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Abstract

This thesis presents a new family of single-determinantal ab initio electronic struc-

ture models ideal for the black-box computational investigation of molecular phe-

nomena. These theories mimic Variational Coupled Cluster and achieve an ap-

proximately fulfilled variational upper bound property on the exact ground-state

Schrödinger energy eigenvalue, while not exceeding the limiting computational

complexity of the well-known CCSD method, and without sacrificing any other

advantageous methodological property. In particular, these Approximate Vari-

ational Coupled Cluster Theories are formulated through the minimization of a

rigorously extensive and orbitally-invariant functional that treats certain limiting

systems exactly. Unlike CCSD and related methods, for which it is extremely

problematic, these theories are highly robust to the breakdown of the Hartree-

Fock approximation that occurs when the single Slater determinant of minimal

energy becomes an inadequate qualitative description of the true electronic wave-

function.

Furthermore, presented results suggest that when the essential physics of

strong non-dynamic correlation is captured by a near-variational ansatz, remain-

ing dynamic correlation effects may be legitimately included perturbatively, with

implications for the design of future electronic structure models because the fail-

ure of methods such as CCSD(T) to describe the dissociation of multiple bonds

may be ascribed to the inadequate non-variational description of the electronic

structure at the CCSD level, and not to a breakdown of perturbation theory;

Optimized-Orbital Quasi-Variational Coupled Cluster Doubles with a perturba-

tive treatment of triple excitations (OQVCCD(T)) is capable of predicting a

physically correct and quantitatively accurate potential energy curve for diatomic

nitrogen, N2, which has not been achieved, at the time of writing, by any other

practical (O(o2v4)-iterative O(o3v4)-non-iterative) method based on Restricted

Hartree-Fock theory. The method is demonstrated to be additionally suitable for

the black-box description of singlet multiradicals through application to model

hydrogen chains.
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Chapter 1

Motivation

A central theoretical and computational problem in the fields of quantum chem-

istry and molecular physics is the purely first principles (or ab initio) predic-

tion of molecular electronic structure, because it is the electronic structure of

a molecule that primarily determines its physical and chemical properties. Ab

initio electronic structure calculations attempt to find an approximate solution

to the Born-Oppenheimer electronic Schrödinger equation, and have, in recent

years, become indispensable tools for the investigation of molecular phenomena.

The construction of new algorithms for the more efficient or more accurate com-

putational calculation of molecular electronic structure therefore continues to be

a very active area of research.

The standard and widely accepted approach to the treatment of this prob-

lem is to first make the Hartree-Fock[1, 2] (HF) approximation, which constructs

the single-determinantal reference wavefunction of minimal energy, solving the

resulting equations by a Self-Consistent Field procedure, and assumes this wave-

function to be an adequate description of the ground-state electronic structure.

This approximation corresponds to a mean-field treatment of the Coulomb and

exchange interactions between electrons.

The Hartree-Fock approximation typically accounts for almost all of the molec-

ular energy, but the small remaining energy, the ‘correlation energy’, is extremely

important for the correct description of phenomena such as chemical bonding.
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Electron correlation may be further conceptually divided into ‘dynamic’ and ‘non-

dynamic’ (or static) correlation. These terms refer respectively to the energy

associated with the instantaneous correlated motion of the electrons that is not

captured by the HF mean-field treatment, and to the character of the system that

cannot be captured easily by the underlying single-determinantal reference wave-

function approximation. One of the key challenges in obtaining sufficient accuracy

for reliable and quantitative prediction of empirical phenomena is to obtain the

energy associated with the correlated motion of the electrons sufficiently com-

pletely. Corrections to Hartree-Fock theory therefore must be computed by some

scheme.

Low-order corrections may be determined from some form of many-body per-

turbation theory, such as the Møller-Plesset method[3], which partitions the elec-

tronic Hamiltonian into the Hamiltonian for which the Hartree-Fock reference

wavefunction is the exact eigenfunction, and the Fluctuation Potential, which

describes the difference between the Hartree-Fock Hamiltonian and the true elec-

tronic Hamiltonian, with the HF Slater determinant playing the role of the zeroth-

order wavefunction. However, the convergence of the perturbation series is often

a troubling consideration[4–6] and motivates the use of other theoretical method-

ologies, although these are often used in conjunction with perturbation theory

for reasons of cost.

The true electronic wavefunction can be expanded exactly in the basis of the

determinants that can be generated by the replacement of one or more of the

orbitals occupied in the reference wavefunction with unoccupied orbitals. The

conceptually (although not computationally) simplest alternative to perturba-

tion theory that exploits this expansion is Configuration Interaction[7] (CI), in

which the exact wavefunction is simply expanded linearly in the determinantal

N -electron basis. When all possible determinants are included it is referred to as

Full Configuration Interaction (FCI). Unfortunately, although the determinantal

series is finite, at least in a finite 1-electron basis set, the series still typically

must be truncated for computational practicality. An attempt is therefore made

to capture a representative subset of the terms in the determinantal series by

truncation to, for example, at most twofold excitations of the reference determi-
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nant. In the case of CI, this defines the CISD method. However, CISD is not

extensive, meaning that calculated energies do not scale physically with the size

of the system under consideration, which limits the applicability of the scheme.

Early extensive or approximately extensive methods attempted to eliminate

unphysical unlinked cluster contributions, and included, for example, the Cou-

pled Pair Functional[8, 9] (CPF), the Coupled Electron Pair Approximation[10–

15] (CEPA), the Linear Coupled Pair Many-Electron Theory[15, 16] (LCPMET),

also known as CEPA(0), and the very simple Davidson correction to CISD[17].

However, many of these approaches introduced other problems, such as discrep-

ancies from CISD/FCI for the simplest molecules involving the correlation of just

2 electrons, and a lack of invariance to rotations of the underlying orbital spaces.

However, more recent work[18] has resulted in more sophisticated, orbitally in-

variant approaches.

The Traditional Coupled Cluster[19–26] (TCC) method has emerged as the

standard approach (based on a single-determinantal reference wavefunction) to

the treatment of the electron correlation problem, sometimes combined with per-

turbative approximations. The ansatz of Coupled Cluster (CC) theory is that

the exact wavefunction should be parameterised exponentially in the determi-

nantal basis, and not linearly, as it is in CI theory. The usual approach is to

model the exact wavefunction as the action of an exponential ‘cluster’ operator

on the Hartree-Fock reference wavefunction, then, in the case of TCC, to project

the Schrödinger equation onto the appropriate manifold of excited determinants

and iteratively solve the resulting equations to determine the cluster operator,

and thus the molecular energy. TCC calculations are, again for reasons of com-

putational cost, most commonly performed with a cluster operator that gener-

ates only single and double excitations of the reference wavefunction, and this

is termed CCSD. The TCC energy is rigorously extensive, even for a truncated

cluster operator, and exactly equivalent to the FCI energy when the cluster oper-

ator is complete. In addition, the Campbell-Baker-Hausdorff expansion[27] of the

similarity-transformed Hamiltonian naturally truncates at the fourth power of the

cluster operators, ensuring that the computational effort of a TCC calculation is

always of polynomial, as opposed to factorial, complexity.
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When the underlying single-determinantal reference wavefunction of Hartree-

Fock theory is a good approximation to the ground-state molecular electronic

structure, CCSD performs extremely well. However, some aspects of the TCC for-

malism are problematic; the similarity-transformed Hamiltonian is not Hermitian,

which complicates the calculation of both ground- and excited-state properties.

In addition, the non-Hermitian nature of this effective Hamiltonian, combined

with the projective determination of the equations to be solved means that, un-

like methods such as Variational CI, a calculated TCC energy is not an upper

bound on the exact ground-state Schrödinger energy eigenvalue. In contrast, fully

variational methods have the advantage that the error in the minimized energy

is second order in remaining errors in the wavefunction or parameterisation. His-

torically, this property led to the preferred use of Variational CI to account for

electron correlation, but, in recent decades, the importance of the guaranteed

energy extensivity of TCC has led to a decline in the use of CI.

Furthermore, situations exist in which the Hartree-Fock approximation breaks

down, such that the single-determinantal reference wavefunction becomes a poor

approximation to the true ground-state wavefunction. In these circumstances,

for which non-dynamic correlation is said to be strong, there are questions as to

whether, for a finite truncation of the cluster operator, TCC can describe phenom-

ena such as dissociating molecules or excited states faithfully. In practice, CCSD

and related methods can fail catastrophically, especially when applied to difficult

problems such as the dissociation of multiply-bonded molecules. These failures

often emerge as the prediction of unphysical maxima in potential energy surfaces,

followed by non-variational collapse to energies significantly below FCI[28]. In

order to circumvent these failures within the methodology of TCC theory, one

must compute increasingly higher-order corrections through the explicit inclu-

sion of triple and higher excitations. This comes with a steep computational

cost, however; the CCSDT method scales with a computational complexity of

O(N8), where N is some measure of the system size, such as the number of elec-

trons. This is in contrast to the more satisfactory O(N6) complexity of CCSD.

The CCSDTQ method is even more computationally demanding, with O(N10)

complexity.
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This problem can be potentially resolved by adopting a method that em-

ploys a reference wavefunction consisting of multiple determinants, for example,

multireference CI (MRCI)[29, 30], and related formulations that correct approx-

imately for extensivity errors[31–33]. However, unlike for methods based on HF

theory, for which the reference wavefunction is trivially determined as the sin-

gle Slater determinant of minimal energy, the determinants to be included in the

multi-determinantal reference wavefunction must be chosen manually, and chosen

well, and these methods are thus difficult to use in a black-box fashion, especially

on large molecules. They are also often highly expensive in terms of compu-

tational effort, and encounter problems due to the lack of rigorous extensivity

of the energy. Other, more novel approaches to the treatment of non-dynamic

correlation have been proposed, such as the active-space CC methods of Head-

Gordon[34–36], and the spin-flip[37, 38] and double-ionization-potential[39, 40]

EOM methods, but an all-purpose method has yet to emerge. Thus, there exist

systems for which practical single-reference methods such as CCSD yield inade-

quate descriptions of the electronic structure, and also for which multireference

methods are impractical. A method that adequately describes phenomena in this

niche would be highly desirable.

Numerous studies have shown[28, 41–45] that the poor performance of CCSD

in the regime of strong non-dynamic correlation is not necessarily the fault of the

Coupled Cluster wavefunction ansatz, but, in fact, arises from the projective de-

termination of the cluster amplitudes inherent to the TCC approach. Alternative

Coupled Cluster methods, such as Unitary Coupled Cluster[46–50] (UCC), and

Variational Coupled Cluster[51] (VCC), have been proposed. In addition, asym-

metric expectation value expressions exist, such as Improved Coupled Cluster[52]

(ICC) and Extended Coupled Cluster[53] (ECC), which suggest hierarchies of

methods stepping systematically from TCC to VCC depending on the level of

the truncation of the series, although they possess no rigorous guarantee of ex-

tensivity at arbitrary truncation, except at the extremes of the hierarchies. These

studies have confirmed the alternative Coupled Cluster ansätze to be significantly

more robust to the breakdown of the Hartree-Fock approximation than TCC. The

excellent performance of the VCC method, in particular, for which the cluster
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operator is optimized by variational minimization of the quantum-mechanical en-

ergy expectation value rather than by projection, can be attributed to its rigorous

upper bound property. This means that it is mathematically impossible for VCC-

calculated energies to lie below the corresponding ground-state Schroödinger en-

ergy eigenvalue. In practice, this means that VCC potential energy curves do not

predict the unphysical maxima and subsequent catastrophic failure that is prob-

lematic for TCC. In fact, there is also an asymmetry between VCC and TCC in

the levels of excited determinants required to achieve a physically correct treat-

ment of difficult problems such as multiple bond breaking, with VCC requiring

only single and double excitations and TCC requiring a full treatment of singles,

doubles, triples and quadruples[28]. This asymmetry can be understood in light

of the analyses of Kutzelnigg[13, 54].

Unfortunately, each of the alternative CC methods scale unfavourably in com-

putational complexity relative to TCC. For the VCC method, in particular, there

is no analogue of the Campbell-Baker-Hausdorff expansion, and the computa-

tional difficulty of the VCC method therefore scales factorially with system size,

making it impractical to apply to all but the simplest of molecular systems. Even

the Quadratic Coupled Cluster[55] (QCC) method, which represents the simplest

possible correction of TCC towards VCC, is significantly more computationally

demanding, and has therefore not been widely adopted. In fact, the recent study

of Evangelista[56] confirmed that the additional accuracy of these methods is

usually significantly outweighed by their increased computational cost.

This thesis investigates whether there exist tractable approximations to the

VCC method with computational complexities not exceeding that of TCC, and

whether these approximations can remain true to the spirit of Coupled Cluster

theory and preserve its notable methodological properties, such as rigorous exten-

sivity and equivalence to FCI for a complete cluster operator. It is further inves-

tigated whether these single-reference Approximate Variational Coupled Cluster

Theories are robust enough to describe problems such as multiple bond breaking,

and other situations involving strong non-dynamic electron correlation for which

TCC fails to perform adequately.



Chapter 2

Electronic Structure Theory

The chemical properties of the two simplest chemical elements could not be more

different; hydrogen (H) is highly reactive, whereas helium (He) is almost com-

pletely inert. These differences can be explained by the electronic structures of

the constituent atoms. The electrons present in a helium atom are paired and

stable, but it is energetically favourable for a hydrogen atom to seek to pair its

single electron by, for example, forming H2. The electronic structure is therefore

the essential property determining the chemical reactivity and physical properties

of a substance. In fact, the electronic structure of a molecule may be determined

entirely from the laws of physics; it was the physicist Paul Dirac who said[57],

The underlying physical laws necessary for the mathematical theory of

a large part of physics and the whole of chemistry are thus completely

known, and the difficulty is only that the exact application of these

laws leads to equations much too complicated to be soluble.

The field of ab initio quantum chemistry concerns this application of the laws of

physics, and quantum mechanics in particular, to the study of chemistry. Dirac

further continued,

It therefore becomes desirable that approximate practical methods of

applying quantum mechanics should be developed, which can lead to

an explanation of the main features of complex atomic systems without

too much computation.
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There has been much success in the design and application of these methods,

and the use of computational tools to predict chemical phenomena has become

increasingly widespread over the last few decades. These techniques are now

routinely applied across diverse fields, such as physics, chemistry, biology and

engineering, and for tasks from the rationalization of observed phenomena and

the elucidation of mechanisms inaccessible to empirical study to the prediction

of the properties of hypothetical molecular designs.

Despite these successes, however, open problems remain. In particular, this

thesis explores the hypothesis that it is possible to construct practical quantum-

chemical methods robust enough to yield quantitatively valid results even when

the underlying approximation scheme on which they are based breaks down. If

true, this would open a new class of systems to a black-box treatment of molecular

electronic structure. This chapter presents a summary of contemporary electronic

structure theory, and introduces this problem.

2.1 Molecular Quantum Mechanics

The predominant Classical view was that matter, such as atoms and molecules,

consisted of particles, whereas light consisted of electromagnetic waves. As the

20th century dawned however, new evidence, such as the famous photoelectric

experiment, for which Einstein won the Nobel Prize, confirmed that light could

behave like particles (now called ‘photons’), and that particles could display wave

properties, for example due to the observation of electron diffraction.

It is now well understood and accepted that there is a duality between particles

and waves captured by the famous de Broglie relationship between wavelength,

λ, (a wave property) and momentum, p, (a particle property),

λ =
h

p
, (2.1)

where h is the Planck constant. Objects of everyday proportions are typically

well treated by classical mechanics because their de Broglie wavelengths are many

orders of magnitude smaller than the particle itself.
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When it comes to chemistry, however, classical mechanics fails completely to

correctly model the true physics between or within atoms. This is because the de

Broglie wavelength of the electron, in particular, is on the order of atomic length

scales, and a wave picture of electrons in atoms becomes essential. This wave

theory of matter is called Quantum Mechanics, and is summarized by a set of

axioms given in, for example, Reference [58]. The fundamental principle is that

the state of a system is described by a mathematical object called a wavefunction,

Ψ, that satisfies the well-known Schrödinger Equation,

ĤΨ(x, t) = i
∂Ψ(x, t)

∂t
, (2.2)

where atomic units[59] are used. If the wavefunction describes a steady-state

phenomenon, then it becomes separable in spatial and temporal coordinates,

Ψ(x, t) = ψ(x)φ(t), (2.3)

where the temporal wavefunction obeys,

i
dφ(t)

dt
= Eφ(t), (2.4)

and therefore oscillates as,

φ(t) = φ(0)e−iEt, (2.5)

and where the spatial wavefunction obeys the time-independent Schrödinger Equa-

tion,

Ĥψ(x) = Eψ(x), (2.6)

where E is the constant energy associated with the wavefunction. Broadly speak-

ing, this thesis is concerned with the development of new computational methods

to find approximate solutions to this equation for atoms and molecules.

Specifying the Hamiltonian, Ĥ, fully defines the quantum-mechanical prob-

lem, that is, the eigenproblem that must be solved in order to obtain the wave-

function, and for the case of an arbitrary molecule consisting of N electrons and

M nuclei, the Hamiltonian is,

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
a=1

1

ma

∇2
a −

N∑
i=1

M∑
a=1

Za
ria

+
N∑
i=1

i−1∑
j=1

1

rij
+

M∑
a=1

a−1∑
b=1

ZaZb
rab

.

(2.7)
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This, of course, implies that not just the electrons, but also the nuclei should

be treated with a wave description. It is more intuitive to force the separability

of the electronic and nuclear wavefunctions, and to model the nuclei as classical

particles that therefore have well-defined positions and momenta. The clamped

nuclei picture can then be invoked in which the nuclei are held fixed and act only

as parameters defining the potential for the electronic problem. Then, one need

only solve the Schrodinger equation for the electrons, for which the Hamiltonian

is,

Ĥelec = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
a=1

Za
ria

+
N∑
i=1

i−1∑
j=1

1

rij
. (2.8)

This approximation, of course, does not reflect the true quantum-mechanical

situation, but often works exceptionally well in practice because the mass of an

electron is roughly one thousand eight hundred times smaller than the mass of the

simplest atomic nucleus (the single proton of a hydrogen atom). The electrons

therefore “move” much faster than the nuclei, and, to an electron, the nuclear

motion indeed appears to be fixed, or, stated another way, the electrons are

able to respond almost instantaneously to changes in the nuclear positions. This

is all part of the well-known Born-Oppenheimer approximation, which will be

assumed throughout this thesis, the other part of which concerns the solution for

the nuclear wavefunction in the field of the electrons. Corrections to the Born-

Oppenheimer approximation have been devised, but it will not become necessary

to apply them in this work.

The time-independent Schrödinger Equation is mathematically intractable to

exact analytic solution, even in the regime of the Born-Oppenheimer approxi-

mation, except for the simplest of systems, such as atomic hydrogen. A huge

number of schemes, sometimes called quantum-chemical methods or ab initio

methods, have therefore been devised to find approximate numerical solutions

to the Born-Oppenheimer electronic Schrödinger equation using computational

tools, and the most popular will be highlighted in this chapter. The simplest

of these, Hartree-Fock theory, is used by a great many ab initio methods, the

so-called single-reference methods, as a first approximation that is then corrected

upon. Hartree-Fock theory will be introduced shortly, motivated by a discussion
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of the quantum mechanics of identical particles in the following section.

2.2 Identical Particles

In classical physics, it is very common to make the simplifying assumption that

certain particles are exactly identical. For example, modelling the collision of

balls on a snooker table becomes much easier if all the balls are assumed to be

perfect spheres of the same uniform density and fixed radius. It is, of course,

understood that the balls are not strictly identical in practice; small deviations

may occur within each ball, and between balls, and it is possible to attach unique

labels to each of the balls. When quantum particles are under consideration,

however, this is not true at all. The electron, for example, is a fundamental and

indivisible particle, at least to contemporary particle physics, and (ignoring spin)

every electron in the universe is strictly identical with every other electron in the

universe. There is no way to attach a unique label to an electron, even in princi-

ple. This indistinguishability of quantum particles has great ramifications for the

behaviour of the wavefunction under particle interchange, as will be discussed in

this section.

Consider a system consisting of two identical particles, and denote the wave-

function of this system as ψ(1, 2). The physically relevant quantity is the wave-

function square norm, |ψ(1, 2)|2 = ψ̄(1, 2)ψ(1, 2). Since the two particles are

identical, exchanging one particle for the other cannot have an empirically ob-

servable effect, and therefore this quantity cannot be affected by this interchange,

|ψ(1, 2)|2 = |ψ(2, 1)|2. (2.9)

This equation, which reduces to,

|ψ(1, 2)| = |ψ(2, 1)|, (2.10)

has the solutions,

ψ(1, 2) = ±ψ(2, 1). (2.11)
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If the wavefunction is symmetric under particle interchange, ψ(1, 2) = +ψ(2, 1),

the associated particles are called bosons. A photon is a well-known example of

a boson. If the wavefunction is instead antisymmetric, ψ(1, 2) = −ψ(2, 1), the

particles are called fermions. The electron is a fermion, and it is therefore this

type of particle that will be of interest in this thesis.

Consider next an example of non-interacting fermions, such as two electrons

separated by a distance such that their electrostatic interactions become negligi-

ble. Since the electrons are isolated from one another, they behave as independent

particles. This implies that the two-electron wavefunction, ψ(1, 2), must be sep-

arable into contributions from the individual electrons,

ψ(1, 2) = ψa(1)ψb(2). (2.12)

Since the wavefunction square norm is often, at least in the Born interpretation

of Quantum Mechanics, thought of as a probability density function, basic prob-

ability theory explains why the form of the separation is a product, and not a

sum (“1 and 2” not “1 or 2”). This wavefunction is not quite correct, however,

because it does not yet satisfy the fermionic antisymmetry property. Similarly,

since the electrons are identical, it could be “electron 2” in ψa, and “electron 1”

in ψb. This suggests that the 2-electron wavefunction is better written as the

antisymmetric linear combination of these two possibilities,

ψ(1, 2) = ψa(1)ψb(2)− ψb(1)ψa(2). (2.13)

Strictly, the opposite-sign wavefunction,

ψ(1, 2) = ψb(1)ψa(2)− ψa(1)ψb(2) = −(ψa(1)ψb(2)− ψb(1)ψa(2)), (2.14)

is also valid, but since they differ only by a sign change, they have identical square

norms and are thus physically indistinguishable. Consider next what happens if

the two electrons occupy the same state,

ψa = ψb. (2.15)

In this case, the two-electron wavefunction vanishes,

ψ(1, 2) = ψa(1)ψa(2)− ψa(1)ψa(2) = 0, (2.16)
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such that this occurs with zero probability, that is, it is impossible. This is the

well-known Pauli Exclusion Principle.

Finally, of interest is how the above results generalize to 3, 4, or an arbitrary

number of independent electrons. Perceptive readers may already have noted

that the two-electron wavefunction given above may, in fact, be written as a 2×2

(Slater) determinant,

ψ(1, 2) = ψa(1)ψb(2)− ψb(1)ψa(2) =

∣∣∣∣∣∣ ψa(1) ψb(1)

ψa(2) ψb(2)

∣∣∣∣∣∣ (2.17)

and this allows trivial generalization to a 3-electron wavefunction, as a 3×3 de-

terminant,

ψ(1, 2, 3) =

∣∣∣∣∣∣∣∣∣
ψa(1) ψb(1) ψc(1)

ψa(2) ψb(2) ψc(2)

ψa(3) ψb(3) ψc(3)

∣∣∣∣∣∣∣∣∣ (2.18)

and to wavefunctions for any number of independent fermions; an N-electron in-

dependent fermion wavefunction can be written as an N×N determinant, for ex-

ample. The fermionic antisymmetry property, that swapping any pair of electrons

should change the sign of the wavefunction, is automatically captured through

the mathematics of elementary determinantal row and column operations[60].

Although electrons are, in general, not independent of each other in real situ-

ations such as atoms, molecules or solids, due to their electrostatic interactions,

an independent particle model can often be an excellent starting approximation

for investigating the physics of such systems, such as in Hartree-Fock theory, as

will be discussed shortly. Furthermore, Slater determinants play a pivotal role in

more advanced electronic structure models that attempt to go beyond the inde-

pendent particle approximation by the inclusion of electron correlation, such as in

both Configuration Interaction and Coupled Cluster theories, and the associated

fermionic antisymmetry property will additionally be inherited by the amplitudes

(coefficients) used in the determinantal wavefunction expansion of each theory.

For this reason, it is worthwhile to mention the important relationships satisfied

by Slater determinants at this stage, although more sophisticated discussions and

proofs can be found elsewhere[59]. In particular, two Slater determinants, |Φ1〉
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and |Φ2〉, which differ in any of the 1-electron wavefunctions (otherwise known as

occupied spinorbitals) from which they are constructed, ψa, ψb, . . ., automatically

have zero overlap,

〈Φ1|Φ2〉 = 0, (2.19)

and when these Slater determinants are later viewed as basis vectors for the exact

many-electron wavefunction, this ensures that linearly independent Slater deter-

minants are automatically mutually orthogonal. Furthermore, certain matrix

elements between different Slater determinants also vanish. If Ô is a 1-electron

operator, and |Φ1〉 and |Φ2〉 differ by more than a single spinorbital, then the

matrix element 〈Φ1|Ô|Φ2〉 vanishes. Similarly, if Ô is a 2-electron operator, and

|Φ1〉 and |Φ2〉 differ by more than two spinorbitals, then the matrix element

〈Φ1|Ô|Φ2〉 also vanishes. Since the Coulomb interaction acts between pairs of

charged particles, the molecular Hamiltonian, the subject of the following sub-

section, contains only 1-electron (for example, the kinetic energy operator) and

2-electron operators.

2.3 The Hartree-Fock Approximation and the

Introduction of a Basis

The previous subsection established that the wavefunction for a system of inde-

pendent fermions takes the form of a Slater determinant. The ansatz of Hartree-

Fock (HF) theory[1, 2] is that a Slater determinant is an adequate model of

interacting fermions also. This invokes a mean-field independent-particle approx-

imation for the interacting fermions, as will be discussed below. In order to com-

pute a ground-state electronic structure with Hartree-Fock theory, the fundamen-

tal principle is that the set of spin-orbitals, from which the single-determinantal

wavefunction is constructed, should be adjusted according to the variational prin-

ciple until the determinant of minimal energy is constructed. This determinant

is the ground-state Hartree-Fock wavefunction, and its energy is the ground-state

Hartree-Fock energy, an approximation of the true energy of the system.
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The ground-state Hartree-Fock energy associated with the single-determinantal

Hartree-Fock wavefunction |Φ0〉 is given by the standard quantum-mechanical en-

ergy expectation value expression,

EHF =
〈Φ0|Ĥ|Φ0〉
〈Φ0|Φ0〉

= 〈Φ0|Ĥ|Φ0〉, (2.20)

where the convention that Slater determinants be normalized to unity has been

applied. |Φ0〉 is not a variable, but a function of the electronic coordinates. The

above energy depends only on the form taken by |Φ0〉, and is therefore not a

function, but a functional. The mathematical mechanism for the minimization

of such a functional is called Calculus of Variations, and is well described in

mathematics textbooks[61, 62], and also in the context of Hartree-Fock theory[58,

59]. The full analysis is beyond the scope of this chapter, but the key points can

be summarized as follows. Hartree-Fock theory constrains the wavefunction to

take the form of a single Slater determinant, and this form is therefore not free

to vary during the above minimization. Instead, it is the form of the 1-electron

wavefunctions, the spinorbitals, here denoted as {χi}, that is allowed to vary

to minimize the above Hartree-Fock functional. The minimization is performed

with respect to the constraint that the spinorbitals remain orthonormal, and a

Lagrangian is therefore constructed. The necessary condition for a minimum,

subject to the orthonormality constraint, is that the variation in the Lagrangian

due to a small variation in the spinorbitals should vanish, exactly as the vanishing

of the gradient of a function of one variable is the condition for a stationary

point in differential calculus. This condition leads to the following set of integro-

differential equations, the Hartree-Fock equations, that must be solved in order

to determine the optimum form of the 1-electron wavefunctions that yield the

minimal Hartree-Fock energy,

f̂ |χi〉 =
∑
j

εji|χj〉, (2.21)

where ε is the matrix of Lagrange multipliers, and where f̂ is the Fock operator,

f̂ = ĥ(1) +
∑
j

Ĵj(1)−
∑
j

K̂j(1), (2.22)
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which consists of the core Hamiltonian,

ĥ(1) = −1

2
∇2

1 −
∑
a

Za
r1a

, (2.23)

the Coulomb operators,

Ĵi(1)χj(1) = χj(1)

∫
χ̄i(2)r−1

12 χi(2)dx2, (2.24)

and the Exchange operators,

K̂i(1)χj(1) = χi(1)

∫
χ̄i(2)r−1

12 χj(2)dx2. (2.25)

However, a simplification can be made by noting that the Hartree-Fock energy

is invariant to a unitary transformation of the spinorbitals amongst themselves;

exploiting this allows the HF equations to be recast into their canonical form,

f̂ |χi〉 = εi|χi〉. (2.26)

The problem of finding the single Slater determinant of minimal energy is there-

fore reduced to the problem of solving this set of equations.

