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ABSTRACT 

 

Acyclovir (ACV) is an acyclic guanine nucleoside analogue used in the 

treatment of herpes simplex virus (HSV) and varicella zoster virus (VZV) 

infections. The human herpes virus-encoded thymidine kinase (HHV-TK) 

phosphorylates ACV generating ACV monophosphate, which is then converted 

to the active form ACV triphosphate by cellular kinases.  

The ProTide approach, causing the direct release of the monophosphate form 

into the cell, allows bypass of the first phosphorylation step of nucleoside 

analogues. In previous studies acyclovir ProTides were found to be active in 

vitro against human immunodeficiency virus (HIV), demonstrating a successful 

release of ACV monophosphate into the cell.  

 

In this work, an extensive study of structure-activity relationship was carried out 

varying the masking groups of the ACV ProTide. Subsequently, several 

substituents were considered on specific position of the guanine base and side 

chain of ACV resulting in the synthesis of the aryl phosphoramidate derivatives 

of ganciclovir, penciclovir, 6-O-alkyl acyclovir, 8-bromoacyclovir, and 8-

methylacyclovir.  

These derivatives were evaluated in vitro for their antiviral activity against HSV, 

VZV, human cytomegalovirus (HCMV), and HIV.  

Enzymatic and molecular modeling studies were carried out in order to 

investigate the bioactivaton of the phosphoramidate derivatives synthesised in 

this work and correlate these results with their biological activity. 

 

Finally, the ProTide approach was also applied to cidofovir resulting in the 

formation of the phosphonoamidate derivative of cyclic cidofovir. The in vitro 

antiviral activity of this compound against herpes viruses and poxviruses is 

reported, as well as investigation of the mechanism of activation, using 

enzymatic and molecular modeling studies.  
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Chapter 1. Introduction 

1.1 Viruses 

Viruses are submicroscopic agents that infect animals, plants, insects, as well as 

unicellular organisms, such as protozoa, bacteria, fungi, and yeasts. Despite their self-

replicating capacity, they are not considered living organisms. The essence of viruses 

consists in a small fragment of nucleic acid (DNA or RNA) enclosed in a protein shell. 

Lacking the machinery that synthesises the viral proteins, they need a host-cell to 

duplicate themselves. For this reason, they are obligate parasites.1  

1.1.1 Viruses Structure 

Virus structure has evolved in order to ensure the propagation of its genome. Despite 

several differences among virus families, some features are often present (fig.1.1):2 

• Genome and functional proteins such as enzymes 

• Capsid 

• Envelope  

• Receptors 

!

Figure 1.1. Generic virus structure  
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Genome 

The genome is a nucleic acid that contains the information needed for replication of 

viruses. Depending on the virus, the genome is either DNA or RNA. Its size does not 

allow viruses to encode for all the machinery required for their replication. For this 

reason, viruses have evolved as obligate parasites: they must use proteins of host cell to 

complete their life cycle1. The viral genome encodes for capsid subunits, receptors that 

protrude from the virus surface and are required to initiate the entry phase of viral 

infection, and enzymes that are involved either in viral genome transcription and 

replication or in the maturation of viral proteins.2  

Capsid 

The protein shell (capsid), which encloses the viral genome and proteins, is constituted 

of many identical subunits by self-assembly to produce a symmetrical structure. 

Considering the small size of viral nucleic acid and the limited number of proteins that 

can be encoded, this is an example of genetic efficiency developed by viruses. The 

purpose of the capsid is to protect its contents from the external environment and to 

release its contents inside the host cell.1 

Envelope 

Some viruses are surrounded by a phospholipid bilayer, containing transmembrane 

proteins, called the envelope. This additional coating is acquired by budding through 

cellular membranes of the host cell. Its presence or absence constitutes the distinction 

between enveloped and non-enveloped viruses. It greatly affects the initial phase of 

virus infection, the entry phase, and the release phase.2 

1.1.2 Virus lifecycle 

The lifecycle of a virus is commonly constituted by the following phases (fig. 1.2):1, 2  

1. Entry   

2. Uncoating  

3. Viral protein biosynthesis 

4. Replication of the viral genome 
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5. Assembly  

6. Maturation and release 

!

Figure 1.2. Generic virus life cycle: (1) entry; (2) uncoating; (3) viral protein biosynthesis; (4) 

replication of the viral genome; (5) assembly; (6) maturation and release 

!

Entry and uncoating 

The entry phase starts with the binding of virus-coded proteins on the surface of viral 

particle to specific proteins, carbohydrates, or lipid on the surface of the host cell.2 This 

event triggers the release of viruses into the host cell.2 The specificity of such 

interaction defines which type of cell is the target of virus infection. The pathway by 

which a virus passes through the plasma membrane differs from enveloped to non-

enveloped viruses. The enveloped viruses are released inside the host cell by fusion of 

the envelope with either the plasma membrane or the membrane of endosomes, in 

which the virus is enclosed after the receptor-mediated endocytosis.1 The non-

enveloped viruses can either release their genome directly inside the cell through the 

formation of a membrane pore or induce endocytosis of the whole viral particle.1  
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Once inside the cell, the following step is the uncoating, the removal of the capsid, 

through which the viral genome is made available to be transcribed and duplicated. 

Transcription, translation, and replication of the viral genome 

After the cell entry and uncoating, the virus life cycle differs from DNA to RNA 

viruses. 

DNA viruses are translocated into the nucleus, where the viral genome is transcribed 

into messanger RNA (mRNA) by host cell polymerase and duplicated by either cellular 

DNA polymerase (e.g. polyomaviruses) or virally encoded DNA polymerase (e.g 

herpes viruses).1 The viral mRNA is decoded by the ribosome of the host cell to 

produce the virus proteins.2  

In the case of RNA viruses, the genome either acts as mRNA and is translated 

immediately by the host ribosomes into proteins or requires a RNA-dependent RNA 

polymerase, which is carried into the host cell directly by the infecting virus, to 

produce the viral mRNA.2 The replication of the virus genome is carried out by a virus-

encoded RNA polymerase and generally does not require translocation into the cell 

nucleus.2  

Retroviruses are a particular kind of RNA viruses that use the virus-encoded reverse 

transcriptase enzyme to convert the viral genome into a DNA molecule which is 

integrated into the chromosomes of the host cell.2  

Assembly and maturation 

The following phase of virus infection is the assembly of viral particles. In this process 

viral nucleic acid and proteins, which are required to start a new cycle of viral 

infection, are packaged into the capsid.1 Once the viral particle has been assembled, the 

maturation of viruses is achieved by means of viral proteases, which cleave structural 

proteins in specific sites affording infectivity to the nascent viral particles.1  

Release 

The mature viral particles are released in the extracellular environment either by lysis 

of the host cell or exocytosis. In this phase enveloped viruses acquire their external 

phospholipid bilayer by budding through the cell membranes.1  
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1.2 Antiviral therapy 

Viral infections cause several diseases worldwide. In many cases the immune system of 

the host is able to defeat the viral infection by producing antibodies, but in other cases 

viruses can evade such defensive systems and cause an infection that can be either 

symptomatic or asymptomatic.3  

Vaccines have always been valid weapon in the prevention of viral infection by 

stimulating the immune system of a potential host to produce antibodies against a 

specific virus by means of the exposure to its antigens. However, their use in the 

antiviral therapy is prophylactic and their administration is generally ineffective when 

the virus has already infected the host.1  

 In order to keep viral infections under control, antiviral agents have been developed for 

those viruses that are able to overcome the natural defences of the host or when a 

vaccine is not available. In 1959, idoxouridine (IDU) was the first nucleoside analogue 

to be described as an antimetabolite that interferes with the polymerization of herpes 

viruses DNA.4 In the late 1970s, Acyclovir represented a significant breakthrough in 

antiviral drug development due to its high selectivity in inhibiting herpes viruses 

infections and low toxicity.4 After that, the research was further stimulated by the 

pandemic disease of acquired immunodeficiency syndrome (AIDS) and the need of new 

antiviral drugs against its etiological agent: the human immunodeficiency virus (HIV).4 

Nowadays, anti-HIV therapy has made a fatal disease like AIDS manageable.5 Despite 

these successes, there are still some viral diseases for which an appropriate antiviral 

therapy is missing. For example, the standard of care of Hepatitis C virus (HCV) is 

ribavirin with interferon but this therapy is successful in only half of the population 

worldwide.6 Moreover, the activity of antiviral agents is generally specific against one 

or few viruses.  

In general, an ideal target of the antiviral therapy is a virus-encoded protein. It should be 

essential for the viral replication or at least its inhibition should lead to the formation of 

non-infective viral particles. Moreover, the antiviral agent should exhibit a high affinity 

for the viral protein, but not for the cellular counterpart, in order to have low toxicity. 

The ratio between antiviral activity and toxicity define the selectivity index of an 

antiviral agent.6 
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 One of the main issues of the treatment of viral infections is their capacity to develop 

drug resistance. This is due to mutations of the genes that encode for the target protein, 

which is no longer recognised by the antiviral agent.1, 6 The exposure to an antiviral drug 

induces a selection pressure that allows the survival of only mutant strains that are drug 

resistant. Mutations occur naturally during genome replication. They are more frequent 

in the case of RNA viruses than in DNA viruses, because their polymerase is less 

accurate.1, 6 The higher the mutation rate, the more rapidly the resistance can develop. 

For this reason, the highly active antiretroviral therapy (HAART), which is currently 

applied for the treatment of HIV infection, is constituted by the combination of three or 

more different drugs in order to counteract the fast development of drug resistance.1, 5, 6 

Conversely, drug resistance is less likely to develop against antiviral agents that target 

host functions. In principle, a host protein could be an antiviral target if it is more 

important for the viral life cycle than for host functions.1 An example of this approach is 

given by the antiviral drug Maraviroc, which inhibits the entry phase of HIV by binding 

the co-receptor CCR5 on the surface of CD4+ T-Helper lymphocytes (target cells of 

HIV).5, 7 Obviously, targeting a host protein is inherently more likely to result in 

toxicity. 

Considering the virus lifecycle, the potential targets of the inhibition of virus replication 

are virus attachment and entry, virus uncoating, viral genome replication, virus 

maturation, and virus release.6 Most of the antiviral drugs on the market block the viral 

genome replication.8-10 Being the main focus of this thesis, this class of antiviral agents 

will be discussed more extensively. 

1.2.1 Inhibition of viral genome replication  

The viral genome replication is generally mediated by virus-encoded polymerases. 

These enzymes, similarly to cellular counterpart, mediate the polymerisation of nucleic 

acid by insertion of monophosphate nucleosides (nucleotides) in the growing chain.1 

The natural nucleosides in DNA are deoxyadenosine, deoxyguanosine, deoxycytidine, 

and thymidine (fig. 1.3); in RNA the same nucleobases are bound to ribose sugar 

affording adenosine, guanosine, and cytidine; the only exception is thymine that is 

replaced by uracil affording uridine.11  
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Figure 1.3. Structure of natural (deoxy)nucleosides 
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In the nucleic acid strand, nucleosides are bound together by a phosphodiester bond 

between the 3’-hydroxyl group of a residue and the 5’-hydroxyl group of the following 

one (fig. 1.4).11 

!

Figure 1.4. Phosphodiester bond of nucleic acid 

!

DNA consists of two nucleic acid strands, while RNA is constituted by only one strand. 

Figure 1.5 depicts the base pairing between the two strands of DNA: the hydrogen 

bonds lead adenine to interact with thymine and guanine with cytosine.11 According to 

this principle, knowing the sequence of nucleotides of one strand of DNA, we can 

deduce the complementary sequence on the other strand.!!
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!

The elongation of the nucleic acid, is catalysed by the polymerase, DNA or RNA, in 5’-

3’ direction using one strand as a template and the mentioned principle of the base 

pairing. This means that the 3’-hydroxyl group of the terminal nucleotide residue in the 

growing nucleic acid strand attacks the phosphate in 5’ position of the incoming 

nucleoside triphosphate allowing its insertion with elimination of the pyrophosphate 

group (fig. 1.6). 11 

!

Figure 1.6. Polymerase-mediated insertion of nucleotides into the growing nucleid acid chain. 

!

The antiviral agents that mimic the natural nucleosides are defined as nucleoside 

analogues. They are inhibitors of viral polymerase and compete with the natural 

nucleoside triphosphates for insertion into the growing nucleic acid strand, often 
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resulting in the termination of its elongation. Due to their mechanism of action they 

must be phosphorylated to the triphosphate form in order to exert their activity, so a 

nucleoside analogue is a prodrug of nucleoside triphosphate. A high phosphorylation 

rate is essential in order to achieve good antiviral activity. Currently, the antiviral drugs 

belonging to this class have been approved for the treatment of herpes viruses, HIV, 

hepatitis B virus (HBV), and Hepatitis C virus (HCV).6, 8-10 

Non-nucleoside inhibitors of viral polymerase are another class of antiviral agents that 

exert their activity on the viral polymerase through a different mechanism of action in 

comparison to the antimetabolic nucleosides. At the moment foscarnet and the non-

nucleoside inhibitors of reverse transcriptase (NNRTI) are the only antiviral drugs 

belonging to this class that have been approved for the treatment of herpesviruses and 

HIV, respectively. 1, 6, 8-10 

1.2.1.1 Herpesvirus DNA polymerase inhibitors 

The Herpesviridae or herpes viruses are a family of DNA viruses. The members that 

have been identified as human pathogens are: herpes simplex virus type 1 (HSV-1), 

herpes simplex virus type 2 (HSV-2), varicella zoster virus (VZV), Epstein-Barr virus 

(EBV), cytomegalovirus (CMV), human herpes virus 6 (HHV-6), human herpes virus 

7 (HHV-7), and human herpes virus 8 known as Kaposi's sarcoma-associated herpes 

virus (HHV-8).1 The viral-encoded DNA polymerase carries out the replication of their 

genome. 

Vidarabine, idoxuridine, and trifluridine are anti-herpes viruses agents that have been 

superseded in late 1970s by acyclovir (ACV), due to its better profile in terms of 

potency and selectivity.12 Nowadays, ACV is still the first choice for the treatment of 

HSV and VZV infections.  Ganciclovir (GCV) and penciclovir (PCV) are analogues of 

ACV.12 Other drugs, which are currently approved for the treatment of herpes viruses, 

are the acyclic nucleoside phosphonate cidofovir (S-HPMPC) and the non-nucleoside 

foscarnet.13 Brividun (BVDU) is a deoxyuridine analogue that has not been approved 

in the UK and in the USA, but it has been commercialized in various countries in 

Europe and in Japan. 6,10,14 All these antiviral agents, illustrated in fig. 1.7, are 

inhibitors of the DNA polymerase encoded by herpes viruses.10  
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Figure 1.7. Structure of herpes viruses DNA polymerase inhibitors 

!

Acyclovir (ACV) 

ACV is an acyclic guanine nucleoside analogue that lacks the 3’-hydroxyl on the side 

chain (fig. 1.8).15  
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Figure 1.8. Comparison of the structures of ACV and 2'-deoxyguanosine showing the lack of the 3’-

hydroxyl group 

!

In 1982 the FDA approved ACV for the treatment of herpes simplex virus type 1 (HSV-

1), herpes simplex virus type 2 (HSV-2), and varicella zoster virus (VZV).  In order to 

improve its poor oral bioavailability (10-30%),6 the L-valinyl ester derivative 

valacyclovir (Valtrex®) was synthesised (fig. 1.9).16 This prodrug is completely 

metabolised to ACV by hydrolase enzymes during the first-pass intestinal and hepatic 

metabolism. The oral administration of valacyclovir increases the relative 

bioavailability of ACV by 3- to 5-fold. This is thought to result from the capacity of 

Valacyclovir to bind the intestinal and renal peptide transporters.17  
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Figure 1.9. Structure of valaciclovir 
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!

!In order to inhibit the herpes virus DNA polymerase, ACV must be phosphorylated to 

its triphosphate form.15 The first phosphorylation step is mediated by the human herpes 

virus-encoded thymidine kinase (HHV TK), which has 200 times greater affinity for 

ACV in comparison to the cellular kinase.15 Accordingly, the concentration of 

phosphorylated ACV is much higher (30 to 100 times) in HSV and VZV-infected cells 

than the concentration detected in uninfected cells. The monophosphate derivative 

(ACV-MP) is converted to ACV diphosphate (ACV-DP) and subsequently ACV 

triphosphate (ACV-TP) by cellular kinases (fig. 1.10).18, 19 The triphosphate form 

inhibits the viral polymerase 10-30 times more potently than the cellular  

counterpart.15, 20  
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Acyclovir triphosphate is not only a competitive inhibitor of the viral polymerase, but it 

is also incorporated as a substrate into the nascent viral DNA chain (fig. 1.11).21, 22 
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Figure 1.11. Insertion of ACV-TP into the nascent viral DNA 
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Due to its lack of the 3’-hydroxyl group, ACV-TP acts as an obligate chain terminator 

preventing further elongation of the nucleic acid strand trapping the polymerase in a so 

called “dead-end-complex”, thus causing the inactivation of the replication machinery 

(fig. 1.12).  
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Figure 1.12. Termination of viral DNA elongation following ACV-TP incorporation 

!

The selectivity for the virus-encoded TK and the viral polymerase account for the high 

therapeutic index of ACV.6 The treatment of herpes virus infections with ACV only 

rarely leads to development of resistance in immunocompetent patients. Several surveys 

revealed the low incidence of ACV-resistant strain of HSV (below 1%). This 

percentage increases in immunocompromised patients (5%) and particularly in patients 

receiving allogenic bone marrow transplant (30%).23 The mechanisms through which 

resistance to ACV develops are:24, 25  

• Total lack of the viral TK (TK deficient strains) 

• Impaired production or low activity of the viral TK (TK lower producer) 

• Modification of the viral TK with loss of binding affinity for ACV (TK altered) 

• Modification of the viral DNA polymerase with loss of binding affinity for  

ACV-TP 

Resistance to ACV involving the viral TK is more common than an alteration of the 

polymerase. This is related to the fact that the TK enzyme is not strictly necessary for 

the successful completion of viral replication, while the mutation of the viral 

polymerase results in highly attenuated strains.1     
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Ganciclovir (GCV) 

GCV is an analogue of ACV from which it differs due to the presence of an additional 

hydroxymethylene group on the acyclic side chain that mimics the  

3’-hydroxyl group of the sugar moiety of natural nucleosides (fig 1.13).  
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Figure 1.13 Structure of GCV showing the analogy with 2'-deoxyguanosine 

!

GCV is active against HSV and HCMV;26 it has been approved for the treatment of 

HCMV infections in immunocompromised patients and the prevention of HCMV 

disease in transplant patients. Ganciclovir inhibits HSV and HCMV DNA polymerase; 

the active form is ganciclovir triphosphate. It shares a similar pathway of activation 

with ACV. The first phosphorylation step is mediated by the viral TK in HSV, while in 

HCMV this process is catalysed by a viral protein kinase (PK), which is encoded by the 

gene UL97.27 The lack of phosphorylation by this viral protein kinase is the reason for 

which ACV does not exert any activity against this member of herpes viruses 26. 

Phosphorylation of GCV to the diphosphate and triphosphate forms is mediated by 

cellular kinases.13 Similarly to ACV-TP, GCV triphosphate (GCV-TP) is a competitive 

inhibitor of deoxyguanosine triphosphate incorporation into the growing nucleic acid 

strand and also a substrate of viral DNA polymerase. However, it is not an obligate 

chain terminator: after GCV incorporation the insertion of an additional nucleotide is 

allowed before the termination of the DNA chain elongation.28 This is due to the 

presence of the hydroxymethylene group of GCV, which, as already mentioned, mimics 

the 3’-hydroxyl group.29 The main issue of this antiviral agent is its toxicity due to a 

lower selectivity for viral DNA polymerase in comparison to ACV: GCV-TP inhibits in 

some extent also cellular DNA polymerase. This is predictive of the bone marrow 

suppression (neutropaenia, anaemia, and thrombocytopaenia) that GCV induces.13  

Mechanisms of resistance involve modification of TK in HSV and PK in HCMV 

leading to lack of phosphorylation of GCV to the monophosphate form (GCV-MP). As 

already seen for ACV, the incidence of viral DNA polymerase alteration is far more 

likely.27 The oral bioavailability of Ganciclovir averages 6-9%.6 This percentage 
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increases up to 60% after adminstration of its valyl ester derivative valganciclovir (fig. 

1.14). The mechanism of metabolisation to Ganciclovir is the same of Valaciclovir.13    
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Figure 1.14. Structure of valganciclovir 

!

Penciclovir (PCV) 

PCV is the carbo analogue of GCV, where a methylene group replaces the ether moiety 

on the side chain. Similarly to ACV, this compound is active against HSV and VZV.30 

Moreover, PCV has showed inhibitory activity of EBV and HBV replication.10 

As already seen for ACV and GCV, penciclovir triphosphate (PCV-TP) is an inhibitor 

of HSV and VZV DNA polymerase.31 HSV or VZV TK mediates the first 

phosphorylation step, and subsequent phosphorylation steps are mediated by cellular 

kinases. In particular, PCV-TP is less potent than ACV-TP as an inhibitor of viral DNA 

polymerase. However, due to a more efficient phosphorylation by both viral and cellular 

kinases, it reaches a higher concentration inside the host cell over that of ACV-TP.32 

The long intracellular half-life (t1/2= 17-20 h) of PCV-TP accounts for its prolonged 

antiviral activity.6 TK deficient strains, which are ACV-resistant, show cross-resistance 

to PCV.33 The low oral bioavailability (<5%) of PCV is considerably increased (ca 

75%) by its prodrug famciclovir (fig. 1.15) that consists in the diacetyl derivative of 6-

deoxypenciclovir.34 The bioactivation pathway of famciclovir to PCV involves the 

hydrolytic cleavage of one acetyl group in the intestine, followed by the cleavage of the 

second acetyl group in the liver.35 Finally, xantine oxidase or aldehyde oxidase  catalyze 

the oxidation of the 6-position.10, 36 Oral famciclovir, topical penciclovir, and 

intravenous PCV have been approved for the treatment of HSV and VZV infections.10 
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Cidofovir (S-HPMPC) 

Cidofovir is the S-enantiomer of 1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine 

(S-HPMPC); the reference to its chirality is important, since the R-enantiomer is not as 

effective as the S-enantiomer.37, 38 Like adefovir and tenofovir, which are inhibitors of 

HIV reverse transcriptase and will be discussed in the following paragraphs,39  

S-HPMPC is an acyclic nucleoside phosphonate (ANP). This class of compounds bears 

a phosphonate group that mimics the phosphate moiety of normal nucleotides. For this 

reason, ANPs are able to deliver an isoster of the monophosphate form of nucleoside 

analogues directly into the cell.37 The replacement of the phosphoric ester bond with a 

methylene bridge in the phosphate moiety confers stability against the hydrolytic 

activity of phosphatase enzymes, which dephosphorylate normal nucleotides and 

prevent their use as antiviral agents.37 The antiviral spectrum of S-HPMPC is broad, 

including several DNA viruses, such as all eight human herpes viruses, papillomavirus, 

polyomavirus, poxviruses (vaccinia virus, cowpox virus, variola virus, etc.), and 

adenovirus.39 Intravenous cidofovir (Vistide®) has been approved for the treatment of 

CMV retinitis in HIV-infected patients.10 

Cidofovir exerts antiviral activity by means of its diphosphate metabolite  

(S-HPMPC-pp), which is competitive inhibitor of deoxycitydine triphosphate 

incorporation into the viral DNA chain, akin to triphosphate nucleoside analogues.37 

Both phosphorylation steps are mediated by cellular kinases (fig. 1.16).40  
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Figure 1.16. Bioactivation pathway of Cidofovir 
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In addition to the competitive inhibition of viral DNA polymerase, S-HPMPC-pp acts 
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also as a substrate. However, it is not an obligate chain terminator due to the presence of 

the hydroxymethylene group on the acyclic side chain, which mimics the 3’-hydroxyl 

group of natural nucleosides. Only the insertion of two consecutive molecules of S-

HPMPC into the growing nucleic acid strand leads to the termination of its 

polymerisation.41 The lack of involvement of virus-encoded proteins in the 

phosphorylation process explains the antiviral activity of S-HPMPC against thymidine 

kinase deficient-strains of HSV and VZV.37  

At physiological pH the phosphonate group is negatively charged and this accounts for 

the extreme low oral bioavailability of S-HPMPC that requires intravenous 

administration. However, the long intracellular half-life (t1/2= 87 h) of the phosphocoline 

metabolite, which slowly releases the antiviral agent as a sort of intracellular reservoir, 

allows the application of an infrequent dosing regimen.6 Differently from the others 

ANPs, no approved prodrugs of S-HPMPC possessing an increased oral biovailability 

are available. The alkoxyalkyl esters of Cidofovir are under preclinical investigation 

and will be discussed more extensively later. 

The main dose-limiting side effect of cidofovir is nephrotoxicity due to its accumulation 

in the renal proximal tubules.37, 39  

The internal cyclisation of the hydroxymethylene residue with the phosphonate group 

generates cyclic cidofovir (S-cHPMPC), which has been shown to be a prodrug of  

S-HPMPC (fig 1.17). It exhibits similar antiviral activity and lower nephrotoxicity, due 

to its reduced uptake in the renal proximal tubule cells.42, 43 The cellular cyclic cytosine 

monophosphate (cCMP) phosphodiesterase was found able to cleave the phosphodiester 

bond generating cidofovir.44  
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Figure 1.17. Structure of S-cHPMPC 

!

 

 



Chapter 1 

! 17 

Foscarnet and brivudin 

Foscarnet (phosphonoformic acid) is a non-nucleoside inhibitor of viral 

polymerase.45 It has been approved for the treatment of HCMV infections, 

particularly in immunocompromised patients, and acyclovir-resistant HSV infections. 

Moreover, foscarnet has shown inhibitory activity against HIV.14 Foscarnet structurally 

is a pyrophosphate analogue and its mechanism of action involves reversible binding to 

the pyrophosphate binding site of the viral polymerase. This event blocks the cleavage 

of the pyrophosphate group of the incoming deoxynucleoside triphosphate into the 

growing DNA chain by the viral polymerase during the viral genome replication.14 This 

results in termination of viral DNA polymerisation.  Due to this mechanism of action, 

foscarnet is active against HSV TK mutants and VZV UL97 mutants that show 

resistance to the antimetabolite nucleosides. The major dose-limiting side effect of 

foscarnet is nephrotoxicity. Due to its ionisation at physiological pH the oral 

bioavailability is poor and it requires intravenous administration.6  

Brivudin or (E)-5-(2-bromovinyl)-2’-deoxyuridine (BVDU) is a 

nucleoside inhibitor of HSV and VZV DNA polymerase.46 Its 

triphosphate form is both a competitive inhibitor and substrate of viral 

DNA polymerase. The incorporation of BVDU in the viral genome 

destabilizes the DNA chain leading to termination of its 

polymerisation.47 Thymidine phosphorylase metabolises BVDU to (E)-5-(2-

bromovinyl)-2’-uracil (BVU) and 2-deoxyribose-1-phosphate. BVU is a potent inhibitor 

of the enzyme involved in pyrimidine metabolism. This enzyme is responsible for the 

metabolism of 5-fluorouracil and its inhibition increases the antiproliferative activity 

and toxicity of this anticancer agent, leading to fatalities in several cases.47   

1.2.1.2 Reverse transcriptase inhibitors 

Reverse transcriptase (RT) is a particular kind of polymerase that is able to produce 

copies of DNA using RNA as template. This enzyme mediates the replication of HIV 

and HBV genomes and differs consistently from the cellular counterpart, suggesting an 

ideal target of antiviral therapy. Most of the approved antiviral agents that inhibit the 

RT of HIV and HBV are nucleoside antimetabolites and are defined nucleoside reverse 

transcriptase inhibitors (NRTIs);8 some of them belong to the class of acyclic nucleoside 

phosphonates (adefovir and tenofovir) and are defined nucleotide reverse transcriptase 
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inhibitors (NtRTIs).8 As already mentioned, a group of non-nucleoside reverse 

transcriptase inhibitors (NNRTIs) have been approved for the treatment of HIV.8 They 

exert their activity by binding to an allosteric pocket of RT that is distinct from the 

catalytic pocket where the NRTIs carry out the inhibition of viral genome replication.1 

NRTIs: anti-HIV agents 

In 1987, zidovudine (3’-azido-2’,3’-dideoxythymidine, AZT) was the first NRTI to be 

approved by the FDA for the treatment of HIV.48, 49 It is a 2’,3’-dideoxythymidine 

analogue where the hydroxyl group in 3’ position of the sugar moiety is replaced by an 

azido group (fig. 1.18). The resistance to AZT and its toxicity lead to the development 

of alternative anti-HIV drugs. The other NRTIs, which have been approved as anti-HIV 

agents, are (fig. 1.18): 2’,3’-didehydro-2’,3’-dideoxythymidine (Stavudine, d4T), 2’-

3‘dideoxyinosine (Didanosine, ddI),50 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-

purin-9-yl]cyclopenten-1-methanol (Abacavir, ABC),51 (-)-!’-3’-thia-2’,3’-

dideoxycytidine (Lamivudine, 3TC),52 and (-)-!’-2’-3‘dideoxy-5-fluoro-3’-thiacytidine 

(Emtricitabine, FTC).53 
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Figure 1.18. Structures of NRTIs 

Also tenofovir, R-9-(2-phosphonylmethoxypropyl)adenine (R-PMPA), is an inhibitor of 

RT.37 It differs from the others nucleoside analogues in being a NtRTI that belongs to 

the class of ANPs (fig. 1.19). Differently from S-HPMPC, the R-enantiomer is more 

potent than the S-enantiomer.54 Its prodrug Tenofovir disoproxil fumarate, which will be 

further discussed later, has been approved for the treatment of HIV by the FDA under 

the name of Viread®.8,39,55 Tenofovir is also used in combination with either 

emtricitabine (Truvada®) or emtricitabine and efavirenz (Atripla®) for the treatment of 

HIV infections.8 
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Figure 1.19. Structure of tenofovir and its diisoproxil fumarate prodrug 
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Similarly to the inhibitors of herpesviruses DNA polymerase, the triphosphate of NRTIs 

and the diphosphate of tenofovir are the active forms that act as competitive inhibitors 

and substrates of RT.3,5 Since they lack the hydroxyl group in 3’ position, these 

compounds are obligate chain terminators. In contrast to herpesviruses, HIV does not 

encoded for enzymes that can phosphorylate nucleoside analogues. The formation of 

their active form is completely carried out by the cellular kinases. This lack of 

selectivity accounts for the accumulation of the active form in all dividing cells and not 

just in infected cells.1,6 A good affinity for the cellular kinases is essential in order to 

achieve an effective concentration of the nucleoside analogue triphosphate into the cell. 

In particular, the phosphorylation to the monophosphate form usually is the rate-

limiting step. The only well known exception is given by the bioactivation of AZT 

where the second phosphorylaton is a rate-limiting step.56 Similarly to S-HPMPC, R-

PMPA bypasses the first phosphorylation step by releasing the monophosphate 

nucleoside analogue directly into the cell.37 

Despite the good selectivity for RT, the inhibition of mitochondrial polymerase-! is the 

main reason of NRTIs toxicity.6 However, the development of 3TC and its analogue 

FTC has overcome this problem by means of an unusual sugar moiety: its L-

configuration, instead of the natural D-configuration, and the atom of sulphur in 

position 3 account for the great decrease of the inhibitory activity exerted on the cellular 

polymerase.1, 57 Although the efficacy against RT is lower in comparison to AZT, their 

therapeutic index is 100 times higher. Another important issue of these antiviral agents 

is the development of cross-resistance due to the error prone nature of RT.1, 6  

NRTIs: anti-HBV agents 

HBV reverse transcriptase is very similar to HIV reverse transcriptase.1 For this reason 

the anti-HIV drugs lamivudine and tenofovir are also active against HBV and they have 

been approved for the treatment of HBV infections, particularly in co-infected HIV 
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patients where they can exert their activity on both viruses.8,37,58 

Adefovir, 9-[2-(phosphonylmethoxy)ethyl]adenine (PMEA), is an analogue of tenofovir 

and is active against HIV, HBV, and also herpesviruses (fig. 1.20).59 Its mechanism of 

action is analogous to that of tenofovir: its diphosphate form (akin to triphosphate 

nucleoside analogues) targets the viral polymerase inhibiting the elongation of the DNA 

chain.37 Its oral prodrug Adefovir dipivoxil (fig. 1.20), which will be further discussed 

later, has been approved for the treatment of HBV infections under the name of 

Hepsera®.6, 8, 60  
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Figure 1.20. Structure of adefovir and its produg adefovir dipivoxil 
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Entecavir and telbivudine are nucleoside analogues that selectively target the HBV 

reverse trascriptase and have been approved for the treatment of this infection (fig. 

1.21).61, 62 
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Figure 1.21. Structure of entecavir and telbivudine 

NNRTIs 

Nevirapine, efavirenz, delaviridine, etravirine, and rilpivirine are NNRTIs (fig. 1.22), 

which have been approved for the treatment of HIV infections by the FDA.8 These 

agents are non-competitive inhibitors of the HIV-RT.5 They bind to a hydrophobic 

pocket distinct from the active site and not essential for the function of RT. This 

interaction induces a conformational change in the enzymatic structure that greatly 

reduces the activity of RT.63 The binding site is virus strain specific, so NNRTIs are 

active only against HIV-1. For this same reason, their cytotoxicity is low, as they do not 

interact with human polymerases.63 The main issue of this class of antiviral agents, 



Chapter 1 

! 21 

particularly in the first generation (Nevirapine, Delaviridine, Efavirenz), is the rapid 

development of resistance due to a modification of the binding site.1, 6 For this reason, 

NNRTIs are never used in monotherapy, they are combined with others antiretroviral 

drugs in order to enhance efficacy and to avoid resistance.63, 64 
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Figure 1.22. Structure of NNRTIs 

1.2.1.3 HIV integrase inhibitors 

HIV integrase catalyses the integration of the viral genome into the host cell DNA.1 It is 

an essential and exclusive enzyme of HIV life cycle. Due to these features HIV 

integrase is an ideal target of antiviral therapy.3 However the only FDA-approved HIV 

integrase inhibitor is raltegravir (fig. 1.23). It is only used in combination with other 

anti-HIV drugs.65  

!

Figure 1.23. Structure of raltegravir 

1.2.1.4 Ribavirin 

Ribavirin (Virazole®) is a nucleoside analogue with antiviral activity that ranges in 

vitro and in vivo from DNA to RNA viruses.66 However, it has been approved only for 

the treatment of respiratory syncytial virus infection and, in combination with pegylated 

interferon-!, for hepatitis C virus infection; both of them are RNA viruses.9 

Structurally, ribavirin differs from the majority of nucleoside analogues in having a 
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normal sugar unit (D-Ribose) attached to a triazole group that mimics a natural purine 

nucleobase (fig. 1.24).  
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Figure 1.24. Structure of ribavirin 
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Its mechanism of action has not been fully clarified yet. Several studies showed that 

ribavirin has various sites where it can exert its antiviral activity. Host cell kinases 

mediate the phosphorylation of Ribavirin to the mono-, di-, and triphosphate forms.67 

The monophosphate derivative is a competitive inhibitor of inosine monophosphate 

dehydrogenase that is involved in de novo guanosine triphosphate (GTP)  

biosynthesis.68, 69 In principle, lowering the cellular GTP pools affects the viral genome 

replication and the activity of others viral GTP-dependent enzymes, which rely on the 

host cell’s source of GTP. Moreover, this effect may promote the incorporation of 

ribavirin triphosphate into the viral nucleic acid.70 This event induces the so called error 

‘catastrophe’, which is an accumulation of mutations over the edge of an error threshold 

that leads to the production of a non functional viral genome.71 In influenza virus 

infection, the triphosphate form of ribavirin shows inhibition of the RNA polymerase.72 

In Dengue virus infection, it inhibits the viral 2’-O-methyl transferase, while the 

monophosphate derivative inhibits the viral guanylyl transferase.73 Finally, ribavirin was 

found to exert an immunomodulatory activity in HCV and HBV patients.74, 75  

1.3 Pronucleotides 

The abundance of nucleoside analogues among the antiviral agents points at the 

relevance of viral polymerases as target of antiviral drug therapy.8-10
!"#$!main features 

that make an ideal target of this enzyme are:1
!

• The difference of structure with the cellular DNA polymerase, which is crucial 

in order to achieve selectivity. 

•  The importance of its function for the viral life cycle 

• Its druggability, due to the small molecular weight of its substrates 



Chapter 1 

! 23 

As already described in the paragraph on antiviral agents, nucleoside analogues need to 

be phosphorylated to the triphosphate form in order to exert their inhibitory activity on 

the viral polymerase; their success as antiviral agents depends not only on the affinity 

and selectivity for the viral polymerase but also on the rate of phosphorylation that 

provides the therapeutic concentration of the active form into host cells. On account of 

this, the release of the monophospate derivative of nucleoside analogues directly into 

infected cells has always been a target for antiviral drug development, because 

bypassing the first phosphorylation step has several advantages. First of all, this is the 

rate-limiting step of the metabolic activation for most nucleoside analogues, so 

nucleotides are supposed to show an improvement in activity in cases where parent 

nucleosides are inactive due to poor first intracellular phosphorylation step.6,76,77 In 

many cases, this is followed by an extension of antiviral spectrum, or an altered 

biological profile in some cases. For example, acyclovir triphosphate shows inhibitory 

activity against HIV and the pronucleotide of BVDU has proliferative activity against 

colon cancer.78,79 Therefore, nucleotides retain activity against certain mutant virus 

strains that develop resistance to the parent nucleosides (e.g TK- HSV and VZV).80  

Nevertheless, nucleotides themselves are not ideal drug candidates. There are some 

disadvantages that do not allow their administration as such. Due to the negative charge 

on the phosphate moiety at physiological pH, they have poor membrane permeability 

and bioavailability.76,80 Another disadvantage of nucleotides is their instability in 

biological media as they are rapidly dephosphorylated by phosphatase enzymes.80  

 

 As already discussed in the paragraphs regarding cidofovir, tenofovir, and adefovir, 

ANPs are resistant to the dephosphorylating activity of extracellular phosphatases. 

However, the therapeutic application of ANPs is limited by the negative charge of the 

phosphonate group that does not allow a significant cellular uptake or good 

bioavailability due to poor membrane permeability of these compounds.37, 38  

In order to overcome this issue, several pronucleotide approaches have been developed 

by masking the phosphate group with lipophilic moieties that allow the passive 

diffusion through cellular membranes.38, 76, 80-83 Once inside the cell, the pronucelotide is 

metabolised releasing the monophosphate form. Approaches that make use of this 

strategy are: 

• Bis(POM) and bis(POC) pronucleotides 
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• Bis(SDTE) and bis(SATE) pronucleotides 

• Cyclosal approach 

• Phospholipid conjugates 

• Peptide conjugates 

• Hepdirect approach  

• Phosphoramidate diester pronucleotides: the Wagner approach 

• Aryl Phosphoramidate triester pronucleotides: the ProTide approach 

• Phosphorodiamidate pronucleotides 

1.3.1 Bis(POM) and Bis(POC) pronucleotides 

The bis(POM) phosphoester derivatives of nucleoside analogues (1.1) mask the 

negative charge of the phosphate (X: O) or phosphonate moiety (X: CH2) by means of 

two pivaloyloxymethyl (POM) groups (figure 1.25).80, 84  
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Figure 1.25. Generic structure of Bis(POM) pronucleotides 

!

The intracellular mechanism of bioactivation involves the esterase-mediated cleavage of 

both POM-groups in two steps (scheme 1.1).85 In the first step the carboxyesterase-

mediated cleavage of one of the two POM groups affords the hydroxymethyl 

phosphoester 1.2. This highly reactive intermediate spontaneously dissociates to give 

the phosphoester 1.3 by elimination of formaldehyde. The cleavage of the second POM 

group follows the same mechanism and results in the release of the 5’-monophosphate 

(X: O) or monophosphonate (X: CH2) form (1.4) of the nucleoside analogue.  
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Scheme 1.1. Bioactivation pathway of Bis(POM) pronucleotides 

!

The bis(POM) prodrug of Adefovir (Adefovir dipivoxil) improves the poor oral 

bioavailability of the parent compound up to 30-60% and has been approved in 2002 for 

the treatment of HBV infections.6  

In the bis(POC) phosphotriester analogues the pivaloyl groups are replaced by 

isopropoxycarbonyl groups. Similarly to the bioactivation mechanism of bis(POM), the 

elimination of the masking group is catalysed by carboxyesterase enzymes and results 

in the release of the monophosphate form of the nucleoside analogue together with 

isopropanol, CO2 and formaldehyde. Although this approach avoids the formation of 

potentially toxic pivalic acid, it still generates formaldehyde. The application of the 

bis(POC) technology to tenofovir resulted in the synthesis of tenofovir disoproxyl 

fumarate that showed a 16- to 35- fold increase of the anti-HIV activity and no 

significant toxicity on account of the improvement of its cellular uptake.86  

1.3.2 Bis(SDTE) and Bis(SATE) pronucleotides  

The bis-[S-(2-hydroxyethylsulfidyl)-2-thioethyl] [bis(SDTE)] and bis-(S-acyl-2-

thioethyl) [bis(SATE)] phosphotriesters were first described by Imbach and Grosselin.87 

Similarly to bis(POM) and bis(POC) approaches, their mechanism of activation is 

mediated by enzymes (scheme 1.2).  
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Scheme 1.2. Bioactivation pathway of bis(SATE) and bis(SDTE) phosphotriesters 
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In the bioactivation of bis(SATE) phosphotriester derivatives (1.5), a carboxyesterases 

enzyme carries out the initial cleavage of the thioester bond of one of the two SATE  

groups with release of pivalic acid and the corresponding phosphothioester 1.6. Then, 

the spontaneous elimination of episulfide affords the intermediate phosphodiester 1.7. 

The elimination of the second S-acyl-2-thioethyl group follows the same pathway and 

leads to the release of the 5’-monophosphate of the nucleoside analogue (1.8). The 

bioactivation pathway of bis(SDTE) analogues (1.9) is slightly different.  The initial 

step is carried out by a reductase enzyme that cleaves the disulfide bond releasing 

thioethanol and the reactive intermediate thioethyltriester 1.10. The spontaneous 

elimination of episulfide affords the intermediate phosphodiester 1.11, which is 

metabolised to the 5’-monophosphate derivative 1.8 by a further reductase-mediated 

cleavage. Alternatively, phosphodiesterase enzyme can catalyse the hydrolysis of the 
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second masking group leading to the formation of the 5’-monophosphate product.80  

Examples of the application of these approaches are the bis(SATE) phosphotriester 

analogues of ACV,88 AZT,89 and d4T.90 All of them are successful in the intracellular 

release of the monophosphate of the parent nucleoside, and thus bypass the first 

phosphorylation step. In particular, the bis(SATE) pronucleotide of ACV extends the 

antiviral activity of ACV on HBV.  

1.3.3 The cyclosal approach 

The cyclosaligenyl phosphotriester derivatives of nucleoside analogues bear a salicyl 

alcohol molecule on the phosphate or phosphonate group. In contrast to other strategies, 

which mask the negative charge of the phosphate moiety by means of a biolabile group, 

the cyclosal approach involves chemical hydrolysis of the lipophilic masking unit 

(scheme 1.3).91  
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Scheme 1.3. Chemical hydrolysis of a generic Cyclosal pronucleotide 

!

The release of the nucleoside 5’-monophosphate 1.14 from the phosphotriester 

derivative 1.12 proceeds in two consecutive steps. The first step is the selective 

hydrolysis of the phenolic ester bond, which is the most labile of the three P-O bonds 

due to the delocalisation of the negative charge of the phenoxide ion in the aromatic 

ring. Then, the spontaneous cleavage of the benzylic ester bond (1.13) results in the 

release of the nucleoside 5’-monophosphate 1.14. The cyclosal approach has been 

applied to many nucleoside analogues, such as ACV,92 BVDU,93 AZT,94 d4T,95 and the 

acyclic nucleoside phosphonate PMEA.96 This approach presents some limits that 

interfere with the efficacious release of nucleotide analogues in the intracellular 

compartment:80 
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• The efflux of the cyclosal derivatives through the membrane cell decreases their 

intracellular concentration 

• The masking group is cleaved also in the extracellular compartment due to its 

low hydrolytic stability   

In order to overcome these issues, second and third generations of cyclosal triesters 

bearing an esterase-cleavable function (lock-in cyclosal pronucleotides) were 

developed. In the second generation of cyclosal derivatives the cleavage of the ester 

group is mediated by cellular esterase and makes the metabolite more polar.97 Such an 

increase in polarity traps the phosphotriester derivative in the intracellular compartment, 

where it is bioactivated through the same mechanism of the first generation derivatives. 

This strategy was applied to the synthesis of various ester-functionalised derivatives of 

cycloSal-d4TMP (fig. 1.26).98 However, the chemical hydrolysis that affords d4TMP is 

very slow.  
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Figure 1.26. Lock-in cyclosal pronucleotide (2nd generation) 

!

In the third generation, the esterase–cleavable function bears electron-donating or weak 

electron-withdrawing groups. Once inside the cell, the esterase-mediated cleavage of 

this substituent leads to a decrease in the hydrolysis stability of the cyclosal derivative 

that favors the elimination of the masking group on the phosphate moiety. The rational 

of this technology is to trigger selectively the release of the nucleotide analogue in the 

intracellular compartment: the idea of trapping the compound into the cell is applied at 

the nucleotide level. Following this strategy, diacyloxymethyl-cycloSal-d4TMPs and 5-

(1-acetoxyvinyl)-cycloSal-d4TMPs were synthesised (fig. 1.27).99, 100  
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Figure 1.27. Structure of cyclosal phosphotriester of nucleoside analogues (3rd generation) 

1.3.4 Phospholipid conjugates  

This technology has been developed by Hostetler and coworkers to improve the oral 

bioavailability and cellular uptake of acyclic nucleoside phosphonates.101 It consists of 

the esterification of the phosphonate group with an alkoxyalkyl chain that masks one of 

the two negative charges (1.15). The rational of this substitution is its resemblance to 

lysophosphatidylcholine (1.16), which easily crosses the cellular membrane and allows 

the cellular uptake of this lipophilic precursor (fig. 1.28).101 In particular the best results 

have been obtained using hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) 

esters. Inside the cell, the alkoxyalkyl chain of phospholipid moiety is selectively 

cleaved by the phospholipase C with release of the acyclic nucleoside phosphonate. The 

absence of this enzyme in plasma or pancreatic secretions avoids the metabolisation of 

these mimetic phospholipid derivatives during the oral absorption and prior to reach 

tissues.   
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Figure 1.28. Generic structure of alkoxyalkyl ester of acyclic nucleoside phosphonate (1.15) in 

comparison to lysophosphatidylcholine (1.16) 

!

The application of this approach to cidofovir afforded the alkoxyalkyl ester derivatives 

HDP-(S)-HPMPC and ODE-(S)-HPMPC,  which exhibited a striking increase in 

potency against several double stranded DNA viruses in comparison to the parent 

nucleoside (fig.1.29).101  
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Figure 1.29. Structures of hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) esters of  

S-HPMPC 
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The activity in vitro against HCMV and others herpes viruses has shown 2.5-to 4-log 

increases in potency (depending on the antiviral assay used).102 These compounds were 

also found to be more active than cidofovir against several poxviruses, such as 

smallpox, cowpox, monkeypox, and vaccinia viruses.103 The oral adminstration of such 

phospholipid conjugates was as effective as parental cidofovir in the treatment of CMV 

infections in murine models. They were also found to be effective in animal models of 

cowpox and vaccinia virus infections.104 Another important achievement of this 

approach is the lack of nephrotoxicity, which is the main dose limiting toxicity of 

intravenous cidofovir.6 The alkoxyalkyl ester derivative of cidofovir is not recognised 

by the transport mechanism that causes the accumulation of cidofovir in the kidney.105 

HDP-(S)-HPMPC, under the name of CMX001, completed Phase I clinical trials as oral 

drug for the treatment of HCMV and small pox infections. Phase II trials are currently 

in progress. This same approach has been applied to the cyclic derivative of cidofovir 

and several others acyclic nucleoside phosphonate including tenofovir and adefovir.101 

Recently, the hexadecyloxypropyl ester derivative of tenofovir (HDP-(R)-PMPA, fig. 

1.30) has entered in Phase I clinical trials as an oral drug, with the name CMX157, for 

the treatment of HIV infections. 
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Figure 1.30! Structure of the hexadecyloxypropyl ester of tenofovir  

Despite the striking improvement of antiviral activity afforded by this technology, the 

poor water solubility of these lipophilic precursors is still an issue of this approach. 

Recently, Kre!merová et al. tried to address this issue by synthesising ester derivatives 

of cidofovir and adefovir bearing hydroxyl groups or oxygen atoms on the aliphatic 
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chain.106 In general, these modifications resulted in a decrease or loss of activity due to 

inefficient cellular uptake or a lack of metabolism mediated by phospholipase C.  

1.3.5 Peptide conjugates 

In order to improve the oral bioavailability of acyclic nucleoside phosphonates, 

McKenna and co-workers have developed a technology that conjugates a dipeptide or a 

single amino acid with the phosphonate group.38 Similarly to valacyclovir, the rational 

of this approach is to improve the bioavailability of the parent drug by targeting the 

human peptide-specific intestinal transporter (hPEPT1), which is present in the 

gastrointestinal tract. The amino acidic moiety is cleaved during the first-pass 

metabolism. The L-Val-L-Ser-OMe dipeptide derivative of cyclic cidofovir (fig. 1.31) 

showed a 8-fold increase in the oral bioavailability of the parent drug.107  
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Figure 1.31. Structure of the L-Val-L-Ser-OMe dipeptide derivative of S-cHPMPC 

!

However, further studies showed that such dipeptide conjugates are not transported, 

although they are recognised, by hEPT1.108 Steric hindrance or polarity of the amino 

acid moiety can be accounted for the lack of hEPT1-mediated transport of these peptidic 

conjugates, thus suggesting that a different transporter is involved in their absorption.  

1.3.6 HepDirect approach 

The cyclic 1-aryl-1,3-propanyl esters of phosphate or phosphonate nucleoside analogues 

are a class of pronucleotides developed by Metabasis and called HepDirect prodrugs. 

The aim of this approach is to treat the infections that affect the liver by delivering the 

drug specifically in this organ and thus decreasing the exposure to the other organs. This 

goal is achieved by coupling the parent drug with a masking group that is selectively 

recognized and cleaved by the cytocrome P450 (isoenzyme CYP3A4) expressed 

predominantly in the liver.109 Pradefovir (fig. 1.32) is the HepDirect prodrug of 
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Adefovir and it has been developed to treat HBV infections.110 The analogous prodrug 

of cytarabine monophosphate (MB07133, fig. 1.32) has been developed for the 

treatment of hepatocellular carcinoma.81  
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Figure 1.32. Hepedirect prodrugs 
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1.3.7 Phosphoramidate diester pronucleotides: the Wagner approach 

This approach has been developed by Wagner et al. to deliver the monophosphate form 

of nucleoside analogues into the cell. The cellular uptake is favored by masking one of 

the phosphate charges with an amino acid ester.80 This strategy is a variant of the 

ProTide approach, developed by McGuigan et al., that masks both negative charges of 

the phosphate group. The unmasked negative charge improves the water solubility and 

the stability in human blood of these compounds in comparison to the phosphotriester 

analogues.80 This class of pronucleotides differs from the other approaches with regard 

to the lack of chirality at the phosphorus. A phosphoramidase-type enzyme (Hint-1) 

mediates the cleavage of the amino acid moiety with release of the monophosphate 

derivative of the nucleoside analogue.80 The application of this approach afforded the 

phosphoramidate derivatives of AZT, 1-!-arabinofuranosylcytosine, and 5-fluoro-2’-

deoxyuridine (fig. 1.33).111, 112 Despite the improvement of antiviral activity in vitro, in 

vivo these derivatives have poor bioavailability and degrade to the parent nucleoside in 

the gastro intestinal tract. 
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Figure 1.33. Structures of phosphoramidate diesters of nucleoside analogues 

1.3.8 Aryl phosphoramidate triester pronucleotides: the ProTide approach 

This approach has been developed by McGuigan et al. with the aim of allowing the 

intracellular delivery of lipophilic precursors of nucleotide analogues by passive 

diffusion of the cellular membrane.82 As depicted in figure 1.34, the aryl 

phosporamidate triester of nucleoside analogues mask both negative charges of the 

phosphate group by means of aryl and amino acid moieties. 
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Figure 1.34. Structural motifs of aryloxy phosphoramidate ProTide 
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In 1992 this technology was applied for the first time to the anti-HIV agent 

zidovudine.113 These derivatives exhibited anti-HIV activity in kinase deficient cell 

lines, proving the successful intracellular release of zidovudine monophosphate.114 Since 

then, the ProTide approach has been applied to several nucleoside analogues, such as 

2’,3’-dideoxyuridine,115 stavudine,116 abacavir,117 4’-azidouridine,118 brivudin,78 the 

anticancer agent 5-fluorouridine, 119 as well as the acyclic phosphonate nucleosides 

tenofovir and adefovir.120, 121 Recently, the aryl phosphoramidate pronucleotides 
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 INX-189, developed by Inhibitex/BMS, PSI-7977, developed by Pharmasset/Gilead, 

and the hybrid SATE/phosphoramidate IDX184, developed by Idenix, all entered 

clinical trials for the treatment of HCV infections (fig. 1.35).122-124 
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Figure 1.35. Structure of phosphoramidate pronucleotides in clinical trials as candidate for the 

treatment of HCV infection 
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The by-pass of the first phosphorylation step was achieved also in the case of 

acyclovir,125 providing the anti-HIV activity of acyclovir triphosphate.126 This topic will 

be discussed more extensively in the next chapter. The aryl phosphoramidate 

derivatives of N-acetylglucosamine were the first application of the ProTide approach 

on non-nucleoside agents.127 They were shown to have enhanced anti-osteoarthritic 

activity compared to their respective parent compounds. 

Proposed mechanism of activation of ProTides. 

The putative bioactivation mechanism of ProTides (1.17) is depicted in  

scheme 1.4.128-130 
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Scheme 1.4. Putative bioactivation pathway of aryloxy phosphoramidate pronucleotides 

Once inside the cell, the first activation step is the hydrolysis of the carboxylic ester 

moiety that affords the metabolite 1.18, a carboxyesterase enzyme is thought to mediate 

this cleavage.129 Recently, Gilead Science has performed mechanistic studies on the aryl 

phosphonamidate derivative of tenofovir GS-7340 showing that cathepsin A is the 

carboxypeptidase involved in this reaction.131 This cleavage is followed by an internal 
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nucleophilic attack of the carboxylate on the phosphorus atom with displacement of the 

aryl group and transient formation of a five-member cyclic intermediate 1.19. The 

instability of such intermediate does not allow its isolation. This cyclic anhydride is 

rapidly hydrolysed to the corresponding phosphoramidate derivative 1.20. The 

nucleophilic attack can take place either on the phosphorus centre (attack I) or on the 

carboxylate group (attack II). Recent in silico studies suggested that the former might be 

favored over the latter.132 The last step is cleavage of the P-N bond with delivery of the 

nucleoside monophosphate (1.21).129 Human Hint-1 (histidine triad nucleoside-binding 

protein), a phosphoramidase-type enzyme that belongs to the HIT (histidine triad) 

superfamily, is presumed to mediate this cleavage.78, 133  

Generic correlation structure – activity of ProTides 

An extensive study concerning the aryl, amino acid, and ester moieties was performed 

with the aim to identify the substituents that afford the optimal biological activity.82 

Figure 1.36 summarises the results of such investigation. 

O

P

O
H
N

ArO

O

R''

R
R'

O

Nuc

Wide variation of nucleosides acceptable
(dd and d4 nucleosides especially succesful,
BVDU succesful for cancer, 3TC and AZT less so)

Aryloxy essential as a leaving group. 
Substitution in the aryl (e.g. halogen) tolerated

Amino link essential

!-amino acid
strongly 
prefered

Ester essential
(benzyl group
preferred)

D-Face. Me or H both equivalent

L-Face. Me or similar preferred. 
Primary alkyl chain preferred

!

Figure 1.36. SAR of  aryloxy phosphoramidate pronucleotides 

Ester moiety 

The hydrolysis of the ester moiety is determinant for the bio-activation of the 

phosphoramidate. Even though the rate of the cleavage in the esterase studies does not 

correlate to the antiviral activity, the lability of the ester bond is necessary (but not 

sufficient alone) to achieve high biological activity. Different esters have been 

evaluated: linear (methyl, ethyl, n-propyl, pentyl), branched (tert-butyl, neopentyl, 2-

propyl), cyclic (cyclohexyl), and aromatic (benzyl, naphthyl). In particular, the t-butyl 

ester derivatives are often poorly active due to the lack of cleavage of the ester bond as 

its branched chain is too bulky to be processed by the carboxyesterase enzyme, while in 

many cases, the more lipophilic benzyl ester derivatives have exhibited the highest 

potency. Clearly, the more lipophilic the compound is, the better the cellular membrane 

diffusion will be, but the steric hindrance of these moieties must be taken into 
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consideration in terms of capacity of the enzymes to process the pronucleotide properly.   

Aryl moiety 

The elimination of the aryl group is not mediated by any enzyme, but it is the result of 

intramolecular cyclisation. For this reason the ability of this moiety to act as a good 

leaving group is essential for the successful metabolism of the ProTide. This is also the 

reason for which the development of the phosphoramidate technology has moved from 

the alkyl and haloakyl moieties to the aryl moiety (phenyl and 1-naphthol), which is a 

better leaving group due to its ability to delocalise the negative charge. Further studies 

performed on the aryl substitution of d4T phosphoramidates have shown that mild 

electron-withdrawing substituents (Cl, COOMe) lead to an increase of potency by 

enhancement of the leaving group ability of the aryl moiety in the formation of the 

aminoacyl intermediate, whilst strong electron-withdrawing groups (p-CN, p-NO2) 

cause a decrease of activity. 

Amino acid moiety 

The !-amino acid is essential for the successful bio-activation of phosphoramidates. 

Early studies have evaluated the replacement of the P-N bond by a P-O bond in lactyl 

and glycolyl analogues of AZT and d4T phosphoramidate showing a significant or 

complete loss of activity.82 Its replacement with n-alkylamine chains led to a complete 

loss of antiviral activity of AZT and d4T phosphoramidates. In general, the distance 

between the nitrogen and the carboxylic acid in the amino acid moiety is important for 

the activity: extending the chain length (e.g. "-amino acid) in d4T phosphoramidates 

resulted in poor activity.134 This study showed that in these derivatives the ester moiety 

is hydrolysed, but the intracellular cyclisation does not take place. A recent in silico 

study showed that the formation of the six-membered ring intermediate is not favored.132 

An extensive study that correlates the amino acid structure of d4T phosphoramidates 

with the antiviral activity was performed.135 From this study it was demonstrated that L-

alanine provides the best results. The one exception being phosphoramidates of N-

acetyl-glucosamine, where the L-Proline derivatives gave the best activity. 

Dimethylglycine derivatives retain the good antiviral activity exhibited by the L-alanine 

analogues. Surprisingly, the loss of the methyl group in the glycine phosphoramidate 

derivatives of d4T leads to a 60- 70- fold decrease of potency in comparison to the L-

alanine analogues. Bulky L-amino acids (e.g. L-valine, L-leucine, and L-isoleucine) are 
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not usually tolerated giving reduced activity. According to the study performed by 

Gilead Science on the hydrolysis rate of the ester moiety of nucleoside 

phosphonoamidate, Cathepsin A is not able to hydrolyse phosphoramidate with 

hindered side chains.131 Concerning the stereochemistry, unnatural D-amino acids are 

poorly active; this is probably due to the bad interaction with the enzymes involved in 

the bioactivation pathway. The D-alaninyl derivative of N-acetyl-glucosamine 

phosphoramidate is an exception to this trend. 

Phosphorus stereochemistry 

The unsymmetrical substitution introduces a chiral center in the phosphorus atom that, 

together with the other chiral centers of the molecule, causes the formation of a mixture 

of diastereomers. In some cases, one of the diastereomers has more potent biological 

activity than the other due to stereoselectivity of the enzymes involved in the 

bioactivation pathway. For example, the anti-HCV agent PSI-7977 (fig. 1.37) is the Sp 

diastereomer and exhibits a greater ability to produce higher intracellular concentration 

of triphosphate metabolite in comparison to the Rp diastereomer thus making it more 

active.123 The correlation between absolute configuration at the phosphorus centre and 

the relative potency of the antiviral agent has not been clarified yet.  
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Figure 1.37 Structure of PSI-7977 

1.3.9 Phosphorodiamidate pronucleotides 

The phoshorodiamidate pronucleotide approach makes it possible to overcome some 

limits of the ProTide approach: the release of phenol or naphthol, which might be toxic, 

and the formation of mixture of diasteroisomers that arises from the chirality of the 

phosphate centre. Such phosphate prodrug motifs were first applied to AZT by 

McGuigan et al.,82 but at that time their development was not further pursued due to the 

lack of improvement of the biological activity and the poor chemical yield. Since then, 

this approach has been applied by Gilead for the development of diamidate prodrugs of 

acyclic nucleoside phosphonates, such in the anticancer agent GS-9191  (fig. 1.38), 
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which is in Phase I clinical trial for the topical treatment of HPV lesions.81, 82, 136 
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Figure 1.38. Structure of the phosphonodiamidate derivative GS-9191 
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More recently, phosphorodiamidates of 6-O-methy-2’-C-methyl guanosine (fig. 1.39) 

were described by McGuigan et al. as good candidates for clinical studies in the 

treatment of HCV infections.137  
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Figure 1.39. Phosphorodiamidates of 6-O-methyl-2’-C-methyl guanosinee 
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The mechanism of bioactivation is analogous to the one already described for the aryl 

phosphoroamidate triester pronucleotides: the carboxyesterase-mediated cleavage of 

one or both the ester moieties leads to intracellular cyclization with elimination of the 

other amino acid moiety and subsequent formation of the phosphoramidate monoester, 

then the same pathway follows.137    

1.3.10 Summary of pronucleotide technologies 

Table 1 gives a summary of the strategies that allow the delivery of nucleotide 

analogues into the cell. 
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Table 1.1. Pronucleotide approaches 

Pronucleotide 

Approach 

Bioactivation 

Pathway 

In Clinical 

Trials/Approved 

Bis(POM)/Bis(POC) Esterase cleavage Yes 

Bis(SDTE)/Bis(SATE) Esterase/Reductase cleavage No 

Cyclosal Chemical hydrolys No 

Phosphoramidate diester Phosphoramidase cleavage No 

Phospholipid conjugate Phospholipase-C cleavage Yes 

Peptide conjugates Phosphatase cleavage No 

Hepdirect Cytochrome P450 Yes 

Arylphosphoramidate ProTide Esterase, phosphoramidase cleavage Yes 

Phosphorodiamidate Esterase, phosphoramidase cleavage Yes 

1.4 Aim of work 

The ProTide approach has proved to be effective in delivering the monophosphate form 

of acyclovir, thus bypassing the first phosphorylation step mediated by the human 

herpes virus-encoded thymidine kinase (HHV-TK) and achieving in vitro antiviral 

activity also against HIV.125, 126  

The aim of this work is:  

• to further investigate the application of the ProTide approach to acyclovir by 

modifying the aryl, amino acid, and ester moieties; 

• to extend this technology to other acyclic nucleosides by introducing different 

substituents at the guanine base and side chain of acyclovir. 

 

As summarised in figure 1.40, in the following chapters the synthesis and in vitro 

antiviral activity of novel aryl phosphoramidate derivatives of acyclovir and its 

derivatives 6-O-alkyl acyclovir, 8-bromoacyclovir, 8-methylacyclovir, penciclovir, and 

ganciclovir will be presented. Enzymatic and modelling studies are also presented in 

order to investigate the mechanism of activation of ProTides. 
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!

Figure 1.40. Outline of the thesis 

!

Furthermore, in this work the synthesis and in vitro biological activity of 

phosphonoamidate derivatives of cidofovir were evaluated (chapter 7).  
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Chapter 2. Synthetic route of ProTides 

2.1 Synthesis of aryl phosphoramidate derivatives of nucleoside 

analogues 

The synthesis of ProTides (2.3) can be achieved by the coupling reaction of the aryl 

amino acid ester phosphorochloridate 2.2 with the nucleoside analogue 2.1 through two 

different synthetic approaches (scheme 2.1A and B).  
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Scheme 2.1. General synthesis of ProTides: (A) Uchyiama approach, (B) van Boom approach. R, R1: 

amino acid side chain; R2: alkyl, aryl; R3: H, OH, O-protecting groups; R4: H, O-protecting group  

!

One method has been developed by Uchiyama et al. and is based on the deprotonation 

of the hydroxy group in the 5’ position of the nucleoside analogue 2.1 using tert-butyl 

magnesium chloride (tBuMgCl) as strong base (scheme 2.3A).1 The deprotonation 

affords the 5’-alkoxide group, which is more nucleophilic than the 5’-hydroxy group 

and this allows it to attack the phosphorus of the phosphorochloridate 2.2. Considering 

that the pKa of nucleoside hydroxyl groups are around 15 and the pKa of the conjugate 

acid of tBuMgCl is 45,2 both the secondary hydroxy groups in the 2’ and 3’ position and 

the primary hydroxy group in the 5’ position of the unprotected nucleoside analogue 

deprotonate in the presence of tBuMgCl. For this reason, the hydroxy groups in the 2’ 

and 3’ position must be protected in order to obtain exclusively the 5’-monophosphate 

analogue 2.3. 
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Another method that is applied in our lab for the synthesis of ProTides, has been 

developed by van Boom et al. and utilises N-methylimidazole (NMI) as reagent 

(scheme 2.3B).3 In this case, NMI (pKa ! 17) does not act as a base, because it is not 

strong enough to deprotonate the hydroxy group. However, NMI is presumably able to 

attack the phosphorochloridate 2.2 displacing the chloride.4 The corresponding 

intermediate delocalises a positive charge at the NMI moiety, which acts as a very good 

leaving group, thus increasing the reactivity towards nucleophiles. The phosphorylation 

of the unprotected nucleoside 2.1 occurs mainly at the primary hydroxy group in the 5’ 

position probably due to steric hindrance of the phosphorous provided by the 

imidazolium group.     

Starting from a diastereomeric mixture of aryl amino acid ester phosphorochloridate, 

both approaches generally afford the aryl phoshoramidate derivative of nucleoside 

analogue as mixture of diastereomers meaning that the coupling reaction is not 

stereospecific.5  

2.2 Synthesis of aryl amino acid ester phosphorochloridates 

The phosphorochloridate 2.2 is obtained by reaction of the appropriate amino acid ester 

salt 2.4 and the aryl phosphorodichloridate 2.5 in the presence of triethylamine (scheme 

2.2).6  
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!

Scheme 2.2 General synthesis of aryl amino acid ester phosphorochloridates 

!

Table 2.1 summarises the aryl amino acid ester phosphorochloridates 2.2a-p 

synthesised in this work, including the 31P NMR chemical shifts (") in CDCl3, and the 

isolated yields.!!

!

!
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Table 2.1. Aryl amino acid phosphorochloridates 2.2a-p synthesised.  

(AA: amino acid moiety; R”: ester moiety; Ar: aryl moiety)  

Cpd AA R’’ Ar Yield 
31P NMR !  

(ppm) 

2.2a L-Alanine Bn Ph 86% 7.52, 8.05  

2.2b L-Alanine Bn 1-Naph 87% 7.52, 7.86 

2.2c L-Alanine tBu Ph 64% 7.81, 8.20 

2.2d L-Alanine CH2tBu Ph Quantitative 7.66, 8.19 

2.2e L-Alanine CH2tBu 1-Naph 63% 7.90, 8.21 

2.2f Glycine Bn Ph 90% 8.75 

2.2g 2,2-Dimethylglycine Bn Ph 90% 5.43 

2.2h 2,2-Dimethylglycine Bn 1-Naph Quantitative 5.83 

2.2i L-Valine Bn Ph 77% 8.89, 9.37 

2.2j L-Valine Bn 1-Naph Quantitative 9.26, 9.72 

2.2k L-Leucine Bn Ph 93% 8.10, 8.34 

2.2l L-Leucine Bn 1-Naph 65% 8.31, 8.56 

2.2m L-Isoleucine Bn Ph Quantitative 8.61, 9.01 

2.2n L-Isoleucine Bn 1-Naph 70% 8.98, 9.40 

2.2o L-Proline Bn Ph Quantitative 7.72, 7.78 

2.2p L-Phenylalanine Bn 1-Naph 60% 8.16, 8.29 

 

Chiral amino acids (e.g. L-alanine) afforded the relative phosphorochloridates as a 

mixture of two diastereomers (SSp and SRp) that displayed two peaks in the 31P NMR 

spectrum. The phosphorochloridates of achiral amino acid (e.g. glycine and 2,2-

dimethylglycine) were obtained as a mixture of enatiomers (Sp and Rp) and displayed 

only one peak in the 31P NMR spectrum. 

2.2.1 Synthesis of amino acid esters 

Some of the amino acid ester salts used in this work for the synthesis of the 

phosphorochloridates 2.2a-p are not commercially available, so their synthesis was 

required.  

The tosylate salt of 2,2-dimethylglycine benzyl ester (2.4a) and L-alanine neopentyl 

ester (2.4b) were prepared by reaction of the amino acid with the appropriate alcohol in 

toluene and in the presence of para-toluenesulphonic acid (TsOH) (scheme 2.3).6 A 

Dean-Stark apparatus was used in order to remove the water produced by the 
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condensation reaction. The desired products were obtained in high yield by ether-

induced crystallization from the crude of reaction.      

R2 OH

NH3

O
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R
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i
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O

R
R1

DMG R = R1: CH3
L-Ala R: CH3; R1: H

R2: Bn, CH2tBu

2.4a R = R1: CH3; R2: Bn
2.4b R: CH3; R1: H; R2: CH2tBu

Reagents and conditions: (i) TsOH, toluene, 110 ºC, 12 h !

Scheme 2.3. Synthesis of the tosylate salt of 2,2-dimethylglycine benzyl ester (2.4a) and L-alanine 

neopentyl ester (2.4b)  

2.2.2 Synthesis of aryl phosphorodichloridates 

The phenyl phosphorodichloridate (2.5a, fig. 2.1) is commercially available, while the 

naphthyl phosphorodichloridate (2.5b, fig. 2.1) is not.  

PO Cl
Cl

O

PO Cl
Cl

O

2.5a 2.5b
!

Figure 2.1. Structures of phenyl phosphorodichloridate (2.5a) and naphthyl phosphorodichloridate 

(2.5b). 

!

