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Abstract

When preparing a design model for engineering analysis, model idealization
is often used, where defeaturing, and/or local dimension reduction of thin
regions, are carried out. This simplifies the analysis, but quantitative esti-
mates of the idealization error, the analysis error caused by this idealization,
are necessary if the results are to be of practical use. The paper focuses
on a posteriori estimation of such idealization error, via both a theoretical
analysis and practical algorithms. Our approach can compute bounds for the
errors induced by dimension reduction, defeaturing or both in combination.
Performance of our error estimate is demonstrated using examples.
Keywords: defeaturing, dimension reduction, model idealization,

CAD/CAE integration, thin plate.

1. Introduction

Engineering analysis is typically performed using the finite element (FE)

method on a mesh derived by discretizing a computer aided design (CAD)
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(a) Original CAD model  (b) Close-up of original (c) Idealized CAD model
CAD model

(d) Mesh for original model, (e) Close-up of mesh for (f) Mesh for idealized model,

61865 elements original model 128 elements

Figure 1: Performing dimension reduction for the horizontal part of the original model in
(a), and suppressing internal features like the one in (b), results in an idealized model (c).

The latter needs far fewer mesh elements to represent it to a desired accuracy.

model. During this process, an initial step of model idealization [1, 2] is often
performed to convert the fully detailed design to a simplified geometry, which
is then used for mesh generation and FE analysis; analysis can be performed
more quickly on such a model. Model idealization includes two main pro-
cesses: defeaturing [3, 4] and dimension reduction[5, 6]. Defeaturing removes
(typically small) design features (or geometric details) that have little im-
pact on the results of analysis, but make meshing more difficult, and cause
the mesh to have a large number of elements. Dimension reduction applies
classical plate or shell theories to reduce three-dimensional boundary value
problems posed on a thin domain to simpler two-dimensional problems, by
making assumptions about solution variation across the domain’s thickness.

An example of an original CAD model and a corresponding idealized model



are shown together with corresponding analysis meshes in Figure 1.

When meshing any model, there is a need to adapt the mesh to the ge-
ometry, while FE analysis requires smooth mesh element size transitions.
Regions of low thickness, and places of high curvature at small internal fea-
tures, lead to a mesh for the original model with far more elements than
needed for a corresponding idealized model, as shown in Figure 1. Removal
of unimportant geometric details and dimension reduction of low-thickness
regions significantly reduces the time and computational difficulty both for
the meshing process, and the finite element analysis performed using that
mesh [3, 7]. In extreme cases, use of a fully detailed model may even lead to
mesh generation failure [7] or ill-conditioned computations [8] which produce
inaccurate analysis results.

The task of model idealization, however, is far from trivial. A report from
Sandia National Laboratories, cited in [9], summarizes that for complex engi-
neering designs, creation of idealized models accounts for about 60% of over-
all analysis time, while mesh generation accounts for about 20% and solving
the boundary value problem takes about 12%. Model idealization is time
consuming mainly due to a lack of proper understanding of the engineering
analysis errors induced by model idealization, which we will henceforth refer
to as idealization errors for short. As a consequence, model idealization is
usually performed manually by the mechanical or structural analysts, based
on their knowledge and experience of dealing with similar analysis problems.
Being able to characterize and predict idealization error are essential, both
to ensure that a desired analysis accuracy can still be achieved after ide-

alization, and as a key requirement if we are to automate the idealization



process.

Often, model idealization produces a mixed-dimension model. Estimating
idealization error has to consider possible coupling errors between regions
of different dimensions, for example, a 3D region and a 2D plate. This
important problem is extremely hard to solve in general. Here, we consider a
less tricky, but still important problem: the idealization error for thin parts
taken in isolation. We consider how to compute bounds on the idealization
error induced by dimension reduction, defeaturing or a combination of both,
as a precursor to automated methods to carry out analysis-aware thin plate
model idealization.

The rest of the paper is organized as follows. Previous work is discussed in
Section 2. The problem of idealization error estimation is defined in Section 3.
Bounds on idealization error are derived in Section 4. Section 5 demonstrates
the proposed estimator using various engineering analysis problems. Finally,

conclusions are drawn in Section 6.

2. Related work

Various research has considered how to simplify a complex CAD model
from a traditional geometry processing point of view [1, 2, 6, 10, 11], but
such approaches are guided solely by the geometric properties of the model
(such as lengths and volumes). They do not attempt to directly estimate
the effects of simplification on engineering analysis, and simply assume that
geometric properties can be used as a proxy for deciding where and when it
is acceptable to modify the model.

