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Abstract

In the present study, we have taken the novel approach of using an in vitro model representative of tamoxifen-withdrawal
subsequent to clinical relapse to achieve a greater understanding of the mechanisms that serve to maintain the resistant-
cell phenotype, independent of any agonistic impact of tamoxifen, to identify potential novel therapeutic approaches for
this disease state. Following tamoxifen withdrawal, tamoxifen-resistant MCF-7 cells conserved both drug resistance and an
increased basal rate of proliferation in an oestrogen deprived environment, despite reduced epidermal growth-factor
receptor expression and reduced sensitivity to gefitinib challenge. Although tamoxifen-withdrawn cells retained ER
expression, a sub-set of ER-responsive genes, including pS2 and progesterone receptor (PgR), were down-regulated by
promoter DNA methylation, as confirmed by clonal bisulphite sequencing experiments. Following promoter demethylation
with 5-Azacytidine (5-Aza), the co-addition of oestradiol (E2) restored gene expression in these cells. In addition, 5-Aza/E2
co-treatment induced a significant anti-proliferative effect in the tamoxifen-withdrawn cells, in-contrast to either agent used
alone. Microarray analysis was undertaken to identify genes specifically up regulated by this co-treatment. Several anti-
proliferative gene candidates were identified and their promoters were confirmed as more heavily methylated in the
tamoxifen resistant vs sensitive cells. One such gene candidate, growth differentiation factor 15 (GDF15), was carried
forward for functional analysis. The addition of 5-Aza/E2 was sufficient to de-methylate and activate GDF15 expression in
the tamoxifen resistant cell-lines, whilst in parallel, treatment with recombinant GDF15 protein decreased cell survival. These
data provide evidence to support a novel concept that long-term tamoxifen exposure induces epigenetic silencing of a
cohort of oestrogen-responsive genes whose function is associated with negative proliferation control. Furthermore,
reactivation of such genes using epigenetic drugs could provide a potential therapeutic avenue for the management of
tamoxifen-resistant breast cancer.
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Introduction

Despite the obvious benefit tamoxifen has provided for millions

of oestrogen receptor alpha (ER) positive breast cancer patients

worldwide, almost all patients with metastatic disease and as many

as 40% of patients receiving adjuvant tamoxifen will acquire

resistance to the drug’s inhibitory effect on breast cancer cell

proliferation [1,2]. Originally it was thought that the acquisition of

resistance was caused by a loss or mutation of the ER, as is often

the case in patients with intrinsic anti-hormone resistance [2,3].

However, it has since been shown that breast cancer cells that have

lost anti-oestrogen sensitivity often retain an ER positive

phenotype with normal ER functionality [4,5]. In tamoxifen

resistant breast cancer, ER interacts with deregulated growth-

factor pathways, facilitating resistant cell proliferation [2,6]. This

cross-talk can be targeted with other hormonal therapies such as

the pure anti-oestrogen fulvestrant [7], which depletes ER.

However, it too is subject to the subsequent development of

resistance mechanisms [8], whilst growth-factor pathway blockade
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(e.g. gefitinib) has also proven relatively disappointing in the clinic

to date [9], suggesting further key mechanisms underlie anti-

hormone resistant growth.

Recent literature suggests that although the interruption of ER-

signalling by long-term tamoxifen exposure does not appear to

deplete ER-expression, it can induce epigenetic modifications to

ER-regulated gene promoters, leading to sustained alterations in

phenotype [10]. Tamoxifen-bound ER is recruited to oestrogen

response elements within a target gene promoter, much the same

as oestrogen-bound ER. The inhibitory effect on ER-regulated

gene transcription caused by tamoxifen is the result of conforma-

tional changes within the ligand binding domain of the ER that

provide docking sites for co-repressors of transcriptional activity,

including NCoR/SMRT [11], REA [12], RTA [13], SAFB1 [14]

and SMAD4 [15]. As part of their inhibitory function, these co-

repressors recruit histone de-acetylases (HDACs) to the receptor

complex which serve to modify the chromatin environment

surrounding the promoter to which the complex is bound. For

example, during tamoxifen-induced suppression of the classically

regulated oestrogen responsive gene, pS2, the time course of

recruitment of the HDAC complexes precisely coincides with that

of the deacetylation of histone H3 and H4 tails at the target

promoter, providing crucial support for the hypothesis that

tamoxifen functions as an antagonist in breast cells by inducing

epigenetic modification [16]. Significantly, gene promoters sup-

pressed in such a manner are vulnerable to more permanent

epigenetic changes, such as promoter methylation [17]. DNA-

methyl transferase DNMT-1 and DNMT3a/DNMT3b bind

HDAC2 and HDAC1, respectively, to achieve effective gene

silencing [18,19]. A study by Fan et al (2006) showed that 75% of

genes that were up-regulated in oestradiol-treated parental MCF-7

breast cancer cells ($2 fold increase in expression), were no longer

inducible in a tamoxifen-resistant sub-line, highlighting the

potential scale of this phenomenon [20].

Although several studies have shown that long-term tamoxifen

treatment can induce distinct global gene expression and promoter

DNA methylation profiles in breast cancer cells [10,20], it is

unclear how this event might contribute to anti-hormone resistant

cell proliferation. Interestingly, long-term tamoxifen treatment of

MCF-7 cells decreased levels of several pro-apoptotic genes and

impaired the subsequent apoptotic response to etoposide treat-

ment [21]. Another study conducted by Wu et al (2007) used

SAGE analysis to show that the expression of the tumour

suppressor gene retinoblastoma binding protein 8 (CtIP) was

decreased in models of acquired tamoxifen resistance, where its

knockdown in MCF-7 cells promoted tamoxifen resistance, and

induction restored response [22]. Promoter methylation of the

tumour suppressor genes identified in these studies was not

examined; however, such data suggest that long-term tamoxifen

treatment may induce genotypic changes that contribute to anti-

hormone resistant cell proliferation.