At this point, it is necessary to point out that this discussion of the Hartree-

Fock approximation has been motivated by the desire to find an approximate so-

lution to the N-electron Born-Oppenheimer electronic Schrödinger equation, but

it is also legitimate to ask for what Hamiltonian Hartree-Fock theory yields the

correct eigenstate. That is, for what problem is Hartree-Fock the exact answer?

The solved Hamiltonian is, in fact, the Hamiltonian that results by the replace-

ment of the instantaneous inter-electronic interactions by an average acquired by

integration over the electronic coordinates, and the Hartree-Fock approximation

therefore corresponds to an independent-electron model in which each electron

moves in the average (or mean) field of the other electrons. For a much more

thorough discussion of Hartree-Fock theory, the reader is directed to, for example,

references [58] or [59].

Of course, computers are best at performing numerous arithmetic operations

extremely quickly, and the Hartree-Fock equations above are therefore not well-

posed for computational implementation. Instead, the problem of solving these

equations must be converted to a problem of linear algebra. In order to do
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this, a basis set, is introduced. That, is, each orbital, an unknown function of

the coordinates of a single electron prior to the solution of the Hartree-Fock

equations, is expanded as a linear combination of a set of K known functions,

the basis functions, with undetermined coefficients,

χi =
K∑
µ=1

Cµiφµ i = 1, 2, . . . K (2.27)

This reduces the problem of finding the spinorbital functions to the problem of

finding the set of discrete amplitude coefficients, a problem that is tractable to

computational implementation. Manipulating the Hartree-Fock equations further

and inserting this expansion yields the Roothaan equations,

FC = SCε (2.28)

a matrix eigenproblem, to be solved for the matrix of coefficients, C and the

matrix of eigenvalues ε, where,

Fµν = 〈φµ|f̂ |φν〉 (2.29)

Sµν = 〈φµ|φν〉. (2.30)

Most basis sets consist of Gaussian functions, which facilitate simple integral

evaluation. In most basis sets, the number of basis functions is significantly

greater than the number of occupied orbitals, and the Hartree-Fock-Roothaan

equations therefore also generate a set of unoccupied (or virtual) orbitals. These

are extremely useful for correlated wavefunction methods, as will be discussed

shortly.

Such a basis set expansion is exact only if the basis is complete, which would

unfortunately require infinitely many basis functions (K → ∞), which would

itself remain intractable to computational application. Instead, a finite basis set

must be employed, with the criterion that as the size of the basis set is made

larger, it should tend towards completeness. It is noteworthy that the correla-

tion energy, to be discussed in detail in the following section, predicted by more

advanced quantum-chemical methods, does not converge quickly with the size of

the basis. This was possibly first noted by Hylleraas, while investigating orbital

expansions of two-electron systems[63]. Acquiring chemical accuracy from basic
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calculations can therefore require very large basis sets, at great computational

expense. For this reason, techniques for extrapolation of the correlation energy

to the complete basis limit may be deployed, and there has also been much re-

cent work on the development of explicitly correlated wavefunction methods that

improve the rate of basis set convergence[64].

The calculations in this thesis use either the minimal STO-3G basis when

comparison of results with more accurate (and more computationally demanding)

methods is required, or make use of the correlation-consistent basis sets of Dun-

ning and co-workers[65] possibly augmented with additional diffuse functions[66],

for more reliable benchmarking.

2.4 Single- and Multi-Reference Post-Hartree-

Fock Methods

Hartree-Fock theory normally works exceptionally well, and typically accounts

for 99% of the total energy of a molecule. Unfortunately, as was discussed

above, the Hartree-Fock single-determinantal wavefunction ansatz corresponds

to a mean-field treatment of the electrons, and the small remaining uncaptured

energy, termed the correlation energy since it is the energy associated with the

correlated motion of the electrons, is itself extremely important for a correct

description of, for example, chemical bonding. It is not precisely true to say

that Hartree-Fock is a totally uncorrelated theory, however, because requiring

the wavefunction take the form of a Slater determinant guarantees fermionic

antisymmetry and therefore also that the Exclusion Principle holds. The ex-

change correlation energy included in the Hartree-Fock energy is a direct result

of fermionic antisymmetry; in a purely uncorrelated Hartree N-electron wave-

function, a simple product of 1-electron wavefunction, the exchange term does

not enter. Nevertheless, the Hartree-Fock approximation provides an inadequate

description of chemical bonding, due to the dynamic correlation of the electrons.

Many of the Post-Hartree-Fock methods to be discussed shortly are well-equipped

to deal with dynamic correlation, however. The ubiquitous and extremely suc-
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cessful CCSD(T) method, for example, typically describes molecular equilibria

well within chemical accuracy.

However, a more serious breakdown of Hartree-Fock theory can occur if the

approximation of a single-determinantal reference wavefunction ansatz becomes

invalid and more than a single determinant becomes equally important to the

description of the ground-state electronic structure. This is called non-dynamic

correlation, or static correlation, and the single-reference methods, which each

attempt to compute corrections to the Hartree-Fock approximation by some

scheme, typically struggle much more when non-dynamic correlation becomes

strong. This often happens in bond-breaking situations, especially of multiply-

bonded molecules.

The problem is that the single-reference methods, taking truncated Configura-

tion Interaction or Coupled Cluster theories (to be discussed shortly) as examples,

explore only a subset of the full space of determinants. This subset is typically

the set containing the reference determinant and those excited determinants that

can be obtained from single and double excitations of the reference. In any sys-

tem, some determinants are inevitably more important to a correct description of

the electronic structure than others. If the most important determinants belong

to the explored space, then the method can be expected to perform well, but

otherwise can be expected to perform less well. In such situations, the most ob-

vious solution is the construction of a reference wavefunction containing multiple

determinants, thus potentially avoiding the non-dynamic breakdown of Hartree-

Fock theory entirely, and then to employ a singles and doubles excitation scheme

of those multiple included determinants in order to account for the effects of dy-

namic electron correlation. Unfortunately, the process of choosing the reference

determinants relevant to the problem of interest is not always straightforward,

especially for large systems, and often requires an intuitive grasp on the chemistry

of the problem prior to running the calculation. This is a disadvantage of mul-

tireference methods, when contrasted with the simplicity of Hartree-Fock theory

and methods based on it, for which the reference determinant is trivially defined

as the determinant of minimal energy, and which can therefore be determined au-

tomatically, through the schemes described above. Many current multireference
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methods also suffer from problems due to a lack of rigorous extensivity and un-

favourable computational scaling, and these properties will be discussed in more

detail below. In this thesis, multireference calculations may sometimes be de-

ployed in lieu of more expensive FCI calculations, and used as the benchmark for

a correct description of a system, in order to measure the effectiveness of other,

less robust but more computationally practical methods, especially to gauge the

relative performance of the single-reference methods in multireference situations.

The multireference methods used for this task include internally-contracted mul-

tireference configuration interaction[29, 30] (MRCI) and multireference averaged

quadratic coupled cluster[32] (MRAQCC).

The central topic of this thesis, however, is instead the possibility of con-

structing a new family of single-reference (and therefore “black-box”) methods

that remain robust to the breakdown of the Hartree-Fock approximation not just

to include dynamic correlation of the electrons, but also to correctly describe

problems for which non-dynamic correlation becomes strong. Before discussing

this topic further, it is worthwhile to review the contemporary approaches to the

inclusion of electron correlation, and this is best accomplished first by a discus-

sion of the various methodological properties that each Post-Hartree-Fock method

may or may not satisfy.

A Post-Hartree-Fock (PHF) method is, loosely, any ab initio quantum-chemical

method that models, or attempts to approximately model, the effects of electron

correlation omitted by Hartree-Fock theory. These methods therefore recover, or

at least partially recover, the correlation energy, and are therefore, in principle,

capable of modelling phenomena such as chemical bonding. A great variety of

PHF methods have been suggested in the literature, from Møller-Plesset Per-

turbation theory and Configuration Interaction theory to Coupled Electron Pair

methods and the extremely successful Traditional Coupled Cluster theory.

The major differences between these methods, which are each discussed in

more detail in the following sections, is in the mathematical form that each as-

sumes for the electronic wavefunction, the so-called electronic structure ansatz.

Møller-Plesset theory, for example, assumes that the true electronic wavefunc-

tion, or at least the optimum wavefunction for the finite basis set in use, can be
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expanded in orders of perturbation theory, with the Hartree-Fock determinant

acting as the zeroth-order wavefunction, whereas Configuration Interaction and

Coupled Cluster theories instead expand the exact wavefunction as a determinan-

tal series directly. The theoretical distinctions between the different ansätze are

best understood through the methodological properties implied by each ansatz

and the subsequent ramifications on the level of accuracy with which each method

can produce physically and chemically relevant results across a wide range of phe-

nomena.

As such, this section summarizes some of the important methodological prop-

erties that can be possessed by the PHF methods. In principle, satisfying all

of these properties should be a sufficient condition for an accurate and widely-

applicable theory. In practice, however, a given PHF method will possess some,

but not all of these properties. This list discusses the majority of the relevant

properties, but is not exhaustive. For example, satisfaction of the generalized

Hellmann-Feynman theorem[67], useful for the calculation of molecular proper-

ties, is only mentioned a few times in this thesis, and is not given further discussion

here.

• An exact treatment of limiting systems

As was discussed above in the context of Hartree-Fock theory, real calculations

must be performed in finite basis sets (sometimes called the finite 1-electron ba-

sis), since even the computational resources of the most powerful supercomputer

cluster are never infinite. This means that it is never possible to obtain the exact

ground-state solution to the Born-Oppenheimer electronic Schrödinger Equation,

although large basis sets combined with basis set extrapolation techniques typi-

cally yield approximate solutions that approach and converge to the true solution

well.

It is possible, however, to find the optimum approximate solution within any

finite basis. This is because, as will be discussed shortly, this optimum wave-

function can be represented as a determinantal expansion (sometimes called the

N-electron basis), which is itself finite in a finite 1-electron basis. This optimum
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solution goes under various names, with Full Configuration Interaction (FCI) the

most common, but Full Coupled Cluster (FCC) also used. Regardless of the name,

however, the principle is that the finite N-electron solution space can, in principle,

be fully explored, with FCI and FCC representing different parameterisations of

the same complete space. The determinants are thus basis vectors for this space,

and the optimum wavefunction is a superposition (a linear combination in the

case of FCI) of each of these basis vectors.

Unfortunately, although it might be possible to perform an FCI calculation,

it is so computationally prohibitive and impractical that it is very rarely even

attempted, except for very small systems and with small 1-electron basis sets.

Instead, it is typical to explore only a restricted subspace (or manifold) of the N-

electron space. The question, then, is whether this can be a good approximation,

but it gains credibility if it becomes exactly equivalent to FCI in some limiting

cases. Of particular importance is the limit of 2 electrons; if a quantum-chemical

method is exactly equivalent to FCI (or simply ‘exact’) for 2 electrons it guar-

antees, in a sense, that pairwise correlations are correctly treated, which can be

assigned the highest priority given that the Coulomb force between electrons is

itself a pairwise interaction.

• Rigorous extensivity

An extensive property is one which scales with system size. A simple hypothetical

example from the field of thermodynamics is of a container of water; if the vol-

ume of the water is doubled then the total internal energy of the system doubles,

because there is then twice as much matter. The internal energy is therefore a

thermodynamically extensive quantity. In contrast, a thermodynamically inten-

sive quantity is one that is invariant to the size of the system. In the previous

example, the temperature of the system does not change upon the addition of

more (identically prepared) water, and is therefore thermodynamically intensive.

In the context of quantum chemistry, the property of rigorous extensivity

is taken to mean correct (that is linear) scaling of calculated energies with some

measure of the size of the system. If a quantum-chemical method does not possess
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this property, then, even if it is exceptionally accurate for some system, it does

not necessarily achieve the same level of accuracy for the containing supersystem.

Rigorous extensivity is thus an essential property that must be satisfied in order

to treat extended systems reliably.

A similar, but perhaps more transparent property is that of size consistency.

A quantum-chemical method is said to be size consistent if the calculated energy

of a system containing two isolated (infinitely separated) subsystems is equal to

the sum of the energies of those subsystems. This is an especially important

property of the chosen ab initio method if the chemical system of study involves

any form of dissociation or bond breaking, but is also useful as an indicator of

extensivity; a method cannot be extensive unless it is size consistent. Extensivity,

however, is a stronger property than size consistency, since rigorous extensivity

implies size consistency, but the converse is not true.

There is an extremely useful result that, put simply, states that if the energy

calculated by an approximate quantum mechanical method can be written in

terms of fully linked diagrams only, diagrams that are themselves composed of

only a single closed diagram, then this is equivalent to rigorous extensivity. The

presence of even a single uncancelled unlinked diagram, however, destroys the

property of rigorous extensivity, and, at best, the energy may be only approx-

imately extensive, or, at worst, not extensive at all. The use of diagrammatic

notation, particularly in the context of Coupled Cluster theory, is discussed at

the end of this chapter.

• Invariance to orbital rotations

The word ‘scalar’ is commonly used to mean a quantity with magnitude, but no

direction. To the mathematically-inclined, however, a scalar is much more pre-

cisely defined as a quantity that is invariant to rotations of the coordinate system

in use[61, 62]. It has already been discussed how the solution to the Hartree-

Fock-Roothaan equations is not unique, with the canonical Hartree-Fock orbitals

chosen as those that diagonalize the Fock matrix, and that a rotation of the oc-

cupied or virtual spin-orbitals amongst themselves does not change the energy.
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The Hartree-Fock energy is hence a scalar with respect to rotations in the orbital

space {ψi}, and (since the Hartree-Fock energy does not depend upon it) also in

the space {ψa}. It is, of course, not invariant to rotations between the occupied

and virtual spaces, since such a rotation would generate an excited determinant,

which, by definition, would be higher in energy than the Hartree-Fock reference

determinant. This same invariance to rotations in the underlying orbital spaces

{ψi} and {ψa} is demanded of correlated methods also, which would otherwise be

dependent on the choice of Hartree-Fock orbitals. In fact, this invariance of the

correlation energy to rotations in these orbital spaces allows a localized orbital

basis to be chosen without affecting the calculated energy, facilitating a more

local treatment of electron correlation, as in the local correlation methods such

as LCCSD[68].

• Definition through minimization of a functional

Taylor’s Theorem is that an infinitely-differentiable function may be represented

as a series through the values of those infinitely-many derivatives at a single point.

For the case of a function of a single variable, this may be concisely written as,

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a).(x− a) +

f ′′(a)

2!
.(x− a)2 + . . . ,

(2.31)

and may be extended further to multivariate functions. This theorem may be

applied to an analysis of the error present in the calculated energy of a quantum-

chemical method, and if the energy of such a quantum-chemical method is defined

to be the minimum of a functional, then a necessary condition for that minimum

is that the first partial derivatives of the energy with respect to the constituent

parameters vanish. This means that, at the minimum, the term containing the

first derivative vanishes, and the error is at least second-order in the remain-

ing errors in the parameters. These parameters are often called “cluster ampli-

tudes” in the methods discussed later, and this property is a great advantage

of functional-based methods over alternative approaches, such as those based on

some projective scheme, for which errors are first-order in the parameter errors.
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• A variational upper bound on the exact ground-state Schrödinger

eigenvalue

Related to the concept of defining an ab initio method through the variational

minimization of a functional is the property of a variational upper bound. Con-

sider calculating the ground-state energy associated with some approximate wave-

function |Φ〉 through direct insertion into and minimization of the quantum me-

chanical expectation value expression,

E =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉 . (2.32)

Since this is only an approximate wavefunction, this energy need not equal the

exact ground-state Schrödinger eigenvalue. To gain additional insight, let |k〉
denote the (unknown) eigenstates of the Hamiltonian, for k = 0, 1, 2, . . . and let

Ek denote the associated energies, such that the Schrödinger equation for each

eigenstate is,

Ĥ|k〉 = Ek|k〉. (2.33)

Inserting the resolution of the identity,

E =

∞∑
k=0

∞∑
l=0

〈Φ|k〉〈k|Ĥ|l〉〈l|Φ〉
∞∑
k=0

〈Φ|k〉〈k|Φ〉
, (2.34)

then applying the Schrödinger equation and noting that the eigenstates of the

Hamiltonian can be taken to be orthonormal,

E =

∞∑
k=0

∞∑
l=0

〈Φ|k〉El〈k|l〉〈l|Φ〉
∞∑
k=0

〈Φ|k〉〈k|Φ〉
=

∞∑
k=0

∞∑
l=0

〈Φ|k〉Elδkl〈l|Φ〉
∞∑
k=0

〈Φ|k〉〈k|Φ〉
=

∞∑
k=0

Ek〈Φ|k〉〈k|Φ〉
∞∑
k=0

〈Φ|k〉〈k|Φ〉
.

(2.35)

Finally, noting that, by definition, the ground-state is the lowest energy state,

followed by the first excited state and so on,

E0 ≥ E1 ≥ E2 ≥ . . . , (2.36)
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it follows that,

E =

∞∑
k=0

Ek〈Φ|k〉〈k|Φ〉
∞∑
k=0

〈Φ|k〉〈k|Φ〉
≥

∞∑
k=0

E0〈Φ|k〉〈k|Φ〉
∞∑
k=0

〈Φ|k〉〈k|Φ〉
= E0

∞∑
k=0

〈Φ|k〉〈k|Φ〉
∞∑
k=0

〈Φ|k〉〈k|Φ〉
= E0, (2.37)

and the energy associated with the approximate wavefunction is hence always

greater than or equal to E0; it is an upper bound on the exact ground-state

Schrödinger energy eigenvalue, or, stated another way, this eigenvalue is a lower

bound on the energy calculable by the approximate method.

In practice, if an electronic structure method possesses this variational upper

bound property, it means that its calculated potential energy curves will remain

above and not cross the FCI curve. A central theme in this thesis is that the highly

successful Traditional Coupled Cluster method abandons this property in favour

of rigorous extensivity, but that this causes non-variational divergent behaviour

to occur when non-dynamic correlation becomes strong, and that a method that

preserves all of the previously mentioned methodological properties while also

approximately satisfying the variational upper bound property is instead what is

required.

• Satisfactory computational requirements

A final criterion for a good quantum-chemical method is that it be computation-

ally practical; if computational feasibility were not an issue, there would be no

reason to even consider alternative schemes to FCI. In practice, the computa-

tional demands of any algorithm may be specified by two measures. The first of

these measures is the computaional complexity, also known as time complexity,

or, more loosely, just the computational cost. This measures the total number

of numerical operations that a computer must carry out in order to complete

the algorithm, or, more simply, how long one can expect the completion of the

algorithm to take. The second measure is the memory, or storage requirement,

of the algorithm, that is, how much data must be stored in memory, and the

algorithm have access to, at any one time. Both measures are typically classified

by their limiting step, using a Big-O, O, notation. For example, in this thesis, an
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ab initio method will be taken to be computationally practical if its complexity

is at most O(o2v4) for the iterative step of the calculation and at most O(o3v4)

for any non-iterative steps, and its storage requirements are at most O(o2v2).

These are the computational requirements of the extremely popular and success-

ful CCSD(T) method, to be discussed shortly. The o and v notation refers to the

number of occupied and virtual orbitals in the calculation respectively, where,

typically, v >> o.

There are many examples in the literature, such as the Quadratic Coupled

Cluster method[55], which provide significantly more robust and accurate de-

scriptions of ground-state molecular electronic strucures than CCSD, but which

have not found widespread acceptance or application due to higher computa-

tional demands. In the case of Quadratic Coupled Cluster, its complexity, at

O(v6), is problematic. It is therefore essential that any new single-reference elec-

tronic structure ansätze that attempt to treat the electronic structure at a higher

level than CCSD(T) do not violate this criterion for computational practicality

by exceeding the specifications outlined above.

2.5 Møller-Plesset Perturbation Theory

The most obvious approach to the treatment of the electron correlation problem

is to treat Hartree-Fock theory as a solved zeroth-order problem, and to com-

pute corrections to Hartree-Fock through perturbation theory. In summary, the

Møller-Plesset treatment of electron correlation partitions the Hamiltonian into

two parts, F̂ , the Hartree-Fock Hamiltonian, the Hamiltonian that Hartree-Fock

theory treats exactly (the sum of the Fock operators), and V̂ , the Fluctuation

Potential that contains the difference between the instantaneous and mean-field

Coulomb interactions, such that the true electronic Hamiltonian may be written

as,

Ĥ = F̂ + V̂ . (2.38)
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The energy and wavefunction may then be expanded in orders of perturbation

theory as,

E = E(0) + E(1) + E(2) + . . . (2.39)

|Φ〉 = |Φ(0)〉+ |Φ(1)〉+ |Φ(2)〉+ . . . , (2.40)

Inserting these expansions into the Schrödinger equation and grouping by per-

turbation order, treating the fluctuation potential as first-order, the zeroth-order

equation is,

F̂ |Φ(0)〉 = E(0)|Φ(0)〉 (2.41)

the first-order equation is,

F̂ |Φ(1)〉+ V̂ |Φ(0)〉 = E(0)|Φ(1)〉+ E(1)|Φ(0)〉 (2.42)

the second-order equation is,

F̂ |Φ(2)〉+ V̂ |Φ(1)〉 = E(0)|Φ(2)〉+ E(1)|Φ(1)〉+ E(2)|Φ(0)〉 (2.43)

and so on. Assuming a Hartree-Fock reference, from these, expressions for the

zeroth-order energy,

E(0) = 〈Φ(0)|F̂ |Φ(0)〉, (2.44)

the first-order energy,

E(1) = 〈Φ(0)|V̂ |Φ(0)〉, (2.45)

and the second-order energy,

E(2) = 〈Φ(0)|V̂ |Φ(1)〉, (2.46)

may be obtained by projection onto the reference determinant. Given |Φ(0)〉 =

|Φ0〉, the sum of the first and second-order Møller-Plesset energies is the Hartree-

Fock energy, and the first contribution to the correlation energy therefore enters at

second order. The second-order energy depends on the first-order wavefunction,

which can be determined by expanding it in terms of the exact eigenstates of

the zeroth-order Hamiltonian, and then by inserting this expansion into the first-

order equation, followed by projection onto those eigenstates to determine the
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coefficients of the expansion. It is therefore possible to show that E(2) takes the

following form,

E(2) =
1

4

∑
ijab

〈ij||ab〉〈ab||ij〉
εi + εj − εa − εb

. (2.47)

where εi is defined through Eq. 2.26, and,

〈ij||ab〉 = 〈ij|ab〉 − 〈ij|ba〉 (2.48)

〈ij|ab〉 =

∫
χ̄i(x1)χ̄j(x2)r−1

12 χa(x1)χb(x2)dx1dx2. (2.49)

Higher-order energies may be found similarly, and the sum of E(0), E(1), E(2) to

some E(N) defines the MPN energy. For more information, the reader is directed

to one of the numerous textbooks on the subject, such as reference [59].

While Møller-Plesset theory may seem like a sensible scheme for the inclusion

of electron correlation effects, and while it is indeed widely used, especially at

the MP2 level as a lowest-order correction to Hartree-Fock, it possesses two quite

serious disadvantages. First, Møller-Plesset theory can only compute the exact

electronic wavefunction for any system if the perturbation series is summed to

infinite order, meaning that even simple two-electron systems cannot be described

exactly. Second, the perturbation series may not converge at all[4–6], and instead

diverge, calling into question the validity of the MP2, MP3, MP4, . . . hierarchy

as a series of systematically increasing accuracy. This precludes Møller-Plesset

theory as the single-reference method of choice for robust and quantitatively

accurate descriptions of molecular phenomena, and other schemes are necessary,

although these more advanced methods often additionally employ perturbation

theory in some capacity, such as for the inclusion of the effects of triple excitations,

to be discussed later, in order to avoid undesirably high computational costs.

2.6 Configuration Interaction Theory

Instead of attempting to include the effects of electron correlation through per-

turbation theory, it is possible to show that the true N-electron wavefunction may

be expanded exactly in the (finite) basis of all possible unique N×N Slater de-

terminants formed from a complete set of spin orbitals (or basis functions) {ψi}.



30 Electronic Structure Theory

For example, a 1-electron wavefunction may be expanded trivially in a basis as

follows,

Φ(x1) =
∑
i

Ciψi(x1), (2.50)

which is automatically a determinantal expansion (of 1×1 determinants). A 2-

electron wavefunction may be similarly expanded,

Φ(x1,x2) =
∑
i

∑
j

Cijψi(x1)ψj(x2), (2.51)

then, requiring fermionic antisymmetry, Φ(x1,x2) = −Φ(x2,x1),∑
i

∑
j

Cijψi(x1)ψj(x2) = −
∑
i

∑
j

Cijψi(x2)ψj(x1)

= −
∑
i

∑
j

Cjiψj(x2)ψi(x1)

= −
∑
i

∑
j

Cjiψi(x1)ψj(x2), (2.52)

from which it follows that, for all i, j, Cij = −Cji, which, in particular, means

Cii = 0. Therefore, the 2-electron wavefunction may be written more compactly

as,

Φ(x1,x2) =
∑
i

∑
j

Cijψi(x1)ψj(x2)

=
∑
i>j

Cijψi(x1)ψj(x2) +
∑
i<j

Cijψi(x1)ψj(x2)

=
∑
i>j

Cijψi(x1)ψj(x2)−
∑
i<j

Cjiψi(x1)ψj(x2)

=
∑
i>j

Cijψi(x1)ψj(x2)−
∑
j<i

Cijψj(x1)ψi(x2)

=
∑
i>j

Cijψi(x1)ψj(x2)−
∑
i>j

Cijψi(x2)ψj(x1)

=
∑
i>j

Cij (ψi(x1)ψj(x2)− ψi(x2)ψj(x1))

=
∑
i>j

Cij

∣∣∣∣∣∣ ψi(x1) ψj(x1)

ψi(x2) ψj(x2)

∣∣∣∣∣∣ (2.53)

This is therefore an expansion of the 2-electron wavefunction in the basis of all

unique 2×2 Slater determinants that can be formed from the 1-electron orbital
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basis. This discussion is given more treatment in various textbooks on electronic

structure theory, such as Szabo and Ostlund[59].

The N-electron case can be proved by mathematical induction. In contrast

to Many-Body or Møller-Plesset perturbation theory, which must go to infinite-

order to account exactly for all of the correlation energy in a given 1-electron basis

(assuming the perturbation series even converges), and which is hence computa-

tionally intractable, if the set {ψi} is finite (corresponding to a finite 1-electron

basis set), there are only finitely many determinants in the above expansion.

Upon determination of the coefficients, this wavefunction therefore represents

the optimal wavefunction for the finite basis. If the basis is allowed to approach

completeness, this wavefunction can approach an exact eigenstate of the Born-

Oppenheimer electronic Schrödinger Equation.

Furthermore, each of these finitely-many determinants may be related to the

Hartree-Fock reference determinant; a Hartree-Fock scheme yields a set of M spin-

orbitals, and these may be conceptually partitioned into the N occupied orbitals

(those orbitals that are used to construct the Hartree-Fock single-determinantal

ground-state wavefunction), {ψi, ψj, ψk, . . .}, and the remaining M-N unoccupied

(or virtual) spin-orbitals, {ψa, ψb, ψc, . . .}. The set of all possible N×N Slater

determinants for the finite 1-electron basis can therefore be generated by replace-

ment of one or more of the occupied spin-orbitals by virtual orbitals. For example,

if the reference determinant for a 2-electron system is denoted as,

|ψiψj〉 =

∣∣∣∣∣∣ ψi(1) ψj(1)

ψi(2) ψj(2)

∣∣∣∣∣∣ , (2.54)

then another possible determinant, also often termed an ‘excited determinant’

because the energy of this single-determinantal wavefunction must be higher than

the optimal single-determinantal ground-state wavefunction by defintion, is,

|ψiψa〉 =

∣∣∣∣∣∣ ψi(1) ψa(1)

ψi(2) ψa(2)

∣∣∣∣∣∣ . (2.55)

If the Hartree-Fock reference determinant is |Φ0〉, then, for example, the notation

|Φa
i 〉 refers to the excited determinant acquired by the replacement of orbital i

with orbital a. Similarly, |Φab
ij 〉 is the excited determinant acquired by replacement
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of orbitals i and j with unoccupied orbitals a and b. The unoccupied orbitals come

from the solution of the Hartree-Fock-Roothaan equations. With this notation,

the linear determinantal expansion of Configuration Interaction theory can be

more concisely written in terms of an excitation operator, Ĉ, as,

|ΦCI〉 = (1 + Ĉ)|Φ0〉. (2.56)

The Ĉ operator can itself be partitioned into contributions grouped by excitation

rank,

Ĉ = Ĉ1 + Ĉ2 + . . .+ ĈN , (2.57)

where, using the Einstein Summation Convention[69], in which repeated indices

imply summation,

Ĉ1|Φ0〉 = Ci
a|Φa

i 〉, (2.58)

and,

Ĉ2|Φ0〉 =
1

4
Cij
ab|Φab

ij 〉, (2.59)

and so on, where {Ci
a} ∪ {Cij

ab} ∪ . . . is the set of amplitudes, or the coefficients

of the determinants in the expansion.