On the other hand, in the field of engineering analysis, numerous ap-



proaches have been proposed for a posteriori estimation of FE approrima-
tion error (caused by discretization) [12] or modeling error (caused by the
use of a simple mathematical model to approximate a physical phenomenon
governed by a more complicated mathematical model) [13, 14, 15]. How-
ever, these techniques assume that, during analysis, the underlying geome-
try remains unchanged (in the sense of not being simplified, rather than just
discretized), while idealization typically changes the geometry or topology
of the underlying geometric model. Overall, then, the problem of idealiza-
tion error estimation, in spite of its importance, is rarely studied due to its
cross-disciplinary nature, and has been widely stated to be an open prob-
lem [2, 16, 17, 18].

Topological sensitivity analysis (TSA) [19, 20, 21] has been studied in
design optimization, and is also closely related to the problem of estimat-
ing idealization errors, particularly defeaturing errors. These methods aim
to compute the derivatives of model response quantities with respect to in-
finitesimal topological changes, given an existing geometry. However, design
sensitivity analysis is essentially dependent on asymptotic expansions of tar-
get functionals, which strongly limits the permissible sizes and locations of
the features involved. Furthermore, such approaches are not applicable to
dimension reduction errors.

A few existing papers do directly address idealization error estimation,
considering defeaturing [4, 22, 23] or dimension reduction [24, 25, 26, 27]
separately. The novelty of this paper is to give a unified approach for deter-
mining idealization error caused by a combination of dimension reduction and

defeaturing. This does not just involve summing these two kinds of error, but



must also consider further errors due to their interaction. Even estimating
these two kinds of errors is not straightforward, as solutions are not available
for the full problem (with original geometry) or for the reduced-dimension
problem.

Recently, the concept of feature sensitivity analysis (FSA) was introduced
for arbitrary-shaped features, for various linear problems such as the Pois-
son equation [22], linear elasticity [23] or plate bending [28], which estimates
changes in local linear quantities when removing a single internal feature
(boundary features require additional heuristics). Li et al [29] proposed a
general framework for handling negative features (i.e. features in which ma-
terial has been removed, such as holes) in nonlinear problems, building on
previous results based on the dual weighted method (DWR) [13, 30, 31]; an
adjoint error term is heuristically discarded without further consideration.
The proposed estimate in this paper is derived using a strict theoretical
analysis without using any heuristics for both internal and boundary nega-
tive features. Additionally, instead of approximating the errors, we determine
upper bounds on them, avoiding the significant problems which may arise due
to underestimating errors.

A practical approach in [4] also considers global energy errors for both
negative and positive features, essentially by dividing the original problem
into a simplified model and a localized model around each feature. This is
similar to the idea of domain decomposition [32], but the issue of a general

approach to partitioning applicable to every case remains problematic.
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Figure 2: Original model, model after dimension reduction, and fully idealized model.

3. Problem statement

We now further explain and define the problem of estimation of ideal-
1zation error: engineering analysis error induced by model idealization. We
do so using a specific example of a thin flat CAD model containing a single
negative feature (which could lie in the plate’s interior or on its boundary);
the problem to be solved is a Poisson equation. In general, a posteriori er-
ror estimation is very problem-dependent. We discuss in Section 4.6 how
to extend the basic approach to cases with more complex geometric models,
multiple features, positive features, other boundary conditions, and other
physical problems.

Errors are measured in terms of changes in specific quantities of engineer-
ing interest: for example, average temperature over a local region. These are
goal-oriented errors. They are estimated in an a posteriori sense by making
use of the solution to the PDE problem for the idealized model, but not the

solution for the original complex model.

3.1. A specific problem

We consider a steady-state heat conduction problem posed in a thin flat
plate with an internal hole of arbitrary shape as described below; see Figure 2.
Let the original plate be 2 — © € R3, produced by creating an internal
through hole © € 2 within a simple thin flat plate 2. The two regions €2, ©
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are respectively Q = w x (—=4,d) and © = 0 x (—4,d), where w,f € R? are
bounded domains with piecewise smooth boundaries dw and 96, and § > 0
is the half-thickness of the domain 2 — ©.

