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Abstract 
 
 

The thermoelectric dimensionless figure-of-merit, ZT, which consists of 

the Seebeck coefficient, , electrical resistivity,  and thermal conductivity, , is 
an important parameter that characterizes the energy conversion performance 
of thermoelectric materials and devices. Larger ZT indicates higher performance 
of thermoelectric device. Current techniques for determining ZT involve 

measurements of ,  and  individually or ZT directly, but all techniques are 

carried out under a small temperature difference (T). In reality, a 

thermoelectric device generally operates under a much larger T and with an 
electrical current flowing through the thermoelectric materials.  Clearly, ZT 
values are conventionally evaluated under a condition which differs significantly 
from the real operating conditions of thermoelectric devices.  

Recently, a novel principle for ZT measurement has been proposed, 

which has the capability of measuring ZT values under a large T and with an 
electrical current flowing through the samples. The main objective of the 
research embodied in this thesis is to investigate experimentally the feasibility of 
the proposed technique and subsequently to develop a laboratory measurement 
system for thermoelectric materials research. The feasibility of the proposed 
technique was investigated initially using thermoelectric modules. The results 
show a reasonable agreement with conventional techniques when it is used to 

measure ZT under a small T.  Furthermore, the investigation reveals that ZT 

obtained under a large T differ significantly from those obtained under a small 

T. This confirms the unique capability of the proposed technique. 
The implementation of this technique for measuring the ZT of 

thermoelectric materials has proved to be very challenging due to the low 

electrical resistance (< 0.01 ) of the material samples. Following an in-depth 
experimental and theoretical investigation, a new design with a modified 
operating principle was proposed and carried out. The measurement system 
based on this new design was successfully developed, which has the capability of 

measuring single materials with different dimensions and under a larger T. The 
performance of this system was investigated using a standard Bi2Te3 sample as 
the reference for calibration. The results show that the system has a 
repeatability of <10% and an accuracy of 13-32%. Investigation on single 
materials and segmented structures showed that there were noticeable 

differences between a small and a large T, which can be attributed to the 

Thomson effect and changes in  values. This finding contributes to an 
improved understanding and new knowledge of thermoelectric behaviour under 
a large temperature difference. The measurement technique developed in this 
work will provide a useful tool for investigation and for the optimization of 
advanced thermoelectric structures. 
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CHAPTER 1 

Introduction 

 

1.1 History of Thermoelectrics 

A thermoelectric phenomenon is a science related to the production of 

electrical potential from temperature difference or the production of 

temperature difference from electrical potential. These phenomena are due to 

three reversible thermoelectric effects, namely the Seebeck effect (1821), the 

Peltier effect (1834) and the Thomson effect (1851).  

Even though Anatychuk [1] claims that thermoelectricity was first 

discovered by Volta, the thermoelectricity era only begin in 1821 after Thomas 

Johann Seebeck discovered the deflection of a compass needle if placed near the 

closed-loop circuit made of two dissimilar metals with the junction maintained at 

a different temperature [2].  Unaware of an electric current at the time, Seebeck 

erroneously assumed that this was a thermomagnetic effect. Two years later 

Orstead [3] determined that the metals in Seebeck’s experiments were reacting 

to the temperatures, producing an electric voltage that in turn created a 

magnetic field that moved the needle.  

Developments in thermoelectricity continued with the finding of French 

scientist Jean Charles Anthanase Peltier in 1834 who observed the opposite 

effect by passing a current through a series of conductors. Unfortunately, Peltier 
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did not relate his discovery to the one made by Seebeck 12 years earlier. Until a 

couple of years later in 1838, Lenz concluded that the direction of the current 

flow determined whether heat was absorbed or generated at the junctions. The 

third thermoelectric effect, known as the Thomson effect, was predicted by 

William Thomson (Lord Kelvin) in 1851, where a homogeneous conductor will 

either absorb or reject heat resulting from the flow of an electrical current in the 

presence of a temperature gradient. 

Further developments in thermoelectricity continued when in 1909 and 

1911, Rayleigh and Altenkirch [4] showed that good thermoelectric materials 

should possess a large Seebeck coefficient, high electrical conductivity and low 

thermal conductivity. A high electrical conductivity is necessary to minimize Joule 

heating, whilst a low thermal conductivity helps to retain heat at the junctions 

and maintain a large temperature gradient. These three properties were later 

embodied in the so-called figure-of-merit, Z. Since Z varies with temperature, a 

more useful parameter known as dimensionless figure-of-merit, ZT is usually 

used. The dimensionless figure-of-merit is defined as: 

   
   

 
  

   

(     )
    (   ) 

where   is the Seebeck coefficient,   is the electrical conductivity  and   is 

thermal conductivity. The ZT is derived from the performance of thermoelectric 

cooler as shown in Appendix 1. The thermal conductivity of a thermoelectric 
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material is the sum of a lattice component,    and an electronic component,    , 

which represent phonon and charge carrier transport respectively.  

 

1.2 Thermoelectric materials 

Since the discovery of thermoelectricity there has not been much 

development in thermoelectric applications due to poor materials’ performance. 

Initial researches were focused on metals and metal alloys that have high 

electrical conductivity. But it was found that the Seeback coefficient in metals 

was low (<40 V/K). In addition, thermal and electrical conductivities are related 

by the Weidemann-Franz-Lorenz’ law results in an increase in the thermal 

conductivity if the electrical conductivity is increased. During the 1930’s 

thermoelectric research went through a resurgence of interest with the 

discovery of semiconductor materials, in which the Seebeck coefficient greater 

than 100 V/K was obtained [4]. Since then, many new approaches to improve 

   have been proposed as a result of progress in solid state physics [5].  

Three well-established thermoelectric materials are bismuth telluride 

(Bi2Te3), lead telluride (PbTe) and silicon germanium (SiGe). Over the past 50 

years, significant improvements have been made in developing high    

materials. Due to the strong dependency of thermoelectric properties on 

temperature, the practical operating temperature of a particular material is 

generally limited [6,7] as depicted in Figure 1.1. Bi2Te3 offered peak ZT at room 

temperature and was found to be suitable for operation at a temperature ranges 
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between 300-500 K, PbTe is suitable for operation at an intermediate 

temperature range (600-900 K) and SiGe at high temperature range (1000-1300 

K). In order to compete with the commercial power generation and refrigeration 

techniques currently being used and to fulfil the requirements of large-scale 

industrial application, ZT larger than 3 are desirable. Consequently, many efforts 

have been made to improve thermoelectric efficiency during the past decades. 

The first and most notable approach is to search for a new thermoelectric 

material with improved properties. The second approach is to optimize the 

current system and the third approach involves finding cheap materials or 

manufacturing processes to reduce the cost of thermoelectric devices.  

 

 

 

 

 

 

 

 

 

Figure 1.1: Dimensionless figure-of-merit as a function of temperature for n-type 

Bi2Te3, PbTe and SiGe showing peaks at different temperature range [7]. 
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In 1993 Hicks and Dresselhaus [8] proposed an approach to increase 

thermoelectric performance by nanostructure engineering. Nanostructure 

materials could exploit reduced dimensionality to increase the power factor 

(   ) by increased electronic mobility and density of state near the Fermi level. 

In addition, thermal conductivity could be reduced with an increase in boundary 

scattering if the semiconductor size was smaller than the phonon wavelength but 

larger than the electrons or holes wavelength, without adversely affecting its 

electrical transport [9]. Since then, a number of experiments have been carried 

out on 2D, 1D and 0D systems. For example, Harman et al. [10] shows that 

PbTe/PbTeSe quantum dot superlattice structures could yield a     0.8 at 

   300 K and     2 at   550 K whereas Venkatasubramaniam [11] shows that 

Bi2Te3 and Sb2Te3 thin-film superlattice structures have    2.4 at room 

temperature. 

In 1995 [12] Slack proposed a concept referred to as the phonon-glass 

electron–single crystal (PGEC). According to this concept, good thermoelectric 

materials should have electrical properties that could conduct electricity like a 

crystalline solid and have thermal properties to maintain heat like a glass. This 

can be achieved by the placement of atoms in the large voids of the material 

structure, thus greatly reducing the total thermal conductivity of the materials 

and consequently increasing ZT. Since then, several classes of complex materials 

have been intensively investigated, such as skutterudite [13,15], clathrate [14,15] 

and half-Heusler alloys [16,17] systems.  
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Recently, a new class of thermoelectric materials has been developed 

based on metal oxides such as SrTiO3, Na2CoO4, CaMnO3, (ZnO)(In2O3), ZnO and 

CuAlO2 [18]. They have attracted increased attention due to their thermal and 

chemical stability in air at high temperature, oxidation resistance, reduced 

toxicity, easy manufacture and low cost [19-23]. However, the general problems 

reported with oxide thermoelectrics were related to weak mechanical strength 

and high contact resistance at interfaces of oxides and electrodes. Despite all the 

new thermoelectric materials that have been investigated, the Bi2Te3 compound 

and its alloys are still the best materials at room temperature.  

 

1.3 Thermoelectric measurements 

Thermoelectric properties are evaluated based on three parameters: the 

Seebeck coefficient, , electrical resistivity,  and thermal conductivity, .  A 

good thermoelectric material must have a large Seebeck coefficient, low 

electrical resistivity and low thermal conductivity. These requirements are 

summarized in the definition of the dimensionless figure-of-merit, ZT described 

by equation (1.1).  

In order to determine ZT, thermoelectric measurement usually involves 

measurements of all three thermoelectric properties. Many methods techniques 

have been reported to measure these properties but the most popular methods 

to measure the Seebeck coefficient, electrical resistivity and thermal conductivity 

are using the hot probe, 4-probe and laser flash techniques respectively. 
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Alternatively, ZT can be measured directly using the Harman method. More 

technique and a detailed description of thermoelectric measurements will be 

presented in Chapter 2. 

 

1.4 Thermoelectric Applications 

Two major applications of the thermoelectric effects for energy 

conversion are power generation based on the Seebeck effect and refrigeration 

based on Peltier effect. Even though the efficiency of thermoelectric materials is 

relatively low (<15%) compared with conventional power-generation and 

refrigeration systems, thermoelectric devices offer several other advantages over  

conventional technologies, such as the absence of moving parts, high reliability, a 

reduction of maintenance and an increase in system life (more than 100,000 

hour life under steady state operation [24]). The absence of a working fluid 

avoids hazard due to environmentally dangerous leakages, there is no noise or 

vibration and they can function in environments that are too severe, too 

sensitive or too small for conventional refrigeration.  

In the past four decades thermoelectric generators have been used by 

NASA in more than 40 spacecrafts, mostly for planetary exploration missions 

powered by Radioisotope Thermoelectric Generators (RTGs) [25-27]. The 

application of thermoelectric generators for specific purposes have been used in 

a military such as for battery replacement in the field and for powering 

lightweight portable battery chargers [28]; in medical applications such as 
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cardiac pacemakers and defibrillators [29]; in industrial applications for corrosion 

control (imposed current cathodic protection); in oil pipelines and sea buoys [30] 

and for commercial products such as wrist-watches [31]. Potential applications of 

utilizing industrial waste heat have also been investigated. These include waste 

heat recovery from processing plants of combustible solid waste [32-33], 

automobile exhaust and engine heat [34], gas-fired dehydrator boiler [35] and 

underwater wellhead [36]. 

Applications of thermoelectric refrigerators are generally limited to niche 

areas where reliability is more important than efficiency. For example, 

thermoelectric devices have been used in localized cooling of computer chips, 

optoelectronics, environmental sensors, laser diodes, infrared detectors, and 

electronic devices as well as for recreational refrigerators such as portable picnic 

coolers and recreational vehicle refrigerators [2, 37-38].  

 

1.5 Thermoelectric Effects 

1.5.1  Seebeck effect 

The Seebeck effect involves the generation of electromotive force (emf) 

voltage in a device that consists of two different materials in the presence of a 

temperature gradient, as shown in Figure 1.2. It is the basis for temperature 

measurement and thermoelectric power generation. The Seebeck coefficient, 

   is defined as the open circuit voltage produced in a circuit of two distributed 
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conductors joined together and with a temperature difference of 1 degree Kelvin 

applied across the two junctions,  

       
    

    

  
  (   ) 

where     is the relative Seebeck coefficient in volts per degree temperature 

difference (   ) or more often in (    ),      is an open circuit voltage 

produced in a circuit of two dissimilar conductors with a temperature difference, 

   , across the two junctions.  

The Seebeck coefficient could be positive or negative corresponding to a 

p-type and n-type material respectively. When heat is applied at one of the 

junctions, the majority charge carriers in the material (electrons or holes) have 

higher energies and velocities than charge carriers at the cold end. As a result the 

charge carriers diffuse from the hot side to the cold side, leaving behind their 

oppositely charged carriers at the hot side. This creates a thermoelectric voltage. 

At the same time this voltage develops an opposing electric field. When in 

equilibrium, an equal amount of charge carriers drift back to the hot side to 

prevent further charge diffusion. The Seebeck coefficient is positive when the 

direction of the electric current is the same as the direction of the thermal 

current.  
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Figure 1.2: The Seebeck effect in an opened circuit consists of two dissimilar 

semiconductors. The temperature difference between the two junctions creates 

the potential difference shown at voltmeter [39]. 

 

1.5.2 Peltier effect 

The Peltier effect is an opposite of the Seebeck effect, where the 

temperature gradient across a device of two different materials is generated in 

the presence of an electrical current as illustrated in Figure 1.3. Electric current 

that flows around the circuit will result in heat absorption at one junction and 

heat rejection at another junction. Heat absorption or rejection at the two 

junctions will be reversed if the electric current changes direction. This effect is 

the basis of thermoelectric refrigeration or heating.  

When electric potential is established in a circuit, electrons or holes will 

be induced to cross the junctions. Because of the different Fermi level of the two 

materials, this process will be accompanied with heat absorption at a junction 

Material a 
 
 
 
 
Material b 

V 

Th Tc 
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due to the fact that electrons and holes need to gain energy to jump from one 

material to another. At another junction electrons or holes will release energy as 

they travel from a high Fermi level material to a lower Fermi level material.  

The amount of energy absorbed or rejected at a junction depends on the 

amount of current supplied.  The Peltier coefficient, , is a measure amount of 

heat,     absorbed or rejected at the junction of two different materials when 

one coulomb of charge flows across the junction. This could be written as; 

    
 

 
 (       )  (   ) 

where     is the relative Peltier coefficient of material a to b which has a unit of 

Watt/A or in Volts. The Peltier coefficient can be positive or negative depending 

on the direction of the electrical current and thermal current. If the electrical 

current flows in the opposite direction to that of thermal current, the Peltier 

coefficient is negative. If the electrical current flows in the same direction as the 

thermal current, the Peltier coefficient is positive. In other words, n-type 

material will have a negative Peltier coefficient and p-type will have a positive 

Peltier coefficient.  
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Figure 1.3: The Peltier effect in a closed circuit of two dissimilar semiconductors. 

As the current flows through the loop, heat is liberated from one junction and 

absorbed at the opposite. 

 

1.5.3 Thomson effect  

The Thomson effect describes the rate of heat generated or absorbed in a 

single current-carrying conductor subjected to a temperature gradient. Unlike 

the Peltier effect, where heat absorption or rejection occurs at the junction, the 

Thomson effect occurs along single material. The Thomson coefficient,  , is a 

measure of the rate of heat absorbed or rejected,  , per unit current,   and 

temperature difference,   . It can be written as; 

     
    

 

   
  (   ) 

The unit for the Thomson coefficient is    . The Thomson coefficient can 

be positive, negative or of zero value. The Thomson coefficient shows a positive 

Material a 
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value for metals such as zinc and copper, which have higher potential at the 

hotter end and lower potential at the cooler end. When the positive charge 

carrier moves from the hotter end to the cooler end, it is moving from a high to a 

low potential, so there is a release of energy as it give up the excess energy to 

the surroundings, as illustrated in Figure 1.4. On the other hand, metals such as 

iron, cobalt and bismuth, which have lower potential at the hotter end and 

higher potential at the cooler end, increase their energy at the expense of their 

surroundings by absorbed heat as the negative charge carrier transfer from low 

potential to high potential as it moves from the hotter to the cooler end. 

 

 

 

 

Figure 1.4: Thomson Effect of single semiconductor. Heat will be absorbed or 

rejected as the current flows through the conductor depending on the direction 

of current. 
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1.5.4 Kelvin Relationship 

The Kelvin relationship was derived from the first and second laws of 

thermodynamics by Lord Kelvin that bears his name. It can be shown that:  

      (   ) 

  
  

  
   (   ) 

where     and   are the Seebeck, Peltier and Thomson coefficients respectively 

and   is an absolute temperature. These relationships are important as they 

show the correlation between the three thermoelectric properties. 

 

1.6 Background to the Present Research 

The dimensionless figure-of-merit, ZT, as mentioned previously, is an 

important parameter used in the determination of thermoelectric performance. 

Conventionally, ZT was obtained indirectly through separate measurements of 

individual thermoelectric properties or directly through the Harman method. The 

direct method has the advantage of rapid execution, a smaller amount of sample 

handling and identical chemical and physical condition during measurement. 

However, the direct method based on the Harman method is associated with 

relatively large error. Therefore, individual measurements of ,  and  are 

usually employed in practice.  

In this study, an alternative technique of direct ZT measurement is 

investigated. The technique was derived in 2001 from the idea of different    
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produced during open and short circuit while under constant heat flows [40]. 

Initial investigation was carried out a year later by Kontastinov [41].  

A unique characteristic embodied in this novel technique is its capability 

to measure ZT under operational conditions, in particular ZT can be measured 

under condition of a large temperature difference with the influence of the 

Thomson effect. To date, all conventional ZT measurement technique can only 

be undertaken under condition of a small temperature difference and neglecting 

the influence of the Thomson effect. Successful implementation of this technique 

will open a new dimension for the ZT assessment of segmented and functionally 

graded materials which is not possible using conventional method and is for the 

first time to be measured directly. Consequently, more accurate evaluation of 

conversion efficiency can be derived. In addition, this technique could facilitate 

the study of the effects that are negligible under small temperature difference. 

Interestingly, this technique is not limited to ZT measurements only but all 

thermoelectric properties (Seebeck coefficient, electrical and thermal 

conductivity) can also be determined in the same measurement. The usefulness 

of this technique is that it can be applied to single materials as well as to module 

devices. However, implementation to single materials is more challenging and 

difficult due to its very small resistance.  
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1.7 Aim and Objectives  

The proposed novel technique for direct ZT measurement has the unique 

capability of measuring ZT under large temperature difference and involves a 

closed-circuit. This is a capability that none of current thermoelectric 

measurement techniques can offer. If this proposed technique can be 

successfully established, it will not only provide a new way to determine ZT but, 

more importantly, it will enable investigating the influence of the Thomson effect 

and offer the capability to determine the ZT of segmented thermoelectric 

materials for the first time.  

The aim of this project is to develop this novel ZT measurement 

technique. It is noted that the conditions required by this technique are relatively 

easier to satisfy using a thermoelectric module because of its large internal 

resistance (up to a few ohms). The strategy is to investigate the “proof of 

principle” using a thermoelectric module. Once it is proved feasible, the 

investigation will progress to develop a measurement facility that is suitable for 

measuring a single piece thermoelectric materials which has a much smaller 

internal resistance around 0.01 ohm. To achieve this challenging goal, a number 

of key objectives have been identified as follows: 

1. To design and construct a simplified measurement system for 

investigating the “proof of principle” using a thermoelectric module as a 

testing sample. 
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2. To identify key challenges and to seek the solutions that will enable 

successful implementation of this technique for thermoelectric materials 

with a dimension of around 3mm×3mm×8mm. 

3. To design and construct a prototype of ZT measurement systems, 

followed by investigating its suitability for thermoelectric materials 

measurement, as well as repeatability and accuracy. 

4. To apply this technique to investigate the thermoelectric properties of 

uniform materials and segmented materials in particular, under large 

temperature differences. 
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CHAPTER 2 

Literature Review 

 

2.1 Introduction 

To increase the competitiveness of thermoelectric applications, most of 

the research has been devoted to improving the thermoelectric conversion 

efficiency. Thermoelectric efficiency increased by increasing the thermoelectric 

materials’ figure-of-merit [25]. Thus, dimensionless figure-of-merit is one of the 

important parameters that influence device performance. Clearly, thermoelectric 

measurements that allow analysis of the device efficiency become important. 

This involves measurements of all the thermoelectric properties. In this chapter, 

a brief introduction on the operating principles of thermoelectric generators and 

refrigerators will be given, followed by a focused review on the present 

measurement techniques for thermoelectric figure-of-merit.  

 

2.2 Thermoelectric Generator and Refrigerator 

Two main applications of thermoelectric effects are in power generation 

and refrigeration. The basic structures of thermoelectric devices consist of a 

number of p-type and n-type semiconductor thermoelectric elements connected 

electrically in series and thermally in parallel [42]. Figure 2.1 shows the basic 

structure of a thermoelectric generator (TEG) and a thermoelectric cooler (TEC). 
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Conducting strips, usually made of copper, are used to connect p and n-type 

thermoelectric elements.  

In the TEG device, heat supplied at one side of the materials increased 

the kinetic energy of the charge carriers in both legs. The presence of a thermal 

energy difference leads to diffusion of carriers from the hot end to the cold end 

as shown in Figure 2.1 (a). The accumulation of charge carriers at the cold end 

results in an electric field opposing this, creating current flows around the loop. 

The operation of a TEC can be viewed as a reversed process to that of a 

TEG. When a voltage is applied such that the positive terminal is connected to n-

type and the negative terminal connected to p-type thermoelements, a current 

will flow through the device from n-type to p-type as shown in the Figure 2.1 (b). 

In the n-type leg, the current is carried by the diffusion of electrons in the 

opposite direction of the current flow while in the p-type leg the current is 

carried by the diffusion of holes in the same direction as the current flow. Both 

charge carriers carry thermal energy away as they move so the upper junction 

will become cold while the bottom junction becomes hot. Though the current is 

flowing through them in series, the thermal energy is being pumped away from 

the cold side to the hot in parallel. 
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Figure 2.1: Schematic diagram of the basic structure of (a) thermoelectric power 

generation (TEG) and (b) thermoelectric refrigeration (TEC). 

 

 

2.3 Importance of ZT Measurement 

The efficiency,    of a thermoelectric generator is determined from the 

amount of electric power produce,    (Watt) divided by the rate of heat flow 

being absorbed,     (Watt), at the hot side; 

  
  

   

  (   ) 

The electrical power delivered at the load can be given as; 

         (   ) 

where   is electric current and    is load resistance. 
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Under a steady state condition, four phenomena contribute to energy 

flow as a result of a current flows in the circuit; 1) heat flow through the 

thermoelectric material due to heat conduction under the temperature 

difference, 2) the absorbed heat at the hot side junction due to the Peltier effect, 

3) the heat produced due to electrical resistance of material, known as Joule 

heating and 4) heat produced along thermoelement due to the Thomson effect. 

On the assumption that half of the Joule heating goes to the hot side and half to 

the cold side of the module [43] and if the contribution of the Thomson effect 

could be neglected [44], the equation that governs the heat flow at the hot side 

can be written as; 

        
 

 
         (   ) 

where  is total Seebeck coefficient,   is total thermal conductance and   is the 

total resistance. Using equation (2.2) and (2.3), it can be shown that the 

maximum efficiency of the thermoelectric generator is given by [45,46]; 

     (
     

  

)
√(    ̅)   

√(    ̅)  (
  

  
⁄ )

  (   ) 

where  ̅  (
     

 
) is the mean temperature and   

  

  
 is the figure-of-merit, 

which depends on the properties of the thermoelectric materials. 

A similar approach could be used to derive the coefficient of 

performance,    of a thermoelectric refrigerator. The coefficient of performance 
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is defined as the ratio of heat absorbed,     at the cold end to the electrical 

power consumed,    . The amount of heat absorption at the cold end of a 

thermoelectric refrigerator can be written as; 

        
 

 
         (   ) 

Note that the heat conduction has different signage in equation (2.5) compared 

with equation (2.3), which indicates that the temperatures    and    are 

opposite.  

Electrical power supplied to the system is given by [44]; 

              (   ) 

Using equations (2.5) and (2.6), it can be shown that the maximum coefficient of 

performance is [44,45];  

     (
  

     

)

√    ̅  (
  

  
⁄ )

√    ̅   
  (   ) 

It can be seen clearly, from equations (2.4) and (2.7), that the conversion 

efficiency and the coefficient of performance of a thermoelectric device depends 

on the temperature difference across the thermoelectric device, the average 

temperature of operation and the transport properties of the materials 

embodied in ZT. In order to increase the conversion efficiency for given 

operating conditions (i.e    and  ̅), it is desirable to employ high    

thermoelectric materials.  
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2.4 ZT Measurement – Indirect Approach 

There are two approaches to the measurement of dimensionless figure-

of-merit; indirect or direct. In the indirect approach, all thermoelectric 

properties, namely ,  and  are measured individually and the    can be 

calculated using equation (1.1). A direct approach determines    directly from 

measurement (e.g the Harman method). Discussed below are some of the 

measurement techniques used to determine    indirectly by measuring ,  and 

 individually. 

  

2.4.1 Seebeck Coefficient Measurement 

The Seebeck coefficient is defined as the ratio of potential difference,   , 

to a temperature difference,     It is crucial to determine  with high accuracy 

as it is a squared dependence in the mathematical expression of Z. Even though 

in principle the measurement is simple, the measurement becomes complicated 

by the absence of standards [47]. Schematic arrangement of   measurement is 

shown in Figure 2.2, which shows the commonly used 2-point and 4-point probes 

and the recently improved uniaxial 4-probe [48]. In general, two pairs of 

thermocouple probe serves as temperature and voltage measurement. 

Thermocouple across the sample measure temperature difference between 

these two points while voltage produced at the same position can be measured 

using one of the thermocouple legs as the probe. The measured relative Seebeck 
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coefficient (see equation 1.2) can be determined using two basic techniques, 

namely, the differential and integral method.  

 

 

Figure 2.2: Schematic arrangement of relative Seebeck coefficient measurements 

based on (a) 2-point, (b) 4-point and (c) uniaxial 4-point where A, C indicates 

thermocouples and B indicates a sample [48]. 

 

 

2.4.1.1 Differential Method 

This is the most popular method in thermoelectrics. The techniques 

based on this method involve establishing a small temperature difference across 

the sample throughout temperature range. Various types of apparatus based on 

the differential method have been previously described [49-53]. Among those, 

hot probe is one of the well known instruments use for thermoelectric 
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measurement. A small source of heat from the hot probe applied at one end of 

the sample producing a temperature difference typically of 5-15 K across the 

sample and is maintained under steady state at mean temperature of interest. 

The absolute Seebeck coefficient of the sample to be examined, b , can then be 

calculated providing the absolute Seebeck coefficient of the reference material, 

a , is known (by referring to Figure 2.2), which gives, 

           (   ) 

where     is Seebeck coefficient of sample b relative to reference sample a. 

More accurate results is obtained from the slope of a multiple data points 

of a Seebeck voltage-temperature difference plot, rather than determined from 

a single point measurement. This feature helped to eliminate offset errors as 

shown in Figure 2.3 (a). Significant efforts also have been made to improve the 

accuracy, rapidity and reproducibility of   measurements [49-53]. Besides the 

steady state technique, the AC techniques [54-55] and quasi-steady state [56-57] 

were also developed to improve accuracy and rapidity. Accuracy and rapidity 

could be improved by neglect resistive voltage and steady state measurement as 

in DC measurement. 

