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Abstract

A near-group fusion category is a fusion category C where all but 1 sim-
ple objects are invertible. Examples of these include the Tambara-Yamagami
categories and the even sectors of the Dél) and Fg subfactors, though there
are infinitely many others. We classify the near-group fusion categories, and
compute their doubles and the modular data relevant to conformal field theory.
Among other things, we explicitly construct over 40 new finite depth subfac-
tors, with Jones index ranging from around 6.85 to around 14.93. We expect

all of these doubles to be realised by rational conformal field theories.
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1 Introduction

Considerable effort in recent years has been directed at the classification of subfactors
of small index. Subfactors of index < 5 are now all known (see e.g. [25]). The
classification for index < 4 was established some time ago. The Haagerup subfactor
[15] with Jones index (5+1+/13)/2 &~ 4.30278, the Asaeda-Haagerup subfactor [1] with
index (5 4 V/17)/2 = 4.56155, and the extended Haagerup subfactor [2] with index
~ 4.37720, arose in Haagerup’s classification [15] of irreducible finite depth subfactors
of index between 4 and 3 + v/3 &~ 4.73205. A Goodman-de la Harpe-Jones subfactor
[13], coming from the even sectors of the subfactor corresponding to the Ay 19 C Ca;
conformal embedding, has index 3 + v/3. Then comes the Izumi-Xu subfactor 2221
[21] with index (54 v/21)/2 ~ 4.79 and principal graph in Figure 1, coming from the
Ga3 C Eg, conformal embedding.

The punchline is that, at least for small index, there are unexpectedly few sub-
factors. Does this continue with higher index? Are the aforementioned subfactors
exotic, or can we put them into sequences? In [21], Izumi realised the Haagerup and
[zumi-Xu subfactors using endomorphisms in Cuntz algebras, and suggested that his
construction may generalise. More precisely, to any abelian group G of odd order,
Izumi wrote down a nonlinear system of equations; any solution to them corresponds
to a subfactor of index (|G| + 2+ 4/|G|? +4)/2. He showed the Haagerup subfactor
corresponds to G = Zs, and that there also is a solution for G = Z;. In [12] we found
solutions for the next several G, explained that the number of these depends on the
prime decomposition of |G|? + 4, and argued that the Haagerup subfactor belongs to
an infinite sequence of subfactors and so should not be regarded as exotic.

Izumi in [21] also associated a second nonlinear system of equations to each finite
abelian group; to any solution of this system he constructs a subfactor of index
(|G| + 2 + /|G> + 4]G])/2 and with principal graph 2/%/1, i.e. a star with one edge
of length 1 and |G| edges of length 2 radiating from the central vertex (Figure 1 is
an example). Izumi then found solutions for G = Z,, (n < 5) and Zy X Zy. G = 74
and Z, correspond to the index < 4 subfactors A, and FEjg, respectively; his solution
for Zs provides his construction for Izumi-Xu. An alternate construction of 2221,
involving the conformal embedding Go3 C Eg 1, is due to Feng Xu as described in
the appendix to [5] (see also [16]). As we touch on later in the paper, there may be



a relation between the series containing the Haagerup subfactor, and that containing
the Izumi-Xu subfactor.

Figure 1. The 21 principal graph

One of our tasks in this paper is to construct several more solutions to Izumi’s
second family of equations, strongly suggesting that this family also contains infinitely
many subfactors. But more important, in this paper we study a broad class of systems
of endomorphisms, the near-group fusion categories, including the Izumi-Xu series as
a special case. We obtain a system of equations, generalising those of Izumi, providing
necessary and sufficient conditions for their existence. We identify the complete list
of solutions to the first several of these systems, which permits us the construction
of over 40 new finite-depth subfactors of index < 15,

A fusion category C [11] is a C-linear semisimple rigid monoidal category with
finitely many simple objects and finite-dimensional spaces of morphisms, such that
the endomorphism algebra of the neutral object is C. The Grothendieck ring of a
fusion category is called a fusion ring. Perhaps the simplest examples are associated
to a finite group G: the objects are G-graded vector spaces ©,4V,, with monoidal
product V, ® V] = (V ® V')g,. Its fusion ring is the group ring ZG. We call such
examples group categories. The category Mod(G) of finite-dimensional G-modules is
also a fusion category.

We're actually interested in certain concrete realisations of fusion categories, which
we call fusion C*-categories: the objects are endomorphisms (or rather sectors, i.e.
equivalence classes of endomorphisms under the adjoint action of unitaries) on some
infinite factor M, the spaces Hom(p, o) of morphisms are intertwiners, and the prod-
uct is composition. Two fusion C*-categories are equivalent iff they are equivalent as
fusion categories — all that matters for us is that the factor M exists, not which one
it is. Every finite-depth subfactor N C M gives rise to two of these, one correspond-
ing to the principal, or N-N, sectors and the other to the dual principal, or M-M,
ones. For example, given an outer action « of a finite group G on an infinite factor N,
we get a subfactor N C NxG = M coming from the crossed product construction:
the N-N system realises the group category for GG, while the M-M system realises
Mod(G).

Not all fusion categories can be realised as fusion C*-categories (e.g. the modular
tensor categories associated to the so-called nonunitary Virasoro minimal models are
not fusion C*-categories). Restricting to C*-categories is very convenient as it allows
us to avoid considering unpleasantries like 6j-symbols. It also doesn’t seem to lose
much generality: we know of only one near-group category which lacks a C*-category



realisation (namely, the Yang-Lee model). Incidentally, it is possible to realise e.g.
the Yang-Lee model using nonunitary and (non*)-algebras of operators.

Perhaps the simplest nontrivial example of the extension of a fusion category is
when the category C has precisely 1 more simple object than the subcategory Cy, and
the latter corresponds to a finite abelian group. More precisely, simple objects [g] in Cy
correspond to group elements g € G, with tensor product [g][h| = [gh] corresponding
to group multiplication. The simple objects of C consist of the [g], together with
some object we'll denote [p]. Then [p] must be self-conjugate, [g][p] = [p] = [p]lg], and
[p]> = ' [p] 43" cclg] (the multiplicities nj in the second term must be independent of
g because of equivariance [g][p] = [p]; because [p] is its own conjugate, the multiplicity
of [1] must be 1).

We call these near-group categories of type G + n’. In this paper we restrict to
abelian GG, and we reserve n always for the order of G. Examples of these have been
studied in the literature:

e the Ising model and the module category of the dihedral group D,, which are
of type Zo + 0 and Zs X Zs + 0, respectively;

e more generally, the Tambara-Yamagami systems are by definition those of type
G+0;

e the Ay, Fg and Izumi-Xu subfactors are of type G + n for G = Zy,Zs, Zs3 re-
spectively;

e more generally, [zumi’s second hypothetical family would be of type G + n;

e the Dél) subfactor and the module category of groups S3 and A, are of type
Zo + 1, Zo + 1, and Z3 + 2, respectively;

e more generally, the representation category of the affine group Affy(F,) =
F x> of a finite field Iy is of type Zg—1 + (¢ — 2).

More precisely, Aff;(IF,) is the group of all affine maps z +— ax + b where a € Fy
and b € F,. Tt has precisely ¢ = p* conjugacy classes, with representatives (a,0)
and (1,1). It has precisely ¢ — 1 1-dimensional representations, corresponding to the
characters of IF;. The remaining irrep is thus of dimension Valg—1) —qg—1=¢q-1,
and is the nontrivial summand of the natural permutation representation of Aff;(F,)
on [, given by the affine maps: (a,b).z = az +b.

In this paper we classify the near-group C*-categories G +n/, in the sense that we
obtain polynomial equations in finitely many variables, whose solutions correspond
bijectively to equivalence classes of the near-group C*-categories. Given any near-
group C*-category C with n’ > 0, we identify a natural subfactor p(M) C M whose
even systems are both identified with C. We also work out the principal graph of the
closely related subfactor p(M) C M%. By contrast, we can realise some but not all
C with n’ = 0, as the even sectors of a subfactor.




There is a fundamental dichotomy here: n’ either equals n — 1, or is a multiple of
n, where as always n = |G|. When n’ < n, we have a complete classification:

Fact. Let G' be any abelian group of order n.
(a) There are precisely two C*-categories of type G + 0.

(b) When n' is not a multiple of n = |G|, the only C*-categories of type G +n’ are
Mod(Affi(F,41)), except forn = 1,2,3,7 which have 1,2,1,1 additional C*-categories.
In all cases here, n+ 1 is a prime power, n' =n — 1, and G = Z, ;1.

This is our Corollary 4 and Proposition 5 respectively, proven below. Type G + 0
and type Z, + n — 1 fusion categories were classified by Tambara-Yamagami [32]
and Etingof-Gelaki-Ostrik [10], respectively; we find that for these types, all fusion
categories can be realised as C*-categories. Our proof of (a) is independent of and
much simpler than [32].

Conjecture 1. For every nontrivial cyclic group G = Z,, there are at least 2
inequivalent subfactors with principal graph 2"1whose principal even sectors satisfy
the mear-group fusions of type G + n.

We have verified this for n < 13. For those n, the complete classification is given
in Table 2 below. In the process, we construct dozens of new finite depth subfactors of
small index with principal even sectors of near-group type. This classification for n =
3 yields a uniqueness proof (up to complex conjugation) for the principal even sectors
of the Izumi-Xu 2221 subfactor; this can be compared to Han’s uniqueness proof [16]
of the 2221 subfactor. Again, our proof is independent of and both considerably
shorter and simpler than the original one. We do not yet feel confident speculating
on systems with n’ > n; the corresponding subfactors would have principal graph as
in Figure 3 below.

Two morals can be drawn from this paper together with our previous one [12]. One
is that there is surely a plethora of undiscovered finite-depth subfactors, of relatively
small index. This is in marked contrast to the observations of e.g. [26], who speak of
the ‘little desert’ in the interval 5 < [M : N] < 3++/5. The situation here is probably
very analogous to the classification of finite groups, which also is very tame for small
orders. The second moral is that, when the fusions are close to that of a group, a very
promising approach to the classification and construction of corresponding systems
of endomorphisms, equivalently C*-categories, or the corresponding subfactors, is the
Cuntz algebra method developed in e.g. [21] and championed here. This approach
also makes the computation of the tube algebra and corresponding modular data
etc (to be discussed shortly) completely accessible. In contrast, the technique of
planar algebras is more robust, able to handle subfactors unrelated to groups, such
as Asaeda-Haagerup and the extended Haagerup. But planar algebra techniques
applied to e.g. the Haagerup fail to see that it (surely) lies in an infinite family. In
a few minutes the interested computer can construct several more subfactors of the
type described in Conjecture 1, using the Cuntz algebra method here, each of which
would be a serious challenge for the planar algebra method.



The underlying presence of groups here begs the question of K-theory realisations
of these fusion rings. For example, the fusion ring of the near-group C*-categories
when n’ = n — 1 can be expressed as Kéx lcfl(IFC’)(l). Is there a K-theoretic expression
in the other class, i.e. when n’ € nZ?

An important class of fusion categories are the modular tensor categories [34],
which are among other things braided and carry a representation (called modular
data) of the modular group SLy(Z) of dimension equal to the rank of the category,
from which e.g. the fusion coefficients can be computed. These arise from braided
systems of endomorphisms on an infinite factor, from representations of completely
rational conformal nets, or from the modules of a rational vertex operator algebra.
Few near-group categories are modular, or even braided [33].

There is a standard construction, called the quantum or Drinfeld double, to go
from fusion categories (with mild additional properties) to modular tensor categories
[27]. We construct the doubles of our C*-categories, following the tube algebra ap-
proach [20], and in particular explicitly compute its modular data. As with the
Haagerup series, our formulae are unexpectedly simple. This simplicity also chal-
lenges the perceived exoticness of these subfactors. Work on the Witt group ([7] etc)
is beginning to suggest that all exoticness in the list of modular tensor categories
arises solely through the doubles of exotic fusion categories; we're finding (somewhat
to our disappointment) that there isn’t much exoticness there either.

A natural question is, are these modular tensor categories realised by conformal
nets of factors, or by rational vertex operator algebras (VOAs)? Ostrik (see Appendix
A in [5]) shows that the double of Izumi-Xu 2221 has a VOA interpretation, in fact it
is the affine algebra VOA corresponding to G 3 ® Az 1. No construction is known for
the large G. Curiously, this VOA conformally embeds into that of Eg1 @ As; (which
realises the fusions of the double of Zs), and this was where [12] suggests to look for
the VOA associated to the double of the Haagerup. Could there be a relation between
[zumi-Xu 2221 and the Haagerup? Other reasons suggest a relationship between 2°1
and the Haagerup. We discuss this latter possibility briefly in Subsections 3.5 and
4.4.

More generally we could consider quadratic extensions of a group category. More
precisely, let G be a finite group (not necessarily abelian) and suppose [p]* = [p][g,]
for some g, € G. Let N be any subgroup of G: we require [g][p] = [p] iff g € N.
Then [p][g] = [p] iff g € g,Ng,' =1 N’. The simple objects in this category are
lg] for g € G as well as [g;][p] for representatives g; of cosets G/N. Let ¢ be any
isomorphism G/N — G/N’; we require [g][p] = [p][¢'] iff ¢ € ¢(gN). Then [p]* =
> genlgl + 32 nilgillp]. We require ¢ to satisfy g,'d(6(g))g, = g for all g € G. This
large class of examples should be accessible to a similar treatment. The near-group
categories correspond to the choice N = G and g, = 1; the Haagerup-Izumi series
[21, 12] corresponds to G = Zapy1, N = 1, ¢(g) = —g, n, = 1; in particular, the
Haagerup subfactor at index (5 + v/13)/2 corresponds to G = Zs. It would be very
interesting to extend the analysis in this paper to this larger class. (An alternate
generalisation of the Tambara-Yamagami categories is considered in [8].)



Here is a summary of our main results. Theorem 1 associates numerical invariants
to a near-group C*-category, which according to Corollary 1 completely characterise
the category. Corollary 2 (and the end of Subsection 2.2) associate to each C*-
category two subfactors and work out their principal graphs. Theorem 2 establishes
the fundamental dichotomy of near-group C*-categories: either n’ =n—1orn’ € nZ.
When n’ =n — 1, Theorem 3 lists the identities necessarily obeyed by the numerical
invariants and shows they are also sufficient. Theorem 4 does the same when n|n'.
In Proposition 5 we find all near-group C*-categories with n’ = n — 1; we see that
almost all of these are known. In Table 2 we list the first several with n’ = n, and
find that almost none of these are known. In Theorem 5 and Corollary 6 we work out
the tube algebra and modular data for any near-group C*-category with n’ =n — 1.
[21] had found a very complicated expression for the modular data when n' = n; we
notice in Subsection 4.4 that it collapses to cosines.

Note added in proof. After completing this manuscript, we received in July 2012
[23] from Masaki Izumi, which overlaps somewhat the contents of our paper. In
particular, he also obtained necessary and sufficient conditions for the Cuntz algebra
construction to realise a near-group C*-category of type G + n/. On the one hand,
unlike us, he does not require GG to be abelian, and he allows the possibilities of
an H2-twist. On the other hand, unlike us, he does not address principal graphs
of associated subfactors, nor the tube algebra, nor the modular data (simplified or
otherwise) for the doubles, and he does not construct new solutions of the resulting
equations and hence does not construct new subfactors.

2 The near-group systems

2.1 The numerical invariants

Let G be a finite abelian group (written additively) with order n = |G|, and as usual
write G for its irreps. Let M be an infinite factor, p a self-conjugate irreducible
endomorphism on M with finite statistical dimension d, < 0o, and o an outer action
of G on M. Suppose the following fusion rules hold:

[agp] = [p] = [pay], (2.1)

[0°] = Plag] @ n'[p], (2.2)

g
for some n' € Zxo. Then the d, satisfies d) = n'd, +n so

n' +v/n'?2 +4n B
5 —

d, = 0. (2.3)

Let C(G, e, p) denote the fusion C*-category generated by «, p. We call these, C*-
categories of type G +n/.



Definition 1. By a pairing (g, h) on G we mean a complez-valued function on G X G
such that for all fired g € G, both (g, *), (x,g) € G. By a symmetric pairing we mean
a pairing satisfying (g, h) = (h,g). By a nondegenerate pairing we mean a pairing
for which the characters (g,*) are distinct for all g.

Note that a nondegenerate pairing is equivalent to a choice of group isomorphism
G — G, g = ¢4, by ¢4(h) = (g,h). The nondegenerate symmetric pairings for
G = 7, are (g, h) = e*™™9"/ for some integer m coprime to n.

In the following theorem, F is a set of labels with cardinality n’, on which G acts
by permutation. We say isometries S; satisfy the Cuntz relations if S;S; = d;; and
3. 8iSF = 1. The assumption below that H?(G;T) = 1 for abelian G is equivalent
to requiring that G is cyclic, and is made for simplicity; if it is dropped, the following
properties and equations will be sufficient for the existence of near-group categories
but no longer necessary.

Theorem 1. Let G,«a,p be a C*-category of type G + n'. Suppose in addition that
H?*(G;T) =1. Then there are n+n' isometries Sy, T, (g € G, z € F) satisfying the
Cuntz relations, such that agp = p, pog = Ad(Uy) p, for a unitary representation U,

of G of the form
Uy = (9.h) SuSi+ Y s T.Ty., (2.4)

h
where G permutes the z € F and (g, h) is a pairing on G. Moreover, ay(Sy) = Sgtn

and oy(T,) = Z(g)T, for some Z € G. Finally,

pSg = <35_1 Z(g, h> Sh + Z ux,gagx,szTz> U; ) (25)
h x,z

p(T.) = F(h)booSWTr + Y F(h) Y, ToShSh+ > W TWTLTy . (2.6)
x,h

h,$ w,T,Yy

for some sign s € {£1} and complex parameters a, ., b, ,, V. 2
F.