In order to perform calculations through Configuration Interaction theory, the

determinantal expansion can be inserted into the Schrödinger equation,

Ĥ(1 + Ĉ)|Φ0〉 = ECI(1 + Ĉ)|Φ0〉, (2.60)

which can then be projected onto the reference determinant in order to determine

an expression for the CI energy,

ECI = 〈Φ0|Ĥ(1 + Ĉ)|Φ0〉, (2.61)

and onto the manifolds of excited determinants in order to determine the equa-

tions to be solved for Ci
a,

〈Φi
a|Ĥ(1 + Ĉ)|Φ0〉 = ECIC

i
a, (2.62)

for Cij
ab,

〈Φij
ab|Ĥ(1 + Ĉ)|Φ0〉 = ECIC

ij
ab, (2.63)
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and so on. It is also possible to equivalently formulate Configuration Interaction

theory through the minimization of a functional by insertion of the determinantal

expansion into the quantum mechanical energy expectation value expression,

ECI =
〈Φ0|(1 + Ĉ†)Ĥ(1 + Ĉ)|Φ0〉
〈Φ0|(1 + Ĉ†)(1 + Ĉ)|Φ0〉

, (2.64)

and requiring that, invoking the variational principle, the optimum ground-state

energy should be the minimum of this functional with respect to the CI ampli-

tudes. This is called Variational Configuration Interaction, and will be discussed

further in the following chapter.

If the excitation operator Ĉ allows for all possible excitations, that is, if Ĉ

contains Ĉ1, Ĉ2, and so on, up to the number of electrons, the resulting the-

ory is called Full Configuration Interaction (FCI), and, as has been discussed

above, is the optimum approximate solution of the Born-Oppenheimer electronic

Schrödinger equation within the finite basis set employed, and which converges

to the exact solution if the basis approaches completeness. Unfortunately, the

number of determinants in the expansion grows combinatorically with the num-

ber of basis functions, and therefore FCI is factorially complex, with the storage

of the enormous number of amplitudes (one for each determinant) also a limit-

ing factor. For these reasons, FCI calculations are typically utterly impractical

for calculations on real systems of chemical interest, and are typically restricted

to small molecules and small basis sets. However, the CI scheme presents an

obvious avenue to the simplification of the calculation, which is the truncation

of the Ĉ operator, and the subsequent restriction of the determinantal expan-

sion, to include, for example, only single and double excitations of the reference

determinant,

Ĉ = Ĉ1 + Ĉ2. (2.65)

This defines the CISD method, for which the computational complexity scales

only as the sixth power of system size, allowing calculations to be performed on

a significantly wider range of chemically relevant systems.

Unfortunately, truncated CI does not possess the property of size consistency,

and, as a consequnce, cannot be extensive. This can be demonstrated quite
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simply by consideration of the CI wavefunction for two isolated, non-interacting

or otherwise independent subsystems, A and B,

Ĉ = ĈA + ĈB

|Φ0〉 = |Φ0A〉|Φ0B〉

(1 + Ĉ)|Φ0〉 = (1 + ĈA + ĈB)|Φ0A〉|Φ0B〉

6= (1 + ĈA)|Φ0A〉.(1 + ĈB)|Φ0B〉; (2.66)

the CI wavefunction is not separable, and does not correspond to the product of

the CI wavefunctions of the monomers. Another perspective is that, in the equa-

tion for the doubles amplitudes coefficients in FCI and considering only double

and quadruple excitations for simplicity,

〈Φij
ab|Ĥ(1 + Ĉ2 + Ĉ4)|Φ0〉 = ECIC

ij
ab, (2.67)

the operator Ĉ4 should be present on the left-hand-side. The resulting term

approximately cancels with the right-hand-side, with the effect of eliminating

unlinked terms that would otherwise enter the energy expression. Unfortunately,

since quadruple excitations are totally omitted by CISD, this does not occur, and

results in the loss of extensivity. Various schemes have been proposed that correct,

or approximately correct, for the lack of extensivity in CI, such as the Quadratic

CI[70] (QCI) method that takes a step towards Coupled Cluster theory (although

QCI is rarely used today due to example calculations that have demonstrated the

method to be less robust than Coupled Cluster[71]), the a posteriori corrections

such as that of Davidson[17], and the Coupled Pair methods to be discussed in

the following section.

2.7 Electron Pair Methods

As has just been explained, the CISD equations do not properly account for

the effects of higher excitations, which leads to the presence of unlinked terms

and the lack of rigorous extensivity. In the case of schemes such as Quadratic

CI, which may be considered as an approximation to Coupled Cluster theory, to

be discussed shortly, attempts are made to directly capture the effect of higher
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excitations; quadruples for example, may be approximated as products of doubles,

which resolves the problem. In the Coupled Electron Pair Approximation[10–

15] (CEPA) methods, however, instead of attempting to build in the effects of

higher excitations, simple modifications of the existing CISD equations are instead

proposed. In the equation for the doubles cluster amplitudes in CISD,

〈Φij
ab|Ĥ(1 + Ĉ)|Φ0〉 = ECIC

ij
ab, (2.68)

replacement of the energy ECI by the Hartree-Fock reference energy, for example,

yields the equation for CEPA(0). While simpler than CISD, CEPA(0) is not

exact, even when the Ĉ operator is complete, for example (when Ĉ = Ĉ1 + Ĉ2)

for the case of a two-electron system. More complicated substitutions may be

made to yield the CEPA(1), CEPA(2) and CEPA(3) methods, for example, and

although these are exact for two electrons, unlike CISD and CEPA(0) (and also

the Coupled Cluster methods), they are not strictly invariant to orbital rotations.

For further information, there is an excellent discussion of the CEPA methods

given in Reference [15].

Related to the CEPA methods are those methods that attempt to modify the

Variational CI functional,

ECI =
〈Φ0|(1 + Ĉ†)Ĥ(1 + Ĉ)|Φ0〉
〈Φ0|(1 + Ĉ†)(1 + Ĉ)|Φ0〉

, (2.69)

which will itself be discussed in the following chapter where it is more relevant for

introducing the overarching themes of this work. One well-known modification

of the CI functional is the Coupled Pair Functional[8], which replaces the CI de-

nominator, the part of the CI functional that leads to its lack of extensivity when

Ĉ is truncated, with partial local denominators that have the effect of dividing

the contributions to the CI numerator only by those parts of the denominator

to which they are local. In the Averaged Coupled Pair Functional[31], the dou-

bles contributions to the CI norm are instead simply divided by the number of

electron pairs, rendering the denominator approximately intensive. Kollmar and

Neese have also succeeded in crafting an extensive and orbitally-invariant energy

functional that is approximately exact for 2-electron systems[72, 73], and recent

work has resulted in some sophisticated new CEPA methods[18], and modifica-

tions of the Coupled Cluster method that may be understood through CEPA[74].
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Furthermore, Mazziotti has done much work on ab initio quantum chemistry

without wavefunctions[75, 76] that may be likened to CEPA, with impressive

results[77, 78]. While CEPA methods therefore continue to show promise as elec-

tronic structure methods, they will be given little further consideration in this

thesis, which will instead be focused on the extremely successful Coupled Cluster

method[19–26].

2.8 Coupled Cluster Theory

From Configuration Interaction theory, it is known that the optimal wavefunction

can be expanded in the basis of the Slater determinants that can be generated

by the replacement of one or more of the orbitals occupied in the reference de-

terminant with unoccupied (or virtual) orbitals,

|ΦCI〉 = (1 + Ĉ)|Φ0〉. (2.70)

However, any truncation of this wavefunction, such as to include only single and

double excitations of the reference determinant, leads to the lack of extensivity

of the energy due to the presence of unphysical unlinked cluster contributions.

This problem is, in fact, a direct result of the linear parameterisation of the CI

wavefunction. Coupled Cluster[19, 20] theory proposes, instead, an exponential

parameterisation,

|ΦCC〉 = eT̂ |Φ0〉 =
∞∑
n=0

T̂ n

n!
|Φ0〉, (2.71)

where meaning is given to this parameterisation through the Maclaurin series of

the exponential function, as given above, and where it is convention to use the

symbol T̂ in place of Ĉ.

Unlike the CI wavefunction, the CC wavefunction is separable for the case of



Coupled Cluster Theory 37

two isolated, non-interacting or otherwise independent subsystems,

T̂ = T̂A + T̂B

|Φ0〉 = |Φ0A〉|Φ0B〉

eT̂ |Φ0〉 = eT̂A+T̂B |Φ0A〉|Φ0B〉

= eT̂AeT̂B |Φ0A〉|Φ0B〉

= eT̂A|Φ0A〉.eT̂B |Φ0B〉, (2.72)

which leads to size consistency, even for a truncated T̂ . This can be understood

at a deeper level by realising that a truncated CC wavefunction approximately

includes the effects of excitations higher than those included explicitly in the clus-

ter operator. This is due to the non-linear nature of the parameterisation. For

example, for the case of T̂ = T̂1 + T̂2, quadruple excitations enter through terms

such as 1
4!
T̂ 4

1 and 1
2!
T̂ 2

2 . Although this does not allow the weightings of the quadru-

ples to vary independently of the singles and doubles, and there is therefore still

an advantage in the explicit inclusion of triples and higher excitations into the

cluster operator, such non-linear contributions exactly cancel the unphysical un-

linked cluster contributions present in, for example, CISD. CC therefore achieves

the same result as the QCI method, and the QCI method may, in fact, be consid-

ered an approximation to the CC method (or the CC method a generalization of

QCI). In the limit of a complete cluster operator, the Full CI wavefunction and

the Full CC wavefunction must agree, and the following relationships then exists

between the single excitations,

Ĉ1 = T̂1, (2.73)

the double excitations,

Ĉ2 = T̂2 +
1

2!
T̂ 2

1 , (2.74)

and similarly for all higher excitations.

In order to perform a calculation of, for example, a molecular energy within

the CC scheme, the CC ansatz can be inserted into the Schrödinger Equation,

ĤeT̂ |Φ0〉 = EeT̂ |Φ0〉, (2.75)



38 Electronic Structure Theory

which is then premultiplied by e−T̂ ,

e−T̂ ĤeT̂ |Φ0〉 = E|Φ0〉, (2.76)

which has the effect of decoupling the amplitude equations from the energy. This

equation can then be projected onto the appropriate determinantal manifold in

order to determine the working equations. In the case of a cluster operator

restricted to only single and double excitations of the reference determinant,

T̂ = T̂1 + T̂2, these equations, which define the CCSD method, are,

〈Φ0|e−T̂ ĤeT̂ |Φ0〉 = ECCSD (2.77)

〈Φa
i |e−T̂ ĤeT̂ |Φ0〉 = 0 (2.78)

〈Φab
ij |e−T̂ ĤeT̂ |Φ0〉 = 0. (2.79)

This projective approach is called Traditional Coupled Cluster[21–26] theory.

Since the Hamiltonian is at most a two-body operator, the Campbell-Baker-

Hausdorff expansion[27] of the similarity-transformed Hamiltonian,

H̄ = e−T̂ ĤeT̂ = Ĥ +
[
Ĥ, T̂

]
+

1

2!

[[
Ĥ, T̂

]
, T̂
]

+
1

3!

[[[
Ĥ, T̂

]
, T̂
]
, T̂
]

+ . . .

(2.80)

terminates at the fourth power of the cluster amplitudes[79]. This ensures that

TCC calculations may always be performed with polynomial, as opposed to fac-

torial, complexity. Furthermore, TCC is rigorously extensive, exactly equivalent

to FCI for a complete cluster operator, T̂ , and invariant to rotations in the un-

derlying orbital spaces, {ψi} and {ψa} However, the non-Hermitian nature of

H̄, (
e−T̂ ĤeT̂

)†
= eT̂

†
Ĥe−T̂

† 6= e−T̂ ĤeT̂ (2.81)

coupled with the projective determination of the equations to be solved, effectively

eliminates the property of a variational upper bound from the TCC approach,

and also complicates the calculation of both ground- and excited-state properties.

An alternative scheme to the projective approach of TCC is to instead in-

sert the exponential wavefunction ansatz into the quantum mechanical energy
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expecation value expression,

〈Φ|Ĥ|Φ〉
〈Φ|Φ〉 =

〈Φ0|eT̂ †
ĤeT̂ |Φ0〉

〈Φ0|eT̂ †eT̂ |Φ0〉
(2.82)

and to minimize this functional with respect to the set of cluster amplitudes,

{T ia} ∪ {T ijab} ∪ . . ., in order to obtain a prediction of the ground-state energy.

This is Variational Coupled Cluster[51] (VCC).

The VCC energy functional may be written in an explicitly linked form,

EVCC =
〈Φ0|eT̂ †

ĤeT̂ |Φ0〉
〈Φ0|eT̂ †eT̂ |Φ0〉

= 〈Φ0|eT̂
†
ĤeT̂ |Φ0〉L, (2.83)

since the unlinked terms present in the numerator and denominator exactly can-

cel, independent of the truncation of T̂ . Take, for example, the case of VCCD

(T̂ = T̂2),

〈eT̂ †
2 ĤeT̂2〉
〈eT̂ †

2 eT̂2〉
=
〈Ĥ〉+ 2〈ĤT̂2〉+ 〈T̂ †2 ĤT̂2〉+ 〈T̂ †2 ĤT̂2〉+ . . .

1 + 〈T̂ †2 T̂2〉+ . . .

=

〈Ĥ〉L + 2〈ĤT̂2〉L + 〈T̂ †2 ĤT̂2〉L + 〈Ĥ〉〈T̂ †2 T̂2〉

+ 〈T̂ †2 ĤT̂ 2
2 〉L + 2〈ĤT̂2〉〈T̂ †2 T̂2〉+ . . .

1 + 〈T̂ †2 T̂2〉+ . . .

=

(
〈Ĥ〉L + 2〈ĤT̂2〉L + 〈T̂2ĤT̂2〉L + . . .

)(
1 + 〈T̂ †2 T̂2〉+ . . .

)
1 + 〈T̂ †2 T̂2〉+ . . .

= 〈Ĥ〉L + 2〈ĤT̂2〉L + 〈T̂2ĤT̂2〉L + . . .

= 〈eT̂ †
2 ĤeT̂2〉L. (2.84)

VCC is, like TCC, therefore rigorously extensive. It is noteworthy, however, that

this cancellation, leaves uncancelled EPV terms present, making 〈eT̂ †
2 ĤeT̂2〉L an

infinite expression; it does not terminate, even when the excitation rank exceeds

the number of electrons. VCC is also exactly equivalent to FCI for a complete

cluster operator, and invariant to rotations in the underlying orbital spaces. How-

ever, in contrast to the Traditional Coupled Cluster method outlined above, the

operator eT̂
†
ĤeT̂ is Hermitian,

(eT̂
†
ĤeT̂ )† = (eT̂ )†Ĥ†(eT̂

†
)† = eT̂

†
ĤeT̂ (2.85)

and, even for an incomplete cluster operator, a calculated VCC energy is an upper

bound on the exact ground-state Schrödinger eigenvalue. VCC therefore repre-

sents the perfect quantum-chemical method, possessing all of the methodological
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properties widely regarded to be important. Unfortunately, however, there is no

known analogue of the Campbell-Baker-Hausdorff expansion within VCC theory,

which renders the method factorially expensive, even with a cluster operator re-

stricted to single and double excitations of the reference determinant, severely

limiting its application only to extremely simple chemical systems with small

basis sets.

There are, in fact, many more ‘alternative’ Coupled Cluster methods, such

as Unitary Coupled Cluster[46–50] (UCC), Improved Coupled Cluster[52] (ICC),

Extended Coupled Cluster[53] (ECC) and Quadratic Coupled Cluster[55] (QCC).

In fact, each of these approaches may be related to the VCC method, or viewed

as an approximation to it. The UCC method, in particular, defines the anti-

Hermitian operator,

σ̂ = T̂ − T̂ †, (2.86)

from which an exponential ansatz,

|Φ〉 = eσ̂|Φ0〉, (2.87)

is constructed. Insertion into the quantum mechanical energy expectation value

expression, in the same manner as the exponential ansatz in VCC theory, yields

the following functional,

EUCC = 〈eσ̂†
Ĥeσ̂〉 (2.88)

which, again, should be minimized with respect to the cluster amplitudes in

order to obtain a ground-state energy. The denominator of the above expression

is automatically unity, due to the unitary nature of eσ̂. The UCC energy is

an infinite expression, much like 〈eT̂ †
ĤeT̂ 〉L, due to the presence of both the

excitation operator, T̂ , and the de-excitation operator, T̂ †, in the argument of

the exponential, although it has been shown that the series converges rapidly[47].

At low orders, the UCC terms generated are the same as those present in VCC,

but higher-order contributions become significantly more complicated than the

equivalent VCC terms[50], and, for this reason, UCC will be given no further

theoretical consideration in this thesis.
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The existence of these alternative schemes motivates their numerical bench-

marking, with the goal of determining whether they are superior to the TCC

method. Numerous such studies have already been undertaken, with the unani-

mous conclusion that the alternative Coupled Cluster ansätze are vastly superior

to TCC[28, 41–45]. Of particular importance to this thesis is the VCC method,

which has been demonstrated to remain particularly robust and accurate when

non-dynamic correlation becomes strong, such as when modelling the dissocia-

tion of multiply-bonded molecules. It is widely known that the CCSD method

perform quite poorly in these situations, typically predicting erroneous maxima

in potential energy curves at long bond lengths, suggesting an unphysical long-

range repulsion. When perturbative corrections, to be discussed in more detail

in Chapter 7, such as (T) are applied to this poor starting point, the predicted

potential energy curves can become catastrophically wrong, although more ad-

vanced perturbative corrections are in development[80–85]. Calculated VCCSD

energies, on the other hand, are guaranteed by the variational upper bound prop-

erty to never drop below the exact ground-state Schrödinger eigenvalue, which

means, in practice, a VCCSD potential energy curve will remain above the cor-

responding FCI curve, and not predict the same unphysical effects problematic

for CCSD. An illustration of the difference between CCSD and VCCSD relative

to FCI is given in Figure 2.1, for the example of breaking the triple bond in

acetylene. These calculations have been performed with the Molpro package of

ab initio quantum chemistry programs[86, 87].

In fact, it is well-known that in order to achieve a physically correct descrip-

tion of the dissociation of strongly-correlated molecules such as dinitrogen, N2, a

TCC scheme must include not just single and double, or even triple, but a full

treatment of quadruple excitations, CCSDTQ. A VCC scheme, however, displays

an interesting asymmetry with TCC in this regard, requiring only single and dou-

ble excitations to achieve the same qualitative effect. Analyses, such as those of

Kutzelnigg[13, 54], elucidate this distinction by noting that the TCC-based CCD

method is deficient in terms present in VCCD, beginning at fourth-order in the

cluster amplitudes, O(T 4), and that this deficiency remains in both CCSD and

CCSDT. It is not until quadruple excitations are added, CCSDTQ, that TCC
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Figure 2.1: Calculated potential energy curves for the stretching of the carbon-

carbon triple bond in acetylene, C2H2, with the C-H bond length fixed at 1.06Å,

and with the STO-3G basis set.

converges closer to VCC; they are, of course, identical and equivalent to FCI in

the limit of a complete cluster operator.

The conclusion is that the poor performance of the TCC methods to describe,

for example, bond breaking, is not the fault of the CC wavefunction, but is

instead associated with the non-Hermitian similarity-transformed Hamiltonian

and projective determination of the equations to be solved. It is unfortunate,

then, that the recent study of Evangelista[56] has demonstrated the unfavourable

computational scaling of the alternative Coupled Cluster methods to significantly

outweigh any potential gains in quantitative accuracy. This is true even of the

QCCSD method, possibly the simplest correction of CCSD towards VCCSD,

which scales as O(v6), much more expensive than the limiting step of a CCSD

calculation, O(o2v4).

A superior CC-like method for which energies are calculated through the min-

imization of a functional, and which yields at least an approximately-fulfilled

variational upper bound on the ground-state Schrödinger eigenvalue while never

exceeding the CCSD-like computational complexity of O(o2v4), would be highly



Appendix: Diagrammatic Notation in Coupled Cluster Theory 43

desirable. The construction of such a method is the subject of this thesis.

2.9 Appendix: Diagrammatic Notation in Cou-

pled Cluster Theory

Throughout this thesis, the terms present in Coupled Cluster expressions, partic-

ularly those of Variational Coupled Cluster, may be represented diagrammatically

for convenience. There is a one-to-one correspondence between a topologically

unique Coupled Cluster diagram and a corresponding algebraic expression, and a

set of rules exist for interpreting such diagrams. For example, in these diagrams,

lines going down represent occupied orbitals, and lines going up represent virtual

orbitals, and should be labelled with the indices {i, j, k, . . .} and {a, b, c, . . .} re-

spectively. Horizontal lines represent cluster amplitudes, and wavy lines represent

two-electron integrals, with the indices corresponding to the order in which the

occupied and virtual lines are attached to each vertex (an amplitude or integral).

The sign of the term equals −1 raised to the power of the sum of the number of

occupied lines plus the number of loops. The numerical prefactor of each term

equals 1/2 raised to the power of the number of equivalent line pairs (a pair of

occupied or vitual lines is equivalent if they begin and end on the same vertex)

plus the number of equivalent amplitude vertex pairs (a pair of amplitude ver-

tices is equivalent if they are connected to the Hamiltonian in an identical way).

There are additional rules for open diagrams (where lines do not terminate on

a vertex), which correspond to contributions to CC amplitude equations, how-

ever, the above rules are sufficient for the closed diagrams (energy contributions)

encountered in this thesis.

The above rules are best understood through an example. Consider the fol-

lowing term, an O(T 3) contribution to VCCD,
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for which there are four pairs of equivalent lines, no pairs of equivalent vertices,

four occupied lines and two loops, and the diagram therefore represents the term

(−1)4+2

(
1

2

)4+0

T abkl T
kl
cd T

cd
ij 〈ij||ab〉. (2.89)

For more thorough introductions to Coupled Cluster diagrams, the reader is re-

ferred to the excellent reviews of Crawford and Schaefer[79] and of Bartlett and

Musial[88].



Chapter 3

The Linked Pair Functional I:

Fundamental Theory†

In the previous chapter, it was described how the failure of the CCSD method,

based on Traditional Coupled Cluster theory, to adequately describe problems in

which the single-determinantal reference wavefunction approximation of Hartree-

Fock theory breaks down, is not necessarily the fault of the Coupled Cluster

exponential ansatz. Rather, it is the lack of a variational upper bound prop-

erty, caused by the non-Hermitian similarity-transformed Hamiltonian and the

subsequent projective determination of the working equations, that allows TCC

energies to fall unphysically below FCI energies. In contrast, the Variational Cou-

pled Cluster method, which preserves the property that a calculated energy is a

rigorous upper bound on the exact ground-state Schrödinger energy eigenvalue,

performs significantly better. Since the factorial computational complexity of

VCC, even at the doubles level, limits its application, it is natural to seek ap-

proximation schemes, but, historically, the approximation of even VCCD has

been troublesome, with each of the proposed approaches flawed in some way.

This chapter discusses these approaches, and further establishes a new quantum-

chemical method, the Linked Pair Functional, with the potential to resolve this

problem.

†Relevant publication:

[89] P. J. Knowles and B. Cooper, J. Chem. Phys. 133, 224106 (2010).
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3.1 Approximating VCC

As has been discussed above, Coupled Cluster theory differs from, for example,

Configuration Interaction, by the ansatz of an exponential parameterisation of

the wavefunction, modelled as the action of an exponential cluster operator on a

single-determinantal reference wavefunction. As mentioned previously, the action

of this exponential operator on the reference determinant can be understood

through the Maclaurin series of the exponential function,

eT̂ |Φ0〉 =
∞∑
n=0

T̂ n

n!
|Φ0〉. (3.1)

The VCC functional, written with an uncancelled denominator, and stated again

here for convenience as,

EVCC =
〈eT̂ †

ĤeT̂ 〉
〈eT̂ †eT̂ 〉

= 〈eT̂ †
ĤeT̂ 〉L. (3.2)

therefore possesses non-zero contributions involving excitations up to the number

of electrons. When the denominator is cancelled with the unlinked parts of the

numerator to leave an explicitly linked functional, uncancelled Exclusion Principle

Violating (EPV) terms remain, such that the expression does not terminate, and

is therefore infinite. In contrast to TCC, for which the Campbell-Baker-Hausdorff

expansion[27] applies, there is no simplification of the VCC functional, and it

therefore has factorial computational complexity.

In order to arrive at a computationally tractable approximation to the VCC

functional, the natural first attempt is to truncate the functional in some way,

typically by direct truncation of the exponential operator itself. However, this is

problematic, and an important objection to this truncation is the convergence of

its series. Although the exponential function converges for all real (and complex)

values of its argument[90, 91], the convergence is not rapid in general as is illus-

trated in Table 3.1, except for very small values of the argument. Besides the

obvious problem of attempting to ascribe a measure of size, not to a number, but

to the operator, T̂ , it cannot be true that T̂ is ‘small’ for all systems of chemical

interest. This renders a low-order truncation of the series inappropriate since

there is then no guarantee that 1 + T̂ , for example, will be a good approximation

to eT̂ in general.
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Table 3.1: Convergence of the Maclaurin series of ex for a selection of x values.

N
N∑
n=0

0.5n

n!
Relative Error

N∑
n=0

1.0n

n!
Relative Error

N∑
n=0

2.0n

n!
Relative Error

0 1.00000 -3.93×10−1 1.00000 -6.32×10−1 1.00000 -8.65×10−1

1 1.50000 -9.02×10−2 2.00000 -2.64×10−1 3.00000 -5.94×10−1

2 1.62500 -1.44×10−2 2.50000 -8.03×10−2 5.00000 -3.23×10−1

3 1.64583 -1.75×10−3 2.66667 -1.90×10−2 6.33333 -1.43×10−1

4 1.64844 -1.72×10−4 2.70833 -3.66×10−3 7.00000 -5.27×10−2

5 1.64870 -1.42×10−5 2.71667 -5.94×10−4 7.26667 -1.66×10−2

6 1.64872 -1.00×10−6 2.71806 -8.32×10−5 7.35556 -4.53×10−3

7 1.64872 -6.22×10−8 2.71825 -1.02×10−5 7.38095 -1.10×10−3

8 1.64872 -3.44×10−9 2.71828 -1.13×10−6 7.38730 -2.37×10−4

9 1.64872 -1.71×10−10 2.71828 -1.11×10−7 7.38871 -4.65×10−5

10 1.64872 -7.74×10−12 2.71828 -1.00×10−8 7.38899 -8.31×10−6

However, there is an even more serious flaw in this scheme of approximation.

Consider, for example, truncating the exponential to be linear in the cluster

operator; eT̂ → 1 + T̂ . Inserting this approximation into the first form of the

VCC functional yields Variational CI,

EVCC =
〈Φ0|eT̂ †

ĤeT̂ |Φ0〉
〈Φ0|eT̂ †eT̂ |Φ0〉

−→ 〈Φ0|(1 + T̂ )†Ĥ(1 + T̂ )|Φ0〉
〈Φ0|(1 + T̂ )†(1 + T̂ )|Φ0〉

= ECI , (3.3)

which is not extensive. Alternatively, insertion into the second, explicitly linked

form of the VCC functional yields CEPA(0),

EVCC = 〈Φ0|eT̂
†
ĤeT̂ |Φ0〉L −→ 〈Φ0|(1 + T̂ )†Ĥ(1 + T̂ )|Φ0〉L = ECEPA(0), (3.4)

which is not exact, even when the cluster operator is complete. Thus, truncation

of the exponential operator has, in each case, eliminated at least one of the im-

portant methodological properties possessed by a true Coupled Cluster method.

This is, in fact, indicative of the more general case; in the first form of the func-

tional, truncation of the exponential operator to any polynomial degree destroys

the exact cancellation of the VCC denominator with the unlinked parts of the

VCC numerator, leaving uncancelled unlinked terms that lead to unphysical scal-

ing of the energy with system size and thus the loss of extensivity. If the exact

cancellation of the denominator is performed first, uncancelled Exclusion Princi-

ple Violating (EPV) terms remain such that 〈eT̂ †
ĤeT̂ 〉L does not terminate, as

discussed above. Any finite approximation to this infinite expression, such as
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that generated by truncation of the exponential operator to any finite polyno-

mial degree, is thus necessarily incomplete and incorrect, even when the cluster

operator is itself complete.

An alternative to the direct approximation of the VCC functional is to correct

upon a TCC starting point. As such, asymmetric expectation value expressions

have been proposed, such as Improved Coupled Cluster[52] (ICC) and Extended

Coupled Cluster[53] (ECC), which suggest hierarchies of methods stepping sys-

tematically from TCC to VCC. They have the disadvantage, however, that there

is typically no rigorous guarantee of extensivity except at the extremes of the

hierarchies. The simplest possible correction of TCC towards VCC is captured

by the Quadratic Coupled Cluster[55] (QCC) method. Unfortunately, in light

of the analyses of Kutzelnigg[54] and others, the lowest-order correction terms

are inevitably O(T 4), and contain contributions to the energy that cannot be

computed in less than O(v6) time, which is significantly more expensive than the

limiting O(o2v4) step in a CCSD calculation, since, typically, v � o. For this

reason, the use of such correction schemes have not found widespread application

within the quantum-chemical community.