 Seebeck measurements at high temperature, which is critical for a 

thermoelectric generator, imposes more challenges due to the lack of 

standardized guidelines for measurement procedures [47], poor apparatus 

design and an inadequate measurement technique [58] that could lead to 

irreproducibility and inconsistency. A number of recent papers have reported 
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some attempts that may improve high temperature measurement. These 

include: Burkov et al [59], Zhou et al [60], Iwanaga et al [48] and Poonambalam 

et al *61+. In Iwanaga et al’s work, a uniaxial 4-point geometry (Figure 2.2 (c)) was 

used that offered direct contact between the thermocouples and the sample 

surface. 

 

Figure 2.3: Graphical illustrations of (a) the differential and (b) the integral 

Seebeck coefficient measurement techniques [58]. 

 

 

He claims that the design enables larger forces to be exerted by 

thermocouples onto the sample surface, thus minimizing the contribution of 

thermal and electrical contact resistance. Measurement was made between 

room temperature and up to 1200 K using a differential steady state method 

with an accuracy of 5-10%. Burkov et al develop an apparatus to measure bulk 
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and thin film sample from 100 K to 1300 K using differential method with 

accuracy of 4-10% while Poonambalam et al developed an apparatus capable of 

measuring   of bar or rod shaped samples using a quasi-steady state condition 

over a temperature span of 300-1000 K with an uncertainty within 1-2 KV / .  

 

2.4.1.2 Integral Method 

Another technique used to measure   is the integral method, also 

known as large T  method. In contra with differential method which use small 

temperature difference (usually <10 K), integral method imposes large 

temperature difference across the sample (>15 K). It is often used to measure   

of long metal wire samples, metallic ribbons, semimetals, and some semi-

degenerate semiconductors but not widely employed for thermoelectric 

materials. The general experimental setup usually involves holding one end of 

the sample at a fixed temperature (generally 0oC) and the other end is varied 

throughout the temperature range of interest (can be several hundred degrees 

hotter than the cold side).  Because of the non-linear temperature dependence 

of the Seebeck coefficient over a large T  range, an integral evaluation is 

appropriate and can be written as; 

    ∫        (   )
  

  

 

Using a suitable fitting method applied to the entire data set ),( chab TTV , 

the Seebeck coefficient at a selected temperature point can be obtained from 
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the slope of the Seebeck voltage versus temperature, at that particular point of 

the curve as shown in Figure 2.3 (b). The integral method offers several 

advantages over the differential method due to its capabilities to include 

inhomogeneity or anisotropy of the sample [62] and to simulate more closely the 

operation of an actual thermoelement in a device [47]. However, the 

accumulation of enough points is needed and careful selection of fitting method 

must be employed.  Various curve fitting techniques were discussed by Wood et 

al [62]. Satisfactory fitting is more difficult to obtain due to the difficulty of 

maintaining    isothermal throughout the large    at high temperatures which 

may requires additional corrections [58].  

Even though differential and integral method measurements using 

different approach, both of these measurements are derived from the same 

fundamental. This has been demonstrated by Wood et al [62]. The measured   

of short rod-shaped samples of several thermoelectric materials using integral 

method up to 1000oC showed good agreement with differential method. The 

same results obtained for differential and integral method. However it is limited 

to analysis of metal, semimetal and degenerate semiconductor only while 

measurement on nondegenerate semiconductor and insulator give contrasting 

results [63].    
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2.4.2 Electrical Resistivity Measurement 

Electrical resistivity measurement requires the determination of electrical 

resistance, R , length, L  and uniform cross sectional area, A  , of the examined 

sample based on the equation 
L

RA . While the length and the cross 

sectional area can be measured directly, the resistance of the sample may be 

determined from Ohm’s law, IRV  . Well-established methods for measuring 

  are the 2-probe, 4-probe and Van der Pauw methods. However, only the 2-

probe and 4-probe methods will be discussed below. 

 

2.4.2.1 The 2-probe method 

In the 2-probe method, the same probe of the current flow is used to 

measures a voltage drop, TV  , across the sample as current flows through the 

sample. The resistivity is calculated by; 

  
   

  
  (    ) 

The above equation assumes that the current passes uniformly through 

the sample. Therefore, the accuracy of measurement depends on the 

distribution of the current within the sample. This method requires good contact 

with the sample. In order to achieve good contact, soldering or insert compliant 

material, such as indium foil for lower temperatures or graphite felt for higher 

temperatures is usually used between the ends of the semiconductor 

thermoelectric sample and the current electrodes.  
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The drawback of this method is that the resistance obtained includes the 

contact resistance at the junctions. A further complication can come from the 

fact that contact resistance may vary with temperature. Typically, in the case of 

metals, the contact resistance is far smaller than the resistance of the sample, 

and can thus be ignored. However, when one is measuring semiconductors (e.g. 

thermoelectric materials) the contact resistance can be significant and the 

results obtained are subject to a significant error in the measured sample 

resistance. Besides, in order to obtain a reasonable voltage drop across the 

sample, a significant current density is required. As a result, a temperature 

gradient can be established across the sample due to the Peltier effect. An AC 

current can be employed in order to eliminate this error.  

 

2.4.2.2 The 4-probe method 

This method is more suitable for the measurement of semiconductors 

including thermoelectric materials. In this technique, two outer probes are used 

to inject a fixed current into the sample, while two inner probes measure the 

voltage produced. Using separate probes for current and voltage eliminate the 

electrical contact resistance due to negligible current passed through the voltage 

probes. Moreover, if the voltage probes are placed close together and far from 

the current probes, uniform current flows between the voltage probes can be 

achieved. For example, in 1973, Rayden et al showed that the voltage probe 

should be inset by at least the width of the sample [64]. One example of a 4-
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probe resistivity apparatus which covers a temperature range of 300-1300 K is 

shown in Figure 2.4 has an estimated error of 1% [60].   

For a disk-shaped sample, a linear 4-probe method is commonly used as 

shown in Figure 2.5. The four probes were arranged in line, with equal spacing, s, 

between the probes. Here the current probes represent a dipole source, which 

establishes a field distribution inside the sample.  

 

 

 

Figure 2.4: Schematic diagram of high temperature   and   measurement 

apparatus using the 4-probe method [60]. 
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Figure 2.5: Linear 4-probe arrangement [65]. 

 

By solving the potential difference between the two inner probes under 

various boundary conditions (set by the sample size and thickness), it have been 

shown that the resistivity of a semi-infinite sample with thickness,    larger than 

the probe spacing,   (   ), can be calculated from; 

     (
 

 
)  (    ) 

In the case of thin samples ( i.e     ), 

  
  

   
(
 

 
)  (    ) 

However, the calculated potential distributions above are based on a 

single dipole source without considering the edge effects. In general, correction 

factors are needed, which depend on the size and thickness of the sample as well 

as the position of the electrodes with respect to the boundary of the sample 
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[65]. For example, the resistivity of a disk-shaped sample with correction factors 

can be expressed as; 

            (
 

 
)  (    ) 

where t  is the thickness of sample, V  is the measured voltage, I  is the current 

supplied, dCF  is the correction factor based on the ratio of diameter and probe 

spacing and tCF  is the correction based on the ratio of thickness and probe 

spacing. Further information regarding the correction factors for different 

sample geometries and positions can be found in Ref [66]. The linear 4-probe 

technique offers advantages which include speed and ease of application, and it 

can be employed for thin-film or disc samples. The use of point contact current 

probes eliminates the need for soldered connections. In addition, the standard 

corrections are readily available. However, the disadvantage of this technique is 

the difficulty to adapt to measurements above ambient temperatures [47]. 

Resistivity measurements using described methods above usually are 

carried out using direct current. This often requires averaging the voltages in 

both forward and reverse current direction in order to minimize the effects of 

Seebeck voltages [61,64]. However, voltage arises from asymmetry in the 

mounting of the sample and a non-homogenous sample cannot be removed by 

using this method. 

Another approach to overcome errors due to the temperature gradients 

in thermoelements was proposed by Goldsmid [64] by measuring voltage drop 
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immediately after the current is applied. This can be achieved using AC current or 

chopped DC current. It can minimize the influence of the Seebeck voltage 

contribution arising from the Peltier effect. Since the Seebeck voltage takes time 

to develop in a bulk sample, reversing the current in a shorter time than that 

needed for the Seebeck voltage to build up can effectively minimize the 

influence of the Seebeck effect. The AC current technique has been implemented 

by Zhou [60] (Figure 2.4) above room temperature. On the other hand, the 

chopped DC current has been implemented in an apparatus developed by 

Dauphinee et al [64] and Rowe et al [67]. This technique has the advantages of 

AC current while maintaining simplicity as in DC current.   

Recently, Nishida claims that the most dependable method to separate 

electrical resistance voltage from Seebeck voltage is to use a high-speed and high 

resolution DC measurement technique. From his experimental results measured 

under vacuum condition, a plateau region on the voltage versus time plot was 

observed with the duration of 1.1-1.3 s just after turning the current on and off. 

This plateau region reflects negligibly small Peltier pumping before it flows into 

the region between the voltage probes after 1.3 s. The measurement error 

increased with an increase in current. Therefore if the voltage can be detect 

within a duration of the plateau region by ensure a sufficient distance between 

the current and voltage probes, electrical resistivity of the sample can be 

determined accurately regardless the driving current being DC, AC or chopped 

DC [68]. 
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2.4.3 Thermal Conductivity Measurement 

Thermal conductivity,    is the most difficult measurement among the 

three parameters due to the fact that heat loss is inevitable. This is worse with 

thermoelectric materials because of their low thermal conductivity and small 

sample size. Thus a challenge in designing thermal conductivity apparatus is to 

minimize these losses.  Thermal conductivity measurement requires the 

determination of temperature gradient, T , developed across the sample 

corresponding to heat flux,  ⃑ . This is according to the relationship: 

 ⃑        (    ) 

There are several methods for the measurement of  but in general it 

may be divided into two categories, the steady state method and the dynamics 

method. In the steady state method, measurement was made only after 

equilibrium had been reached. This type of measurement requires a lengthy 

process but can achieve a high accuracy. On the other hand, the dynamics 

method requires measurement of the thermal gradient as a function of time. The 

dynamics method results are not so affected by heat losses. However, this type 

of method usually gives thermal diffusivity value instead of thermal conductivity. 

It is preferable for its rapidity and wide temperature range. Discussed below are 

examples of the techniques for each type of the methods describe above. These 

include axial, radial, comparative techniques (steady state methods) and 

Amstrong and laser flash techniques (dynamics methods).  
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2.4.3.1 Steady State method 

One of the steady state methods to measure thermal conductivity is that 

of using an axial heat flow as shown schematically in Figure 2.6. A sample with a 

cross sectional area, A , is connected to a heat sink at a reference temperature, 

0T , while another end is attached to a heater that has a temperature, hT . 

Assuming that the temperature is uniform and the heat losses are negligible, 

heat supplied from the heater,  , is conducted along a uniform cross sectional 

area,    with the distance between two  thermometers of  .  

The thermal conductivity of the sample can be calculated by; 

 ( )  
 

 

 

  
  (    ) 

where          is the temperature difference between the thermometers. 

The difficulty of this measurement is associated with the heat flux measurement. 

Heat flux can be measured directly (referred to as an absolute method, for 

example, by measuring the electrical power going into the heater) or indirectly 

(for example, by comparison with a reference material), referred to as the 

comparative method. Thermal conductivity can be measured accurately above 

room temperature for example the one reported by Goldsmid whose 

successfully measured  of Bi2Te3 from 100-300 K with error not exceeding 3% 

[64]. However, prevention of heat loss is extremely difficult for measurements 

above room temperature. At high temperature, insulation around the sample, 

installation of a radiation shield and guard may become ineffective. 
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This problem can be minimized by using the radial heat flow method as 

shown in Figure 2.7. The temperature difference developed at different radii was 

measured as the heat generated in the centre along the axis of a cylindrical 

sample.   can be computed from the formula below, 

  

    (
  

  ⁄ )

      
  (    ) 

where 1r  and 2r  are the radial positions of the inner and outer thermocouples 

respectively, T  is the measured temperature difference,   is heat energy input 

and L  is the sample length. This method is, in principle, suitable for 

measurement of thermoelectric materials. However, a problem is associated 

with sample size. As a sample becomes smaller, positioning thermocouples at 

certain radii imposes a challenge [70]. 

In comparative methods, the idea is to pass a heat flux through a known 

sample and an unknown sample and to compare the respective thermal 

gradients, which will be inversely proportional to their thermal conductivities. 

Most commonly, the unknown sample is sandwiched between two known 

samples (the references), to take into consideration the minor heat losses that 

are very difficult to eliminate.   
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Figure 2.6: Absolute axial flow measurement of thermal conductivity above room 

temperature [69]. 

 

 

 

Figure 2.7: Schematic diagram of radial flow measurement technique for 

measuring of thermal conductivity [70]. 
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An example of schematic diagram of comparative method is shown in Figure 2.8. 

The thermal conductivity of the unknown sample can be calculated from; 

 

 
   

   

 
   

       

 

 

 
  (    ) 

where s  and R  is thermal conductivity of the unknown sample and the 

references respectively,           and     are temperature difference across 

sample, across top reference material and across bottom reference materials 

respectively, and   is distance across it. The greatest drawback of this method is 

the lack of reproducible reference materials that have a similar thermal 

conductivity to the test samples [64].  

 

 

 
 

Figure 2.8: Schematic diagram of the comparative method for measuring thermal 

conductivity [71]. 
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2.4.3.2 The dynamic method 

Dynamic methods do not require the lengthy period of time that is 

needed to reach equilibrium in a steady state method. The theory is based on 

the fact that temperature distribution varies with time. These techniques 

generally involve the measurement of thermal diffusivity, ' , rather than thermal 

conductivity,   , as in the steady state method. For homogenous material, '  is 

related to   by; 

        

                           
   (    ) 

where   is the density, pC  is the specific heat and pC  is the heat capacity per 

unit volume. Clearly, separate determinations of the specific heat and density are 

necessary to obtain thermal conductivities. Dynamics methods may be divided 

into two categories: periodic and transitory temperature methods.  

 

(i) The Angstrom Method 

The Angstrom method is an example of a dynamics periodic method. When 

a thermal wave propagates in a medium, the amplitude and phase at any point 

depend on the properties of the medium and the frequency of the wave. In this 

method, the changes in amplitude and phase of the temperature wave are 

observed as it passes down a long thin rod. This is done by heating one end of a 

sample using a periodic heat source which has a period of  /2  while another 

end is free to radiate to the ambient temperature. The amplitude of the 
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sinusoidal temperature wave with an angular frequency, , decays exponentially 

towards the other end. Thus, comparison of the amplitude and phase at two 

points along the sample enables the thermal diffusivity to be determined. Taking 

into account the heat losses from the surfaces, the ratio of the amplitude of the 

thermal wave at two points,  , separate by the distance,   , with phase 

difference,   , is calculated by [64]; 

   
   

     
  (    ) 

For accurate measurement, typically used sample has dimension of 300-

500mm long and a diameter of 3-9mm [72] which is not suitable for 

thermoelectric materials. However, Abeles et al [73] managed to measure a 

shorter Ge sample with dimension of 7.67.6mm2 and 51mm long using higher 

frequency up to temperatures of 800oC. A much shorter sample was reported 

successfully measured by Lopez et al [74] using BiSbTe sample of 3.5mm long. 

The measurement use a slight modification to the Angstorm method initiated 

from Tomokiyo and Okada’s. Because the sample was short, the temperature of 

the sample continued to rise indefinitely and to prevent this, the sample was 

attached to a periodic heater, mounted on a thermal resistor that was directly 

attached to a heat sink as illustrated in Figure 2.9.  
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(ii) The Laser Flash Method 

The laser flash method is an example of the dynamic transitory method 

and the most popular method for measuring thermal conductivity of solids. In 

this method, the front face of a thermally insulated sample (usually, a small disk) 

is subjected to a very short pulse of heat came from a laser, electron beam or 

xenon flash lamp with irradiation times  1msec. The resulting temperature rise 

on the back surface of the sample is usually recorded by an oscilloscope or high 

speed chart recorder.  

 

 

 

 

Figure 2.9: Schematic diagram of a modified Angstrom method for small size 

samples [73]. 
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If there is no heat loss, the characteristic rising profile of the temperature as a 

function of time is shown by the curve A in Figure 2.10 while curves B and C 

shows the actual results of measurements with increasing heat losses.   

The thermal diffusivity is calculated using; 

         
  

    

  (    ) 

where L  is sample thickness and 2/1t  the time taken for the back surface 

temperature reach half its maximum value. The reproducibility of thermal 

diffusivity measurement at room temperature is reported to be ±2% [67]. The 

errors can be attributed to deviation from ideal assumptions of an adiabatic 

sample and instantaneous pulse heating. Correction factors have been 

introduced to account for deviation due to heat losses, finite pulse duration, 

non-uniform pulse heating and non-homogeneous structures. 

 

2.5 ZT Measurement – The Direct Approach 

Thermoelectric figure-of-merit can be determined directly using a 

method described by T.C. Harman in 1958 [75]. The theory is based on the ZT 

association with the co-existence of the Seebeck voltage and the resistive voltage 

across the sample when a small direct current is passed through the sample. This 

will cause a temperature gradient due to the Peltier effect being generated at 

the junction at a rate of IT . 
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Figure 2.10: Typical curves of the rear surface temperature history for various 

experiments conditions. Curve A shows an ideal temperature profile without 

heat loss and curves B and C show the temperature profile with heat losses at a 

different rate. 

 

 

The Peltier heat flow from one end to another will be accompanied by 

heat conduction in the opposite direction, at a rate of T
L

A



. Assuming no heat 

loss from the sample and contact resistance is negligible, Peltier heat is in 

balances with heat transported across the sample when the system reaches a 

steady state, 

    
  

 
    (    ) 

where  and  are the Seebeck coefficient and thermal conductivity, L is the 

sample length,   is the current flow in the circuit,    is the ambient temperature 
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and A is cross sectional area of the sample. The Joule and Thomson heat can be 

neglected because of the small current applied.  The Seebeck coefficient, , and 

electrical resistivity, , are defined as, 

  
  
  

  (    ) 

  
  

 
 

   

  
  (    ) 

where    is the Seebeck voltage,    is the electrical resistive voltage under 

isothermal condition,   is the cross sectional area,   is the sample length and    

is the temperature difference across the sample.  

The thermal conductivity,  , is derived based on equations (2.21) and 

(2.22) as, 

  
    

   
 

                         
  

   

   

 
  (    ) 

When the current flows, temperature difference develop across the sample 

produce a voltage where the total voltage,    , produce under adiabatic 

condition is given by, 

          (    )  

From definition of       
   ⁄ and by substituting equations (2.22)-(2.24) 

above, dimensionless figure-of-merit becomes,  
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    (    ) 

Clearly, simplifications used in the Harman method by neglecting 

radiation and convection heat losses from the sample surfaces as well as 

conduction heat loss from current and voltage wires introduce errors. To include 

these influences, Harman later derived an equation with correction factors [64] 

and this was later confirmed by Bowley et al [76]. He showed that the correction 

of radiation heat loss of bismuth telluride sample at room temperature is less 

than 1% using different sizes of homogenous and isotropic samples. Correction 

for Harman method which includes heat loss from wire and voltage probes also 

has been reported by Abrutin et al [77].  

Using another approach, Penn [78] replaced the voltage probe at the end 

of the sample to the sample itself by a distance at least as large as the largest 

cross sectional dimension. The voltage-time plot showed the same behaviour 

observed except that after an instantaneous rise, voltage remain constant 

(plateau) for a short time before then rising slowly and asymptotically to a final 

value. The same plateau was also observed when the current was off. These 

characteristics enabled accurate determination of both the electrical resistivity 

and Seebeck voltages without requires separate measurement of the Seebeck 

coefficient.  

There are few ways to measure ZT using the Harman method. In the 

original/classical Harman method, ZT is obtained indirectly from determination 
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of electrical resistive voltage,      from measurements of    and    using small 

direct current.      is obtain after steady state is achieved meanwhile    is obtain 

from separate measurement using the same equipment. The fact that the total 

voltage,    and the Seebeck voltage,   , are measured under the same 

equipment, make the measurement more convenient and hence minimize 

instrumental error.  

In the modified Harman method, ZT is obtained directly by measuring 

voltage produced by supplying direct and alternating current across the sample. 

The ZT is given by, 

   
   

   

    (    ) 

where VDC and VAC represent the voltage values obtained by the DC and AC 

method respectively.  When a constant direct current (DC) is applied, the voltage 

produced consists of the resistive voltage,     and the Seebeck voltage,   . When 

alternating current (AC) is applied, the changes in current polarity will 

subsequently change the resistive voltage direction,    , but not the Seebeck 

voltage component,    . As the result, both voltages can be separated. The main 

drawbacks of this method are due to the fact that its accuracy depends on the 

frequency of alternating current [79] and parasitic heat losses such as radiation 

heat to the environment especially at high temperature which can alter the 

result substantially [80]. Research also has been reported to improve accuracy of 

the Harman method as reported in [81-83]. Practically, measurements are made 
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using a forward and reverse direct current in order to eliminate the disbalance of 

the zero bias and the effect of the thermoelectric voltage. The ZT parameter was 

calculated using    
     

    
     from the results of measured voltages,        , 

and     using alternating, forward, and reverse currents respectively [79]. This 

method is the basis of commercial portable Z-meter equipment as shown in 

Figure 2.11. The meter is capable of measuring Z , ACR  and maxT  of single and 

2-stage TEC modules [84-86].  

Another method of determining ZT based on the Harman method was 

proposed by Buist [87] in 1992 known as the transient method. This method is 

made based on determination of Seebeck voltage,    , that is slightly different 

from the original Harman method based on determination of the electrical 

resistive component,   . When current is applied as shown in Figure 2.12 (a), the 

voltage raises instantaneously to the resistive voltage value,    and then 

increase asymptotically to the steady state voltage,    , as in Figure 2.12 (b). 

When the current is off, the voltage drops instantaneously to Seebeck voltage, 

   , before decay exponentially to zero. By utilizing of high speed analog-to-digital 

converter with high resolving power [79], the transient method improves ZT 

accuracy and reproducibility [87].  
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Figure 2.11: A typical commercial Z-meter [84]. 

 

 

Figure 2.12: Illustration of the transient Harman method (a) rectangular current 

pulse which flows through the sample and (b) corresponding voltage 

characteristic used to calculate the ZT [79]. 

VR 
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Although many techniques has been discussed above, in general the 

Harman technique is limited to only thermocouple, module or 

cascade/multistage modules [88]. The measurement successfully demonstrated 

near or below room temperature due to negligible heat loss. However, the 

Harman method is not suitable for inhomogeneous samples (e.g., segmented, 

functionally-graded or irregular shaped) due to different temperature drops in 

individual segments and measurement on higher temperature as required in TEG 

applications. Few studies have been made on measurement above room 

temperature using this method such as reported in [89-91]. For example, 

Fujimoto et al [90] observed that, by using the transient method, the 

measurement of ZT from room temperature to 573 K using n-type Bi2Te3 

samples showed a very good agreement with other measurement techniques. 

However, studies by Jacquot et al [91] theoretically show that application of 

Harman method at much higher temperatures ( 1000 K) could not easily be 

implemented due to the strong influence of sample thickness and contact 

resistance.   

 

2.6 Large Temperature Difference Measurements 

All ZT measurements described above derived from small T 

measurement throughout temperature range except integral method of Seebeck 

coefficient measurements. However, in reality, thermoelectric devices operate 

under larger temperature differences than that is allowed in ZT measurement. 
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Neglecting thermoelectric properties dependence with temperature in ZT 

calculation would introduce significant errors. This is especially true for TEG in 

waste heat recovery applications where a larger temperature range is involved in 

order to improve its efficiency. Practically, this can be realized by the 

development of functionally graded materials (FGM), segmented and cascaded 

structures. Unfortunately, it is not possible to measure the ZT of these structures 

using conventional methods due to the different temperatures that are 

produced along the device. Conventional ZT was estimated from modelling and 

computational calculation. Although there are few papers reporting on the 

practical instrumentation of large T measurement, the aim of the methods 

concentrated on the measurement of power output performance and the 

efficiency of the TEG. 

One of the earliest attempts was proposed by Y. S. Kang et al [92] in 1997. 

He developed an apparatus that was capable of measuring samples with 

dimensions of 10-20 mm diameter and 5-30 mm length up to temperature 1073 

K. The measurement was focused on thermoelectric power output performance 

which was determined from the measurement of current and voltage produced. 

The two samples measured were FGM (n-type Bi2Te3, PbTe, SiGe) and segmented 

(p-type Bi2Te3, PbTe) thermoelectric leg. Both measurements observed lower 

power output produced compared with a calculation using measured resistance. 

A year later, Y. S. Kang et al [93] made a comparison between a segmented and 

FGM sample (n-type Bi2Te3, PbTe, SiGe) and observed higher power output 
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achieved by segmented sample under the same temperature difference. This is 

due to the lower contact resistance in the segmented sample. Although Y. S. 

Kang et al managed to measure the power output of the TEG under large T, the 

resistance of the sample was obtained under a small temperature difference by 

supplied small current ( 15 mA) to prevent the Peltier effect.  

In 1998 and 1999, another apparatus for large temperature difference 

measurement was reported by E. Muller et al [94, 95]. By contrast to Y. S. Kang 

works, the efficiency, Seebeck coefficient, electrical resistance and thermal 

conductance of FeSi2 sample were measured with the hot side temperature up 

to 873 K while maintaining the cold side at near room temperature.  A tunable 

low resistance load, based on a switch relay was constructed to reduce overall 

load resistance. Thermal conductance was obtained from the average sample 

heat flow and the sample interface temperature while sample resistance is 

obtained by voltage measurement with varied load resistance. The internal 

resistance of the FeSi2 series measured were almost double compared to the 

material while the efficiency measured was lower than the material [94]. On the 

other hand, resistance in the FGM FeSi2 was higher than expected while the 

homogeneous FeSi2 sample was in good agreement with the standard sample 

[95].  

More recent research has been reported by A. Muto et al [96] in 2009 

which employs an effective properties approach to model a TEG leg. An effective 

dimensionless figure-of-merit, ZT under large T can be represented similarly to 
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the definition of ZT under small T provided that all effective thermoelectric 

properties are used during calculation,   ̅  
  

   

        
 ̅. Seebeck coefficient was 

measured using integral method, electrical resistance was measured using 4-wire 

AC method and the heat conduction was measured from heat flows,   , to the 

sample. ZT can then be calculated by measuring all these three parameter and 

represented as    
  

 

    ̇ 
 ̅  Effective thermoelectric properties were 

compared with intrinsic thermoelectric properties that were derived from 

effective properties derivative, which shows ZT calculated from intrinsic 

properties drop more rapidly with increasing temperature than ZTeff. 

2.7 Conclusion 

In summary, both direct and indirect ZT measurement methods have 

their advantages and disadvantages. In general, the Harman method is subject to 

a higher degree of uncertainty compared with individual measurements. Despite 

this, the Harman method may be an option for its simplicity. Moreover, the fact 

that direct measurement is applied to the same sample prevents ambiguity 

caused when different measurements are taken on different samples, such as 

crystallography direction and variation of properties as function of time. 

Nevertheless, direct measurement is generally faster than combining 

measurements of  ,  and   on separate measurement systems.  