The research question addressed in the present study, therefore, was

whether ER-regulated genes associated with an anti-proliferative

function were silenced by promoter methylation in tamoxifen-resistant

breast cancer cells as a consequence of prolonged tamoxifen treatment;

and whether re-activation of such genes could induce an anti-

proliferative response and thus provide a potential therapeutic avenue

for the management of tamoxifen-resistant disease.

Materials and Methods

Cell Culture
ER-positive, MCF-7 breast cancer cells, given to our laboratory

by AstraZeneca (Cheshire, UK), were maintained in RPMI-1640

based medium containing 5% (v/v) FCS, antibiotics (streptomycin

(10 mg/ml), penicillin (10 IU/ml), fungizone (2.5 mg/ml)

(RPMI+5%). All tissue culture media and constituents were

purchased from Invitrogen and plastic-ware was obtained from

Nunc. Tamoxifen-resistant MCF-7 (TAM-R) cells were generated

by the long-term culture of MCF-7 cells in phenol-red-free RPMI

medium containing 5% charcoal stripped FCS and 4-OH-

tamoxifen (161027 M) (TAM) (Sigma-Aldrich) as previously

described [23]. In the present study, the TAM-R cells were

maintained in TAM-free medium for up to 6 months to produce

tamoxifen-withdrawn TAM-R cell sub-lines (1, 3 and 6 month

withdrawal). Throughout this study TAM-Wd refers to TAM-R

cells withdrawn from tamoxifen for 6 months unless otherwise

stated. The authenticity of all cell-lines was verified by STR

profiling (CellBank Australia, Westmead, NSW, Australia).

Proliferation and Dose Response Analysis
Cells were seeded into 24-well plates at a density of 16104 cells/

well. After 24 hrs, the treatments were added. Dose response

experiments using 4-OH tamoxifen (1610210 M to 161026 M),

gefitinib (AstraZeneca) (161029 M to 161026 M) and oestradiol

(Sigma-Aldrich) (E2; 1610212 M to 161027 M) in the presence of

5-azacytidine (Sigma-Aldrich) (161026 M) and/or 4-OH tamox-

ifen (161027 M) were terminated after a further 6-days of culture.

Dose response experiments using recombinant GDF-15 protein

(R&D Systems) (1, 3, 10 ng/ml) were terminated after 48 hrs.

Proliferation assays using fulvestrant (AstraZeneca) (161027 M),

gefitinib (161026 M) or 5-Azacytidine (161026 M) in combina-

tion with E2 (161029 M) and/or 4-OH tamoxifen (161027 M)

were monitored for up to 14 days. Cell medium was typically

changed every 3 days and all cell counts were determined by

coulter counter analysis. Data shown represent the findings of 3

independent experiments.

RT-qPCR
The present study used the Applied Biosystems High Capacity

R.T Kit and the DyNAmoTM SYBR Green qPCR Kit

(Finnzymes). RT was carried out on RNA harvested from MCF-

7, TAM-R and TAM-Wd cells 72 hrs post-seeding on to 10 cm

dishes (6E22161029 M) and cells treated with E2 (161029 M),

5-Azacytidine (161026 M), 5-Aza + E2 and 5-Aza + E2+4-OH

tamoxifen (161027 M) for 48-hrs post-treatment. The expression

of the following genes was analysed; ER (59-ggagacatgagagctgc-

caac-39 and 39-ccagcagcagcatgtcgaagatc-59), EGFR (59-caacatctcc-

gaaagcca-39 and 39-cggaactttgggcgactat-59), pS2 (59-catggagaa-

caaggtgatctg-39 and 39-cagaagcgtgtctgaggtgtc-59), PgR (59-

ccatgtggcagatcccacaggagtt -39 and 39- tggaaattcaacactcagtgcccgg

-59), GDF15 (59-tcccgggaccctcagagt-39 and 39-caggtcctcg-

tagcgtttcc-59) and b-actin (59- ggagcaatgatcttgatctt -39 and 39-

ccttcctgggcatggagtcct -59).

Immunocytochemistry
Cells were seeded onto 22-mm2, 3-amino-propyltriethoxysilane

coated glass coverslips in 35 mm culture dishes at a density of

16105 cells/ml and incubated for 24 hrs before treatment (65-

Aza (161026 M) 6E2 (161029 M) for 48 hrs). Coverslips were

fixed and primary antibody was applied (pS2 and PgR -

NovaCastra). Staining was visualised with DAKO EnVisionTM +
system-HRP-labelled polymer and DAKO Liquid DAB+ sub-

strate. Coverslips were counter-stained with methyl-green and

visualised at 106 magnification for evaluation of pS2/PgR

staining and photographed.
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Western Blotting
Briefly, cell lysate samples (40 mg) were denatured, subjected to

electrophoresis separation on SDS polyacrylamide gel and trans-

blotted onto a 0.2 mM nitro-cellulose membrane. Blots were

blocked then incubated with primary antibody (ER- 1D5 DAKO/

EGFR- sc-03-G Upstate Biotechnology/GDF15- Cell Signalling

#8479). Following incubation with the appropriate secondary

antibody, detection was performed by applying a thin film of

Figure 1. Tamoxifen resistant cells retain ER expression and TAM-resistance following withdrawal from the drug. A. RT-qPCR
evaluation of the basal total ER mRNA expression in MCF-7, TAM-R in the presence of TAM) and TAM-Wd cells. Data are shown as arbitrary units after
normalisation to actin (n = 3) (*p,0.001). Lysates were western blotted for total ER protein and b-actin (loading control). Data are representative of 3
independent experiments. B. MCF-7, TAM-R and TAM-Wd cell concentration response to TAM (1610210 M to 161026 M). Cell number was assessed
after 7 days. The data shown represent the percentage cell number relative to non-treated control cells (*p,0.001). The bar graph depicts flow
cytometry data was used to determine the percentage of cells in S-phase following TAM treatment (161027 M). A significant reduction in S-phase
was observed only in the MCF-7 cells (*p,0.001). C. Cell proliferation inhibition in response to fulvestrant (161027 M). Cell counts were taken on days
4, 6, 8 and 11. The data shown represent the cell number relative to time-matched non-treated control cells. Cell counts for all cell-lines treated with
fulvestrant were significantly reduced compared to vehicle treated controls by day 11 of culture (*p,0.001).
doi:10.1371/journal.pone.0040466.g001
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enhanced chemiluminescence reagent (SupersignalTM). Blots