The lateral boundaries of 2 and © are given in turn by I' = dw x (-9, 9)
and v = 00 x (—§,6), while the top and bottom faces of 2 — © are denoted
by Ry = {(z1, 22, 23)|(x1,22) € w— 6,253 = £5}. We will use notation
like z = (21, 22) for 2D coordinates, and = = (x1,x9,23) = (T, x3) for 3D
coordinates.

The boundary value problem we choose to study over the plate 2 — O is

to find the temperature u satisfying

(

Lu = 0 inQ-—06,
U = 0 onl,

n-Vu = f* on RT,

n-Vu = 0 onv,

\

where

Lu = -V - (Vu);

f* are the prescribed heat fluxes (independent of u) across the top and
bottom faces R, and n is an outward normal vector to the corresponding
model boundary.

The space of admissible functions for the problem in Eq. (1) is
V={ve H(w—-0)x H'((-1,1)) : v|a, = 0},

where H'(w — ), H'((—1,1)) are the standard Sobolev spaces.
The idealization error may be estimated by using a weak form of Eq. (1),

which may be derived by multiplying both sides of the first equation by a
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function v € V and then performing integration by parts, taking boundary
conditions into account. The corresponding equivalent weak form of Eq. (1)

seeks to find the solution v € V such that

a(u,v) =1(v), forveV, (2)
where
' 10udv _
a(u,v) = /w—é) /_1 59295 +0Vzu - Vzv}dzdz,
and

l(v) = /_a(ﬁ(:z)v(:z, 1)+ f~(2)v(z, —1)) dz;

the notation V; means (0/0x1,0/0x2).

3.2. The idealized problem

The idealized problem comes from a combination of dimension reduction
and defeaturing. Firstly, the dimension reduction process assumes that the
solution does not vary across the thickness, i.e. du/0dz = 0. Secondly, the
defeaturing process suppresses feature © from model 2 — ©. As a result, the
original problem in Eq. (2) is converted to a new analysis problem: find the

solution u satisfying

Loug = fo inw,
(3)

Ug = 0 onJw,
where

L()UO = —25v§ : (VjUO)

As feature © has been removed, the boundary conditions prescribed over
© in Eq. (1) also disappear. This new analysis problem in Eq. (3) is now

defined over the 2D mid-surface w.



Equivalently, we may write: find the solution uy € V; such that

ap(ug,v) = ly(v), for v e Vg, (4)
where
ap(ug,v) = 25/ Vzug - Vzvdr,
o) = [ foola) de, with fy= f*+ 1,
and
1 1 ov
%:{UGH (w) x H ((_171)) : &ZO, U|8w:O}'

Note that the solution ug is defined via a 2D problem over the mid-surface
w. Its extension to its 3D counterpart over €2 is trivial due to the assumption
that the 3D solution is constant in the thickness direction. We still denote
this 3D solution by uy without confusion, allowing us to also say that this

solution is defined over the 3D model €2 whenever needed.

3.3. An intermediate problem

To facilitate derivation of our estimate of the idealization error in the
next Section, an intermediate problem is now introduced and defined. Model
idealization is considered to be a two-step process which first performs di-
mension reduction, resulting in an intermediate model, and then defeatures
the dimensionally reduced model, resulting in the final idealized model; again
see Figure 2. Note that we do not actually need to compute a solution to

this intermediate problem to estimate the final idealization error.
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The solution to the intermediate analysis problem is denoted wu;. Per-
forming dimension reduction, and letting du/dz = 0 in Eq. (1), gives the

problem: find the solution u; such that

Louy = fo inw-—40,
Uy = 0 on Jw, (5)
n-Vzu, = 0 on 06.

Note that the interior operator Ly is the same as in Eq. (3), while a new
boundary condition over 06 is prescribed.

Equivalently, we may write: find solution u; € V; such that
ay(ug,v) = ly(v), for v €V, (6)

where

ay(ug,v) = 25/ Vzu - Vzvdr,
w—0

ov

L(v) = / Jw@)ds, Vi={ve V. 5 =0k

Again, u; is computed over the 2D mid-surface, now w — #, and may also

be extended to £2 — © in 3D.