Proof. Our argument follows in part that of the first theorem of [22]. Because [ayp] =
[p], there exists a unitary W, € U(M) for each g € G, satisfying a,p = Ad(W,) p.
But

i
bz;w,x,y; fO?” w,r, Y,z €

Ad(Wyin) p = anagp = Ad(an(Wy) Wy) p (2.7)

for all g,h € G, so ay,(W,) W), = &(g,h) Wypp for some 2-cocycle £ € Z?(G;T).
Because H*(G;T) = 1, we can require that ¢ be identically 1, by tensoring W, with
the appropriate 1-coboundary. Since G is a finite group and « is outer, the a-cocycle
W, is a coboundary, so there exists a unitary V' € U(M) so that W, = ay,(V*) v for
all ¢ € G. This means Ad(a,(V)) oy(p) = Ad(V) p, ie. ay(Ad(V)p) = Ad(V) p.
Thus if we replace p by Ad(V') p we obtain a,p = p as endomorphisms, not just as
sectors.

This has exhausted most of the freedom in choosing p. The fusion [pay] = [p]
means pa, = Ad(U,)p for some unitaries U,; because H*(G;T) = 1, we can in
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addition insist that g — U, defines a unitary representation of G'. Note that we still
have a freedom in replacing U, with v¢(g) U, for any character ¢ € G.
The fusion (2.2) means

PHa) = Syag() S5+ D Tep(a) T2, (28)

geG zeF

where S, and {T.}.cr are bases of isometries for the intertwiner spaces Hom(c, p?)
and Hom(p, p?) respectively (so p*(z)S, = S,ay(z) etc). Then (2.8) implies S,, T,
obey the Cuntz relations. Since Ad(U,) p* = payp = p?, U, maps Hom(ay, p*) to
itself and Hom(p, p?) to itself, i.e. UpS, = py(h) S, and UpT, = Y, u(h), Ty for
some fiy(h), u(h),, € C. Since Upyp = UpUy, we have that p, € G for each g €@,
and the matrices u define a unitary representation on Hom(p, p?). This gives us

Uy = 1n(9)SuSh + Y u(g).y T.T; . (2.9)
h

Z?y

Define U; = 10(9) U,. Then poy, = Ad(Uy) p and Uy is still a unitary representation
of GG. For this reason we may assume that p is identically 1.

Similarly, o, maps Hom(a, p?) to Hom(ayip, p*) and Hom(p, p?) to itself, as
app = p. This means oy, (S,) = g1 Sg+n for some nonzero 1, € C, and «;, defines
an n/-dimensional unitary G-representation on Hom(p, p?). Because H*(G;T) = 1
we can choose 1,5, to be identically 1. Because G is abelian, we can diagonalise the
n’-dimensional representation, i.e. choose our basis 7}, so that o, T, = Z(g)T, for some
zed.

Because p is self-conjugate and Sy € Hom(id, p?), the isometry Sy will satisfy
Sop(So) = s/ for a sign s. Hence Syp(So) = ay(S5p(S0)) = s/9.

For any T € Hom(p, p?), define the right and left Frobenius maps R(T) =
VOT*p(Sy) and L(T) = vop(T*)Sy, as in Section 3.2 of [4]. Then p?(z)R(T) =
T p*(x)p(So) = T*p(p*(x)Se) = T*p(Sor) = R(T)p(zr) and p*(x)L(T) =
p(T*p?*(x))Sy = L(T)p(z) so both L, R are conjugate-linear on the space Hom(p, p?).
R is surjective: R(R(T)) = p(So)*Tp(So) = 0p(SipSo)T = sT. A similar
calculation shows that for any T,7", 7" € Hom(p, p?), T*p(T")T" € Hom(p, p*):
(T*p(T)T")p(x) = T*p(T'p(2))T" = p*(x)T*p(T")T".

Since 1 =) S,5; + >, T.T;, we find

p(So) =) SpSip(So) + > T.T:p(So) = s67' Y Sy + > T.R(T.)
=56 ) S+ Y a., LT, (2.10)
h z,y

for some complex numbers a,,, and covariance p(S;) = p(ay(So)) = Ad(Uy) p(So)
forces (2.5).

We can identify the shape of p(T') similarly. Choose some T, € Hom(p, p?); then
surjectivity of R implies there is some T/ € Hom(p, p?) such that T, = R(T7). We

9



find

p(T) = Sy Sip(T) + V8 TuTup(T'2)p*(S0)SyS; + Y TuTip(T.) T, T
g w,g w,T
=2 Sy (L(T)) + Y TuThag(L(T2))eg(S0)S; + > Tu(Tip(T2)T)T;
g w,g w,T

= b9, 2) SgTo+ Y V(0 h) TuSeS; + > Tu(Tipp(T2)T) Ty
g9,

9, w,z

agp(T.) = p(1%) forces b.(h,z) = b, ,x(h) and U (z, h) = b ,¥(h), which gives (2.6).

All that remains is to show that a basis T, of Hom(p, p?) can be found for which
u(g) in (2.9) is a generalised permutation matrix. For each ¢ € G let T4 denote the
(possibly zero) subspace of Hom(p, p*) on which «, acts as ¢, so Hom(p, p?) = @475
Note that a,p(S,) = p(Sp) implies (among other things) the selection rule: u(g),, #
0= 7 = 7uf for ¢ € G defined by 19(k) = px(g). This means there is a pairing
(g, h) on G such that u,(g) = p9(h) = (g, h). Each u(g) defines a linear isomorphism
from T, to T (with inverse u(—g)).

Define H to be the set of all h € G such that p" = 1; then H is a subgroup of G.
Choose a set O of orbit representatives of this G-action ¢ — p9¢ on G, and a set C' of
coset representatives for G/H. Note that u restricts to a unitary representation of H
on each space 7y; for each representative ¢ € O choose a basis Fy of 7, diagonalising
this H-representation. For any ¢ € G there will be a unique choice of representatives
¥ € O,ky € C such that p*v¢¥ = 1; let the basis F,; on Ty, be the image under
u(ky) of the basis for Tgw. Our basis F = {T.} of the intertwiner space Hom(p, p?)
will be the union of these bases F, for the subspaces 7. For any basis vector T, € F
and g € G, write T, = u(k,)T, for some representative k, € C and basis vector
T, € Fyfor p € O, and g+ k, = h+ k' for K’ € C and h € H. Then because G
is abelian we have u(g)eer = u(g + kz)yar = u(h)yy0r, wiiryr,- NOW Write ug g = uy
and define gz to label the basis vector Ty, = w(k’)T,. Then gz defines a G-action on
F, and u(h) is diagonal Vh € H for this basis, and the matrix entries u(g),, equal
Uy g0y g @S desired. QFED to Theorem 1

Corollary 1. Let G be a finite abelian group with H*(G;T) = 1 and choose any
C*-category C of type G +n'. Then the sign s, pairing (x,*), and complex numbers
Ug gy Ay 22, U, 45 ULy 1y form a complete invariant of C, up to gauge equivalence and
automorphism of G.

By gauge equivalence we mean equivalence up to a change of basis on Hom(p, p?)
(in contrast, relative rescaling of the S; would wreck (2.10) so isn’t allowed). More
precisely, for each representative ¢ € O and ¢ € H let T4 denote the subspace
of Hom(p, p?) spanned by T, € F with Z(g) = ¢(g) for g € G, and u, ), = ¥(h)
for h € H. Then gauge equivalence amounts to a change-of-basis Py, € U(Tp,4).
Let P € U(Hom(p, p*)) be the direct sum of ||O]| copies of each P, and define
T;ld — Zw Px,ngew- Then g"¥ = PTaOldP, prew — Pflbold?’ p/new — Pflb/oldp’

10



prnew - — Zz,’w,@,’y, vl P Py Po s Py, An automorphism ¢ of G acts by

Z3W,T,Y 2wzl y
permuting Sy, +— Syp, Ty — Ty, where ¢x = ¢z, (g, h) — (¢g, ph), etc.

The requirement that H?(G;T) = 1 is made for simplicity; dropping it would
introduce more possibilities (e.g. U, need only be a projective representation). We
will see shortly that either n” =n — 1 or n’ € nZ; when n’ =n — 1 G must be cyclic
and therefore in this case the hypothesis H*(G;T) = 1 in Theorem 1 etc is redundant
and can be dropped.

Corollary 2. Suppose C is a C*-category of type G+n' forn’ > 0. Then p(M) C M
1s a subfactor with index df,, whose M -M and N-N systems are both type G+n', with
(dual) principal graph consisting of n vertices attached to a left vertex, n other vertices
attached to a right vertex, and the left and right vertices attached with n’ edges (see
Figure 2 for an example). This has the intermediate subfactors p(M) C MY Cc M
(where the G-action is given by a,) and p(M) C p(M)xG C M (using the G-action
pagpt).

Figure 2. The principal graph for ps2(M) C M

The subfactor p(M) C M is self-dual because p = p; the principal graphs for
p(M) C MY match those of p(M)xG C M because of the basic construction applied
to p(M) C p(M)xG C M. At the end of next subsection we compute the principal
graph of p(M)xG C M in all cases.

G acts on M through the «,; the relation oy - p = p says p(M) C M%. When
n' = 0, we see p(M) = M by an index calculation. The index of p(M) C M% is
1+n'n1o.

Recall the near-group C*-categories listed in the Introduction. For example:

e The Tambara-Yamagami categories [32], which are of type G + 0, correspond
to & = /n, pn(g) = (g, h), and s = +1.

e The hypothetical [zumi-Xu family of subfactors (Section 5 of [21]) correspond

to the parameter choices s = 1, F = G, n’ = n, 6 = (n + vn?+4n)/2,
—1 -1

pn(9) = (g,h) = 1"(9), oy = VO Goga(z), tsy =1, boy = cVnd (z,2),

v,, = a(z)ey/n Hz, z), V. ey = Oywa @(x) b(2T)(2,y) for some complex num-

bers ¢, a(z),b(x) where a(z)? = (z,2) and (g, h) is a nondegenerate symmetric
pairing on G. We extend this pairing to G through the group isomorphism
G = G: (zg4,zp) == (g, h).

e The Dél) subfactor (Example 3.2 of [19]) has G = Z,, F = G\ {1}, n/ = 1,
) = 27 S = ]-7 Mh(g) = Mh(g) = 17 Uyp g = (_1)97 Qgox = \/5717 b:v,.t — a\/gila
Uy = a, b = 0 for some complex number a satisfying a® = 1.

) Yxyr,x,x
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2.2 Generalities

There is a fundamental bifurcation of the theory of near-group C*-categories:

Theorem 2. Suppose C is a near-group C*-category of type G + n', and suppose
H?(G;T) = 1. Let (x,%),uy,s,a,b,b,1" be the parameters which Corollary 1 asso-
ciates to C.

(a) Either n' =n —1, orn’ = kn for some k € Z>y.

(b) Suppose n' = n — 1. Then 6 = n, the pairing (g, h) is identical/l\y 1, gv =
Vo € F and g € G. The assignment x — T bijectively identifies F with G\{1} =: G*.
There is a permutation o of G* such that Uz = (0(2))(g) for all x and g. Finally,
Ugy = \/5_15%5.

(c) Suppose n' = kn for k € Zsy. Then the pairing (g, h) is nondegenerate, and for

any x € F there is a unique g, € G such that g,x = 1. Moreover, u, , is identically
1, and ay, # 0 implies Ty = 1.

Proof. Let C = C(G, a, p) be of type G+ n’, and let s,...,b" be its numerical invari-
ants, and (x,*) its pairing. Define subgroups H, H' of G by H = {h € G| (h,g) =
1Vg} and H = {h' € G|(g,h') = 1Vg}. Let n” = |H|. Write pu9(h) = (g, h) = un(g)
as before. Note that the orders |H| and |H'| must be equal, since the row-rank of the
matrix (g, h) will equal its column-rank.

Let us review some observations contained in the proof of Theorem 1. Recall
the coset representatives £k € C and orbit representatives ¢ € O introduced in the
proof of Theorem 1. We saw there that the phases u, restricted to h € H forms
a representation of H , which we’ll denote by . Then we found there the formula
Uy = Z(g + ky — K) valid for any ¢ € G and = € F, where k,, k' € C satisty
pw € O and g +k, — k' € H. Recall the partition F = UF,, where ¢ € CA}, (NS ﬁ];
the G-action z +— gz on F, contained in U,, bijectively relates F3; to Fy 3 where
¢ € O is the unique representative with ¢|g = Z|g.

Recall the Cuntz algebra O, ,, generated by S, and the T.. Being an endomor-
phism of O, s, p preserves the Cuntz relations. Firstly, p(S,)*p(Sp) = g4 for g € H
is equivalent to

890 =10 0gnn + > i(9) Urz aga: - (2.11)

T,z

Putting ¢ = 0 gives > |a,.|* = 6~ for all z. Hitting both sides with 1 (g) for any
¢ € H and summing over g € H, (2.11) is equivalent to

1 —nn"07%61, = 6 'n"iiy, (2.12)

where 7y denotes the number of x € F with & = ¢. The T,5055T, and SyS,
coefficients of completeness 1 = > pS, pS;+> . pT pT; give unitarity of the matrix
b’ together with

bg0 =0 0gipr mr + Z |b..” (g) - (2.13)

Z,x
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Putting g = 0 into (2.13) tells us >, [b..|* = 67, so (2.13) becomes
1 —nn"07%61, = 6 'nny (2.14)

for any ¢ € @, where n, denotes the number of z € F with 7 = ¢.

Now suppose H # 0. Then there exist ¢ € H and o € G such that ¥ # 1 and
dlu # 1, so (2.12),(2.14) say 6 = n"iy = nngy € Z. Then n = §* — n/§ tells us §
divides n, but § = nngy > n, so 6 = n. Hence n’ = n — 1, so some 7, must vanish,
sofy =0,80 1 —nn"6"2=0s0on" =n,ie H=G. Since |H'|=|H|, we know H’
would also equal G. This means (g, h) is identically 1, so gz = « for all g,z. We've
just proved ny =1 — 041 = 71y for all ¢ € G; in particular we can (and will) identify
F with G* via 7 z, and then the assignment x — u, corresponds to a permutation
o of G*.

On the other hand, when H = 0, (g, h) will be nondegenerate, and H' also equals
0. The element g, is then the unique one with % = Z. We know from the proof
of Theorem 1 that the cardinalities 14 and 7,94 must be equal for any ¢ € G and
g € G, and so in this case they all equal n; =: k € Z>o. Thus n’ = Z¢6@ ne = nk.
Now, u, 4 is uniquely defined by its values at g € H, where it is a character, so in
this case it is identically 1 for all g € G.

Return to the general case (i.e. arbitrary n'). The equivariance a,p = p yields
the selection rule: a,, # 0 implies zy = 1. When n’ = n — 1, this means a,, =
d' ()07 for some a'(z) € C. But Y, |as.|*> = 67" then implies |a'(x)|* = 67, so
a(z) :=d' (x)Vo € T. QED to Theorem 2

For the convenience of the next two subsections, let us run through the identities
which must be satisfied by the numerical invariants s, a,b,b’,b”, in order that they
define a near-group C*-category of type n’. Let H = G respectively 0, and K = 0
respectively G, for n’ =n — 1 and n|n’ respectively. Then we know from Theorem 2
that (x,*) is symmetric and nondegenerate on K. Write u, , = #(g), where & € G

equals 1 on K. Assume that a,, = \/5_1%6%5 for some order-2 permutation x — T
of F (we already know this when n’ = n — 1, and will prove it in subsection 2.3 when
n divides n').

Define endomorphisms p, oy, Uy on the Cuntz algebra O,,,/, as in Theorem 1.
It is immediate that o, defines a well-defined G-action on O, ,, and U, a unitary
representation of G. In order for p to be a well-defined endomorphism on O, ,/, we
need it to preserve the Cuntz relations S;Sy = dgp, S;T. = 0="T;S,, T;T = 0,
and Y7 oSy + > . T.T7 = 1. (pSy)*(pSh) = g reduces to (2.11). (pSy)*(pT%) = 0
(or its adjoint) is equivalent to

_377'5@7@ bZﬂU = \/S Z l’(g) @ bg;x,ﬁ,w ) (215)

while the relation (pT,)*(pT%/) = 0., (3. SpSi + . T,T) gives

— ~ E 7 /"
5272’/5972/ - nég,y/ bzvy bz’,y’ + zw,x,y 2 w,x,y’ (2]‘6)
w,x
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and the unitarity of b': Y ¥, V., , = 6... Finally, completeness 1 = > PSq Sy +
>, pT. pT} is equivalent to (2 13) (with H" = H), unitarity of o, and

—67%%a. > " #(g) Oguz in(g) Zy bug Uiz eyr (217

g

oo = 00z 3 ig) Ogoz ©(9) 8,00 = + wa“ybgﬁ vy (218)

g

To establish ayp(z) = p(x) and p(oy(z)) = AdU,(p(z)) for all z, it suffices to
prove both for x = S, and © = T.,. The first follows from the bilinearity of (g, h),
that gz = 9%, and that T = Z. The second follows from the factorisations of b, (g, x)
and 0 (z,g) given in Theorem 1, and the selection rule b7, ., # 0 = y = w7.
The identity p(aySh) = ng(Sh)Ug is built into (2.5), while p(ongz) = Uyp(T2)U; is

implied by the covariances

bsge = 2(9) £(9) bz (2.19)
V. g0 = 2(9) E(9) V. . , (2.20)
V. guwgy = 2(9) 0(9) §(9) Uy (2.21)

All that remains is to consider are the fusion rules. We require S, to be in the
intertwiner space Hom(a, p*). We will follow as much as we can the proof of Lemma
5.1(a) in [21]. Thanks to Lemma 2.2 in [21], S, € Hom(ay, p*) iff S}p*(x)S, = ayz
for all generators z. Hitting with a we see that this is true iff S;p*(z)Sy = z for all
generators x. Because Sjp(U,) = S, the calculation in the middle of p.625 of [21]
still goes through and Sgp?(Sy)So = Sy, will follow once we know it for h = 0. So we
have learned that S, € Hom(ay, p?) iff both S§p*(S0)So = So and Sgp*(T.)Sy = T,
for all z. Those two identities are equivalent to

Vi Z% e U (2.22)
w = Sno_ szzbzw—l—né 3/22b by 1w QG

+ Y Wy b ,b;y st Dyt (2.23)

z,y,z vy 2

respectively, where we use (2.45) to simplify (2.23).