The synthesis of 2.5b was carried out by treatment of naphthol with phosphorus 

oxychloride in the presence of triethylamine (TEA) (scheme 2.4).6 The crude of reaction 

was filtrated and used in the next step without any further purification. 
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Scheme 2. 4 Synthesis of naphthyl phosphorodichloridate (2.5b) 

 

 

!
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Chapter 3. Aryl phosphoramidate derivatives of acyclovir 

3.1 Introduction to the application of the ProTide approach to 

acyclovir 

As already discussed in chapter 1, acyclovir (ACV) is an acyclic guanine nucleoside 

analogue (fig 3.1) that has been approved for the treatment of HSV and VZV 

infections.1 This antimetabolite nucleoside exerts inhibitory activity on the viral DNA 

polymerase by means of its triphosphate form (ACV-TP). The selectivity for the virus-

encoded TK, which is responsible for the formation of ACV monophosphate (ACV-

MP), and the viral polymerase accounts for the high therapeutic index of ACV.2 

NH

NN

N

O

NH2O
HO  

Figure 3.1. Structure of ACV 

 

The development of drug resistance to ACV mainly involves a partial or complete loss 

of the virus-encoded TK activity. Despite the fact that ACV has been used in the 

treatment of herpes virus infections for more than 30 years, the incidence of ACV-

resistant infections is not a risk among immunocompetent patients. However, this risk is 

a concern for immunocompromised patients and particularly in patients receiving 

allogenic bone marrow transplant.3 

The release of ACV-MP directly into the cell bypasses the HSV- and VZV-TK-

mediated phosphorylation of ACV affording activity also against TK-deficient strains of 

HSV and VZV. For this reason, in our group the ProTide approach was previously 

applied to the synthesis of aryl phosphoramidates of ACV, which were evaluated in 

vitro against ACV-sensitive and ACV-resistant strains of HSV and VZV.4 In particular, 

the L-alanine benzyl ester derivatives 3.1a and 3.1b (fig. 3.2) exhibited retention of 

activity against TK-deficient strains of HSV and VZV in the micromolar range, proving 

a successful bypass of the first phosphorylation step by releasing ACV-MP.  
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Figure 3.2 L-alanine benzyl ester derivatives 3.1a and 3.1b 

 

These compounds were also found significantly active against HIV in human T-

lymphocyte CEM and MT-4 cells (table 3.1).5 

Table 3.1. Anti-HIV and cytostatic activity of L-alanine benzyl ester derivatives 3.1a-b and ACV in 

CEM and MT-4 cell cultures (from ref. 5) 

 Antiviral Activity Cytotoxic/Cytostatic Activity 

 EC50 (µM) a IC50
 b(µM) CC50

 c(µM) 

Cps HIV-1 (CEM) HIV-2 (CEM) 
HIV-1 

(MT-4) 
 CEM MT-4 MT-4 

3.1a 16 ± 14 11 ± 4.9 5.7 ± 1.6 42 ± 11 33.8 ± 10.6 > 150 

3.1b 15 ± 14 8.9 ± 6.3 0.8 17 > 150 ND 

ACV > 250 > 250 > 250 > 250 > 250 > 250 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50%; b 50% Inhibitory concentration, or compound concentration  required to inhibit 

cell proliferation by 50%; c 50% Cytotoxic  concentration, or compound concentration  that induces 

50% cell death in the cultures 

 

This result was not totally unexpected considering that early clinical trials pointed out 

the survival benefits of ACV treatment in HIV patients co-infected with HHV.6 At first 

the mechanism of action of ACV in inhibiting HIV was not clear. Recent trials, which 

showed reduction of HIV load in HSV-2 co-infected individuals following ACV 

treatment, argued that the suppression of the inflammation mediated by HSV-2 could be 

accountable for HIV load decrease.7, 8 However, studies in vitro proved that acyclovir 

triphosphate inhibits HIV-1 RT and HSV co-infection is necessary for the suppression 

of HIV-1 replication by ACV (EC50= 3.1 µM in tonsillar tissues co-infected ex-vivo 

with HSV-2).9, 10 The bioactivation mechanism of ACV accounts for the need of HSV-

TK activity in order to have inhibitory activity against HIV-1 RT. This finding is in 

agreement with results obtained in vitro with ACV ProTides.  

Compounds 3.1a and 3.1b are considered the lead compounds for ACV ProTide series 

and they will be reported as references for the antiviral activity of the novel aryl 

phosphoramidate derivatives of ACV discussed in the following paragraphs. 
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3.2 Design of novel aryl phosphoramidate derivatives of acyclovir: 

modification of aryl, amino acid, and ester moieties. 

In order to improve the antiviral activity of the L-Alanine benzyl ester derivatives 3.1a 

and 3.1b,
5
 novel aryl phosphoramidates of ACV were designed and synthesised varying 

the aryl, amino acid and ester moieties (3.2, fig. 3.3).  
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R''
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Ar: aryl moiety
R, R': amino acid (AA) side chain
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3.2

 

Figure 3.3. General structure of ACV ProTides 

 

As already discussed in chapter 1, the capacity of the masking groups to be good 

leaving groups or to adopt the right conformation in order to interact properly with the 

enzymes involved in the bioactivation pathway of ProTides is crucial for the successful 

release of the monophosphate form of nucleoside analogues.
11

 For this reason, the 

present work is focused on the study of the structure-activity relationships of the 

masking groups of ACV ProTides (tab. 3.2).  

In the first instance, the ACV ProTides 3.2a-f containing the phenyl group as aryl 

moiety, the benzyl group as ester moiety, and different amino acids were considered. 

Hydrophobic amino acids were selected considering to balance the liphophilicity and 

the steric hindrance of the amino acid side chain. The increase in the lipophilicity is 

meant to improve the cellular uptake of ProTides. However, it must be considered that 

bulky aliphatic side chains are more likely to cause loss of activity due to the lack of 

interaction with the enzymes involved in the bioactivation pathway of ProTides.
11

 The 

non-natural amino acid 2,2-dimethylglycine 3.2b was considered in order to evaluate 

the influence of the amino acid stereochemistry on the activity. Then, the replacement 

of the phenyl group with the naphthyl 3.2g-j was evaluated with the aim of improving 

the lipophilicity and leaving group ability of the aryl moiety. In addition, the biological 

evaluation of the elsewhere reported derivatives 3.2p and q, containing meta- and para-

ethyl-phenyl groups at the aryl moiety respectively, is included in this work due to the 

similar lipophilicity and lower steric hindrance of these substituents in comparison to 

the naphthyl group.12 Finally, in addition to the benzyl different esters such as neopentyl 
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and tert-butyl were also evaluated (3.2k and l). The biological evaluation of the 

previously reported L-valine methyl and ethyl ester derivatives 3.2n and o is included in 

this work.13 

Table 3.2. Aryl (Ar), amino acid (AA) and ester (R”) substituents of ACV ProTides 3.2 a-q 

Cps Ar AA R” 

3.2a Ph Gly Bn 

3.2b Ph DMG Bn 

3.2c Ph L-Val Bn 

3.2d Ph L-Leu Bn 

3.2e Ph L-Ile Bn 

3.2f Ph L-Pro Bn 

3.2g 1-Naph L-Val Bn 

3.2h 1-Naph L-Leu Bn 

3.2i 1-Naph L-Ile Bn 

3.2j 1-Naph L-Phe Bn 

3.2k Ph L-Ala tBu 

3.2l Ph L-Ala CH2-tBu 

3.2m 1-Naph L-Ala CH2-tBu 

3.2n13 1-Naph L-Val Me 

3.2o13 1-Naph L-Val Et 

3.2p12 3-Et-Ph L-Ala Bn 

3.2q12 4-Et-Ph L-Ala Bn 

 

3.3 Synthesis of ACV ProTides. 

Based on the previous experience in our group,14 ACV was protected at the amino group 

using N,N-dimethylformamide dimethyl acetal  in order to improve its poor solubility in 

THF (scheme 3.1),15 which is the solvent commonly used for the synthesis of ProTides.  
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Scheme 3.1. Protection of ACV 

 

For most of the ACV ProTides synthesised, coupling reaction of protected ACV (3.3) 

with the appropriate aryl amino acid ester phosphorochloridate (2.2) in anhydrous THF 

was carried out in the presence of tert-Butyl magnesium chloride (tBuMgCl), according 

to the Uchiyama approach described in chapter 2, and afforded the protected derivatives 

of ACV ProTide (3.4, scheme 3.2).16 However, in the case of glycine and proline 

derivatives this approach was not successful, so their synthesis was carried out in 

anhydrous THF/Pyridine mixture (3:2) in the presence of N-methylimidazole (NMI) 

according to the Van Boom procedure (scheme 3.2).17  
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Scheme 3.2. Generic synthesis of ACV ProTides   

 

The DMF-protecting group was removed by refluxing 3.4 in isopropyl alcohol (iPrOH) 

obtaining the desired compounds 3.2 (scheme 3.3). 
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Scheme 2.3. N2-DMF protecting group removal 

 

Table 3.3 summarises structures, 31P NMR chemical shifts (!) in deuterated methanol, 

and isolated yields of the ACV ProTides synthesised. All the ACV ProTides containing 
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chiral amino acid display two peaks at the 31P NMR spectra corresponding to the two 

diastereomeric configurations, except the L-Proline derivative, which was isolated as 

single diastereomer. This was likely due to the stereospecificity of the coupling 

reaction, giving only one peak at the 31P NMR spectrum.  

Table 3.3. ACV ProTides synthesised.  

(Ar: aryl moiety; AA: amino acid moiety; R”: ester moiety)  

Protected 

Cps 
Ar AA R” 

Coupling 

Yield 

Final 

Cps 

31P NMR 

!  (ppm) 

Deprotection 

Yield  

3.4a Ph Gly Bn 81% 3.2a 4.77 2% 

3.4b Ph DMG Bn 93% 3.2b 2.13 14% 

3.4c Ph L-Val Bn 57% 3.2c 4.27, 4.51 8% 

3.4d Ph L-Leu Bn 65% 3.2d 3.60, 4.05 8% 

3.4e Ph L-Ile Bn 45% 3.2e 4.13, 4.42 3% 

3.4f Ph L-Pro Bn 16% 3.2f 1.68 4% 

3.4g 1-Naph L-Val Bn 60% 3.2g 4.79, 4.90 10% 

3.4h 1-Naph L-Leu Bn 65% 3.2h 4.04, 4.94 21% 

3.4i 1-Naph L-Ile Bn 47% 3.2i 4.63, 4.82 17% 

3.4j 1-Naph L-Phe Bn 50% 3.2j 3.77, 3.86 16% 

3.4k Ph L-Ala tBu 75% 3.2k 3.71, 3.81 22% 

3.4l Ph L-Ala CH2tBu 85% 3.2l 3.59, 3.80 14% 

3.4m 1-Naph L-Ala CH2tBu 53% 3.2m 4.09, 4.15 22% 

 

The yields of the coupling reactions may suggest that the phosphorylation of 3.3 with 

the phosphorochloridate 2.2 is negatively affected by the steric hindrance of the amino 

acid side chain. The instability of the P-N bond does not allow the removal of the DMF-

protecting group in basic conditions, but instead requires milder conditions, which 

afforded poor yields at the deprotection step. 

3.4 Biological evaluation of acyclovir ProTides 

The newly synthesised ACV ProTides 3.2a-m and the previously reported 3.2n-q were 

evaluated for their activity against HSV, VZV, HCMV in human embryonic lung (HEL) 

cell cultures. The antiviral activity of ACV ProTides was evaluated also against HIV in 

human T-lymphocyte cell cultures (CEM and MT-4 cells). In the case of the antiviral 

assays performed in HEL cell cultures against the herpes viruses, the minimum 
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concentration required to cause a microscopically visible alteration of cell morphology 

was measured and considered as a parameter of cytotoxicity. The cytostatic activity of 

these compounds on HEL and MT-4 cell cultures is also reported. In the case of the 

MT-4 cells, the compound concentration that induces 50% cell death in the cultures was 

evaluated too. The results of these assays will be presented in the next paragraphs. 

 

These derivatives were evaluated also against feline herpes virus, feline corona virus, 

influenza A and B viruses, para-influenza-3-virus, vescicular stomatitis, respiratory 

syncitial virus, punta toro virus, but no activity was detected. 

Also the protected intermediates of the ACV ProTides 3.4b, d, f, g, h, i, k, and m were 

evaluated for their activity against HSV, VZV, HCMV, and HIV. Most of them were 

found to be inactive. Only the 2,2-dimethylglycine and the L-proline benzyl ester 

derivatives 3.4b and 3.4f exhibited moderate to poor activity against HIV-1 in MT-4 

cells (EC50= 30-70 µM). These compounds resulted significantly less active in 

comparison to the unprotected ACV ProTides 3.2, indicating a detrimental effect of the 

N
2-DMF protecting group on their antiviral activity.  

3.4.1 Anti-HSV activity 

Three different strains of HSV were used to evaluate the anti-HSV activity of the ACV 

ProTides 3.2a-j in HEL cells: HSV-1 (KOS), HSV-2 (G), and thymidin kinase-deficient 

(TK-) HSV-1 (KOS). The minimum concentration required to cause a microscopically 

visible alteration of cell morphology (MCC) was found to be above 100 µM for all the 

compounds synthesised. 

Modification of the aryl and amino acid moieties  

Table 3.4 reports the anti-HSV activity of ACV ProTides 3.2a-j containing phenyl and 

naphthyl as aryl moieties, benzyl group as the ester, and different amino acids. The data 

include ACV and the lead compounds 3.1a and b as references.4  
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Table 3.4. Anti-HSV activity of ACV ProTides 3.2a-j in HEL cell cultures 

(Ar: aryl moiety; AA: amino acid moiety; R”: ester moiety)  

    Antiviral Activity EC50 
a (µM) 

Cps Ar AA R” HSV-1 HSV-2 TK- HSV-1  

3.2a Ph Gly Bn 3 0.8 9 

3.2b Ph DMG Bn 1.4 ± 0.8 0.8 ± 0.1 5.5 ± 2.1 

3.2c Ph L-Val Bn 2 ± 0.1 0.9 ± 0.2 7.5 ± 6.4 

3.2d Ph L-Leu Bn 0.8 ± 0.1 0.7 ± 0.1 1.4 ± 0.8 

3.2e Ph L-Ile Bn 1.1 ± 0.4 1.1 ± 0.4 1.4 ± 0.8 

3.2f Ph L-Pro Bn >100 >100 >100 

3.2g 1-Naph L-Val Bn 0.7 3 2.5 

3.2h 1-Naph L-Leu Bn 1.2 1.1 1.3 

3.2i 1-Naph L-Ile Bn 1.2 1.5 3 

3.2j 1-Naph L-Phe Bn >20 >20 >20 

ACV - - - 0.4 0.2 50 

3.1a Ph L-Ala Bn 8 ± 5.7 4 ± 0 15 ± 7.1 

3.1b 1-Naph L-Ala Bn 2 ± 0 1.4 ± 0.8 10 ± 2.1 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50% 
 

ACV exhibited activity against HSV-1 and HSV-2 in the sub-micromolar range (EC50= 

0.4 and 0.2 µM respectively) but markedly lost the activity against TK--HSV-1 (EC50= 

50 µM). Lead compounds 3.1a and 3.1b, did not improve the antiviral activity of ACV 

showing micromolar activity against HSV-1 and HSV-2. However, as already 

mentioned, they retained their activity against TK--HSV-1, demonstrating a successful 

by-pass of the first phosphorylation step.5  

The majority of the novel ACV ProTides 3.2a-j were found active against HSV-1 and 

HSV-2 (EC50: 0.7-3 µM) and showed retention of activity against TK-deficient HSV-1 

in contrast to ACV, demonstrating successful bypass of the first phosphorylation step. 

More specifically: 

• Glycine and 2,2-dimethylglycine derivatives 3.2a and b exhibited retention 

of activity when compared with the lead compounds 3.1a and b.  

• In disagreement with the common structure-activity relationship of the 
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ProTides, showing that the replacement of L-alanine with bulky amino acids leads 

to a significant loss of activity,11 ACV ProTides containing  L-valine (3.2c and 

3.2g), L-leucine (3.2d and 3.2h), and L-isoleucine (3.2e and 3.2i) as amino acid 

moiety displayed anti-HSV activity in the micromolar range. In particular, L-

leucine and L-isoleucine derivatives of the phenyl series (3.2d and 3.2e) showed 

slight improvement of activity against HSV-1 (EC50= 0.8-1.1 µM), HSV-2 (EC50= 

0.7-1.1 µM), and TK-deficient HSV-1 (EC50= 1.4 ± 0.8 µM) in comparison to the 

analogous lead compound 3.1a. 

• The L-proline and L-phenylalanine derivatives (3.2f and 3.2j) exhibited a 

complete loss of the anti-HSV activity. 

• The increase of lipophilicity, achieved through the replacement of the 

phenyl with the naphtyl group in the aryl moiety, did not improve the anti-HSV 

activity. 

Evaluation of meta- and para-ethyl-phenyl susbstituents 

Table 3.5 shows the anti-HSV activity of the elsewhere reported L-alanine benzyl ester 

derivatives of ACV ProTides bearing meta- or para-ethyl substituted phenyl group as 

aryl moiety (3.2p-q).12 As already mentioned, these substituents were considered due to 

their similar lipophilicity and lower steric hindrance when compared with the naphthyl 

group. ACV and the lead compounds 3.1a and b are reported as the reference 

compounds. 

Table 3.5. Anti-HSV activity of ACV ProTides 3.2p-q in HEL cell cultures  

(Ar: aryl moiety; AA: amino acid moiety; R”: ester moiety) 

    Antiviral activity EC50 
a (µM) 

Cps Aryl AA R” HSV-1 HSV-2 TK- HSV-1 

3.2p12 4-Me-Ph L-Ala Bn 32.5 32.5 47.5 

3.2q12 4-Et-Ph L-Ala Bn 32.5 32.5 45 

ACV - - - 2 1 250 

3.1a Ph L-Ala Bn 8 ± 5.7 4 ± 0 15 ± 7.1 

3.1b 1-Naph L-Ala Bn 2 ± 0 1.4 ± 0.8 10 ± 2.1 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50% 

 



Chapter 3 

 

 67 

The data show a marked decrease of potency of compounds 3.2p and q against HSV-1 

and HSV-2 in comparison to ACV and the analogous ProTides containing the 

unsubstituted phenyl (3.1a) or naphthyl group (3.1b) as aryl moiety. This antiviral 

activity was retained against TK--HSV-1, proving that this series of ACV ProTide is 

able to deliver the monophosphate form of ACV into the cell.  

Modification of the ester moiety  

Table 3.6 shows the anti-HSV activity of different ester derivatives of ACV ProTide 

such as the L-alanine tert-butyl and neopentyl ester derivatives 3.2k-m, as well as the 

previously reported L-valine methyl and ethyl ester derivatives 3.2n and o, which have 

been included in this work. The analogous benzyl ester derivatives 3.1a, 3.1b and 3.2g 

have been reported for comparison. 

Table 3.6. Anti-HSV activity of ACV ProTides 3.2k-o in HEL cell cultures  

(Ar: aryl moiety; AA: amino acid moiety; R”: ester moiety) 

    Antiviral Activity EC50 
a (µM) 

Cps Ar AA R” HSV-1 HSV-2 TK- HSV-1  

3.2k Ph L-Ala tBu >100 >100 >100 

3.2l Ph L-Ala CH2tBu 3 12 2.5 

3.2m 1-Naph L-Ala CH2tBu 1.3 1.7 1.5 

3.2n13 1-Naph L-Val Me >100 >100 >100 

3.2o13 1-Naph L-Val Et 51 ± 9.2 32 ± 18 42 ± 3.5 

ACV - - - 0.4 0.2 50 

3.1a Ph L-Ala Bn 8 ± 5.7 4 ± 0 15 ± 7.1 

3.1b 1-Naph L-Ala Bn 2 ± 0 1.4 ± 0.8 10 ± 2.1 

3.2g 1-Naph L-Val Bn 0.7 3 2.5 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50% 

 

The inactivity of the tert-butyl ester derivative 3.2k confirms the early study of 

structure-activity relationship conducted on aryl phosphoramidates of stavudine (d4T) 

showing that the tert-butyl ester derivative was the least potent of the series.11  

In contrast, the neopentyl ester analogues 3.2l and 3.2m showed antiviral activity in the 

micromolar range against HSV-1, HSV-2, and TK-deficient HSV-1. 
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Finally, the data show that in the case of L-valine derivatives the replacement of the 

benzyl (3.2g) with methyl (3.2n) and ethyl (3.2o) esters led to a significant loss of 

antiviral activity. This result is in agreement with the previous studies showing that L-

alanine methyl ester derivative of ACV ProTide was poorly active against HSV.4 As 

previously reported, the unsuccessful ester cleavage mediated by the cellular 

carboxyesterase may account for such a lack of activity.5 

3.4.2 Anti-VZV activity 

The antiviral activity of ACV protides 3.2a-d, 3.2f-g, 3.2k-l, and 3.2o-r against TK-

positive (TK+) and TK-deficient (TK-) strains of VZV in HEL cell cultures is reported 

in table 3.7. The data include ACV as reference compound. The lead compounds 3.1a 

and b are reported for comparison.4  

Table 3.7. Anti-VZV of ACV ProTides 3.2a-d, f-g, k-l, and o-r in HEL cell cultures 

(Ar: aryl moiety; AA: amino acid moiety; R”: ester moiety) 

    Antiviral Activity EC50
a (µM) 

TK+ VZV strains TK- VZV strains 
Cps Ar AA R” 

YS  OKA  07-1  YS/R  

3.2a Ph Gly Bn 8.1 7.4 10.4 8.5 

3.2b Ph DMG Bn 5.8 5.9 3.7 1.6 

3.2c Ph L-Val Bn 2.6 6.8 7.8 0.3 

3.2d Ph L-Leu Bn N.D. b 1.6 5.3 2.6 

3.2f Ph L-Pro Bn N.D. >50 >50 N.D. b 

3.2g 1-Naph L-Val Bn 0.7 0.7 1.7 1.4 

3.2k Ph L-Ala tBu N.D. b 35 N.D. b >50 

3.2l Ph L-Ala CH2tBu 1.1 2.1 3.3 3 

3.2o 1-Naph L-Val Me N.D. b >50 >50 N.D. b 

3.2p 1-Naph L-Val Et N.D. b 26 23.7 N.D. b 

3.2q 3-Et-Ph L-Ala Bn 1.5 1 4 2.9 

3.2r 4-Et-Ph L-Ala Bn 1.5 1.4 3.2 2.7 

ACV - - - 1 4.17 73.6 94.3 

3.1a Ph L-Ala Bn 0.72 1.0 1.8 0.59 

3.1b 1-Naph L-Ala Bn 7.2 3.3 6.9 N.D 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50%; bnot determined  
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ACV was found active against TK+-VZV in the micromolar range; such activity was 

markedly decreased against the TK- strains. The lead compounds, 3.1a and b, exhibited 

good antiviral activity against both TK+ and TK- strains of VZV.4 In general, the newly 

synthesised ACV ProTides retained this activity, proving the successful release of ACV 

monophosphate inside the cell.  

In agreement with the major results obtained against HSV, L-valine and L-leucine 

benzyl ester derivatives (3.2c, 3.2d, 3.2g) were found active against VZV in the 

micromolar range retaining the antiviral activity of the lead compounds 3.1a and b. The 

L-Proline derivative 3.2f confirmed to be inactive, as already observed in the anti-HSV 

assay. The L-alanine neopentyl ester derivative 3.2l retained the anti-VZV activity in 

comparison to the benzyl ester analogue 3.1a. The L-valine methyl and ethyl ester 

derivatives 3.2o and 3.2p were found to be inactive or poorly active. 

In contrast to the results obtained against HSV, the meta and para-ethyl-phenyl 

derivatives 3.2q and 3.2-r did not show the same marked decrease of the anti-VZV 

activity in comparison to the L-alanine benzyl ester analogues 3.1a and 3.1b.  

The minimum concentration required to cause a microscopically visible alteration of 

HEL cell morphology (MCC) was found to be above 100 µM for all the compounds 

evaluated in the antiviral assay against VZV. 

3.4.3 Anti-HCMV activity 

Table 3.8 reports the antiviral activity of ACV ProTides 3.2a-d, 3.2f-g, 3.2k-l, and  

3.2o-r against HCMV in HEL cell cultures. GCV is included as reference compound. 

The L-alanine benzyl ester derivatives 3.1a and b are reported for comparison.18 The 

minimum concentration required to cause a microscopically visible alteration of HEL 

cell morphology (MCC) was above 100 µM for all the compounds tested against 

HCMV. 
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Table 3.8. Anti-HCMV activity of ACV ProTides 3.2a-d, f-g, k-l, and o-r in HEL cell cultures 

(Ar: aryl moiety; AA: amino acid moiety; R”: ester moiety) 

    Antiviral Activity EC50
a (µM) 

Cps AR AA R” AD-169 strain Davis strain 

3.2a Ph Gly Bn 33.8 11.0 

3.2b Ph DMG Bn 11 4.3 

3.2c Ph L-Val Bn 4 2 

3.2d Ph L-Leu Bn 2.7 1 

3.2f Ph L-Pro Bn >50 >50 

3.2g 1-Naph L-Val Bn 2 0.9 

3.2k Ph L-Ala tBu >50 >50 

3.2l Ph L-Ala CH2-tBu 14.3 6.1 

3.2o 1-Naph L-Val Me 50 20 

3.2p 1-Naph L-Val Et 12.6 4.3 

3.2q 3-Et-Ph L-Ala Bn 9.3 6.7 

3.2r 4-Et-Ph L-Ala Bn 16.2 4.1 

GCV - - - 6.7 8.3 

3.1a Ph L-Ala Bn 12.6 2.9 

3.1b 1-Naph L-Ala Bn 2.1 1.8 

a 50% Effective concentration, or compound concentration required to inhibit virus-

induced cytopathicity by 50% 
 

All the ACV ProTides, except for the L-proline benzyl and L-alanine tert-butyl ester 

derivatives 3.2f and 3.2k, exhibited good to moderate anti-HCMV activity. Considering 

that ACV is not active against HCMV due to the lack of phosphorylation,19 this result 

confirms that the ProTide approach is effective in releasing the ACV monophosphate 

inside the cell. In particular, the 2,2-dimethylglycine, L-valine and L-leucine benzyl 

ester derivatives 3.2b, 3.2d and 3.2g showed activity against HCMV comparable to 

GCV and the lead compounds 3.1a and 3.1b. In contrast to the anti-HSV and anti-VZV 

assays, the L-valine ethyl ester derivative 3.2p displayed good anti-HCMV activity 

(EC50= 4.3-12.6 µM), while the L-valine methyl ester derivative 3.2o was poorly active 

(EC50= 20-50 µM).  
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3.4.4 Cytostatic activity of ACV ProTides in HEL cell cultures 

The cytostatic activity in HEL cell cultures of ACV protides 3.2a-d, 3.2f-g, 3.2k-l, and 

3.2o-r is reported in table 3.9.  

ACV is included as reference compound. The antiproliferative activity of L-alanine 

benzyl ester derivatives 3.1a and 3.1b on HEL cells is reported for comparison.4  

Table 3.9 Cytostatic activity of ACV ProTides 3.2a-d, f-g, k-l, and o-r on HEL cell cultures 

(Ar: aryl moiety; AA: amino acid moiety; R”: ester moiety) 

    Cytostatic  Activity IC50
a (µM) 

Cps AR AA R” HEL 

3.2a Ph Gly Bn >100 

3.2b Ph DMG Bn >100 

3.2c Ph L-Val Bn 100 

3.2d Ph L-Leu Bn 100 

3.2f Ph L-Pro Bn >100 

3.2g 1-Naph L-Val Bn 74 

3.2k Ph L-Ala tBu >100 

3.2l Ph L-Ala CH2-tBu 43.3 

3.2o 1-Naph L-Val Me >100 

3.2p 1-Naph L-Val Et >100 

3.2q 3-Et-Ph L-Ala Bn 45.4 

3.2r 4-Et-Ph L-Ala Bn 47.3 

ACV - - - 559 

3.1a Ph L-Ala Bn >100 

3.1b 1-Naph L-Ala Bn 20 

a 50% Inhibitory concentration, or compound concentration  required to inhibit cell 

proliferation by 50% 
 

Most of the ACV ProTides did not exert antiproliferative activity on HEL cells below 

100 µM. Some of them showed moderate cytostatic activity (IC50: 43.3-74 µM). 

However, this result was not completely unexpected considering that the lead 

compound 3.1b exhibited similar effect (IC50: 20 µM), as previously reported in the 

literature.4 
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3.4.5 Anti-HIV activity 

The antiviral activity of ACV ProTides 3.2b, 3.2d, 3.2g-i, and 3.2k-m was evaluated 

against HIV-1 in CEM and MT-4 cell cultures and against HIV-2 in CEM cell cultures. 

Table 3.10 reports the anti-HIV-1 and cytostatic activity in MT-4 cell cultures of the 

selected ACV ProTides. The data include ACV as reference compound and the 

previously reported L-alanine benzyl ester derivatives 3.1a and 3.1b for comparison.5   

Table 3.10. Anti-HIV-1 and cytostatic activty of ACV ProTides in MT-4 cell cultures. 

(Ar: aryl moiety; AA: amino acid moiety; R”: ester moiety) 

    
Antiviral Activity 

EC50
a (µM) 

Cytostatic Activity 

IC50
b
 (µM) 

Cps Ar AA R” HIV-1 MT-4 

3.2b Ph DMG Bn 7 >150 

3.2d Ph L-Leu Bn 0.8 17 

3.2g 1-Naph L-Val Bn 10 48 

3.2h 1-Naph L-Leu Bn 2.5 21 

3.2i 1-Naph L-Ile Bn 4 21 

3.2k Ph L-Ala tBu >150 >150 

3.2l Ph L-Ala CH2tBu 4 >150 

3.2m 1-Naph L-Ala CH2tBu 0.7 70 

ACV - - - >250 >250 

3.1a Ph L-Ala Bn 5.7 ± 1.6 33.8 ± 10.6 

3.1b 1-Naph L-Ala Bn 0.8 > 150 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50%; b 50% Inhibitory concentration, or compound concentration  required 

to inhibit cell proliferation by 50% 
 

As known, ACV does not exert any activity against HIV-1 and HIV-2 in the absence of 

herpes virus-encoded thymidine kinase.9  

The antiviral activity of the newly synthesised ACV ProTides against HIV-1 in MT-4 

cells suggests that the ACV monophosphate was released into the cell bypassing the 

first phosphoryation step of ACV. The 2,2-dimethylglycine benzyl ester derivative 3.2b 

was found active in the micromolar range (EC50= 7 µM) showing retention of activity in 

comparison to 3.1a and 3.1b. The ACV ProTides containing bulky amino acids such as 

L-Leucine (3.2d, 3.2h), L-Valine (3.2g) and L-isoleucine (3.2i) displayed good to 

moderate activity (EC50= 0.8-10 µM). However, these compounds showed also 
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moderate cytostatic activity (IC50= 21-48 µM). As observed against the herpes viruses, 

the L-alanine tert-butyl ester derivative 3.2k was inactive against HIV-1 in MT-4 cells. 

While, the L-alanine neopentyl ester derivatives 3.2l and 3.2m retained the activity 

diplayed by the lead compounds 3.1a and 3.1b.  

The concentration that induces 50% cell death in the cultures was above 150 µM for all 

the ACV ProTides tested against HIV-1 in MT-4 cells.  

Surprisingly, all these compounds were found to be totally inactive against HIV-1 and 

HIV-2 in CEM cell cultures, where the previously reported L-alanine benzyl ester 

derivatives 3.1a and 3.1b exhibited anti-HIV activity in the micromolar range (table 

3.1).  

3.4.6 Summary of the biological activity of ACV ProTides 

The biological evaluation of the ACV ProTides presented in this work strongly 

suggests that most of them successfully bypass the first phosphorylation of ACV, 

releasing the ACV monophosphate into the cell. This hypothesis is supported by the 

activity of these compounds against TK-deficient strains of HSV and VZV as well as 

against HCMV and HIV-1 in MT-4 cells.    

The glycine and 2,2-dimethylglycine benzyl ester derivatives 3.2a and 3.2b showed 

retention of activity against the herpes viruses when compared to the analogous L-

alanine benzyl ester derivatives 3.1a and 3.1b (tab. 3.4 and 3.7). Compound 3.2b 

showed similar result also against HIV-1 in MT-4 cell (tab 3.10). 

In disagreement with the common structure-activity relationships of ProTides, the aryl 

phosphoramidate derivatives of ACV 3.2c-e and 3.2g-l containing benzyl ester of bulky 

amino acids such as L-valine, L-leucine, and L-isoleucine exhibited good antiviral 

activity against both herpes viruses and HIV-1 in MT-4 cells with general retention of 

activity in comparison to the lead compounds 3.1a and 3.1b (tab. 3.4, 3.7, 3.8, 3.10). 

The flexibility of the acyclic chain of ACV may allow these derivatives to assume the 

right conformation in order to interact properly with the different enzymes involved in 

the activation pathway of the ProTides. 

The complete lack of activity of the L-proline derivative 3.2f has already been 

described in the application of the ProTide approach to the other nucleoside 

analogues.11 Whether the steric hinderance or the lack of the free NH are accountable 
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for the missed bioactivation of L-proline derivatives has not been clarified yet.5  

The inactivity of the L-phenylalanine derivative 3.2j is most probably correlated to the 

steric hindrance of the amino acid moiety that interferes with the carboxyesterase- or 

phosphoramidase-mediated cleavages.5  

The increase of lipophilicity afforded by the replacement of the phenyl group at the 

aryl moiety with the naphthyl did not improve the potency of the antiviral activity (tab. 

3.4). The introduction of meta- and para-ethyl-phenyl led to a marked decrease of the 

anti-HSV activity of 3.2p and 3.2q in comparison to 3.1a and 3.1b (tab 3.5). Similar 

decrease was not observed against VZV (tab 3.7). In a previous study, it was proved 

that the benzyl ester of 3.2p and 3.2q is successfully cleaved by the carboxypeptidase 

Y suggesting that these compounds can release ACV monophosphate into the cell 

according to the putative mechanism of activation of ProTides described in chapter 1.12 

The replacement of the benzyl ester of the L-alanine derivatives 3.1a and 3.1b with the 

tert-butyl group caused a complete loss of antiviral activity in all the biological assays 

presented in this work (tab 3.6-3.8 and 3.10). This result confirms previous studies 

showing that the tert-butyl ester derivatives are not successfully processed according to 

the putative mechanism of activation of ProTides.5, 11 Differently, the L-alanine 

neopentyl ester derivatives 3.2l and 3.2m were found active against both the herpes 

viruses and HIV-1 in MT-4 cells (tab. 3.6-3.9) showing a general retention of the 

antiviral activity when compared to the analogous benzyl ester derivatives 3.1a and 

3.1b. In comparison to the tert-butyl group, the additional methylene group of the 

neopentyl ester must be crucial in order to properly accommodate this moiety into the 

active site of the carboxyesterase.  

The previously reported L-valine methyl and ethyl ester derivatives 3.2n and 3.2o were 

found inactive or poorly active against HSV and VZV presumably due to the poor 

cleavage mediated by the carboxyesterase (tab. 3.6-3.7).5 However, compound 3.2o 

showed also good antiviral activity against HCMV (EC50= 4.3-12.6 µM, tab. 3.8).  

Some of the ACV ProTides presented in this work exerted moderate antiproliferative 

activity on Hel cell (IC50= 45.4-74 µM, tab 3.9) and MT-4 cell cultures (IC50= 17-70 

µM, tab. 3.10). These results may indicate that the application of the ProTide approach 

could induce the release of cytotoxic concentration of ACV triphosphate into the cell.   
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The lack of activity of the newly synthesised ACV ProTides against HIV-1 and HIV-2 

in CEM cell cultures is in contrast with all the biological results presented so far. 

However, it is in agreement with previous studies of the application of the ProTide 

approach to different nucleoside analogues showing that the replacement of the L-

alanine with other amino acids leads to the loss of the antiviral activity (10- to 100-

fold), particularly in the case of bulky amino acids.11 The inactivity of the  

2,2-dimethylglycine derivative is surprising, considering that this amino acid generally 

involves retention of the antiviral activity displayed by the L-alanine analogues. In 

comparison to the antiviral assays performed in HEL and MT-4 cell cultures, the lack of 

anti-HIV activity of the ACV ProTides in CEM cell cultures could be explained by a 

difference in terms of substrate affinity or intracellular levels of the enzymes involved 

in the intracellular bioactivation of ProTides.  

3.5 Enzymatic and modelling studies on ACV ProTides 

With the aim to understand the difference of antiviral activity among the novel ACV 

ProTides presented in the previous paragraphs, enzymatic and molecular modelling 

studies were performed. 

3.5.1 Study of the carboxyesterase activity 

According to the putative bioactivation mechanism of ProTides described in chapter 1, 

the cleavage of the ester moiety leads to the loss of the aryl moiety with formation of 

the phosphoramidate monoester intermediate, which is cleaved by a phosphoramidase-

type enzyme affording the monophosphate derivative of nucleoside analogues.11 As 

already mentioned, cathepsin A (catA, EC 3.4.16.5) has been indicated as the main 

intracellular enzyme responsible for the cleavage of the ester moiety of ProTides.20 

Unfortunately, human cathepsin A is not commercially available. However, it has been 

shown that this enzyme has a high degree of amino acid sequence homology with the 

yeast carboxypeptidase Y (CPY, EC 3.4.16.1), which is commercially available. The 

two enzymes have similar structure and similar substrate specificities.21,22 The formation 

of the phosphoramidate monoester as a product of the enzymatic ester hydrolysis has 

been extensively investigated in our group monitoring the reaction by 31P NMR.18 The 

phosphoramidate monoester was also synthesised by chemical hydrolysis of a ProTides 

in the presence of triethylamine confirming that the chemical shift of the phosphorus is 



Chapter 3 

 

 76 

around 7-8 ppm in the 31P NMR spectrum.23  

In order to evaluate whether the ester group of the ACV ProTides presented in this work 

can be hydrolyzed according to the putative bioactivation mechanism of ProTides, 

enzymatic studies have been performed using CPY.    

In particular, compounds 3.2b, 3.2d, 3.2f, and 3.2j were selected with the aim to 

investigate the effect of the amino acid side chain hindrance on the carboxypeptidase Y 

activity and whether the difference of their antiviral activity can be correlated to the 

efficiency of the enzymatic reaction. Compounds 3.2k and 3.2l were chosen in order to 

study the enzymatic hydrolysis of the tert-butyl and neopentyl ester groups and 

correlate the activity of the CPY with their biological activity.  

General procedure  

Following the procedure developed in our lab to study the CPY-mediated hydrolysis of 

aryl phosphoramidate derivatives,18 ACV ProTide was dissolved in acetone-D6 and 

Trizma buffer (pH 7.6), then 31P NMR spectrum of the blank was recorded. The 

compound was incubated with CPY for 14h and the enzymatic reaction was monitored 

by 31P NMR analysis. 

The proposed pathway of the enzymatic reaction is depicted in figure 3.4. 

 

Figure 3.4.  Proposed mechanism of ester cleavage of ACV ProTides mediated by CPY 

 

Except for the 2,2-dimethylglycine and L-proline derivatives 3.2b and 3.2f, the starting 

material 3.2 shows two peaks around 4-5 ppm in the 31P NMR spectrum that correlate to 
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the two diastereomeric configurations. The hydrolysis of the ester affords compound 3.5 

(!"6 ppm) that leads through intracellular cyclisation to the formation of the unstable 

intermediate 3.6.  The nucleophilic attack of water, either on the phosphorus or on the 

carbonyl group, opens the ring affording the phosphoramidate monoester 3.7. As 

already reported, this species gives rise to only one peak around 7-8 ppm in the 31P 

NMR spectrum indicating the loss of chirality of the phosphorus.23 

Enzymatic study results-1: amino acid modification 

In the case of compound 3.2b (!P= 2.31 ppm, fig. 3.5A) and 3.2d (!P= 3.74, 3.91 ppm, 

fig. 3.5B), the hydrolysis of the ester moiety occurred in less than 6 min from exposure 

to CPY.  

 

Figure 3.5. 31P NMR spectra (acetone-D6, 202 MHz) at different time of the enzymatic study 

performed on compound (A) 3.2b and (B) 3.2d  

 

The formation of the intermediate resulting from the cleavage of the benzyl group of 

3.2b was not observed before the formation of the final product 3.7b (!P= 5.51 ppm, fig. 

3.5A). 
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In the case of 3.2d, the intermediate 3.5d (!P= 4.91, 5.29 ppm, fig. 3.5B) was converted 

to the corresponding phosphoramidate monoester 3.7d (!P= 7.30 ppm, fig. 3.5B) 

approximately by 50% after 13 min from exposure to CPY. The conversion of 3.2d was 

complete in less than 30 min. The fast cleavage of the benzyl ester of compound 3.2d 

proves that the hindrance of the L-leucine side chain is well tolerated by the 

carboxyesterase, confirming the biological activity seen with this compound. 

Similarly, the inactivity of compounds 3.2f (!P= 1.73 ppm, fig. 3.6A) and 3.2j (!P= 

3.77, 3.86 ppm, fig. 3.6B) has been confirmed by the incapacity of CPY to cleave the 

benzyl ester in presence of L-proline and L-phenylalanine amino acids, proving the 

detrimental effect of their hindrance on the bioactivation of these aryl phosphoramidate 

derivatives of ACV. 

 

Figure 3.6. 31P NMR spectra (acetone-D6, 202 MHz) at different time of the enzymatic study 

performed on compound (A) 3.2f and (B) 3.2j 
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Enzymatic study results-2: ester modification  

Figure 3.7 shows the 31P NMR spectra of compound 3.2k (!P= 3.77, 3.82 ppm) over the 

14 h incubation period with CPY. As expected from the previous studies and 

considering the inactivity of this compound in the antiviral assays, the enzyme was 

probably not able to cleave the tert-butyl ester group.  

 

Figure 3.7. 31P NMR spectra (acetone-D6, 202 MHz) at different time of the enzymatic study 

performed on compound 3.2k 
 

In the case of compound 3.2l (!P= 3.81, 3.92 ppm, fig. 3.8), the enzymatic hydrolysis of 

the neopentyl ester afforded the intermediate 3.5l (!P= 4.75, 4.89 ppm, fig. 3.8), which 

then formed the phosphoramidate monoester 3.7l (!P= 7.19 ppm, fig 3.8) by loss of the 

phenyl group, as previously described in figure 3.4. After 90 min from the exposure to 

CPY, the diastereomer correlated to the upfield peak in the 31P NMR spectrum was 

almost completely processed, while 56% of the other diastereomer was still unreacted. 

After a 5 h period incubation, 3.2l was completely converted to 3.7l. This result, 

indicating that CPY is able to hydrolyse the neopentyl ester more efficiently than the 

tert-butyl ester, could justify the retention of antiviral activity against HSV, VZV, 

HCMV and HIV-1 in MT-4 cells found for this compound in comparison to L-alanine 

benzyl ester derivative 3.1a and 3.1b. 
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Figure 3.8. 31P NMR spectra (acetone-D6, 202 MHz) at different time of the enzymatic study 

performed on compound 3.2l 

3.5.2 Molecular modelling studies  

Modelling studies were carried out in order to further investigate the ester hydrolysis of 

ACV ProTides by CPY and the processing of the correlated phosphoramidate 

monoester derivatives by human Hint-1. 

Docking of ACV ProTides within the active site of carboxypeptidase Y  

Using docking techniques, the interaction of ACV ProTides with the active site of the 

CPY was modelled on the crystal structure of the enzyme (protein data bank, 1YSC).24 

As depicted in figure 3.9, the mechanism of action of the ester cleavage within the 

catalytic site of this enzyme involves the coordination of the NH of the glycine 52 

(Gly52) and glycine 53 (Gly53) residues with the carbonyl group of the ester, which 

undergoes the nucleophilic attack of the serine residue 146 (Ser146).25 
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Figure 3.9. Mechanism of cleavage of the ester moiety of generic ACV ProTide 3.2 within the active 

site of CPY 

 

Compound 3.2d, 3.2f, and 3.2j were selected for this study in order to confirm the 

results obtained in the enzymatic experiments that suggest the poor interaction of the 

CPY with the ACV Protide containing L-proline and L-phenylalanine as amino acid 

moiety, while L-leucine is well tolerated. At the same time, the difference in terms of 

ester cleavage efficiency between the two diastereomers of the L-alanine neopentyl 

ester derivative 3.2l was investigated. 

CPY docking results-1: amino acid hindrance investigation 

The docking study of compound 3.2d within the catalytic site of CPY showed a positive 

interaction for both diastereomers. As depicted in figure 3.10 for the Rp diastereomer, 

the guanine base (in blue) is projected outside the pocket of the active site, the phenyl 

group (yellow) on the phosphate (purple) is on the right pocket, while the benzyl ester 

(red) is on the left pocket. 
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Figure 3.10. Docking of 3.2d (Rp diasteromer) within the catalytic site of CPY. 

Guanine base (blue), phenyl group (yellow), phosphorus (purple), benzyl ester (red). 

 

The ester moiety is properly orientated to interact with the amino acid residues (Gly52, 

Gly53, and Ser146) involved in its cleavage (fig 3.11).   

 

Figure 3.11. Detail of the docking of 3.2d within the active site of CPY showing the orientation and 

the distance in angstroms of the carboxyl group toward the glycine and serine residues (Gly52, 

Gly53, and Ser146) responsible for its cleavage.  
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The same study was performed on compound 3.2f and 3.2j proving the detrimental 

effect of the L-proline and L-phenylalanine on this interaction. In particular, the 

restriction imposed by the pyrrolidine ring of L-proline forces the carbonyl group of the 

ester moiety to adopt an orientation that does not favour its coordination with Gly52 and 

Gly53 residues (figure 3.12, Sp diastereomer shown).  

 

 

Figure 3.12. Docking of 3.2f (Sp diastereomer) within the catalytic site of CPY. 

The pyrrolidine ring of L-Proline is shown in yellow. 

 

In the case of compound 3.2j, the hindrance of the phenylalanine side chain has a 

similar effect on the orientation of the carbonyl group of the ester moiety (fig. 3.13). 
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Figure 3.13. Docking of compound 3.2j (Rp diastereomer) within the catalytic site of CPY. 

 

CPY docking results-2: neopentyl ester investigation. 

Figure 3.14 shows the docking of both phosphate diastereomers (Rp and Sp) of 

compound 3.2j within the catalytic site of CPY.  

 

Figure 3.14 Docking of 3.2l within the catalytic site of CPY. The red arrows indicate the position of the 

carbonyl group.  
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In the Rp configuration, the carbonyl group of the neopentyl ester, indicated by the red 

arrow in figure 3.14, is orientated in opposite direction in comparison to the orientation 

adopted in the Sp configuration. As depicted in figure 3.15, this affects the interaction 

with Gly52, Gly53, and Ser146 residues. In particular, the carbonyl group of the Rp 

diastereomer appears to be properly orientated in order to be attacked by the residue of 

Ser146 and coordinated by the NH of the glycine residues, while the orientation in the 

Sp configuration is different and a positive interaction with these residues is less 

favoured.  

 

Figure 3.15. Detail of the docking of 3.2l (Rp and Sp diastereomers) within the active site of CPY 

showing the orientation and the distance in angstroms of the carboxyl group toward the glycine and 

serine residues (Gly52, Gly53, and Ser146) responsible for its cleavage.  

 

In conclusion, the result of this study suggests that the Sp may be the configuration of 

the diasteroisomer that is metabolised less efficiently by the CPY in the enzymatic 

experiment performed on 3.2l (fig. 3.8). This hypothesis also implies that the Sp 

diastereomer is correlated to the downfield signal in the 31P NMR spectrum, while the 

Rp diastereomer is correlated to the upfield signal.  
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Docking of the phosphoramidate monoester derivatives of ACV within the active site 

of human Hint-1 

According to the putative bioactivation mechanism of ProTides, the phosphoramidate 

monoester derivative of nucleoside analogue 3.7 is considered to be a substrate of 

human Hint-1 enzyme that may hydrolyse the phosphorus-nitrogen bond, releasing 

ACV monophosphate (ACV-MP).26, 27 As already described in chapter 1, human Hint-1 

is a phosphoramidase-type enzyme belonging to the HIT superfamily and its catalytic 

activity is based on three histidine residues. The proposed mechanism of action of this 

enzyme, depicted in figure 3.16, involves the nucleophilic attack of the hisitidine 112 

residue (shown in blue) to the phosphorus with the elimination of the amino acid 

moiety, which is favoured by the protonation mediated by a serine residue. Finally, the 

nucleophilic attack of a molecule of water to the phosphorus release ACV-MP and 

protonate the serine residue.28  

P O

O

HN

O

R

O

O R'

O
N

N

N

NH

O

NH2

HN

O

O

O

H

N
H

CH

C

CH2

OO

N NH

HN

CH

C

O

O

P O

O

O

O
N

N

N

NH

O

NH2
N

HN

HN

N
H

HN

CH

C

O

O

HN

N
H

O H

H

P O

O

O

O

O
N

N

N

NH

O

NH2

ACV-MP

3.7

HN

O

O

O

-OOC NH2

RR'

NHCHC

CH2

O

O

N

HN

NHCHC

CH2

O

O

N

HN

HN

CH

C

O

O

HN

N
H

N
H

CH

C

CH2

OO

N NH

HN

HO

O

O

NHCHC

CH2

O

O

N

HN

 

Figure 3.16. Proposed mechanism of action of human Hint-1 (form ref. 26) 

 

In order to investigate the effect of the amino acid side chain hindrance on the human 

Hint-1 activity, docking studies of the metabolites 3.7b and 3.7d (fig. 3.17) were 

performed using a co-crystallised structure of the enzyme with adenosine 

monophosphate (AMP). 
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Figure 3.17. ACV phosphoramidates 3.7b and 3.7d   

 

Figure 3.18 shows that 3.7b binds in the catalytic site of human Hint-1. The guanine 

base and the side chain of acyclovir are well positioned in the enzymatic pocket. The 

phosphate moiety (purple) is slightly moved from the position adopted by the phosphate 

group of AMP (yellow), 

 

Figure 3.18. Superimposition of acyclovir phosphoramidate 3.7b with AMP (yellow) within the 

active site of huma Hint-1. The red arrow indicates the position of the phosphate group of AMP. 

 

However, figure 3.19 shows that the histidine and serine residues (His51, His112, 

His114, and Ser107) are in a suitable position to catalyse the cleavage of the P-N bond 

according to the mechanism of action previously described. This result is in agreement 

with the antiviral activity exhibited by the parent compound 3.2b and confirms the 

capacity of this compound to release ACV-MP inside the cell. 
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Figure 3.19. Detail of the docking of 3.7b within the active site of human Hint-1 showing the 

orientation and the distance in angstroms of the P-N bond (purple and blue) toward the histidine 

and the serine residues (His-51, His-112, His 114, and Ser107) responsible for its cleavage.  

 

Similarly, the modelling study performed on compound 3.7d (fig. 3.20) showed that this 

compound interact positively with the active site of the human Hint-1 confirming that 

the hindrance of L-leucine side chain is well tolerated by this enzyme, as suggested by 

the results of the antiviral assays. 
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Figure 3.20 A: superimposition of 3.7d with AMP (yellow) within the active site of human Hint-1 

enzyme. The red arrow indicates the position of the phosphate group of AMP. B: Detail of the 

docking of 3.7d within the active site of human Hint-1 showing the orientation and the distance in 

angstroms of the P-N bond (purple and blue) toward the histidine and the serine residues (His-51, 

His-112, His 114, and Ser107) responsible for its cleavage. 

3.6 Conclusions 

An extensive study of structure-activity relationship of ACV ProTide was conducted in 

this work by evaluating the effect of the modification of the aryl, amino acid, and ester 

moieties on the antiviral activity of compounds 3.2a-q against HSV, VZV, HCV, and 

HIV. The retention of antiviral activity of the L-valine, L-leucine, and L-isoeucine 

benzyl ester derivatives 3.2c-e and 3.2g-i against HSV, VZV, HCV, and HIV-1 in MT-4 

cells, in comparison to the L-alanine benzyl ester derivatives 3.1a and 3.1b, indicates 

that ACV monophosphate is released also in the presence of bulky masking groups. The 

L-alanine neopentyl ester derivatives 3.2l and 3.2m resulted to be as effective as the 
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analogous benzyl ester derivatives 3.1a and 3.1b. The increase of lipophilicity by 

replacement of the phenyl with the naphthyl group at the aryl moiety did not afford any 

improvement of activity. However, concern has arisen from the potential toxicity of 

some ACV ProTides due to their cytostatic effects observed on HEL and MT-4 cell 

cultures. 

The lack of activity of all the ACV ProTides synthesised in this work against HIV-1 and 

HIV-2 in CEM cell points at the L-alanine benzyl ester as the masking group of choice 

in the synthesis of the novel acyclic nucleoside ProTides, which will be discussed in the 

subsequent chapters. 
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Chapter 4. Aryl phosphoramidate derivatives of 6-O-alkyl 

acyclovir  

4.1 Introduction 

In this study alkoxy groups were introduced in the 6 position of ACV in order to 

investigate the effect of the nucleobase modification on the antiviral activity. Figure 4.1 

depicts the structure of 6-O-methyl ACV (4.1a) and 6-O-ethyl ACV (4.1b).  

N

NN

N

NH2O
HO

O R

4.1a R: CH3 

4.1b R: CH2CH3 !

Figure 4.1 Structure of 6-O-methyl ACV (4.1a) and 6-O-ethyl ACV (4.1b) 

!

The 6-O-alkyl-2-aminopurine nucleosides have already been described in the literature 

as prodrugs of guanosine analogues.1, 2 In particular, nelarabine (fig. 4.2) is the 6-

methoxy prodrug of the anti-proliferative agent 9-!-D-arabinofuranosylguanine (Ara-G, 

fig. 4.2).1 In 2005 nelarabine was approved for the treatment of T-cell lymphoblastic 

lymphoma and T-cell acute lymphoblastic leukemia. The endogenous adenosine 

deaminase (ADA) was identified as the enzyme responsible for the conversion of 

nelarabine to Ara-G in vivo (fig 4.2).1  
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Figure 4.2. Structures and metabolism of nelarabine and Ara-G  

!

 Recently, the ProTide approach has been applied to 6-O-methyl-2’-C-methyl guanosine 

affording the “double prodrug” INX-189 developed by the Inhibitex/BMS (fig. 4.3).2 As 

already mentioned in chapter 1, INX-189 is in phase 2 clinical trials for the treatment of 

HCV infections. 
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Figure 4.3. Structures of INX-189 and the parent nucleoside 6-O-methyl-2’-C-methyl guanosine 

!

In vitro, the anti-HCV activity of INX-189 was 500-fold greater, compared to the parent 

nucleoside.2 The improvement in antiviral activity of INX-189 has been observed also 

in comparison to ProTides of 2’-C-methyl guanosine, suggesting that the increase in 

compound lipophilicity, which is conferred by the 6-methoxy group, could account for 

the enhancement of cellular uptake of INX-189.2-4 The carboxypeptidase Y study 

indicates that INX-189 is successfully bioactivated according to the putative mechanism 

of activation of ProTides.2 It has been reported that in order to exert antiviral activity 

against HCV in vitro, INX-189 must be deaminated by most probably adenylate 

deaminase, which exerts the same activity as adenosine deaminase at the nucleotide 

level.4 Further studies in vitro were reported showing that INX-189 is converted to the 

monophosphate form before the 6-methoxy group is removed (fig. 4.4).5  
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Figure 4.4. Proposed metabolic pathway of INX-189 

!

Considering the successful application of the ProTide approach to 6-O-methyl-2’-C-

methyl guanosine, it appeared reasonable in this study to synthesise the 

phosphoramidate derivatives of 6-O-methyl ACV and 6-O-ethyl ACV in order to 
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evaluate the possibility of improving the antiviral activity of the ACV ProTides reported 

in chapter 3.  

4.2 Synthesis of 6-O-methyl ACV and 6-O-ethyl ACV 

The synthesis of compounds 4.1a and 4.1b was achieved following the procedure 

described in scheme 4.1. As previously described in the literature for the synthesis of 

penciclovir, ACV was acetylated using acetic anhydride (Ac2O) and  

4-dimethylaminopyridine (DMAP) as a catalyst to afford compound 4.2.6 The 

chlorination at the 6-position was carried out using phosphorus oxychloride (POCl3), 

benzyltriethylammonium chloride (BTEA) and N,N-dimethylaniline (DMA) to afford 

compound 4.3. According to the procedure reported in the literature for the synthesis of 

6-O-methyl-2’-C-methyl guanosine,4 the reaction of compound 4.3 with sodium 

methoxide (MeONa) in anhydrous methanol (MeOH) at room temperature led to the 

elimination of the acetyl group and the displacement of the 6-chloro affording 

compound 4.1a. Following the same strategy, the reaction of compound 4.3 with 

sodium ethoxide (EtONa) in anhydrous ethanol (EtOH) at 40 °C afforded compound 

4.1b.  
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Scheme 4.1. Synthesis of 6-O-methyl ACV and 6-O-ethyl ACV 

4.3 Design of 6-O-methyl and 6-O-ethyl ACV ProTides 

Considering the results obtained from the evaluation of the ACV ProTides as antiviral 

agents, phenyl and naphthyl L-alanine benzyl ester phosphoramidate derivatives 4.4a-d 

were synthesised  (fig. 4.5). The L-leucine benzyl ester derivative 4.4e was synthesised 

as well (fig.4.5). Considering that the analogous phosphoramidate of ACV (3.2d) is 
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effective in the release of its monophosphate form inside the cell, also in this case the 

hindrance of L-leucine side chain was expected to be well tolerated by enzymes 

involved in the bioactivation pathway of ProTides.  
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O

NH
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4.4a R:  CH3; AR: Ph; R': CH3 

4.4b R:  CH3; AR: 1-Naph; R': CH3 

4.4c R:  CH2CH3 ; AR: Ph; R': CH3 

4.4d R: CH2CH3 ; AR: 1-Naph; R': CH3 

4.4e R:  CH3; AR: Ph; R': CH2CH(CH3)2 !

Figure 4.5 Structure of aryl phosphoramidate derivatives 4.4a-e  

4.3.1 Synthesis of 6-O-methyl and 6-O-ethyl ACV ProTides 

Following the procedure described in chapter 3 for the synthesis of ACV ProTides, the 

coupling of compounds 4.1a and 4.1b with the appropriate phosphochloridate 2.2 was 

performed in the presence of tBuMgCl and afforded compounds 4.4a-e (scheme 4.2).7 

All the compounds were obtained as mixtures of two diastereomers. 

 

2.2a AR: Ph; R': CH3 

2.2b AR: 1-Naph; R': CH3

2.2k AR: Ph; R': CH2CH(CH3)2
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4.4a R:  CH3; AR: Ph; R': CH3 

4.4b R:  CH3; AR: 1-Naph; R': CH3 

4.4c R:  CH2CH3 ; AR: Ph; R': CH3 

4.4d R: CH2CH3 ; AR: 1-Naph; R': CH3 

4.4e R:  CH3; AR: Ph; R': CH2CH(CH3)2

!

Scheme 4.2. Synthesis of aryl phosphoramidate derivatives 4.4a-e 

!

In the case of compound 4.4d, a transesterification reaction occurred during 

chromatographic purification, presumably due to a residue of the unreacted tBuMgCl 

and methanol that was used as solvent during the absorption of the sample on the silica. 

This reaction afforded compound 4.4f (scheme 4.3).   
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Scheme 4.3 Transesterification reaction of compound 4.4d  

!

In order to prove that tBuMgCl was responsible of this novel transesterification reaction 

of the ProTides, neopentyl alcohol was added to a THF solution of compound 4.4a with 

a slight excess of tBuMgCl (1.1 eq). After 2 h, compound 4.4g was obtained in 70% 

yield (scheme 4.4). According to this result, the transesterifcation reaction of compound 

4.4a using n-butylamine was performed in the attempt to obtain compound 4.4h, but no 

detectable traces of product were obtained (scheme 4.4). 
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Scheme 4.4 Transesterification reaction of compound 4.4a  

!

In the case of the neopentyl alcohol, tBuMgCl (pKa = 45)8 deprotonates the alcoholic 

group (pKa = 18)8 affording the corresponding neopentyloxy anion that acts as a 

nucleophile in the replacement of the benzyl ester of compound 4.4a. The amino group 

of n-butylamine is a weak acid (pKa = 40)8 and might not be strong enough in terms of 

nucleophilicity in order to displace the benzyl group of compound 4.4a. It must be 

pointed out that this study has been performed at room temperature and that an increase 

of temperature could overcome the lack of reactivity. Also further alcohols could be 

pursued to evaluate the extent of this reaction. 
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Table 4.1 summarises the aryl phosphoramidates of 6-O-methyl and 6-O-ethyl ACV 

synthesised. 

Table 4.1. 6-O-methyl and 6-O-ethyl ACV ProTides 4.4a-g 

(O6-R: O6-alkyl substituent; Ar: aryl group; AA: amino acid; R’’: ester group)!

Cps O6-R Ar AA R’’ 31P NMR Yield 

4.4a MeO Ph L-Ala Bn 3.76, 3.47 78% 

4.4b MeO 1-Naph L-Ala Bn 4.11, 3.93 60% 

4.4c EtO Ph L-Ala Bn 3.76, 3.47 53% 

4.4d EtO 1-Naph L-Ala Bn 4.11, 3.94 30% 

4.4e MeO Ph L-Leu Bn 4.03, 3.58 40% 

4.4f EtO 1-Naph L-Ala Me 4.05, 4.04 16%b 

4.4g MeO Ph L-Ala CH2tBu 3.76, 3.47 70%b 

b Transesterification product 

The synthesis of the phosphoramidate derivatives 4.4a-e was carried out without 

protecting the 2-amino group of the parent nucleosides, as previously described for the 

synthesis of ACV ProTides, due to increased solubility in THF afforded by 6-alkoxy 

substituents. Not needing the deprotection step after the coupling reaction greatly 

improved the overall yield. As already described in the synthesis of the ACV ProTides, 

the hindrance of the L-leucine side chain negatively affects the coupling reaction. 

Formation of the transesterification side-product 4.4f accounts for the poor yield of 

compound 4.4d (scheme 4.3). 

4.3 Biological evaluation of 6-O-methyl ACV, 6-O-ethyl ACV and their 

phosphoramidate derivatives 

The 6-alkoxy derivatives of ACV 4.1a, 4.1b, and their phosphoramidate derivatives 

4.4a-g were evaluated for their antiviral activity against HSV, VZV, HCMV, and HIV. 

The antiproliferative activity of these compounds on several cell cultures was also 

evaluated.  

4.3.1 Anti-HSV activity  

Table 4.2 reports the antiviral activity of 4.1a, 4.1b and their phosphoramidates 

derivatives 4.1a-g against HSV-1, HSV-2, and thymidine kinase-deficient (TK-) HSV-1 
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in human embryonic lung (HEL) cells. The data include ACV and the L-alanine benzyl 

ester derivatives of ACV ProTide (3.1a and 3.1b)9 as reference compounds. 

Table 4.2. Anti-HSV activity of  4.1a, 4.1b and their phosphoramidate derivatives in HEL cells 

(R: O6-alkyl substituent; Ar: aryl group; AA: amino acid; R’’: ester group)!

 Antiviral Activity EC50
 a

 (µM) 

Cps O6-R Ar AA R’’ HSV-1 HSV-2 TK- HSV-1  

4.1a MeO - - - 73 73 100 

4.4a MeO Ph L-Ala Bn 0.7 0.6 2.5 

4.4b MeO 1-Naph L-Ala Bn 0.4 0.4 2 

4.4e MeO Ph L-Leu Bn 15 6.5 65 

4.4g MeO Ph L-Ala CH2tBu 0.8 0.8 1.4 

4.1b EtO - - - >100 >100 >100 

4.4c EtO Ph L-Ala Bn 0.8 0.8 2 

4.4d EtO 1-Naph L-Ala Bn 0.4 0.4 2 

4.4f EtO 1-Naph L-Ala Me 1 1 1 

ACV - - - - 0.4 0.2 >250 

3.1a - - - - 8 ± 5.7 4 ± 0 15 ± 7.1 

3.1b - - - - 2 ± 0 1.4 ± 0.8 10 ± 2.1 

a 50%! Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50%!
 

The antiviral activity observed for 4.1a and 4.1b show that the introduction of the 

alkoxy group in the 6 position of ACV nucleobase is detrimental for the anti-HSV 

activity. However, all the phosphoramidate derivatives of 4.1a and 4.1b showed good to 

moderate activity against HSV- 1 and HSV-2 (EC50= 0.4-15 µM). Most of them 

exhibited retention of this activity against TK- HSV-1. These results indicate that the 

bypass of the first phosphorylation step is crucial for the anti-HSV activity of the 6-O-

alkyl ACV ProTides. It is also suggested that into the cell compounds 4.1a and 4.1b are 

neither phosphorylated by the HSV-TK to afford the monophosphate form nor 

dealkylated by the cellular adenosine deaminase to afford ACV.  

The L-alanine derivatives 4.4a-d and 4.4g exhibited retention of the anti-HSV activity 

in comparison to the analogous derivatives of ACV ProTides 3.1a and 3.1b.9 In contrast 

to the results obtained in the case of the ACV Protides described in chapter 3, the 

replacement of L-alanine (4.4a) with L-Leucine (4.4b) in the amino acid moiety of 6-O-

alkyl ACV ProTides led to the partial loss of activity, particularly against TK- HSV-1 
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(EC50= 65 µM). This result suggests that the hindrance of the L-leucine side chain may 

not be well tolerated by enzymes involved in the bioactivation pathway. Moreover, the 

methyl ester derivative 4.4f showed good antiviral activity against HSV-1, HSV-2, TK--

HSV-1 (EC50= 1 µM), while the analogous ProTide of ACV were markedly less active 

(EC50= 10-16  µM against HSV-1 and HSV-2, EC50= 79 ± 29 µM against TK- HSV-1).9  

Finally, the concentration required to cause a microscopically visible alteration of cell 

morphology (MCC) was above 100 µM for all compounds synthesised. 

4.3.2 Anti-VZV activity  

Compounds 4.1a, 4.1b, and their phosphoramidate derivatives 4.4a-g were evaluated 

for their activity against TK-positive (TK+) and TK-deficient (TK-) strains of VZV in 

HEL cells (table 4.3). These data include ACV and the L-alanine benzyl ester 

derivatives of ACV ProTides (3.1a and 3.1b)10 as reference compounds. 

Table 4.3. Anti-VZV activity of 4.1a, 4.1b and their phosphoramidate derivatives in HEL cells 

(R: O6-alkyl substituent; Ar: aryl group; AA: amino acid; R’’: ester group)!

     Antiviral Activity EC50
 a

 (µM) 

TK+ VZV strains TK- VZV strains 
Cps O6-R Ar AA R’’ 

YS OKA 07-1 YS/R 

4.1a MeO - - - - >50 >50 - 

4.4a MeO Ph L-Ala Bn 0.5 2.2 1.4 0.9 

4.4b MeO 1-Naph L-Ala Bn - 1.3 8.9 - 

4.4e MeO Ph L-Leu Bn 0.6 0.3 2.77 1.2 

4.4g MeO Ph L-Ala CH2tBu 0.1 0.2 0.2 0.3 

4.1b EtO - - - - >50 >50 - 

4.4c EtO Ph L-Ala Bn 0.3 0.4 2.6 2.2 

4.4d EtO 1-Naph L-Ala Bn 1.55 1.78 5.47 6.4 

4.4f EtO 1-Naph L-Ala Me 0.2 0.1 0.3 0.2 

ACV - - - - - 1.2 75 93 

3.1a - Ph L-Ala Bn 0.7 1.0 1.8 0.59 

3.1b - 1-Naph L-Ala Bn 7.2 3.3 6.9 N.D 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50% 
 

When compared to ACV, compounds 4.1a and 4.1b exhibited a complete loss of 

activity against VZV, as already observed in the anti-HSV assay.  
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The phosphoramidate derivatives 4.4a-g were active against both TK+ and TK- strains of 

VZV in the micromolar and subicromolar range (EC50= 0.1-8.9 µM). These data show 

that the phosphoramidate derivatives 4.4a-g successfully bypassed the VZV-TK-

mediated phosphorylation, as proved by the activity against TK- VZV. Moreover, all 

these compounds exhibited retention of activity in comparison to ACV ProTides 3.1a 

and 3.1b. 

No cytotoxic effects were detected by microscopic analysis of HEL cells morfology 

(MCC > 100 µM) 

4.3.3 Anti-HCMV activity 

Table 4.4 reports the anti-HCMV activity in HEL cells of 4.1a, 4.1b and their 

phosphoramidates derivatives 4.4a, 4.4f, 4.4g. GCV is reported as reference compound. 

Table 4.4. Anti-HCMV activity of 4.1a, 4.1b and their derivatives 4.4a, 4.4f, 4.4g in HEL cells 

(R: O6-alkyl substituent; Ar: aryl group; AA: amino acid; R’’: ester group)!

     Antiviral Activity EC50 
a (µM) 

Cps O6-R Ar AA R’’ AD-169 strain Davis strain 

4.1a MeO - - - - >50 

4.1b EtO - - - - >50 

4.4a MeO Ph L-Ala Bn 17.5 11.3 

4.4f EtO 1-Naph L-Ala Me 4.2 2.4 

4.4g MeO Ph L-Ala CH2tBu 1.6 1.3 

GCV - - - - 8.3 3.1 

a 50% Effective concentration, or compound concentration required to inhibit virus-

induced cytopathicity by 50% 

 

The data regarding the nucleoside analogues 4.1a and 4.1b confirm their inactivity.  

The phosphoramidates derivatives 4.4a, 4.4f, and 4.4g showed anti-HCMV activity 

comparable to that of GCV.  

The concentration of these compounds required to cause a microscopically visible 

alteration of cell morphology (MCC) was above 100 µM. 
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4.3.4 Antiproliferative activity on HEL cell cultures of 6-O-methyl ACV, 6-O-ethyl 

ACV and their phosphoramidate derivatives  

The cytostatic activity on HEL cell cultures of compounds 4.1a, 4.1b, and their 

phosphoramidate derivatives 4.4a-g is reported in table 4.5.  

These data include ACV and the L-alanine benzyl ester derivatives of ACV ProTides 

(3.1a and 3.1b) as reference compounds.10 

Table 4.5. Cytostatic activity on HEL cell cultures of 4.1a, 4.1b and their phosphoramidate 

derivatives 4.4a-g. (R: O6-alkyl substituent; Ar: aryl group; AA: amino acid; R’’: ester group) 

     Cytostatic Activity IC50
 b (µM) 

Cps O6-R Ar AA R’’ HEL Cells 

4.1a MeO - - - >100 

4.4a MeO Ph L-Ala Bn 1.9 

4.4b MeO 1-Naph L-Ala Bn 0.7 

4.4e MeO Ph L-Leu Bn 0.9 

4.4g MeO Ph L-Ala CH2tBu 1.4 

4.1b EtO - - - >100 

4.4c EtO Ph L-Ala Bn 2.1 

4.4d EtO 1-Naph L-Ala Bn 1.3 

4.4f EtO 1-Naph L-Ala Me 4.2 

ACV - - - - 1770 

3.1a - Ph L-Ala Bn >100 

3.1b - 1-Naph L-Ala Bn 20 

a 50% inhibitory concentration, or compound concentration  required to inhibit cell 

proliferation by 50% 
 

Despite the fact that the concentration required to cause a microscopically visible 

alteration of cell morphology (MCC) was above 100 µM, the aryl phosphoramidate 

derivatives 4.4a-g exhibited marked antiproliferative activity on HEL cells (IC50= 0.7-

4.2 µM). It must be pointed out that this effect was not detected in the antiviral assays 

previously described, where confluent monolayers of HEL cells, which are not 

proliferating, were used. Indeed, the cytostatic activity on HEL cell was measured using 

non-confluent and highly proliferating cell cultures. This difference is indicative of a 

different cellular metabolism and must be taken into account when the results of the 

antiviral assays are compared with the cytostatic activity obtained in this assay. In 
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comparison to the ACV ProTides 3.1a and 3.1b, an increased cellular uptake of the 6-

O-alkyl ACV ProTides 4.4a-g may account for the formation of ACV triphosphate at 

concetrations that could exert inhibitory activity also on the DNA polymerase of HEL 

cells. Alternatively, it might be assumed that 6-O-alkyl ACV triphosphate could act 

itself as inhibitor of cellular DNA polymerase. However, no study has been reported in 

the literature that could support this hypothesis. 

4.3.5 Antiproliferative activity of 6-O-methyl ACV, 6-O-ethyl ACV and their 

phosphoramidate derivatives on murine leukemia, murine mammary carcinoma, 

human T-lymphocyte, and human cervix carcinoma cell cultures. 

Considering the cytostatic activity exerted on HEL cells, the inhibitory effect of the 

phosphoramidates derivatives 4.4a-f was evaluated on the proliferation of murine 

leukemia cells (L1210), murine mammary carcinoma cells (FM3A), human T-

lymphocyte cells (CEM) and human cervix carcinoma cells (HeLa) (tab. 4.6). In 

addition the antiproliferative activity of the parent nucleosides 4.1a and 4.1b is reported. 