3.2 The Internal Mathematical Structure of Vari-

ational Coupled Cluster Doubles

In summary of the discussions of the previous section, the construction of approx-

imations to the Variational Coupled Cluster method is quite problematic. Direct

approximation schemes relying on the truncation of the exponential operator, eT̂ ,

to, for example, 1+ T̂ reduce the VCC functional only to that of Variational CI or

CEPA(0). A more relaxed truncation, perhaps to 1+T̂+ 1
2!
T̂ 2, does not resolve the

problem and still results in the loss of extensivity or an exact treatment of limiting

systems. Furthermore, the cost of computing terms such as
(

1
2!

)2 〈(T̂ †2 )2ĤT̂ 2
2 〉L is,

at O(v6) complexity, significantly higher than even the limiting step in a CCSD

calculation. Attempts to correct, for example, CCSD towards VCCSD suffer from

this same unsatisfactorarily high computational scaling.
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It appears, however, that few authors have recognized the VCC functional

to possess an internal mathematical structure, and that this structure can be

exploited. For simplicity, consider the VCC functional for the case of a cluster

operator restricted to contain only double excitations of the single-determinantal

reference wavefunction, T̂ = T̂2, which defines the VCCD method,

EVCCD =
〈eT̂ †

2 ĤeT̂2〉
〈eT̂ †

2 eT̂2〉
= 〈eT̂ †

2 ĤeT̂2〉L. (3.5)

The term 1
2!
〈T̂ †2 ĤT̂ 2

2 〉L is the lowest-order term present in VCCD that is omitted

by CEPA(0). The contributions to this term, represented diagrammatically, are

given in Fig. 3.1. These terms, labelled A, B, C and D, obey certain relationships

for the case of a 2-electron system. In particular, the terms A and D cancel,

A+D = + = 0, (3.6)

and the remaining terms satisfy,

B + 2 C = + 2 = 0, (3.7)

in this limit. Therefore, in this case of two electrons, the complete VCCD O(T 3)

contribution, A+ B + C +D, may be captured in infinitely many ways,

A+ B + C +D = B + C

=
1

2
(1− λ)B − λ C

=
1

2
(1− λ) − λ , (3.8)

corresponding to the continuously adjustable weightings of the B and C terms,

controlled by the parameter λ. Similar relationships have, in fact, been noted by

Huntington and Nooijen[74] also to occur in the TCCSD residual. Three values

of the parameter λ, in particular, stand out. For λ = 0, the C term vanishes

completely. Similarly, for λ = +1, the B term is switched off entirely. The case

of B + C, for which the weightings of the B and C terms are equal to the true

weightings as the terms appear in VCCD, corresponds to the case λ = −1 with

this parameterisation. Similar cancellations occur between terms throughout the

VCCD functional, through all orders of the cluster amplitudes.
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A B

C D

Figure 3.1: Linked O(T 3) terms contributing to VCCD.

While it remains true that any finite truncation of 〈eT̂ †
2 ĤeT̂2〉L will not be

exact, this mathematical structure implies that it is possible to construct an

approximation to this form of the VCC functional, and, crucially, one that remains

exact for 2 electrons, by capturing only a subset of the contributing terms, albeit

to infinite order. The Linked Pair Functional is a quantum-chemical method that

exploits this property. It is first introduced and motivated from the more well-

known problem[8, 9] of attempting to construct a post-Hartree-Fock Hermitian

energy functional with the properties of rigorous extensivity, orbital invariance

and an exact treatment of 2-electron systems before its relationship to VCCD is

discussed. It is particularly satisfying that a potential solution to this problem

is one that also solves the problem of constructing an approximation to VCCD

that possesses these same properties.

3.3 Linked Pair Functional Theory

Consider the Configuration Interaction Doubles functional,

ECID =
〈Φ0|(1 + T̂2)†Ĥ(1 + T̂2)|Φ0〉
〈Φ0|(1 + T̂2)†(1 + T̂2)|Φ0〉

, (3.9)

and the CEPA(0) Doubles functional,

ECEPA(0) = 〈Φ0|(1 + T̂2)†Ĥ(1 + T̂2)|Φ0〉L. (3.10)
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Disregarding the effects of single excitations, the CID functional is equivalent to

FCI for a limiting system containing only two electrons, but is not extensive. The

CEPA(0) functional, on the other hand, is rigorously extensive since it contains

only linked terms, but is not equivalent to CID for a 2-electron system. How-

ever, by partitioning these functionals into contributions to the reference and

correlation energies,

ECID =
〈Φ0|(1 + T̂2)†Ĥ(1 + T̂2)|Φ0〉
〈Φ0|(1 + T̂2)†(1 + T̂2)|Φ0〉

=
〈Ĥ〉+ 2〈Ĥ T̂2〉+ 〈T̂ †2 Ĥ T̂2〉

1 + 〈T̂ †2 T̂2〉

= 〈Ĥ〉+
2〈Ĥ T̂2〉+ 〈T̂ †2 (Ĥ − 〈Ĥ〉)T̂2〉

1 + 〈T̂ †2 T̂2〉
, (3.11)

for the CID functional, and,

ECEPA(0) = 〈Φ0|(1 + T̂2)†Ĥ(1 + T̂2)|Φ0〉L
= 〈Ĥ〉+ 2〈Ĥ T̂2〉+ 〈T̂ †2 Ĥ T̂2〉L
= 〈Ĥ〉+ 2〈Ĥ T̂2〉+ 〈T̂ †2 (Ĥ − 〈Ĥ〉)T̂2〉, (3.12)

for the CEPA(0) functional, it is apparent that they are remarkably similar.

In fact, the numerator of the CID correlation energy is simply the CEPA(0)

correlation energy. It also makes clear that the CID numerator is itself extensive

(since it contains only the fully-linked CEPA(0) terms), and the unlinked terms

that violate extensivity enter only through division by the CID denominator;

the CID numerator necessarily already scales physically with the system size

since its fully linked nature makes it rigorously extensive, and any dependence

of the denominator on the size of the system therefore disrupts this behaviour.

Unfortunately, it is easy to see that the CID denominator grows with system size;

〈T̂ †2 T̂2〉 =
1

4
T ijabT

ab
ij =

1

4

Nelec∑
i,j

Nvirt∑
a,b

(T abij )2 ≤ 1

4

N ′
elec∑
i,j

N ′
virt∑
a,b

(T abij )2 (3.13)

if N ′elec ≥ Nelec and N ′virt ≥ Nvirt. Alternatively, the loss of extensivity caused by

division by the CID denominator can be understood through the introduction of

unlinked terms via the binomial theorem,

ECID = 〈Ĥ〉+
2〈Ĥ T̂2〉+ 〈T̂ †2 (Ĥ − 〈Ĥ〉)T̂2〉

1 + 〈T̂ †2 T̂2〉
= 〈Ĥ〉+

(
2〈Ĥ T̂2〉+ 〈T̂ †2 (Ĥ − 〈Ĥ〉)T̂2〉

)(
1− 〈T̂ †2 T̂ 〉+ . . .

)
(3.14)
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This suggests that a functional that is potentially both exact and extensive

could be achieved by simply dividing the CEPA(0) functional by a denominator

that does not scale with system size. This has, of course, been attempted previ-

ously; for example, the Coupled Pair Functional[8] (CPF) of Ahlrichs et al. and

Kollmar’s functionals[72, 73] each attempt schemes in which the terms present

in the numerator are scaled only by contributions to the denominator to which

they are local, the Averaged Coupled Pair Functional[31] (ACPF) simply divides

the term 〈T̂ †2 T̂2〉 by the number of electrons, and alternative CEPA approaches

attempt to eliminate the unphysical unlinked contributions from the working

equations in order to achieve a similar effect[92]. These functional modifications,

however, are typically either only approximately extensive, only approximately

exact for 2 electrons, or not invariant to orbital rotations.

The Linked Pair Functional (LPF), however, posits that the effect of the CID

denominator can be incorporated directly into the cluster amplitudes by an ap-

propriate matrix transformation. The advantage of this scheme is that such con-

structions are fully linked tensor expressions, and an energy can be constructed

that is therefore not only rigorously extensive, but also explicitly scalar and thus

invariant to rotations in the underlying orbital spaces. Furthermore, an appro-

priate choice of the form of the transformation and its associated transformation

matrix can render the approach additionally exactly equivalent to CID for a 2-

electron system. The explicit form of Linked Pair Functional Doubles (LPFD)

theory is given below.

A ground-state LPFD energy is calculated as the minimum of the LPFD

energy functional,

ELPFD = 〈Ĥ〉+ 2〈Ĥ 2T̂ 〉+ 〈1T̂ †(Ĥ − 〈Ĥ〉)1T̂ 〉, (3.15)

which takes the same form as the CEPA(0) functional except that left subscripts

have been inserted on the cluster operators; 2T̂ and 1T̂ . These are doubles-only

excitation operators,

qT̂ |Φ0〉 =
1

4

∑
i,j,a,b

qT
ij
abb
†ja†i|Φ0〉 =

1

4
qT

ij
ab|Φab

ij 〉, (3.16)

where the coefficients, { qT ijab}, are the transformed cluster amplitudes. These are

defined as the contraction of a transforming tensor, U−
q
2 , with the untransformed
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cluster amplitudes,

qT
ij
ab = (U−

q
2 T)ijab =

1

2
(U−

q
2 )ijkl T

kl
ab . (3.17)

Since it is required that the transformed cluster amplitudes inherit the fermionic

antisymmetry properties of the untransformed cluster amplitudes, it is necessary

that U ij
kl also possesses these properties,

U ji
kl = −U ij

kl , (3.18)

U ij
lk = −U ij

kl . (3.19)

Thus, there is a one-to-one relationship between the unique elements of the 4-

component tensor, U ij
kl , and the elements of the two-index matrix, U, with rows

and columns labelled by the unique electron pairs, for which the composite indices

ij, kl ∈ {(m,n), m > n} stand. With this alternative representation, it makes

sense to talk of a transformation matrix and also of its powers, which can be

defined simply as matrix powers. This gives meaning to U−
q
2 , used above. The

definition of U2, for example, is as follows,

(U2)ijkl = (UU)ijkl =
∑
m>n

U ij
mnU

mn
kl =

1

2
U ij
mnU

mn
kl , (3.20)

and more general powers may be computed first by diagonalizing the Npair×Npair

representation of U, raising the resulting diagonal matrix to the appropriate

power and then reversing the diagonalization.

The transformation matrix itself takes the following form,

U ij
kl = δijkl + ∆ij

kl (3.21)

∆ij
kl = λ ηijkl +

1

2
(1− λ) (1− τij) (1− τkl) δik ηjl , (3.22)

where τij permutes the labels i, j in what follows, and where,

ηij = 〈T̂ †ji†T̂ 〉 =
1

2
T ikab T

ab
jk (3.23)

ηijkl = 〈T̂ †klj†i†T̂ 〉 =
1

2
T ijab T

ab
kl (3.24)

are the one- and two-hole reduced density matrices[93]. It should be noted that

this explicit form for U ij
kl , satisfies the fermionic antisymmetry criteria outlined
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above, as can be confirmed trivially from the definitions given. The quantity λ is

a continuously-adjustable real scalar parameter.

It has already been mentioned that since the LPFD energy functional corre-

sponds simply to the CEPA(0) functional in which a transformation of the cluster

amplitudes is carried out, and that these new amplitudes are themselves fully

linked tensors, the functional contains no unlinked terms, making it rigorously

extensive. Also from the fact that the new amplitudes are fully linked tensors,

and the terms contributing to the functional contain no unsummed indices, for

example,

〈Ĥ 2T̂ 〉 =
1

4
〈ij||ab〉2T abij , (3.25)

the energy is therefore a scalar, invariant to rotations in the underlying orbital

spaces {ψi} and {ψa}. Furthermore, consider the behaviour of the transforma-

tions in the 2-electron limit. In this limit, there is only a single unique electron

pair, and the U matrix is thus simply a scalar. Therefore,

qT
eē
ab =

1

2
(U−

q
2 )eēklT

kl
ab

=
1

2
(U−

q
2 )eēeēT

eē
ab +

1

2
(U−

q
2 )eēēeT

ēe
ab

= (U−
q
2 )eēeēT

eē
ab

=
T eēab

(U eē
eē )

q
2

, (3.26)

which, for each term in the functional, introduces division by U eē
eē , where e and ē

are labels for the two electrons present in the system, and for which the Einstein

summation convention is not implied. The equivalent notation h and h̄ will be

used in later chapters when discussing 2-hole systems, or systems containing only

2 unoccupied (virtual) orbitals. From the definition of U ij
kl , it further follows that

U eē
eē equals the CID norm, since,

〈T̂ †2 T̂2〉 =
1

4
T ijabT

ab
ij =

1

4
T eēabT

ab
eē +

1

4
T ēeabT

ab
ēe =

1

2
T eēabT

ab
eē , (3.27)

and,

ηeēeē = ηee = ηēē =
1

2
T eēabT

ab
eē , (3.28)
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and therefore,

U eē
eē = δeēeē + λ ηeēeē +

1

2
(1− λ) (δee η

ē
ē − δeē ηēe − δēe ηeē + δēē η

e
e)

= 1 + λ〈T̂ †2 T̂2〉+
1

2
(1− λ)

(
〈T̂ †2 T̂ 〉+ 〈T̂ †2 T̂ 〉

)
= 1 + λ〈T̂ †2 T̂2〉+ (1− λ)〈T̂ †2 T̂2〉

= 1 + (λ+ 1− λ)〈T̂ †2 T̂2〉

= 1 + 〈T̂ †2 T̂2〉. (3.29)

Notice the cancellation of the λ parameter. Thus, the LPFD amplitude trans-

formations are exactly equivalent to direct division by the CID denominator for

2-electron systems. Hence, the LPFD functional reduces exactly, by construc-

tion, to the CID functional, and is therefore additionally exact in this limit,

independent of λ. For more general systems, the effect of the matrix inverse is to

introduce division by those parts of the CID denominator that are coupled to a

given pair of orbitals, rather than by the complete denominator.

Since no specific value for the λ parameter can be assigned without first seek-

ing additional information, LPFD methods with different values for this param-

eter will be discussed. To simplify such discussions, the nomenclature LPFD(λ)

will be used for LPFD methods with specific values of λ. The purpose of the λ

parameter, which simply controls the weighting of the one- and 2-hole density

matrices contributing to the transformation matrix, will be explained further in

the following section.

The LPFD scheme possesses an extremely theoretically aesthetic set of method-

ological properties, which, for completeness, are summarised below.

• The ground-state energy is calculated by variational minimization of a func-

tional. The error in a calculated energy is thus second-order in any remain-

ing errors in the cluster amplitude parameters.

• The functional contains fully linked terms only, and is therefore rigorously

extensive.

• It is exactly equivalent to CID for a limiting 2-electron system.
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• The energy is a scalar that is invariant to rotations in the underlying orbital

spaces {ψi} and {ψa}.

• The energy is not a true upper bound on the exact ground-state Schrödinger

energy eigenvalue, but variational minimization of the functional gives a

theory that satisfies the generalized Hellmann-Feynman theorem[67].

• The limiting computational complexity of the method is O(o2v4), the same

as CCSD.

It therefore appears that the LPFD method, when combined with a suitable

treatment of single excitations, outlined in the following chapter, resolves the

long-standing problem[8, 9] of finding a computationally practical approximate

solution to the Born-Oppenheimer electronic Schrödinger Equation that can be

formulated through the minimization of a functional that is exact, extensive and

invariant to orbital rotations. Furthermore, it can be shown that the LPFD

method possesses a very deep connection with the VCCD method, which will be

discussed in the following section.

3.4 Relationship of LPFD to VCCD

Further theoretical understanding of the workings of the LPFD method can be

gained by an examination of the terms present in the transformed cluster ampli-

tudes through the application of the binomial theorem to the matrix U−
q
2 .

qT
ij
ab =

1

2
(U−

q
2 )ijklT

kl
ab

=
1

2
((1 + ∆)−

q
2 )ijklT

kl
ab

=
1

2

∞∑
n=0

(− q
2

n

)
(∆n)ijklT

kl
ab

=
1

2
(∆0)ijklT

kl
ab −

q

4
(∆)ijklT

kl
ab + . . .

=
∑
k>l

δijklT
kl
ab −

q

4
(∆)ijklT

kl
ab + . . .

= T ijab −
q

4
(∆)ijklT

kl
ab + . . . (3.30)
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Table 3.2: Linked O(T 3) contributions to VCCD, where 〈T̂ †T̂ 〉 = 1
4
T ijabT

ab
ij , and

where e and ē label the two spinorbitals occupied in the reference wavefunction.

1
2!
〈T̂ †2 ĤT̂ 2

2 〉L Diagram 1
2!
〈T̂ †2 ĤT̂ 2

2 〉L Term 2 Electrons

A 1
4
T acij T

kl
cd T

db
kl 〈ij||ab〉 T aceē T

eē
cd T

db
eē 〈eē||ab〉

B
1
4
T abik T

kl
cd T

cd
lj 〈ij||ab〉

= −1
2
T abik η

k
j 〈ij||ab〉

−T abeē 〈T̂ †T̂ 〉〈eē||ab〉

C
1
16
T abkl T

kl
cd T

cd
ij 〈ij||ab〉

= 1
8
T abkl η

kl
ij 〈ij||ab〉

1
2
T abeē 〈T̂ †T̂ 〉〈eē||ab〉

D 1
2
T acik T

kl
cd T

db
lj 〈ij||ab〉 −T aceē T eēcd T dbeē 〈eē||ab〉

Noting that ∆ is O(T 2), the leading contribution to the transformed cluster

amplitudes is therefore the untransformed amplitudes,

qT
ij
ab = T ijab +O(T 3). (3.31)

Therefore, the leading contribution to the LPFD energy is the CEPA(0) energy,

ELPFD = 〈Ĥ〉+ 2〈Ĥ 2T̂ 〉+ 〈1T̂ †(Ĥ − 〈Ĥ〉)1T̂ 〉

= 〈Ĥ〉+ 2〈ĤT̂2〉+ 〈T̂ †2 (Ĥ − 〈Ĥ〉)T̂2〉+O(T 3)

= ECEPA(0) +O(T 3). (3.32)

As discussed above, CEPA(0) is itself a low-order approximation of VCCD, cor-

rect to O(T 2), and LPFD is therefore equivalent to VCCD to O(T 2) also,

ELPFD = EVCCD +O(T 3). (3.33)

In addition to this low-order correspondence, unlike CEPA(0), LPFD contains

terms through all orders of the cluster amplitudes that are generated through the

powers of the ∆ matrix in the binomial expansion above, and an examination of

the O(T 3) terms yields additional insight. These odd-order terms are generated

by the insertion of the expansion of the transformed amplitudes into the first
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contribution to the LPFD correlation energy,

〈Ĥ 2T̂ 〉 =
1

4
〈ij||ab〉2T abij

=
1

8
〈ij||ab〉(U−1)klijT

ab
kl

=
1

8
〈ij||ab〉

∞∑
n=0

(−1

n

)
(∆n)klijT

ab
kl

← −1

8
〈ij||ab〉∆kl

ijT
ab
kl , (3.34)

where the left-arrow (←) notation stands for “one contribution to the previous

expression is”. The other contribution, 〈1T̂ †(Ĥ − 〈Ĥ〉)1T̂ 〉, generates the even-

ordered terms. By inserting the definition of ∆,

〈Ĥ 2T̂ 〉 ← −
1

8
〈ij||ab〉∆kl

ijT
ab
kl

= −1

8
T abkl 〈ij||ab〉

[
1

2
(1− λ)

(
δki η

l
j − δkj ηli − δliηkj + δljη

k
i

)
+ ληklij

]
= − 1

16
(1− λ)T abkl 〈ij||ab〉

(
δki η

l
j − δkj ηli − δliηkj + δljη

k
i

)
− 1

8
λT abkl 〈ij||ab〉ηklij

= −1

4
(1− λ)T abik 〈ij||ab〉ηkj −

1

8
λT abkl 〈ij||ab〉ηklij

=
1

2
(1− λ) − λ , (3.35)

it becomes clear that the O(T 3) terms contributing to the LPFD correlation

energy are exactly those terms, with the same λ-dependent weightings, that were

established to be able to capture the O(T 3) contributions to VCCD in the 2-

electron limit, due to the simplifications and mutual cancellations that occur

between the VCCD terms in this limit. In particular, LPFD(0) generates the

term 1
2
B, and LPFD(+1) generates the term −C. The best approximation to

VCCD is clearly LPFD(-1), which generates B + C, exactly as the terms appear

in VCCD itself. For reference, the algebraic interpretation of each of the O(T 3)

VCCD terms is presented in Table 3.2.

Furthermore, it has already been observed that, through the binomial theo-

rem, the transformed cluster amplitudes contain geometric series of terms that

generate VCCD-like contributions to the energy through all orders of the cluster

amplitudes. Since it has been demonstrated that LPFD is exact for 2 electrons,

it must be true that the terms generated by LPFD, for different values of λ, form
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representative subsets of the terms present in VCCD, and that, in particular,

any omitted VCCD terms must vanish by mutual cancellation. The λ parameter

controls the specific subset of VCCD terms generated, and the weightings of the

terms within that set.

One final point, and one of fundamental importance for the rest of this thesis,

is that, as was noted in a previous section, any finite truncation of 〈eT̂ †
2 ĤeT̂ 〉L leads

to a functional that cannot be exact for 2 electrons. This is because any truncation

of this expression, which is infinite even in the limiting 2-electron case, renders it

necessarily incomplete. LPFD overcomes this by constructing instead an infinite-

order approximation that violates neither extensivity, nor an exact treatment of

limiting systems. It therefore represents the first of a new family of quantum-

chemical methods that has been named Approximate Variational Coupled Cluster

Theories.





Chapter 4

The Linked Pair Functional II:

Technical Details†

The Linked Pair Functional is a new and unique electronic structure method,

possessing an extremely impressive array of methodological properties, and that

has been shown to be deeply connected with the VCCD method. However, the

novel part of the approach, the introduction of partial local normalization through

matrix transformations of the cluster amplitudes, brings with it several complica-

tions that are only rarely encountered or discussed in the context of contemporary

electronic structure models, such as the non-commutation of certain matrices that

renders the correct minimization of the functional problematic, and concerns re-

garding the existence of the inverse and inverse square root of the transformation

matrix, U. It is the purpose of this chapter to discuss these technical details. In

addition, the inclusion of the effects of single excitations into the LPFD scheme

will be outlined.

†Relevant publications:

[94] J. B. Robinson and P. J. Knowles, J. Chem. Phys. 135, 044113 (2011).

[95] J. B. Robinson and P. J. Knowles, J. Chem. Phys. 136, 054114 (2012).
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4.1 Minimization of the Functional

The ground-state energy in LPFD theory is the minimum of the functional with

respect to the set of doubles-only cluster amplitudes, {T ijab}, and a necessary

condition for a minimum is that each of the partial first derivatives of the energy

with respect to the set of cluster amplitudes vanish.

∂E

∂T ijab
= 0 ∀ i, j, a, b (4.1)

A computational implementation of LPFD requires an analytic expression for

the above partial derivative. Using the Einstein summation convention[69], the

differential of the energy may be written as follows.

dE =
∂E

∂T ijab
dT ijab (4.2)

For technical reasons, the following definition is made,

1

2
dE =

1

4
Gab
ij dT

ij
ab (4.3)

and the problem is thus to find Gab
ij , commonly called “the residual”. In this

section, an expression for the residual of LPFD(+1) is derived. The restriction

to LPFD(+1) is for simplicity of exposition, but the main result of this section,

the differentiation of matrix powers, applies to all square symmetric matrices, a

set to which all transformation matrices discussed in this thesis belong.

To begin, consider the differential of the LPFD energy, which may be written

as follows,

dE =
1

2
〈Φ0|Ĥd(2T

ij
ab)|Φab

ij 〉+
1

2
〈Φ0|1T̂ †(Ĥ − 〈Ĥ〉)d(1T

ij
ab)|Φab

ij 〉 (4.4)

=
1

2

(
2Vabij d(2T

ij
ab) + 1Vabij d(1T

ij
ab)
)

(4.5)

=
1

2

2∑
q=1

qVabij d( qT
ij
ab), (4.6)

with the following definitions,

2Vabij = 〈Φ0|Ĥ|Φab
ij 〉 (4.7)

1Vabij = 〈Φ0|1T̂ †(Ĥ − 〈Ĥ〉)|Φab
ij 〉. (4.8)
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The transformed amplitudes differentiate as follows,

d( qT
ij
ab) =

(
U−

q
2dT + d

[
U−

q
2

]
T
)ij
ab

=
(

U−
q
2dT

)ij
ab

+
(
d
[
U−

q
2

]
T
)ij
ab
. (4.9)

The derivative of the LPFD(+1) transformation matrix, U, is,

(dU)ijkl = d(U ij
kl)

=
1

2
d
(
T ijcdT

cd
kl

)
=

1

2
dT ijcdT

cd
kl +

1

2
T ijcd dT

cd
kl , (4.10)

and a first attempt at differentiating its powers might be,

d (Ux) = xUx−1dU = x dUUx−1. (4.11)

The necessary working may then be carried out,

dE =
1

2

2∑
q=1

qVabij
(

U−
q
2 dT + d

[
U−

q
2

]
T
)ij
ab

=
1

4

2∑
q=1

qVabij
(

U−
q
2

)ij
kl
dT klab −

1

8

2∑
q=1

q qVabij dU ij
kl

(
U−

q
2
−1T

)kl
ab

=
1

2

2∑
q=1

qAabij dT ijab −
1

8

2∑
q=1

q qVabij dU ij
kl qBklab

=
1

2

2∑
q=1

qAabij dT ijab −
1

8

2∑
q=1

q
(
dT ijabT

ab
kl + T ijabdT

ab
kl

)
qCklij

=
1

2

2∑
q=1

qAabij dT ijab −
1

4

2∑
q=1

q qDklijT abkl dT ijab

=
1

2
dT ijab

2∑
q=1

(
qAabij − q qEabij

)
,

and the residual straightforwardly read off to be,

Gab
ij =

2∑
q=1

(
qAabij − q qEabij

)
, (4.12)

with the following definitions of the intermediate quantities,

qAabij =
1

2
(U−

q
2 )klij qVabkl (4.13)
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qBijab =
1

2
(U−

q
2
−1)ijklT

kl
ab (4.14)

qCijkl =
1

2
qVabkl qBijab (4.15)

qDijkl =
1

2

(
qCijkl +

(
qCT
)ij
kl

)
=

1

2

(
qCijkl + qCklij

)
(4.16)

qEabij =
1

2
qDklijT abkl . (4.17)

Unfortunately, the above residual is incorrect ; it yields a correct minimum for the

LPFD(+1) functional only for a 2-electron system. The reason is the erroneous

differentiation of matrix powers in Eq. 4.11; in general, there is no reason to

expect a matrix, U, to commute with its derivative, dU. Take for example, the

case x = 2.

d
(
U2
)

= U dU + dU U 6= 2U dU 6= 2 dU U (4.18)

Thus, the above residual holds for the case of 2 electrons only because the matrix

is then a scalar. In fact, a similar test for a 2-hole system, for which LPFD(+1) is

also exact for reasons discussed in Chapter 6, makes the problem readily apparent,

since then the LPFD(+1) matrix is not a scalar, but the method should still agree

with CID. Using the above residual, it does not.

This section proves that the derivative of a real symmetric transformation

matrix U, a set to which all transformation matrices in this thesis belong, raised

to some rational power x, can in fact be expressed in terms of the eigenvalues, {εp},
and eigenvectors, {Xp}, of the transformation matrix U. The explicit analytic

form of this result is given in Eq. 4.47. This result will then be used to derive

the correct residual, {Gab
ij }, for the case of LPFD(+1) in section 4.4.

Take U to be an Np × Np real symmetric matrix, where, for example, in

the case of LPFD(+1), Np = N(N−1)
2

is the number of electron pairs, and N is

the number of electrons. The eigenvalues, {εp} of a real symmetric matrix are

always real and its eigenvectors linearly independent, so that a set of orthonormal

eigenvectors, {Xp} can always be constructed. The eigenproblem for U is,

UXp = εpXp p ∈ {1, 2, . . . , Np}, (4.19)

or, more generally,

UX = Xε, (4.20)
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where X is the matrix with the set of eigenvectors {Xp} as its columns and ε is

the corresponding diagonal matrix of eigenvalues. The notation Xp thus denotes

the pth column of X, and XT
p is the transpose of this column, which is equivalent

to the pth row of XT . It also follows from the orthonormality of the eigenvectors

that X is an orthogonal matrix,

XXT = XTX = 1⇔ XT
p Xq = δpq ⇔ Xt = X−1. (4.21)

Since U is a real symmetric matrix it follows that U can always be diagonalized

as follows,

U = XεXT . (4.22)

It is noteworthy that the powers of U possess the same eigenvectors as U itself,

UxXp = εxpXp, (4.23)

and that arbitrary rational powers of U may thus be defined in the standard way,

Ux = XεxXT x ∈ Q. (4.24)

In contrast to powers of U, the powers of a diagonal matrix such as ε are very

easy to calculate; the diagonal elements of a diagonal matrix raised to some

power simply correspond to the powers of those diagonal elements. For example,

cubing the 2×2 diagonal matrix with diagonal elements {3, 5}, produces another

diagonal matrix with elements {27, 125}, which can be confirmed by repeated

matrix multiplication. Therefore,

(εx)pp = (εpp)
x = εxp . (4.25)

Eq. 4.24 allows an expression for the derivative of Ux to be found, as long as

expressions for the derivatives of εx and X can first be found in terms of known

quantities.

