 

p55, p57R  
(Product = 112bp) 

Human Keratin 10 
(KRT10) 

p20, p23R 
(Product = 136 bp) 

p22, p24R 
(Product = 111 bp) 

 

 

Once total RNA had been extracted from the HaCaT cells harvested at 

different times, cDNA was generated by reverse transcription and a standard 

PCR carried out for each gene of interest (KRT14, KRT10, Notch receptors, 

ligands and target genes). The PCR products were analysed on 1.5% agarose 

gels and the resulting product sizes compared with the anticipated theoretical 

size. PCRs were carried out according to a rigorous protocol to minimize errors 

such as contamination by other DNA, primer dimers and products of incorrect 
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size. Ideally, the PCR products should show strong bands on a gel. As only an 

aliquot of the whole PCR reaction is tested, the remainder can then be 

sequenced to verify the precise identity of the product. 

 

Standard PCR reactions are limited in terms of the estimation of specific gene 

expression levels and it can be difficult to distinguish between PCR samples 

containing 10 copies or 50 copies on a gel. Thus, when there are small 

differences in expression level, this is best estimated by quantitative real time 

PCR (qPCR).   

 

In order to get an absolute level of quantitation in a dynamic cell system, 

levels of gene expression must be related to a housekeeping gene that is 

stable through the cellular changes of a typical experiment. This is an 

important control in qPCR experiments. However, levels of the housekeeping 

genes examined (β-actin, TF2H, TBP and RPLA13) were not stable as HaCaT 

cells altered from proliferation to differentiation. Thus, none of these 

molecules were considered as a stable housekeeping gene in the HaCaT cell 

culture model.  

 

Primers designed for real time PCR should generate a product size of 80-

120bp and not be more than 150bp. Therefore, set of primers were 
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specifically designed for qPCR although some of the primers designed for 

standard PCR could be used because where the size of the product was 

suitable (see Table 3.1). This was followed by estimating the level of gene 

expression from the qPCR data. This was calculated using a standard curve 

measuring the efficiency of the qPCR reaction and CT value. 

 

To establish the expression level of the gene of interest, the qPCR data was 

analyzed using the standard curve of efficiency and CT value and each gene 

was tested in triplicate using same set of HaCaT cells to minimize variation.  

 

3.2 Morphology of HaCaT Cells during Calcium-

Induced Terminal Differentiation 

 

HaCaT cell culture was found to be the best in vitro model of human 

keratinocyte function. In fact, it represents a reliable and convenient model 

for keratinocyte proliferation and differentiation (Deyrieux and Wilson, 2007). 

At the same time, manipulation of HaCaT cell conditions by adjusting calcium 

levels (shift from low to high Ca2+) demonstrates many of the actual 

morphological changes taking place in primary human keratinocytes and 

provides a reasonable representation of the in vivo situation.  
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HaCaT cells were initially grown in DMEM containing 10% foetal calf serum 

(FCS). The cells were then transferred to keratinocyte growth medium (KGM) 

containing low levels of Ca2+ (0.06 mM). During this stage, these cells appear 

as individual small clusters of spindle shaped cells which round up as they 

divide. They tend to stay apart from one another and coat the base of the dish 

in a monolayer. There are few if any flat cornified cells and few if any cells that 

are K10 positive. Thus, they generally represent a homogenous group of 

loosely associated rapidly dividing basal cells. HaCaT cells continue to 

proliferate and remain as monolayer during early expansion of cells numbers 

(Boukamp et al., 1988). In contrast, HaCaT cells in high Ca2+ medium showed 

extensive organisation and a typical stratified epithelium resulted with 

coherent sheets of corneocytes on the surface. In addition, the cells formed a 

prominent densely packed polygonal structure with proliferating cells in the 

middle and differentiating cells to the periphery. However, some cells do 

continue to proliferate but at a lower rate (see Figure 3.1). It should also be 

noted that cells left in low calcium for 16 days do terminally differentiate due 

to contact inhibition of growth at high density, but these cells are not so well 

organised. 
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Figure ‎3.1: Phase Contrast Micrographs of Early Passage HaCaT Cells.  Cells 

in low Ca2+medium (0.06 mM) after 1 day showing sparse clumps (A) and by 

3 days have attained about 80% confluence exhibiting a more densely 

packed monolayer (B). Cells 1 day after shifting to high Ca2+medium (1.8 

mM) show a focal organisation (C) and after 10 days in high Ca2+medium 

(1.8mM), cells have formed a well stratified coherent sheet with a high level 

of organization (D). 

 

 

3.3 Expression of K10 in HaCaT Cell Culture Model 

Proliferation and terminal differentiation in the HaCaT cell culture model can  

be defined by the expression of different keratins and by markers of 

proliferation such as Ki67. Keratins K5 and K14 are expressed by basal 

keratinocytes undergoing proliferation. Gene expression is switched to 

suprabasal keratins (K1 and K10) as cells are committed to terminal 
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differentiation. This was demonstrated at the protein level using two 

techniques. Total proteins were extracted from the HaCaT cultures at 

different times, separated by SDS-PAGE, transferred by western blotting and 

reacted with either K14 or K10 antibodies. K14 levels were found to be 

approximately equal over the whole culture period, although less expression 

was observed in the early cultures (Figure 3.2).  

 

 
Figure ‎3.2: Expression of K14 by SDS-PAGE and Western Blotting 

of Protein Extracts from HaCaT Cells Grown under Different 

Conditions. Cells grown in low calcium [0.06mM] KGM for 3, 6 or 

16 days (3D, 6D, 16D) were switched to high calcium [1.80mM] 

KGM at day 6 and grown for a further 3, 6 or 10 days (6D+3, 6D+6, 

6D+10). Protein extracts were western blotted and detected using 

a K14 antibody (LL002). Protein size markers are shown on left 

(20-50kDa). Note constant K14 levels throughout HaCaT cell 

differentiation (data courtesy of Dr. Paul E. Bowden and Tammy 

Easter, Department of Dermatology, Cardiff University).  

 

 

However, when K10 was examined (Figure 3.3), expression was low to 

virtually absent in early proliferating cultures (3D, 6D), increased in low 
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calcium at 16 days and increased dramatically in cells induced to differentiate 

with high calcium.  

 

 
Figure ‎3.3: Expression of K10 by SDS-PAGE and Western 

Blotting of Protein Extracts from HaCaT Cells Grown under 

Different Conditions. Cells grown in low calcium [0.06mM] KGM 

for 3, 6 or 16 days (3D, 6D, 16D) were switched to high calcium 

[1.80mM] KGM at day 6 and grown for a further 3, 6 or 10 days 

(6D+3, 6D+6, 6D+10). Protein extracts were western blotted and 

K10 (56 kDa) detected using a K10-speific antibody. Protein size 

markers are shown on left (20-200 kDa). K10 increased in HaCaT 

cells as differentiation proceeded (data courtesy of Dr. Paul E. 

Bowden and Tammy Easter, Department of Dermatology, Cardiff 

University).  

 

Keratin 14 (K14) expression was also examined in the cells by indirect 

immunofluorescence (Figure 3.4). While levels overall did remain constant, 

the amount of K14 in the proliferating cells appeared higher but at later times, 

the cell density was much higher but the cell content appeared lower. Ki67 

expression also varied throughout the culture. 
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Figure ‎3.4: Expression of K14 (Proliferation Marker) and Ki67 

(Cell Division Marker) in HaCaT cells.  HaCaT cell grown in low 

calcium KGM for 3 days (D3), 6 days (D6) or 16 days (D16) and 

shifted to high calcium KGM for another 3 days ( D6+3), 6 days 

(D6+6) or 10 days (D6+10). K14 (red) was expressed from early 

proliferation and remained constant throughout differentiation. 

Ki67 (green) was expressed poorly in early cultures but increased 

at later times in low calcium. Expression became more prominent 

and differently organised during calcium induced differentiation. 

Nuclei were stained blue with DAPI (data courtesy of Dr. Paul E. 

Bowden and Tammy Easter, Department of Dermatology, Cardiff 

University). 

 

K10 expression was found to be a good marker for terminal differentiation 

both in vivo (data not shown) and in HaCaT cultures (Figure 3.5). This was 

generally absent in early low calcium cultures (Days 3 and 6) but was found in 

any cells that formed organised clumps. However, by day 16 in low calcium, 

the cell density was high and so cell-cell contact induced K10 expression at 

several locations. However, after calcium induction, the cells became more 

organised and K10 expression was switched on in all cells that attained a 

suprabasal position (mimicking the in vivo situation).  
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Figure ‎3.5: Expression of K10 (Differentiation Marker) in HaCaT cells.  HaCaT 

cells were grown in low calcium KGM for 3 days, 6 days or 16 days and shifted 

to high calcium KGM at day 6 and grown for another 3 days ( Day 6+3), 6 days 

(Day 6+6) or 10 days (Day 6+10). Data is shown for Day3 and Day 16 in low 

calcium and for Day 6+3 and 6+10 in high calcium. K10 (green) was not 

expressed in early proliferating low calcium cultures but low levels were found 

at day 16. After calcium induction, cells were more organised and expressed 

K10 in much larger amounts. Nuclei were stained blue with DAPI (data 

courtesy of Dr. Paul E. Bowden and Tammy Easter, Department of 

Dermatology, Cardiff University). 

 

Thus, cellular levels of K10 and K14 are good indicators of the state of cultured 

cells. Therefore, before notch receptors, ligands and target genes could be 

evaluated in terms of altered gene expression during terminal differentiation, 

K10 and K14 expression had to be evaluated in more quantitative terms. Thus, 

mRNA (cDNA) levels measured in the HaCaT cell culture model and the effect 

on differentiation was investigated. 
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Human K10 and K14 primer pairs generally work well and in addition to 

quantitating levels in cell cultures, they have been generally used in PCR 

reactions as controls. They can indicate if the DNA in any reaction was intact 

and they are also useful to test for genomic contamination, as long as primer 

pairs are located over an intron. Also the expression of other genes can be 

related to K14 expression as this was stable over the whole time period of a 

HaCaT cell culture experiment (similar use to a housekeeping gene in qPCR).  

 

Keratin primers were used to test HaCaT RNA quality and look for any 

genomic contamination. One primer pair (HK14p55 and p56R) was used to 

detect the K14 gene (KRT14) and this was designed across intron 7 to produce 

an amplicon of 830 bp with gDNA but a smaller amplicon (266 bp) with cDNA. 

However, this was too big for use in qPCR so another primer was made 

(HK14p57R) in exon 8 producing a smaller fragment (112 bp) with cDNA 

(Table 3.2).  

Table 3.2: Sequence of K14 Oligonucleotide Primers for PCR and qPCR. 

Note: reverse complement primers are designated “R”. One pair was used 

for standard PCR (p55 and p56R) and another for qPCR (p55 and p57R). 

Primers Sequence 

K14 p55 [5'- CTG GAT CGC AGT CAT CCA GAG ATG -3'] 
K14 p56R [5'- GAT AAT GAA GCT GTA TTG ATT GCC -3'] 
K14 p57R [5'- TGG TGC GAA GGA CCT GCT CGT GGG -3'] 
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The K14 primer set was used to investigate gDNA contamination of total RNA 

extracts form HaCaT cells in culture. The K14 PCR was designed across intron 7 

so cDNA products are smaller (266 bp) than genomic DNA products (830 bp). 

When run with a set of RNA samples, there are no products in the absence of 

gDNA contamination so the only product found was in the sample containing 

the control genomic DNA (gDNA). Here a single band of 830 bp was observed 

with the K14 primers on a 1.5% agarose gel, confirming the lack of genomic 

contamination (Figure 3.6).  

 

 
Figure ‎3.6: Assessing Genomic DNA Contamination in Total 

RNA Extracts of HaCaT Cells. PCR with K14 primers (p55, 

p56R) on a genomic DNA (gDNA) sample (C19) and a series of 

total RNA extracts from HaCaT cells (D1, D4, D14, D4+3, 

D4+6, D4+10). The K14 PCR product (830 bp) was only found 

in the tube with control gDNA showing that there was no 

gDNA in the RNA extracts. M= φx174 DNA +Hae III marker. 
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The K10 primers used for standard PCR also generated a fragment that was 

too large for qPCR. Thus, two specific primers were designed in the 3’ non-

coding region of the gene (HK10p22 and p24R) to give an amplicon of 111 bp 

on cDNA and gDNA. Another pair (HK10p20 and p23R) were also made over 

intron 7 (304 bp) that produced an amplicon of 136 bp on cDNA and 440 bp 

on gDNA (Table 3.3). 

 

Table 3.3: Sequence of K10 Oligonucleotide Primers for qPCR. Note that 

reverse complement primer was designated “R”.   

Primers Sequence 

HK10p20 

HK10p23R 

 

HK10 p22  

*5’- CTC CAG CGG AGG CCA CAA GTC CTC -3'] 
*5’-GAT GAA AGA ACT CTA CCG TCG GGC -3']  

 
[5'- TGC ATC AAG AGG AAA GAG TCT CCC-3'] 

HK10 p24R [5'- AAG GTC TAT TTC CAT AGA CCA TCA AGA CAG-3'] 

  

 

After reverse transcription of HaCaT total RNA to total cDNA using a poly A+ 

primer, the K14 oligonucleotide primer pair (K14p55, p56R) were used under 

standard PCR conditions (58°C annealing and 35 cycles). The PCR products 

were run on a 1.5% agarose gel (Figure 3.7) and their identity was confirmed 

by sequence analysis. The PCR resulted in uniform strong bands (at 266 bp) 

throughout HaCaT cell proliferation and differentiation and appeared 

independent of the amount of calcium in the medium.  In addition, there were 

no larger bands (830 bp) except in the gDNA control tube. 
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Figure ‎3.7: Analysis of K14 PCR Products from HaCaT Cell 

cDNA by Agarose Gel Electrophoresis. K14 primer pair (p55 

& p56R) produced a single PCR amplicon (266 bp) with 

cDNA from HaCaT cells while a gDNA control sample (C19) 

gave a product of 830 bp. No genomic band was seen in the 

cDNA samples. The level of K14 expression was similar in all 

samples (low calcium: D1, D4, D14 and high calcium: D4+3, 

D4+6, D4+10). Products were analysed on a 1.5% agarose 

gel (DNA marker: M, φx174 + Hae III). Bands were visualised 

with ethidium bromide under UV light. 

 

The K14 primer pair optimized for quantitative PCR was initially tested on 

total cDNA from HaCaT cells using a standard protocol. Again a single strong 

band (at 112 bp) was observed on the 1.5% agarose gel (Figure 3.8) and the 

identity of the product was confirmed by direct sequencing. It is important to 

point out that the total RNA samples from each HaCaT cell culture time point 

were quantified and adjusted to the same concentration to ensure that the 

cDNA generated was as representative of mRNA expression as possible. This 

step reduces some of the inherent variation and helps to produce more 

reliable qPCR results. 
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Figure ‎3.8: Analysis of K14 PCR Products from HaCaT Cell 

cDNA by Agarose Gel Electrophoresis. K14 primer pair (p55 

and p57R) produced a single amplicon (112 bp) with cDNA 

from HaCaT cells.  K14 expression was similar in all samples 

(low calcium: D1, D4, D14 and high calcium: D4+3, D4+6, 

D4+10). Analysis was on a 1.5% agarose gel (M= φx174 + 

Hae III DNA marker) and bands were visualised with 

ethidium bromide under UV light.   

 

 

This was also repeated for the K10 primer pair (K10p22 and p24R) designed 

for qPCR, which produced a small amplicon (111 bp) from the 3’ non-coding 

region of the gene (and cDNA). It was tested on cDNA from HaCaT cells using 

standard PCR conditions (58°C annealing and 35 cycles) and analysed on a 

1.5% agarose gel (Figure 3.9). K10 showed relatively consistent expression 

throughout the HaCaT cell period in culture and little difference was observed 

between low calcium and high calcium conditions. This was not expected as 

there was very little if any K10 protein expression in early cultures (day 1-4) 

while cells were proliferating and a much more dramatic increase in K10 levels 

in differentiating cells. Thus, it may be that the conditions used in the PCR 

were causing all reactions to reach a maximum plateau independent of the 
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original starting conditions as long as there were a least a few molecules of 

K10 mRNA present. This also highlighted the need for qPCR.    

 

 
Figure ‎3.9: Analysis of K10 PCR Products from HaCaT Cell 

cDNA by Agarose Gel Electrophoresis. K10 primer pair 

(p22, p24R) produced a single amplicon (111 bp) with cDNA 

from HaCaT cells.  K10 expression was similar in all samples 

(low calcium: D1, D4, D14 and high calcium: D4+3, D4+6, 

D4+10). Analysis was on a 1.5% agarose gel (M= φx174 + 

Hae III DNA marker) and bands were visualised with 

ethidium bromide under UV light.   

 

  

K10 and K14 PCR amplicons were sequenced to confirm their identity 

and then they were inserted into separate pGEM-T easy vectors and 

cloned (see methods chapter for details).  

 

Once ligated into the pGEM-T easy vectors and cloned, the relevant bacterial 

clones were grown in batch culture and the plasmid carrying the vector and 
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insert isolated.  Six clones were selected for each insert and the plasmids were 

extracted using a Qiagen mini plasmid kit (details in methods chapter). The 

K10 and K14 inserts were released from the pGEM-T easy vectors by digestion 

with Eco RI, and the products were run on a 1.5% agarose gel (Figures 3.10 

and 3.11). 

 

 
Figure ‎3.10: Analysis of K10 Plasmid Digests by Gel 

Electrophoresis. Cloned K10 plasmids (K10 Plas1-6) were 

digested with EcoRI and run on a 1.5% agarose gel. The larger 

band (3015 bp) is pGEM-T easy vector and the lower band 

(111 bp) is the K10 insert. All inserts were sequenced to 

confirm K10 had been cloned successfully. M: low molecular 

weight DNA marker (755-21 bp). 

 

 

The clones that contained plasmids with inserts were stored as glycerol stocks 

at -80˚C and isolated plasmid DNA was stored at -20˚C. One plasmid was then 

selected based on the quality of the insert and a set serial dilutions was made. 

Plasmid 5 was selected for K10 and plasmid F for K14 and serial dilutions 
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(300,000 to 30 copies) were made for use in qPCR experiments (see methods 

Chapter for details). 

 

 
Figure ‎3.11: Analysis of K14 Plasmid Digests by Gel 

Electrophoresis. Cloned K14 plasmids (K14plas A-F) were 

digested with EcoRI and run on a 1.5% agarose gel. The larger 

band (3015 bp) is pGEM-T easy vector and the lower band 

(112 bp) is the K14 insert. Only plasmids D and F contained an 

insert and they two were sequenced to confirm K14 had been 

cloned successfully. M: low Molecular weight DNA Marker 

(755-21 bp). 

 

In brief, the DNA concentration of the stock plasmid solution was measured 

by spectrophotometry (180 ng/µl for K10 plasmid 5). This was then diluted 1 

in 106 to produce a working K10 plasmid 5 working solution (1.8e-13 g/µl). 

The length of the plasmid (3126 bp) was calculated from the size of the vector 

(3015bp) and insert (111 bp) and the mass of a single copy calculated from 

the following equation (where m=mass (g), n = number of base pairs):  

𝑚 = 𝑛 × 1.096𝑒−21  𝑔/𝑏𝑝       
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This gives a value of 3.426e-18 g for the mass of a single K10 plasmid. In order 

to calculate the mass of a fixed number of molecules, multiply the mass of a 

single molecule by the number of molecules required. As this was delivered in 

a 5 µl aliquot then the mass data must be divided by 5 to obtain the final 

concentration (Table 3.4).   

 

Table 3.4: Mass and Final Concentration of K10 Plasmid 5 containing 

between 300,000 and 30 copies in a 5 µl Aliquot 

Copy # 

x 3.426e-18g 

Mass of K10 
Plasmid DNA 

(g) 

Final Concentration 
of K10 Plasmid DNA 

in 5 µl (g/µl) 

300,000  1.028e-12 2.06e-13 

30,000 1.028e-13 2.06e-14 

3000 1.028e-14 2.06e-15 

300 1.028e-15 2.06e-16 

30 1.028e-16 2.06e-17 

 

These values can then be used together with the stock concentration to work 

out the dilutions necessary to obtain the correct copy number using the 

following equation: 

C1V1=C2V2 

 

So for the dilution containing 300,000 copies the following applies and 

all other dilutions can be made at 1 in 10 from this stock (Table 3.5): 

V1 =  C2 x V2  =  2.06e-13 x 100 = 11.43 µl 
           C1                           1.8e-13 
 
Volume of diluent= 100 µl- 11.43 µl = 88.57 µl  

Where  C1= Initial plasmid DNA concentration (g/µl) 
               V1=Volume of stock plasmid solution needed (µl) 
               C2= Final plasmid DNA concentration (g/µl) 
               V2= Final volume of working plasmid solution (µl) 
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Table 3.5: Serial Dilutions of K10 Plasmid 5 for qPCR. Sterile nuclease free H2O was 

used as the diluent. 