Table 4.6. Antiproliferative activity of compounds 4.1a, 4.1b and their phosphoramidate derivatives 

(R: O6-alkyl substituent; Ar: aryl group; AA: amino acid; R’’: ester group)!

     IC50 
a (µM) 

Cps O6-R Ar AA R’’ L1210 FM3A CEM HeLa 

4.1a Me - - - > 500 > 500 > 500 > 500 

4.4a Me Ph L-Ala Bn 0.88 ± 0.41 54 ± 14 17 ± 4 31 ± 3 

4.4b Me 1-Naph L-Ala Bn 1.9 ± 1.1 6.2 ± 4.0 11 ± 2 N.D. 

4.4e Me Ph L-Leu Bn 1.7 ± 1.0 26 ± 6 29 ± 11 16 ± 3 

4.1b Et - - - 349 ± 126 > 500 > 500 > 500 

4.4c Et Ph L-Ala Bn 2.8 ± 1.6 25 ± 3 31 ± 6 22 ± 1 

4.4d Et 1-Naph L-Ala Bn 5.6 ± 1.1 49 ± 4 16 ± 5 16 ± 1 

4.4f Et 1-Naph L-Ala Me 3.2 ± 0.9 172 ± 2 41 ± 9 23 ± 11 

a 50% inhibitory concentration, or compound concentration  required to inhibit cell proliferation 

by 50% 

 

Consistent with the previous results, compounds 4.1a and 4.1b did not show inhibitory 

activity on cell proliferation. As expected, the phosphoramidate derivatives 4.4a-f had 

antiproliferative effect. This activity was particularly marked in murine leukemia cells 

(L1210). The selectivity for this cell line was striking in the case of compound 4.4a. 
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These results confirm the cytotoxicity of the aryl phosphoramidate derivatives 4.4a-g 

and suggest it to be very cell dependent.  

4.3.6 Anti-HIV activity 

Table 4.6 reports the anti-HIV-1 and cytotoxic activity in MT-4 cell cultures of 4.1a, 

4.1b and their aryl phosphoramidate derivatives 4.4a-d and 4.4g. These data include 

ACV as reference. The previously reported L-alanine benzyl ester derivatives of ACV 

ProTide (3.1a and 3.1b)9 are reported for comparison.  The anti-HIV activity in CEM 

cell cultures of these compounds is currently under evaluation. 

Table 4.7 Anti-HIV-1, cytostatic and cytotoxic activity in MT-4 cells of 4.1a, 4.1b and their 

derivatives 4.4a-d and 4.4g. (R: O6-alkyl substituent; Ar: aryl group; AA: amino acid; R’’: ester group) 

     Antiviral Activity 
Cytostatic/Cytotoxic 

Activity 

EC50
a (µM) IC50

b
 (µM) CC50

c
 (µM) 

Cps O6-R Ar AA R’’ 
HIV-1 MT-4 cells 

4.1a Me - - - >150 >150 >150 

4.4a Me Ph L-Ala Bn 0.4 2 20 

4.4b Me 1-Naph L-Ala Bn 0.6 6 >150 

4.4g Me Ph L-Ala CH2tBu 1.3 20 >150 

4.1b Et - - - >150 >150 >150 

4.4c Et Ph L-Ala Bn 1.2 6.2 50 

4.4d Et 1-Naph L-Ala Bn 0.7 2 4 

ACV - - - - >250 >250 >250 

3.1a - Ph L-Ala Bn 5.7 ± 1.6 33.8 ± 10.6 > 150 

3.1b - 1-Naph L-Ala Bn 0.8 N.D. d > 150 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50%; b 50% Inhibitory concentration, or compound concentration  required to 

inhibit cell proliferation by 50%; c 50% Cytotoxic  concentration, or compound concentration 

that induces 50% cell death in the culture; d N.D.: not determined 
 

As expected compounds 4.1a and 4.1b did not exert any inhibitory activity against 

HIV-1.  

The phosphoramidates derivatives 4.4a-d and 4.4g showed antiviral activity in the 

micromolar and sub-micromolar range (EC50= 0.4-1.3 µM). As already described in the 

previous paragraphs, these compounds exerted antiproliferative activity on MT-4 cells 

(IC50= 2-20 µM) and, except 4.4b and 4.4g, induced 50% cell death in the culture at a 

concentration in the micromolar range (CC50= 4-50 µM). 
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4.3.7 Summary of the antiviral and antiproliferative activitiy of the 6-O-methyl 

and 6-O-ethyl acyclovir and their phosphoramidate derivatives. 

The biological results of 6-O-methyl ACV (4.1a) and 6-O-ethyl ACV (4.1b) showed a 

significant or complete loss of antiviral activity in comparison to ACV. Considering the 

biological activity exerted by the phosphoramidate derivatives 4.4a-g, these results 

suggest that the parent nucleosides 4.1a and 4.1b were neither phosphorylated to afford 

the monophosphate form nor dealkylated by the cellular adenosine deaminase to afford 

ACV.  

The antiviral activity of the phosphoramidate derivatives 4.4a-g shows that the 

application of the ProTide approach to the parent nucleosides 4.1a and 4.1b was 

successful in the bypass of the HHV-TK-mediated phosphorylation and suggests that 

the monophosphate form was released into the cell according to the putative mechanism 

of ProTide bioactivation. The studies reported in the literature on the phosphoramidates 

of 6-O-methyl-2’-C-methyl guanosine suggest that ProTides of 6-O-alkyl ACV may 

release ACV monophosphate.2,4 However, it has not been clarified yet whether the 

triphosphate form of 6-O-methyl and 6-O-ethyl ACV are inhibitors of DNA 

polymerase. An antiviral assay that combines the exposure to the phosphoramidate 

derivatives 4.4a-g with deoxycoformycin-5’-phosphate, inhibitor of adenilate 

deaminase and N6-methyl-AMP/dAMP aminohydrolase, may confirm whether or not 

the ProTides of 6-O-methyl and 6-O-ethyl ACV derivative are ‘double prodrugs’ of 

ACV triphosphate.4, 11-13  

Unfortunately, the phosphoramidate derivatives 4.4a-g exhibited marked cytostatic 

activity on HEL cell cultures and also on MT-4 cell cultures. Moreover, the 

antiproliferative activity of these compounds was observed also on L1210, FM3A, 

CEM, and HeLa cell cultures (tab 4.6). Inhibition of cellular DNA polymerase may 

account for this activity. No evidence has been reported in the literature that could 

account for the inhibitory activity of 6-O-alkyl ACV derivatives on cellular enzymes 

causing such cytotoxic effects.   

 

 

 



  Chapter 4    

 107 

4.4 Study of the adenosine deaminase activity on the 6-O-methyl and 6-

O-ethyl ACV  

Compounds 4.1a and 4.1b were incubated with adenosine deaminase (ADA) enzyme 

over a period of 20 h in order to prove whether the 6-alkoxy derivatives of ACV could 

be a prodrug of ACV triphosphate. The enzymatic reaction was monitored by recording 

UV spectra every 10 minutes (fig 4.6B). A UV spectrum of acyclovir was also recorded 

for comparison (fig 4.6A). As expected, the ADA assay performed on compound 4.1a 

showed no conversion within the incubation period of 20 h. Similar results were 

obtained for compound 4.1b.  

 

Figure 3.6. (A) UV spectrum of acyclovir; (B) Adenosine deaminase mediated deamination of 

compound 4.1a followed by UV spectroscopy 

!

The lack of conversion of compounds 4.1a and 4.1b to ACV could explain the 

inactivity of these compounds.   

Assuming that inside the cell the ProTides of 6-O-methyl and 6-O-ethyl ACV release 

acyclovir monophosphate, these results suggest that the adenylate deaminase may 

exhibit broader substrate specificity in comparison to ADA or that the conversion is 

catalysed by a different type of deaminase such as N
6-methyl-AMP/dAMP 

aminohydrolase that has been proved to be involved in the deamination of several 6-O-

alkyl-2-aminopurine nucleotides.14  
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4.5 Study of the carboxyesterase activity 

In order to investigate the ester cleavage of the phosphoramidate derivative 4.4a and 

confirm the successful release of the monophosphate form according to the putative 

mechanism of activation of ProTides, an enzymatic study has been performed using 

CPY. The enzymatic assay was carried out following the procedure described for ACV 

ProTides in chapter 3. 

Figure 4.7 depicts the 31P NMR spectra of the enzymatic reaction over 14 h period of 

incubation.  

 

Figure 4.7. 31P NMR spectra (acetone-D6, 202 MHz) at different time of the enzymatic study 

performed on compound 4.4a 

!

The hydrolysis of compound 4.4a (!P= 3.67, 3.72 ppm) occured in less than 6 min from 

the exposure to carboxypeptidase Y affording the intermediate 4.5 (!P= 4.78 and 4.88 

ppm). After 13 min from exposure to CPY, the intermediate 4.5 was converted to the 

corresponding phosphoramidate monoester 4.6 (!P= 6.81 ppm) by 50%. The conversion 

was complete in less than 34 min from the exposure to the enzyme. The fast cleavage of 

the benzyl ester of compound 4.4a proves that the hindrance of the 6-methoxy 

substituent is well tolerated by CPY, suggesting an efficient ester cleavage. 
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4.6 Docking study of the phosphoramidate derivatives of 6-O-methyl 

and 6-O-ethyl ACV within the active site of human Hint-1 enzyme  

As already mentioned, a study showed that INX-189, the ProTide of 6-O-methyl-2’-C-

methyl guanosine, is converted to the monophosphate form before that the 6-methoxy 

group is removed (fig. 4.4).5  

The modeling study of compounds 4.6 and 4.7 (fig. 4.8) within the active site of human 

Hint-1 co-crystallised with adenosine monophosphate (AMP) was performed using 

docking techniques in order to investigate whether the phosphoramidate monoester of 

6-O-methyl and 6-O-ethyl ACV could be successfully processed by this enzyme. 

N

NN

N

NH2O
O

P

O

O

NH

O

O

CH3

O
CH3

N

NN

N

NH2O
O

P

O

O

NH

O

O

CH3

O CH3

4.6 4.7

 

Figure 4.8. Phosphoramidate monoester derivatives of 6-O-methyl ACV (4.6) and 6-O-ethyl  

ACV (4.7) 

 

The docking study of compound 4.6 (fig. 4.9) shows that it binds in the enzymatic 

pocket of the human Hint-1 interacting in a similar way to AMP (green).  

  

 
Figure 4.9. Superimposition of compound 4.6 with AMP (green) within the active site of human 

Hint-1 enzyme.  
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Figure 4.10 shows that the histidine and serine residues (His51, His112, and His114, 

Ser107) are in a suitable position to catalyze the cleavage of the P-N bond according to 

the mechanism of action of the human Hint-1 described in chapter 3.15 This result 

suggests that 4.6 is successfully processed to the monophosphate in the cell. 

 
Figure 4.10. Detail of the docking of 4.6 within the active site of human Hint-1 showing the 

orientation and the distance in angstroms of the P-N bond (purple and blue) toward the histidine 

and the serine residues (His-51, His-112, His 114, and Ser_107) responsible for its cleavage (from 

ref 15)  

!

Figure 4.11 shows that compound 4.7 binds in the catalytic site of the human Hint-1. 

The guanine base and the side chain are well positioned in the enzymatic pocket.  
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Figure 4.11. Superimposition of compound 4.7 with AMP (green) within the active site of human 

Hint-1 enzyme. The red arrow indicates the position of the phosphate group of AMP 

!

Althought the phosphate moiety (purple) is slightly moved from the position adopted by 

the phosphate group of AMP (green), figure 4.12 shows that the histidine and serine 

residues (His51, His112, and His114, Ser107) are in a suitable position to catalyze the 

cleavage of the P-N bond.  

 
Figure 4.12. Detail of the docking of 4.7 within the active site of human Hint-1 showing the 

orientation and the distance in angstroms of the P-N bond (purple and blue) toward the histidine 

and the serine residues (His-51, His-112, His 114, and Ser_107) responsible for its cleavage  
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4.7 Conclusions 

The application of the ProTide approach to 6-O-methyl and 6-O-ethyl ACV was 

successful in the intracellular release of the monophosphate form inside the cell 

conferring biological activity to the parent nucleosides. The results of the enzymatic and 

modeling studies supported the hypothesis that the aryl phosphoramidate derivatives of 

6-O-methyl and 6-O-ethyl ACV were processed according to the putative mechanism of 

ProTide activation. However it has not been confirmed whether these compounds are 

dual prodrugs of ACV triphosphate. 

  

Unfortunately, the introduction of the alkoxy group in the 6 position of acyclovir led to 

the rise in cytotoxicity clearly indicating the unsuitability of this strategy as a way to 

improve the antiviral activity of ACV Protides. 
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Chapter 5. Aryl phosphoramidate derivatives of 8-bromo- and 

8-methylacyclovir 

5.1 Introduction 

As already described in chapter 1, the high therapeutic index of ACV as an antiviral 

agent is guaranteed by its high selectivity for the herpes virus DNA polymerase and by 

the fact that its active form, ACV triphosphate, is generated at effective concentrations 

in HSV and VZV infected cells, which contain the virally encoded TK required for the 

first phosphorylation step.1 The application of the ProTide approach to ACV, allowing 

the release of the monophosphate form directly into the cell, exposes also the uninfected 

cells to ACV triphosphate thus possibly decreasing its antiviral selectivity.2 Indeed, 

some of the ACV ProTides described in chapter 3 had moderate cytostatic activity. Also 

the 6-O-alkyl ACV ProTides, described in chapter 4, were found to be cytotoxic.  

Following these results, a modification of the structure of ACV was investigated in 

order to obtain phosphoramidate derivatives that could improve the antiviral activity of 

ACV without exerting cytotoxic effects. According to a previous study, the acyclic 

guanine nucleoside analogues such as 8-bromo-, 8-methyl-, and 8-iodoacyclovir (5.1-

5.3, fig 5.1) display good antiviral activity against HSV with an improved therapeutic 

index when compared to ACV.3  
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HO
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5.3  

Figure 5.1. Structures of 8-bromo-, 8-methyl-, and 8-iodoacyclovir derivatives  

Table 5.1 contains the antiviral and the antimetabolic activity, as well as the antiviral 

index, reported in the literature for ACV and compounds 5.1-5.3.3 The antimetabolic 

activity of the acyclic guanine nucleoside analogues has been evaluated by measuring 

the dose of compound required to inhibit the incorporation of 2’-deoxythymidine 

(dThd) or 2’-deoxyuridine (dUrd) into the DNA of primary rabbit kidney (PRK) cell 

cultures by 50% (ID50).
4, 5 The antiviral index is the ratio of the ID50 of the host cell 

DNA synthesis and the ID50 of the anti-HSV activity. All the three derivatives 5.1-5.3 

have a better antiviral index when compared to ACV, with 5.2 being the best 

compound.  
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Table 5.1 Antiviral activity, antimetabolic activity and antiviral index of 8-bromo-, 8-methyl-, and 

8-iodoacyclovir.  X: substituent in C-8 of ACV nucleobase 

  
Antiviral Activity in PRK 

Cell Cultures ID50
a
 (µg/ml) 

Antimetabolic Activity in PRK 

Cell Cultures ID50
b

  (µg/ml) 
 

Cps X 
HSV-1 

(KOS) 

HSV-2 !  

(G) 
dThd incorp dUrd incorp 

Antiviral 

Index c 

5.1 Br 0.5 0.5 340 225 450 

5.2 CH3 0.5 0.5 >400 >400 >800 

5.3 I 0.4 0.4 >350 >250 625 

ACV - 0.05 0.04 12 13 300 

a 50% Inhibitory dose or concentration required to reduce cytopathogenicity by 50% !; b 50% 

Inhibitory dose50 or concentration required to reduce [3H-methyl]dThd or [3H-1’,2’]dUrd 

incorporation into cellular DNA by 50%; !c Ratio of ID50 for dThd or dUrd incorporation 

(whatever was lowest) to ID50 for HSV-1, HSV-2 ! (whatever was lowest) 

 

With the aim of identifying possible modifications of ACV that could improve the 

inhibitory activity and selectivity of the triphosphate form against HIV-RT, the 

introduction of a methyl or a halogen subsituent in the C-8 position of the guanine base 

of ACV was evaluated in an in silico study previously performed in our lab.6 For this 

purpose, virtual screening was carried out by applying the docking technique to HIV-

RT, adenylate kinase, guanylate kinase, and cellular DNA polymerase !. The docking 

study within the active site of HIV-RT showed that substitution at the 8 position of the 

guanine base of the acyclic guanine nucleoside analogues with a halogen atom or a 

methyl group is permitted. 

Considering these previous reports, it appeared reasonable to synthesise the 

phosphoramidate derivatives of 5.1 and 5.2. 

5.2 Synthesis of 8-bromo- and 8-methylacyclovir  

According to the procedure described in the literature,7 the bromination of ACV was 

achieved using N-bromosuccinamide (NBS) in acetic acid (CH3CO2H) affording 

compound 5.1 in 40% yield (procedure i, scheme 5.1). Alternatively, ACV was 

brominated on the C-8 position of the guanine base using a saturated solution of 

bromine in water (Br2/H2O). Compound 5.1 was obtained in 80% yield (procedure ii, 

scheme 5.1).3  
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i or ii

Reagents and conditions: 

(i) NBS, CH3CO2H, rt, 20 h (yield: 40%)

(ii) sature Br2/H2O, H2O, 0° C, 2h (yield: 80%)  

Scheme 5.1. Synthesis of 8-bromoacyclovir 

!

In the H-NMR spectrum of 5.1 (fig 5.2B) the absence of the peak at 7.82 ppm 

corresponding to the hydrogen on the C-8 of ACV (fig 5.2A) is one of the parameters 

that indicates the effective substitution at this position. 

 

Figure 5.2. H-NMR spectra (DMSO, 500 MHz) of (A) ACV and (B) 8-bromoacyclovir 

!

Furthermore the substitution of the hydrogen with bromine is also suggested in the 13C-

NMR spectrum, as the unsubstituted C-8 of ACV gives a negative signal (fig 5.3A), 

while its substitution with bromine results in a positive signal and in a characteristic 

upfield shift from 137 to 121 ppm due to the heavy halogen atom effect (fig. 5.3B).8  
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Figure 5.3. 13C-NMR spectra (DMSO, 125 MHz) of  (A) ACV and (B) 8-bromoacyclovir 

!

According to the procedure described in the literature,3, 9 the free-radical methylation of 

ACV with tert-butylhydroperoxide (tBuOOH) in the presence of ferrous sulfate (FeSO4) 

and sulfuric acid (H2SO4) afforded compound 5.2 in 53% yield (scheme 5.2).  
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ACV

 

Scheme 5.2. Free-radical methylation of ACV 

!

The introduction of the methyl group on the C-8 of ACV is evident in the H-NMR 

spectrum from the presence of a singlet integrating for 3 protons at 2.36 ppm, while the 

peak at 7.82 ppm, corresponding to the hydrogen on the C-8 of ACV is not visible (fig. 

5.4A). The presence of the methyl group on the C-8 is also recognised in the 13C-NMR 

spectrum where a peak at 13.34 ppm is present (fig 5.4B). Moreover, the signal of the 

C-8 changes from negative to positive due to the effect of the substitution and a 
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downfield shift of this signal is seen when the 13C-NMR spectra of ACV and 5.2 are 

compared (fig 5.4B). 

 

Figure 5.4! (A) H-NMR spectrum (DMSO, 500 MHz) and (B) 13C-NMR spectrum (DMSO, 125 

MHz) of 8-methylacyclovir 

!

In order to improve the yield of 5.2 a different synthetic approach was followed. In the 

literature the cross coupling reaction of 8-bromoadenosine with trimethylaluminum 

(AlMe3) has been reported to afford very good yield of 8-methyladenosine.10 According 

to the procedure described in the literature,10 the protection of 5.1 with the trimethylsilyl 

group was performed in 1,4-dioxane using hexamethyldisiloxane (HMDS) in the 

presence of a catalytic amount of ammonium sulphate ((NH4)2SO4) under reflux 

conditions in argon atmosphere (i, scheme 5.3). The crude of the reaction, without any 
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purification, was redissolved in anhydorus THF and refluxed for 2 h in the presence of 

tetrakis (Pd(PPh3)4, 0.1 eq) and AlMe3 (2 eq) (ii, scheme 5.3). No formation of the 

desired product of the cross coupling reaction with AlMe3 was detected and the further 

desilylation was not carried out (iii, scheme 5.2).   
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N

N

N

NH

NH2

O

O
HO

5.1

i, ii, iii

Reagents and conditions: (i) HMDS, (NH4)2SO4, 1-4 dioxane, 110 °C, 2-3 h; (ii) 

Pd(PPh3)4, AlMe3, anhydrous THF, 70 °C, 18 h; (iii) NH4Cl, MeOH, 65 °C, 2 h

Br

 

Scheme 5.3. Palladium-catalyzed cross coupling reaction of compound 8-bromoacyclovir with 

trimethylalluminium 

5.3 Design of 8-bromo- and 8-methylacyclovir ProTides 

In order to apply the ProTide approach to the acyclic guanosine analogues 5.1 and 5.2, 

compounds 5.4a-d and 5.5 were synthesised (fig 5.2). On the basis of the biological 

results of the ACV Protides described in chapter 3, the phosphoramidate derivatives 

5.4a-d and 5.5 were synthesized using L-Alanine benzyl ester as amino acid group and 

phenyl or naphthyl groups as aryl moiety. The phosphoramidate derivatives of ACV 

containing L-alanine as amino acid moiety were indeed the only ProTides active against 

HIV-1 and HIV-2 in CEM cell cultures with, in particular, the L-alanine benzyl ester 

derivatives exhibiting the best antiviral activity.2 Compound 5.4c was also synthesised 

in order to evaluate whether the 2,2-dimethylglycine benzyl ester derivative could retain 

the antiviral activity of the L-alanine benzyl ester phosphoramidate analogues 5.4a-b. 

Finally, the L-Valine benzyl ester derivative 5.4d was also prepared in order to evaluate 

whether the bulky side chain is well tolerated by the enzymes involved in the 

bioactivation of the ProTides. 
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Figure 4.5. Structure of phosphoramidate derivatives 5.4a-d and 5.5 
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5.3.1 Synthesis of 8-bromo- and 8-methylacyclovir ProTides 

The synthesis of 8-bromoacyclovir ProTides 5.4a-d was performed following two 

different routes:  

• coupling reaction of 5.1 with the appropriate phosphorochloridate 2.2 affording 

compounds 5.4a-c; 

• bromination of ACV ProTide 3.2g affording compound 5.4d. 

 

According to the procedure described in chapter 3 for the synthesis of ACV ProTides, 

the coupling reactions of compounds 5.1 with the freshly prepared 

phosphorochloridates 2.2a, 2.2b and 2.2g were performed in the presence of tBuMgCl 

in anhydrous THF affording compounds 5.4a-c in 18-21% yield (scheme 5.4). 
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Scheme 5.4. Synthesis of the phosphoramidate derivatives 5.4a-c 

!

Alternatively, compound 5.4d was synthesised by bromination of the previously 

reported aryl phosphoramidate derivative of ACV 3.2g using NBS in THF (scheme 

5.5).7  
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Scheme 5.5. Synthesis of the phosphoramidate derivative 5.4d by bromination of the ACV ProTide 

3.2g 

!
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In the case of the synthesis of 8-methylacyclovir ProTide 5.5 the guanine base of 5.2 

was protected using N,N-dimethyl formamide dimethyl acetal with the aim to improve 

the solubility in THF and affording the N2-dimethylformamidine derivative 5.6 (scheme 

5.6).11 

NH

NN

N

O

NH2O
HO

NH

NN

N

O

N
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CH3

CH3

i

5.2 5.6

H3C
H3C

Reagents and conditions: (i) N,N-dimethyl formamide dimethyl acetal , anhydrous DMF, rt, 24 h  

Scheme 5.6. Synthesis of the N2-dimethylformamidine derivative 5.6 

!

The coupling reaction of compound 5.6 with the phosphorochloridate 2.2a in anhydrous 

THF was performed in the presence of tBuMgCl and afforded compound 5.7 as mixture 

of two diastereomers in 27% yield (scheme 5.7). The dimethylformyl group was 

removed by refluxing 5.7 in 2-propanol (iPrOH) obtaining the desired compound 5.5 in 

21% yield (scheme 5.7).  
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Scheme 5.7. Synthesis of the phosphoramidate derivative 5.5 

 

Table 4.2 summarises the ProTides of 8-bromo- and 8-methylacyclovir synthesised. 
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Table 4.2. ProTides of 8-bromo- and 8-methylacyclovir 

(X: substituent in C-8; AA: amino acid) 

Cps X Aryl AA 31P NMR (ppm) Yield 

5.4a Br Ph L-Ala 3.72, 3.46 18% 

5.4b Br 1-Naph L-Ala 4.01, 3.92 21% 

5.4c Br 1-Naph DMG 2.52 20% 

5.4d Br 1-Naph L-Val 4.82, 4.74  36%a 

5.5 Me Ph L-Ala 3.77, 3.48 6%b 

a direct bromination of the ACV ProTide 3.4g; b overall yield of 2-steps synthesis 
 

The low overall yield of compound 5.5 (6%) is due to the additional deprotection step 

of the N2-dimethylformamidine derivative 5.7 required to obtain the final compound. In 

order to avoid the cleavage of the P-N bond, the removal of the N2-dimethylformamide 

group was performed under mild conditions, which are responsible for the incomplete 

deprotection of 5.7 and thus the low yield of the reaction (21%, scheme 4.6). 

Interestingly, the use of NBS as source of bromine in THF proved to be a suitable 

approach to introduce a bromine atom in the C-8 position of the guanine base of ACV 

ProTides.   

5.4 Biological evaluation of 8-bromoacyclovir, 8-methylacyclovir, and 

their phosphoramidate derivatives  

The acyclic guanine nucleoside analogues 5.1, 5.2, and their phosphoramidate 

derivatives 5.4a-d and 5.5 were evaluated for their antiviral activity against HSV, VZV, 

HCMV, and HIV. 

5.4.1 Anti-HSV activity  

Table 5.3 reports the antiviral activity of the phosphoramidate derivatives  

5.4a-d and 5.5 against HSV-1, HSV-2, and TK--HSV-1 in HEL cells. The anti-HSV 

activity of the parent nucleosides 5.1 and 5.2 was also evaluated and compared with the 

values reported in the literature (tab 5.1).3 ACV is included as a reference compound. 
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Table 5.3 Anti-HSV activity of 5.1, 5.2 and their phosphoramidate derivatives in HEL cell cultures 

(X: substituent in C-8; AA: amino acid) 

 Antiviral Activity EC50
a
 (µM) 

Cps X Aryl AA HSV-1 HSV-2 TK- HSV-1  

5.1 Br - - 11 16 >100 

5.4a Br Ph L-Ala 79 48 >100 

5.4b Br 1-Naph L-Ala >100 >100 >100 

5.4c Br Ph DMG 60 50 >100 

5.4d Br 1-Naph L-Val >100 >100 >100 

5.2 Me - - 8 4 >100 

5.5 Me Ph L-Ala 46 42 >100 

ACV - - - 0.24 0.14 120 

a 50% Effective concentration, or compound concentration required to inhibit virus-

induced cytopathicity by 50% 
 

Compounds 5.1 and 5.2 exhibited activity against HSV-1 and HSV-2 in the micromolar 

range. The decrease of anti-HSV activity of compounds 5.1 and 5.2 in comparison to 

ACV (EC50= 0.14-0.24 µM) is consistent with the data reported in the literature (tab. 

4.1).3 Moreover 5.1 and 5.2, as well as ACV, did not retain activity against TK- HSV-1, 

showing that the 8-substituted derivatives of ACV require phosphorylation by HSV TK. 

The phosphoramidate derivatives 5.4a, 5.4c, and 5.5, bearing the phenyl group as aryl 

moiety, (EC50= 42-79 µM) showed a significant loss of activity against HSV-1 and 

HSV-2 in comparison to the parent nucleosides 5.1 and 5.2. The naphthyl derivatives 

5.4b and 5.4d were inactive against HSV-1 and HSV-2. None of the phosphoramidate 

derivatives 5.4a-d and 5.5 exerted antiviral activity against TK- HSV-1 below 100 µM.  

The concentration required to cause a microscopically visible alteration of cell 

morphology (MCC) was found above 100 µM for all the compounds synthesised. 

5.4.2 Anti-VZV activity  

The antiviral activity of compounds 5.1, 5.2, and their phosphoramidate derivatives 

5.4a-d and 5.5 against TK-positive (TK+) and TK-deficient (TK-) strains of VZV in 

HEL cells are reported in table 5.4. ACV is included as reference compound. 
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Table 5.4. Anti-VZV activity of 5.1, 5.2 and their phosphoramidate derivatives in HEL cell cultures 

  (X: substituent in C-8; AA: amino acid) 

  Antiviral Activity EC50
a (µM) 

TK+ VZV strains TK- VZV strains 

Cps X Aryl AA 
YS OKA 07-1 YS/R 

5.1 Br - - - >50 >50 - 

5.4a Br Ph L-Ala - >50 >50 - 

5.4b Br 1-Naph L-Ala - >50 >50 - 

5.4c Br Ph DMG - >50 >50 - 

5.4d Br 1-Naph L-Val - >50 >50 - 

5.2 Me - - - 40.4 >100 - 

5.5 Me Ph L-Ala - 40.2 >100 - 

ACV - - - - 1.16 75 93 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50%;   
 

Compound 5.1 was found inactive against TK+ strains of VZV (EC50> 50 µM), while 

compound 5.2 showed weak activity (EC50= 40.4 µM). As expected from data reported 

in the literature,12 ACV was active against TK+ VZV in the micromolar range (EC50= 

1.16 µM). These results could reflect a different substrate specificity of the VZV-TK 

compared with the HSV-TK. Indeed, the characterisation of the crystal structure of 

VZV-TK has highlighted some differences in the conformation of the active site 

between both enzymes that suggest different substrate selectivity.13 None of these 

compounds showed activity against TK- strains of VZV. 

Similarly to the parent nucleoside 5.1, the phosphoramidate derivatives 5.4a-d were 

inactive against TK+ and TK- VZV. The phosphoramidate derivative 5.5 retained the 

antiviral activity of the parent nucleoside 5.2 against TK+ VZV (EC50= 40.6 µM) and 

was inactive against TK- VZV. 

The concentration required to cause a microscopically visible alteration of cell 

morphology (MCC) was above 100 µM for all the compounds synthesised. 
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5.4.3 Anti-HCMV activity 

Table 5.5 reports the antiviral activity of compounds 5.1, 5.2, and their 

phosphoramidate derivatives 5.4a-d and 5.5 against HCMV in HEL cells. Ganciclovir is 

reported as a reference compound. 

Table 5.5. Anti-HCMV activity of 5.1, 5.2, and their phosphoramidate derivatives in HEL cells 

(X: substituent in C-8; AA: amino acid) 

    Antiviral Activity EC50
a
  (µM) 

Cps X Aryl AA AD-169 strain Davis strain 

5.1 Br - - >50 >50 

5.4a Br Ph L-Ala N.D b >50 

5.4b Br 1-Naph L-Ala N.D b >50 

5.4c Br Ph DMG N.D b >50 

5.4d Br 1-Naph L-Val N.D b >50 

5.2 Me - - >20 >100 

5.5 Me Ph L-Ala >100 >100 

GCV - - - 8.3 3.1 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50%; b N.D.: not determined 
 

Compounds 5.1 and 5.2 were inactive against HCMV. This result is consistent with the 

lack of anti-HCMV activity of ACV as it is not phoshorylated by the virally encoded 

protein kinase, which instead is able to phosphorylate GCV.14, 15  

The phosphoramidate derivatives 5.4a-d and 5.5 were inactive against HCMV.  

The antiviral assay performed against HCMV has also shown that none of the 

compound synthesised altered cell morphology at concentrations below 100 µM.  

5.4.4 Cytostatic activity on HEL cell cultures of 8-bromoacyclovir, 8-

methylacyclovir and their phosphoramidate derivatives  

The acyclic guanine nucleoside analogues 5.1, 5.2, and their phosphoramidate 

derivatives 5.4a-d and 5.5 were evaluated for their antiproliferative activity on HEL 

cells. The concentration required to reduce cell growth by 50% was above 100 µM for 

all the compounds synthesised.  
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5.4.5 Anti-HIV activity 

Compounds 5.1, 5.2, and the L-alanine benzyl ester phoshoramidate derivatives  

5.4a-b and 5.5 were evaluated for their activity against HIV-1 in CEM cell and MT-4 

cell cultures and against HIV-2 in CEM cell cultures. 

Table 5.6 reports the anti-HIV-1 activity and cytostatic activity in MT-4 cell cultures of 

5.1, 5.2, and their phosphoramidate derivatives 5.4a-b and 5.5.  

ACV and the previously reported L-alanine benzyl ester derivatives of ACV ProTides 

(3.1a and 3.1b)2 are included as reference compounds.   

Table 5.6. Anti-HIV-1 and cytostatic activity in MT-4 cell cultures of compounds 5.1, 5.2, and their 

L-alanine benzyl ester derivatives 5.4a-b and 5.5. (X: substituent in C-8; AA: amino acid) 

    Antiviral Activity EC50
a (µM) Cytostatic Activity IC50

b
 (µM) 

Cps X Aryl AA HIV-1 MT-4 cells 

5.1 Br - - >150 >150 

5.4a Br Ph L-Ala >150 >150 

5.4b Br 1-Naph L-Ala >150 >150 

5.2 Me - - >150 >150 

5.5 Me Ph L-Ala >150 >150 

ACV - - - >250 >250 

3.1a - Ph L-Ala 5.7 ± 1.6 33.8 ± 10.6 

3.1b - 1-Naph L-Ala 0.8 N.D. c 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50%; b 50% Inhibitory concentration, or compound concentration  required to 

inhibit cell proliferation by 50%; c N.D.: not determined 

Compounds 5.1 and 5.2 were inactive against HIV-1 in MT-4 cells. Since the in silico 

study previously performed in our lab on several derivatives of ACV as potential anti-

HIV agent suggested that 8-methyl- and 8-bromoacyclovir triphosphate may be 

inhibitors of HIV-RT,16 this result may indicate that the lack of anti-HIV activity of 

compounds 5.1 and 5.2, similarly to ACV,17 may be explained by the poor conversion 

of the 8-substituted ACV derivatives to the monophosphate form. However it must be 

pointed out that no in vitro studies have been reported in the literature regarding the 

inhibition of HIV-RT by 8-methylacyclovir triphosphate and 8-bromoacyclovir 

triphosphate.  

The phosphoramidate derivatives 5.4a-b and 5.5 were inactive against HIV-1 in MT-4 

cell cultures. 
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None of the compound synthesised exerted antiprioliferative activity against MT-4 cell. 

The results of the anti-HIV-1 and anti-HIV-2 assays performed in CEM cell culture 

confirm the lack of anti-HIV activity of compounds 5.1, 5.2 and their  

L-alanine benzyl ester phosphoramidate derivatives 5.4a-b and 5.5, which exhibited 

antiviral activity (EC50) above 250 µM. 

5.4.6 Summary of the biological activity of 8-bromo-, 8-methylacyclovir and their 

phosphoramidate derivatives 

The results of the antiviral assay performed on 8-bromo- and 8-methyacyclovir confirm 

the selective antiviral activity of these compounds against HSV-1 and HSV-2. The poor 

formation of the monophosphate derivative may account for the lack of activity against 

VZV, HCMV, and HIV. 

The lack of antiviral activity of the phosphoramidate derivatives 5.4a-d and 5.5 against 

TK--HSV-1 strongly suggests that the monophosphate form of 8-bromo- and 8-

methylacyclovir was not successfully released into the cell. Most probably, the antiviral 

activity displayed by the phenyl derivatives 5.4a, 5.4c, and 5.5 against HSV-1 and 

HSV-2 was due to the intracellular release of the parent nucleoside. The results of the 

antiviral assays performed against VZV, HCMV, and HIV confirm this hypothesis. 

5.5 Enzymatic and modeling studies 

Considering the putative mechanism of activation of ProTides described in chapter 1, 

enzymatic and molecular modelling studies were performed in order to further 

investigate the biological activity of the phosphoramidate derivatives  

5.4a-d and 5.5 and evaluate whether their inactivity could be attributed to poor 

conversion to the monophosphate form. 

5.5.1 Study of the carboxyesterase activity 

The enzymatic study of compounds 5.4a and 5.5 was performed using 

carboxypeoptidase Y (CPY) in order to investigate the first step in the bioactivation 

pathway of ProTides. The enzymatic assay was carried out following the procedure 

described in chapter 3. 31P NMR spectra were recorded at 30 minutes intervals in order 

to monitor the enzymatic reaction. 
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Figure 5.6 depicts the 31P NMR spectra of the enzymatic reaction performed on 

compound 5.4a over a 60 min period of incubation.  

The hydrolysis of compound 5.4a (!P= 3.75 and 3.91 ppm) occurred in less than 30 min 

after exposure to CPY, affording the intermediate 5.8 (!P= 4.71 and 4.86 ppm). After 

this period, the intermediate 5.8 was already converted to the phosphoramidate 

monoester 5.9 (!P= 7.27 ppm) by 70%. After a 60 min period of incubation, the 

conversion to 5.9 was complete.  

 

Figure 5.6 31P NMR spectra (acetone-D6, 202 MHz) of the enzymatic study performed on 

compound 5.4a 

The 31P NMR spectra of the enzymatic reaction performed on compound 5.5 over a 30 

min period of incubation is depicted in figure 5.7.  

 
Figure 5.7 31P NMR spectra (acetone-D6, 202 MHz) of the enzymatic study performed on 

compound 5.5 

!

The hydrolysis of compound 5.5 (!P= 3.67 and 3.80 ppm) occurred in less then 30 min 

from the exposure to the CPY (fig. 5.7). Due to rapid processing, the 31P NMR signal 
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corresponding to intermediate 5.10 was not detected and only the formation of the final 

product 5.11 (!P= 7.33 ppm) was observed. 

The enzymatic study performed on compounds 5.4a and 5.5 indicates that the benzyl 

ester is successfully cleaved by CPY, according to the putative mechanism of activation 

of ProTides.18 Thus the lack of antiviral activity probably cannot be correlated to a poor 

cleavage of the benzyl ester for these derivatives. 

5.5.2 Docking study of the phosphoramidate derivatives of 8-bromo- and 8-methyl-

acyclovir within the active site of human Hint-1 enzyme  

According to the putative mechanism of activation of ProTides previously described in 

chapter 1, human Hint-1 is considered to be responsible for the release of the free 

monophosphate form of nucleoside analogues by cleaving the P-N bond of 

phosphoramidate derivatives.19, 20  

In order to further investigate the bioactivation of the L-alanine benzyl ester 

phosphoramidate derivatives 5.4a and 5.5, the modeling study of compounds 5.9 and 

5.11 (fig. 5.8) within the active site of the human Hint-1 was performed using docking 

techniques. 
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Figure 5.8. Structures of the L-alanine phosphoramidate monoester derivatives 5.9 and 5.11 

!

Figure 5.9 shows the docking study of compound 5.9 within the active site of the human 

Hint-1 co-crystallised with AMP (shown in yellow).  
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Figure 5.9. Superimposition of compound 5.9 with AMP (yellow) within the active site of human 

Hint-1 enzyme. The red circle indicates the phosphate moiety of AMP. The red arrows indicate the 

position of the residues of serine 107 (Ser_107), hisitidine 112 (His_112), and histidine 114 

(His_114) involved in the cleavage of the P-N bond of compound 5.9 according to the mechanism of 

action of the human Hint-1 enzyme (from ref. 20) 

!

Despite a slight difference in comparison to the position adopted by AMP, the guanine 

base of compound 5.9 fits well into the enzymatic pocket. Instead, the orientation of the 

side chain of 8-bromoacyclovir places the phosphate moiety (shown in purple) in a 

totally different position when compared to the phosphate group of AMP (highlighted 

by the red circle). As result of the placement outside the enzymatic pocket, the P-N 

bond is not in a suitable position to interact with serine and histidine residues (indicated 

by the red arrows in fig. 5.9), which are responsible for its cleavage according to the 

mechanism of action of human Hint-1 ezyme.20  

The docking study of compound 5.11 (fig. 5.10) shows a similar result: the phosphate 

moiety (purple) is placed in a position that does not allow a proper interaction with the 

serine and histidine residues (red arrows in fig 4.6) involved in the cleavage of the P-N 

bond. 
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Figure 5.10. Superimposition of compound 5.11 with AMP (yellow) within the active site of human 

Hint-1 enzyme. The red circle highlights the phosphate moiety of AMP. The red arrows indicate the 

position of the residues of serine 107 (Ser_107), hisitidine 112 (His_112), and histidine 114 

(His_114) involved in the cleavage of the P-N bond of compound 5.11 according to the mechanism 

of action of the Hint enzyme (from ref. 20)  

!

In conclusion the modeling studies of compound 5.9 and 5.11 within the active site of 

the human Hint-1 enzyme strongly suggests that the inactivity of compounds 5.4a and 

5.5 may be due to the inefficacy of the phosphoramidase enzyme to cleave the P-N 

bond and release the monophosphate.  

5.6 Conclusions 

In order to overcome the decrease in selectivity induced by the application of the 

ProTide approach to ACV and the potential cytotoxic effect related to the inhibition of 

the cellular DNA replication, a series of phosphoramidate derivatives of 8-methyl- and 

8-bromoacyclovir were synthesised and evaluated for their activity against HSV, VZV, 

HCMV, and HIV. Unfortunately, the phosphoramidate derivatives 54a-d and 5.5 were 

found either poorly active or completely inactive. The enzymatic studies indicated that 

these compounds are successfully processed by carboxypeptidase Y. However modeling 

studies suggest that the metabolites of 8-methyl- and 8-bromoacyclovir ProTides may 

be poor substrates for human Hint-1, resulting in missed cleavage of the P-N bond.  
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Chapter 6. Aryl phosphoramidate derivatives of ganciclovir 

and penciclovir 

6.1 Introduction to the application of the ProTide approach to 

ganciclovir and penciclovir 

As described in chapter 1, ganciclovir (GCV) and penciclovir (PCV) are analogues of 

acyclovir (ACV), from which they differ for the presence of an additional 

hydroxymethylene group on the acyclic side chain that mimics the 3’ hydroxyl group of 

natural nucleosides (fig. 6.1).1 Moreover, PCV differs from GCV and ACV for the 

replacement of the oxygen on the side chain with a methylene group. These compounds 

are anti-herpes virus agents and share a similar mechanism of activation with ACV, 

leading to the formation of the triphosphate form that inhibits the viral DNA 

polymerase.1  
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Figure 6.1. Structures of GCV and PCV 

!

The application of the ProTide approach to GCV and PCV has been previously 

investigated in our group on the basis of the virtual screening carried out on several 

derivatives of ACV triphosphate as potential inhibitors of HIV-RT.2 In particular, the in 

silico study pointed out that GCV and PCV triphosphate could be good candidates as 

inhibitors of this enzyme. Following the procedure already described for the synthesis 

of ACV ProTides,3 several aryl phosphoramidate derivatives of GCV and PCV were 

previously prepared in our lab.4 When phenyl and naphthyl L-alanine benzyl ester 

phosphorochloridates were used, the bisphosphate prodrugs (bis-ProTide) 6.1a-d were 

exclusively obtained (fig. 6.2).4 Only in the case of the L-alanine isopropyl ester 

derivative of GCV it was possible to isolate the mono-ProTide 6.2, together with the 

bis-ProTide 6.3 (fig. 6.2).4  
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Figure 6.2. Structures of GCV and PCV ProTides 6.1a-d, 6.2, and 6.3 previously prepared in our 

lab (from ref. 4)  

The bis-ProTides derivatives of PCV 6.1a-b exhibited a significant loss of activity 

against TK-positive strains of VZV (EC50= 6.9-32.2 µM) in comparison to the parent 

nucleoside (EC50= 0.9-2.2 µM) and they were inactive against TK-deficient strains of 

VZV.5 This result may suggest that either the bisphosphate prodrugs are not 

successfully bioactivated or they release the parent nucleoside. 

The ProTides 6.1c-d, 6.2, and 6.3 were evaluated for their activity against HIV but 

found inactive.4 The inactivity of the mono-ProTide 6.2 may be due to the poor 

cleavage of the ester moiety in the bioactivation pathway, as suggested by the 

enzymatic study performed on this compound using carboxypeptidase Y.4  

In the same study also the application of the ProTide approach to the 6–methoxy 

derivative of PCV was described and the synthesis of ProTides 6.4a and 6.4b was 

reported (fig 6.3).4  
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Figure 6.3. Structure of the 6-methoxy-PCV ProTides 6.4a and 6.4b previously prepared in our lab 

(from ref. 4)  

!

 These compounds exhibited poor activity against TK-positive strains of HSV (EC50= 

38-58 µM against HSV-1 and 20-45 µM against HSV-2) and retention of this activity 

against TK-deficient strains of HSV-1 (EC50= 20-58 µM), while the parent nucleoside 

was completely inactive against both strains of HSV.  

6.2 Design of novel aryl phosphoramidate derivatives of GCV and 

PCV 

Considering the results obtained in the evaluation of ACV ProTides (chapter 3), 

compounds 6.5a-d (fig 6.4) were synthesised in order to investigate the antiviral activity 

of the phenyl and naphthyl 2,2-dimethylglycine benzyl ester phosphoramidate 

derivatives of GCV and PCV. The bisphosphate derivatives 6.6a-d were also obtained 

(fig 6.4). 
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Figure 6.4. Structure of phenyl and naphthyl 2,2-dimethylglycine benzyl ester phosphoramidate 

derivatives 6.5a-d (mono-ProTides) and 6.6a-d (bis-ProTides) 
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Phenyl and naphthyl L-alanine benzyl ester phosphoramidate derivatives 6.7a-d (fig 

6.5) were synthesised in order to evaluate the antiviral activity of the mono-ProTides of 

GCV and PCV and compare their activity with that of the analogous bis-ProTides 6.1a-

d previously prepared in our lab (fig. 6.2).  
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Figure 6.5. Structure of phenyl and naphthyl L-alanine benzyl ester phosphoramidate derivatives 

6.7a-d 

6.2.1 Synthesis of the 2,2-dimethylglycine benzyl ester derivatives of GCV and 

PCV ProTides 

The synthesis of the phenyl and naphthyl 2,2-dimethylglycine benzyl ester 

phosphoramidate derivatives of GCV and PCV was carried out following the same 

procedure described in chapter 3 for the synthesis of ACV ProTides. The protection of 

the guanine base with N,N-dimethyl formamide dimethyl acetal afforded the N2-

dimethylformamidine (N2-DMF) derivatives 6.8a and 6.8b  (scheme 6.1).6  
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Scheme 6.1 N2-dimethylformamidine derivatives of GCV and PCV 

!

The coupling reaction of compounds 6.8a and 6.8b with an excess of the appropriate 

phosphorochloridate 2.2 in THF was performed in the presence of tBuMgCl and 

afforded the monophosphate derivatives 6.9a-d in 30-56% yield along with the 

bisphosphate derivatives 6.10a-d in 33-40% yield (scheme 6.2).7 All these products 

were obtained as mixtures of diastereomers. 
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Scheme 6.2. Synthesis of the phenyl and naphthyl 2,2-dimethylglycine benzyl ester 

phosphoramidate derivatives 6.9a-d (mono-ProTides) and 6.10a-d (bis-ProTides) 

 

The yields of the coupling reactions reported in scheme 6.2 show that the 

monoProTides 6.9a-d and the bis-ProTides 6.10a-d are obtained in comparable 

amounts. These results are in contrast with the findings previously reported in our group 

showing that under the same conditions the synthesis of the L-alanine benzyl ester 

derivatives of GCV and PCV ProTides afforded only the bis-ProTide derivatives 6.1a-d 

(fig. 6.2).4
  

The N2-DMF group was removed in 2-propanol (iPrOH) under reflux conditions 

obtaining the desired compounds 6.5a-d and 6.6-d in 2.7-6.5% yield (scheme 6.3). 
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Reagents and conditions: (i) iPrOH, reflux, 24-72 h.  

Scheme 6.3. Deprotection of N2-DMF derivatives 6.9a-d and 6.10a-d 

6.2.2 Synthesis of the L-alanine benzyl ester derivatives of GCV and PCV mono-

ProTides 

In this work, different synthetic approaches were evaluated in order to obtain the L-

alanine benzyl ester derivatives of GCV and PCV mono-ProTides (6.7a-d, fig. 6.5).   

As described in the previous paragraph, the use of an excess of aryl amino acid ester 

phosphorochloridate (2-4 eq) and tBuMgCl (2 eq) can be the reason why both hydroxyl 

groups of GCV and PCV can be phosphorylated in the coupling reaction.  

In preliminary studies, the use of a lower amount (1.1 eq) of the freshly prepared phenyl 

and naphthyl L-alanine benzyl ester phosphorochloridates (2.2a and 2.2b) in the 

coupling reaction with the N2-DMF derivatives of GCV (6.8a) and PCV  (6.8b) was 

evaluated. Unfortunately, the reaction did not afford any product indicating that the 

excess of the phosphorochloridate is required to carry out the reaction in these 

conditions. The same reaction was repeated using 2 eq of phosphorochloridate and 

decreasing the amount of tBuMgCl from 2 to 1.1 eq in order to achieve the 

deprotonation of only one of the two hydroxyl groups of GCV and PCV and drive the 
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reaction toward the formation of the mono-ProTide. Also in this case no product was 

obtained.  

Following this unsuccessful result, pyridine was used as solvent to improve the 

solubility of the parent nucleoside. The phosphorylation of the N2-DMF derivatives 6.8a 

and 6.8b was performed in pyridine using 2-4 eq of the appropriate phosphorochloridate 

(2.2a and 2.2b) and in the presence of tBuMgCl (2 eq).  However, this approach was 

not successful. The same reaction was performed using unprotected PCV affording 

compound 6.7a in 5% yield as a mixture of diastereomers (scheme 6.4).  

NH

NN

N

NH2
O

O

OH

P

O

O

HN

O

O

Bn
CH3

PO

O

Cl

HN

NH

NN

N

NH2
HO

O

OH

O

O

Bn
CH3

2.2a 6.7a

i

Reagents and conditions: (i) tBuMgCl, anhydrous Pyr, rt, 12-14 h

PCV

 

Scheme 6.4. Coupling reaction of PCV in pyridine 

!

As alternative approach, the solubility of the parent nucleoside in THF was improved 

using a different protective group. For this purpose, the 2-amino group of PCV was 

protected using N,N-dibenzylformamide dimethylacetal affording compound 6.11 

(scheme 6.5), which showed higher solubility in THF in comparison to compound 6.8a.8  
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PCV

 

Scheme 6.5. Protection of PCV with the N,N-dibenzylformamide group 

!

The coupling reaction of 6.11 with the phosphorochloridate 2.2b (2 eq) was performed 

in THF and in the presence of tBuMgCl (2 eq) affording compound 6.12 in 30% yield 

as a mixture of diastereomers (scheme 6.6). No traces of the bis-ProTide analogue were 

detected. This result indicates that the solubility of the parent nucleoside is a crucial 

factor for the synthesis of the mono-ProTide derivative as the main product of the 

coupling reaction with aryl amino acid ester phosphorochloridates.  
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Scheme 6.6. Coupling reaction of N,N-dibenzyl-formamide-protected PCV with the 

phosphorochloridate 2.2b. 

!

According to the procedure described in the literature, trifluoroacetic acid aqueous 

(50% V/V) was used to remove the N,N-dibenzylformamide group from compound 

6.12.9 However, degradation of the starting material was observed indicating that under 

these conditions this approach is not suitable for the synthesis of ProTides. Milder 

conditions were applied to the elimination of the protective group. The reflux reaction 

in 2-propanol did not afford any product after 72 h.  

In order to improve the solubility in THF and make only one of the two hydroxyl 

groups on the side chain available for phosphorylation, the protection of GCV and PCV 

with the mono-methoxytrityl group (MMT) was evaluated. Following the procedure 

described in the literature, GCV and PCV were dissolved in DMF and reacted with 

mono-methoxytrityl chloride (MMT-Cl) in the presence of TEA and a catalytic amount 

of DMAP (scheme 6.7).10 The reaction yielded two different products for each parent 

compound: the more lipophilic (6.13a and 6.13b) bearing two protecting groups at the 

2-amino position and at one of the two hydroxyl group on the side chain; and the less 

lipophilic (6.14a and 6.14b) bearing the MTT group only at the 2-amino position.  
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Scheme 6.7. Protection of GCV and PCV with MMT-Cl 

The coupling reaction of compound 6.13a and 6.13b with the appropriate 

phosphorochloridate (2.2a and 2.2b) in THF was performed in the presence of tBuMgCl 

and afforded compounds 6.15a and 6.15b as mixtures of diastereomers in 40% and 38% 

yield, respectively (scheme 6.8).  
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Scheme 6.8. Coupling reaction of 6.13a and 6.13b with the phosphorochloridates 2.2a and 2.2b  

!

The removal of the MTT group was performed using para-toluensulfonic acid (TsOH) 

at room temperature and afforded the desired compounds 6.7b and 6.7c in 30% and 

28% yield, respectively (scheme 6.9). 
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Scheme 6.9 Detritylation reaction 

!

Finally, a diastereomeric mixture of the protected mono-ProTide 6.16 was obtained in 

35% yield by coupling reaction in THF of 6.14b with the phosphorochloridate 2.2b in 

the presence of tBuMgCl (scheme 6.10). This result shows that also compound 6.14b is 

suitable for the synthesis of the mono-ProTides confirming the important role of the 

solubility of the parent nucleoside in the coupling reaction. The detritylation of 6.16 

afforded the desired compound 6.7d in 25 % yield (scheme 6.10).  
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Scheme 6.10. Coupling reaction of compound 6.14b with the phosphorochloridate 2.2b and 

detritylation reaction. 

!

The coupling reaction of the phosphorochloridates 2.2a and 2.2b with the MMT-

protected derivatives of GCV and PCV represents the first successful route to the 

synthesis of the mono-ProTides derivatives containing L-alanine benzyl ester as a 

masking group.  

6.2.3 Summary of the GCV and PCV ProTides synthesised. 

Table 6.1 reports a summary of the L-alanine and 2,2-dimethylglycine benzyl ester 

derivatives of GCV and PCV ProTides 6.5a-d, 6.6a-d, and 6.7a-d, including the 

synthetic pathway, the yields of the coupling reaction (Coupl. Yield) and deprotection 

(Depr. Yield), the substitution pattern, and the 31P NMR chemical shift (!) of the final 

compounds in deuterated methanol. 
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Table 6.1. GCV and PCV ProTides synthesised 

 (Ar: aryl moiety; AA: amino acid moiety;)  

Starting 

material 

Coupl. 

Yield 

Depr. 

Yield 

Final 

Cps 
Ar AA 

Mono/Bis 

ProTide 

31P NMR !  

(ppm) 

N2-DMF 

PCV 
30% 5% 6.5a Ph DMG Mono 2.37, 2.35 

N2-DMF 

PCV 
48% 5% 6.5b 1-Naph DMG Mono 2.89, 2.85 

N2-DMF 

GCV 
40% 6.5% 6.5c Ph DMG Mono 2.26, 2.24 

N2-DMF 

GCV 
56% 2.7% 6.5d 1-Naph DMG Mono 2.65, 2.69 

N2-DMF 

PCV 
33% 5% 6.6a Ph DMG Bis 

2.23, 2.18, 

2.17 

N2-DMF 

PCV 
40% 5%` 6.6b 1-Naph DMG Bis 

2.76, 2.70, 

2.64, 2.57 

N2-DMF 

GCV 
38% 4.3% 6.6c Ph DMG Bis 

2.18, 2.16, 

2.11  

N2-DMF 

GCV 
35% 5.3% 6.6d 1-Naph DMG Bis 

2.63, 2.57, 

2.53, 2.52 

PCVb 5% - 6.7a Ph L-Ala Mono 
4.12, 4.05, 

3.61, 3.59  

N2,O-MMT 

PCV 
40% 30% 6.7b 1-Naph L-Ala Mono 

4.46, 4.44, 

4.16, 4.13 

N2,O-MMT 

GCV 
38% 28% 6.7c Ph L-Ala Mono 

3.92, 3.83, 

3.63, 3.61 

N2-MMT 

GCV 
35% 25% 6.7d 1-Naph L-Ala Mono 

4.29, 4.24, 

4.18, 4.09 

 

Not only the protection of GCV and PCV with the monomethoxytrityl group allowed to 

obtain the mono-ProTide derivatives, but it also represented an improvement in terms of 

yield of the deprotection step when compared to N2-DMF group. 

6.3 Diastereospecific synthesis of the mono-phosphoramidate 

derivatives of GCV and PCV  

Ganciclovir and penciclovir are prochiral molecules: the phosphorylation of one of the 

two hydroxyl groups generates a chiral center at the side chain affording the S and R 

enantiomers of GCV and PCV mono-phosphate (fig. 6.6). 
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Figure 6.6. S and R enantiomers of GCV and PCV monophosphate 

!

A Previous study pointed out the important role of stereochemistry in the intracellular 

activation of GCV showing that:  

• HSV-TK phosphorylates GCV affording exclusively the S enantiomer of the 

monophosphate derivative.11 

• The S enantiomers of GCV monophosphate reacts much faster than the R 

enantiomer in the phosphorylation step mediated by GMP kinase.11 

• While the S enantiomer of GCV triphosphate displays potent inhibitory activity 

against HSV-1 DNA polymerase, the R enantiomer is a poor inhibitor of this 

enzyme.11 

Considering these results, a pronucloetide approach that allows to release into the cell 

exclusively the S enatiomer of GCV monphosphate represents an improvement over the 

release of a mixture of the enatiomers.  

The synthetic route that has been described in previous paragraphs for the preparation of 

GCV and PCV ProTides is not stereoselective meaning that inside the cell their 

activation may lead to the release of both the enantiomers of the monophosphate. 

According to the procedure described in the literature for the enantioselective synthesis 

of ganciclovir cyanoethyl phospharamidite derivative, a route aimed to obtain the 

diastereoselective synthesis of GCV and PCV ProTides was developed.12  

Scheme 6.11 describes this route based on the enantioselective acetylation of the N
2-

DMF derivatives of GCV and PCV (6.8a and 6.8b) in the presence of porcine 

pancreatic lipase (PPL). As previously reported in the literature for the acetylation of 

the analogous isobutyryl derivative of GCV, this reaction was expected to afford 

exclusively the S enantiomer of 6.17a and 6.17b.12 Thus, the coupling reaction of 6.17a 

and 6.17b with the phosphorochloridates 2.2a and 2.2b in the presence of tBuMgCl was 
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presumed to give rise to the formation of the diastereomers of 6.18a-d with only the S 

configuration at the chiral carbon of the side chain, which is the desired configuration 

according to the studies reported in the literature about the stereoselective bioactivation 

of GCV.11
 The 31P NMR analysis of the ProTides synthesised through this route is 

expected to give only two peaks corresponding to the two diastereomers obtained (SSpS 

and SRpS) and has been considered as an easy tool to evaluate the diastereselectivity of 

the whole synthetic approach. However, no information can be obtained about the 

configuration of the stereocenters by this analysis.  
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Scheme 6.11. Diastereoselective route of GCV and PCV ProTides with S configuration at the chiral 

carbon of the side chain 

!

Following this route, the N
2-DMF derivative of GCV 6.8b was reacted with vinyl 

acetate in the presence of PPL (scheme 6.12) affording the mono-acetylated derivative 

6.17b as main product (53%) along with a minor amount of the di-acetylated derivative 

6.20 (8%).  
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Scheme 6.12. PPL-mediated acetylation of N2-DMF derivative of GCV 

!

The coupling reaction of compound 6.17b with the freshly prepared 

phosphorochloridate 2.2a was performed in the presence of tBuMgCl and afforded 

compound 6.18c (scheme 6.13). The dimethylformamide group was removed in 2-

propanol (iPrOH) under reflux conditions affording compound 6.19c (scheme 6.13).  
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Scheme 6.13 Coupling reaction of the mono-acetylated derivative of GCV 6.17b with the 

phosphorchloridate 2.2a 

!

As depicted in figure 6.7, the 31P NMR spectrum of compound 6.19c in deuterated 

methanol showed 4 peaks corresponding to the 4 diastereomers with configuration 

SSpS, SRpS, SSpR, and SRpR at the stereocenters, demonstrating that the whole 

synthetic route was not diastereoselective as expected. This result may suggest that the 

PPL-mediated acetylation of compound 6.8b (scheme 6.12) lacked the expected 

enantioselectivity. The formation of the diacetate derivative 6.20, showed in scheme 

6.12, strongly supports this hypothesis.  
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Figure 6.7. 31P NMR spectrum (MeOD, 202 Mhz) and structures of the 4 diastereomers (S-Sp-S, S-

Rp-S, S-Sp-R, and S-Rp-R) of compound 6.19c  

!

Due to this unsuccessful result, an alternative approach was applied to the 

diastereoselective synthesis of PCV ProTides. As previously reported in the literature 

for the enantioselective synthesis of cyclopropavir monophosphate, PCV was protected 

at the 2-amino group of the guanine base with the isobutyryl group (i-Bu) affording 

compound 6.21, which was then converted to compound 6.22 by acetylation with acetic 

anhydride (Ac2O) (scheme 6.14).13 Deacetylation was performed using pig liver esterase 

(PLE) and afforded the mono-acetyl derivative 6.23 in 60% yield (scheme 6.14). As 

described in the literature, this reaction was expected to be enantioselective.13   
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Scheme 6.14 Synthesis of the mono-acetyl derivative of N2-iBU-PCV (6.23)  
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Coupling reaction of compound 6.23 with the phosphorochloridate 2.2a was performed 

in the presence of tBuMgCl and afforded compound 6.24 (scheme 6.15).  
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Scheme 6.15. Coupling reaction of 6.23 with the phosphorochloridate 2.2a 

!

The 31P NMR spectrum of compound 6.24 (fig. 6.8) showed two peaks corresponding to 

two of the four possible diastereomeric configurations. This result suggests that the 

PLE-mediated deacetylation of compound 6.22 was enantioselective (scheme 6.15).  

 
Figure 6.8. 31P NMR spectrum (MeOD, 202 Mhz) of compound 6.24  

!

The removal of the N2
-iBu group was attempted according to the procedure described in 

the literature (scheme 6.16).13 However, degradation of compound 6.24 occurred under 

these conditions and compound 6.25 was not obtained. 
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Scheme 6.16. N2-iBu group deprotection of compound 6.24 

!

In conclusion, the PPL-mediated acetylation of the N2-DMF derivatives of GCV did not 

achieve the expected selectivity (scheme 6.12), while the diastereoselective synthesis of 

PCV ProTide 6.24 was successfully obtained by means of the PLE-mediated 

deacetylation of compound 6.22 (scheme 6.14). However the isobutyryl group proved to 

be unsuitable for the synthesis of ProTides. These results suggest that the route 

involving the PLE-mediated deacetylation must be preferred over that where PPL-

mediated acetylation is used to achieve the diastereoselective synthesis of GCV and 

PCV ProTides.  

6.4 Biological evaluation of GCV and PCV ProTides  

The aryl phosphoramidate derivatives of GCV and PCV synthesised in this work were 

evaluated for their antiviral activity against HSV, VZV, HCMV, and HIV. The 

cytostatic activity on HEL and MT-4 cell cultures was also evaluated, as well as the 

concentration required to cause a microscopically visible alteration of HEL cell 

morphology and the concentration that induces 50% cell death in MT-4 cell cultures. 

6.4.1 Anti-HSV activity 

Table 6.2 reports the antiviral activity of compounds 6.5a-d, 6.6a-d, and 6.7a-d against 

HSV-1, HSV-2, and TK--HSV-1 in HEL cell cultures. The data include ACV and GCV 

as references. Moreover, the anti-HSV activity of the L-alanine benzyl ester derivatives 

of ACV ProTides (3.1a and 3.1b) are reported for comparison.3 
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Table 6.2. anti-HSV activity of GCV and PCV ProTides 6.5a-d, 6.6a-d, and 6.7a-d in HEL cells 

(Nuc: nucleoside; AA: amino acid moiety) 

 Antiviral Activity EC50
 a

 (µM) 

Cps Nuc Aryl AA Mono/Bis HSV-1 HSV-2 TK- HSV-1  

6.5a PCV Ph DMG Mono 29 39 100 

6.5b PCV 1-Naph DMG Mono 75 51.5 100 

6.5c GCV Ph DMG Mono 0.1 0.3 0.1 

6.5d GCV 1-Naph DMG Mono 0.6 0.8 1.4 

6.6a PCV Ph DMG Bis >100 >100 >100 

6.6b PCV 1-Naph DMG Bis >20 >20 >20 

6.6c GCV Ph DMG Bis 1.45 2.5 1.5 

6.6d GCV 1-Naph DMG Bis 0.8 0.9 1.6 

6.7a PCV Ph L-Ala Mono 12 17.3 100 

6.7b PCV 1-Naph L-Ala Mono 72.5 79 100 

6.7c GCV Ph L-Ala Mono 0.55 3 3 

6.7d GCV 1-Naph L-Ala Mono 0.4 0.5 3 

ACV - - - - 0.1 0.2 112 

GCV - - - - 0.1 0.03 100 

3.1a ACV Ph L-Ala Mono 8 ± 5.7 4 15 ± 7.1 

3.1b ACV 1-Naph L-Ala Mono 2 1.4 ± 0.8 10 ± 2.1 

a 50% Effective concentration or compound concentration required to inhibit virus-induced 

cytopathicity by 50% 

 

Similarly to ACV, GCV exhibited activity against HSV-1 and HSV-2 in the 

submicromolar range (EC50= 0.1 and 0.03 µM respectively) and it lost activity against 

TK- strain of HSV-1 (EC50= 100  µM). 

All the novel derivatives of GCV ProTides (6.5c-d, 6.6c-d, and 6.7c-d) showed activity 

against HSV-1 and HSV-2 in the micromolar and sub-micromolar range (EC50= 0.1-3 

µM).  The retention of antiviral activity against TK- HSV-1 indicates the successful 

bypass of the HSV-TK-mediated phosphorylation step. The  

2,2-dimethylglycine benzyl ester derivatives of GCV ProTides 6.5c and 6.5d exhibited 

retention of anti-HSV activity when compared to the L-alanine benzyl ester analogues 

6.7c and 6.7d. The antiviral activity of 6.6c and 6.6d against TK- HSV-1 (EC50= 1.5-1.6 

µM) also suggests that the bis-ProTide derivatives of GCV successfully bypassed the 

first phosphorylation step mediated by the HSV-TK. This result is in contrast to the 
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study of the analogous L-alanine benzyl ester derivatives of GCV bis-ProTides 6.1c and 

6.1d previously reported in our group (fig 6.2).4  

In comparison to the previously reported L-alanine benzyl ester derivatives of ACV 

ProTides (3.1a and 3.1b),3 all the GCV ProTides presented in this work  (6.5c-d, 6.6c-d, 

and 6.7c-d) displayed retention of activity against HSV-1, HSV-2, and a slight 

improvement of potency against TK- HSV-1 (EC50= 0.15-3 µM).  

Surprisingly, the PCV ProTides 6.5a-b, 6.6a-b, and 6.7a-b showed a significant or 

complete loss of the anti-HSV activity in comparison to the analogous GCV derivatives. 

The antiviral activity of these compounds against HSV-1 and HSV-2 indicates that the 

phenyl derivatives 6.5a and 6.7a were more active than the naphthyl derivatives 6.5b 

and 6.7b. However, the significant decrease of potency against TK- HSV-1, which is 

comparable to that exhibited by ACV and GCV, strongly suggests that these derivatives 

of PCV ProTides did not release the phosphate form inside the cell and their anti-HSV 

activity was due to the release of the parent nucleoside instead. 

The concentration required to cause a microscopically visible alteration of cell 

morphology (MCC) was above 100 µM for all the compounds synthesised, indicating 

low cytotoxicity. 

6.4.2 Anti-VZV activity 

Compounds 6.5a-c, 6.6b-d, and 6.7b-d were evaluated for their antiviral activity against 

TK-positive (TK+) and TK-deficient (TK-) strains of VZV in HEL cell cultures (table 

6.3). ACV and the previously reported L-alanine benzyl ester derivatives of ACV 

ProTides 3.1a and 3.1b are reported as reference compounds.14 
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Table 6.3. Anti-VZV activity of GCV and PCV ProTides 6.5a-c, 6.6b-d, and 6.7b-d in HEL cells 

(Nuc: nucleoside; AA: amino acid moiety) 

     Antiviral Activity EC50
a (µM) 

TK+ VZV strains TK- VZV strains 
Cps Nuc Aryl AA Mono/Bis 

YS OKA 07-1 YS/R 

6.5a PCV Ph DMG Mono >50 >50 

6.5b PCV 1-Naph DMG Mono 23.3 >50 

6.5c GCV Ph DMG Mono 6.40 7.3 3.3 2.4 

6.6b PCV 1-Naph DMG Bis >50 >50 >50 >50 

6.6c GCV Ph DMG Bis 8.8 21.7 8.3 12.5 

6.6d GCV 1-Naph DMG Bis 12.1 13.6 7.2 20 

6.7b PCV 1-Naph L-Ala Mono 16.2 9.3 >50 N.D. 

6.7c GCV Ph L-Ala Mono N.D. 2.7 4.8 N.D. 

6.7d GCV 1-Naph L-Ala Mono N.D. 9.5 8.2 N.D. 

ACV - - - - 1 4.2 73.6 94.3 

3.1a ACV Ph L-Ala - 0.7 1.0 1.8 0.59 

3.1b ACV 1-Naph L-Ala - 7.2 3.3 6.9 N.D 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50% 
 

The phosphoramidate derivatives of GCV 6.5c, 6.6c-d, and 6.7c-d exhibited antiviral 

activity against TK+-VZV and TK—-VZV in the micromolar range, retaining the activity 

of the L-alanine benzyl ester derivatives of ACV ProTides 3.1a and 3.1b.14 These 

results show that the application of the ProTide approach to GCV allowed bypass of the 

first phosphorylation step mediated by the virus-encoded thymidine kinase also in the 

case of VZV. Moreover, the effective bioactivation of the bis-ProTide derivatives 6.6c 

and 6.6d, which was already observed in the anti-HSV assay, was confirmed also 

against VZV. 

PCV ProTides 6.5b and 6.7b were moderately active against TK+-VZV (EC50= 9.3-23.3 

µM), while compounds 6.5a and 6.6b were completely inactive (EC50> 50 µM). None 

of the PCV ProTides showed antiviral activity below 50 µM against TK--VZV. 

The concentration required to cause a microscopically visible alteration of cell 

morphology (MCC) were above 100 µM for all the compounds synthesised confirming 

the lack of cytotoxicity, which was already observed in the anti-HSV assays.  
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6.4.3 Anti-HCMV activity 

Table 6.4 reports the antiviral activity of GCV and PCV ProTides 6.5a-d, 6.6a-d, and 

6.7a-d against HCMV in HEL cell cultures. Ganciclovir is included as reference 

compound. 

Table 5.4. Anti-HCMV activity of GCV and PCV ProTides 6.5a-d, 6.6a-d, and 6.7a-d in HEL cells!

(Nuc: nucleoside; AA: amino acid moiety) 

 Antiviral Activity EC50
 a

 (µM) 

Cps Nuc Aryl AA Mono/Bis AD-169 strain Davis strain 

6.5a PCV Ph DMG Mono >50 >50 

6.5b PCV 1-Naph DMG Mono >50 >50 

6.5c GCV Ph DMG Mono 38.5 15.7 

6.5d GCV 1-Naph DMG Mono 6.6 9.8 

6.6a PCV Ph DMG Bis >50 >50 

6.6b PCV 1-Naph DMG Bis >50 >50 

6.6c GCV Ph DMG Bis 50 23.5 

6.6d GCV 1-Naph DMG Bis 45 26 

6.7a PCV Ph L-Ala Mono >50 >50 

6.7b PCV 1-Naph L-Ala Mono >50 >50 

6.7c GCV Ph L-Ala Mono 6.84 4.0 

6.7d GCV 1-Naph L-Ala Mono 11.7 8.9 

GCV - - - - 9.2 9.4 

a 50% Effective concentratio n, or compound concentration required to inhibit virus-

induced cytopathicity by 50% 

 

GCV ProTides 6.5c-d, 6.6c-d, and 6.7c-d showed good to moderate activity against 

HCMV (EC50: 4-45 µM) in comparison to the parent nucleoside.  