To begin, consider the problem of differentiating εx, the powers of the eigen-

value matrix. This is quite a trivial problem because ε is a diagonal matrix. As

a consequence, dε is also diagonal, since the off-diagonal elements of ε are fixed

at zero and hence have no dependence on the amplitudes. Hence,

εpq = εpδpq

dεpq = dεpδpq. (4.26)
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Now, since two square diagonal matrices (of the appropriate dimensions to permit

matrix multiplication) always commute, εx dε = dε εx. It thus follows that

d (εx) = xεx−1 dε = x dε εx−1, (4.27)

since commutation holds, and the eigenvalue matrix thus differentiates like a

scalar. Furthermore, it is possible to derive an expression for dεp. From projection

of Eq. 4.19 onto Xp,

XT
p UX = εpX

T
p Xp = εp (4.28)

then performing the differentiation,

dεp = dXT
p UXp + XT

p dUXp + XT
p UdXp

= dXT
p UXp + XT

p dUXp + (UXp)
T dXp

= dXT εpXp + XT
p dUXp + XT

p εpdXp

= XT
p dUXp + εp

(
dXT

p Xp + XT
p dXp

)
. (4.29)

In fact, the second term can be shown not to contribute, since it is related to the

differential of the orthonormality condition,

d
(
XTX

)
pq

= dXT
p Xq + XT

p dXq = d(δpq) = 0, (4.30)

which yields a very simple expression for dεp,

dεp = XT
p dUXp, (4.31)

which solves the problem of finding an expression for the differential of the eigen-

values. The elements of dU may be found by direct differentiation of the matrix,

as was carried out above.

Next, an expression for the derivative of the eigenvector matrix, X, must

be found. This is a much more involved problem than the derivative of powers

of the eigenvalue matrix. First, recall that the Np eigenvectors of U are linearly

independent. They therefore form a basis for RNp . The columns of dX are vectors

in RNp , and thus each dXp may be expanded in the basis of the eigenvectors of

U.

dXp =

Np∑
q=1

Xqαqp (4.32)
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This reduces the problem of finding {dXp} to the problem of finding the scalar

coefficients of the above expansion, {αqp}. Inserting this expansion into the dif-

ferential of the orthonormality condition,

dXT
p Xq + XT

p dXq =

Np∑
r=1

[
XT
r αrpXq + XT

p Xrαrq
]

=

Np∑
r=1

[αrpδrq + αrqδpr]

= αqp + αpq

= 0, (4.33)

implies αpq = −αqp so that α is a skew-symmetric matrix. In particular, αpp = 0.

Hence, the expansion of dXp may omit the diagonal term.

dXp =

Np∑
q=1
q 6=p

Xqαqp (4.34)

Taking the differential of the eigenproblem,

dUXp + UdXp = dεpXp + εpXp, (4.35)

rearranging,

UdXp − εpdXp = dεpXp − dUXp (4.36)

and performing some further manipulation,

(U− εp1) dXp = Xpdεp − dUXp

= XpX
T
p dUXp − dUXp

= −(1−XpX
T
p )dUXp, (4.37)

then inserting the expansion of dXp into the left hand side,

Np∑
q=1
q 6=p

(U− εp1) Xqαqp = −(1−XpX
T
p )dUXp (4.38)

and applying again the eigenproblem yields the following result,

Np∑
q=1
q 6=p

(εq − εp) Xqαqp = −
(
1−XpX

T
p

)
dU Xp. (4.39)
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The case p 6= q but εp = εq, which can occur if U possesses an eigenvalue with

algebraic multiplicity greater than one (repeated eigenvalues), also vanishes from

the LHS,

Np∑
q=1

q 6=p,εq 6=εp

(εq − εp) Xqαqp = −
(
1−XpX

T
p

)
dU Xp. (4.40)

Projection onto XT
r with r 6= p and εr 6= εp,

Np∑
q=1

q 6=p,εq 6=εp

(εq − εp) XT
r Xqαqp = −XT

r dU Xp + XT
r XpX

T
p dU Xp, (4.41)

application of the orthonormality condition,

Np∑
q=1

q 6=p,εq 6=εp

(εq − εp) δrqαqp = −XT
r dU Xp + δrpX

T
p dU Xp, (4.42)

and further simplification,

(εr − εp)αrp = −XT
r dU Xp, (4.43)

allows determination of the coefficients.

αrp =
XT
r dU Xp

εp − εr
r, p ∈ {1, 2, . . . , Np}, r 6= p, εr 6= εp (4.44)

The case αpp = 0 is already known, and the only remaining case that is unknown

is αrp when r 6= p but εr = εp. This cannot be determined by projection onto

the above equation since the desired αrp vanishes from the LHS. However, these

values turn out to be unnecessary.

Finally, with explicit forms for dεp and dXp, consider differentiating Eq. 4.24,

d (Ux) = dXεxXT + Xεx dXT + xXεx−1 dεXT . (4.45)

Noting that d
(
XT
)
≡ (dX)T , and expanding dX as above gives the following

result,

(d (Ux))ij = x

Np∑
l=1
m=1

(dU)lm

Np∑
k=1

εx−1
k XikXlkXmkXjk +

Np∑
k=1
l=1

(εxk − εxl )XilXjkαlk.

(4.46)
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Excluding again the cases k = l and k 6= l but εk = εl from the second summa-

tion on the grounds that they do not contribute, then inserting the remaining

(and known) values of {αlk} gives the following, final result, for the derivative of

rational powers of the matrix U,

d (Ux)ij = x

Np∑
k=1

XikXjkε
x−1
k

Np∑
m=1
n=1

Xmk dUmnXnk

+

Np∑
k=1,l=1
k 6=l,εk 6=εl

εxk − εxl
εk − εl

XilXjk

Np∑
m=1
n=1

Xml dUmnXnk. (4.47)

It is possible to show that this expression generates some sensible expressions,

such as d(U2) = UdU + dUU, and d(U−1) = −U−1dUU−1. A computer

program that requires the result of Eq. 4.47 needs only to solve the eigenproblem

of Eq. 4.20 in order to make use of it. The values {dUmn} may be obtained by

straightforward differentiation of the unpowered matrix, as was done above. It

should be noted that the special case of a transformation matrix that possesses

degenerate eigenvalues is automatically accounted for by the above analysis, and

within Eq. 4.47. This result therefore applies to all square symmetric matrices,

the set to which all transformation matrices in this thesis belong.

At this stage, a complete derivation of the correct LPFD(+1) residual may be

given. However, this is presented in an appendix to this chapter, such that the

ongoing discussion of the technical aspects of LPF theory is not disrupted.

4.2 Positivity Considerations

In the previous section, it was demonstrated that the use of rational powers

of the transformation matrix, U, in order to formulate the LPFD approach, in

particular U−1 and U−
1
2 , leads to complications for the minimization of the

functional arising from the differentiation of these powered matrices, but that

this is both a tractable and soluble problem. However, the use of these matrix

powers leads to another, more severe complication; if either U−1 or U−
1
2 fail to

exist then the LPFD energy becomes incalculable, rendering the entire method

useless.
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The matrix U−1 is not particularly problematic, because it only fails to exist

when the matrix U is singular, that is, when its determinant, |U|, equals zero, or,

equivalently, when any of the eigenvalues of U equal zero since the determinant

of a matrix is equal to the product of its eigenvalues. Still, avoiding this possibil-

ity entirely would be ideal. The existence of U−
1
2 , however, is a much stronger

condition on the matrix U. From Eq. 4.24, it is apparent that a real matrix U−
1
2

fails to exist if any of the eigenvalues, {εi}, of the matrix U are less than or equal

to zero. This imposes the very strict condition that, for both U−1 and U−
1
2 to

exist, all eigenvalues of U must be strictly positive. In mathematical nomencla-

ture, a matrix with all eigenvalues strictly positive is called positive-definite. A

matrix with only positive or zero eigenvalues is called positive-semidefinite.

Since the transformation matrix is defined as the sum of an identity matrix

and another matrix, ∆,

U ij
kl = δijkl + ∆ij

kl, (4.48)

this reduces to the problem of ensuring that ∆ is positive-semidefinite, since by

writing ∆ in spectral form,

∆ = XεXT , (4.49)

and from the following working,

U = 1 + ∆

= 1 + XεXT

= XXT + XεXT

= X (1 + ε) XT (4.50)

it can be seen that the eigenvalues of U will simply be the eigenvalues of ∆

incremented by 1. Thus, if ∆ is positive-semidefinite then U will be positive-

definite since the eigenvalues will each be greater than or equal to 1. If ∆ is

not positive-semidefinite, however, then there is still no guarantee that U will

be positive-definite, since the eigenvalues of ∆ may take any arbitrarily large

negative value. Thus, in order for LPFD calculations to be possible for general

systems, the associated ∆ matrix must be at least positive-semidefinite for all

possible values of the cluster amplitudes from which it is constructed.
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Unfortunately, the potential positivity of the matrix for λ = −1 can be dis-

proved by the existence of numerical counter-examples. For example, the LPFD(-

1) U matrix is found to contain negative eigenvalues, causing the matrix powering

procedure to fail, for difluorine at large interatomic separations with the STO-3G

basis. This precludes the use of LPFD(-1), the optimal LPFD method for the

approximation of VCCD, for general calculations.

In fact, the only LPFD method that employs a transformation matrix that

is rigorously demonstrable to be positive-definite is LPFD(+1). This is because,

for LPFD(+1), ∆ij
kl = ηijkl, and the ∆ matrix is Gramian; a matrix G is said to

be Gramian if each of its elements correspond to inner products formed from a

set of vectors[60], {xi},

Gij = 〈xi,xj〉. (4.51)

It can be proved that a Gramian matrix is always positive semi-definite. The

density matrices in Eqs. 3.23 and 3.24, can be seen to be Gramian, since their

elements may be written in the required inner product form.

ηij = 〈T̂ †ji†T̂ 〉 (4.52)

ηijkl = 〈T̂ †klj†i†T̂ 〉 (4.53)

Any value of λ except λ = +1, however, makes use of a linear combination of

these density matrices, which is not positive-semidefinite in general. Thus, the

constraint of matrix positivity forces the elimination of all LPFD methods except

LPFD(+1).

There is however, still the possibility of reformulating the definition of the

LPFD transformed amplitudes to make direct use of the other positive-semidefinite

density matrix, ηij. This new theory, for which the form of the functional is un-

changed,

E = 〈Ĥ〉+ 2〈Ĥ 2T̂ 〉+ 〈1T̂ †(Ĥ − 〈Ĥ〉)1T̂ 〉, (4.54)
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may be defined through a revised definition of the transformed amplitudes,

qT̂ |Φ0〉 =
1

4
qT

ij
ab|Φab

ij 〉 (4.55)

qT
ij
ab =

1

2
(1− τij)(U−

q
2 )ikT

kj
ab (4.56)

U i
j = δij + ∆i

j (4.57)

∆i
j = ηij =

1

2
T ikabT

ab
jk , (4.58)

where the ground-state energy is again calculated as the minimum of the above

energy functional with respect to the set of cluster amplitudes {T ijab}. This is a

method that is very much like performing LPFD(0) in a positive-definite way,

since it generates the same O(T 3) term with the same weighting,

1

4
〈ij||ab〉2T abij =

1

4
〈ij||ab〉

[
1

2
(1− τij)

(
U−1

)k
i
T abkj

]
=

1

8
〈ij||ab〉(1− τij)

∞∑
n=0

(−1

n

)
(ηn)ki T

ab
kj

← −1

8
〈ij||ab〉(1− τij)ηki T abkj

= −1

4
〈ij||ab〉ηki T abkj

= −1

4
〈ij||ab〉ηkj T abik

= +
1

2
(4.59)

and all of the noteworthy methodological properties of LPFD theory are preserved

by this reformulation. In particular, it remains exact for 2 electrons because,

although the transformation matrix is not a scalar in this limit, it is diagonal.

For example, the following off-diagonal element,

U e
ē = δeē +

1

2
T ekab T

ab
ēk

=
1

2
T eeabT

ab
ēe +

1

2
T eēabT

ab
ēē

= 0, (4.60)

vanishes due to the fermionic antisymmetry of the cluster amplitudes. The diag-
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onal elements contain the CID square norm,

U e
e = δee +

1

2
T ekab T

ab
ek

= 1 +
1

2
T eeabT

ab
ee +

1

2
T eēabT

ab
eē

= 1 +
1

2
T eēabT

ab
eē

= 1 + 〈T̂ †2 T̂2〉, (4.61)

since for 2 electrons,

〈T̂ †2 T̂2〉 =
1

4
T ijabT

ab
ij

=
1

4
T eēabT

ab
eē +

1

4
T ēeabT

ab
ēe

=
1

2
T eēabT

ab
eē . (4.62)

Then, since the elements of the powers of a diagonal matrix correspond to the

powers of the diagonal elements of that matrix, (εx)i = (εi)
x, the transformed

amplitudes correctly introduce the CID denominator,

qT
eē
ab =

1

2
(U−

q
2 )ekT

kē
ab +

1

2
(U−

q
2 )ēkT

ek
ab

=
1

2
(U−

q
2 )eeT

eē
ab +

1

2
(U−

q
2 )ēēT

eē
ab

=
1

2

T eēab

(1 + 〈T̂ †2 T̂2〉)−
q
2

+
1

2

T eēab

(1 + 〈T̂ †2 T̂2〉)−
q
2

=
T eēab

(1 + 〈T̂ †2 T̂2〉)−
q
2

(4.63)

Furthermore, this new formulation has the aesthetic property that U is now

indexed by electrons, rather than by electron pairs, and so the matrix is sig-

nificantly smaller in general; if N is the number of electrons then the number

of unique electron pairs is 1
2
N(N − 1) ∝ N2. Of course, this is not LPFD(0);

the agreement between LPFD(0) and this new formulation of the theory is lost

at high orders since the different definitions of matrix powers produce different

terms. For example, in LPFD(0), ηik η
j
l T

kl
ab is a contribution to 1

2
(∆2)

ij
kl T

kl
ab , but

(η2)
i
j = ηik η

k
j and cannot produce this term. However, LPFD(0) and this new

theory agree exactly to O(T 4), so, numerically, the differences are quite small.

For this reason, and for convenience of description, this positive-definite approx-

imate reformulation of LPFD(0) will itself be called LPFD(0), unless a specific

distinction is made.
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In conclusion, the positivity of the LPFD transformation matrix is only guar-

anteed in a few special cases, such as for the parameter value λ = +1 for the

original LPFD transformation matrix, or for the reformulated LPFD(0)-like the-

ory. In particular, LPFD(-1), the best LPFD approximation to VCCD, violates

the positivity condition and is therefore not suitable for application to arbitrary

systems because there is no guarantee that the LPFD(-1) energy is calculable.

Since LPFD(+1) and the reformulated approximate LPFD(0) theory are the only

LPFD methods that satisfy the positivity criterion, they are the only LPFD meth-

ods that will be given further consideration.

4.3 The Treatment of Single Excitations

The Linked Pair Functional (LPFD) is a doubles-only Variational Coupled Cluster

approximation, in the sense that it accounts only for a subset of the terms present

in VCCD. However, it is an approximation to VCCSD that is truly desired; al-

though it is the double excitations that are the leading-order contributions to the

correlation energy, the single excitations are also important, since, in particular,

it is CISD that is the correct answer for a 2-electron system, not CID.

A natural extension of LPFD to a hypothetical LPFSD theory would be to

incorporate the single excitation amplitudes into either of the positive-definite

transformation matrices of LPFD(0) or LPFD(+1) such that, in the 2-electron

limit, the CISD denominator is generated for all terms contributing to the func-

tional, and then to employ either matrix to construct transformed single excita-

tion operators, in addition to the transformed doubles, in order to construct that

functional. Unfortunately, it appears difficult to reconcile this extension with the

desire to preserve all of the advantageous LPFD methodological properties. For

example, the LPFD(0) transformation matrix has the following elements,

U i
j = δij +

1

2
T ikabT

ab
jk , (4.64)

and the obvious extension is,

U i
j = δij + T iaT

a
j +

1

2
T ikabT

ab
jk . (4.65)
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However, the singles contribution to the CISD denominator,

〈T̂ †1 T̂1〉 = T iaT
a
i , (4.66)

reduces to the sum of two distinct contributions in the two-electron limit,

〈T̂ †1 T̂1〉 = T eaT
a
e + T ēaT

a
ē , (4.67)

but only one of these two contributions enters U i
j in this limit; T eaT

a
e in the case

of U e
e and T ēaT

a
ē in the case of U ē

ē . Thus, this theory would not be exact for a

limiting system containing only 2 electrons.

In contrast, the inclusion of singles explicitly into an LPFD(+1) transforma-

tion matrix is possible; consider the following potential form of the LPFD(+1)

transformation matrix,

U ij
kl = δijkl + (1− τij)(1− τkl)T iaT ak δjl +

1

2
T ijabT

ab
kl . (4.68)

Noting that δeē and δēe vanish, U eē
eē contains the correct contributions such that

U eē
eē = 1+ 〈T̂ †1 T̂1〉+ 〈T̂ †2 T̂2〉 for a 2-electron system. The contraction of this matrix

with a double excitation amplitude is unchanged from LPFD(+1) theory, and is

therefore straightforward, but contraction of this matrix with a single excitation

amplitude is problematic because, in order to perform the contraction, two of

the indices of the matrix must be eliminated in some way, such as in U ij
kjT

k
a ,

where a sum over j is, of course, implied by the Einstein summation convention.

This contains contributions such δikT
j
aT

a
j T

k
a = T jaT

a
j T

i
a = 〈T̂ †1 T̂1〉T ia, which clearly

generates unlinked terms, such that the energy would not scale physically with

the size of the system, and the theory therefore would not possess the property

of rigorous extensivity.

For the above reasons, the explicit inclusion of single excitations into an LPF

scheme currently remains an open problem. There are alternatives, however. The

Brueckner Coupled Cluster method[96], restricted to double excitations (BCCD),

for example, is a close relative of the CCSD method, but omits single excitations

and instead replaces the equation to be solved for the singles with a Brueckner
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condition[97, 98].

〈Φ0|ĤeT̂2 |Φ0〉 = EBCCD (4.69)

〈Φa
i |ĤeT̂2 |Φ0〉 = 0 (4.70)

〈Φab
ij |ĤeT̂2|Φ0〉 = T abij EBCCD (4.71)

This treats single excitations by absorbing their effects into the underlying or-

bitals, exploiting the equivalence between orbital rotations and single excita-

tions implied by the Thouless Theorem[99], which states that any two single-

determinantal wavefunctions, |Φ〉 and |Φ′〉, may be related by |Φ′〉 = eT̂1|Φ〉 for

an appropriate choice of T̂1. An equivalent Brueckner condition,

〈Φa
i |Ĥ(1 + 1T̂2)|Φ0〉 = 0, (4.72)

can be applied to the LPFD method, and the ground-state energy calculated

as the minimum of the functional constrained to satisfy this relationship. This

defines the Brueckner Linked Pair Function Doubles (BLPFD) method.

Alternatively, one can assert that the LPFD functional should be minimized

directly with respect to both the doubles cluster amplitudes and the orbitals. This

defines the Optimized-orbital Linked Pair Functional Doubles (OLPFD) method.

The precise mechanics of performing this minimization are quite complicated,

but have been discussed extensively in the context of coupled-pair functionals by

Kollmar and Heßelmann[100]. The result is that the condition for the station-

arity of the functional is that the partial derivatives with respect to the doubles

amplitudes should vanish,

∂E

∂T ijab
= 0 ∀ i, j, a, b, (4.73)

and that the orbital gradient, fia, as defined in Ref. [100] should also vanish,

fia = 0 ∀ i, a. (4.74)

OLPFD has the advantage that it is fully variational, making the calculation

of properties simpler, since solution of the linear equations that determine the

lagrangian multipliers[101] is unnecessary. However, BLPFD is computationally
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cheaper since the recalculation of integrals with three external indices in each

iteration can be avoided[102]. While neither of these methods are as aesthetic

as a hypothetical LPFSD theory, both BLPFD and OLPFD correctly account

for the effects of single excitations such that they are exactly equivalent to CISD

for a 2-electron system, and preserve all of the other attractive methodological

properties of LPFD theory discussed in the previous chapter. However, the use

of the Brueckner condition can sometimes lead to some surprising failures[103],

and therefore OLPFD is the preferred approach.

4.4 Appendix: The Correct LPFD(+1) Resid-

ual

With the result of Section 4.1 for the differentiation of the transformation matrices

raised to arbitrary rational powers, Eq. 4.47, it is possible to find a correct

expression for the residual of an LPFD method, and, for completeness, this is

presented here. For convenience, the simplest case of LPFD(+1) is again taken.

Returning to the following point in the derivation,

dE =
1

2

2∑
q=1

qVabij
(

U−
q
2 dT + d(U−

q
2 )T

)ij
ab

=
1

2

2∑
q=1

qAabij dT ijab +
1

2

2∑
q=1

qBklijd(U−
q
2 )ijkl, (4.75)

the working for the first term is essentially complete, so developing the second

term is now the goal. First, it is noteworthy that this second term can be con-

verted from a spin-orbital notation in which the Einstein summation convention

is taken to apply, to summations over the unique electron pairs only, taking ij

and kl, for example, to be labels for the electron pairs (such that U effectively

has two indices, not 4), and from there to an explicit matrix form in which the

result of the previous subsection is more readily applicable. It is noteworthy that

although qB is not symmetric, the overall value of the contribution is independent
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of the way in which the indices of qB and U are combined.

1

2

2∑
q=1

qBklij d(U−
q
2 )ijkl = 2

2∑
q=1

N∑
j<i
l<k

qBklij d(U−
q
2 )ijkl

= 2
2∑
q=1

Np∑
i=1
j=1

qBij d(U−
q
2 )ji

= 2
2∑
q=1

Np∑
i=1
j=1

qBji d(U−
q
2 )ij

= 2
2∑
q=1

Np∑
i=1
j=1

qBji d(U−
q
2 )ji (4.76)

Substituting in the appropriate expression, the derivation proceeds as follows,

where a number of intermediate quantities have been defined. These are sum-

marised below in Eqs. 4.81-4.90.

1

2

2∑
q=1

qBklij d(U−
q
2 )ijkl = 2

2∑
q=1

Np∑
i=1
j=1

qBij d(U−
q
2 )ji

= 2
2∑
q=1

Np∑
i=1
j=1

qBij
Np∑
m=1
n=1

dUmn

 Np∑
k=1,l=1
k 6=l,εk 6=εl

ε
− q

2
k − ε−

q
2

l

εk − εl
XjlXikXmlXnk

−q
2

Np∑
k=1

ε
− q

2
−1

k XjkXikXmkXnk

]

= 2
2∑
q=1

Np∑
i=1
m=1
n=1

dUmn

 Np∑
k=1,l=1
k 6=l,εk 6=εl

ε
− q

2
k − ε−

q
2

l

εk − εl
XikXmlXnk qCil

−q
2

Np∑
k=1

ε
− q

2
−1

k XikXmkXnk qCik
]

= 2
2∑
q=1

Np∑
m=1
n=1

dUmn

 Np∑
k=1,l=1
k 6=l,εk 6=εl

ε
− q

2
k − ε−

q
2

l

εk − εl
XmlXnk qDlk

−q
2

Np∑
k=1

ε
− q

2
−1

k XmkXnk qDkk
]

= 2
2∑
q=1

Np∑
m=1
n=1

dUmn

[
Np∑
k=1

Xnk qFkm − q
2 q
Emn

]
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= 2
2∑
q=1

Np∑
m=1
n=1

dUmn
[
qHmn − q

2 q
Emn

]

= 2
2∑
q=1

Np∑
m=1
n=1

dUmn qImn (4.77)

At this point, it is possible to convert back to a spin-orbital notation and to

substitute the derivative of the unpowered matrix,

1

2

2∑
q=1

qBklij d(U−
q
2 )ijkl = 2

2∑
q=1

Np∑
m=1
n=1

dUmn qImn

= 2
2∑
q=1

Np∑
m=1
n=1

dUm
n qInm

=
1

2

2∑
q=1

dU ij
kl qIklij

=
1

4

2∑
q=1

qIklij
(
T ijabdT

ab
kl + dT ijabT

ab
kl

)
=

1

4

2∑
q=1

[
qIklij +

(
qIT
)kl
ij

]
T abkl dT

ij
ab

=
1

4

2∑
q=1

qJ kl
ij T

ab
kl dT

ij
ab

=
1

2

2∑
q=1

qKabij dT ijab. (4.78)

Combining this with the first term from above, the differential of the energy is

found to be,

dE =
1

2

2∑
q=1

[
qAabij + qKabij

]
dT ijab, (4.79)

from which the correct residual can be determined to be,

Gab
ij =

2∑
q=1

[
qAabij + qKabij

]
. (4.80)

The definitions of the intermediate quantities used are as follows.

qAabij =
1

2
(U−

q
2 )klij qVabkl (4.81)

qBklij =
1

2
qVabij T klab (4.82)
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qCij =

Np∑
k=1

qBikXkj (4.83)

qDij =

Np∑
k=1

qCkiXkj (4.84)

qEij =

Np∑
k=1

ε
− q

2
−1

k XikXjk qDkk (4.85)

qFij =

Np∑
k=1,k 6=i,εk 6=εi

ε
− q

2
i − ε−

q
2

k

εi − εk
Xjk qDki (4.86)

qHij =

Np∑
k=1

Xjk qFki (4.87)

qIij = qHij −
q

2
qEij (4.88)

qJij = qIij + qIji ⇔ qJ = qI + qIT (4.89)

qKabij =
1

2
qJ kl

ij T
ab
kl (4.90)



Chapter 5

Approximate Variational

Coupled Cluster Theory†

In the previous two chapters, the fundamental theory of the Linked Pair Func-

tional Doubles quantum-chemical method was outlined, and it was discussed how

the effects of single excitations may be captured by variational minimization

of the LPFD energy also with respect to the orbitals, defining the Optimized-

orbital Linked Pair Functional Doubles method. Furthermore, it was found that

only OLPFD(+1) and the approximate OLPFD(0) methods satisfy the constraint

that the LPFD transformation matrix must be positive-definite if the LPFD en-

ergy is to be calculable. At this stage, it is necessary to benchmark the per-

formance of the OLPFD(0) and OLPFD(+1) methods against CCSD, VCCSD

and FCI. BCCD results are also given as a measure of the degree to which the

different treatments of single excitations affect the results. It should be noted,

however, that the Brueckner orbitals are not always close to the variationally op-

timal orbitals [100], and Brueckner Linked Pair Functional Doubles calculations

have additionally been carried out as checks, although, for simplicity, these are

not presented here. These calculations have been performed with the Molpro

package of ab initio quantum chemistry programs[86, 87].

†Relevant publication:

[94] J. B. Robinson and P. J. Knowles, J. Chem. Phys. 135, 044113 (2011).



82 Approximate Variational Coupled Cluster Theory

555555

555550

555555

555550

555555

555550

555505

550 555 550 555 550 555

sssssssssssssssssssssss

s
s
s
ss

s
ss

ss
s
ss

ss
s
s

DDDD sDDD )s))D)0) )s))D))5) DDDDD )DI

Figure 5.1: Calculated potential energy curves for BeO with the STO-3G basis

set.

5.1 Preliminary OLPFD(0) and OLPFD(+1) Re-

sults

As a first example, consider the dissociation of the BeO molecule with the mini-

mal STO-3G basis, for which results are given in Figure 5.1. The first noteworthy

point is that neither of the TCC-based methods, CCSD and BCCD, perform par-

ticularly well; the CCSD curve is too shallow at long bond lengths, crossing the

FCI curve at around 2.3Å, and the BCCD curve possesses an unphysical maxi-

mum. Neither curve therefore qualitatively mimics the shape of the FCI curve

well. In contrast, the shape of the VCCSD curve is a significant improvement.

Unfortunately, although both OLPFD(0) and OLPFD(+1) are closer to VCCSD

at short bond lengths, they both eventually cross the FCI curve and in such a way

that they appear to be approaching the wrong dissociation limits. By consider-

ing only this example, it clearly cannot be said that either of the positive-definite

LPFD methods are better approximations of VCCSD than is CCSD, and clearly,

this is not a good start.
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Since these results are not particularly positive, consider next a model system

in which four hydrogen atoms are arranged at the vertices of a rectangle that

can be specified by two parameters. The parameter R, measured in angstroms,

controls the distance of each H atom from the center of the rectangle. The

parameter θ, measured in degrees, is the angle subtended at the center by lines

to two neighbouring H nuclei. R therefore controls the overall size of the rectangle,

and θ controls the distortion of the system from square (θ = 90◦), to rectangular

geometry.