Dilution 
Source of 

plasmid DNA 
for dilution 

Initial 
Conc. 
(g/µl) 

 
C1 

Volume of 
K10 

Plasmid 
DNA (µl) 

V1 

Volume of 
Diluent 

(µl) 

Final Vol (µl)  
 
 
 

V2 

Final Conc 
(g/µl) 

 
 

C2 

Copy #  

1 Stock 1.8e-7
 

10µl 990µl 1000µl 1.8e-9
 

N/A 
2 Dilution 1 1.8e-9 10µl 990µl 1000µl 1.8e-11 N/A 
3 Dilution 2 1.8e-11 10µl 990µl 1000µl 1.8e-13 N/A 
4 Dilution 3 1.8e-13 11.43 88.57 100µl 2.06e-13 300,000 
5 Dilution 4 2.06e-13 10µl 90µl 100µl 2.06e-14 30,000 
6 Dilution 5 2.06e-14 10µl 90µl 100µl 2.06e-15 3000 
7 Dilution 6 2.06e-15 10µl 90µl 100µl 2.06e-16 300 
8 Dilution 7 2.06e-16 10µl 90µl 100µl 2.06e-17 30 

 

 

The serial dilutions of K10 plasmid were initially tested by standard PCR and 

analyzed on a high definition (3% NuSieve and 1% agarose) gel (Figure 3.12).   

 

 
Figure ‎3.12: Analysis of Standard PCR with K10 Plasmid 5 

Serial Dilutions.  K10 plasmid 5 dilutions (300,000 copies to 

30 copies) were run by standard PCR (58a35c) using K10 

primers (HK10p22, p24R). Products were analysed on a 3% 

NuSieve + 1% agarose gel and only very faint bands (not 

clear) were seen (M = DNA marker: φx174 + Hae III). 
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Plasmid F containing the K14 insert was selected for qPCR and a set of serial 

dilutions made in the same way. The stock K14 plasmid DNA concentration 

was 400 ng/µl and this was diluted 1 in 106 (4e-13 g/µl).  The mass of a single 

plasmid was calculated as 3.42e-18 g and the mass of 300,000 copies was 

calculated as 1.028e-12 g. This is equivalent to 2.056e-13 g/µl in a 5 µl aliquot. 

Thus, the initial plasmid working solution containing 300,000 copies of K14 

vector and insert was made by adding 51.41 µl of stock plasmid DNA to a tube 

containing 48.59 µl sterile water. The other working plasmid solutions were 

made by diluting this initial solution by 1 in 10 (Table 3.6).  

 
 

 
 

Table 3.6: Serial Dilutions of K14 Plasmid F for qPCR. Sterile nuclease free H2O was 

used as diluent. 

Dilution 

Source of 
Plasmid DNA 
for dilution 

Initial Conc 
(g/µl) 

 
 

C1 

Volume of 
K14 Plasmid 

DNA (µl) 
 

V1 

Volume of 
Diluent (µl) 

Final Vol 
(µl)  

 
 

V2 

Final Conc 
(g/µl) 

 
 

C2 

Copy #  

1 Stock 4e-7
 

10µl 990µl 1000µl     4e-9
 

N/A 

2 Dilution 1 4e-9 10µl 990µl 1000µl 4e-11 N/A 

3 Dilution 2 4e-11 10µl 990µl 1000µl 4e-13 N/A 

4 Dilution 3 4e-13 51.41 48.59 100µl 2.056e-13 300,000 

5 Dilution 4 2.056e-13 10µl 90µl 100µl 2.056e-14 30,000 

6 Dilution 5 2.056e-14 10µl 90µl 100µl 2.056e-15 3000 

7 Dilution 6 2.056e-15 10µl 90µl 100µl 2.056e-16 300 

8 Dilution 7 2.056e-16 10µl 90µl 100µl 2.056e-17 30 
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K10 expression was measured in HaCaT cultures by qRT-PCR and both the 

copy number of cDNA (and mRNA by inference) and also the fold change 

relative to the initial culture conditions (Day 1-3, varies between difference 

experiments) were estimated.  

 

The K10 standard dilution series was run at the same time as the experimental 

samples and this data was used to calculate the copy number from the 

individual sample Ct values (number of cycles to reach the threshold). The K10 

dilution series data was analysed first and a standard curve drawn. 

  

The amplification plot (Figure 3.13) of the K10 dilution series showed 5 evenly 

spaced curves (fluorescence vs cycle number) and these were shown in 

different colours for each dilution (blue = 300,000; red= 30,000; green = 

3,000; grey = 300 and yellow = 30 copies). As the dilution increased, the 

threshold copy number (Ct value) increased and this data can be used to 

calculate a standard curve of Ct value versus copy number (Figure 3.14). The 

copy number of experimental (unknown) samples can then be estimated from 

their Ct values. 
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Figure ‎3.13: Amplification Plot of K10 Plasmid Dilution Series. 

Amplification plots were calculated by qPCR MxPro Software. 

Each colour represents the fluorescence values for a different 

K10 plasmid dilution: blue 300,000 copies; red 30,000; green 

3,000; grey 300 and yellow 30. The distance between each 

fluorescence amplification plot was approximately constant (3-4 

cycles starting at 18 cycles) and the Ct values measured as the 

lines cross the threshold. Note: The data represents an average 

of 3 separate measurements (triplicate samples). 

 

The Ct values for the K10 dilution series ranged from 19 to 33 and this 

produced a linear plot (Figure 3.14) with an efficiency of 99.2% (ideal = 100%), 

an Rsq (R2) value of 0.999 (ideal = 1.000) and a slope of  -3.342 (ideal = -3.2 to 

-3.6).  This represents a very good standard curve for K10 and this was used to 

estimate the copy number in experimental samples from the measured Ct 

value. 

 



150 

 

 
Figure ‎3.14: Standard Curve of K10 Plasmid Dilution Series. The Ct 

value was plotted against copy number and the efficiency of the 

PCR reaction estimated as 99.2% (calculated from the slope which 

was -3.342). The Rsq value was 0.999 indicating the data is a close 

fit to the linear line as plotted. The scale on the x-axis does not 

signify the copy number at each data point. It is important to note 

that the standard curve may only be used to interpolate, not 

extrapolate, the quantity of the unknown sample. This is because 

the assay may not be linear outside the range covered by the 

standard tested. 

 

The qPCR data from 3 consecutive experiments (triplicate experiments) were 

then analysed using the K10 standard curve and INSTAT software. The raw 

qPCR data was analysed using different statistical methods such as Tukey-

Kramer Multiple Comparison Test and One-way Analysis of Variance (ANOVA). 

This software was used to analyse the K10 experimental data in two different 

ways: initially calculating the level of K10 expression in relation to copy 

number and then calculating the fold change in expression.  
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Proliferating cultures (3 days and 6 days in low calcium medium) did have a 

low copy number (188,500 – 366,100) of K10 transcripts (Table 3.7) even 

though very little if any K10 protein was observed in these cells. However, the 

cultures that showed distinct stratification and cornification (16D in low 

calcium and all high calcium cultures) showed a large increase in K10 copy 

number (834,400 – 2,372,000). All the data represents an average value of 

three separate experiments (Table 3.7). 

 

Table 3.7: K10 Gene Expression (Copy Number) during HaCaT Cell Culture. Data 

for 3 experiments showed the same general trend with an increase in K10 

expression as the cultures differentiated. There was a significant increase in copy 

number as cells differentiated (16D, 6D+3, 6D+6, 6D+10) relative to proliferating 

cultures (3D, 6D). Note: sample values were outside standard curve range (see 

Figure 3.13) so the cDNA was diluted 1:10 to bring them into range (30-300,000 

copies) and the numbers below represent the original undiluted cDNA.  

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 262,300 354,800 1,316,000 834,400 2,372,000 1,892,000 

2 188,500 326,100 1,367,000 1,014,000 2,224,000 1,959,000 

3 238,500 366,100 1,352,000 998,000 2,187,000 1,929,000 

Average 229,767 349,000 1,345,000 948,800 2,261,000 1,926,667 

 

 

In terms of fold change, the increase in K10 expression during differentiation 

represented a 3.18 (min) to 13.92 (max) fold increase over the level observed 

in day 3 cultures (Table 3.8). 
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Table 3.8: K10 Gene Expression (Fold Change) in HaCaT Cell 

Cultures. K10 gene expression only increased slightly while cells were 

proliferating (1.83 fold max) but much larger increases were seen as 

cells differentiated (3.18-13.92 fold). Fold change data relative to 3D 

culture levels and average values of 3 experiments are shown in blue. 

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 1.00 1.35 5.02 3.18 9.04 7.21 

2 1.00 1.73 7.25 5.38 11.80 10.39 

3 1.00 1.83 9.86 7.21 13.06 13.92 

Average 1.00 1.64 7.38 5.26 11.30 10.51 
   

 

Comparisons were then made between levels of K10 expression at each time 

point in the HaCaT culture experiments using the Tukey-Kramer Multiple 

Comparison Test (Table 3.9). Here, values of q greater than 5.628 were just 

significant (p < 0.05) while larger values of q (>13.175) were very significant (p 

< 0.001). In all cases when comparing cultures that showed signs of 

differentiation with proliferating cultures (either 3D or 6D), the increases 

were significant. There was no significant difference between K10 levels in 3D 

and 6D cultures (both low calcium) but 16D cultures in low calcium did stratify 

due to contact inhibition and the levels of K10 were significantly higher. The 

cultures that differentiated the longest (6D+10) had lower K10 levels than 

6D+6 which appeared to be the optimum time in this model.    
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Table 3.9: Comparison of K10 Expression Levels (Copy Number) in 

Different HaCaT Cultures. The mean difference in copy number 

between the cultures compared was calculated and a q value 

assigned. Where the value of Q was >5.628, the data was significant 

(values shown in red). Note: sample values were outside standard 

curve range (see Figure 3.13) so the cDNA was diluted 1:10 to bring 

them into range (30-300,000 copies) and the numbers below 

represent the original undiluted cDNA. 

Comparison Mean Difference Q P value 

3D vs 6D -115050 2.169 ns  P>0.05 

3D vs 16D -1116100 21.042 ***  P<0.001 

3D vs 6D+3 -698800 13.175 ***  P<0.001 

3D vs 6D+6 -2072600 39.075 ***  P<0.001 

3D vs 6D+10 -1700100 32.053 ***  P<0.001 

6D vs 16D -1001050 18.873 ***  P<0.001 

6D vs 6D+3 -583750 11.006 **  P<0.01 

6D vs 6D+6 -1957550 36.906 ***  P<0.001 

6D vs 6D+10 -1585050 29.883 ***  P<0.001 

16D vs 6D+3 417300 7.868 *     P<0.05 

16D vs 6D+6 -956500 18.033 ***  P<0.001 

16D vs 6D+10 -584000 11.010 **  P<0.01 

6D+3 vs 6D+6 -1373800 25.901 ***  P<0.001 

6D+3 vs 6D+10 -1001300 18.878 ***  P<0.001 

6D+6 vs 6D+10 372500 7.023 *     P<0.05 

 

   

Interestingly, the data expressed as fold change in K10 expression levels 

was not as significant as the copy number data (Table 3.10). This was 

also analysed using the Tukey-Kramer Multiple Comparison Test and 

values of q was greater than 5.628 were significant (p < 0.05). The only 

data that remained significant were the comparisons between 

proliferating cultures in low calcium (3D and 6D) and late differentiating 

cultures in high calcium (6D+6 and 6D+10).   
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Table 3.10: Comparison of K10 Expression Levels (Fold Change) in 

HaCaT Cultures. The mean difference in K10 fold change between 

certain cultures was compared and where the value of Q was 

greater than 2.60, the difference was significant (p < 0.05 or more). 

Comparison Mean Difference Q P value 

3D vs 6D -0.5400 0.5028 ns  P>0.05 

3D vs 16D -5.135 4.781 **  P<0.01 

3D vs 6D+3 -3.280 3.054 *    P<0.05 

3D vs 6D+6 -9.420 8.770 ***  P<0.001 

3D vs 6D+10 -7.800 7.262 ***  P<0.001 

6D vs 16D -4.595 4.278 ** P<0.01 

6D vs 6D+3 -2.740 2.551 ns  P>0.05 

6D vs 6D+6 -8.880 8.268 *** P<0.001 

6D vs 6D+10 -7.260 6.759 *** P<0.001 

16D vs 6D+3 1.855 1.727 ns  P>0.05 

16D vs 6D+6 -4.285 3.989 **  P<0.01 

16D vs 6D+10 -2.665 2.481 ns  P>0.05 

6D+3 vs 6D+6 -6.140 5.717 **  P<0.01 

6D+3 vs 6D+10 -4.520 4.200 **  P<0.01 

6D+6 vs 6D+10 1.620 1.508 ns  P>0.05 

  
 

The copy number data for K10 expression in different HaCaT cultures was 

made into a bar chart and the standard deviation (SD) was shown for each bar 

as well as the significance relative to the 3D cultures (Figure 3.15). Low levels 

of K10 expression were found in early cultures in low calcium medium (3D & 

6D) and K10 expression was increased significantly in all cultures that had 

differentiated and stratified (16D, 6D+3, 6D+6, 6D+10).  
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Figure ‎3.15: K10 Gene Expression in HaCaT Cells during 

Calcium-induced Differentiation. K10 expression (copy 

number) was measured by qPCR and the data for 3 

experiments shown as an average ± SD. The level of 

significance relative to the day 3 culture data (3D) is shown 

(*** p < 0.001).  

 

 

 

Expressing the K10 data as fold change produced a bar chart with the same 

overall trends but lower levels of significance (Figure 3.16). The only increases 

that were significant were those in late differentiation (6D+6 and 6D+10) as 

these were greater than 10 fold over the level seen in the 3D cultures (p < 

0.01 and p < 0.05 respectively). 
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Figure ‎3.16: K10 Gene Expression in HaCaT Cells during 

Calcium-induced Differentiation.  K10 expression (fold change) 

was measured by qPCR and the data for 3 experiments shown as 

an average ± SD. The level of significance relative to the 3 day 

culture data (3D) is shown (*** p<0.001, ** p < 0.01 and * p < 

0.05). 

  

 

 

These observations agreed with previous work done in the laboratory and 

agreed with the data obtained at the protein level. Thus, K10 appears to be 

expressed in some cells in early low calcium cultures and the small amounts of 

cDNA probably represent a few cells that have clumped together and begun 

differentiating due to contact inhibition of growth. K10 expression was much 

more apparent in the cultures that had been left in low calcium for 16 days. 

However, cultures exposed to high calcium are much more organised, stratify 

better and express a significantly higher level of K10. While there may be a 

slight discrepancy between K10 mRNA and protein levels in early cultures, this 

can be explained either by levels of detection in the different methods used or 

may be a consequence of blocking K10 translation in proliferating cells.  
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3.4 Expression of K14 in HaCaT Cell Culture Model 

Unlike K10, the levels of K14 did not change so dramatically as HaCaT cells 

differentiated. The same experimental procedure and MxPro software were 

used for analysis by qRT-PCR. This required cloning a segment of K14 into 

pGEM-T easy, constructing a set of serial dilution standards of known copy 

number and then relating the sample fluorescence and Ct value back to the 

starting copy number. The amplification plot data for the serial dilutions was 

not quite as good as K10 with some variation in the Ct values between 

dilutions (Figure 3.17).  

 

Figure ‎3.17: Amplification Plot of K14 Plasmid Dilution Series. 

Amplification plots of qPCR data were calculated by MxPro 

Software. Each colour represents the fluorescence values for a 

different K14 plasmid dilution: blue 300,000 copies; red 30,000; 

green 3,000; grey 300 and yellow 30. The distance between each 

fluorescence amplification plot was approximately constant (3-4 

cycles starting at 21 cycles) and the Ct values measured as the lines 

cross the threshold. Note: This is an average of 3 measurements 

(triplicate).   
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The Ct values for the K14 dilution series ranged from 21 to 36 and this 

produced a linear plot (Figure 3.18) with an efficiency of 95.5% (ideal = 100%), 

an Rsq (R2) value of 0.996 (ideal = 1.000) and a slope of  -3.434 (ideal = -3.2 to 

-3.6).  This represents a reasonable standard curve for K14 and this was used 

to estimate the copy number in experimental samples from the measured Ct 

value. 

 

 
Figure ‎3.18: Standard Curve of K14 Plasmid Dilution Series. Ct 

values were plotted against copy number and the efficiency of the 

PCR reaction estimated as 95.5% (calculated from the slope). The 

Rsq value was 0.996 indicating the data is a close fit to the linear 

line as plotted. The scale on the x-axis does not signify the copy 

number at each data point. 

 

The qPCR data from 3 consecutive experiments (triplicates) was then analysed 

using the K14 standard curve and INSTAT software. This analysed the raw 

qPCR data using different statistical methods such as Tukey-Kramer Multiple 

Comparison Test and One-way Analysis of Variance (ANOVA). This software 

was used to analyse the K14 experimental data, initially calculating the level of 
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K14 expression in relation to copy number (The original cDNA was diluted into 

1 in 100, to get the data in range for qPCR) and then calculating the 

subsequent fold change. K14 levels increased in early proliferating cultures (6 

day cultures almost 4 fold higher level than 3 day cultures) after which the 

level of K14 reduced (Table 3.11). This data was not related to the amount of 

starting cellular material so the initial increased K14 expression probably 

reflected the 4 fold increase in cell density typically seen between 3 and 6 

days and the subsequent reduction in K14 levels as cellular material increased 

further reflected a fall in K14 expression in real terms. 

 

Table 3.11: K14 Gene Expression (Copy Number) during HaCaT Cell Culture. Data 

for 4 experiments showed the same general trend with an increase in K14 

expression as the cultures initially proliferated and then a subsequent decrease as 

cells differentiated. An average value for the four experiments is shown in blue. 

Note: sample values were outside standard curve range (see Figure 3.18) so the 

cDNA was diluted 1:100 to bring them into range (30-300,000 copies) and the 

numbers below represent the original undiluted cDNA.  

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 526,200 1,899,000 943,200 943,000 879,400 784,800 

2 542,300 1,657,000 925,100 708,300 652,200 646,600 

3 316,015 1,228,335 610,598 777,741 602,446 582,537 

4 256,580 1,377,011 684,505 586,466 530,225 505,857 

Average 410,274 1,540,336 790,851 754,877 666,068 629,949 

 

 

The initial increase in K14 expression during proliferation was equivalent to a 

3.98 fold change while the K14 level in differentiating cells was almost 2 fold 

above the levels observed in 3D cultures (Table 3.12). 
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Table 3.12: K14 Gene Expression (Fold Change) in HaCaT Cell 

Cultures.  K14 gene expression increased almost 4 fold in early 

proliferating cultures and then decreased as cells differentiated 

(1.95 to 1.62 fold). Fold change data relative to 3D culture levels 

and average values of 4 experiments are shown in blue. 

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 1.00 3.61 1.79 1.79 1.67 1.49 

2 1.00 3.06 1.71 1.31 1.20 1.19 

3 1.00 3.89 1.93 2.46 1.91 1.84 

4 1.00 5.37 2.67 2.29 2.07 1.97 

Average 1.00 3.98 1.95 1.96 1.71 1.62 

  

 

The level of K14 expression at each time point in the HaCaT culture 

experiments was analysed using the Tukey-Kramer Multiple Comparison Test. 

Here, values of q greater than 4.495 were just significant (p < 0.05) while 

larger values of q (>8.241) were very significant (p < 0.001). Large differences 

were only obtained when comparing 6D cultures to all others and the data 

was in general highly significant in all cases (p > 0.001). This was true whether 

the data was expressed in terms of copy number (Table 3.13) or fold change 

(Table 3.14).  
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Table 3.13: Comparison of K14 Levels (Copy Number) in Different 

HaCaT Cultures. The mean difference in K14 copy number between the 

cultures as listed (comparison) was calculated and a Q value assigned. 

Where the value of q was >4.495, the data was significant (actual p 

values shown in red). Note: sample values were outside standard curve 

range (see Figure 3.18) so the cDNA was diluted 1:100 to bring them into 

range (30-300,000 copies) and the numbers below represent the original 

undiluted cDNA. 

Comparison Mean Difference Q P value 

3D vs 6D -1130063 10.652 *** P<0.001 

3D vs 16D -380577 3.587 ns P>0.05 

3D vs 6D+3 -131428 1.239 ns P>0.05 

3D vs 6D+6 -255794 2.411 ns P>0.05 

3D vs 6D+10 -219675 2.071 ns P>0.05 

6D vs 16D 749486 7.064 ** P<0.01 

6D vs 6D+3 998635 9.413 *** P<0.001 

6D vs 6D+6 874269 8.241 *** P<0.001 

6D vs 6D+10 910388 8.581 *** P<0.001 

16D vs 6D+3 249149 2.348 ns P>0.05 

16D vs 6D+6 124783 1.176 ns P>0.05 

16D vs 6D+10 160902 1.517 ns P>0.05 

6D+3 vs 6D+6 -124366 1.172 ns P>0.05 

6D+3 vs 6D+10 -88247 0.8318 ns P>0.05 

6D+6 vs 6D+10 36119 0.3404 ns P>0.05 

 

 
 

Apart from the day 6 data (6D), comparison between day 3 cultures in low 

Ca2+ (3D) and other time points (6D, 16D, 6D+3, 6D+6 and 6D+10) showed no 

significant difference. This was also true of the other comparisons 

independent of how the data was expressed.  
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Table 3.14: Comparison of K14 Expression Levels (Fold Change) in 

HaCaT Cultures. The mean difference in K14 fold change between 

certain cultures was compared and where the value of Q was greater 

than 4.495, the difference was significant (p < 0.001).  