shown reflect the observations from three independent experi-

ments and were standardised for equivalence of loading using b-

actin detection.

Microarray Analysis
Total RNA was extracted from TAM-Wd cells 65-Aza

(161026 M) 6E2 (161029 M) 64-OH tamoxifen (161027 M)

for 48 hrs. Extraction was performed using Tri-reagent (Sigma-

Aldrich) and subsequently DNase treated before quantifying by

spectrophotometry. Three experimental replicates were performed

for each treatment. 5 mg of RNA per cell-subline/treatment was

sent for each of the triplicates to Central Biotechnology Services,

Cardiff University, who performed RNA integrity analysis,

reverse-transcription, labelling and hybridisation to HG-

U133A.2 AffymetrixH gene chips. Following scanning of each

chip and capture of the expression data with MAS 5.0 software,

the data were subsequently uploaded and analysed using

GenesifterTM software (www.geospiza.com) after median normal-

isation and log-transformation. Statistical interrogation of the

expression profiles was then performed within GenesifterTM to

select all those most highly expressed in 5-Aza/E2 treated cells vs

non-treated, E2 or 5-Aza alone and 5-Aza/E2+4-OH tamoxifen

treated cells.

MeDIP-coupled PCR
MeDIP was carried out on DNA extracted from MCF-7, TAM-

R and TAM-Wd cells using the MethylMinerTM Methylated DNA

Enrichment Kit (Invitrogen) according to the manufacturer’s

instructions. QPCR was performed to quantify the abundance of

the following genes; PEG3 (59-gattggcacgtcacagggct-39 and 39-

gcctcccaaacctctcctcc-59), GAPDH (59-tcgacagtcagccgcatct-39 and

39-ctagcctcccgggtttctct-59), RASAL1 (59-gcccttctgcctggaaagtt-39

and 39-ccaccacgcgaacattcag-59), DUSP7 (59-ctttctcggcacgattcga-

39 and 39-ccatcaacaggaaaaaaaaggaa-59), ATP2B4 (59-aggctca-

gagtgcagctattcc-39 and 39- ccaacatcgacccctaatcaga-59) and

GDF15 (59-tcccgggaccctcagagt-39 and 39-caggtcctcgtagcgtttcc-59).

Gene expression is presented relative to the hemi-methylated,

imprinted gene, PEG3.

Clonal Bisulphite Sequencing
Clonal bisulphite sequencing was used to analyse the methylation

status of the promoter regions of three different genes; pS2, PgR and

GDF15. The bisulphite reaction was carried out on up to 1.5 mg of

extracted genomic DNA for 12 hr at 55uC, under conditions

previously described in [24–26]. After bisulphite conversion, the

DNA was precipitated and resuspended in water to a final

concentration of 40 ng/ml. Bisulphite converted DNA was then

analysed by bisulphite PCR analysis. Triplicate PCR amplifications

were performed using the following bisulphite conversion primers:

pS2 FW: 59-gttggtatgaatagttaaaagtattattttgagatttt-39; pS2 RV: 59-

aaaaaaacaataaccaccataaaaaacaaaata-39; PgR FW: 59-tttttygttttgta-

taggatgtattttag-39; PgR RV:59- aaaatcrccctaataaaacaaaa-39;

GDF15 FW:59- tggtttttagatgtttttggtgttgtt-39; GDF15 RV:59-

aatttcccaaatactatacacattcaaaaaaa-39. PCR conditions were opti-

mised as previously described [25,26]. The triplicates of the PCR

products of each condition were pooled to ensure representative

clonal analysis and then cloned and sequenced. After cloning and

sequencing the methylation state of the individual clones was

analysed using BiQ Analyzer software tabulated in a bisulphite map,

to visualize the heterogeneity of methylation.

Flow Cytometry
Cell cycle analysis was achieved by flow cytometric analysis of

propidium iodide-stained, ethanol fixed cells. Apoptotic cell

populations were determined by the detection of M30 positivity

(FITC-conjugated M30 CytoDEATH monoclonal antibody,

Alexis Biochemicals). All samples were run on a BD FACSCanto

II (BD Biosciences).

Statistics
The statistical significance of results obtained when comparing

between cell-lines or when comparing treated cells versus control

counterparts was derived using an independent, two-tailed

Student’s t-test. Where multiple data points were present, data

were analysed using ANOVA with post-hoc tests (p,0.05 was

deemed statistically significant).

Results

In order to provide a cellular model of tamoxifen-resistance that

was representative of tamoxifen-withdrawal subsequent to clinical

relapse, TAM-R cells [23] which are routinely maintained in 4-

OH tamoxifen (TAM) (161027 M), were cultured in its absence

for 6 months. The rationale was that the permanent heritable

changes acquired following long-term TAM exposure would be

maintained following this period, and any agonistic contribution to

cell proliferation would be depleted.