Clearly, if T, is in the intertwiner space Hom(p, p?), then p(y*p(z))T, =
p(y*)T,p(z) for all generators x,y. Conversely, if p(y*p(z))T. = p(y*)T.p(x) for
all generators x, y, then the calculation

()T = Z p(SeSy)p* ()T + Z p(TuT,)p* ()T

g
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shows that T p?(z)T, = p(z) for all generators x, and Lemma 2.2 of [21] then would
imply T € Hom(p, p*). We compute

Tip(Uy) = Vi (9) LT, T7 + Z Wony(9)SuSi T + Z Xuan(9)T.S5
T,Y,2
where
wayz(g) = 571a$a_y Z<k7g> ’lU(k) Z( ) 5kw,§ (skz,y + Z ( )blz/ w,x,y’ bgz ERTR T
k 2y’

Wany(g) = y(h) w(h) Z {OL A

Xuon(9) = 673%a, Z ky g — h) Ozt (K +Z (9) Vs T(R) gy -

The identity p(S;p(S,))Tw = p(S;)Twp(S,) gives

<gv h’> ka‘y( ) —> Z (g) Ahw,z Agz,hy (224)
S<gv h> wayz’ (g) = 5w,gz/ Y,9% Z(h) %(g) 3:(9) W amm 5 (2'25)
Xuzn(g) =0. (2.26)

Using (2.26), the identity p(T;p(S,))Tw = p(T3)Twp(S,) gives

(k) (g, k= h) ¥, = sV0agi(9) Y bg why(9),  (2:27)

y
E@(h) (h.g) @%yz =S Z Oge Ugz a0 x h) Vipzyar (9) (2.28)

S<g> h> bgng w’ g$ (g) z’ = .’13(9) gz Zngw x/ yWWhy<g)’ (229)

Y

U oo 0(9) a0 = 8(9) g0 Y Vs ar ot Ve (9) - (2:30)

!

z
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p(Syp(12)) T = p(Sy)Tup(T%) and p(T7p(1%))Tw = p(17)Twp(T:) now simplify to
V6 Zw<g> b Vo = #(9) T W,z (2:31)
Vo Zw b Uy = 6(9) (9) Tga Vg gy s (2.32)
by — 06" 3/2_yb’”213 = ) W b Wy s (2.33)

wzx

Z Y,z yrw’m’b ybgcw_bng,gﬂ (234)

Z L By — 0 ay @ V. o %(h) @' (h) i (h) Oy, Onzrw

Z V.ot Viriar gy Voo ory  (2:35)

w’ Yy w

where (2.33) was simplified using the selection rules ayy,, # 0 = pwwy = 1 and
Vg 7 0= 2 = Wy, both obtained earlier. (2.34) was simplified using unitarity
of & and the selection rule for b”.

Let M be the weak closure of the Cuntz algebra O,, s in the GNS representation
of a KMS state (as in [19], Remark 4.8). Then the endomorphisms «, and p extend
to M and obey the same fusions as sectors. Note that the o, are outer because if
they were implemented by a unitary, it would have to commute with p since ayp = p,
but as p is irreducible only the scalars can commute with it.

We have proved:

Proposition 1. Fiz an abelian group G = H x K, where H = G or H = 0, and
a symmetric pairing (g, h) nondegenerate on K. Let a,, = \/3_1%6%5 for some
permutation © — T of the index set F with T = x and T = Z, and suppose b’ obeys
the selection rule V7., . # 0 = y = wr. Suppose the quantities s,a,b,b',b" satisfy

the equations (2.11), unitarity of V/, (2.13), (2.15)-(2.35). Then ay, p defined as in
Theorem 1 yield a near-group C*-category of type G +n' for n’ = || F]||.

We can now identify the principal graph of the subfactor p(M)xG C M of index
df,/n = 1+ n'n"*d,, introduced at the end of Section 2.1. Write the inclusions as
L p(M) C p(M)xG and j : p(M)xG — M. Then as M-M sectors the canonical
endomorphism jj is a subsector of the canonical endomorphism j:izj = p?, i.e. of
> glag] +n'[p], which contains [ag].

Consider first n’ = n — 1; then d, = n is the desired index, so the only possibility
for [j7] is 3 [ay]. We see that the principal graph matches that of the orbifold
M€E c M. This means this subfactor is isomorphic to M% C M, up to a 3-cocycle.
Could this 3-cocycle be related to the 3-cocycle appearing at the end of Subsection
4.27

Now consider n’ a multiple of n. When n’ = 0 there is nothing to say: the
subfactor has index 1 so is trivial. When n/ > 0, there is only one possibility for [j7],
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namely [a + 0] + n'n~![p]. We recover the graph as in Figure 3, i.e. the 2"1 graph
but with the n valence-2 vertices attached to the central vertex with n'n=! edges.
This generalises the paragraph concluding Section 5 of [21], which in the G + n case
considered there associates a subfactor M D p(M)xG with canonical endomorphism
[ao] @ [p], index § + 1 and principal graph 2"1.

Figure 3. Principal graph for the intermediate subfactor for type Zs + 6

2.3 First class: Near-group categories with n' =n — 1

Theorem 2 says that there are two classes of near-group C*-categories: n’ = n—1 and
n' € nZ. In this subsection we focus on the former, and identify a complete set of
relations satisfied by the numerical invariants s, ..., 0" of Corollary 1. We know from
Corollary 2 that these systems are always realised by the even part of a subfactor.

Theorem 3(a) Let G be an abelian group of order n. Put § = n and F = G =
G \ {1}. Let o be a permutation of G* satisfying

o(@) =ola, 0® =id,and o(caob) = c?ac(ba), (2.36)

foralla #b € G. Putz =z, upy = (02)(9), yy = \/ﬁfléy@a(x), bpy =
Vi 8,55 b(x), v, = 50,02 b(T) a(z), and V. 2y = Ozoway Oyuwa 0" (w, ) for quan-
tities a(x) € {1, s}, b(x),b"(z,y) € T (provided xy # 1). Suppose these parameters
satisfy a(x) = a(ox) = sa(x), b(cx) = sb(x), b(x) b(ox) b(c*r) = sa(x) and

V'(x,y) = saly) a(o(zy)o@) V' (xy,y)  Vay#1,  (2.37)
V'(z,y) = sa(z)b(ox o(xy)) V' (T, zy) Vay # 1, (2.38)
/(2. y) = sb(E) D9) blay) b(oPa09) ¥ (oPm,7)  Vay£1,  (230)
V' (owaoz, oxo(xy)) b (z,y) b (w, 2w) = V"' (w, zyw) V' (2w, y) (2.40)

where the last equation requires w # vy, xy # 1, and w # x. Then oy, Uy, and p
defined as in Theorem 1 constitute a near-group C*-category of type G + (n — 1).

3(b) Conversely, let C be a near-group C*-category of type G + (n — 1), and assume
H?(G;T)=1. Then C is C*-tensor equivalent to one in part 3(a).

Proof. We'll prove part (b) first. Theorem 2(b) tells us 6 = n, we can identify F
with G* through = — 7, a,, = \/ﬁfl a(z) d,z, and there is a permutation o of G*
obtaining u, , as (o z)(g).
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Recall the Cuntz algebra O, ,, generated by the S, and T,. Select representatives
z € R of each Zy-orbit {z,Z} in F; then by rescaling the T, appropriately we can fix
the values of a, > to be 1 for z € R. Now, if T,, is in the intertwiner space Hom(p, p?),
then p(y*p(z))Tw = p(y*)Twp(z) for all generators x,y. In particular, the 7,5;S;
coefficient of p(S;p(S,))Tw = p(Sy)Twp(Sy) reads

50 Z Vs by = W(R)iH(R) D 2(9) Tz gy - (2.41)

z

Putting g = h = 0 in (2.53) gives a, az = s, and hence az = s for all z € R.

We get selection rules for b, 0, b” through the equivariance o,p = p and the identity
plagT.) = Uyp(T.)Uy, namely: b, . # 0 implies y = wr and z = owdy; b., # 0
implies zoz = 1; and b, , # 0 implies z = o(x). Therefore we can write b,, =
Vi 0,5 b(x), Vyy = Oyoal/(x), and b, . = 0. 0wy Oywe 0" (w, ) for quantities
b(x), b (x),b"(w,z) € C. Note that b”(w, z) = 0 when wz = 1 because 1 is a forbidden
value for y = wz. (2.13) forces b, € T. g = h = 0 in (2.53) forces unitarity of the
matrix b'. The Sy50.S; coefficient of the identity p(1;p(So))Tw = p(T;)Twp(So) (again
coming from T, € Hom(p, p*)) gives V/(x) = sa(x)b(T). The T, T,TT;, coefficient of
L=>,pS;pSy + >, pTw pT;, collapses now to

Sar Oy = Oy 0y 27 Onar + V' (@, ) V(@ 4) > Guvoay sy O paryy Oy - (2:42)

w,z

Choose any z,y € G* with xy # 1; we claim that the only solution ',y € G* with
vy = 2’y and ox oy = ox' oy is ¥ = 2’ and y = y': otherwise (2.42) would force
b'(z,y) V' («',y') = 0, which contradicts (2.42) with z = 2’ and y = 3’. Thus each
b'(xz,y) € T (provided zy # 1).

The SyS; respectively T, Ty coefficients of p(S;p(T.))T, = p(S;)T.p(T:), to-
gether with b’ = séab, gives 02z = 0% and b(2)b(Z)b(0z2) = a(2)a(oz)a(o?z), re-
spectively o(cacb) = o?ac(ba) and (2.38). Taking o of the complex conjugate of
o(cacb) = o?ac(ba), we obtain o3 = 1; iterating (2.38) twice gives b(y) = sb(77).
The T,T,.50S5 coefficient of p(Tp(So))Tw = p(T)Twp(So) recovers (2.37). The
1,505 and T,T..50S; coefficients of p(Tp(1,))Tw = p(T)Twp(T,) give (2.39) and
(2.40).

Now that we know o has order dividing 3, we know we can choose the Zj-orbit
representatives R so that a. is constant on o-orbits. Indeed, if o'z = T for some i
and z, then o~z = o~z and s must equal 1, so there is nothing to do; when there
is no such 4, z, there is no obstruction to putting all of z, ox, 0?z in R.

Conversely, suppose s, a(z),b(x),b"(z,y), and o are as in Theorem 3(a). We need
to verify the conditions of Proposition 1 are satisfied. For this purpose note that:

i) >, z(9) = ndgo — 1 since x runs over G*; (ii) that given a pair w,z € G*, there
will be y,z € G* with V) oy ;é 0 (namely y = wz and z = cway) iff x # w; and

(iii) that given a pair y,z € G*, there will be w,z € G* with U wey 7 0 (namely
w = c*((oy)z) and x = yw) iff 7 # oy.
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The permutation in Proposition 1 is the usual complex-conjugation T of
characters.  One easily computes Wyn,(g9) = duy (c*w)(g9) and Vig,.(g9) =
0w 0z (0*w)(g) (02)(g). In the last term of (2.23), z,y,y', 2" are determined from
2', z,w, and is nonzero precisely when z = w # 2’. That the second term in X,.,(9g)
vanishes, follows because 0%(w) o(z) = wz implies wz = 1; this can be seen directly
from (2.36) but is trivial once we have Proposition 2 below. Both (2.57),(2.30) fol-
low from (2.37), (2.48) comes from (2.38), and both (2.33),(2.34) follow from (2.39).
(2.35) follows from (2.40) and (when y = 2’) (2.37),(2.38). QED to Theorem 3

When such a permutation o exists, we get a solution by taking s = 1, a(z) =
b(xz) = b"(x,y) = 1. This solution corresponds to Mod(Aff;(F,)), as we explain at
the end of Subsection 4.3. It is possible to classify all solutions o to (2.36) — they
are essentially unique when they exist. The key observation in the following proof
(the relation to finite fields) is due to Siehler [31]. (Incidentally, an implicit unwritten
hypothesis throughout [31] is that G is abelian.)

Proposition 2. Let G be a finite abelian group which possesses a solution o to (2.36).
Then G = Z, 1 for some prime power q = p*. Moreover, if o’ is any other solution
to (2.36), then o' = aca™ for some group automorphism o € Aut(G). Conversely,
any G = Zy—1 for ¢ = p* has ezactly |Aut(G)| = ¢(q — 1) solutions o to (2.36).

Proof. Suppose G has a solution o. For convenience in the following proof, write
G multiplicatively. Then [31] explains how to give G U {0} the structure of a field
F: the multiplicative structure of F is the multiplication in G, supplemented by
0z = 20 = 0; let —1 be the unique element in G of order ged(2,1 + |G|) and write
—z = —lz; addition in F is defined by 4+ y = (o(—2"'y)) 'z when z,y € G and
x # —y, supplemented by 0 + x = x + 0 = z and x + (—x) = 0. This means G is
the multiplicative group of the finite field IF, and thus is isomorphic to Z,_; for some
power q of a prime.

Call this field F,. Suppose there is a second solution ¢’. Let « be the field
isomorphism F, — F,,. Then « restricts to a group isomorphism from F} = G to
F*, = G,ie. a€ Aut(G). Conversely, given any solution o to (2.36) and o € Aut(G),
we get a new additive structure on F, given by z +'y = ((aca™) (=2 1y)) "tz etc,
corresponding to a solution aca™ to (2.36). This is a bijectiion, since a can be
recovered from o’ = aca™!.

Conversely, any G' = Z,_; with ¢ a power of a prime, can be regarded as the
multiplicative group F* of a finite field with ¢ elements (so 0 € G corresponds to
1 € F*). Then o(x) = (1 — z)~! works. QED to Proposition 2

Corollary 3. Consider any equivalence class of C*-categories of type G +n — 1.
Fiz any finite field F,yq, identify G = F;, and define o'z = 1/(1 — x). Fiz any
assignment of signs ' (x) € {1, s} such that a’(x) = o'(ox) = sa’(T). There is a set L
of functions f : G x G* — Z, defined in the proof below, such that any C*-category
18 equivalent to one with:

e a(x) =d(x) and ox = o'z for all x;
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o b(z) = sa(x) for all x # —1; in addition, b(—1) = sa(—1) unless n + 1 is a
power of 3 in which case b(—1) must be a third root of unity w;

° H(x’y) b//(x’y)f(x,y) =1 forall f € L.

Conversely, any two C*-categories with numerical invariants satisfying these con-
straints, and with identical b(z) and b"(z,y), will be equivalent. Finally, s = 1 unless
n+1=gq is a power of 2.

Proof. Note that gauge equivalence by a diagonal matrix P with entries in T, permits
us to change a(z)"® = P,Psa(x)?, b"¥(x) = P,Psmb(x), and b (w,x) =
PawWPwawab’“’ld(w,x). First note that, for any given z, we can change both
signs a(z) and a(Z) (and leave all other a(y) unchanged) by taking P, = Pr = i
and all other P, = 1. Now choose any « with ox # x. Without loss of generality
assume both © # —1 and ¢%(x) # —1. Then 7 # z and o2z # o%z, so take
P, = sa(x)b"(z) = Py, Pyy = 1 = Pz, Py2, = sa(z)b?(0x) = P4 and all other
P, = 1. This gives b"*(x) = sa(x) = b"*(ox). Then b(z)b(cx)b(o?x) = sa(x) forces
b(o?z) = sa(z), and b(ay) = sb(y) forces b(c'T) = a(x) = a(T).

~

—1 € G* precisely when G has even order, i.e. precisely when F,,; has odd
characteristic. In this case, a(—1) = sa(—1) = sa(—1) so s = +1. This forces all
a(z) = 1, and by the previous paragraph we know b(z) = 1 unless ox = . When
ox = z, the relation b(z)b(ox)b(c?z) = sa(x) says b(x) will be a third root of 1.

Thanks to Proposition 2, we can find a finite field F, with G = F ¢ = Z,, for which
ox =1/(1 —z). Suppose ox = x. Then 2> —x+1=01in F,, so 2* = —1. If 3 does
not divide n, the only solution to 2> = —1isx = —1, but o(—1) = —1 iff ¢ is a power
of 3, i.e. m = 2 (mod 3). When 3 divides n, there are thus exactly 2 fixed-points

of 0. Let f be one of these. Then we calculate 0'(f, f) = ¥"(f, f) from (2.37), and
V'(f, £) = b (7, ) from (2.38), s b(F) = b(/) = 1.