Comparison Mean Difference Q P value 

3D vs 6D -2.983 11.187 *** P<0.001 

3D vs 16D -1.025 3.845 ns P>0.05 

3D vs 6D+3 -0.9625 3.610 ns P>0.05 

3D vs 6D+6 -0.7125 2.673 ns P>0.05 

3D vs 6D+10 -0.6225 2.335 ns P>0.05 

6D vs 16D 1.958 7.343 *** P<0.001 

6D vs 6D+3 2.020 7.577 *** P<0.001 

6D vs 6D+6 2.270 8.515 *** P<0.001 

6D vs 6D+10 2.360 8.852 *** P<0.001 

16D vs 6D+3 0.06250 0.2344 ns P>0.05 

16D vs 6D+6 0.3125 1.172 ns P>0.05 

16D vs 6D+10 0.4025 1.510 ns P>0.05 

6D+3 vs 6D+6 0.2500 0.9378 ns P>0.05 

6D+3 vs 6D+10 0.3400 1.275 ns P>0.05 

6D+6 vs 6D+10 0.09000 0.3376 ns P>0.05 

  

 

The K14 data from individual experiments was also analysed by the INSTAT 

statistical software as an overall average. This was presented as a bar chart 

showing mean plus standard deviation and the p values where they were 

significant. This was expressed both in terms of total copy number (Figure 

3:19) and fold change (Figure 3:20).  

 



163 

 

 
Figure ‎3.19: Analysis of K14 Gene Expression (Copy Number) in HaCaT 

Cells during Calcium-induced Differentiation. K14 copy number was 

estimated by qPCR in HaCaT cultures at different stages of proliferation 

and differentiation. Green bars show the mean of 3 different 

experiments together with standard deviation (black bars). The only 

significant data relative to day 3 was an increase at day 6 (p < 0.001). 

 

 
Figure ‎3.20: Analysis of K14 Gene Expression (Fold Change) in HaCaT 

Cells during Calcium-induced Differentiation. The fold change in K14 

expression was estimated by qPCR in HaCaT cultures at different stages 

of proliferation and differentiation. Pink bars show the mean of 3 

different experiments together with the standard deviation. The only 

significant data relative to 3D was the increase at 6D (p < 0.001). 
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In conclusion, K14 expression levels increased significantly during early 

proliferation (between 3 and 6 days in low calcium culture) when the cells 

were increasing in mass. After calcium induced differentiation, K14 levels 

reduced almost back to the initial 3D culture level. As the cell volume 

continued to increase, then a reduction in K14 expression per unit cell seemed 

likely, agreeing with the reduction seen as cells differentiated in vivo. 

 

In general, the change over from a majority of K14 expression to a majority of 

K10 expression can be seen by comparing the copy number data on the same 

bar chart (Figure 3.21).  

 
Figure ‎3.21: Alterations in K14 and K10 Expression (Copy Number) in 

HaCaT Cells during Calcium-Induced Differentiation. K14 (pink) and K10 

(green) expression (copy number) was measured by qPCR and analysed 

using MxPro software. The K14 gene expression was increased in low 

calcium medium (3D, 6D) but then reduced again as cells differentiated 

(16D). The same reduction was also seen during calcium-induced 

differentiation (6D+3, 6D+6 and6D+10). The opposite was true for K10 

where levels are low in proliferating cultures and these increase as cells 

differentiate.  
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The observations of K10 and K14 expression, together with the Ki67 IMF data, 

showed that HaCaT cells in culture were broadly similar to human epidermis 

in vivo in terms of the commitment to terminal differentiation and that this 

model was sufficient to study alterations in notch signalling during epidermal 

differentiation in vitro. 
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4.1 Introduction 

Investigating notch signalling in human skin (in vivo) was proving to be difficult 

and a model system was sought so that the signalling process and its response 

to the differentiation status of the cell could be assessed. The HaCaT tissue 

culture model was chosen because this was already established in the 

laboratory and terminal differentiation can be induced reproducibly using the 

calcium shift technique. In brief (see Chapter 2 for details), the cells were 

grown over a 4-7 day period until they reach 70-80% confluence and then the 

calcium level in the medium is increased and the cells are allowed to growth 

for another 6-10 days. Sufficient numbers of HaCaT cells were then produced 

so that total RNA and total protein could be extracted for analysis of both the 

state of cellular proliferation and extent of terminal differentiation. Once the 

model was reproducibly shifting into terminal differentiation after increasing 

calcium levels, then notch signalling could be evaluated and experiments 

designed to investigate the effect of notch signalling on the process. In order 

to assess gene expression levels, both standard and real time qPCR were done 

using various primer combinations (see Table 4.1 below). Where possible, 

primer pairs were designed over intron boundaries so that any genomic PCR 

product (amplicon) was larger than the cDNA amplicon, providing an internal 

control for genomic contamination. 
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Once total RNA had been extracted from HaCaT cell cultures harvested at 

different times, cDNA was generated by reverse transcription and a standard 

PCR carried out for each gene of interest (notch receptors, ligands and target 

genes). PCR products were analysed on 1.5% agarose gels to estimate the size 

of each amplicon. PCRs were carried out according to a rigorous protocol to 

minimize errors such as contamination by other DNA, primer dimers and 

products of incorrect size. Ideally, the PCR products should show strong single 

bands on the agarose gel. As only an aliquot of the whole PCR reaction was 

tested, the remainder can then be sequenced for identity verification (see 

Chapter 2 for details).  

 

Standard PCR reactions are limited in terms of the estimation of specific gene 

expression levels and it can be hard to accurately distinguish PCR samples that 

contain 20 copies or 50 copies on a gel. Thus, when there are small 

differences in expression level, quantitative real time PCR (qPCR) is required.   

 

In order to get an absolute level of quantitation in a dynamic cell system, 

levels of gene expression must be related to a housekeeping gene that is 

stable through the cellular changes of a typical experiment. This is an 

important control in qPCR experiments. However, the levels of the 

housekeeping genes examined (β-actin, TF2H, TBP and RPLA13) in the HaCaT 

cell culture model were not stable and levels changed as HaCaT cells changed 
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from proliferation to terminal differentiation. Thus, none of these molecules 

were considered as a stable housekeeping gene in the HaCaT cell culture 

model. Thus, in order to estimate the copy number of a given gene product in 

the HaCaT cells, a probe for each gene was cloned and sufficient cDNA 

generated to make a gene specific standard curve. This would relate absolute 

levels to Ct values and therefore gene copy number in the experimental 

samples could be estimated from the Ct values obtained.  

 

Primers for real time PCR were arranged to generate an optimum product size 

of 80-120bp and should not be more than 150bp. Some of the primers 

designed for standard PCR were of a suitable size for use in qPCR but where 

this was not the case, primers were designed specifically for qPCR (Table 4.1).  

 

Table 4.1: Table of Primers for Standard PCR and qPCR of Notch, 

Delta, Jagged, Hes and Hey. 

Gene Primers for PCR Primers for qPCR 

Notch 1 receptor N1p7, N1p6R 

Notch 3 receptor N3p1, N3p4R 

Delta like 1 DLL1p1, DLL1p2R DLL1p7, DLL1p8R 

Jagged 1 Jag1p11, Jag1p12R 

Jagged 2 Jag2p14, Jag2p11R 

Hes 1 Hes1p1, Hes1p2R 

Hes 5 Hes5p1, Hes5p2R 

Hes7 Hes7p1, Hes7p2R 

Hey1 Hey1p3, Hey1p4R 

Hey2 Hey2p3, Hey2p4R 

HeyL HeyLp1, HeyLp2R 
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Each gene was tested in triplicate using the same set of HaCaT cells to 

minimize variation in the results. To establish the expression level of each 

gene, qPCR results were analyzed using standard curve and CT values 

established for each gene.  

 

4.2 Expression of Notch Receptors in HaCaT Cells  
 

As HaCaT cells undergo calcium-induced terminal differentiation, many 

changes in gene expression occur and some of these involve notch-delta 

signalling. Thus, we initially wanted to investigate which notch receptors were 

present in HaCaT cells and if they altered expression during a calcium shift 

experiment. Thus, were notch receptor levels of expression different in 

proliferating and differentiating HaCaT cells. Expression levels measured by 

standard PCR were not accurate and before we could proceed with qPCR, a 

functional primer pair had to be designed and tested to generate a notch 

receptor specific cDNA probe that could be cloned and used to make a qPCR 

standard curve. 

  

However, as the optimum size of primers for standard PCR were generally 

larger (300-600 bp) than those used for qPCR (150bp or less), in some cases it 

was necessary to make at least two sets of primers. All of the primers were 
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designed by my supervisor (Dr. P.E. Bowden, Cardiff University) and those for 

amplifying the notch 1 and notch 3 gene fragments are shown below (Table 

4.2).  

 

Table 4.2: Sequence of Notch Primers. All oligonucleotide primers 

were designed by Dr. P.E. Bowden (Dermatology Dept, Cardiff 

University) and supplied by Sigma-Aldrich Company Ltd (Poole, UK). 

Reverse primers were designated ‘R’. 

Primer Name Primer Sequence 

Notch 1 (N1p7) [ 5'- ACC TTC CGC ACG CGG ATT AAT TTG -3'] 

Notch 1 (N1p6R) [ 5'- TGC ACT CTT GGC ATA CAC ACT CCG -3'] 

Notch 3 (N3p1) [ 5'- TTA CCT GGC AGT CCC AGG ACA TGG -3'] 

Notch 3 (N3p4R) [ 5'- TAA GGG TGC TCA CTG GGA ACC CGC-3'] 

 

 

Notch 1 and notch 3 expression were investigated in HaCaT cells during 

proliferation (1-6 days in low Ca2+ KGM) and terminal differentiation (1-10 

days after shift to high Ca2+ KGM).  Total RNA was extracted from the relevant 

HaCaT cells and cDNA prepared by reverse transcription (see Chapter 2 for 

details). The PCR reactions were prepared in ice-cold tubes and Taq 

polymerase was added last. Samples were run at an optimal annealing 

temperature for the oligonucleotide pairs chosen (60:C in this case) and run 

for 35 cycles. The PCR products were analysed by flat bed electrophoresis 

using a combination gel (3% NuSieve and 1% agarose) for better resolution of 

smaller fragments of DNA. The gel was run for about 45 minutes (conditions 



172 

 

summarized in Table 4.3) and the DNA was visualised under UV light (gel 

contained ethidium bromide). 

 

Table 4.3: Agarose Gel Electrophoresis for PCR Products. 

Experimental conditions for analysis of PCR products 

generated with Notch 1 and Notch 3 primer sets using 

agarose gel electrophoresis. 

Experiment Notch 1 & Notch 3 

Gel Composition 3% NuSieve + 1% Agarose  

Electrophoresis Buffer   Tris-Acetate-EDTA 

Power pack Setting 90V (current 50mA) 

Running Time 45 minutes 

Sample Preparation 
4 µl sample plus 1 µl 

glycerol/BPB mix 

Marker Preparation Low MW (φX174 + HaeIII) 

 

Notch 1 amplicons (142 bp) showed strong bands across the whole gel, 

changing very little throughout the experiment (Figure 4.1). Thus, the levels 

appeared to be similar in proliferating HaCaT cells (low Ca2+ KGM) and 

differentiating HaCaT cells (high Ca2+ KGM). The amplicons were sequenced to 

confirm their identity as products of the notch 1 gene (data not shown). 

 

In contrast, Notch 3 was expressed predominantly during cell differentiation 

(in all high Ca2+ cultures and at day 14 in low Ca2+ medium) and only weak 

expression was observed during cell proliferation in early low calcium cultures 
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(see Figure 4.2). The PCR products were confirmed as notch 3 by sequencing. 

However, in different sets of HaCaT cell cultures, the results were variable and 

it was difficult to get a consistent expression of Notch 1 and 3. This was 

explained, at that time, due to the low level of expression therefore difficult 

to detect. 

 
Figure ‎4.1: Expression of NOTCH 1 during HaCaT 

Differentiation.PCR products analyzed by 

electrophoresis on a 3% NuSieve + 1% agarose gel. A 

series of total cDNA extracts from HaCaT cells (D1, D4, 

and D14, D4 + 1, D4 + 3, D4 + 6, D4 + 10). Single product 

(142bp) found in all cells but levels appeared to vary 

(low calcium: D1, D4, D14 and high calcium: D4+1, D4+3, 

D4+6, D4+10). M = φx174 DNA +Hae III marker.  

 

 

It is important to point out that PCR conditions for notch 1 and 3 were not 

fully optimized at this stage for use in RT-qPCR. However, since notch 1 and 3 

primers gave a product of the correct size, it was only necessary to optimize 

the conditions for qPCR.  
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In order to clone the notch inserts generated for use as a qPCR standard, the 

optimum PCR was chosen for each notch reaction. The Notch 1 amplicon (142 

bp) was strongest in Day 14 cultures in low calcium medium (Figure 4.1) and 

the Notch 3 amplicon (102 bp) was strongest in day 4+6 cultures in high 

calcium medium (Figure 4.2). 

 

 
Figure ‎4.2: Expression of NOTCH 3 during HaCaT Cell 

Differentiation. Electrophoresis of PCR products on a 3% 

NuSieve and 1% agarose gel. A single product (102 bp) 

was found and expression varied between different HaCaT 

cells medium (low calcium: D1, D4, D14 and high calcium: 

D4+1, D4+3, D4+6, D4+10). M = φx174 DNA +Hae III 

marker.   

 

These observations were considered as optimum levels and chosen as the 

starting point for cloning the Notch 1 and Notch 3 specific PCR products for 

use as qPCR standards. Both were run on the same gel to obtain a direct 

comparison of the size of each amplicon (Figure 4.3). This was followed by 

sequencing the products using standard automated sequencing protocols. 
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Once the sequence was confirmed, the Notch 1 and Notch 3 PCR products 

were cloned into pGEM-T easy vectors (see Chapter 2 cloning procedure). 

 

 
Figure ‎4.3: Expression of Notch 1 and Notch 3 in HaCaT 

Cell Differentiation. Optimum PCR amplicons of Notch 1 

and 3 were obtained using total RNA from different HaCaT 

cell cultures (14 day low Ca and 4+6 days high Ca 

respectively). The PCR products were analyzed on 3% 

NuSieve plus 1% agarose gel prior to cloning. M (DNA 

Marker) = φx174 DNA +Hae III.  

 

PCR fragments were cleaned prior to ligation into the bacterial plasmid 

(pGEM-T easy vector system). Once the PCR fragments have been inserted 

into the plasmids, these are inserted into bacteria by transformation and the 

clones generated examined. The best clones were then selected and grown in 

bulk. The plasmids from each clone were extracted using a Qiagen plasmid 

miniprep kit and the inserts (Notch 1 or Notch 3) were released from the 

vector by restriction enzyme digestion (Eco RI) and then analysed by 

electrophoresis on 1.5% agarose gels (Figures 4.4 and 4.5).  To ensure that 
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inserts did represent the gene of interest, they were all sequenced and 

checked against the human genome database (data not shown). 

Figure  4.4: Analysis of Notch 1 Plasmid Digests by Gel 
Electrophoresis. Cloned Notch 1 plasmids (Plas 1-6) were 
digested with EcoRI and run on a 1.5% agarose gel. The 
pGEM-T easy vector is the larger band (3015 bp) and the 
lower band (142 bp) is the Notch 1 insert. M: DNA Marker = 
100 bp Ladder. Plasmid 1, 3, 4, 5 contained inserts of the 
correct size and their identity was confirmed by sequencing.  

 

 
Figure ‎4.5: Analysis of Notch 3 Plasmid Digests by Gel 

Electrophoresis. Cloned Notch 3 plasmids (Plas 1-6) were 

digested with EcoRI and run on a 1.5% agarose gel. The 

pGEM-T easy vector is the larger band (3015 bp) and the 

smaller band (102 bp) is the Notch 3 insert. Only Plas1 had 

an insert of the correct size and the identity was confirmed 

by sequencing. M: DNA Marker (100 bp Ladder, NEB). 

Plasmids 2-6 showed incomplete digestion of the vector 

and no product was released.  
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Once the inserts had been confirmed by sequencing, then stocks of three 

isolated plasmids for each PCR generated insert were stored at -80°C. 

Sufficient amounts of plasmid could then be generated to make serial 

dilutions of each gene probe of interest. Serial dilutions were calculated based 

on the combined size (bp) of the pGEM-T vector and the PCR generated insert. 

The equations were based on the average mass of a single base pair (1.096e-

21 g) derived from the dividing the gram molecular weight of 1 bp (660 g) by 

Avogadro’s number (6.023E23), the number of molecules per mole (see 

Chapter 2 for details).  

 

Serial dilutions of the appropriate Notch 1 (N1plas3) and Notch 3 (N3plas1) 

plasmid DNA were made for the qPCR experiments. The concentration of 

stock N1plas3 DNA was determined by spectrophotometric analysis (580 

ng/µl or 5.8e-7 g/µl). Initially, this stock was diluted serially (three times by 1 

in 100) to a more manageable 1 in 106 (concentration 5.8e-13 g/µl). The mass 

(m) of a single plasmid molecule (vector plus insert) was calculated from the 

size (3,015 bp + 142 bp), so that n = 3,157 bp and m = 3157 x 1.096e-21 g, a 

value of 3.46e-18 g. The calculated mass of a single molecule of N1plas3 

(3.46e-18 g) was then used to determine the mass equivalent of 300,000 

copies (1.038e-12 g) which is equivalent to a concentration of 2.076e-13 g/µl 

in a 5 µl aliquot (as used for the PCR reaction). The stock plasmid was 5.8e-13 
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g/µl so the dilution required to contain 300,000 copies in 500 µl was 

calculated as 179µl of stock N1plas3 diluted with 321 µl of sterile water. This 

300,000 copy number stock can then be used to make a serial dilution series 

(1:10) to generate working solutions that contain 30,000, 3,000, 300 and 30 

copies in 5 µl (Table 4.4). 

 

Table 4.4: Dilution Series for N1plas3 Stock. Sterile nuclease free water was 

used as the diluent and dilutions 4-8 were used for qPCR. 

Dilution Source of 
plasmid DNA 
for dilution 

Initial 
Conc. 
(g/µl) 

 
 C1 

Volume of 
Plasmid 
DNA (µl) 

 
V1 

Volume of 
Diluent (µl) 

Final Vol 
(µl)  

 
 

V2 

Final Conc 
(g/µl) 

 
 

C2 

Copy #  

1 Stock 5.8e-7 10µl 990µl 1000µl 5.8e-9 N/A 
2 Dilution1 5.8e-9 10µl 990µl 1000µl 5.8e-11 N/A 
3 Dilution2 5.8e-11 10µl 990µl 1000µl 5.8e-13 N/A 
4 Dilution3 5.8e-13 179 321 500µl 2.076e-13 300,000 
5 Dilution4 2.076e-13

 
10µl 90µl 100µl 2.076e-14

 
30,000 

6 Dilution5 2.076e-14 10µl 90µl 100µl 2.076e-15 3000 
7 Dilution6 2.076e-15 10µl 90µl 100µl 2.076e-16 300 
8 Dilution7 2.076e-16 10µl 90µl 100µl 2.076e-17 30 

 

The same calculations were repeated for the Notch 3 plasmid (N3plas1). The 

N3plas1 DNA stock had a concentration of 500 ng/µl (5e-7 g/µl) and this was 

also diluted 1 in 106 (5e-13 g/µl). The insert was 102 bp so the mass of a single 

molecule of plasmid was calculated as before (3.416e-18 g). The mass 

equivalent of 300,000 copies would be 1.0248e-12 g and the concentration of 

plasmid required in a 5 µl aliquot would 2.0496e-13 g/µl. Thus, the dilution 

required to make 500 µl of a standard stock solution containing 300,000 

copies of plasmid would be 205 µl of stock diluted with 295 µl sterile water. 

Again, this solution can then be diluted 1:10 to make a set of working serial 

dilutions (Table 4.5). 
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Table 4.5: Dilution Series for N3plas1 Stock. Sterile nuclease free H2O was 
used as the diluent and dilutions 4-8 used for qPCR.  

Dilution Plasmid DNA 
Dilutions 

Initial 
Conc. 
(g/µl) 

  
C1 

Plasmid 
DNA 

Volume 
(µl) 
V1 

Volume of 
Diluent 

added (µl) 

Final 
Vol. (µl)  

 
V2 

Final 
Conc. 
(g/µl) 

 
C2 

Copy #  

1 Stock 5e-7 10µl 990µl 1000µl 5e-9  N/A 
2 Dilution 1 5e-9 10µl 990µl 1000µl 5e-11 N/A 
3 Dilution 2 5e-11 10µl 990µl 1000µl 5e-13 N/A 
4 Dilution 3 5e-13 205 295 500µl 2.049e-13 300,000 
5 Dilution 4 2.0497e-13 50µl 450µl 500µl 2.049e-14 30,000 
6 Dilution 5 2.0497e-14 50µl 450µl 500µl 2.049e-15 3000 
7 Dilution 6 2.0497e-15 50µl 450µl 500µl 2.049e-16 300 
8 Dilution 7 2.0497e-16 50µl 450µl 500µl 2.049e-17 30 

 

 

Initially, an aliquot of each diluted plasmid was run in a standard PCR reaction 

and analyzed on a high resolution gel (3% NuSieve and 1% agarose). The 

Notch 3 dilution series was analysed as an example (Figure 4.6) but only the 

high copy number standards resulted in a clearly visible product and the 

amplicons progressively disappeared as the starting material was serially 

diluted. 