First we determined whether TAM-induced suppression of ER

expression was a permanent feature of the TAM-R phenotype. In

TAM-R cells in the presence of TAM, ER mRNA and protein

expression were significantly reduced compared to the parental

MCF-7 cells, although cells remained ER-positive (Fig. 1a)

(*p,0.001). Tamoxifen withdrawal restored ER expression to

the level detected in the MCF-7 cells (Fig. 1a). Despite the

restoration of ER expression in the tamoxifen-withdrawn (TAM-

Wd) cells, resistance to TAM was conserved following the 6-month

withdrawal period (Fig. 1b). Whilst 6-day treatment with TAM at

a concentration of 161027 M (or greater) significantly reduced

MCF-7 cell counts by 60% (compared to non-treated controls)

(*p,0.001), TAM-R and TAM-Wd cell counts were not

significantly affected. This is concordant with a significant

reduction of MCF-7 cells in the S-phase of the cell cycle following

TAM treatment (*p,0.001); an affect that was not observed in

TAM-treated TAM-R and TAM-Wd sub-lines (Fig. 1b). The pure

ER antagonist fulvestrant (161027 M), however, was able to

significantly inhibit TAM-Wd cell proliferation, as well as the

MCF-7 and TAM-R cell proliferation, consistent with previous

observations [27] (Fig. 1c) (*p,0.001). Importantly, the extent to

which fulvestrant inhibited proliferation varied between cell lines:

TAM-Wd cells were less sensitive than TAM-R which were in turn

less sensitive than parental cells. This implies that the significance

of ER-signalling as a contributor to cell proliferation decreased

following the acquisition of tamoxifen resistance and further

decreased following the withdrawal of the drug, although as in the

clinical setting, some responsiveness to alternative anti-hormonal

challenge clearly remains [7]. In the TAM-R cells, and in the

clinical setting, this phenomenon has been closely associated with

the emergence of alternative proliferative pathways, including

EGFR signalling [23,28]. We therefore next determined whether

the TAM-Wd cells demonstrated continued reliance on EGFR

signalling.

As expected, EGFR expression in the TAM-R cells (in the

presence of TAM) was significantly increased from that expressed

in the parental MCF-7 cells (Fig. 2a) (p = 0.012). In contrast, in the

TAM-Wd cells, EGFR expression was comparable to the parental

Tamoxifen Resistance and Epigenetic Modification
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Figure 2. Tamoxifen withdrawal from resistant cells reduces EGFR expression and gefitinib sensitivity, but not the rate of
proliferation. A. RT-qPCR evaluation of the basal total EGFR mRNA expression in MCF-7, TAM-R and TAM-Wd cells. Data have been normalised to
actin (n = 3) (*p = 0.012). The lower panel shows a western blot of total EGFR protein and b-actin (loading control) (representative of 3 independent
experiments). B. MCF-7, TAM-R and TAM-Wd cell concentration response to gefitinib (161029 M to 161026 M). Cell number was assessed after 7
days. The data shown represent the cell number relative to non-treated control cells. Cell counts for gefitinib treated (161026 M) TAM-R cells are
significantly lower than vehicle treated controls (*p,0.001). C. Inhibition of cell proliferation in response to gefitinib (161026 M). Cell counts were
taken on days 4, 6, 8 and 11. TAM-R cells were significantly inhibited by gefitinib challenge from day 4 of culture (*p,0.001). The data represent the
cell number relative to time-matched non-treated control cells D. Anchorage-dependent proliferation assay of non-treated MCF-7, TAM-R, and TAM-
Wd cells (1, 3 and 6 months withdrawn). Data shown represent actual cell number/well recorded over 3 independent experiments. Counts recorded
for all resistant cell-lines were greater than MCF-7 cell counts from day 4 of culture (*p,0.001).
doi:10.1371/journal.pone.0040466.g002
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cell line (Fig. 2a). When challenged with increasing concentrations

of EGFR inhibitor, gefitinib, the highly EGFR-positive TAM-R

cells showed a significantly greater (albeit incomplete) growth

inhibitory response (,50%), compared to the MCF-7 and TAM-

Wd cells, which were largely insensitive (Fig. 2b). When challenged

with gefitinib at a concentration of 161026 M, the TAM-Rs

demonstrate significantly greater sensitivity (compared to both

MCF-7 and TAM-Wd cells) from day 4 of culture (Fig. 2c)

(*p,0.001). Therefore, tamoxifen withdrawal caused a reduction

in EGFR expression which directly correlated with a loss of

sensitivity to gefitinib. However, despite reduced expression of this

major driver of resistant cell proliferation, TAM-Wd cells

continued to proliferate at a much greater rate than the MCF-7

cells, in a similar fashion to the TAM-R cell-line (Fig. 2d). This led

us to investigate whether TAM exposure had a more permanent

effect on the genes it suppresses, rather than activates, and whether

this could be associated with the permanently enhanced rate of

proliferation.

To explore whether ER gene targets could be permanently

suppressed following long-term TAM exposure, the expression of

the classically regulated genes, pS2 and progesterone receptor

(PgR), was assessed by RT-qPCR and ICC in all cell-lines in the

presence and absence of E2 (Fig. 3a and 3c). Both pS2 and PgR

gene expression were significantly up-regulated in the MCF-7 cells

following E2 challenge (*p,0.001), in contrast to the TAM-R and

TAM-Wd cells, where no significant increase was detected. ICC

showed a concurrent trend at the protein level (Fig. 3a and 3c).

To determine whether promoter DNA-methylation was the

mechanism by which pS2 and PgR were inactivated in the

resistant cells, clonal bisulphite sequencing experiments were

carried out in non-E2 stimulated MCF-7, TAM-R and TAM-Wd

cells (Fig. 3b and 3d). Interestingly, very low levels of pS2

promoter methylation were observed in the MCF-7 cells (10%), in

contrast to the more heavily methylated promoter regions of the

TAM-R (51% methylated) and TAM-Wd (63% methylated) cell-

lines (Fig. 3b). Similarly, none of the CpG residues in the PgR

promoter were methylated in the MCF-7 cells, in contrast to the

more heavily methylated PgR promoters in the TAM-R (10%) and

TAM-Wd (31%) cell-lines (Fig. 3d). Together these data provide

proof of principle that decreased E2-sensitivity at a ER-regulated

promoter region is associated with increased DNA-methylation in

the resistant cell-lines.