The 2,2-dimethylgycine benzyl ester derivative 6.5d showed retention of activity in 

comparison to the analogous L-alanine benzyl ester derivative 6.7d, while compound 

6.5c exhibited a significant decrease of potency (EC50: 38.5-15.7 µM). Also the bis-

ProTide derivatives of GCV 6.6c and 6.6d exhibited a decrease in potency (EC50: 26-50 

µM) in comparison to the mono-ProTide analogues 6.5c and 6.5d. PCV ProTides 6.5a-

b, 6.6a-b, and 6.7a-b resulted completely inactive against HCMV. Also in this case 

none of the compounds evaluated resulted cytotoxic (MCC > 100 µM).    
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6.4.4 Cytostatic activity of GCV and PCV ProTides on HEL cell cultures 

All the phosphoramidate derivatives of GCV and PCV synthesised in this work were 

evaluated for their antiproliferative activity on HEL cell cultures. The concentration 

required to reduce cell growth by 50% was above 100 µM for all the compounds 

evaluated confirming the lack of cytotoxicity, as already indicated by the microscopy 

analysis of cell morphology performed during the antiviral assays previously described.  

6.4.5 Anti-HIV activity 

Table 6.5 reports the antiviral and cytostatic activity of the GCV and PCV ProTides 

6.5b-d, 6.6c-d, and 6.7a-d against HIV-1 in MT-4 cell cultures. ACV and the L-alanine 

derivatives of ACV ProTides 3.1a and 3.1d are included as reference compounds.3  

Table 6.5. Anti-HIV and cytostatic activity in MT-4 cell cultures of GCV and PCV ProTides!

(Nuc: nucleoside; AA: amino acid moiety) 

 
Antiviral Activity 

EC50
a (µM) 

Cytostatic Activity 

IC50
b
 (µM) 

Cps Nuc Aryl AA Mono/Bis HIV-1 MT-4 Cells 

6.5b PCV 1-Naph DMG Mono 95 100 

6.5c GCV Ph DMG Mono > 150 > 150 

6.5d GCV 1-Naph DMG Mono 10 26 

6.6c GCV Ph DMG Bis 10 13 

6.6d GCV 1-Naph DMG Bis > 150 > 150 

6.7a PCV Ph L-Ala Mono 10 > 150 

6.7b PCV 1-Naph L-Ala Mono 21 100 

6.7c GCV Ph L-Ala Mono 17 20 

6.7d GCV 1-Naph L-Ala Mono 8 100 

ACV - - - - >250 >250 

3.1a ACV Ph L-Ala - 5.7 ± 1.6 33.8 ± 10.6 

3.1b ACV 1-Naph L-Ala - 0.8 >150 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50%; b 50% Inhibitory concentration, or compound concentration  required to 

inhibit cell proliferation by 50%. 

 

The results of the anti-HIV assay performed in MT-4 cell cultures show that the L-

alanine benzyl ester derivatives of GCV ProTides 6.7c and 6.7d were active against 

HIV-1 in the micromolar range (EC50= 8-17 µM). Compound 6.7c exhibited 
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antiproliferative activity on the MT-4 cells (IC50= 20 µM). However, similar cytostatic 

activity was observed also in the case of the ACV ProTide 3.1a (IC50= 33.8 ± 10.6 

µM).3 Surprisingly, the 2,2-dimethylglycine benzyl ester derivative of GCV ProTides 

6.5c resulted inactive, while the analogous derivative bearing the naphthyl group as aryl 

moiety (6.5d) exerted moderate antiviral activity against HIV-1 (EC50= 10 µM), but also 

cytostatic activity (IC50= 26 µM). Similarly, the bis-ProTide derivative 6.6d was 

inactive, while compound 6.6c exhibited antiviral and cytostatic activity.  

PCV ProTides 6.7a and 6.7b showed antiviral activity against HIV-1 in MT-4 cell 

cultures comparable to that of the analogous derivatives of GCV ProTides 6.7c and 6.7d 

and weak or no inhibition of cell proliferation. These results suggests that compounds 

6.7a and 6.7b successfully released PCV monophosphate inside MT-4 cells. The lack of 

bioactivation of the dimethylglycine benzyl ester derivative of PCV ProTides 6.5b is 

indicated by the significant loss of anti-HIV-1 activity (EC50= 95 µM) in comparison to 

the analogous L-alanine benzyl ester derivative 6.7b (EC50= 21 µM). 

The concentration that induces 50% cell death in the MT-4 cell cultures was above 150 

µM for all the compounds synthesised.  

The anti-HIV activity in CEM cell cultures of GCV and PCV ProTides is currently 

under evaluation. 

6.4.6 Summary of the biological activity of the novel aryl phosphoramidate 

derivatives of GCV and PCV 

The results of the anti-HIV activity of the newly synthesised GCV and PCV ProTides 

6.5a-d, 6.6a-d, and 6.7a-d afford structure activity relationships significantly different 

from that implied by their antiviral activity against HSV, VZV, and HCMV. As claimed 

in the case of ACV ProTides, the differences in cell-type and cell cycle between the 

antiviral assays may affect the bioactivation pathway of ProTides. 

The data on anti-herpes virus activity, in particular against TK- strains of HSV and 

VZV, show that the application of the ProTide approach to GCV successfully achieved 

the bypass of the phosphorylation step mediated by the virus-encoded kinase. This 

result strongly suggests that the mono-ProTides 6.5c-d, 6.7c-d, and surprisingly also the 

bis-ProTides 6.6c-d may be converted inside the cell according to the putative 

mechanism of bioactivation of ProTides.15  
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In comparison to the GCV ProTides presented in this work, the loss of antiviral activity 

of the analogous derivatives of PCV 6.5a-b, 6.6a-b, and 6.7a-b against the herpes 

viruses suggests that the replacement of the ether group at the side chain of the 

nucleoside moiety with a methylene group may lead to the lack of bioactivation of these 

phosphoramidate derivatives.  

Also the 6-alkoxy derivatives of PCV ProTides 6.3a and 6.3b, which have been 

previously reported by our group (fig. 6.3),4 exhibited poor activity against HSV-1 

(EC50= 38-58 µM) and HSV-2 (EC50= 20-45 µM). However, they showed retention of 

activity against TK-deficient strains of HSV-1 (EC50= 20-58 µM), while the analogous 

PCV ProTides 6.7a and 6.7b presented in this work were completely inactive (EC50= 

100 µM). Assuming that the 6-alkoxy derivatives of PCV Protides are prodrugs of PCV 

triphosphate and are deaminated after the release of the monophosphate form, as 

reported for the 6-methoxy derivative of the 2’-C-methyl-guanosine ProTide,16 this 

result suggests that 6.3a and 6.3b may be bioactivated more efficiently than 6.7a and 

6.7b. 

The data of the anti-HIV-1 assay performed in MT-4 cell cultures suggest that the L-

alanine benzyl ester derivatives of both GCV and PCV ProTides 6.7a-d successfully 

bypass the first phosphorylation step by releasing their monophasphate form. This result 

confirms the findings of the in silico study previously performed in our group, which 

indicated PCV and GCV triphosphate as potential anti-HIV agents.2 However, in the 

case of the PCV ProTide 6.7a and 6.7b these results are in contrast to the data on the 

antiviral activity against HSV, VZV, and HCMV.  

The results of the anti-HIV activity of the 2,2-dimethylglycine benzyl ester derivatives 

of GCV ProTides 6.5c-d and 6.6c-d are in contrast with those obtained against the 

herpes viruses. Indeed, 6.5c, and 6.6d were inactive, while 6.5d and 6.6c exerted 

antiproliferative activity on MT-4 cells (IC50= 13-26 µM) comparable to their  

anti-HIV-1 activity (EC50= 10 µM). Thus, the correlation of the anti-HIV activity with 

the replacement of L-alanine with 2,2-dimethylglycine at the amino acid moiety is not 

clear. The poor antiviral activity of the 2,2-dimethylglycine benzyl ester derivative of 

PCV Protide 6.5b observed in the anti-herpes virus assays was confirmed also against 

HIV-1 in MT-4 cells (EC50= 95 µM). This result suggests that in MT-4 cell cultures the 

replacement of the L-alanine with 2,2-dimethylglycine at the amino acid moiety may 
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lead to a significant decrease of anti-HIV activity. These results further support the 

notion that the ProTide motif need to be tuned on a case-by-case basis.  

6.5 Enzymatic and modeling studies 

Enzymatic and molecular modelling studies were performed in order to investigate the 

difference of antiviral activity among the GCV and PCV ProTides presented in this 

work. 

6.5.1 Study of the carboxyesterase activity  

The enzymatic study of selected derivatives of GCV and PCV ProTides was performed 

using carboxypeoptidase Y (CPY) with the aim to evaluate whether the difference of 

their antiviral activity can be correlated to the activity of this enzyme. The enzymatic 

assay was carried out following the procedure described for the ACV ProTides (chapter 

3). The L-alanine benzyl ester phosphoramidate derivatives of PCV 6.7b and GCV 6.7c 

were chosen in order to study the effect of the nucleoside on the activity of CPY. The 

same assay was performed on the 2,2-dimethylglycine benzyl ester phosphoramidate of 

GCV 6.5c in order to evaluate the effect of the amino acid moiety replacement on the 

activity of CPY by comparison with the enzymatic study performed on compound 6.7c.    

The 31P NMR spectra of the enzymatic reaction performed on compound 6.7b over the 

14 h period of incubation is depicted in figure 6.9.  

According to the putative mechanism of ProTides activation, the hydrolysis of the 

benzyl ester of 6.7b (!P= 3.95, 4.00, and 4.16 ppm) afforded the intermediate 6.26 (!P= 

5.59 and 5.67 ppm), which was converted to the corresponding phosphoramidate 

monoester 6.27 (!P= 7.49 ppm). Compound 6.7b was hydrolyzed by 50% after a 40 min 

incubation period. The conversion of 6.7b to 6.27 was not complete after 14 h from 

exposure to the enzyme and 30% of the starting material was still unreacted after this 

period, indicating that compound 6.7b is slowly converted by CPY.  
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Figure 6.9. 31P NMR spectra (acetone-D6, 202 MHz) at different time of the enzymatic study 

performed on compound 6.7b 

!

The 31P NMR spectra of the enzymatic reaction performed on compound 6.7c over the 

18 h period of incubation is depicted in figure 6.10. 

!

Figure 6.10. 31P NMR spectra (acetone-D6, 202 MHz) at different time of the enzymatic study 

performed on compound 6.7c 

Due to the background noise the 31P NMR spectra showed in figure 6.10 are not very 

clear. For this reason the spectra have been deconvoluted (Lorentz-Gauss 

deconvolution, Bruker TOPSPIN 2.1). Deconvolution is a mathematical processing of 

the spectrum. It allows to show only the peaks that stands out significantly from the 

noise. The advantage of this procedure is that much cleaner spectra are obtained. 

However, some peaks may be mistaken for noise and not considered in the 
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deconvoluted spectrum. Figure 6.11 shows the deconvoluted 31P NMR spectra of the 

enzymatic reaction performed on compound 6.7c. In comparison to the original spectra 

(fig. 6.10) the appearance of the signal around 4.5 ppm after 15 min from the exposure 

to CPY is clearer  

 

Figure 6.11. Deconvoluted 31P NMR spectra (acetone-D6, 202 MHz) at different time of the 

enzymatic study performed on compound 6.7c 

!

According to the putative mechanism of ProTides activation, the benzyl ester cleavage 

of compound 6.7c (!P= 3.48-3.57 ppm,) afforded the intermediate 6.28 (!P= 4.61 ppm), 

which was converted to the corresponding phosphoramidate monoester 6.29  (!P= 7.28 

ppm) (fig 6.11). Also in this case the catalytic activity of CPY was slow, as 

demonstrated by the fact that the conversion of compound 6.7c to compound 6.29 was 

not complete after the 14 h incubation period resulting in 40% of 6.7c unreacted. This 

result is surprising considering that ACV ProTides with comparable antiviral activity 

were converted very quickly by CPY, as described in chapter 3. 

 

The 31P NMR spectra of the enzymatic reaction performed on compound 6.5c over a 14 

h period of incubation is showed in figure 6.12. 
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Figure 6.12. 31P NMR spectra (acetone-D6, 202 MHz) at different time of the enzymatic study 

performed on compound 6.5c 

!

The hydrolysis of compound 6.5c (!P= 2.19-2.29 ppm, broad signal) occurred in less 

then 15 minutes from the exposure to CPY (fig. 6.12). According to the putative 

mechanism of activation of ProTides, the formation of the intermediate 6.30 resulting 

from the cleavage of the benzyl group of 6.5c!was not observed before the formation of 

the final product 6.31 (!P= 5.61 ppm, broad signal). The fast conversion of compound 

6.5c is in agreement with the results of the enzymatic studies performed on the 

analogous ACV Protide 3.2b, which was hydrolysed by CPY in less than 6 minutes and 

exhibited similar antiviral activity against HSV, VZV, and HCMV, as described in 

chapter 3. The lack of antiviral activity of compound 6.5c against HIV-1 in MT-4 cell 

cultures suggest that a different substrate affinity could occur either at the level of the 

enzyme responsible for the ester cleavage or at the level of the phosphoramidase 

enzyme responsible for the P-N bond cleavage.  

6.5.2 Docking study of L-alanine derivatives of GCV and PCV ProTides  

The modeling study of the phosphoramidate monoesters 6.27 and 6.29 (fig. 6.13) into 

the active site of the human Hint-1 enzyme co-crystallised with adenosine 

monophosphate (AMP) was performed with the aim to further investigate the 

bioactivation of the L-alanine benzyl ester phosphoramidates of GCV and PCV 

according to the putative mechanism of activation of ProTides.15, 17 Both the 

diastereomers of 6.27 and 6.29 were evaluated for their ability to fit into the active site 

of the human Hint-1 enzyme. 
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Figure 6.13 Structure of the diastereomers of compound 6.27 and 6.29 

The docking study of compound 6.29 is shown in figure 6.14.  

 
Figure 6.14. Superimposition of the diastereomers (R and S) of compound 6.29 with AMP (yellow) 

within the active site of human Hint-1 enzyme. The red arrows indicate the position of the 

phosphate group of AMP. The phosphate group of 6.29 is shown in purple. The position in the 

catalytic pocket of histidine and serine residues (His_112, His_114, and Ser_107) responsible for the 

cleavage of the P-N bond is also shown 
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!

Both the diastereomers (R-6.29 and S-6.29) bind quite well in the active site of the 

human Hint-1 enzyme. The guanine base and the side chain are well positioned in the 

enzymatic pocket. However, the phosphate moiety (purple) is moved from the position 

adopted by the phosphate group of AMP (yellow), as shown by the red arrow in figure 

6.14. Nevertheless, the P-N bond is in a suitable position to be cleaved by interaction 

with the histidine and serine residues of the active site according to the proposed 

mechanism of action of the human Hint-1 described in chapter 3.17, 18 

This result is in agreement with the antiviral activity found for compounds 6.7c and 

6.7d suggesting that the L-alanine derivatives of GCV Protides are able to bypass the 

first phosphorylation step by releasing the monophosphate form of the parent 

nucleoside. 

 

Figure 6.15 shows the docking study of both the diastereomers of compound 6.27 (R-

6.27 and S-6.27). The guanine base and the side chain are well positioned in the 

enzymatic pocket, as shown by the superimposition with AMP (yellow). Similarly to 

compound 6.27, the phosphate moiety (purple) is moved from the position adopted by 

the phosphate group of AMP. However, in this case the amino acid moiety has an 

orientation that appears to favour the interaction of the serine residue 107 (red circle) 

with the phosphate group (purple) rather than the amino group (blue) of compound 

6.27. Considering that the serine residue 107 is supposed to protonate the amino group 

in order to favour the elimination of the amino acid moiety,17 this study suggests that 

6.27 does not interact properly with active site of the human Hint-1 enzyme resulting in 

the missed release of the monophosphate form. This result is strongly supported by the 

inactivity of compounds 6.7a and 6.7b against HSV, VZV, and HCMV. However, the 

anti-HIV activity exhibited by these compound in MT-4 cell cultures is in contrast to 

this hypothesis. This may suggest that in MT-4 cells a different substrate affinity of the 

phosphoramidase enzyme responsible for the cleavage of the P-N bond could be 

accountable for the anti-HIV activity exerted by the L-alanine benzyl ester derivatives 

of PCV ProTides 6.7a and 6.7b. 
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Figure 6.15. Superimposition of the diastereomers (R and S) of compound 6.27 with AMP (yellow) 

within the active site of human Hint-1 enzyme. The red circles indicate the serine residue 107. The 

phosphate group of 6.27 is shown in purple. 

6.6 Conclusions 

Novel L-alanine and 2,2-dimethylglycine benzyl ester derivatives of GCV and PCV 

Protides were synthesised in this work. In particular, a synthetic route was developed in 

order to achieve the phosphorylation of only one of the two primary hydroxyl groups of 

PCV and GCV side chain. The application of this route resulted in the synthesis of the 

L-alanine benzyl ester derivatives 6.7a-d. Moreover the use of the monomethoxytrityl 
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group for the protection of GCV and PCV improved the yield at the deprotection step 

(25-30%) in comparison to that usually achieved with the N2-DMF group (4-6%). 

According to the results of the antiviral assays performed against the herpes viruses, the 

aryl phosphoramidate derivatives of GCV 6.5c-d, 6.6c-d, and 6.7c-d were successfully 

bioactivated in the cell exerting antiviral activity against HSV, VZV, and HCMV. By 

contrast, the application of the ProTide approach to PCV did not succeed in bypassing 

the first phosphorylation step. This result is confirmed by the modelling study of the L-

alanine phosphoramidate monoester derivatives of PCV and GCV 6.27 and 6.29 within 

the active site of the human Hint-1 enzyme, showing that in the case of the PCV 

derivative 6.27 the P-N bond is not in a suitable position for the cleavage.  

The anti-HIV-1 assay performed in MT-4 cell cultures afforded contrasting results. The 

L-alanine benyl ester derivatives of GCV and PCV ProTides 6.7a-d showed activity 

against HIV-1 (EC50: 8-17 µM). This result confirms the findings of the virtual 

screening previously performed in our group on the derivatives of ACV showing that 

GCV and PCV triphosphate are good candidates as inhibitors of the HIV-1 RT. This 

result also suggests that a different substrate affinity of the enzymes involved in the 

bioactivation of ProTides may occur in the MT-4 cells.    
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Chapter 7. Phosphonoamidate prodrugs of cidofovir 

7.1 Introduction 

Cidofovir (S-HPMPC), tenofovir (R-PMPA), and adefovir (PMEA) are acyclic 

nucleoside phosphonates (ANPs) that exert broad antiviral activity (fig. 7.1).1-3  
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Figure 7.1. Structures of the ANPs cidofovir, tenofovir, and adefovir 

 

In particular, cidofovir is active against a wide variety of DNA viruses including all the 

herpes viruses, poxviruses, polyomavirus, papillomavirus, and adenovirus.2 Adefovir is 

active against herpes viruses, retroviruses, and hepadnaviruses displaying the broadest 

antiviral spectrum among the series of ANPs.2 The antiviral spectrum of tenofovir is 

limited to retroviruses and hepadnaviruses.2  

This class of nucleotide analogues are characterised by the replacement of the sugar 

moiety with an acyclic chain and by the presence of a phosphonate group that mimics 

the 5’-phosphate of natural nucleotides and confers resistance against extracellular 

phosphatases.3 Inside the cell the ANPs are phosphorylated by cellular kinases to the 

diphosphate form, which in similarity to the triphosphate form of the antiviral 

nucleoside analogues inhibits the replication of the viral genome.3  

As mentioned in chapter 1, in order to overcome the poor membrane permeability of the 

ANPs, due to the negative charge of the phosphonate group, several oral prodrugs of 

this class of compounds were synthesised.4-7  

In particular, the ProTide approach was applied to tenofovir and adefovir in a previous 

study carried out in our group by Ballatore resulting in the formation of the phenyl L-

alanine methyl ester phosphonoamidate derivatives 7.1 and 7.2 (fig. 7.2) that exhibited 

improved anti-HIV activity in vitro in comparison to the parent ANPs.8  
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Figure 7.2. Structure of the phenyl L-alanine methyl ester phosphonamidate derivatives 7.1 and 7.2 

 

Also Gilead-Science investigated the aryl phosphonoamidate derivatives of ANPs 

extensively resulting in the synthesis of the prodrug of tenofovir GS-7340 (fig 7.3), 

which proved to be 500 to 1000-fold more potent than tenofovir against HIV in vitro. 

GS-7340 completed phase 1 clinical trials for the treatment of HIV infections.9  
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Figure 7.3. Structure of the phosphonoamidate prodrug GS-7340 

 

Moreover, Gilead-Science has also applied similar approach to the synthesis of 

phosphonoamidate derivatives of cyclic cidofovir (S-cHPMPC) obtaining the 

L-alanine ethyl (GS-7357 diastereomer I, GS7358 diastereomer II), phenylethyl (GS-

7356), and butyl (GS-8262) ester derivatives  (fig 7.4), which were evaluated for their 

activity against vaccinia virus (VV) and cowpox virus (CPXV).10 The two diastereomers 

of the L-alanine ethyl ester derivative (GS-7357 and GS7358) showed retention of the 

anti-poxvirus activity when compared to S-HPMPC, meanwhile compounds GS-7356 

and GS-8262 were found to be 5- to 7-fold more potent than S-HPMPC.  
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Figure 7.4. Structures of cyclic cidofovir and the L-alanine phosphonoamidate derivatives 
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As already mentioned in chapter 1, S-cHPMPC was proved to exert antiviral activity as 

prodrug of S-HPMPC.11, 12 A study reported in the literature indicated that the cellular 

cyclic cytidine monophosphate (cCMP) phosphodiesterase is the intracellular enzyme 

responsible for the release of S-HPMPC by cleavage of the phosphodiester bond of  

S-cHPMPC.13 However, no studies regarding the metabolism of the phosphonoamidate 

derivatives of S-cHPMPC were reported. 

More recently, the phosphonodiamidate pronucleotide approach, which shares a similar 

mechanism of activation with ProTides,14 have been applied to the antiproliferative 

agent 9-(2-phosphonomethoxyethyl)-N6-cyclopropyl-2,6,diaminopurine (cPrPMEDAP) 

by Gilead-Science, resulting in the synthesis of the phosphonodiamidate derivative GS-

9191 (fig 7.5), now in phase 1 clinical trials for the topical treatment of human 

papillomavirus-induced lesions.15  
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Figure 7.5. Structure of the phosphonodiamidate derivative GS-9191 

 

These studies show that the amidate derivatives of ANPs succesfully overcome the poor 

membrane permeability of the parent drugs. For this reason, the purpose of this study is 

the synthesis of the amidate derivatives of S-HPMPC and  

S-cHPMPC and the evaluation of their biological activity. 

7.2 Design of amidate derivatives cidofovir and cyclic cidofovir  

As a first example of the synthesis of diamidate prodrugs of S-HPMPC the L-alanine 

benzyl ester phosphonodiamidate 7.3 was planned (fig 7.6). L-alanine was chosen as 

masking group on the basis of the results obtained in our lab on the anti-HIV activity of 

adefovir and tenofovir ProTides.8 The benzyl ester was selected on the basis of studies 

reported in chapter 3 on acyclovir ProTides.   
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Figure 7.6. Structure of the phosphonodiamidate 7.3 

 

The phosphonoamidates GS-7356 and GS-8262 (fig. 7.4) were proved to be more 

effective against VV and CPXV than S-HPMPC also suggesting that the amidate 

derivatives of S-cHPMPC successfully improve the cellular uptake of cidofovir.10 The 

synthesis of the phosphonoamidate derivative of S-cHPMPC 7.4 was thus also 

considered (fig. 7.7). 
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Figure 7.7. Structure of the phosphonoamidate 7.4. 

7.2.1 Synthesis of the diamidate derivatives of cidofovir  

The synthesis of adefovir and tenofovir ProTides was previously developed in our lab.8 

It is based on the replacement of the hydroxyl groups at the phosphonate moiety with 

chlorine atoms, which then act as leaving groups in the nucleophilic substitutions of the 

phosphorochloridate intermediates 7.5-7.8 with the aryloxy and the amino acid ester, 

affording the aryl phosphonamidate derivatives 7.1 and 7.2 (scheme 7.1). However, this 

methodology afforded the ProTides in extremely low yield (5%). 
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Scheme 7.1. Synthetic route of amidate derivatives of tenofovir and adefovir described by Ballatore 

et al. (from ref. 8) 

 

An alternative synthetic route has been reported for the synthesis of the aryl 

phosphonoamidate and phosphonodiamidate derivatives of the cyclic nucleoside 

phosphonate GS-9148 and the antiproliferative agent cPrPMEDAP by Gilead-

Science.16, 17 The synthesis of a generic diamidate derivative of cPrPMEDAP, performed 

according to this strategy, is depicted in scheme 7.2. The free phosphonic acid is 

activated toward the nucleophilic attack of the amino derivative (NH2R) by oxidation-

reduction condensation with 2,2’-dithiophyridine ((PyS)2) and triphenylphosphine 

(PPh3) affording the S,S-di-2-pyridyl-dithiophosphonate intermediate 7.9,  where the 

pyridylthio group is replaced by the nucleophilic species leading to the product 7.10.18  
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Scheme 7.2. Synthetic route of the diamidate derivatives of cPrPMEDAP (7.10) 

 

The yields of the reaction are variable (11-74%) and may depend on the nature of the 

amino acid,19 but in general they were higher than the yields achieved through the 

Ballatore procedure. For this reason, we decide to apply this methodology also to the 

synthesis of 7.3. However, using S-HPMPC as starting material the desired product was 

not obtained under these conditions. 

In a study previously reported, the synthesis of the morpholide derivative of  

S-HPMPC (7.11) was investigated as intermediate for the preparation of the 

diphosphoryl derivative (7.12).20 Indeed, the standard procedure for the synthesis of 

triphosphate nucleoside analogues consists in conversion of the monophosphate 

derivative into its activate intermediate morpholide or imidazolide in the presence of 

1,3-dicyclohexylcarbodiimide (DCC) as coupling regent followed by the reaction of the 

residue with inorganic diphosphate.21,22 However, the synthesis of the morpholide 

derivative of S-HPMPC (7.12) was not succesful under these conditions and the internal 

cyclisation of the hydroxymethylene group with the phosphorus occurred affording 

instead the cyclic derivative of S-HPMPC (scheme 7.3).20  
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Scheme 7.3. Attempted synthesis of the diphosphoryl derivative of cidofovir (7.12) through the 

morpholide intermediate 7.11 resulting in the formation of cyclic cidofovir (from ref. 20) 

 

The synthesis of the morpholide intermediate (7.14) and thus the diphosphate derivative 

7.12 was accomplished by protecting the primary hydroxyl group of  

S-HPMPC with the dimethoxytrityl group (DMTr) (7.13) (scheme 7.4).20 
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Scheme 7.4. Synthesis of the diphosphoryl derivative of cidofovir by means of hydroxymethylene 

tritylation (from ref. 20) 

 

Moreover, during the synthesis of the phenyl ester derivative of S-cHPMPC (7.16) the 

phosphorochloridate 7.15 was obtained starting from cidofovir under the conditions of 

the Vilsmeier reaction (scheme 7.5).23 This result confirms that the activation of the 
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phosphonic acid, by introduction of a good leaving group, induces intramolecular 

cyclisation with the hydroxymethylene group.  
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7.5. Synthesis of salicylate and aryl ester derivatives 198a-l (from ref. 23)  

 

Considering these studies, it appeared necessary first to protect the hydroxymethylene 

group of the side chain of S-HPMPC in order to prepare the diamidate derivative 7.3.  

Following a literature procedure,20  the tritylation of the tributylammonium salt of S-

HPMPC (7.17) afforded compound 7.18 in 32% yield as a free acid (scheme 7.6).  
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Scheme 7.6. Tritylation of the primary hydroxyl group of S-HPMPC 

 

The phosphonate 7.18 was treated with an excess of L-alanine benzyl ester (6 eq) in the 

presence of triethylamine (12 eq) in anhydrous pyridine at 60 °C under argon 

atmosphere. Addition of a solution of 2,2’-dithiopyridine (7 eq) and triphenylphosphine 

(7 eq) in pyridine at 60 °C afforded compound 7.19 in 20% yield (scheme 7.7). 
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Scheme 7.7 Synthesis of the diamidate derivative of S-HPMPC (7.19) 

 

The detritylation of compound 7.19 was attempted using 5 equivalents of p-

toluensulfonic acid (TsOH) in a mixture of dichloromethane and methanol at room 

temperature, as previously described for GCV and PCV (scheme 7.8). Unfortunately, 

the desired product 7.4 was not obtained. After 1 h the starting material had not reacted. 

An additional 2.5 equivalents of TsOH led to the degradation of 7.19.  
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Scheme 7.8. Detritylation of compound 7.19 

 

More recently, the improvement in the synthesis of diamidate prodrugs of ANPs was 

reported in the literature.19 According to this strategy, the dialkyl phosphonate ester 

derivative of ANPs (7.20) was silylated with trimethylsilyl bromide (TMS-Br) affording 

the intermediate 7.21 (scheme 7.9), which was used in the next step without any 

purification. The reaction of the bis(trimethylsilyl) ester derivative 7.21 with 2,2'-

dithiopyridine and triphenylphosphine in the presence of an excess of the amino acid 

ester (NH2R) yielded the diamidate derivative of ANPs 7.22 (scheme 7.9) with 

improved yield (83-98%) when compared with those obtained with the same procedure 

starting from the free phosphonic acid (50-70%).  
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Scheme 7.9. General synthetic route of diamidate prodrugs of ANPs starting from the dialkyl ester 

derivative 

 

The application of this approach to the synthesis of the diamidate derivative of 

S-HPMPC 7.24 required (S)-N
1
-[(3-triphenylmethoxy-2-diethylphosphonylmethoxy)-

propyl)]cytosine (7.23) as starting material (scheme 7.10).  
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Scheme 7.10. General synthetic route of the diamidate derivative of S-HPMPC (7.24) starting from 

(S)-N1-[(3-triphenylmethoxy-2-diethylphosphonylmethoxy)-propyl)]-cytosine (7.23) 

 

For this purpose, the synthesis of compound 7.23 was performed. Following the 

procedure described in the literature,24, 25 (R)-glycidol (7.25) was protected using trityl 

chloride (TrCl) in the presence of TEA under argon atmosphere (i, scheme 7.11). The 

epoxy ring of the trityl derivative 7.26 was opened by reaction with cytosine (Cyt) and 

K2CO3 in DMF at 105 °C affording compound 7.27 in 71% yield (ii, scheme 7.11). The 

N
4-benzoyl derivative 7.28 was obtained in 83% yield protecting 7.27 with benzoic 

anhydride at 100 °C (iii, scheme 7.11).  
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anhydrous DMF, 105 °C, 5 h; (iii) Bz2O, anhydrous Pyr/DMF, 100 °C, 3 h  

Scheme 7.11. Synthesis of the intermediate 7.28 

 

The tosylation of the diethyl(hydroxymethyl)phosphonate 7.29 was performed using p-

toluensulfonyl chloride (TosCl) in the presence of DMAP and TEA and affording 

compound 7.30 in 61% yield (scheme 7.12). 
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Scheme 7.12. Tosylation of diethyl-(hydroxymethyl)-phosphonate (7.29) 

 

The coupling reaction of the tosyl derivative 7.30 with compound 7.28 in the presence 

of NaH at 5° C under argon atmosphere yielded the fully protected derivative of 

cidofovir 7.31 (i, scheme 7.13). Debenzoylation of 7.31 was performed using 

methanolic ammonia and afforded compound 7.23 in 95% yield (ii, scheme 7.13).  
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Scheme 7.13 Synthesis of N1-[(3-triphenylmethoxy-2-diethylphosphonylmethoxy)-propyl)]-cytosine 

(7.23) 
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According to the strategy previously described,19, 26 the diethyl ester derivative 7.23 was 

silylated using trimethylsilyl bromide (TMSBr) in the presence of 2,6-lutidine under 

argon atmosphere (i, scheme 6.14). The crude of the reaction, without further 

purification, was treated with an excess of L-alanine benzyl ester (L-Ala-O-Bn) in 

anhydrous pyridine at 60 °C (ii, scheme 7.14), then a solution of 2,2'-dithiopyridine and 

triphenylphosphine in anhydrous pyridine was added (iii, scheme 7.14). Unfortunately 

the desired product (7.24) was not detected by mass spectrometry analysis of the crude 

of reaction.  
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TEA, anhydrous Pyr, 60 °C, 20 min; (iii) (PyS)2, PPh3, anhydrous Pyr, 60 °C, 16 h

i, ii, iii

7.23 7.24

 

Scheme 7.14. Synthesis of the diamidate derivative of S-HPMPC through silylation of the diethyl 

ester derivative 7.23 

 

In conclusion, the synthesis of the phosphonodiamidate 7.3 was not achieved perhaps 

due to the interference of the hydroxymethylene group of S-HPMPC and the 

unsuitability of its protection with the trityl group.  

7.2.2 Synthesis of the amidate derivatives of cyclic cidofovir  

Finally, the synthesis of the amidate derivative of S-cHPMPC (7.4) was performed. 

Following the procedure described in the literature,27 the treatment of S-HPMPC with 

N,N-dicyclohexyl-4-morpholinecarboxamidine (DCMC) and 1,3-

dicyclohexylcarbodiimide (DCC) afforded S-cHPMPC as dicyclohexyl-

morpholinocarboxamidine salt in 50% yield (scheme 7.15). The reaction of  

S-cHPMPC with an excess of L-alanine benzyl ester in presence of 2,2'-dithiopyridine 

and triphenylphosphine in anhydrous pyridine at 60 °C afforded compound 7.4 in 30% 

yield as a mixture of two diastereomers (scheme 7.15). 
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Scheme 7.15 Synthesis of the phosphonoamidate derivative 7.4 

7.3 Biological evaluation of the amidate derivative of cyclic cidofovir 

The amidate derivative of cyclic cidofovir 7.4 was evaluated for its activity against 

HSV, VZV, HCMV, and poxviruses such as vaccinia virus (VV), cowpox virus 

(CPXV), and camelpox virus (CMLV). The antirpoliferative activity of this compound 

on HEL cell cultures was also evaluated.  

7.3.1 Anti-HSV activity  

Table 7.1 reports the antiviral activity of 7.4 against HSV-1, HSV-2, and thymidine 

kinase-deficient (TK-) HSV-1 in HEL cells. The anti-HSV activity of the parent 

compound, cyclic cidofovir (S-cHPMPC), was also evaluated. Cidofovir (S-HPMPC) 

and acyclovir (ACV) are included as reference compounds. 

Table 7.1 Anti-HSV activity of S-cHPMPC and its phosphonamidate derivative 7.4 in HEL cells 

 Antiviral Activity EC50
a (µM) 

Cps HSV-1 HSV-2 TK- HSV-1  

7.4 0.3 0.4 0.2 

S-cHPMPC 0.8 1.2 0.5 

S-HPMPC 0.8 N.D. 0.6 

ACV 0.5 0.4 >222 

a 50% Effective concentration, or compound concentration required to 

inhibit virus-induced cytopathicity by 50% 
 

ACV, S-HPMPC and S-cHPMPC showed antiviral activity against HSV-1 and HSV-2 

confirming the results reported in the literature.3, 11, 28 As already described in chapter 1, 

inside the cell S-cHPMPC is converted to S-HPMPC by the cCMP phosphodiesterase-
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mediated cleavage of its phosphodiester bond,11 thus the antiviral activity of S-cHPMPC 

is due to the release of the diphosphate derivative of S-HPMPC as the active form.11 

Due to the presence of the phosphonate group, S-HPMPC and its prodrug S-cHPMPC, 

akin to monophosphate nucleoside analogues, do not require the HSV-TK-mediated 

phosphorylation to be bioactivated thus retaining activity also against TK—HSV-1 

(EC50= 0.20-0.65 µM), while ACV is completely inactive.  

The phosphonoamidate derivative 7.4 exhibited anti-HSV activity in the submicromolar 

range (EC50= 0.20-0.40 µM) retaining the activity of the parent compound S-cHPMPC. 

The concentration required to cause a microscopically visible alteration of cell 

morphology (MCC) was found above 100 µM for 7.4, as well as S-cHPMPC and S-

HPMPC. 

7.3.2 Anti-VZV activity  

The antiviral activity of compounds 7.4 and its parent compound S-cHPMPC against 

TK-positive (TK+) and TK-deficient (TK-) strains of VZV are reported in table 7.2. 

ACV is included as a reference compound. 

Table 7.2. Anti-VZV activity of S-cHPMPC and its phosphonamidate derivative 7.4 in HEL cells 

 Antiviral Activity EC50
a (µM) 

 TK+ VZV strains TK- VZV strains 

Cps YS OKA 07-1 YS/R 

7.4 N.D.c 0.14 0.16 0.16 

S-cHPMPC N.D.c 0.25 0.49 0.28 

ACV N.D.c 2.55 182 N.D.c 

a 50% Effective concentration, or compound concentration required to reduce virus 

plaque formation by 50% 
 

S-cHPMPC exhibited antiviral activity in the submicromolar range against both TK+ 

and TK- strains of VZV (EC50= 0.25-0.49 µM), while ACV lost its activity against TK- 

VZV (EC50= 182 µM) due to the lack of virus-encoded TK required for phosphorylation 

to its monophosphate form.  

The phosphonoamidate derivative 7.4 retained the anti-VZV activity of the parent 

compound (S-cHPMPC) against both TK+ and TK- strains (EC50= 0.14-0.16 µM).  
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The minimum concentration of 7.4 required to cause a microscopically visible alteration 

of cell morphology was found to be above 100 µM  

7.3.3 Anti-HCMV activity  

Table 7.3 reports the antiviral activity of S-cHPMPC and its phosphonoamidate 

derivative 7.4 against AD-169 and Davis strains of HCMV in HEL cell cultures. GCV 

and S-HPMPC are included as reference compounds. 

Table 7.3. Anti-HCMV activity of S-cHPMPC and its phosphonamidate derivative 7.4 in HEL cells 

 Antiviral Activity EC50
 a

 (µM) 

Cps AD-169 strain Davis strain 

7.4 0.42 0.22 

S-cHPMPC 1.1 0.61 

S-HPMPC 0.97 0.69 

GCV 11.38 4.45 

a 50% Effective concentration, or compound concentration required to reduce 

virus plaque formation by 50% 

 

In agreement with the studies reported in the literature,3, 29 S-HPMPC and S-cHPMPC 

were active against HCMV displaying similar potency.  

Compound 7.4 exerted anti-HCMV activity in the submicromolar range (EC50= 0.22-

0.42 µM) showing retention of activity in comparison to S-HPMPC and S-cHPMPC.  

Also in this antiviral assay, microscopy analysis of the cell culture revealed that the 

minimum concentration of 7.4 required to cause alteration of cell morphology was 

above 100 µM.  

7.3.4 Anti-poxvirus activity  

The phosphonoamidate 7.4 and its parent compound S-cHPMPC were evaluated for 

their antiviral activity against Lederle and Western Reserve strains of vaccinia virus 

(VV), Brighton strain of cowpox virus (CPXV), and CMLV-1 strain of camelpox virusv 

(CMLV) in HEL cell cultures (table 7.4). Also S-HPMPC was evaluated for its anti-

poxvirus activity and these results were compared with data reported in the literature.30  

 



Chapter 7 

 184 

Table 7.4. Anti-poxvirus activity of S-cHPMPC and phosphonamidate derivative 7.4 in HEL cells 

 Antiviral Activity EC50
 a

 (µM) 

 VV  CPXV CMLV 

Cps 
Lederle  

strain  

Western 

Reserve strain 

Brighton 

strain 

CMLV-1 

strain 

7.4 0.94 2.0 2.38 2.15 

S-cHPMPC 2.57 10.10 4.52 4.10 

S-HPMPC 3.48 9.17 7.48 8.20 

a 50% Effective concentration, or compound concentration required to inhibit virus-induced 

cytopathicity by 50% 
 

S-HPMPC exhibited anti-poxvirus activity in the micromolar range confirming the 

results reported in the literature,30 S-cHPMPC retained the antiviral activity of  

S-HPMPC against VV, CPXV, and CMLV. 

As already observed in antiviral assays against the herpes viruses, the 

phosphonoamidate derivative 7.4 exhibited retention of activity in comparison to S-

HPMPC and S-cHPMPC.  

7.3.5 Cytostatic activity of the amidate derivative of cyclic cidofovir on HEL cell 

cultures 

The cytostatic activity on HEL cell cultures of 7.4 and its parent compound S-cHPMPC 

is reported in table 7.5.  

These data include S-HPMPC, ACV, and GCV as reference compounds. 

Table 7.5. Cytostatic activity of S-cHPMPC and its phosphonamidate derivative 7.4 

 Cytostatic Activity IC50
 a (µM)  

Cps HEL Cells 

7.4 53 

S-cHPMPC 240 

S-HPMPC 330 

ACV >1778 

GCV 520 

a 50% Inhibitory concentration or compound concentration 

required to reduce cell proliferation by 50% 
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S-HPMPC, S-cHPMPC, ACV, and GCV exerted cytostatic activity only at high 

concentrations. 

The amidate derivative of S-cHPMPC 7.4 exhibited moderate antiproliferative activity 

on HEL cell cultures (IC50= 53 µM). As already described for the 6-alkoxy derivatives 

of ACV ProTide (chapter 4), it must be pointed out that the inhibition of cell growth 

was evaluated in non-confluent and highly proliferating HEL cells, while the antiviral 

assays previously described were performed on confluent resting HEL cells. It could be 

assumed that the higher metabolism of proliferating HEL cell may affect positively the 

bioactivation of 7.4. Improvement in the bioactivation and cellular uptake, due to the 

masking of the negative charge of the phosphonate group, could account for the 

cytostatic activity of 7.4 detected in this assay.  

7.3.6 Summary of the biological activity of the phosphonoamidate derivative of 

cyclic cidofovir 

The results of the antiviral assays against herpes viruses (HSV, VZV, and HCMV) and 

poxivruses (VV, CPXV, CMLV) indicate that the phosphonoamidate derivative 7.4 

released cyclic cidofovir, which was then converted inside the cell to cidofovir and its 

active form cidofovir diphosphate according to the metabolic pathway already described 

in the literature.2,3,11,13 No significant improvement in the antiviral activity was observed 

compared to cidofovir and cyclic cidofovir. However, it must be pointed out that the 

improvement of the antiviral activity against poxvirus of analogous derivatives of cyclic 

cidofovir previously reported in the literature was observed in human foreskin fibroblast 

cell cultures, while the antiviral activity of 7.4 was evaluated in non-proliferating HEL 

cells.10 The uptake, activation and conversion steps of this class of prodrugs may be 

dependent on the nature of the cell line and its metabolism, as also suggested by the 

cytostatic activity exerted by 7.4 on highly proliferating HEL cells (IC50= 53 µM).  
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7.4 Enzymatic and modeling studies 

Enzymatic and molecular modelling studies were performed in order to investigate the 

mechanism of activation of 7.4.  

7.4.1 Study of the carboxyesterase activity 

In order to evaluate whether 7.4 could be processed following the same mechanism of 

bioactivation of phosphonoamidate prodrugs of ANPs,9, 31 an enzymatic study was 

performed using carboxypeptidase Y (CPY) according to the procedure described in 

chapter 3. 

Figure 7.8 depicts the 31P NMR spectra and the proposed metabolic pathway of the 

enzymatic reaction performed on compound 7.4 over a 20 h period of incubation. The 

31P NMR spectra of compound 7.4 in deuterated acetone (acetone-d6) and phosphate 

buffer (pH= 7.6) showed two peaks at 17.80 and 18.98 ppm (blank, fig. 7.8A) 

corresponding to the two diastereomers (Sp and Rp). The mixture of diastereomers was 

not separated, so it was not possible to correlate the absolute configuration at the 

phosphorus center with the 31P NMR signals. Normalisation of the integrals to the total 

sum of the spectrum was carried out on the data and used as an indicator for the relative 

abundance of the two diastereomers. The relative abundance in the blank of the 

diastereomers of 7.4 was 54% (!P = 17.80 ppm) and 46% (!P = 18.98 ppm) (fig. 7.8A). 

The 31P NMR spectra at different time of the enzymatic study showed that:  

• After 15 min from the exposure to the CPY, two peaks appeared at 18.39 ppm 

and 19.47 ppm. They may be tentatively correlated to the hydrolysis of the 

benzyl ester of compound 7.4 affording the intermediate 7.34 (fig. 7.8B).  

• After 180 min from exposure to CPY, normalisation of the integrals to the total 

sum of the spectrum showed that the relative abundance of the two 

diastereomers of 7.4 was 17% (!P = 17.80 ppm) and 30% (!P = 18.98 ppm). 

Comparing this data with the relative abundance of the two diastereomers in the 

blank, the diastereomer corresponding to the signal at 17.80 ppm was found to 

be processed faster than the diastereomer corresponding to the signal at 18.98 

ppm. 
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• After the 20 h period of incubation, the diastereomers of compound 7.4 with 

chemical shift at 17.80 ppm was completely processed, while 20% of the initial 

amount of the other (!P= 18.98 ppm) was still unreacted (fig. 7.8A).  

The enzymatic reaction afforded two metabolites that displayed 31P NMR signals at 

17.17 ppm and 8.22 ppm, respectively (fig. 7.8A).  

 

Figure 7.8. 31P NMR spectra (acetone-D6, 202 MHz) and (B) proposed methabolic pathway of the 

enzymatic study performed on compound 7.4 

 

After this period, the solution of the enzymatic reaction was treated with methanol, 

causing denaturation of the enzyme, and centrifuged.32 The mass analysis performed on 

the supernatant liquid strongly suggests that one of the metabolites was S-cHPMPC (fig. 

7.9). From the 31P NMR experiment performed on S-cHPMPC in deuterated methanol, 
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this metabolite can be correlated to the signal at 8.22 ppm (fig. 7.8A). The mass 

analysis revealed also that the other metabolite with 31P NMR signal at 17.17 ppm (fig. 

7.8A) was the L-alanine conjugate of cidofovir (7.35), while the 31P NMR signal at 

18.98 (fig. 7.8A) is correlated to the unreacted diastereomer of 7.4 (fig. 7.9).  

 

Figure 7.9. Mass analysis in positive mode (A) and negative mode (B) performed on the supernatant 

liquid of the enzymatic reaction after CPY denaturation with methanol and centrifugation 

These results are in agreement to some extent with the metabolic study of the 

phosphonamidate prodrug GS-7340 reported in the literature showing that the 

cathepsin-A-mediated cleavage of the ester moiety, which affords the intermediate 7.36, 

leads to formation of the metabolite 7.37 according to the putative mechanism of 

activation depicted in scheme 7.16.9, 31, 33  
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Scheme 7.16 Proposed mechanism of activation of GS-7340 mediated by cathepsin A (from ref.10, 

32, 34)  

It may be tentatively assumed that similar mechanism of reaction also occurs in the case 

of 7.4 in the presence of CPY leading to the formation of the metabolite 7.34 (scheme 

7.17).  
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Scheme 7.17 Proposed mechanism of reaction of 7.4 mediated by CPY 

The faster metabolism observed for one diastereomer over the other points out the role 

of the phosphorus stereochemistry in the bioactivation process. In analogy with this 

result, the half life of the Rp diastereomer of phenyl L-alanine isopropyl ester derivative 

of tenofovir (GS-7339) in MT-2 cell cultures (t1/2>1000 min.) has been reported to be 

longer in comparison to the Sp diastereomer GS-7340 (t1/2= 28.3 ± 7.4 min.) indicating a 

slower conversion to tenofovir as suggested by the 12-fold higher anti-HIV-1 activity of 

GS-7340 compared to that of GS-7339.9 However, it must be taken into consideration 

that the stability study of the two diastereomers of salicylate phosphoester prodrugs of 

S-cHPMPC (7.36) in buffer solution at pH 7.4 and 37 °C, previously reported in the 

literature, showed that exocyclic and endocyclic hydrolysis of the P-O bond occur 

resulting in the formation of S-cHPMPC and the monoester derivative of S-HPMPC 

7.37, respectively (scheme 7.18).23 Therefore, the chemical hydrolysis of the endocyclic 

P-O bond of compound 7.4 cannot be ruled out. This could also explain the formation 

of cyclic cidofovir detected during the enzymatic assay of 7.4 performed in the presence 

of CPY (fig 7.8). 
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Scheme 7.18.  Chemical hydrolysis of the salicylate phosphoester derivatives of cyclic cidofovir 

(7.36) at pH 7.4 and 37 ºC. 
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7.4.2 Docking of the L-alanine benzyl ester derivative of cyclic cidofovir within the 

active site of carboxypetidase Y. 

A modeling study of 7.4 was performed using a crystal structure of CPY in order to 

investigate the interaction of the benzyl ester group with the residues of the catalytic site 

responsible for the carboxylester cleavage. Moreover this study meant to detect any 

difference of orientation of the ester moiety in an attempt to explain the lower reactivity 

of one diastereomer over the other in the enzymatic assay previously described (fig. 

7.8).  

The conformational study performed on salicylate and aryl phosphoester derivatives of 

S-cHPMPC previously described in the literature has shown that the 6-membered 

phosphonate ring of cyclic cidofovir adopts a chair conformation with the cytosine 

preferentially in an equatorial position.23 However, it was also proved that in same cases 

the nucleobase of analogous compounds can be crystallised in axial position, and that in 

solution there could be an equilibrium between two different chair conformations where 

the nucleobase alternates between axial and equatorial position.34  

The separation of the mixture of diastereomers was not achieved during the purification 

process of 7.4. For this reason, it was not possible to carry out the studies of the crystal 

structure and NMR coupling constants required to assign the relative conformation of 

the phosphonate ring of each diastereomer. Thus, we assumed that the 6-membered 

phosphonate ring of 7.4 adopts a chair conformation with the cytosine in equatorial 

position placing the amino acid moiety at the phosphonate group in axial position in the 

case of the Rp diastereomer (7.4ax) and in the equatorial position in the case of the Sp 

diastereomer (7.4eq) (fig. 7.10), based on previous studies led on the salicylate and aryl 

phosphoester derivatives of S-cHPMPC.23  

O
P

O
NN

H2N

O

O
P

O
NN

H2N

ONH

O

O

O

Bn CH3

H
N

O

O

O
Bn

CH3

7.4ax (Rp) 7.4eq (Sp)  

Figure 7.10 Chair conformations of Rp and Sp diastereomers of  7.4 

 

Figure 7.11 shows the docking of both phosphate diastereomers (Rp and Sp) of 7.4 

within the active site of the CPY enzyme. 
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Figure 7.11 Docking of (A) Rp and (B) Sp diastereomers of 7.4 within the active site of CPY. The 

red arrows indicate the position of the carboxylester group 

 

The carboxyl group of the Rp diastereomer, indicated by the red arrow in figure 7.11A, 

is oriented in the opposite direction compared to the carboxyl group of Sp diastereomer 

(fig. 7.11B) affecting the interaction with the glycine  (Gly52 and Gly53) and serine 

(Ser146) residues, which are responsible for the benzyl ester cleavage, as already 

describe in chapter 3.35 Indeed, in the case of the Rp diastereomer the carboxyl group 

points toward the glycine and serine residues resulting in a suitable position for them to 

interact properly (fig 7.12A). By contrast, in the case of the Sp diastereomer the 

orientation of the carboxyl group does not favour a positive interaction with these 

residues (fig 7.12B).  

 

Figure 7.12 Detail of the docking of (A) Rp and (B) Sp diastereomers of 7.4 within the active site of 

the CPY enzyme showing the orientation and the distance in angstroms of the carboxyl group 

toward the glycine and the serine residues (Gly_52, Gly_53, and Ser_146) responsible for the benzyl 

ester cleavage. 

Assuming that 7.4 is converted to 7.35 by carboxypeptidase Y according to the 

mechanism proposed in scheme 7.17, these results are in agreement with the enzymatic 
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study previously described (fig. 7.8) showing that one of the two diastereomers of 7.4 is 

processed faster than the other. Moreover this study suggests that the Rp diastereomer 

may be processed faster than the Sp diastereomer.  

7.4.3 Docking of the L-alanine conjugate of cidofovir within the active site of  

Hint-1 enzyme 

According to the putative mechanism of activation of ProTides, the hydrolysis of the 

ester moiety of the aryl phosphoramidate derivatives, which leads to the elimination of 

the aryl group, is followed by the cleavage of the P—N bond.36 In the case of 

phosphonoamidate and phosphonodiamidate derivatives of ANPs, this last step was 

investigated affording two possible mechanisms of reaction:37  

• Chemical hydrolysis at acidic pH 

• Enzymatic hydrolysis mediated by a phosphoramidase-type enzyme such as the 

human Hint-1  

In particular, it was proved that the L-alanine conjugate of tenofovir 7.37 (matabolite of 

the phosphonoamidate derivative GS-7340 in the presence of cathepsin A) was 

converted to R-PMPA with a half life of 49 min at pH 4.5, while it was stable in the 

presence of human Hint-1 at pH 7.2 (scheme 7.19). Instead, the analogous L-alanine 

conjugate of cPrPMEDAP 7.38 was successfully converted by both chemical hydrolysis 

at acidic pH and human Hint-1-mediated cleavage of the P-N bond affording 

cPrPMEDAP as product and suggesting that both mechanisms of action could be 

involved in the conversion of the prodrug (scheme 7.19).37  
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Scheme 7.19 Half-lives (t1/2) of nucleotide-amino acid conjugates 7.38 and 7.39 at pH 4.5 and in the 

presence of Hint-1 (from ref. 37)  
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The modelling study of the L-alanine conjugate of S-HPMPC (7.35) was performed 

within the active site of human Hint-1 enzyme co-crystallised with adenosine 

monophosphate (AMP) using docking techniques in order to evaluate whether this 

phosphoramidase-type enyme may be involved in the bioactivation of the 

phosphonoamidate of S-cHPMPC (fig 7.13).  

 

Figure 7.13 Superimposition of compound 7.35 with AMP (yellow) within the active site of human 

Hint-1 enzyme. The red circle highlights the phosphate moiety of AMP. The red arrows indicate the 

position of the residues of serine 107 (Ser_107), hisitidine 112 (His_112), and histidine 114 

(His_114) involved in the cleavage of the P-N bond of compound 7.35 according to the mechanism 

of action of the Hint enzyme.38  

 

The superimposition of 7.35 with AMP (shown in yellow in fig 7.13) within the 

enzymatic pocket of Hint-1 shows that the phosphorus of 7.35 (shown in purple in fig 

7.13) is placed in a completely different position in comparison to the phosphate group 

of AMP (highlighted by the red circle in fig 7.13). As a result, the P-N bond of 7.35 is 

not in a suitable position to interact with the serine and histidine residues (indicated by 

the red arrows in fig. 7.13), which are responsible for its cleavage according to the 

mechanism of action of human Hint-1 enzyme.38 The result of this study strongly 

suggests that 7.35 is a poor substrate for human Hint-1 and could be converted to 

cidofovir by chemical hydrolysis of the P-N bond at acidic pH, typical of lysosomes, as 

previously reported in the case of GS-7340.37 In order to validate the modelling study, 

the docking of L-alanine conjugates of R-PMPA (7.37) and cPrPMEDAP (7.38) within 
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the active site of Hint-1 enzyme co-crystallised with AMP was carried out confirming 

the results previously reported in the literature (scheme 7.19).37 In particular, the 

docking of the L-alanine conjugate of cPrPMEDAP (7.38) within the active site of 

human Hint-1 (fig. 7.14) shows that the nucleobase fits quite well into the enzymatic 

pocket adopting a position similar to that of AMP (shown in yellow), while the 

phosphonate moiety of 7.38 (purple) is moved from the position adopted by the 

phosphate group of AMP (highlighted by the red circle).  

 

Figure 7.14 Superimposition of compound 7.38 with AMP (yellow) within the active site of human 

Hint-1 enzyme. The red circle highlights the phosphate moiety of AMP. The red arrows indicate the 

position of the residues of serine 107 (Ser_107), hisitidine 112 (His_112), and histidine 114 

(His_114) involved in the cleavage of the P-N bond of compound 7.39 according to the mechanism 

of action of the Hint enzyme.38  

 

Nevertheless, the P-N bond is in a suitable position to interact with serine and histidine 

residues, which are responsible for its cleavage, as also indicated more specifically in 

figure 7.15. 
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Figure 7.15. Detail of the docking of 7.38 within the active site of Hint-1 showing the orientation 

and the distance in angstroms of the P-N bond (purple and blue) toward the histidine and the serine 

residues (His-51, His-112, His 114, and Ser_107) responsible for its cleavage.  

 

To the contrary, the phosphonate group of 7.37, like in the case of 7.35, is placed in a 

totally different position within the active site of human Hint-1 in comparison to AMP 

resulting in an unsuitable position to interact with the serine residue 107 and histidine 

residues 112 and 114 (fig. 7.16).  

 
Figure 7.16. Superimposition of compound 7.37 with AMP (yellow) within the active site of human 

Hint-1 enzyme. The red circle highlights the phosphate moiety of AMP. The red arrows indicate the 

position of the residues of serine 107 (Ser_107), hisitidine 112 (His_112), and histidine 114 

(His_114) involved in the cleavage of the P-N bond according to the mechanism of action of the 

Hint enzyme.38  
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7.5 Conclusion 

The phosphonoamidate prodrugs of cidofovir were considered as a possible strategy to 

overcome the poor membrane permeability of the parent compound. The L-alanine 

benzyl ester derivative of cyclic cidofovir (7.4) was synthesised. Unfortunately the 

synthesis of the analogous phosphonodiamidate derivative of cidofovir (7.3) was not 

achieved. This result suggests that a different protective group of the hydroxymethylene 

side chain of cidofovir should be used in order to obtain the phosphonodiamidate 

derivatives of cidofovir. 

The biological results show retention of antiviral activity of 7.4 against herpes viruses 

and poxviruses indicating the release of cidofovir inside the cell. No cytotoxic effects 

were observed during the antiviral assays by microscopy analysis of cell morphology. 

However, a moderate cytostatic activity was observed in proliferating HEL cells. This 

effect may be explained by improvement of cellular uptake of 7.4 in comparison to S-

cHPMPC and S-HPMPC. 

Enzymatic study of 7.4 was performed using carboxypeptidase Y and afforded the L-

alanine conjugate of cidofovir (7.35) as main metabolite of the reaction. However, it is 

not clear whether the endocyclic cleavage occurs through the mechanism of reaction 

already described for the phosphoramidate and phosphonoamidate derivatives of 

nucleoside analogues or by chemical hydrolysis of the phosphoester bond, as previously 

described in the case of salicylate and aryl ester prodrugs of cyclic cidofovir. 23, 31, 33, 36, 37 

The enzymatic study also showed also that one of the two diastereomers is converted 

faster than the other. The docking of 7.4 within the active site of CPY suggests that the 

diastereomer Rp may interact better with the amino acid residues of the catalytic site 

than the diastereomer Sp. The modelling study of 7.35 within the active site of human 

Hint-1 suggests that this metabolite is not converted to cidofovir by enzymatic 

hydrolysis of the P-N bond but by chemical hydrolysis at acidic pH as previously 

reported in the case of the aryl phosphonoamidate prodrug GS-7340.37          
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Chapter 8. Main conclusions 

The application of the ProTide approach to several acyclic nucleosides was evaluated in 

this work starting from acyclovir and varying the aryl, amino acid, and ester moieties, as 

well as specific positions of the side chain and guanine base.   

 

ProTides bearing L-alanine have historically shown good results. For this reason, new 

projects have usually started from a family of L-alanine-derived ProTides. Indeed, the 

first ProTides of acyclovir reported in the literature were L-alanine derivatives.  

Very importantly, the study of structure-activity relationship initially performed in this 

work on ACV ProTides showed that bulky amino acids such as L-valine, L-leucine, and 

L-isoleucne were well tolerated by the enzymes involved in their bioactivation pathway, 

as demonstrated by their antiviral activity against TK- HSV and TK- VZV, as well as 

HCMV and HIV-1 in MT-4 cells. These results further support the notion that the 

ProTide motif needs to be tuned on a case-by-case basis when applying this technology 

to a novel nucleoside. However, the lack of activity against HIV-1 and HIV-2 in CEM 

cells cultures of the aryl phosphoramidate derivatives of ACV synthesised in this work 

suggests that their activation!might be dependent on the nature of the cell line.  

 

The biological evaluation of 6-O-alkyl ACV ProTides as potential double prodrugs of 

ACV monophosphate showed that these derivatives were cytotoxic, perhaps the 

increase of their cellular uptake may account for these toxic effects. 

 The study of the aryl phosphoramidate derivatives of 8-bromoacyclovir, 8-

methylacyclovir, ganciclovir and penciclovir showed that even small structural changes 

on the nucleoside moiety of ProTides can affect the processing of the phosphoramidate 

moiety, and thus the antiviral activity of these compounds. In particular, introduction of 

methyl group or bromine atom at the C-8 of the guanine base of ACV ProTides caused 

a significant loss of antiviral activity. The additional hydroxymethylene group on the 

side chain was well tolerated in the case of ganciclovir ProTides. The replacement of 

the oxygen on the side chain of ganciclovir with the methylene group of PCV affected 

negatively the antiviral activity of the ProTides derivatives against herpes viruses. 

However, PCV ProTides showed anti-HIV-1 activty in MT-4 cells comparable to that 

of GCV ProTides supporting the hypothesis that different substrate affinities of the 

enzymes involved in the bioactivation of PCV ProTides may occur in the MT-4 cells.  
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Collectively these results points out the necessity of evaluating the potential of each 

nucleoside and not relying on structural similarities for prediction of ProTides 

bioactivation. 

 

Finally, the application of the phosphoramidate approach to cidofovir resulted in the 

synthesis of the L-alanine benzyl ester derivative of cyclic cidofovir, which showed 

retention of antiviral activity in comparison to the parent compound.  
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Chapter 9. EXPERIMENTAL PROCEDURES 

9.1 General Experimental Details 

Solvents and Reagents  

All solvents and reagents commercially available were used without any further 

purification. The following solvents were purchased as anhydrous: chloroform 

(CHCl3), dichloromethane (DCM), diethyl ether (Et2O), N,N-dimethylformamide 

(DMF), pyridine, tetrahydrofyran (THF).All glassware was dried in the oven at 130°C 

for several hours and allowed to cool down. 

Thin Layer Chromatography 

The reactions were analysed by Thin Layer Chromatography (TLC) on commercially 

available Merck Kieselgel plates. Separated components were visualized using ultra 

violet light (245 and 366 nm). Preparative TLC plates (20x20 cm, 500-2000 µm) were 

purchased from Merck. 

 Column Chromatography (CC) 

Column chromatography was performed using Silica gel (Fisher, 60A, 35-70µm) as 

stationery phase. Glass columns were packed in the appropriate eluent under gravity. 

Samples were applied as a concentrated solution in the same eluent, or pre absorbed 

onto silica gel. The fractions containing the product were analyzed by TLC then 

combined together and the solvent removed under vacuum. 

NMR Spectroscopy 

1H, 13C, 31P were recorded on a Brucker Avance 500 spectrometer (500, 125, 202 MHz 

respectively) at 25 °C.  Spectra were calibrated to the residual signal of the deuterated 

solvent used. Chemical shift are given in parts per million (ppm) and coupling costant 

(J) in Hertz. The following abbreviations are used in the NMR signals assignment: s 

(singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br s (broad singlet), JC-P 

(coupling between carbon and phosphorus), Jgem (geminal coupling).  
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High Performance Liquid Chromatography (HPLC) 

Analytical and semi-preparative experiments were ran on a Varian ProStar equipment 

(LC Work Station, Varian ProStar 335LC detector, Varian fraction collector model 701, 

ProStar 201 delivery system) using Varian Pursuit XRs 5C18 (150 x 4.6mm) as an 

analytical column and Varian Puruit XRs 5C18 (150 x 21.2 mm) as semi-preparative 

column. Used software was Galaxie Chromatography Data System.  

Mass Spetroscopy (MS) 

High and low resolution mass spectroscopy was performed as a service by 

CardiffUniversity, using electrospray (ES). 

Elemental Analysis (CHN)  

CHN microanalysis was performed as a service by MEDAC Ltd., Surrey. 

UV Spectroscopy (UV) 

UV experiments were conducted using a Varian 50 Bio UV-Visisble 

spectrophotometer. 
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9.2. Experimental procedures for chapter 2: synthesis of aryl amino 

acid ester phosphorochloridates  

Standard procedure A  

To a stirred solution of the appropriate amino acid ester salt 2.4 (1 eq) and the 

appropriate aryl dichlorophosphate 2.5 (1 eq.) in anhydrous DCM was added dropwise 

at -78 °C anhydrous TEA (2 eq). Following the addition, the reaction mixture was 

stirred at -78 °C for 30 min, then at room temperature for 1 h. Formation of desired 

compound was monitored by 31P NMR. After this period the solvent was removed under 

reduced pressure to give an oil. Most of the aryl phosphorochloridates synthesized were 

purified by flash column chromatography (eluting with ethyl acetate/petroleum ether= 

70/30). 

Synthesis of 2,2-Dimethylglycine benzyl ester tosylate [2.4a] 

 Chemical Formula: C19H25NO5S 

Molecular Weight: 379.4705 

2,2-Dimethylglycine (1.02 g, 9.89 mmol), benzyl alcohol (15 mL) and 

p-toluenesulphonic acid (2.06 g, 10.83 mmol) were refluxed in toluene 

(13 mL) overnight using a Dean-Stark apparatus. After cooling to room temperature 

toluene was evaporated under reduced pressure. Upon standing (1 h) a solid formed 

from the crude oil and Et2O was added to give the product as a white precipitate. The 

mixture was filtered and the white solid washed with Et2O and dried under vacuum. 

(Yield: 80%, 2.90 g) 

1H NMR (500 MHz, CDCl3): ! 7.74 (2H, d, J = 8.1 Hz, Ts), 7.44-7.35 (5H, m, CH2Ph), 

7.10 (2H, d, J = 8.1 Hz, Ts), 5.12 (2H, s, OCH2), 2.32 (3H, s, CH3 (Ts)), 1.54 (6H, s, 2 x 

CH3). 

Synthesis of L-alanine neopentyl ester tosylate [2.4b] 

Chemical Formula: C15H25NO5S 

Molecular Weight: 331.4277 

 

L-alanine (4 g, 44.89 mmol), neopentyl alcohol (25 mL) and p-

toluenesulphonic acid (9.48 g, 49.84 mmol) were refluxed in toluene (60 mL) overnight 

using a Dean-Stark apparatus. After cooling to room temperature toluene was 

evaporated under reduced pressure. Upon standing (1 h) a solid formed from the crude 
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oil and Et2O was added to give the product as a white precipitate. The mixture was 

filtered and the white solid washed with Et2O and dried under vacuum. (Yield: 80%, 

12g) 

1H NMR (500 MHz, MeOD): ! 7.73 (2H, d, J = 8.1, Ts), 7.26 (2H, d, J = 8.1, Ts), 4.16 

(1H, q, J = 7.2 Hz, CHCH3), 4.03 (1H, d, Jgem = 10.5 Hz, COOCH2(CH3)3), 3.92 (1H, 

d, Jgem = 10.5 Hz, COOCH2(CH3)3), 2.39 (3H, s, CH3 (Ts)), 1.58 (3H, d, J = 7.2 Hz, 

CHCH3), 1.00 (9H, s, COOCH2(CH3)3). 

Synthesis of 1-naphthyl dichlorophosphate [2.5b] 

Chemical Formula: C10H7Cl2O2P 

Molecular Weight: 331.4277 

 

Phosphorus oxychloride (2.59 mL, 27.74 mmol) and 1-naphthol (4.00 

g, 27.74 mmol) were stirred in anhydrous Et2O under an argon atmosphere. Anhydrous 

TEA was added (3.87 mL, 27.74 mmol) at -78 oC and after 30 minutes, the solution was 

allowed to warm to room temperature. After 31P NMR, the solvent was removed under 

reduced pressure and the residue was triturated with anhydrous Et2O to give the crude 

product as yellowish oil. (Crude yield 95%, 6.91 g).  

31P-NMR (CDCl3, 202 MHz): ! 3.72. 1H-NMR (CDCl3, 500 MHz): ! 8.02-8.00 (1H, m, 

H-8), 7.81-7.80 (1H, m, H-5), 7.72-7.70 (1H, m, H-4), 7.54-7.45 (4H, m, H-2, H-3, H-6, 

H-7). 

Synthesis of phenyl-(benzyloxy-L-alaninyl) phosphorochloridate [2.2a] 

Chemical Formula: C16H17ClNO4P 

Molecular Weight: 353.7372 

Prepared according to standard procedure A, using phenyl 

dichlorophosphate (1.27 mL, 8.50 mmol), L-alanine benzyl ester 

tosylate  (3 g, 8.5 mmol), anhydrous TEA (2.36 mL, 17 mmol) in 

anhydrous DCM (70 mL). The reaction mixture was stirred at -78 oC for 30 min., then 

at room temperature for 2 h. The crude was purified by column chromatography eluting 

with ethyl acetate/petroleum ether = 70/30 to give an oil (86%, 2.57 g).  

31P-NMR (CDCl3, 202 MHz): ! 8.05, 7.52. 1H-NMR (CDCl3, 500 MHz): ! 7.44-7.25 

(10H, m, PhO, OCH2Ph), 5.24-5.22 (2H, m, OCH2Ph), 4.30-4.21 (2H, m, CHNH, 

CHNH), 1.56-1.54 (3H, m, CHCH3). 
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Synthesis of 1-naphthyl-(benzyloxy-L-alaninyl) phosphorochloridate [2.2b] 

Chemical Formula: C20H19ClNO4P 

Molecular Weight: 403.7959 

Prepared according to standard procedure A, using naphthyl 

dichlorophosphate (0.30 mL, 2 mmol), L-alanine benzyl ester 

hydrochloride (0.43 g, 2 mmol), anhydrous TEA (0.56 mL, 4 mmol) 

in anhydrous DCM (15 mL). The reaction mixture was stirred at -78 oC for 1 h, then at 

room temperature for 3.5 h. The crude was obtained as an oil (87%, 0.62 g).  

31P-NMR (CDCl3, 202 MHz): ! 7.86, 7.52. 1H-NMR (CDCl3, 500 MHz): ! 7.33-7.28 

(10H, m, NaphO, OCH2Ph), 5.15-5.13 (2H, m, OCH2Ph), 4.18-4.13 (1H, m, CHNH), 

1.46-1.44 (3H, m, CHCH3). 

Synthesis of phenyl-(tert-butoxy-L-alaninyl) phosphorochloridate [2.2c] 

Chemical Formula: C13H19ClNO4P 

Molecular Weight: 319.721 

Prepared according to standard procedure A, phenyl dichlorophosphate 

(3.95 mL, 26.54 mmol), L-alanine tert-butyl ester tosylate (4.8 g, 

26.42 mmol), anhydrous TEA (7.36 mL, 52.84 mmol) in anhydrous 

DCM (80 mL). The reaction mixture was stirred at -78 oC for 30 min, then at room 

temperature for 30 min. The crude was purified by column chromatography eluting with 

ethyl acetate/hexane = 70/30 to give an oil (64%, 5.4 g).  

31P-NMR (CDCl3, 202 MHz): ! 8.20, 7.81. 1H-NMR (CDCl3, 500 MHz): ! 7.41-7.38 

(2H, m, PhO), 7.30-7.24 (3H, m, PhO), 4.35-4.24 (1H, m, NH), 4.14-4.01 (1H, m, 

CHCH3), 1.52-1.49 (12H, m, C(CH3)3, CHCH3). 