 
Figure ‎4.6: PCR Reactions with Serial Dilutions of Notch 3 

Plasmid 1 (N3plas1). Reactions were analysed on a 3% 

NuSieve plus 1% agarose gel. The Notch 3 amplicon is 102 

bp (yellow arrows) and this represents a dilution series from 

300,000 copies to 30 copies as starting material. M (Marker) 

= φx174 DNA +Hae III. 
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These standardised serial dilutions of cloned Notch 1 and Notch 3 PCR 

fragments were analysed by qPCR and a standard curve constructed from the 

data using MxPro software (MX3000P Real Time PCR Machine).  The Notch 3 

data was reasonable and the individual amplification plots from the separate 

wells containing different levels of cloned Notch 3 plasmid (300,000 to 30 

copies) all showed a good sigmoid curve and all attained a plateau of 

approximately equal height (Figure 4.7). Also, the different dilutions gave 

equally spaced plots providing Ct values about 4 cycles apart. When plotted as 

a standard curve (Figure 4.8), the N3plas1 data showed an efficiency value of 

101.8 % (reproducible over the triplicate repeats).  

 
Figure ‎4.7: Amplification Plot of Notch 3 Plasmid Serial Dilutions. 

Fluorescence data from MxPro software showing the 

amplification from different starting levels of Notch 3 plasmid in 

different colours: Blue represents 300,000 copies, red (30,000 

copies), green (3,000 copies), grey (300 copies) and yellow (30 

copies). A constant distance (4 cycles) between each fluorescence 

amplification plot indicated a good serial dilution. 
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Figure ‎4.8: Standard Curve of Notch 3 Plasmid (Ct Value versus 

Original Copy Number). The efficiency of the qPCR reaction was 

101.8% (calculated from slope: -3.279 log (X)) and the RSq (R2) 

value was 0.996 (ideal reaction > 0.95). The data points were 

close to the line and a good fit). 

 

This data showed a good relationship between the starting copy number in 

the serial dilutions and the fluorescence obtained in qPCR. This was then used 

to calculate the relative copy number in unknown experimental samples from 

the Ct values obtained. The standard curve for Notch 1 was similar (data not 

shown).  

 

A series of qRT-PCR experiments were run using mRNA extracted from HaCaT 

cultures grown under different conditions for different lengths of time (see 

Chapter 2 for details). These were run together with a standard dilution series 

of cloned Notch 1 or 3 plasmids of known copy number. Experiments were 

conducted in triplicate and different sets of HaCaT cultures used as the level 

of differentiation in any given culture was variable.  The data were analysed 
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with MxPro software and different statistical packages (including Tukey-

Kramer Multiple Comparison Test and One-way Analysis of Variance or 

ANOVA).  

 

Overall, Notch 1 was expressed at a constant level in keratinocyte cultures 

and there were no significant differences between levels during cell 

proliferation and terminal differentiation. Thus, few changes in Notch 1 

expression were detected during calcium-induced HaCaT cell differentiation in 

culture. This broadly agreed with early results obtained by standard PCR and 

protein chemistry (Paul E. Bowden, unpublished data). However, previous 

experiments using Notch 1 antibodies (for immunofluorescence and western 

blotting) produced variable results and consistently poor data, probably due 

to low levels of expression and the fact that only poor antibodies were 

available. Thus, we concluded that there were few changes in Notch 1 levels 

of expression during keratinocyte differentiation in HaCaT cultures.  

 

However, the data for Notch 3 did show some alterations during the culture 

period. The qPCR experimental data was analyzed by INSTAT software in two 

different ways. The level of expression was initially calculated in relation to 

copy number and then any alterations in expression level were calculated as 

fold change relative to the starting point (day 3 culture). This produced 
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different levels of significance in the data but the trend remained the same 

(Tables 4.6 to 4.8).   

 

The copy number varied between the different experiments but the data was 

reasonable between triplicates done within a single experiment (data not 

shown). In general, Notch 3 levels increased as calcium-induced 

differentiation proceeded with levels being much higher after calcium shift 

(samples 6D+3, 6D+6 and 6D+10). While cultures left for 16 days in low 

calcium did show induced differentiation (due to contact inhibition), levels of 

Notch 3 were not as high as those seen in the presence of calcium (Table 4.6). 

 

Table 4.6: Raw qPCR Data (Copy Number) for Notch 3 

Gene Expression. Data obtained from qPCR experiments 

run four times and each samples was run in triplicate 

using same cDNA of HaCaT cells. Data expressed as copy 

number relative to the standard dilution series of cloned 

Notch 3 PCR product. Notch 3 levels generally rise with 

calcium-induced differentiation but the data was 

variable between different cultures.   

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 1,280 765 4,864 9,312 7,998 5,554 

2 8,787 785 6,880 23,970 16,190 10,640 

3 4,465 644 2,935 15,410 11,510 9,751 

4 4,347 947 2,130 16,600 10,790 20,690 

Average 4,719 785 4,202 16,323 11,622 11,659 

 

The data was also expressed as fold change relative to day 3 (3D) cultures 

(Table 4.7) and Notch 3 levels varied from 1.21 to 7.28 fold higher in 

differentiating cultures. However, this did vary from culture to culture. 
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Table 4.7: Raw qPCR Data for Notch 3 Gene Expression. 

Data obtained from qPCR experiments run four times 

(each qPCR sample in triplicate using cDNA of HaCaT 

cells). Fold change of Notch 3 expression levels during 

calcium-induced differentiation of HaCaT cell cultures. 

All data is relative to the expression level at day 3 in low 

calcium (3D).   

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 1.00 0.60 3.8 7.28 6.25 4.34 

2 1.00 0.09 0.78 2.73 1.84 1.21 

3 1.00 0.14 0.66 3.45 2.58 2.18 

4 1.00 0.22 0.49 3.84 2.48 4.76 

Average 1.00 0.26 1.43 4.33 3.29 3.12 

 

The raw copy number data of all four experiments shown in Table 4.6 was 

analysed statistically using the Tukey-Kramer Multiple Comparison Test and a 

comparison done between day 3 (low Ca2+) cultures (3D) and cultures at all 

other time points (6D, 16D, 6D+3, 6D+6 and 6D+10), as well as some other 

additional comparisons were made (Table 4.8). The increase in Notch 3 

expression was highly significant (p<0.001) when comparing 6D (6 days in low 

Ca2+) to 6D+3 (3 days after switch to high Ca2+). The data was less significant 

when comparing Notch 3 levels in day 3 or day 16 low calcium cultures 

compared to any cells in high Ca2+ (6D+3, +6, +10). This suggested that Notch 

3 levels were initially high, decreased as cells proliferated and then increased 

again as cells terminally differentiated (Table 4.8). The derived fold change 

data was also analysed using the Tukey-Kramer Multiple Comparison Test. 

Changes in Notch 3 expression were even less significant (Table 4.9) and in 

fact, only the comparison between 6D and 6D+3 gave a significant change (4 

fold, p>0.05).  
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This data was then plotted as a bar chart to summarize changes in Notch 3 

levels that occurred during the HaCaT cell culture experiments (Figures 4.9 

and 4.10). 

Table 4.8: Statistical Comparison of Notch 3 Levels (Copy Number) at 

Different Stages of HaCaT Culture. Values of Q > 4.495 are significant 

(p < 0.05, coloured in red) and asterisks designate significance level. 

Comparison Mean Difference Q P value 

3D vs 6D 3934.5 1.899 ns  P>0.05 

3D vs 16D 517.50 0.2498 ns  P>0.05 

3D vs 6D+3 -11623 5.611 **  P<0.01 

3D vs 6D+6 -6902.3 3.332 ns  P>0.05 

3D vs 6D+10 -6939.0 3.350 ns  P>0.05 

6D vs 16D -3417.0 1.650 ns  P>0.05 

6D vs 6D+3 -15558 7.511 ***  P<0.001 

6D vs 6D+6 -10837 5.232 *    P<0.05 

6D vs 6D+10 -10874 5.249 *    P<0.05 

16D vs 6D+3 -12141 5.861 **  P<0.01 

16D vs 6D+6 -7419.8 3.582 ns  P>0.05 

16D vs 6D+10 -7456.5 3.600 ns  P>0.05 

6D+3 vs 6D+6 4721.0 2.279 ns  P>0.05 

6D+3 vs 6D+10 4684.3 2.261 ns  P>0.05 

6D+6 vs 6D+10 -36.750 0.01774 ns  P>0.05 

 
Table 4.9: Statistical Comparison of Notch 3 Levels at 

Different Stages of HaCaT Culture (Fold Change). Values of Q 

> 4.495 are significant (p < 0.05, coloured in red). 

Comparison Mean Difference Q P value 

3D vs 6D 0.7375 0.9811 ns  P>0.05 

3D vs 16D -0.4325 0.5753 ns  P>0.05 

3D vs 6D+3 -3.325 4.423 ns  P>0.05 

3D vs 6D+6 -2.288 3.043 ns  P>0.05 

3D vs 6D+10 -2.122 2.823 ns  P>0.05 

6D vs 16D -1.170 1.556 ns  P>0.05 

6D vs 6D+3 -4.062 5.404 *    P<0.05  

6D vs 6D+6 -3.025 4.024 ns  P>0.05 

6D vs 6D+10 -2.860 3.805 ns  P>0.05 

16D vs 6D+3 -2.893 3.848 ns  P>0.05 

16D vs 6D+6 -1.855 2.468 ns  P>0.05 

16D vs 6D+10 -1.690 2.248 ns  P>0.05 

6D+3 vs 6D+6 1.037 1.380 ns  P>0.05 

6D+3 vs 6D+10 1.203 1.600 ns  P>0.05 

6D+6 vs 6D+10 0.1650 0.2195 ns  P>0.05 
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Initially, the levels of Notch 3 decreased as the cultures proliferated and 

expanded. However, even in the absence of calcium, levels of Notch 3 

returned to day 3 levels in 16 day cultures that were confluent, stratified but 

disorganised. Levels were significantly higher in all cells that had 

differentiated in the presence of high calcium levels, cultures that showed a 

much higher level of cellular organisation. 

 

 
Figure ‎4.9: Notch 3 Expression (Transcript Copy Number) in HaCaT Cells 

during Calcium-induced Differentiation.  No significant changes 

occurred In low calcium medium (3D, 6D, 16D) but significant increases 

were observed in differentiating cells (6D+3, 6D+6, 6D+10) especially at 

3 days after introduction of high calcium (significance relative to 3D: * = 

p<0.05 and *** = p< 0.001).    
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Figure ‎4.10: Notch 3 Expression (Fold Change) in HaCaT Cells during 

Calcium-induced Differentiation. No significant changes in copy number 

were detected in low calcium medium (3D, 6D, 16D) and the only 

significant increase observed in differentiating cells occurred 3 days after 

the switch to high calcium medium (* p<0.05). 

 

 

4.3 Expression of Notch Ligands (DLL1, JAG1 and 

JAG2) in HaCaT Cells  

 

The expression of three Notch ligands (DLL1, JAG1 and JAG2) was investigated 

in the HaCaT cell culture model. Cells were induced to differentiate with high 

calcium levels and the expression between proliferating cells and terminally 

differentiating cells compared using PCR and qRCR. 

 

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

3D 6D 16D 6D+3 6D+6 6D+10

Fo
ld

 C
h

an
ge

Notch 3 Expression in HaCaT Cells 

*



188 

 

Initially, several DLL1 primers were designed and tested in the laboratory so 

that an optimum set could be developed (see Table 4.10). Several 

experiments were done to obtain PCR products from the different DLL1 

primer pairs using both genomic DNA (gDNA) and cDNA obtained by reverse 

transcription of total RNA from the relevant HaCaT cell cultures. Standard 

PCRs with all primer pairs were run at 58°C (annealing temperature) and 35 

cycles.  

Table 4.10: Sequence of Delta 1 like (DLL1) Primers. Initially, three 

primer pairs were designed and synthesised (p1, p3 and p5 forward 

primers and p2R, p4R and p6R reverse primers). Product sizes were: 382 

bp for p1+p2R,   267 bp for p3+p4R and 254 bp for p5+p6R. 

Primers Sequence 

DLL1 p1 [ 5'- AGA CGG AGA CCA TGA ACA AC -3'] Exon 9 

DLL1 p2R [ 5'- TCC TCG  GAT ATG  ACG TAC AC -3'] Exon 10 
 

DLL1 p3 [ 5'- GCC GCT GTT CTA AGG AGA GA -3'] Exon 1 

DLL1 p4R [ 5'- TGG CCT GGT AGT GCT TGA GG -3'] Exon 2 

 

DLL1 p5 [ 5'- TAT CCG CTA TCC AGG CTG TC -3'] Exon 6 

DLL1 p6R [ 5'- CTC CCT CCG TTC TTA CAA GG -3'] Exon 7 

 

Earlier work with two DLL1 primer pairs (p3, p4R and p5, p6R) on cDNA from 

proliferating HaCaT cells (D3 and D6) showed that two bands of different size 

were obtained with both primer sets while the K14 control primers gave a 

single band (Figure 4.11). All samples were sequenced and both products 

were from the correct region of DLL1. However, the upper band was amplified 

from gDNA and included intron sequences while the lower band was amplified 

from cDNA. This indicated that the total RNA preparations of HaCaT cells were 
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contaminated with some gDNA. However, the K14 control did not produce a 

gDNA band but a single band of the correct size for cDNA even thought the 

primers were across an intron. The only possible explanation is that K14 

mRNA (and therefore cDNA) was abundant in the samples and the cDNA binds 

the primers well, so there would be little chance of binding to gDNA. DLL1 

primers on the other hand bind poorly to cDNA and levels were low so binding 

to gDNA was more likely.  

 

 
Figure ‎4.11: DLL1 PCR with cDNA from HaCaT Cells. Two different 

primer pairs used (p3 + p4R, p5 + p6R). Lanes 3-5: two bands 

present (upper gDNA, lower cDNA). Lane 6: K14 positive control 

(single band). Lanes 2, 7: no products (NR). Lane 1 (M): DNA 

marker (φX174 + Hae III). Two HaCaT extracts were examined (D3, 

D6: cells grown in low calcium KGM for 3 and 6 days respectively). 
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These early total RNA extracts from HaCaT cells were discarded due to 

genomic DNA contamination and later extracts were treated with DNase to 

remove any genomic DNA. The stock RNA samples together with the derived 

cDNA samples were then quality tested by PCR with K14 primers before use 

(see Chapter 3, Figures 3.6 & 3.7).   

 

A second problem was that the sizes of standard PCR products were too big 

for qPCR, so another set of primers was made and tested (Table 4.11). Several 

combinations of DLL1 primers were tested using the new primers and the 

original primers (Figure 4.12) on a sample of cDNA from differentiating HaCaT 

cells (6D+10). Two combinations gave products that were still too large for 

qPCR (p1+p8R: 342 bp and p7+p2R: 166 bp) but p7 and p8R gave a single 

product (126 bp) ideal for qPCR. This experiment also included a sample of 

genomic DNA that produced a larger band in each case due to the presence of 

intervening introns. Generally, very little gDNA contamination was noted in 

the cDNA samples but a faint band could be seen with the new primer pair 

(p7, p8R).  

 

Table 4.11: Delta 1 like (DLL1) Primer Sequences. DLL1p7 is a forward primer 

in exon 9 while DLL1p8R is a reverse primer in exon 10. The product size 

generated was 126bp (all primers designed by Dr. P.E Bowden, Cardiff 

University). 

Primers Sequence 

DLL1 p7 [ 5'- ACA GCA AGC GTG ACA CCA AGT GCC -3'] Exon 9 

DLL1 p8R [ 5'- TTG AAG TTG AAC AGC CCG AGT CCG -3'] Exon 10 
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Figure ‎4.12: DLL1 PCR Products using gDNA and cDNA from 

HaCaT Cells (D4+10). Different primer pairs (as shown in 

green) were tested on a gDNA sample and on HaCaT derived 

cDNA. Product sizes were 382 bp, 342 bp, 166 bp and 126 bp 

for cDNA and 508bp, 467bp, 291bp and 251bp for gDNA (as 

shown in yellow). M (marker) = φx174 DNA +Hae III.  

 

The new primer pair (DLL1p7, p8R) was then used for PCR with a full set of 

HaCaT cDNA samples, representing all stages of the culture model from 

proliferation to differentiation. A single sample of gDNA was also used as a 

control for genomic contamination.  The PCR was run at 58°C (annealing) and 

35 cycles after which the samples were analysed on a 1.5% agarose gel (Figure 

4.13). DLL1 amplicons appeared to be uniform throughout the samples and 

little difference was observed between levels during proliferation (low 

calcium) and differentiation (high calcium). The cDNA product (126 bp) was 

predominant but low levels of a gDNA product (251 bp) were visible indicating 

a very low level of gDNA contamination. 



192 

 

 

 
Figure ‎4.13: PCR with DLL1 Primers on cDNA from HaCaT 

Cell Cultures. PCR products were analysed on a 1.5% 

agarose gel and visualised with ethidium bromide under UV 

light. A gDNA control sample gave a single band (251 bp) 

while cDNA samples produced a smaller product (126 bp). 

All PCR products were sequenced to confirm identity. M 

(Marker) = φX174 DNA + Hae III. 

 

The effect of altering the PCR cycle number (35, 30, 28 and 25 cycles) was 

then examined using the another DLL1 primer set (p1 and p2R: cDNA product 

size 382 bp). The expression was variable at all cycle levels tested and as 

expected the amount of total product faded as the cycle number reduced 

(Figure 4.14).  This was repeated with the smaller primer set (p7, p8R) but 

unfortunately the products were too faint to see (data not shown).  
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Figure ‎4.14: PCR with DLL1 Primers on cDNA from HaCaT 

Cells. PCR was varied (25, 28, 30, 35 cycles as indicated) and 

products were analysed on 1.5% agarose gel. DLL1 expression 

varied a little between samples (D1, D4, D14 low calcium 

cultures and D4+3, D4+6, D4+10 high calcium cultures). As 

expected, the product quantity decreased with cycle number 

(annealing temperature remained constant).  

 

 

Previous studies on DLL4 suggested that it was not expressed in human 

epidermis and a standard PCR was conducted to confirm this earlier 

observation. Several DLL4 primer pairs had been designed for earlier research 

projects in the department (Table 4.12) and one pair (DLL4p5 and p6R) was 

selected for the experiment.  
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Table 4.12: Sequence of Delta Like 4 (DLL4) Primers. Three sets of primers were 

made for DLL4 (p1 + p3R, p4 + p2R, p5 + p6R). The product sizes were 241bp, 

257bp and 522bp respectively. All primers were designed by Dr. P.E. Bowden 

(Cardiff University) and synthesised by Sigma. 

Primers Sequence 

DLL4 p1 [ 5'- TGA CCA CTT CGG CCA CTA TG -3'] Exon 4 
 

DLL4 p3R [ 5'- CAC AAG TAC ATT GCC AGG GAG TGC -3'] Exon 6 
 

DLL4 p4 [ 5'- AAG CTA CAC CTG CAC CTG TCG -3'] Exon 7  
 

DLL4 p2R [ 5'- AGT TGG AGC CGG TGA AGT TG-3'] Exon 8 
  
 

DLL4 p5 [ 5'- TAC ACC GAC CTC TCC ACA GAC ACC -3'] Exon 9 

DLL4 p6R [ 5'- ACA CAG ACT GGT ACA TGG AGT CCC -3'] Exon 10 

 

DLL1 and DLL4 were only weakly expressed in human epidermis so in order to 

clone a strong PCR product, a good source of cDNA was sought. As DLL1 was 

strongly expressed in human pancreas, PCR reactions were done with DLL1 

and DLL4 primer pairs on cDNA from both pancreas and human epidermis 

(pancreatic cDNA was purchased and epidermal cDNA made in the 

laboratory). The products were run on a 1.5% agarose gel together with a K14 

control (Figure 4.15). The DLL1 product was the same size for both epidermal 

and pancreatic cDNA (382 bp) but the latter was cleaner. The products from 

the DLL4 PCR were not the same size, the epidermal product (230 bp) being 

smaller than the pancreatic product (522 bp).  
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Figure ‎4.15: PCR with DLL1 and DLL4 Primers on cDNA 

from Human Epidermis and Pancreas. Products were run 

on a 1.5% agarose gel. K14 primers (HK14p55, p56R) 

produced no product in pancreas (negative control). DLL1 

primers (p1, p2R) produced a similar sized band (382 bp) 

with epidermal and pancreatic cDNA. However, DLL4 

primers (p5, p6R) produced different sized products 

(epidermis, 230bp and pancreas, 522bp). M (marker) =  

φX174 DNA + Hae III. 

 

All of the PCR products were sequenced and while DLL1 products were 

correct, only the larger DLL4 product from the pancreatic cDNA was correct. 

The smaller product from the epidermal cDNA was a partial sequence only.  

Thus, only the DLL1 product was used to make a set of serial dilutions for 

qPCR. While DLL4 was strongly expressed in human pancreas, little was found 

in human epidermis. The DLL4 PCR was repeated with another sample of 

human epidermis and cDNA from HaCaT cells but again no bands were 

detected except in the pancreatic cDNA (Figure 4.16). This observation 

concurred with published research and other work in the laboratory (Dr. Paul 
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Bowden, unpublished data) that indicated that very little, if any, DLL4 was 

expressed in human epidermis. Thus, the investigations into DLL4 expression 

were halted.  

 

 
Figure ‎4.16: Analysis of PCR Products with DLL4 Primers. 