Both direct and indirect techniques were used under condition of a small 

temperature difference. For example,   measurement typically measures 
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between 5-10 K temperature difference,   under isothermal conditions,   at 

various temperature differences (usually small) depending upon the technique 

employed and the Harman method is invariably used under condition of a small 

temperature difference. In practice, the operational temperature differences 

typical for thermoelectric devices are much larger than that usually employed in 

ZT measurements. Although there are few papers that describe measurement 

under large temperature difference, only Muto et al [96] report the 

measurement of ZT. However, ZT reported is determined by measuring all 

thermoelectric properties individually. This is a completely different approach 

from that used in this study, which measures ZT directly under operating 

conditions. It allows study on the effects that only exist under condition of a 

large temperature difference (e.g the Thomson effect). 
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CHAPTER 3 

Theoretical Background of Open-Short Circuit Technique 

 

3.1 Introduction 

In chapter 2 we already discussed the  importance of the figure-of-merit, 

Z, in determination of the thermoelectric performance and techniques to 

measure ZT. Indirect method of ZT measurement requires different shape, size, 

temperature, and operating conditions for each measurement system. This will 

introduce significant error which becomes more complex for samples that are 

non-homogeneous and of differing crystallography. Furthermore, lot of samples 

are needed to evaluate the same thermoelectric material which will increase the 

cost of sample production as well as the maintenance of the equipment. 

Moreover, it will also increase time consumption due to need for more 

measurement. To overcome these problems, direct method using Harman 

technique is preferable which offer easiest and fastest way to obtain ZT. The 

disadvantage of this method is that it introduces a bigger error ( 20%) compared 

to individual measurement method ( 10%) [97]. Its application is limited at lower 

temperatures and non-segmented and non-FGM structures. Both direct and 

indirect techniques in the current method measure ZT under a small 

temperature difference throughout the temperature range. In this chapter, 
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theoretical background of new technique capable to measure ZT directly and 

under operating temperature is discussed. 

 

3.2 Dimensionless Figure-of-Merit, ZT 

The figure-of-merit, Z, was made of thermoelectric properties of the 

Seebeck coefficient, electrical resistivity and thermal conductivity. Z is usually 

multiplied by the mean temperature,  ̅  
(     )

 
  to give the so-called 

dimensionless figure-of-merit, ZT, used widely in literature.  It should be noted 

that the validity of efficiency,   , and coefficient of performance,   , formulation 

from equations (2.4) and (2.7) is only relevant for ZT obtain under small 

temperature difference. This is due to the fact that the heat balance equations 

used in derivation are based on the assumption that Seebeck coefficient is 

independent of temperature thus no Thomson effect is included [44, 45]. In 

general, electrical resistivity involves measurement under isothermal conditions 

to prevent the Peltier effect. The Seebeck coefficient is usually measured under 

condition of a small temperature difference of around 5-10K while thermal 

conductivity is measured at various temperature differences (usually small) 

depending upon the technique employed. The most common variations of the 

Harman technique also limit the measurement to a small temperature 

difference. In reality, thermoelectric devices operate at a much higher 

temperature difference than that employed for ZT measurement. Clearly, 

significant errors can exist due to neglecting the effects that only become 
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significant under a large temperature difference [98]. In the absence of ZT 

measurement under a large temperature difference, its conversion efficiency is 

currently estimated using the average value of many ZT measurements under 

small temperature differences over the temperature range [98].  

 

3.3 Background of the Open-Short Circuit Technique 

The new technique used in this research was proposed theoretically in 

2001 by Gao Min [97]. After that, an initial study has been made by Konstantinos 

[99] to measure the ZT of a thermoelectric module, which will be explained 

more in Chapter 4. The new technique proposed offer several advantages which 

will be beneficial to thermoelectric measurement. Initial study suggests that this 

method offers easy and rapid measurements due to its capability to measure ZT 

directly. More importantly this technique allows ZT measurement under a large 

temperature difference and current flowing. The success of ZT measurement 

under large temperature difference will determine the performance of the 

thermoelectric material under real operating conditions. It has also proved to be 

beneficial for the measurement of more complex structures such as segmented 

or functionally graded material which are designed for operating under condition 

of a larger temperature difference.  
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3.4 Principle of the Open-Short Circuit Technique 

The basic schematic diagram of the arrangement for ZT measurement is 

shown in Figure 3.1. Thermoelectric material (sample) under evaluation is 

sandwiched between a heater and a heat sink. The sample is connected to 

terminals A and B which can be opened or short circuited. Figure 3.2 shows an 

equivalent circuit, where the thermoelectric sample can be represented as a 

thermoelectric battery with an internal resistance, Ri. When heat from the 

heater is supplied to flow through the sample, a temperature difference will be 

produced between the hot junction, hT  and the cold junction, cT . 

Under open circuit conditions (    ), the Seebeck voltage,   , 

generated across the thermoelectric material due to the difference in 

temperature,    , at the hot and cold junctions can be expressed as, 

    ̅      (   ) 

with  ̅  
     

 
  is the mean Seebeck coefficient over the thermoelectric sample 

where h  and c
 are the Seebeck coefficients for the hot and cold end, 

respectively. Assuming the measurement is done in an adiabatic condition where 

all the heat from the hot junction is transferred to the cold junction by 

conduction, the total rate of heat flow can be written following Fourier’s law as, 

    
 

 
(     ) 

                 (   ) 
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Figure 3.1: Schematic diagram of the open-short circuit technique for ZT 

measurement [97]. 

 

 

 

 

Figure 3.2: Equivalent circuit for thermoelectric battery [101]. 
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where K  is thermal conductance of the thermoelectric sample at that particular 

temperature and     is the open circuit temperature difference.   

When terminals A and B are in short circuited (    ), the temperature 

difference across the specimen will change from oT  to sT , corresponding to 

the temperature difference during the short circuit while current flowing into it. 

Figure 3.3 (a) shows the expected schematic change in the temperature 

difference across the specimen when the circuit is switched from open circuit to 

short circuit, while the corresponding change in the Seebeck voltage is displayed 

in Figure 3.3 (b). The voltage produced can be written as,  

 ̅          (   ) 

Because of the current flow, the total heat flow through the sample is not 

only from the heat conduction from the heater but also from heat absorbed due 

to the Peltier effect at the hot junction,    , as well as a contribution from the 

Joule heating which is given by, 

    ̅     
 

 
  
          (   ) 

where    is short circuit current,    is the internal resistance of the 

thermoelectric sample,    is temperature at hot end and      is the difference in 

temperature across the sample when A and B are short circuited. Note that for 

equation (3.4) to be valid, constant thermal and electrical conductivities of the 

thermoelectric sample between    and    are required so that the Joule heat 

and Thomson heat affect both ends equally.  
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Figure 3.3: Schematic of transient processes in thermoelectric materials from 

open circuit to short circuit (a) Temperature difference; (b) Voltage across the 

specimen [98]. 
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Consequently it is essential that the temperature difference between    and    

achieves steady state before measurement is made. The four formulas above 

(equation 3.1-3.4) were the basis for the derivation of the formula for this novel 

technique as explained below. If the rate of heat input,   , is kept constant 

during open and short circuit, the following relationship can be derived, 

      

                                     ̅     
 

 
  
         

                                               
   

   

 
 ̅    

    

 
  
   

     

    (   ) 

By replacing 
i

s

s
R

T
I





 obtained from equation (3.3) into equation (3.5), 

   

   

 
 ̅  

    

(
 ̅   

  

)  
  

     

(
 ̅   

  

)
 

   

    
 ̅ 

   

   
 ̅ 

   

(
   

 
)     (   ) 

Using definition 
iKR

Z

2


  into equation (3.6), 

   
   

   

     
 

 
       

                 (   
     

 
)    

   ̅  
   

   

    (   ) 
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with 






 


2

ch TT
T is the mean temperature of the short circuit. This is the first 

equation of this technique and will be referred to as the “temperature 

measurement method”. The second equation can be derived by replacing 

    
  

 ̅⁄  from equation (3.1) and     
(    )

 ̅⁄   from equation (3.3) into 

equation (3.7), 

  ̅  
  

    

    (   ) 

The second equation will be referred to as the “electrical measurement 

method”. It is apparent that temperature measurement method introduces 

simplicity of instrumentation as it only requires the measurement of 

temperature difference between samples during open and short circuit 

conditions. However, theoretically the electrical measurement method which 

requires measurement of the Seebeck voltage during open circuit, the current 

flows and resistance of the sample during the short circuit can be achieved more 

accurately because current and voltage can be measured more accurately than 

temperature measurement.  

Besides the advantages of measuring ZT directly, this novel technique 

also has the capability to determine all the thermoelectric properties using the 

same experimental setup. The Seebeck coefficient of the sample can be 

determined from the voltage generated at terminals A and B and the 

temperature difference during open-circuit by, 
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     (   ) 

where    and    are the absolute Seebeck coefficient of the sample and 

interconnector respectively. Interconnector usually made of metal such as 

copper was used due to negligible Seebeck coefficient compared with that of 

good thermoelectric materials (i.e.       ).   

The resistivity of the thermoelectric sample,  
   

 ⁄  , can be obtained by 

determining the resistance of the sample using [42], 

     (
  
   

  )  (    ) 

where     is the voltage taken at the moment immediately after terminals A and 

B are closed while the temperature difference across the specimen is still very 

close to the open circuit value, oT , as indicated in Figures 3.3 (a) and (b). 

Alternatively, by using equation (3.3) resistance can be calculate by, 

   
 ̅   

  
  (    ) 

Note that sample’s resistance obtained from equations (3.10) and (3.11) is valid 

for any temperature difference. This is different compared with conventional 

resistance measurement methods that are usually performed under a small 

temperature difference to prevent the influence of the Peltier effect.  

Once ZT,  and  are determined, thermal conductivity can easily be 

calculated from, 
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  (    ) 

Alternatively, by knowing the total heat flows into the sample, thermal 

conductivity may be estimated from the determination of module conductance 

during open circuit. From equation (3.2), 

  
  

   

  (    ) 

It is important to have an adiabatic condition to guarantee the success of the 

measurement.  

 

3.5 Non short-circuited condition 

Another advantage of this novel technique is that it is not limited to one 

size and dimension of thermoelectric material. Since a thermoelectric module 

has a bigger internal resistance,   , than that in a single thermoelement or 

thermocouples, it is much easier to obtain the short circuit condition. This is due 

to the bigger ratio between internal resistance,   , and resistance of the short 

circuit wire connection,   , used. However, with modification to the derivation 

of the equation (3.3) above, a smaller resistance of thermoelectric material such 

as in a single element or thermocouples can be measured. In this case, equation 

(3.3) can be expressed as, 

 ̅      (     )  (    ) 

where     and    refers to the temperature difference and the current produced 

under a closed circuit condition )0( LR . This will lead to a modification in the 
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ZT equation, which can be derived by replacing    in equation (3.5) with cI  

obtained from equation (3.14) above, 
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T  is the effective mean temperature. By 

defining 
i

Li

R

RR
a


 , mT  can be simplified as, 
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Note that the short circuit temperature difference, sT , has now been 

replaced with the closed circuit temperature difference, cT . According to the 

equation, temperature difference changes with the changing of external load, 

  . Provided that the dimensionless figure-of-merit of the thermoelectric 

material is constant over the temperature range, the changes of temperature 

difference can be plotted on a graph as shown in Figure 3.4. This has been 

proven [101] by adding the variable resistor as shown schematically in Figure 3.5. 

By keeping constant heat flows during the open circuit and the short circuit 

throughout LR  range, changes in cT  obtained agree well with those calculated 

where, 

   

   

       

    
   

     
 

                                                   
   

 [
(    )     

   ]
  (    ) 

As LR  increases, cT  gets smaller. This means that it is getting harder to 

observe changes in temperature difference between open and closed circuit for 

a much smaller resistance sample. Consequently, a larger temperature difference 

is required.  
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Figure 3.4: Temperature difference across the specimen during closed circuit, 

cT , as a function of the ratio of iL RR /  for different values of thermoelectric 

figure-of-merit. 

 

 

Figure 3.5: Schematic diagram of closed circuit temperature difference study 

with changes in load resistance.  
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By knowing the trend of cT  changing with 
i

L

R

R
, the short circuit 

temperature difference, sT
 , can be indirectly determined by extrapolating the 

i

L
c

R

R
T  curve to 0LR . In this case, an appropriate curve fitting based on 

equation (3.17) is necessary. On the other hand, a match of the experimental 

data with the theoretical derivation of the 
i

L
c

R

R
T   curve line will directly 

determine the Z value of the sample.  

 

3.6 Large temperature difference measurement 

The figure-of-merit defined by 



2

 has been derived assuming 

thermoelectric properties of ,  and  are independent of temperature. In 

reality, this is not the case. Consequently, the Thomson effect was neglected. 

This can be shown from definition of the Thomson coefficient, 
dT

d
T


   where 

if the Seebeck coefficient is constant (i.e. 0
dT

d
), the Thomson coefficient is 

zero. By contrast, if the Seebeck coefficient is dependent on temperature, 

0
dT

d
, the effect become important as 0 . To overcome this problem, an 

average Seebeck coefficient,  , over the required temperature range is used 
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and an average product of    is taken rather than a separate parameter over 

temperature range [44] as shown below,  

  
〈     〉 

(〈    〉
  ⁄  〈    〉  ⁄ )

   (    ) 

where angular brackets indicate temperature-averaged quantities.  However, Z  

defined in equation (3.18) would provide results within 10% of the true value 

[102] only if the temperature differences are small. It becomes progressively 

more inaccurate with increasing temperature difference.  

 For operation under a large temperature difference the Thomson effect 

could be taken into account by modifying the heat balance equation. For a 

thermoelectric generator, total heat flows from the hot side can be written as 

[100],  

         
 

 
         

 

 
      (    ) 

where   is the Thomson coefficient. A factor of ½ has been introduced into the 

last term in equation (3.19), following the simplification similar to the one used 

when dealing with the Joule heat. It is assumed that half of the Thomson heat 

flows to the hot end and half flows to cold end for a thermally insulated sample. 

Note that the Thomson heat is either released or absorbed depending on the 

materials, direction of the electrical current and temperature difference.  

Rearranging equation (3.19), 

   (   
   

   

)     
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          (    ) 

where 








 


h

he
T

T

2


  is the effective Seebeck coefficient. By replacing an 

average Seebeck coefficient with an effective Seebeck coefficient, the modified 

figure-of-merit can be expressed as,  

   
  

 

  
 

(   
   
   

)
 

  
  (    ) 

It can be seen that if T  is much smaller than hT  , the Thomson effect can be 

neglected. However, if T  becomes comparable with hT , the contribution of the 

Thomson effect to the thermoelectric process can no longer be neglected.  The 

same concept can be applied to a thermoelectric cooler as the charge carrier 

moves from the cold end to the hot end and the heat balance equation at the 

cold end can be written as, 

         
 

 
              

                                   (   
   

   

)     
 

 
          (    ) 

The Thomson effect could significantly influence the effective Seebeck coefficient 

under conditions of a large temperature difference. Theoretically, an increase in 

the effective Seebeck coefficient will increase the effective figure-of-merit while 

a reduction in the effective Seebeck coefficient will decrease the effective figure-

of-merit.  
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3.7 Conclusion 

A new technique based on open and short circuit provides an alternative 

for the direct measurement of the thermoelectric figure-of-merit. The technique 

offers measurement under a large temperature difference which indicates that 

ZT obtained using this technique provides a realistic evaluation under real 

operating conditions. Another unique criterion is that ZT derived from this 

technique shows a dependency with current flow through the material. By 

contrast, conventional ZT measurement defined by  
 

(  )⁄ , is independent of 

measuring current. This gives the new technique the capability of measuring the 

realistic ZT of a segmented or a functionally gradient structure which was 

difficult using conventional methods. This is because small differences in current 

or temperature across the segmented sample can significantly affect the ZT 

value.  
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CHAPTER 4 

“Proof of principle” of the Open-Short Circuit Technique 

 

4.1 Introduction 

Previously, Konstantinos [99] has investigated the feasibility of the open-

short circuit technique by developing an apparatus to measure a thermoelectric 

module. He concluded that the ZT  of a bismuth telluride thermoelectric module 

under large temperature difference measurement (T) reduced significantly as 

compared to conventional measurement at the same mean temperature, a 

phenomenon that is not to be ascribed to experimental error. Even though 

Konstantinos did the initial measurement of the module under a large 

temperature difference, the results were arguable. Simplification adopted by 

assuming constant heat flux was provided during the measurement could 

introduce error to the measurement result. Moreover, there is no proof that the 

measurements are true as no comparison/benchmarking was made with 

conventional method.  

The focus of this chapter is to study the feasibility of the proposed 

technique which includes measurement of the figure-of-merit obtained from the 

temperature measurement method and the electrical measurement method. To 

investigate how accurately ZT measurement was obtained from this apparatus 

and how well this technique agrees with conventional method. The results were 
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compared with the expected ZT calculated from thermoelectric properties. If 

small T is applied to the sample, theoretically, results obtained are comparable 

with conventional method because thermoelectric properties are observed 

under a small T. Upon confirming the results with the conventional method, 

study on the effect of real operating conditions to ZT can be investigated 

through comparison with a large T measurement determined using the same 

technique.  

 

4.2 Design and Construction 

A thermoelectric module was selected for initial investigation because it 

was much easier to obtain a short circuit condition due to the larger internal 

resistance compared to the short circuit wire employed. As for the type of 

materials, bismuth telluride was the best option due to its high figure-of-merit at 

room temperature. The higher the figure-of-merit of the thermoelectric material, 

bigger temperature difference, voltage and current could be observed. 

Investigation was carried out using the previous apparatus with significant 

modification to improve measurement reliability. Two major issues needed to be 

addressed in order to make module measurements successful are discussed 

below.  

As discussed in chapter 3, one important requirement for the new 

proposed technique was an equal rate of heat flow through the examined 

module during open and closed circuit conditions. The most crucial factor that 
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was not considered in previous measurements was to confirm that the heat flow 

to the module was constant. Technically this could be achieved by maintaining a 

constant power supply to the heater and minimizing the heat loss from the 

heater to the environment, so heat loss can be neglected. The usage of a 

thermoelectric module as a heater in the previous design may introduce more 

uncertainty into the experiment since the heat flux to the examined module was 

not solely coming from the electrical power supply but also from the heat 

absorbed at the cold side, cT , of the module due to the Peltier effect. Although 

alternatively heat supplied from the heater module could be calculated from its 

thermoelectric properties, the fact that these properties were obtained under a 

small temperature difference introduced inaccuracy by not considering 

temperature dependency.  

To overcome this problem, the thermoelectric module as a heater was 

replaced with a resistive heater. Heat flow to the module was monitored in two 

ways, directly and indirectly. In absolute measurement, heat flow can be 

calculated by directly measuring the electrical power supply to the heater. Even 

though this method allows the determination of heat flow to be made easier and 

quicker, the results obtained in this way can introduce significant error as heat 

loss take place from the other surface (the one that is not attached to the 

examined module) of the heater. Thus this method is only useful as an initial 

indicator. In order to monitor if the heat flux was constant or not, a known 

reference material was sandwiched between the heater and the examined 
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sample. Heat flow can be calculated from the temperature difference produced 

between two known points in the reference material with known thermal 

conductivity by using Fourier’s Law; 

 

 
  ⃑    

  

  
  (   ) 

where   is the rate of heat flow through the examined module,  ⃑  is the heat 

flux,   is the cross sectional area,   
  ⁄  is the temperature gradient produced 

between the two known points and   is the thermal conductivity of the 

reference material.  

Since the heater will be mounted on the reference material, a high 

thermal conductivity material is needed to minimize heat loss. Copper was 

chosen due to its high thermal conductivity ( = 4 W/cmK), thus ensuring that all 

the supplied heat was transferred equally within the volume of the block almost 

instantly. The length of the copper designed as the reference material 

(addressed as the heat flow meter or copper block later) is determined by the 

quantity of heat flux it is expected to measure. Minimum heat flux was 

considered in the design because it will set the limit of heat flow meter design 

capability. Theoretically, to achieve minimum temperature difference of 10 K 

across the examined module, taking the examined sample’s thickness as 0.171 

cm and general Bi2Te3 thermal conductivity,  , as 1.510-2 W/cmK, minimum rate 

of heat flow required can be calculated using equation (4.1), 

    ( 
  

 
  ) 
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                          (   ) 

Assuming that the radial heat loss from the copper is negligible, the 

distance required between two thermocouples at the reference material can be 

calculated. Based on (i) the thermal conductivity of the copper (i.e., 4 W/cmK), 

(ii) the cross sectional area of the copper block of 44 cm2 (i.e., the same as 

cross-sectional of examined module) and (iii) minimum temperature difference 

allowed which was set at 1 K was higher than the accuracy of the temperature 

meter, a minimum distance of 14.6 cm was required between thermocouples. 

The distance of 14.6 cm for the heat flow meter was too long and not practical 

for implementation. It may also introduce significant heat loss and inaccuracy in 

measurement.  

There were two solutions being considered here. The first option was to 

change the reference material to one with much lower thermal conductivity such 

as stainless steel (  0.16 W/cmK), brass (  1.09 W/cmK) [103], or iron (  

0.804 W/cmK) [104]. The second option was to reduce the cross sectional area,

A , of a reference material. The minimum distances required for stainless steel, 

brass and iron for minimum heat flux were 0.59 cm, 3.99 cm and 2.95 cm 

respectively. The minimum distance required for iron is reasonable for 

fabrication and implies a flow meter that is not too thin as in the case with 

stainless steel, which will prove to be unsuitable for insertion of thermocouples. 
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If copper is used, the cross sectional area has to be reduced to 1.51 cm2. Using 

the same distance achievable for iron, the temperature differences may be 

calculated as; 

   
  

  
 

             

                
 

        (   ) 

The temperature difference achievable for copper with a reduced   was 

higher than the temperature difference achieved by iron for the same distance, 

 . This gave the advantage to copper since the bigger the temperature 

difference, the smaller the error will be. Moreover, radial heat loss will be 

minimized due to smaller surface area from which heat can escape.  

Another important consideration that needed to be looked into was the 

minimum detectable changes in heat flux for which the heat flow meter was 

designed. According to Fourier’s law, 10% changes in heat flux will induce 10% 

changes in temperature difference. By taking the minimum resolution of 

temperature measurement using an ordinary temperature meter 0.1 K, 10% 

changes in the heat flux for the above design induced changes of 0.2 K in the 

temperature difference, which was measureable. The design is capable of 

measuring changes in heat flux as small as 5%. By using more sophisticated 

instrumentation for temperature measurement with much smaller resolution, 

will increase the capability. For example, by using a PicoLog data logger with a 

resolution of 0.025 oC, will allow to detect heat flux changes up to 1.2%. 
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      The only problem that arose with this design was the smaller contact 

surface with the examined module, which will introduce uneven heat 

distribution. Changing the examined module to a smaller size is not a solution 

because it will introduce other problems. The reduction in module resistance will 

make it harder to achieve the short circuit condition. To prevent this, the contact 

surface of the copper block was designed to have the same size as the examined 

module but became narrow as shown in Figure 4.1.  By maintaining the size of 

copper block contact equal to the module surface size will ensures heat 

distributes uniformly over the entire 44 cm2 cross sectional area. Optimization 

of the design was simulated using Patran software as shown in Figure 4.2. 

Thermal conductivity of copper, module, box container and wool insulation used 

in the simulation are 4.01 W/cmK, 0.015 W/cmK, 0.003 W/cmK and 0.0003 

W/cmK respectively. Heat provided at hot side of the copper was 20 W while 

boundary condition of 300 K was defined for all side of the box container. 

Optimization in Figure 4.2 helps to design the thickness of the bottom 

part of the copper block to allow constant heat flow before it enters the sample. 

The position of the thermocouple’s holes can also be identified to prevent 

positioning them at points of accumulated heat flux. In this setup, constant heat 

flow can be confirmed by monitoring non changes in temperature differences 

produced at the heat flow meter during open and short circuit states. 
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Figure 4.1: Schematic diagram of the heat flow meter. 
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Figure 4.2: Simulation for optimization design of heat flow meter using MD 

Patran software. 
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Maintaining a constant heat flow requires minimizing heat loss at the 

copper block. Since the operating temperature of the thermoelectric module 

does not exceed 423 K, vacuum is not necessary, which will facilitate rapid 

measurement due to a non-complex assembly setup without compromising the 

result. However, to prevent heat loss from the heater and the copper block, they 

are wrapped with wool insulation (   410-5 W/cmK) inside a box container.  

 The schematic design of the box container is shown in Figure 4.3. 

Polyoxymethylene was chosen as the material for the box container because of 

its low thermal conductivity (   0.3 W/cmK) and machinability. More 

importantly, its strength, rigidity and toughness made it possible to hold the 

copper securely. The container is made of 2 pieces of 8.87 cm2 and 2 pieces of 

77 cm2 with wall-thickness of 0.9 cm. Holes of diameter 1.5 cm were made on 

one side of the container to allow the connection wires to the heater and 

thermocouples to pass through to outside of the container. The top and bottom 

wall were made of 8.88.8 cm2 with thicknesses of 1 cm and 0.9 cm respectively. 

A square opening of 44 cm2
 was made at the bottom wall of the container to 

allow the copper block to make contact with the examined module. The opening 

also acts as a holder for heat flow meter. In the previous design by Konstantinos, 

the container was much smaller and used wood as the bottom wall. A square of 

44 cm2 copper plate was held to the opening at the centre of the wood. The 

usage of wood was proven to be problematic as wood tends to bend when 

operated at high temperature, thus resulting in a loose opening to the copper 
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plate. A loose copper plate makes assembly more difficult and this effect is even 

more significant when this copper plate is used as a thermocouple mounting. 

Any movement will affect the position of thermocouple, thus giving an unreliable 

temperature reading. 

Even though polyoxymethylene has low thermal conductivity, lateral heat 

loss by conduction at the holder cannot be neglected as temperature at the 

copper block increases. Because of direct contact with the copper block at the 

opening, the size of contact holder should be minimized to minimize heat loss 

yet be strong enough to hold the weight of copper. Four small holder legs of size 

0.80.8 cm2 were made at the centre of each side with half of the bottom 

thickness, as shown in Figure 4.4. The wall was assembled with screws made of 

the same material. The inner container had the dimensions of 777 cm3, 

enough to allow the heat flow meter to be covered with thick layer of wool. The 

heat sink component design was as before. It was made of a plastic box 

8.88.84 cm3 with two holes at the side wall to allow water in and out. The top 

of the box was made out of copper plate. A groove was made on top for 

thermocouple insertion. The final assembly of the container on the heat sink is 

shown in Figure 4.5. 
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Figure 4.3: Schematic diagram of heat flow meter inside box container mounted 

on heat sink from side view. 
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Figure 4.4: Bottom view of box container where copper block makes contact with 

the examined module. 

 

 

 

Figure 4.5: Heat flow meter inside box container mounted on top of heat sink. 