Synthesis of phenyl-(neopentyloxy-L-alaninyl) phosphorochloridate [2.2d] 

Chemical Formula: C14H21ClNO4P 

Molecular Weight: 333.7476 

Prepared according to standard procedure A, from phenyl-

dichlorophosphate (1.13 mL, 7.54 mmol), L-alanine neopentyl ester 

tosylate (2.5 g, 7.54 mmol), anhydrous TEA (2.10 mL, 15.08 

mmol) and anhydrous DCM (45 mL). The reaction mixture was stirred at -78 oC for 30 
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min, then at room temperature for 2 h. The crude was purified by column 

chromatography eluting with ethyl acetate/petroleum ether = 70/30 to give an oil 

(quantitative yield , 2.48 g).  

31P-NMR (CDCl3, 202 MHz): ! 7.66, 8.19. 1H-NMR (CDCl3, 500 MHz): ! 7.44-7.26 

(5H, m, PhO), 4.42-4.37 (1H, m, NH), 4.34-4.21 (1H, m, CHCH3), 3.97-3.93 (1H, m, 

COOCH2(CH3)3 of one diasteroisomer), 3.90-3.86 (1H, m, COOCH2(CH3)3 of one 

diasteroisomer), 1.58-1.55 (3H, m, CHCH3), 0.99 (4.5H, s, COOCH2(CH3)3 of one 

diastereomer), 0.98 (4.5H, s, COOCH2(CH3)3 of one diastereomer. 

Synthesis of phenyl-(neopentyloxy-L-alaninyl) phosphorochloridate [2.2e]. 

Chemical Formula: C18H23ClNO4P 

Molecular Weight: 383.8063 

Prepared according to standard procedure A, from naphthyl 

dichlorophosphate (1.97 g, 7.54 mmol), L-alanine neopentyl ester 

tosylate (2.5 g, 7.54 mmol), anhydrous TEA (2.10 mL, 15.08 mmol) 

and anhydrous DCM (45 mL). The reaction mixture was stirred at -78 oC for 30 min, 

then at room temperature for 2 h. The crude was purified by column chromatography 

eluting with ethyl acetate/petroleum ether = 70/30 to give an oil (63%, 1.8 g). 

31P-NMR (CDCl3, 202 MHz): ! 8.21, 7.90. 1H-NMR (CDCl3, 500 MHz): ! 8.11-7.45 

(7H, m, NaphO), 4.48-4.44 (1H, m, NH), 4.38-4.35 (1H, m, CHCH3), 3.99-3.84 (2H, m, 

COOCH2(CH3)3), 1.62-1.58 (3H, m, CHCH3), 0.99 (4.5H, s, COOCH2(CH3)3 of one 

diastereomer), 0.98 (4.5H, s, COOCH2(CH3)3 of one diastereomer. 

Synthesis of phenyl-(benzyloxy-glicinyl) phosphorochloridate [2.2f]. 

 Chemical Formula: C15H15ClN4OP 

 Molecular Weight: 339.7107 

Prepared according to standard procedure A, from phenyl 

dichlorophosphate (2.21 mL, 14.81 mmol), glycine benzyl ester tosylate  

(5.00 g, 14.81 mmol), anhydrous TEA (4.20 mL, 30.00 mmol) and 

anhydrous DCM (100 mL). The reaction mixture was stirred at -78 ºC for 30 min, then 

at room temperature for 1 h. The crude was purified by column chromatography eluting 

with ethyl acetate/petroleum ether = 70/30 to give an oil (90%, 4.50 g). 

31P NMR (CDCl3, 202 MHz): ! 8.75. 1H NMR (CDCl3, 500 MHz): ! 7.45-7.24 (10H, m, 

PhO, OCH2Ph), 5.26 (2H, s, OCH2Ph), 4.27-4.26 (1H, bs, NH), 4.04-3.91 (2H, m, 
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NHCH2). 

Synthesis of phenyl-(benzyloxy-dimethylglycinyl) phosphorochloridate [2.2g]. 

Chemical Formula: C17H19ClNO4P 

Molecular Weight: 367.7638 

Prepared according to the standard procedure A, from phenyl 

dichlorophosphate (2.45 mL, 16.40 mmol) and 2,2-dimethylglycine 

benzyl ester tosylate (6.00 g, 16.4 mmol), anhydrous TEA (4.58 mL, 

33.00 mmol) and anhydrous DCM (150 mL). The reaction mixture was stirred at -78 oC 

for 30 min, then at room temperature for 1 h. The crude was purified by column 

chromatography eluting with ethyl acetate/petroleum ether = 70/30 to give an oil (90%, 

5.50 g).  

31P NMR (CDCl3, 202 MHz): ! 5.43. 1H NMR (CDCl3, 500 MHz): ! 7.41-7.23 (10H, m, 

PhO, OCH2Ph), 5.24 (2H, s, OCH2Ph), 4.70-4.68  (1H, bs, NH), 1.74, 1.72 (6H, 2s, 

C(CH3)2). 

Synthesis of 1-naphthyl-(benzyloxy-dimethylglycinyl) phosphorochloridate [2.2h] 

Chemical Formula: C21H21ClNO4P 

Molecular Weight: 417.8225 

Prepared according to the standard procedure A, from naphthyl 

dichlorophosphate (1.53 g, 5.88 mmol) and 2,2-dimethylglycine 

benzyl ester tosylate (2.15 g, 5.88 mmol), anhydrous TEA (4.59 mL, 

32.94 mmol) and anhydrous DCM (50 mL). The reaction mixture was stirred at -78 oC 

for 30 min, then at room temperature for 1 h. The crude was purified by column 

chromatography eluting with ethyl acetate/petroleum ether = 70/30 to give an oil 

(quantitative yield, 2.7 g). 

31P-NMR (CDCl3, 202 MHz): ! 5.83. 1H-NMR (CDCl3, 500 MHz): ! 8.13-7.33 (12H, 

m, Naph, OCH2Ph), 5.25 (2H, s, OCH2Ph), 1.80, 1.76 (6H, 2s, C(CH3)2). 

Synthesis of phenyl-(benzyloxy-L-valinyl) phosphorochloridate [2.2i] 

Chemical Formula: C18H21ClNO4P 

Molecular Weight: 381.7904  

Prepared according to standard procedure A, from phenyl-

dichlorophosphate (0.91 mL, 6.13 mmol), L-valine benzyl ester 

tosylate (2.33 g, 6.13 mmol), anhydrous TEA (1.71 mL, 12.26 
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mmol) and anhydrous DCM (50 mL). The reaction mixture was stirred at -78 oC for 30 

min, then at room temperature for 1 h. The crude was purified by column 

chromatography eluting with ethyl acetate/petroleum ether = 70/30 to give an oil (77%, 

1.80 g). 

31P NMR (CDCl3, 202 MHz): ! 9.37, 8.89. 1H NMR (CDCl3, 500 MHz): ! 7.42-7.23 

(10H, m, PhO, OCH2Ph), 5.24-5.23 (2H, m, OCH2Ph), 4.08-3.96 (1H, m, NHCH), 2.24-

2.17 (1H, m, CH(CH3)2), 1.05-1.01 (3H, m, CH(CH3)2), 0.94-0.91 (3H, m, CH(CH3)2).  

Synthesis of 1-naphthyl-(benzyloxy-L-valinyl) phosphorochloridate [2.2j] 

Chemical Formula: C22H23ClNO4P 

Molecular Weight: 431.8491 

Prepared according to standard procedure A, from naphthyl 

dichlorophosphate (1.72 g, 6.58 mmol), L-valine benzyl ester 

tosylate (2.5 g, 6.58 mmol), anhydrous TEA (1.83 mL, 13.16 

mmol) and anhydrous DCM (50 mL). The reaction mixture was stirred at -78 oC for 30 

min, then at room temperature for 1 h. The crude was purified by column 

chromatography eluting with ethyl acetate/petroleum ether = 70/30 to give an oil 

(quantitative yield %, 2.8 g). 

31P NMR (CDCl3, 202 MHz): ! 9.72, 9.26. 1H NMR (CDCl3, 500 MHz): ! 8.09-7.31 

(12H, m, Naph, OCH2Ph), 5.24-5.16 (2H, m, OCH2Ph), 4.29-4.20 (1H, m, NHCH), 

2.26-2.18 (1H, m, CH(CH3)2), 1.05-1.02 (3H, m, CH(CH3)2), 0.96-0.92 (3H, m, 

CH(CH3)2)  

Synthesis of phenyl-(benzyloxy-L-leucinyl) phosphorochloridate [2.2k]. 

Chemical Formula: C19H23ClNO4P 

Molecular Weight: 395.8170 

 

Prepared according to standard procedure A, from phenyl-

dichlorophosphate (0.91 mL, 6.13 mmol), L-leucine benzyl ester 

tosylate (2.41 g, 6.13 mmol), anhydrous TEA (1.71 mL, 12.26 mmol) and anhydrous 

DCM (50 mL). The reaction mixture was stirred at -78 ºC for 30 min, then at room 

temperature for 1 h. The crude was purified by column chromatography eluting with 

ethyl acetate/petroleum ether = 70/30 to give an oil (93%, 2.25 g). 

31P NMR (CDCl3, 202 MHz): ! 8.34, 8.10. 1H NMR (CDCl3, 500 MHz): ! 7.43-7.22 

(10H, m, PhO, OCH2Ph), 5.27-5.09 (2H, m, OCH2Ph), 4.21-4.11 (1H, m, NHCH), 1.90-
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1.75 (1H, m, CH2CH(CH3)2), 1.71-1.59 (2H, m, CH2CH(CH3)2), 0.98-0.95 (6H, m, 

CH3).  

 

Synthesis of Naphthyl-(benzyloxy-L-leucinyl) phosphorochloridate [2.2l]. 

Chemical Formula: C23H25ClNO4P 

Molecular Weight: 445.8757 

 

Prepared according to standard procedure procedure A, from 

naphthyl dichlorophosphate (1.6 g, 6.13 mmol), L-leucine benzyl 

ester tosylate (2.41 g, 6.13 mmol), anhydrous TEA (1.71 mL, 12.26 mmol) and 

anhydrous DCM (50 mL). The reaction mixture was stirred at -78 ºC for 30 min, then at 

room temperature for 1 h. The crude was purified by column chromatography eluting 

with ethyl acetate/petroleum ether = 70/30 to give an oil (65%, 1.76 g). 

31P NMR (CDCl3, 202 MHz): ! 8.56, 8.31. 1H NMR (CDCl3, 500 MHz): ! 8.03-7.28 

(12H, m, Naph, OCH2Ph), 5.27-5.09 (2H, m, OCH2Ph), 4.21-4.11 (1H, m, NHCH), 

1.90-1.75 (1H, m, CH2CH(CH3)2), 1.71-1.59 (2H, m, CH2CH(CH3)2), 0.98-0.95 (6H, m, 

CH3). 

Synthesis of phenyl-(benzyloxy-L-isoleucinyl) phosphorochloridate [2.2m]. 

Chemical Formula: C19H23ClNO4P 

Molecular Weight: 395.8170 

 

Prepared according to standard procedure procedure A, from 

phenyl dichlorophosphate (0.91 mL, 6.13 mmol), L-isoleucine 

benzyl ester tosylate  (2.41 g, 6.13 mmol), anhydrous TEA (1.71 

mL, 12.26 mmol) and anhydrous DCM (50 mL). The reaction mixture was stirred at -78 

ºC for 30 min, then at room temperature for 1 h. The crude was purified by column 

chromatography eluting with ethyl acetate/petroleum ether = 70/30 to give an oil 

(quantitative yield, 2.41 g). 

31P NMR (CDCl3, 202 MHz): ! 9.01, 8.61. 1H NMR (CDCl3, 500 MHz): ! 7.45-7.22 

(10H, m, PhO, OCH2Ph), 5.27-5.19 (2H, m, OCH2Ph), 4.11-4.00 (1H, m, NHCH), 1.52-

1.40 (1H, m, NHCHCH, 1.25-1.16 (2H, m, CH(CH3)CH2CH3), 0.94-0.75 (6H, m, CH3). 
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Synthesis of Naphthyl-(benzyloxy-L-isoleucinyl) phosphorochloridate [2.2n]. 

Chemical Formula: C23H25ClNO4P 

Molecular Weight: 445.8757 

 

Prepared according to standard procedure A, from naphthyl 

dichlorophosphate (1.85 g, 7.1 mmol), L-isoleucine benzyl ester 

tosylate (2.8 g, 7.1 mmol), anhydrous TEA (1.97 mL, 14.2 mmol) and anhydrous DCM 

(50 mL). The reaction mixture was stirred at -78 ºC for 30 min, then at room 

temperature for 1 h. The crude was purified by column chromatography eluting with 

ethyl acetate/petroleum ether = 70/30 to give an oil (70%, 2.26 g). 

31P NMR (CDCl3, 202 MHz): ! 9.40, 8.98. 1H NMR (CDCl3, 500 MHz): ! 8.09-7.29 

(12H, m, Naph, OCH2Ph), 5.25-5.23 (2H, m, OCH2Ph), 4.20-4.17 (1H, m, NHCH), 

1.54-1.42 (1H, m, NHCHCH), 1.26-1.14 (2H, m, CHCH(CH3)CH2CH3), 1.00 (1.5 H, d, 

J = 6.8 Hz, CHCH3 of one diasteroisomer), 0.97 (1.5H, d, J = 6.8 Hz, CHCH3 of one 

diasteroisomer), 0.91 (3H, t, J = 7.4 Hz, CH2CH3). 

Synthesis of phenyl-(benzyloxy-L-prolinyl) phosphorochloridate [2.2o]. 

Chemical Formula: C18H19ClNO4P 

Molecular Weight: 379.7745 

Prepared according to standard procedure A, from phenyl 

dichlorophosphate (3.09 mL, 20.68 mmol), L-proline benzyl ester 

tosyltate  (5.00 g, 20.68 mmol), anhydrous TEA (5.76 mL, 41.36 mmol) and anhydrous 

DCM (100 mL). The reaction mixture was stirred at -78 ºC for 30 min, then at room 

temperature for 1 h. The crude product was obtained as an oil (quantitative, 7.85 g).  

31P NMR (CDCl3, 202 MHz): ! 7.78, 7.72. 1H NMR (CDCl3, 500 MHz): ! 7.40-7.19 

(10H, m, PhO, OCH2Ph), 5.25-5.15 (2H, m, OCH2Ph), 4.58-4.55 (0.5H, m, NCH of one 

diastereoisomer), 4.49-4.45 (0.5H, m, NCH, of one diastereoisomer), 3.64-3.45 (2H, m, 

NCH2), 2.31-2.21 (1H, m, NCHCH2), 2.18-2.10 (1H, m, NCHCH2), 2.09-1.92 (2H, m, 

NCHCH2CH2). 
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Synthesis of Naphthyl-(benzyloxy-L-phenylalaninyl) phosphorochloridate [2.2p]. 

Chemical Formula: C26H23ClNO4P 

Molecular Weight: 479.8919 

Prepared according to standard procedure A, from naphthyl 

dichlorophosphate (2.7 g, 10.28 mmol), L-Phenylalanine benzyl 

ester tosylate (3 g, 10.28 mmol), anhydrous TEA (2.86 mL, 20.56 

mmol) and anhydrous DCM (60 mL). The reaction mixture was stirred at -78 ºC for 30 

min, then at room temperature for 1 h. The crude was purified by column 

chromatography eluting with ethyl acetate/petroleum ether = 70/30 to give an oil (60%, 

3 g). 

31P NMR (CDCl3, 202 MHz): 8.29, 8.16. 1H-NMR (CDCl3, 500 MHz): ! 8.05-6.80 

(17H, m, NaphO, CHCH2Ph, OCH2Ph), 5.19-4.97 (2H, m, OCH2Ph), 4.64-4.52 (1H, m, 

CHNH), 3.22-3.10 (2H, m, CHCH2Ph). 

9.3. Experimental procedures for chapter 3: synthesis of acyclovir 

ProTides 

Figure 9.1 reports the numbering assigned to different positions of ACV structure. In 

particular the side chain positions have been assigned in analogy to the structure of 2’-

deoxyguanosine.  
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Standard procedure B: Grignard (tButMgCl) method 

To a stirring suspension of N2-DMF ACV 3.3 (1 eq.) in anhydrous THF was added 

dropwise, under argon atmosphere tButMgCl, (2 eq.). The reaction mixture was stirred 

at room temperature for 30 min. Then, a solution of the appropriate aryl amino acid 

ester phosphorochloridate 2.2 (2 to 4 eq.) in anhydrous THF was added dropwise and 

the reaction mixture was stirred at room temperature overnight. The solvent was 
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removed under reduced pressure and the residue was purified by column 

chromatography eluting with DCM/MeOH in different proportions.  

Standard procedure C: N-methylimidazole (NMI) method 

To a stirring suspension of 3.3 (1 eq.) and the appropriate aryl amino acid ester 

phosphorochloridate 2.2 (3 to 4 eq.) in anhydrous THF/pyridine mixture (3/2) was 

added dropwise under an argon atmosphere NMI (5-10 eq.). The reaction mixture was 

stirred at room temperature overnight. The solvent was removed under reduced 

pressure. The residue was dissolved in DCM, washed with water (twice) and 0.5 N HCl 

(twice). The organic phase was dried over MgSO4, filtered, reduced to dryness and the 

crude purified by column chromatography eluting with DCM/MeOH in different 

proportions.  

Synthesis of N2-DMF-acyclovir: 

N2-(N,N-dimethylformamidine)-9-[(2-hydroxyethoxy)methyl]guanine [3.3] 

Chemical Formula: C11H16N6O3 

Molecular Weight: 280.2831 

 

To a suspension of ACV in anhydrous DMF (70 ml) 

was added N,N-dimethylformamide dimethyl acetale (11.75 ml, 88.8 mmol) and the 

reaction mixture was stirred at room temperetature for 24 h. After this period the 

suspension was filtered, and the solid was washed with diethyl ether to give a white 

solid (92%, 4.55g). 

1H NMR (DMSO, 500 MHz): ! 11.30 (1H, s, NH), 8.58 (1H, s, CHN(CH3)2), 7.94 (1H, 

s, H-8), 5.45 (2H, s, H-1’), 4.65 (1H, br s, OH), 3.53-3.49 (4H, m, H-4’, H-5’), 3.18-

3.04 (6H, 2s, N(CH3)2). 

Synthesis of N2-DMF-acyclovir-[phenyl(benzyloxyglicinyl)] phosphate [3.4a]. 

Chemical Formula: C26H30N7O7P 

Molecular Weight: 583.5329 

Prepared according to standard procedure C 

using 3.3 (1.00 g, 3.57 mmol) in a 3/2 mixture of 

THF/pyridine (50 mL), 2.2f (3.64 g, 10.70 

mmol) dissolved in anhydrous THF (10 mL) and 

NMI (0.85 ml, 10.70 mmol). The reaction mixture was stirred at room temperature 
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overnight. The solvent was removed under reduced pressure. The residue was purified 

by column chromatography, gradient elution of DCM/MeOH (98/2, then 97/3, then 

96/4, then 95/5) to give a white solid (81%, 1.69 g).  

31P NMR (MeOD, 202 MHz): ! 4.78 1H NMR (MeOD, 500 MHz): ! 8.70 (1H, s, 

NCHN(CH3)2), 7.92 (1H, s, H-8), 7.39-7.28 (7H, m, PhO, OCH2Ph), 7.20-7.15 (3H, m, 

PhO, OCH2Ph), 5.53 (2H, s, H-1’), 5.16 (2H, s, OCH2Ph), 4.29-4.17 (2H, m, H-5’), 

3.80-3.74 (4H, m, H-4’, NHCH2), 3.17, 3.11 (6H, 2s, N(CH3)2). 

Synthesis of acyclovir-[phenyl(benzyloxyglicinyl)] phosphate [3.2a]. 

Chemical Formula: C23H25N6O7P 

Molecular Weight: 528.4544 

A solution of 3,4a (1.69 g, 2.89 mmol) in isopropanol 

(60 mL) was stirred under reflux for 48 h. The solvent 

was then removed under reduced pressure and the 

residue was purified by column chromatography 

gradient elution of DCM/MeOH = 98/2, then 96/4, then 94/6. The product was purified 

by preparative reverse phase HPLC (gradient elution of H20/MetOH from 100/0 to 

20/80 in 5 min, isocratic 20/80 for 10 min, from 20/80 to 0/100 in 10 min, isocratic 

0/100 for 5 min) to give a white solid (2%, 0.031 g).  

31P NMR (MeOD, 202 MHz): ! 4.77. 1H NMR (MeOD, 500 MHz): ! 7.81 (1H, s, H-8), 

7.37-7.31 (7H, m, PhO, OCH2Ph), 7.18-7.16 (3H, m, PhO, OCH2Ph), 5.44 (2H, s, H-

1’), 5.17 (2H, s, OCH2Ph), 4.26-4.16 (2H, m, H-5’), 3.80 (1H, s, NHCH2), 3.77-3.76 

(3H, m, H-4’, NHCH2). 
13C NMR (MeOD, 126 MHz): ! 43.91 (NHCH2), 67.11 (d, JC–P 

= 5.40 Hz, C-5’), 67.95 (OCH2Ph), 69.37 (d, JC–P = 7.40 Hz, C-4’), 73.66 (C-1’), 

117.57, 121.43, 121.47, 126.10, 129.37, 129.43, 129.58, 130.73 (C-5, PhO, OCH2Ph), 

137.23 (‘ipso’ OCH2Ph), 139.74 (C-8), 152.31 (d, JC–P = 6.00 Hz, ipsoPhO), 153.23 (C-

4), 155.67 (C-2), 159.39 (C-6), 172.31 (d, JC–P = 4.90 Hz, COOCH2Ph). EI MS= 

529.1617 (M+H). Elemental analysis calculated for C23H25N6O7P"H2O: C, 50.55; H, 

4.98; N, 15.38. Found: C, 50.97; H, 4.73; N, 15.31. 
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Synthesis of N2-DMF-acyclovir-[phenyl-(benzyloxydimethylglicinyl)] phosphate 

[3.4b]. 

Chemical Formula: C28H34N7O7P 

Molecular Weight: 611.5860 

Prepared according to standard procedure B, 

from 3.3 (0.50 g, 1.78 mmol) in anhydrous THF 

(20 mL), tButMgCl (1.0 M THF solution, 3.70 

mL, 3.70 mmol), 2.2g (2.01 g, 5.34 mmol) in 

anhydrous THF (10 mL). The reaction mixture was stirred at room temperature 

overnight. The solvent was removed under reduced pressure and the residue was 

purified by column chromatography, gradient elution of DCM/MeOH = 98/2, then 96/4 

to give a white solid (93%, 1.02 g). 

 

31P NMR (MeOD, 202 MHz): ! 2.17. 1H NMR (MeOD, 500 MHz): ! 8.69 (1H, s, 

NCHN(CH3)2), 7.91 (1H, s, H-8), 7.40-7.25 (7H, m, PhO, OCH2Ph), 7.17-7.15 (3H, m, 

PhO, OCH2Ph), 5.53 (2H, s, H-1’), 5.19-5.06 (2H, m, OCH2Ph), 4.18-4.12 (2H, m, H-

5’), 3.77-370 (2H, m, H-4’), 3.18 (3H, s, N(CH3)2), 3.12 (3H, s, N(CH3)2), 1.48, 1.47 

(6H, 2s, C(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 27.42 (d, JC–P = 6.60 Hz, CH3), 27.58 

(d, JC–P = 6.60 Hz, CH3), 35.38 (NCHN(CH3)2), 41.51 (NCHN(CH3)2), 57.98 (C(CH3)2), 

67.02 (d, JC–P = 5.60 Hz, C-5’), 68.20 (OCH2Ph), 69.43 (d, JC–P = 7.40 Hz, C-4’), 73.69 

(C-1’), 120.35, 121.47, 121.51, 125.99, 129.31, 129.58, 130.68 (C-5, PhO, OCH2Ph), 

137.36 (‘ipso’ OCH2Ph), 140.62 (C-8), 152.28, 152.33 (ipsoPhO, C-4), 159.37 (C-2), 

159.90 (NCHN(CH3)2), 176.51 (d, JC–P = 3.70 Hz, COOCH2Ph). EI MS= 612.2316 

(M+H). Anal. Calcd for C28H34N7O7P·0.5H2O: C, 54.19; H, 5.68; N, 15.80. Found: C, 

54.16; H, 5.61; N, 15.70. 

Synthesis of acyclovir [phenyl(benzyloxy-dimethylglicinyl)] phosphate [3.2b]. 

Chemical Formula: C25H29N6O7P 

Molecular Weight: 556.5075 

A solution of 3.4b (1.02 g, 1.65 mmol) in isopropanol 

(50 mL) was stirred under reflux for 48 h. The solvent 

was then removed under reduced pressure and the 

residue was purified by column chromatography, 

gradient elution of DCM/MeOH (98/2, then 96/4, then 94/6). The residue was then 
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triturated with ether, filtered and washed with water to give a white solid (14%, 0.13 g). 

31P NMR (MeOD, 202 MHz): ! 2.13. 1H NMR (MeOD, 500 MHz): ! 7.81 (1H, s, H-8), 

7.39-7.29 (7H, m, PhO, OCH2Ph), 7.25-7.14 (3H, m, PhO, OCH2Ph), 5.43 (2H, s, H-

1’), 5.17-5.09 (2H, m, OCH2Ph), 4.15-4.12 (2H, m, H-5’), 3.74-3.69 (2H, m, H-4’), 

1.50, 1.49 (6H, 2s, C(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 27.37 (d, JC–P = 4.80 Hz, 

C(CH3)2), 27.57 (d, JC–P = 6.60 Hz, C(CH3)2), 57.99 (C(CH3)2), 67.01 (d, JC–P = 5.70 Hz, 

C-5’), 68.22 (OCH2Ph), 69.46 (d, JC–P = 7.50 Hz, C-4’), 73.61 (C-1’), 117.52, 121.34, 

121.38, 121.47, 121.51, 125.96, 129.06, 129.14, 129.29, 129.34, 129.52, 129.56, 

130.06, 130.66 (C-5, PhO, OCH2Ph), 137.36 (‘ipso’ OCH2Ph), 139.74 (C-8), 152.31 (d, 

JC–P = 7.30, ipsoPhO), 153.45 (C-4), 155.68 (C-2), 176.54 (d, JC–P = 3.80, COOCH2Ph). 

EI MS= 557.1891 (M+H). HPLC = H2O/ACN from 100/0 to 0/100 in 30 min = 

retention time 16.37 min; H2O/MeOH 100/0 to 20/80 in 5 min, 20/80 isocratic 10 min, 

then to 0/100 in 10 min = retention time 18.19 min. 

Synthesis of N2-DMF-acyclovir-[phenyl(benzyloxy-L-valinyl)] phosphate [3.4c]. 

Chemical Formula: C29H36N7O7P 

Molecular Weight: 625.6126 

Prepared according to Standard Procedure C, 

from 3.3 (0.40 g, 1.43 mmol) in anhydrous THF 

(20 mL), tBuMgCl (1.0 M THF solution, 2.86 

mL, 2.86 mmol), 2.2i (1.63 g, 4.29 mmol) in anhydrous THF (10 mL). The reaction 

mixture was stirred at room temperature overnight. The residue was purified by column 

chromatography gradient elution of DCM/MeOH = 98/2 then 96/4 then 94/6, to give a 

white solid (57%, 0.51 g).  

31P NMR (MeOD, 202 MHz): ! 4.52, 4.18. 1H NMR (MeOD, 500 MHz): ! 8.68 (1H, s, 

NCHN(CH3)2), 8.03, 7.97 (1H, 2s, H-8), 7.38-7.11 (10H, m, PhO, OCH2Ph), 5.52, 5.50 

(2H, 2s, H-1’), 5.10, 5.03 (2H, 2s, OCH2Ph), 4.16 (2H, s, H-5’), 3.76-3.64 (3H, m, 

NHCH, H-4’), 3.15, 3.10 (6H, 2s, N(CH3)2), 2.03-1.99 (0.5H, m, CH(CH3)2 of one 

diastereoisomer), 1.93-1.91 (0.5H, m, CH(CH3)2 of one diastereoisomer), 0.86-0.84 

(6H, m, CH(CH3)2). 
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Synthesis of acyclovir-[phenyl(benzyloxy-L-valinyl)] phosphate [3.2c]. 

Chemical Formula: C26H31N6O7P 

Molecular Weight: 570.5341 

A solution of 3.4c (0.51 g, 0.81 mmol) in isopropanol 

(20 mL) was stirred under reflux for 48 h. The solvent 

was then removed under reduced pressure and the 

residue was purified by column chromatography, 

gradient elution of DCM/MeOH (98/2 then 96/4 then 94/6) to give a white solid which 

was further purified by preparative reverse phase HPLC (gradient elution of 

H20/CH3CN from 100/0 to 0/100 in 30 min) to give a white solid (8%, 0.037 g). 

31P NMR (MeOD, 202 MHz): ! 4.51, 4.27. 1H NMR (MeOD, 500 MHz): ! 7.82-7.80 

(1H, 2s, H-8), 7.37-7.30 (7H, m, PhO, OCH2Ph), 7.19-7.14 (3H, m, PhO, OCH2Ph), 

5.45-5.43 (2H, 2s, H-1’), 5.14-5.13 (2H, m, OCH2Ph), 4.16-4.14 (2H, m, H-5’), 3.74-

3.66 (3H, m, H-4’, NHCH), 2.05-2.01 (1H, m, NHCHCH), 0.91-0.85 (6H, m, 

CH(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 18.15, 18.31 (2s, CH(CH3)2), 19.47, 19.51 

(2s, CH(CH3)2), 33.07 (d, JC–P = 7.20 Hz, CH(CH3)2) 33.25 (d, JC–P = 7.20 Hz, 

CH(CH3)2), 61.93, 61.97 (2s, NHCH), 67.05 (d, JC–P = 5.80 Hz, C-5’), 67.13 (d, JC–P = 

5.80 Hz, C-5’), 67.82 (OCH2Ph), 69.36 (d, JC–P = 4.70 Hz, C-4’), 69.42 (d, JC–P = 4.70 

Hz, C-4’), 73.63 (s, C-1’), 117.56, 121.34, 121.38, 121.48, 121.51, 126.00, 126.07, 

129.39, 129.41, 129.56, 129.57, 129.62, 130.69 (C-5, PhO, OCH2Ph), 137.23 (‘ipso’ 

OCH2Ph), 139.71 (C-8), 152.22 (d, JC–P = 4.70 Hz, ipsoPhO), 152.28 (d, JC–P = 4.70 Hz, 

ipsoPhO), 153.39 (C-4) 155.68 (C-2), 159.41 (C-6), 173.95 (d, JC–P = 3.50, 

COOCH2Ph), 174.08 (d, JC–P = 3.50, COOCH2Ph). EI MS= 593.1895 (M+Na). HPLC = 

H2O/ACN from 100/0 to 0/100 in 30 min = retention time 17.29 min; H2O/MeOH 100/0 

to 20/80 in 5 min, 20/80 isocratic 10 min, then to 0/100 in 10 min = retention time 

20.09, 20.47 min. 

Synthesis of N2-DMF-acyclovir-[phenyl(benzyloxy-L-leucinyl)] phosphate [3.4d]. 

Chemical Formula: C30H38N7O7P 

Molecular Weight: 639.6392 

 

Prepared according to Standard Procedure C, 

from 3.3 (0.40 g, 1.43 mmol) in anhydrous THF 

(20 mL), tBuMgCl (1.0 M THF solution, 2.86 
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mL, 2.86 mmol), 2.2k (2.25 g, 5.68 mmol) in anhydrous THF (10 mL). The reaction 

mixture was stirred at room temperature overnight. The residue was purified by column 

chromatography gradient elution of DCM/MeOH = 98/2 then 96/4 then 95/5, to give a 

white solid (65%, 0.59 g).  

31P NMR (MeOD, 202 MHz): ! 4.10, 3.57. 1H NMR (MeOD, 500 MHz): ! 8.69 (1H, s, 

NCHN(CH3)2), 7.95, 7.93 (1H, 2s, H-8), 7.44-6.98 (10H, m, PhO, OCH2Ph), 5.56-5.49 

(2H, m, H-1’), 5.12-5.11 (2H, m, OCH2Ph), 4.21-4.07 (2H, m, H-5’), 3.99-3.83 (1H, m, 

NHCH), 3.76-3.74 (2H, m, H-4’), 3.16 (3H, s, N(CH3)2), 3.11 (3H, s, N(CH3)2), 1.70-

1.61 (1H, m, CH2CH(CH3)2), 1.54-1.40 (2H, m, CH2CH(CH3)2), 0.91-0.76 (6H, m, 

CH2CH(CH3)2). 

Synthesis of acyclovir-[phenyl(benzyloxy-L-leucinyl)] phosphate [3.2d]. 

Chemical Formula: C27H33N6O7P 

Molecular Weight: 584.5607 

 

A solution of 3.4d (0.59 g, 0.93 mmol) in isopropanol 

(20 mL) was stirred under reflux for 48 h. The solvent 

was then removed under reduced pressure and the 

residue was purified by column chromatography 

gradient elution of DCM/MeOH = 98/2 then 96/4 then 94/6. The product was purified 

by preparative reverse phase HPLC (gradient elution of H20/CH3CN from 100/0 to 

0/100 in 30 min) to give a white solid (8%, 0.042 g). 

31P NMR (MeOD, 202 MHz): ! 4.05, 3.60. 1H NMR (MeOD, 500 MHz): ! 7.82, 7.79 

(1H, 2s, H-8), 7.38-7.37 (7H, m, PhO, OCH2Ph), 7.19-7.15 (3H, m, PhO, OCH2Ph), 

5.45, 5.42 (2H, 2s, H-1’), 5.12, 5.13 (2H, 2s, OCH2Ph), 4.16-4.07 (2H, m, H-5’), 3.95-

3.88 (1H, m, NHCH) 3.74-3.71 (2H, m, H-4’), 1.73-1.66 (0.5H, m, CH2CH(CH3)2 of 

one diastereoisomer), 1.62-1.46 (2.5H, m, CH2CH(CH3)2 of one diastereoisomer, 

CH2CH(CH3)2), 0.91-0.80 (6H, m, CH2CH(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 

21.75, 22.01, 23.12, 23.20 (4s, CH2CH(CH3)2), 25.40, 25.55 (2s, CH(CH3)2), 43.84 (d, 

JC–P = 7.40 Hz, CH2CH(CH3)2), 44.05 (d, JC–P = 7.40 Hz, CH2CH(CH3)2), 54.48, 54.70 

(2s, NHCH), 67.03 (d, JC–P = 1.80 Hz, C-5’), 67.07 (d, JC–P = 1.80 Hz, C-5’), 67.87, 

67.89 (2s, OCH2Ph), 69.35 (d, JC–P = 2.40 Hz, C-4’), 69.41 (d, JC–P = 2.40 Hz, C-4’), 

73.64 (s, C-1’), 117.54, 121.26, 121.30, 121.51, 121.54, 125.99, 126.09, 129.36, 129.38, 

129.47, 129.57, 129.59, 130.69, 130.71 (C-5, PhO, OCH2Ph), 137.27 (‘ipso’ OCH2Ph), 
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139.70, 139.74 (2s, C-8), 152.22 (d, JC–P = 2.10 Hz, ipsoPhO), 152.27 (d, JC–P = 2.10 Hz, 

ipsoPhO), 153.56 (C-4), 155.66 (C-2), 159.37, 159.38 (2s, C-6), 174.85 (d, JC–P = 2.80 

Hz, COOCH2Ph), 175.09 (d, JC–P = 2.80 Hz, COOCH2Ph). EI MS= 607.2051 (M+Na). 

Anal. Calcd for C27H33N6O7P!H2O: C, 53.82; H, 5.85; N, 13.95. Found: C, 54.16; H, 

5.62; N, 13.67.  

 

Synthesis of N
2-DMF-Acyclovir-[phenyl(benzyloxy-L-isoleucinyl)] phosphate 

[3.4e]. 

Chemical Formula: C30H38N7O7P 

Molecular Weight: 639.6392 

 

Prepared according to Standard Procedure C, 

from 3.3 (0.49 g, 1.75 mmol) in anhydrous THF 

(20 mL), tBuMgCl (1.0 M THF solution, 2.86 

mL, 2.86 mmol), 2.2m (2.41 g, 6.09 mmol) in anhydrous THF (10 mL). The reaction 

mixture was stirred at room temperature overnight. After this period tBuMgCl (1.0 M 

THF solution, 2. mL, 2 mmol) was added and the reaction mixture was stirred at room 

temperature for 6 h. The residue was purified by column chromatography gradient 

elution of DCM/MeOH = 98/2 then 96/4 then 95/5, to give a white solid (45%, 0.50 g).  

31P NMR (MeOD, 202 MHz): ! 4.44, 4.05. 1H NMR (MeOD, 500 MHz): ! 8.69 (1H, s, 

NCHN(CH3)2), 7.98-7.97 (1H, m, H-8), 7.33-7.16 (10H, m, PhO, OCH2Ph), 5.53-5.52 

(2H, 2s, H-1’), 5.14-5.06 (2H, m, OCH2Ph), 4.20-4.11 (2H, m, H-5’), 3.83-3.65 (3H, m, 

NHCH, H-4’), 3.15-3.10 (6H, 2s, N(CH3)2), 1.78-1.71 (1H, m, CH(CH3)CH2CH3), 1.52-

1.36 (1H, m, CH(CH3)CH2CH3), 1.16-1.07 (1H, m, CH(CH3)CH2CH3), 0.86-0.80 (6H, 

m, CH(CH3)CH2CH3). 

Synthesis of acyclovir-[phenyl(benzyloxy-L-isoleucinyl)] phosphate [3.2e]. 

Chemical Formula: C27H33N6O7P 

Molecular Weight: 584.5607 

 

A solution of 3.4e (0.50 g, 0.78 mmol) in isopropanol 

(20 mL) was stirred under reflux for 62 h. The solvent 

was then removed under reduced pressure and the 

residue was purified by column chromatography, 

gradient elution of DCM/MeOH = 98/2, then 96/4, then 94/6. The product was purified 
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by preparative reverse phase HPLC (gradient elution of H20/CH3CN from 100/0 to 

0/100 in 30 min) to give a white solid (3%, 0.015 g).  

31P NMR (MeOD, 202 MHz): ! 4.42, 4.13. 1H NMR (MeOD, 500 MHz): ! 7.82-7.80 

(1H, 2s, H-8), 7.39-7.30 (7H, m, PhO, OCH2Ph), 7.19-7.14 (3H, m, PhO, OCH2Ph), 

5.45-5.44 (2H, 2s, H-1’), 5.16-5.09 (2H, m, OCH2Ph), 4.17-4.12 (2H, m, H-5’), 3.79-

3.77 (1H, m, NHCH), 3.75-3.73 (2H, m, H-4’), 1.78-1.72 (1H, m, NHCHCH), 1.49-

1.39 (1H, m, CHCH2CH3), 1.19-1.08 (1H, m, CHCH2CH3), 0.88-0.80 (6H, m, 

CH(CH3)CH2CH3). 
13C NMR (MeOD, 126 MHz): ! 11.52, 11.55, 15.84, 15.88 (4s, 

CH(CH3)CH2CH3), 25.80, 25.90 (2s, CH(CH3)CH2CH3), 39.86 (d, JC–P = 6.90 Hz, 

CH(CH3)CH2CH3), 40.01 (d, JC–P = 6.90 Hz, CH(CH3)CH2(CH3), 60.72, 60.86 (2s, 

NHCH), 67.05 (d, JC–P = 5.00 Hz, C-5’), 67.10 (d, JC–P = 5.00 Hz, C-5’), 67.81 

(OCH2Ph), 69.36 (d, JC–P = 5.50 Hz, C-4’), 69.42 (d, JC–P = 5.50 Hz, C-4’), 73.63, 73.65 

(2s, C-1’), 117.54, 121.32, 121.36, 121.50, 121.54, 126.00, 126.08, 129.40, 129.41, 

129.55, 129.57, 129.65, 129.66, 130.68, 130.69 (C-5, PhO, OCH2Ph), 137.21 (‘ipso’ 

OCH2Ph), 139.72 (C-8), 152.22 (d, JC–P = 1.60 Hz, ipsoPhO), 152.27 (d, JC–P = 1.60 Hz, 

ipsoPhO), 153.21 (C-4), 155.67 (C-2), 159.38 (C-6), 173.91 (d, JC–P = 3.00 Hz, 

COOCH2Ph), 174.07 (d, JC–P = 3.00 Hz, COOCH2Ph). EI MS= 607.2044 (M+Na). 

HPLC: H2O/ACN from 100/0 to 0/100 in 20 min = retention time 15.00 min. 

Synthesis of N2-DMF-acyclovir-[phenyl(benzyloxy-L-prolinyl)] phosphate [3.4f]. 

Chemical Formula: C29H34N7O7P 

Molecular Weight: 623.5967 

 

Prepared according to standard procedure C 

using 3.3 (1.00 g, 3.57 mmol) in a 3/2 

mixture of THF/pyridine (50 mL), 2.2o (4.07 

g, 10.71 mmol) in anhydrous THF (10 mL) and NMI (0.85 mL, 10.70 mmol). The 

reaction mixture was stirred at room temperature overnight. The solvent was removed 

under reduced pressure. The residue was purified by column chromatography, gradient 

elution of DCM/MeOH = 98/2, then 97/3, then 96/4, to give a white solid (16%, 0.35 g). 

31P NMR (MeOD, 202 MHz): ! 1.73. 1H NMR (MeOD, 500 MHz): ! 8.68 (1H, s, 

NCHN(CH3)2), 7.94 (1H, s, H-8), 7.38-7.26 (7H, m, PhO, OCH2Ph), 7.19-7.13 (3H, m, 

PhO, OCH2Ph), 5.60-5.50 (2H, m, H-1’), 5.16-5.08 (2H, m, OCH2Ph), 4.31-4.22 (2H, 

m, H-5’, NCH), 4.19-4.14 (1H, m, H-5’), 3.79-3.78 (2H, m, H-4’), 3.27-3.19 (2H, m, 

NCH2), 3.17 (3H, s, N(CH3)2), 3.10 (3H, s, N(CH3)2) 2.15-2.07  (1H, m, NCHCH2), 
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1.98-1.91 (1H, m, NCHCH2), 1.89-1.73 (2H, m, NCHCH2CH2). 
13C NMR (MeOD, 126 

MHz): ! 26.18 (d, JC–P = 8.90 Hz, NCHCH2CH2CH2), 32.19 (d, JC–P = 8.90 Hz, 

NCHCH2), 35.36, 41.49 (2s, NCHN(CH3)2), 48.09 (d, JC–P = 4.50 Hz, NCH2), 62.17 (d, 

JC–P = 7.00 Hz, NCH), 67.08 (d, JC–P = 5.00 Hz, C-5’), 67.99 (OCH2Ph), 69.49 (d, JC–P = 

7.20 Hz, C-4’), 73.73 (C-1’), 120.38, 121.17, 121.21, 126.18, 129.34, 129.60, 130.87 

(C-5, PhO, OCH2Ph), 137.26 (‘ipso’ OCH2Ph), 140.68 (C-8), 152.03 (d, JC–P = 6.50 Hz, 

ipsoPhO), 154.54 (C-4), 159.41 (C-2), 159.55 (NCHN(CH3)2), 160.23 (C-6), 174.84 

(COOCH2Ph).  EI MS= 624.2338 (M+H). Elemental analysis Calculated for 

C29H34N7O7P·H2O: C, 54.29; H, 5.66, N, 15.28. Found: C, 54.63; H, 5.44; N, 15.23 

Synthesis of acyclovir-[phenyl(benzyloxy-L-prolinyl)] phosphate [3.2f]. 

Chemical Formula: C26H29N6O7P 

Molecular Weight: 568.5182 

A solution of 3.4f (0.35 g, 0.56 mmol) in isopropanol 

(20 mL) was stirred under reflux for 48 h. The solvent 

was then removed under reduced pressure and the 

residue was purified by column chromatography gradient elution of DCM/MeOH (98/2, 

then 96/4, then 94/6). The product was purified by preparative reverse phase HPLC 

(gradient eluition of H20/MeOH from 100/0 to 20/80 in 5 min, isocratic 20/80 for 10 

min, from 20/80 to 0/100 in 10 min, isocratic 0/100 for 5 min) to give a white solid as a 

pure diastereoisomer (4%, 0.020 g). 

31P NMR (MeOD, 202 MHz): ! 1.68. 1H NMR (MeOD, 500 MHz): ! 7.84 (1H, m H-8), 

7.38-7.27 (7H, m, PhO, OCH2Ph), 7.22-7.12 (3H, m, PhO, OCH2Ph), 5.49-5.44 (2H, m, 

H-1’), 5.17-5.11  (2H, m, OCH2Ph), 4.32-4.21 (2H, m, NCH, H-5’), 4.18-4.10 (1H, m, 

H-5’), 3.80-3.71 (2H, m, H-4’), 3.31-3.22 (2H, m, CHNCH2), 2.15-2.11 (1H, m, 

CH2NCHCH2CH2), 1.99-197 (1H, m, CH2NCHCH2CH2), 1.91-1.76 (2H, m, 

CH2NCHCH2CH2). 
13C NMR (MeOD, 126 MHz): ! 26.18 (d, JC–P = 8.90 Hz, 

NCHCH2CH2), 32.20 (d, JC–P = 4.60 Hz, NCHCH2), 48.12 (d, JC–P = 4.60 Hz, CHNCH2), 

62.17 (d, JC–P = 7.00 Hz, NCH), 67.08 (d, JC–P = 5.00 Hz, C-5’), 68.03 (OCH2Ph), 69.46 

(d, JC–P = 7.40 Hz, C-4’), 73.66 (C-1’), 117.60, 121.18, 121.22, 126.16, 129.36, 129.40, 

129.59, 130.85 (C-5, PhO, OCH2Ph), 137.25 (‘ipso’ OCH2Ph), 139.75 (C-8), 152.05 (d, 

JC–P = 6.70 Hz, ipsoPhO), 153.34 (C-4), 155.74 (C-2), 159.50 (C-6), 174.84 

(COOCH2Ph). EI MS= 569.1917 (M+H). HPLC = H2O/ACN from 100/0 to 0/100 in 30 

min = retention time 16.57 min; H2O/MeOH 100/0 to 20/80 in 5 min, 20/80 isocratic 10 
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min, then to 0/100 in 10 min = retention time 19.07 min. 

Synthesis of N
2-DMF-acyclovir-[1-naphthyl(benzyloxy-L-valinyl)] phosphate 

[3.4g]. 

Chemical Formula: C33H38N7O7P 

Molecular Weight: 675.6713 

Prepared according to Standard Procedure B, 

from 3.3 (0.70 g, 2.5 mmol) in anhydrous THF 

(35 mL), tBuMgCl (1.0 M THF solution, 5 mL, 

5 mmol), 2.2j (2.16 g, 5 mmol) in anhydrous THF (15 mL). The reaction mixture was 

stirred at room temperature overnight. After this period the solvent was removed under 

reduced pressure. The residue was purified by column chromatography gradient elution 

of DCM/MeOH = 98/2 then 96/4 then 94/6, to give a white solid (60%, 1 g). 

31P NMR (MeOD, 202 MHz): ! 4.96, 4.73. 1H NMR (MeOD, 500 MHz): ! 8.50 (1H, s, 

NCHN(CH3)2), 8.13-8.10 (1H, m, H-8 Naph), 7.97-7.82 (2H, m, H-8, H-6 Naph), 7.64-

7.63 (1H, m, H-2 Naph), 7.5-7.42 (2H, m, H-5 Naph, H-7 Naph), 7.35-7.22 (7H, m, 

Naph, OCH2Ph), 5.44 (2H, 1s, H-1’), 5.02 (2H, 1s, OCH2Ph), 4.25-4.20 (2H, m, H-5’), 

3.74-3.70 (3H, m, NHCH, H-4’), 3.03-2.99 (6H, m, N(CH3)2), 2.02-1.95 (1H, m, 

CH(CH3)2), 0.84-0.81 (6H, m, CH(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 18.38, 18.27 

(2s, CH(CH3)2), 19.55, 19.60 (2s, CH(CH3)2), 33.07 (d, JC–P = 7.20 Hz, CH(CH3)2) 33.23 

(d, JC–P = 7.20 Hz, CH(CH3)2), 35.34, 41.48 (2s, N(CH3)2), 62.03, 62.07 (2s, NHCH), 

67.24 (d, JC–P = 5.54 Hz, C-5’), 67.38 (d, JC–P = 5.54 Hz, C-5’), 67.80 (s, OCH2Ph), 

69.40, 69.46 (2s, C-4’), 73.72 (s, C-1’), 116.13, 116.15, 116.33, 116.36, 120.35, 122.74, 

122.86, 125.87, 125.92, 126.53, 127.42, 127.45, 127.78, 127.87, 128.84, 128.88, 

129.35, 129.40, 129.53, 129.54, 129.57 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, C-5 

Naph, C-6 Naph, C-7 Naph, C-8 Naph, OCH2Ph), 136.21 (‘ipso’ OCH2Ph), 137.11, 

137.14 (2s, C-8a Naph) 140.55 (s, C-8), 148.03 (d, JC–P = 7.50 Hz, ‘ipso’ ONaph), 

148.05 (d, JC–P = 7.50 Hz, ‘ipso’ ONaph) 152.36 (s, C-4), 159.24 (s, C-2), 159.77 (s, 

N(CH3)2), 160.18, (s, C-6), 173.86 (d, JC–P = 2.52 Hz, COOCH2Ph), 174.09 (d, JC–P = 

2.52 Hz, COOCH2Ph). EI MS= 676.26 (M+H+). HPLC = H2O/ACN from 90/10 to 

0/100 in 20 min = retention time 15.23 min; H2O/MeOH 90/10 to 20/80 in 5 min, 20/80 

isocratic 10 min, then to 0/100 in 5 min = retention time 12.45, 12.84 min. 
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Synthesis of acyclovir-[1-naphthyl(benzyloxy-L-valinyl)] phosphate [3.2g]. 

Chemical Formula: C30H33N6O7P 

Molecular Weight: 620.5928 

A solution of 3.4g (0.9 g, 1.33 mmol) in isopropanol (60 

mL) was stirred under reflux for 62 h. The solvent was 

then removed under reduced pressure and the residue 

was purified by column chromatography, gradient elution of DCM/MeOH (98/2 then 

96/4 then 94/6) to give a white solid which was further purified by preparative reverse 

phase HPLC (gradient elution of H2O/MeOH 90/10 to 20/80 in 5 min, 20/80 isocratic 

10 min, then to 0/100 in 5 min) to give a white solid (10%, 0.08 g). 

31P NMR (MeOD, 202 MHz): ! 4.79, 4.90. 1H NMR (MeOD, 500 MHz): ! 8.13-8.10 

(1H, m, H-8 Naph), 7.89-7.87 (1H, m, H-6 Naph), 7.77 (1H, s, H-8), 7.71-7.68 (1H, m, 

H-2 Naph), 7.55-7.51 (2H, m, H-5 Naph, H-7 Naph), 7.45-7.25 (7H, m, Naph, 

OCH2Ph), 5.39 (2H, 1s, H-1’), 5.05 (2H, 1s, OCH2Ph), 4.24-4.19 (2H, m, H-5’), 3.78-

3.73 (3H, m, NHCH, H-4’), 2.03-2.01 (1H, m, CH(CH3)2), 0.89-0.84 (6H, m, 

CH(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 18.23, 18.32 (2s, CH(CH3)2), 19.48, 19.52 

(2s, CH(CH3)2), 33.07 (d, JC–P = 7.30 Hz, CH(CH3)2) 33.27 (d, JC–P = 7.30 Hz, 

CH(CH3)2), 62.05, 62.09 (2s, NHCH), 67.26 (d, JC–P = 5.54 Hz, C-5’), 67.37 (d, JC–P = 

5.54 Hz, C-5’), 67.83 (s, OCH2Ph), 69.36 (d, JC–P = 7.18 Hz, C-4’), 69.45 (d, JC–P = 7.18 

Hz, C-4’), 73.68, 73.64 (2s, C-1’), 116.19, 116.22, 116.35, 116.38, 117.54, 117.59, 

122.75, 122.87, 125.87, 125.91, 126.51, 126.52, 127.40, 127.43, 127.74, 128.79, 

128.83, 129.33, 129.37, 129.49, 129.54, 129.57 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, 

C-5 Naph, C-6 Naph, C-7 Naph, C-8 Naph, OCH2Ph), 136.26 (‘ipso’ OCH2Ph), 137.13 

(s, C-8a Naph) 139.69 (s, C-8), 148.03 (d, JC–P = 7.56 Hz, ‘ipso’ ONaph), 148.06 (d, JC–P 

= 7.56 Hz, ‘ipso’ ONaph) 153.36 (s, C-4), 155.56 (s, C-2), 159.37 (s, C-6), 173.96 (d, 

JC–P = 2.52 Hz, COOCH2Ph), 174.10 (d, JC–P = 2.52 Hz, COOCH2Ph). EI MS= 621.2204 

(M+H+). HPLC = H2O/ACN from 90/10 to 0/100 in 20 min = retention time 14.19 min; 

H2O/MeOH 90/10 to 20/80 in 5 min, 20/80 isocratic 10 min, then to 0/100 in 5 min = 

retention time 11.59, 11.89 min. 
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Synthesis of N
2-DMF-acyclovir-[1-naphthyl(benzyloxy-L-leucinyl)] phosphate 

[3.4h]. 

Chemical Formula: C34H40N7O7P 

Molecular Weight: 689.6979 

Prepared according to Standard Procedure B, 

from 3.3 (0.45 g, 1.60 mmol) in anhydrous 

THF (20 mL), tBuMgCl (1.0 M THF solution, 

3.21 mL, 3.21 mmol), 2.2l (1.43 g, 3.21 mmol) in anhydrous THF (5 mL) and the 

reaction mixture was stirred at room temperature overnight. The residue was purified by 

column chromatography gradient elution of DCM/MeOH = 98/2 then 96/4 to give a 

white solid (65%, 0.73 g). 

31P NMR (MeOD, 202 MHz): ! 4.39, 3.87. 1H NMR (MeOD, 500 MHz): ! 8.51, 8.49 

(1H, 2s, NCHN(CH3)2), 8.29, 8.28 (1H, 2s, H-8 Naph), 8.14, 8.11 (1H, m, H-6 Naph), 

7.91, 7.89 (1H, 2s, H-8), 7.85-7.84 (1H, m, H-2 Naph), 7.78-7.77 (1H, m, H-5 Naph), 

7.66, 7.64 (1H, m, H-7 Naph), 7.50-7.19 (7H, m, Naph, OCH2Ph), 5.44, 5.41 (2H, 2s, 

H-1’), 5.06, 5.04 (2H, m, OCH2Ph), 4.25-4.13 (2H, m, H-5’), 3.99-3.92 (1H, m, 

NHCH), 3.74-3.71 (2H, m, H-4’), 3.03, 3.02, 3.00, 2.99 (6H, 4s, N(CH3)2) 1.64-1.57 

(0.5H, m, CH2CH(CH3)2 of one diastereoisomer), 1.51-1.30 (2.5H, m,  CH2CH(CH3)2 of 

one diastereoisomer, CH2CH(CH3)2), 0.80-0.66 (6H, m, CH2CH(CH3)2). 
13C NMR 

(MeOD, 126 MHz): ! 22.74, 22.93, 23.08, 23.22 (4s, CH2CH(CH3)2), 25.42, 25.60 (2s, 

CH(CH3)2), 35.39, 41.51 (2s, N(CH3)2), 43.81 (d, JC–P = 7.68 Hz, CH2CH(CH3)2), 44.03 

(d, JC–P = 7.68 Hz, CH2CH(CH3)2), 54.74, 54.85 (2s, NHCH), 67.28 (d, JC–P = 5.42 Hz, 

C-5’), 67.53 (OCH2Ph ), 67.88 (d, JC–P = 5.42 Hz, C-5’), 69.43 (d, JC–P = 3.49 Hz, C-4’), 

69.49 (d, JC–P = 3.49 Hz, C-4’), 73.76 (s, C-1’), 115.07, 116.06, 116.09, 116.43, 116.46, 

122.72, 122.87, 123.32, 123.79, 125.89, 125.99, 126.39, 126.53, 126.88, 127.12, 

127.49, 127.79, 127.81, 128.53, 128.88, 128.92, 129.19, 129.26, 129.39, 129.42, 

129.47, 129.56, 129.60 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, C-5 Naph, C-6 Naph, C-

7 Naph, C-8 Naph, OCH2Ph), 136.17, 136.26 (2s, ‘ipso’ OCH2Ph), 137.17 137.20 (2s, 

C-8a Naph), 138.37 (C-8), 148.02 (d, JC–P = 7.50, ‘ipso’ ONaph), 150.50 (d, JC–P = 7.50, 

‘ipso’ ONaph), 152.26, 152.58 (2s, C-4), 159.27 (s, C-2), 159.84 (s, N(CH3)2), 174.70 

(d, JC–P = 2.71 Hz, COOCH2Ph), 175.10 (d, JC–P = 2.71 Hz, COOCH2Ph). EI MS= 

712.26 (M+Na+). HPLC = H2O/ACN from 90/10 to 0/100 in 30 min, then 0/100 

isocratic for 5 min = retention time 19.00 min; H2O/MeOH 90/10 to 0/100 in 30 min, 
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then 0/100 isocratic for 5 min = retention time 26.85, 27.01 min. 

Synthesis of acyclovir-[1-naphthyl(benzyloxy-L-leucinyl)] phosphate [3.2h] 

Chemical Formula: C34H40N7O7P 

Molecular Weight: 689.6979 

A solution of 3.4h (0.73 g, 1.06 mmol) in isopropanol 

(20 mL) was stirred under reflux for 62 h. The solvent 

was then removed under reduced pressure and the 

residue was purified by column chromatography gradient elution of DCM/MeOH = 

98/2 then 96/4 then 94/6. The product was purified by preparative reverse phase HPLC 

(gradient elution of H2O/MeOH 90/10 to 20/80 in 5 min, 20/80 isocratic 10 min, then to 

0/100 in 5 min) to give a white solid (21%, 0.14g). 

31P NMR (MeOD, 202 MHz): 4.49, 4.04. 1H NMR (MeOD, 500 MHz): ! 8.29, 8.28 (1H, 

2s, H-8 Naph), 8.15, 8.11 (1H, m, H-6 Naph), 7.86, 7.85 (1H, 2s, H-8), 7.85-7.84 (1H, 

m, H-2 Naph), 7.79-7.78 (1H, m, H-5 Naph), 7.69-7.66 (1H, m, H-7 Naph), 7.62-7.20 

(7H, m, Naph, OCH2Ph), 5.36, 5.33 (2H, 2s, H-1’), 5.06, 5.05 (2H, m, OCH2Ph), 4.23-

4.13 (2H, m, H-5’), 3.99-3.94 (1H, m, NHCH), 3.72-3.68 (2H, m, H-4’), 1.67-1.60 

(0.5H, m, CH2CH(CH3)2 of one diastereoisomer), 1.55-1.30 (2.5H, m,  CH2CH(CH3)2 of 

one diastereoisomer, CH2CH(CH3)2), 0.82-0.67 (6H, m, CH2CH(CH3)2). 
13C NMR 

(MeOD, 126 MHz): ! 22.74, 22.95, 23.08, 23.22 (4s, CH2CH(CH3)2), 25.42, 25.63 (2s, 

CH(CH3)2), 43.82  (d, JC–P = 7.86, Hz CH2CH(CH3)2), 44.08 (d, JC–P = 7.86 Hz, 

CH2CH(CH3)2), 54.75, 54.85 (2s, NHCH), 67.30 (d, JC–P = 5.47 Hz, C-5’), 67.54 

(OCH2Ph), 67.92 (d, JC–P = 5.47 Hz, C-5’), 69.42 (d, JC–P = 7.44 Hz, C-4’), 69.48 (d, JC–P 

= 7.44 Hz, C-4’), 73.73 (s, C-1’), 115.10, 115.12, 116.12, 116.15, 116.48, 116.50, 

122.73, 122.88, 123.37, 123.79, 125.90, 125.99, 126.40, 126.56, 126.88, 127.12, 

127.46, 127.49, 127.79, 128.52, 128.85, 128.89, 129.18, 129.26, 129.39, 129.40, 

129.43, 129.45, 129.55, 129.59 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, C-5 Naph, C-6 

Naph, C-7 Naph, C-8 Naph, OCH2Ph), 136.18, 136.26 (2s, ‘ipso’ OCH2Ph), 137.17 

137.23 (2s, C-8a Naph), 139.88 (C-8), 148.00 (d, JC–P = 7.39 Hz, ‘ipso’ ONaph), 150.50 

(d, JC–P = 7.39 Hz, ‘ipso’ ONaph), 155.64 (C-4), 159.50 (s, C-2), 174.90 (d, JC–P = 2.50, 

COOCH2Ph), 175.10 (d, JC–P = 2.50, COOCH2Ph). EI MS= 657.22 (M+Na+). HPLC = 

H2O/ACN from 100/0 to 0/100 in 20 min, then 0/100 isocratic for 5 min = retention 

time min 15.00; H2O/MeOH 90/10 to 0/100 in 25 min, then 0/100 isocratic for 5 min = 
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retention time 22.91 min. 

Synthesis of N2-DMF-acyclovir-[1-naphthyl(benzyloxy-L-isoleucinyl)] phosphate 

[3.4i]. 

Chemical Formula: C34H40N7O7P 

Molecular Weight: 689.6979 

Prepared according to Standard Procedure B, 

from 3.3 (0.40 g, 1.43 mmol) in anhydrous 

THF (20 mL), tBuMgCl (1.0 M THF 

solution, 2.85 mL, 2.85 mmol), and 2.2n 

(1.27 g, 2.85 mmol) in anhydrous THF (5 mL). The reaction mixture was stirred at 

room temperature overnight. The residue was purified by column chromatography 

gradient elution of DCM/MeOH = 98/2 then 96/4 to give a white solid (47%, 0.47 g). 

31P NMR (MeOD, 202 MHz): ! 4.87, 4.56. 1H NMR (MeOD, 500 MHz): ! 8.55 (1H, bs, 

NCHN(CH3)2), 8.13, 8.11 (1H, 2s, H-8 Naph), 7.88-7.85 (2H, m, H-6 Naph, H-8), 7.67-

7.65 (1H, m, H-2 Naph), 7.52-7.46 (2H, m, H-5 Naph, H-7 Naph), 7.43-7.24 (7H, m, 

Naph, OCH2Ph), 5.46 (2H, bs, H-1’), 5.08-4.96 (2H, m, OCH2Ph), 4.29-4.16 (2H, m, H-

5’), 3.83-3.74 (3H, m, H-4’, NHCH), 3.06, 3.04 (3H, 2s, N(CH3)2), 3.03 (3H, bs, 

N(CH3)2) 1.74-1.69 (1H, m, CH(CH3)CH2CH3), 1.44-1.35 (1H, m, CH(CH3)CH2CH3), 

1.12-1.03 (1H, m, CH(CH3)CH2CH3), 0.81 (3H, m, CH(CH3)CH2CH3), 0.76-0.73 (3H, 

m, CH(CH3)CH2CH3). 
13C NMR (MeOD, 126 MHz): ! 11.55, 11.64 (2s, 

CH(CH3)CH2CH3), 15.84, 15.94 (2s, CH(CH3)CH2CH3), 25.89, 25.95 (2s, 

CH(CH3)CH2CH3), 35.35 (N(CH3)2), 39.91 (d, JC–P = 7.08 Hz, CH(CH3)CH2CH3), 39.99 

(d, JC–P = 7.08 Hz, CH(CH3)CH2(CH3), 41.49 (N(CH3)2), 60.84, 60.96 (2s, NHCH), 

67.26 (d, JC–P = 5.44 Hz, C-5’), 67.37 (d, JC–P = 5.44 Hz, C-5’), 67.80 (OCH2Ph), 69.42, 

69.48 (2s, C-4’), 73.73 (2s, C-1’), 116.11, 116.14, 116.39, 116.41, 120.36, 122.75, 

122.88, 125.88, 125.95, 126.50, 126.53, 127.43, 127.46, 127.78, 127.79, 128.85, 

128.88, 129.37, 129.42, 129.53, 129.58, 129.62 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, 

C-4a Naph, C-5 Naph, C-6 Naph, C-7 Naph, C-8 Naph, OCH2Ph), 136.23 (‘ipso’ 

OCH2Ph), 137.11 137.14 (2s, C-8a Naph), 140.56 (C-8), 148.00 (d, JC–P = 7.26 Hz, 

‘ipso’ ONaph), 148.04 (d, JC–P = 7.26 Hz, ‘ipso’ ONaph), 152.39 (C-4), 159.27 (C-2), 

159.80 (N(CH3)2), 160.19 (C-6), 173.80 (d, JC–P = 2.75 Hz, COOCH2Ph), 174.00 (d, JC–P 

= 2.75 Hz, COOCH2Ph). EI MS= 712.267 (M+Na+). HPLC = H2O/ACN from 90/10 to 

0/100 in 30 min, then 0/100 isocratic for 5 min = retention time 19.00 min; H2O/MeOH 
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90/10 to 0/100 in 30 min, then 0/100 isocratic for 5 min = retention time 24.24, 24.61 

min. 

Synthesis of acyclovir-[1-naphthyl(benzyloxy-L-isoleucinyl)] phosphate [3.2i]. 

Chemical Formula: C34H40N7O7P 

Molecular Weight: 689.6979 

A solution of 3.4i (0.44 g, 0.64 mmol) in 

isopropanol (20 mL) was stirred under reflux for 62 

h. The solvent was then removed under reduced 

pressure and the residue was purified by column 

chromatography gradient elution of DCM/MeOH = 98/2, then 96/4, then 94/6. The 

product was purified by preparative reverse phase HPLC (gradient elution of 

H2O/MeOH 90/10 to 20/80 in 5 min, 20/80 isocratic 10 min, then to 0/100 in 5 min) to 

give a white solid (17%, 0.07g). 

31P NMR (MeOD, 202 MHz): ! 4.82, 4.63. 1H NMR (MeOD, 500 MHz): ! 8.16-8.11 

(1H, m, H-8 Naph), 7.88-7.87 (1H, 2s, H-6 Naph), 7.77 (bs, H-8), 7.70-7.68 (1H, m, H-

2 Naph), 7.54-7.50 (2H, m, H-5 Naph, H-7 Naph), 7.43-7.20 (7H, m, Naph, OCH2Ph), 

5.38 (2H, bs, H-1’), 5.09-4.98 (2H, m, OCH2Ph), 4.24-4.19 (2H, m, H-5’), 3.84-3.81 

(1H, m, NHCH), 3.75-3.73 (2H, m, H-4’), 1.77-1.70 (1H, m, CH(CH3)CH2CH3), 1.47-

1.37 (1H, m, CH(CH3)CH2
CH3), 1.14-1.05 (1H, m, CH(CH3)CH2CH3), 0.87-0.85 (3H, 

m, CH(CH3)CH2CH3), 0.79-0.74 (3H, m, CH(CH3)CH2CH3). 
13C NMR (MeOD, 126 

MHz): ! 11.50, 11.59 (2s, CH(CH3)CH2CH3), 15.79, 15.87 (2s, CH(CH3)CH2CH3), 

25.90, 25.97 (2s, CH(CH3)CH2CH3), 39.92 (d, JC–P = 7.12 Hz, CH(CH3)CH2CH3), 40.06 

(d, JC–P = 7.12 Hz, CH(CH3)CH2(CH3), 60.84, 60.98 (2s, NHCH), 67.27 (d, JC–P = 5.46 

Hz, C-5’), 67.36 (d, JC–P = 5.46 Hz, C-5’), 67.83 (OCH2Ph), 69.38 (d, JC–P = 7.24 Hz, C-

4’), 69.47 (d, JC–P = 7.24 Hz, C-4’), 73.66, 73.70 (2s, C-1’), 116.17, 116.19, 116.40, 

116.42, 117.53, 117.57, 122.75, 122.88, 123.10, 123.85, 125.88, 125.94, 126.26, 

126.52, 126.87, 127.00, 127.42, 127.44, 127.76, 128.81, 128.84, 129.36, 129.39, 

129.43, 129.51, 129.52, 129.62 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, C-5 Naph, C-6 

Naph, C-7 Naph, C-8 Naph, OCH2Ph), 136.28 (‘ipso’ OCH2Ph), 137.11 137.12 (2s, C-

8a Naph), 139.71 (C-8), 148.00 (d, JC–P = 8.03 Hz, ‘ipso’ ONaph), 153.38 (C-4), 155.64, 

155.65 (2s, C-2), 159.38 (C-6), 173.90 (d, JC–P = 3.48 Hz, COOCH2Ph), 174.10 (d, JC–P 

= 3.48 Hz, COOCH2Ph). EI MS= 657.22 (M+Na+). HPLC = H2O/ACN from 100/0 to 

0/100 in 20 min, then 0/100 isocratic for 5 min = retention time min 14.92; H2O/MeOH 
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90/10 to 0/100 in 25 min, then 0/100 isocratic for 5 min = retention time 22.77, 23.00 

min. 

Synthesis of N2-DMF-acyclovir-[phenyl(benzyloxy-L-phenylalaninyl)] phosphate 

[3.4j]  

Chemical Formula: C37H38N7O7P 

Molecular Weight: 723.7141 

Prepared according to Standard Procedure B, 

from 3.3 (0.7 g, 2.5 mmol) in anhydrous THF 

(30 mL), tBuMgCl (1.0 M THF solution, 5 mL, 

5 mmol), and 2.2p (2.4 g, 5 mmol) in anhydrous THF (3 mL). The reaction mixture was 

stirred at room temperature overnight. The residue was purified by column 

chromatography gradient elution of DCM/MeOH = 98/2 then 96/4, then 94/6 to give to 

give a white solid (50%, 0.72 g).  

31P-NMR (MeOD, 202 MHz): ! 3.85, 3.73. 1H-NMR (MeOD, 500 MHz): ! 8.41, 8.39 

(1H, 2s, NCHN(CH3)2), 8.26, 8.24 (1H, 2s, H-8 Naph), 8.04, 8.01 (1H, m, H-6 Naph), 

7.87, 7.85 (1H, 2s, H-8), 7.71-7.70 (1H, m, H-2 Naph), 7.57-7.56 (1H, m, H-5 Naph), 

7.45, 6.82 (13H, m, Naph, OCH2Ph, CHCH2Ph), 5.34, 5.33 (2H, 2s, H-1’), 4.99-4.93 

(2H, m, COOCH2Ph), 4.23-4.14 (1H, m, CHCH2Ph), 4.07-3.95 (2H, m, H-5’), 3.61-3.57 

(2H, m, H-4’), 3.02-2.99 (6H, m, N(CH3)2), 2.92-2.69 (2H, m, CHCH2Ph). 

Synthesis of acyclovir-[phenyl(benzyloxy-L-phenylalaninyl)] phosphate [3.2j]. 

Chemical Formula: C34H33N6O7P 

Molecular Weight: 668.6356 

A solution of 3.4j (0.34 g, 0.47 mmol) in isopropanol 

(20 mL) was stirred under reflux for 62 h. The solvent 

was then removed under reduced pressure and the 

residue was purified by flash column chromatography, gradient elution of DCM/MeOH 

(98/2 then 96/4 then 94/6), to give a white solid which was further purified by 

preparative reverse phase HPLC (gradient elution of H20/CH3CN from 90/10 to 0/100 in 

25 min) to give a white solid (16%, 0.05 g).  