3.4. Idealization error for quantities of interest

The process of idealization changes the mathematical model from opera-
tor L to operator Ly due to dimension reduction, while defeaturing changes
its computational domain, from 2 — © to €2, or w. These differences cause
the corresponding solutions u and ug to differ, affecting the accuracy of the

engineering analysis.
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This difference affects local quantities of interest as we now explain. En-
gineering analysis error, caused by FE approximation or different mathemat-
ical models alike, was originally measured globally in terms of differences in
quantities such as global energies. Global measures are, however, insensitive
to local quantities of interest such as local temperatures, fluxes, etc. Goal-
oriented error measures provide a better way of characterizing error [33], and
are used to study idealization error here.

Following [24, 25], local quantities of interest can generally be expressed
as continuous linear functionals Q(-) of the following form, on the space of

admissible functions V:

Q) = [ (" @@ 1) + g @0l -1) ds g

with g* € L?(w), i.e. the Lebesgue space of square-integrable functions over
w. In other words, we are interested in the accuracy of the solution ug of the
idealized model on those portions of the top and bottom surfaces where g+
does not vanish.

As solutions u and wug differ, this in turn affects any quantity of interest,

Q(up) and Q(u). Their difference is the idealization error:

e = Q(u) — Q(uo). (8)

We estimate this error a posterior: by using solution uy without explicitly
finding u. Practical computation of solution uy will involve certain numeri-
cal approximation errors. The relation between the idealization error under
study to the approximation error will be discussed in Section 6.

We now have a clear mathematical definition of idealization error in

Eq. (8) in terms of the original problem in Eq. (2) and its idealized ver-

12



sion in Eq. (4). Additionally, an intermediate problem has been defined in
Eq. (6), allowing the next section to detail our concrete approach for finding

a bound on the idealization error.

4. Computable bounds for idealization errors

We now give our unified approach for estimating goal-oriented idealiza-
tion error (which may include defeaturing errors and/or dimension reduction
errors). The key idea is to first convert the problem to one of estimating a
unified modeling error defined over the same geometry, which can then be
re-expressed in a residual form using adjoint solutions [12] as weight factors.
We then partition the re-formulated idealization error into three different
terms: a computable term based on the solution defined over the idealized
model, a dimension reduction residual and a defeaturing residual. By finding
bounds on these two residual terms, a computable bound can be derived for

the idealization error, as we now explain.

4.1. From idealization error to modeling error

As the original model €2 — © is contained within the idealized model €2,
ie. 2 — 0O C €, the solution ug is well defined over the geometry 2 —©. It is
then not difficult to see that the solution ug is equal to the following solution
Uy over the region 2 — © (defined over its mid-surface w — @) with certain

Neumann conditions prescribed over the internal boundary 06:

L(ﬂlo = f(] nw— 9,
U = 0 on Jw, (9)
n-Vig = hy on 00,

13



for

aUO

The corresponding weak formulation for Eq. (9) is: find the solution

ho

iy € V; such that
ao(tg, v) = li(v), for v eV, (10)

with

do(tig, v) = 20( /

w—>0

Vit - Vv dz — / hov ds).
90

Equality of ug and 1y over w — 6 shows that

e = Q(u) — Qup) = Q(u) — Qo).

By this process, the idealization error defined over different geometries (2 —©
and w (on the left-hand side) has been converted into a modeling error defined

over the same geometry 2 — © (on the right-hand side).

4.2. Modeling error estimation

The modeling error Q(u) — Q(1p) can be estimated using adjoint theory.
For a specific primal analysis problem, for example, the one in Eqs. (2)
and (10), and a target functional (), an adjoint problem can be defined [12].
Its corresponding adjoint solutions are typically used as weight factors in a
posteriori goal-oriented error estimation techniques. For a good introduction
to adjoint theory, see [34].

The adjoint problems for the primal problems in Eqs. (2) and (10) with
respect to a linear target function () are: find solutions p € V, py € V;
such that

a(gv) =Qv), wveV, (11)

14



and
ao(v,po) = Qv), v eV (12)

Define the residual R(u,v) = I(v) — a(u,v). From the equality @y = ug

over {2 — O, we then have

Qu) — Qo) = a(u,p) — a(to,p)
= U(p) — a(do, p)
= R(uo,p).

The result is summarized below.

Lemma 1. The idealization error defined by Eq. (8) can be expressed as

below, assuming a linear quantity of interest Q(u) defined by Eq. (7):
Q(u) — Q(uo) = R(uo,p), (13)
where p is the adjoint solution defined via Eq. (11).

4.3. Residual terms

The residual R(ug,p) in Lemma 1 can be partitioned into three different
terms, which we handle separately.