This system is of interest because the optimum Hartree-Fock reference deter-

minant differs depending on whether θ < 90◦ or θ > 90◦. This can easily be

understood because, if the hydrogen atoms are labelled A, B, C and D, then for

θ ≈ 0◦, atoms A and B, say, would be spatially distant from atoms C and D,

and therefore the bonding would be A-B C-D, whereas for θ ≈ 180◦, it would be,

say, A and C nearby, and spatially distant from B and D, such that the bond-

ing would instead be A-C B-D. The system therefore, by definition, possesses

strong multireference character around the square geometry, since at least two

determinants then become equally important to the description of the electronic

structure. This is therefore a prototypical example of strong non-dynamic corre-

lation, in which VCCSD is expected to be superior to CCSD. This system was

first studied, at least in the context of VCCD benchmarking, by Van Voorhis and

Head-Gordon[44], who found that around twice the ‘equilibrium’ value of R, the

VCCD method is much more faithful to the shape of the FCI curve than CCSD.

Analogous results, with R fixed and θ allowed to vary, and with the aug-cc-pVDZ

basis set are supplied in Figure 5.2.

The first thing that should be apparent upon examination of this graph is

that only the FCI curve is smooth through the square geometry. All of the single-

reference systems display unphysical cusps at θ = 90◦, since, in these calculations,

the reference determinant is allowed to vary. If the reference determinant is

instead fixed, independent of θ, the single-reference methods become extremely

poor and all predict asymmetric curves. The symmetry of this system about

θ = 90◦ dictates that instead allowing the optimum reference determinant for a

particular geometry to be used is the most faithful way to model this system with
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Figure 5.2: Calculated potential energy curves for H4 with R = 1.75Å, and with

the aug-cc-pVDZ basis set.

single-reference methods.

The distinction betweem the CCSD, BCCD and VCCSD methods in this

system is significant; although the VCCSD curve is strongly cusped, the maximum

at θ = 90◦ is analogous to the FCI curve, whereas both the CCSD and BCCD

curves turn over around the square geometry, predicting less faithful, inverted

cusps. The LPF methods show small improvements; the OLPFD(+1) curve is

cusped in the same manner as the CCSD methods, but to a lesser degree, and

the OLFPD(0) method is cusped in the same way as VCCSD, but is displaced

below the FCI curve. It can therefore be said that the OLPFD approximation of

VCCSD shows promise, but it is not strictly better than CCSD.

Finally, an examination of the dissociation of a multiply-bonded molecule is

in order, since this is the type of system for which CCSD and related methods are

known to perform poorly, and for which a more robust single-reference method

would be highly desirable. The case of stretching the triple bond in acetylene

(with the C-H bond length fixed at 1.06Å) is examined with the minimal STO-

3G basis in Figure 5.3. A plot of the potential energy curve was previously given
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in Figure 2.1, here errors relative to FCI are presented, with the effect of more

clearly elucidating the behaviours of the different methods.

Even a cursory examination of Figure 5.3 reveals the huge difference be-

tween the behaviour of VCCSD, which remains above FCI throughout, and the

other single-reference methods, which rapidly diverge to energies significantly be-

low FCI for this system. It is particularly shocking, however, that while the

TCC-based methods have reached an unphysical maximum and entered the non-

variational turn-over phase by 1.7Å, the OLPFD methods, which have been con-

structed with the goal of better approximating VCCSD in situations such as this,

in fact diverge more quickly, and at shorter bond lengths, with OLPFD(0), di-

verging from at least 1.6Å, performing only slightly better than OLPFD(+1),

which diverges from at least 1.5Å.

In conclusion, while the OLPFD methods are extremely theoretically attrac-

tive, and despite their intimate relationship with the VCCSD functional, they

do not solve the problem of constructing a single-reference method capable of

correctly modelling strongly multireference phenomena, such as multiple bond

breaking, and are not, in general, numerically close to VCCSD. This chapter

rationalizes this problem, and proposes a potential solution such that a more

accurate approximation to VCCSD can be constructed from the same LPFD

mathematical and methodological principles.

5.2 A Corrected LPFD(0) Theory

The reason for the poor performance of the OLPFD methods, especially as ap-

proximations to VCCSD, can be explained through an examination of the low-

order contributions to the correlation energy. The LPFD methods are exactly

equivalent to VCCD to O(T 2) in the cluster amplitudes, or to third-order in

Møller-Plesset perturbation theory, since this is the level of accuracy of the

CEPA(0) functional that the LPFD amplitude transformations modify. At all

higher orders, unlike CEPA(0), the LPFD methods contain subsets of the terms

present in VCCD, and the use of these subsets is justified by the mutual cancel-



86 Approximate Variational Coupled Cluster Theory

44444

44443

44442

44441

4444

4441

4442

440 144 142 144 140 140 244

sssssssssssssssssssssss

s
s
s
ss

s
ss

ss
s
ss

s
ss

s
ss

ss
s
s

DDDD sDDD )s))D)4) )s))D))1) DDDDD

Figure 5.3: Calculated potential energy curves for the stretching of the carbon-

carbon triple bond in acetylene, C2H2, with the C-H bond length fixed at 1.06Å,

and with the STO-3G basis set.

lation of all other contributions in the 2-electron limit. For example, at O(T 3),

the first order at which VCCD and LPFD differ, in the case of LPFD(0), only

1
2
B enters at this order, and the remaining omitted terms cancel for the case of 2

electrons,

A+
1

2
B + C +D = 0, (5.1)

exactly as is implied by the relationships between the terms noted in Chapter 3.

For the case of LPFD(+1), which generates diagram C with a factor of −1, the

difference from VCCD at O(T 3) is,

A+ B + 2C +D = 0, (5.2)

which again vanishes for 2 electrons. These cancellations occur at all higher orders

also.

However, the failure of the LPFD methods to achieve good numerical cor-

respondence with VCCD can be understood as being due to the omission of so

many low-order contributions, since the many omitted terms may become impor-

tant for more general systems, containing more than 2 electrons. To put this in
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perspective, LPFD(0) and LPFD(+1) both omit three of the four linked O(T 3)

VCCD contributions, and recover the remaining term with an incorrect prefactor

relative to how the term enters in VCCD. The correspondence with VCCD gets

even worse at higher orders, and a scheme for correcting upon an LPFD starting

point is required.

Since both the B and C terms are able to contribute in the 2-electron limit,

they can be viewed as equally important, and a first correction to either LPFD(0)

or LPFD(+1) should restore the balance of these two contributions, such that

B+C is obtained at O(T 3), exactly as the contributions appear in VCCD, and as

in LPFD(-1), which was, of course, discarded on the grounds of positivity. Since

the LPFD(0) method has been demonstrated to be slightly more accurate than

LPFD(+1) in the numerical tests performed above, and since, as was discussed

in Chapter 4, it is also slightly more simple to carry out computationally, the

LPFD(0) method will be used as the underlying theory on which these low-order

corrections are to be applied.

It is, of course, possible simply to add these low-order correction terms directly

to the energy functional, but it is more satisfying to formulate their addition

through the application of a new matrix transformation, since, for an appropri-

ately chosen transformation, this ensures the preservation of all of the aesthetic

LPFD methodological properties, and has the additional advantage that, if the

transformation is applied multiplicatively, then contributions that couple the new

transformation with the original U transformation will enter through all orders,

and not just at low orders. The validity of these new infinite-order contribu-

tions can again be justified by the argument that they give a correct subset for

2-electrons, assuming that this can be demonstrated in a closed form.

Thus, the following transformation matrix is proposed,

qW
ij
kl = δijkl + qSw Ωij

kl (5.3)

Ωij
kl = ηijkl −

1

2
(1− τij)(1− τkl) δik ηjl . (5.4)

This matrix reduces exactly to the identity, or rather a scalar equal to one, for
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two electrons, since the Ω matrix then vanishes,

Ωeē
eē = ηeēeē −

1

2
(δee η

ē
ē − δēe ηeē − δeē ηēe + δēē η

e
e)

= ηeēeē −
1

2
(ηēē + ηee)

= 〈T̂ †2 T̂2〉 −
1

2

(
〈T̂ †2 T̂2〉+ 〈T̂ †2 T̂2〉

)
= 0. (5.5)

The transformation of the cluster amplitudes by this matrix may be defined as

follows,

(
qW qPw T

)ij
ab

=
1

2

(
qW qPw

)ij
kl
T klab , (5.6)

exactly the same as the U transformation.

By expanding the powers of the W matrix through the binomial theorem,

the leading-order contribution to the powered matrix can be seen to be the iden-

tity, such that the leading-order contribution to the W-transformed amplitudes

remains the untransformed cluster amplitudes, as is required for consistency. Ap-

plying this same procedure to examine the O(T 3) terms generated by this trans-

formation gives the following,

(
qW qPw T

)ij
ab

=
1

2

(
qW qPw

)ij
kl
T klab

← 1

2
qPw qSwΩij

klT
kl
ab

=
1

2
qPw qSw

(
ηijkl −

1

2
(1− τij)(1− τkl) δik ηjl

)
T klab

=
1

2
qPw qSw

(
ηijklT

kl
ab − 2ηjl T

il
ab

)
= qPw qSw

(
1

2
ηijklT

kl
ab − ηjkT ikab

)
,

which, when inserted into the corresponding expression in the energy functional,
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gives,

〈Ĥ 2T̂ 〉 =
1

4
〈ij||ab〉2T abij

〈Ĥ 2T̂ 〉 =
1

4
〈ij||ab〉

(
2W 2PwT

)ab
ij

← 2Pw 2Sw〈ij||ab〉
(

1

8
ηklijT

ab
kl −

1

4
ηkj T

ab
ik

)
= 2Pw 2Sw

(
C +

1

2
B
)

= 2Pw 2Sw

 +
1

2

 (5.7)

If the (at present unspecified) matrix powers, qPw, and matrix coefficients, qSw,

satisfy,

2Pw 2Sw = +1, (5.8)

or, more generally, for correct behavior for the O(T 4) 1-electron terms that will

be necessary in Chapter 7,

qPw qSw = +
q

2
, (5.9)

the effect of this transformation is therefore to add 1
2
B+C at O(T 3), compliment-

ing the 1
2
B already present in LPFD(0) to give B + C, exactly as the terms enter

VCCD.

Attention must now be given to the other two O(T 3) terms. One may be

forgiven for thinking that since they do not contribute at all for a limiting system

containing only 2 electrons, the A and D terms are ‘less important’ than either

the B or C terms. This is false, however, because the cancellation of the terms

is only exact for 2 electrons. In fact, in the general case, particularly when non-

dynamic correlation is strong, the terms do not even approximately cancel, and

the sum of the terms therefore represents an important contribution to the VCCD

correlation energy. In addition, the A term is important in the 2-hole limit, which

LPFD(0) does not treat correctly, and will be of interest in Chapter 6, and the

D term is therefore at least as important, due to their 2-electron cancellation.

Thus, these missing terms should be built into the prospective LPFD correction

scheme.
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Consider the following transformation matrix,

qV
ib
aj = δibaj + qSv Γibaj (5.10)

Γibaj = 2
(
δijη

b
a − ηibaj

)
(5.11)

ηab =
1

2
T ijbc T

ac
ij (5.12)

ηibaj = T ikac T
bc
jk . (5.13)

This matrix again reduces to the identity for the case of 2 electrons since,

Γebae = 2
(
δeeη

b
a − ηebae

)
= 2

(
ηba − ηebae

)
= 2

(
1

2
T bckl T

kl
ac − T elacT bcel

)
= 2

(
T bceēT

eē
ac − T eēacT bceē

)
= 0, (5.14)

and,

Γebaē = 2
(
δeēη

b
a − ηebaē

)
= −2ηebaē

= −2T elacT
bc
ēl

= −2T eeacT
bc
ēe − 2T eēacT

bc
ēē

= 0, (5.15)

and when its powers are applied to transform the cluster amplitudes by the fol-

lowing scheme,

(
qV qPv T

)ij
ab

=
1

4
(1− τij)(1− τab)

(
qV qPv

)ic
ak
T kjcb (5.16)

which preserves the necessary fermionic antisymmetry, the following O(T 3) con-
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tributions are generated.

1

4
〈ij||ab〉2T abij =

1

4
〈ij||ab〉

(
2V 2PvT

)ab
ij

← 1

4
2Pv 2Sv〈ij||ab〉 (ΓT)abij

=
1

16
2Pv 2Sv〈ij||ab〉(1− τij)(1− τab)Γakic T cbkj

=
1

4
2Pv 2Sv〈ij||ab〉Γakic T cbkj

=
1

2
2Pv 2Sv〈ij||ab〉

(
δki η

a
c − ηakic

)
T cbkj

=
1

2
2Pv 2Sv〈ij||ab〉ηacT cbij −

1

2
2Pv 2Sv〈ij||ab〉ηakic T cbkj

= −2Pv 2Sv(A+D)

= −2Pv 2Sv

 +

 (5.17)

Therefore, if the (again, currently unset) matrix powers, qPv, and matrix coeffi-

cients, qSv, satisfy the following constraint,

qPv qSv = −q
2
, (5.18)

then the correct VCCD terms, A + D, are generated at O(T 3), and also the

correct 1-electron O(T 4) terms through 〈1T̂ †(Ĥ − 〈Ĥ〉)1T̂ 〉. For completeness,

an updated table (Table 5.1) of the O(T 3) VCCD terms is given, in which the

contributions are written in terms of the newly-defined quantities.

With these new transformations in hand, it is possible to fully define the cor-

rected OLPFD(0) scheme, which will be named Approximate Variational Cou-

pled Cluster Doubles (AVCCD) theory. The structure of the (previously LPFD)

functional remains unchanged,

EAVCCD = 〈Ĥ〉+ 2〈Ĥ 2T̂ 〉+ 〈1T̂ †(Ĥ − 〈Ĥ〉)1T̂ 〉, (5.19)

and is to be minimized with respect to the untransformed cluster amplitudes in

order to give a ground-state energy. The transformed cluster amplitudes, however,

now take the following form,

qT
ij
ab =

(
qV qPv

(
qW qPw

(
U−

q
2 T
)))ij

ab
. (5.20)
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Table 5.1: Linked O(T 3) contributions to VCCD, where 〈T̂ †T̂ 〉 = 1
4
T ijabT

ab
ij , and

where e and ē label the two spinorbitals occupied in the reference wavefunction.

1
2!
〈T̂ †2 ĤT̂ 2

2 〉L Diagram 1
2!
〈T̂ †2 ĤT̂ 2

2 〉L Term 2 Electrons

A
1
4
T acij T

kl
cd T

db
kl 〈ij||ab〉

= −1
2
T acij η

b
c 〈ij||ab〉

−T aceē ηbc 〈eē||ab〉

B
1
4
T abik T

kl
cd T

cd
lj 〈ij||ab〉

= −1
2
T abik η

k
j 〈ij||ab〉

−T abeē 〈T̂ †T̂ 〉〈eē||ab〉

C
1
16
T abkl T

kl
cd T

cd
ij 〈ij||ab〉

= 1
8
T abkl η

kl
ij 〈ij||ab〉

1
2
T abeē 〈T̂ †T̂ 〉〈eē||ab〉

D
1
2
T acik T

kl
cd T

db
lj 〈ij||ab〉

= 1
2
T acik η

kb
cj 〈ij||ab〉

T aceē η
b
c 〈eē||ab〉

As discussed above, the transformations are applied multiplicatively, or, more

correctly, in a compound fashion, in which the transformations are applied suc-

cessively. That is, first the LPFD(0) U-transformed amplitudes are constructed,

then these amplitudes are themselves transformed by qW to generate a new set

of qW-U-transformed amplitudes, to which the qV transformation is applied.

The explicit form of each transformation has been outlined above. Since the new

transformations are explicitly linked tensor quantities, still no unlinked terms are

introduced, and the AVCCD method remains rigorously extensive, as well as in-

variant to rotations in the underlying orbital spaces. Since both of the corrective

transformation matrices, qW and qV, reduce to the identity matrix for the case

of a 2-electron system, the AVCCD functional also reduces to the LPFD(0) func-

tional, which is itself equal to the CID functional in this limit. AVCCD therefore

remains exactly equivalent to CID for 2 electrons. Furthermore, the leading-order

corrective terms enter linearly,

(1 + qSvΓ) qPv(1 + qSwΩ) qPw(1 + ∆)−
q
2

= (1 + qPv qSvΓ + . . .)(1 + qPw qSwΩ + . . .)(1− q

2
∆ + . . .)

= 1− q

2
∆ + qPw qSwΩ + qPv qSvΓ + . . . , (5.21)

and the AVCCD method therefore includes the O(T 3) terms exactly as they

appear in VCCD.
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When the AVCCD functional is also optimized with respect to the orbitals[100]

(OAVCCD), or constrained by a Brueckner condition[96–98] (BAVCCD), in order

to account for the effects of single excitations, the method possesses the following

attractive theoretical properties.

• The ground-state energy is calculated by variational minimization of a func-

tional. The error in a calculated energy is thus second-order in any remain-

ing errors in the cluster amplitude parameters.

• The functional contains fully linked terms only, and is therefore rigorously

extensive.

• It is exactly equivalent to FCI for a limiting 2-electron system.

• The energy is a scalar that is invariant to rotations in the underlying orbital

spaces {ψi} and {ψa}.

• The energy is not a true upper bound on the exact ground-state Schrödinger

energy eigenvalue, but variational minimization of the functional gives a

theory that satisfies the generalized Hellmann-Feynman theorem[67].

• The doubles-only theory is equivalent to VCCD to O(T 3), and, as a conse-

quence, the one-electron O(T 4) terms are also constructed correctly.

• It is correct to third-order in Møller-Plesset perturbation theory[3] and

omits only the terms containing triple excitations from fourth-order, the

same as CCSD (see Chapter 7).

• The limiting computational complexity of the method is O(o2v4), the same

as CCSD.

At this point, however, the powers and coefficients of the corrective trans-

formation matrices remain unspecified. There are, in fact, no good theoretical

reasons to justify any particular values, except that they must satisfy the con-

straints outlined above if the O(T 3) VCCD terms are to be generated with the

correct weightings. AVCCD is therefore not a unique theory, a minor theoretical

disadvantage. However, sensible values for the powers can be justified from the
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constraint of positivity; neither of the corrective transformation matrices, qW or

qV, are strictly positive-definite in general. In particular, this prevents the use

of − q
2

as the power of these matrices, analogous to the power of the U matrix,

for reasons outlined in Chapter 4, and a restriction to positive integer powers

must be made. Choosing powers of zero switches off the new transformations

entirely, so, since it is the most computationally practical alternative, powers of

+1 are proposed, since any other powers require additional matrix operations.

Therefore,

qPw = qPv = +1, (5.22)

which, given the above constraints, allows the coefficients to be determined as,

qSw = − qSv = +
q

2
. (5.23)

With the AVCCD method fully specified, numerical benchmarking must be car-

ried out, the topic of the next section.

5.3 Preliminary Results

The example systems of BeO, H4 and acetylene, previously demonstrated a de-

ficiency in the LPFD approximation of VCCD that has been attributed to the

poor low-order correspondence of LPFD with VCCD. In particular, independent

of the λ parameter, no LPFD method is able to match VCCD beyond O(T 2),

since even LPFD(-1) omits the A and D terms at O(T 3). The AVCCD method,

outlined in the previous section, however, by construction matches VCCD exactly

to O(T 3), and to fourth-order in Møller-Plesset perturbation theory, by adding

corrective terms to the LPFD(0) VCCD subset, without modification of the 2-

electron behaviour. In this section, the above systems will be re-examined in

order to determine to what level the numerical performance is improved by the

improved approximation of VCCD.

The new BeO potential energy curves, for which the new AVCCD results,

using orbital optimization to account for the effects of single excitations, have

been added, are given in Figure 5.4 with the STO-3G basis set. At first glance,
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Figure 5.4: Calculated potential energy curves for BeO with the STO-3G basis

set.

the AVCCD method appears to be performing better than either of the TCC

methods; it neither crosses the FCI curve, as CCSD does, nor does it predict an

unphysical maximum, as BCCD does. It also does not diverge from VCCSD at

intermediate bond lengths, as was observed for the OLPFD methods in Figure 5.1,

and appears to be a good approximation to VCCSD throughout. Unfortunately,

however, unlike all of CCSD, BCCD and VCCSD, OAVCCD does not tend to

the same limit, and does not become coincident with the FCI curve at long bond

lengths, even when the bond appears to be fully broken. The AVCCD method

is extensive, and exact for 2 electron systems, so this discrepancy cannot be

explained by a shortcoming of its theoretical properties. Instead, it is likely to be

associated with the omission of VCCD terms at higher orders, such that a further

improvement to the approximation of VCCD may resolve the problem.

New results for the H4 model system are given in Figure 5.5. Unlike the TCC

potential energy curves, and the OLPFD potential energy curves given in Figure

5.2, the OAVCCD curve correctly mimics the VCCSD cusp shape. Furthermore,

although it is too high in energy, the OAVCCD curve has the advantage that

it remains above the FCI curve throughout, and the discrepancy from VCCSD
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Figure 5.5: Calculated potential energy curves for H4 with R = 1.75Å, and with

the aug-cc-pVDZ basis set.

can again be attributed to the deficiency of the current VCCD approximation at

orders higher than O(T 3).

Finally, the case of breaking the triple bond in acetylene is examined again in

Figure 5.6. It was previously observed that the TCC methods predict an unphys-

ical maximum in the potential energy curve for this system, followed by a non-

variational breakdown to energies significantly below FCI, and that the LPFD

methods perform even worse, as shown in Figure 5.3. The OAVCCD method,

however, performs much better. In particular, it does not predict an unphysical

maximum, and instead continues to increase monotonically at large bond lengths

in a physically correct manner. Unfortunately, it is still significantly below the

FCI curve, indicating that while it is potentially a more robust method than,

for example, CCSD, it does not inherit sufficient upper bound character from its

parent VCCD method to treat problems for which non-dynamic correlation is as

strong as in this example.

In summary, these results indicate the AVCCD ansatz to be a remarkable

improvement upon the LPFD methods for the treatment of systems for which non-
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Figure 5.6: Calculated potential energy curves for the stretching of the carbon-

carbon triple bond in acetylene, C2H2, with the C-H bond length fixed at 1.06Å,

and with the STO-3G basis set.

dynamic correlation is strong, and the Hartree-Fock approximation breaks down,

and shows promise as a method more suitable for the modelling of such systems

than TCC. However, it does not fully resolve the problem of finding a robust and

accurate single-reference method capable of correctly treating problems such as

multiple bond breaking. If it is possible to further improve upon the AVCCD

approximation to VCCD, this situation may be liable to change.

5.4 A Corrected LPFD(+1) Theory

In this chapter, it has already been discussed how low-order corrections to the

LPFD(0) scheme can be constructed from the application of additional matrix

transformations, such that the method agrees with VCCD to O(T 3). It has also

been demonstrated that, although the resulting AVCCD method is more similar

in spirit to VCCD than is CCD, and is more robust to the breakdown of the

Hartree-Fock approximation that occurs in situations such as the dissociation of

multiply-bonded molecules, it is still not robust enough to treat these problems
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in a physically correct manner. Thus, a pertinent question is whether applying

corrections to the other positive-definite LPFD method, LPFD(+1), performs

any better. There is, in fact, a sound theoretical reason why this might be true;

the LPFD(+1) method is exactly equivalent to CID, not just for 2 electrons, but

for 2 holes (2 unoccupied virtual orbitals) also. This will be discussed further

and rigorously proved in the following chapter, where preserving particle-hole

symmetry will be promoted to a necessary criterion that an approximate VCC

method must satisfy.

The correction scheme to be applied to LPFD(+1), in fact, requires only a

trivial modification of the corrective transformations applied to LPFD(0). Con-

sider the O(T 3) terms that must be added to LPFD(+1) to make it agree with

VCCD exactly to this order; clearly, this is A+ B + 2C +D. With no modifica-

tion, the qV transformation can be used to account for A+D, and the Ω matrix

requires only to be multiplied by a factor of 2, such that the qW transformation

generates B + 2C, instead of 1
2
B + C. However, if applied in the same multi-

plicative (or compound) fashion as the corrections to LPFD(0) above, although

this hypothetical corrected LPFD(+1) theory would remain exact for 2 electrons,

the corrective transformations break the hole-particle symmetry and prevent the

reduction of the functional to CID for 2 holes. It is therefore suggested that the

LPFD(+1)-based corrected transformed amplitudes are constructed as follows,

qT
ij
ab = (U−

q
2 T)ijab −

q

2
(U−

q
4
−1

2 (Γ−Ω)U−
q
4
−1

2 T)ijab (5.24)

since, in this form, not only do the corrective transformation matrices vanish

for 2 electrons, they also mutually cancel for 2 holes, such that LPFD(+1) (and

therefore also CID) is recovered in both the 2-electron and 2-hole limits.

The proof of this cancellation is quite involved, and begins with an exam-

ination of the case of the application of the corrective transformations to the

untransformed amplitudes, noting that the additional factor of 2 has been incor-
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porated into the Ω matrix,

((Γ−Ω) T)ijab = (ΓT−ΩT)ijab

= (ΓT)ijab − (ΩT)ijab

=
1

4
(1− τij)(1− τab)ΓicakT kjcb −

1

2
Ωij
klT

kl
ab

=
1

4
(1− τij)ΓicakT kjcb −

1

4
(1− τij)ΓicbkT kjca −

1

2
Ωij
klT

kl
ab , (5.25)

and then to examine it specifically for 2 holes,

((Γ−Ω) T)ij
hh̄

=
1

4
(1− τij)ΓihhkT kjhh̄ +

1

4
(1− τij)Γih̄h̄kT

kj

hh̄
− 1

2
Ωij
klT

kl
hh̄

=
1

4
(1− τij)T kjhh̄

(
Γihhk + Γih̄h̄k

)
− 1

2
Ωij
klT

kl
hh̄

=
1

2
(1− τij)T kjhh̄

(
δikη

h
h + δikη

h̄
h̄ − ηihhk − ηih̄h̄k

)
− T klhh̄

(
ηijkl −

1

2
(1− τij)(1− τkl)δikηjl

)
=

1

2
(1− τij)T ijhh̄

(
ηhh + ηh̄h̄

)
− 1

2
(1− τij)T kjhh̄

(
ηihhk + ηih̄h̄k

)
− ηijklT klhh̄ +

1

2
T klhh̄(1− τij)(1− τkl)δikη

j
l . (5.26)

Then, because the following cancellations occur,

1

2
(1− τij)T ijhh̄

(
ηhh + ηh̄h̄

)
− ηijklT klhh̄

=
1

2
(1− τij)T ijhh̄T

hh̄
kl T

kl
hh̄ − T

ij

hh̄
T hh̄kl T

kl
hh̄

= T ij
hh̄
T hh̄kl T

kl
hh̄ − T

ij

hh̄
T hh̄kl T

kl
hh̄

= 0 (5.27)

1

2
T klhh̄(1− τij)(1− τkl)δikη

j
l −

1

2
(1− τij)T kjhh̄

(
ηihhk + ηih̄h̄k

)
= (1− τij)ηjkT ikhh̄ − (1− τij)T kjhh̄T

il
hh̄T

hh̄
kl

= (1− τij)T kjhh̄T
hh̄
kl T

il
hh̄ − (1− τij)T kjhh̄T

il
hh̄T

hh̄
kl

= 0, (5.28)

it is true that,

((Γ−Ω) T)ij
hh̄

= 0. (5.29)
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It is then additionally necessary to prove that the corrective transformations

still cancel for 2 holes when applied to an amplitude related to the untransformed

amplitudes by a non-negative integer power of ∆. This is trivially true since, in

the 2-hole limit, (∆xT)ij
hh̄

is a scalar multiple of T ij
hh̄

. Take x = 1, for example.

(∆T)ij
hh̄

=
1

2
T ij
hh̄
T hh̄kl T

kl
hh̄

= κT ij
hh̄

where κ =
1

2
T hh̄kl T

kl
hh̄ (5.30)

Higher values of x follow trivially.

(∆xT)ij
hh̄

=
(
∆x−1∆T

)ij
hh̄

=
1

2

(
∆x−1

)ij
mn

(∆T)mnhh̄

=
1

2
κ
(
∆x−1

)ij
mn
Tmnhh̄

= κ
(
∆x−1T

)ij
hh̄

= κxT ij
hh̄

(5.31)

Then the result follows easily.

((Γ−Ω)∆xT )ij
hh̄

= κx ((Γ−Ω)T)ij
hh̄

= 0 (5.32)

Finally, it possible to complete the proof that the corrective transformations

cancel when they act on an amplitude related to the untransformed amplitudes

by a rational power of U. This is also fairly trivial, since any rational powers

of U may be written as an infinite series of non-negative integer powers of ∆

through the binomial theorem. Each of the terms generated then vanishes in the

2-hole limit.

((Γ−Ω)UyT)ij
hh̄

= ((Γ−Ω)(1 + ∆)yT)ij
hh̄

=
∞∑
x=0

(
y

x

)
((Γ−Ω)∆xT)ij

hh̄
(5.33)

= 0 (5.34)

It is unfortunately true that, in practice, such a corrected LPFD(+1) scheme

performs no better than the corrected LPFD(0) scheme for which numerical
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benchmarking has been presented. There is, in fact, a very serious flaw in both

of these schemes; adding only finite corrections to an infinite-order LPFD ex-

pression will be beneficial in general, but if the infinite-order expression becomes

qualitatively wrong, as has been observed for the case of breaking the triple bond

in acetylene, where both LPFD(0) and LPFD(+1) diverge unphysically, it be-

comes impossible to recover with only a finite-order correction. Decoupling a

prospective Approximate Variational Coupled Cluster theory from the Linked

Pair Functional in favour of a more robust infinite subset of VCCD terms will

therefore be the subject of the following chapter.