31P-NMR (MeOD, 202 MHz): ! 3.86, 3.77. 1H-NMR (MeOD, 500 MHz): ! 8.05, 8.00 

(1H, 2s, H-8 Naph), 7.85, 7.84 (1H, m, H-6 Naph), 7.73 (1H, bs, H-8), 7.66-7.64 (1H, 

m, H-2 Naph), 7.52-7.45 (2H, m, H-5 Naph, H-7 Naph), 7.34, 7.08 (12H, m, Naph, 
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OCH2Ph, CHCH2Ph), 5.31, 5.30 (2H, 2s, H-1’), 5.05-4.98 (2H, m, COOCH2Ph), 4.25-

4.18 (1H, m, CHCH2Ph), 4.00-3.75 (2H, m, H-5’ of one diastereoisomer), 3.59 (2H, br 

s, H-4’), 3.08-3.01 (1H, m, CHCH2Ph of one diastereoisomer), 2.89-2.81 (1H, m, 

CHCH2Ph of one diastereoisomer). 13C-NMR (MeOD, 125 MHz): ! 40.91 (d, JC–P = 

8.14 Hz, CHCH2Ph), 40.98 (d, JC–P = 8.14 Hz, CHCH2Ph), 57.89, 58.08 (2s, CHCH2Ph), 

67.01 (d, JC–P = 5.53 Hz, C-5’), 67.08 (d, JC–P = 5.53 Hz, C-5’), 68.01, 68.06 (2s, 

COOCH2Ph), 69.28, 69.33 (2s, C-4’), 73.64 (C-1’), 116.15, 116.18, 116.21, 122.80, 

122.83, 125.88, 126.54, 127.42, 127.44, 127.73, 127.91, 127.94, 128.78, 128.81, 

129.32, 129.47, 129.50, 129.52, 129.54, 130.55, 130.66 (C-5, NaphO, OCH2Ph, 

CHCH2Ph), 136.21, 136.23(2s, ‘ipso’ CHCH2Ph), 136.93, 136.98 (2s, ‘ipso’ OCH2Ph), 

137.95 138.09 (2s, C-8a Naph), 139.69 (C-8), 147.90 (d, JC–P = 7.25 Hz, ‘ipso’ ONaph), 

148.00 (d, JC–P = 7.25 Hz, ‘ipso’ ONaph), 153.32 (C-4), 155.62 (C-2), 159.38 (C-6), 

173.86 (d, JC–P = 3.53 Hz, COOCH2Ph), 173.94 (d, JC–P = 3.53 Hz, COOCH2Ph). EI 

MS= 691.21 (M+Na+), 707.18 (M+K+). HPLC = H2O/ACN from 100/0 to 30/70 in 10 

min, then 30/70 isocratic for 10 min, from 30/70 to 0/100 in 5 min, then 0/100 isocratic 

for 5 min = retention time min 15.35; H2O/MeOH 90/10 to 0/100 in 25 min, then 0/100 

isocratic for 5 min = retention time 22.77, 23.00 min. 

Synthesis of N
2-DMF-acyclovir-[1-phenyl(tert-butoxy-L-alaninyl)] phosphate 

[3.4k]. 

Chemical Formula: C24H34N7O7P 

Molecular Weight: 563.5432 

 

Prepared according to Standard Procedure B, 

from 3.3 (0.40 g, 1.43 mmol) in anhydrous THF 

(15 mL), tBuMgCl (1.0 M THF solution, 2.86 mL, 2.86 mmol), 2.2c (1.37 g, 4.32 

mmol) in anhydrous THF (10 mL). The reaction mixture was stirred at room 

temperature overnight. The residue was purified by flash column chromatography 

gradient elution of DCM/MeOH = 98/2 then 96/4, to give a white solid (75%, 0.60 g).  

31P-NMR (MeOD, 202 MHz): ! 3.91, 3.73. 1H-NMR (MeOD, 500 MHz): ! 8.63 (1H, s, 

NCHN(CH3)2), 7.95, 7.93 (1H, 2s, H-8), 7.34-7.31 (2H, m, PhO), 7.20-7.15 (3H, m, 

PhO), 5.56, 5.55 (2H, 2s, H-1’), 4.28-4.20 (2H, m, H-5’), 3.85-3.76 (3H, m, H-4’, 

CHCH3), 3.17, 3.08 (3H, 2s, N(CH3)2), 3.07, 3.06 (3H, 2s, N(CH3)2), 1.43-1.42 (9H, m, 

C(CH3)3), 1.31-1.26 (3H, m, CHCH3). 
13C-NMR (MeOD, 125 MHz): ! 20.63 (d, JC–P = 
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7.03 Hz, CHCH3), 20.74 (d, JC–P = 7.03 Hz, CHCH3), 28.31 (C(CH3)3), 35.46, 41.63 (2s, 

N(CH3)2), 52.14, 52.26 (2s, CHCH3), 67.07 (d, JC–P = 6.12 Hz, C-5’), 67.12 (d, JC–P = 

6.12 Hz, C-5’), 69.49 (d, JC–P = 3.74 Hz, C-4’), 69.55 (d, JC–P = 3.74 Hz, C-4’), 73.81 

(C-1’), 82.63, 82.66 (2s, C(CH3)3), 120.29, 121.43, 121.47, 121.49, 121.53, 126.11, 

130.78 (C-5, PhO), 140.67 (C-8), 152.22 (d, JC–P = 5.30 Hz, ‘ipso’PhO), 152.27 (d, JC–P 

= 5.30 Hz, ‘ipso’PhO), 153.85 (C-4), 159.33 (C-2), 159.92 (CHN(CH3)2), 160.19 (C-6), 

174.21 (d, JC–P = 5.90 Hz, COOC(CH3)3), 174.40 (d, JC–P = 5.90 Hz, COOC(CH3)3). EI 

MS = 564.23 (M+H), 586.22 (M+Na).  

Synthesis of acyclovir-[phenyl(tert-butoxy-L-alaninyl)] phosphate [3.2k].  

Chemical Formula: C21H29N6O7P 

Molecular Weight: 508.4647 

A solution of 3.4k (0.50 g, 0.89 mmol) in isopropanol 

(25 mL) was stirred under reflux for 50 h. After this 

period the solvent was removed under reduced pressure 

and the residue was purified by flash column 

chromatography, gradient elution of DCM/MeOH = 98/2 then 96/4 then 94/6 then 92/8. 

The product was purified by preparative TLC (gradient elution of DCM/MeOH = 98/2 

then 96/4 then 92/8) to give a white solid (22%, 0.10 g).  

31P-NMR (MeOD, 202 MHz): ! 3.81, 3.71. 1H-NMR (MeOD, 500 MHz): ! 7.87, 7.86 

(1H, 2s, H-8), 7.34-7.31 (2H, m, PhO), 7.26-7.14 (3H, m, PhO), 5.48, 5.46 (2H, 2s, H-

1’), 4.26-4.21 (2H, m, H-5’), 3.83-3.80 (3H, m, H-4’, CHCH3), 1.44-1.42 (9H, m, 

C(CH3)3), 1.33-1.29 (3H, m, CHCH3). 
13C-NMR (MeOD, 125 MHz): ! 20.61 (d, JC–P = 

6.70 Hz, CHCH3), 20.73 (d, JC–P = 6.70 Hz, CHCH3), 28.29 (C(CH3)3), 52.18, 52.28 (2s, 

CHCH3), 67.08 (d, JC–P = 5.50 Hz, C-5’), 67.14 (d, JC–P = 5.50 Hz, C-5’), 69.45 (d, JC–P = 

6.63 Hz, C-4’), 69.51 (d, JC–P = 6.63 Hz, C-4’), 73.79 (C-1’), 82.81, 82.87 (2s, C(CH3)3), 

117.44, 121.37, 121.41, 121.15, 121.49, 121.62, 121.66, 124.02, 124.62, 124.92, 

126.16, 130.12, 130.20, 130.22, 130.30, 130.34, 130.80,  (C-5, PhO), 139.98 (C-8), 

152.14, 152.20 (2s, C-4), 153.44 (‘ipso’PhO), 155.70 (C-2), 159.55 (C-6), 174.44 (d, JC–

P = 5.30 Hz, COOC(CH3)3), 174.55 (d, JC–P = 5.30 Hz, COOC(CH3)3). EI MS = 509.19 

(M+H). HPLC = H2O/MeOH from 100/0 to 30/70 in 5 min, then 30/70 isocratic for 10 

min, from 30/70 to 0/100 in 5 min, then 0/100 isocratic for 5 min = retention time 12.64 

min. 
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Synthesis of N2-DMF-acyclovir-[phenyl(neopentoxy-L-alaninyl)] phosphate [3.4l]. 

Chemical Formula: C25H36N7O7P 

Molecular Weight: 577.5698 

Prepared according to Standard Procedure B, 

from 3.3 (0.50 g, 1.78 mmol) in anhydrous 

THF (25 mL), tBuMgCl (1.0 M THF 

solution, 3.56 mL, 3.56 mmol), 2.2d (1.19 g, 3.56 mmol) in anhydrous THF (5 mL). 

The reaction mixture was stirred at room temperature overnight. After this period the 

solvent was removed under reduced pressure. The residue was purified by column 

chromatography gradient elution of DCM/MeOH = 98/2 then 96/4 then 94/6, to give a 

white solid (85%, 0.88 g).  

31P-NMR (MeOD, 202 MHz): ! 3.87, 3.59. 1H-NMR (MeOD, 500 MHz): ! 8.65, 8.60 

(1H, 2s, NCHN(CH3)2), 7.92 (1H, bs, H-8), 7.32 (2H, bs, PhO), 7.17 (3H, m, PhO), 

5.54, 5.51 (2H, 2s, H-1’), 4.25-4.21 (2H, m, H-5’), 3.95 (1H, bs, CHCH3), 3.82-3.75 

(4H, m, H-4’, COOCH2(CH3)3), 3.22-3.14 (3H, m, N(CH3)2), 3.08-3.04 (3H, m, 

N(CH3)2) 1.34-1.33 (3H, m, CHCH3), 0.92-0.90 (9H, m, COOCH2(CH3)3). 

Synthesis of acyclovir-[phenyl(neopentoxy-L-alaninyl)] phosphate [3.2l]. 

Chemical Formula: C22H31N6O7P 

Molecular Weight: 522.4913 

A solution of 3.4l (0.88 g, 1.52 mmol) in isopropanol 

(30 mL) was stirred under reflux for 62 h. The solvent 

was then removed under reduced pressure and the 

residue was purified by column chromatography, gradient elution of DCM/MeOH (98/2 

then 96/4 then 94/6) to give a white solid which was further purified by preparative 

reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 30/70 in 5 min, 30/70 

isocratic 10 min, then to 0/100 in 5 min) to give a white solid (14%, 0.11 g). 

31P-NMR (MeOD, 202 MHz): ! 3.80, 3.59. 1H-NMR (MeOD, 500 MHz): ! 7.90, 7.88 

(1H, 2s, H-8), 7.36-7.33 (2H, m, PhO), 7.21-7.17 (3H, m, PhO), 5.56, 5.50 (2H, 2s, H-

1’), 4.24-4.19 (2H, m, H-5’), 4.01-3.95 (1H, m, CHCH3), 3.87-3.77 (4H, m, H-4’, 

COOCH2(CH3)3), 1.39 (1.5H, d, J= 2.52, CHCH3 of one diasteroisomer), 1.35 (1.5H, d, 

J= 2.52, CHCH3 of one diasteroisomer), 0.96-0.95 (9H, m, COOCH2(CH3)3). 

13C NMR (MeOD, 126 MHz): ! 20.56 (d, JC–P = 6.90 Hz, CHCH3) 20.70 (d, JC–P = 6.90 
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Hz, CHCH3), 26.73, 26.84 (2s, COOCH2(CH3)3), 51.63, 51.73 (2s, CHCH3), 67.03 (d, 

JC–P = 5.63 Hz, C-5’), 67.12 (d, JC–P = 5.63 Hz, C-5’), 69.41 (d, JC–P = 7.17 Hz, C-4’), 

69.49 (d, JC–P = 7.17 Hz, C-4’), 73.75 (C-1’), 75.40, 75.42 (2s, COOCH2(CH3)3), 117.27, 

121.40, 121.43, 121.47, 121.50, 122.23, 126.06, 126.10, 127.08, 127.77, 130.14, 

130.43, 130.72, 130.88 (C-5, PhO), 139.73 (C-8), 152.20 (d, JC–P = 2.80 Hz, ‘ipso’PhO), 

152.25 (d, JC–P = 2.80 Hz, ‘ipso’PhO), 153.73 (s, C-4), 155.73 (C-2), 159.23 (s, C-6), 

175.01 (d, JC–P = 5.64 Hz. COOCH2(CH3)3), 175.16 (d, JC–P = 5.64 Hz, COOCH2(CH3)3). 

EI MS= 523.2061 (M+H+). HPLC = H2O/ACN from 90/10 to 0/100 in 20 min = 

retention time 11.87 min; H2O/MeOH 90/10 to 30/70 in 5 min, 30/70 isocratic 10 min, 

then to 0/100 in 5 min = retention time 11.40 min. 

Synthesis of N2-DMF-acyclovir-[1-naphthyl(neopentoxy-L-alaninyl)] phosphate 

[3.4m]. 

Chemical Formula: C29H38N7O7P 

Molecular Weight: 627.6285 

 

Prepared according to Standard Procedure B, 

from 3.3 (0.45 g, 1.61 mmol) in anhydrous THF 

(20 mL), tBuMgCl (1.0 M THF solution, 3.21 

mL, 3.21 mmol), 2.2e (1.20 g, 3.21 mmol) in anhydrous THF (5 mL). The reaction 

mixture was stirred at room temperature overnight. After this period the solvent was 

removed under reduced pressure. The residue was purified by column chromatography 

gradient elution of DCM/MeOH = 98/2 then 96/4 then 94/6, to give a white solid (53%, 

0.54 g).  

31P-NMR (MeOD, 202 MHz): ! 4.21, 4.05. 1H-NMR (MeOD, 500 MHz): ! 8.56, 8.60 

(1H, 2s, NCHN(CH3)2), 8.16-8.12 (1H, m, H-8 Naph), 7.92-7.89 (1H, m, H-6 Naph), 

7.82, 7.80 (1H, 2s, H-8), 7.70-7.68 (1H, m, H-2 Naph), 7.54-7.52 (2H, m, H-5 Naph, H-

7 Naph), 7.47, 7.37 (2H, m, H-3 Naph, H-4 Naph), 5.53, 5.51 (2H, 2s, H-1’), 4.34-4.26 

(2H, m, H-5’), 4.08-4.01 (1H, m, CHCH3), 3.86-3.84 (2H, m, H-4’), 3.80-3.70 (2H, m, 

COOCH2(CH3)3), 3.12, 3.11 (3H, 2s, N(CH3)2), 3.08-3.07 (3H, 2s, N(CH3)2), 1.35, 1.33 

(3H, 2d, J= 7.11 Hz, CHCH3), 0.92-0.91 (9H, m, COOCH2(CH3)3). 
13C NMR (MeOD, 

126 MHz): ! 20.71 (d, JC–P = 7.00 Hz, CHCH3) 20.83 (d, JC–P = 7.00 Hz, CHCH3), 

26.80, 26.82 (2s, COOCH2C(CH3)3), 32.34, 32.37 (2s, COOCH2C(CH3)3), 35.40, 41.56 

(2s, N(CH3)2), 51.77, 51.82 (2s, CHCH3), 67.32 (d, JC–P = 5.80 Hz, C-5’), 67.36 (d, JC–P 

= 5.80 Hz, C-5’), 69.47 (d, JC–P = 6.76 Hz, C-4’), 69.52 (d, JC–P = 6.76 Hz, C-4’), 73.74 
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(C-1’), 75.39, 75.42 (2s, COOCH2C(CH3)3), 116.24, 116.26, 116.32, 116.34, 120.36, 

122.73, 122.81, 125.95, 126.56, 127.45, 127.47, 127.80, 128.88, 128.91 (C-5, C-2 

Naph, C-3 Naph, C-4 Naph, C-5 Naph, C-6 Naph, C-7 Naph, C-8 Naph), 136.23 (C-8a 

Naph), 140.57 (C-8), 148.00 (d, JC–P = 1.51 Hz, ‘ipso’ ONaph), 148.10 (d, JC–P = 1.63 

Hz, ‘ipso’ ONaph) 152.38 (C-4), 159.23 (s, C-2), 159.79 (CHN(CH3)2), 160.17 (C6) 

174.90 (d, JC–P = 5.33 Hz, COOCH2C(CH3)3), 175.10 (d, JC–P = 5.33 Hz, 

COOCH2C(CH3)3). EI MS= 650.252 (M+Na+). HPLC = H2O/ACN from 90/10 to 0/100 

in 30 min, then 0/100 isocratic for 5 min = retention time 17.21 min; H2O/MeOH 90/10 

to 0/100 in 30 min, then 0/100 isocratic for 5 min = retention time 25.05 min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

Synthesis of acyclovir-[1-naphthyl(neopentoxy-L-alaninyl)] phosphate [3.2m] 

Chemical Formula: C26H33N6O7P 

Molecular Weight: 572.5500 

A solution of 3.4m (0.54 g, 0.86 mmol) in isopropanol 

(20 mL) was stirred under reflux for 62 h. The solvent 

was then removed under reduced pressure and the 

residue was purified by column chromatography 

gradient elution of DCM/MeOH = 98/2, then 96/4, then 94/6. The product was purified 

by preparative reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 20/80 in 5 

min, 20/80 isocratic 10 min, then to 0/100 in 5 min) to give a white solid (22%, 0.11g). 

31P-NMR (MeOD, 202 MHz): ! 4.15, 4.09. 1H-NMR (MeOD, 500 MHz): ! 8.14-8.12 

(1H, 2s, H-8 Naph), 7.87-7.85 (1H, m, H-6 Naph), 7.81, 7.79 (1H, 2s, H-8), 7.69-7.68 

(1H, 2s, H-2 Naph), 7.58-7.50 (2H, m, H-5 Naph, H-7 Naph), 7.46-7.35 (2H, m, H-3 

Naph, H-4 Naph), 5.42, 5.40 (2H, 2s, H-1’), 4.32-4.29 (1H, m, H-5’), 4.28-4.24 (1H, m, 

H-5’), 4.11-4.03 (1H, m, CHCH3), 3.83-3.70 (4H, m, H-4’, COOCH2(CH3)3), 1.35, 1.38 

(3H, 2d, J= 7.10 Hz,   CHCH3), 0.92-0.90 (9H, m, COOCH2(CH3)3). 
13C NMR (MeOD, 

126 MHz): ! 20.71 (d, JC–P = 7.00 Hz CHCH3) 20.86 (d, JC–P = 7.00 Hz, CHCH3), 26.77, 

26.79 (2s, COOCH2C(CH3)3), 32.31, 32.35 (2s, COOCH2C(CH3)3), 51.80, 51.84 (2s, 

CHCH3), 67.31 (d, JC–P = 6.12 Hz, C-5’), 67.37 (d, JC–P = 6.12 Hz, C-5’), 69.40 (d, JC–P = 

6.97 Hz, C-4’), 69.50 (d, JC–P = 6.97 Hz, C-4’), 73.77 (C-1’), 75.41, 75.46 (2s, 

COOCH2(CH3)3), 116.28, 116.30, 116.36, 116.38, 117.47, 117.50, 122.71, 122.79, 

125.96, 126.56, 127.46, 127.77, 128.50, 128.86 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, 

C-4a Naph, C-5 Naph, C-6 Naph, C-7 Naph, C-8 Naph), 136.23 (C-4a Naph), 139.77 

(C-8), 147.99, 148.00 (‘ipso’ ONaph), 153.37 (C-4), 155.64 (s, C-2), 159.57 (C6) 

175.10 (d, JC–P = 5.47 Hz, COOCH2C(CH3)3), 175.20 (d, JC–P = 5.47 Hz, 
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COOCH2C(CH3)3). EI MS= 595.211 (M+Na+). HPLC = H2O/ACN from 100/0 to 0/100 

in 20 min, then 0/100 isocratic for 5 min = retention time 13.77 min; H2O/MeOH 90/10 

to 0/100 in 25 min, then 0/100 isocratic for 5 min = retention time 21.29, 21.41 min. 

9.4. Experimental procedures for chapter 4: synthesis of 6-O-methyl 

and 6-O-ethyl acyclovir ProTides  

Standard procedure D 

To a stirring solution of 6-O-alkyl acyclovir 4.1a and 4.1b (1 eq.) in anhydrous THF 

was added dropwise under argon atmosphere tButMgCl (2 eq.). The reaction mixture 

was stirred at room temperature for 30 min. Then, a solution of the appropriate aryl 

amino acid ester phosphorochloridate 2.2 (2 to 4 eq.) in anhydrous THF was added 

dropwise and the reaction mixture was stirred at room temperature overnight. The 

solvent was removed under reduced pressure and the residue was purified by column 

chromatography eluting with DCM/MeOH in different proportions. 

Synthesis of 9-[(2-Acetoxy-ethoxy)methyl]guanine [4.2] 

Chemical Formula: C10H13N5O4 

Molecular Weight: 267.2413 

Acetic anhydride (4.20 mL, 44.40 mmol) was added dropwise 

to a suspension of ACV (4 g, 17.76 mmol), TEA (5 mL, 35.87 mmol), and DMAP (0.22 

g, 1.77mmol) in ACN (250 mL). The reaction was stirred at room temperature for 4 h. 

Methanol was added to quench the reaction and the mixture was filtered. The resulting 

solid was washed with Et2O and dried (4.35 g, 92%). 

1H NMR (DMSO, 500 MHz): ! 10.63 (1H, s, NH), 7.82 (1H, s, H-8), 6.50 (2H, bs, 

NH2), 5.36 (2H, s, H-1’), 4.09-4.07 (2H, m, H-5’), 3.68-3.66 (2H, m, H-4’), 1.97 (3H, s, 

CH3). 

Synthesis of 9-[(2-Acetoxy-ethoxy)methyl]-2-amino-6-chloropurine [4.3] 

Chemical Formula: C10H12ClN5O3 

Molecular Weight: 285.6870 

 

A mixture of 4.2 (2g, 7.48 mmol) and 

bennzyltriethylammonium chloride (3.42 g, 14.96 mmol) in ACN (24 mL) was cooled 

to 0° C and added to a mixture of N,N-dimethylaniline (1.04 mL, 8.22 mmol) and 
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POCl3 (3.44 mL, 37.4 mmol). The reaction mixture was stirred in a preheated oil bath at 

85 °C for 20 min. The solvent was removed. The yellow foam was dissolved in CHCl3 

and vigorously stirred with crushed ice for 30 min. The layers were separated and the 

aqueous phase was extracted with CHCl3. Crushed ice was added to the combined 

organic phase, which was washed (ice/H2O 3 times, 5% Na2CO3/H2O once) and dried 

over Na2SO4 and concentrated. The residue was purified by column chromathography, 

gradient elution of DCM/MeOH (98/2, then 96/4, then 95/5) to give a white solid (47%, 

0.5 g). 

1H NMR (CHCl3, 500 MHz): ! 7.88 (1H, s, H-8), 5.47 (2H, s, H-1’), 4.14-4.11 (2H, m, 

H-5’), 3.71-3.68 (2H, m, H-4’), 1.96 (3H, s, CH3). 
13C NMR (CDCl3, 126 MHz): ! 

20.73 (CH3), 62.78 (C-4’), 67.59 (C-5’), 72.67 (C-1’), 124.70 (C-5), 142.17 (H-8), 

151.36 (C-6), 154.09 (C-4), 159.66 (C-2), 170.79 (COOCH3). EI MS= 286.07 (M+H). 

Synthesis of 6-O-methyl acyclovir: 9-[(2-hydroxyethoxy)methyl]-2-amino-6-

methoxypurine [4.1a] 

Chemical Formula: C9H13N5O3 

Molecular Weight: 239.2312 

To a stirring suspension of 4.3 (1.5 g; 5.25 mmol) in anhydrous 

MeOH (18 mL) was added at 0 °C NaOMe (1.48 g, 27 mmol) in anhydrous MeOH 

(25% P/P). The mixture was stirred at room temperature for 24 h then quenched by 

addition of Amberlite (H+). The mixture was then filtered and methanol was removed 

under reduced pressure. The residue was purified by column chromatography gradient 

elution DCM/MeOH (98/2, then 96/4, then 94/6, then 92/8) to give a white solid (0.8 g, 

68%).  

1H NMR (MeOH, 500 MHz): ! 7.98 (1H, s, H-8), 5.56 (2H, s, H-1’), 4.08 (3H, s, 

OCH3), 3.66-3.63 (4H, m, H-4’, H-5’). 13C NMR (MeOH, 126 MHz): ! 54.26 (OCH3), 

61.94 (C-4’), 71.96 (C-5’), 73.94 (C-1’), 115.08 (C-5), 141.27 (C-8), 155.25 (C-4), 

162.18 (C-2), 162.80 (C-6). EI MS= 239.09 (M+H). HPLC = H2O/ACN from 100/0 to 

0/100 in 20 min = retention time 6.60 min; H2O/MeOH 90/10 to 30/70 in 5 min, 30/70 

isocratic 10 min, then to 0/100 in 5 min = retention time 5.91 min. 

 

 

N

NN

N

NH2O
HO

O
CH3



Chapter 9 

 237 

Synthesis of 6-O-ethyl acyclovir: 9-[2-hydroxyethoxy)methyl[-2-amino-6-

ethoxypurine [4.1b] 

Chemical Formula: C10H15N5O3 

Molecular Weight: 253.2578     
     

To a stirring suspension of 4.3 (1.7 g; 5.95 mmol) in anhydrous 

methanol (20 mL) was added at 0 °C NaOEt (1.82 g, 26.78 mmol) in anhydrous 

methanol (25% P/P). The mixture was stirred at 40 °C for 4 h then quenched by 

addition of Amberlite (H+). The mixture was then filtered and methanol was removed 

under reduced pressure. The residue was purified by column chromatography gradient 

elution DCM/Methanol (98/2, then 96/4, then 94/6, then 92/8) to give a white solid 

(0.55 g, 36%). 

1H NMR (MeOH, 500 MHz): ! 7.98 (1H, s, H-8), 5.56 (2H, s, H-1’), 4.56 (2H, q, J= 

7.09 Hz, OCH2CH3), 3.66-3.63 (4H, m, H-4’, H-5’), 1.46 (3H, t, J= 7.09 Hz, 

OCH2CH3). 
13C NMR (MeOH, 126 MHz): ! 14.82 (OCH2CH3), 61.95 (OCH2CH3), 

63.59 (C-4’), 71.95 (C-5’), 73.91 (C-1’), 115.09 (C-5), 141.19 (H-8), 155.28 (C-4), 

162.18 (C-2), 162.46 (C-6). EI MS= 254.13 (M+H). HPLC= H2O/MeOH 90/10 to 30/70 

in 5 min, 30/70 isocratic 10 min, then to 0/100 in 5 min = retention time 7.15, 8.64 min. 

 Synthesis of 6-O-methyl acyclovir-[phenyl(benzyloxy-L-alaninyl)] phosphate 

[4.4a] 

Chemical Formula: C25H29N6O7P 

Molecular Weight: 556.5075 

Prepared according to Standard Procedure D, from 4.1a 

(0.40 g, 1.68 mmol) in anhydrous THF (20 mL), 

tBuMgCl (1.0 M THF solution, 3.36 mL, 3.36 mmol), 

2.2a (1.78 g, 5.04 mmol) in anhydrous THF (10 mL). The reaction mixture was stirred 

at room temperature overnight. The residue was purified by column chromatography 

gradient elution of DCM/MeOH = 98/2 then 96/4 then 94/6. The product was purified 

by preparative reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 40/60 in 5 

min, 60/40 isocratic 10 min, then to 0/100 in 5 min) to give a white solid (733 mg, 

78%). 

31P NMR (MeOD, 202 MHz): ! 3.76, 3.47. 1H NMR (MeOD, 500 MHz): ! 7.94-7.91 

(1H, m, H-8), 7.35-7.28 (7H, m, PhO, OCH2Ph), 7.18-7.12 (3H, m, PhO, OCH2Ph), 
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5.52-5.48 (2H, m, H-1’), 5.13-5.12 (2H, m, OCH2Ph), 4.18-4.11 (2H, m, H-5’), 4.06-

4.05 (3H, 2s, OCH3), 3.99-3.95 (1H, m, NHCH), 3.76-3.71 (2H, m, H-4’), 1.35-1.31 

(3H, m, CHCH3). 
13C NMR (MeOD, 126 MHz): ! 20.30 (d, JC–P = 6.3 Hz, CHCH3), 

20.38 (d, JC–P = 6.3 Hz, CHCH3), 51.58, 51.70 (2s, NHCH), 54.24 54.26 (2s, OCH3), 

66.98 (d, JC–P = 5.04 Hz, C-5’), 67.08 (d, JC–P = 5.04 Hz, C-5’), 67.94 (OCH2Ph), 69.38 

(d, JC–P = 6.30, C-4’), 69.40 (d, JC–P = 6.30, C-4’), 73.71 (C-1’), 115.10, 121.39, 121.43, 

121.47, 121.50, 126.03, 126.06, 129.32, 129.34, 129.37, 129.57, 129.59, 129.88, 130.69 

(C-5, PhO, OCH2Ph), 137.28 (‘ipso’ OCH2Ph), 141.17, 141.20 (2s, C-8), 152.13 (d, JC–P 

= 5.04 Hz, ‘ipso’PhO), 152.24 (d, JC–P = 5.04 Hz, ‘ipso’PhO), 153.24 (C-4) 155.26 (C-

2), 162.20, 162.79 (2s, C-6), 174.73 (d, JC–P = 5.04 Hz, COOCH2Ph), 174.88 (d, JC–P = 

5.04 Hz, COOCH2Ph). EI MS= 579.17 (M+Na). HPLC = H2O/ACN from 100/0 to 

0/100 in 20 min = retention time 12.00 min; H2O/MeOH 90/10 to 40/60 in 5 min, 40/60 

isocratic 10 min, then to 0/100 in 5 min, 0/100 isocratic 5 min = retention time 14.35, 

15.39 min. 

Synthesis of 6-O-methyl acyclovir-[1-naphthyl(benzyloxy-L-alaninyl)] phosphate 

[4.4b] 

 Chemical Formula: C29H31N6O7P 

Molecular Weight: 606.5662 

Prepared according to Standard Procedure D, from 

4.1a (0.30 g, 1.26 mmol) in anhydrous THF (15 

mL), tBuMgCl (1.0 M THF solution, 2.52 mL, 2.52 

mmol), 2.2b (1.02 g, 2.52 mmol) in anhydrous THF (5 mL). The reaction mixture was 

stirred at room temperature overnight. The residue was purified by column 

chromatography gradient elution of DCM/MeOH = 98/2 then 96/4. The product was 

purified by preparative reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 

30/70 in 5 min, 30/70 isocratic 10 min, then to 0/100 in 5 min) to give a white solid 

(0.46 g, 60%). 

31P NMR (MeOD, 202 MHz): ! 4.11, 3.93. 1H NMR (MeOD, 500 MHz): ! 8.10-8.08 

(1H, m, H-8 Naph), 7.88-7.86 (1H, 2s, H-6 Naph), 7.85-7.84 (1H, m, H-8), 7.67-7.66 

(1H, m, H-2 Naph), 7.52-7.47 (2H, m, H-5 Naph, H-7 Naph), 7.42-7.23 (7H, m, Naph, 

OCH2Ph), 5.45,5.41 (2H, 2s, H-1’), 5.10-5.00 (2H, m, OCH2Ph), 4.23-4.16 (2H, m, H-

5’), 4.09-4.04 (1H, m, NHCH), 4.02, 4.01 (3H, 2s, OCH3), 3.74-3.70 (2H, m, H-4’), 

1.33 (1.5H of one diasteroisomer, d, J= 7.08 Hz, CHCH3), 1.30 (1.5H of one 
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diasteroisomer, d, J= 7.08 Hz, CHCH3). 
13C NMR (MeOD, 126 MHz): ! 20.35 (d, JC–P = 

6.3 Hz, CHCH3), 20.46 (d, JC–P = 6.3 Hz, CHCH3), 51.73, 51.79 (2s, NHCH), 54.26 

(OCH3), 67.21 (d, JC–P = 6.3 Hz, C-5’), 67.28 (d, JC–P = 6.3 Hz, C-5’), 67.93, 67.96 

(OCH2Ph), 69.35 (d, JC–P = 7.56 Hz, C-4’), 69.41 (d, JC–P = 7.56 Hz, C-4’), 73.70 (C-1’), 

115.12, 116.25, 116.27, 116.34, 116.36, 122.71, 122.82, 125.89, 125.91, 126.52, 

126.52, 127.42, 127.44, 127.73, 127.90, 127.95, 128.80, 128.82, 129.27, 129.32, 

129.52, 129.57 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, C-5 Naph, C-6 Naph, C-7 Naph, 

C-8 Naph, OCH2Ph), 136.23 (‘ipso’ OCH2Ph), 137.18, 137.22 (2s, C-8a Naph) 141.11, 

141.14 (2s, C-8), 147.96, 148.02 (2s, ‘ipso’ ONaph), 155.21 (C-4), 162.15 (s, C-2), 

162.75 (C-6), 174.74 (d, JC–P = 5.04 Hz, COOCH2Ph), 174.91 (d, JC–P = 5.04 Hz, 

COOCH2Ph). EI MS= 607.20 (M+H), 629.19 (M+Na). HPLC= H2O/ACN from 100/0 

to 0/100 in 20 min = retention time 16.55 min; H2O/MeOH 90/10 to 30/70 in 5 min, 

30/70 isocratic 10 min, then to 0/100 in 10 min, 0/100 isocratic 5 min = retention time 

12.31, 12.85 min. 

Synthesis of 6-O-ethyl acyclovir-[phenyl(benzyloxy-L-alaninyl)] phosphate [4.4c] 

 Chemical Formula: C26H31N6O7P 

 Molecular Weight: 570.5341 

Prepared according to Standard Procedure D, from 4.1b 

(0.20 g, 0.79 mmol) in anhydrous THF (10 mL), 

tBuMgCl (1.0 M THF solution, 1.58 mL, 1.58 mmol), 

2.2a (0.56 g, 1.58 mmol) in anhydrous THF (5 mL) and the reaction mixture was stirred 

at room temperature overnight. The residue was purified by column chromatography 

gradient elution of DCM/MeOH = 98/2, then, 96/4 then 94/6. The product was further 

purified by preparative reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 

30/70 in 5 min, 30/70 isocratic 10 min, then to 0/100 in 5 min) to give a white solid 

(241 mg, 53%). 

31P NMR (MeOD, 202 MHz): ! 3.76, 3.47. 1H NMR (MeOD, 500 MHz): ! 7.92-7.89 

(1H, 2s, H-8), 7.35-7.26 (7H, m, PhO, OCH2Ph), 7.15-7.12 (3H, m, PhO, OCH2Ph), 

5.49, 5.46 (2H, 2s, H-1’), 5.11 (2H, OCH2Ph), 4.54-4.49 (2H, m, OCH2CH3), 4.19-4.10 

(2H, m, H-5’), 4.00-3.93 (1H, m, NHCH), 3.74-3.70 (2H, m, H-4’), 1.42 (3H, t, J= 7.09 

Hz, OCH2CH3), 1.34 (1.5H of one diasteroisomer, d, J= 7.00 Hz, CHCH3), 1.31 (1.5H 

of one diasteroisomer, d, J= 7.00 Hz, CHCH3). 
13C NMR (MeOD, 126 MHz): ! 14.82 

(OCH2CH3), 20.37 (d, JC–P = 6.3 Hz, CHCH3), 20.45 (d, JC–P = 6.3 Hz, CHCH3), 51.58, 
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51.71 (2s, NHCH), 63.63 (OCH2CH3), 66.99 (d, JC–P = 5.04 Hz, C-5’), 67.09 (d, JC–P = 

5.04 Hz, C-5’), 67.95 (OCH2Ph), 69.36 (d, JC–P = 7.56 Hz, C-4’), 69.39 (d, JC–P = 7.56 

Hz, C-4’), 73.71 (C-1’), 115.13, 121.41, 121.45, 121.49, 121.53, 126.05, 126.08, 

129.33, 129.37, 129.59, 129.61, 129.72, 130.71, 130.69 (C-5, PhO, OCH2Ph), 137.28 

(‘ipso’ OCH2Ph), 141.16 (C-8), 152.11, 152.17 (2s, ‘ipso’PhO),  153.41 (C-4), 155.27 

(C-2), 162.16, 162.43 (2s, C-6), 174.74 (d, JC–P = 5.04 Hz, COOCH2Ph), 174.88 (d, JC–P 

= 5.04 Hz, COOCH2Ph). EI MS= 571.29 (M+H), 593.27 (M+Na). HPLC = H2O/ACN 

90/10 to 30/70 in 5 min, 30/70 isocratic 10 min, then to 0/100 in 5 min, 0/100 isocratic 5 

min = retention time 7.51 min; H2O/MeOH 90/10 to 30/70 in 5 min, 30/70 isocratic 10 

min, then to 0/100 in 5 min, 0/100 isocratic 5 min = retention time 10.36 min. 

 Synthesis of 6-O-ethyl acyclovir-[1-naphthyl(benzyloxy-L-alaninyl)] phosphate 

[4.4d] and 6-O-ethyl acyclovir-[1-naphthyl(methoxy-L-alaninyl)] phosphate 

[4.4f] 
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Chemical Formula: C24H29N6O7P

Molecular Weight: 544.4968
Chemical Formula: C30H33N6O7P

Molecular Weight: 620.5928

4.4d 4.4f

 

Prepared according to Standard Procedure D, from 4.1b (0.20 g, 0.79 mmol) in 

anhydrous THF (10 mL), tBuMgCl (1.0 M THF solution, 1.58 mL, 1.58 mmol), 2.2b 

(0.64 g, 1.58 mmol) in anhydrous THF (2 mL). The reaction mixture was stirred at 

room temperature overnight. The residue was purified by column chromatography 

gradient elution of DCM/MeOH = 98/2, then 96/4, then 94/6 to give two products: 4.4d 

and its transesterification product 4.4f. The products were further purified by 

preparative reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 30/70 in 5 

min, 30/70 isocratic 10 min, then to 0/100 in 5 min) to give a white solid [(4.4d)  0.15 g, 

30%, (4.4f) 0.07 g, 16%].  

[4.4d] 

31P NMR (MeOD, 202 MHz): ! 4.11, 3.94. 1H NMR (MeOD, 500 MHz): ! 8.10-8.09 

(1H, m, H-8 Naph), 7.88-7.85 (2H, m, H-8, H-6 Naph), 7.68-7.66 (1H, m, H-2 Naph), 

7.53-7.48 (2H, m, H-5 Naph, H-7 Naph), 7.41-7.23 (7H, m, Naph, OCH2Ph), 5.45, 5.42 
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(2H, 2s, H-1’), 5.05, 5.03 (2H, 2s, OCH2Ph), 4.52-4.47 (2H, m, OCH2CH3), 4.23-4.16 

(2H, m, H-5’), 4.09-4.02 (1H, m, NHCH), 3.75-3.70 (2H, m, H-4’), 1.42 (1.5 H, t, J= 

7.09 Hz, OCH2CH3), 1.41 (1.5 H, t, J= 7.09 Hz, OCH2CH3), 1.33 (1.5H of one 

diasteroisomer, d, J= 7.12 Hz, CHCH3), 1.30 (1.5H of one diasteroisomer, d, J= 7.12 

Hz, CHCH3). 
13C NMR (MeOD, 126 MHz): ! 14.68  (OCH2CH3), 20.33 (d, JC–P = 7.56 

Hz, CHCH3), 20.45 (d, JC–P = 7.56 Hz, CHCH3) 51.73, 51.79 (2s, NHCH), 63.59 

(OCH2CH3), 67.23 (d, JC–P = 5.41 Hz, C-5’), 67.30 (d, JC–P = 5.41 Hz, C-5’), 67.95, 

67.93 (OCH2Ph), 69.34 (d, JC–P = 6.3 Hz, C-4’), 69.41 (d, JC–P = 6.3 Hz, C-4’), 73.69 (C-

1’), 115.14, 116.25, 116.28, 116.35, 116.37, 122.72, 122.82, 125.88, 125.91, 126.23, 

126.53, 127.42, 127.44, 127.72, 127.86, 127.91, 127.95, 128.80, 128.82, 129.27, 

129.33, 129.52, 129.57, 129.65, 129.73, 129.90 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, 

C-5 Naph, C-6 Naph, C-7 Naph, C-8 Naph, OCH2Ph), 136.24 (‘ipso’ OCH2Ph), 137.18, 

137.22 (2s, C-8a Naph) 141.06, 141.09 (2s, C-8), 147.96, 148.02 (2s, ‘ipso’ ONaph), 

155.23 (C-4), 162.15 (s, C-2), 162.42 (C-6), 174.74 (d, JC–P = 5.04 Hz, COOCH2Ph), 

174.91 (d, JC–P = 5.04 Hz, COOCH2Ph). EI MS= 621.02 (M+H), 642.99 (M+Na). HPLC 

= H2O/ACN 90/10 to 30/70 in 5 min, 30/70 isocratic 10 min, then to 0/100 in 5 min, 

0/100 isocratic 5 min = retention time 8.56 min; H2O/MeOH 90/10 to 30/70 in 5 min, 

30/70 isocratic 10 min, then to 0/100 in 5 min, 0/100 isocratic 5 min = retention time 

15.56, 16.65 min. 

[4.4f] 

31P NMR (MeOD, 202 MHz): ! 4.05, 4.04. 1H NMR (MeOD, 500 MHz): ! 8.11-8.09 

(1H, m, H-8 Naph), 7.91-7.90 (1H, 2s, H-8), 7.87-7.85 (1H, m, H-6 Naph), 7.68-7.67 

(1H, m, H-2 Naph), 7.54-7.50 (2H, m, H-5 Naph, H-7 Naph), 7.42-7.37 (2H, m, H-3 

Naph, H-4 Naph), 5.49, 5.47 (2H, 2s, H-1’), 4.53-4.48 (2H, m, OCH2CH3), 4.31-4.22 

(2H, m, H-5’), 4.04-3.96 (1H, m, NHCH), 3.75-3.70 (2H, m, H-4’), 3.61, 3.58 (3H, 2s, 

OCH3), 1.42 (1.5 H, t, J= 7.09 Hz, OCH2CH3), 1.41 (1.5 H, t, J= 7.09 Hz, OCH2CH3), 

1.32 (1.5H of one diasteroisomer, d, J= 7.14 Hz, CHCH3), 1.28 (1.5H of one 

diasteroisomer, d, J= 7.14 Hz, CHCH3). 
13C NMR (MeOD, 126 MHz): ! 14.68  

(OCH2CH3), 20.40 (d, JC–P = 7.56 Hz, CHCH3), 20.51 (d, JC–P = 7.56 Hz, CHCH3) 51.78 

(NHCH), 52.70, 52.78 (2s, OCH3), 63.60 (OCH2CH3), 67.25 (d, JC–P = 6.30 Hz, C-5’), 

67.31 (d, JC–P = 6.30 Hz, C-5’), 69.41 (d, JC–P = 7.56 Hz, C-4’), 69.48 (d, JC–P = 7.56 Hz, 

C-4’), 73.73 (C-1’), 115.14, 116.22, 116.25, 116.27, 122.71, 122.75, 125.88, 126.53, 

127.43, 127.73, 127.87, 127.92, 128.81 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, C-5 
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Naph, C-6 Naph, C-7 Naph, C-8 Naph), 136.23 (C-8a Naph) 141.11 (C-8), 147.97, 

148.03 (2s, ‘ipso’ ONaph), 155.23 (C-4), 162.16 (s, C-2), 162.42 (C-6), 175.44 (d, JC–P 

= 5.04 Hz, COOCH2Ph), 174.61 (d, JC–P = 5.04 Hz, COOCH2Ph). EI MS= 545.26 

(M+H), 567.25 (M+Na). HPLC = H2O/ACN 90/10 to 30/70 in 5 min, 30/70 isocratic 10 

min, then to 0/100 in 5 min, 0/100 isocratic 5 min = retention time 9.36 min; 

H2O/MeOH 90/10 to 30/70 in 5 min, 30/70 isocratic 10 min, then to 0/100 in 5 min, 

0/100 isocratic 5 min = retention time 6.88 min. 

Synthesis of 6-O-methyl acyclovir-[phenyl(benzyloxy-L-leucinyl)] phosphate 

[4.4e] 

Chemical Formula: C28H35N6O7P 

Molecular Weight: 598.5873 

Prepared according to Standard Procedure D, from 4.1a 

(0.06 g, 0.25 mmol) in anhydrous THF (10 mL), 

tBuMgCl (1.0 M THF solution, 0.5 mL, 0.5 mmol), 2.2k 

(0.198 g, 0.5 mmol) in anhydrous THF (2 mL). The reaction mixture was stirred at 

room temperature overnight. The residue was purified by column chromatography 

gradient elution of DCM/MeOH = 98/2 then 96/4. The product was further purified by 

preparative reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 30/70 in 5 

min, 30/70 isocratic 10 min, then to 0/100 in 5 min) to give a white solid (60 mg, 40%). 

31P NMR (MeOD, 202 MHz): ! 4.03, 3.58. 1H NMR (MeOD, 500 MHz): ! 7.94-7.91 

(1H, 2s, H-8), 7.36-7.28 (7H, m, PhO, OCH2Ph), 7.19-7.14 (3H, m, PhO, OCH2Ph), 

5.51, 5.49 (2H, 2s, H-1’), 5.11(2H, OCH2Ph), 4.20-4.09 (2H, m, H-5’), 4.06 (3H, 

OCH3), 3.96-3.86 (1H, m, NHCH), 3.74-3.71 (2H, m, H-4’), 1.74-1.65 (1H, m, 

CH2CH(CH3)2), 1.60-1.48 (2H, m, CH2CH(CH3)2), 0.89 (3H, d, J= 6.64 Hz, 

CH2CH(CH3)2), 0.80 (3H, d, J= 6.64 Hz, CH2CH(CH3)2). 
13C NMR (MeOD, 126 MHz): 

! 21.74, 22.00, 23.11, 23.20 (4s, CH2CH(CH3)2), 25.39, 25.54 (2s, CH2CH(CH3)2), 

43.84 (d, JC–P = 7.84 Hz, CH2CH(CH3)2), 44.06 (d, JC–P = 7.84 Hz, CH2CH(CH3)2), 54.25 

(OCH3), 54.56, 54.69 (2s, NHCH), 67.05 (d, JC–P = 5.04 Hz, C-5’), 67.06 (d, JC–P = 5.04 

Hz, C-5’), 67.85, 67.88 (2s, OCH2Ph), 69.41 (d, JC–P = 7.29 Hz, C-4’), 69.42 (d, JC–P = 

7.29 Hz, C-4’), 73.71 (C-1’), 115.09, 121.25, 121.29, 121.51, 121.55, 125.96, 126.07, 

129.35, 129.37, 129.45, 129.48, 129.56, 130.67 (C-5, PhO, OCH2Ph), 137.28 (‘ipso’ 

OCH2Ph), 141.16, 141.20 (2s, C-8), 152.19, 152.24 (2s, ‘ipso’PhO), 153.42 (C-4), 

155.26 (C-2), 162.20, 162.78 (2s, C-6), 174.81 (d, JC–P = 2.76 Hz, COOCH2Ph), 175.14 
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(d, JC–P = 2.76 Hz, COOCH2Ph). EI MS= 599.05 (M+H), 621.03 (M+Na). HPLC = 

H2O/ACN 90/10 to 30/70 in 5 min, 30/70 isocratic 10 min, then  to 0/100 in 10 min, 

0/100 isocratic 5 min = retention time 8.50 min; H2O/MeOH 90/10 to 30/70 in 5 min, 

30/70 isocratic 10 min, then to 0/100 in 5 min, 0/100  isocratic 5 min = retention time 

15.12, 16.03 min. 

Synthesis of 6-O-methyl acyclovir-[1-naphthyl(neopentyloxy-L-alaninyl)] 

phosphate [4.4g] 

Chemical Formula: C23H33N6O7P 

Molecular Weight: 536.5179 

Neopentyl alcohol (0.05 g, 0.55mmol) was added to 

a solution of 4.4a (0.15 g, 0.27 mmol) and tBuMgCl 

(sol THF 1 M, 0.3 ml, 0.3mmol) in THF (3 mL). 

The mixture was stirred for 2h at room temperature. The solvent was removed and the 

the residue was purified by column chromatography gradient elution of DCM/MeOH = 

98/2, then 96/4, then 94/6 to give a solid which was further purified by preparative 

reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 40/60 in 5 min, 60/40 

isocratic 10 min, then to 0/100 in 5 min) to give a white solid (100 mg, 70%).  

31P NMR (MeOD, 202 MHz): ! 3.76, 3.47. 1H NMR (MeOD, 500 MHz): ! ! 7.90, 7.88 

(1H, 2s, H-8), 7.36-7.33 (2H, m, PhO), 7.21-7.17 (3H, m, PhO), 5.56, 5.50 (2H, 2s, H-

1’), 4.18-4.11 (2H, m, H-5’), 4.06 (3H, OCH3), 3.99-3.95 (1H, m, NHCH), 3.86-3.76 

(4H, m, H-4’, COOCH2C (CH3)3), 1.39 (1.5H, d, J= 2.52 Hz, CHCH3 of one 

diasteroisomer), 1.35 (1.5H, d, J= 2.52 Hz, CHCH3 of one diasteroisomer) 0.96-0.95 

(9H, m, COOCH2C(CH3)3). 
13C NMR (MeOD, 126 MHz): ! 20.57 (d, JC–P = 6.97 Hz, 

CHCH3), 20.71 (d, JC–P = 6.97 Hz, CHCH3), 26.74 (C(CH3)3), 32.36 (C(CH3)3), 51.63, 

51.72 (2s, CHCH3), 54.25 (OCH3), 67.05 (d, JC–P = 5.51 Hz, C-5’), 67.14 (d, JC–P = 5.51 

Hz, C-5’), 69.42 (d, JC–P = 6.97 Hz, C-4’), 69.46 (d, JC–P = 6.97 Hz, C-4’), 73.75 (C-1’), 

75.40 (COOCH2C(CH3)3), 115.10, 121.41, 121.45, 121.48, 121.52, 126.04, 126.08, 

130.71 (C-5, PhO), 141.19, 141.22 (2s, C-8), 152.19 (‘ipso’PhO), 153.41 (C-4) 155.29 

(C-2), 162.22, 162.79 (2s, C-6), 174.99 (d, JC–P = 5.53 Hz, COOCH2C(CH3)3), 175.14 

(d, JC–P = 5.53 Hz, COOCH2C(CH3)3). EI MS= 559.20 (M+Na). HPLC = H2O/MeOH 

90/10 to 30/70 in 5 min, 30/70 isocratic 10 min, then to 0/100 in 5 min, 0/100 isocratic 5 

min = retention time 13.25, 13.57 min. 
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9.5. Experimental procedures for chapter 5: synthesis of 8-bromo- and 

8-methylacyclovir ProTides  

Standard procedure E: tBuMgCl method 

To a stirring suspension of the appropriate nucleoside (1 eq.) in anhydrous THF was 

added dropwise under argon atmosphere tButMgCl (2 eq.). The reaction mixture was 

stirred at room temperature for 30 min. Then, a solution of the appropriate aryl amino 

acid ester phosphorochloridate 2.2 (2 to 4 eq.) in anhydrous THF was added dropwise 

and the reaction mixture was stirred at room temperature overnight. The solvent was 

removed under reduced pressure and the residue was purified by column 

chromatography eluting with DCM/MeOH in different proportions.  

Standard procedure F: bromination of ACV PRoTides 

N-Bromosuccinimide (1 eq) was added to a solution of the appropriate ACV Protide 3.2 

(1 eq) in methanol. The mixture was stirred at room temperature overnight. The solvent 

was then removed under reduced pressure and the residue was purified by column 

chromatography eluting with DCM/MeOH in different proportions. 

Synthesis of 8-bromoacyclovir: 9-[(2-hydroxyethoxy)methyl]-8-bromoguanine [5.1] 

 

Chemical Formula: C8H10BrN5O3 

    Molecular Weight: 304.1007 

Method 1 

N-Bromosuccinimide (0.45 g, 2.5 mmol) was added to a solution of ACV (0.54 g, 2.4 

mmol) in acetic acid (7 ml) and the mixture was stirred at room temperature for 20 h. 

The solution was diluted with water. The precipitated was filtered and washed with 

water to give a white solid (40%, 0.30 g). 

Method 2 

A saturated solution of bromine in water was added slowly to a stirring solution of ACV 

(0.45 g, 2 mmol) in 100 mL of H2O until the color of Br2 persisted in solution. This 

solution was allowed to stand at 0 °C for 2 h. The separated solid was filtered and 

N

N

N

NH

NH2

O

O
HO

Br



Chapter 9 

 245 

recrystallised from EtOH/H2O to give a white solid (80%, 0.50g). 

 

1H NMR (DMSO, 500 MHz): ! 10.74 (1H, s, NH), 6.63 (2H, s, NH2), 5.31 (2H, s, H-

1’), 4.66 (1H, bs, OH), 3.51-3.47 (4H, m, H-4’, H-5’). 13C NMR (MeOD, 126 MHz): ! 

59.82 (C-5’), 70.78 (C-4’), 72.36 (C-1’), 116.57 (C-5), 120.85 (C-8), 152.83 (C-4), 

154.15 (C-2), 155.50 (C-6). EI MS= 302.9965 (M+H). HPLC = H2O/AcCN from 90/10 

to 0/100 in 20 min = retention time 3.32 min; H2O/MeOH 90/10 to 20/80 in 5 min, 

20/80 isocratic 10 min, then to 0/100 in 5 min = retention time 5.36 min. 

Synthesis of 8-methylacyclovir: 9-[(2-hydroxyethoxy)methyl]-8-bromoguanine [5.2] 

Chemical Formula: C9H13N5O3 

Molecular Weight: 239.2312 

A stirred solution of ACV (0.5 g, 2.22 mmol) and 

FeSO4*7H2O (2 g, 7.25 mmol) in 125 mL of H2SO4/H2O (1 M) was deoxygenated 

thoroughly (O2-freeN2) and treated slowly with a mixture of tert-butyl hydroperoxide 

(2.5 g, 27.74 mmol) in 12.5 mL of H2O over 30 min. The resulting solution was stirred 

for an additional 30min and adjusted to neutral pH with 1M NaOH/H2O. A fine brown 

precipitate was removed by centrifugation and the supernatant solution was evaporated 

under reduced pressure. The residue was purified by reverse phase column 

chromatography. Gradient elution with H2O/ACN (10/0, then 7/3) gave an 

approximately equal mixture of starting material and product (TLC, i/PrOH/ H2O/conc. 

NH3 (aq), 7:2:1). These fractions were combined and evaporated and the residue was 

resubmitted to the above reaction conditions. TLC now indicated complete conversion 

of ACV to 5.2. Purification by reverse phase column chromatography gave a white 

solid (56%, 0.3 g).  

1H NMR (DMSO, 500 MHz): ! 10.60 (1H, bs, NH), 6.46 (2H, s, NH2), 5.32 (2H, s, H-

1’), 4.65 (1H, br s, OH), 3.47-3.42 (4H, m, H-4’, H-5’), 2.37 (3H, s, CH3). 
13C NMR 

(MeOD, 126 MHz): ! 13.34 (CH3), 59.87 (C-5’), 70.11 (C-4’), 70.93 (C-1’), 114.64 (C-

5), 144.64 (C-8), 152.34 (C-4), 153.52 (C-2), 156.34 (C-6). EI MS= 240.1052 (M+H). 

HPLC= H2O/AcCN from 100/0 to 90/10 in 5 min, 90/10 isocratic 5 min, then to 0/100 

in 5 min, 0/100 isocratic 5 min = retention time 7.87 min; H2O/MeOH 100/0 to 0/100 in 

20 min, 0/100 isocratic 5 min = retention time 7.13 min. 
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Synthesis of N2-DMF-8-methylacyclovir: N2-(N,N-dimethylformamidine)-(9-[(2-

hydroxyethoxy)methyl]-8-methylguanine [5.6] 

Chemical Formula: C12H18N6O3 

Molecular Weight: 294.3097 

To a suspension of 5.2 (0.3g, 1.25 mmol) in dry DMF 

(10 ml) was added N,N-dimethylformamide dimethyl 

acetale (0.83 mL, 6.25 mmol). The reaction mixture was stirred at room temperetature 

for 24 h. After this period the suspension was filtered, and the solid was washed with 

ET2O to give a white solid (68%, 0.25 g). 

1H NMR (MeOH, 500 MHz): ! 8.61 (1H, s, CHN(CH3)2),  5.58 (2H, s, H-1’), 3.67-3.60 

(4H, m, H-4’, H-5’), 3.24, 3.15 (6H, 2s, N(CH3)2), 2.55 (3H, s, CH3). 

Synthesis of 8-bromoacyclovir-[phenyl(benzyloxy-L-alaninyl)] phosphate [5.4a] 

Chemical Formula: C24H26BrN6O7P 

Molecular Weight: 621.3770 

Prepared according to Standard Procedure E, from 5.1 

(0.40 g, 1.43 mmol) in anhydrous THF (15 mL), 

tBuMgCl (1.0 M THF solution, 2.86 mL, 2.86 mmol), 

2.2a (1.53 g, 4.32 mmol) in anhydrous THF (10 mL). The reaction mixture was stirred 

at room temperature overnight. The residue was purified by column chromatography, 

gradient elution of DCM/MeOH = 98/2 then 96/4. The product was further purified by 

preparative reverse phase HPLC (gradient elution of H2O/AcCN from 90/10 to 0/100 in 

20 min) to give a white solid (18%, 0.15 g). 

31P-NMR (MeOD, 202 MHz): ! 3.72, 3.46. 1H-NMR (MeOD, 500 MHz): ! 7.36-7.29 

(7H, m, PhO, OCH2Ph), 7.19-7.14 (3H, m, PhO, OCH2Ph), 5.44, 5.40 (2H, 2s, H-1’), 

5.15-5.13 (2H, 2s, OCH2Ph), 4.18-4.14 (2H, m, H-5’), 4.02-3.99 (1H, m, CHCH3), 3.78-

3.76 (2H, m, H-4’), 1.37-1.31 (3H, m, CHCH3). 
13C-NMR (MeOD, 126 MHz): ! 20.35 

(d, JC–P = 7.02 Hz, CHCH3), 20.40 (d, JC–P = 7.02 Hz, CHCH3), 51.58, 51.71 (2s, 

CHCH3), 66.92 (d, JC–P = 6.30 Hz, C-5’), 66.98 (d, JC–P = 6.30 Hz, C-5’), 67.95, 67.97 

(2s, OCH2Ph), 69.61 (d, JC–P = 6.31 Hz, C-4’), 69.66 (d, JC–P = 6.31 Hz, C-4’), 73.75 (C-

1’), 117.93 (C-5), 121.41, 121.45, 121.48, 121.51, 123.61, 126.08, 127.04, 129.32, 

129.35, 129.57, 129.59, 130.22, 130.71 (C-8, PhO, OCH2Ph), 137.27 (‘ipso’ OCH2Ph), 

152.13, 152.19 (2s, ‘ipso’PhO), 154.88 (C-4), 155.84 (C-2), 158.30 (C-6), 174.71 (d,  
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JC–P = 5.04 Hz, COOCH2Ph), 174.87 (d, JC–P = 5.04 Hz, COOCH2Ph). EI MS= 643.0697 

(M+Na). HPLC= H2O/AcCN from 90/10 to 0/100 in 20 min = retention time 12.40 min. 

Synthesis of 8-bromoacyclovir-[1-naphthyl(benzyloxy-L-alaninyl)] phosphate 

[5.4b]. 

Chemical Formula: C28H28BrN6O7P 

Molecular Weight: 671.4357 

Prepared according to Standard Procedure E, from 

5.1 (0.30 g, 0.98 mmol) in anhydrous THF (10 mL), 

tBuMgCl (1.0 M THF solution, 1.96 mL, 1.96 

mmol), 2.2b (0.79 g, 1.96 mmol) in anhydrous THF (3 mL). The reaction mixture was 

stirred at room temperature overnight. The residue was purified by column 

chromatography, gradient elution of DCM/MeOH = 98/2, then 96/4, then 94/6. The 

product was further purified by preparative reverse phase HPLC (gradient elution of 

H2O/AcCN from 90/10 to 0/100 in 20 min) to give a white solid (21%, 0.14 g).  

31P-NMR (MeOD, 202 MHz): ! 4.01, 3.92. 1H-NMR (MeOD, 500 MHz): ! 8.15-8.12 

(1H, m, H-8 Naph), 7.88-7.87 (1H, m, H-6 Naph), 7.70-7.68 (1H, m, H-2 Naph), 7.53-

7.51 (2H, m, H-5 Naph, H-7 Naph), 7.46-7.25 (7H, m, Naph, OCH2Ph), 5.36, 5.33 (2H, 

2s, H-1’), 5.11-5.05 (2H, m, OCH2Ph), 4.25-4.18 (2H, m, H-5’), 4.12-4.06 (1H, m, 

CHCH3), 3.78-3.74 (2H, m, H-4’), 1.36-1.33 (3H, m, CHCH3). 
13C-NMR (MeOD, 126 

MHz): ! 20.39 (d, JC–P = 7.84 Hz, CHCH3), 20.45 (d, JC–P = 7.84 Hz, CHCH3), 51.73, 

51.81 (2s, CHCH3), 67.17 (d, JC–P = 4.85 Hz, C-5’), 67.21 (d, JC–P = 4.85 Hz, C-5’), 

67.95, 67.99 (2s, OCH2Ph), 69.65 (d, JC–P = 7.79 Hz, C-4’), 69.70 (d, JC–P = 7.79 Hz, C-

4’), 73.74 (C-1’), 116.30, 116.32, 116.38, 116.41, 117.93, 122.74, 122.85, 123.55, 

123.57, 125.95, 126.54, 127.44, 127.48, 127.75, 128.81, 128.85, 129.28, 129.30, 

129.34, 129.53, 129.58, 130.22, 130 (C-5, C-8, C-2 Naph, C-3 Naph, C-4 Naph, C-5 

Naph, C-6 Naph, C-7 Naph, C-8 Naph, OCH2Ph), 136.26 (‘ipso’ OCH2Ph), 137.18 

137.24 (2s, C-8a Naph), 148.00 (d, JC–P = 7.38 Hz, ‘ipso’ ONaph), 154.81, 154.84 (2s, 

C-4), 155.83 (C-2), 158.30, 158.32 (C-6), 174.70 (d, JC–P = 4.39 Hz, COOCH2Ph), 

174.90 (d, JC–P = 4.39 Hz, COOCH2Ph). EI MS= 693.119 (M+Na). HPLC= H2O/AcCN 

from 90/10 to 0/100 in 20 min = retention time 12.40 min. 
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Synthesis of 8-bromoacyclovir-[1-naphthyl(benzyloxy-dimethylglycinyl)] 

phosphate [5.4c] 

Chemical Formula: C29H30BrN6O7P 

Molecular Weight: 685.4623 

Prepared according to Standard Procedure E, from 

5.1 (0.25 g, 0.83 mmol) in anhydrous THF (15 mL), 

tBuMgCl (1.0 M THF solution, 1.7 mL, 1.7 mmol), 

2.2h (0.67 g, 1.7 mmol) in anhydrous THF (5 mL). The reaction mixture was stirred at 

room temperature overnight. The residue was purified by column chromatography, 

gradient elution of DCM/MeOH = 98/2 then 96/4, to give a white solid (20%, 0.11 g). 

31P-NMR (MeOD, 202 MHz): !. 2.52. 1H-NMR (MeOD, 500 MHz): ! 8.18-8.16 (1H, 

m, H-8 Naph), 7.87-7.85 (1H, m,  H-6 Naph), 7.68-7.67 (1H, m, 
 H-2 Naph), 7.53-7.51 

(2H, m, H-7 Naph, H-5 Naph), 7.46-7.25 (7H, m, Naph, OCH2Ph), 5.33 (2H, s, H-1’), 

5.16-5.08 (2H, m, OCH2Ph), 4.20-4.17 (2H, m, H-5’), 3.74-3.71 (2H, m, H-4’), 1.53, 

1.51 (6H, 2s, NHC(CH3)2). 
13C-NMR (MeOD, 126 MHz): ! 27.46 (d, JC–P = 4.65 Hz, 

CH3), 27.76 (d, JC–P = 4.65 Hz, CH3), 58.09 (C(CH3)2), 67.16 (d, JC–P = 5.63 Hz, C-5’), 

68.25 (OCH2Ph), 69.81 (d, JC–P = 7.65 Hz, C-4’), 73.74 (C-1’), 116.35, 116.38, 117.93, 

122.99, 123.54, 125.76, 126.51, 127.31, 127.68, 127.90, 127.95, 128.78, 129.26, 129.54 

(C-5, C-8, C-2 Naph, C-3 Naph, C-4 Naph, C-5 Naph, C-6 Naph, C-7 Naph, C-8 Naph, 

C-8a Naph, OCH2Ph), 136.25, 137.31 (C-4a Naph, ‘ipso’ OCH2Ph), 148.11 (d, JC–P = 

7.61, ‘ipso’ Naph), 154.82 (C-4), 155.62 (C-2), 158.34 (C-6), 176.57 (d, JC–P = 3.55 Hz, 

COOCH2Ph). EI MS= 707.1128 (M+Na). HPLC = H2O/AcCN from 90/10 to 0/100 in 

20 min = retention time 14.80 min; H2O/MeOH 90/10 to 20/80 in 5 min, 20/80 isocratic 

10 min, then to 0/100 in 5 min = retention time 12.27 min. 

Synthesis of 8-bromoacyclovir-[1-naphthyl(benzyloxy-L-valinyl)] phosphate [5.4d]. 

Chemical Formula: C30H32BrN6O7P 

Molecular Weight: 699.4888 

Prepared according to standard procedure F, from 

N-Bromosuccinimide (7.7*10-3 g,  

0.43*10-1 mmol) and 3.2g (2.7*10-2 g,  

0.44*10-1 mmol) in MeOH (6 ml). The mixture was stirred at room temperature 

overnight. The solvent was then removed under reduced pressure and the residue was 

purified by preparative reverse phase HPLC (gradient elution of H2O/MeOH 90/10 
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to 20/80 in 5 min, 20/80 isocratic 10 min, then to 0/100 in 5 min) to give a white solid 

(36%, 0.11*10-1 g). 

31P-NMR (MeOD, 202MHz): ! 4.74, 4.82. 1H NMR (MeOD, 500 MHz): ! 8.17-8.14 

(1H, m, H-8 Naph), 7.89-7.87 (1H, s, H-6 Naph), 7.70-7.68 (1H, m, H-2 Naph), 7.55-

7.50 (2H, m, H-5 Naph, H-7 Naph), 7.46-7.37 (2H, m, H-3 Naph, H-4 Naph), 7.33-7.25 

(5H, m, OCH2Ph), 5.36 (2H, 1s, H-1’), 5.05 (2H, 1s, OCH2Ph), 4.28-4.18 (2H, m, H-

5’), 3.81-3.75 (3H, m, NHCH, H-4’), 2.06-1.99 (1H, m, CH(CH3)2), 0.89-0.86 (6H, m, 

CH(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 18.27, 18.32 (2s, CH(CH3)2), 19.48, 19.54 

(2s, CH(CH3)2), 33.09 (d, JC–P = 7.56 Hz, CH(CH3)2) 33.27 (d, JC–P = 7.56 Hz, 

CH(CH3)2), 62.03, 62.07 (2s, NHCH), 67.18 (d, JC–P = 5.55 Hz, C-5’), 67.34 (d, JC–P = 

5.55 Hz, C-5’), 67.82 (s, OCH2Ph), 69.69 (d, JC–P = 7.23 Hz, C-4’), 69.75 (d, JC–P = 7.23 

Hz, C-4’), 73.75, 73.78 (2s, C-1’), 116.20, 116.23, 116.38, 117.94, 122.79, 122.91, 

123.54, 125.88, 125.92, 126.54, 127.41, 127.44, 127.74, 127.88, 128.78, 128.83, 

129.32, 129.36, 129.49, 129.54, 129.56 (C-5, C-8 C-2 Naph, C-3 Naph, C-4 Naph, C-5 

Naph, C-6 Naph, C-7 Naph, C-8 Naph, OCH2Ph), 136.27 (‘ipso’ OCH2Ph), 137.13 (C-

8a Naph), 148.03 (d, JC–P = 3.78 Hz, ‘ipso’ ONaph), 148.08 (d, JC–P = 3.78 Hz, ‘ipso’ 

ONaph) 154.83 (C-4), 155.80 (C-2), 158.28 (C-6), 173.90 (d, JC–P = 2.52 Hz, 

COOCH2Ph), 174.09 (d, JC–P = 2.52 Hz, COOCH2Ph). EI MS= 699.1307 (M+H+). 

HPLC = H2O/AcCN from 90/10 to 0/100 in 20 min = retention time 16.48 min; 

H2O/MeOH 90/10 to 20/80 in 5 min, 20/80 isocratic 10 min, then to 0/100 in 5 min = 

retention time 13.44 min., 14.09 min. 

Synthesis of N2-DMF-8-methylacyclovir-[phenyl(benzyloxy-L-alaninyl)] phosphate 

[5.7] 

Chemical Formula: C28H34N7O7P 

Molecular Weight: 611.5860 

Prepared according to Standard procedure E, 

from 5.6 (0.25 g, 0.85 mmol) in anhydrous THF 

(8 mL), tBuMgCl (1.0 M THF solution, 1.7 mL, 

1.7 mmol), 2.2a (0.6 g, 1.7 mmol) in anhydrous THF (2 mL). The reaction mixture was 

stirred at room temperature overnight. After this period the solvent was removed under 

reduced pressure. The residue was purified by column chromatography gradient elution 

of DCM/MeOH = 98/2 then 96/4 to give a white solid (27%, 0.14 g). 

NH

N

N

NN
O

O
P

O

O

NH

O

O

Bn

O

H3C

CH3

C
H

N
CH3

CH3



Chapter 9 

 250 

31P-NMR (MeOD, 202 MHz): ! 3.87, 3.51. 1H-NMR (MeOD, 500 MHz): ! 8.69 (1H, 

bs, NCHN(CH3)2), 7.34-7.29 (7H, m, PhO), 7.19-7.14 (3H, m, PhO), 5.53 (2H, s, H-1’), 

5.13, 5.12 (2H, 2s, OCH2Ph), 4.20-4.12 (2H, m, H-5’), 3.99-3.94 (1H, m, CHCH3), 

3.74-3.69 (2H, m, H-4’), 3.17, 3.11 (6H, 2s, N(CH3)2), 2.51, 2.49 (3H, 2s, CH3-8), 1.36, 

1.34 (1.5H, d, J = 6.30, CHCH3 of one diasteroisomer), 1.33, 1.31 (1.5H, d, J = 6.30 

CHCH3, of one diasteroisomer). 13C NMR (MeOD, 126 MHz): ! 13.60 (CH3-8), 20.35 

(d, JC–P = 7.30 Hz, CHCH3), 20.42 (d, JC–P = 7.30 Hz, CHCH3), 35.38, 41.51 (2s, 

N(CH3)2), 51.60, 51.75 (2s, CHCH3), 66.97 (d, JC–P = 5.5 Hz, C-5’), 67.04 (d, JC–P = 5.5 

Hz, C-5’), 67.95 (OCH2Ph), 69.04 (d, J = 6.4 Hz, C-4’), 69.09 (d, JC–P = 6.4, C-4’), 

72.46 (C-1’), 118.57, 121.38, 121.42, 121.46, 121.50, 126.10, 126.12, 129.33, 129.34, 

129.60, 130.75, 130.77 (C-5, PhO, OCH2Ph), 137.28 (‘ipso’ OCH2Ph), 149.57 (C-8), 

152.14, 152.19 (2s, ‘ipso’PhO), 153.21 (C-4), 154.33 (C-2), 156.91 (C-6), 159.77 

(NCHN(CH3)2), 174.65 (d, JC–P = 5.2 Hz, COOCH2Ph), 174.85 (d, JC–P = 5.2 Hz, 

COOCH2Ph). EI MS= 634.21 (M+Na).  