The thermoelectric module to be tested is sandwiched between the heat flow 

meter and heat sink. 
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Another issue that needs to be addressed is how to achieve the short 

circuit condition. This means that the electrical resistance of the external 

circuitry (i.e. wire, switch) should be negligible compared to the thermoelectric 

module resistance, iR . Two types of bismuth telluride thermoelectric module 

were used. One was from the Nord thermoelectric supplier (Sample A) and 

another from Thermoelectric.com (Sample B). The size of both modules were 

44 cm2, consisting of 127 pairs of thermoelectric legs each with a cross sectional 

area of 0.140.14 cm2. The resistance of each examined module, iR , can be 

estimated from the knowledge of the thickness and cross sectional area of the 

legs. The thickness of the legs was measured using a travelling microscope, which 

excluded the thickness of the ceramic and electrodes at both sides. The cross 

sectional area of each leg can also be obtained from the manufacturer’s 

specifications. The measured thickness of sample A and sample B were 0.171 cm 

and 0.115 cm respectively. By taking the electrical resistivity,  , of Bi2Te3 at 

room temperature as 110-3 
cm, the resistances of the examined module were 

estimated as follows, 

    
  

 
       

                 

             
        (   ) 

    
  

 
       

                 

             
        (   ) 

where AR and BR are module A and B resistance at room temperature, N is the  

number of thermocouple legs,  is Bi2Te3 electrical resistivity, l  and A  are 
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thickness and the cross sectional area of the legs respectively.  To achieve low 

external resistance, a toggle switch with resistance ~swR  10 m was used while 

short and thick copper wire used as wire connections. Measurement showed 

that the total external resistance TR  was 15~ m which was  100 times smaller 

than the resistance of the modules. 

Before proceeding with ZT measurement, it was important to have an 

estimate of the ZT  value expected from the module measurement. The figure-

of-merit of the sample can be estimated using the cooling method by measuring 

maxT and cT  of the module by use of the formula below, 

      
 

 
   

   (   ) 

where maxT  is the maximum temperature difference across the module and cT  

is  the cold side temperature. To achieve this, sample A was mounted on the 

heat sink using heat compound with one thermocouple located between module 

and heat sink and another thermocouple mounted on another module surface. 

The exposed module was then covered by thick wool insulation to provide a 

condition of zero heat load. The module was then connected in series with a DC 

power supply as illustrated in Figure 4.6. Temperature differences produced for a 

given current were recorded. The process was repeated by increasing the current 

value until the maximum temperature difference was observed and the results 

were plotted as shown in Figure 4.7. Sample A shows a maximum temperature 
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difference of 64.3 K at I = 6.3 A (as shown in Table 1) when cT = 230.4 K and 

meanT = 262.5 K.  

 

Table 1: Temperature difference changes with changes in current flow across 

Sample A. 

Current, I (A) T (K) 
 

TH (K) TC(K) 

 
2.0 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
5.6 
5.7 
5.8 
5.9 
6.0 
6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 
7.0 
8.0 
9.0 

 

 
39.7 
50.2 
54.1 
57.2 
59.9 
61.8 
63.2 
63.4 
63.6 
63.8 
63.9 
64.0 
64.1 
64.2 
64.3 
64.1 
64.1 
64.1 
64.1 
64.0 
63.7 
63.6 
60.5 
45.0 

 
 

 
289.5 
290.3 
290.6 
291.1 
291.7 
292.3 
293.0 
293.3 
293.4 
293.6 
293.8 
294.0 
294.2 
294.4 
294.6 
294.7 
294.9 
295.1 
295.3 
295.6 
295.9 
295.8 
298.4 
302.7 

 

 
260.6 
240.1 
236.5 
233.9 
231.9 
230.5 
229.8 
229.9 
229.9 
229.8 
229.9 
230.0 
230.1 
230.2 
230.4 
230.6 
230.8 
231.0 
231.3 
231.7 
232.2 
232.2 
237.9 
257.5 
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Figure 4.6: Schematic diagram of maxT module measurement. 
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Figure 4.7: Changes in temperature difference T with current I. 
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Z for Sample A can be estimated using equation 4.6, 

                           
       

  
 

 

 
       

(      ) 
               (   ) 

The Z  value observed was comparable with data obtained from the 

manufacturer where maxT = 71 K at hT = 298 K, which gave calculated 

131076.2  KZ  at meanT = 262.5 K. The percentage of error between Z  

experimental value and the manufacturer’s data value for Sample A was 12.3%. 

Considering factors that could cause this discrepancy include zero heat loads 

were not successfully achieved using wool insulation and the fact that the 

experiment was not done in an inert atmosphere increased the possibility of 

heat absorption from the surroundings. Besides that, additional thermal 

resistance was neglected during temperature difference measurement, where 

thermal resistance from ceramic and electrode connection at both sides were 

included.  In addition, the degradation of the module performance due to 

operational factors might also contribute to the discrepancy since the module 

measured was not brand new. Despite this, it provides useful information as an 

initial reference for the expected figure-of-merit of module measurement. 
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4.3 Experimental Set-up & Procedure 

The module under evaluation was sandwiched between a copper block 

and a heat sink. The heat flow was provided by an 80 watt, 55 cm2 flat plat mica 

heater mounted on the top of the copper block. The other side of the copper 

block was attached to the hot side, hT , of the thermoelectric module. The 

constant heat flow was monitored by two K-type thermocouples  21,TT  inserted 

at the centre of the copper block with half the depth of the copper. The 

thermocouples were separated by a distance of 3.1 cm each. Heater and copper 

block were enclosed inside the 8.88.88 cm3 box container filled with thick 

layer of insulating wools. The cold side, cT , of the module was mounted on the 

copper heat sink where heat dissipated is removed by flowing water from a 

circulator. Once assembled, the entire gap between plastic container and heat 

sink was covered with wool insulation to prevent further heat loss from the side 

of the module. The assembled apparatus was connected in series with the switch 

and in parallel with the voltmeter. 

The same type of thermocouple was used to monitor temperature 

differences between modules, attached underneath the copper block to measure 

hT  and on top of the copper plate to measure cT . To get an accurate 

measurement, temperatures were measured at the centre instead at the corner 

or side of the module. Both thermocouples lay inside the copper groove to 

prevent uneven pressure due to the thickness of thermocouple at module 
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surfaces. The thermocouple was then connected to a PicoLog data logger that 

automatically recorded temperature measurement into a computer. Heat 

compound was applied on both sides of thermoelectric module surfaces, heater 

surface and inside the thermocouple holes to fill any remaining air gaps and 

ensure adequate thermal contact. Before measurement was made, the reliability 

of all four thermocouples were checked and calibrated. To make sure module 

and copper were in good contact, pressure was applied on top of the container 

after assembly. The examined module mounted on the heat sink was then 

connected in series to a low-resistance switch. The voltmeter was connected in 

parallel to the switch. Schematic diagram of experimental arrangement for 

module measurement is shown in Figures 4.8. 

To start the measurement, water cooling from circulator to heat sink was 

switched on. For small T measurement, cold end temperature,    , was set at 

 286 K. The switch was set to open circuit and the voltmeter was switched on. 

Then the power supply was turned on, starting with modest power  5-6 W to 

give a temperature difference across the module around 10 to 15 K. 

Temperature at the cold side,    , and the hot side,    , of the module was 

recorded to a computer using the data logger. Temperatures at the heat flow 

meter,    and    were simultaneously recorded where    is temperature near 

the heater and    is temperature near the module surface.  
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Figure 4.8: Schematic diagram of apparatus arrangement in ZT module 

measurement. 

 

 

The temperature difference across the module, mT , and temperature 

difference between the heat flow meter, cT , were automatically calculated 

from the temperature observed and a graph was plotted. As the heater started 

supplying heat to the module, a temperature difference across the module and 

open circuit voltage began to increase due to the Seebeck effect. Measurement 

was then left to achieve stabilisation before the module’s open circuit voltage, oV  

, and heater’s voltage and current supply ( hoho IV , ) were recorded.   

After the temperature was stabilized and while the power supply remain 

on, the switch was then closed. Instantaneously, voltage and temperature 

differences started to reduce drastically with time. The rate of temperature and 
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voltage reduction became slower after about a few minutes and started to 

stabilized  30 minutes later. Once the short circuit temperature difference was 

stabilised, the short circuit voltage across module, sV , as well as voltage and 

current supply from heater ( hshs IV , ) were recorded. After that, the switch was 

set to “off” and the temperature of the water circulator was set to increase by 5-

11 K for the next measurement. At the same time power supply to the heater 

was adjusted to give sT  10-15 K. The same process was repeated until the 

temperature of the water circulator reached about  100oC (this is the 

temperature of boiling water). As for large T measurements, the same 

procedure are followed except that Tc is maintained at a fixed temperature 

around 15-27oC throughout the temperature range. Figure 4.9 shows one of the 

recorded results for small T measurement. 

 

4.4 Reliability 

The reliability of the experimental setup and technique can be confirmed 

through the repeatability and accuracy assessment. As explained in Chapter 3, 

there are two ways to determined ZT from this novel technique, first using the 

temperature measurement method derived as ,1





s

o

T

T
TZ  and second using 

the electrical measurement method derived as 1
is

o

RI

V
TZ .  
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Figure 4.9: Temperature difference across the module mT  and copper block 

cT  over time recorded using a PicoLog data acquisition system. 
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In the electrical measurement method, open voltage, Vo , short circuit 

current, Is , and resistance of sample, Ri, need to be obtained unlike in the 

temperature measurement method that only requires temperature difference. 

Vo and Is can be directly measured during the experiment while Ri can be 

determined using equation 3.10. The results are plotted in Figure 4.10. 

Measurement results obtained from the temperature measurement 

method show a clear trend throughout the temperature range compared with 

the electrical measurement method, where the distribution of ZT is more 

scattered. Theoretically, the electrical measurement method should give more 

accuracy due to the high accuracy of voltage and current measurement 

compared to the temperature measurement method. But in this case, the 

difficulty of obtaining and determining accurate instantaneous voltage drop, Vs1 

lead to significant error in internal resistance measurement. To prevent 

complexity, the rest of the thesis will focus on ZT measurement based on the 

temperature measurement method.  

 

4.4.1 Repeatability 

To investigate the maximum deviation and stabilization of the 

measurements under the same conditions, seven sets of small T measurements 

(S1, S2, S3, S4, S5, S6 and S7) were conducted on sample A.  
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Figure 4.10: Comparison between ZT measurements obtained from temperature 

measurement method and electrical measurement method across different 

mean temperature. 
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Figure 4.11: ZT of seven sets (S1, S2, S3, S4, S5, S6 and S7) small T 

measurement on sample A with solid-line showing an average. 
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All the measurements were set within a temperature difference range of 8-16 K. 

The results are shown in Figure 4.11. The data presented in the figure has been 

adjusted to the constant heat flow. The details are discussed in Section 4.5.1. It 

can be seen that a high degree of repeatability has been achieved with the 

percentage of error less than 3.3%. For large T, six different sets of (L1, L2, L3, 

L4, L5 and L6) measurements were taken, with repeatability less than 1.7% as 

shown in Figure 4.12.  Large T is expected to have higher repeatability than 

small T as higher accuracy can be obtained at larger temperature. Both data for 

small and large T measurement can be found in Appendix 2 and 3 respectively. 

 

4.4.2 Accuracy 

The accuracy of the system here is define as deviation of the 

measurement using open-short circuit technique as compared with the 

measurement measured using conventional method. To get an idea of how 

accurate is the data measured, the ZT result obtained from small  T 

measurement was compared with ZT calculated using data obtained from the 

manufacturer. The manufacturer material properties for given temperature 

range of 200 K to 350 K for both p and n-type can be found in Appendix 4. 

Theoretically the results were comparable because all properties were measured 

under small temperature differences.  
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Figure 4.12: ZT of six sets (L1, L2, L3, L4, L5 and L6) large T measurement on 

sample A with solid-line showing an average. 
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In general, the ZT of a thermoelectric module can be calculated from 

individual materials’ properties using the formula, 

   
(     )

 
 

*(    )
  ⁄

 (
 
 )

  ⁄
+
   (   ) 

where n and p are the Seebeck coefficient, n and p are the electrical 

resistivity and n and p are the thermal conductivity of n and p-type 

respectively.  

The experimental dimensionless figure-of-merit, ZT , obtained under 

small T using temperature measurement method was compared with the 

conventional dimensionless figure-of-merit, cZT , calculated from equation (4.8) 

by plotting both together in Figure 4.13. The figure-of-merit, Z  obtained by 

dividing the dimensionless figure-of-merit, ZT , with the mean temperature, 

2

)( ch TT
T


 are also shown in Figure 4.14 with conventional figure-of-merit, cZ , 

as a comparison.  

It can be seen from Figures 4.13 and 4.14 that the temperature 

dependence of the experimental results agrees with the calculated results as 

both cZT  and ZT  increased while cZ  and Z  decreased with a mean 

temperature. However, the experimental results were lower between 22-30% 

than expected values.  
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Figure 4.13: Temperature dependence of calculated ZT from manufacturer, 

(     )  and experimental ZT,  (     )   values where calZT
 data is from 

materials while       is from module, which includes the influence of electrical 

and thermal contact. 10% calZT
 shows an estimate of 10% reduction from 

material to device. 
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Figure 4.14: Temperature dependence of calculated Z from manufacturer, 

(    )   and experimental Z, (    )   values where      data is from materials 

while      data is from module, which include the influence of electrical and 

thermal contact. 10%    shows an estimate of 10% reduction from material to 

device. 
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Although the percentage of relative error observed are big, the actual 

error could be much smaller than this due to the fact that cZT  was calculated 

using equation (4.8) solely from materials and does not include thermal and 

electrical contact influences. It was expected that cZT would be  10% lower due 

the transition from material to device as plotted as a dotted line in the graphs 

and within 10% error indicate by the error bars [102].  

Another factor that contributed to this discrepancy was that the 

measured samples are not identical even though they are from the same Bi2Te3-

based materials. If 10% reduction and error are taken into account, a deviation of 

11% observed, which is agrees with ZT at room temperature measured using 

cooling method. 

Based on the initial experimental results above, it is clear that the 

apparatus demonstrates good repeatability of the technique, which is promising 

evidence of reliability. However, because there is significant difference in the ZT 

values between the new and the established technique, further investigation was 

needed to identify the sources of error, as will be discussed below. 

 

4.5 Error Analysis 

4.5.1 Constant heat flow 

One of the errors in ZT measurement came from non-constant heat flow 

during the open and short circuit. Previously, Konstantinos assumed a constant 

heat flow was achieved by maintaining a constant heating power. In this new 
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design, the heat flow meter was used to monitor the constant heat. Comparison 

was made between the two methods and no significant changes of heat from the 

power supply during open and short circuit states was observed, indicating that 

constant heat flows were achieved during both conditions. However, it was 

observed that temperature differences at the heat flow meter were slightly 

higher during the short circuit than that during the open circuit state. This 

indicates that heat flow through the thermoelectric module during short circuit 

was higher than that during the open circuit state (see Figure 4.15). An increased 

heat flow during the short circuit state may be due to less heat loss from the 

heater and the copper block or may be due to additional heat absorption from 

hot side of the sample because of the Peltier effect. The differences in heat flow 

between the two states ranging up to 4.5% over the measurement range. 

Although heat flow varies, the change cannot be detected by monitoring heater 

power supply. This might be due to the fluctuation in voltage and current 

measurement and heat loss at the heater’s surfaces. Even though the variation 

appears to be small, it could lead to significant changes in ZT value. 

Figure 4.16 shows heat flow through the copper block as well as heat 

supply from the heater calculated from the current and voltage measurement. 

Heat flow from the heater flowing through the copper block was greater than 

heat flow calculated from the copper block through the thermoelectric module. 

This indicates that heat loss takes place around the heater before reaching the 

copper block. The heat loss increased almost linearly as plotted in Figure 4.17.  
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Figure 4.15: Temperature difference during open circuit and short circuit 

observed from heat flow meter. 
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Figure 4.16: Rate of heat flow observed from heat flow meter and heater during 

open circuit. 
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Figure 4.17: Percentage of difference between heat flow from heater power 

supply and heat flow meter during open circuit. 
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For lower mean temperatures, the difference is about 15% and it increases up to 

54% with increasing mean temperature. Despite an increase in heat loss, in 

principle it is not a problem as long as the heat flow through the module remains 

constant during open and short circuit operation. 

Heat loss is inevitable and to keep the heat flow constant between two 

states, a correction factor can be derived using equations (3.2), (3.3) and (3.4) to 

compensate for differences in heat flow during open and short circuit as shown 

below, 
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where    and    are heat flow during open and short circuit,       and       are 

the temperature difference across heat flow meter while      and      are 

temperature difference across module during open and short circuit respectively.  

The dimensionless figure-of-merit measurement on sample A without the 

correction factor, woZT , and with correction factor, wZT , are shown in Figure 4.18. 

wZT  clearly shows a trend of slowly increasing until Tmean  350 K before 

decreasing significantly. The results for woZT  appear to be more scattered, even 

though the similar trend was observable. Note that woZT  values are lower than 

wZT  values. The larger the heat flow differences between open and short circuit, 

the greater the deviation. Hence, it is important to keep a constant heat flow 

during open and short circuit measurement and accurate detection of heat flux 

change. Thus only corrected dimensionless figure-of-merit, wZT  will be plotted 

throughout the rest of the thesis and will be represented as ZT.  

 

4.5.2 Seebeck Coefficient  

The Seebeck coefficient,  , can be calculated from the open circuit 

voltage,   , and the temperature difference, moT  , using 

  
  

    

     (    ) 
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Figure 4.18: Dimensionless figure-of-merit without correction factor woZT and 

with correction factor wZT  as a function of Tmean for sample A. 
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High repeatability was observed for the Seebeck coefficient measurement with 

an error of <1%. The Seebeck coefficient obtained from experiment showed high 

accuracy as well as having a relative error of 4-7% compared with the expected 

result from the manufacturer’s data as plotted in Figure 4.19. 

 

4.5.3 Electrical resistivity 

Before the electrical resistivity can be determined, the resistance of the 

thermoelectric module needs first to be obtained. Resistance could be found 

using equation 3.3, 
s

s

i
I

T
R





. Figure 4.20 shows the resistance of sample A as 

a function of mean temperatures for seven sets of measurements. The resistance 

measurement shows good repeatability with achieved standard deviation of 

0.07. Measured resistance at Tmean = 304 K was 2.29 Ω which was comparable 

with the estimated resistance of 2.22 Ω at room temperature as calculated in 

section 4.2.   

Once the resistance of the thermoelectric module is determined, the 

electrical resistivity of the material can be calculated by, 

  
 

 
(
   

 
)  (    ) 

where N is the number of thermoelectric pellets and A and l  are the cross 

sectional area and thickness of each pellet respectively. The electrical resistivity, 

, observed from experiments is shown in Figure 4.21, which agrees well with 

reference data from the manufacturer with an error <6.3%.  
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Figure 4.19: An average of Seebeck coefficient (from seven different 

experiments) from module measurement as a function of Tmean as compared with 

manufacturer data [Appendix 4] as reference material. 
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Figure 4.20: Module resistance of seven sets of measurement as a function of 

Tmean. 
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Figure 4.21: An average of electrical resistivity (from seven different 

experiments) from module measurement as a function of Tmean as compared with 

manufacturer data [Appendix 4] as reference material. 
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4.5.4 Thermal conductivity 

Two possible ways to determine the thermal conductivity of the sample 

from this experimental set up are by calculation from measured Z, α and  or 

from calculation of heat flow through copper and module. Thermal conductivity 

can easily be calculated by using obtained values of ,  and ZT employing, 

   
  

  
  (    ) 

Another way to obtain thermal conductivity was by measuring the module’s 

thermal conductance. This can be achieved by knowing the total heat flowing to 

the sample by observing the temperature difference produced at the heat flow 

meter during open circuit. Assuming that heat loss from the copper to the 

examined module was negligible, the module’s conductance and hence thermal 

conductivity of the material can be calculated using equation, 
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where    and              are the thermal conductance for the module 

and the copper respectively,      and     are the temperature difference 

between the copper block and module during open circuit,    is total heat flow 



                           Chapter 4: “Proof of Principle” of the Open-Short Circuit Technique 
          

 117 

during open circuit and            and              are length and cross 

sectional area of the legs of module A. 

Thermal conductivity derived from Z,  and  measurement is plotted in 

Figure 4.22 together with the reference data from manufacturer. Experimental 

results show thermal conductivity produced is higher than expected with 

deviation of 23-27% from the reference value. Despite the differences, thermal 

conductivity behaves in similar ways with reference data. The only possible 

reason for this deviation is due to an overestimation of heat flowing through the 

sample. This can be confirmed from the measurement of heat flow through the 

copper flow meter throughout the temperature range. Negligible heat loss 

obtained at low temperature but worsened as the temperature increased. This 

meant that more heat was lost during the transition from copper block to 

examined module and getting worst with an increase in temperature. As a result, 

an increase in temperature differences was observed at the copper block. Due to 

significant heat loss at the heat flow meter, the derivation of thermal 

conductivity from heat flow at open circuit will introduce significant error. 

Besides that, the assumption of copper thermal conductivity is the same 

throughout the temperature range might introduce more discrepancy. Because 

of that, thermal conductivity derived from ZT,  and  measurement was used as 

comparison in Figure 4.22.  
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Figure 4.22: An average thermal conductivity 1 calculated using measured ZT, α 

and ; and thermal conductivity 2 using heat flow meter, together with 

manufacturer data [Appendix 4] as material reference as a function of Tmean. 
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From all the thermoelectric properties results, it was obvious that the 

reduction in ZT obtained from experiment as compared to the manufacturer’s 

reference data was most likely due to an overestimate of thermal conductivity. 

As discussed above, significant error appears to occur in the thermal 

conductivity. The errors in electrical resistivity and Seebeck coefficient are 

relatively smaller. This indicates that the accuracy of the ZT measurement can be 

improved by minimizing the heat loss from the copper block. With careful 

insulation and proper design of the experimental setup, this technique is capable 

providing more accurate ZT measurement.  

 

4.6 Conclusion 

In conclusion, this study has proved that the temperature method 

technique is feasible and reliable when measuring thermoelectric ZT. Using a 

heat flow meter, a constant heat with a deviation of 4.5% is achieved during 

open and short circuit. Good repeatability is achieved for ZT,  and  

measurement with an error of <3.3%, <1% and <6.3% respectively under small 

T and repeatability error are less for large T measurement. The accuracy of ZT 

measurement shows less than 13% error compared with ZT from the cooling 

method at room temperature and from materials properties considering 10% 

reduction and error. Even though the ZT results show a large deviation from the 

original materials properties of manufacturer’s data, a good temperature 

dependency was observed, which indicates that the main error is due to heat 
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loss at the copper flow meter. However, since the main objective of this 

investigation is to prove the feasibility of the novel measurement method, 

further efforts will not focus on improving the accuracy of measurements of 

module system but rather to the development of a measurement system which 

is suitable for the evaluation of single materials. The results from this chapter 

demonstrate the feasibility and reliability of the proposed technique. In the 

following chapters, efforts will be made to focus on a more challenging task – the 

ZT measurement of single materials where the short circuit condition is difficult 

to achieve. Further improvements are required. 
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CHAPTER 5 

Design and Construction of Large Temperature Difference 

(LT) Facility for Single Thermoelement Measurement 

 
 
5.1 Introduction 

Measurements of the dimensionless figure-of-merit, ZT, using the 

proposed novel technique have been successfully demonstrated using a 

thermoelectric module structure as discussed in chapter 4. However, it would be 

more useful if the technique could also be used to evaluate a single piece of 

material. The evaluation of thermoelectric material’s performance at this level 

will determine the behaviour of final device development as in module 

structures. This will not only reduce cost, time and energy of production, but 

more importantly it is necessary in the process to determine the optimization of 

an existing thermoelectric composition which requires a lot of tests. 

Nevertheless, researches on possible new thermoelectric materials have proved 

to be of great help. Because of this, an approach was taken involving the design 

and construction of new measuring equipment catering for thermoelements, and 

investigating the applicability of the novel technique over a large temperature 

differences. It is worth mentioning that application of this technique at the 

thermoelement can be fully optimised by neglecting the contribution from the 

thermal resistance of the ceramic layer which exists in module measurement.  
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5.2 Design of equipment 

  A lot of effort has been made to achieve accurate and reliable measuring 

equipment which is able to measure thermoelement under a large temperature 

difference. Although the principle technique has been demonstrated using a 

module, it cannot be directly applied to material measurement. Due to the 

difficulty of achieving a “short-circuit” condition, the implementation to 

thermoelement and thermocouples is not as easy and straightforward as in 

module measurement. As a result, significant modification is needed. The main 

challenges in this design involve: 1) to overcome non-short circuit condition; 2) 

to provide constant heat flows into the sample at higher temperature and 3) to 

design a high temperature apparatus which involves careful selection of the 

materials used.  

The schematic diagram of the developed apparatus is shown in Figure 

5.1. The design consists of four important components: heat flow meter, heat 

sink, sample holder and vacuum chamber, which will be explained in detail 

below. 

 

5.2.1 Heat flow meter 

The heat flow meter is a crucial part of the equipment that is responsible 

for heat supply to the sample and allows monitoring of constant heat fluxes 

during the open and closed circuit state. A schematic diagram of heat flow 

construction is shown in Figure 5.2.  
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Figure 5.1: Schematic diagram of apparatus for large temperature difference ZT 

measurement setup inside vacuum chamber. 
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The flow meter consists of two parts, heater and brass heat regulator. 

The heater holder is made of copper with dimensions of 8mm8mm48mm. 

Holes with diameter 3.2 mm and 28 mm depth were bored from the top side of 

the copper heater holder for heater insertion. High powered density cartridge 

heater (Omega CSS series) with a maximum output of 15 Watt was used. The 

heater had been tested and was able to withstand operational temperatures up 

to 500oC in a vacuum environment without deterioration.  

The lower part of the copper block was cut to a dimension of 

4mm4mm18mm (referred to as the heater arm). Screw type wire connection 

and temperature sensors were located here. Two thermocouple holes separated 

by a distance of 11 mm were responsible for measuring heater temperature, T1, 

and the hot side temperature of brass, T2. They are located at 15 mm and 4 mm 

from the bottom respectively. All the thermocouples holes were 1 mm in 

diameter and 2 mm in depth. At the end of the heater arm, a hole with a 3 mm 

depth was bored to allow brass rod insertion.  

The brass heat regulator consists of a brass rod and a copper contact. The 

length and diameter of the rod were 12 mm and 1 mm, respectively. It was 

tightly inserted into the hole at the end of heater arm to form a good pressure 

contact. Similarly, the other end of the rod was tightly inserted. The total 

distance from the end of heater arm to the copper contact was 8 mm as shown 

in Figure 5.2.  
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Figure 5.2: Heat flow meter design to provide heat and measure heat flux to the 

sample. 
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Figure 5.3: Heat flow meter assembly consists of two components (a) heater and 

(b) the brass heat regulator. 
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The brass rod acted as a flow meter responsible for measuring the changes in 

heat flux into the sample during open and closed circuit by monitoring the 

temperature difference across it. The copper contact was responsible for 

distributing the heat evenly to the sample by making the cross sectional area 

equal to that of the sample. Due to limited space on the brass rod itself, the 

temperature difference was measured at the heater arm, T2, at the hot side and 

at the copper contact, T3, at the cold side. 

There are three main reasons why the contact between the brass rod 

with heater arm and copper contact was made using tight insertion instead of 

permanent contact such as by soldering or brazing because 1) this makes it 

easier to change the copper contact to other dimensions depending on the 

contact area of the samples to be measured, 2) this facilitates measurements of 

a different range of heat flow through the samples by only changing the brass 

rod with different materials and length and 3) if good contact is still needed 

between copper and sample, copper contact can easily reproduced  without 

removing the whole structure.  