MCF-7 and TAM-Wd cells were exposed to the de-methylation

agent, 5-Azacytidine (5-Aza) in combination with E2 to investigate

whether demethylation could restore pS2 and PgR activation in

the resistant cells (Fig. 4a and 4b). Used at a concentration (1 mM)

and length of time (48 hrs) previously shown to provide effective

DNA de-methylation with minimal cell-cytotoxicity [29,30], 5-Aza

had no effect on the induction of pS2 or PgR in MCF-7 cells.

However, in the TAM-Wd cells, 5-Aza restored pS2 and PgR

activation in response to E2 as assessed by RT-qPCR and ICC

(Fig. 4a and 4b) (*p,0.001).

Clonal bisulphite sequencing was used to analyse the methyl-

ation status of the pS2 and PgR promoters in 5-Aza treated TAM-

Figure 3. pS2 and PgR are silenced by DNA-methylation in tamoxifen-resistant cells. RT-qPCR evaluation of pS2 (A) and PgR (C) mRNA
expression in MCF-7, TAM-R and TAM-Wd cells 6 E2 (161029 M) for 48 hrs. Data was normalised to actin (n = 3). Gene expression is significantly
induced following E2 challenge in the MCF-7 cells (*p,0.001). The right panel of the figure shows parallel ICC for pS2 (A) and PgR (B) protein (106
magnification) (representative of 3 independent experiments). Clonal bisulphite sequencing analysis was performed across pS2 (B) and PgR (D) gene
promoter regions in MCF7, TAM-R and TAM-Wd. PS2 (B) and PgR (D) promoter region maps are shown on the left panel. The PCR amplicons (441 bp
for pS2 and 566 bp for PgR) interrogated a total number of 12 CpG sites pS2 gene (B) and 53 CpG sites for PgR (D) located downstream the TSS.
Bisulphite maps determined by direct sequencing of individual clones show the density of methylated CpG site (black circle) and unmethylated CpG
site (white circle) at individual CpG sites. The line plots on the right panel show the percentage of methylation of each CpG site interrogated in each
cell line for pS2 (B) and PgR (D) genes. The lines on the gene promoter maps represent CpG sites and the arrow the Transcriptional Start Site (TSS).
The dashed red box denotes the genomic region with the major changes in DNA methylation that was further analyzed in the line plot.
doi:10.1371/journal.pone.0040466.g003
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Wd cells (Fig. 4c and 4d). The percentage of methylated CpG

residues in the pS2 and PgR gene promoters was reduced from

63% to 54% and from 31% to 23% respectively. Although

complete promoter demethylation was not observed in all clones,

these findings are consistent with previous reports that suggest

gene expression can be restored following partial demethylation of

the promoter region [31–33]. In this instance, the restoration of

gene expression may have been facilitated by other epigenetic

modifiers (e.g. histone acetylases) recruited to the site of

transcription by the active ER/E2 complex [16,34]. Interestingly,

it is apparent that some clones are more sensitive to 5-Aza induced

demethylation. For example, the first 3 clones are completely de-

methylated across all CpGs in the PgR promoter following 5-Aza

treatment (Fig. 4d), and the first 2 clones are reduced to one single

methylated CpG in the pS2 promoter (Fig. 4c).

Surprisingly, 5-Aza treatment also enabled E2, a modest

mitogen in the absence of this agent, to become a significant

inhibitor of TAM-Wd cell proliferation (Fig. 5a, 5b and 5c). This

was apparent with concentrations of E2 from 1610210 M to

161027 M (*p#0.017) (Fig. 5a). This event was specific to the

TAM-Wd cells as parallel experiments in the MCF-7 cells showed

that 5-Aza had no effect on E2 response (Fig. 5a). Further analysis

showed that the co-addition of TAM (161027 M) to TAM-Wd

cells cultured with 5-Aza and E2 reversed the inhibition of

proliferation (Fig. 5b and 5c), thus supporting the hypothesis that

the genes reactivated by 5-Aza/E2 co-treatment in the TAM-Wd

cells were ER-dependent. Over a 14 day period, it was apparent

that the 5-Aza/E2 treated cells were undergoing cell death from

day 7 of culture, whilst the 5-Aza or 5-Aza/E2/TAM treated cells

continued to proliferate (Fig. 5c). Fig. 5d shows that the addition of

5-Aza to vehicle or E2 treated cells did not affect TAM-Wd cell

cycle phase distribution. Instead, 5-Aza/E2 inhibition of TAM-

Wd cells was associated with apoptosis, as suggested by the growth

curve (Fig. 5c) and confirmed by M30 flow cytometry (see Fig. 7b).

Microarray analysis of TAM-Wd cells was conducted to identify

genes that were up-regulated by E2 challenge only in the presence

of the demethylation agent i.e. were most highly expressed in 5-

Aza/E2 treated cells, vs non-treated, E2 or 5-Aza-alone treated

and 5-Aza/E2+ TAM treated cells (n = 159 probes). Using a

second microarray database [35] we also identified genes that were

E2 activated in the MCF-7 cells and suppressed in the TAM-R

cells, and were thus potentially silenced by promoter methylation

following long-term tamoxifen exposure (202 probes p,0.001) (the

gene selection process is summarised in Figure S1). The 43 probes (34

genes, Table S1) common to both gene sets were high-confidence

potential contributors to the altered control of proliferation in the

TAM-Wd cells. Using the UCSC Genome browser (http://

genome.ucsc.edu/), we determined that of these 34 genes, 23 had

bona-fide CpG islands in their promoter regions [36], 9 of which

had ER binding sites [37] (Fig. S1 and Table S1).