Writing
R(“a ’U) = Oé(U, U) - Z(U), Rt(u7 U) = O‘t(ua U) - lt(v)a
it can be easily verified that

Q(u) — Q(ug) = R(uo,p) = R(ug, po) + R(uo,p — po)-

15



SO

Q(u) — Q(ug) = R(uo, po) + R(uo, pr — po) + R(ue, p —py) + R(uo — ug, p — py).

As p; = po for z = +1, and duy/0z = 0, it follows that R(ug,v) = Ry(ug,v).
Similarly, R(uo,po) = Ri(ug,po). Additionally, R(ug — us,p — p) = Ry(ug —

ug, p — p¢) = 0, leading to the following lemma:

Lemma 2. The idealization error can be expressed as a sum of three terms:

Q(u) — Qug) = Ry(uo, po) + Ry(uo, pr — po) + R(us, p — py),

where Ry(ug, po) is readily computable from the solution to the idealized prob-
lem, R(uy, p — py) is the dimension reduction residual, and Ry(ug, p; — po) 18

the defeaturing residual.

In the above equation, the first term Ry(ug,po) can be easily evaluated
using the primal and adjoint solutions wg, py defined over model w. Thus, to
estimate Q(u) — Q(ug), we need to simply estimate the dimension reduction
residual R(us, p — p;) and the defeaturing residual Ry(ug,p; — po), which we

consider next.

4.4. Bounds for the defeaturing residual
Estimating the defeaturing residual R;(ug,p; — po) is considered in this
section. The following result shows how to convert the residual into a bound-

ary integral:

Lemma 3. The defeaturing residual may be rewritten as

auo

Ri(uo, pt — po) = 25/ ho(pe — po) ds, where hy = T
00 n

16



Proof: From the definitions of R,(-,-) and Egs. (10) and (6), we have

Ri(ug,v) = au(ug,v) — l;(v)
= oy(ug,v) — & (ug, v)

= 20 | hovds.
90

Replacing v by p; — pg completes the proof. n
The above Lemma shows that the defeaturing residual completely de-
pends on the adjoint error p; — py over the internal boundary 96. It is not

difficult to verify for p; — py that

/ V(pi — po) - VodV = dov ds, for, dy = %.
w—>0 o0 on

Thus, the following bound can be deduced for the defeaturing residual.

Theorem 1. The defeaturing residual is bounded as follows:

Ry(uo, pr — po) < 26C%||ho|| 1200 l| dol| L2(56),

where C' is a constant only dependent on the geometry of region 2 — O, and

. Oug o dpo

ho= 280 g, = 90
" on’ " on

We discuss the value of C later.

Proof: Define

at(va U)
20

1]l 5os) = / Vo Vo ds
w—0

From the Trace Theorem, a const C' exists such that for v € V,

vl 2(aw-0)) < Cllv|lEw—0);

17



where C' is a positive constant only dependent on the geometry of region

) — ©. Then,

lau(pr — po,v)| = 26| | dovds|
00

20||dol| L2 (06) ||V | L2 (6)

IN

IN

20|[doll 2 o0y 01| 2 (o-0))

IN

20|\dol| 2(00)C[|v[| E(w-0)-

Replacing v = p; — pg in the above equation, we thus obtain

26||pe — p0||2E(w—0) = a(pt — po, Pt — Po)

IN

26|dol| 290 CllPt — Pol E(w—0)

or equivalently
lpe = pollBw—-0) < C||dol|L2(00)-

Thus from Lemma 3,

|Ri(uo,pe — o)l < 26| [hollz2(a0) IPe — PollL2(00)

IA

20C || ho | 22 (00) [|P: — Poll B(w—0)
< 26C% | hol| L2 a8yl dol| L2 (o6)

completing the proof. O
The above derivation shows that the constant C' should ideally be set to

O — |pe — poHH(ae).
Hp - pOHE(w—G)

However, since the solution p is not available, instead we may in practice use

an estimate of
||po ||L2(8(w—0))

C=X\
10l £(—0)

(14)

18



where A is a balancing constant set to the ratio of the measure (length or area)
of the overall non-homogeneous Dirichlet boundary to that of the feature
boundary 06. The reason behind this can be observed from the different
numerators of the above equations, respectively defined over 90 and 0(w —6).

A alms to balance such area differences.