PCRs (58°C annealing and 35 cycles) with DLL4 primers (p5, 

p6R) were run on human epidermis (H.E), human pancreas 

(H.P), HaCaT cells and gDNA (C19) together with a K14 

control. Human epidermis and pancreas produced bands of 

different sizes (230 bp and 522 bp) and no product was 

obtained from HaCaT cells (gDNA products were 830 bp for 

K14 and 1009 bp for DLL4). M (Marker) = φX174 DNA + Hae 

III. 

 

A summary of all the data for DLL1 and DLL4 analysed by standard PCR 

showing expression in different samples such as human epidermis, human 

pancreas and HaCaT cell cultures is shown in Table 4.13. DLL1 was made the 

main focus for the research on HaCaT cell cultures and no further work was 

done with DLL4. 
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Table 4.13:  Summary of DLL1 and DLL4 data experiments was conducted using 

standard PCR.  

Primers gDNA 
Human 

Pancreas 
Human 

Epidermis 
HaCaT 

 DLL1 (p1, 2R) Strong Strong Faint Strong 

DLL1 (p1, p8R) Strong ? ? Strong 

DLL1 (p3, p4R) Good ? ? Good 

DLL1 (p5, p6R) Good ? ? Good 

DLL1 (p7, p2R) Strong ? ? Strong 

DLL1 (p7, p8R) Strong ? ? Strong 

DLL4 (p1, p3R) Strong Strong ? No Band 

DLL4 (p4, p2R) Strong Strong ? No Band 

DLL4 (p5, p6R) Strong Strong Wrong size No Band 
 

 

The optimum DLL1 primer pair was used to generate a good PCR product for 

ligation into the pGEM-T easy vector and subsequent bacterial cloning. DLL1 

PCR amplicons were sequenced to confirm their identity prior to use and then 

the inserts ligated into separate pGEM-T easy vectors (see Chapter 2 for 

details of the methods).  

 

Once ligated into the pGEM-T easy vectors and cloned, the relevant bacterial 

clones were grown in batch culture and the plasmid carrying the vector and 

insert isolated. Six clones were selected for each insert and the plasmids 

extracted using a Qiagen mini plasmid kit (details in methods chapter). The 

DLL1 inserts were released from the pGEM-T easy vectors by digestion with 

Eco RI, and the products were run on a 1.5% agarose gel (Figures 4.17). 
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Figure ‎4.17: Gel Analysis of Cloned Plasmids cut with 

EcoRI to Release the pGEM-T vector and DLL1 Insert. The 

pGEM-T easy vector (3015bp, in green) lies at the top of 

the gel and the DLL1 insert (126bp, in yellow) below. All 

plasmids (Plas1-6) were sequenced to confirm the 

presence of DLL1 and one was selected to make a serial 

dilution series. M (marker) = low molecular weight mix. 

 

 

The concentration of stock DLL1 plasmid DNA (0.4 ng/µl) was determined by 

spectrophotometric analysis. The standard dilution series was made as before 

(see Chapter 2 for details). Initially, the mass (m) of a single plasmid was 

calculated (depends on size of vector plus insert in bp). This was 3.44e-18 g 

for the DLL1 stock plasmid. The mass of 300,000 copies of the plasmid can 

then be calculated (1.032e-12) and the concentration of plasmid required 

determined (2.1e-13 g/µl). This allows calculation of the dilution required to 

make a total of 100 µl at 300,000 copies per 5 µl (add 45.65 µl stock to 54.35 

µl sterile water). From the initial accurate plasmid dilution, a series can be 

generated by diluting the 300,000 copy stock serially by 1:10 (see Table 4.14). 
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Table 4.14: Dilution Series for DLL1 Cloned PCR Product. The stock plasmid (0.4 
ng/µl) was diluted to 1 in 106 initially and this was diluted to 300,000 copies per 5 µl. 
A 1 in 10 series dilution was then made and dilutions 4 to 8 were used for qPCR 
experiments (sterile nuclease free water was used as the diluent).  

Dilution Source of 
Plasmid DNA 

Initial Conc 
(g/µl) 

 
C1 

Volume of 
Plasmid 
DNA (µl) 

V1 

Volume of 
Diluent (µl) 

Final Vol 
(µl)  

 
V2 

Final Conc 
(g/µl) 

 
C2 

Resulting
Copy # 
per 5 µl  

1 Stock 4.6e-7 10µl 990µl 1000µl 4.6e-9 N/A 
2 Dilution 1 4.6e-9 10µl 990µl 1000µl 4.6e-11 N/A 
3 Dilution 2 4.6e-11 10µl 990µl 1000µl 4.6e-13 N/A 
4 Dilution 3 4.6e-13 45.65µl 54.35µl 100µl 2.1e-13 300,000 
5 Dilution 4  2.1e-13 10µl 90µl 100µl 2.1e-14 30,000 
6 Dilution 5 2.1e-14 10µl 90µl 100µl 2.1e-15 3000 
7 Dilution 6 2.1e-15 10µl 90µl 100µl 2.1e-16 300 
8 Dilution 7 2.1e-16

 
10µl 90µl 100µl 2.1e-17

 
30 

 

 

The amplification plot from the qPCR of the dilution series of DLL1 

plasmids showed well spaced fluorescence curves and Ct values of 18 - 

32 cycles (Figure 4.18).   

 

The standard curve that was generated from this qPCR data was a 

reasonable straight line fit with an efficiency of 100.6% and an Rsq (R2) 

value of 0.990 (Figure 4.19). 
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Figure ‎4.18: Amplification Plot of DLL1 Plasmid Serial Dilutions. Data 

calculated by MxPro Software. Each fluorescence curve represents a 

different DLL1 copy number (blue line: fluorescence with 300,000 

copies; red: 30,000; green: 3,000; grey: 300 and yellow: 30). The 

distance between each fluorescence amplification plot was constant 

(about 4 cycles starting at 18 cycles) indicating the PCR reaction was 

efficient. Ct values represent the cycles at which the fluorescence 

crosses the threshold (each point average of 3 measurements). 

 

 

Figure  4.19: Standard Curve of DLL1 Plasmid Dilution Series. Ct 
values plotted against copy number and efficiency of PCR reaction 
estimated as 100.6% (calculated from slope: -3.308 logX). Rsq (R2) 
value was 0.990 indicating data was close to linear. Note scale on x-
axis does not signify copy number (y-axis) data but an arithmetic 
range. 
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The DLL1 plasmid dilution series was then used to estimate copy number 

levels of DLL1 in various stages of HaCaT cell culture. The qPCR data showed 

that DLL1 levels were low, variable from culture to culture and that no 

significant alterations were found between proliferating cells and those that 

were undergoing terminal differentiation. This was true for the copy number 

data (Figure 4.20) and the data expressed as fold change (Figure 4.21). 

 

 
Figure ‎4.20: DLL1 Gene Expression in HaCaT Cells during 

Calcium-induced Differentiation DLL1 gene expression (copy 

number) was measured by qPCR. Data for 3 experiments 

showed no significant change due to a wide variation in levels 

detected between different experiments. There was an 

average trend as shown but no significant increases or 

decreases.   

 

Therefore, in conclusion, DLL1 expression levels were low and while some 

changes appeared to take place during HaCaT keratinocyte proliferation or 

differentiation, none of these were statistically significant. This was probably 
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due to the low transcript levels and variable results between different culture 

experiments. Expression of DLL1 at the protein level using western blotting 

was also inconclusive due to weak expression and the poor quality of 

antibodies available at the time this research was done (data not shown). 

 

 
Figure ‎4.21: DLL1 Gene Expression in HaCaT Cells during 

Calcium-induced Differentiation. DLL1 expression (fold 

change) was measured by qPCR in 3 experiments. The 

average data showed variation in fold change between 

cultures but none of the data reached significance. 

 

Statistical (INSTAT version 1.0) software was used to analyse the qPCR data 

but no significant changes could be found (Table 4.15). The data was also 

analysed a different way, comparing fold change using the Tukey-Kramer 

Multiple Comparison Test (Table 4.16). This also showed no significant change 
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in DLL1 expression even when the largest changes (3D versus 6D+10) were 

considered.  

Table 4.15: Statistical Analysis of DLL1 Expression 
Data. Values of Q >4.495 significant (p<0.05) but no 
data reached this value in any of comparisons made 
in relation to copy number. 

Comparison Mean Difference Q P value 

3D vs 6D 651.33 0.2816 ns  P>0.05 

3D vs 16D 4088.3 1.768 ns  P>0.05 

3D vs 6D+3 2967.3 1.283 ns  P>0.05 

3D vs 6D+6 2525.7 1.092 ns  P>0.05 

3D vs 6D+10 5202.0 2.249 ns  P>0.05 

6D vs 16D 3437.0 1.486 ns  P>0.05 

6D vs 6D+3 2316.0 1.001 ns   P>0.05 

6D vs 6D+6 1874.3 0.8105 ns  P>0.05 

6D vs 6D+10 4550.7 1.968 ns  P>0.05 

16D vs 6D+3 -1121.0 0.4847 ns  P>0.05 

16D vs 6D+6 -1562.7 0.6757 ns  P>0.05 

16D vs 6D+10 1113.7 0.4816 ns  P>0.05 

6D+3 vs 6D+6 -441.67 0.1910 ns  P>0.05 

6D+3 vs 6D+10 2234.7 0.9663 ns  P>0.05 

6D+6 vs 6D+10 2676.3 1.157 ns  P>0.05 

 
Table 4.16: Statistical Analysis of DLL1 Expression 
Data. Values of Q greater than 4.495 are significant 
(p<0.05) but no significant values were found in any 
of the comparisons made in relation to DLL1 fold 
change. 

Comparison Mean Difference Q P value 

3D vs 6D 0.1867 0.4224 ns  P>0.05 

3D vs 16D 0.4767 1.079 ns  P>0.05 

3D vs 6D+3 0.2400 0.5431 ns  P>0.05 

3D vs 6D+6 0.1333 0.3017 ns  P>0.05 

3D vs 6D+10 0.6833 1.546 ns  P>0.05 

6D vs 16D 0.2900 0.6563 ns  P>0.05 

6D vs 6D+3 0.05333 0.1207 ns  P>0.05 

6D vs 6D+6 -0.05333 0.1207 ns  P>0.05 

6D vs 6D+10 0.4967 1.124 ns  P>0.05 

16D vs 6D+3 -0.2367 0.5356 ns  P>0.05 

16D vs 6D+6 -0.3433 0.7770 ns  P>0.05 

16D vs 6D+10 0.2067 0.4677 ns  P>0.05 

6D+3 vs 6D+6 -0.1067 0.2414 ns  P>0.05 

6D+3 vs 6D+10 0.4433 1.003 ns  P>0.05 

6D+6 vs 6D+10 0.5500 1.245 ns  P>0.05 
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Also, several statistical tests were used to analyse the results but the outcome 

was the same. These included Tukey-Kramer Multiple Comparison Test and 

One-way Analysis of Variance (ANOVA) but none of the predicted values were 

significantly changed when comparing any cultures (low or high Ca2+). 

 

Overall, the DLL1 gene was expressed at a constant level in keratinocyte 

cultures when examined by standard PCR. Similar results were obtained with 

qPCR in that no significant change in DLL levels could be found when 

comparing proliferating cells and differentiating cells. Previous experiments 

done on DLL1 expression at the protein level in epidermal tissue were also 

inconclusive due to a lack of good antibodies at the time this research was 

done. This was true for western blotting and direct immunofluorescence on 

cultured cells. Thus, the current research strategies have failed to reveal any 

significant information regarding DLL1 expression in HaCaT keratinocyte 

cultures. 

 

Two other notch ligands, JAG1 and JAG2 had been investigated at the proteins 

level with some success and the current project was done to examine 

expression at the mRNA level. JAG1 and JAG2 primer pairs had already been 

designed and were available in the laboratory (sequences given in Table 4.17).  
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Table 4.17: Sequence of Oligonucleotide Primers for JAG1 and JAG2. All 

primers were designed by Dr. P.E. Bowden (Dermatology Department, Cardiff 

University). Those ending ‘R’ are reverse primers. Oligonucleotide primers in 

dark red were only used for standard PCR while the primers in green were 

used in qPCR.  

Primers Sequence 

Jag1p7 *‎5’‎– GAT ATA CGG GAT GAT GGG AAC CCG – 3’+‎Exon‎25 

Jag1p8R *‎5’‎– ATC CTT GAT GGG GAC CGT GTT GGC – 3’+‎Exon‎26 

Jag1p11 *‎5’‎– AGC CTA ATC CCT GCC AGA ACG GTG – 3’+‎Exon‎13 

Jag1p12R *‎5’‎– TCA GGT GTG AGC AGT TCT TGC CCT – 3’+‎Exon‎13 

  
Jag2p14 [ 5'- AGG ATG AGG AGG ACG AGG ATC TGG-3'] Exon 26 

Jag2p9R *‎5’‎– CTA CTC CTT GCC GGC GTA GCG – 3’+‎‎‎3’nc 
Jag2p11R [ 5'- GCC TCA TTG ATG CTC CTG ACC -3'] Exon 26 

 

 

One primer pair (Jag1p7 and p8R) was designed across exons 25 and 26 and 

produced an amplicon of 356 bp with a cDNA template. This was used to 

detect expression of Jagged 1 (JAG1) in a standard PCR. However, this was too 

long for use in qPCR so another primer pair was made (Jag1p11 and p12R) 

within exon 13 producing a smaller fragment (102 bp) with a cDNA template, 

ideal for qPCR. 

 

Two sets of Jagged 2 primers had previously been used for standard PCR. One 

primer pair (Jag2p14 and p9R) was designed from exon 26 to the 3’ non-

coding region of the Jagged 2 (JAG2) gene and produced an amplicon of 240 

bp with a cDNA template. The other pair were made within exon 26 (Jag2p14 

and p11R) and produced an amplicon of 168 bp with a cDNA template, 

sufficient for qPCR. 
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JAG1 and JAG2 expression in HaCaT cells during proliferation (low Ca2+) and 

differentiation (high Ca2+) was examined using the larger primer sets by 

standard PCR (60:C annealing and 35 cycles). The PCR products were then run 

on a 1.5% agarose gel and the DNA visualised on a UV light box (Figure 4.22). 

JAG1 showed strong bands throughout the whole range of HaCaT cell culture 

and similar levels were detected during proliferation (low Ca2+) and 

differentiation (high Ca2+). No genomic contamination was detected in this 

gel. 

  
Figure ‎4.22: JAG1 Expression in HaCaT Cells. K14 (p55, 

p56R) used as control (single band of 266 bp, in blue). 

JAG1 (p7, p8R) produced a single amplicon (356 bp, in 

green) with cDNA from HaCaT cells. JAG1 expression was 

similar in all samples: 1D, 4D, 14D, 4D+3, 4D+6, and 

4D+10. Analysis on 1.5% agarose gel (DNA marker: M = 

φx174 + Hae III). Bands visualised with ethidium 

bromide/UV light. All PCR products were sequenced to 

confirm identity as JAG2 (PCR performed by Mary 

Cleaton and shown courtesy of Dr. P.E. Bowden, Cardiff 

University). 

 



207 

 

The results were similar for JAG2 with approximately equal expression in low 

calcium cultures (proliferating cells) and high calcium cultures (differentiating 

cells). The PCR products were analysed on a 1.5% agarose gel (Figure 4.23). 

 

 
Figure ‎4.23: JAG2 Expression in HaCaT Cells. K14 (p55, 

p56R) used as control (single band of 266 bp, in blue). 

JAG2 (p14, p9R) produced a single amplicon (280 bp, in 

green) with cDNA from HaCaT cells. JAG2 expression was 

similar in all samples (1D, 4D, 14D, 4D+3, 4D+6, and 

4D+10). Analysis on 1.5% agarose gel (DNA marker: M= 

φx174 + Hae III). Bands visualised with ethidium 

bromide/UV light. All PCR products were sequenced to 

confirm identity as JAG2. PCR was performed by Mary 

Cleaton and shown courtesy of Dr. P.E. Bowden (Cardiff 

University). 

   

 

JAG1 and JAG2 PCR products were too big for qPCR, so the other primers were 

used. However, it was necessary to optimize these primer pairs before 

starting qPCR experiments. A summary agarose gel was run to show the 

products produced under optimal primer concentrations (Figure 4.24). 
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Figure ‎4.24: Analysis of JAG1 PCR Products (fully optimized) from 

HaCaT Cell cDNA by Agarose Gel Electrophoresis. Single PCR 

amplicons were observed with cDNA from HaCaT cells (1-3: low 

calcium, D16 and 4-5: high calcium, D6+6). K14 primers (p55 & 

p57R) gave 112 bp product (marked in orange), JAG1 primers 

(p11, p12R) gave 102 bp product (yellow) and Notch 3 (N3) 

primers (p1, p4R) also gave 102 bp product (blue). Levels of K14, 

JAG1 and N3 were similar in both samples examined. Analysis was 

on a 3% NuSieve + 1% agarose gel (DNA marker: M= φx174 + Hae 

III) and bands were visualised with ethidium bromide under UV 

light. 

 

The JAG2 primer pair intended for qPCR (p14 & p11R) was also used with 

cDNA from various HaCaT cultures in a standard PCR (Figure 4.25). Again 

similar levels were seen in proliferating and differentiating cells.  

 

The JAG1 and JAG2 PCR amplicons were sequenced to confirm their identity 

and then the inserts were cloned into separate pGEM-T easy vectors (see 

methods chapter for details). PCR samples were selected for cloning as 

before. However, JAG1 cloning was problematic even though the PCR product 
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was strong, ligation into pGEMT- easy and cloning gave the wrong product. 

This was repeated without any problems. JAG2 worked well.  

 

  
Figure ‎4.25: JAG2 PCR Products with cDNA from HaCaT 

Cells Analysed by Agarose Gel Electrophoresis. JAG2 

primers (p14 & p11R) produced a single PCR amplicon (168 

bp) with cDNA from HaCaT cells. Levels of JAG2 expression 

were similar in all samples examined (low calcium: D2 and 

high calcium: D4+1, D4+3 and D4+10). Analysis was done on 

a 3% NuSieve + 1% agarose gel (DNA marker: M= φx174 + 

Hae III) and bands were visualised with ethidium bromide 

under UV light. 

 

Once ligated into the pGEM-T easy vectors and cloned, the relevant bacterial 

clones were grown in batch culture and the plasmids carrying vector and 

insert isolated. Six clones were selected for each insert and the plasmids 

extracted using a Qiagen mini plasmid kit (details in Chapter 2). JAG1 and 

JAG2 inserts were released from the pGEM-T easy vectors by digestion with 

Eco RI, and the products were run on a 1.5% agarose gel (Figure 4.26, JAG2 

data only). 
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Figure ‎4.26: Analysis of JAG2 Plasmid Digests by Gel 

Electrophoresis. Cloned JAG2 plasmids (Plas 1-6) were 

digested with EcoR1 and run on 1.5% agarose gel. The 

pGEM-T easy vector is larger band (3015 bp) and the 

lower band (168 bp) is JAG2 insert. Plasmids 1, 2, 4, 5 

and 6 were selected and sequenced to confirm JAG2 

identity. M (DNA marker): low molecular weight mix 

(755 bp - 21 bp). 

 

 

Bacterial clones containing plasmids were stored as glycerol stocks at -80˚C 

and isolated plasmid DNA was stored at -20˚C. One plasmid was then selected 

based on the quality of the insert (Plasmid 3 for JAG1 and plasmid 6 for JAG2) 

and a set of serial dilutions (300,000 to 30 copies) were made for the qPCR 

experiments (Tables 4.18 and 4.19. Also see Chapter 2 for further details). 
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Table 4.18: Serial Dilutions of JAG1 Plasmid 3 for qPCR Standards. Sterile 

nuclease free H2O was used as the diluent. 

Dilution Source of 
plasmid 
DNA for 
dilution 

Initial 
Conc. 
(g/µl) 

 
 C1 

Volume of 
plasmid 
DNA (µl) 

 
V1 

Volume 
of 

diluents 
(µl) 

Final 
Vol. (µl)  

 
 

V2 

Final conc. 
(g/µl) 

 
 

C2 

copy#  

1 Stock 7.2e-7 10µl 990µl 1000µl    7.2e-9 N/A 
2 Dilution1 7.2e-9 10µl 990µl 1000µl 7.2e-11 N/A 
3 Dilution2 7.2e-11 10µl 990µl 1000µl 7.2e-13 N/A 
4 Dilution3 7.2e-13 142.35 357.65 500µl 2.049e-13 300,000 
5 Dilution4 2.049e-13 50µl 450µl 500µl 2.049e-14 30,000 
6 Dilution5 2.049e-14 50µl 450µl 500µl 2.049e-15 3000 
7 Dilution6 2.049e-15 50µl 450µl 500µl 2.049e-16 300 
8 Dilution7 2.049e-16 50µl 450µl 500µl 2.049e-17 30 

 

The serial dilutions of JAG1 plasmid were initially tested by standard PCR and 

analyzed on a high definition (3% NuSieve and 1% agarose) gel (Figure 4.27). 

The only bands visible were those that started with higher copy numbers.   