Brass was selected due to its properties of high thermal conductivity and 

low electrical resistivity (= 1.09 W/cmK and m 61009.0 ) besides having 

relatively high strength at high temperature. By using a hot probe apparatus, 

measurement on Seebeck coefficient of the brass rod relative to copper is small 

(= 1.0V/K), thus will not give significant change to the produced Seebeck 

voltage when measured against thermoelectric samples. According to Fourier’s 
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law, the 8 mm length of the brass rod is capable of detecting heat flux as small as 

10.7 mW if the temperature difference can be measured to an accuracy of 1 K. 

In the initial design, the heater arm was used as the heat flow meter for 

heat flux measurements but no significant temperature drop between samples 

was observed from open to close circuit after several attempts. Significant efforts 

were made to identify the problem. It was found that due to large heat capacity 

of the copper heater arm, the temperature drop at the moment of a closed 

circuit cannot be observed as a result of heat compensation. Consequently, brass 

rod of a smaller dimension with lower thermal conductivity was used instead.    

The copper contact should have the same cross sectional area as that of 

the samples in order to allow equal heat flux distribution from the brass rod. In 

addition, to prevent high heat capacity at the contact, it should be as thin as 

possible. Taking into consideration the minimum hole depth of 1 mm that is 

required for stable brass rod insertion and at least 1 mm distance from the 1 mm 

diameter hole required for the insertion of thermocouples, the minimum 

thickness of the copper contact had to be 3 mm. Copper contacts with two 

different cross sectional areas (4mm4mm and 3mm3mm) were prepared. The 

sizes of the cross sectional areas were selected to match the cross sectional area 

of the samples measured. In order to avoid heat loss from the copper contact, 

the electrical contact was attached to the heater arm and not directly to the 

copper contact.   
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5.2.2 Heat sink 

The amount of heat required in the measurement depended on the size 

and thermal conductivity of the samples. The heat sink in this measurement 

system consisted of two parts: copper disk and copper plate. The huge copper 

disk (diameter = 148 mm, thickness = 16 mm) could dissipate heat quickly and 

was mounted directly onto the vacuum chamber. This copper disk was important 

in the design not only to stabilize the cold side temperature but also serves as a 

foundation for the whole structure (see Figure 5.1). 

To allow the apparatus to measure a sample under small T throughout 

the temperature range, a heater was needed to increase the temperature at the 

cold side/heat sink. A thermoelectric module (30mm30mm) was chosen over a 

resistive heater because of its ability to operate as both heater and cooler which 

is needed for large T measurement. Moreover, resistive heater that is mounted 

on the huge copper disk would require a large power to heat up the sample. The 

module chosen (HZ-2, Hi-Z Technology) was placed on top of the copper disk 

heat sink. The module is able to operate at temperatures as high as 250oC in 

continuous operation and intermittently as high as 400oC without degrading the 

module. This is an important consideration because the cold side of the samples 

needs to be at high temperature in order to achieve higher mean temperature 

during small T measurement.  A small copper plate with dimensions 

30mm30mm3mm (the same cross sectional area as the module) was mounted 

on a thermoelectric module. During large T measurements, this plate will 
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dissipate the heat and ensure the cold side of the sample remains cool. 

Meanwhile, during small T measurement the copper plate will distribute heat 

from the module equally to the sample. Theoretically, 0.84 Watt of heat flux is 

required to heat up Bi2Te3 sample of dimensions 3mm3mm8mm to 

temperature difference of 500 K, assuming the thermal conductivity is 1.5 

W/cmK and Tc is 300 K. Due to the very small amount of heat flux, the 

temperature of cooper plate of this size did not change significantly, which was 

enough to be used as a heat sink to cool the sample. 1 mm diameter holes with 3 

mm depth was bored on one side of the copper plate for temperature 

measurement, T4, while one side of the cooper plate was grooved for the easy 

soldering of a wire connection as shown in Figure 5.4. A temperature solder with 

melting point of  200oC (AgSnPb, CuP Alloys Ltd.) was used to prevent melting at 

high temperature during small T measurement.  

 

 

 

Figure 5.4: Schematic diagram of copper plate heat sink design. 
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5.2.3 Holders 

Two types of holders were developed for this experimental assembly; 1) 

sample holder, and 2) chamber holder. The sample holder was responsible for 

holding the sample together and at the same time providing sufficient pressure 

to the sample to achieve good contact. The chamber holder was responsible for 

holding the heater/sample assembly to the top flange of the vacuum chamber 

for easy insertion and removal during assembly. 

The sample holder held the sample between the heat flow meter and 

heat sink as shown in Figure 5.1. Sufficient pressure was given by tightening all 

nuts at all four points of stainless steel rods. To allow for the expansion of heated 

materials, compression springs were placed on top of the ceramic insulator. A 

low thermal conductivity ceramic plate was employed to hold the heater 

assembly in place and at the same time minimize the heat loss from the heater 

assembly. The ceramic plate was supported by four 5 mm diameter stainless 

steel rods. Each rod goes through the ceramic plate at one end and the other end 

was fixed into the copper disc heat sink.  

The sample holder was placed inside the chamber holder. The chamber 

holder was attached to the top of the vacuum chamber flange so that the whole 

setup could be lifted out or inserted together with the top flange during open 

and closed circuit conditions. This is a convenient design because;  
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1) it prevent from having long thermocouples and wire connections 

inside the vacuum chamber and thus possibilities of short circuit and 

extra resistance due to long thin wires;  

2) it prevent the thermocouples from being damaged due to the 

movement of the top flange during assembly.  

Four steel socket shoulder screws (M6, 10 mm diameter, Buck & 

Hickman) were fixed on the top flange while the opposite ends were fixed to the 

copper disk heat sink. The screws were strong enough to hold the top flange and 

copper disk weight when lifted out the chamber and at the same time could 

provide compression during the sealing of the chamber. To allow easy access to 

the samples, the steel screws at the copper disc heat sink were put in line with 

the stainless steel rods of the sample holder, as shown in Appendix 5. 

 

5.2.4 Vacuum 

By designing the assembly setup inside a vacuum chamber could 

minimize heat loss through convection. The vacuum was achieved by a two-stage 

system that comprised of a RV8 rotary vane pump and an EXT250 

turbomolecular pump (Edwards). This pump took about 10-15 minutes to 

achieve up to 210-5 Torr and the pressure slightly increased as the temperature 

increased. However, less time is required to achieve a similar pressure if the 

vacuum chamber remains un-open in the next measurements. The dimensions of 

the vacuum chamber used can be found in Appendix 6.  
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Two types of feed-through were employed and were located at the top 

flange of the vacuum chamber; one was for thermocouples access, which was a 

solder-type sealing and another one for wire connection access (WFP series, 

Spectite) sealed by tightening the nuts to a pre-set torque to compress an 

internal sealant. Both feed-through were electrically and thermally insulated. 

 

5.2.5 Wire Connection 

One of the challenges in thermoelement measurement is to accomplish a 

short circuit condition. Due to very low sample resistance ( 0.01 ), it is 

important to obtain a closed circuit ( 0LR ) with an external resistance (i.e. 

wire connection, switch and contact) as low as possible. In order to achieve this, 

copper wires should be thick and short. The copper wires of 1.626 mm (16swg) in 

diameter and length of about 15 cm long were employed to form the total closed 

circuit. Ideally, smaller external resistance can be achieved if a closed circuit 

were to be made inside the vacuum chamber where only a short wire is required, 

but switching the circuit would require the use of a relay switch. The typical 

resistance of a relay switch found in the market is around 0.15   and this 

contributes to the total wire connection resistance. In the case where only long 

and thick copper wire was used, the total wire connection resistance measured 

was 0.025 , while the switching resistance contribute around 0.01 , making 

the total external resistance is  0.035 , much smaller than achievable if using a 

relay switch inside the vacuum. In addition, the penalty of using of a relay switch 
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will get worse as the temperature inside the chamber increases. Due to the 

complexity and significant difference in resistance between the use of a switch 

inside and outside the vacuum chamber, the switch placed outside vacuum 

chamber was employed. In order to avoid more additional resistance to the 

circuit, measurement of the current was made using a clamp meter. 

Another consideration was to avoid the copper wire being connected 

close to the location of temperature measurement to prevent conduction heat 

loss through thick copper wire becoming significant. Consequently, the 

connection at the hot side was located at the heater arm just below the heater. 

 

5.2.6 Thermocouple 

A bare fine thermocouple type-J, 0.25 mm in diameter (IRCO, Omega) 

was used for temperature measurement in this setup. Type-J thermocouples 

consist of iron as the positive leg and constantan as the negative leg was chosen 

over a typical type-K thermocouples due to its ability to operate in a vacuum 

environment over a wide temperature range 0-750oC. For most thermocouples, 

the operating temperature is limited by the temperature of the insulating sleeve 

(typically up to 300oC), consequently, bare thermocouples wires are employed 

for high temperature operation. In addition, the bare thermocouple is needed 

for feed-through soldering termination. Fine thermocouples help to minimize 

heat loss through wire conduction. The total length of each thermocouple was 1 

m with about 0.4 m was assembled inside the vacuum chamber while the rest 
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was outside and connected to a data logger. To prevent a short circuit, all the 

thermocouples wires inside the chamber were insulated using stack of single 

hole ceramic beads (maximum temperature 1600oC) while the thermocouples 

wires outside the chamber were insulated by PVC insulating sleeves.   

 

5.3 Experimental Setup 

Figure 5.5 shows a schematic diagram of experimental setup for ZT 

measurement of a small resistance sample. The heat flux at the hot side of the 

sample was provided by a cartridge heater powered by an AC power supply 

(MKII, Regavolt). The current and voltage of the power supply were monitored 

by Keithley 199 and Fluke 8842A digital multimeters respectively. The cold end of 

the sample was placed on a thermoelectric module which was powered by a 

programmable DC power supply (TSX3510P, Thurlby Thandar Instruments). The 

whole measurement assembly was placed inside a vacuum chamber which was 

connected to a turbomolecular pump. Five pairs of thermocouples were 

positioned at T1, T2, T3, T4 and T5 where the temperature of heater, brass hot 

junction, brass cold junction/ sample hot junction, sample cold junction and 

copper disk heat sink were measured respectively. The thermocouple was 

inserted inside small holes filled with heat sink compound (RS) to provide good 

thermal contact. All the data were recorded by a data logger (TC-08, PicoLog) 

which recorded the measurements every second and displayed them on the 

computer.  
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Figure 5.5: Schematic diagram of experimental setup for single leg 

thermoelement measurements.  
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Meanwhile, a Keithley 2000 multimeter was used to measure the voltage 

produced in the samples by connecting it across the switch. The electric current 

during closed circuit is measured using a clamp meter (ST-337, Farnell). The 

completed experimental setup is shown in Figure 5.6.  

 

5.4 Experimental Procedure 

5.4.1 Preparation of sample 

Samples of disk shape were cut into squares with dimensions of 

2mm2mm and 3mm3mm using a MKII microslice precision slicing machine 

(Malvern Instruments). A few attempts were made to cut segmented samples 

but these were not successful because the samples were too fragile and proved 

to be easily broken at the join during cutting. However, successful attempts were 

achieved by using a wire-cutter from Wire Cut Technology Ltd. The samples were 

then cleaned using acetone and deionised water a few times to remove dirt and 

residue. Prior to that, all surfaces of the samples were polished using fine sand 

paper (P2500, Hermes) to obtain flat surfaces. The average cross sectional area 

and thickness of each sample were then measured using a precision micrometer. 

 

5.4.2 Contact material 

Contact material is an important layer that will connect the samples to an 

electrode to ensure low electrical and thermal contact resistances.  
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Figure 5.6: The completed (except computer data acquisition system is not in the 

picture) measurement system for single leg thermoelement. 
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In this apparatus, the electrodes were the copper contact at the hot junction and 

the copper plate at the cold junction. There are a few considerations in making 

contact to the samples which include; 

 1) material will not react with samples,  

 2) high melting temperature, and 

 3) high thermal and electrical conductivity. 

PbSn solder and indium could have been used as a good contact material. 

However, it’s low melting temperature (<200oC) limit the usage to low 

temperature operation only and thus was not suitable for this type of 

measurement. Hence, pure platinum foil (99.998%, Alfa Aesa) with 0.1mm 

thickness was chosen as a contact material due to its high melting temperature 

(1768oC) and high thermal conductivity (71.6 W/mK) which is close to indium 

(81.8 W/mK) [105]. Platinum’s high resistance to oxidation also provides a low 

and relatively stable contact resistance. Because platinum is not as soft as 

indium, folding the platinum foils into a few layers helps to decrease the contact 

resistance. 

Prior to forming the contact, the sample at each junction was plated with 

nickel using a nickel plating pen (Hunter Product). Nickel layers act as a barrier to 

prevent the diffusion of copper atoms into the sample that would change the 

carrier concentration and even may change the conducting type of the sample 

[106,107]. 
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5.4.3 Assembly 

The prepared sample was placed vertically between the sample holders 

with layers of platinum foil placed at each junction. Prior to that, the 

thermoelectric module was sandwiched between the copper plate and the 

copper disk heat sink. Once assembled, the nuts on top of the spring of each rod 

were tightened to ensure sufficient pressure across the sample. Two opposite 

nuts were tightened simultaneously to prevent tilt and unbalanced pressure on 

the sample. Then all thermocouples were inserted into the respective holes. 

Figure 5.7 shows the assembled setup of thermoelement measurement. A close-

up of sample mounting inside the sample holder is shown in Figure 5.8. 

 

5.4.4 Measurement 

Once the sample was assembled, the total resistance at room 

temperature was measured. Measurement was made using 4-wires and the 

average of a few measurements was recorded. Then the apparatus was sealed 

inside the vacuum chamber to be evacuated to a vacuum pressure of 210-5 Torr 

and after 10 minutes or as soon as the pressure was reached, a low power was 

applied to the heater (under open circuit) to produce small temperature 

difference ( 15 K). Temperature produced (T1-T5) were recorded to the 

computer. When the temperature reading was stabilized, the open voltage 

reading was recorded. This was followed by the closed circuit measurement in a 

similar manner, except that the switch was on.  
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Figure 5.7: Measurement setup (before put inside vacuum chamber). 
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Figure 5.8: Close-up of mounting sample between heat flow meter and heat sink. 
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For large T measurements, this measurement cycle was repeated for different 

Th by increasing the heating power, while keeping the cold side at a constant Tc 

(295 K-300 K). The highest Th that can be reached with this equipment is  570 K, 

when the brass rod start becomes soft and bended.  

For small T measurement, a similar procedure was repeated except that 

the current to the thermoelectric module was reversed so that the temperature 

at the cold junction, cT , could be adjusted to keep the same temperature 

difference ( 15-30 K) with the change on the hot side during open circuit. The 

process was repeated until Th not exceeded  570 K. Usually, large T method 

was measured first (i.e., increasing T across the sample with increasing 

temperature), so that practical temperature difference for small T 

measurement (i.e., T keeps almost constant with increasing temperature) could 

be determined. The minimum observable temperature difference for the 

different samples was determined by its ZT and dimensions. 

 

5.5 ZT Calculation 

Due to the relatively small thermoelement resistance in comparison to 

the external wiring resistance in the measurement setup (i.e., RL is not << Ri), the 

short circuit condition cannot be obtained. In this case, equation 3.15, 

1( 





c

o

m
T

T
ZT , as explained in chapter 3) will be used for ZT calculation where 
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22
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  is an effective mean temperature and 

i

Li

R

RR
a


 is the 

ratio of total to internal resistance. 

 

5.5.1 Closed circuit 

Equation 3.15 indicates that the resistance of sample, iR , is needed for 

the determination of ZT values. Determination of internal resistance became 

more complex at higher temperature due to the fact that sample’s resistance 

changed with temperature.  

To determine   , method using extrapolation of      with changes in    

[101] as successfully proved in module measurement described in chapter 3 has 

been tried but not successful due to the very small changes of     . To solve this 

problem, larger temperature difference (T>200oC) is required. Since the 

research involved comparison measurement of ZT at small T, so this method is 

not suitable for determination of the sample resistance. Alternative approach for 

determination of    can be determined using equation 3.14, )( Licc RRIT  . 

Since value of         and  ̅ are already obtainable in the measurements, we 

only need to know the external resistance, LR , to determine the value of iR . 

External resistance consists of a contribution from leads and contacts as 

illustrate schematically in Figure 5.9. R1 and R2 represent wire resistances at the 

hot side and cold side respectively meanwhile R3 is the resistance of the switch. 

Rc1 and Rc2 are the contact resistances at the hot and cold side respectively.  
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Figure 5.9: Schematic diagram of total circuit resistance. 

 

 

Although R1, R2 and R3 are very small, they can be measured quite 

accurately using 4-wires. On the other hand contact resistance cannot be 

determined readily. Contact resistance should not be ignored because it can 

make a significant contribution to the total external resistance. The total external 

resistance which includes contact resistances can be determined from the 

measured overall resistance,      , and the sample resistance,   , at room 

temperature by using, 

[  ]       
 [(     )    ]       

  (   ) 

In contrast with total resistance measurement which can be measured 

during assembly of the sample measurement, the sample resistance need to be 

measured separately.    at room temperature can be measured using an 
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apparatus developed by Srivatsan [108] which will be explained further in section 

5.5.3. The total resistance,    (     ) at room temperature was measured 

using the 4-wires method available on a digital multimeter. With the assumption 

that wire and contact resistance does not change significantly over the 

temperature range, the sample resistance at different temperatures,   ( ) can 

be determined using equation 3.14, 

  ( )  
    

  
 [  ]       

  (   ) 

where [  ]                        is the total external resistance 

at room temperature. Note that    calculated from this equation represents 

resistance under actual operating conditions with a temperature difference 

established across the sample. It is to be noted also that    needs to be 

determined whenever a new contact is formed because the formation of the 

contacts has a negligible influence on   .  

 

5.5.2 Sample Resistance at room temperature 

The sample resistance at room temperature was determined from 

resistivity measurement measured using an apparatus developed by Srivatsan, 

originally to evaluate the electrical contact resistance at the thermoelectric 

junction. The concept of the measurement used a three-probe technique where 

a small ac current was applied at the end of the sample while the voltage 

produced between one movable probe and one fixed probe were measured. 



Chapter 5: Design and Construction of Large Temperature Difference (LT)Facility 
_________________________________for Single Thermoelement Measurement 

          

 147 

Plotting    as a function of distance,  , the resistivity of the sample can be 

calculated from the slope of the graph, 

 ( )  (
 

 
)        (   ) 

where )(xR  is the resistance measured at a particular distance x, cR  is the 

contact resistance, x,  and A  are resistivity, length and cross sectional area of 

the sample respectively.  

The apparatus for resistivity measurement and the schematic diagram of 

the measurement principles used are shown in Figures 5.10 and 5.11 

respectively. The current flowing into the samples can be determined accurately 

by measuring the voltage, 1V , across known resistance, LR . )(xR  can then be 

calculated using the Ohm’s Law, 
I

V
xR 2)(  , where 2V  is the voltage drop across 

the sample.  

It is to be noted that only one or two sets of measurements are required 

for determination of the resistance of each sample. However, the total resistance 

measurement is always required at the start of each run of measurement. Once 

iR  at room temperature and TR  are successfully measured, a  and mT  values 

can be calculated and thus ZT at that particular temperature can also be 

determined. 
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Figure 5.10: Apparatus used for sample resistivity measurement at room 

temperature (Photograph from recent equipment, Srivatsan, 2008). 

 

 

Figure 5.11: Schematic diagram of resistivity measurement [1]. 
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5.5.3 Expected results  

After all the data are available, modified dimensionless figure-of-merit, 

ZTm , with correction could be calculated using, 

    (
   

   

 
    

    

)     (   ) 

where To and Tc are the temperature difference across the sample during 

open and closed circuit respectively while Tbo and Tbc are the temperature 

difference across the brass regulator during open and closed circuit respectively. 

Figures 5.12 and 5.13 show the results of the temperature difference 

measurement across the sample and the temperature difference across the 

brass heat regulator as a function of time. Compared to the ZT module 

measurement described in chapter 4, the temperature drop between open and 

closed circuit in a single thermoelement measurement is much smaller. On the 

other hand, thermoelement measurement requires less time to stabilize 

compared to module measurement. Because of the relatively small drop during 

open and closed circuit, a small change in heat flux can result in significant 

change to ZT.  Therefore, the observation of the ratio of the temperature 

difference across the sample to the temperature difference across the brass 

regulator serves as an accurate indicator for the steady state condition (see 

Figure 5.15).  
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Figure 5.12: Temperature difference across the sample as function of time at 
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Figure 5.13: Temperature difference across the brass heat regulator as a function 

of time at           
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Figure 5.14: The ratio of the temperature difference across the sample and 

temperature difference across the brass, 
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5.6 Performance evaluation of the equipment 

5.6.1 Calibration 

Since temperature difference and current are involved directly in the 

measurement of     , all thermocouples and the current meter were calibrated.  

The temperature of a copper block placed inside the vacuum chamber was 

measured using all thermocouples involved from the same position during a 

period in which the heater power kept increasing. 

The results were compared with one of the calibrated thermocouples (T4 

as reference). Figure 5.15 shows the measurement results of all thermocouples 

from 0-50oC and Figure 5.16 shows the measurement results from 50-250oC. The 

relative error for all thermocouples with T4 showed an error of less than 3.6%, 

1.1%, 2.7% and 4.4%   in the high temperature range and less than 0.7%, 0.3%, 

0.4% and 0.7% observed for the low temperature range for T1, T2, T3, and T5 

respectively.  

The clamp meter used for current measurement in determination of    

and    was calibrated against a precision 1021 DC Current Source (Time 

Electronics) in a range of 1 to 99 mA. It showed an error of less than 2%. At the 

higher current range, the clamp meter was calibrated against the current 

measured by a TTi 1906 multimeter from Thurlby DC Power source in 0.1 to 1 A 

ranges. The error observed was less than 1.2%. 
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Figure 5.15: Calibration of all thermocouples at lower temperature (0-50 oC). 

 

Figure 5.16: Calibration of all thermocouples at higher temperature (50-250 oC). 
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5.6.2 Repeatability  

The developed equipment shows good repeatability under the same 

measurement conditions. The repeatability tests were done on a n-type Bi2Te3 

sample with dimensions of 3mm3mm8mm (sample C). The measurements 

were made with and without moving the sample out throughout the test. It was 

observed that the repeatability is slightly affected when a new contact was 

required. Figure 5.17 is shows four sets of small T measurements that were 

carried out under temperature differences of 17-35 K throughout the 

temperature range of 300-428 K. On the other hand, four sets of large T 

measurements were made with an increasing temperature difference from 12 K 

to 243 K is shown in Figure 5.18. Measurement data for small and large T can 

be found in Appendixes 9 and 10 respectively. Both results show a maximum 

error of less than 10% and 7% respectively. It was also found that repeatability 

for thermoelement measurement was slightly lower than for module 

measurement.  

The uncertainty in temperature measurement can be estimated using the 

theory of propagation error. The fluctuation of temperature measurement 

observed from the experiment gives an estimated error of ratio temperature 

difference,  (
   

   
) of 0.02-0.06 K (as shown in Figure 5.14). The estimated error 

of figure-of-merit, δ(ZT), determine by equation 5.4, can be calculated by,  

 (  )     [(
 (        ⁄ )

(        ⁄ )
)

 

 (
 (        ⁄ )

(        ⁄ )
)

 

]

 
 ⁄

  (   ) 



Chapter 5: Design and Construction of Large Temperature Difference (LT)Facility 
_________________________________for Single Thermoelement Measurement 

          

 155 

  

 

T
mean (K)

300 320 340 360 380 400 420 440

Z
T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S1

S2

S3

S4

  
 
 
 
 
 

Figure 5.17: Repeatability test of ZT measurement under small T for sample C. 

The results of four set of measurements shows maximum repeatability error of 

less than 10%. 
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Figure 5.18: Repeatability test of ZT measurement under large T for sample C. 

The results of four set of measurements shows maximum repeatability error of 

less than 7%. 
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where      and      are temperature difference across sample during open 

circuit and       and       are temperature difference across brass heat 

regulator during open and close circuit respectively. It was calculated that the 

maximum error of less than 1% are observed if maximum  (
   

   
)       are 

used in the calculation. Due to the small uncertainty in temperature 

measurement, this did not significantly contribute to repeatability errors. It 

suggested that the error in repeatability came from the difficulty of achieving a 

good contact using platinum foil especially when a new contact is required. 

Unlike in the module measurement, all thermoelements are already in good 

contact. Repeatability could be improved if high temperature solder was used at 

the junction. 

 

5.6.3 Accuracy 

 The accuracy of the measurement has been compared with a similar 

material using other commercial PPMS equipment (Quantum Design Inc) as a 

reference. However, the reference data was only available up to a temperature 

of 360 K. Comparison between these two results is shown in Figure 5.19. The 

results show that a relative error of 13% up to 32% was obtained within the 

temperature range of 300-362 K. ZT measurement from the new setup 

equipment decrease more rapidly compared with measurement using PPMS 

(data can be found in Appendix 11). Investigation on the deviation is carried out 

as discussed below.  



Chapter 5: Design and Construction of Large Temperature Difference (LT)Facility 
_________________________________for Single Thermoelement Measurement 

          

 158 

 

 

T
mean (K)

300 320 340 360 380 400 420 440

Z
T

0.2

0.4

0.6

0.8

1.0

1.2

Experiment

PPMS

 

 

 

Figure 5.19: Temperature dependence of sample C based on an average 

experimental ZT using novel technique as compared with PPMS measurement 

technique [Appendix 11].   
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5.7 Error Analysis 

5.7.1 Constant heat 

As observed in module measurement, temperature differences across the 

heat flow meter were higher at closed circuit compared with that during open 

circuit, which indicates that heat flux through the sample during short circuit is 

higher than during open circuit. The differences observed in thermoelement 

measurement were 3% to 15% for all temperatures. These differences can be 

compensated using for equation (4.9). Figure 5.20 shows the results of small T 

measurement (T 15-35 K) on Bi2Te3 with (ZTw) and without (ZTwo) correction. 

Deviation in heat flow temperature difference during open and close circuit is 

larger compared to module measurement corresponding to higher mean 

temperature measured.  

 

5.7.2 Seebeck Coefficient 

The Seebeck coefficient is calculated using equation 4.10. The results 

were then compared with reference data as shown in Figure 5.21. The 

experimental Seebeck coefficient result shows 9-12% lower than the reference 

material. Despite this, the curves show similar behaviour as expected which 

means that the ZT curve is only shifted to lower ZT without changing its 

behaviour. 
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Figure 5.20: Dimensionless figure-of-merit of sample C (from S2 data) obtained 

from small T measurements with ( wZT ) and without ( woZT ) correction. 
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Figure 5.21: An average Seebeck coefficient of sample C obtained from four 

different sets of measurements (S1, S2, S3 and S4) as comparison with PPMS 

measurement data [Appendix 11] as material reference as a function of Tmean. 
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5.7.3 Electrical resistivity 

Electrical resistance of non-short circuited condition can be determined 

from equation 5.2 with the assumption that LR  was constant throughout the 

temperature range. The result of electrical resistivity measurement is shown in 

Figure 5.22. The deviation of  25% compared with the reference material is 

observed. As can be seen, the large overestimate of sample resistance mainly 

contributes to the reduction of ZT. Because determination of sample resistance 

requires the measurement of current as well as of the external resistance at 

room temperature, the low resolution of current clamp meter and resistance 

meter contribute to the reduction in the accuracy of ZT measurement. 