4.5. Bounds for the dimension reduction residual

Estimation of the dimension reduction residual R(u:,p — p;) is discussed
next. Unlike previous approaches to dimension reduction error, in this spe-
cific problem, none of the solutions wu;, p;, or p are known. We must estimate
dimension reduction error a priori without use of any pre-computed solu-
tions. We do so using previous results from [24, 25].

Let
== =0t/

Lemma 4. The dimension reduction error eg = u — uy is bounded globally

as follows:

20 | e o
leoll o) < Copp = §||f 1200y + 2001 f° 7200

Proof: The proof can be obtained using the Peano Kernel Theorem [35],
by following similar lines to those used in [24]. O

Similarly,

- 20, . o
p _pOHJZE(Qf@) < Cipp = gHQ H%Q(Q—G) +24|lg ||%2(Q—@)

for

=" —97)/2 ¢=(g"+97)/2

19



where g, g~ are defined in Eq. (7).
Using these we arrive at the following bounds on the dimension reduction

residual:

Theorem 2. The dimension reduction residual R(us,p — p;) is bounded as

follows:

R<ut>p - pt) § Cuppéupp- (15)

Proof:

|R(utap_pt)‘ = |l(p—])t)_0‘<ut7p—pt)|

= |a(u,p—p) — a(u,p—p)l

|o(u — ug, p — )|

IN

v — ul| pa-e)llp — Pell (-0

S Cupp C_-’M pp D

Combining Lemma 2, and Theorems 1 and 2 gives the following overall

theorem bounding idealization error:

Theorem 3. The idealization error defined by Eq. (8) is bounded below by

Q(u) - Q(Uo) S Rt(u07p0) + Cuppgupp + CQ25HhOHL2(69)HdOHLQ(ae)- (16>

4.6. Discussion

We now discuss potential limitations of the proposed bounds, and its pos-
sible extension to other general cases. Our approach depends on the following
four main steps to achieve the error bounds: (I) converting idealization error
into modeling error based on Eq. (9) in Section 4.1, (II) re-formulating mod-

eling error based on adjoint theory (Theorem 1) in Section 4.2, (III) building

20



bounds on the dimension reduction residual based on Theorem 2, and (IV)
building bounds on the defeaturing error residual based on Theorem 1.

Specifically, step (I) works as long as the original model is contained
within the idealized /simplified model. This means all features must be nega-
tive (i.e. remove material). Step (II) works as long as the primal and adjoint
solutions over the original model and over the idealized model lie in the same
solution space. Removing features with Dirichlet boundary conditions (or so-
lution values are set along boundary) will result in different solution spaces,
in which case our method cannot be used. The first two steps work for both
defeaturing and dimension reduction.

Step (III) applies to dimension reduction. Basically, the dimension re-
duction process involves a process of building the analysis problem over an
extracted mid-surface (from a thin model of constant or varying thickness).
If boundary conditions over the lateral faces are not constant across the
thickness, it is not a trivial issue to set corresponding boundary conditions
for the mid-surface boundary, which is why we assume free lateral boundary
conditions for the original problem in Eq. (1). For the same reason, the local
quantity takes the form in Eq. (7) so that it can also be easily defined over
the idealized model w. If this issue can be resolved, specific geometric forms
(for example, plates of varying thickness) are not essential as long as the
analysis problem for the idealized model is well defined. By utilizing other
approaches to estimating the dimension reduction error for other kinds of
shells [26], our proposed technique can be extended to further cases.

Step (IV) also works to bound the error even when simultaneously remov-

ing multiple negative features. This is because it does not need additional
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computations provided the primal and adjoint solutions ug, pg are computed
from the idealized model; furthermore, the constant C' does not depend on
concrete solutions. Thus, in the case of multiple features, the residual esti-
mate is found simply by summing the derived error bounds together.