Chapter 6

Quasi-Variational Coupled

Cluster Theory†

It was discussed in the previous chapter how Approximate Variational Coupled

Cluster theory yields, in principle, a good approximation, correct to O(T 3), to the

VCCD method, and that this allows the OAVCCD method to predict a cusp shape

for the rectangular H4 model that is qualitatively similar to that of VCCSD. It

is surprising, therefore, that OAVCCD performs only slightly better than CCSD

in extreme examples such as breaking the triple bond in acetylene. VCCSD itself

performs extremely well in such circumstances, which indicates that the OAVCCD

method does not inherit sufficient upper bound character from VCCSD in order

to treat these problems correctly; a superior approximation of VCCSD is required.

The paradigm of the AVCC approach was to use either of the positive-definite

LPF methods, LPFD(0) or LPFD(+1), to account for a representative subset of

the terms present in VCCD through all orders of the cluster amplitudes such that

the resulting method is exact for the appropriate limiting systems. Corrections

were then added to further improve the approximation of VCCD at low orders.

However, Fig. 6.1 shows the performances of both LPFD(0) and LPFD(+1) to

be completely unsatisfactory for breaking the triple bond in acetylene. Thus, the

failure of OAVCCD in this system can be traced back to the inadequacy of the

†Relevant publication:

[95] J. B. Robinson and P. J. Knowles, J. Chem. Phys. 136, 054114 (2012).
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Figure 6.1: Errors relative to FCI in calculated energies for the stretching of the

carbon-carbon triple bond in acetylene, C2H2, with the C-H bond length fixed at

1.06Å, and with the STO-3G basis set.

underlying approximation scheme of Linked Pair Functional theory.

This can be given a theoretical justification also; neither the LPFD(0) nor

LPFD(+1) methods are particularly good approximations to VCCD from which

to begin, each acquiring only one of the four unique O(T 3) terms, and, at higher

orders, the situation can be expected to be even worse. More significantly, how-

ever, each of these methods generates only one type of VCCD term through all

orders; LPFD(0) generates only terms that look like diagram B and LPFD(+1)

generates only terms that look like diagram C. This has been justified in the

context of LPF theory by appealing to the internal mathematical structure of

VCCD, that allows a series of, for example, B-like terms, in the case of LPFD(0),

or C-like terms, in the case of LPFD(+1), to be correct for a system containing

only 2 electrons due to the cancellation of the remaining terms. Fig. 6.2 shows

what is meant by, for example, an O(T 4) C-like term. However, for more general

systems, the different terms present in VCCD can become equally important, and

only by balancing these contributions correctly through all orders can a method

truly approximate VCCD well. Put simply, if the underlying infinite-order ap-
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proximation to VCCD becomes qualitatively wrong, as has been shown to occur

in the case of acetylene, it becomes impossible to recover with only a finite-order

correction, which dooms the AVCC approach to failure in such circumstances.

For this reason, the approach of adding low-order corrections to an LPF method

is fully discarded. It is important to point out, however, that the fundamental

principle of modifying the CEPA(0) functional through matrix transformations

of the cluster amplitudes such that partial local normalization is introduced, and

accounting also for a subset of VCCD terms through all orders, remains valid. It

is only the precise definition of the transformed cluster amplitudes that requires

modification in order to achieve balanced contributions to VCCD through all

orders.

Figure 6.2: An example of an O(T 5) C-like term that arises from

(η2)klijT
ab
kl 〈ij||ab〉 ∝ ηmnij η

kl
mnT

ab
kl 〈ij||ab〉

6.1 The QVCCD Method and its Transformed

Amplitudes

The current goal is to construct a new definition for the transformed cluster

amplitudes that, when inserted into the following functional,

E = 〈Ĥ〉+ 2〈Ĥ 2T̂ 〉+ 〈1T̂ †(Ĥ − 〈Ĥ〉)1T̂ 〉, (6.1)

not only yields a method that is identical with VCCD to O(T 3), but also balances

higher-order terms such that problems involving strong static correlation may be

treated by inheriting sufficient variational upper bound character from the parent

VCCD method. This hypothetical theory is named Quasi-Variational Coupled

Cluster Doubles (QVCCD).

In order to accomplish this goal, it would be desirable to construct a single

positive-definite transformation matrix for each of the O(T 3) VCCD terms, such
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that series of A-like, B-like, C-like and D-like terms may be generated separately

and equivalently. In fact, it is possible to make use of the previously defined

density matrices for this task,

Aη
a
b = 〈T̂ †a†bT̂ 〉 =

1

2
T ijbc T

ac
ij (6.2)

Bη
i
j = 〈T̂ †ji†T̂ 〉 =

1

2
T ikab T

ab
jk (6.3)

Cη
ij
kl = 〈T̂ †klj†i†T̂ 〉 =

1

2
T ijab T

ab
kl (6.4)

Dη
ib
aj = 〈T̂ †jb†ai†T̂ 〉 = T ikac T

bc
jk , (6.5)

where each density matrix has now been assigned a subscript denoting the O(T 3)

VCCD term which it is responsible for generating. It should be noted that, since

the elements of each density matrix can be written as inner products, then, when

considered as true 2-index matrices with the following structures implied by the

above inner products,

Aηa,b = 〈T̂ †a†bT̂ 〉 (6.6)

Bηi,j = 〈T̂ †ji†T̂ 〉 (6.7)

Cηij,kl = 〈T̂ †klj†i†T̂ 〉 ij, kl ∈ {(m,n), m > n} (6.8)

Dηia,jb = 〈T̂ †jb†ai†T̂ 〉 ia, jb ∈ {(k, c)}, (6.9)

these density matrices are clearly all positive-semidefinite. The problem that

the qW and qV transformation matrices are not positive-definite in general only

arises because linear combinations of these density matrices are taken in order

to construct transformation matrices. Thus, it is proposed that the transformed

amplitudes take the form of a linear combination of several strictly positive-

definite transformations, each constructed from a single one of the above density

matrices, as is given below.

qT
ij
ab =α

[
1

2
(1− τab)

(
AUAP

)c
a
T ijcb

]
+β

[
1

2
(1− τij)

(
BUBP

)i
k
T kjab

]
+γ

[
1

2

(
CUCP

)ij
kl
T klab

]
+δ

[
1

4
(1− τij)(1− τab)

(
DUDP

)ic
ak
T kjcb

]
(6.10)
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Several currently unknown parameters have been introduced; α, β, γ and δ con-

trol the relative weightings of each of the transformations and AP , BP , CP and DP

are the powers to which each of the transformation matrices is raised. The trans-

formation matrices themselves are defined from the positive-semidefinite density

matrices as follows,

AU
a
b = δab + α′ Aη

a
b (6.11)

BU
i
j = δij + β′ Bη

i
j (6.12)

CU
ij
kl = δijkl + γ′ Cη

ij
kl (6.13)

DU
ib
aj = δibaj + δ′ Dη

ib
aj (6.14)

where the parameters α′, β′, γ′ and δ′ act as prefactors on each of the density

matrices. These transformation matrices are strictly positive-definite for any pos-

itive value of the primed prefactors. The purpose of introducing these parameters

is to allow the transformed amplitudes sufficient flexibility such that the resulting

theory can be made to meet the criteria of satisfying the important methodologi-

cal properties that have been discussed previously. For example, it will be shown

that several constraints on these parameters emerge from the criterion of an exact

treatment of limiting systems containing only 2 electrons. Furthermore, it will be

shown to be possible to tune the values of these parameters such that the method

treats a system containing only 2 holes correctly, as CID and CCD already do,

because, disregarding single excitations, the cluster operator T̂ = T̂2 is complete,

not only for 2 electrons, but also in this limiting case. Finally, the third-order

VCCD terms will be used to obtain further constraints from which unique values

for each of these parameters can be derived.

Before proceeding to derive these important constraints, a preliminary con-

straint among the parameters α, β, γ and δ must first be established because, if

the proposed functional is to be correct to O(T 3), it must necessarily be correct to

O(T 2) first, and this means recovering CEPA(0) at low orders. Equivalently, this

means that the leading-order contribution to the transformed amplitudes must

be the untransformed amplitudes, since the QVCCD functional reduces to the

CEPA(0) functional if the transformations are switched off. Expanding each of

the transformation matrices through its binomial series, the leading-order contri-
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butions to the new transformed amplitudes can be shown to be the untransformed

amplitudes scaled by a multiplicative factor.

qT
ij
ab =α

[
1

2
(1− τab)

(
1 +O(T 2)

)c
a
T ijcb

]
+β

[
1

2
(1− τij)

(
1 +O(T 2)

)i
k
T kjab

]
+γ

[
1

2

(
1 +O(T 2)

)ij
kl
T klab

]
+δ

[
1

4
(1− τij)(1− τab)

(
1 +O(T 2)

)ic
ak
T kjcb

]
=α

[
1

2
(1− τab)T ijab

]
+ β

[
1

2
(1− τij)T ijab

]
+γT ijab + δ

[
1

4
(1− τij)(1− τab)T ijab

]
+O(T 3)

= (α + β + γ + δ)T ijab +O(T 3) (6.15)

This places the following constraint on the values of α, β, γ and δ.

α + β + γ + δ = 1 (6.16)

6.2 Derivation I - Constraints Arising from the

Limit of Two Electrons

In the limit of two electrons, some simplifying relationships emerge in the density

matrices. Noting that in this limit, 〈T̂ †T̂ 〉 ≡ 1
4
T ijabT

ab
ij = 1

2
T eēabT

ab
eē , these are as

follows.

Aη
a
b = T eēbc T

ac
eē

Bη
e
e =

1

2
T eēabT

ab
eē = Bη

ē
ē = 〈T̂ †T̂ 〉, Bη

e
ē = Bη

ē
e = 0

Cη
eē
eē =

1

2
T eēabT

ab
eē = 〈T̂ †T̂ 〉

Dη
ea
be = T eēbc T

ac
eē = Dη

ēa
bē = Aη

a
b , Dη

ea
bē = Dη

ēa
be = 0 (6.17)

In this limit, Bη and Cη are both diagonal matrices (treating its indices as pair

labels, Cη is, in fact, simply a scalar), and, as such, powers of the matrices corre-
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spond simply to powers of the non-zero (diagonal) elements.

(Bη
x)ij =

(
Bη

i
j

)x
, Bη

i
j 6= 0

(Cη
x)ijkl =

(
Cη
ij
kl

)x
, Cη

ij
kl 6= 0 (6.18)

This behaviour persists when the corresponding identity contribution is added

to form the transformation matrix. This has the consequence that the B and

C terms both have the potential to introduce division by the CID norm in this

limit.

qT
eē
ab ←

β

2
(1− τeē)(BUBP )ekT

kē
ab +

γ

2
(CUCP )eēklT

kl
ab

=
β

2
(1− τeē)(BUBP )eeT

eē
ab + γ(CUCP )eēeēT

eē
ab

=
(
β(1 + β′〈T̂ †T̂ 〉)BP + γ(1 + γ′〈T̂ †T̂ 〉)CP

)
T eēab (6.19)

If this is to happen correctly, such that the denominator introduced matches the

CID norm exactly, then clearly it is required that the powers are,

BP = CP = −q
2

(6.20)

such that 2T̂ generates the norm with a power of −1, and that the product of

the 1T̂
† and 1T̂ contributions, each of which should be the norm with a power

of −1/2, also generates the norm with a power of −1 overall. Furthermore, the

prefactor of 〈T̂ †T̂ 〉 must be unity, or else the introduced denominator differs from

that of CID,

β′ = γ′ = 1. (6.21)

Finally, in order for the combined effect of the B and C terms to be correct, it is

also required that the two contributions sum to one.

β + γ = 1 (6.22)

Furthermore, it is useless for the CID denominator to be correctly generated

through the B and C terms if the A and D terms cause erroneous contributions to

enter. Fortunately, as can be seen from the simplification of the density matrices,

Dη
ea
be = Dη

ēa
bē = Aη

a
b (6.23)
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there is an equality between the Dη and Aη matrices in this limit and thus the

A and D terms can be arranged to cancel exactly. In order to do this, the above

equivalence between the Aη and Dη matrices must first be shown to be true for

integer powers of the matrices also.

(Dη
n)eabe = (Dη

n)ēabē = (Aη
n)ab , n ∈ N0 (6.24)

This can be proved by induction; it has already been shown to be true for n = 1,

and the case of n = 0 can also be trivially established.

(
Dη

0
)ea
be

= δeabe = δab =
(
Aη

0
)a
b

(6.25)

For the inductive step, assume the relationship to hold for all integers up to n,

then,

(
Dη

n+1
)ea
be

= (Dη)ecbk (Dη
n)kace

= (Dη)ecbe (Dη
n)eace

= (Aη)cb (Aη
n)ac

=
(
Aη

n+1
)a
b
, n ∈ N0 (6.26)

shows that it holds for n + 1, completing the proof. This result allows the con-

straints arising from cancellation of the A and D terms to be found.

qT
eē
ab ←

1

2
α(1− τab)

(
AUAP

)c
a
T eēcb +

1

4
δ(1− τeē)(1− τab)

(
DUDP

)ec
ae
T eēcb

=
∞∑
n=0

(
AP

n

)[
1

2
α(1− τab) (α′nAη

n)
c
a T

eē
cb

]
+
∞∑
n=0

(
DP

n

)[
1

4
δ(1− τeē)(1− τab) (δ′nDη

n)
ec
ae T

eē
cb

]
=
∞∑
n=0

(
AP

n

)[
1

2
α(1− τab) (α′nAη

n)
c
a T

eē
cb

]
+
∞∑
n=0

(
DP

n

)[
1

4
δ(1− τeē)(1− τab) (δ′nAη

n)
c
a T

eē
cb

]
=

1

2

∞∑
n=0

(
AP

n

)[
α(1− τab) (α′nAη

n)
c
a T

eē
cb

]
+

1

2

∞∑
n=0

(
DP

n

)[
δ(1− τab) (δ′nAη

n)
c
a T

eē
cb

]



Derivation II - Constraints Arising from the Limit of Two Holes 111

=
1

2
α

∞∑
n=0

(
AP

n

)
α′n(1− τab) (Aη

n)ca T
eē
cb

+
1

2
δ

∞∑
n=0

(
DP

n

)
δ′n(1− τab) (Aη

n)ca T
eē
cb

=
1

2

∞∑
n=0

[
αα′n

(
AP

n

)
+ δ δ′n

(
DP

n

)]
(1− τab) (Aη

n)ca T
eē
cb (6.27)

Discarding trivial cases such as α = δ = 0 or α′ = δ′ = 0, which would switch

off the A and D contributions permanently, in order for these series to cancel

exactly, the following constraints must be applied,

AP − DP = 0 (6.28)

α′ − δ′ = 0 (6.29)

α + δ = 0. (6.30)

6.3 Derivation II - Constraints Arising from the

Limit of Two Holes

Analogously to the limiting case of two electrons, one can examine the case of

two holes, or two unoccupied spinorbitals in the reference wavefunction. This

case occurs only in certain molecular examples and only when minimal basis sets

are in use, but is nevertheless an important limiting case because, like the case

of two electrons, a singles and doubles cluster operator is complete when only 2

holes exist, since at most two electrons can then be excited into the two virtual

spinorbitals without violating the exclusion principle. Crucially, while CCD and

VCCD are therefore equivalent to CID in both the limits of 2 electrons and 2

holes, LPFD(0) and AVCCD are correct only for 2 electrons, and not 2 holes. It

would be especially theoretically attractive if correct behaviour in this limit could

be additionally built into the QVCCD method. In order to do this, however, it

becomes important to understand an additional property of LPFD(+1) and its

associated transformation matrix, CU, which is itself used in QVCCD theory.

First, some insight can be gained by considering once again the O(T 3) VCCD

terms. Like the case of 2 electrons, simplifying relationships between the terms
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hold for the case of 2 holes. In particular, it is the terms B and D that cancel,

B +D = + = 0, (6.31)

and the remaining terms obey,

A+ 2 C = + 2 = 0. (6.32)

This means that the complete VCCD O(T 3) contribution, A + B + C + D, may

again be captured in infinitely many ways, enumerated here by the continuously

adjustable parameter µ.

A+ B + C +D = A+ C

=
1

2
(1− µ)A− µ C

=
1

2
(1− µ) − µ (6.33)

The algebraic expressions for these diagrams in the 2-hole limit are given in

Table 6.1. From this, it is quite clear that any method that includes term B
without an appropriately-weighted D term to cancel it, will be incorrect in this

limit. This applies to LPFD(0) and LPFD(-1) in particular. Although AVCCD

is correct to O(T 3), its infinite-order behaviour is based on LPFD(0), and since

the cancellations at O(T 3) are indicative of the cancellations that occur at higher

orders, it is similarly incorrect for 2 holes.

Of particular interest, however, is the case µ = +1, which switches off the

A term entirely. In fact, in this limit, −C correctly accounts for the combined

contributions of A+B+ C +D, exactly as in the limit of 2 electrons for the case

λ = +1. This is exactly the O(T 3) contribution generated by LPFD(+1), which

implies that, of all the LPFD methods, only LPFD(+1) is correct for 2 holes, at

least to O(T 3).

In fact, a rigorous proof that LPFD(+1) is correct for 2 holes through all

orders of the cluster amplitudes, and is therefore exact in this limiting case,

can be constructed. The CU matrix, which is indexed by the unique pairs of

electrons, becomes a scalar in the 2-electron limit, since then there is only a
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single pair. This element, by construction, takes the value of the CID norm, and,

when raised to the appropriate power, introduces division by that norm such that

LPFD(+1) is exact in the 2-electron limit. Analogously, it is possible to write

down a transformation matrix that is the hole-particle partner of the CU matrix,

C′η
cd
ab =

1

2
T cdij T

ij
ab (6.34)

C′U
cd
ab = δcdab + γ′ C′η

cd
ab, (6.35)

where γ′ is taken to be the same as for CU. It would be unwise to use this

matrix in any real calculation, however, since the four virtual indices cause it

to require extremely large O(v4) storage and manipulating it has similarly steep

computational complexity. Nevertheless, this matrix, which is indexed by the

unique hole pairs, would reduce to a scalar equal to the CID norm in the limit

of 2 holes. Thus, using this matrix in place of the CU matrix in a hypothetical

LPFD(+1)-like theory would render the theory exact for 2 holes. Next, consider

the binomial series of these matrices when each is raised to an arbitrary rational

power, x.

1

2
(CU

x)ijkl T
kl
ab =

1

2

∞∑
n=0

(
x

n

)
γ′n (Cη

n)ijkl T
kl
ab (6.36)

1

2
(C′U

x)cdab T
ij
cd =

1

2

∞∑
n=0

(
x

n

)
γ′n (C′η

n)cdab T
ij
cd (6.37)

The following property,

(Cη
n)ijkl T

kl
ab = (C′η

n)cdab T
ij
cd, n ∈ N0 (6.38)

is obviously true for n = 0,

δijkl T
kl
ab = δcdab T

ij
cd = T ijab (6.39)

and n = 1,

Cη
ij
kl T

kl
ab = C′η

cd
ab T

ij
cd =

1

2
T ijcdT

cd
kl T

kl
ab (6.40)

and the general result follows by another application of mathematical induction;
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assuming the case of n− 1 to hold, the case of n can be shown to follow.

(Cη
n)ijkl T

kl
ab =

1

2
Cη
ij
kl

(
Cη
n−1
)kl
mn
Tmnab

=
1

4
T ijcd T

cd
kl

(
Cη
n−1
)kl
mn

Tmnab

=
1

4
T ijcd T

cd
kl

(
C′η

n−1
)ef
ab
T klef

=
1

2
T ijcd
(
C′η

n−1
)ef
ab C′η

cd
ef

= (C′η
n)cdab T

ij
cd (6.41)

This result proves that the CU binomial series agrees termwise with the series of

the C′U matrix;

1

2
(CU

− q
2 )ijkl T

kl
ab =

1

2
(C′U

− q
2 )cdab T

ij
cd (6.42)

Thus, although the matrices are different in general, they always generate exactly

the same VCCD terms through all orders, such that they have exactly the same

effect when applied as a transformation matrix to a set of cluster amplitudes.

Since the CU matrix is known to lead to a theory exact for 2 electrons and the

C′U matrix similarly leads to a theory exact for 2 holes, and since both matrices

have the same effect when applied to a set of cluster amplitudes, a theory that uses

either of these matrices as its principal transformation matrix, such as LPFD(+1),

will be exact for both 2 electrons and 2 holes.

It is noteworthy, however, that constructing an AVCCD-like method on an

LPFD(+1) starting point would yield no better results than the AVCCD theory

based on LPFD(0) outlined in the previous chapter. This is because. as has

been demonstrated previously, LPFD(+1) performs no better than LPFD(0) in

strongly-correlated examples, such as acetylene, and is therefore no better as an

underlying theory on which to perform corrections. This was discussed at the

end of Chapter 5. The QVCCD ansatz of balancing the contributions to VCCD

through all orders of the cluster amplitudes is what is required.

With this result, it is possible to make further progress in identifying con-

straints among the parameters used to define the QVCCD transformed ampli-

tudes. First, a re-examination of the density matrices for the case of 2 holes, for

which 〈T̂ †T̂ 〉 = 1
4
T ijabT

ab
ij = 1

2
T ij
hh̄
T hh̄ij , reveals further simplifying relationships to
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hold in this limit.

Aη
h
h =

1

2
T ij
hh̄
T hh̄ij = Aη

h̄
h̄ = 〈T̂ †T̂ 〉, Aη

h
h̄ = Aη

h̄
h = 0

Bη
i
j = T ikhh̄T

hh̄
jk

Cη
ij
kl = T ij

hh̄
T hh̄kl but C′η

hh̄
hh̄ =

1

2
T hh̄ij T

ij

hh̄
= 〈T̂ †T̂ 〉

Dη
ih
hj = T ikhh̄T

hh̄
jk = Dη

ih̄
h̄j = Bη

i
j, Dη

ih
h̄j = Dη

ih̄
hj = 0

(6.43)

By employing the identity above to convert a CU matrix to a C′U matrix, it can

be shown that both the A and C terms can then contribute to the introduction

of a CID denominator.

qT
ij

hh̄
← α

2
(1− τhh̄)(AUAP )chT

ij

ch̄
+
γ

2
(CUCP )ijklT

kl
hh̄

=
α

2
(1− τhh̄)(AUAP )hhT

ij

hh̄
+ γ(C′UCP )hh̄hh̄T

ij

hh̄
(6.44)

=
(
α(1 + α′〈T̂ †T̂ 〉)AP + γ(1 + γ′〈T̂ †T̂ 〉)CP

)
T ij
hh̄

(6.45)

Hence, for the correct introduction of the CID denominator, the following con-

straints are required,

AP = CP = −q
2

(6.46)

α′ = γ′ = 1 (6.47)

α + γ = 1, (6.48)

and, similarly to the case of 2 electrons, the B and D terms can be arranged to

cancel in the limit of 2 holes. This follows from the relationship between the Bη

and Dη matrices that again can be shown to generalize to integer powers of these

matrices by a final application of mathematical induction; the following property,

(Dη
n)ihhj = (Dη

n)ih̄h̄j = (Bη
n)ij , n ∈ N0 (6.49)

has already been shown to hold for n = 1, and trivially holds for n = 0,

(
Dη

0
)ih
hj

= δihhj = δij =
(
Bη

0
)i
j
. (6.50)

Then, assuming it to hold for all integers up to n allows the case of n + 1 to be
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proved, completing the inductive step.(
Dη

n+1
)ih
hj

= (Dη)ichk (Dη
n)khcj

= (Dη)ihhk (Dη
n)khhj

= (Bη)ik (Bη
n)kj

=
(
Bη

n+1
)i
j

n ∈ N0 (6.51)

Using this result, the conditions for the appropriate cancellation of the B and D
terms can be found.

qT
ij

hh̄
← 1

2
β(1− τij)

(
BUBP

)i
k
T kj
hh̄

+
1

4
δ(1− τij)(1− τhh̄)

(
DUDP

)ih
hk
T kj
hh̄

=
∞∑
n=0

(
BP

n

)[
1

2
β(1− τij) (β′n Bη

n)
i
k T

kj

hh̄

]
+
∞∑
n=0

(
DP

n

)[
1

4
δ(1− τij)(1− τhh̄) (δ′nDη

n)
ih
hk T

kj

hh̄

]
=
∞∑
n=0

(
BP

n

)[
1

2
β(1− τij) (β′n Bη

n)
i
k T

kj

hh̄

]
+
∞∑
n=0

(
DP

n

)[
1

4
δ(1− τij)(1− τhh̄) (δ′n Bη

n)
i
k T

kj

hh̄

]
=

1

2

∞∑
n=0

(
BP

n

)[
β(1− τij) (β′n Bη

n)
i
k T

kj

hh̄

]
+

1

2

∞∑
n=0

(
DP

n

)[
δ(1− τij) (δ′n Bη

n)
i
k T

kj

hh̄

]
=

1

2
β

∞∑
n=0

(
BP

n

)
β′n(1− τij) (Bη

n)ik T
kj

hh̄

+
1

2
δ

∞∑
n=0

(
DP

n

)
δ′n(1− τij) (Bη

n)ik T
kj

hh̄

=
1

2

∞∑
n=0

[
β β′n

(
BP

n

)
+ δ δ′n

(
DP

n

)]
(1− τij) (Bη

n)ik T
kj

hh̄
(6.52)

Again discarding trivial cases such as β = δ = 0, which would permanently

switch off the corresponding transformations, this clearly imposes the following

constraints for the cancellation to occur as required,

BP − DP = 0 (6.53)

β′ − δ′ = 0 (6.54)

β + δ = 0. (6.55)
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The cancellations that have been shown to be necessary so far in this chapter

mimic those that were noted earlier to occur between the O(T 3) VCCD terms in

the limiting cases of either 2 electrons or 2 holes; in the case of 2 electrons, terms

A and D cancel exactly, whereas for 2 holes, terms B and D cancel exactly. The

algebraic expressions to which these terms correspond are given in Table 6.1.

6.4 Derivation III - Constraints Arising from

the Third-Order VCCD Terms

At this point it is useful to collate all of the constraints derived so far. First, the

following relationships have been derived for the powers,

BP = CP = −q
2

(6.56)

AP − DP = 0 (6.57)

AP = CP = −q
2

(6.58)

BP − DP = 0. (6.59)

Thus, the values of these parameters are already fully determined.

AP = BP = CP = DP = −q
2

(6.60)

Similarly, the following constraints have been derived for the coefficients of the

density matrices,

β′ = γ′ = 1 (6.61)

α′ − δ′ = 0 (6.62)

α′ = γ′ = 1 (6.63)

β′ − δ′ = 0, (6.64)

and so these parameters are also already fully determined to be,

α′ = β′ = γ′ = δ′ = 1. (6.65)

Therefore, eight of the twelve parameters have been fixed from considerations

of the limiting cases of 2 electrons and 2 holes, and all that remains are the
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coefficients of the transformations, for which the following constraints have been

derived,

α + β + γ + δ = 1 (6.66)

β + γ = 1 (6.67)

α + δ = 0 (6.68)

α + γ = 1 (6.69)

β + δ = 0. (6.70)

Note that second and third constraints can be added together to yield the first

constraint, and the same can be done with the fourth and fifth. Thus, there are

only three unique constraints currently known,

α + β + γ + δ = 1 (6.71)

β + γ = 1 (6.72)

α + γ = 1, (6.73)

which is insufficient to uniquely determine the values of these four parameters,

and further information must be sought. This information can be found quite

readily from an examination of the O(T 3) VCCD terms generated by each of the

transformations.

A detailed breakdown of the Coupled Cluster diagrams and corresponding

terms that contribute to 1
2!
〈T̂ †ĤT̂ 2〉L is given in Table 6.1, in which the values of

the terms for the limit of 2 holes is also given. With this information at hand, it

is possible to readily determine the weightings of each of the O(T 3) terms relative

to how they appear in VCCD. These relative weightings should, of course, all be

made equal to 1 if QVCCD is to match VCCD exactly to O(T 3). For example,



Derivation III - Constraints Arising from the Third-Order VCCD Terms 119

the A term is generated with a factor of +α/2,

1

4
〈ij||ab〉2T abij ←

1

4
〈ij||ab〉.α

[
1

2
(1− τab)

(
AU
−1
)a
c
T cbij

]
=

1

8
α〈ij||ab〉(1− τab)

∞∑
n=0

(−1

n

)
(Aη

n)ac T
cb
ij

← −1

8
α〈ij||ab〉(1− τab)AηacT cbij

= −1

4
α〈ij||ab〉AηacT cbij

= −1

4
α〈ij||ab〉AηbcT acij

= +
α

2
. (6.74)

Given that the B term is the hole-particle opposite of the A term, it makes

intuitive sense that it is generated with an analogous factor of +β/2. In fact,

this agrees with the terms generated by LPFD(0), for which α = γ = δ = 0 and

β = +1, and which generates B with a factor of 1/2.