 

 
Figure ‎4.27: Analysis of Standard PCR with JAG1 Plasmid 

3 Serial Dilutions.  JAG1 plasmid 3 dilutions (300,000 

copies to 30 copies) were amplified by PCR using JAG1 

primers (JAG1p11, p12R). Products analysed on 3% 

NuSieve + 1% agarose gel (M = DNA marker: φx174 + Hae 

III). 
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Table 4.19: Serial Dilutions of Jag 2 Plasmid 6 for qPCR Standards. Sterile nuclease 

free H2O was used as diluents. 

Dilution Source of 
plasmid 
DNA for 
dilution 

Initial Conc. 
(g/µl) 

 
  

C1 

Volume of 
plasmid DNA 

(µl) 
 

V1 

Volume 
of Diluent 

(µl) 

Final Vol. 
(µl)  

 
 

V2 

Final 
conc. 
(g/µl) 

 
C2 

copy#  

1 Stock 3.15e-7 10µl 990µl 1000µl     5e-9 N/A 
2 Dilution1 3.15e-9 10µl 990µl 1000µl 5e-11 N/A 
3 Dilution2 3.15e-11 10µl 990µl 1000µl 5e-13 N/A 
4 Dilution3 3.15e-13 66.45 33.55 100µl 2.093e-13 300,000 
5 Dilution4 2.093e-13 10µl 90µl 100µl 2.093e-14 30,000 
6 Dilution5 2.093e-14 10µl 90µl 100µl 2.093e-15 3000 
7 Dilution6 2.093e-15 10µl 90µl 100µl 2.093e-16 300 
8 Dilution7 2.093e-16 10µl 90µl 100µl 2.093e-17 30 

 

 

The serial dilutions of JAG2 plasmid were initially tested by standard PCR and 

analyzed on a high definition (3% NuSieve and 1% agarose) gel (Figure 4.28). 

The larger product size (168 bp) was visible across the whole range showing 

that the dilution series was reliable. 

 

JAG1 expression was measured in HaCaT cultures by qRT-PCR both estimating 

the copy numbers of cDNA (and mRNA by inference) and also the fold change 

relative to the initial culture conditions (Day 1-3, varies between difference 

experiments). 
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Figure ‎4.28: Analysis of Standard PCR with JAG2 Plasmid 

6 Serial Dilutions.  JAG2 plasmid 6 dilutions (300,000 

copies to 30 copies) were run by standard PCR using JAG2 

primers (p14, p11R). Products were analysed on a 3% 

NuSieve + 1% agarose gel (M = DNA marker: φx174 + Hae 

III). 

 

The JAG1 standard dilution series was run at the same time as the 

experimental samples and this data was used to calculate the copy number 

from the individual sample Ct values (number of cycles to reach the 

threshold). The JAG1 dilution series data was analysed first and a standard 

curve drawn as before.  

 

The amplification plot of the JAG1 dilution series (Figure 4.29) showed evenly 

spaced curves (fluorescence vs cycle number), shown in different colours for 

each dilution (blue = 300,000; red= 30,000; green = 3,000; grey = 300 and 

yellow = 30 copies). As the dilution increased, the threshold copy number (Ct 
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value) increased and this data was used to calculate a standard curve, Ct 

values versus copy number (Figure 4.30). 

 

 
Figure ‎4.29: Amplification Plot of JAG1 Plasmid Dilution Series. 

Amplification plots were calculated by qPCR MxPro Software. 

Each colour represents the fluorescence values for a different 

JAG1 plasmid dilution: blue represents 300,000 copies, red 

(30,000), green (3,000), grey (300) and yellow (30). The distance 

between each fluorescence amplification plot was 

approximately constant (3-4 cycles). The Ct values are shown for 

each curve (blue arrows).  Note: The data is an average of 3 

measurements (triplicate samples). 

 

 

The Ct values for the JAG1 dilution series ranged from 20 to 33 and this 

produced a linear plot (Figure 4.30) with an efficiency of 98.7% (ideal = 

100%) , an Rsq (R2) value of 0.997 (ideal = 1.000) and a slope of  -3.354 

log(X) (ideal = -3.2 to -3.6).  This represents a good standard curve for 

JAG1 and this was used to estimate the copy number in experimental 

samples from the measured Ct value. 
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Figure ‎4.30: Standard Curve of JAG1 Plasmid Dilution Series. 

The Ct value was plotted against copy number and the 

efficiency of the PCR reaction estimated as 98.7% (calculated 

from slope: -3.354). The Rsq (R2) value was 0.997 indicating the 

data was a close fit to the linear line as plotted. The scale on 

the x-axis does not signify the copy number at each data point. 

  

The data from 3 consecutive JAG1 qPCR runs (triplicate) with cDNA from 

HaCaT cultures was analysed using this JAG1 standard curve and INSTAT 

software. The raw qPCR data was then analysed using different statistical 

methods (e.g. Tukey-Kramer Multiple Comparison Test and One-way Analysis 

of Variance, ANOVA). The JAG1 experimental data was analysed in two 

different ways. Initially calculating the level of JAG1 expression in relation to 

copy number and then calculating the fold change in expression. Proliferating 

cultures (day 3 in low calcium medium) did have a low average copy number 

(1,028) of JAG1 transcripts (Table 4.20). Even though very little if any JAG1 

protein was observed in these cells, there was a dramatic increase in copy 
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number (38,736) in cells grown for 6 days in low calcium medium. Cultures 

that showed distinct stratification and cornification (6D+3 in high calcium 

medium) showed a further increase in JAG1 copy number (65,406). Both the 

individual and average values of the 3 experiments are shown in Table 4.20. 

 

Table 4.20: JAG1 Gene Expression (Copy Number) during HaCaT Cell Culture. 

Data for 3 experiments showed the same general trend with an increase in K10 

expression as the cultures differentiated. There was a significant increase in 

copy number as cells differentiated (16D, 6D+3, 6D+6 and 6D+10) relative to 

proliferating cultures (3D, 6D). 

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 800 27,120 15,870 56,280 30,190 34,930 

2 455 21,370 13,170 35,240 28,800 42,120 

3 1,830 67,720 54,650 104,700 80,630 47,430 

Average 1,028 38,736 27,896 65,406 46,540 41,493 

 

 In terms of fold change, JAG1 expression increased a cell density increased so 

day 6 levels were on average 39.30 fold higher but did fall slightly by day 16 

(Table 4.21). Differentiating cells had even higher levels (68.35 fold increase 3 

days after switching to high calcium falling to 48.37 fold at 6 days).   
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Table 4.21: JAG1 Gene Expression (Fold Change) in HaCaT Cell 

Cultures. JAG1 gene expression increased significantly while cells 

were proliferating (39.30 fold average) but larger increases were 

seen as cells differentiated (68.35 fold maximum average). Fold 

change data relative to 3D culture levels and average values are 

shown in blue. 

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 1.00 33.92 19.85 70.39 37.76 43.68 

2 1.00 46.97 28.95 77.45 63.30 92.57 

3 1.00 37.01 29.86 57.21 44.06 25.92 

Average 1.00 39.30 26.22 68.35 48.37 54.06 

  

 

Comparisons were then made between levels of JAG1 expression at each time 

point in the HaCaT culture experiments using the Tukey-Kramer Multiple 

Comparison Test (Table 4.22). In all cases when comparing cultures that 

showed signs of differentiation with proliferating cultures (either 3D or 6D), 

the increases were not significant, as the value of q was always <4.8. Even 

though there was a large difference between JAG1 levels in 3D and 6D 

cultures (both low calcium) this was not statistically significant. The cultures 

that differentiated generally had higher levels of JAG1 but these were 

variable. The largest difference observed (comparing 3D and 6D+3) was 

almost significant (q=4.714). 
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Table 4.22: Comparison of JAG1 Expression Levels (Copy Number) in 

Different HaCaT Cultures. The mean difference in copy number 

between the cultures compared was calculated and a Q value 

assigned. Where the value of Q was <3.00, the data was not 

significant otherwise as stated below. 

Comparison Mean Difference Q P value 

3D vs 6D -37708 2.761 ns  P>0.05 

3D vs 16D -26868 1.967 ns  P>0.05 

3D vs 6D+3 -64378 4.714 ** P<0.01 

3D vs 6D+6 -45512 3.332 *  P<0.05 

3D vs 6D+10 -40465 2.963 ns  P>0.05 

6D vs 16D 10840 0.7937 ns  P>0.05 

6D vs 6D+3 -26670 1.953 ns  P>0.05 

6D vs 6D+6 -7803.3 0.5714 ns  P>0.05 

6D vs 6D+10 -2756.7 0.2018 ns  P>0.05 

16D vs 6D+3 -37510 2.746 ns  P>0.05 

16D vs 6D+6 -18643 1.365 ns  P>0.05 

16D vs 6D+10 -13597 0.9955 ns  P>0.05 

6D+3 vs 6D+6 18867 1.381 ns  P>0.05 

6D+3 vs 6D+10 23913 1.751 ns  P>0.05 

6D+6 vs 6D+10 5046.7 0.3695 ns  P>0.05 

 

 

Interestingly, the data expressed as fold change in JAG1 expression levels was 

significant in comparison to the copy number data (Table 4.23). This was also 

analysed using the Tukey-Kramer Multiple Comparison Test. Values of q 

greater than 4.495 were significant (p < 0.05) with larger values (q=7.255) 

being more significant (p < 0.01). The only data that reached significance was 

the comparison between early proliferating cultures (3 days in low calcium) 

and differentiating cultures in high calcium (6D+3, 6D+6 and 6D+10).   
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Table 4.23: Comparison of JAG1 Expression Levels (Fold Change) 

in HaCaT Cultures. The mean difference in JAG1 fold change 

between certain cultures was compared and where the value of Q 

was greater than 3.495, the difference was significant (p < 0.05 pr 

p<0.01, marked in red). 

Comparison Mean Difference Q P value 

3D vs 6D -38.300 4.126 *  P<0.05 

3D vs 16D -25.220 2.717 ns  P>0.05 

3D vs 6D+3 -67.350 7.255 **  P<0.01 

3D vs 6D+6 -47.373 5.103 *  P<0.05 

3D vs 6D+10 -53.057 5.716 **  P<0.01 

6D vs 16D 13.080 1.409 ns  P>0.05 

6D vs 6D+3 -29.050 3.129 ns  P>0.05 

6D vs 6D+6 -9.073 0.9774 ns  P>0.05 

6D vs 6D+10 -14.757 1.590 ns  P>0.05 

16D vs 6D+3 -42.130 4.539 *  P<0.05 

16D vs 6D+6 -22.153 2.387 ns  P>0.05 

16D vs 6D+10 -27.837 2.999 ns  P>0.05 

6D+3 vs 6D+6 19.977 2.152 ns  P>0.05 

6D+3 vs 6D+10 14.293 1.540 ns  P>0.05 

6D+6 vs 6D+10 -5.683 0.6123 ns  P>0.05 

 

 

The copy number data for JAG1 expression in different HaCaT cultures was 

made into a bar chart that showed the standard deviation (SD) and the 

significance relative to 3D cultures (Figure 4.31). Low levels of JAG1 

expression were found in early cultures in low calcium medium (3D) but this 

increase as the cell density increased and JAG1 expression was further 

increased in cultures that had stratified and differentiated (6D+3, 6D+6 and 

6D+10).   
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Figure ‎4.31: JAG1 Gene Expression in HaCaT Cells during Calcium-

induced Differentiation. JAG1 expression (copy number) was 

measured by qPCR and the data for 3 experiments shown as an 

average ± SD (significance relative to 3D sample: * = p<0.05 and ** 

= p< 0.01).    

 

Expressing the JAG1 data as fold change produced a bar chart with the same 

overall trends but higher levels of significance (Figure 4.32). The only 

increases that were significant were those in late differentiation (6D+3, 6D+6 

and 6D+10) as these were greater than 10 fold over the levels seen in the 3D 

cultures (p < 0.01 and p < 0.05 respectively). 
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Figure ‎4.32: JAG1 Gene Expression in HaCaT Cells during Calcium-

induced Differentiation. JAG1 expression (fold change) was 

measured by qPCR and the data for 3 experiments shown as an 

average ± SD. The level of significance relative to the 3 day culture 

(3D) data is shown (** p < 0.01 and * p < 0.05). 

 

Overall, JAG1 was not expressed at a constant level in cultured HaCaT 

keratinocytes undergoing calcium-induced differentiation. In fact, JAG1 

expression was significantly higher in differentiating cells compared to early 

cultures in low calcium. However, when compared to more mature cultures in 

low calcium (6 days or 16 days), the increase was much less and not 

significant. Earlier data from the dermatology laboratory using western 

blotting showed a constant expression of JAG1 in all epidermal layers 

although there was some variation (data not shown). Experiments using 

immunoperoxidase (IMP) and immunofluorescence (IMF) techniques on 

human skin and cultured cells also showed that JAG1 expression was similar 

across the whole epidermis (Figure 4.33). Thus, the small changes seen in 

JAG1 expression probably only represent variations in the level in culture. 
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Figure ‎4.33: Immunoperoxidase (IMP) of Human Scalp Skin (frozen 

sections) to detect JAG1. (A) Blank control on human skin. (B) JAG1 

antibody on human skin. Peripheral staining of all epidermal cells 

from basal layer to granular layer (IMP performed by Mary Cleaton 

and Fiona Ruge shown courtesy of Dr. Paul E. Bowden, Cardiff 

University). 

 

 

JAG2 levels were also measured in HaCaT cells undergoing calcium-induced 

differentiation. The same experimental procedure was used for qRT-PCR 

measurements and analysis of the data using MxPro software. This required 

cloning a segment of JAG2 into pGEM-T easy, using this to construct a set of 

serial dilution standards of known copy number and then relating the sample 

fluorescence and Ct value back to starting copy number. The amplification 

plot data for the serial dilutions was quite as good as that for JAG1 with 

evenly spaced Ct values between dilutions (Figure 4.34). The amplifications 

were shown in different colours for each dilution (blue = 300,000; red= 

30,000; green = 3,000; grey = 300 and yellow = 30 copies). As the dilution 
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increased, the threshold copy number (Ct value) increased and this data can 

be used to calculate a standard curve of Ct value versus copy number. 

 
Figure ‎4.34: Amplification Plot of JAG2 Plasmid Dilution Series. 

Amplification plots were calculated by qPCR MxPro Software. 

Each colour represents the fluorescence values for a different 

JAG2 plasmid dilution: blue represents 300,000 copies, red 

(30,000), green (3,000), grey (300) and yellow (30). The distance 

between each plot was approximately constant (3-4 cycles) and 

Ct values are shown (blue arrows). Note: each data point is an 

average of 3 measurements (triplicate). 

 

 

The Ct values for the JAG2 dilution series ranged from 17 to 31 and this 

produced a linear plot (Figure 4.35) with an efficiency of 96.4% (ideal = 100%) 

, an Rsq (R2) value of 1.000 (ideal = 1.000) and a slope of  -3.411 log X  (ideal 

values = -3.2 to -3.6).  This represents a very good standard curve and this was 

used to estimate the JAG2 copy number in experimental samples from the 

measured Ct value. 
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Figure ‎4.35: Standard Curve of JAG2 Plasmid Dilution Series. Ct 

value plotted against copy number giving an estimated PCR 

reaction efficiency of 96.4% (calculated from slope: -3.411). The 

Rsq (R2) was 1.000 indicating a good linear fit. Note: scale on the 

x-axis does not signify copy number at each data point. 

 

The JAG2 data from 3 consecutive qPCR runs (triplicate) was interpreted with 

the JAG2 standard curve and INSTAT software. The raw qPCR data was then 

analysed using different statistical methods (e.g. Tukey-Kramer Multiple 

Comparison Test and One-way Analysis of Variance, ANOVA). This software 

was used to analyse the JAG2 experimental data and to calculate JAG2 

expression in terms of copy number and fold change values. JAG2 levels 

showed reduction in early proliferating cultures and were reduced by about 

half at day 6 compared to day 3 (Table 4.24). However, after cultures were 

left in low calcium for 16 days, JAG2 levels increased (16 day cultures almost 3 

fold higher than 3 day cultures).  After calcium-induced differentiation, JAG2 

levels were similarly increased (day 6+6 was 5 fold higher than day 3 cultures) 

but a slight reduction was seen later (day 6+10). This data was not related to 
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the amount of starting cellular material so the initial increase JAG2 expression 

probably reflected the 4 fold increase in cell density typically seen between 6 

and 16 days and the subsequent reduction in JAG2 levels as cellular material 

increased further reflected a fall in JAG2 expression in real terms. 

Table 4.24: JAG2 Gene Expression (Copy Number) during HaCaT Cell 

Culture. Data for 3 experiments showed the same general trend with an 

increase in JAG2 expression as the cultures initially proliferated and then 

a subsequent decrease as cells differentiated. An average value for the 

three experiments is shown in blue. 

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 5,546 7,133 2,446 3,784 1,872 3,981 

2 17,060 3,604 35,370 26,660 48,170 13,940 

3 9,500 2,213 50,670 51,960 51,880 15,970 

Average 10,702 4,316 29,495 27,468 33,974 11,297 

 

JAG2 levels were reduced halved during early proliferation (day 6 compared 

to day 3) but did increase later (2.61 fold higher at day 16) as cells in low 

calcium differentiated due to contact inhibition (Table 4.25). Cells that were 

forced into differentiation by increasing calcium levels showed similar 

increase in JAG2 levels (2.87 fold higher in 6D+6 cultures was typical).  

Table 4.25: JAG2 Gene Expression (Fold Change) during HaCaT Cell 

Culture. JAG2 gene expression increased almost 3 fold in late proliferating 

cultures and then increased as cells differentiated (2.61 to 2.87 fold). But 

by day 6+10 (6D+10) a major reduction in fold change. Fold change data 

relative to 3D culture levels and average values of 3 experiments are 

shown in blue. 

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 1.00 1.29 0.44 0.68 0.34 0.72 

2 1.00 0.21 2.07 1.56 2.82 0.82 

3 1.00 0.23 5.33 5.47 5.46 1.68 

Average 1.00 0.57 2.61 2.57 2.87 1.07 
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The levels of JAG2 expression at each time point in the HaCaT culture 

experiments were analysed using the Tukey-Kramer Multiple Comparison 

Test. Here, values of q greater than 5.837 were just significant (p < 0.05). 

Large differences were only found when comparing 6D cultures to other time 

points and the data was in general significant in all cases (p < 0.05). This was 

true whether the data was expressed in terms of copy number (Table 4.26) or 

fold change (data not shown).  

Table 4.26: Comparison of JAG2 Levels (Copy Number) in 

Different HaCaT Cultures. Mean difference in JAG2 copy 

number comparing various HaCaT cultures (as listed) was 

calculated and a Q value assigned. Where the value of q was 

>4.495, the data was significant (significant p values shown in 

red). 

Comparison Mean Difference Q P value 

3D vs 6D 10372 1.647 ns  P>0.05 

3D vs 16D -29740 4.724 ns  P>0.05 

3D vs 6D+3 -26030 4.135 ns  P>0.05 

3D vs 6D+6 -36745 5.837 *  P<0.05 

3D vs 6D+10 -1675.0 0.2661 ns  P>0.05 

6D vs 16D -40112 6.372 *  P<0.05 

6D vs 6D+3 -36402 5.782 *  P<0.05 

6D vs 6D+6 -47117 7.484 *  P<0.05 

6D vs 6D+10 -12047 1.914 ns  P>0.05 

16D vs 6D+3 3710.0 0.5893 ns  P>0.05 

16D vs 6D+6 -7005.0 1.113 ns  P>0.05 

16D vs 6D+10 20865 4.458 ns  P>0.05 

6D+3 vs 6D+6 -10715 1.702 ns  P>0.05 

6D+3 vs 6D+10 24355 3.869 ns  P>0.05 

6D+6 vs 6D+10 35070 5.571 ns  P>0.05 

 

As day 3 (3D) levels of JAG2 were relatively high compared to day 6, 

comparison of the 3D data and most other time points (6D, 16D, 6D+3, and 

6D+10) showed no significant difference. However, the levels 6 days after 
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shifting to high calcium (6D+6) were significantly higher. This was also true 

whether the data was expressed as copy number or fold change.  

 

The JAG2 data from individual experiments was also analysed by the INSTAT 

statistical software as an overall average. This was presented as a bar chart 

showing mean plus standard deviation and any significant p values were 

shown. This data was expressed in terms of total copy number (Figure 4.36) 

and while there was a general trend for higher levels of JAG2 in differentiated 

cultures, the data was only significant at 6D+6.  

 

 
Figure ‎4.36: JAG2 Gene Expression in HaCaT Cells during Calcium-

induced Differentiation. JAG2 expression (copy number) was measured 

by qPCR and the data for 3 experiments shown as an average ± SD. The 

level of significance relative to the day 3 culture (3D) data is shown (* p 

< 0.05). 
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In conclusion, JAG2 levels increased in 16 day cultures left in low calcium but 

these cannot be considered as proliferating as contact inhibition in a cell mass 

of this size induces differentiation. After calcium induced differentiation, JAG2 

levels increased in all cultures initially (6D+3 and 6D+6) but levels did decline 

in older cultures (6D+10). As the cell volume continued to increase, then an 

increase in JAG2 expression per unit cell seemed likely, agreeing with the 

increase seen as cells differentiated in vivo. 

 

Jagged 2 (JAG2) levels had been previously estimated at the protein level by 

analysis of HaCaT cell extracts (Dr. P.E Bowden, unpublished data). Total 

protein extracts were analysed by SDS-PAGE (visualised with Coomassie Blue 

R250) and western blotted using JAG2 specific antisera (data not shown). 