In summary, the accuracy of the derived error bound in Theorem 3 de-
pends on the three different terms on the right hand side of Eq. (16). The
first term R:(uo,po) can be exactly evaluated (without estimation) once the
solutions ug, pp have been computed, ignoring any numerical approximation
errors. This term generally accounts for the largest contribution to the over-
all estimated idealization error, and thus a final idealization error estimation
with high accuracy can be generally expected. The other two residual terms
are estimates and may reduce the accuracy of the final idealization error es-
timate. Specifically, accuracy of the dimension reduction residual, i.e. the
second term on the right hand side of Eq. (16), depends on those of the energy
norms of the primal and adjoint solutions; See also Eq. (15). Nice experi-
mental performance has been observed for such error estimates in [25], which
may generally further ensure the accuracy of the second estimated term. In
rare cases, u — u; and p — p; may have different signs, and the term may
significantly overestimate the error. It can be further refined by using the
parallelogram identity [25, 36]. The last term involves no approximation, but
does depend on a constant C' whose value must be determined. Essentially,
no theoretically sound approach exists for finding such a constant except in a
very few special cases. In Section 4.4 we provide a simple heuristic approach
for setting this value. We note that obtaining an exact or tight value for

constant C' is not essential due to the dominant contribution of the first term
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to the overall idealization error. Our experiments in the next section verify
this assertion. Nevertheless, a reliable strategy for giving a value to C' based

on solutions ug, pg needs further research.

5. Experimental results

Applying Theorem 3 for idealization error estimation is straightforward to
implement for a single feature. We compute the primal and adjoint solutions
up, po over the idealized model w with a sufficiently dense mesh (ignoring
numerical approximation errors), and then evaluate the error bounds based
on the theorem. Our approach for estimation of idealization error has been
implemented on a 2.8GHz dual quad-core processor with 4GB RAM using
COMSOL [37], a commercial finite element based CAD/CAE system. We
have tested the approach’s accuracy for 2D defeaturing cases in Section 5.1,
for 3D idealization in Section 5.2, and finally for a complex example with
multiple features in Section 5.3.

The accuracy of an error estimate is usually measured in terms of effec-
tivity index, defined as the ratio between the estimated error e and the exact
error F, that is,

I=e/FE. (17)

For goal-oriented error estimation as considered in this paper, it is gener-
ally believed to be difficult or expensive to obtain highly accurate error
estimates [38]. In practice, effectivity index values up to 10 can still be
useful [39]. Nevertheless, Estep has provided accurate and inexpensive com-
putable goal-oriented error estimates [40]. We leave the reader to form their

own judgement on the results reported here.
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In these examples, the exact error £ = Q(u) — Q(ug), denoted Ezact, is
evaluated in practical terms by directly computing the field solutions u, ug
from Egs. (1) and (3) over sufficiently dense meshes. We ignore any discrete
FE approximation errors, and use the resulting values as ground truth for

comparisons.

5.1. Defeaturing error estimates

Idealization error is a combination of dimension reduction error, and
defeaturing error. Performance of our dimension reduction error has been
demonstrated in previous work [24, 25]. We thus first show here the perfor-
mance of the defeaturing bounds we have derived (denoted Upp) based on
Theorem 1, for an analysis problem defined over a 2D example in Figure 3,
in the same form as Eq. (5). The const C involved in evaluating Upp was
computed via Eq. (14). We compare the derived Upp to the ground truth,
denoted Ezact as explained above, and the error R;(ug,po) without further
approximations, denoted App.

The model in Figure 3 contains an internal elliptic hole F} with semimajor
and semiminor axes of @ and a/2, and a boundary circular feature F» of radius
b; values of a, b are explained later. In this example, the internal boundary
was set free, and other outer boundary conditions are depicted in Figure 3.

The quantity of interest is defined over a circular region .S with radius 0.2 to

be
Qu) = / udsS.
S
In our tests, we took feature F} or F, as the target negative feature to be

suppressed. First consider feature Fj. Figure 4(a) shows for the quantity of
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Figure 3: A defeaturing error estimation problem.
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Figure 4: Idealization error estimates for the internal elliptic hole shown in Figure 3.

interest how the estimated error bound Upp and the estimated error App vary
with the feature’s semimajor axis a, compared to the ground truth Ezact;
values of a were varied from 0.1 to 0.2 with a step size of 0.01. Results are
compared using effectivity indices plotted in Figure 4(b). As can be seen,
our estimates provide close upper bounds for the exact value with effectivity
indices ranging between 1.3 and 1.6, demonstrating that it is highly effective
in estimating defeaturing error.

Next consider feature F,. Similar experimental results for changes in the
boundary circular feature are summarized in Figure 5 (A in Eq. (14) is set 1
in this example); values of b were varied from 0.1 to 0.3 with a step size of

0.02 in this test. Again, our error estimates bound the exact value and are
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Figure 5: Idealization error estimates for the boundary circular hole shown in Figure 3.

close to it, with effectivity indices ranging from 1.3 to 2.5 as the radius of

the circular feature changes.