Synthesis of 8-methylacyclovir-[phenyl(benzyloxy-L-alaninyl)] phosphate [5.5] 

Chemical Formula: C25H29N6O7P 

Molecular Weight: 556.5075 

A solution of 5.7 (0.14 g, 0.81 mmol) in isopropanol (10 

mL) was stirred under reflux for 62 h. The solvent was 

then removed under reduced pressure and the residue 

was purified by column chromatography, gradient elution of DCM/MeOH = 98/2 then 

96/4 then 94/6. The product was further purified by preparative TLC plate DCM/MeOH 

98/2 then 96/4 then 94/6) to give a white solid (21%, 0.027 g). 

31P NMR (MeOD, 202 MHz): ! 3.77, 3.48. 1H NMR (MeOD, 500 MHz): ! 7.39-7.14 

(10H, m, OCH2Ph) 5.43-5.40 (2H, 2s, H-1’), 5.14-5.13 (2H, 2s, OCH2Ph), 4.18-4.11 

(2H, m, H-5’), 4.02-3.94 (1H, m, CHCH3), 3.71-3.66 (2H, m, H-4’), 2.47, 2.45 (3H, 2s, 

CH3-8), 1.37, 1.35 (1.5H, d, J = 6.30 Hz, CHCH3 of one diasteroisomer), 1.34, 1.32 

(1.5H, d, J = 6.30 Hz CHCH3, of one diasteroisomer).13C NMR (MeOD, 126 MHz): ! 

13.45 (CH3-8), 20.31 (d, JC–P = 7.21 Hz, CHCH3), 20.39 (d, JC–P = 7.21 Hz, CHCH3), 

51.70, 51.85 (2s, CHCH3), 66.95 (d, JC–P = 5.55 Hz, C-5’), 67.03 (d, JC–P = 5.55 Hz, C-

5’), 67.97 (OCH2Ph), 69.05 (d, JC–P = 5.79 Hz, C-4’), 69.12 (d, JC–P = 5.79 Hz, C-4’), 

72.37 (C-1’), 115.68, 121.38, 121.42, 121.46, 121.49, 122.08, 124.11, 126.08, 126.10, 

128.90, 129.02, 129.36, 129.42, 129.58, 130.02, 130.72 (C-5, PhO, OCH2Ph), 137.27, 
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137.69 (2s, ‘ipso’ OCH2Ph), 148.60 (C-8), 152.14, 152.19 (2s, ‘ipso’PhO), 153.25 (C-

4), 154.42 (C-2), 155.31 (C-6), 174.70 (d, JC–P = 5.47 Hz, COOCH2Ph), 174.90 (d, JC–P 

= 5.47 Hz, COOCH2Ph). EI MS= 579.17 (M+Na). HPLC = H2O/ACN from 100/0 to 

0/100 in 15 min, then 0/100 isocratic 5 min = retention time 10.23 min; H2O/MeOH 

90/10 to 0/100 in 25 min, then 0/100 isocratic 5 min = retention time 18.03, 18.29 min. 

9.5. Experimental procedures for chapter 5: synthesis of penciclovir 

and ganciclovir ProTides 

Figure 9.2 reports the numbering assigned to the different position in PCV and GCV 

structures. 
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Figure 9.2. Numbering of GCV and PCV structures  

Standard procedure G  

To a stirring solution/suspension of the appropriate nucleoside (1 eq.) in anhydrous THF 

or pyridine was added dropwise under argon atmosphere tButMgCl (2 to 6 eq). The 

reaction mixture was stirred at room temperature for 30 min. Then, a solution of the 

appropriate aryl amino acid ester phosphorochloridate 2.2 (2 to 4 eq.) in anhydrous THF 

was added dropwise and the reaction mixture was stirred at room temperature overnight. 

The solvent was removed under reduced pressure and the residue was purified by 

column chromatography eluting with DCM/MeOH in different proportions.  
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9.5.1 Synthesis of 2,2-dimethylglycine benzyl ester derivatives of penciclovir 

ProTides 6.5a-b and 6.6a-b  

Synthesis of N2-DMF-penciclovir: 

N2-(N,N-dimethylformamidine)-9-[(4-dihydroxy-3-hydroxymethylbut-1-ylpropan-

2-yl]-guanine [6.8a]. 

Chemical Formula: C13H20N6O3 

Molecular Weight: 308.3363 

To a suspension of PCV (2.5 g, 9.8 mmol) in anhydrous 

DMF (35 ml) was added N,N-dimethylformamide 

dimethyl acetal (6.5 mL, 49 mmol) and the reaction mixture was stirred at room 

temperature overnight. After this period the suspension was filtered and the solid was 

washed with diethyl ether to give a white solid (90%, 2.7 g).  

1H-NMR (DMSO, 500 MHz): ! 11.20 (1H, bs, NH), 8.56 (1H, s, CHN(CH3)2), 7.81 

(1H, s, H-8), 4.09 (2H, t, J = 7.3 Hz, H-1’),  3.47-3.37 (4H, m, H-4’, H-5’), 3.16, 3.04 

(6H, 2s, N(CH3)2), 1.79-1.74 (2H, m, H-2’), 1.47 (1H, m, H-3’).  

Synthesis of N2-DMF-penciclovir-[phenyl(benzyloxy-dimethylglicinyl)] phosphate 

[6.9a] and  N2-DMF-penciclovir-[phenyl(benzyloxy-dimethylglicinyl)] diphosphate 

[6.10a] .  
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Chemical Formula: C30H38N7O7P

Molecular Weight: 639.6392

Chemical Formula: C47H56N8O11P2

Molecular Weight: 970.9421

6.9a 6.10a

 

Prepared according to standard procedure G from 6.8a (0.6 g, 1.95 mmol) in anhydrous 

THF (30 mL) tBuMgCl (1.0 M THF solution, 3.89 mL, 3.89 mmol), 2.2g (1.43 g, 3.9 

mmol) in anhydrous THF (5 mL). The reaction mixture was stirred at room temperature 

overnight. After this period tBuMgCl (1.0 M THF solution, 2.0 mL, 2.0 mmol), 2.2g  

(0.77 g, 2.1 mmol) in anhydrous THF (2 mL) were added and the reaction mixture was 
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stirred at room temperature for 6 h. The solvent was removed under reduced pressure.  

The residue was purified by column chromatography gradient elution of DCM/MeOH = 

98/2 then 96/4 then 94/6 then 92/8, to give two products: [6.9a] (30%, 0.38 g) and  

[6.10a] (33%, 0.61 g). 

[6.9a] 

31P-NMR (MeOD, 202 MHz): ! 2.07, 1.49. 1H-NMR (MeOD, 500 MHz): ! 8.72 (1H, s, 

NCHN(CH3)2), 7.75, 7.70 (1H, 2s, H-8), 7.39-7.28 (7H, m, PhO, OCH2Ph), 7.20-7.14 

(3H, m, PhO, OCH2Ph), 5.13-5.11 (2H, m, H-5’), 4.16-4.00 (4H, m, H-1’, H-5’), 3.08, 

2.99 (6H, 2s, N(CH3)2) 3.54-3.53 (2H, m, H-4’), 1.80-1.75 (3H, m, H-2’, H-3’), 1.50 

(6H, br s, C(CH3)2). 

[6.10a] 

31P-NMR (MeOD, 202 MHz): ! 2.28, 2.22 (br s). 1H-NMR (MeOD, 500 MHz): ! 8.65 

(1H, s, NCHN(CH3)2), 7.84 (1H, bs, H-8), 7.31-7.20 (20H, m, 2 x PhO,  2 x OCH2Ph), 

5.10-5.08 (4H, m, 2 x OCH2Ph), 4.17-4.09 (6H, m, H-1’, H-4’, H-5’), 3.01-3.00 (6H, m, 

N(CH3)2) 1.88-1.74 (3H, m, H-2’, H-3’), 1.52-1.47 (12H, m, 2 x C(CH3)2). 

Synthesis of penciclovir-[phenyl(benzyloxy-dimethylglicinyl)] phosphate [6.5a] 

Chemical Formula: C27H33N6O7P 

Molecular Weight: 584.5607 

A solution of 6.9a (0.15 g, 0.23 mmol) in isopropanol 

(10 mL) was stirred under reflux for 24 h. After this 

period the solvent was removed under reduced pressure 

and the residue was purified by column chromatography, gradient elution of 

DCM/MeOH = 98/2 then 96/4 then 94/6 then 92/8 then 90/10. The product was further 

purified by preparative reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 

40/60 in 5 min, 40/60 isocratic 15 min, then to 0/100 in 5 min) to give a white solid 

(5.2%, 0.07*10-1 g). 

31P-NMR (MeOD, 202 MHz): ! 2.37, 2.35. 1H-NMR (MeOD, 500 MHz): ! 7.70, 7.69 

(1H, 2s, H-8), 7.38-7.27 (7H, m, PhO, OCH2Ph), 7.20-7.14 (3H, m, PhO, OCH2Ph), 

5.15, 5.14 (2H, 2s, H-5’), 4.19-4.07 (4H, m, H-1’, H-5’), 3.54-3.53 (2H, m, H-4’), 1.85-

1.72 (3H, m, H-2’, H-3’), 1.49 (6H, br s, C(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 

27.43 (d, JC–P = 4.95 Hz, C(CH3)2), 27.49 (d, JC–P = 4.95 Hz, C(CH3)2), 27.66 (d, JC–P = 

7.06 Hz, C(CH3)2), 27.73 (d, JC–P = 7.06 Hz, C(CH3)2), 29.43, 29.52 (2s, C-2’), 40.19 (d, 
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JC–P = 7.56 Hz, C-3’), 40.28 (d, JC–P = 7.56 Hz, C-3’), 42.33, 42.25 (2s, C-1’), 62.25, 

62.29 (2s, C-4’), 67.74 (d, JC–P = 6.3 Hz, C-5’), 67.91 (d, JC–P = 6.3 Hz, C-5’), 68.19 (br 

s, OCH2Ph), 117.59, 121.54, 121.58, 121.59, 121.63, 126.01, 129.23, 129.27, 129.57, 

130.68 (C-5, PhO, OCH2Ph), 137.37 (‘ipso’ OCH2Ph), 139.54 (C-8), 152.37, 152.43 

(2s, ‘ipso’ OPh), 153.11 (C4), 155.24 (C-2), 159.45 (C-6), 176.62 (bs, COOCH2Ph). EI 

MS= 607.21 (M+Na). HPLC = H2O/ACN from 90/10 to 0/100 in 25 min = retention 

time 12.07 min; H2O/MeOH  90/10 to 40/60 in 5 min, 40/60 isocratic 15 min, then to 

0/100 in 5 min  = retention time 12.35 min. 

Synthesis of penciclovir-[phenyl(benzyloxy-dimethylglicinyl)] diphosphate [6.6a] 

Chemical Formula: C44H51N7O11P2 

Molecular Weight: 915.8636 

A solution of 6.10a (0.60 g, 0.62 mmol) in isopropanol 

(20 mL) was stirred under reflux for 62 h. After this 

period the solvent was removed under reduced pressure 

and the residue was purified by column 

chromatography, gradient elution of DCM/MeOH = 

100/0, then 98/2, then 97/3. The product was further purified by preparative reverse 

phase HPLC (gradient elution of H2O/MeOH 90/10 to 20/80 in 5 min, 20/80 isocratic 

15 min, then to 0/100 in 5 min) to give a white solid (5%, 0.03g). 

31P-NMR (MeOD, 202 MHz): ! 2.23, 2.18, 2.17. 1H-NMR (MeOD, 500 MHz): ! 7.65, 

7.63 (1H, 2s, H-8), 7.34-7.26 (14H, m, PhO, OCH2Ph), 7.19-7.13 (6H, m, PhO, 

OCH2Ph), 5.15-5.09 (4H, m, 2 x OCH2Ph), 4.09-4.07 (4H, m, H-4’, H-5’), 4.02-3.98 

(2H, m, H-1’), 1.88-1.82 (1H, m, H-3’), 1.76-1.65 (2H, m, H-2’) 1.49 (12H, br s, 2x 

C(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 27.47 (d, JC–P = 5.04 Hz, C(CH3)2), 27.56 (d, 

JC–P = 5.04 Hz, C(CH3)2), 27.71 (d, JC–P = 6.30 Hz, C(CH3)2), 27.81 (d, JC–P = 6.30 Hz, 

C(CH3)2), 29.01, 29.05 (2s, C-2’), 38.38 (d, JC–P = 7.56 Hz, C-3’), 38.50 (d, JC–P = 7.56 

Hz, C-3’), 41.81, 41.85 (2s, C-1’), 66.90, 66.94, 67.08, 67.13 (C-4’, C-5’), 68.19 (s, 

OCH2Ph), 117.56, 121.35, 121.52, 121.56, 121.58, 121.62, 121.66, 126.05, 129.19, 

129.21, 129.24, 129.28, 129.58, 130.74 (C-5, PhO, OCH2Ph), 137.36 (‘ipso’ OCH2Ph), 

139.49 (C-8), 152.29, 152.35 (2s, ‘ipso’ OPh), 153.16 (C4), 155.23 (C-2), 159.44 (C-6), 

176.56, 176.58, 176.59 (3s, COOCH2Ph), EI MS= 938.31 (M+Na);  

H2O/MeOH  90/10 to 20/80 in 5 min, 20/80 isocratic 15 min, then to 0/100 in 5 min  = 
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retention time 16.28 min. 

Synthesis of N
2-DMF-penciclovir-[1-naphthyl(benzyloxy-dimethylglicinyl)] 

phosphate [6.9b] and N
2-DMF-penciclovir-[1-naphthyl(benzyloxy-

dimethylglicinyl)] diphosphate [6.10b].  
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Chemical Formula: C55H60N8O11P2

Molecular Weight: 1071.0594

Chemical Formula: C34H40N7O7P

Molecular Weight: 689.6979
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Prepared according to standard procedure G from 6.8a (0.6 g, 1.95 mmol) in anhydrous 

THF (35 ml), tBuMgCl (1.0 M THF solution, 3.89 mL, 3.89 mmol), 2.2h (1.43 g, 3.9 

mmol) in anhydrous THF (10 ml) and the reaction mixture was stirred at room 

temperature overnight. After this period tBuMgCl (1.0 M THF solution, 2.0 mL, 2.0 

mmol), 2.2h (0.9 g, 2.1 mmol) in anhydrous THF (2 mL) were added and the reaction 

mixture was stirred at room temperature for 4 h. The solvent was removed under 

reduced pressure.  The residue was purified by column chromatography gradient elution 

of DCM/MeOH = 98/2 then 96/4 then 94/6 then 92/8, to give two products: [6.9b] 

(48%, 0.66 g) and [6.10b] (40%, 0.54 g,). 

 [6.9b] 

31P-NMR (MeOD, 202 MHz): ! 2.44  (br s). 1H-NMR (MeOD, 500 MHz): ! 8.65 (1H, 

s, NCHN(CH3)2), 8.15-8.09 (1H, m, H-8 Naph), 7.89-7.70 (2H, m, H-6-Naph, H-8), 

7.65-7.55 (1H, m, H-2 Naph), 7.50-7.40 (2H, m, H-5 Naph, H-7 Naph), 7.30-7.21 (7H, 

NaphO, OCH2Ph), 5.15-5.07 (2H, m, OCH2Ph), 4.06-3.98 (4H, m, H-1’, H-5’), 3.37-

3.25 (2H, m, H-4’), 2.80-2.75 (6H, 2s, N(CH3)2), 1.75-1.64 (1H, m, H-3’), 1.56-1.50 

(8H, m, H-2’, C(CH3)2). 

[6.10b] 

31P-NMR (MeOD, 202 MHz): ! 2.82, 2.74, 2.59. 1H-NMR (MeOD, 500 MHz): ! 8.34-

8.29 (1H, m, NCHN(CH3)2), 8.18-8.13 (2H, m, 2 x H-8 Naph), 7.77-7.70 (2H, m, 2 x H-
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6 Naph), 7.67-7.52 (3H, m, H-8, 2 x H-2 Naph), 7.47-7.16 (18H, m, Naph, 2 x 

OCH2Ph) 5.11-5.04 (4H, m, 2 x OCH2Ph), 4.15-4.00 (4H, m, H-4’, H-5’), 3.91-3.79 

(2H, m, H-1’), 2.89-2.81 (6H, m, N(CH3)2), 1.79-1.75 (1H, m, H-3’),  1.53-1.47 (14H, 

m, H-2’, 2 x C(CH3)2). 

Synthesis of penciclovir-[phenyl(benzyloxy-dimethylglicinyl)] phosphate [6.5b] 

Chemical Formula: C31H35N6O7P 

Molecular Weight: 634.6194 

A solution of 6.9b (0.66 g, 0.95 mmol) in 

isopropanol (20 mL) was stirred under reflux for 24 

h . After this period the solvent was removed under 

reduced pressure and the residue was purified by column chromatography, gradient 

elution of DCM/MeOH = 98/2 then 96/4 then 94/6 then 92/8 then 90/10. The product 

was further purified by preparative reverse phase HPLC (gradient elution of 

H2O/MeOH 90/10 to 80/20 in 5 min, 80/20 isocratic 15 min, then to 0/100 in 5 min) to 

give a white solid (5%, 0.3*10-1 g).  

31P-NMR (MeOD, 202 MHz): ! 2.89, 2.85. 1H-NMR (MeOD, 500 MHz): ! 8.18-8.13 

(1H, m, H-8 Naph), 7.84-7.79 (1H, m, H-6 Naph), 7.66,7.64 (1H, 2s, H-8), 7.62-7.59 

(1H, m, H-2 Naph), 7.49-7.40 (2H, m, H-5 Naph, H-7 Naph), 7.37-7.21 (7H, NaphO, 

OCH2Ph), 5.1-5.04 (2H, m, OCH2Ph), 4.06-4.00 (4H, m, H-1’, H-5’), 3.37-3.20 (2H, m, 

H-4’), 1.79-1.70 (1H, m, H-3’), 1.56-1.50 (8H, m, H-2’, C(CH3)2). 
13C NMR (MeOD, 

126 MHz): ! 27.50 (d, JC–P = 4.77 Hz, C(CH3)2), 27.57 (d, JC–P = 4.77 Hz, C(CH3)2), 

27.86 (d, JC–P = 7.28 Hz, C(CH3)2), 27.96 (d, JC–P = 7.28 Hz, C(CH3)2), 29.35, 29.53 (2s, 

C-2’), 40.21 (d, JC–P = 7.48 Hz, C-3’), 40.31 (d, JC–P = 7.48 Hz, C-3’), 42.16, 42.26 (2s, 

C-1’), 62.21, 62.25 (2s, C-4’), 67.85 (d, JC–P = 6.07 Hz, C-5’), 68.08 (d, JC–P = 6.07 Hz, 

C-5’), 68.25 (bs, OCH2Ph), 116.55, 116.58, 116.71, 116.73, 117.55, 123.02, 125.84, 

125.87, 126.48, 127.29, 127.68, 127.69, 127.97, 128.02, 128.06, 128.81, 129.23, 

129.25, 129.27, 129.55 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, C-5 Naph, C-6 Naph, C-

7 Naph, C-8 Naph, OCH2Ph), 136.25 (‘ipso’ OCH2Ph), 137.34 (C-8a Naph) 139.45 (C-

8), 148.20, 148.26 (2s, ‘ipso’ ONaph), 153.03 (C-4), 155.20 (C-2), 159.46 (C-6), 

176.69, 176.72 (2s, COOCH2Ph). EI MS= 635.28 (M+H). HPLC = H2O/ACN from 

90/10 to 0/100 in 25 min = retention time 13.87 min; H2O/MeOH 90/10 to 20/80 in 5 

min, 20/80 isocratic 5 min, then to 0/100 in 5 min= retention time 8.55 min. 
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Synthesis of penciclovir-[1-naphtyl-(benzyloxy-dimethylglicinyl)]diphosphate 

[6.6b] 

Chemical Formula: C52H55N7O11P2 

Molecular Weight: 1015.9809 

A solution of 6.10b (0.54 g, 0.50 mmol) in 

isopropanol (20 mL) was stirred under reflux for 62 

h. After this period the solvent was removed under 

reduced pressure and the residue was purified by 

column chromatography, gradient elution of 

DCM/MeOH = 100/0, 98/2, then 97/3. The product was further purified by preparative 

reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 20/80 in 5 min, 20/80 

isocratic 25 min, then to 0/100 in 5 min) to give a white solid (5%, 0.25*10-1 g).  

31P-NMR (MeOD, 202 MHz): ! 2.76, 2.70, 2.64, 2.57. 1H-NMR (MeOD, 500 MHz): ! 

8.18-8.13 (2H, m, 2 x H-8 Naph), 7.84-7.79 (2H, m, 2 x H-6 Naph), 7.65,7.64 (1H, 2s, 

H-8), 7.62-7.59 (2H, m, 2 x H-2 Naph), 7.49-7.18 (18H, m, Naph, 2 x OCH2Ph), 5.12-

5.03 (4H, m, 2 x OCH2Ph), 4.09-4.07 (4H, m, H-4’, H-5’), 4.02-3.98 (2H, m, H-1’), 

1.78-1.72 (1H, m, H-3’), 1.52-1.47 (14H, m, H-2’, 2 x C(CH3)2). 
13C NMR (MeOD, 126 

MHz): ! 27.48 (d, JC–P = 7.48 Hz, C(CH3)2), 27.54 (d, JC–P = 7.48 Hz, Hz C(CH3)2), 

27.59 (d, JC–P = 7.56, C(CH3)2), 27.89 (d, JC–P = 7.56, C(CH3)2), 27.97 (d, JC–P = 7.56 Hz, 

C(CH3)2), 28.07 (d, JC–P = 7.56 Hz, C(CH3)2), 28.88, 28.72 (2s, C-2’), 38.32 (d, JC–P = 

7.56 Hz, C-3’), 38.48 (d, JC–P = 7.56 Hz, C-3’), 41.72, 41.67 (2s, C-1’), 66.88, 66.97, 

67.01, 67.28 (C-4’, C-5’), 68.21 (OCH2Ph), 116.46, 116.48, 116.66, 116.69, 116.77, 

116.80, 117.53, 122.96, 123.02, 123.07, 123.10, 125.83, 125.88, 125.92, 126.50, 

126.52, 126.54, 127.35, 127.37, 127.68, 127.70, 127.72, 128.84, 129.17, 129.19, 

129.22, 129.25 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, C-5 Naph, C-6 Naph, C-7 Naph, 

C-8 Naph, OCH2Ph), 136.22, 136.25 (‘ipso’ OCH2Ph), 137.28, 137.31 (2s, C-8a Naph) 

139.25, 139.31 (2s, C-8), 148.14, 148.18 (2s, ‘ipso’ ONaph), 153.00 (C-4), 155.15 (C-

2), 159.43 (C-6), 176.62, 176.64 (2s, COOCH2Ph). EI MS= 1038.34 (M+Na). 

HPLC=H2O/MeOH 90/10 to 20/80 in 5 min, 20/80 isocratic 5 min, then to 0/100 in 5 

min, then 0/100 for 5= retention time 30.76, 31.97 min. 
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9.5.2 Synthesis of 2,2-dimethylglycine benzyl ester derivatives of ganciclovir 

ProTides 6.5c-d and 6.5c-d  

Synthesis of N2-DMF-ganciclovir:  

 N2-(N,N-dimethylformamidine)-9-[(1,3-dihydroxypropan-2-yloxy)methyl]-guanine 

[6.8b]. 

 Chemical Formula: C12H18N6O3 

Molecular Weight: 310.3091 

To a suspension of GCV (2 g, 7.8 mmol) in anhydrous 

DMF (35 ml) was added N,N-dimethylformamide 

dimethyl acetal (5.2 mL, 39 mmol) and the reaction mixture was stirred at room 

temperature overnight. After this period the suspension was filtered and the solid was 

washed with diethyl ether to give a white solid (95% 2.3 g). 

1H-NMR (DMSO, 500 MHz): ! 11.33 (1H, bs, NH), 8.58 (1H, s, CHN(CH3)2), 7.96 

(1H, s, H-8), 5.54 (2H, s, H-1’),  4.64 (2H, bs, 2XOH), 3.66-3.60 (1H, m, H-3’), 3.49-

3.43 (4H, m, H-4’, H-5’), 3.17, 3.05 (6H, 2s, N(CH3)2). 

Synthesis of N2-DMF-ganciclovir-[1-phenyl(benzyloxydimethylglicinyl)] phosphate 

[6.9c] and N2-DMF ganciclovir-[1-phenyl(benzyloxydimethylglicinyl)] diphosphate 

[6.10c] 
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Chemical Formula: C29H36N7O8P

Molecular Weight: 641.612

Chemical Formula: C46H54N8O12P2

Molecular Weight: 972.9149

6.9c 6.10c

 

Prepared according to standard procedure G from 6.8b (0.4 g, 1.3 mmol) in anhydrous 

mixture of THF (30 mL) and pyridine (10 mL), tBuMgCl (1.0 M THF solution, 2.6 mL, 

2.6 mmol), and 2.2g (1.43 g, 3.9 mmol) in anhydrous THF (5 mL) and the reaction 

mixture was stirred at room temperature overnight. After this period tBuMgCl (1.0 M 

THF solution, 2.6 mL, 2.6 mmol) ws added and the reaction mixture was stirred at room 

temperature for 6 h. The solvent was removed under reduced pressure.  The residue was 
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purified by column chromatography gradient elution of DCM/MeOH = 98/2 then 96/4 

then 94/6 then 92/8, to give two products: [6.9c] (40%, 0.33 g), [6.10c] (38%, 0.47 g).  

[6.9c] 

31P-NMR (MeOD, 202 MHz): ! 1.72 (br s). 1H-NMR (MeOD, 500 MHz): ! 8.70 (1H, s, 

NCHN(CH3)2), 7.82-7.81 (1H, m, H-8), 7.40-7.30 (7H, m, PhO, OCH2Ph), 7.20-7.15 

(3H, m, PhO, OCH2Ph), 5.55, 5.52 (2H, 2s, H-1’), 5.19-5.11 (2H, m, OCH2Ph), 4.45-

4.20 (1H, m, H-3’), 4.07-4.01 (1H, m, H-5’), 3.99-3.94 (1H, m, H-5’), 3.60-3.47 (2H, 

m, H-4’), 2.80-2.75 (6H, 2s, N(CH3)2), 1.49 (6H, br s, C(CH3)2). 

[6.10c] 

31P-NMR (MeOD, 202 MHz): ! 1.91 (br s). 1H-NMR (MeOD, 500 MHz): ! 8.70-8.64 

(1H, m, NCHN(CH3)2), 7.70 (1H, bs, H-8), 7.40-7.30 (14H, m, PhO, OCH2Ph), 7.19-

7.15 (6H, m, PhO, OCH2Ph), 5.45-5.42 (2H, m, H-1’), 5.20-5.15 (4H, m, OCH2Ph), 

4.18-4.01 (5H, m, H-3’, H-4’, H-5’), 2.90-2.82 (6H, 2s, N(CH3)2) 1.50 (12H, br s, 2 x 

C(CH3)2) 

Synthesis of ganciclovir-[phenyl(benzyloxydimethylglicinyl)] phosphate [6.5c] 

Chemical Formula: C26H31N6O8P 

Molecular Weight: 586.5335 

A solution of 6.9c (0.33 g, 0.52 mmol) in isopropanol (10 

mL) was stirred under reflux for 24 h. After this period the 

solvent was removed under reduced pressure and the 

residue was purified by column chromatography, gradient elution of DCM/MeOH = 

98/2 then 96/4 then 94/6 then 92/8. The product was further purified by preparative 

reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 30/70 in 5 min, 30/70 

isocratic 10 min, then to 0/100 in 5 min) to give a white solid (6.5%, 0.02 g). 

31P-NMR (MeOD, 202 MHz): ! 2.26, 2.24. 1H-NMR (MeOD, 500 MHz): ! 7.82, 7.81 

(1H, 2s, H-8), 7.37-7.31 (7H, m, PhO, OCH2Ph), 7.19-7.15 (3H, m, PhO, OCH2Ph), 

5.52, 5.51 (2H, 2s, H-1’), 5.16-5.12 (2H, m, OCH2Ph), 4.20-4.14 (1H, m, H-3’), 4.09-

4.04 (1H, m, H-5’), 3.94-3.90 (1H, m, H-5’), 3.60-3.47 (2H, m, H-4’), 1.49 (6H, br s, 

C(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 27.39 (d, JC–P = 6.3 Hz, C(CH3)2), 27.61 (d, 

JC–P = 6.3 Hz, C(CH3)2), 27.63 (d, JC–P = 6.3 Hz, C(CH3)2), 61.95, 61.99 (2s, C -4’), 

67.15 (d, JC–P = 5.54 Hz, C -5’), 67.19 (d, JC–P = 5.54 Hz, C -5’), 68.21, 68.20 (2s, 
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OCH2Ph), 72.96, 73.07 (2s, C-1’) 79.23 (d, JC–P = 5.29 Hz, C-3’), 79.30 (d, JC–P = 5.29 

Hz, CH2CHCH2), 115.24, 115.85, 117.55, 121.51, 121.55, 122.00, 126.01, 128.00, 

129.25, 129.27, 129.57, 130.68, 130.70 (C-5, PhO, OCH2Ph), 137.38 (‘ipso’ OCH2Ph), 

139.76 (s, C-8), 152.25 (d, JC–P = 2.56 Hz, ‘ipso’ OPh), 152.31 (d, JC–P = 2.56 Hz, ‘ipso’ 

OPh), 153.32 (C4), 155.65 (C-2), 159.34 (C-6), 176.54 (d, JC–P = 3.78 Hz, COOCH2Ph), 

176.57 (d, JC–P = 3.78 Hz, COOCH2Ph). EI MS= 587.2022 (M+H+). HPLC = 

H2O/AcCN from 90/10 to 0/100 in 20 min = retention time 10.96 min; H2O/MeOH 

90/10 to 30/70 in 5 min, 30/70 isocratic 10 min, then to 0/100 in 5 min = retention time 

9.67 min. 

Synthesis of ganciclovir-[phenyl(benzyloxydimethylglicinyl)] diphosphate [6.6c] 

Chemical Formula: C43H49N7O12P2 

Molecular Weight: 917.8364 

A solution of 6.10c (0.47 g, 0.49 mmol) in isopropanol 

(15 mL) was stirred under reflux for 62 h. After this 

period the solvent was removed under reduced pressure 

and the residue was purified by column 

chromatography, gradient elution of DCM/MeOH = 

98/2 then 96/4. The product was further purified by preparative reverse phase HPLC 

(gradient elution of H2O/MeOH 90/10 to 30/70 in 5 min, 20/80 isocratic 15 min, then to 

0/100 in 5 min) to give a white solid (4.3%, 0.02 g). 

31P-NMR (MeOD, 202 MHz): ! 2.18, 2.16, 2.11. 1H-NMR (MeOD, 500 MHz): ! 7.76 

(1H, bs, H-8), 7.37-7.27 (14H, m, PhO, OCH2Ph), 7.18-7.14 (6H, m, PhO, OCH2Ph), 

5.43 (2H, br s, H-1’), 5.16-5.10 (4H, m, OCH2Ph), 4.17-4.04 (5H, m, H-3’, H-4’, H-5’), 

1.48 (12H, br s, 2 x C(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 27.43 (d, JC–P = 3.64 Hz, 

C(CH3)2), 27.65 (d, JC–P = 3.64 Hz, C(CH3)2), 27.70 (d, JC–P = 3.64 Hz, C(CH3)2), 66.38, 

66.42, 66.47, 66.52 (C-4’, C-5’), 68.22 (bs, OCH2Ph), 72.66, 72.79 (2s, C-1’) 77.96, 

77.05 (2s, C-3’), 117.58, 121.50, 121.53, 121.57, 126.06, 129.23, 129.24, 129.29, 

129.59, 130.72, 130.75 (C-5, PhO, OCH2Ph), 137.36 (‘ipso’ OCH2Ph), 139.66, 139.68 

(s, C-8), 152.21 (d, JC–P = 7.56 Hz, ‘ipso’ OPh), 152.22 (d, JC–P = 7.56 Hz, ‘ipso’ OPh), 

153.32 (C4), 155.65 (C-2), 159.30 (C-6), 176.52 (s, JC–P = 3.78, COOCH2Ph), 176.54 (s, 

JC–P = 2.52 Hz, COOCH2Ph). EI MS= 918.3033 (M+H+). HPLC = H2O/AcCN from 

90/10 to 0/100 in 20 min = retention time 16.88 min; H2O/MeOH 90/10 to 30/70 in 5 
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min, 20/80 isocratic 15 min, then to 0/100 in 5 min = retention time 14.65 min. 

Synthesis of N
2-DMF-ganciclovir-[1-naphthyl(benzyloxydimethylglicinyl)] 

phosphate [6.9d] and N
2-DMF-ganciclovir-[1-naphthyl(benzyloxy-

dimethylglicinyl)] diphosphate [6.10d] 
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Chemical Formula: C33H38N7O8P

Molecular Weight: 691.6707
Chemical Formula: C54H58N8O12P2

Molecular Weight: 1073.0322

6.9d

6.10d

 

Prepared according to standard procedure G from 6.8b (0.5 g, 1.6 mmol) in anhydrous 

THF (30 mL), tBuMgCl (1.0 M THF solution, 3.2 mL, 3.2 mmol), 2.2h (1.67 g, 4.14 

mmol) in anhydrous THF (10 mL) and the reaction mixture was stirred at room 

temperature overnight. After this period the solvent was removed under reduced 

pressure.  The residue was purified by column chromatography gradient elution of 

DCM/MeOH = 98/2 then 96/4 then 94/6 then 92/8, to give two products: 6.9d (56%, 

0.62 g), 6.10d (35%, 0.6 g).  

[6.9d] 

31P-NMR (MeOD, 202 MHz): ! 2.31 (br s). 1H-NMR (MeOD, 500 MHz): ! 8.60 (1H, s, 

NCHN(CH3)2, 7.78-7.81 (1H, m, H-8), 7.40-7.35 (7H, m, PhO, OCH2Ph), 7.20-7.14 

(3H, m, PhO, OCH2Ph), 5.57-5.50 (2H, m, H-1’), 5.15-5.12 (2H, m, OCH2Ph), 4.20-

4.14 (1H, m, H-3’), 4.07-4.00 (1H, m, H-5’), 3.91-3.87 (1H, m, H-5’), 3.60-3.47 (2H, 

m, H-4’), 2.74-2.64 (6H, 2 s, N(CH3)2), 1.52 (6H, br s, C(CH3)2). 

[6.10d] 

31P-NMR (MeOD, 202 MHz): ! 2.70, 2.66, 2.62, 2.60. 1H-NMR (MeOD, 500 MHz): ! 

8.47, 8.46 (1H, 2s, NCHN(CH3)2, 8.13-8.10 (2H, m, 2x H-8 Naph), 7.85 (2H, bs, 2 x H-

6 Naph), 7.68-7.65 (3H, m, H-8, 2 x H-2 Naph), 7.51-7.24 (18H, m, Naph, 2 x 

OCH2Ph), 5.32-5.28 (2H, m, H-1’), 5.11-5.08 (4H, m, OCH2Ph), 4.25-4.07 (5H, m, H-

3’, H-4’, H-5’), 2.90-2.88 (6H, m, N(CH3)2), 1.48-1.43 (12H, m, 2 x C(CH3)2) 
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Synthesis of ganciclovir-[1-naphthyl(benzyloxydimethylglicinyl)] phosphate [6.5d] 

Chemical Formula: C30H33N6O8P 

Molecular Weight: 636.5922 

A solution of 6.9d (0.62 g, 0.9 mmol) in isopropanol 

(20 mL) was stirred under reflux for 62 h. After this 

period the solvent was removed under reduced 

pressure and the residue was purified by column chromatography, gradient elution of 

DCM/MeOH = 98/2 then 96/4 then 94/6 then 92/8. The product was further purified by 

preparative TLC (gradient elution of DCM/MeOH = 98/2 then 96/4 then 94/6) to give a 

white solid (2.7%, 0.15*10-1 g). 

31P-NMR (MeOD, 202 MHz): ! 2.65, 2.69. 1H-NMR (MeOD, 500 MHz): ! 8.19-8.14 

(1H, m, H-8 Naph), 7.89-7.87 (1H, 2s, H-6 Naph), 7.76 (1H, s, H-8), 7.71-7.68 (1H, m, 

H-2 Naph), 7.54-7.52 (2H, m, H-5 Naph, H-7 Naph), 7.47-7.27 (7H, m, Naph, 

OCH2Ph), 5.42, 5.43 (2H, 2s, H-1’), 5.17-5.10 (2H, m, OCH2Ph), 4.26-4.20 (1H, m, H-

5’), 4.15-4.10 (1H, m, H-5’), 3.93-3.88 (1H, m, H-3’), 3.57-3.45 (2H, m, H-4’), 1.53-

1.51 (6H, m, C(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 27.47 (d, JC–P = 5.20 Hz, 

C(CH3)2), 27.75 (d, JC–P = 5.20 Hz, C(CH3)2), 27.80 (d, JC–P = 5.20 Hz, C(CH3)2), 61.93, 

61.96 (2s, C-4’), 67.34 (d, JC–P = 5.76 Hz, C-5’), 67.38 (d, JC–P = 5.76 Hz, C-5’), 68.24 

(OCH2Ph), 72.96, 73.06 (2s, C-1’) 79.23 (d, JC–P = 7.90 Hz, C-3’), 79.29 (d, JC–P = 7.90 

Hz, C-3’), 116.41, 116.44, 116.47, 117.54, 122.98, 125.82, 126.51, 127.36, 127.71, 

127.91, 127.91, 127.96, 128.80, 129.23,  129.25, 129.55 (C-5, C-2 Naph, C-3 Naph, C-

4 Naph, C-5 Naph, C-6 Naph, C-7 Naph, C-8 Naph, OCH2Ph), 136.26 (‘ipso’ 

OCH2Ph), 137.34 (C-8a Naph), 139.69 (C-8), 148.10 (d, JC–P = 7.56, ‘ipso’ ONaph), 

148.13 (d, JC–P = 7.56, ‘ipso’ ONaph), 153.25 (C4), 155.62 (C-2), 159.31 (C-6), 176.60 

(d, JC–P = 3.35 Hz, COOCH2Ph), 176.62 (d, JC–P = 3.35 Hz, COOCH2Ph).  EI MS= 

659.20 (M+Na). HPLC = H2O/AcCN from 90/10 to 0/100 in 20 min = retention time 

13.71 min; H2O/MeOH from 90/10 to 20/80 in 5 min, 20/80 isocratic 10 min, then to 

0/100 in 5 min = retention time 9.99 min. 
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Synthesis of ganciclovir-[1-naphthyl(benzyloxydimethylglicinyl)] diphosphate 

[6.6d] 

Chemical Formula: C51H53N7O12P2 

Molecular Weight: 1017.9537 

A solution of 6.10d (0.6 g, 0.56 mmol) in 

isopropanol (20 mL) was stirred under reflux for 

62 h. After this period the solvent was removed 

under reduced pressure and the residue was 

purified by column chromatography, gradient 

elution of DCM/MeOH = 98/2 then 96/4 then 94/6 to give a white solid (5.3%, 0.3*10-1 

g). 

31P-NMR (MeOD, 202 MHz): ! 2.63, 2.57, 2.53, 2.52. 1H-NMR (MeOD, 500 MHz): ! 

8.13-8.10 (2H, m, 2 x H-8 Naph), 7.85 (2H, bs, 2 x H-6 Naph), 7.68-7.65 (3H, m, H-8, 

2 x H-2 Naph), 7.51-7.24 (18H, m, Naph, 2 x OCH2Ph), 5.32-5.28 (2H, m, H-1’), 5.11-

5.08 (4H, m, OCH2Ph), 4.25-4.07 (5H, m, H-3’, H-4’, H-5’), 2.90-2.88 (6H, m, 

N(CH3)2), 1.48-1.43 (6H, m, C(CH3)2). 
13C NMR (MeOD, 126 MHz): ! 27.47 (br s, 

C(CH3)2), 27.79, 27.82, 27.85, 27.88, (C(CH3)2), 66.44, 66.49, 66.52, 66.57, 66.67, 

66.64 (C-4’, C-5’), 68.23 (br s, OCH2Ph), 72.66, 72.79 (2s, C-1’) 77.10, 77.03 (2s, C-

3’), 116.39, 116.42, 116.44, 116.51, 116.53, 117.56, 122.93, 122.98, 123.50, 125.87, 

126.53, 127.21, 127.42, 127.70, 127.73, 127.89, 127.94, 128.81, 129.19, 129.24, 

129.54, 129.76 (C-5, C-2 Naph, C-3 Naph, C-4 Naph, C-5 Naph, C-6 Naph, C-7 Naph, 

C-8 Naph, OCH2Ph), 136.24, 136.26 (2s, ‘ipso’ OCH2Ph), 137.29, 137.31 (2s, C-8a 

Naph), 139.53 (C-8), 147.99, 148.05 (2s, ‘ipso’ONaph), 153.23 (C4), 155.59 (C-2), 

159.26 (C-6), 176.57, 176.59 (2s, COOCH2Ph). EI MS= 1018.34 (M+H+). HPLC = 

H2O/ACN from 90/10 to 0/100 in 40 min = retention time 34.05 min; H2O/MeOH 90/10 

to 20/80 in 5 min, 20/80 isocratic 30 min, then to 0/100 in 5 min = retention time 35.52 

min. 

 

 

 

 

NH

NN

N

NH2O
O

O

O

P

O

O

HN

O

O

Bn
CH3

CH3

PO
NH

O

CH3

CH3

OO Bn



Chapter 9 

 264 

9.5.3 Synthesis of L-alanine benzyl ester derivatives of penciclovir ProTides  

[6.7a-b]  

Synthesis of penciclovir-[phenyl(benzyloxy-L-alaninyl)] phosphate [6.7a] 

Chemical Formula: C51H53N7O12P2 

Molecular Weight: 1017.9537 

Prepared according to standard procedure G, from 

penciclovir (0.3 g, 1.18 mmol) in anhydrous 

pyridine (20 mL), tBuMgCl (1.0 M THF solution, 

2.36mL, 2.36 mmol), 2.2a (0.8 g, 2.36 mmol) in 

anhydrous THF (2.5 mL). The reaction mixture was stirred at room temperature 

overnight. The solvent was removed under reduced pressure.  The residue was purified 

by column chromatography gradient elution of DCM/MeOH = 98/2, then 96/4, then 

94/6, then 92/8. The product was further purified by preparative reverse phase HPLC 

(gradient elution of H2O/MeOH 90/10 to 40/60 in 5 min, 40/60 isocratic 15 min, then to 

0/100 in 5 min) to give a white solid (5%, 0.035 g) . 

31P-NMR (MeOD, 202 MHz): ! 4.12, 4.05, 3.61, 3.59. 1H-NMR (MeOD, 500 MHz): ! 

8.01-7.99 (1H, m, H-8), 7.37-7.27 (7H, m, PhO, OCH2Ph), 7.21-7.15 (3H, m, PhO, 

OCH2Ph), 5.15, 5.14 (2H, 2s, OCH2Ph), 4.20-4.11 (4H, m, H-1’, H-5’), 4.04-4.01 (1H, 

m, CHCH3), 3.57-3.51 (2H, m, H-4’), 1.89-1.75 (3H, m, H-2’, H-3’), 1.39-1.36 (3H, m, 

CHCH3). 
13C NMR (MeOD, 126 MHz): ! 20.39, 20.44 (CHCH3), 29.28, 29.32, 29.37, 

29.39, 29.46 (C-2’), 40.20 (C-3’), 42.77, 42.81 (C-1’), 51.67, 51.70 (NHCH), 62.21, 

62.25, 62.32 (C-4’), 67.70, 67.74, 67.79 (C-5’), 67.98, 68.00 (2S, OCH2Ph), 120.84, 

121.47, 121.52, 121.55, 121.59, 121.63, 126.17, 128.01, 128.28, 129.27, 129.33, 

129.37, 130.32, 130.78, 131.06, 131.10 (C-5, PhO, OCH2Ph), 137.26 (‘ipso’ OCH2Ph), 

141.05 (C-8), 152.21, 152.27 (‘ipso’ OPh), 153.11 (C4), 155.20, 152.24, 152.6 (C-2, C-

3), 155.68 (C-6), 174.82, 175.07 (2s, COOCH2Ph). EI MS = 571.24 (M+H). HPLC = 

H2O/ACN from 90/10 to 0/100 in 25 min, then 0/100 isocratic  

5 min = retention time 16.88 min; H2O/MeOH from 90/10 to 0/100 in 25 min, then 

0/100 isocratic 5 min = retention time 23.35 min. 
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Synthesis of N2-(N,N-dibenzylformamidine)-penciclovir:  

 N2-(N,N-dibenzylformamidine)-9-[(4-dihydroxy-3-hydroxymethylbut-1-ylpropan-

2-yl]-guanine [6.11] 

Chemical Formula: C25H28N6O3
 

Molecular Weight: 460.5282 

Freshly distilled dibenzylamine  (7.5 g, 38.1 mmol) and 

N,N-dimethylformamide dimethylacetale (1.7 mL, 12.8 

mmol) were refluxed in ACN (15 mL) for 24 h. Anhydrous toluene (15 mL)  was added 

and the solvent was removed under reduced pressure. The crude residue in anhydrous 

ACN (10 mL) was added to PCV (1.06 g, 4.2 mmol) in ACN (20 mL). The solution was 

stirred for 24 h at 45 °C and precipitated in ET2O (65 mL). The solid was filtrated and 

purified by column chromatography, gradient elution of DCM/MeOH = 98/2 to 80/20, 

to give a white solid (52%, 1 g). 

1H-NMR (DMSO, 500 MHz): ! 11.41 (1H, bs, NH), 8.99 (1H, s, CHN(Bn)2), 7.85 (1H, 

s, H-8), 7.42-7.31(10H, m, Bn), 4.62, 4.58 (2H, 2s, NCH2Ph), 4.43 (2H, t, J = 5.23 Hz,  

H-1’),  3.49-3.38 (4H, m, H-4’, H-5’), 1.81-1.76 (2H, m, H-2’), 1.51-1.46 (1H, m, H-

3’).  

Synthesis of N2-(N,N-dibenzylformamidine)-penciclovir-[1-naphthyl(benzyloxy-L-

alaninyl)] phosphate [6.12] 

Chemical Formula: C45H46N7O7P 

Molecular Weight: 827.8632 

Prepared according to standard procedure G 

from 6.11 (0.13 g, 0.28 mmol) in anhydrous 

mixture of THF (6 mL) and pyridine (2 mL), 

tBuMgCl (1.0 M THF solution, 0.56 mL, 0.56 mmol), and 2.2b (0.23 g, 0.56 mmol) in 

anhydrous THF (3 mL) and the reaction mixture was stirred at room temperature 

overnight. The solvent was removed under reduced pressure.  The residue was purified 

by column chromatography gradient elution of DCM/MeOH = 98/2 then 96/4 then 94/6 

then 92/8, to give a white solid (30%, 0.07 g).  

31P-NMR (MeOD, 202 MHz): ! 4.52, 4.64, 4.19, 4.09. 1H-NMR (MeOD, 500 MHz): ! 

9.05 (1H, s, NCHN(CH2Ph)2), 8.28-8.27 (1H, m, H-8 Naph), 8.14-8.13 (1H, m, H-6 

Naph), 7.78-7.13 (21H, m, H-8, Naph, OCH2Ph, N(CH2Ph)2), 5.04-5.02 (2H, m, 

OCH2Ph), 4.61-4.58 (2H, m, NCH2Ph), 4.42-4.37 (2H, m, NCH2Ph), 4.11-4.03 (6H, 
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m, H-1’, H-5’, CHCH3),  3.51-3.45 (2H, m, H-4’), 1.78-1.66 (2H, m, H-2’), 1.31-1.28 

(1H, m, H-3’), 1.19 (3H, d, J= 6.86 Hz, CHCH3). 

Synthesis of N2,O-bis(MTT)-penciclovir:  

(N2-(monomethoxytrity1)-9-[3-(hydroxymethyl)-4-[(monomethoxytrityl)oxy]but-l-

yl]guanine) [6.13a]  

and 

 N2-MTT-penciclovir: 

 (N2-(monomethoxytrity1)-9-[4-hydroxy-3-(hydroxymethyl)but-1-yl]guanine) 

[6.14a] 

NH

NN

N

NH

HO

O

O

O CH3

O

CH3

NH

NN

N

NH

HO

O

OH

O

CH3

 6.13a  6.14a

Chemical Formula: C50H47N5O5

Molecular Weight: 797.9387

Chemical Formula: C30H31N5O4

Molecular Weight: 525.5982
 

 A solution of penciclovir (4.05 g, 16 mmol), monomethoxytrityl chloride (10.9 g, 35 

mmol), anhydrous triethylamine (6.7 mL) and 4-dimethylaminopyridine (40 mg) in 

anhydrous DMF (50 mL) was stirred at room temperature for 2 h. The reaction was 

quenched with MeOH and the solvent was removed. The residue was taken up in ethyl 

acetate and the solution washed with aqueous NaHCO3 and water. The solution was 

dried (MgSO4) and the solvent removed. The residue was purified by column 

chromatography on silica gel eluting with CHCL3/MeOH (gradient elution = 100/0, then 

98/2, then 96/4, then 94/6) The first product to elute was 6.13a (4.4 g, 34%). The 

second product to elute was 6.14a (1.4 g, 17%). 

[6.13a] 

1H-NMR (DMSO, 500 MHz): ! 10.50 (1H, bs, NH), 7.55 (1H, s, N-2), 7.44 (1H, s, H-

8), 7.4-6.7 (28H, m, Ph), 4.35 (1H, t, J = 4.8 Hz, OH), 3.74 (3H, s, CH3O), 3.66 (3H, s, 

CH3O), 3.42 (2H, t, J=6.7 Hz, H-1’), 3.40-3.10 (2H, m, H-5’), 2.90-2.70 (2H, m, H-4’), 

1.43 (1H, m, H-3’), 1.24 (2H, m, H-2’). 
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[6.13a] 

1H-NMR (DMSO, 500 MHz): ! 10.49 (1H, bs, NH), 7.56 (1H, s, N-2), 7.54 (1H, s, H-

8), 7.35-6.86 (14H, m, Ph), 4.28 (2H, t, J = 5.2 Hz, 2 X OH), 3.72 (3H, s, CH3O), 3.52 

(2H, t, J=6.6 Hz, H-1’), 3.3-3.1 (4H, m, 2 X CH2OH), 1.25 (3H, m, H-2’, H-3’). 

Synthesis of N2,O-bis(MTT)-penciclovir-[1-naphtyl(benzyloxy-L-alaninyl)] 

phosphate [6.15a] 

Chemical Formula: C70H65N6O9P 

Molecular Weight: 1165.2737 

Prepared according to standard procedure G 

from 6.13a  (0.6 g, 0.75 mmol) in anhydrous 

THF (15 mL) tBuMgCl (1.0 M THF solution, 

1.5 mL, 1.5 mmol), 2.2b (0.6 g, 1.5 mmol) in 

anhydrous THF (5 mL). The reaction mixture was stirred at room temperature 

overnight. The solvent was removed under reduced pressure. The residue was purified 

by column chromatography, gradient elution of DCM/MeOH = 100/0 then 98/2, to give 

a white solid (40%, 0.36 g,).  

31P-NMR (DMSO, 202 MHz): ! 3.99, 3.85, 3.81, 3.75. 1H-NMR (DMSO, 500 MHz): ! 

10.51 (1H, bs, NH-1), 8.09-8.03 (1H, m, H-8 Naph), 7.95-7.94 (1H, m, H-6 Naph), 

7.73-7.71 (1H, m, H-8), 7.56 (1H, bs, NH-2), 7.46-6.74 (38H, m, Naph, OCH2Ph, 2 x 

Tr), 5.13-4.95 (2H, m, OCH2Ph), 4.03-3.80 (5H, m, H-1’, CHCH3, H-5’), 3.72 (3H, s, 

OCH3), 3.65 (3H, s, OCH3), 2.73-2.71 (2H, m, H-4’), 1.52-1.47 (3H, m, H-2’, H-3’), 

1.28-1.24 (3H, m, CHCH3). EI MS = 1187.39 (M+Na).  

Synthesis of penciclovir-[1-naphtyl(benzyloxy-L-alaninyl)] phosphate [6.7b] 

Chemical Formula: C30H33N6O7P 

Molecular Weight: 620.5928 

A solution of 6.15a (0.164 g, 0.14 mmol) in 

CH2Cl2/MeOH mixture 7:3 (10 mL) was treated 

with p-toluensulfonic acid (0.133 g, 0.7 mmol). The 

mixture was stirred at room temperature for 2 h. After this period the solvent was 

removed under reduced pressure and the residue was purified by column 

chromatography, gradient elution of DCM/MeOH = 98/2, then 96/4, then 94/6 then, 

92/8, then 90/10). The product was further purified by preparative reverse phase HPLC 
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(gradient elution of H2O/MeOH 90/10 to 80/20 in 5 min, 80/20 isocratic 15 min, then to 

0/100 in 5 min) to give a white solid (30%, 0.027 g).  

31P-NMR (MeOD, 202 MHz): ! 4.46, 4.44, 4.16, 4.13. 1H-NMR (MeOD, 500 MHz): ! 

8.17-8.15 (1H, m, H-8 Naph), 7.87-7.86 (1H, m, H-6 Naph), 7.70-7.67 (1H, m, H-8), 

7.63-7.58 (1H, m, H-2 Naph), 7.52-7.50 (2H, m, H-5 Naph, H-7 Naph), 7.47-7.26 (7H, 

NaphO, PhO), 5.13, 5.09 (2H, m, OCH2Ph), 4.23-4.11 (3H, m, H-5’, CHCH3), 4.03-

3.94 (1H, m, H-1’), 3.49-3.43 (2H, m, H-4’), 1.76-1.62 (3H, m, H-2’, H-3’), 1.38 (3H, 

bs, CHCH3). 
13C NMR (MeOD, 126 MHz): ! 20.39, 20.42, 20.44, 20.48, 20.50 

(CHCH3), 29.44, 29.54 (C-2’), 40.27, 40.31, 40.40 (C-3’), 42.25, 42.29 (C-1’), 51.83, 

51.87, 51.93 (NHCH), 62.24, 62.31 (H-4’), 67.82, 67.86, 67.94, 67.99, 68.07 (H-5’, 

OCH2Ph), 116.47, 116.50, 116.60, 116.69, 116.71, 117.56, 119.99, 122.73, 122.76, 

122.85, 122.88, 123.15, 125.46, 126.03, 126.51, 126.99, 127.42, 127.45, 127.75, 

128.02, 128.27, 128.43, 128.84, 128.87, 129.25, 129.30, 129.33, 129.54, 129.57 (C-5, 

C-2 Naph, C-3 Naph, C-4 Naph, C-5 Naph, C-6 Naph, C-7 Naph, C-8 Naph, OCH2Ph), 

136.27 (‘ipso’ OCH2Ph), 137.20 (C-8a Naph) 139.48 (C-8), 148.05, 148.11 (2s, ‘ipso’ 

ONaph), 153.04 (C-4), 155.21 (C-2), 159.42 (C-6), 174.84, 175.04 (2s, COOCH2Ph).  

EI MS = 621.22 (M+H). HPLC: H2O/ACN from 90/0 to 0/100 in 30 min, then 0/100 

isocratic 5 min = retention time 12.93 min 

 

 

 

 

 

 

 

 



Chapter 9 

 269 

9.5.4 Synthesis of L-alanine benzyl ester derivatives of ganciclovir ProTides  

6.7c-d 

Synthesis of N2,O-bis(MTT)-ganciclovir: 

 (N2-(monomethoxytrityl)-9-[(1-monomethoxytrityloxy-3-hydroxypropan-2-

yloxy)methyl]guanine) [6.13a] 

and 

N2-MTT-ganciclovir: 

(N2-Monomethoxytrityl-9-[(1,3-dihydroxypropan-2-yloxy)methyl]guanine) [6.14b] 
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 6.13b  6.14b

Chemical Formula: C49H45N5O6

Molecular Weight: 799.9115

Chemical Formula: C29H29N5O5

Molecular Weight: 527.5711
 

A solution of GCV (0.5 g, 1.96 mmol), monomethoxytrityl chloride (1.33 g, 4.32 

mmol), triethylamine (0.82 mL, 5.88 mmol) and 4-dimethylaminopyridine (5 mg) in 

DMF (5 mL) was stirred at room temperature for 2 h. The reaction was quenched with 

MeOH and the solvent was removed. The residue was taken up in ethyl acetate and the 

solution washed with aqueous NaHCO3 and water. The solution was dried (MgSO4) and 

the solvent removed. The residue was purified by column chromatography on silica gel 

using a gradient elution of DCM/MeOH (98/2, then 96/4, then 94/6). The first product 

to elute was 6.13b (53%, 0.84 g). The second product to elute was 6.14b (30% 0.3 g) 

[6.13b] 

1H-NMR (MeOH, 500 MHz): ! 7.79 (1H, s, H-8), 7.32-6.73 (28H, m, Ph), 5.06 (2H, s, 

H-1’), 3.82 (3H, s, CH3O), 3.66 (3H, s, CH3O), 3.57-3.54 (1H, m, H-3’), 3.28-3.18 (2H, 

m, H-5’), 2.87-2.79 (2H, m, H-4’) 

[6.14b] 

1H-NMR (MeOH, 500 MHz): ! 7.74 (1H, s, H-8), 7.38-6.87 (14H, m, Ph), 3.80 (3H, s, 

CH3O), 3.66-3.60 (1H, m, H-3’), 3.49-3.43 (4H, m, H-4’, H-5’). 
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Synthesis of N2,O-bis(MTT)-ganciclovir-[phenyl(benzyloxy-L-alaninyl)] phosphate 

[6.15b] 

Chemical Formula: C66H63N6O10P 

Molecular Weight: 1131.2144 

Prepared according to standard 

procedure G from 6.13b (0.45 g, 0.58 

mmol) in anhydrous THF (10 mL) 

tBuMgCl (1.0 M THF solution, 1.12 

mL, 1.12 mmol), 2.2a (0.45 g, 1.27 

mmol) in anhydrous THF (2 mL) and the reaction mixture was stirred at room 

temperature overnight. The solvent was removed under reduced pressure. The residue 

was purified by column chromatography, gradient elution of DCM/MeOH = 100/0 then 

98/2, to give a white solid (38%, 0.247 g,). 

31P-NMR (MeOD, 202 MHz): ! 3.32, 3.30, 3.27, 3.16. 1H-NMR (MeOD, 500 MHz): ! 

7.74-7.73 (1H, m, H-8), 7.34-6.70 (38H, m, PhO, OCH2Ph, 2 x Tr), 5.17-4.99 (2H, m, 

OCH2Ph), 4.95-4.89 (2H, m, H-1’), 3.79-3.60 (8H, m, CHCH3, H-3’, 2X OCH3) 3.17-

3.07 (2H, m, H-5’), 2.81-2.78 (2H, m, H-4’), 1.85, 1.72 (3H, m, CHCH3).  

Synthesis of ganciclovir-[phenyl(benzyloxy-L-alaninyl)] phosphate [6.7c] 

Chemical Formula: C25H29N6O8P 

Molecular Weight: 572.5069 

 

A solution of 6.15b (0.11 g, 0.1 mmol) in 

CH2Cl2/MeOH mixture 7:3 (5 mL) was treated with p-

toluensulfonic acid (0.09 g, 0.48 mmol). The mixture was stirred at room temperature 

for 2 h. After this period the solvent was removed under reduced pressure and the 

residue was purified by preparative TLC plate chromatography, gradient elution of 

DCM/MeOH = 98/2 then 96/4 then 94/6. The product was further purified by 

preparative reverse phase HPLC (gradient elution of H2O/MeOH 90/10 to 80/20 in 5 

min, 80/20 isocratic 15 min, then to 0/100 in 5 min) to give a white solid (28%, 1.7*10-2 

g).  

31P-NMR (MeOD, 202 MHz): ! 3.92, 3.83, 3.63, 3.61. 1H-NMR (MeOD, 500 MHz): ! 

7.84-7.79 (1H, m, H-8), 7.40-7.30 (7H, m, PhO, OCH2Ph), 7.21-7.13 (3H, m, PhO, 
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OCH2Ph), 5.54-5.50 (2H, m, H-1’), 5.17-5.14 (2H, m, OCH2Ph), 4.23-3.91 (4H, m, H-

5’, H-3’, CHCH3), 3.61-3.47 (2H, m, H-4’), 1.38-1.31 (3H, m, CH3). 
13C NMR (MeOD, 

126 MHz): ! 20.50 (d, JC–P = 7.1 Hz, CHCH3), 20.40 (d, JC–P = 7.1 Hz, CHCH3), 20.37 

(d, JC–P = 7.1 Hz, CHCH3), 51.62, 51.75 (CHCH3), 61.91, 61.99, 62.02 (C-4’), 67.31 (d, 

JC–P = 5.9 Hz, C-5’), 67.25 (d, JC–P = 5.9 Hz, C-5’), 67.20 (d, JC–P = 5.9 Hz, C-5’), 67.97, 

68.00, 68.03 (OCH2Ph), 73.07, 73.11, 79.13 (C-1’) 79.24 (d, JC–P = 7.56, C-3’), 79.25 

(d, JC–P = 5.6 Hz, C-3’), 79.30 (d, JC–P = 5.6 Hz, C-3’), 117.55, 121.41, 121.44, 121.47, 

121.49, 121.51, 121.53, 121.54, 126.09, 126.12, 126.15,129.27, 129.32, 129.33, 129.35, 

129.58, 129.61, 129.63, 130.76 (C-5, PhO, OCH2Ph), 137.30 (‘ipso’ OCH2Ph), 139.8 

(s, C-8), 152.12, 152.17, 152.19, 152.23 (4s, ‘ipso’OPh), 153.30 (C-4), 155.68 (C-2), 

159.37 (C-6), 174.92 (d, JC–P = 5.4 Hz, 1C), 174.82 (d, JC–P = 5.4 Hz, COOCH2Ph), 

174.72 (d, JC–P = 5.4 Hz, COOCH2Ph). EI MS= 595.162 (M+Na). HPLC = H2O/ACN 

from 100/0 to 0/100 in 15 min, then 0/100 isocratic 5 min = retention time 9.29 min; 

H2O/MeOH from 100/0 to 0/100 in 15 min, then 0/100 isocratic 5 min = retention time 

13.18 min. 

Synthesis of N2-MTT-ganciclovir-[1-naphthyl(benzyloxy-L-alaninyl)] phosphate 

[6.16] 

Chemical Formula: C48H45N6O8P 

Molecular Weight: 864.8801 

Prepared according to standard 

procedure G, from 6.14b (0.24 g, 0.46 

mmol) in anhydrous THF (8 mL) 

tBuMgCl (1.0 M THF solution, 0.92 mL, 0.92 mmol), 2.2b (0.37 g, 0.92 mmol) in 

anhydrous THF (2.5 mL). The reaction mixture was stirred at room temperature 

overnight. The solvent was removed under reduced pressure. The residue was purified 

by column chromatography, gradient elution of DCM/MeOH = 100/0, 98/2, then 96/2, 

to give a white solid (35%, 0.146 g).  

31P-NMR (MeOD, 202 MHz): ! 3.58, 3.52, 3.48, 3.35. 1H-NMR (MeOD, 500 MHz): ! 

8.19-8.11 (1H, m, H-8 Naph), 7.91-7.89 (1H, m, H-6 Naph), 7.69-7.68 (1H, m, H-8), 

7.66-6.75 (m, 24H, Naph, OCH2Ph, Tr), 5.1-5.03 (m, 2H, OCH2Ph), 4.95-4.91 (2H, m, 

H-1’), 4.04-3.72 (3H, m, CHCH3, H-5’), 3.67 (3H, s, OCH3), 3.52-3.44 (1H, m, H-3’), 

3.29-3.08 (2H, m, H-4’), 1.34-1.30 (3H, m, CHCH3). 

NH

NN

N

NHO
O

O

OH

P

O

O

HN

O

O

Bn
CH3

Ph

O

CH3Ph



Chapter 9 

 272 

Synthesis of ganciclovir-[1-phenyl(benzyloxy-L-alaninyl)] phosphate. [6.7d] 

Chemical Formula: C29H31N6O8P 

Molecular Weight: 622.5656 

A solution of 6.16 (0.09 g, 0.1 mmol) in 

CH2Cl2/MeOH 7:3 (5 mL) was treated with p-

toluensulfonic acid (0.09 g, 0.48 mmol). The 

mixture was stirred at room temperature for 2 h. After this period the solvent was 

removed under reduced pressure and the residue was purified by preparative TLC plate 

chromatography, gradient elution of DCM/MeOH = 98/2 then 96/4 then 94/6, to give a 

white solid (25%, 1.5*10-2 g). 

31P-NMR (MeOD, 202 MHz): ! 4.29, 4.24, 4.18, 4.09. 1H-NMR (MeOD, 500 MHz): ! 

8.16-8.09 (m, 1H, H-8 Naph), 7.90, 7.80 (1H, 2s, H-6 Naph), 7.79-7.75 (1H, m, H-8), 

7.72-7.70 (1H, m, H-2 Naph), 7.54-7.24 (12H, m, Naph, OCH2Ph), 5.46-5.42 (2H, m, 

H-1’), 5.13-5.07 (2H, m, OCH2Ph), 4.29-4.06 (4H, m, H-5’, H-3’ CHCH3), 3.97-3.90 

(2H, m, H-4’), 1.38-1.31 (3H, m, CHCH3). 
13C NMR (MeOD, 126 MHz): ! 20.38 (d, J 

= 6.7 Hz, CHCH3), 20.43 (d, J = 6.7 Hz, CHCH3), 20.53 (d, J = 6.7 Hz, CHCH3), 51.80, 

51.85 (CHCH3), 61.84, 61.94, 61.97 (C-4’), 67.43 (d, J = 5.6 Hz, C-5’), 67.49 (d, J = 

5.6 Hz, C-5’), 67.53 (d, J = 5.6 Hz, C-5’), 67.97, 68.01, 68.04 (OCH2Ph), 72.96, 73.00, 

73.08, 79.10 (4s, C-1’), 79.11 (d, JC–P = 7.8 Hz, C-3’), 79.25 (d, JC–P = 7.8 Hz, C-3’), 

79.31 (d, JC–P = 7.8 Hz, C-3’), 116.34, 116.36, 116.39, 116.42, 116.45, 116.47, 122.70, 

122.74, 122.47, 125.99, 126.01, 126.55, 127.50, 127.53, 127.79, 128.87, 129.22, 

129.27, 129.30, 129.32, 129.34, 129.54, 129.58, 129.60 (C-5, PhO, OCH2Ph), 136.30, 

137.23 (‘ipso’ OCH2Ph, C4aNaph), 139.73 (C-8), 147.98, 148.03 (2s, ‘ipso’OPh), 

153.27 (C-4), 155.65 (C-2), 159.34 (C-6), 174.74 (d, JC–P = 4.7 Hz, COOCH2Ph), 

174.86 (d, JC–P = 4.7 Hz, COOCH2Ph), 174.96 (d, JC–P = 4.7 Hz, COOCH2Ph). EI MS= 

645.187 (M+Na). HPLC = H2O/ACN from 100/0 to 0/100 in 15 min, then 0/100 

isocratic 5 min = retention time 10.49 min; H2O/MeOH from 100/0 to 0/100 in 15 min, 

then 0/100 isocratic 5 min = retention time 13.93 min. 
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9.5.5 Synthesis of ganciclovir ProTide 6.19c 

Synthesis of N2-DMF-O-monoacetyl-ganciclovir: 

N2-(N,N-dimethylformamidine)-9-[(1-acetoxy-3-hydroxypropan-2-yloxy)methyl]-

guanine) [6.17b]  

and 

N2-DMF-O,O-diacetyl-ganciclovir: 

N2-(N,N-dimethylformamidine)-9-[(1,3-diacetoxy-propan-2-yloxy)methyl]- 

guanine) [6.20] 
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Chemical Formula: C14H20N6O5

Molecular Weight: 352.3458

Chemical Formula: C16H22N6O6

Molecular Weight: 394.3825

6.17b 6.20

 

A suspension of 6.8b (0.3 g, 0.97 mmol) in a mixture of pyridine (50 mL) and benzene 

(25 mL) was treated with vinyl acetate (7.46 mL, 80.76 mmol) and porcine pancreatic 

lipase (1.46 g, 33’407 units). This suspension was allowed to stir at room temperature. 

After 24 h, TLC on silica of mixture reaction showed an incomplete acetylation of the 

starting material. An additional portion of porcine pancreatic lipase (0.48 g, 11’135 

units) was added and the suspension was allowed to stir for an additional 24 h. At this 

point TLC of mixture reaction showed monoacetylated product along with traces of 

diacetylated product. The crude of the reaction was filtered and the solvent was 

removed under vacuum. The residue was purified by flash column chromatography, 

gradient elution of CHCl3/MeOH = 98/2, then 95/5, then 92/8, to give 6.17b as a white 

solid (53%, 0.180 g) 6.20 as a white solid (0.03 g, 8%).  

6.17b 

1H-NMR (MeOH, 500 MHz): ! 8.67 (1H, s, CHN(CH3)2), 7.95 (1H, s, H-8), 5.63 (2H, 

s, H-1’), 4.22-4.01 (1H, dd, J = 11.22, 3.13, H-4’), 4.05-3.98 (2H, m, H-3’, H-4’), 3.64-

3.56 (2H, m, H-5’), 3.23, 3.11 (6H, 2s, N(CH3)2), 1.91 (3H, br s, COCH3). 
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6.20 

1H-NMR (MeOH, 500 MHz): ! 8.73 (1H, s, CHN(CH3)2), 7.98 (1H, bs, H-8), 5.62 (2H, 

s, H-1’), 4.30-4.05 (5H, m, H-3’, H-4’, H-5’), 3.27, 3.16 (6H, 2s, N(CH3)2), 1.95 (6H, br 

s, 2 x COCH3). 

Synthesis of N2-dimethylformamidine-O-monoacetyl-ganciclovir-

[phenyl(benzyloxy-L-alaninyl)] phosphate [6.18c] 

Chemical Formula: C30H36N7O9P 

Molecular Weight: 669,6221 

Prepared according to standard procedure G, 

from 6.17b (0.18 g, 0.51 mmol) in anhydrous 

THF (10 mL), tBuMgCl (1.0 M THF solution, 3 

mL, 3 mmol), 2.2a (0.36 g, 1.02 mmol) in anhydrous THF (2.5 mL). The reaction 

mixture was stirred at room temperature overnight. The solvent was removed under 

reduced pressure. The residue was purified by column chromatography, gradient elution 

of DCM/MeOH = 100/0, then 98/2, then 96/4, to give a white  solid (68%, 0.24 g,). 

31P-NMR (CDCl3, 202 MHz): ! 3.93, 3.88, 3.47, 3.42. 1H-NMR (CDCl3, 500 MHz): ! 

8.68-8.62 (1H, m, NCHN(CH3)2), 7.76-7.75 (1H, m, H-8), 7.39-6.81 (10H, m, Ph, 

OCH2Ph), 5.53-5.37 (2H, m, H-1’), 4.95-4.84 (2H, m, OCH2Ph), 4.23-3.98 (6H, m, H-

3’, H-4’, H-5’, CHCH3), 3.14, 3.02 (6H, 2s, N(CH3)2), 1.92 (bs, 3H COCH3), 1.41-1.38 

(3H, m, CH3).  

Synthesis of O-monoacetyl-ganciclovir-[phenyl(benzyloxy-L-alaninyl)] phosphate 

[6.19c] 

Chemical Formula: C27H31N6O9P 

Molecular Weight: 614.5436 

A solution of 6.18c (0.24 g, 0.35 mmol) in 

isopropanol (15 mL) was stirred under reflux for 62 

h. The solvent was then removed under reduced 

pressure and the residue was purified by column chromatography gradient elution of  

DCM/MeOH = 98/2, then 96/4, then 94/6) to give  a white solid (31%, 0.07g). 

31P-NMR (MeOD, 202 MHz): ! 3.93, 3.83, 3.53, 3.47. 1H-NMR (MeOD, 500 MHz): ! 