 

5.7.4 Thermal conductivity 

Thermal conductivity was calculated using equation 4.12. The plotted 

result is shown in Figure 5.23. The graph indicates reduced heat loss was 

achieved as smaller deviation of thermal conductivity was observed from the 

reference data as the temperature increased. However,  at low temperature 

show much larger deviation. As shown in Figure 5.24, the error decreased 

linearly from 29% to 4% as a function of temperature. ZT of measured sample is 

being overestimate at lower mean temperature due to underestimate of thermal 

conductivity. This is because of smaller heat flux through the sample which 

reduced the capability of constant heat flow detection at lower temperature.  
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Figure 5.22: An average electrical resistivity of Sample C obtained from four 

different set of measurements (S1, S2, S3 and S4) as comparison with PPMS 

measurement data [Appendix 11] as material reference as a function of Tmean. 



Chapter 5: Design and Construction of Large Temperature Difference (LT)Facility 
_________________________________for Single Thermoelement Measurement 

          

 164 

 

T
mean (K)

280 300 320 340 360 380 400 420 440

T
h
e

rm
a

l c
o

n
d

u
c
ti
vi

ty
, 

(W
/c

m
K

)

1.00e-2

1.50e-2

2.00e-2

2.50e-2

3.00e-2

3.50e-2

Experiment

PPMS

 

 

 

Figure 5.23: An average thermal conductivity of Sample C obtained from four 

different sets of measurements (S1, S2, S3 and S4) as comparison with PPMS 

measurement data [Appendix 11] as material reference as a function of Tmean. 
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Figure 5.24: Percentage of thermal conductivity relative error as compared with 

material reference as a function of Tmean.  
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Compromise has been made between longer heat flux meter and heat loss along 

the meter. That is also the reason why reduction in ZT looks more rapidly from 

the reference materials. Thermal conductivity could also be calculated from 

equation 4.13 using total heat flow to the sample using brass rod conductance, 

                 (taken     
     

   
          and      ;   with  

       cm). It is found out that the results are similar with thermal conductivity 

obtained using     and   measurements. This gives an indication that the heat 

loss across heat flow meter is almost negligible as a result of vacuum usage as 

compared in module measurement where heat loss is significant. 

 

5.8 Conclusion 

The large temperature difference facility for measuring ZT of a 

thermoelement using the proposed novel technique has been successfully 

developed. The design allows for both types of measurement (small T and large 

T) by appropriate control of heater and cooling stage. Measurement can be 

done on different cross sectional area of samples without major changes to the 

facility. However, the facility operating temperature is limited due to brass rod 

properties.  

The facility successfully demonstrates ZT measurement using the 

proposed technique for thermoelements. ZT of n-type Bi2Te3 under small T 

measurement showed acceptable agreement with a similar sample measure 

using commercial PPMS equipment. Good repeatability was achieved with an 
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error of less than 10% and 7% under small and large T respectively. On the 

other hand, the accuracy of ZT measurement suggested a 13% to 32% deviation 

from the reference sample. In addition, the Seebeck coefficient and electrical 

resistivity can also be measured, although noticeable deviations are observed. 
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CHAPTER 6 

Results and Discussions 

 

6.1 Introduction 

Following the successful development of the proposed measurement 

technique on thermoelement, a number of carefully selected samples were 

investigated using the new apparatus. In this chapter, measurement results are 

presented and discussed. The key focuses of this investigation are 1) to confirm if 

there exists, in general, a noticeable difference in ZT evaluation between 

measurements under a large T and those under a small T; 2) to identify 

possible factors that are responsible for the observed differences.   

 

6.2 Samples 

A number of samples were used in the study of ZT measurement under a 

large T. These include homogeneous thermoelements of an n-type (sample C) 

and a p-type (sample D) Bi2Te3 and three segmented samples of an n-type 

BiTe+PbTe (sample E), p-type BiTe+TAGS-85 (sample F) and p-type BiTe+TAGS-80 

(sample G). The Bi2Te3 samples were made previously by the Cardiff 

thermoelectric group. Samples E and F (segmented) were supplied by Zhejiang 

University, China. Sample G was formed by joining sample D to a TAGS-80 (from 

Zhejiang University) using an indium contact. The exact compositions for the n-
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type segmented sample were made up from Bi2Se0.9Te2.1 and Pb9.6Sb0.2Te2Se8. 

The composition for the p-type segmented sample were Bi0.5Sb1.5Te3 and 

(AgSbTe2)15(GeTe)85. Both were prepared using the SPS method. A summary of 

the samples employed in this study is given in Table 6.1 below.  

 

 

Table 6.1: Type and dimensions of the samples used in the experiments. 

Sample Structure Material Type/No. 
of legs 

Cross 
sectional 

area 
(mm2) 

 

Thickness 
(mm) 

A Module Bi2Te3 127 1.41.4 1.71 
 

B 
 

Module Bi2Te3 127 1.41.4 1.15 

C Single Bi2Te3 n-type 3.0×3.0 8.00 

D Single Bi2Te3 p-type 3.0×3.0 8.00 

E Segmented Bi2Te3+PbTe n-type 2.0×2.0 10.00 

F Segmented Bi2Te3+TAGS-85 p-type 2.0×2.0 5.00 

G Segmented Bi2Te3 p-type 3.0×3.0 8.00 

TAGS-80 p-type 1.53.0 7.00 
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6.3 Sample Resistivity at Room Temperature 

As discussed in chapter 5, it is necessary to obtain the resistance of the 

tested samples at room temperature for ZT calculation. The resistance of each 

sample was measured using an apparatus developed by Srivatsan [108]. The 

measurement was carried out using a small ac signal of <10 mA for the single 

element and <100 mA for segmented element samples, with frequency ranging 

between 100-500 Hz. The results are shown in Table 6.2.  

 

 

Table 6.2: Electrical resistivity of all samples measured at room temperature. 

 S
am

p
le

 Structure Material Frequency  
(Hz) 

Current 
(mA) 

Electrical 
Resistivity 
(Ωcm) 

 

Resistance 
(Ω) 

C Single leg n-BiTe 100 9.43 1.368×10-3 12.16×10-3 

D Single leg p-BiTe 100 6.59 1.008×10-3 8.24×10-3 

E Segmented n-BiTe 400 22 1.31810-3 6.59×10-3 

n-PbTe 400 22 8.35810-4 5.11×10-3 

F Segmented p-BiTe 300 91.2 1.55210-3 9.7×10-3 

p-TAGS 85 300 91.2 7.8410-4 4.9×10-3 

G Segmented p-BiTe 100 6.59 1.008×10-3 8.24×10-3 

p-TAGS 80 500 91.2 0.80110-3 12.46×10-3 
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6.4 Module Measurement Results 

ZT results for sample A (thermoelectric module) under small T and large 

T obtained in chapter 3 are shown in Figure 6.1 for comparison.  The plotted ZT 

are calculated based on equation 4.9 with measurement data for small and large 

T can be obtained in Appendix 2 and 3. It can be seen that the ZT of the module 

starts at 0.65 at room temperature and then shows an increasing trend as the 

mean temperature increases. Large T measurements show a much slower 

increase in ZT than small T measurements for the same mean temperature. 

Large T measurements then continue to increase up to T= 110 K while the ZT 

of small T starts to decrease at a temperature of 341 K.  

A similar test was performed on another module of the same cross 

sectional area, sample B. The result is shown in Figure 6.2, with both curves 

showing an increasing ZT with increasing mean temperature. It can be seen that 

ZT behaviour is similar with to that observed in sample A but the ZT of large T 

became bigger than that of small T for temperature above 336 K. The ZT of 

sample B is much lower than sample A, with 0.52 at room temperature. It is 

noted that the ZT for this module degrades after it has operated at a high 

temperature for a period of time. The initial measurement of large T shows ZT 

as high as 0.57 can be achieved at a temperature of 304 K as represented by solid 

triangle in Figure 6.2. Measurement data for sample B can be obtained at 

Appendix 7 and 8. 
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Figure 6.1: An average ZT (from 4 set of measurements for ST and LT) as a 

function of mean temperature for Sample A. The dots represent the ZT value 

obtained under constant T (small T); the solid square represent the ZT values 

measured under increased T (large T). 
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Figure 6.2: An average ZT (from 4 sets of measurements of ST and LT) as a 

function of mean temperature for Sample B. The dots represent the ZT value 

obtained under constant T (small T); the solid square represent the ZT values 

measured under increased T (large T) and the triangle represents initial large 

T measurement. 
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6.5 Single and segmented ZT measurements 

ZT measurement for single leg thermoelement and segmented materials 

is obtained based on equation 5.4. For single leg measurements of samples C and 

D, the temperature difference was set between 11-38 K for a small T while 

those under large T were measured at up to 243 K for sample C and to 210 K for 

sample D. (Measurements data for sample C and D can be found in Appendix 9, 

10 and 12, 13 respectively.) 

 The ZTs of n-type and p-type Bi2Te3 samples are shown in Figure 6.3 and 

6.4 respectively. Small T measurements for both samples show a decrease in ZT 

with increasing mean temperature. When the large T measurement of sample C 

was compared to the small T measurements, ZT initially shows an increasing 

trend up to a temperature of 344 K before decreasing, following the same trend 

as small T.  On the other hand, the ZT for sample D did not show any significant 

difference with measurements under small T except toward the end of the 

temperature range.  

Measurements on the segmented thermoelectric structure were 

investigated for n-type and p-type of sample E, F and G. Sample E consisted of  

Bi2Te3 and PbTe materials, sample F consist of Bi2Te3 and TAGS-85 materials and 

sample G consist of Bi2Te3 and TAGS-80 materials. Since samples E and F were 

made from nanostructure materials using the SPS method, sample G which was 

joined together using an indium layer will be used as a reference material to 

study the segmentation influences toward the final result. 
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Figure 6.3: An average (from 5 sets of measurements for ST and 4 sets for LT) 

ZT as a function of mean temperature for Sample C. The dots represent the ZT 

value obtained under small T; the solid square represents the ZT values 

measured under increased T (large T). 
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Figure 6.4: An average (from 8 sets of measurements for ST and 5 sets for LT) 

ZT as a function of mean temperature for Sample D. The dots represent the ZT 

value obtained under small T; the solid square represents the ZT values 

measured under increased T (large T). 
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The segmented samples were arranged in such way that the low 

temperature material (Bi2Te3) was located at the cold side while the high 

temperature materials (PbTe or TAGS-85 or TAGS-80) were located at the hot 

side. ZT results for sample E and F are plotted in Figures 6.5 and 6.6. For sample 

E, no significant difference was observed between large and small T 

measurements for the same mean temperature. Under large T, that ZT showed 

an increase from a measurement at T= 26 K to T= 94 K before starting to 

decrease with further increase in mean temperature. Temperature difference for 

small T measurement was set at a much higher than homogenous sample to 

the range 64-77 K to reduce the error. Sample F observed a significant difference 

between large T and small T measurements. ZT obtained from large T 

measurements increases up to  0.6 at ∆T= 101 K, and then decreases to 0.27 at 

T= 237 K. ZT obtained from small T decreases monotonically from 0.4 to 0.13 

when measured under T 56-79 K. (Measurement data for sample E and F can 

be obtained in Appendixes 14-17). 

The segmented sample G was made in-house by putting together Bi2Te3 

sample of dimension 3mm3mm8mm (from sample D) and a TAGS-80 sample 

of dimensions 1.5mm3mm7mm with an indium layer in between. The result 

(Appendix 18) is plotted in Figure 6.7. Temperature differences for measurement 

under small ∆T were set at ∆T  30 K; while Tc of measurements under large T 

were set at  300 K. In this sample, a significant difference can be seen between 

ZT under large T measurements and that under small T measurements.  
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Figure 6.5: ZT as a function of mean temperature for Sample E with Bi2Te3 at the 

cold side. The dots represent the ZT value obtained under a small T; the solid 

squares represent ZT values measured under an increased T (large T). 
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Figure 6.6: An average (from 5 sets of measurements for ST and 7 sets for LT) 

of ZT as a function of mean temperature for sample F with Bi2Te3 at the cold 

side. The dots represent the ZT value obtained under small T; the solid squares 

represent ZT values measured under an increased T (large T).  
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Figure 6.7: ZT as a function of mean temperature for Sample G with Bi2Te3 at the 

cold side. The dots represent the ZT value obtained under a small T; the solid 

squares represent ZT values measured under an increased T (large T).  
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6.6 Influence of material “polarity” 

The portion of segmented materials in contact with the hot or cold sides 

was investigated by flipping the sample position by 180o, so that the higher 

temperature portion (PbTe or TAGS-85) was placed at the cold side while the 

lower temperature portion (Bi2Te3) was place at the hot side. This is referred to 

as changing the “polarity”. The results of measurement for both samples E and F 

are shown in Figures 6.8 and 6.9, respectively.  

The ZT of samples E and F under small T measurements behave almost 

the same when the sample is change in polarity. Temperature differences for 

small T measurements were set at 34-38 K and 41-52 K respectively. However, 

large T measurements show an increase of up to T= 240 K when Bi2Te3 was at 

the hot side. By contrast, sample F did not show a significant difference under 

large T except towards the end of the temperature range. It is anticipated that 

ZT obtained under large T should be significantly higher than that obtained 

under small T for both samples E and F. However, this was not observed in all of 

the measurement results. In order to understand the reasons behind this, a 

detail knowledge of samples E and F are needed. Unfortunately, this is not 

readily available and is outside the scope of this project.  
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Figure 6.8: ZT as a function of mean temperature for Sample E with Bi2Te3 at the 

hot side. The dots represent the ZT value obtained under small T; the solid 

squares represent ZT values measured under an increased T (large T).  
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Figure 6.9: An average (from 7 sets of measurements for LT) ZT as a function of 

mean temperature for sample F with Bi2Te3 at the hot side. The dots represent 

the ZT value obtained under small T; the solid squares represent the ZT values 

measured under an increased T (large T).  
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It can be seen from Figure 6.6 that sample F (Bi2Te3+TAGS-85) displayed a 

similar trend to sample G (as shown in Figure 6.7). This was expected due to the 

use of almost similar samples for both measurements. Consequently it was 

proved that the significant difference observed under both methods was not due 

to the change in properties of the segmented material made using the SPS 

technique.  On the other hand, the polarity effect on this material cannot be 

further proved because no measurement was made on sample G when it was in 

the opposite position due to smaller size of TAGS-80 makes it difficult to hold the 

segment tightly without breaking the Bi2Te3/TAGS-80 junction.  

 

6.7 Influence of contact material 

As mentioned in chapter 5, platinum was chosen to replace indium as the 

contact material between sample and copper due to its high melting 

temperature and low electrical resistivity. However, platinum is not as soft as 

indium, which introduces gaps at the junction and thus increases the total 

contact resistance. To minimize this effect, a few layers of platinum were used. It 

was observed that the total electrical resistance at room temperature was 

increased by  31-36% compared with that produced by the indium. The changes 

were observed using the 4-wire method. The total resistance using indium 

produced an average resistance of 0.040  while total resistance using platinum 

produced an average resistance of 0.062 . 
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The influence of indium and platinum contact materials on measured ZT 

values at higher temperature was also investigated. Measurements were made 

on the same n-type and p-type Bi2Te3 samples under large T. Figures 6.10 and 

6.11 show the results of indium and of platinum contacts on samples C and D 

respectively. It was shown that both contacts gave similar ZT despite the higher 

total resistance of the platinum contact. The maximum temperature difference 

measured using indium was <100 K because the melting point of the indium is 

429.7 K. 

 

6.8 Thermoelectric Transport Properties  

Key thermoelectric transport properties include the Seebeck coefficient, 

, electrical resistivity,  and thermal conductivity, . The Seebeck coefficient 

can be readily measured using this technique under large T and small T.  The 

Seebeck coefficients of samples A and B are shown in Figures 6.12 and 6.13, 

respectively.   The temperature difference for small T measurement was kept in 

range 8-16 K for both modules, while Tc were maintained between 288-295 K and 

293-300 K for samples A and B respectively, with a maximum achievable T of 

 110 K. It can be seen from the figures that for both modules, the Seebeck 

coefficients obtained under large T measurements are lower than those 

obtained under small T measurements as the mean temperature increases.  

  



  _____________________________________Chapter 6: Results and Discussions 
          

 186 

T
o
 (K)

0 50 100 150 200 250 300

Z
T

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Indium

Platinum

 

Figure 6.10: ZT measurements made under large T on n-type Bi2Te3 (sample C) 

using indium and platinum as contact material. 
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Figure 6.11: ZT measurements made under large T on p-type Bi2Te3 (sample D) 

using indium and platinum as contact material. 
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Figure 6.12: An average (from 7 sets of measurements for ST and 6 sets of LT) 

of the Seebeck coefficient of sample A under small T and large T. 
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Figure 6.13: An average (from 4 sets of measurements for ST and LT) of the 

Seebeck coefficient of sample B under small T and large T. 
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Figures 6.14 and 6.15 show the Seebeck coefficient of n-type and p-type 

thermoelements for samples C and D. Similar to the behaviour observed in the 

modules, the Seebeck coefficient under large T is lower than that under small 

T for the same mean temperatures. For segmented samples, the Seebeck 

coefficients change with the material “polarity” as shown in Figures 6.16-6.20. 

When placing low temperature materials, Bi2Te3 parts of sample E and F at the 

cold side, the Seebeck coefficient under large T measurements is bigger than 

small T measurements under the same mean temperatures. It behaved in the 

opposite fashion when the polarity changed. Such behaviours are anticipated 

due to the inhomogeneity of the segmented samples. Unfortunately, an in-depth 

analysis of these results is not straight forward and is complicated by other 

factors. For example, it has been observed that the temperature profiles along 

the samples are non-linear for segmented samples as shown in Figure 6.21 (a) 

and (b). This may also contribute to the observed difference in  when changing 

the “polarity”. Further investigations are needed.  

 can be calculated using Z and the Seebeck coefficient values,    
  

 
. 

Figures 6.22 and 6.23 show  values for samples A and B (thermoelectric 

modules), Figures 6.24-6.27 show the results for samples C, D, E and F 

(thermoelements), respectively. Except for sample E, all  obtained under large 

T were lower than those under small T. 
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Figure 6.14: An average (from 4 sets of measurements for ST and LT) of the 

Seebeck coefficient for sample C under small T and large T. 
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Figure 6.15: An average (from 8 sets of measurements for ST and 5 sets for LT) 

of the Seebeck coefficient for sample D under small T and large T. 
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Figure 6.16: The Seebeck coefficient for sample E under small T and large T 

with the Bi2Te3 segment at the cold side. 
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Figure 6.17: The Seebeck coefficient for sample E under small and large T with 

the Bi2Te3 parts at the hot side. 
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Figure 6.18: An average (from 5 sets of measurements for ST and 7 sets for LT) 

of the Seebeck coefficient for sample F under small and large T with the Bi2Te3 

part at the cold side. 
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Figure 6.19: An average (from 4 sets of measurements for LT) of the Seebeck 

coefficient for sample F under small and large T with the Bi2Te3 part at the hot 

side. 
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Figure 6.20: The Seebeck coefficient for sample G under small and large T with 

the Bi2Te3 part at the cold side. 
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Figure 6.21: Temperature distribution along sample F when (a) Bi2Te3 is located 

at the hot side and (b) TAGS-85 is located at the hot side. 
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Figure 6.22: An average (from 7 sets of measurements for ST and 6 sets of LT) 

of the product of electrical resistivity and thermal conductivity,  of sample A 

under small T and large T. 
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Figure 6.23: An average (from 4 sets of measurements for ST and LT) of the 

product of electrical resistivity and thermal conductivity,  of sample B under 

small T and large T. 
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Figure 6.24: An average (from 4 sets of measurements for ST and LT) of the 

product of electrical resistivity and thermal conductivity,  of sample C under 

small and large T. 
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Figure 6.25: An average (from 8 sets of measurements for ST and 5 sets for LT) 

of the product of electrical resistivity and thermal conductivity,  of sample D 

under small and large T. 
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Figure 6.26: A product of electrical resistivity and thermal conductivity,  of 

sample E under small and large T when (a) Bi2Te3 at the cold side and (b) Bi2Te3 

at the hot side. 
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Figure 6.27: A product of electrical resistivity and thermal conductivity,  for 

sample F under small and large T when (a) Bi2Te3 at the cold side and (b) Bi2Te3 

at the hot side. 
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6.9 Influence of the Thomson Effect  

Most of the ZT measurements presented above show a significant 

difference between small T and large T which is not due to experimental 

error. This is evident by examining the errors bars in the figures. In fact, one of 

the reasons for the observed differences is the Thomson effect, which becomes 

significant under larger temperature differences. The Thomson effect will 

introduce additional heat absorption or dissipation to the sample and 

consequently affects the ZT values.  

The Thomson coefficient can be determined from the measured Seebeck 

coefficients using, 

   
  

  
 ……..(6.1) 

where T is mean temperature and    
  ⁄   is the derivative of the Seebeck 

coefficient for small T. The Thomson heat being absorbed or released can be 

calculated using,  

        …….(6.2) 

where  is the Thomson coefficient, I  is the electrical current flowing through 

the samples and T is the temperature difference across the sample. Since 

Thomson heat occurred throughout the whole sample, it is assumed that half of 

the Thomson heat flowed to the hot end.  

Using the experimental data, the total heat flows into the sample which 

include the Thomson effect can then be obtained using equation (3.19).Thus, the 
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effective figure-of-merit for different temperature differences can be calculated 

using; 

       
(    )

 

  
   

                          
(   

   

   
)
 

  
    (   ) 

As shown previously, almost all  values obtained under large T differ 

significantly from  obtained under small T. In order to investigate the 

influence of the Thomson effect only, ZT values were calculated using  values 

derived under small T measurements. However, it was also necessary to 

identify the influences of  on ZT. This was achieved by using  values 

obtained from large T measurements. Those calculated results were plotted 

together with experimental results under small T as well large T 

measurements for comparison.  Effective ZT which includes the influence of 

Thomson heat only, is referred to as ZTeff1, while ZTeff2 represents the calculated 

ZT which included the influence of both the Thomson effect and the product .  

Figures 6.28 and 6.29 show the calculated effective figure-of-merit, 

compared with ZT obtained from small T and large T measurements for 

samples A and B. Average ZTeff1 curves for both modules exhibited similar trends 

to those of large T measurements. It was expected that ZT values from large T 

measurements would be in agreement with ZTeff2 because it included the 

influence of both the Thomson effect and  values under large T.  
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Figure 6.28: Calculated ZTeff1 and ZTeff2 for sample A, an average experimental ZT 

under small and large T. 
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Figure 6.29: Calculated ZTeff1 and ZTeff2 for sample B, an average experimental ZT 

under small and large T. 
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Figures 6.30 and 6.31 show the results of samples C and D. In these two 

single element samples, the calculated ZTeff2 is in better agreement with ZT 

values obtained from large T measurements than ZTeff1. This result may indicate 

that changes in  due to operating under large T and current also contribute 

to the observed change in ZT.  

The calculated ZTeff1 and ZTeff2 for segmented samples E and F are shown 

in Figures 6.32-6.35. The results from the segmented samples are more complex 

and difficult to explain due to the fact that the temperature profile along the 

samples exhibited significant non-linearity. Nevertheless, the results also indicate 

that both the Thomson heat and  product under large T are different from 

those when operated under small T.  
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Figure 6.30: Calculated ZTeff1 and ZTeff2 for sample C, an average experimental ZT 

under small and large T. 
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Figure 6.31: Calculated ZTeff1 and ZTeff2 for sample D, an average experimental ZT 

under small and large T. 
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Figure 6.32: Calculated ZTeff1 and ZTeff2 for sample E with the Bi2Te3 part at the 

cold side, experimental ZT under small and large T. 
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Figure 6.33: Calculated ZTeff1 and ZTeff2 for sample E with the Bi2Te3 part at the 

hot side, experimental ZT under small and large T. 
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Figure 6.34: Calculated ZTeff1 and ZTeff2 for sample F with the Bi2Te3 part at the 

cold side, experimental ZT under small and large T. 
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Figure 6.35: Calculated ZTeff1 and ZTeff2 for sample F with the Bi2Te3 part at the 

hot side, experimental ZT under small and large T. 
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6.10 Conclusion 

Measurements results presented in this chapter showed that ZT values 

obtained under large T were different from those obtained under small T. This 

finding was observed in a variety of samples including thermoelectric modules, 

homogeneous single thermoelements (both n and p-types) and segmented 

structures. 

Measurements of the Seebeck coefficient under large T and small T 

enabled the deduction of  values under respective Ts. Experimental data 

analysis indicated that in addition to the Thomson effect, the change in  also 

contributed to the observed difference in ZT values under large T.  

The ZT of segmented materials over large T were measured for the first 

time. This demonstrates the unique capability of this new technique. However it 

should be noted that the experimental results on the segmented samples were 

not conclusive due to the fact that the temperature profile along the sample 

exhibit non-linearity. In order to achieve accurate measurement, linear 

temperature profile along the samples is required.  
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CHAPTER 7 

Conclusions and Further Work  

 

7.1 Conclusions 

The main aim of the research in this thesis was to develop a novel ZT 

measurement technique. The studies embodied in this thesis describe 

experimental attempts toward fulfilling this aim. Since specific conclusions have 

been discussed at the end of each chapter, this final chapter will focus on the 

major conclusions that contribute to the successful establishment of this novel 

ZT measurement technique and facility.  The key achievements are as follows: 

 

1) 

An initial measurement system was constructed to investigate the feasibility of 

this novel technique. The system was designed for studying the feasibility using 

thermoelectric modules because the “short circuit” condition required by this 

technique can be readily achieved with thermoelectric modules, which have a 

relatively large internal resistance (a few ohms). An important feature of this 

system is the capability to monitor heat flow using an in-house designed heat 

flow meter, so that a constant heat flow across the sample is ensured. This 

facility can also be used for measuring the power output of the thermoelectric 

modules. Extensive experimental studies of ZT measurement using this system 
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confirmed the feasibility of the proposal measurement principle. The 

“temperature method” has proved to be more feasible and reliable, with ZT 

measurements showing a repeatability of <3.3% and an accuracy of <13%. The 

results from small T measurements agree well with other measurement 

methods and the data supplied by the module manufacturers. Furthermore, the 

experimental results obtained from this initial study demonstrated that ZT 

obtained under a large T measurement is different from that obtained under 

small T measurement.   

 

2) 

Following on from the success of the feasibility study using thermoelectric 

modules, research efforts were focused on the implementation of this technique 

for the evaluation of single thermoelectric materials, which have dimensions of 

approximately 3mm3mm8mm. A major problem associated with small-

dimension samples is the difficulty in achieving the short circuit condition. The 

investigation of T dependence on the ratio of the load resistance to the internal 

resistance led to a viable solution – determination of ZT by measuring the 

temperature differences at open and closed circuits, rather than at the 

unattainable short circuit condition. The theoretical outline for the modified 

technique was established (equations 3.15 and 3.16). Extensive experimental 

investigation on the influence of contact resistance and constant heat flux were 

carried out, which helped to identify suitable materials and structures for a 
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successful design of the proposed measurement system. Those include vacuum 

assembly, a multi-function heat flux meter as well as indium and platinum 

contacts for the cold and hot sides.   