By Corollary 1, two C*-categories are equivalent, if they have identical numerical
invariants s, a, b, b, b” modulo gauge equivalence and automorphism of G. Fixing o
fixes the automorphism of G. Suppose we also fix a and b. The remaining gauge
freedom are the quantities P, = P,, = P> € T. Note that Z = o'z iff 07/(2) = —1
(the only order-2 element in Fx). Together, o and complex-conjugation form a group

isomorphic to S3; the even-length orbits in G* are precisely those which don’t contain
—1. Let £ be the number of even-length orbits; the point is that for each of these, the
gauge phase P, € T is arbitrary. Associate to each pair (z,y) € G* x G*, zy # 1, a
vector ¥(z,y) € Z* such that the gauge action is V' (x,y) — 0" (z,y) []. PP The
Z-span of these ¥(z,y) is a lattice (of dimension < /), and thus will have a Z-basis; £
consists of those linear combinations >, ., f(z,y)v(z,y), f(z,y) € Z, corresponding
to such a basis. QFED to Corollary 3

We will show in Proposition 5 below that s = a =b =0 = 0’ = 1 except for
n =1,2,3,7. One can see from the data in Subsection 3.4 that for all n < 32, the
basis defining £ consists of exactly ¢ of the v(x,y).
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Let C(b,b") denote the equivalence class corresponding to the constraints of Corol-
lary 3 (we suppress the choice of field F and subset £, though these are implicit).
Note that there is an obvious product structure on the collection of equivalence
classes of type G + n — 1 C*-categories: C(by,b]) * C(be,by) = C(b1be, b]y) where
(b1be)(z) = bi(x)ba(x) and (b/0y)(x,y) = bf(z,y)by(z,y). (Of course s = s;s2,
a(x) = ay(x)ag(z) and V' (z) = bi(x)by(x)). Then s,a,b,b',b" will obviously also
satisfy the conditions of Theorem 3(a) and Corollary 3, and thus uniquely deter-
mine an equivalence class of type G +n — 1 C*-categories. Likewise, the identity
iss=a=b="0 =0b" =1, and the inverse is complex-conjugation. We find this
abelian group structure very useful in Section 4.2 (though we will find in Section 3.4
that this group is usually triviall).

In any case, this group of equivalence classes should be closely related to the set
H*((Zy, Zye_1); T) /~ defined in Chapter III of [24], as suggested by their Theorem
IX.8 (see also [17]). Those equivalence classes parametrise deformations of Kac al-
gebras (equivalently, depth-2 subfactors) possessing what we would call near-group
fusions of type Z,x_; + p¥ — 2. We return to this briefly in Section 4.2.

Note that in all cases in Corollary 3, b(cx) = b(x) = sb(Z). In the following we fix
a finite field I, identify the labels x € G* with the entries of F,\ {0, 1}, and choose
ox = (1 —xz)7!, so that (when F, has odd characteristic, i.e. n is even) o(—1) = 1/2
and 0(2) = —1. Note from the proof that ¢ will have exactly 0,1,2 fixed-points
respectively, for n =1,2,0 (mod 3).

By Corollary 2, the principal graph for p(M) C M when n = 2 is Dél), the
McKay graph for binary S3. This suggests an alternate construction of the subfactor
p(M) C M, at least when b = 0" = 1. Construct a central extension BAff;(F,) of
Affy(F,) by Zy — it will have precisely 2 n-dimensional irreps (one of which, denoted
¢, is faithful) and 2n 1-dimensional irreps, and its McKay graph (which consists of
a node for each irrep and m edges connecting node i and j if k is the multiplicity of
irrep j in the tensor product of irrep ¢ with p') is the desired principal graph. The
irreps of BAff;(F,) are separated into even and odd ones, depending on whether or
not the centre is in the kernel; the even vertices are precisely the irreps of Aff;(FF,).
To construct the subfactor, start with the index-n? subfactor

CI & Mnxn & Mnxn Q- C Mnxn ® Mnxn X Mnxn Q- ’ (243)

identifying BAff;(IF,) with its image K C M, using the faithful irrep p’, and then
take fixed-points:

CIoME oME «--.c MEX o ME o ME

nxn nxn nxn nxn nxn SOERR

(2.44)

The principal graph is constructed as in [13]; for this purpose it is important that p’
is self-conjugate, as explained in [35].

2.4 The remaining class: n’ a multiple of n

In this section we identify a complete set of relations satisfied by the numerical
invariants s, ..., b” of Corollary 1, for the remaining class of near-group C*-categories,
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namely where the fusion coefficient multiplicity n’ is a multiple of the order n of the
abelian group G. Corollary 2 tells us that when n’ is a positive multiple of n, the
system will be realised by the even parts of a subfactor. There seems no reason to
expect all solutions with n’ = 0 to arise from subfactors.

The main result in Theorem 4 is part (b). As usual, we identify the basis {T.,} = F
of Hom(p, p?) found in Theorem 1, with the set of labels {z}. For a given symmetric
pairing (,) for G, fix a function €y : G — T satisfying €)(—g) = €()(g9) and €;y(g +

h) = (g,h)ey(g)ecy(h). An 1mmed1ate consequence is that €/,(g)* = (g,g). For
example, if n = |G| is odd, the unique such function is €;(g) = (g, )"V while if
G = Zoy, and (g, h) = exp(mmigh/k) one of the two is €(y(g) = exp(—mmig®/(2k)).
Theorem 4(a) Let G be a finite abelian group. Let (k,k') = (K';k) € T be a
nondegenerate symmetric pairing on G. For each w € q let _7:¢ be a (possibly empty)
parameter set and define fiw = .7:# for all ¢, ¢ € G, then F is the set of all triples
v = (%,i,%) where T,4 € G, % € Fi. Letn' = [|F|| =n}, |FY| and define & by
(2.3). Let S,,T, be standard Cuntz generators, for g € G and z € F. Define a, and
U, as in Theorem 1, where u, ; = 1 and gx = (u9%, =9, &) for u?(k) = (g, k). Define
p(S,) and p(T.) by (2.5),(2.6) where a,, = V3§ 1ax5y,§ and b, = s/ 0ty bz, for
Uz = S22(9z) €y(92), where g, € G is as in Theorem 2(c), for some signs s, € {1, s}
and some permutation x — T of F as in Proposition 1. Then C(G,«,p) is a C*-
category of type G + n/, provided the following equations are satisfied: s; = s,,
Sz = 885, T =1, byp = Sby,,

bz7gﬂ? = z(g) bz , T ; (245)
(_)b// = _ w ) b (246)

29w, x,gY ZW,T,Y —gz;gw, gxy?

5meb2y:(5 _stw Ul (2.47)
oy, —S\/_ awazw =0 taya, b’

oy i ! S, 7
= Z Dy btz Vg o (2.48)
n_lzbzwy 6710, 405, = xlazbeywz, (2.49)
szmy U wary = 022000 — n5_15%7;, O Ot g (2.50)
Z bros Y2, sz .zl T O,/ 0,20 — 5715%3:,9% Ogea’,g. 2" ; (2.51)

0 & bewy o Vs — 07, 00 0, 5 T O
g D Ve Vvt Vit (2.52)

Wy
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as well as the selection rules by, # 0 = Ty = zy, and b’ #0=y=wx.

Zw,x,y
(b) Conversely, let C be a C*-category of type G + n' for n' € nZ and suppose
H?(G;T) = 1. Then there exist quantities (x,%),s,a,b, b, b" satisfying the above
equations and relations, such that the corresponding C(G, «, p) is tensor-equivalent to

C.

Proof. We will prove part (b) first. Recall the Cuntz algebra O,, ,» generated by the
isometries S, and T},. The desired selection rule for b” follows from the equivariance
agp = p. The identity p(a,1.) = Uyp(T.)U; implies the covariances for b,V b",
namely the left-sides of (2.45) and (2.46), along with b, , = Z(g) ¥, ,.The S;S;-
coeflicient of the Cuntz relation 6, . = pT7 pT./ forces the unitarity of b'.

The T,S,S;; coeflicient of the identity p(S;p(Sy))Tw = p(S;)Twp(Sy) (which holds

because T, lies in the intertwiner space Hom(p, p*)) reads

<g7 h>85_1 Zab;z,y = Zmagzvhy . (253)

z

Putting ¢ = h = 0 in (2.53) gives > @, a,. = s0719, .. Applying the triangle
inequality to this, and comparing with 3= |a,,|* = 67", yields ay, = sa.,.

For each ¢ € @, recall the subspace F, consisting of all T € Hom(p, p*) with
ay(T) = ¢(g)T Vg € G. Using the gauge freedom discussed after Corollary 1, we
can now simplify the form of a. We need this unitary change-of-basis P to commute
with each U(g), i.e. to satisfy P(Fy;) = F, and Pyypy = Py, for all k € G. For
any g € G define A(g),,y = 9>, Gy g-Gy.. Then (2.53) tells us for any ¢,k € G the
covariance A(g)y, = (g, k) A(9)rary and the selection rule A(g),, = 0 unless both
y = p?z. The latter tells us each A(g) is a map from F, to F,es. We verify that
A(0) =1, A(g) A(k) = A(g + k) and A(—g) = A(g)* so g — A(g) defines a unitary
representation of G. Moreover, covariance yields A(g)Uy = (g, k)UrA(g). Hence the
set of unitary operators A(g)U_, for all ¢ € G commute and so can be simultaneously
diagonalised; choose P so that all A(g)U_, are diagonal on Fj, and P is defined
on arbitrary F, by requiring Py, 4y, = P, ,. This means A(g).,, = €(9)dy4. for all
x,y € F, for some €,(g) € T. Hence the properties of A reduce to €x.(9) = (g, k)€ (9)
and €;(g)ege(h) = €(g + h). We see that 1, = eey lies in G. The triangle
inequality applied to A(g)y 4z, together with § " |a,.|* = 1, gives us the covariance

Qgz,—gy = €2(7) @z,y. We need to refine this P further.

Define an equivalence relation on F by x ~ 2’ iff there exists a sequence x =
2o, %1, .., Ly = ¢' and yy,...,Yn in F such that the entries a,, ,, and a,,, are
nonzero for all 1 <7 < m. Let X, denote the equivalence class containing x and write
T, for spanyex,{T}. Then whenever a,, # 0, a restricts to the indecomposable
blocks 7, — 7T, where it is unitary. An induction argument (the base step of which
was done in the previous paragraph) verifies that any w € X, has w = z. Moreover,
the invertibility of a says a,, # 0 implies the cardinalities ||| = ||, || are equal.

Choose any x € F;, and suppose a,, # 0. Consider first the case where &, and
&, are disjoint, and fix some bijection 7 : X, = A&,. Define a unitary u on 7, + 7,
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to be the identity on 7, and to be a|r, o m on 7T,, and replace a on T, + 7T, with
u”au. Otherwise we have the case X, = X, so we can make use of some facts from
linear algebra (see section 4.4 of [18]) which say that: (i) when a complex matrix
B is both symmetric and normal, then there exists a real orthogonal matrix ) and
a diagonal matrix D such that B = QDQT; (ii) when a complex matrix B is both
skew-symmetric and normal, then there exists a real orthogonal matrix () such that
QTBQ = 0@..-@0@6% (_OZ. ,2(‘)3
J
al7,) is in fact unitary, so both the z; and the diagonal entries of D lie in T and
we can adjust ) by the square-roots of those numbers and maintain unitarity. The
result is a matrix a in the form described in the statement of Theorem 4, where we

write mx =7 and #(g) = ¥,(g), and decompose each Fy into @w}"w where & = 1) for

for z; € C*. Our matrix B here (namely

x € .7-’2?”’ This means we write € F as a triple (7, &, Z) where & € FZ; then for any
9,7, €:(9) = 2(g) €()(9) and g(7, 2, %) = (09T, p~94, ) as desired.
Because S, € Hom(ay, p?), we have

S202(S0)Sy = Sy = Sip*(S,)S0 = Sap(Usp(S0)UZ)Ss = (p(U)"So)*0*(So) (p(Uy)*S0).
But the intertwiner space Hom(ay, p?) is one-dimensional, and thus
B(9) Sy = Sop(Uy) (2.54)

for some scalars 3(g) with |8(g)| = 1. Because p(Uysn) = p(U,) p(Uy), we have from
(2.54) and ay-covariance that § € G. The Sj-coefficient of (2.54) reads

n — ~
B(9) b = 53 Our o + > bewbgen i(R). (2.55)

The triangle inequality applied to (2.55) with g = h forces § =1 = ppu, on G (i.e.
the pairing (x,*) is symmetric).

Putting g = h = 0 in (2.27) gives 0/, , = = 50@; bs,,. Hence the unitarity of & implies
the left-side of (2.47). p(S;p(1.))T, = p(S*) p(T.) holds because T, € Hom(p, p?);
its SoSi and T, T coefficients, together with ' = sdab, gives the right-side of (2.47)
and the left-side of (2.48). Combining the left-side of (2.48) with a,, = sa,, and
the unitarity of v/0b, gives

me,bz’myw_st” s (2.56)

Choose g € G so that wp? = 1; replacing y with g7 and applying } ° ag. to (2.56), this
simplifies by (2.15) to >__, b, Z/bz w =5y by sz ws 1.€. by, = sby,. Substituting
the value for A(g) and our expression for ¢ into (2.53) with A = 0, and applying
the triangle inequality and 6 [b,,|* = 1, yields by gy = €w(9)€y(9)bu,y; comparing
with covariance (2.45) yields the selection rule for b given in the theorem.
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Because T,, € Hom(p, p?), we get p(T:p(Sy))Tw = p(T))Twp(S,). Using (2.53)
and our formula for A(g), the T,T,/S0S; coeflicient of this identity gives

(9,9) €u(9) , (2.57)

which simplifies to the second equality of (2.48) (for ¢ = 0) and the right-side of
(2.46). The left-side of (2.49) comes from (2.15), while its right-side comes from the
T, T; coefficient of (2.54). (2.50) follows by multiplying (2.16) by > . ., b, ub.r, and
using the left-side of (2.48) twice. (2.51) is a simplification of (2.18). Equations
(2.34),(2.35) simplify to the right-side of (2.48) (after applying the other parts of
(2.48)) and (2.52), respectively. (2.50) follows directly from (2.16) and (2.48). This
concludes the proof of part (b).

To prove part (a), we need to verify the conditions of Proposition 1, given the
equations listed in Theorem 4. Unitarity of ¥ follows from that of v/da and v/6b. The
covariances (2.45),(2.46), ago = ¢(y(9)E(g)a, and b, = (g,h)zZ(h)w(g)e.(g)V. .,
(covariance for v follows from that for a and b) are used repeatedly to simplify
the expressions of Section 2.2. For example, these covariances immediately give
Wany(9) = (9. ) 9(9)€()(9) 0w, gy- .

(2.15) follows from multiplying the left-side of (2.49) by > b. . and replacing z
with gx and y with gy. (2.17) involves the right-side of (2.49). (2.27) involves the
selection rule b, , # 0 = &7 = ww. Verifying (2.28) requires the selection rule for
bzw. (2.34) involves all three identities in (2.48). To obtain (2.35) from (2.52), use
three times the left-side of (2.46) with g = ¢/g,, as well as the selection rule for b".

Equation (2.50) and the left-side of (2.49) tells us that the inverse of the matrix
Diwy),(z2) = Uy gy 18 b’(wy)’(z’x) =0y — W(92)€()(92)0uw g0z Hence we obtain
another form of (2.50):

1 o -1
E bz;w,x,y bz;w/,x,y' - 5w,w’(5y,y’ -9 5gww’,gyy’5gww,gyy : (2-58)

2,x

77 _ "
wiw,—gz'y 42’ = gz bg?;y,?,—gw

(2.16) arises from __ , by -bur -+ applied to (2.50), while (2.18) follows from (2.58).
(2.23) comes from (2.50) and the formula for 6. To see (2.33), hit it with > by b.r,
and use (2.48), (2.16), and both sides of (2.47). From (2.18) we compute Viy.(9) =
2(9)€)(9)0w,g20gz.y- QED to Theorem j

3 Explicit classifications

Recall that G is the abelian group formed by the group-like simple objects, so n = |G|
is the number of S’s in the Cuntz algebra O, ,s of Section 2. The fusion coefficient
n' = Nf = ||F[| will be the number of T"s. We know that either n’ = n — 1 (‘first
class’) or n’ is a multiple of n (second class). In this subsection we explicitly solve our
equations for small n or n’. But first we address the question of the direct relation of
near-group systems to character rings of groups K, a question begged by the examples
in the Introduction.
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3.1 Which finite group module categories are near-group?

We have seen several examples of finite groups K whose module categories are near-
group. For example, the module categories Mod(D,) and Mod(Qsg) for the order-8
dihedral and quaternion groups, are both of type Zs X Zs + 0, and those exam-
ples apparently motivated Tambara-Yamagami to study their class of categories [32].
Similarly, the even sectors of the Dél) subfactor satisfies the S3 fusions and, more gen-
erally, the module categories for the affine groups Aff; (F,) are of type Z,_1+¢—2. The
complete list of groups whose representation rings possess the near-group property
has been rediscovered several times, but perhaps originated with Seitz:

Proposition 3. [30] The complete list of all finite groups K whose module category
Mod(K ) is a near-group category of type G +n’, for some abelian group G and some
n € Z207 18:

(a) |K| = 2% for k odd, its centre is order 2, and G/Z = 7o X ---Zy. In this case,
G=K/Z(K),d,=6=2%V2 andn' = 0.

(b) K = Afty(F,) for some finite field F,. In this case, G = Z,—1, d, = q— 1, and
n' =q-—2.

The groups in part (a) are called extraspecial 2-groups; there are precisely 2 of
them for each odd k£ > 1. We will see next subsection that most C*-categories of type
G + 0 are not Mod(K) for some K. In contrast, Proposition 5 below says that all
but 5 C*-categories of type G +n — 1 will be Mod(K) for K in part (b).

3.2 The type G + 0 classification

As a special case of Theorem 4, we recover the Tambara-Yamagami classification [32]:

Corollary 4. The equivalence classes of C*-categories of type G + 0 are in one-
to-one correspondence with either choice of sign s and any choice of nondegenerate
symmetric pairing (,) on G, up to automorphism of G.

Proof. Because n’ = 0, the parameters a, b, b, b” must be dropped from all equations
in Proposition 1. All that remains is the sign s and the symmetric pairing (x, ),
which will be nondegenerate for G. QED to Corollary 4

The proof in [32] is independent and much longer, involving a detailed study of
the pentagon equations in the category. It is worth remarking that [32] prove that G
must be abelian (whereas we assume it).