Many of the genes identified through these analyses were

involved in the regulation of several distinct processes that affect

cell proliferation and/or apoptosis, including regulators of signal-

transduction (EPS15R, RASAL-1 and DUSP-7), calcium trans-

portation (ATP2B4), p53 activation (GDF15 and UNC5B) and

hormone metabolism (CYP1B1), all of which have CpG islands in

their promoter regions. Using MeDIP-coupled qPCR, we

determined 4 of the 7 candidates (RASAL1, DUSP7, ATP2B4

and GDF15) were more heavily methylated in the resistant cell

lines vs the parental MCF-7 cells (Fig. 6a) (*p,0.05), with GDF15

showing the greatest difference. Further experiments therefore

focussed on GDF15.

RT-qPCR was used to demonstrate that GDF15 expression was

regulated by E2 in the MCF-7 cells (*p,0.001), but not the TAM-

R and TAM-Wd cell-lines (Fig. 6b). However, with 5-Aza/E2 co-

treatment, GDF15 expression increased 4-fold in the resistant cell-

lines, similar to the degree of induction in the parental MCF-7s

(Fig. 6b). The induction of GDF15 protein in 5-Aza/E2 treated

resistant cells was confirmed by western blotting for the processed,

mature form of GDF15 in cell lysate (Fig. 6b).

Clonal bisulphite sequencing analysis confirmed that 5-Aza

treatment led to demethylation of the GDF15 promoter, with an

overall reduction in methylation from 65% to 55% (Fig. 6c).

Interestingly, 3 out of the 14 clones showed complete demethyl-

ation of the interrogated CpG sites upon 5-Aza treatment (Fig. 6c).

Having shown that active GDF15 was induced following 5-

Aza/E2 treatment, dose-response experiments with recombinant

GDF15 protein were performed to determine the effect on cell

proliferation/apoptosis (Fig. 7a and 7b). Cell counts for GDF15

(10 ng/ml) treated MCF-7, TAM-R and TAM-Wd cells were all

significantly lower than vehicle treated control cells (Fig. 7a)

(*p,0.001).

Using the M30 CytoDEATH antibody (that detects caspase-

cleaved cytokeratin 18 [38]), flow cytometric analysis showed that

both GDF15 (10 ng/ml) and 5-Aza/E2 treatment (48 hrs) induced

a significant apoptotic response in the TAM-Wd cells (*p,0.001)

(Fig. 7b). The percentage of M30-positive cells was increased by

10% following GDF15 exposure, and 30% with 5-Aza/E2

compared to vehicle treated controls (Fig. 7b). Although the

magnitude of response was different, the data indicate that both

treatments induce the same inhibitory response in the TAM-Wd

cells.

Discussion

Cumulatively, the data from this study provide evidence to

support the novel concept that long-term tamoxifen exposure

induces epigenetic silencing of oestrogen-responsive genes poten-

tially associated with negative cellular control, which serves to

promote resistant cell proliferation. As such, when co-treated with

the demethylation agent 5-Azacytidine, we observed that resistant

cell growth was markedly inhibited by oestrogen challenge in

parallel with the re-expression of such gene cohorts.

The TAM-R cells used in the present study retain ER-

expression and function (as indicated by partial responsiveness to

further anti-hormone challenge with fulvestrant), and yet in

Figure 4. 5-Aza/E2 Co-treatment restored pS2 and PgR sensitivity to E2 challenge in the TAM-Wd cells. A. RT-qPCR evaluation of pS2
expression in MCF-7 and TAM-Wd cells 65-Aza (161026 M) 6E2 (161029 M) for 48 hrs. Data shown represent percentage increase in pS2 detected
in cells 65-Aza following E2 challenge. Expression of pS2 is significantly increased in TAM-Wd cells treated with 5-Aza/E2 compared to 5-Aza treated
cells (*p,0.001). Figure also shows ICC parallel analysis of pS2 protein expression in TAM-Wd cells (106 magnification) (representative of 3
independent experiments). B. RT-qPCR evaluation of PgR expression in MCF-7 and TAM-Wd cells 65-Aza (161026 M) 6E2 (161029 M) for 48 hrs.
Data shown represent percentage increase in PgR detected in cells 65-Aza following E2 challenge. Expression of PgR is significantly increased in
TAM-Wd cells treated with 5-Aza/E2 compared to 5-Aza treated cells (*p,0.001). Figure also shows ICC parallel analysis of PgR protein expression in
TAM-Wd cells (106 magnification) (representative of 3 independent experiments). C. Clonal bisulphite sequencing analysis for the pS2 promoter
region in TAM-Wd cells 65-Aza (161026 M) for 48 hrs. Colours and symbols are the same as in Figure 3. D. Clonal bisulphite sequencing analysis for
the PgR promoter region in TAM-Wd cells 65-Aza (161026 M) for 48 hrs. Colours and symbols are the same as in Figure 3.
doi:10.1371/journal.pone.0040466.g004
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contrast to the parental cells, classically regulated oestrogen-

responsive genes, such as pS2 and PgR, are insensitive to

oestrogen activation. This was observed in parallel with an

increase in pS2/PgR promoter DNA-methylation, demonstrating

that ER-signalling disruption caused by long-term tamoxifen

exposure can result in a permanent epigenetic modification to the

promoters of ER-responsive genes. Critically, pS2 and PgR

suppression was maintained following tamoxifen withdrawal from

the TAM-R cells, whilst promoter methylation increased, prob-

ably due to the extended period of culture in an oestrogen free-

environment and thus supressed ER-activity. Interestingly, disease

recurrence following adjuvant tamoxifen treatment has been

closely associated with the development of an ER positive/PgR

negative phenotype in some patients [5]. Our studies raise the

possibility that the loss of PgR in these patients could have been

due to DNA-promoter methylation and that PgR methylation

could be potential bio-marker of tamoxifen insensitivity.