5.2. Idealization error estimates

Our approach was also tested on the example in Figure 6 to determine
its effectivity in estimating idealization error caused by a combination of
dimension reduction and defeaturing. The internal hole is taken as the target
feature to be suppressed. The example follows the definition in Section 3,
and is not further explained here. The quantity of interest is defined over

the top face RT as

Qu) = /mudS.

In this example, effectivity of the idealization error estimate was tested
under simultaneously changes of both the plate’s height and the internal
hole’s size, thus forming an error surface shown in Figure 7(a). In this ex-
ample, besides the estimated upper bounds Upp and the ground truth values
Ezact, we also computed for comparison the approximated error as Ry (ug, po)
and lower bounds set as R;(tg, Po) — CuppCupp — C’2||h0||L2(39) l|dol| L2(99) and de-

noted Low.
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Figure 6: Example of an idealization error estimation problem.

The estimated values, including its lower and upper bounds, are compared
to the ground truth in Figure 7(a), and the corresponding effectivity indices
are plotted in Figure 7(b). As can be seen from Figure 7(a), the estimated
upper and lower errors bound the ground truth errors, with corresponding
effectivity indices ranging from 1.0 to 2.7, and 0.3 to 1.0. Furthermore, the
estimated value also approximates the ground truth with effectivity indices
ranging from 0.4 to 1.0. All demonstrate the effectivity of our error esti-
mation approach. Strangely, the accuracy of error estimates was worse for
small values of the heights and the features’ sizes. This was perhaps due
to discretization errors that are assumed ignorable, but it is hard to ver-
ify this claim due to the computational requirements. When the errors are
small, discretization error plays a major role, and it is harder to estimate
the idealization error accurately. This situation can be worse when a locking
phenomenon happens in solving a very thin structure [41]. Results could be
improved by further considering the numerical approximation error involved

in computing ug, as further discussed in Section 6.

27



0.08
01 0.1 nn2 n1

(a) Error comparisons (b) Effectivity index

Figure 7: Idealization error estimation results for the problem in Figure 6.

5.8. Multiple features

We also tested the accuracy of our approach for the complex plate model
in Figure 8, which represents a simplified version of the model in Figure 1(a).
The model’s symmetry allows us to concentrate on four features labeled
Fy, ..., Fy; other features of larger size are not studied here. Meshes of the
original thin model are shown in Figure 8(b). The analysis problem is defined
following Section 5.2.

In this test, we took the idealized model as the mid-surface by removing
the 20 features including F},..., F, and their symmetric counterparts, as
shown in Figure 9. An error bound was computed for each feature based on
Theorem 3. The estimated bounds were compared with the ground truth
values in Figure 10. As can be seen these computed values bound the ground
truth value tightly with effectivity indices ranging from 1.0 to 1.2. Based on
the these computational results, all 20 features can be removed, leaving an

idealized 2D model in Figure 9.
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(a) Original plate (b) Original mesh model

Figure 8: Example of an idealization error estimation problem for cases of multiple fea-

tures.

(a) Idealized plate (b) Mesh model of idealized plate

Figure 9: Idealized model and its mesh form for the model in Figure 8.

6. Conclusion and future work

The paper provides a unified approach to estimating the idealization er-
ror caused by defeaturing, dimension reduction or their combination. Simply

using an approach either targeting defeaturing, or dimension reduction, or
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Figure 10: Idealization error estimation results for the problem in Figure 8.

simply summing the absolute values or the error due to each independently,
are inadequate—we must also consider their interaction. Instead of an ap-
proximate error estimate, we build error bounds, which are important have
confidence in the results. Our experimental results indicate that our error
estimates both bound the true error and have an effectivity quite close to 1.

On the other hand, the proposed approach to idealization error estimation
assumes that the solution wug is exactly known. However, in practical engi-
neering analysis, solution ug is only computed approximately as a numerical

solution uff. We actually should seek an estimate of the error
e" = Qu) — Q(up).

Noticing that

e" = Q(u) — Q(ug) = (Q(u) — Q(uo)) + (Q(uo) — Q(up)),

" as a summation between the computed idealization

we can thus compute e
error Q(u) — Q(up) and the approximation error Q(ug) — Q(ul). Estimation
of the latter error can be achieved using various well developed techniques,

for example, as reviewed in [12].
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