These usually don’t seem to be realised by a subfactor. As explained after Corol-
lary 2, for both choices of signs the subfactors pi(M) C M are equivalent to the
M€ C M subfactor.

3.3 The near-group categories for the trivial group G

It is generally believed that there are a finite number of fusion categories of each
rank, so in particular one would expect that for each finite GG, there are only finitely
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many near-group C*-categories of type G + n’ for arbitrary n’. In fact, we are led
to expect that only finitely many cyclic groups G = Z,,, when n + 1 is not a prime
power, will have C*-categories of type G + n' for n’ > 0.

Nevertheless, until we can bound n’ given a G, it seems to be nontrivial to classify
all near-group C*-categories whose group-like objects form a given group G. The
only example we can fully work out is G = {0} (although we expect the tube algebra
analysis for n’ > n should yield classifications for other groups of small orders).

Proposition 4. Up to equivalence, there are precisely 3 near-group C*-categories of
type {0} + n': namely, two of type {0} + 0, and one of type {0} + 1.

The possibility n’ = 0 is Tambara-Yamagami and so is covered by Corollary 4,
while n’ = 1 is most easily handled using Corollary 5 below. The reason there can be
no examples with n’ > 1 is that such a solution would yield a fusion category with
rank 2 and a fusion coefficient = n’ > 2, and no such fusion category can exist [29].

There are precisely 4 rank 2 fusion categories (2 of type {0} + 0 and 2 of type
{0} +1). The one which is not realised as a fusion C*-category is known as the
Yang-Lee model, corresponding to one of the nonunitary Virasoro minimal models.
The nonunitary minimal models can never be realised as C*-categories, so it is no
surprise that Yang-Lee is missing from Proposition 4.

3.4 The type G +n —1 C*-categories

By Corollary 3, the only parameters we need to identify are a sign s when n + 1 is
a power of 2, a third root of unity w when n + 1 is a power of 3, and the bg@ when
xy # 1. The complete classification for n < 32 is collected in Table 1; the only value
for the entries n # 1,2,3,7 is the permutation o. Recall n + 1 must be a power of
a prime and G must be cyclic. In Table 1 we identify F with the subset G \ {0}.
w there is any third root of 1. In the o column of the table we use cycle notation,
writing A for 10, B for 11, etc. For G = Z7, a(x) = 1,1,s,1,s,s for z = 1,2,...,6
respectively, and b” is given by

1 s s 1 s x
1 1 s s % s
IR N 1)
s x 1 s 1 1
*x s 1 s 11

It is elementary to verify from Corollary 3 that each entry in Table 1 yields an
inequivalent solution to the equations of Theorem 3.
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G| #] o [ s | a [b] ¥
Z, | 2 (1) +1] 0 0 0
Zs || 3 (1) 1 1 w 0
Zs || 2 (1) +1| 1,s |sa| b, =a,
Zg || 1 (123) 1 1 1 1
Ze || 1 (234) 1 1 1 1
Zr | 2 (142)(365) +1 | 11slss | sa | (see above)
Zg || 1 (165)(273) 1 1 1 1
Zg || 1 (159)(276)(843) 1 1 1 1
Zoo || 1 (16B)(378)(459) 1 1 1 1
Zas || 1 (1B3)(276) (4EC)(8D9) 1 1 1 1
Zag || 1 (1AD)(2ES)(36F)(4B9)(5C7) 1 1 1 1
Zig || 1 (19H)(2EB)(4G7)(5CA)(6D8) 1 1 1 1
Zoo || 1 (1EI)(236)(48L) (5FD)(7H9) (ACB)(GJK) 1 1 1 1
Zoy || 1 (129)(3EJ)(5AL)(6CI)(7GD)(8HB)(FMN) 1 1 1 1
Zog || 1 (139)(2LG) (4FK)(50A) (6BM)(7EI) (8CJ)(HNP) 1 1 1 1
Zog || 1 (1ER)(293)(4FN)(5D0)(6KG)(7HI) (8MC)(ABL) (JQP) 1 1 1 1
Zso || 1 (1LN)(23A)(4JM)(60F)(79T)(8BQ) (CHG)(DIE)(KRS) 1 1 1 1
Zs31 || 1 | (1HD)(23Q)(46L)(5ST)(7F9)(8CB)(APR)(EUI)(GOM)(JNK) | 1 1 1 1

Table 1. The C*-categories of type G +n' for |G| =n'+1 < 31

Proposition 5. If a C*-category is of type G + n’ with n' & nZ, then G = Z,,
n+ 1 =:q is a prime power, and n' = n — 1. There is precisely one C*-category of
type Zy,, +n — 1, namely Mod(Affi(F,)), except for n =1,2,3,7 which have precisely
1,2,1,1 additional C*-categories, collected in Table 1.

Proof. We know n’ = n — 1 from Theorem 2, and G = Z, where n = ¢ — 1 for
some prime power ¢ = p¥, by Proposition 2. Corollary 7.4 of [10] tells us that the
only fusion categories of type Z,, +n — 1 are Mod(Aff;(F,)), except for n =1,2,3,7
where there are precisely 1,2,1,1 additional fusion categories. There always is at least
one C*-category of type Z, + n — 1, namely the one corresponding to the solution
b =10" =1, so it suffices to find 1,2,1,1 additional solutions the the equations of
Theorem 3, when n = 1,2, 3,7 respectively. These are collected in Table 1. QED

Combining [10] and Proposition 5, we find that each near-group fusion category
with n’ =n — 1 and G = Z,, has a C*-category structure, i.e. a system of endomor-
phisms (unique up to equivalence). To our knowledge, this gives the first construction
of the extra C*-categories for Zs and Z;. As pointed out in Section 2.3, the collection
of (equivalence classes of) type G + n — 1 C*-categories for a given G will form an
abelian group. We find that this group is always trivial, except for n = 1,2, 3,7 when
it is Zo, Z3, Lo, 7o respectively.

Recall the discussion of the deformation parameters H?((ZE, Zx_,); T)/ ~ near
the end of Section 2.3. We expect the group H?((ZF, Zy._1); T) is trivial for all n. It

28



should be possible to verify this from the results of [24], at least for n < 4 and n = 6.
Certainly it says there is a unique depth-2 subfactor with principal even fusions of
type Zy+n—1 for those n, namely M*" C M xZ,_, for H = Z (see [3] for a complete
analysis of these subfactors). It is easy to compute H 2((Z’; , Ly —1); T) directly from
the definition, for n = 1,2, and we find indeed that it is trivial. In particular, this
means that only the s = 1 solution at n = 1, and only w = 1 at n = 2, are realised
by depth-2 subfactors. The triviality of this for n = 5 follows from uniqueness results
for subfactors of index 5.

3.5 At least as many 1’s as S’s

Consider now type G +n', where n’ > n (and therefore must be a multiple of n). We
don’t know of any examples where n’ > n. A natural approach to bounding n’, given
n, would be carrying through the tube algebra analysis for n’ > n. After all, we find
in Section 4.2 below that this strategy is effective in pruning the possibilities for type
G 4+ n — 1. Likewise, Ostrik’s analysis [29], which eliminated n’ > n for G = {0},
investigated the modular data for the double. We will pursue this thought in future
work.

Corollary 5. Any solution to the equations of Proposition 1, for arbitrary G and
e -1
n=mn,hass=1,F =G, H=0, uy,, =1, and is of the form a,, = Vo dzga(z),

boy =V nd_l(z,x>, v, . = a(z)ey/n (2, ), V, pmy = Oywe a(7) D(2T)(2,y) for some
complex numbers c,a(x),b(x) satisfying

a(l) =1, a(z) = a(@), alzy) (v,y) = a(@)aly), Y alz)=vnc™*,  (32)

T

b(1) = —=1/8, Y {&,9)bly) = Vneb(x), a(z)b(@) =b(z),  (33)

> b(ay)b(z) = 0,1 — 6, > blay) b(az) b(z) = {y, 2) b(y) b(2) (3.4)

c
d/n’
Conversely, any a(x),b(x),c satisfying (3.2)-(3.4) yields a solution to the equations
of Proposition 1 in this way. Two C*-categories Cy,Cy of type G + n are equivalent
iff c1 = co and there is a ¢ € Aut(G) such that (g, h)s = (pg, ph)1, az(x) = a1(px),
and by(z) = by(¢x).

Proof. Through the pairing (x,*) we may identify @, and hence F, with the group
G. More precisely, let zy denote the x € F with 5 = 1; then z, = gzo has
gzo(h) = p?(h) = (g,h). So the action of G on F corresponds to addition in G:
htg = Tpyg.

Equivariance (2.45) forces by, ., = cx/5_1<g,h> for some ¢ with |¢| = 1. Write
Uy z) = \/3_1a(g)5gv_h for some numbers a(g) with |a(g)| = 1. Then a(—g) = sa(g),

/

Tg,xn E(Q, h>a(g) and covariance

so we get s = +1 by looking at ¢ = 0. We get b
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(2.46) says b = 01 k(g, M) ), for some numbers b . The left-side of (2.48)

Lg;Th,Tk,2]
now reduces to

e (g, h = k)b, = a(k) (b, k) b, 1.y, (3.5)
g
and hence L
b = ca(k) (h, k)Y (g, h— k)BT y = a(k) (h, k) by, (3.6)
g

Writing by 5 = b(g), it is now easy to verify that all equations of [21] are recovered.
QFED to Corollary 5

This Corollary says that the case n’ = n reduces to the generalisation of Fj
introduced in Section 5 of [21].

Proposition 6. There are (up to equivalence) precisely 1, 2, 2, 2, 3, 4, 2, 8, 2, 4,
4, 4, 4 systems for G = Z,, 1 < n < 13, respectively. There is 1 solution each for
G =79 X Lo and G = Z3 X L3, 2 solutions for Zo X Zg, 4 solutions for Zy X Z4, and
no solutions for Zo X Lo X Zs.
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G || e l&] e Q' (J15- -1 d|ny2))
71 1 1 1 2 0
7o Tl 1 1 (—1,-5) (0.78539816)
gyl 1 -1 (1,5) (—0.78539816)
Zs o] 1 1 (—2.8484536)
&12 | -1 1 —1 (2.8484536)
Za s |1 1 (3,-3) (—0.60623837, —1.5707963)
&° ] -1 1 (-3,3) (—1.39163653, 1.57079632)
Zao X Lo 1 1 1 (—2.356194490, 2.356194490, 0)
Zs 1| 1 1 (1,1) (—1.256637,1.256637)
& | 2 1 2 (—1.0071249, 0.3425266)
&l 2 1 —2 (—0.3425266, —2.263762)
Zg o | 1 1 (—1,-19) (—2.9552611, —0.055354168, 0.78539816)
& | -1 1 (3,13) (—2.915033694, 1.5909100, —2.3561944)
5. | 1L —1 (—3,-13) (2.9150336, —1.590910, 2.3561944)
E2q | -1 —1 (1,19) (2.9552611, 0.055354168, —0.78539816)
Z7 i 1 1 —2 (—1.05169, 1.7936250, —0.3143315)
—i | -1 1 2 (1.0516925, —1.793625, 0.31433)
Zs €aq | 1 1 (=5,-7) (—0.87227636, 2.7042615, —2.9767963, 3.1415926)
&g | 1 -1 (=5,17) (—2.9767963, —1.1334651, —0.87227635, 3.1415926)
| —1 1 (5,7) (0.87227636, —2.7042615, 2.9767963, 3.1415926)
o | —1 -1 (5,—17) (2.9767963, 1.1334651, 0.87227635, 3.1415926)
51 | 3 1 (1,11) (2.4640490, —3.0755747, —0.49188699, 0)
&, 3 —1 (1,—13) (—0.49188700, 1.5047784, 2.4640490, 0)
-3 1 (—1,-11) (—2.4640490, 3.0755747, 0.49188699, 0)
-3 -1 (—1,13) (0.49188700, —1.5047784, —2.4640490, 0)
Zo X La 2o | 1 (1,1) (0.7853981, 1.77783, —2.497219, 1.570796, —0.7853981)
5| 1] (=1,1) (—0.785398, 0.9924406, 1.42977, —1.57079, 0.7853981)
o 1] (1,-1) (0.785398,1.42977, —1.777838, —1.570796, —0.785398)
&, | -1](-1,-1) (—0.7853981, —2.497219, —0.9924406, 1.5707963, 0.7853981)
Zg &)1 1 —2 (—2.69568, 1.367012, 1.41882, —2.38374)
& | —1 1 2 (2.695680, —1.3670127, —1.418824, 2.383744)
Z3 x L3 1 [ -1 1 2 (2.9557793, —1.2330109, —2.2802084, 0)
Z1o &1 1 (—2.3665026, —3.0894639, 3.077894, 0.00650245, 0.785398)
s |7 1 (1.7756309, —0.6115079, —1.030618, 2.8686859, —2.3561944)
€ | 1 —1 (—3.077894,2.519776, —1.424024, 3.089463, —0.78539816)
&7 -1 (—1.3447773, —2.868685, —1.7756309, 0.64512913, 2.3561944)
Z11 L1 1 2 (1.9464713,2.0140743, —1.7487929, 0.3352432, —0.1427077)
o] 1 1 1 (0.53877136, —2.8317431,0.2827610, 0.46457259, 2.5063157)
&12 | -1 1 -1 (—2.8884206, 2.3090448, 0.85395967, 2.1781685, —1.4920749)
&, | -1 1 —2 (—1.4807206,0.87167704, —1.1775942, 2.0488391, 2.1420869)
Z12 a1 1 (3.0822445, —0.3494640, —3.0450322, —0.7241984, —0.38234715, 1.570796)
o | 1 -1 (—0.6247574, —3.044463, —2.3415376, 0.4718634,0.99777419, 1.5707963)
o | —1 1 (—3.0822445, 0.34946402, 3.0450322, 0.7241984, 0.3823471, —1.570796)
5. | —1 —1 (0.6247574,3.0444636, 2.3415376, —0.47186343, —0.99777419, —1.5707963)
ZoxZg || &5 | -1 (1,1) (—2.35619,0.0611997,2.469129, 0.89833, —1.88433, 0.785398, 1.57079)
& | 1 (-1,1) (2.356194, —0.0611997, —2.4691295, —0.8983332, 1.884331, —0.785398, —1.570796)
Z13 -1 1 1 3 (—2.4521656, 1.9847836, 0.42579608, 1.4322079, —1.4550587, 1.1404478)
-1 1 1 3 (1.4550587, 1.3924399, —1.9847836, —1.2761619, 0.44776608, —1.4322079)
1 2 1 1 (—2.4805730, 3.0305492, 0.28372451, —0.04125417, 0.44928247, 2.9410534)
1 2 1 1 (—0.44928247,2.2170122, —3.0305492, —1.892166, —2.9638949, 0.041254182)

Table 2. The C*-categories of type G + n for |G| < 13

All systems for G = Z, (n < 4) and Zy X Zs, and the first one for Zs were
constructed in Section 5 and Appendix A of [21]; the rest are to our knowledge new.
The column Q" will be relevant to subsection 4.4, where it will be explained.

In the table, we write & for exp(2wi/k). If (,) is a nondegenerate symmetric
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pairing for a cyclic group G = Z,, then it equals (g, h) = exp(2rimgh/n) for some
integer m coprime to n. When G' = Z, X Z,,» in Table 2, any pairing appearing there
is of the form ((¢', ¢"), (W', ")) = exp(27mig'h' /n’) exp(2mwimg"h"” /n") for some m € Z
coprime to n”. This m is the entry appearing in the (,) column.

Note that if a; are both solutions of (3.2) for fixed group G and pairing (, ), then
as = Y a; for some ¢ € G with )2 = 1. Thus for G of odd order, the unique a is
a(g) = (g,9)" Y2 For G = Z, or G = Zyps X Zyn, for n,n’,n" even, with pairing
given by m as above, then a(g) = s¢ exp(—mmg?/n) or a(g, ¢") = ¢ sJ respectively,
for some s1,s55 € {£1}. These signs s; or (s1,s2) grace the fourth column of the
Table.

For the group G = Z,, the quantities b(g) are recovered through Table 2 from
the formula b(g) = eYs/\/n, for 0 < g < n/2, b(0) = —1/§, and b(—g) =
a(g)b(g). For the noncyclic group Z, X Z,», these parameters j are taken in or-
der (1,0),...,([n/2],0),(0,1),(1,1),...,(|n"/2], [n"/2]).

The table lists representatives of equivalence classes of systems. Using Corollary 5,
it is easy to determine when numerical invariants determine equivalent systems. Note
that taking the complex conjugate of numerical invariants (i.e. the conjugate of c,
and the negatives of the (,) and j; columns) will yield another (possibly equivalent)
solution to the equations of Corollary 5. For example, consider the first entry for
G = Zs: although the complex conjugate solution has different j’s, it is equivalent
as the j’s are permuted back to each other through the Zj; automorphism —1 € Z.'.
On the other hand, complex conjugation interchanges the second and third systems
for Zs; these two are inequivalent because they have different ¢’s.

Apart from G = Z,, the solutions in the Table turn out to be precisely the
solutions to the linear equations (3.3) together with |b(g)| = 1/4/n for g # 1 (which
is a consequence of the equations of Corollary 5). These values for j, are floating
point; to improve their accuracy arbitrarily is trivial using mathematics packages like
Maple (where you would change ‘Digits’ to say 200, and use ‘fsolve’ with the provided
seed values). The b(g)’s are in fact all algebraic, but providing the exact algebraic

expressions (though possible) would not be very enlightening.