Also, cultured cells were directly stained with JAG2 specific antisera that were 

labelled with fluorescent tags and visualised by immunofluorescence (IMF) 

microscopy (see Figure 4.37). This indicated that JAG1 and JAG2 levels were 

not constant but varied in different culture conditions. JAG1 and JAG2 levels 

were low (or even absent) in early cultures (3D) in low calcium medium but 

then significantly increased as cells differentiated. This protein data was in 

broad agreement with the quantitative mRNA data. 
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Figure ‎4.37: Expression of Jagged 2 (J2) and K10 (Differentiation 

Marker) in HaCaT Cells.  HaCaT cells were grown in low calcium KGM for 

3 days (D3), 6 days (D6) or 16 days (D16) or shifted to high calcium KGM 

at 6 days and growth for another 3 days (D6+3), 6 days (D6+6) or 10 days 

(D6+10). J2 (red) was expressed late in proliferation and throughout 

differentiation. K10 (in green) not expressed in early low calcium 

cultures and only poorly expressed at 16 days. K10 expression increased 

dramatically as differentiation was induced by high calcium levels. Nuclei 

were stained blue with DAPI (courtesy of Dr. Paul E. Bowden, 

Department of Dermatology, Cardiff University). 

 

 

Overall, JAG2 showed variable expression in early proliferating cultures (low 

calcium) with an increase after 16 days where low calcium cultures undergo a 

certain level of differentiation. Levels did increase slightly (about 2-3 fold) in 

cells undergoing calcium-induced differentiation but this was not sustained 

over time and only significant at some points (e.g. 6D+6 data). This infers a 

possibly biphasic action of JAG2 both in early proliferation and late 

differentiation, a situation that agrees with some of the in vivo observations. 
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However, this data is not robust enough and needs to be repeated to see if 

these changes are real or not.  

 

Earlier immunoperoxidase (IMP) and immunofluorescence (IMF) work in the 

dermatology laboratory using various JAG2 antibodies with human skin 

sections did reveal that JAG2 was prominent in both the basal layer and 

granular layer of the epidermis but the antibodies were of low titre and the 

results were not robust (Figure 4.38). Thus, more work is required to fully 

assess the role of JAG2 in terminal differentiation of keratinocytes. 

 

 
Figure ‎4.38: Immunoperoxidase (IMP) of Human Scalp Skin (Frozen 

Sections). (A) Blank Control of Human epidermis. (B) JAG2 staining of 

human epidermis. JAG2 was more prominent in basal cells and again 

in granular cells of human epidermis (data courtesy of Dr. Paul E. 

Bowden). Note: sections were counterstained with Light Green 

(histology dye). 
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In conclusion, levels of JAG1 and JAG2 expression in HaCaT cell cultures were 

broadly similar (Figure 4.39).  While differentiating cells appeared to express a 

higher level of both JAG1 and JAG2, levels measured between experiments 

were variable and the increases were not always statistically significant.  

 

 
Figure ‎4.39: Alterations in JAG1 and JAG2 Expression (Copy Number) in 

HaCaT Cells during Calcium-Induced Differentiation. JAG1 (yellow) and 

JAG2 (blue) expression in terms of copy number was measured by qPCR 

and analysed using MxPro software. JAG1 expression increased in low 

calcium medium (3D, 6D, 16D) and increased further with calcium-

induced differentiation (6D+3, 6D+6, 6D+10). JAG2 levels were similar, 

with the small but not significant decrease in early low calcium cultures 

being followed by a small increase in differentiating cells. 
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4.4 Expression of Notch Target Genes (HES and 

HERT) in HaCaT Cells  

 

Notch target genes form two broad families (HES and HERT) and within these 

multigene families only certain members are thought to be expressed in 

human skin. From data in the literature, we focussed on HES1, HES5, HES7, 

HEYL, HEY1 and HEY2 as possible Notch signalling targets in skin. Primers were 

designed to specifically detect cDNA for these six genes using standard PCR to 

confirm that they were expressed in human epidermis (Table 4.27).  

 

Table 4.27: Sequence of HES & HEY Primer Pairs. All oligonucleotide 
primers were designed by Dr. P.E. Bowden (Dermatology, Cardiff 
University) and supplied by Sigma-Aldrich Company Ltd (Poole, UK). 
Reverse primers were designated ‘R’. Location of primers within each 
gene is shown. 

Primers Sequence 

Hes 1 p1 [ 5'-  GGT GCT GAT AAC AGC GGA AT -3'] (5’nc) 

Hes 1 p2R [ 5'-  TGA GCA AGT GCT GAG GGT TT -3'+ (5’nc) 

  
Hes 5 p1 [ 5'-  GGT GCC TCC ACT ATG ATC CTT A -3'+ (3’nc) 

Hes 5 p2R [ 5'-  ATT GAA CTC TCA GTC ACG TGG A -3'+ (3’nc) 

  
Hes 7 p1 [ 5'-  AAC CCG AAG CTG GAG AAA GCG GAG -3'] Exon 3 
Hes7 p2R * 5’- AAA CCG GAC AAG TAG CAG CTG GCG -3’+ Exon 4 

  
Hey1 p3 * 5’- CCA TGT CCC CCA CTA CAT CTT CCC -3’+ Exon 2 

Hey 1 p4R * 5’- ACG GTC ATC TGC AGG ATC TCG GCT -3’+ Exon 4 
  

Hey 2 p3 * 5’ - ACG TGG CTG ATA CTG ACA AGG GCG -3’+ Exon 5 
Hey2 p4R * 5’ - ACG TTT GCC CAT GCG GAT TCA GCC -3’+ Exon 5 

  
Hey L p1 * 5’ – CGG AGG AAT GTG CTG CCC AGT CGA -3’+ Exon 5 

Hey L p2R [ 5' – TCG ACT GGG CAG CAC ATT CCT CCG -3']  Exon 5 
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The HES1 primers (p1 and p2R) produced an amplicon of 108 bp from the 5’ 

non-coding region of the gene. HES5 primers (p1, p2R) were designed to 

amplify the 3’ non-coding region and produced an amplicon of 96 bp. HES7 

primers (p1, p2R) was designed across exons 3 and 4 to produce an amplicon 

of 140 bp with cDNA (and a larger amplicon with gDNA due to the inclusion of 

intron sequences). 

 

HEY1 (p3, p4R) and HEY2 (p3, p4R) primers were made to exon 5 of the 

appropriate gene and produced amplicons of 181 bp and 250 bp respectively 

using cDNA.  Finally, HEYL primers (p1 and p2R) were also made to exon 5 

sequences and produced an amplicon of 185 bp on cDNA. 

 

Standard PCRs were carried out to investigate the expression of HES1, HES5, 

HES7, HEY1, HEY2 and HEYL in HaCaT cells during proliferation (low Ca2+) and 

differentiation (high Ca2+). cDNA was prepared by reverse transcription of 

total RNA extracted from the relevant cells (see Chapter 2 for details). PCR 

were run at an annealing temperature of 60:C for 35 cycles, the products 

separated on 3% NuSieve plus 1% agarose gels (see Table 4.3 for details) and 

DNA visualised under UV light in the presence of ethidium bromide. 
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HES1 amplicons showed as relatively strong bands across the whole gel, 

changing throughout the experiment (Figure 4.40). Thus, levels were similar in 

proliferating HaCaT cells (low Ca2+ KGM) and differentiating cells (high Ca2+ 

KGM). The amplicons were sequenced to confirm their identity as products of 

the HES1 gene. The level of expression was highest in the D4, D4+1 and D4+3 

cultures and these were selected for cloning. 

 

 
Figure ‎4.40: Expression of HES1 in HaCaT cell differentiation.  

HES1 primers (p1, p2R) produced an amplicon of 108 bp with 

cDNA from HaCaT keratinocytes. Levels were low in early 

proliferation (D2) but increased later (D4) and in differentiating 

cells (D4+1, D4+3 and D4+10). Products separated on a 3% 

NuSieve plus 1% agarose gel. Human K14 (HK14) primers (p55, 

p56R) used as a positive control (amplicon 266bp). All PCR 

products were confirmed by sequencing. M (DNA Marker) = 

φx174 DNA +Hae III. 
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HES1 PCR products were inserted into pGEM-T easy vectors by ligation and 

then cloned in bacterial cells (see Chapter 2 for details). Bacterial clones were 

selected, grown in bulk and the plasmids purified using a Qiagen plasmid 

Miniprep kit. The HES1 inserts were released by restriction enzyme digestion 

(Eco RI) and analysed by electrophoresis on 1.5% agarose gels (Figure 4.41). 

 

 
Figure ‎4.41: Analysis of HES1 Plasmid Digests by Gel 

Electrophoresis. Cloned HES1 plasmids (Plas1-6) were 

digested with EcoRI and run on a 1.5% agarose gel. The 

larger band (3015 bp) is pGEM-T easy vector and the lower 

band (108 bp) is the K10 insert. All inserts were sequenced 

to confirm HES1 had been cloned successfully. M: low 

Molecular weight DNA Marker (755-21 bp, NEB). 

 

HES1 Plasmid 5 was selected to make a set of serial dilutions (300,000 to 30 

copies) for qPCR. The calculations were done as before (see Chapter 2 for 

details) and all the dilutions are given in Table 4.28. 
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Table 4.28: Serial Dilutions of HES1 Plasmid 5 for qPCR. Sterile nuclease 

free H2O was used as the diluent. 

Dilution Source of 
plasmid 
DNA for 
dilution 

Initial 
Conc. 
(g/µl) 

 
  

C1 

Volume 
of 

plasmid 
DNA (µl) 

 
V1 

Volume 
of 

diluents 
(µl) 

Final 
Vol. 
(µl)  

 
 

V2 

Final 
conc. 
(g/µl) 

 
 

C2 

copy#  

1 Stock 2.3e-7 10µl 990µl 1000µl 2.3e-9 N/A 
2 Dilution1 2.3e-9 10µl 990µl 1000µl 2.3e-11 N/A 
3 Dilution2 2.3e-11 10µl 990µl 1000µl 2.3e-13 N/A 
4 Dilution3 2.3e-13 89.26µl 10.74µl 100µl 2.05e-13 300,000 
5 Dilution4 2.05e-13 10µl 90µl 100µl 2.05e-14 30,000 
6 Dilution5 2.05e-14 10µl 90µl 100µl 2.05e-15 3000 
7 Dilution6 2.05e-15 10µl 90µl 100µl 2.05e-16 300 
8 Dilution7 2.05e-16 10µl 90µl 100µl 2.05e-17 30 

 

 

HES1 expression was measured in HaCaT cell cultures by qPCR and both the 

copy number and fold change relative to the initial culture conditions (Day 1-

3, varies between difference experiments) were calculated. The HES1 

standard dilution series was run at the same time as the experimental 

samples and this data was used to calculate the copy number from the 

individual sample Ct values (number of cycles to reach the threshold). The 

HES1 dilution series data was analysed first and a standard curve drawn. The 

amplification plot (Figure 4.42) of the HES1 dilution series showed evenly 

spaced curves (fluorescence vs cycle number) and each dilution was shown in 

a different colour (blue = 300,000; red= 30,000; green = 3,000; grey = 300 and 

yellow = 30 copies). 
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Figure ‎4.42: Amplification Plot of HES1 Plasmid serial dilutions. 

Data calculated by MxPro Software. Each coloured line 

represents fluorescence with different HES1 copy numbers. Blue 

line represents 300,000 copies, red (30,000), green (3,000), grey 

(300) and yellow (30). The distance between each fluorescence 

amplification plot was constant (about 4 cycles starting at 20 

cycles) indicating the PCR reaction was efficient. 

 

As the dilution increased, the threshold copy number (Ct value) increased and 

this data can be used to calculate a standard curve of Ct value versus copy 

number.  The Ct values for the HES1 dilution series ranged from 18 to 32 and 

this produced a linear plot (Figure 4.43) with an efficiency of 92.0% (ideal = 

100%), an Rsq (R2) value of 0.996 (ideal = 1.000) and a slope of  -3.351 (ideal = 

-3.2 to -3.6).  This represents a very good standard curve for HES1 and this 

was used to estimate the copy number in experimental samples from the 

measured Ct value. 
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Figure ‎4.43: Standard Curve of HES1 Plasmid Dilution Series. The 

Ct value was plotted against copy number and the efficiency of 

the PCR reaction estimated as 92.0% (calculated from the slope 

which was -3.531). The Rsq (R2) value was 0.996 indicating the 

data is a close fit to the linear line as plotted. The scale on the x-

axis does not signify the copy number at each data point. 

. 

The data from 5 consecutive qPCR experiments with HES1 primers and HaCaT 

cell cDNA was then analysed using the HES1 standard curve and INSTAT 

software. This analysed the raw qPCR data using different statistical methods 

such as Tukey-Kramer Multiple Comparison Test and One-way Analysis of 

Variance (ANOVA). This software was used to analyse the HES1 experimental 

data in two different ways: initially calculating the level of HES1 expression in 

relation to copy number and then calculating the fold change in expression 
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showed distinct stratification and cornification (16D in low calcium and all 

high calcium cultures) showed greater levels of HES1 (105,000 – 795,000 

copies). The data is given for individual experiments as well as an overall 

average value (Table 4.29). 

 

Table 4.29: HES1 Gene Expression (Copy Number) during HaCaT Cell 

Culture. Data for 5 experiments showed almost the same general 

trend with an increase in HES1 expression as the cultures 

differentiated. There was a significant increase in copy number as 

cells differentiated (16D, 6D+3, 6D+6, and 6D+10) relative to 

proliferating cultures (3D, 6D). 

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 28,000 15,110 27,090 24,790 7,685 23,700 

2 24,250 10,950 30,330 34,990 67,060 23,490 

3 4,137 36,370 123,000 346,600 65,070 112,100 

4 60,180 357,300 718,900 795,000 647,500 428,100 

5 27,330 40,920 105,000 325,600 307,800 391,700 

Average 28,779 92,130 200,864 305,396 219,023 195,818 

 

 

In terms of fold change, the increase in HES1 expression during 

differentiation represented a 3.18 (min) to 13.92 (max) fold increase 

over the level observed in 3D cultures (Table 4.30). 
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Table 4.30: HES1 Gene Expression (Fold Change) in HaCaT Cell 

Cultures. HES1 gene expression increased gradually while cells 

were proliferating (6D average 4.7 fold) but much larger increases 

were seen as cells differentiated (10.8-26.9 fold on average). Fold 

change data was expressed relative to 3D culture levels and 

average values of 5 experiments are shown in blue. 

Experiment 3D 6D 16D 6D+3 6D+6 6D+10 

1 1.0 5.94 11.95 13.21 10.76 7.11 

2 1.0 1.5 3.84 11.91 11.26 14.33 

3 1.0 3.44 3.32 17.94 7.83 3.03 

4 1.0 3.83 5.35 7.74 8.84 6.51 

5 1.0 8.79 29.73 83.78 15.73 27.10 

Average 1.0 4.7 10.83 26.91 10.88 11.61 
 

  

 

The range of values in different experiments varied widely but the overall 

trend was similar. Comparisons were made between levels of HES1 expression 

at each time point in the HaCaT culture experiments using the Tukey-Kramer 

Multiple Comparison Test (Table 4.31). Values of q less than 2.691 were not 

statistically significant (ns). In all cases when comparing cultures that showed 

signs of differentiation with proliferating cultures (either 3D or 6D), the 

increases observed were not statistically significant, generally due to the large 

variance in the individual values. Larger numbers of cultures would have to be 

analysed to get a robust set of average data values.   
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Table 4.31: Comparison of HES1 Expression Levels (Copy 

Number) in Different HaCaT Cultures. The mean difference 

in copy number between the cultures compared was 

calculated and Q values assigned (values of Q <2.000 were 

not significant, ns). 

Comparison Mean Difference Q P value 

3D vs 6D -63,351 0.6162 ns  P>0.05 

3D vs 16D -172,085 1.674 ns  P>0.05 

3D vs 6D+3 -276,617 2.691 * P<0.05 

3D vs 6D+6 -190,244 1.850 ns  P>0.05 

3D vs 6D+10 -167,039 1.625 ns  P>0.05 

6D vs 16D -108,734 1.058 ns  P>0.05 

6D vs 6D+3 -213,266 2.074 * P<0.05 

6D vs 6D+6 -126,893 1.234 ns  P>0.05 

6D vs 6D+10 -103,688 1.009 ns  P>0.05 

16D vs 6D+3 -104,532 1.017 ns  P>0.05 

16D vs 6D+6 -18,159 0.1766 ns  P>0.05 

16D vs 6D+10 5,046 0.04908 ns  P>0.05 

6D+3 vs 6D+6 86,373 0.8401 ns  P>0.05 

6D+3 vs 6D+10 109,578 1.006 ns  P>0.05 

6D+6 vs 6D+10 23,205 0.2257 ns  P>0.05 

 

 

Interestingly, the data expressed as fold change in HES1 expression 

levels was significant (Table 4.32). This was also analysed using the 

Tukey-Kramer Multiple Comparison Test and values of q that were 

5.398 or greater were significant (p < 0.05) and larger values (>7.281) 

were very significant (p < 0.001). This analysis did show that the levels 

of HES1 observed in 6D+3 and 6D+6 cultures was significantly higher 

than the level in proliferating cells in low calcium medium (3D and 6D).   
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Table 4.32: Comparison of HES1 Expression Levels (Fold Change) 

in HaCaT Cultures. The mean difference in HES1 fold change 

between certain cultures was compared and where the value of Q 

was greater than 4.195, the difference were significant (p < 0.05). 

Comparison Mean Difference Q P value 

3D vs 6D -2.678 1.667 ns  P>0.05 

3D vs 16D -5.115 3.184 ns  P>0.05 

3D vs 6D+3 -11.700 7.283 *    P<0.05 

3D vs 6D+6 -8.672 5.398 ns  P>0.05 

3D vs 6D+10 -6.745 4.199 ns  P>0.05 

6D vs 16D -2.437 1.517 ns  P>0.05 

6D vs 6D+3 -9.023 5.616 ns  P>0.05 

6D vs 6D+6 -5.995 3.732 ns  P>0.05 

6D vs 6D+10 -4.068 2.532 ns  P>0.05 

16D vs 6D+3 -6.585 4.099 ns  P>0.05 

16D vs 6D+6 -3.557 2.214 ns  P>0.05 

16D vs 6D+10 -1.630 1.015 ns  P>0.05 

6D+3 vs 6D+6 3.028 1.885 ns  P>0.05 

6D+3 vs 6D+10 4.955 3.084 ns  P>0.05 

6D+6 vs 6D+10 1.927 1.200 ns  P>0.05 

 

The copy number data for HES1 expression in different HaCaT cultures was 

made into a bar chart and the standard deviation (SD) was shown for each 

value as well as the significance relative to 3D cultures (Figure 4.44). Low 

levels of HES1 expression were found in early cultures in low calcium medium 

(3D & 6D) but while levels in cultures that had stratified and differentiated 

(16D, 6D+3, 6D+6, 6D+10) were higher, none of the values was statistically 

significant.  
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Figure ‎4.44: HES1 Gene Expression in HaCaT Cells during 

Calcium-induced Differentiation.  HES1 expression (copy 

number) was measured by qPCR and the data for 5 

experiments shown as an average ± SD. The increase at 6D+3  

was significant in relation to the day 3 culture (3D) data (* 

p<0.05). 

 

 

Expressing the HES1 data as fold change produced a bar chart with the same 

overall trends but higher levels of significance (Figure 4.45). The increases 

that were significant were those in late differentiation (6D+3 and 6D+6) as 

these were greater than 12 fold over the levels seen in the 3D cultures (p < 

0.001 and p < 0.05 respectively). 
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Figure ‎4.45: HES1 Gene Expression in HaCaT Cells during 

Calcium-induced Differentiation.  HES1 expression (fold 

change) was measured by qPCR and the data for 5 

experiments shown as an average ± SD. The increase at 6D+3  

was significant in relation to the day 3 culture (3D) data (* 

p<0.05). 

 

Overall, HES1 was not expressed at a constant level in cultured HaCaT 

keratinocytes undergoing calcium-induced differentiation. Levels were higher 

in differentiating cells and in some cases this was significant.  

 

The qPCR data did not agree with preliminary work on Hes-1 protein 

expression using immunoperoxidase (IMP) and immunofluorescence (IMF). 

While the available antibodies were not always of high titre, expression of 

HES1 appeared more prominent in basal layer of epidermis (Figure 4.46).  
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Figure ‎4.46: Immunoperoxidase (IMP) of the epidermis of human 

scalp skin (frozen sections). (A) Pan-specific blank Human 

epidermis. (B) HES1 was expressed in basal layers of the human 

epidermis. HES1 was also prominent in spinous layer of epidermis 

(Suprabasal). Nuclear staining location suggests HES1 may be 

active. IMP performed by Mary Cleaton and Fiona Ruge. 

 

Observations of HES1 expression indicated that the notch pathway is active in 

HaCaT cells but a specific link with proliferation or differentiation was not 

apparent.   