7.84-7.80 (1H, m, H-8); 7.43-7.17 (10H, m, Ph, OCH2Ph), 5.51-5.49 (2H, m, H-1’), 
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5.18-5.14 (2H, m, OCH2Ph), 4.18-4.11 (5H, m, H-3’, H-4’, H-5’), 4.01-3.98 (1H, m, 

CHCH3), 1.94- 1.90 (3H, m, COCH3), 1.38-1.31 (3H, m, CHCH3).  

9.5.6 Synthesis of penciclovir ProTide 6.24 

Synthesis of N2-isobutyryl penciclovir:  

N2-isobutyryl-9-(4-hydroxy-3-hydroxymethylbut-1yl)-guanine [6.21] 

Chemical Formula: C14H21N5O4 

Molecular Weight: 323.3476 

Isobutyryl chloride (2.23 mL, 21.13 mmol) was added 

dropwise at 0 °C to a suspension of penciclovir (1 g, 3.95 

mmol) suspended in pyridine (50 mL). The mixture was stirred at room temperature for 

16 h. After this period, the reaction was quenched with methanol (5 mL) and the solvent 

was removed under reduced pressure. The residue was dissolved in pyridine/methanol 

mixture (2:1, 30 mL) and the pH was adjusted to 12.5 with 2M NaOH. The mixture was 

kept at room temperature for 10 min. The pH was adjusted to 7.0 with 2 M HCl and the 

solvent was removed under vacuum. The residue was purified by flash chromatography, 

gradient elution of DCM/MeOH  = 95/5, then 90/10, the 85/15), to give a white solid 

(78%, 1 g). 1H-NMR (MeOH, 500 MHz): ! 7.99 (1H, s, H-8), 4.28 (2H, t, J = 7.49 Hz, 

H-1’), 3.64 (2H, dd, J = 10.9 Hz, 5.9 Hz, H-5’), 3.59 (2H, dd, J = 10.9 Hz, 5.9 Hz, H-

4’), 2.74 (1H, septet, J = 6.86 Hz, CH(CH3)2), 1.95 (2H, m, H-2’), 1.64 (1H, m, H-3’), 

1.25 (6H, d, J =  6.86 Hz,  CH(CH3)2). 

Synthesis of N2-isobutyryl-O,O-diacetyl-penciclovir:  

N2-isobutyryl-9-(4-Acetoxy-3-Acetoxymethylbut-1yl)-guanine [6.22] 

Chemical Formula: C18H25N5O6 

Molecular Weight: 407.4210 

A mixture of 6.21 (1 g, 3.09 mmol), DMAP (0.05 g, 0.4 

mmol) and acetic anhydride (2.1 mL, 22.47 mmol) in 

DMF (80 mL) was stirred for 1 h at room temperature. 

Solvent was removed under vacuum and the crude was purified by flash 

chromatography, gradient elution of DCM/MeOH = 98/2, then 96/4) to give a white 

solid (0.9 g, 71%). 

1H-NMR (MeOH, 500 MHz): ! 7.99 (1H, s, H-8), 4.29 (2H, t, J = 7.03 Hz, H-1’), 4.13 
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(4H, d, J = 5.35 Hz,  H-4’, H-5’), 2.74 (1H, septet, J = 6.87 Hz, CH(CH3)2), 2.06-1.98 

(9H, m, H-2’, H-3’, 2X COCH3), 1.25 (6H, d, J =  6.87 Hz,  CH(CH3)2). 

Synthesis of N2-isobutyryl-O-monoacetyl-penciclovir : 

N2-isobutyryl-9-(4-hydroxy-3-Acetoxymethylbut-1yl)-guanine [6.23] 

Chemical Formula: C16H23N5O5 

Molecular Weight: 365.3843 

A mixture of diacetate 6.22 (0.32 g, 0.79 mmol) in DMF 

(30 mL) and buffer phosphate (pH 7.00, 300 mL) was 

treated with and porcine liver esterase (1.44 g, 27’360 

units). The mixture was stirred for 2 h at room temperature, then lyophilized. The 

residue was sonicated with DCM/MeOH (3:1, 3X 100 mL) and the insoluble portion 

was filtered off. The solvent was removed under reduced pressure and the residue was 

purified by flash column chromatography using gradient elution of DCM/MeOH = 98/2, 

then 95/5, then 90/10 to give the monoacetate 6.23 (60%, 0.173 g) as a white solid and 

unreacted starting material 6.22 (0.15 g, 18%). 

1H-NMR (MeOH, 500 MHz): ! 7.98 (1H, s, H-8), 4.26 (2H, t, J = 7.25 Hz, H-1’), 4.16-

4.08 (2H, m, H-4’), 3.63-3.60 (2H, m, H-5’), 2.77-2.72 (1H, m, CH(CH3)2), 2.04 (3H, 

m, CH3CO), 2.01-1.87 (2H, m, H-2’), 1.84-1.79 (1H, m, H-3’), 1.24 (6H, d, J =  6.84 

Hz,  CH(CH3)2). 

Synthesis of N2-isobutyryl-O-monoacetyl-penciclovir-[phenyl(benzyloxy-L-

alaninyl)]-phosphate. [6.24]  

Chemical Formula: C32H39N6O9P 

Molecular Weight: 682.6606 

Prepared according to standard procedure G from 

6.24 (0.93 g, 0.25 mmol) in a mixture of anhydrous 

THF (6 mL) and anhydrous pyridine (2 mL), tBuMgCl (1.0 M THF solution, 1.5 mL, 

1.5 mmol), 2.2a (0.18 g, 0.5 mmol) in anhydrous THF (1.5 mL). The reaction mixture 

was stirred at room temperature overnight. The solvent was removed under reduced 

pressure. The residue was purified by column chromatography, gradient elution of 

DCM/MeOH = then 98/2, then 96/4, then 94/6, to give a white solid (40%, 0.07 g). 

31P-NMR (MeOH, 202 MHz): ! 3.95, 3.39.  1H-NMR (CDCl3, 500 MHz): ! 7.96-7.93 

(1H, m, H-8); 7.33-7.29 (7H, m, PhO, OCH2Ph), 7.19-7.16 (3H, m, PhO, OCH2Ph), 
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5.13-5.12 (2H, m, OCH2Ph), 4.28-3.97 (6H, m, H-1’, H-5’, H-4’, CHCH3), 2.77-2.68 

(1H, m, CH(CH3)2), 2.04-1.84 (6H, m, H-2’, H-3’, CH3CO), 1.38-1.35 (3H, m, CHCH3), 

1.25-1.20 (6H, m, CH(CH3)2). 

9.6. Experimental procedures for chapter 6: synthesis of 

phosphonoamidate derivatives of S-HPMPC 

9.6.1 Synthesis of the L-alanine benzyl ester phosphonodiamidate derivative of S-

HPMPC [7.19] 

Synthesis of (S)-1-{3-[(4-Methoxytrityl)oxy]-2-(phosphonomethoxy)propyl} 

cytosine [7.18] 

Chemical Formula: C28H30N3O7P 

Molecular Weight: 551.5275 

To a suspension of S-HPMPC dihydrate (free acid, 0.16 g, 0.5 mmol) 

in methanol (15 mL), tributylamine (1.6 g, 10 mmol) was added. The 

suspension of the free acid easily dissolved to a clear solution of 

tributyl-ammonium salt. The solvent was removed under reduced 

pressure. The residue, co-evaporated with acetonitrile, was dissolved 

in DMSO and 4-methoxytrityl chloride (0.46 g, 1.5 mmol) was added. The reaction 

mixture was stirred for 3 h. Proceeding of the reaction was monitored by TLC in 

propan-1-ol-ammonia-water (11:7:2). Tributylamine and DMSO were extracted down 

with Et2O; the product was collected by filtration, recrystallized from ethyl acetate and 

dried in vacuo (32%, 0.09 g).  

31P NMR (DMSO, 202 MHz): ! 15.40. 1H NMR (DMSO, 500 MHz): ! 7.55 (1H, d, J = 

7.27 Hz, H-6), 7.43-6.90 (14 H, m, CPh3), 5.63 (1H, d, J = 7.27 Hz, H-5), 4.00 (1H, dd, 

J = 12.0 Hz, 7.5 Hz, H-1’); 3.83 (1H, m, H-2’), 3.71 (3H, s, MTr), 3.64 (1H, dd, J = 

12.4 Hz, 10.0 Hz, CH2P), 3.63 (1H, dd, J = 12.0 Hz, 7.5 H-1’), 3.40 (1H, dd, J = 12.4 

Hz, 10.0 Hz CH2P), 3.10 (1H, dd, J = 10.5 Hz, 4.0 H-3’), 2.95 (1H, dd, J = 10.5 Hz, 4.0 

Hz, H-3’). EI MS= 445.12 (M+Na+). 
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Synthesis of (S)-1-{[3-(4-methoxytrityl)-oxy]-2-{[bis(benzyloxy-L-Alaninyl)]- 

phosphonomethoxy}-propyl}-cytosine [7.19] 

Chemical Formula: C48H52N5O9P 

Molecular Weight: 873.9283 

Compound 7.18 (0.08 g, 0.15 mmol) and the para-toluene-

sulphate salt of L-alanine-O-benzyl ester (0.31 g, 0.89 mmol) 

were mixed in anhydrous pyridine (5 mL). Triethylamine 

(0.25 mL, 1.8 mmol) was added and the resultant mixture was 

stirred at 60 °C under nitrogen. In a separate flask, 2-

2’dithiodipyridine (0.27 g, 1.05 mmol) and PPH3 (0.23 g, 1.05 mmol) were dissolved in 

anhydrous pyridine (2 mL), and the resultant yellow solution was stirred for 20 minutes. 

The solution was then added to the 60 °C solution of 7.18 in one portion. The combined 

mixture was stirred at 60 °C under nitrogen for 16 h to give a clear yellow solution. The 

solvent was removed under reduced pressure. The resultant oil was dissolved in CH2Cl2 

and purified by flash column chromatography, gradient elution of DCM/MeOH = 98/2, 

then 96/4, then 94/6. The product was purified by preparative TLC (gradient elution of 

DCM/MeOH = 98/2, then 96/4, then 94/6) to give a white solid (20%, 0.25*10-1g). 

31P NMR (MeOD, 202 MHz): ! 23.36. 1H NMR (MeOD, 500 MHz): ! 7.48-6.88 (25 H, 

m, H-6, OCH2Ph, CPh3), 5.74 (1H, d, J = 7.21 Hz, H-5), 5.16-5.05 (4H, m, 2 x 

OCH2Ph), 4.10 (1H, dd, J = 13.66 Hz, 4.06 Hz, H-1’), 4.02-3.97 (2H, m, 2X CHCH3), 

3.84-3.71 (7H, m, H-1’, H-2’, OCH2P, OCH3), 3.30-3.27 (1H, m, H-3’), 3.15-3.12 (1H, 

m, H-3’), 1.36 (6H, d, J = 7.17 Hz, 2 x CHCH3). EI MS= 896.34 (M+Na+). HPLC = 

H2O/MeOH from 100/0 to 20/80 in 5 min, then 20/80 isocratic for 10 min, then from 

20/80 to 0/100 in 5 min, then 0/100 isocratic for 5 min = retention time 17.88 min. 

9.6.2 Synthesis of the diethyl ester derivative of S-HPMPC [7.23] 

Synthesis of (S)-Tritylglycidol [7.26] 

Chemical Formula: C22H20O2 

Molecular Weight: 316.3930 

Tritylchloride (18 g, 64.5 mmol) was dissolved in CH2Cl2 (50 mL)  under nitrogen, 

cooled down to around 0 °C and treated with TEA (13 mL, 94 mmol). After an hour of 

stirring at 0°C, a solution of (R)-Glycidol (5 g, 67.5 mmol) in CH2Cl2 (15 mL) was 
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added over 45 min. The resulting solution was allowed to warm to room temperature 

and was stirred for 3 h. It was then filtered and the filtrate was washed with water and 

brine. The organic phase was dried over Na2SO4. The solvent was removed under 

reduced pressure and the residue was crystallized to give the desired compound as an 

off-white powder (60%, 12 g). 

1H NMR (DMSO, 500 MHz): ! 7.42-7.40 (6H, m, Tr), 7.36-7.33 (6H, m, Tr), 7.29-7.26 

(3H, m, Tr), 3.28 (1H, dd, J = 10.89 Hz, 2.58 Hz, CH2OTr), 3.17-3.14 (1H, m, 

CHCH2OTr), 2.91 (1H, dd, J = 10.89, 2.58 Hz, CH2OTr), 2.71 (1H, dd, J = 4.65, 2.70 

Hz, CH
2
CHCH2OTr), 2.56 (1H, dd, J = 5.07 Hz, 2.67 Hz, CH

2
CHCH2OTr). 

Synthesis of (S)-N
1
-(3-triphenylmethoxy-2-hydroxy)-propyl)-cytosine [7.27] 

Chemical Formula: C26H25N3O3 

Molecular Weight: 427.4950 

Cytosine (1.68 g, 15.1 mmol) and K2CO3 (2.1 g, 15.3 mmol) in DMF 

(30 mL) were stirred for 1h at 105 °C under nitrogen. Compound 7.26 

(4.77 g, 15 mmol) was dissolved in DMF (30 mL) and added to the solution of cytosine. 

According to TLC of reaction mixture, the alkylation reaction was complete after 5 h at 

105 °C. Solvent was removed under reduced pressure and 7.27 was obtained by 

precipitation from ethyl ether (71%, 4.55 g). 

1H NMR (MeOH, 500 MHz): ! 7.38 (1H, d, J = 7.22 Hz, H-6), 7.49-7.48 (6H, m, Tr), 

7.30-7.27 (6H, m, Tr), 7.23-7.20 (3H, m, Tr), 5.75 (1H, m, H-5), 4.19-4.12 (2H, m, H-

1’, H-2’), 3.57 (1H, d, J = 13.16 Hz, 7.87 Hz, H-1’), 3.18-3.12 (2H, m, H-3’). 

Synthesis of (S)-N
1
-(3-triphenylmethoxy-2-hydroxy)-propyl)-N

4
-benzoyl-cytosine 

[7.28]. 

Chemical Formula: C33H29N3O4 

Molecular Weight: 531.6011 

Benzoic anhydride (2.91 g, 12.90 mmol) and 7.27 (4.59 g, 10.80 

mmol) were added to an anhydrous mixture of pyridine (46.50 mL) 

and DMF (24 mL). The reaction was carried out under nitrogen at 

100 °C for 3 h. Solvent was removed under reduced pressure and the 

residue was dissolved in 100 mL of CH2CL2, followed by aqueous work up using 35 

mL saturated solution NaHCO3 solution twice. The organic phase was dried over 

Na2SO4 and solvent removed under vacuum. The residue was further purified by flash 
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column chromatography, gradient elution DCM/MeOH = 100/0, then 98/2, to give a 

brown solid (82.5%, 4.74 g).  

1H NMR (CDCl3  500 MHz): ! 8.11 (1H, d, J = 7.10 Hz, H-6), 7.94-7.93 (2H, m, Bz), 

7.68-7.23 (19H, m, H-5, Bz, Tr), 4.52 (1H, dd, J = 13.81 Hz, 4.09 Hz H-1’), 4.41-4.24 

(1H, m, H-2’), 3.80 (1H, d, J = 13.81 Hz, 4.09 Hz, H-1’), 3.32-3.27 (1H, m, H-3’), 3.21-

3.18 (1H, m, H-3’). 

Synthesis of diethyl-[(tosyloxy)methyl]-phoshonate [7.30]. 

Chemical Formula: C12H19O6PS 

Molecular Weight: 322.3144 

A two-necked, 250 mL, round bottom flask was charged under 

argon with CH2Cl2 (20 mL), diethyl-(hydroxymethyl)-

phosphonate (5.04 g, 30 mmol) in CH2Cl2 (5 mL), DMAP (0.6 g), TEA (6.30 mL, 45.20 

mmol). P-toluensulfonyl-chloride (8.04, 42.17 mmol) was dissolved in CH2Cl2 (20 mL) 

and added at 5 °C via a dropping funnel to the diethyl-(hydroxymethyl)-phosphonate. 

The reaction mixture stirred at 5 °C for 3 h. The organic phase was washed with H2O 

and dried over Na2SO4. Solvent was removed under vacuum and the residue was 

purified by flash column chromatography, elution of chloroform:acetone (2:1), to give  

a clear yellow oil (61%, 5.90 g). 

31P NMR (CDCl3  500 MHz): ! 15.13. 1H NMR (CDCl3  202 MHz): ! 7.76 (2H, d, J = 

8.33 Hz, TsH), 7.34 (2H, d, J = 8.33 Hz, TsH), 4.16, 4.14 (2H, 2s, CH2P), 4.13-4.07 

(4H, m, 2 x OCH2CH3), 2.42 (3H, s, CH3-Ts), 1.28 (6H, t, J= 7.32 Hz, 2 x OCH2CH3). 

(S)-N
1
-[(3-triphenylmethoxy-2-diethylphosphonylmethoxy)-propyl)]-N

4
-

benzoylcytosine [7.31]. 

Chemical Formula: C38H40N3O7P 

Molecular Weight: 681.7139 

Compound 7.28 (1g, 1.88 mmol) was dissolved in anhydrous DMF 

(2.7 mL) and transferred to a solution of 7.29 (0.91 g, 2.8 mmol) in 

anhydrous DMF (2.77 mL). The reaction mixture was cooled down 

to 5 °C before 3-fold excess of NaH (0.23 g, 60% dispersion in oil, 5.64 mmol) was 

added under argon. The reaction mixture was stirred under argon for 2 h at 5 °C. The 

residue was dissolved in ethyl acetate and the excess of NaH was eliminated by 

dropwise addition of ethyl acetate (H2O saturated) until no further evolvement of 
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hydrogen gas could be detected. An additional 100 mL of ethyl acetate was added to the 

reaction mixture followed by 5 mL of H2O-saturated ethyl acetate. The organic phase 

was washed with 10 mL H2O and 20 mL saturated NaHCO3 solution and the organic 

phase was dried over Na2SO4. Solvent was removed under reduced pressure. The 

residue was purified by flash column chromatography, eluting with DCM/MeOH = 

100:0 then 98:2, to give a white solid (62%, 0.80 g).  

31P NMR (MeOD, 202 MHz): ! 21.65. 1H NMR (MeOD, 500 MHz): ! 8.00-7.98 (2H, m, 

Bz), 7.90 (1H, d, J = 7.28 Hz, H-6), 7.56-7.22 (19 H, m, H-5, Bz, CPh3), 4.36 (1H, dd, J 

= 13.31 Hz, 3.83 Hz, H-1’); 4.20-4.17 (1H, m, H-2’); 4.13-4.06 (1H, m, CH2P), 3.98-

3.93 (1H, m, CH2P), 3.79-3.72 (1H, m, H-1’); 3.49 (4H, q, J = 7.27 Hz, 2 x OCH2CH3), 

3.23-3.20 (1H, m, H-3’); 3.17-3.15 (1H, m, H-3’), 1.37 (6H, t, J = 7.27 Hz, 2 x 

OCH2CH3). EI MS= 720.22 (M+K+).   

(S)-N
1
-[(3-triphenylmethoxy-2-diethylphosphonylmethoxy)-propyl)]-cytosine 

[7.23]. 

Chemical Formula: C31H36N3O6P 

Molecular Weight: 577.6078 

A stirring solution of 7.31 (0.22 g, 0.32 mmol) in MeOH (10 mL) 

was saturated with NH3 gas in a sealed tube at 0 °C. The solution 

was stirred for 3 h at room temperature. Solvent was removed under vacuum. The 

residue was purified by flash column chromatography, gradient elution of DCM/MeOH 

= 100:0, then 98:2, then 96/4), to give a white solid (95%, 0.175 g).  

 31P NMR (MeOD, 202 MHz): ! 21.57. 1H NMR (MeOD, 500 MHz): ! 7.50-7.47 (5H, 

m, CPh3); 7.43 (1H, d, J = 7.25 Hz, H-6), 7.36-7.24 (10H, m, CPh3); 5.76 (1H, d, J = 

7.25 Hz, H-5); 4.20 (1H, dd, J = 13.53 Hz, 3.93 Hz, H-1’), 4.13-4.09 (2H, m, H-2’, 

CH2P); 3.81-3.75 (1H, m, CH2P); 3.63 (4H, q, J = 7.05 Hz, 2 x OCH2CH3); 3.61-3.57 

(1H, m, H-1’); 3.18-3.11 (2H, m, H-3’); 3.17-3.15 (1H, m, H-3’); 1.20 (6H, t, J = 7.05 

Hz, 2 x OCH2CH3).   
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9.6.2 Synthesis of the L-alanine benzyl ester phosphonoamidate derivative of S-

cHPMPC [7.4] 

Synthesis of the dicyclohexyl-morpholinocarboxamidine salt of 1-[((S-2-hydroxy-2-

oxo-1,4,2-dioxaphosphorinan-5-yl)methyl]cytosine [S-cHPMPC]. 

Chemical Formula: C25H43N6O6P 

Molecular Weight: 554.6193 

To a stirred suspension of S-HPMPC*2H2O (0.3 g, 

1.07 mmol) in DMF (7.5 Ml) was added N,N-

dicyclohexyl-4-morpholinecarboxamidine (0.31 g, 

1.07 mmol). The reaction mixture was stirred for 12 h at room temperature, during 

which the S-HPMPC dissolved. This solution was then added slowly to a hot pyridine 

solution (7.5 Ml) of 1,3 dicyclohexyl carbodiimide (0.5 g, 2.42 mmol). The mixture was 

stirred at 100 °C for 16 h, cooled to room temperature and filtered, and the filtrate was 

concentrated under vacuum. The solvent was then removed under reduced pressure and 

the residue was purified by column chromatography, gradient elution of DCM/MeOH  

from 90/10 to 80/20, to give the dicyclohexyl-morpholinocarboxamidine (DCMC) salt 

of S-cHPMPC as a white solid (50%, 0.3 g).  

31P NMR (MeOD, 202 MHz): ! 7.30. 1H NMR (MeOD, 500 MHz): ! 7.53 (1H, d, J = 

7.26 Hz, H-6), 5.86 (1H, d, J = 7.26 Hz, H-5), 4.25-4.21 (1H, m, OCH2P), 4.15-4.10 

(1H, m, OCH2P), 4.04-4.00 (2H, m, H-1’), 3.92-3.87 (1H, m, H-2’), 3.77-3.75 (4H, m, 

CH2OCH2 (DCMC)), 3.67-3.60 (2H, m, H-3’), 3.46-3.45 (4H, m, CH2NCH2 (DCMC), 

3.37-3.33 (2H, m, CHN of (DCMC), 1.96,-1.18 (20H, m, cHx (DCMC)). 13C NMR 

(MeOD, 126 MHz): ! 26.22 (cHx (DCMC)), 26.38 (cHx (DCMC)), 34.48 (cHx 

(DCMC)), 49.89 (CH2NCH2 (DCMC)), 50.68 (C-1’), 56.08 (CHN (DCMC)), 67.31 (d, 

Jc-p = 144.07 Hz, OCH2P), 67.38 (CH2OCH2 (DCMC)), 70.84 (d, Jc-p = 6.67 Hz, C-3’), 

75.85 (d, Jc-p = 3.71 Hz, C-2’), 95.49 (C-5), 148.61 (C-6), 159.03 (C-2), 159.37 

(NC(NH)N (DCMC)), 168.11 (C-4).  
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Benzyl-O-[(5S)-5-[(4-Amino-2-oxopyrimidin-1(2H)-yl)-methyl]-2-oxido-1,4,2-

dioxaphosphinan-2-yl]-(L)-alaninate [7.4] 

Chemical Formula: C18H23N4O6P 

Molecular Weight: 422.3722 

 

The dicyclohexyl-morpholinocarboxamidine salt of  

S-cHPMPC (0.113 g, 0.2 mmol) and para-toluenesulphate salt of 

L-alanine-O-benzyl ester (0.41 g, 1.2 mmol) were mixed in 

anhydrous pyridine (5 mL). Triethylamine (0.3 mL, 2.4 mmol) was 

added and the resultant mixture was stirred at 60 °C under 

nitrogen. In a separate flask, 2-2’dithiodipyridine (0.368 g, 1.40 mmol) and PPH3 (0.306 

g, 1.40 mmol) were dissolved in anhydrous pyridine (2 mL). The resultant yellow 

solution was stirred for 20 minutes. The solution was then added to the 60 °C solution 

of S-cHPMPC in one portion. The combined mixture was stirred at 60 °C under 

nitrogen for 16 h to give a clear yellow solution. The solvent was removed under 

reduced pressure. The resultant oil was dissolved in CH2Cl2 and purified by flash 

column chromatography, gradient elution of DCM/MeOH = 98/2, then 96/4, then 94/6. 

The product was further purified by preparative TLC (gradient elution of DCM/MeOH 

= 98/2, then 96/4, then 94/6) to give a white solid (30%,  0.25*10-1g). 

31P NMR (MeOD, 202 MHz): ! 17.76, 16.69. 1H NMR (MeOD, 500 MHz): ! 7.50, 7.49 

(1H, 2d, J = 7.80 Hz H-6), 7.42-7.32 (5H, m, OCH2Ph), 5.86, 5.85 (1H, 2d, J = 7.80 Hz, 

H-5), 5.20-5.18 (2H, m, OCH2Ph), 4.43-3.20 (2H, m, H-3’), 4.11-3.97 (3H, m, CHCH3, 

H-2’, OCH2P), 3.86-3.73 (2H, m, OCH2P, H-1’), 3.66-3.62 (1H, m, H-1’), 1.46, 1.40 

(3H, 2d, J = 7.15 Hz, CHCH3). 
13C NMR (MeOD, 126 MHz): ! 20.43 (d, JC–P = 5.84 Hz 

CHCH3) 20.73 (d, JC–P = 5.84 Hz, CHCH3), 50.08, 50.40 (C-1’), 50.48, 50.70 (2s, 

CHCH3), 65.89 (d, Jc-p = 131.79 Hz, OCH2P), 67.11 (d, Jc-p = 131.79 Hz, OCH2P), 68.08 

(OCH2Ph), 71.13 (d, JC–P = 6.64 Hz, C-3’), 71.62 (d, JC–P = 6.64 Hz, C-3’), 75.00 (d, JC–P 

= 5.19 Hz, C-2’), 75.40 (d, JC–P = 5.19 Hz, C-2’), 95.48, 95.66 (2s, C-5), 129.37, 129.60 

(2s OCH2Ph), 137.28, 137.32 (‘ipso’ OCH2Ph), 148.27, 148.68 (2s, C-6), 158.68, 

158.71 (C-2), 167.87, 167.97 (C-4), 174.80 (d, JC–P = 3.30 Hz, COOCH2Ph), 175.10 (d, 

JC–P = 3.30 Hz, COOCH2Ph). EI MS= 445.12 (M+Na+). HPLC = H2O/MeOH from 

90/10 to 0/100 in 20 min, then 0/100 isocratic for 5 min = retention time 13.11 min. 
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9.7 Enzymatic assays 

Carboxypeptidase Y assay: standard procedure 

The appropriate ProTide (5 mg) was dissolved in acetone-d6 (150 !L) and Trizma 

buffer (pH 7.6, 300 !L) was added. A 31P NMR spectrum was recorded at 25 ºC (64, 

128 or 264 scans). Carboxypeptidase Y (ca. 0.1 mg) in the Trizma buffer (150 !L) was 

added to the solution of the ProTide and 31P NMR spectra were recorded at regular 

intervals overnight (usually 128 or 264 scans, repeated every 6-15 min for 14 h, 25 ºC). 

Adenosine deaminase 

A stock solution of adenosine deaminase was prepared by dissolving 0.50 mg of 

adenosine deaminase in 1.0 mL of phosphate buffer (pH 7.5, 0.05 M). A solution of the 

appropriate nucleosides in phosphate buffer (pH 7.5, 44 µM) was similarly prepared. 

The assay was performed by transferring 1.0 mL of nucleoside stock solution and 

recording UV spectrum at 25 °C over the range 400 to 220 nm, then 5-30 µL of the 

enzyme solution was added and UV spectra were recorded at 10 min intervals over a 

period of 20 h. 

9.8 Molecular modeling 

The modeling studies presented in this work were performed on MacPro dual 2.66GHz 

Xeon running Ubuntu 9.10. The crystal structures were downloaded from PDB website 

(http://www.rcsb.org/). Hydrogen atoms were added to the protein, using Molecular 

Operating Enviroment (MOE) 2008.10 and minimized, keeping all the heavy atoms 

fixed until a rmsd gradient of 0.05 kcal mol-1 Å-1 was reached (MOE). Ligand 

structures were built with MOE and minimized using the MMFF94X force field until a 

rmsd gradient of 0.05 kcal mol-1 Å-1 was reached. The docking simulations were 

performed using PLANTS. Cathepsin Y binding site: center 47.758, -2.019, 35.82, 

radius 10 Å, cluster RMSD 2, cluster structures 10. Hint-1 binding site: center 10.8, 

12.4, 14.4, radius 12 Å, cluster RMSD 2, cluster structures 10. 
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Recently, it has been reported that phosphorylated acyclovir (ACV) inhibits human immunodeficiency
virus type 1 (HIV-1) reverse transcriptase in a cell-free system. To deliver phosphorylated ACV inside
cells, we designed ACVmonophosphorylated derivatives using ProTide technology. We found that the
L-alanine derived ProTides show anti-HIV activity at noncytotoxic concentrations; ester and aryl
variation was tolerated. ACV ProTides with other amino acids, other than L-phenylalanine, showed no
detectable activity against HIV in cell culture. The inhibitory activity of the prodrugs against herpes
simplex virus (HSV) types -1 and -2 and thymidine kinase-deficient HSV-1 revealed different structure-
activity relationships but was again consistent with successful nucleoside kinase bypass. Enzymatic and
molecular modeling studies have been performed in order to better understand the antiviral behavior of
these compounds. ProTides showing diminished carboxypeptidase lability translated to poor anti-HIV
agents and vice versa, so the assay became predictive.

Introduction

Human immunodeficiency virus (HIVa) belongs to the
retroviradae family and causes the acquired immunodefi-
ciency syndrome (AIDS). A variety of different compounds
have been developed for the treatment of HIV, and currently
25 drugs have been approved for clinical use including nucleo-
side reverse transcriptase inhibitors (NRTIs), non-nucleoside
reverse transcriptase inhibitors (NNRTIs), protease inhibi-
tors (PI), a viral fusion inhibitor (FI), a CCR-5 coreceptor
inhibitor, and a viral integrase (IN) inhibitor.1

Because of the rapid development of drug resistance as well
as to the toxicity shown by these drugs,2 novel anti-HIV
agents are needed. Diverse structures are sought to address
the constant threat of viral resistance.

In this context, recently it has been reported how the
antiherpetic drug acyclovir (ACV, 1, Figure 2) inhibits HIV
upon human herpesvirus (HHV) coinfection in tissue cul-
tures.3 This activity was found to be correlated with the
phosphorylation of the parent drug to the monophosphate
form mediated by HHV-encoded kinase(s). HIV does not
encode an enzyme that recognizes ACV as a substrate for this
activation (phosphorylation) step, hence the need for the
HHV coinfection for activity. The subsequent phosphoryla-
tions to the di- and triphosphate derivatives may be mediated
by cellular guanosine monophosphate kinase and nucleoside
diphosphate kinase, respectively.4,5 In its triphosphate form,

ACV inhibits HIV RT acting as a chain terminator.3 Follow-
ing these results, it is evident that the anti-HIV activity can
only occur uponACVmonophosphate (ACV-MP) formation
which requires HHV coinfection. ACV-MP itself can not be
used as efficient anti-HIV chemotherapeutic agent to bypass
the first limitingphosphorylation stepbecauseof its instability
inbiologicalmedia and its poor efficiencyof diffusion through
intact cell membranes. A suitable strategy to overcome these
limitations would consist of masking the negative charges of
the monophosphate with lipophilic groups. In this regard, the
phosphoramidate ProTide technology has been developed
and successfully applied to a range of nucleosides of antiviral
and anticancer interest.6-9 The structural motif of this app-
roach consists of masking the nucleoside monophosphate
with an aryl moiety and an amino acid ester. Cell entry then
apparently occurs by passive diffusion. Once inside the cell,
the phosphoramidate prodrug is activated and converted to
the monophosphorylated ACV (Figure 1).10 The first step
involves an enzymatic hydrolysis of the amino acid ester
moiety mediated by an esterase- or carboxypeptidase-type
enzyme followed by spontaneous cyclization and subsequent
spontaneous displacement of the aryl group and opening of
the unstable ring mediated by water. The last step before
release of the ACV monophosphate involves a hydrolysis of
the P-Nbondmediated by a phosphoramidase-type enzyme.
The phosphoramidate ProTide approach has been already
successfully applied to ACV, demonstrating its ability to
bypass the thymidine kinase deficiency of HSV-1 and -2 and
varicella zoster virus strains resistant to ACV.11

In this paper, we present the synthesis and initial biolo-
gical evaluation of a novel series of ACV ProTides
(Figure 2). The ProTide moiety has three different change-
able parts: the aryl moiety, the amino acid, and the ester. In
the first part of this study, we have chosen L-alanine as the

*To whom correspondence should be addressed. Phone: þ44 29
20874537. Fax: þ44 29 20874537. E-mail: mcguigan@cardiff.ac.uk.

aAbbreviations: ACV, acyclovir; HIV, human immunodeficiency
virus; HSV, herpes simplex virus; NNRTIs, non-nucleoside reverse
transcriptase inhibitors; PI, protease inhibitor; FI, fusion inhibitor;
HHV, human herpes virus; ACVMP, acyclovir 50-monophosphate;
DMF, N,N-dimethylformamide.
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amino acid, as it has shown previously an optimal biologi-
cal profile,12 varying the other two components. For the
aryl moiety we considered phenol, naphthol, and p-fluoro-
phenol and as the ester moiety methyl, ethyl, n-propyl, iso-
propyl, tert-butyl, and benzyl and combinations thereof.
All of these combinations allowed us to extensively vary
the LogP for these compounds and to study how this
variation can influence the antiviral activity. Moreover, it
has been previously reported how the substitutions can
influence the bioactivation of the ProTide; for example,
naphthol has shown an enhancement of activity against a
panel of cancer cell lines for phosphoramidates6 and the
tert-butyl ester showed a lack of biological activity due to
the poor bioactivation of the bulky moiety. Following the
results for these derivatives, different amino acids have been
considered including L-valine, L-leucine, L-isoleucine, L-
proline, glycine, and the non-natural D-alanine, D-valine,
and dimethylglycine. Moreover, some intermediate-prote-
cted (N2-DMF)-ACV ProTides have been biologically
evaluated.

Chemistry

The compounds have been synthesized following the pro-
cedure reported by Uchiyama13 using tert-butylmagnesium
chloride (tBuMgCl) as a coupling reagent and using THF as a
solvent in most of the cases.

Aryl phosphorodichlorophosphates 26 and 27 have been
synthesized, coupling respectively 1-naphthol (24) or p-fluor-
ophenol (25) with POCl3 in the presence of Et3N (1equiv)
(Scheme 1), while phenyl dichlorophosphate (28) was com-
mercially available. The coupling with the appropriate amino
acid ester salt (29-44) has been performed in the presence of
Et3N (2 equiv) (Scheme 2), giving the final product (45-65) as
an oil which was, in most of the cases, purified by column
chromatography.

To improve the solubility of ACV in THF, used as ideal
solvent for the coupling reaction, the 2-amino was protected
using dimethylformamide dimethyl acetal (Scheme 3). How-
ever, compound 66 is not completely soluble in THF but the
solubility was improved sufficiently to carry out the reaction.
The final coupling of the nucleoside was performed using an
excess of the appropriate phosphorochloridate (1.50-4.00
equiv) in the presence of tBuMgCl (2 equiv). Because of the
reactivity problem, the use of N-methylimidazole (NMI),
following the Van Boom procedure,14 was used for the
synthesis of the L-proline (22) and glycine (23) derivatives.
Moreover, a mixture of THF/pyridine (3/2) was used as a
solvent to improve the solubility of N2-DMF-ACV.

The deprotection of the dimethylformyl DMF derivative
was initially carried out by refluxing the compound in
1-propanol (Scheme 3).However, because of a transesterifica-
tion during the synthesis of 2, obtaining compound 3, the
solvent was changed to 2-propanol, obtaining the desired
compounds (2, 4-23).

All the compounds were obtained as a mixture of
two diastereoisomers confirmed by the presence of two peaks
in the 31P NMR, with the exception of the glycine and

Figure 1. Proposed activation pathway of the acyclovir ProTides.

Figure 2. ACV and its ProTides.

Scheme 1a

aReagents and conditions: (i) POCl3, anhydrous TEA, anhydrous
Et2O, -78 !C, 1 h then rt, overnight.

Scheme 2a

aReagents and conditions: (i) anhydrous TEA, anhydrous DCM,
-78 !C, 30 min to 1 h, then rt, 30 min to 4 h.

http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-003.png&w=205&h=91
http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-000.png&w=426&h=172
http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-001.png&w=211&h=79
http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-002.png&w=205&h=52
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dimethylglycine derivatives, due to the absence of a chiral
center, and L-proline, for which we were able to isolate only
one diastereoisomer.

Biological Results

Anti-HSV Activity. The activity of the compounds were
evaluated against three different strains of HSV including
HSV-1 (KOS), HSV-2 (G), and thymidine kinase-deficient
HSV-1 (ACVR).

Native ACV showed submicromolar (EC50: 0.4 μM and
0.2 μM) activity against respectively HSV-1 and HSV-2
(Table 1) but was inactive against TK-deficient HSV-1
(EC50: 50 μM). The ACV ProTides did not show increased
activity against HSV-1 and HSV-2 compared to the parent
compound. Only two compounds (11 and 20), respectively
the p-fluorophenyl-L-Ala-OBn and the phenyl-L-Leu-OBn

derivatives, showed anti-HSV activity in the submicromolar
range, while the majority of the compounds showed an
activity in the range of ca. 1-30 μM. Compound 6 having
the bulky t-butyl group as ester moiety did not show any
marked activity (g50 μM) against theHSV strains. ACV has
been evaluated against thymidine kinase-deficient HSV-1
showing a dramatic loss of activity (>100-fold) (EC50:
50 μM). Interestingly, several of the ProTides showed sig-
nificant retention of activity, demonstrating a successful
bypass of the first phosphorylation step (i.e., compounds
11, 13, 20, 21). Notably, none of the ACV ProTides showed
appreciable cytostatic/cytotoxic activity despite the potential
loss of antiviral selectivity that could follow from viral
nucleoside kinase bypass.

Anti-HIV Aactivity. The ACV ProTides have also been
evaluated against HIV-1 and HIV-2 in CEM and against

Table 1. Anti-HSV Activity for ACV and Its Protides

antiviral activity EC50
a (μM) cytotoxic/cytostatic activity (μM)

compds aryl amino acid ester CLogP HSV-1 HSV-2 HSV-1 TK- MCCb (Hel) IC50
c (Hel)

2 Naph L-Ala Bn 2.06 2 ( 0 1.4 ( 0.8 10 ( 2.1 g20 20
3 Naph L-Ala nPr 1.41 5.5 ( 2.1 1.9 ( 1.6 16 ( 5.7 g50 68
4 Naph L-Ala Me 0.35 16 ( 5.7 10 ( 2.1 79 ( 29 >50 >100
5 Naph L-Ala Et 0.88 32 ( 25 9.5 ( 0.7 32 ( 18 >150 >100
6 Naph L-Ala tBu 1.59 >100 50 >100 >50 >100
7 Naph L-Ala iPr 1.19 15 ( 7.1 10 ( 0 g45 >50 >100
8 Ph L-Ala Me -0.82 20 ( 0 16 ( 5.7 79 ( 29 >100 ND
9 Ph L-Ala Bn 0.89 8 ( 5.7 4 ( 0 15 ( 7.1 >50 91
10 Ph L-Ala iPr 0.02 10 ( 0 8.5 ( 0.7 27 ( 25 >50 >100
11 p-F-Ph L-Ala Bn 1.11 0.9 ( 0.1 0.5 ( 0 1.5 ( 0.7 >100 ND
12 Ph D-Ala Bn 0.89 2 ( 0 1.4 ( 0.8 23 ( 16 >100 ND
13 Naph DMG Bn 2.37 2.4 ( 0 1.6 ( 1.1 3.2 ( 1.1 >50 >100
14 Ph DMG Bn 1.20 1.4 ( 0.85 0.8 ( 0.0 5.5 ( 2.1 >100 ND
15 Ph Phe Bn 2.31 17 ( 4.2 8 ( 5.7 g100 >50 87
16 Ph L-Val Bn 1.82 2 ( 0 0.85 ( 0.2 7.5 ( 6.4 >100 ND
17 Naph L-Val Me 1.28 >100 >100 >100 >100 ND
18 Naph L-Val Et 1.81 51 ( 9.2 32 ( 18 42 ( 3.5 >100 ND
19 Naph D-Val Me 1.28 >100 >100 >100 >100 ND
20 Ph L-Leu Bn 2.35 0.8 ( 0.07 0.7 ( 0 1.4 ( 0.8 >100 ND
21 Ph L-Ile Bn 2.35 1.1 ( 0.4 1.1 ( 0.4 1.4 ( 0.8 >100 ND
22 Ph L-Pro Bn 2.82 >100 >100 >100 >100 >100
23 Ph Gly Bn 0.58 3 0.8 9 >100 ND
ACV (1) -2.42 0.4 0.2 50 >100 ND

a 50% Effective concentration, or compound concentration required to inhibit virus-induced cytopathicity by 50%. bMinimal cytotoxic concentra-
tion, or compound concentration required to cause a microscopically visible alteration of cell morphology. c 50% Inhibitory concentration, or
compound concentration required to inhibit cell proliferation by 50%. ND=not determined

Scheme 3a

aReagents and conditions: (i) dimethylformamide dimethyl acetal, anhydrous DMF, rt, 1 day; (ii) tBuMgCl, THF, rt, overnight or NMI, THF/
pyridine=3/2, rt, overnight; (iii) 1-propanol, reflux, for 18 h or 2-propanol, reflux, 24-96 h.

http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-004.png&w=306&h=158


Article Journal of Medicinal Chemistry, 2009, Vol. 52, No. 17 5523

HIV-1 in MT-4 cell cultures and in HIV-infected tonsillar
tissues ex vivo (Table 2).

While parent ACV was inactive, in most of the L-alanine
derivatives (2-11), with the exception of 6, 10, and 11,
showed activity (EC50) in a range of 6.2-17 μM against
HIV-1 (CEM) and in a range of 8.9-42 μM against HIV-2
(CEM) (Table 2). Similar results were obtained when these
compounds were applied to the HIV-1-infected MT-4 cell
cultures. In these cells, parental ACV was inactive whereas
HIVwas suppressed by all the tested compoundswith EC50’s
in the range of 0.8-30 μM, with the exception of 6, 10, 78,
and 81 (Table 2). The antiviral activity of the ACV ProTides
was confirmed in HIV-infected tonsillar tissue ex vivo. The
compounds 4, 5, and 9 suppressed HIV replication with
EC50’s in a range of 0.1-0.6 μM (data not shown). These
findings indicate that theACVProTide approach can also be
successfully applied to HIV-infected tissue.

No clear-cut structure-activity relationship could be ob-
served with regard to the nature of the aryl moiety nor the
alaninyl ester moiety in terms of eventual antiviral activity of
the ProTide derivatives. The lack of activity obtained for the
t-butyl analogue (6) is in agreement with the previous report
and with the enzymatic experiment to be discussed later. All
of these compounds showed an antiproliferative effect (on
CEM or MT-4 cell cultures) in a range between 17 and
76 μM.

With regard to the amino acid modifications, we found
that, besides the L-alanine ProTides, only the phenylalanine
derivative (15) had activity against HIV-1 (26 μM) andHIV-
2 (34 μM). All other derivatives, including D-alanine (12),
dimethylglycine (13 and 14), L-valine (16-18), D-valine (19),
L-leucine (20), L-isoleucine (21), L-proline (22), and glycine

(23), did not show appreciable activity inCEM.These results
are in agreement with previous reports for other nucleosides,
in which the substitution of the L-alanine with different
natural L-amino acids gave loss (∼10- to 100-fold) of anti-
viral activity.15 However, in the case of dimethylglycine, this
result is quite surprising as this variation led usually to a
retention of anti-HIV activity compared to the L-alanine
derivatives.16

Interestingly, in MT-4 cell cultures, the amino acid mod-
ification seems to be tolerated, in fact compounds 14 (DMG)
and 20 (L-Leu), showed respectively an anti-HIV-1 activity of
7 and 0.8 μM.

Moreover, in MT-4, the N2-DMF-protected ACV Pro-
Tides (77, 78, and 86) showed activity againstHIV-1 (EC50’s:
15, 70, and 30, respectively), indicating that this kind of
substitutionmay be tolerated. However, in the case of CEM,
these compounds did not show any inhibitory activity.

From these results, it is possible to conclude that the
amino acid L-alanine is optimal for the anti-HIV activity of
the ACV ProTides. Neither D-alanine nor glycine can effi-
ciently substitute for L-alanine nor can bulkier amino acids.

In contrast to the structural requirement for anti-HIV
activities, the anti-HSV activity tolerates liberal amino acid
variation. This may reflect different substrate specificities
and/or different intracellular levels of the necessary activat-
ing enzymes. It should indeed be noticed that the HIV
assays are performed in rapid proliferating lymphocyte cell
cultures (generation time ∼ 24 h), whereas the antiherpetic
assays are carried out in confluent fibroblast monolayer
(nonproliferating) cell cultures. Thus, the different cell-type
and cell-cycle conditions between both assay models can
result in different prodrug activation modalities that may

Table 2. Anti-HIV Activity of the ACV ProTides and ACV

antiviral activity EC50
a (μM) cytostatic activity (μM)

compds aryl amino acid ester HIV-1 CEM HIV-2 CEM HIV-1 MT-4 IC50
bCEM CC50

c (MT-4) IC50
b (MT-4)

2 Naph L-Ala Bn 15 ( 14 8.9 ( 6.3 0.8 17 ND >150
3 Naph L-Ala nPr 6.6 ( 5.6 24 ( 30 10 22 ND ND
4 Naph L-Ala Me 10 ( 7.9 13 ( 6.4 4.7 ( 2.1 57 >150 18.7 ( 3.2
5 Naph L-Ala Et 12 ( 9.8 42 ( 13 1.7 ( 0.8 32 ( 7.8 >150 12 ( 5.3
6 Naph L-Ala tBu >100 >100 >150 >100 >150 >150
7 Naph L-Ala iPr 6.2 ( 5.4 12 ( 0.71 5.4 36 ( 15 >150 72.5
8 Ph L-Ala Me 17 ( 4.6 26 ( 8.5 15 67 ( 7.8 ND ND
9 Ph L-Ala Bn 16 ( 14 11 ( 4.9 5.7 ( 1.6 42 ( 11 >150 33.8 ( 10.6
10 Ph L-Ala iPr >100 >100 >150 >100 >150 >150
11 p-F-Ph L-Ala Bn >20 >20 ND 76 ( 13 ND ND
12 Ph D-Ala Bn >250 >250 ND g250 ND ND
13 Naph DMG Bn g100 79 ( 30 ND >100 ND ND
14 Ph DMG Bn >100 >100 7 >100 >150 >150
15 Ph Phe Bn 26 ( 11 34 ( 24 16 42 ND ND
16 Ph L-Val Bn >50 >50 ND g100 ND ND
17 Naph L-Val Me >100 >100 ND >100 ND ND
18 Naph L-Val Et >100 >100 ND >100 ND ND
19 Naph D-Val Me >100 >100 ND >100 ND ND
20 Ph L-Leu Bn >20 >20 0.8 >20 17 >150
21 Ph L-Ile Bn >20 >20 ND ND ND ND
22 Ph L-Pro Bn >20 >20 ND >100 ND ND
23 Ph Gly Bn >100 >100 ND >100 ND ND
77d Naph DMG Bn >20 >20 15 40 ( 2.8 45 140
78d Ph DMG Bn >100 >100 70 >100 >150 >150
81d Naph L-Val Me >100 >100 >150 >100 >150 >150
86d Ph L-Pro Bn >20 >20 30 45 ( 0.0 90 >150
ACV (1) >250 >250 >250 >250 >250 >250

a 50%Effective concentration, or compound concentration required to inhibit virus-induced cytopathicity by 50%. b 50%Cytotoxic concentration,
or compound concentration required to decrease the viability of the cell cultures by 50%. c 50% Inhibitory concentration, or compound concentration
required to inhibit cell proliferation by 50%. ND = not determined. dN2-DMF-ACV.
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explain the differential antiviral activities of the ACV Pro-
Tides.

Enzymatic Studies. The mechanism of activation of the
ProTides involves a first enzymatic activation step mediated
by carboxypeptidase-type enzyme(s), which hydrolyze the
ester of the amino acid moiety (Figure 1).

To probe the activation of the ACV ProTides to the
monophosphorylated form inside cells, we performed an

enzymatic study using carboxypeptidase Y following the
conversion by 31P NMR. Of three different L-alanine deri-
vatives (9, 6, and 10), the first one is active vs HIV and the
second and third compounds are inactive against HIV, as
well as the inactive L-valine 17 and D-valine derivatives 19
that have been considered for these experiments. The assay
has been carried out by dissolving the compounds in acetone-
d6 and trizma buffer (pH=7.6), incubating with the enzyme

Figure 3. Carboxypeptidase-mediated cleavage of compound 9, monitored by 31P NMR.

Figure 4. Carboxypeptidase-mediated cleavage of compound 10, monitored by 31P NMR.

http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-006.png&w=490&h=269
http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-005.png&w=494&h=276
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and recording a blank for each sample before the addition of
the enzyme.

In the case of the phenyl benzylalanine compound 9
(Figure 3), the experiment showed a fast hydrolysis of the
starting material (δP=3.65 and 3.60) to the intermediate type
88 (Figure 1) (δP=4.85 and 4.70), noting the presence of the two
diastereoisomers. This intermediate is then processed to a
compound of type 90 (δP=7.10) through the putative inter-
mediate89,which is notdetectedby31PNMR.Thehalf-life for9
is 17 min. In the case of the isopropyl ester analogue 10
(Figure 4), the experiment showed a slow conversion of the
startingmaterial to90withahalf-lifeof 46h.This is ca. 150 times
slower than 9. This result is in accordance with the inactivity of
10 against HIV (Table 2). Notably one of the two diastereo-
isomers seems to be faster converted compared to the other one.

Compound 6, the naphthyl t-butyl alanine analogue
(Figure 5), showed no conversion at all presumably due to
the presence of the tert-butyl ester, which is too bulky to be
processed by the enzyme. This observation is in agreement
with the lack of antiviral activity for this compound.

In the case of the L-valine derivative 17 (Figure 6), the
experiment showed, as already demonstrated for compound
10, a slow conversion to the compound of type 90, with a
half-life of 72 h. The D-valine derivative 19 (Figure 7) was not
processed due to the presence of the non-natural amino acid,
which seems not to be recognized by the enzyme.

Also, CEM cell extracts have been prepared to examine
the rate of hydrolysis of the antivirally active 9 and 4 and the
inactive 6 derivatives. Whereas 9 and 4 were efficiently
hydrolyzed within a short time period (>95% conversion
of 9 and 65% conversion of 4 within 1 h of incubation), 6
proved entirely stable after a 120 min incubation period
(Figure 8). These observations are in agreement with the
antiviral data and demonstrate that CEM cell-associated
enzymes can efficiently convert methyl and benzyl esters of
the ACV ProTides but not tert-butyl esters. Tonsil extracts
were also found to efficiently hydrolyze 9 and 4, with the
same preference profile of 9 over 4 as found for the CEM cell
extracts (data not shown).

These experiments support the need of activation of ACV
ProTide in order to deliver the ACV monophosphate meta-
bolite. The enzymatic data correlate well with the in vitro
anti-HIV data andmay support the role of carboxypeptidase
Y in the ProTide activation in the lymphocyte cell cultures.

Stability Studies of ACV ProTide. Two different stability
studies of compound 9 using human serum and pH1.0 buffer
have been conducted. In the case of human serum, 9 was
dissolved in DMSO and D2O and human serum was added.
The experiment was conducted at 37 !C and monitored by
31PNMR. In Figure 9 are reported 31P NMR spectra 10 min
after the addition of the serum and after 12 h. For a better
resolution, both original spectra and deconvoluted ones have

Figure 6. Carboxypeptidase-mediated cleavage of compound 17, monitored by 31P NMR.

Figure 5. Carboxypeptidase-mediated cleavage of compound 6, monitored by 31P NMR.

http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-008.png&w=503&h=142
http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-007.png&w=502&h=199
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been reported. The spectra show that the ACV ProTide is
stable under these conditions. In fact, after 12 h, 56% of the
compound is still present. The spectra also show the forma-
tion of the compound type 90 and the formation of a peak at
δP= 1.90, which may correspond to the monophosphate
form. The peak at δP=2.25 corresponds to the human serum
that in the first experiment is overlapping with the peak at at
δP=1.90.

In the case of the stability in acid, a pH of 1.0 was used.
Compound 9 was dissolved in MeOD, and the buffer was

added. The experiment was conducted at 37 !C and moni-
tored by 31P NMR. The experiment showed a good stability
of the compound (see Figure 12 in the Supporting In-
formation) having an half-life of 11 h. Notably, the forma-
tion after 5 h of a peak at δP = -0.25, which should
correspond to the monophosphate form was observed.

Molecular Modeling-1: Carboxypeptidase Y Enzyme.
To better understand the enzymatic results obtained using
carboxypeptidase Y, molecular modeling studies using a
crystal structure of the enzyme have been performed.17 The

Figure 8. Stability of ACV ProTides in crude CEM cell extracts as a function of incubation time.

Figure 7. Carboxypeptidase-mediated cleavage of compound 19, monitored by 31P NMR.

Figure 9. Stability of compound 9 in human serum, monitored by 31P NMR.

http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-011.png&w=463&h=140
http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-009.jpg&w=300&h=151
http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-010.png&w=476&h=202
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putative mechanism of action involves an attack from the
Ser146 to the carbonyl of the ester, which is coordinatedwith
the NH from Gly52 and Gly53.18

The processed compound 9 showed a positive interaction
with the active site of the enzyme for both phosphate
diastereoisomers (shown only the RP diastereoisomer)
(Figure 10a). In particular, the carbonyl moiety is in a
suitable position for the nucleophilic attack from the cata-
lytic Ser146, with the NH from Gly52 and Gly53 correctly
placed to stabilize the tetrahedral intermediate. This result is
in accordance with the enzymatic result for this compound.
In the case of the inactive compound 6, the carbonyl is not
in a favorable position, pointing away from Gly52 and
Gly53, probably due to the presence of the bulky tert-butyl,
whichmay influence the interaction with enzyme resulting in
a poor activation (reported only the SP-diastereoisomer,
Figure 10b). The docking of compound 10, which showed
a faster hydrolysis of one diastereoisomer compared to the
other one, showed interesting results. In fact, the two dia-
stereoisomers docked in a different way. The R-diastereo-
isomer showed a preferable position for the carbonylmoiety,
while in the case of the S-diastereoisomer the position of
carbonyl group is different and it is not able to coordinate

with the Gly52 and Gly53. This result supports the fact that
one of them is faster metabolized, presumably the RP, than
the other one, and this is due to a different binding in the
catalytic site of the enzyme. In the case of the valine
derivatives, none of them showed a suitable pose in the active
site of the enzyme.

Molecular Modeling-2: Human Hint Enzyme.As shown in
the enzymatic experiment on 9, the first step of activation
proceeds well and leads to compound 90, which needs to be
further converted in order to release the monophosphate
form 91. The last step of the activation of the ProTide
involving the cleavage of the P-N bond is not well-known,
and it is considered to be mediated by a phosphoramidase-
type enzyme called Hint, belonging to the HIT superfam-
ily.19 A molecular modeling study using human hint enzyme
1, cocrystallized with adenosine monophosphate, has been
performed in order to investigate this last step of activation.
The catalytic activity of this enzyme is due to the presence of
three histidines, which interact with the substrate, and to the
presence of a serine, which binds the nitrogen of the amino
acid, protonating the nitrogen, and favoring P-N bond
cleavage (Figure 11a). From Figure 11b, it is clear to see
how the compound binds correctly in the active site of the

Figure 10. (a) Docking of compound 9 within the catalytic site of
carboxypeptidase Y enzyme. (b) Docking of compound 6within the
catalytic site of carboxypeptidase Y enzyme.

Figure 11. (a) Interactions of 90 (L-Ala) with the active site of
human Hint-1. (b) Docking of compound 90 (L-Ala) ACV-MP
phosphoramidate within the catalytic site of human HINT (I)
enzyme.

http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-013.jpg&w=240&h=392
http://pubs.acs.org/action/showImage?doi=10.1021/jm9007856&iName=master.img-012.jpg&w=240&h=399
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enzyme positioning the phosphatemoiety (pink) in a suitable
position for the cleavage of the P-N bond. This experiment
suggests that the last step of the activation to release ACV-
MPmay proceed well in the case of ACV alaninyl phosphate
in vivo, supporting the biological data.

Conclusion

A series of 22 acyclovir ProTides has been reported. These
compounds as well as the parent ACV have been biologically
evaluated against HSV-1 and -2 and against HIV-1 and -2.

In the case of HSV-1 and -2, the compounds did not show
any improvement of activity compared to the parent. How-
ever, these compounds retained activity against the TK-
deficient HSV-1 strain while ACV showed a loss on activity.
These results showed a successful thymidine-kinase bypass.

In the case of HIV-1 and -2, ACV did not show any acti-
vity, while the ProTides show a good activity in a range of
6.2-17 μM (HIV-1, CEM), 8.9-42 μM (HIV-2, CEM), and
0.8-30 μM (HIV-1, MT-4).

The variation of the amino acid moiety seems to be
tolerated in the case ofHSV. In the case ofHIV, this variation
is less tolerated, showing good results only in the case of the L-
alanine derivatives and phenylalanine derivative. In theMT-4
cell cultures, dimethylglycine, and L-leucine are tolerated.
These differences on activity may be due to different substrate
specificities and/or different intracellular levels of enzyme
necessary for the activation of these compounds.

Experimental Section

General. Anhydrous solvents were bought from Aldrich and
used without further purification. All reactions were carried out
under an argon atmosphere. Reactions were monitored with
analytical TLC on silica gel 60-F254 precoated aluminum plates
and visualized under UV (254 nm) and/or with 31P NMR
spectra. Column chromatography was performed on silica gel
(35-70 μM). Proton (1H), carbon (13C), and phosphorus (31P)
NMR spectra were recorded on a Bruker Avance 500 spectro-
meter at 25 !C. Spectra were autocalibrated to the deuterated
solvent peak and all 13C NMR and 31P NMR were proton-
decoupled. High resolution mass spectra was performed as a
service by Birmingham University using electrospray (ES).
CHN microanalysis were performed as a service by the School
of Pharmacy at the University of London. Purity (g95%) of all
final products was assured by a combination of microanalysis,
andHPLC, with additional characterization in every case by: H,
C, and P NMR, and HRMS.

Standard Procedure A: Synthesis of Dichlorophosphates (26,
27). To a solution of phosphorus oxychloride (1.00 mol/equiv)
and the appropriate substituted phenol or naphthol (1.00mol/eq)
in anhydrous diethyl ether, stirred under an argon atmosphere,
and added dropwise at -78 !C under an argon atmosphere
anhydrous TEA (1.00 mol/equiv). Following the addition, the
reaction mixture was stirred at -78 !C for 30 min and then at
room temperature overnight. Formation of the desired com-
pound was monitored by 31P NMR. The mixture was filtered
under nitrogen and the corresponding filtrate reduced to dryness
to give the crude product as an oil.

Standard Procedure B: Synthesis of Phosphorochloridates
(45-65). To a stirred solution of the appropriate aryl dichlor-
ophosphate 26-28 (1.00 mol/equiv) and the appropriate amino
acid ester salt 29-44 (1.00 mol/equiv) in anhydrous DCM was
added dropwise at -78 !C under an argon atmosphere, anhy-
drous TEA (2.00 mol/equiv). Following the addition the reac-
tion mixture was stirred at-78 !C for 30 min to 1 h and then at
room temperature for 30 min to 3.5 h. Formation of the desired
compound was monitored by 31P NMR. After this period, the

solvent was removed under reduced pressure and the residue
triturated with anhydrous diethyl ether. The precipitate was
filtered under nitrogen and the solutionwas concentrated to give
an oil. Most of the aryl phosphorochloridates synthesized were
purified by flash column chromatography (eluting with ethyl
acetate/petroleum ether in different proportions).

Standard Procedure C: Synthesis of Phosphoramidates (67-
85).To a stirring suspension of N2-DMF-ACV (1.00mol/equiv)
in anhydrous THF was added dropwise under an argon atmo-
sphere tBuMgCl (2.00 mol/equiv), and the reaction mixture was
stirred at room temperature for 30 min. Then was added
dropwise a solution of the appropriate phosphorochloridate
(1.50 to 4.00 mol/equiv) in anhydrous THF. The reaction
mixture was stirred at room temperature overnight. The solvent
was removed under reduced pressure, and the residue was
purified by column chromatography eluting with DCM/MeOH
in different proportions.

Standard Procedure D: Deprotection of N2-DMF-Phosphor-
amidates (2-23). A solution of 67-87 in 1-propanol or
2-propanol was stirred under reflux for 24-96 h. The solvent
was then removed under reduced pressure, and the residue was
purified by column chromatography eluting with DCM/MeOH
in different proportions. The product was usually further pur-
ified by preparative TLC or semipreparative HPLC to give a
white solid.

Synthesis of N2-DMF Acyclovir (N0-(9-((2-Hydroxyethoxy)-
methyl)-6-oxo-6,9-dihydro-1H-purin-2-yl)-N,N-dimethylformi-
midamide) (66). To a suspension of 1 (1.00 g, 4.44 mmol) in dry
DMF (20 mL) was added N,N-dimethylformamide dimethyl
acetal (2.96 mL, 22.20 mmol) and the reaction mixture was
stirred at room temperature for 1 day. After this period, the
solvent was removed and the residue triturated with diethyl
ether and filtered. The solid was washed with diethyl ether to
give a white solid (97%, 1.20 g). 1HNMR (DMSO, 500MHz): δ
11.30 (1H, s, NH), 8.58 (1H, s, CHN(CH3)2), 7.94 (1H, s, H-8),
5.45 (2H, s, H-10), 4.65 (1H, t, OH), 3.52-3.49 (4H, m, H-40, H-
50), 3.17, 3.04 (6H, 2s, N(CH3)2).

Synthesis of 1-Naphthyl Dichlorophosphate (26). Prepared
according to standard procedure A, using 24 (4.00 g, 27.74
mmol) in anhydrous diethyl ether (60 mL), POCl3 (2.59 mL,
27.74mmol), and anhydrous TEA (3.87mL, 27.74mmol). After
31P NMR, the solvent was removed under reduced pressure and
the residue was triturated with anhydrous diethyl ether. The
precipitate was filtered, and the organic phase was removed
under reduced pressure to give an oil (95%, 6.91 g). 31P NMR
(CDCl3, 202 MHz): δ 3.72. 1H NMR (CDCl3, 500 MHz): δ
8.02-8.00 (1H, m, H-8), 7.81-7.80 (1H, m, H-5), 7.72-7.70
(1H, m, H-4), 7.54-7.45 (4H, m, H-2, H-3, H-6, H-7).

Synthesis of 1-Naphthyl(benzoxy-L-alaninyl)-phosphorochlor-
idate (45). Prepared according to standard procedure B, 26
(6.91 g, 26.48 mmol), L-alanine benzyl ester tosylate 29 (9.30 g,
26.48 mmol), and anhydrous TEA (7.40 mL, 52.96 mmol) in
anhydrous DCM (100 mL). The reaction mixture was stirred at
-78 !C for 1 h, then at room temperature for 2 h. The crude was
purified by column chromatography eluting with ethyl acetate/
hexane=5/5 to give an oil (72%, 7.68 g). 31P NMR (CDCl3, 202
MHz): δ 8.14, 7.88. 1H NMR (CDCl3, 500 MHz): δ 7.99-7.25
(12H, m, Naph, OCH2Ph), 5.15-5.07 (2H, m, CH2Ph), 4.30-
4.23 (1H, m, CHCH3), 1.49-1.46 (3H, m, CHCH3).

Synthesis of N2-DMF-acyclovir-[1-naphthyl(benzoxy-L-alani-
nyl)] Phosphate (67). Prepared according to standard procedure
C, from 66 (0.30 g, 1.07 mmol) in anhydrous THF (10 mL),
tBuMgCl (1.0MTHF solution, 2.14mL, 2.14mmol), 45 (1.31 g,
3.25 mmol) in anhydrous THF (10 mL), and the reaction
mixture was stirred at room temperature overnight. The residue
was purified by column chromatography, eluting with DCM/
MeOH=95/5, to give a white solid (17%, 0.12 g). 31P NMR
(MeOD, 202 MHz): δ 4.18, 3.92. 1H NMR (MeOD, 500 MHz):
δ 8.47, 8.46 (1H, 2s, NCHN(CH3)2), 8.01-7.98 (1H, m, H-8
Naph), 7.78-7.74 (2H, m, H-8, H-6 Naph), 7.56, 7.55 (1H, m,
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H-2 Naph), 7.41-7.12 (9H, m, Naph, OCH2Ph), 5.37-5.36
(2H, 2s, H-10), 5.00-4.93 (2H, m, OCH2Ph), 4.14-4.06 (2H, m,
H-50), 3.96-3.88 (1H, m, CHCH3), 3.88-3.59 (2H, m, H-40),
2.95-2.93 (6H, m, N(CH3)2), 1.20-1.17 (3H, m, CHCH3).

Synthesis of Acyclovir-[1-naphthyl(benzoxy-L-alaninyl)] Phos-
phate (2). A solution of 67 (0.10 g, 0.16 mmol) in 2-propanol
(5 mL) was stirred under reflux for 2 days. The solvent was then
removed under reduced pressure, and the residue was purified
by column chromatography eluting with DCM/MeOH=96/4.
The product was purified by preparative TLC (gradient elution
of DCM/MeOH=99/1, then 98/2, then 96/4) to give a white
solid (35%, 0.032 g). 31PNMR (MeOD, 202MHz): δ 4.13, 3.96.
1H NMR (MeOD, 500 MHz): δ 8.01-7.99 (1H, m, H-8 Naph),
7.77-7.75 (1H, m, H-6 Naph), 7.67, 7.64 (1H, 2s, H-8), 7.58-
7.13 (10H, m, Naph, OCH2Ph), 5.28, 5.25 (2H, 2s, H-10), 4.99-
4.94 (2H, m, OCH2Ph), 4.12-4.06 (2H, m, H-50), 3.97-3.93
(1H, m, CHCH3), 3.64-3.59 (2H, m, H-40), 1.24-1.20 (3H, m,
CHCH3).

13CNMR (MeOD, 125MHz): δ 20.32 (d, JC-P=7.63,
CHCH3), 20.43 (d, JC-P = 6.61, CHCH3), 51.76, 51.81 (2s,
CHCH3), 67.20 (d, JC-P=5.58, C-50), 67.28 (d, JC-P=4.91, C-
50), 67.95, 67.98 (2s,OCH2Ph), 69.34 (d, JC-P=7.72,C-40), 69.40
(d, JC-P = 8.14, C-40), 73.65 (C-10), 116.26, 116.29, 116.35,
122.69, 122.80, 125.92, 126.51, 127.20, 127.42, 127.46, 127.74,
128.81, 128.83, 129.27, 129.33, 129.52, 129.57 (C-5, C-2 Naph,
C-3 Naph, C-4 Naph, C-5 Naph, C-6 Naph, C-7 Naph, C-8
Naph, C-8a Naph, OCH2Ph), 136.26, 137.23 (C-4a Naph,
“ipso” OCH2Ph), 139.69 (C-8), 147.98, 148.04 (“ipso” Naph,
C-4), 152.44 (C-2), 159.39 (C-6), 174.61, 174.88 (2s,
COOCH2Ph). EI MS=615.1735 (M þ Na). Anal. Calcd for
C28H29N6O7P 3 0.5H2O: C, 55.91; H, 5.03; N, 13.97. Found: C,
55.81; H, 4.91; N, 13.78.

Antiviral Activity Assays. The compounds were evaluated
against the following viruses: HSV-1 strain KOS, thymidine
kinase-deficient (TK-) HSV-1 KOS strain resistant to ACV
(ACVr), HSV-2 strain G, HIV-1 strain IIIB/Lai, and HIV-2
strain ROD. The antiviral, other than anti-HIV, assays were
based on inhibition of virus-induced cytopathicity or plaque
formation in human embryonic lung (HEL) fibroblasts. Con-
fluent cell cultures in microtiter 96-well plates were inoculated
with 100 CCID50 of virus (1CCID50 being the virus dose
required to infect 50% of the cell cultures). After a 1-2 h
adsorption period, residual virus was removed and the cell
cultures were incubated in the presence of varying concentra-
tions of the test compounds. Viral cytopathicity was recorded as
soon as it reached completion in the control virus-infected cell
cultures that were not treated with the test compounds. Anti-
viral activity was expressed as the EC50 or effective compound
concentration required to reduce virus-induced cytopathicity by
50%.

Human CEM cell cultures (∼3"105 cells mL-1) were infected
with 100 CCID50 HIV-1(IIIB) or HIV-2(ROD) per mL and
seeded in 200 μL well microtiter plates, containing appropriate
dilutions of the test compounds. After 4 days of incubation at
37 !C, CEMgiant cell formationwas examinedmicroscopically.

MT-4 cells (1" 104 cells per mL) were suspended in fresh
culture medium and infected with 10 μL (0.7 ng of p24) of
X4LAI.04 viral stock per mL of cell suspension. Infected cell
suspensions were then transferred to microplate wells, mixed
with 1 mL of medium containing the test compound at an
appropriate dilution and further incubated at 37 !C. After 3
days, p24 production was measured in the MT-4 cell culture
supernatants. The EC50 corresponded to the compound con-
centration required to suppress the production of p24 in the
virus-infectedMT-4 cell cultures by 50%. Viability inMT-4 cell
cultures were evaluated using a nucleocounter automated cell
counting system (Chemometec, Denmark). Total number of
cells and number of dead cells in the cultures untreated and
treated with ACVProTides were enumerated using a propidium
iodide-based assay according to the manufacturers’ protocol.

Data were collected and analyzed using Nucleoview software
(Chemometec, Denmark).

Human tonsils obtained under an IRB-approved protocol
were dissected into∼2mmblocks and cultured on collagen rafts
at the medium-air interface. Tissues were inoculated ex vivo
with X4LAI.04 (∼0.5 μg of p24gag per block) and treated with
ACV ProTides at concentrations ranging from 0.1 to 10 μM.
The culture medium was changed every 3 days, and ACV
ProTides were replenished. For each compounds’ concentration
HIV-1 release was quantified by measurements of p24gag accu-
mulated over 3-day periods in the culture media bathing 18
tissue blocks. The EC50 corresponded to the compound con-
centration required to suppress by 50% the production of p24.

Preparation of CEM and Tonsil Cell Extracts and Analysis of
ProTide Conversion. Exponentially growing CEM cells or tonsil
tissues were washed twice with PBS. Then, cells and tissues were
suspended in PBS, and extracts were made in a Precellys-24
homogenizator (Berlin Technologies, Montigny-en-Breton-
neux, France) (tonsils) or by a Hielscher-Ultrasound Technol-
ogy (CEM cells) (Germany). The extracts were cleared by
centrifugation (10 min, 15000 rpm) and frozen at-20 !C before
use. Ten micromolar solutions of 9, 4, and 6 were added to the
crude cell and tissue extracts (100 μL) and incubated for 30, 60,
and 120min at 37 !C.At each time point, 20μLof the incubation
mixtures were withdrawn and added to 30 μL cold methanol to
precipitate the proteins. After centrifugation, the supernatants
were subjected toHPLC analysis on a reverse phaseC18 column
(Merck) to separate the parent ACV ProTides from their
hydrolysis products that may be formed during the incubation
process. Data were plotted as percent of disappearance of the
intact parent ACV ProTide from the incubation mixture.
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