We illustrate our method of establishing Proposition 6 and Table 2, by sketching
the hardest case, namely n = 13. Up to automorphism of Z;3, there are two possible
pairings: (g, h) = ggh for m = 1 or 2; choose m = 1 (this will also yield the
solutions for m = 2). By (3.2) there are 3 possible values of ¢; choose ¢ = —1 for
now. To find a complete list of candidate solutions, first solve the linear equations
(3.3) (breaking each b(g) into its real and imaginary parts). This determines each of
the 26 variables Re b(g), Im b(g), up to 4 real parameters, which we can take to be the
real and imaginary parts of b(11) and b(12). The norms |b(1)]* =--- = [b(4)|*> = 1/n
yield four independent quadratic identities obeyed by those parameters; by Bezout’s
Theorem they can have at most 2% (complex) solutions, and as always here this upper

bound is realised (i.e. no zeros have multiplicities). We ‘solved’ these equations using
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floating point: our approximate solutions are

(Reb(12),Im b(12), Re b(11), Im b(11)) € {(—.0277709, 9996143, .7988155, —.601576), (—.022834, —.999739, .585511, —.810664),
(.1154793,.9933099, .1774122, .9841366), (—.2122594, .9772133, —.0413084, .9991464), (—.3498383, .9368100, .9107102, —.4130459),
(.623311, 7819739, .7557187, —.6548963), (—.7923374, .6100831, —. 1096719, .9939678), (.8581882, .5133351, .8230236, —.5680071),
(—.9560999, .2930407, .00007002229, .9999999), (.976436, —.2158069, .6983522, —.7157542), (.9014165, —.4329529, .5249502, —.8511329),
(—.8964165, —.4432124, —.1923449, .9813274), (—.7716105, —.6360951, —.402263, .9155241), (.2614237, —.9652241, —.3345549, .9423762),
(.1595449, —.9871906, —.5115023, .8592819), (.08134136, —.9966863, .4166086, —.9090859)} .

Of these, four also satisfy the remaining norms |b(5)|* = |b(6)|*> = 1, and indeed all
equations (3.4). Two of these are related to the other two by the automorphism —1 €
Zyy; the resulting two inequivalent solutions are collected in Table 2. Incidentally,
had we chosen either of the two remaining possibilities for ¢, we would have had 3
parameters from the linear system, 8 solutions to 3 norm equations, but none of these
8 would be solutions to all of the remaining 3 independent norm equations; thus those
other values of ¢ don’t yield solutions (floating point calculations suffice, thanks to

Bezout).

This gives us a (rigorous) upper bound on the possible solutions b(g), but we still
need to verify both candidates are indeed solutions, i.e. that they satisfy (3.2)-(3.4)
exactly. For this purpose, let b; be the 12 roots (in any order) of

134+ V13 —v17 — \/221X11 " 106 + 1613 — 13v17 — 7\/221X10 n 637 4+ 13413 — 118V/17 — 43+/221 X0
2 2 2

7531 1905/13 253\/22 t (57473 15935v/13  16341V/17  4531/221
+<+ —416V17 — + — < + - - >>X8+

P(X)=X"+

4 4 628 29 29 34 34
—2587 — 129313 4+ 1127+/17 4 173/ 221 t 1057407 544973v17 1209333\/ 221
< + + + — < + 36663V 13 — ) >

8 4553 8 17

1
—l—2 ( 25283 — 7T179v'13 + 6279V 17 + 1701\/221 X604+

—2587 — 129313 + 112717 + 173v221 ¢ (1057407 54497317 1209333\/221
hs + -— + 3666313 —
8 4553 8 17
7531 190513 253v221  t (57473  15935v/13 1634117 4531\/22
+—+ — 416V17 — -— +
4 4 2 628 \ 29 29 34
L 637+ 134VT3 — 1I8VIT —43V22T g 106+ 16vVT3 — 13VIT — 7221 1y 13+ VI3 - VIT— V2RI
2 2 2

for t = iy/75090 + 2y/13.  We will shortly identify these b;/v/13 with the desired
b(g). First note that the base field (i.e. the one generated over Q by the coefficients)
of P(X) is clearly K = Q[v/13, /17, t], which has Galois group (over Q) D, generated

by t — $iv/75090 + s'24/13 and V17 s"\/17, for all signs s, s, s”. From this we
obtain that the roots b; are algebraic integers (because each coefficient is an algebraic
integer, in spite of the large denominators — e.g. the minimal polynomial of the
X! coefficient is xt — 2623 + 12822 + 312z + 144). Moreover, the b; all necessarily
have modulus 1 (thanks to the fact that the X* and X'>7% coefficients are complex
conjugates, and that numerics confirm for each 4 the only candidate for 1/b; is b;
itself). (Now, use resultants to prove the products b;b; of roots will include primitive

13th roots of unity. Use numerics then to identify a pair ¢, ¢ for which b;by = a(1) —
we know this will hold exactly. Call b(1) = b;/v/13 and b(—1) = by /+/13. Next, note
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that the prime p = 101 has /13,17, v/ =75090 — 2v/13 all in Z,; P(X) reduced
modulo 101 is

X2+ 30X" +29X10 4 56X2 +20X8 +92X7 +41X% — X5 +18X* +56X3 +29X2 + 30X +1

which is irreducible in Zj;[X].  This means Gal(F/K) contains an element of
order 12.  We can now conclude the splitting field F of P(X) is a quadratic ex-
tension of Q[¢13,v/17,t], with Galois group ZJ = Z;, over K sending &3 — £,
For each automorphism ¢ € Zy; define v/13b(() to be its image of b; resp. by;
hence 13b(¢)b(—¢) = a(g) and this assignment is well-defined. The 7 nontrivial au-
tomorphisms in Gal(K/Q), lifted to F, map b(g) to the three other solutions for
n = 13 in Table 2, together with 4 analogous ‘shadow’ solutions corresponding to
§' = (13 — v/221)/2, which can also be estimated numerically. To show that b(g)
(as well as the other 3 candidates in Table 2 for n = 13) indeed satisfy the remain-
ing identities in (3.2)-(3.4), it suffices to replace each b(g) with 13/b(g), multiply by
d and an appropriate power of y/n to guarantee that the equations are manifestly
algebraic integers, and then evaluate the equations numerically for all 8 choices of
b (the 4 from Table 2 and the 4 shadows). We used 200 digits of accuracy — far
more than necessary but trivial using Maple — and found that the equations held
to accuracy 107 or so. The errors will therefore be algebraic integers, and from
the above we know that all of their Galois associates will have modulus << 1. This
means the errors must vanish identically, and we are done. (Incidentally, the poly-
nomial P(X) was found working backwards: the numerical analysis of the previous
paragraph suggested its existence and basic properties.)

The 1 in Proposition 6 for G = Z; corresponds to (i.e. is also implied by) the
uniqueness of the Az subfactor, and the 2 systems for G = Zs correspond to the
two versions of the Fg subfactor. Note that our classification for uniqueness (up to
complex conjugation) for G = Zj corresponds to the uniqueness for even sectors of
the Izumi-Xu 2221 subfactor. The uniqueness of the Izumi-Xu subfactor was first
shown in the thesis of Han [16]. His proof is independent of ours: it involved planar
algebras, and was quite complicated.

Note the numerology ndg, = drxn2, where dy, =(n++/n? + 4)/2 is the dimension
of the nongrouplike simple objects in the Haagerup system for Z, [21], and 0;x,2 is
the dimension of p for near-group C*-categories of type Z,» + n?. This suggests
comparing the subfactor py,(M) C M with the subfactor prxn2(M) C M%2, as
they have the same index, namely d%,. For n = 3, the principal graph of the former
is Figure (4’) in Lemma 3.10 of [14], while the principal graph of the latter is the
completely different 2°1, so the connection (if indeed there is one) is not simply this.
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4 Tube algebras and modular data

4.1 The tube algebras of near-group systems

In this section we compute the tube algebras, for any solution to the equations of
Proposition 1. Our notation will be as in [20]. We can assume F # (), i.e. n’ # 0, as
the tube algebra for the Tambara-Yamagami systems was computed in Section 3 of
[21].

Let A = {ay, p}sec be a finite system of endomorphisms, as in Section 2. The
tube algebra Tube A is a finite-dimensional C*-algebra, defined as a vector space by

Tube A = ®¢ ) ceaHom(€ - ¢, (- 1) . (4.1)

Given an element X of TubeA, we write (£C|X|(n) for the restriction to
Hom(&(¢| X |¢n), since the same operator may belong to two distinct intertwiner spaces.
For readability we will often write g for ;. In our case the intertwiner spaces are
Hom (g4, agay) = C1, Hom(p, ayp) = C1, Hom(p, pay) = CU,, Hom(ey, p?) =
CS, and Hom(p,p?) = span,.z{T.}. Denote the elements A,, = (gh|l|hg),
Byn = (9p|Unlph), Cy. = (g9p|T:lpp), Dy: = (pplUsT7|pg), Ex = (pk|Ug|kp),
E. = (pp|SkSilpp), El, = (pp|TwTs|pp). Then the vector space structure of the
tube algebra is:

Tube A = P A © P Agy ©EP Ay @ A, (4.2)
g

g,h g

where A, , = CB, , ® span,cq Ak, Ayn = CByy (for g # h), A, , = span, C, .,
A, =span,D, ., A, , = span, Ej @ span, Ej, @ span,, L,

w,z " w,z"

The C*-algebra structure of Tube A is as follows: multiplication is given by

(EXICMECYICT) = by D D (Eu|T(w,i) pc(V) X pe(T(v,i))on), (4.3)

v<¢¢ 1

where p, = p and p, = o, and: when ¢ = g and ¢’ = h, then the unique v is g+ h
and the unique T'(v,1) is 1; when ¢ = g and ¢’ = p, the unique v is p and the unique
T(v,i) is 1; when ¢ = p and ¢’ = g, the unique v = p and the unique 7'(v, 1) is Uy;
and when ¢ = ¢’ = p, then v runs over all g € G, with T'(g,i) = Sy, as well as v = p,
with T'(g,4) running over all T,. Moreover, the adjoint is

(CIX1¢n)* = de(nClpe(pe(Re) X ) Re[CE) (4.4)
where d, = 1,d, =6, R, =1=R,, and R, = Sy, R, = s5).

Let o be a finite sum of sectors in A. A half-braiding for ¢ is a choice of unitary op-
erator &, (&) € Hom(ope, peo) for each £ € A, such that for every X € Hom(p¢, pepy),

XE:(Q) = pe(Es(n)) £,(&) o (X). (4.5)
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For our systems this reduces to

E(g+h) = ay(E(h) E(g) (4.6)
Es(p) = O‘g(‘go(p)) E5(9), (4.7)
Ugs(p) = p(E5(9)) E-(p)a(Uy), (4.8)
Se€s(9) = p(Es(p)) Ex(p) 7 (Sy) , (4.9)
T.E4(p) = p(E(p)) E5(p)a (1), (4.10)

for all g,h € G, z € F. There may be more than 1 half-braiding associated to a
given o; in that case we denote them by £J. As we will see shortly, knowing the
half-braiding is equivalent to knowing the matriz units of the corresponding simple
summand of Tube A (the matrix units e; ; of a matrix algebra isomorphic to M
are a basis satisfying e; je,,; = d;mei; — e.g. the standard basis of Mjyy). If we
decompose 0 = ) g kgtg £ Kpp into a sum of irreducibles, then each half-braiding &7
will correspond to a distinct matrix subalgebra of Tube A isomorphic to My, where
k=> ky+k,

The dual principal graph for the Longo-Rehren inclusion of A can be read off from
the collection of half-braidings as follows. On the bottom are the simple sectors of A;
on the top row are the (inequivalent) half-braidings £J. If we write 0 = Y kyay+ k,pp,
connect & to a, with k, edges, and to p with k, edges. This forgetful map &£ — o
is called alpha-induction and plays a central role in much of the theory. See Figure 4
for an example, which follows from the tube algebra analysis of Subsection 4.2. (The
principal graph for the Longo-Rehren inclusion is much simpler: just A x A on the
bottom and A on the top, with edge multiplicities given by fusion multiplicities.)

: el £, €., €., g &
Y

Figure 4. The dual principal graph for the double of A(Z3 + 2)

p

The point is that the centre of the tube algebra is nondegenerately braided. A
nondegenerately braided system comes with modular data:

Definition 2. Unitary matrices S = (Sap)aped, I = (Tup)apes are called modular
. . . . . . . 0—1

data if S is symmetric, T is diagonal and of finite order, the assignment (1 0 ) — S,

(0 1) — T generates a representation of SLy(7Z), and there is some index 0 € ® such
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that S2, > 0 Va € ® and the quantities

Su.dShaSe
N 1=y —moonaed (4.11)

S
ded 0.d

are nonnegative integers.

The a € ® are called primaries; 0 € ® is called the identity; the N,;. are
called fusion coefficients and (4.11) is called Verlinde’s formula. S? will necessarily
be a permutation matrix, called charge-conjugation C'. In the case of modular data
associated to nondegenerately braided fusion categories, the primaries ® label the
simple objects, the quantities Ng, := N, cc are the structure constants of the fusion
ring. Nondegenerately braided systems of endomorphisms always satisfy the stronger
inequality S, > 0, so we will assume this for now. The quantum-dimension S,0/500
in this case is the statistical dimension d, = \/[M : a(M)] and 1/Sp0 = />_, d2 is
the global dimension. When S,0 = Spo then a has an inverse in ® and is called a
simple-current.

In the case of the centre of Tube A, the primaries are in one-to-one correspon-
dence with the simple summands of Tube A, or equivalently with the half-braidings
defined above. These matrices can be computed once we know the matriz entries
EL) o). (y.ar) € Hom(py, - pe, pe - py) for each irreducible £ € A, as 0,7 run over all
simple objects (with multiplicities) in o. In fact, the diagonal entries (1, /) = (9, «)
suffice to determine S,7. These matrix entries can be computed from either the
half-braidings, or from the diagonal matrix units e(c?),;, as follows. Let W, (n, «) be
an orthonormal basis of Hom(p,, o); then we have

E3(8) (o). a) = pe(Wo (1, o)) £5(6) Wo(n, @), (4.12)

e(07) ),y 0) = A\/W > de (EIELE) .o 611 (4.13)
where
A=n+06"=2n+n6 (4.14)

is the global dimension. The entries of the diagonal unitary matrix 7" and symmetric
unitary matrix S are determined from the matrix entries £2(&)(,a),(.0) through:

T, ol = d& ¢£<5g(’f)(§7a),(§,a)> ) (4-15)

JJ old = Z df (bf EJ (E a),(&,a) gj (5)?17,(1’%(77,0/)) ’ (416)
(6 @)

where ¢¢ is the standard left inverse of the endomorphism pg, defined by ¢¢(z) =
R}, pe(x) Ry In (4.15), £ can be any irreducible in o, and in (4.16) the sum is over
all £ (counting multiplicities) in ¢’ while 7 is any (fixed) irreducible in o.
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4.2 The first class near-group C*-categories: n' =n — 1

As before, we will sometimes write a,, b,, b, for a(x),b(x),bt"(z,y). We will first

show that, as a C*-algebra, o
Tube A 2 C2H @ M,y & (Mayo)" ", (4.17)
unless s = —1 and n = 7, in which case
Tube A = C7 @ My & (Mawo)™ . (4.18)

It will prove useful to know the formulae

pU, = Zsh +h+20w )T, U, T (4.19)
b,/<1’, y) = Qg Gy gy b(O’Q.Z‘ Uy) b”(ya f) ) (420)
V(0% (—ox),0(—ox)) = V" (x,0%). (4.21)

(4.19) is implicit in Section 2.3. (4.20) follows from the sequence (2.37),(2.39),(2.37).
(4.21) is trivial when n is odd (where —1 = 1), so it suffices to take s = a = b = 1;
then apply the sequence (2.37),(2.39),(2.38) to the left-side. Note also that we always
have a_, = a, and b_, = b, (when both sides are defined).

Theorem 5. Consider any type G +n — 1 C*-category, i.e. let s,a,b,b"” be any
solution of the equations of Theorem 3.

(a) There is precisely one half-braiding &, for any g € G: &,,(h) =1 and 5%( ) =
(=1)"9U,. We get the diagonal matriz entries & (h)gg = 1, Eg( )y = (=1)V9U,.
These half-braidings correspond to central projections

Ty=n"'(n+1)" ZAthr (n+1)"(=1)"B,,. (4.22)

(b) There is precisely one half-braiding 529 ag- It corresponds to the n X n matriz
algebra A(>_ ), spanned by By, (9 # h) and

= (n+1)" ZAgh+ (n+1)"(=1)"*'B,, Vg. (4.23)

The corresponding matriz entries are Es(9)nn = 1, Ex(p)yy = n~ (=1 *F1U,.

(c) There are precisely n — 1 half-braidings £ e for any g € G, one for each 2 x
2 matriz algebra A(g,w) = Span{pg.., Cyw, Dy, gw,Dg,mC'g@}. The corresponding
matriz entries are % (h)gq = w(h), £ (h),, = (—=1)"Mw(g + h) Uy, and

EX Py =D _(=1)""w(h) 5,5},

h
n CLw b Z b:;?w o?(wz),x a'w ,zo2w o? (wz) 2('LULU) <g) U(w O'(’ll)l’))(g) TwTjﬁx o?2(wz) ”
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(d) When s = w = 1 orn < 3, there are precisely n + 1 half-braidings 81/’, natu-

rally parametrised by the characters ¢ &€ Fn+1 The matriz entries are S;f’( Jop =
(—1)'U; and

EV(P)pp = (1) D (1) SSk+ Y Giplo) T,TS-, (4.24)

k

where (1, is any particular solution to the equations (4.41) (when b” and b are
identically 1, take C identically 1).

(e) When s = —1 and n > 3, then n = 7 and there are precisely 2 half-braidings for
o = 2p, with matriz entries £5,(9) (p,s2).(ps2) = U, and

gzsll) (p)(p752)7(p752) = 181 Z SQS; —I— i82T1T5* + SlsgiTﬁTI s (425)

)

where s1, 59 € {£1}.
(f) There are no C*-categories of type G +n — 1 with w # 1 and n > 2.