 

3) 

A novel ZT measurement system was successfully designed, constructed and 

calibrated. The system is capable of measuring ZT values of small dimension 

samples under real operating conditions (i.e., under a large temperature 

difference and with electrical current flowing through the sample). This provides 

a radically new characterisation method for the investigation of the 

thermoelectric parameters and processes that was not possible previously. The 

system has been successfully tested at high temperatures up to 570 K, with a 

large temperature difference of  260 K. The calibration against a standard n-type 

Bi2Te3 based sample shows that both the repeatability and accuracy of the 

system is better than 10% and 32% errors respectively. The system can be used 

to measure a homogeneous single piece or inhomogeneous segmented or 

functionally graded samples with different cross-sectional areas and lengths with 

a typical dimension of 3mm3mm8mm. The heat flux meter has ability to 

detect changes with 3% error between open and close circuit.  A better accuracy 

and reliability of measurement is achieved with an established correction 

procedure. 

 



                                                                        Chapter 7: Conclusions and Further Work 
 

219 

 

4) 

The measurement system developed in this project was employed to investigate 

a variety of different types of thermoelectric materials. Those include:  

homogenous single piece p- and n-type Bi2Te3 based alloys, inhomogeneous n-

type Bi2Te3+PbTe, p-type Bi2Te3+TAGS-85 and p-Bi2Te3+TAGS-80 segmented 

samples. Taking advantage of being capable of measuring ZT under both small 

and large temperature difference of the developed system, a comparative study 

was carried out to investigate if the ZT obtained under a large temperature 

difference (which represents real operating conditions) differs from that  under a 

small temperature difference (which represent the values obtained from 

conventional ZT measurement techniques). Experimental results show clearly a 

noticeable difference in ZT values between large and small T measurements.  

Analysis of experimental data indicates that the observed difference can be 

attributed to the Thomson effect and the changes in the product of the electrical 

resistivity and thermal conductivity under a large temperature difference. ZT for 

segmented materials was measured for the first time and a change with the 

sample “polarity” was observed. However, the result is not fully understood but 

an initial study suggests that it may be partly due to the non-linear temperature 

profile that occurred along the sample during measurement. Further 

investigation is needed.        
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7.2 Further Work 

Several improvements in the design of the apparatus and of the measurement 

technique have been identified. This study has also highlighted several potential 

areas which suggest further investigation that could be carried out in the future.   

 

1. The ZT measurement system developed in this project has a temperature 

limitation of 570 K. This is mainly due to the fact that the thin brass rod of 

the heat flow meter becomes soft when the operating temperature is 

higher than 570 K and it is likely to get bent under pressure. To increase 

the measurement temperature and hence to achieve a larger 

temperature difference, the brass rod used in the current system should 

be replaced with a high strength and high temperature material which 

also needs to satisfy the requirements of high electrical conductivity and 

relatively low thermal conductivity.  

2. The current system demonstrated the capability of ZT measurement but 

only with materials which have relatively large ZT values (ZT > 0.2). In 

order to improve its ability to measure small ZT materials, the electrical 

resistance in the measurement loop needs to be further reduced. This 

may be achieved by employing high temperature soldering material as an 

interconnector between sample and copper contact/copper plate to 

reduce the total contact resistance and increase repeatability. Since the 

temperature change between open and closed circuit is small when 
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measuring small dimension samples, a more accurate temperature 

measurement system such as a higher resolution data logger and more 

accurate current measurement system should be incorporated to 

improve measurement accuracy.  

3. The results from this investigation show that the Thomson effect has a 

noticeable influence on ZT values under large temperature difference 

(i.e., real operating conditions). An in-depth investigation of the influence 

of the Thomson effect on ZT values will provide useful insight into further 

improvement of thermoelectric efficiency. Since the Thomson coefficient 

can be positive or negative depending on the temperature dependence of 

the Seebeck coefficient, it can either increase or decrease ZT values when 

under a real operating temperature. It is anticipated that the optimal 

operating temperature region is where the Thomson effect contributes to 

improving ZT values, which can be identified by ZT measurement using 

the system developed in this project.     

4. The experimental results also indicate that the product of electrical 

resistivity and thermal conductivity under large temperature differences 

is significantly smaller from that under small temperature differences. 

This finding has not been investigated in this project. The determination 

of why and how they are responsible for the observed reduction will 

provide useful insights into the understanding of the electrical and the 

thermal transport mechanisms under a large temperature difference.       
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5. As demonstrated in the experiments, segmented materials exhibit 

directional dependence. Unfortunately, non-linearity in the temperature 

profile of those materials was also observed, which complicated the 

interpretation of the results. Further investigation is required to study the 

influences of non-linear temperature distribution along the sample and 

its correlation to the changes in thermoelectric properties. Moreover, 

careful preparation of samples and measurement conditions may help to 

minimize the non-linear temperature distribution and consequently allow 

a direct comparison of ZT values measured in different “polarities” under 

large temperature differences.  

6. It has been predicted theoretically that the efficiency of thermoelectric 

devices over a large operating temperature difference can be significantly 

improved by employing appropriately segmented thermoelements. Very 

little experimental work has been done in this area due to lack of simple 

procedures. The measurement system developed in this project provides 

an effective method. It is now possible to design segmented samples 

based on theoretical calculation and then to evaluate their ZT values 

experimentally using the developed technique.  This investigation will be 

able to provide a direct verification of improved thermoelectric 

performance by using segmented structures.  In addition, it will provide 

experimental guidelines for the appropriate design of segmented 

structures.        
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APPENDIXES 

 

Appendix 1 

 

Heat absorbed at cold side thermoelectric cooler given as: 

        
 

 
        

By setting 
   

  
    maximum current obtained: 

     
(     )  

 
 

Therefore, maximum heat absorbed at cold side can be calculated by replace 

     into equation: 

(  )    
(     )

 
  

 

  
  (     ) 

By setting (  )       maximum    obtained is: 

(     )     
(     )

 
  

 

   
 

From definition of maximum efficiency of heat engine, 
     

  
, thermoelectric 

figure-of-merit can be defined as: 
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Appendix 2 

Measurements data for sample A under small temperature differences condition. 

 

Exp Tmean (K) 
 

Tmo Tms Tco Tcs ZTwo ZT 

S1 294.315 13.35 8.1 2.86 2.85 0.648148 0.642385 

 299.855 13.81 8.54 3.04 3.11 0.617096 0.654332 

 304.99 13.78 8.43 3.05 3.15 0.634638 0.688233 

 311.975 13.41 8.14 3.06 3.09 0.64742 0.663571 

 320.675 13.37 8.13 3.02 3.14 0.644526 0.709872 

S2 330.835 12.91 7.55 3.06 3.07 0.709934 0.715522 

 341.2 12.5 7.54 2.94 3.06 0.657825 0.725491 

 351.905 12.63 7.38 3.04 3.06 0.711382 0.722641 

 363.505 13.724 8.38 3.355 3.49 0.637709 0.703608 

 373.725 13.17 7.84 3.35 3.37 0.679847 0.689876 

 291.73 13.72 8.39 2.98 2.96 0.63528 0.624305 

S3 332.41 13.878 8.28 3.226 3.28 0.676087 0.704143 

 342.925 13.458 8.03 3.13 3.22 0.675965 0.724156 

 364.655 13.81 8.36 3.39 3.48 0.651914 0.69577 

 359.33 13.84 8.37 3.34 3.46 0.653524 0.712933 

S4 302.92 8.12 5.03 1.84 1.88 0.614314 0.649408 

 329.555 8.29 5.04 1.97 2.06 0.644841 0.719986 

 362.1 8.892 5.25 2.345 2.36 0.693714 0.704548 

S5 302.955 8.03 4.93 1.8 1.83 0.628803 0.65595 

 308 7.448 4.53 1.71 1.74 0.64415 0.672995 

 313.66 8.08 4.95 1.88 1.93 0.632323 0.675736 

 319.39 8.54 5.26 2 2.07 0.623574 0.680399 

 335.81 9.38 5.72 2.27 2.37 0.63986 0.712101 

S6 298.125 13.65 8.43 2.92 2.98 0.619217 0.652489 

 307.735 12.59 7.7 2.79 2.86 0.635065 0.676088 

 317.715 11.91 7.35 2.72 2.83 0.620408 0.685939 

 328.34 11.46 6.88 2.7 2.77 0.665698 0.708882 

 338.615 10.55 6.5 2.54 2.7 0.623077 0.725318 

S7 368.745 10.85 6.51 2.77 2.83 0.666667 0.702768 

 363.27 11.12 6.69 2.88 2.94 0.662182 0.696811 

 349.945 16.47 9.93 3.93 4.05 0.65861 0.709255 

 367.15 8.26 5.06 2.22 2.3 0.632411 0.691237 
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Appendix 3 

Measurements data for sample A under large temperature differences condition. 
 
 

Exp Tmean (K) 
 

Tmo Tms Tco Tcs ZTwo ZT 

L1 302.425 17.87 10.98 3.89 3.95 0.627505 0.652607 

 309.105 30.15 18.65 6.69 6.85 0.616622 0.655286 

 340.185 87.05 53.31 19.07 19.78 0.632902 0.693697 

L2 348.66 108.12 66.96 23.71 25.01 0.614695 0.703228 

 297.34 8.54 5.51 1.86 1.96 0.549909 0.633238 

 317.07 45.54 28.49 10.11 10.53 0.598456 0.66486 

 327.895 65.45 41.12 14.57 15.29 0.591683 0.670338 

L3 343.315 110.49 68.39 24.65 25.9 0.615587 0.697513 

 295.965 14.19 8.77 3.12 3.16 0.618016 0.63876 

 302.045 25.19 15.72 5.64 5.77 0.602417 0.639352 

 332.035 79.63 47.93 17.88 18.05 0.661381 0.677177 

 345.105 103.55 63.29 22.89 23.89 0.636119 0.707597 

 347.535 108.75 66.51 24 25.13 0.635092 0.712078 

L4 301.52 17.444 10.95 3.77 3.89 0.593059 0.643447 

 304.23 22.54 14.36 4.93 5.16 0.569638 0.642575 

 311.6 36.1032 22.82 7.88 8.22 0.582086 0.649828 

 321.155 53.8706 33.44 11.65 12.01 0.610963 0.659905 

 327.495 65.42284 39.91 14.184 14.46 0.639259 0.669999 

 332.425 74.5094 45.62 16.17 16.61 0.633262 0.676346 

 337.72 84.4172 51.65 18.33 18.89 0.634409 0.68278 

L5 300.245 17.85 11.08 3.92 3.97 0.611011 0.631559 

 307.37 31.12 19.25 6.88 7.01 0.616623 0.64717 

 316.29 47.54 29.55 10.52 10.83 0.608799 0.656206 

 326.775 66.847 41.09 14.894 15.21 0.626844 0.66136 

 338.98 89.32 55.44 19.74 20.57 0.611111 0.678853 

L6 300.535 14.8895 9.34 3.42 3.52 0.594165 0.643117 

 311.38 34.726 21.59 7.77 8.02 0.60843 0.66172 

 317.78 46.6376 28.73 10.35 10.59 0.623307 0.662456 

 325.09 60.1982 37.2 13.33 13.76 0.618231 0.671548 

 333.015 74.5833 45.35 16.42 16.68 0.644615 0.671764 

 340.405 88.1245 54.2 19.32 20.05 0.625913 0.687767 
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Appendix 4  

Temperature dependence of thermoelectric properties data showing (a) Seebeck 

coefficient, (b) thermal conductivity and (c) electrical resistivity [109] from 

manufacturer for given sample A.  

 

 

 
 

(a) 

 

 

 
 

 
(b) 
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(c) 
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Appendix 5 

Diagram showing design of the bottom heat sink where position of screw and 

rod made in line for easy access and assembly of the sample at the centre. 
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Appendix 6 

Size and dimension of vacuum chamber used in high temperature 

thermoelement measurement. 
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Appendix 7 

Measurements data for sample B under small temperature differences condition. 

 

Exp Tmean (K)  (V/K) Tso Tbo Tsc Tbc ZT  (V/K) 

S1 298.575 1.77E-04 11.97 3.85 8.15 3.98 0.518305 1.185E-04 

  300.195 1.78E-04 11.93 3.83 8.11 3.97 0.524795 1.154E-04 

  305.405 1.80E-04 11.75 3.78 7.91 3.9 0.532619 1.050E-04 

  312.35 1.83E-04 11.04 3.7 7.54 3.9 0.543336 9.054E-05 

  315.65 1.83E-04 11.338 3.79 7.63 3.95 0.548709 8.340E-05 

S2 320.605 1.83E-04 10.95 3.73 7.3 3.84 0.544236 7.236E-05 

  325.805 1.86E-04 10.53 3.67 7 3.78 0.549373 6.036E-05 

  331.055 1.87E-04 10.43 3.64 7.02 3.81 0.555145 4.783E-05 

  335.895 1.86E-04 9.87 3.54 6.72 3.74 0.55173 3.589E-05 

  341.31 1.87E-04 9.82 3.53 6.57 3.67 0.553952 2.211E-05 

  346.58 1.89E-04 9.52 3.47 6.351 3.618 0.56291 8.252E-06 

  351.82 1.88E-04 9.08 3.39 6.02 3.51 0.561697 -5.951E-06 

S3 302.99 1.79E-04 11.56 3.8 7.85 3.95 0.530741 1.099E-04 

  336.835 1.86E-04 11.51 4.07 7.73 4.24 0.551198 3.353E-05 

  342.335 1.87E-04 11.53 4.1 7.68 4.25 0.556228 1.945E-05 

  347.565 1.87E-04 11.25 4.08 7.52 4.25 0.558344 5.615E-06 

  358.3 1.87E-04 11.18 4.16 7.48 4.33 0.555732 -2.411E-05 

  300.145 1.77E-04 11.97 3.93 8.13 4.05 0.517281 1.155E-04 

S4 299.535 1.77E-04 10.33 3.17 7.04 3.3 0.527504 1.167E-04 
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  307.63 1.82E-04 12.113 4.02 8.115 4.129 0.533141 1.005E-04 

  318.49 1.83E-04 12.84 4.32 8.58 4.44 0.538073 7.712E-05 

  329.13 1.86E-04 12.5 4.3 8.33 4.43 0.545967 5.248E-05 

  339.67 1.86E-04 12.3 4.31 8.37 4.54 0.547955 2.633E-05 

  350.115 1.88E-04 11.89 4.29 7.88 4.43 0.558124 -1.283E-06 
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Appendix 8 

Measurements data for sample B under large temperature differences condition. 

 

Exp Tmean (K)  (V/K) Tmo Tco Tms Tcs ZT 

L1 314.86 1.81E-04 37.36 24.64 12.06 12.28 0.543893 

  323.64 1.81E-04 52.74 34.65 16.8 17.12 0.55107 

  333.64 1.82E-04 70.2 46.08 22.12 22.7 0.563383 

  341.92 1.81E-04 84.74 55.39 26.67 27.37 0.570033 

  304.935 1.79E-04 19.95 13.3 6.52 6.67 0.534509 

  311.095 1.80E-04 30.81 20.84 10.09 10.43 0.528224 

  318.665 1.81E-04 44.07 29.36 14.29 14.65 0.538836 

L2 299.965 1.77E-04 11.19 7.37 3.76 3.77 0.522356 

  302.185 1.78E-04 15.11 9.92 5.18 5.18 0.523185 

  304.43 1.79E-04 19.16 12.67 6.61 6.67 0.52596 

  307.055 1.79E-04 23.97 15.87 8.23 8.39 0.539761 

  310.275 1.80E-04 29.71 19.43 10.24 10.31 0.539531 

L3 312.75 1.80E-04 34.34 23.16 11.89 12.32 0.536352 

  316.775 1.81E-04 41.53 27.09 14.4 14.51 0.544749 

  320.855 1.81E-04 48.73 31.75 16.89 17.01 0.545708 

  325 1.81E-04 56 36.51 19.4 19.6 0.549639 

  329.31 1.82E-04 63.8 42.27 22.12 22.8 0.555744 

  333.1 1.81E-04 70.82 46.31 24.6 25.06 0.557855 

  339 1.81E-04 81.16 52.64 27.95 28.39 0.566065 
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  345.67 1.80E-04 93.14 61.3 31.81 33.04 0.578164 

L4 313.49 1.81E-04 35.9 24.31 11.9658 12.41 0.531005 

  348.535 1.80E-04 98.67 68.25 33.2416 36.51 0.58947 

  351.205 1.79E-04 103.51 68.23 34.8292 36.5 0.591537 

  349.095 1.80E-04 99.85 63.41 33.5356 33.78 0.587691 
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Appendix 9 

Measurements data for sample C under small temperature differences condition. 

 

Exp 
Tmean 
(K) 

 (V/K) Tso Tbo Tsc Tbc Ic (A) ZTm+1 a Tm ZT  (V/K) 

S1 310.04 -1.89E-04 25.94 3.65 24.88 4.03 0.076 1.15115 6.208807 51.60354 0.908124 -1.12E-04 

  329.57 -1.96E-04 23.22 4.16 22.64 4.59 0.07 1.131632 5.534725 61.21076 0.70873 -8.61E-05 

  349.81 -2.00E-04 26.52 5.56 25.93 6.09 0.081 1.120246 5.524327 65.20127 0.645131 -5.52E-05 

  371.31 -2.03E-04 27.77 7.01 26.42 7.48 0.082 1.121571 4.855233 78.54396 0.574723 -1.77E-05 

  394.75 -2.03E-04 30.01 9.04 29.28 9.71 0.091 1.100895 4.839418 83.89538 0.474742 2.85E-05 

S2 312.45 -1.91E-04 29.15 4.06 27.42 4.44 0.09 1.162594 5.669598 57.19662 0.888222 -1.09E-04 

  327.77 -1.96E-04 32.46 5.01 31.67 5.67 0.107 1.159967 5.641212 60.38117 0.868359 -8.87E-05 

  343.14 -2.00E-04 30.19 5.49 29.21 6.1 0.099 1.148389 5.282862 67.11427 0.758691 -6.58E-05 

  363.07 -2.02E-04 32.8 6.95 31.91 7.65 0.105 1.13142 4.510783 83.17025 0.573697 -3.27E-05 

  384.71 -2.03E-04 34.58 8.6 33.23 9.29 0.108 1.124118 4.279674 92.7612 0.514757 7.99E-06 

  428.11 -1.99E-04 27.07 11.58 26.51 12.16 0.083 1.072268 4.052237 108.0216 0.286417 1.04E-04 

S3 312.39 -1.92E-04 25.94 3.74 25.27 4.2 0.079 1.152769 5.885371 54.8416 0.870208 -1.09E-04 

  338.58 -1.99E-04 26.93 4.91 25.75 5.4 0.08 1.150195 4.93885 70.53122 0.72101 -7.29E-05 

  368.98 -2.05E-04 17.75 5.63 16.99 5.97 0.056 1.107824 5.790023 64.89142 0.61311 -2.20E-05 

  410.46 -2.03E-04 19.99 9.09 19.51 9.54 0.061 1.075326 4.790978 87.22517 0.354468 6.26E-05 

S4 311.25 -1.93E-04 26.71 3.76 26.32 4.3 0.084 1.160563 5.80883 55.54035 0.899813 -1.11E-04 

  324.00 -1.97E-04 26.25 4.2 25.31 4.66 0.082 1.150731 5.683247 58.80499 0.830501 -9.39E-05 

  338.76 -2.00E-04 19.88 4.17 18.64 4.472 0.059 1.143273 4.748692 72.82311 0.666479 -7.26E-05 

  363.09 -2.04E-04 27.66 6.37 26.82 6.93 0.087 1.121985 4.870625 76.66916 0.577699 -3.26E-05 
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  385.25 -2.03E-04 30.71 8.28 29.79 8.92 0.094 1.110565 4.414605 89.79194 0.474381 9.08E-06 

  407.70 -2.01E-04 31.15 10.29 30.22 10.92 0.094 1.093883 4.394987 95.34317 0.401461 5.64E-05 

  428.17 -1.97E-04 28.96 11.95 28.06 12.49 0.083 1.078712 3.998954 109.5815 0.307552 1.04E-04 
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Appendix 10 

Measurements data for sample C under large temperature differences condition. 

 

Exp Tmean (K)  (V/K) Tso Tbo Tsc Tbc Ic (A) ZTm+1 a Tm ZT 

L1 306.9 -1.85E-04 14.76 2.17 14.4 2.41 0.042 1.138364 6.056468 51.65241 0.822109 

  320.455 -1.92E-04 38.05 5.39 37.16 6.08 0.116 1.155031 6.794248 49.44996 1.004663 

  349.185 -1.97E-04 91.51 13.1 88.47 14.79 0.28 1.167803 6.39938 60.23515 0.972756 

  367.14 -1.96E-04 125.34 18.86 121.04 21.16 0.385 1.161809 6.600227 63.18277 0.940234 

  396.895 -1.92E-04 180.87 29.48 175.56 32.71 0.54 1.143126 6.2996 74.4612 0.762893 

  418.535 -1.84E-04 219.33 38.16 214.41 41.84 0.638 1.121596 6.676692 76.13701 0.668427 

L2 299.325 -1.85E-04 12.45 1.82 11.71 1.97 0.033 1.15082 5.492249 55.47708 0.813743 

  324.53 -1.95E-04 54.56 7.44 52.61 8.35 0.164 1.163911 6.518882 53.00676 1.00353 

  354.7 -1.97E-04 109.7 15.29 105.37 17.19 0.33 1.170464 6.262191 63.46449 0.952715 

  382.875 -1.94E-04 163.27 24.23 158.53 27.22 0.489 1.15699 6.368552 70.38079 0.854034 

  410.935 -1.86E-04 213.937 35.766 210.41 39.76 0.63 1.130305 6.788836 73.6729 0.726818 

  427.58 -1.81E-04 243.3 42.24 237.64 46.06 0.688 1.116407 6.620838 79.58111 0.625442 

L3 304.36 -1.89E-04 18.64 2.61 17.93 2.89 0.056 1.151126 5.645403 55.10713 0.834679 

  321.295 -1.94E-04 47.75 6.46 44.95 7.15 0.147 1.175756 6.301182 53.87135 1.048229 

  342.15 -1.97E-04 84 11.25 80.07 12.71 0.265 1.18523 6.259855 59.86792 1.058602 

  370.14 -1.96E-04 133.04 18.26 128.79 20.81 0.421 1.177257 6.011334 70.2985 0.933306 

  394.055 -1.92E-04 176.11 25.8 169.37 28.73 0.539 1.15788 5.91186 78.1286 0.796293 

  411.065 -1.87E-04 207.45 32.87 201.49 36.3 0.63 1.137017 6.207712 79.52383 0.70825 
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L4 306.62 -1.91E-04 18 2.5 17.56 2.81 0.053 1.152164 5.700076 55.05184 0.847502 

  322.075 -1.95E-04 44.95 6.06 43.71 6.87 0.139 1.165824 6.650956 51.18121 1.043503 

  338.615 -1.98E-04 73.21 9.8 70.59 11.08 0.227 1.172576 6.641909 55.41269 1.054573 

  357.245 -1.98E-04 104.99 14.06 100.84 15.87 0.321 1.175186 6.207525 64.15079 0.975583 

  377.36 -1.96E-04 142.08 19.6 137.405 22.018 0.433 1.161588 6.205482 69.96088 0.871586 

  393.185 -1.92E-04 172.21 25.09 167.47 28.08 0.51 1.150848 5.903775 78.10878 0.759338 

  409.91 -1.87E-04 203.803 31.801 198.17 35.09 0.597 1.134789 6.241449 78.70203 0.702034 

  424.415 -1.82E-04 230.73 38.02 225.31 41.6 0.666 1.120482 6.58254 78.75012 0.649323 
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Appendix 11 

Measurements data for n-type Bi2Te3 sample using commercial PPMS method. 

 

Tmean (K)  (V/K)  (cm)  (W/cmK) ZT 

362.67 -2.26E-04 1.14E-03 1.84E-02 0.886960076 

349.61 -2.23E-04 1.09E-03 1.71E-02 0.932481153 

336.57 -2.23E-04 1.04E-03 1.64E-02 0.98508119 

323.42 -2.19E-04 9.79E-04 1.55E-02 1.021016673 

310.18 -2.17E-04 9.26E-04 1.50E-02 1.046851661 

298.34 -2.12E-04 8.80E-04 1.47E-02 1.033873254 

287.97 -2.08E-04 8.42E-04 1.44E-02 1.022277126 
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Appendix 12  

Measurements data for sample D under small temperature differences condition. 