 

Several problems were encountered with the HES5 (p1, p2R) PCR primers and 

HaCaT cell cDNA. Not all PCRs gave a product but where a product was 

obtained, this was the correct size and sequence (Figure 4.47). However, the 

PCR generated HES5 DNA failed to clone properly and inserts released after 

cloning were not the correct size and were of random sequence (Figures 

4.48).  HES5 cloning was repeated several times but none of the attempts was 

successful.  
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Figure ‎4.47: HES5 Expression in HaCaT Cells. HES5 primers (p1 

& p2R) produced a single PCR amplicon (96 bp) with cDNA 

from HaCaT cells (high calcium cultures: 6D+3, 7D+3, 5D+3 and 

4D+3). K14 control primers (HK14p55, p57R) produced no 

product and a HES5 product was only found in one set of 

cultures (6D+3) and not in human epidermis (HE). Analysis on 

Nusieve:Agarose (3:1) gel (M (DNA Marker) = φx174 DNA + Hae 

III and bands visualised with ethidium bromide under UV light. 

 

  
Figure ‎4.48: Analysis of HES5 Plasmid Digested with EcoRI.  

Cloned HES5 plasmids (Plas1-6) were digested with EcoRI and 

run on a 1.5% agarose gel. The larger band (3,015 bp) is pGEM-

T easy vector (blue) but the lower band is too large for HES5. 

Inserts were sequenced and were not HES5. M: low molecular 

weight DNA Marker (755-21 bp). 

 



247 

 

Problems were also experienced with HES7. The PCR primers used (p1, 

p2R) produced two amplicons of different size (Figure 4.49), the larger 

of which was from genomic DNA (460 bp) and the smaller, the correct 

cDNA amplicon (155 bp). This genomic contamination meant that the 

PCR products were no good for cloning and there was not sufficient 

time to repeat the experiments with better samples of HaCaT cell 

cDNA.  

 

 
Figure ‎4.49: Gel Analysis of HES7 PCR Products from HaCaT 

Cell cDNA. HES7 primers (p1, p2R) produced two amplicons, 

the larger representing gDNA (460 bp) while the smaller was 

the correct size from cDNA (155 bp). HES7 expression varied 

in the different cultures being more prominent in cells grown 

in low calcium (D3, D6, D16) than those in high calcium 

(D6+3, D6+6, D6+10). Analysis on NuSieve-Agarose (3:1) gel 

and bands were visualised with ethidium bromide under UV 

light. M (DNA Marker) = φx174 DNA + Hae III. 
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Thus, only HES1 data was generated by qPCR and further work would be 

needed to optimise the primers and PCR conditions to obtain good levels of 

HES5 and HES7 so these could be cloned and further investigated. 

 

PCRs were then run with HEY1 primers (p3, p4R) using cDNA from HaCaT cell 

cultures. Standard PCR conditions (58°C annealing and 35 cycles) were used 

and the HEY1 amplicons (181 bp) were run on a 1.5% agarose gel. In addition, 

their identity was confirmed by sequence analysis. However, only very low 

levels of HEY1 were found in HaCaT cells (Figure 4.50) and the highest levels 

appeared to be in moderately confluent cultures in low calcium medium (6D).   

 

 
Figure ‎4.50: HEY1 Expression in HaCaT Cells. HEY1 primers 

(p3 & p4R) produced a single PCR amplicon (181 bp) from 

cDNA. No gDNA product was found (583 bp) and the level 

of HEY1 expression was very faint in all samples: (low 

calcium: D3, D6, D16 and high calcium: D6+3, D6+6, D6+10). 

Analysis was on a 1.5% agarose gel and bands were 

visualised with ethidium bromide under UV light. M 

(Marker DNA) = φx174 DNA + Hae III. 
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The very low levels of HEY1 PCR product obtained meant this PCR product was  

difficult to clone. This was repeated twice but no clones of the HEY1 gene 

product were obtained. Results with HEY2 and HEYL were similar. Only low 

levels of PCR product were obtained using cDNA from HaCaT cells but the 

products were correct (confirmed by sequencing). Also, there did appear to be 

some changes in expression level at different times in culture but insufficient 

material was obtained for cloning (Figures 4.51 and 4.52) so no further work 

was done with HEY2 and HEYL.  

 

 
Figure ‎4.51: HEY2 Expression in HaCaT Cell Cultures. HEY2 

primers (p3 & p4R) produced a single PCR amplicon (250 

bp) with cDNA from HaCaT cells. However, no product was 

obtained from a gDNA sample (C19). The level of HEY2 

expression varied and was higher in early low calcium 

cultures (D3) and at early time points after shifting to high 

calcium (D6+3, D6+6). Analysis on 1.5% agarose gel and 

bands visualised with ethidium bromide under UV light. M 

(marker DNA) = φx174 DNA + Hae III.  
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Figure ‎4.52: HEYL Expression in HaCaT Cells. HEYL primers 

(p1 & p2R) produced a single PCR amplicon (185 bp) with 

cDNA from HaCaT cells. No product was found with gDNA 

(sample C19). HEYL expression was variable and appeared 

higher at early time in low calcium medium (D3, D6) and 

early time points after the shift to higher calcium levels 

(D6+3, D6+6). Analysis on 1.5% agarose gel and bands 

visualised with ethidium bromide under UV light. M 

(marker DNA) = φx174 DNA + Hae III.  

 

 

4.5 Summary  

It is clear from the research literature that cultured keratinocytes grown in 

low calcium medium do exhibit many properties of epidermal basal cells, 

including proliferation and the ability to undergo terminal differentiation. The 

structural and biochemical changes that occur during terminal differentiation 

can be re-iterated in cultured keratinocytes and the process observed does 

closely resemble that occurring in vivo. The expression of terminal 

differentiation markers such as keratin K10 provides a good indicator of which 
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cells are differentiating but this does not necessarily mean that all cellular 

signalling systems are behaving the same way in cell cultures as they are in 

vivo. Thus, while some changes did appear to be significant in differentiating 

HaCaT cells and these could be related to changes observed in vivo, many of 

the observations failed to reach significance and more work is required to 

obtain a more complete set of data on notch signalling pathways in HaCaT 

cells.  

 

The data obtained from this project suggested that Notch receptors, ligands 

and target genes differ when comparing keratinocyte proliferation and 

calcium-induced differentiation in HaCaT cells. While expression levels of 

Notch3, JAG1, JAG2, DLL1 and HES1 differed between cells growing in low and 

high calcium, the differences were often variable in different cultures which 

prevented the average data from being statistically significant. Levels of HES1 

expression were much higher in terms of copy number that the other genes 

examined but high standard deviation in the data prevent any of the changes 

from being significant (Figure 4.53).  Notch receptor and ligand levels were 

much lower and DLL1 levels were the lowest.  

 

When the data was expressed in terms of fold change (Figure 4.54), HES1 and 

K10 did show significantly higher levels in differentiating cells than in 

proliferating cells. As HES1 is a notch signalling responsive gene, this would 



252 

 

indicate that notch signalling is active during terminal differentiation of HaCaT 

cells. 

 

 
Figure ‎4.53: Expression of JAG1, JAG2, DLL1, HES1 and Notch3 in HaCaT 

Cells during Calcium-Induced Differentiation. Relative copy number for all 

Notch family genes examined (JAG1, blue; JAG2, green; DLL1, purple; 

HES1, yellow and Notch3, red). qPCR data was analysed using MxPro 

software. HES1, JAG1 and JAG2 expression increased in low calcium 

medium (6D, 16D) with a further increase during calcium-induced 

differentiation (6D+3, 6D+6). Notch3 levels were much lower but a similar 

trend was observed. Little change was apparent in DLL1 levels. 
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Figure ‎4.54: Expression Levels of DLL1, K14, K10, JAG2, HES1 and NOTCH3 

in HaCaT Cells during Calcium-Induced Differentiation. All qPCR 

measurements were made in triplicate and analysed using MX3000 

software. Total RNA was isolated from HaCaT cells at different stages of 

differentiation, converted to total cDNA and used qPCR. The fold change 

relative to 3 day cultures was then calculated.  

 

 

  

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

3D 6D 16D 6D+3 6D+6 6D+10

F
o

ld
 C

h
a
n

g
e

Gene Expression in HaCaT Cells

DLL1

K14

K10

Jag2

Hes1

N3



254 

 

CHAPTER 5:  

Discussion and Conclusions 
 

5.1 Discussion 

This study has examined Notch signalling during the switch from 

epidermal proliferation to terminal differentiation in vitro. This was 

done by observing the expression of notch receptors, ligands and target 

genes at the mRNA level in immortalized human keratinocyte cultures 

(HaCaT). It examined changes in gene expression using PCR based 

methods (standard PCR, RT-PCR and qPCR) as well as having to clone 

and sequence various notch receptor, ligand and target gene probes. 

Levels of notch receptors, ligands and target genes at different time 

points in calcium-induced keratinocyte differentiation were examined 

in the HaCaT cell culture model. In addition, the results were compared 

to earlier preliminary work done in the laboratory that was largely 

based on protein methods (IMP, IMF, SDS-PAGE and western blotting).  

 

Notch signalling is considered a highly conserved pathway essential for 

cell fate determination in embryonic development but less is known 

about the function in adult tissues.  Human epidermis is regulated by 

notch signalling and this is required for the maintenance of stem cells, 

for proliferation and for differentiation into mature keratinocytes 
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(Blanpain et al, 2006). However, some details of how this complex 

terminal differentiation programme is regulated in keratinocytes still 

remain unclear (Nickoloff et al., 2002). While notch signalling in human 

epidermis may initially promote differentiation, loss of notch signalling 

in the skin may potentiate skin tumour development or result in a 

defect of interfollicular epidermal differentiation (Rangarajan et al., 

2001 and Nicolas et al., 2003). However, there is still very little evidence 

of any dynamic regulatory function of notch signalling in terms of 

epidermal differentiation.  

 

Several studies have examined notch signalling in human epidermis at 

the protein level. Lowell et al (2000) suggested that Notch1 was 

expressed in all living epidermal cells throughout differentiation but 

delta 1 was confined to the basal layer. On the other hand, Wilson and 

Radtke (2006) provided evidence that mRNA encoding Notch1-3 was 

expressed in the basal layer of human epidermis. Estrach et al (2008) 

also detected suprabasal expression of JAG1 and JAG2. In addition, 

Powell et al (1998) detected expression of Notch1 and JAG1 at the 

protein level in hair follicles with Notch1 expression in the bulb and ORS 

while JAG2 was restricted to the bulb and basal layer of the ORS.  
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In this project, a detailed study of notch receptors, ligands and target 

genes was made a human keratinocyte cell line (HaCaT) and where 

possible the results related back to earlier results obtained on human 

epidermis.  

 

As part of this study, it was necessary to clone PCR generated cDNA 

probes of the genes being studied so that standard curves could be 

generated for each gene so that quantitative assessment of the copy 

number could be made by qPCR. In total probes were cloned for two 

Notch receptors (Notch1 and Notch3), three ligands (DLL1, JAG1 and 

JAG2) and one target gene (HES1) as well as the keratins (K10 and K14) 

required to define the level of differentiation in the HaCaT cells.  

 

When the project began, there were few published papers that 

investigated Notch1 expression in human adult epidermis. Okuyama 

and colleagues (2008) reported that Notch1 was differentially localized 

in various layers of hair follicles, a finding largely supported by Powell et 

al (1998) who detected Notch1 expression in the hair bulb and ORS of 

the hair follicle. This concurred with the findings of Watt et al (2008) 

suggesting that notch receptors are expressed at the base of the hair 

follicle. Notch1 was also thought to be up-regulated in suprabasal layers 
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of interfollicular epidermis (Pan et al., 2004 and Kopan and Weintraub, 

1993). 

 

However, other work was contradictory and investigations by Thelu et 

al (2002) showed weak expression of Notch1 in differentiating skin. 

Similar results were also observed by Dhouailly et al (2000) and Favier 

et al (2000). Interestingly, Blanpain et al (2006) claimed that Notch1 

expression was restricted to suprabasal layers of the epidermis while  

Wilson and Radtke (2006) suggested Notch1 was highly expressed in 

the basal layer, agreeing with observations by Nickoloff et al (2002) 

providing evidence for strong staining of the lower and middle layers of 

the epidermis.  

 

In the present study, our evidence suggests that Notch1 has a 

somewhat uniform pattern of expression across the epidermis based on 

qPCR estimation of mRNA copy number. The data obtained with 

standard PCR was more variable and earlier obtained using Notch1 

antibodies varied depending on which antibody was used. This implies 

that there was no significant change in Notch1 expression during the 

transition from proliferation to differentiation in HaCaT cell cultures. 

Thus, our evidence suggests that Notch1 may be required to maintain 
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the epidermal phenotype but it is unlikely that signalling via Notch1 is 

driving the shift from epidermal proliferation to differentiation. 

 

Less work has been published on Notch3 expression in human 

epidermis. Wilson and Radtke (2006) suggested that mRNA levels were 

high in basal cells and lower in suprabasal cells. Similar observations 

were reported by Thelu et al (2002) but Blanpain et al (2006) claimed 

that Notch3 expression was restricted to suprabasal cells agreeing with 

earlier evidence from Nickoloff et al (2002). In this study, Notch3 was 

expressed in mid and upper epidermal cells by immunoperoxidase 

staining. Our investigations of Notch3 showed predominant expression 

during epidermal differentiation rather than proliferation based on data 

from standard PCR and qPCR analysis confirmed this by showing there 

was a significant fourfold increase in copy number. Again these findings 

agree with some but not all of the earlier work on Notch3 expression. It 

is important to point out that there was no preliminary investigation of 

Notch3 as reliable antibodies were not available for western blotting 

and tissue immunofluorescence studies. The current work would 

suggest that Notch3 is likely to play a role switching human 

keratinocytes from proliferation to differentiation, agreeing with earlier 

work that suggests Notch3 may promote the switch towards terminal 

differentiation. 
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Previous studies on DLL1 expression have indicated that it is confined to 

basal cells. According to Wilson and Radtke (2006), DLL1 mRNA levels 

are high in basal cells and appear to be mainly localised at the tip of 

dermal papillae. This observation agreed with earlier studies by Thelu et 

al (2002), Nickoloff et al (2002), Pourquie (2000) and Lowell et al (2000). 

Our data showed that DLL1 expression was low in HaCaT cells and 

somewhat uniform across all the cultures (similar to Notch1). However, 

DLL1 expression was also variable in both low and high calcium cultures 

and no significant differences were found in qPCR experiments. This 

implies that DLL1 expression did not significantly change in relation to 

keratinocyte differentiation. These findings disagree with earlier 

published work that suggests DLL1 is localised to epidermal basal cells 

and more work is needed to reconcile these differences. However, it 

still remains unclear how DLL1 expression in the human epidermis is 

initiated or maintained and what role this has in notch signalling.   

 

Preliminary investigations on DLL4 expression showed that while this 

was expressed in pancreatic tissue, there was no expression in human 

epidermis or HaCaT cell cultures. Thus, this ligand does not play a role 

in notch signalling in human epidermal keratinocytes. 
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Jagged 1 (JAG1) expression in human adult epidermis has been 

previously investigated. Thelu et al (2002) reported that JAG1 mRNA 

was found in proliferating cells and transcribed to a lesser extent in 

suprabasal differentiating cells. Wilson and Radtke (2006) supported 

this with their observation that JAG1 expression was confined to the 

basal layer. However, Nickoloff et al (2002) reported that JAG1 showed 

strong and diffuse staining from the basal layer to the lower suprabasal 

layers but there was no stain detectable in the granular layer. In 

contrast others reported that JAG1 expression increased as 

keratinocytes differentiated and levels were highest in the suprabasal 

layers (Blanpain et al., 2006; Dotto, 2008 and Watt et al., 2008). At the 

same time, Estrach et al (2006) reported JAG1 expression in suprabasal 

layers of upper ORS.  

 

Our earlier research investigated JAG1 expression in the peripheral 

matrix cells of the hair bulb indicating a possible regulatory function in 

cell fate decisions during hair differentiation. In human epidermis, JAG1 

was found at the cell periphery of basal, spinous and granular cells both 

by immunoperoxidase and immunofluorescence. However, clear 

differences appear to exist amongst all of this evidence and it is not 

clear how much of this variability is due to the use of different 

techniques. It is clear that JAG1 antibodies vary in the ability to stain 
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human epidermis and results at the protein level do not always concur 

with those at the mRNA level.  

 

The current findings show that HaCaT cells expressed JAG1 uniformly 

throughout HaCaT cell culture. The qPCR data did highlight slight 

variations in JAG1 levels with a trend towards higher levels in 

differentiating cells but in terms of copy number, none of the findings 

were significant. In terms of fold change, comparisons of the early 

proliferating cells and the most differentiated cells did show a 5 fold 

significant difference, supporting the evidence that JAG1 levels are 

higher in differentiating cells. These findings suggest that JAG1 may 

contribute to the shift of keratinocytes from proliferation to 

differentiation but strong evidence for this suggestion is still not 

forthcoming.  

 

There is very little published work on JAG2 expression in human adult 

epidermis. Nickoloff et al (2002) did include JAG2 in his study but found 

weak to undetectable staining in suprabasal cells and concluded that 

the antibody was not working well enough. Preliminary work done in 

the laboratory on JAG2 was variable and poor due to the lack of good 

reagents. The only antibody that did work well gave strong suprabasal 

staining of human epidermis but this was later found to cross-react with 
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K10 making the data worthless (Dr. P.E. Bowden, unpublished data). 

The current research on JAG2 levels in HaCaT cell cultures showed 

similar findings to JAG1. In overall terms, the level of expression did not 

change much in the different culture conditions but the qPCR data did 

show a 2 fold increase of JAG2 in differentiating cells but again this was 

not significant. Thus, while there was a trend for JAG2 levels of 

expression to be higher in differentiating keratinocytes, the data was 

not conclusive so the role played by JAG2 is currently unclear. Thus, 

further investigations are required on JAG2 expression to obtain a 

better understanding of the nature of JAG2 function in human 

epidermis.    

 

Notch target genes have received less attention and the only research 

published at the beginning of this study was restricted to investigations 

of the hair follicle. Blanpain et al (2006) reported that HES1 was 

expressed in the inner root sheath (IRS) during hair follicle 

development. In addition, Ambler and Watt (2007) found that HES1 

expression was low in telogen and high in the matrix of mouse hair 

bulbs.  

 

Preliminary work done in the laboratory had already established that 

HES1, HES5 and HEY1 were expressed in HaCaT cells. However, these 
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target genes were difficult to in human epidermis. HES1 was detected 

at the protein level in human epidermis using IMP but again the 

antibodies were poor and the data not conclusive. However, the 

current work with qPCR found high levels of HES1 expression in 

cultured HaCaT cells that were differentiating and levels were 

significantly above those measured in proliferating cultures. These 

findings imply that HES1 is up-regulated in HaCaT cells during the 

induction of terminal differentiation. This provides good evidence for 

notch signalling and from the present data, it would appear that the 

molecules involved in this signalling pathway are Notch3, JAG1 and 

JAG2. However, these results are far from conclusive and more 

research is needed to confirm if this signalling pathway is indeed active 

in differentiating keratinocytes. The other notch target genes (HES5, 

HES7, HEY1, HEY2, and HEYL) provided no data due to various technical 

difficulties and this work needs to be repeated at later date.  

 

Even though several epidermal markers were used as controls in our 

study of keratinocyte differentiation in a HaCaT cell culture model, the 

expression of Notch receptors, ligands and target genes was more 

variable than anticipated, This raises the question as to whether the 

HaCaT cell culture model was mimicking normal keratinocytes or not. 

Despite trying to standardise the HaCaT cells cultures and keep the 

extraction of total RNA and making of cDNA as reproducible as possible, 
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some variation in expression was inevitable. Nevertheless, HaCaT cells 

currently remain the best choice of system to study human epidermis.    

 

More studies still need to be done and a better clarity between the 

data obtained at the protein level and that obtained at the mRNA levels 

needs to be sought. Other approaches are also needed including the 

use of other keratinocytes (e.g. Ntert, primary cells) and other methods 

such as siRNA knock down of notch receptors and ligands. Once 

knocked done, the effect on the target genes and on keratinocyte 

differentiation can be assessed. 

 

5.2 Conclusions 

It is well documented that Notch signalling pathways are essential for the 

normal development of human tissues and that they are involved in 

manipulating cell fate, survival, cell proliferation and differentiation. Despite 

recent efforts, many questions concerning notch signalling and the skin 

remain obscure. More work is need on establishing which pathway 

components are required for normal epidermal growth and differentiation 

and what receptor-ligand interactions are required. The importance of non-

canonical signalling and the effect of cis and trans interactions cannot be 

under estimated.   
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The two main points where notch signalling could influence human epidermis 

are at the basal-spinous interface and then again at the level of the granular 

layer where a host of late differentiating events are taking place. The HaCaT 

cell model as used in these studies has focused on the switch from a basal to 

suprabasal phenotype and studies of later differentiation would require more 

advanced systems such as the organotypic culture system.   

 

Studies have also linked another signalling pathway (Wnt) to epidermal 

differentiation. Interestingly, DLL1 and JAG1 are both transcriptional targets 

of canonical Wnt signalling (Estrach et al, 2006). Thus, it is likely that Notch 

and Wnt signalling pathways may integrate together to influence self renewal, 

proliferation survival, suppression of cell fate commitment and lineage 

determination. Therefore, it would also be interesting to investigate how 

notch ligands impact on other signalling pathways. 

 

In the coming years, notch signalling pathways may become a major focus in 

terms of delivering therapy to patients with skin disorders. Biological 

therapies are gathering pace and having many successful outcomes so 

understanding the role of notch signalling in the human epidermis may be of 

potential benefit to patients with disorder of keratinisation such as eczema 

and psoriasis. This will remain a major challenge for future research. 
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