Proof. From (4.3) we obtain the formulae

Agn Akt = 0g1Agnsts Agn Bri = 0g1Bri BonBri = 6nk0g1 Y Agm + niconBau
m

Ag,th,z - g,kz(h) Ck,z ) Bg,h Ck,z = 07 Cg,ka,z - g,kéaw,zazbz Z w(h>Ag,h>

Dy -Chrs = 04 k020w by Z )" Mw(h + g)Ep + 6y 10-.00by Z hw(h) B},

80420 Z o i 0 (w2)(9) o (w o (W) (9) BY s,

2w o?(wz),z aw 02w o? (wx

CyaBi = 2(k)(=1)"*Cyz, CyuBy = 5(=1)"*2(k — 9)C,.z
Cy 2Bl o = Cy204 ozmyz(9)aw(g)b (zo”w, 2)b (2, zo?w) |
where ¢y := Y. 2(g) 02(h) 022(l). Using (—1)"" = z(h)oz(h)o?z(h), we get conn =
Chgh = Chhg = (—1)"'h(n§g,h — 1) Write e = zh(—l)n/hEh, e = Zh<—1)n/hE;l,
ey = E”——. From (4.4) we obtain

Az’h - Ag’fh’ B;’h = Bh,g; C;.= Sz(g)azEDg,Uza

g7Z
" =e, " =s0_11¢ +sey, € =0.2¢ +a.b.0"(7Z,0%(~TZ)) €2, -
We use in these expressions that 0(2) = —1, where 2 denotes the element 1+1 in the

corresponding field F,,,1; when the characteristic of F,,; is 2, then neither —1 = 1
nor 2 = 0 lie in F, so the corresponding terms should be ignored.

Let’s begin by solving the half-braiding equations for (a). For later conve-
nience, we'll solve this for any near-group C*-category. Since Hom(agip, og1p) and
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Hom(ayp, pay) are both one-dimensional, we need to find numbers ¢, 5, c, € C for
each g, h € G, such that &, (h) = ¢, and &, (p) = c,U,. (4.7) and (4.10) give cgp
and ¢, respectively. The remaining three equations are then automatically satisfied.
(4.10) becomes

_86_3/2 Z<g + k? h> (_hy)(h) a_gé_hg’zl = Z Z(Q) I(k) bzn’E b;]/z,z/,y,x ) (426)

h Z,x

z g) C/gil z ) <g> h — g>5x,gz = thz(g) ) (427)
g, 9):(9) 2(9) #(9) Owgs Oyge = Vaay=(g) ,  (4.28)

where W, V' are defined in the proof of Proposition 1. It is easy to see from Theorems
3 and 4 that (4.26) is automatically satisfied for both classes.

When n’ = n — 1 this condition becomes ¢, = z(g) 02(g) 02z(g) is independent of
2. Using the finite field expression oo = (1 —x)~! of Proposition 2, z 0z 0%z collapses
to —1 € I, so this expression for ¢ simplifies to ¢, = (=1)¢ if n is even, or ¢, = 1 if
n is odd. In this case, (4.9) is automatically satisfied.

Now turn to the proof of (b). We see from (4.3) or the products collected at
the beginning of this proof, that A(>_ «) is an n?-dimensional C*-algebra, so is a
direct sum of matrix algebras. The 7, obey m,* = m, m m, = dgn7,, and 7 By =
g, Bnk, so the projections 7, are the diagonal matrix units. For any g, there is
an n-dimensional space in A(}_ «) satisfying 7,2 = z, namely the span of 7, By
(h # g), so T, must belong to an n x n block and hence A( a) is My, (C).

To show the 7 are minimal, i.e. A(}_ «a) is maximal as a simple C*-subalgebra
of Tube A, it suffices to show that 7T;7Tk = Bynm = W;Ck,z = By pCr. =0 forall k, 2
and all g # h. This is clear from the products listed earlier.

The C*-algebras A, , are each isomorphic to C**!, with projections 7, of Theorem

5(a), m, of Theorem 5(b), and for all z € G,

Doz =n"" Z%Ag,h . (4.29)
h

Together with the n x n matrix algebra of Theorem 5(b) and the projections m,
of Theorem 5(a), these projections p, . span all of Zgﬁ Ay . Note that p,.m, =
pg,zﬂ-;g = 0 and p;,z = Dg,z-

Now turn to (c¢). Each A(g,w) is clearly a 4-dimensional C*-algebra, and is
noncommutative since CyyDyow € D Agn and Dy ,,Cy. € A, , are distinct.
Therefore each A(g,w) is isomorphic as a C*-algebra to the 2 x 2 matrix alge-
bra. Each A(g,w) is readily seen to be orthogonal to 7, and A(>_ «). Note that
CywDyow is a scalar multiple of p,,. A basis for Zg A, + Zg Ao +A,, is
Ug,wlCogws Dg.ows CgwDyg.ow, DgowCyuw} U {e, € el ), ca.. To verify that A(g,w) is
maximal as a simple C*-subalgebra of Tube A, it suffices to verify that Cy ., Dy v =
0 = Dy wCyw unless g = ¢" and ow = ', Cy e = Cy e’ = Cy el = 0 (the other
orthogonalities are either trivial or follow from these). This is elementary.
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The diagonal matrix units are py,, and n‘lngQ,ngg,w. From this we obtain
the desired quantities.
Now, turn to (d). We compute

e* =ne, e =ne’ =ce, ee! =ne! =cle, e’ =n"'s5 e+ agbge’{/Q ,

eel =n15,0e + bbb (0(—02),0%(—02)) i

ele =n15, e +0"(022,%) e

GZ)

GZ)

n_n —1 /! /!
€€, =N sbwazb;’,ggzdm —o2€ + A0, wb ¢+ 0 b ((;2 y)er

z,x'Yz,y o(—owozo(wz)) »
where in the e’e! equation z,2’,y are defined by ox = —gwoz, o2’ = roz, and
oy = o2zow. Manifestly, the span of e, e’ and all €/ is an n + 1-dimensional C*-

algebra, which we’ll call A(p). It is immediate now that it is orthogonal to 7, A(D «)
and all A(g,w). Let’s identify when it is abelian. First note that

by by V' (0(—01),0%(—0x)) = V'(022,7)  forx #2, (4.30)
s$by a, b’z’a 2, = 8b.ay bg} o for 02z = —ow, (4.31)
Ay b, = a, by forz=w. (4.32)

Indeed, (4.30) follows by applying (4.20) twice and (4.21) once; any b, appearing
in these expressions can be replaced with sa,. To see (4.31), use (4.21) and the
substitution —oz = ow; again, b = sa here. (4.32) is trivial.

Thus to conclude the argument that A(p) is commutative, it suffices to ver-
ify that b"(x,2")0"(z,y) b"(0%2,y’) is invariant under the switch z <> w. Using
(2.37),(2.40),(2.38) and (4.20), we obtain

= b (w, 02 02w) a, b2 by, Ap2 s bozwgz2 a(czow) ab(c*wo(c*woz)), (4.33)

b/z/,y = b'(022, 0w) ab(z) by, by, b(o*w o2) b(o?*z ow), (4.34)
v (02z,y) =V"(z,0%z0w) b, by b, b(02z ow), (4.35)

//
b:r

where we write ab(z) for a(z)b(z) etc. We likewise have

V' (02w, 0z2) = b (022, ow) s ab(z) ab(w) ab(o*z ow) b(o?w 02)2 . (4.36)

Since z, 7',y depend on w, z, they will be affected by the switch w < 2: in particular
we find x becomes o2x, y becomes c?woz, and z’' is unchanged. Thus A(p) is
commutative iff

ab(c®w oz2) ab(c®w o(c*woz)) =
ab(o?z ow) ab(o?z o (0?2 ow)) ab(o?z ow) WQ : (4.37)

Consider first the generic case, where w = 1. We find that, provided cw # —oz
and z # W, elell = selle?. This means A(p) will be commutative provided s = w =1

orn < 3.
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Much more subtle is when w is a primitive third root of unity. In this case
—1=o0(-1)and s = 1; a, = b, = 1 except for b_; = w. Then A(p) is commutative
iff

b(o*woz) b(o*w o (0w oz)) = b(o*z ow) b(o*z o(0?2 02)) (4.38)
for all w, z with ow # —oz and z # w. The only possible way this equation can be
violated is if at least one of those b’s doesn’t equal 1.

Suppose first 022 o(0%z cw) = —1. Then hitting both sides with o, we get —oz =

7. This implies o2’ = —1, i.e. 2’ = —1, and hence cw = —o?z. Therefore
—1=0(-1) = o(owo’r) = c*wolox®W) = c*wo(—02 TTD) (4.39)
and thus 02w o (0w oz) = —1. Thusin (4.38), b(c*w o(c*w 02)) and b(c*z 0(c?2 02))

2 2

are always equal.
Finally, suppose 0°zow = —1. Then o°w oz = T cannot equal —1. This means

that for any pair z, 2z with 020w = —1 and 0z # —oz and z # T, ¢’e!l = welle’.
Consider now the case where A(p) is commutative, i.e. where either s = w = 1,

or n < 7. Then the n 4 1 minimal central projections in 4, , are scalar multiples of

—

Q) =m*+n)te+(n+1)'Ge +(n+1 ng . (4.40)

— — — =

for some (1, (, € C*. These must satisfy ¢'7(() = Bo7(¢) and e/n(¢) = B,7(¢) for
scalars (., B, € C. This yields the equations

G = Cl , G = sa,b,C1 Cﬂm CO’(—O’Z‘) = b, M—e Ca: z,027 (I # 2) )
Co(—ororo@s) = Co G V0 UL, baTy (z £, 0%(—ox)),  (4.41)

as well as (? = s when n + 1 is even.

First, note we can solve these equations in the special case that »” and b are
identically 1. In this case, identify G with F,, and take (; = ¢(1) and (, = (o)
for any of the n + 1 characters of the additive group F},, = (Z,)*: a little effort
shows these n + 1 choices of (’s all work, and so must exhaust all solutions.

Recall that the C*-categories with n’ = n — 1 form a group: C(by,by) x C(ba, b)) =
C(bybo, /0Y).  Let w(C(i)) be solutions of (4.41) for b! respectively; then ¢, =
¢(1),¢(2), will be a solution for C(biby,b{by). This implies that if you have any
particular solution ¢ for a given C (b,b"), all other solutions for that category C(b,0")
are obtained by multiplying that particular solution by the solutions ¢ (o) for C(1,1).

Since the sum of the minimal projections of A(p) must equal the unit n~'e, we
know now that the 7(¢) given in (4.40) are indeed the minimal projections (i.c. the
coefficient A™! for e is correct).

When s = —1, both e,¢’ are central elements. Suppose the centre is not 2-
dimensional. Then there is some Z = ) c,el # 0 which commutes with all e/].
Suppose ¢, # 0; then as long as n > 3 it will be possible to choose a z not equal to
0,1,2,%. Then €/Z and Ze! will differ by a sign in at least one coefficient (namely
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that of e/ (GQMZZ)U(E)), which will be nonzero because ¢, is. This contradiction means
that A(p) will indeed be a sum of two matrix subalgebras. Note that fe + ve' =
(Be + ~ve')? = Bne + 2Byne’ — v*n~te forces § = (2n)~! and v = +i/2. Thus the
identities in the two matrix subalgebras are 15 := (2n) 'e+ie’/2, and the two matrix
subalgebras will be the images ey (A(p)) =: A(p)+, and are of equal dimension.

Let’s finish off the proof of (e). The C*-algebra A(p), is spanned by 1, and
2y = (v, € —i7ze2) /2 where 7y, = /b (02, 2) (since b (02, 2) = —V'(022,%), we can
choose these square-roots so that vz = 17, so zy = z;). We compute 23 = 1, so
each z, is invertible. Provided w ¢ {z,Z}, we have

1
W = o <“’Z i > (4.42)
+

w—+z

for some 3, ,, € C, where we use addition in the finite field IF,,;; to simplify notation.
But provided w ¢ {z,z}, we know e’e! = —e! e” and hence z,w; = —w,z,. Now
choose some = & {z,z,w,w, (wz + 1)/(w + 2), (w + z)/(wz + 1)} — this is possible
as long as n > 7. Then

—(zrwi)zy = zy(2pwy) = =24 24wy = 2z Wy Ty (4.43)

so zyxywy = 0, which contradicts invertibility of z,,w,,z,. This contradiction
shows that s = —1 requires n < 7.

When w # 1, say w = e*?™/3 we see that every z # —1 will have precisely one
such that 02z oz = —1. This means e’e” = e’e” unless r € {—1/(1+2),—(1+1/2)},
using finite field notation for addition as usual. Note that e¢”,,,,  , € Ce'el and
€’ 141/ € Ce’ e.. The centre of A(p) manifestly contains e, e’,e”,, and exactly as
in the s = —1 argument, we see that the centre cannot be more than 3-dimensional.
Therefore A(p) here must be a sum of 3 matrix subalgebras. We compute the corre-
sponding identities as before, obtaining 1, = (3n)te+eF2™/9¢e /34+eT2m/9¢2e" | /3 for
each third root ¢ of unity. Thus A(p) will be a sum of the matrix subalgebras A(p). :=
1cA(p) = span{l¢, 1ce?}. Now, 1cel € Cleel iff v € {2z, —1/(142), —(1+1/2)}, so we
see that 1ce” and 1.e) will always commute, and thus each subalgebra A(p), will be

commutative. Since they are also simple, each must be C, and we have that n+1 = 3.
This concludes the proof of (f). QED to Theorem 5

We already knew (from Proposition 5) that s = 1 for n # 1,3,7 and w = 1 for
n # 2, but we wanted to derive it directly to demonstrate the effectiveness of the
structure of the tube algebra in constraining the sets of solutions. Let us now give
particular solutions for ¢ in the known cases where a, b, b’ are not all identically 1.
When n = 1 and s = 1, there are no parameters (. When n = 2 and w = e*?7/3
take (; = e™>™/9 = (_;. Whenn =3 and s = —1, take (; = (2 =iand {, =1,
where we identify Fy with Zs[w] for w® = 1 and identify G with F.

Corollary 6. Fix any finite field F = F, for ¢ = n+1, and identify G with F*. Here
s the modular data of the double of any system covered by Theorem 3. The global
dimension is A = n? +n. The primaries come in 4 families, parametrised as follows:
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g € G;

the symbol X;
w+hforw€@* and h € G;

either p¥ for 1 € I[i:l (when s =w =1 orn < 3), or p** for sy € {£} (when
s=—landn="7).

Then the T and S matrices are given in block form by

T = diag (1,1,w( ) ol )) , (4.44)
1 n~1 1 w(g)(n+ 1)n=t 1
1 n 0 -1
= n—_H w(@)(n+1n=t 0  (n+ Dn"tw'(R)w(h') 0 : (445)
1 -1 0 Saerx Co W(@@)d((02) )
except for n =7 when s = —1, when
T = diag (1; 1;w(h); ii) : (4.46)
o1 Sw(g) 2
1 1 7 0 —2
g == 4.47
8| w(g) 0 Ew'(h)w(h) 0 (4.47)
2 -2 0 —4s18}

The primary labelled g corresponds to the half-braiding with ¢ = «, in Theorem
5(a); ¥ corresponds to o = ), in 5(b); w + g corresponds to the half-braiding £}, ,
of 5(c); pj or p,p" or p,p', p" correspond to the half-braidings with ¢ = p in 5(d).
The proof of Corollary 6 is an elementary calculation based on the matrix entries
listed in Theorem 5, as well as the formulae of Section 4.1. The most difficult is the

bottom-right block in the S matrix. Consider n + 1 odd (so s = 1). Then

Syt = 555 <—<1w<1> SO 1p(S,)p(S,)° + 3 G2 (T p(T2)*

g

< (—wm SO0 a(S)p(Sh) + 3 Gt () p(Tz) Sop(T)”

h

(Clw( T3 1/2"‘2@ 02)b,0"(0%(—02),0(—02)) 15—z Tr2(—o)

<C1¢ ( T1/2T2 + Z Cw(b/ O'U) bll(02(_0w)7 U(_aw))TUQ(—aw)To(—Uw)> )
which simplifies down to the given expression.
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Note that when s = w = 1, this recovers the modular data for the double of
the affine group Aff;(F,,1) (see e.g. [9, 6] for the general theory of finite group
modular data and its twists by cocycles in H?(G; T)). Recall that the primaries of the
(untwisted) double of a finite group are pairs (g, ¥) of a conjugacy class representative,
and an irrep of the centraliser of g in the full group. The primaries of the double
of C(1,1) and the double of Aff;(FF,;1) = F,xF match up quite nicely as follows:
what we call ¢ € G corresponds to the pair (e, 1)) where e is the identity and ¢ is
a 1-dimensional representation of Aff;(F,1); ¥ corresponds to (e, p) where p is the
n-dimensional irrep; w + h corresponds to conjugacy class (w,0) and irrep g € ﬁq;;
p¥ corresponds to conjugacy class (1,1) and irrep v of the centraliser Fr.

Note that in each case the modular data is inequivalent for the two systems at
n = 1, the three at n = 2, the two at n = 3 and at n = 7. This then verifies that for
n=1,2,3,7, the solution b = " = 1 corresponds to Mod(Aff;(F,)) (for the other n,
this is clear by the uniqueness in Proposition 5. This inequivalence of the modular
data also means that those systems are not Morita equivalent, i.e. there cannot exist
a subfactor N C M for which the principal even sectors form say the s = +1 system
at n = 7 and the dual principal sectors form the s = —1 system at n = 7.