The discrete demethylation at gene promoters induced by 5-

Aza in TAMR-Wd cells was sufficient to re-express pS2, PgR and

GDF15 expression upon E2 treatment. Other researchers have

also demonstrated dramatic increases in the expression of hyper-

methylated genes in 5-Aza treated cells, with only partial

demethylation of the CpG-rich promoter regions [31–33]. It is

noteworthy that the clonal bisulphite sequencing data shows that

the effect of 5-Aza treatment was heterogeneous, suggesting that

demethylation may not occur evenly in cell culture, with some cells

being more vulnerable than others. Although our results indicate

that the level of methylation across these gene promoters is crucial

to re-activating silenced genes, we cannot rule out dependence or

crosstalk with other epigenetic factors to induce gene expression.

Previous reports demonstrate that active ER recruits co-activators

of transcription, often with intrinsic histone-acetylase (HAT)

activity, which serve to further adapt the chromatin landscape to

facilitate gene transcription [16,34]. As epigenetic mechanisms

often work in synergy to elicit the ultimate response, it is possible

that the combination of 5-Aza and HAT activity permitted the

observed dramatic increases in pS2, PgR and GDF15 gene

expression.

In addition to 5-Aza treatment restoring ER-regulated gene

promoter sensitivity to E2, it switched oestradiol from being a

modest mitogen to a significant growth inhibitory agent. This

previously unidentified phenomenon appeared to be ER related,

since it was reversible by tamoxifen co-addition and was not

evident in the parental MCF-7 cells, hence confirming it was a

consequence of long-term tamoxifen treatment. We hypothesised

that in the TAM-Wd cells, demethylation enhances the oestrogen

responsiveness of genes that can individually or collectively inhibit

proliferation and/or induce apoptosis. Although this may initially

appear incongruent, since oestrogens are mitogenic to many breast

cancer cell-lines, inhibitory effects of oestrogen are not unprece-

dented. Oestrogen induces apoptosis in oestrogen-deprived

[39,40] and ER-negative breast cancer cells stably transfected

with ER [41,42]. Furthermore, high doses of synthetic oestrogens,

such as diethylstilbestrol (DES), have been used effectively to treat

postmenopausal women with ER-positive breast cancer, and cause

tumour regression [43]; indicating that under certain circum-

stances, oestrogen is able to promote anti-proliferative or pro-

apoptotic gene networks. Since the TAM-Wd cells remain

tamoxifen resistant, it is apparent that they harbour some

alterations in oestrogen signalling, and this could make the cells

less able to overcome the effects of oestrogen-responsive anti-

proliferative genes than the parental MCF-7 cells.

Microarray analysis was used to identify genes that may

potentially contribute to the inhibitive effect 5-Aza/E2 treatment

had on TAM-Wd cell proliferation, i.e. genes that were E2-

responsive prior to long-term tamoxifen treatment, depleted

following the acquisition of resistance and readily expressed

following 5-Aza/E2 challenge. Some of these candidate genes

have ER-binding sites but it is probable that many lie downstream

of directly ER-regulated gene, since oestrogenic control of breast

cancer cell proliferation and survival is achieved through the

regulation of multiple gene networks and signalling pathways,

many of which are not directly activated by ER [44]. Although not

all candidates identified possess known CpG islands within their

promoter region (as is the case for pS2) they may still be subject to

epigenetic silencing (caused by DNA methylation) as it has recently

become clear that CpG methylation can occur outside of gene

promoters and in the absence of CpG islands [45].

GDF-15 is a p53 target gene that inhibits tumour cell growth via

the TGFb signalling pathway [46,47] and is subject to promoter

hypermethylation in renal cancer cells [48]. It inhibits the

proliferation of prostate and breast cancer cells, induces colon

and mammary epithelial cancer cell apoptosis in-vitro and inhibits

colon and glioblastoma tumour growth in vivo [46,49–53]. The

GDF-15 promoter was more heavily methylated in the tamoxifen-

resistant cell-lines compared to the parental MCF-7 cell-line, and

5-Aza/E2 caused promoter demethylation and increased GDF15

expression. Furthermore, recombinant GDF15 protein inhibited

cell proliferation in a dose-dependent manner, demonstrating that

genes reactivated by 5-Aza/E2 could cause the associated anti-

proliferative/apoptotic effect. Many of the other candidate genes

identified by our analysis also have functions associated with the

control of processes known to contribute to cancer cell prolifer-

ation and survival, including regulators of various signalling

pathways including EGFR (EPS15R [54]), Ras (RASAL-1 [55])

and ERK (DUSP7 [56]), calcium transportation (ATP2B4

[57,58]), p53 activation (UNC5B [59]) and hormone metabolism

(CYP1B1 [60]).