 

Exp  (V/K) Tmean Tso Tbo Tsc Tbc Ic ZTm+1 a Tm ZT  (V/K) 

S1 1.92E-04 318.595 31.81 5.3 31.04 6 0.111 1.160159 3.256864 101.0465 0.504973 1.389E-04 

  1.96E-04 328.845 33.77 6.02 32.89 6.82 0.117 1.163202 3.065476 110.7806 0.484454 1.251E-04 

  2.02E-04 345.925 32.89 6.86 32.27 7.69 0.111 1.142529 2.730796 130.3142 0.378349 9.952E-05 

  2.05E-04 357.32 38.72 8.31 37.6 9.26 0.137 1.147513 2.937713 125.6761 0.419405 8.070E-05 

S2 1.88E-04 307.585 20.03 3.24 19.36 3.6 0.068 1.149564 3.920129 80.28581 0.572998 1.525E-04 

  1.93E-04 318.58 25.2 4.46 24.37 4.95 0.087 1.147666 3.714667 88.07243 0.534143 1.390E-04 

  1.97E-04 330.85 31.34 5.93 30.69 6.65 0.107 1.145168 3.316641 102.9305 0.466613 1.223E-04 

  2.01E-04 341.115 31.43 6.51 30.75 7.26 0.108 1.139869 3.221815 109.0714 0.437432 1.070E-04 

  2.04E-04 353.4 34.4 7.59 32.91 8.31 0.108 1.144432 2.748715 132.1394 0.386275 8.733E-05 

  2.06E-04 365.375 34.37 8.4 33.03 9.12 0.113 1.129761 2.889437 130.0407 0.364589 6.654E-05 

  2.09E-04 377.76 35.2 9.39 34.21 10.26 0.118 1.124272 2.873482 135.2252 0.347161 4.339E-05 

  2.10E-04 389.09 32.74 9.97 31.84 10.76 0.106 1.109744 2.670976 149.23 0.286137 2.076E-05 

  2.09E-04 409.115 33.47 11.85 32.84 12.7 0.105 1.09229 2.521862 165.992 0.227464 -2.265E-05 

  2.08E-04 421.065 29.51 12.29 28.78 12.96 0.093 1.081263 2.594915 165.4214 0.206849 -5.063E-05 

S3 1.90E-04 316.385 31.73 5.03 30.48 5.66 0.113 1.171396 3.158573 103.3426 0.52473 1.418E-04 

  1.93E-04 321.59 32.68 5.37 31.71 6.08 0.118 1.16685 3.096698 107.2497 0.500303 1.350E-04 

  1.96E-04 329.755 34.95 5.98 33.11 6.63 0.124 1.170308 3.060062 111.1971 0.50505 1.238E-04 

  2.00E-04 335.71 24.46 4.93 23.42 5.44 0.089 1.152449 3.001546 114.3106 0.447714 1.152E-04 

  2.02E-04 343.89 27.18 5.69 26.1 6.3 0.098 1.153021 2.887725 121.9094 0.431652 1.027E-04 
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  2.08E-04 358.635 37.55 7.76 35.27 8.46 0.132 1.160682 2.720899 135.5834 0.425023 7.843E-05 

  2.08E-04 376.27 34.98 8.52 33.41 9.3 0.121 1.142843 2.58333 149.4054 0.359744 4.626E-05 

S4 1.87E-04 303.9 15.26 2.54 14.89 2.82 0.055 1.137824 4.168651 74.25521 0.564066 1.568E-04 

  1.88E-04 303.825 10.53 1.85 10.11 2.03 0.037 1.142882 4.088187 75.23715 0.576992 1.569E-04 

  1.91E-04 312.46 16 2.92 15.39 3.2 0.056 1.139327 3.741004 84.97 0.512348 1.467E-04 

  1.95E-04 321 18.88 3.71 18.21 4.08 0.068 1.140193 3.754446 87.22323 0.515939 1.358E-04 

  2.01E-04 334.245 18.63 4.34 17.77 4.69 0.068 1.132944 3.743388 90.93541 0.488654 1.174E-04 

  2.05E-04 350.28 22.78 5.8 21.94 6.31 0.08 1.129584 3.143746 113.6894 0.399251 9.249E-05 

S5 1.90E-04 306.67 15.5 2.68 15.07 2.97 0.047 1.13983 3.923503 79.58438 0.53882 1.536E-04 

  2.01E-04 342.32 17.82 4.78 17.24 5.16 0.056 1.115815 3.828073 91.03751 0.435489 1.052E-04 

  2.05E-04 357.7 22.1 6.23 21.48 6.74 0.07 1.113089 3.622974 100.8055 0.401287 8.004E-05 

  2.08E-04 367.09 20.06 6.59 19.58 7.09 0.062 1.102247 3.27793 114.0394 0.329132 6.343E-05 

  2.10E-04 379.315 20.55 7.48 19.72 7.94 0.06 1.106175 2.95631 130.4514 0.308726 4.037E-05 

  2.12E-04 395.735 17.27 8.29 16.84 8.74 0.051 1.081203 2.915259 137.5836 0.233566 6.837E-06 

S6 1.85E-04 305.97 13.02 2.28 12.59 2.51 0.041 1.138477 3.873279 80.18136 0.528423 1.544E-04 

  1.89E-04 313.21 16.12 2.99 15.72 3.32 0.052 1.138622 3.877508 82.26942 0.52775 1.457E-04 

  1.94E-04 323.545 15.93 3.42 15.55 3.76 0.055 1.126282 4.285835 76.88021 0.531449 1.324E-04 

  2.00E-04 337.12 15.68 4.09 15.23 4.44 0.052 1.11765 3.565656 96.03966 0.412977 1.131E-04 

  2.10E-04 376.615 18.75 6.98 18.16 7.46 0.06 1.103491 2.978297 128.3926 0.303571 4.560E-05 

  2.10E-04 398.01 20.78 8.93 19.7 9.34 0.062 1.103252 2.676536 150.8442 0.272436 1.960E-06 

S7 1.90E-04 308.025 15.41 2.66 14.85 2.93 0.054 1.143042 3.745855 83.67591 0.526561 1.520E-04 

  1.92E-04 315.38 13.66 2.68 13.28 2.95 0.052 1.132244 4.431771 72.2988 0.576869 1.430E-04 

  1.94E-04 326.07 13.26 3.13 12.79 3.39 0.049 1.122867 4.011198 82.45559 0.485877 1.290E-04 

  2.04E-04 350.995 12.93 4.48 12.51 4.79 0.047 1.105093 3.457312 102.7737 0.358915 9.132E-05 

  2.10E-04 380.755 21.41 7.56 20.65 8.05 0.073 1.104004 2.842033 136.2747 0.29059 3.754E-05 
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S8 1.85E-04 306.215 14.63 2.48 13.93 2.7 0.046 1.143419 4.437737 70.2589 0.625073 1.541E-04 

  1.90E-04 312.845 15.51 2.83 14.92 3.11 0.05 1.142397 4.132433 77.06713 0.578043 1.462E-04 

  1.94E-04 322.18 19.14 3.75 18.44 4.09 0.064 1.132069 4.309004 76.37735 0.557104 1.342E-04 

  1.98E-04 329.72 18.04 3.98 17.5 4.34 0.059 1.124101 3.837243 87.55498 0.467345 1.239E-04 

  1.99E-04 337.235 19.43 4.58 18.93 4.97 0.066 1.113815 3.996376 86.11843 0.445694 1.129E-04 

  2.02E-04 343.26 17.3 4.61 16.37 4.91 0.056 1.125584 3.683572 94.69828 0.455215 1.037E-04 

  2.07E-04 355.975 16.21 5.17 15.24 5.44 0.052 1.119197 3.488044 103.498 0.40997 8.299E-05 

  2.08E-04 368.9 20.5 6.59 19.7 7.04 0.066 1.111667 3.233943 116.0918 0.354841 6.012E-05 
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Appendix 13  

Measurements data for sample D under large temperature differences condition. 

 

Exp  (V/K) Tmean Tso Tbo Tsc Tbc Ic ZTm+1 a Tm ZT 

L1 1.83E-04 300.575 10.03 1.98 9.79 2.18 0.039 1.128001 5.652897 53.87398 0.714147 

  1.88E-04 313.39 31.02 5.72 29.95 6.36 0.113 1.151612 4.097624 79.2619 0.59945 

  1.92E-04 327.25 55.32 10.04 53.01 11.18 0.197 1.16207 3.737141 92.57817 0.572895 

  1.97E-04 345.66 88.54 16.37 84.43 18.23 0.312 1.167833 3.429437 109.1288 0.531602 

  2.01E-04 364.175 122.29 23.58 116.4 26.1 0.419 1.162879 3.094516 129.8046 0.456968 

  2.02E-04 378.505 148.17 29.67 142.61 33.03 0.51 1.156648 3.002524 141.2517 0.419762 

  2.02E-04 392.83 174.04 36.62 167.37 40.44 0.58 1.148324 2.829143 157.2456 0.370541 

  2.01E-04 405.37 196.26 43.46 189.61 47.81 0.643 1.138674 2.755735 168.3424 0.333929 

L2 1.85E-04 303.255 11.51 2.18 11.09 2.4 0.046 1.142611 4.504902 68.24991 0.633665 

  1.87E-04 308.925 20.01 3.67 19.39 4.11 0.08 1.1557 4.289891 73.73848 0.652299 

  1.93E-04 327.635 53.79 9.54 52.18 10.79 0.203 1.165925 3.346451 103.2538 0.526497 

  1.99E-04 351.665 97.79 17.84 93.39 20.03 0.357 1.175656 3.002455 127.032 0.486271 

  2.02E-04 371.855 134.59 25.95 130.06 29.41 0.493 1.172807 2.862876 144.2239 0.445552 

  2.03E-04 390.715 167.59 34.34 161.47 38.4 0.597 1.160612 2.725026 161.5114 0.38854 

L3 1.86E-04 302.98 9.92 1.91 9.66 2.12 0.039 1.139822 4.917857 62.37226 0.679201 

  1.88E-04 310.43 22.5 4.07 21.78 4.54 0.082 1.152354 3.79021 83.95756 0.563325 

  1.94E-04 329.7 57.28 9.92 55.63 11.29 0.212 1.171861 3.58786 97.3275 0.582186 

  1.98E-04 345.24 85.3 14.88 79.73 16.37 0.3 1.176991 3.303221 112.3029 0.544102 
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  2.02E-04 365.885 123.09 22.69 119.19 25.79 0.434 1.173815 2.952316 137.0091 0.464177 

  2.03E-04 391.79 169.9 34.15 164.29 38.21 0.593 1.157094 2.879062 154.2162 0.399101 

L4 1.84E-04 301.59 11.46 2.02 10.86 2.17 0.039 1.133609 4.501153 67.99672 0.592603 

  1.87E-04 305.875 16.27 2.78 15.64 3.06 0.055 1.145058 4.327867 72.08242 0.615539 

  1.89E-04 309.995 21.73 3.64 20.95 4.03 0.074 1.148363 4.17058 76.22881 0.603341 

  1.90E-04 315.715 31.11 5.14 29.92 5.68 0.107 1.14901 4.310128 75.86065 0.620144 

  1.92E-04 320.355 38.71 6.34 37.64 7.11 0.129 1.153331 3.856621 86.6173 0.567096 

  1.95E-04 330.48 57 9.2 54.32 10.22 0.184 1.165677 3.429813 101.6764 0.538501 

  1.97E-04 341.27 76.9 12.38 74.51 13.97 0.25 1.164629 3.243912 112.9363 0.497474 

  1.99E-04 356.175 104.35 16.85 99.67 18.69 0.323 1.161281 2.968765 130.5538 0.440005 

  2.03E-04 373.86 136.82 22.55 132.69 25.38 0.425 1.16053 2.80549 148.0568 0.405357 

L5 1.90E-04 299.295 5.47 0.96 5.38 1.05 0.018 1.112047 4.624092 65.17133 0.514568 

  1.90E-04 307.5 15.8 2.71 15.28 2.98 0.05 1.137053 4.208902 74.44098 0.566137 

  1.91E-04 316.645 31.73 5.27 30.49 5.82 0.102 1.149278 4.161146 78.81396 0.599742 

  1.94E-04 328.285 52.85 8.65 50.56 9.57 0.167 1.156468 3.825675 90.47608 0.567733 

  1.99E-04 362.91 117.02 18.92 111.3 20.69 0.343 1.149752 3.002225 132.5296 0.410071 

  2.00E-04 391.845 170.11 29.09 164.56 32.3 0.514 1.147795 3.05702 145.7677 0.397295 

  1.98E-04 414.59 210.1 38.38 204.71 42.27 0.614 1.130353 2.909289 165.1668 0.327204 
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Appendix 14 

Small and large T measurement for sample E (BiTe@Tc). 

 

Exp  (V/K) Tmean Tso Tbo Tsc Tbc Ic ZTm+1 a Tm ZT  (V/K) 

L1 -8.69E-05 302.4 25.56 4.62 25.47 4.68 0.026 1.016566 4.798615 65.1013 0.076952  

  -8.90E-05 317.67 53.83 9.967 53.39 10.08 0.064 1.019672 10.98572 31.09127 0.201  

  -9.22E-05 338.22 93.519 17.49 92.95 17.76 0.117 1.021653 13.16999 28.94696 0.253002  

  -9.79E-05 364.88 144.68 27.7 145.52 28.55 0.192 1.024881 11.68583 37.10127 0.244694  

  -1.04E-04 393.25 199.57 39.89 199.23 40.88 0.27 1.026521 8.906502 54.06201 0.192916  

  -1.13E-04 423.87 257.3 49.56 255.46 50.6 0.363 1.028339 6.917847 76.95547 0.156088  

S1 -9.92E-05 437.92 64.06 20.14 63.92 20.49 0.085 1.019607 6.757984 68.83129 0.124742 -2.788E-06 

  -1.00E-04 416.3 77.62 19.08 78.74 19.65 0.113 1.015225 11.52653 39.22901 0.161571 -1.511E-05 

  -9.87E-05 397.7 77.88 17.22 78.53 17.8 0.107 1.025126 8.197077 52.74439 0.189453 -2.467E-05 

  -9.69E-05 379.8 77.14 15.73 76.22 15.94 0.104 1.025582 9.579435 43.11545 0.225347 -3.296E-05 

  -9.44E-05 360.73 67.99 13.36 67.92 13.68 0.092 1.025007 11.44023 34.2311 0.263534 -4.083E-05 

  -9.33E-05 346.15 74.76 13.36 74.91 13.74 0.1 1.026077 11.17846 33.9912 0.265551 -4.616E-05 

  -9.06E-05 325.44 70.55 11.59 70.91 11.93 0.092 1.02411 11.147 32.11709 0.244307 -5.273E-05 
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Appendix 15  

Small and large T measurement for sample E (BiTe@Th). 

 

Exp  (V/K) Tmean Tso Tbo Tsc Tbc Ic ZTm+1 a Tm ZT  (V/K) 

L1 -9.55E-05 309.435 17.95 4.15 17.93 4.24 0.022 1.022826 6.795417 46.66832 0.151351  

  -9.82E-05 322.625 42.29 9.41 42.32 9.63 0.056 1.022654 9.595037 35.61265 0.205228  

  -1.03E-04 343.74 82.44 18.13 82.11 18.54 0.115 1.026724 10.50109 36.26867 0.253283  

  -1.09E-04 367.925 128.69 28.49 129.65 29.66 0.191 1.033358 10.42832 40.96479 0.299608  

  -1.14E-04 396.245 182.33 40.58 180.4 41.65 0.281 1.037348 11.34855 42.07866 0.351699  

  -1.16E-04 406.98 202.76 45.49 201.29 46.78 0.323 1.035868 13.30605 37.53452 0.388909  

  -1.19E-04 425.99 239.68 55.4 239.49 57.44 0.396 1.037646 14.18847 37.87233 0.42344  

  -1.11E-04 377.2 149.34 30.99 147.52 31.65 0.229 1.033897 11.03977 40.15833 0.318391  

  -1.01E-04 335.37 68.98 14.22 68.53 14.51 0.096 1.027094 9.478982 38.60068 0.235399  

  -1.16E-04 402.42 200.9 42.69 198.95 44.02 0.322 1.041262 11.04259 44.54949 0.372721  

  -1.18E-04 422.245 244.91 54.159 242.41 55.76 0.407 1.040179 12.87686 41.38101 0.409981  

S1 -9.49E-05 308.66 18.96 4.15 18.93 4.23 0.026 1.020892 7.482383 42.35616 0.152248 -4.05E-05 

  -9.65E-05 316.555 35.35 7.44 35.2 7.58 0.05 1.023159 8.54183 38.87452 0.188582 -4.05E-05 

  -1.03E-04 331.84 35.84 8.79 35.66 8.95 0.055 1.023342 10.06602 34.5607 0.224122 -4.02E-05 

  -1.12E-04 347.565 34.07 9.83 34.44 10.15 0.059 1.02146 12.1301 29.98495 0.248754 -3.98E-05 

  -1.23E-04 379.095 35.878 13.29 35.54 13.5 0.065 1.025462 9.476567 41.71182 0.23141 -3.82E-05 

  -1.31E-04 398.9 38.66 15.56 38.32 15.84 0.073 1.027027 7.886917 52.69875 0.204581 -3.68E-05 

  -1.36E-04 406.76 35.14 15.82 35.13 16.16 0.07 1.021783 8.083032 52.19662 0.169748 -3.61E-05 
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Appendix 16  

Small and large T measurement for sample F (BiTe@Tc). 

 

Exp  (V/K) Tmean Tso Tbo Tsc Tbc Ic ZTm+1 a Tm ZT  (V/K) 

L1 1.53E-04 335.355 67.03 13.31 66.63 14 0.135 1.058155 9.533477 38.31084 0.509064  

  1.66E-04 413.86 201.84 42.86 200.85 45.42 0.414 1.064953 6.420518 77.71004 0.345919  

  1.67E-04 424.79 220.54 47.45 217.829 49.817 0.452 1.06295 6.550398 78.79666 0.339364  

  1.60E-04 379.08 140.26 25.86 138.47 27.29 0.29 1.06894 8.947735 49.16577 0.531541  

L2 1.55E-04 337.95 71.78 13.79 70.88 14.42 0.145 1.058963 10.72333 34.4935 0.577689  

  1.65E-04 391.375 161.75 31.93 155.52 32.36 0.336 1.054066 10.42696 44.04952 0.480367  

  1.66E-04 409.155 191.63 39.27 188.31 40.97 0.389 1.061684 6.996656 69.89666 0.361079  

  1.67E-04 428.225 223.99 47.37 221.68 49.91 0.43 1.0646 4.995225 103.4089 0.267512  

  1.67E-04 435.87 236.86 50.24 233.03 52.56 0.445 1.063373 4.739011 111.1548 0.248504  

L3 1.60E-04 372.14 128.82 23.5 126.535 24.66 0.268 1.068311 9.652729 44.34455 0.57327  

  1.63E-04 397.96 173.4 31.41 170.55 33.06 0.358 1.07012 7.874815 59.86695 0.466113  

  1.66E-04 424.13 218.78 43.36 215.66 45.57 0.443 1.066173 6.408286 80.19981 0.349952  

  1.53E-04 346.475 79.456 13.983 79.45 14.83 0.162 1.060654 10.34849 36.87219 0.569941  

L4 1.56E-04 324.755 44.15 7.7 43.82 7.99 0.054 1.045477 8.347531 41.19964 0.358469  

  1.58E-04 343.325 77.63 13.47 77.5 14.09 0.101 1.047783 12.23276 30.97765 0.529577  

  1.59E-04 365.555 117.33 20.6 117.06 21.57 0.154 1.049502 12.77368 32.84003 0.551031  

  1.60E-04 389.965 159.13 28.81 157.37 29.88 0.206 1.048739 11.80395 39.09234 0.486196  

  1.64E-04 411.005 195.55 36.62 193.22 37.86 0.245 1.046328 7.306765 67.55082 0.28188  

L5 1.46E-04 306.24 16.58 2.79 16.56 2.9 0.016 1.040682 4.498085 69.54275 0.179148  
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  1.55E-04 328.32 55.652 8.88 55.53 9.24 0.067 1.042827 11.52377 30.74608 0.457321  

  1.60E-04 353.84 101.85 15.84 100.86 16.49 0.127 1.051254 13.17935 30.369 0.597175  

  1.60E-04 370.45 127.16 22.09 125.35 22.72 0.163 1.043371 15.62205 27.42586 0.585827  

  1.66E-04 407.52 193.36 35.13 191.71 36.37 0.251 1.044208 10.9736 45.03489 0.400038  

L6 1.49E-04 327.145 52.35 9.29 52.07 9.56 0.059 1.034597 11.78064 29.7921 0.379909  

  1.56E-04 355.295 100.45 17.31 99.58 17.87 0.121 1.041371 15.78373 25.46138 0.577296  

  1.64E-04 389.305 160.35 27.73 155.77 28.09 0.196 1.042766 13.97023 32.89889 0.506071  

  1.70E-04 432.56 236.48 44.07 235.77 45.93 0.287 1.045344 7.473961 71.60156 0.273933  

  1.66E-04 412.39 204.26 34.45 202.52 35.81 0.243 1.048408 7.775595 64.31369 0.310403  

L8 1.49E-04 317.85 32.68 6.95 32.53 7.17 0.036 1.036412 6.964777 47.63895 0.242942  

  1.53E-04 334.965 62.93 13.11 62.71 13.52 0.077 1.034892 13.64658 26.67938 0.438073  

  1.59E-04 363.095 113.428 24.148 113.7 25.03 0.149 1.034045 20.66599 20.22207 0.611293  

  1.65E-04 405.41 187.76 41.07 187.34 41.89 0.255 1.022253 21.04531 23.51969 0.383569  

  1.67E-04 418.435 210.85 46 208.82 47.57 0.27 1.044184 9.790634 52.24643 0.35386  

  1.68E-04 430.17 231.72 50.71 229.77 52.57 0.291 1.045477 8.045774 65.88814 0.296911  

S1 1.58E-04 410.005 56.47 17.78 56.41 18.34 0.078 1.032593 4.80126 90.08999 0.148334 -2.61E-05 

  1.51E-04 459.38 60.06 23.32 60.07 23.96 0.08 1.027273 4.94612 97.66799 0.128279 -1.00E-04 

S2 1.53E-04 337.91 68.9 13.33 67.85 13.91 0.139 1.05966 8.215286 44.72887 0.450706 5.47E-05 

  1.55E-04 346.06 65.72 13.11 64.83 13.72 0.129 1.060896 6.393175 58.36376 0.361077 4.72E-05 

  1.57E-04 363.045 61.91 13.24 61.1 13.85 0.117 1.05994 4.974148 77.85217 0.279517 3.02E-05 

  1.59E-04 386.77 60.42 14.24 59.97 14.93 0.111 1.056322 4.259276 96.13373 0.226599 3.51E-06 

  1.57E-04 418.745 57.48 16.016 57.04 16.66 0.1 1.048234 3.726679 117.867 0.17136 -3.81E-05 

  1.48E-04 463.735 61.49 21.95 60.47 22.4 0.102 1.037715 3.924438 123.7338 0.141349 -1.07E-04 

  1.41E-04 491.145 59.95 25.6 58.99 26.16 0.092 1.038505 3.612654 141.7755 0.133391 -1.56E-04 

  1.32E-04 516.62 56.96 28.35 56.48 28.94 0.089 1.029487 4.555124 118.2098 0.128868 -2.05E-04 

S3 1.53E-04 341.935 75.63 13.86 74.48 14.48 0.153 1.060864 5.77853 64.43083 0.323006 5.10E-05 
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  1.55E-04 354.775 70.25 13.36 69.36 14.04 0.139 1.064383 4.944026 77.29843 0.295497 3.87E-05 

  1.56E-04 360.375 79.15 14.84 77.96 15.57 0.155 1.065206 4.673743 83.58606 0.281133 3.30E-05 

  1.57E-04 382.105 60.79 13.18 60 13.78 0.116 1.05929 4.157663 97.28166 0.232879 9.04E-06 

  1.57E-04 399.995 61.83 14.29 60.96 14.91 0.114 1.058278 3.715975 113.5631 0.205268 -1.29E-05 

  1.50E-04 454.225 64.35 18.62 63.4 19.23 0.108 1.048236 3.336475 142.6383 0.153604 -9.17E-05 

S4 1.54E-04 339.975 66.89 13.89 66.56 14.01 0.035 1.01364 32.74979 11.36141 0.408161 5.28E-05 

  1.56E-04 356.65 57.64 13.37 57.5 13.51 0.0305 1.012931 28.56906 13.45244 0.342838 3.68E-05 

S5 1.56E-04 372.045 62.93 13.72 63.07 14.07 0.051 1.023234 8.321584 48.01976 0.18001 2.05E-05 

  1.56E-04 393.145 63.51 16.05 62.78 16.24 0.051 1.023604 8.549255 49.18655 0.188662 -4.27E-06 

  1.53E-04 434.22 71.82 21.63 71.4 21.97 0.055 1.021694 6.774092 68.55825 0.137399 -6.05E-05 
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Appendix 17  

Small and large T measurement for sample F (BiTe@Th). 

 

Exp  (V/K) Tmean Tso Tbo Tsc Tbc Ic ZTm+1 a Tm ZT  (V/K) 

L1 1.58E-04 319.28 36.72 6.43 36.15 6.79 0.074 1.072638 3.952082 84.1927 0.275462  

  1.63E-04 355.54 101.04 17.53 99.35 18.73 0.2 1.086629 3.454049 113.145 0.272218  

  1.61E-04 392.27 165.48 30.05 162.26 31.71 0.311 1.076182 3.195279 139.9719 0.2135  

  1.58E-04 406.95 190.98 35.29 187.66 37.34 0.346 1.076809 3.103982 151.2931 0.206603  

  1.54E-04 417.7 209.84 39.17 204.96 40.74 0.363 1.064846 2.984869 162.1702 0.167022  

  1.51E-04 426.585 225.77 42.05 222.45 44.07 0.351 1.06368 2.543404 193.7637 0.140196  

L2 1.60E-04 315.72 28.28 5.22 27.86 5.5 0.049 1.069524 4.058537 80.35106 0.273177  

  1.64E-04 334.215 59.97 10.78 59.02 11.37 0.11 1.071708 4.61842 77.32738 0.309928  

  1.63E-04 358.96 104.54 18.682 102.33 19.66 0.186 1.075077 4.325768 92.09511 0.292629  

  1.62E-04 387.53 153.3 27.95 149.68 29.12 0.26 1.067058 3.863462 114.322 0.227313  

  1.54E-04 412.47 197.7 37.39 196.03 39.32 0.3 1.060577 3.180865 150.8382 0.165649  

  1.46E-04 433.355 233.98 45.59 232.31 47.81 0.32 1.056234 2.874893 177.1081 0.137595  

L3 1.59E-04 321.29 40.7 6.85 40.39 7.28 0.076 1.070931 4.812948 70.06808 0.325245  

  1.63E-04 338.325 69.67 11.45 68.79 12.14 0.13 1.073825 4.497758 81.12549 0.307881  

  1.64E-04 361.73 110.68 18.24 108.82 19.29 0.195 1.075642 3.757139 106.7084 0.256419  

  1.60E-04 390.68 162.26 27.9 160.04 29.42 0.268 1.069108 3.406233 131.0679 0.205992  

  1.52E-04 417.93 210.08 38.01 208.79 40.13 0.322 1.062298 3.193934 153.3547 0.169777  

  1.44E-04 436.12 241.76 45.92 239.27 47.91 0.335 1.054194 2.900373 177.1434 0.133423  

L4 1.59E-04 311.78 22.84 5.03 22.72 5.19 0.031 1.037259 7.859807 40.92527 0.283848  
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  1.62E-04 327.27 49.36 10.51 48.83 10.83 0.068 1.041632 7.796495 44.68784 0.304888  

  1.64E-04 342.76 76.2 15.92 75.69 16.54 0.105 1.045945 7.074653 53.03308 0.29695  

  1.64E-04 361.8 109.014 23.284 108.02 24.05 0.151 1.042403 7.369036 55.4049 0.276895  

  1.60E-04 385.875 150.91 32.95 149.22 33.98 0.198 1.042939 6.296587 71.14977 0.232877  

  1.54E-04 404.93 184.24 41.37 182.53 42.66 0.228 1.040842 5.635324 85.07848 0.194389  

  1.48E-04 422.605 214.21 49.2 212.82 50.63 0.253 1.035786 5.431866 93.72471 0.16136  

S1 1.61E-04 322.145 44.49 9.65 44.85 10.13 0.07 1.041315 7.423246 46.06329 0.288937 7.596E-05 

  1.63E-04 334.43 48.2 10.82 47.51 11.15 0.074 1.045465 6.778879 52.29268 0.290766 7.017E-05 

  1.70E-04 360.07 47.18 12.03 46.74 12.47 0.073 1.046333 5.634339 67.29489 0.247912 5.603E-05 

  1.72E-04 392.89 52.62 15.77 52.04 16.25 0.078 1.041922 4.517558 91.42113 0.180164 3.387E-05 

  1.74E-04 420.345 45.63 17.06 45.5 17.54 0.066 1.031074 3.932357 111.1991 0.117461 1.183E-05 

  1.74E-04 460.82 41.98 20.61 42.02 21.04 0.059 1.019892 3.601 132.1176 0.069382 -2.648E-05 
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Appendix 18 

Small and large T measurement for sample G (BiTe@Tc). 

 

Exp  (V/K) Tmean Tso Tbo Tsc Tbc Ic ZTm+1 a Tm 

L1 1.67E-04 408.535 214.51 27.66 213.23 29.34 1.067105 6.434085 77.42199 0.354095 

  1.64E-04 393.33 183.44 22.15 181.98 23.41 1.065364 7.492787 62.94004 0.408479 

  1.60E-04 379.425 155.67 17.98 154.37 19.04 1.067872 8.294666 53.85926 0.478143 

  1.53E-04 357.955 113.29 12.58 113 13.37 1.065526 9.582519 42.62385 0.550284 

  1.47E-04 339.12 76.26 8.33 75.54 8.73 1.058008 9.917956 37.57848 0.523485 

  1.41E-04 322.415 43.67 4.73 43.16 4.94 1.056739 8.732987 39.07929 0.468109 

  1.34E-04 308.005 16.15 2 15.8 2.03 1.037484 9.253369 34.03477 0.339221 

S1 1.38E-04 315.98 30.46 3.59 30.35 3.72 1.039967 12.36619 26.6778 0.473385 

  1.40E-04 333.9 32.5 4.81 32.04 4.95 1.043881 9.99821 34.82101 0.420776 

  1.41E-04 362.355 31.67 6.66 31.369 6.83 1.035333 10.17362 36.9906 0.346117 

  1.42E-04 400.82 37.49 10.29 36.91 10.53 1.029237 11.23242 37.15845 0.31511 
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