The modular data for the 3 systems with G = Z, was also computed in Section
4 of [21], where it was remarked that the modular data corresponds to that of the
double of S3 = Aff|(Z,) and its twists by order-3 cocycles in H3(Ss;T) & Zg. The
order-3 twist arises because all that the twist is allowed to affect is the primary
corresponding to conjugacy class (1,1) and (projective) irreps 1 of its centraliser Zs.
In other words the cocycle must be nontrivial on Zs < S3, and coboundary on the
7 subgroups.

It appears that s = —1 for n = 1, 3,7 likewise corresponds to twisted modular
data. This is clear for n = 1: H3(Zy; T) & Zy and s = +1 corresponds to 41-twisted
data for Zy = Aff;(Fy). Aff;(IF4) is isomorphic to the alternating group Ay, and the
natural restriction of H3(Ay;T) to the subgroup Z3 < Ay is Z3. The s = —1 modular
data appears to agree with the twist by some cocycle in that Z3, although we haven’t
yet fleshed out the details. For n = 7, something analogous will hold, except now we
want a twist which, when restricted to Z3 < Z3xZ, is not ‘CT’ in the sense of [6]
(because the number of primaries for s = —1, n = 7 is less than for s = 1, n = 7).
Such cocycles do indeed exist here.

4.3 The tube algebra in the second class

Consider now the near-group systems of type G + n’ where n’ € nZ. It is certainly
expected that only finitely many n’ will work for a given n; in fact to our knowledge
all known near-group categories for abelian G have n’ € {0,n—1,n}. Last subsection,
we used the existence and properties of the tube algebra for n’ = n — 1 to prove that
s =w =1 except for n = 1,2,3,7. Likewise, we expect that the existence of the tube
algebra should constrain the possible values n’ € nZ.

As a preliminary step towards working out the tube algebra structure here for
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n’ > n, consider the half-braidings for o = a,, when n divides n’. We find (following
the proof of Theorem 5(a)) that &,, exists here iff, whenever z = w = 1, we have
2(g9) = w(g). Indeed, when n|n’, equations (4.27) and (4.28) are both satisfied iff

¢, = €y(9) 2(9) 2(9) (4.48)
is independent of z. In this case, the only condition from (4.9) is 0;2 = (g,9). Because
gz = pu9% while gz = p9z, it suffices to consider z with trivial Z. Moreover, because

Z = 7, if 2(g) 2(g) is independent of z then it must be real and hence in 1. Thus
ch? =€(y(9)* = (g, g) and (4.9) is automatic.

This condition (independence of z) is automatically true when n = n’ (the case
considered in [21]) because then z uniquely determines z. At this time, we don’t
know whether it is also true when n’ > n — for all we know, n’ > n is never realised.

When the half-braiding &,, exists, it is unique and defined by &,, (o) = (g, h)
and &,,(p) = €)(9)2(9)Z(g)Uy, for any choice of z. This then allows us to compute
the corresponding parts of the S and T matrices. In particular (assuming all half-

braidings &, exist), we have

Tag,ag = gag (ag) = (g,g), (4-49)
Sapian = A Eay (1) Emy ()" = X", Y, (4.50)

where A is given in (4.14).

In the remainder of this subsection we turn to n’ = 0 and n’ = n. When n’ = 0,
(4.10) no longer applies and we have two half-braidings for o, given by choosing either
sign in c. The remaining half-braidings for n’ = 0 are for o = p, with precisely 2n
half-braidings, and precisely one each for ¢ = «a, + «a; for each g # h. In this
Tambara-Yamagami case, as analysed in Section 3 of [21], Tube A is isomorphic as a
C*-algebra to C** @ (ngg)"("fl)/ ?_and elementary expressions for the modular data
fall out directly.

Thanks to Proposition 6, the case n = n’ reduces to that studied in [21], and so
its tube algebra is fully analysed in Section 6 of [21]. We find there is a unique half-
braiding and simple summand C in Tube A for each ¢ = oy, while each 0 = p + a4
corresponds to a unique summand Msyo and half-braiding. o = p+ o, + ay, (9 # h)
gives a unique braiding and summand Mjsy3. Finally, there are exactly n(n + 3)/2
half-braidings with ¢ = p, and each contributes a C to Tube A. Thus

Tube A,y_,, = CM"5)/2 g (May2)" @® (M3x3)n(n_1)/2 . (4.51)

The modular data for n’ = n is described in [21] as follows. First, find all functions
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§:G@—=Tandw e T, 7 € G such that
Zf vnwra(t) —né~t,  (4.52)
EZb(g+k)§(k):w263a( YE(g+T7) —V/not,  (4.53)

E(r—g)=wctalg)alr —9)€(g), (4.54)
S E(k) bk — g) bk — ) = 2 blg + h— 7)E(g) E(h)alg ) — 5. (455)

k

There will be a total of n(n + 3)/2 such triples (w;, 75,&;).
The n(n + 3) primaries fall into four classes:

1. n primaries, denoted a,, g € G;
2. n primaries, denoted bj, for h € G;
3. n(n — 1)/2 primaries, denoted ¢x; = ¢, for k,l € G, k #
4. n(n 4+ 3)/2 primaries, denoted 9;, corresponding to the triples (w;, 75, &;).
We can write the S and T matrices in block form as
T = diag({g, 9); (h, h); (k. )3 w)) (4.56)
1 (9,9") 72 (64 1)(g,h')=2 (G +2) (g, K +1) (g, 7j1)
G — = | G+Dhg)? (h, h)~2 5+ 2){h, & + 1) —6(h, ;1) (4.57)
AN\ G+2k+1Lg) G+T+LA) (5 +2)((k k)11 + (&, 1) (1, K)) 0 roE
5(15,9") —0(rj, h') 0 55,5
where
Sjjr = wjwjr Z(T]—f—T]/—l-g g)+ow;wicla(ti)a Zﬁj )& (h)(Tj —Tp +h —g,h —g).
9
(4.58)

This is all perfectly simple, except for the n(n +3)/2 x n(n + 3)/2 block S; ;.

4.4 The modular data for the double of G +n when n is odd

The point of this subsection is to compute the mysterious part (4.58). We will show
that, rather unexpectedly, S; ; is built up from a quadratic form on an abelian group
of order n + 4.

Definition 3. Let G be any finite abelian group. By a nondegenerate quadratic
form @ on G we mean a map Q : G — Q/Z such that Q(—g) = Q(g) (mod 1) for
all g € G, and {,)q : G x G — T defined by (g, h)q = ¥ QUFN=Q-QM) 45 ¢
nondegenerate symmetric pairing in the sense of Definition 1.

For example, when G = Z, for n odd, these are precisely Q(g) = mg?/n for any
integer m coprime to n. More generally, for |G| odd, the nondegenerate quadratic
forms and nondegenerate symmetric pairings are in natural bijection. In such a
case, we can always write G as Z,, X --- X Z,, where () restricted to each Z,, is
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nondegenerate and (Zy,,Z,;) = 1 for i # j. When |G| is even, things are more
complicated but G will have precisely |G /2G| nondegenerate quadratic forms for
each nondegenerate symmetric pairing (, ). The map a : G — T of Corollary 5 is the
exponential of a nondegenerate quadratic form.

Given a nondegenerate quadratic form ) and a € Z, define the Gauss sum

apla exp(27mia
qla) \/WZ p(2mia Q(k)) .

keG

For example, note from (3.2) that the quantity ¢* of Corollary 5 is a Gauss sum.
Provided a@ is nondegenerate, ag(a) will be a root of unity (this is a consequence of
Proposition 7(a) below). All Gauss sums needed in this paper can be computed from
the classical Gauss sums, corresponding to G' = Z,, and Q(g) = mg?/n, which equal

(%) forn=41
i (%) forn=43
0 forn =4 2 ’

(1+1) (%) whenn=,0and a =4 £tm

where (%) is the Jacobi symbol. For n even, these classical Gauss sums are not

modulus 1, because mg?/n is degenerate in Z,.

Proposition 7(a) Let Q be a nondegenerate quadratic form on any abelian group G.
Define matrices
8% = —={g,h) T2, = B8y exp(27i Q(g)) (4.59)
g’h - \/@ g’ Q Y g’h - g,h eXp 1 g 9 .

for any a, B € C. Then S9,T9 define modular data iff « = £1 and 82 = aag(1). In
this case, the identity is ag.

(b) Let G,G" be abelian groups of odd order n and n + 4 respectively. Choose any
nondegenerate quadratic forms Q and Q' on them, and write (g, h) = (g, h>(”+1)/2 and
(8,7) = (B forall g, h € G, B, € G, 50 Qg) = (g,9) and Q'(7) = (7,7)"
Let ® consist of the following n(n+3) =n+n+n(n—1)/24+n(n+3)/2 elements: a,
Vg e G; b, Yh € Gy ey =i Vel € Gwithk #1; and 0y, =0,y VM € G,y € G,
v # 0. Define

T = diag((g, 9); (h, h); (k, 1); (m,m) (v, 7)),
(g,9")? (6+1)(g,n')? (0 +2)(g, k' +1") 5(g, m’)?

oo 1| +nhg)? (h, 1) (6 +2)th, 7+ 1) —~3(h,m')?
ST = Y| er2RFTy G+EFIRT (6+2) (BRI + R DLE)) 0
5(m. g’ —3(m, 17)? 0 —stmm’) (12 + 7Y

where X is given in (4.14). Then these define modular data iff ag(l) ag (1) = —1.
The identity is ag.
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The straightforward proof is by direct calculation: S? = C, S* = CS, ST*S =
TS*T, and Verlinde’s formula (4.11). In (a), o* = 1 arises from the requirement that
S? be a permutation matrix. The conditions o®8* = ag(—1) and ag(—1)ag (—1) =
—1 for (a) and (b) respectively both come from ST*S = T'S*I". We find that the
fusion coefficients of part (a) are N, ; n = Okgth, €very primary is a simple-current,
and charge-conjugation C' acts by —1. In (b), charge-conjugation sends a, — a_,,
by, — b_p, ¢y c_p 1, Oy > sy 4. The nonzero fusion coefficients there are

Nag,anar = Nag,on,br = Nogby.b, = Nogby00, = g+ h+k);

Ny pip o =0(g+h+1)0(g+k+k)+(g+h+k)i(g+h +k)e{0,1};

Nagon s, =0(g+h+k)dpy;

= Nogppon, =029 +2h +k+K);

Noycprcr v =029 +h+k+h0 +k)+6(g+h+1)o(g+k+k)

+0(g+h+KE)o(g+n +Ek)e{0,1,2};

(g+h+k)(1—05,);

(g+h+g +n+2k);

(g+ h+2k+2K);

(g+h+g +hW+¢"+W)1+6(g+g +9g")+0(g+h +g"
+6(g+g +h)+8(g+H +n") €{0,1,2};

Nogooy o n =0(g+g +g" )1 =0(y++"+7")=d(v=+"+7") = (v +79" ="

—d(y =" —=1")) €{0,1},

N,,
th,mcg/,hubk,w

N

0h,8:0k,~

9,10k, 8,0k ~

o
o
)
o

cg,hvcg’,h’vcg”,h”

where we write 0(¢g) = 1 or 0 depending on whether or not g = 0.

The modular data of (b) factorises into a tensor product of modular data from
(a) corresponding to @ (and some choice of «, 3), with modular data possessing n+ 3
primaries ® = {ag, by, ¢4 _r = ¢_gx, 004 = 00—~} and S, T matrices

T' = Bdiag(1;1; (k, —k); (v, 7)),

1 d+1 6+2 1
al 1l 1 S+1 1 5+2 -
S'——(———) §+2 §+2 (6+2)((k K2 + Tk k’)2> 0
2 n / 4 k) 9y
v n 5 —4 0 =6 ((%7’>’+<%7’>’)

We'll let MDg o (Q, Q') denote the modular data of (b). Of course, associating
SLy(Z) representations to quadratic forms is an old story. See for instance [28§],
who study these in similar generality (though their G are p-groups, and they require
p = 1), and call these Weil representations. To our knowledge, Proposition 7(b) is
completely new, but what is more important is its relation to near-group doubles:

Conjecture 2. When |G| = n is odd, the modular data for G+n is MDg e (Q,Q'),
where @) is the nondegenerate quadratic form on G corresponding to (,), and Q' is a
nondegenerate quadratic form on some abelian group G’ of order n + 4.
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This is true for all groups G of odd order < 13 (recall in Table 2). The easi-
est way to verify modular datum are equivalent is to first identify their T" matrices
(straightforward since they must have finite order) and then compare the floating
point values of the S matrices — see Section 4.1 of [12] for details. In all cases in
Table 2, G' = Z, 4, except for the first entry for G = Zs when G’ = Z3 x Z3. The
quadratic form @’ is then identified in Table 2 by the integer m’ in the @' column.
For the first entry of G = Zs, Q'(71,72) = (7% +3)/3.

Even for n = 3, this is vastly simpler than the modular data as it appears in
Example A.1 of [21]. In fact we have no direct proof that they are equal for n = 3 —
our proof that they are the same is that they both yield nonnegative integer fusions,
they have the same T matrices, and their S matrices are numerically close. The
simplicity of this modular data MDg (G, G’) supports our claim that the doubles
of these near-group categories G + n should not be regarded as exotic. We would
expect that these doubles are realised by rational conformal nets of factors, and by
rational vertex operator algebras.

The quantum-dimensions S, 0/So 0 are 1, d+1, 6+2, ¢ for primaries of type a, b, ¢,d
respectively. We see from the above that the a, are simple-currents, and obey the
fusions a, * ap, = agyn, ag % by = bgin, g * chp = Copngik, and ag * 0 = Vgip -
They form a group isomorphic to G, and act without fixed-points. They supply the
ultimate explanation for the G-action of Proposition 6.7 of [21]. The phases ¢, (z)
defined by Sa,z = ©4(y)Sa,y are (g, h) for aj, by, 04, and (g, k + 1) for ¢ .

The Galois symmetry is useful in understanding the modular invariants. For

(e Zz(n iy ag = agy or by, depending on whether or not the Jacobi symbol (ﬁ)

equals 1. Similarly, bg = by, or ayy respectively. Finally, c’;h = ¢yg,0n and Ogﬁ = 0¢g,0~-

All parities €(x) = +1 except for €,(3,,) = <ﬁ> The requirement of a coherent
Galois symmetry is what led us to the simplified modular data given above.

A modular invariant is a matrix Z with nonnegative integer entries (often formally
written as a generator function Z = )" _, Za7bchac_hb), with Zyo = 1, which commutes
with the modular data S, T". It is called iype I if Z can be written as a sum of squares.
There are exactly 3 type I modular invariants when both n and n + 4 are prime (e.g.

for n = 3):

2z, = Z lag|* + Z by |* + Z el + Z 04417
g g g,h 9,y

Zo=Y oy + 0,242 eul?.  Za=lag+bo+ > cyol’.
g g,h g#0

The most important modular invariants are the monomial ones, of form Z =
|XZ40cha|?, as explained in Section 1.3 of [12], as they give a canonical endomor-
phism # as a sum of sectors, and can be used to recover the original system from
its double. This is Miiger’s forgetful functor [27]. For example, there are exactly 3
monomial modular invariants for the modular data of the double of the Haagerup
subfactor; these should correspond bijectively to the three systems found in [14] which
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are Morita equivalent to the principal even Haagerup system (see their Theorem 1.1),
as each of those must correspond to a monomial modular invariant.

We see however that for the MD¢ ¢ (Q, Q') modular data there is only one generic
monomial modular invariant, namely Z3. This suggests that Grossman-Snyder per-
haps isn’t as interesting here as it was for the Haagerup (at least not for general n).
On the other hand, recall our comments earlier that the type G + n systems with
n = n’ = v? may be related to the Haagerup-Izumi system for groups of order v.
Consider first G = Z, for n = v? a perfect square and write H = vG = Z,; then
MDe¢ o (Q, Q') has at least one other monomial invariant, namely

Z4:|Zah—|—th+2 Z ch,h’|2~ (460)

heH heH h<h'eH

Alternatively, when G = H; x Hy where each H; = Z,, and (Hy, Hy)g = 1 (which
can always be arranged), another monomial invariant is

Zy =lag+bo + Z ¢(h0).0m) | - (4.61)
hEHl,h/EHZ

We would expect that systems of type Z,2 +v? or Z, x Z, +v? should have nontrivial
quantum subgroups in the sense of [14].

It isn’t difficult to see why n + 4 arises here, i.e. why it can’t be replaced by some
other positive integer n’. In particular, after some work, the nonzero fusions of the
form Nppp are found to be 4/(n’ — n);,and the ST*S = T'S*T' calculation requires
the product of Gauss sums for G and G’ to be —1, which forces 4|(n" — n).

When G has even order, the situation is similar but (as always with n even)
somewhat messier; we will provide its modular data elsewhere. Again we have n
simple-currents (the a,), but for each g € G of order 2, a, now has n/2 fixed-points,
which complicates things. The T" entries for the first several even G are provided by
the pairs (m’,m”) in the @’ column of Table 2, and from this the S matrix follows
quickly from the equations of the last subsection. In particular,

{9.9) fﬁf if v+ n/2 is odd
— " 2
Vg7 0.7 &({n,m—w gzl(nfgm) if 74 n/2 is even

where 7, = 0,1 for 7+ n/2 odd respectively even. Here 1 <y < (n+4)/2and g € G
except for v = (n +4)/2 when g € G/2.

Recall our observation in Section 3 of [12] that the modular data of the double of
the Haagerup-Izumi series at G = Z,, resembles that of the affine algebra so(n?+4)®)
at level 2. The analogous statement here is that the modular datum of the double of
type Z, +n near-group systems resemble that of the affine algebra so(n+4)") at level
2. In particular, for an appropriate choice of )’ (corresponding to m’ = (n+3)/2), this
recovers Ty, o, and Sy, o, - This could hint at ways to construct the corresponding
vertex operator algebra.
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