The potential for anti-hormone-induced epigenetic modification

of ER-regulated genes to affect cell proliferation has been clearly

demonstrated in this study. It remains unclear as to whether gene

promoters become methylated as a direct consequence of

sustained tamoxifen binding or whether as a consequence of

long-term ER-signalling deprivation (as demonstrated by ER

siRNA studies [61]). We have provided evidence that components

of multiple regulatory mechanisms, including inhibitors of growth-

Figure 5. 5-Aza/E2 inhibits TAM-Wd cell proliferation. A. TAM-Wd and MCF-7 cell concentration response to E2 challenge (1610212 M to
161027 M) 65-Aza (161026 M). Cell counts were taken on day 7 of culture. Data shown represent E2-treated cell counts as a percentage of non-E2
treated control cells. Cell counts are significantly lower in 5-Aza treated TAM-Wd cells, co-treated with E2 at a concentration of 1610210 M and
greater (*p,0.017). B. TAM-Wd cell concentration response to E2 challenge (1610212 M to 161027 M) +5-Aza (161026 M) 6TAM (161027 M). Cell
counts were taken on day 7. Data shown represent E2-treated cell counts as a percentage of non-E2 treated control cells. The co-addition of TAM to
5-Aza treated TAM-Wd cells significantly changes the effect of E2 from a concentration of 161029 M and greater (*p,0.026). C. Anchorage-
dependent proliferation assay of TAM-Wd cells treated with E2 (161029 M) 6 TAM (161027 M) in the presence of 5-Aza (161026 M) for 14 days. The
data shown represent actual cell number/well recorded over 3 independent experiments. By day 14, there are significantly more cells in the 5-Aza and
5-Aza/E2/TAM treated cells compared to TAM-Wd +5-Aza/E2 treated cells (*p,0.001). D. Cell cycle analysis using flow cytometric analysis of
propidium iodide-stained TAM-Wd cells. Data represent percentage of cell in each phase relative to the total population.
doi:10.1371/journal.pone.0040466.g005
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Figure 6. Genes associated with an anti-proliferative function are silenced by DNA methylation in tamoxifen-resistant cells. A.
MeDIP coupled PCR to determine the methylation status of RASAL1, DUSP7, ATP2B4 and GDF15 in MCF-7, TAM-R and TAM-Wd cells, relative the
expression of PEG3 (an imprinted gene). Data is expressed as 2

‘
2DDct (n = 3). GAPDH is included as a negative control to demonstrate the successful

enrichment of methylated material. The data demonstrate a greater enrichment of methylated DNA in resistant vs tamoxifen-sensitive MCF-7 cells for
all four genes (*p,0.05). B. RT-qPCR evaluation of GDF15 expression in MCF-7, TAM-R and TAM-Wd cells +E2 (161029 M), +5-Aza (161026 M), 5-Aza
+ E2 or 5-Aza + E2+ TAM (161027 M) for 48 hrs. Data shown are normalised to GAPDH and presented relative to the expression calculated for vehicle-
treated cells. In the absence of 5-Aza, GDF15 expression is only significantly increased by E2 challenge in MCF-7 cells (*p,0.001). The lower panel
shows a western blot of mature, processed GDF15 protein (18 KDa) and b-actin (loading control) (representative of 3 independent experiments). C.
Clonal bisulphite sequencing analysis for the GDF15 promoter region in TAM-Wd cells 65-Aza (161026 M) for 48 hrs. Colours and symbols are the
same as in Figure 3.
doi:10.1371/journal.pone.0040466.g006
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Figure 7. Recombinant GDF15 is anti-proliferative and induces apoptosis in the TAM-Wd cells. A. Dose response to recombinant GDF-15
protein (1, 3, 10 ng/ml) in MCF-7, TAM-R and TAM-Wd cells. Cell number was assessed after 48 hrs post-treatment. The data shown represent the cell

Tamoxifen Resistance and Epigenetic Modification

PLoS ONE | www.plosone.org 12 July 2012 | Volume 7 | Issue 7 | e40466



factor signalling and mediators of p53 function are silenced

following long-term tamoxifen treatment in a cellular model.

However, more detailed analysis will be required to fully

understand the contribution of epigenetic silencing of these genes

to tamoxifen resistance. Importantly, this process is reversible with

5-Aza/E2 co-treatment in parallel with a growth inhibitory effect,

highlighting a previously unidentified therapeutic opportunity in

tamoxifen-resistant breast cancer. Further exploration of this

phenomenon in other models of anti-hormone resistance and in

clinical disease is warranted.

Supporting Information

Figure S1 The microarray gene selection process and
Venn diagram depicting ER-binding site/CpG island
characteristics of the final gene candidates. The figure

depicts the microarray interrogation strategy used to identify genes

that could be associated with the inhibitory effect of 5-Aza/E2 co-

treatment in the TAM-Wd cells (shown in Fig. 5a, 5b and 5c).

Firstly, genes were selected that were most highly up-regulated in

TAM-Wd cells +5-Aza/E2 vs non-treated TAM-Wd cells (n = 744

p,0.05). This gene set was further analysed to identify those genes

more highly expressed in 5-Aza/E2 vs 5-Aza treated cells, to

ensure the selected genes were oestrogen responsive (n = 240

p,0.05). Since we showed that TAM co-addition could block the

inhibitory effect of 5-Aza/E2 treatment (Fig. 5b and 5c), we then

selected genes whose expression were reduced in 5-Aza/E2+TAM

treated cells vs 5-Aza/E2 (n = 159 – no statistical cut-off applied).

In parallel, we identified genes that were E2 responsive in the

MCF-7 cells (n = 1691 p,0.05), which were not over-expressed in

TAM-R vs MCF-7 cells (n = 202 – no statistical cut-off applied).

The two gene sets were used to generate a Venn diagram, so genes

that were both oestrogen responsive in the MCF-7 cells, and most

highly expressed in 5-Aza/E2 treated TAM-Wd cells could be

identified (n = 43 probes/34 genes). Using UCSC Genome

Browser (http://genome.ucsc.edu), it was determined 23 of the

34 genes contained bona fide CpG islands [36] and 12 had ER-

binding sites [37]. Nine of the 34 genes were found to contain both

features.

(TIF)

Table S1 CpG Island and ER-binding site status of the
34 gene candidates identified from the microarray
screen. The table shows the 34 genes derived from the

microarray interrogation, and whether they contain a bona fide

CpG island and/or an ER binding site within their transcription

site [36,37] (green = yes, red = no).

(TIF)
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