1

4
〈ij||ab〉2T abij ←

1

4
〈ij||ab〉.β

[
1

2
(1− τij)

(
BU
−1
)k
i
T abkj

]
=

1

8
β〈ij||ab〉(1− τij)

∞∑
n=0

(−1

n

)
(Bη

n)ki T
ab
kj

← −1

8
β〈ij||ab〉(1− τij)Bηki T abkj

= −1

4
β〈ij||ab〉Bηki T abkj

= −1

4
β〈ij||ab〉Bηkj T abik

= +
β

2
(6.75)

The C term is generated with a factor of −γ, which agrees with the terms present

in LPFD(+1), for which α = β = δ = 0 and γ = +1, and for which the C term is
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generated with a factor of −1.

1

4
〈ij||ab〉2T abij ←

1

4
〈ij||ab〉.γ

[
1

2

(
CU
−1
)kl
ij
T abkl

]
=

1

8
γ〈ij||ab〉

∞∑
n=0

(−1

n

)
(Cη

n)klijT
ab
kl

← −1

8
γ〈ij||ab〉CηklijT abkl

= −γ (6.76)

The final linked O(T 3) VCCD, term D, can be shown to be generated with a

factor of −δ/2,

1

4
〈ij||ab〉2T abij ←

1

4
〈ij||ab〉.δ

[
1

4
(1− τij)(1− τab)

(
DU
−1
)ak
ic
T cbkj

]
=

1

16
δ〈ij||ab〉(1− τij)(1− τab)

∞∑
n=0

(−1

n

)
(Dη

n)akic T
cb
kj

← − 1

16
δ〈ij||ab〉(1− τij)(1− τab)Dηakic T cbkj

= −1

4
δ〈ij||ab〉Dηakic T cbkj

= −1

4
δ〈ij||ab〉T adil T lkdcT cbkj

= −1

4
δ〈ij||ab〉T acik T klcdT dblj

= −δ
2

. (6.77)

Thus, with all the weightings of the O(T 3) terms determined as functions of the

remaining unknown parameters, the values of these parameters can be determined

through the requirement that each weighting be made equal to +1.

+
α

2
= +1 =⇒ α = +2

+
β

2
= +1 =⇒ β = +2

−γ = +1 =⇒ γ = −1

−δ
2

= +1 =⇒ δ = −2 (6.78)

Finally, it must be checked that these values are consistent with the constraints

given in Equations 6.71-6.73 that were derived previously, such that, with these
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Table 6.1: Linked O(T 3) contributions to VCCD, where 〈T̂ †T̂ 〉 = 1
4
T ijabT

ab
ij , and

where e and ē and h and h̄ label the two spinorbitals occupied and unoccupied

in the reference wavefunction respectively.

1
2!
〈T̂ †2 ĤT̂ 2

2 〉L Diagram 1
2!
〈T̂ †2 ĤT̂ 2

2 〉L Term 2 Electrons 2 Holes

A
1
4
T acij T

kl
cd T

db
kl 〈ij||ab〉

= −1
2
T acij Aη

b
c 〈ij||ab〉

−T aceē Aηbc 〈eē||ab〉 −T hh̄ij 〈T̂ †T̂ 〉〈ij||hh̄〉

B
1
4
T abik T

kl
cd T

cd
lj 〈ij||ab〉

= −1
2
T abik Bη

k
j 〈ij||ab〉

−T abeē 〈T̂ †T̂ 〉〈eē||ab〉 −T hh̄ik Bη
k
j 〈ij||hh̄〉

C
1
16
T abkl T

kl
cd T

cd
ij 〈ij||ab〉

= 1
8
T abkl Cη

kl
ij 〈ij||ab〉

= 1
8
T cdij C′η

ab
cd 〈ij||ab〉

1
2
T abeē 〈T̂ †T̂ 〉〈eē||ab〉 1

2
T hh̄ij 〈T̂ †T̂ 〉〈ij||hh̄〉

D
1
2
T acik T

kl
cd T

db
lj 〈ij||ab〉

= 1
2
T acik Dη

kb
cj 〈ij||ab〉

T aceē Aη
b
c 〈eē||ab〉 T hh̄ik Bη

k
j 〈ij||hh̄〉

values, the QVCCD method treats the limiting cases of 2 electrons and 2 holes

exactly and agrees with VCCD to O(T 3). Fortunately, these values pass this test.

α + β + γ + δ = 2 + 2− 1− 2 = 1 X

β + γ = 2− 1 = 1 X

α + γ = 2− 1 = 1 X

6.5 The Fully-Determined Quasi-Variational Cou-

pled Cluster Method

In the last three sections, all twelve of the parameters defining the QVCCD

method have been determined uniquely from the requirements that the func-

tional correspond to CID for limiting systems consisting of 2 electrons or 2 holes

and from the correct reproduction of the O(T 3) VCCD terms for general sys-

tems. In contrast to both LPFD, which contained the arbitrary parameter λ,

and AVCCD, which additionally contained arbitrary coefficients and powers used

in the corrective transformations, QVCCD is a truly ab initio theory. This new

quantum-chemical method will be the primary focus of this thesis from this point

on. Since it has such central importance, and since its derivation has been dis-
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cussed in such detail, a summary of the workings and properties of this theory is

given below.

The QVCCD method is defined through the following functional,

EQVCCD = 〈Ĥ〉+ 2〈Ĥ 2T̂ 〉+ 〈1T̂ †(Ĥ − 〈Ĥ〉)1T̂ 〉, (6.79)

and the ground-state QVCCD energy corresponds to the minimum of this func-

tional with respect to the set of doubles-only cluster amplitudes, {T ijab}. The

transformed cluster amplitudes take the form of a linear combination of several

different LPF-style amplitude transformations, which seeks to achieve a balance

of several types of VCCD terms through all orders of the cluster amplitudes.

qT̂ |Φ0〉 =
1

4
qT

ij
ab|Φab

ij 〉

AU
a
b = δab +

1

2
T ijbc T

ac
ij

BU
i
j = δij +

1

2
T ikab T

ab
jk

CU
ij
kl = δijkl +

1

2
T ijab T

ab
kl

DU
ib
aj = δibaj + T ikac T

bc
jk

qT
ij
ab = + 2

[
1

2
(1− τab)

(
AU
− q

2

)c
a
T ijcb

]
+ 2

[
1

2
(1− τij)

(
BU
− q

2

)i
k
T kjab

]
− 1

[
1

2

(
CU
− q

2

)ij
kl
T klab

]
− 2

[
1

4
(1− τij)(1− τab)

(
DU
− q

2

)ic
ak
T kjcb

]

(6.80)

When this functional is also optimized with respect to the orbitals[100] (OQVCCD),

or constrained by a Brueckner condition[96–98] (BQVCCD), in order to account

for the effects of single excitations, the ansatz possesses the following extremely

theoretically attractive set of methodological properties.

• OQVCCD is a unique theory, containing no arbitrary parameters.

• The ground-state energy is calculated by variational minimization of a func-

tional. The error in a calculated energy is thus second-order in any remain-

ing errors in the cluster amplitude parameters.

• The functional contains fully linked terms only, and is therefore rigorously

extensive.

• It is exactly equivalent to FCI for 2 electrons or 2 holes, systems for which

the cluster operator T̂ = T̂1 + T̂2 is complete.
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• The energy is a scalar that is invariant to rotations in the underlying orbital

spaces {ψi} and {ψa}.

• The energy is not a true upper bound on the exact ground-state Schrödinger

energy eigenvalue, but variational minimization of the functional gives a

theory that satisfies the generalized Hellmann-Feynman theorem[67].

• The doubles-only theory is equivalent to VCCD to O(T 3), and, as a conse-

quence, the one-electron O(T 4) terms are also constructed correctly.

• Furthermore, by construction, balanced VCCD contributions are generated

through all orders of the cluster amplitudes, such that the functional poten-

tially inherits approximate upper bound character from its parent VCCD

method.

• It is correct to third-order in Møller-Plesset perturbation theory and omits

only the terms containing triple excitations from fourth-order, the same as

CCSD.

• The limiting computational complexity of the method isO(o2v4) withO(o2v2)

storage, the same as CCSD.

The remarks made about the one-electron O(T 4) terms and the relationship of

the method to Møller-Plesset perturbation theory will be discussed in the follow-

ing chapter, but a brief discussion of the computational complexity is in order

here. The overall computational cost of performing an OQVCCD calculation is

very slightly higher than performing an equivalent CCSD calculation. This is

partially because the use of optimization of the orbitals to treat the single excita-

tions requires an integral transformation for each iteration of the program. This

involves up to three virtual orbitals, at O(o3v3) cost. For technical reasons, the

integral transformation associated with the Brueckner condition is computation-

ally simpler, requiring only O(o4v2) time, but still introduces additional steps in

comparison to the CCSD method. Furthermore, the minimization of the QVCCD

functional requires the solution of the eigenproblems for each of the four matri-

ces, AU, BU, CU and DU, for reasons outlined in Section 4.1, on each iteration

of the program. Since the solution of the eigenproblem for an N × N matrix
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requires O(N3) time, the complexity of each of these eigenproblems is O(v3),

O(o3), O(o6) and O(o3v3) respectively. Of these, it is only the O(o3v3) steps

involved for DU that are concerning, and future work should address whether a

finite truncation of the binomial series of DU
− q

2 is possible, either in principle

or in practice. However, the manipulation of the four-external integrals in either

CCSD or OQVCCD requires O(o2v4) time, and this is thus the limiting step in

both calculations. Therefore, it should be true that if it is computationally prac-

tical to perform a CCSD calculation on a particular system, it should also be

possible to perform an equivalent OQVCCD calculation.

6.6 Preliminary Results

In this, the final section of this chapter, some preliminary results are given and

discussed in order to establish the adequacy of OQVCCD theory as an approxi-

mation to VCCSD. As was noted in the previous chapter, the earlier OAVCCD

method predicts potential energy curves qualitatively more like VCCSD than

CCSD for the three systems tested; BeO, H4 and C2H2. These systems are suf-

ficiently complicated that the CCSD method struggles to perform adequately,

diverging from the VCCSD method to yield results qualitatively different from

FCI and sometimes physically incorrect altogether. Despite this, OAVCCD is not

itself particularly quantitatively accurate. These systems must be tested again

with the OQVCCD method in order to determine if it yields improved results, and

whether the improved approximation of VCCSD allows the OQVCCD method

to inherit sufficient upper bound character to treat difficult problems such as

breaking the triple bond in acetylene.

The new plot for BeO, showing the additional potential energy curve predicted

by OQVCCD, is shown in Fig. 6.3. As was previously noted, the OAVCCD

method is in excellent agreement with VCCSD in the interval 1.5-2.5Å, and the

OQVCCD method performs similarly well. This is in contrast to CCSD, which

experiences a crossing with the FCI curve at approximately 2.2Å, and BCCD

which predicts an unphysical maximum. However, the OAVCCD method does

not describe the dissociation quantitatively accurately, possessing a large error
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Figure 6.3: Calculated potential energy curves for BeO with the STO-3G basis

set.

relative to both VCCSD and FCI from approximately 2.5Å. Even the TCC meth-

ods converge to the correct limit at long bond lengths in this system, making this

behaviour problematic for OAVCCD. In contrast, not only does OQVCCD de-

scribe the intermediate interval with an accuracy that matches or exceeds that of

OAVCCD, the predicted potential energy curve also levels off much more quickly

than OAVCCD, and approaches the correct dissociation limit.

Similarly, the OQVCCD method predicts a significantly improved cusp for

the H4 model system. This is illustrated in Fig. 6.4. Previously, it was noted

that both CCSD and BCCD erroneously predict an inverted cusp that is at odds

with FCI, for which a smooth maximum is present at θ = 90◦, but, while VCCSD

still predicts a cusp, it is a much better approximation to the FCI curve. The

OAVCCD method predicts a cusp that is qualitatively like that of VCCSD, but is

far too high in energy, and is thus itself a poor model of the FCI behaviour. The

OQVCCD curve however, is almost coincident with the VCCSD curve through-

out. Since dynamic correlation is weak in this system, but static correlation is

strong due to the swapping of the optimum references around θ = 90◦, this pro-

vides compelling evidence that OQVCCD is capable of treating static correlation
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Figure 6.4: Calculated potential energy curves for H4 with R = 1.75Å, and with

the aug-cc-pVDZ basis set.
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Figure 6.5: Errors relative to FCI in calculated energies for the stretching of the

carbon-carbon triple bond in acetylene, C2H2, with the C-H bond length fixed at

1.06Å, and with the STO-3G basis set.

with a quality similar to VCCSD.
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Finally, potential energy curves for breaking the triple bond in acetylene are

re-examined. For clarity, the plot in Fig. 6.5 is again presented as errors relative

to FCI. As is obvious from the figure, CCSD, BCCD, OLPFD(0), OLPFD(+1)

and OAVCCD all perform non-variationally, crossing the FCI potential energy

curve as the triple bond is stretched. VCCSD does not experience a crossing due

to its upper bound property, and it is extremely promising that OQVCCD also

remains above the FCI energy; despite a significantly larger error than VCCSD

at long bond lengths, OQVCCD remains physically correct throughout. Each of

the impressive results obtained for these three systems prompt the benchmarking

of the OQVCCD method on further systems and with more representative basis

sets. This will be performed in the next chapter, once a perturbative correction

for the effects of triples has been obtained for the OQVCCD method.





Chapter 7

Perturbative Corrections for

Triples and Benchmark Results†

The previous chapter detailed the construction of the OQVCCD approximation,

and presented preliminary results of calculations that indicate it to inherit signif-

icant upper bound character from its parent theory, VCCSD, such that it is more

robust to the breakdown of the Hartree-Fock approximation than methods based

on Traditional Coupled Cluster theory. In particular, the OQVCCD method ap-

pears to possess enough upper bound character to treat difficult problems such

as the breaking of multiple bonds, for example in acetylene, sufficiently well that

predicted potential energy curves remain physically correct throughout. It is the

purpose of this chapter to more thoroughly benchmark the OQVCCD method

against TCC-based methods, especially on multiply-bonded systems, for which it

was designed.

However, it is well known that a method restricted only to single and double

excitations of a single-determinantal reference wavefunction captures insufficient

dynamic electron correlation to achieve chemically accurate results, and that the

effect of at least triple excitations must be additionally included. Unfortunately,

†Relevant publications:

[104] J. B. Robinson and P. J. Knowles, Phys. Chem. Chem. Phys. 14, 6729 (2012).

[105] J. B. Robinson and P. J. Knowles, J. Chem. Theory Comput. (2012), “Benchmark

Quasi-Variational Coupled Cluster Calculations of Multiple Bond Breaking”, in press.
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the explicit inclusion of connected triples is prohibitively expensive. For example,

while the CCSD method scales in computational complexity as O(N6), where N

is some measure of the size of the system, such as the number of electrons, the

CCSDT method scales as O(N8). The CCSDTQ method is even more compu-

tationally expensive, possessing O(N10) complexity. For this reason, the effects

of connected triple excitations are commonly included approximately (through

perturbation theory) in a single non-iterative O(N7) step.

In the case of CCSD, numerous such perturbative corrections have been pro-

posed. Analysing the contributions to CCSD through orders of Møller-Plesset

perturbation theory, CCSD first diverges from FCC at fourth-order, since it omits

those terms that contain triple excitations. The [T] correction[106] is the minimal

non-iterative correction for these missing terms, such that CCSD[T] is correct to

fourth-order. The CCSD(T)[107] method also includes some additional terms at

fifth-order and higher that have been justified in different ways[70, 107, 108], and

further corrective terms have also been proposed[109].

However, it is also well-known[110] that CCSD(T) fails to accurately describe

molecular dissociation due to the breakdown of the (T) perturbative correction,

which can become singular if the Highest Occupied Molecular Orbital (HOMO)

and Lowest Unoccupied Molecular Orbital (LUMO) become degenerate, common

when bonds are stretched. To remedy this failure of CCSD(T) for bond-breaking

situations, several authors have proposed more advanced alternatives, such as the

Λ methods of Bartlett et al.[83], the CCSD(2) method[111] and the Completely

Renormalized CC (CR-CC(2,3)) method of Piecuch et al.[112].

In this chapter, the perturbative decompositions of TCC and VCC are dis-

cussed. For simplicity, single excitations are taken to vanish, as in the case of

using Brueckner or variationally optimal orbitals. These perturbative decom-

positions allow comparisons between the corrections necessary for TCC and for

VCC to be drawn, allowing the minimalistic [T] correction for the omission of

connected triple excitations by VCCD, and subsequently by QVCCD, to be de-

termined. This is then generalized to (T). The resulting OQVCCD(T) method is

then benchmarked for both single-bond dissociations, and also multiple-bond dis-

sociations for which non-dynamic correlation is especially strong, and for which
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CCSD(T) is known to fail catastrophically, with some surprising results.

7.1 The Perturbative Decomposition of TCC and

VCC

As is common in Møller-Plesset analyses, the Hamiltonian is partitioned into the

one-electron Fock operator, Ĥ(0) = F̂ , and the 2-electron fluctuation potential,

Ĥ(1) = V̂ , such that Ĥ = F̂ + V̂ . With the Hartree-Fock reference wavefunction

taken to be the zeroth-order wavefunction (that is Hartree-Fock is assumed to

be the problem that is solved exactly), the energy may then be decomposed in

orders of perturbation theory,

E = E(0) + E(1) + . . . , (7.1)

along with the cluster operators,

T̂ = T̂ (1) + T̂ (2) + . . . . (7.2)

In the absence of singles,

T̂ (1) = T̂
(1)
2 (7.3)

T̂ (2) = T̂
(2)
2 + T̂

(2)
3 (7.4)

for example, where T̂
(2)
4 has been omitted since, although quadruples enter the

second-order wavefunction, they may be factorized exactly into products of double

excitations. For a more thorough introduction to perturbative analyses of CC

theory, the reader is directed to one of the excellent reviews on the subject, such

as Ref. [79].

The Traditional Coupled Cluster method may therefore be quite simply de-

composed through orders of perturbation theory by constructing the nth-order

similarity-transformed Schrödinger Equation,

(e−T̂ ĤeT̂ )(n)|Φ0〉 = (ĤeT̂ )(n)
c |Φ0〉 = E(n)|Φ0〉. (7.5)
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Then, just as in regular TCC theory, the nth-order energy is,

E
(n)
TCC = 〈Φ0|(ĤeT̂ )(n)

c |Φ0〉, (7.6)

and the equations for the nth-order amplitudes are also determined by projection

onto the manifold of the appropriate excited determinants. In this way, the

zeroth-order TCC energy is simply,

E
(0)
TCC = 〈Φ0|(ĤeT̂ )(0)

c |Φ0〉 = 〈(F̂ )c〉 = 〈F̂ 〉, (7.7)

since the cluster operator is at least first-order in the cluster amplitudes, and the

first-order TCC energy is similarly,

E
(1)
TCC = 〈Φ0|(ĤeT̂ )(1)

c |Φ0〉

= 〈(V̂ )c〉+ 〈(F̂ T̂ (1))c〉

= 〈V̂ 〉+ 〈F̂ T̂ (1)
2 〉

= 〈V̂ 〉. (7.8)

By employing the same Møller-Plesset partitioning of the Hamiltionian as in

the TCC case, it is similarly possible to decompose the VCC functional in orders

of perturbation theory. The nth-order VCC energy is simply,

E
(n)
VCC = 〈(eT̂ †

ĤeT̂ )(n)〉L, (7.9)

and the equations to be solved for the amplitudes are obtained by minimization

of these energy expressions, rather than by projection. Since the cluster operator

is at least first-order, the zeroth-order VCC energy is,

E
(0)
VCC = 〈F̂ 〉L = 〈F̂ 〉. (7.10)

The first-order VCC energy is,

E
(1)
VCC = 〈V̂ 〉L + 2〈F̂ T̂ (1)〉L

= 〈V̂ 〉+ 2〈F̂ T̂ (1)〉

= 〈V̂ 〉+ 2〈F̂ T̂ (1)
2 〉

= 〈V̂ 〉, (7.11)
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where the second term vanishes by the Slater rules, and singles are again being

ignored. The sum of the zeroth- and first-order energies therefore remains equal

to the Hartree-Fock reference energy,

Eref = 〈Ĥ〉 = 〈F̂ 〉+ 〈V̂ 〉, (7.12)

and, as is also the case for TCC, the first contribution to the correlation energy

enters at second-order.

A comparison of the second-order TCC and VCC terms is now in order, and

a result from standard Møller-Plesset theory must first be established. The equa-

tion satisfied by the first-order wavefunction,

V̂ |Φ0〉+ F̂ |Φ(1)〉 = E(1)|Φ0〉+ E(0)|Φ(1)〉, (7.13)

can be rearranged as,

(V̂ − E(1)|Φ0〉+ (F̂ − E(0))|Φ(1)〉 = 0, (7.14)

or

(V̂ − 〈V̂ 〉)|Φ0〉+ (F̂ − 〈F̂ 〉)|Φ(1)〉 = 0, (7.15)

It is convenient to introduce the normal-ordered Hamiltonian, which for the pur-

poses of this discussion, is simply

ĤN = Ĥ − 〈Ĥ〉. (7.16)

This is an operator for the correlation energy, since 〈ĤN〉 = 0, and the F̂ and V̂

contributions may be similarly rewritten through,

F̂N = F̂ − 〈F̂ 〉 (7.17)

V̂N = V̂ − 〈V̂ 〉. (7.18)

With these definitions, the equation satisfied by the first-order wavefunction be-

comes,

V̂N |Φ0〉+ F̂N |Φ(1)〉 = 0, (7.19)
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and, writing |Φ(1)〉 = T̂ (1)|Φ0〉, yields,

(V̂N + F̂N T̂
(1))|Φ0〉 = 0. (7.20)

It has already been shown that the contributions to the reference energy are

already fully accounted for by the zeroth- and first-order energies in both TCC

and VCC, and the higher contributions are thus contributions to the correlation

energy only. Normal-ordered operators may therefore be used without detriment

in the remaining analysis.

From the previous discussions, the second-order TCC energy may be given as

follows,

E
(2)
TCC = 〈(ĤNe

T̂ )(2)
c 〉

= 〈(F̂ T̂ (2))c〉+ 〈(V̂ T̂ (1))c〉+
1

2!
〈(F̂ (T̂ (1))2)c〉

= 〈(V̂ T̂ (1)
2 )c〉

= 〈V̂ T̂ (1)
2 〉, (7.21)

where, for no singles, the first and third terms vanish due to the Slater rules. The

equation satisfied by T̂
(1)
2 can be trivially determined by projection to be,

〈Φab
ij |(ĤNe

T̂ )(1)
c |Φ0〉 = 〈Φab

ij |(V̂N)c|Φ0〉+ 〈Φab
ij |(F̂N T̂ (1)

2 )c|Φ0〉 = 0, (7.22)

or,

〈Φab
ij |V̂N |Φ0〉+ 〈Φab

ij |F̂N T̂ (1)
2 |Φ0〉 = 0 (7.23)

The second-order VCC energy, however, appears to take a different form,

E
(2)
VCC = 2〈V̂N T̂ (1)

2 〉L + 〈(T̂ (1)
2 )†F̂N T̂

(1)
2 〉L

= 2〈V̂N T̂ (1)
2 〉+ 〈(T̂ (1)

2 )†F̂N T̂
(1)
2 〉, (7.24)

where the unlinked diagram in the second term vanishes since 〈F̂N〉 = 0. However,

the criterion for the minimization of this functional, obtained by differentiation

and setting the result equal to zero,

dE
(2)
VCC = 2〈V̂NdT̂ (1)

2 〉+ 2〈(T̂ (1)
2 )†F̂NdT̂

(1)
2 〉 = 0, (7.25)
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reveals that T̂
(1)
2 must satisfy the same equation as in TCC,

〈Φab
ij |V̂N |Φ0〉+ 〈Φab

ij |F̂N T̂ (1)
2 |Φ0〉 = 0. (7.26)

Furthermore, by using the result outlined above, or alternatively by manipulat-

ing the constituent diagrams with the amplitude equation, the VCC second-order

energy can be shown to be, in fact, exactly equal to the TCC second-order ex-

pression due to the mutual cancellation of some of the VCC terms,

E
(2)
VCC = 2〈V̂N T̂ (1)

2 〉+ 〈(T̂ (1)
2 )†F̂N T̂

(1)
2 〉

= 2〈V̂N T̂ (1)
2 〉 − 〈(T̂ (1)

2 )†V̂N〉

= 2〈V̂N T̂ (1)
2 〉 − 〈V̂N T̂ (1)

2 〉

= 〈V̂N T̂ (1)
2 〉 (7.27)

It may be further established that both the TCC and VCC second-order energies

are themselves equal to the second-order Møller-Plesset energy[79], such that both

TCC and VCC are exactly correct to second-order in perturbation theory.

In fact, it is already well known[13, 54] that TCC and VCC agree not just to

second-order, but to fourth-order in Møller-Plesset theory, and are fully correct

to third-order, each omitting only the terms containing triple excitations from

fourth-order. The purpose of the above discussion has been to illustrate how

the mutual cancellation between the VCC contributions to the energy can yield

the TCC contributions, and is particularly aesthetic because it brings to mind

the cancellation between VCC diagrams for limiting systems that has been noted

throughout this thesis. In addition, it is similarly known that not only is TCC

equivalent to VCC to fourth-order, but at truncated levels, CCSD is equivalent

to VCCSD, and CCSDT is equivalent to VCCSDT to this order. This has an

extremely important practical consequence; the same minimalistic correction for

the omission of fourth-order triples by CCSD, [T], is equally valid for VCCSD,

such that both CCSD[T] and VCCSD[T] are both exactly correct to fourth-order

in Møller-Plesset theory, as is intended by this correction. Therefore, if it can be

additionally shown that QVCCD correctly generates all of the fourth-order VCCD

contributions, the [T] correction becomes additionally valid for this Approximate

VCC theory. This is the subject of the following section.
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7.2 Perturbative Corrections for Approximate

VCC Theories

At the end of the previous section, it was noted that the [T] correction for triple

excitations is applicable not just to CCSD, but also to VCCSD, and becomes valid

also for approximate VCC theories such as Quasi-Variational Coupled Cluster if

QVCCD correctly agrees with VCCD to fourth-order in Møller-Plesset perturba-

tion theory. This section demonstrates this to be true; the QVCCD method (and

also the earlier AVCCD method) has been constructed specifically such that it

agrees with VCCD to O(T 3), which has been demonstrated thoroughly in ear-

lier chapters, and also such that it correctly accounts for the 1-electron O(T 4)

terms. Although this last statement will not be proved in detail, due to to the

large number of contributing diagrams, its validity will be made plausible in this

section.

Previously the VCC energy was decomposed through second-order of pertur-

bation theory. Consider now the contributions to specifically the VCCD energy

through fourth-order of perturbation theory. The leading order contribution to

the VCCD energy is the reference energy,

E
(0)
VCCD + E

(1)
VCCD = 〈F̂ 〉+ 〈V̂ 〉 = 〈Ĥ〉. (7.28)

The reference energy is the first term present in the QVCCD functional. Therefore

QVCCD is correct and equivalent to VCCD to at least first-order. Similarly, it

was previously shown that,

E
(2)
VCCD = 2〈V̂N T̂ (1)

2 〉+ 〈(T̂ (1)
2 )†F̂N T̂

(1)
2 〉 = 2〈V̂ T̂ (1)

2 〉+ 〈(T̂ (1)
2 )†(F̂ − 〈F̂ 〉)T̂ (1)

2 〉.
(7.29)

Both of these terms are contained in the CEPA(0) functional, which is itself

contained by QVCCD. Hence, QVCCD is also equivalent to VCCD to at least

second-order. The third-order VCCD energy,

E
(3)
VCCD = 2〈V̂N T̂ (2)

2 〉+ 〈(T̂ (1)
2 )†V̂N T̂

(1)
2 〉L + 2〈(T̂ (1)

2 )†F̂N T̂
(2)
2 〉L (7.30)

is similarly captured by CEPA(0), and hence also by QVCCD.
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Therefore, only an examination of the fourth-order VCCD terms remains. Of

these terms, several are captured by CEPA(0),

E
(4)
VCCD ←− 2〈(T̂ (1)

2 )†F̂N T̂
(3)
2 〉L + 〈(T̂ (2)

2 )†F̂N T̂
(2)
2 〉L + 2〈V̂N T̂ (3)

2 〉+ 2〈(T̂ (1)
2 )†V̂N T̂

(2)
2 〉L

(7.31)

but the remaining terms,

E
(4)
VCCD ←− 〈(T̂

(1)
2 )†V̂N(T̂

(1)
2 )2〉+

(
1

2!

)2

〈((T̂ (1)
2 )†)2F̂N(T̂

(1)
2 )2〉L (7.32)

are not. Those terms captured by CEPA(0) are automatically present in QVCCD,

but the remaining terms require further discussion. The first of these terms enters

from the O(T 3) VCCD term, 〈T̂ †2 ĤN T̂
2
2 〉, which is generated exactly by QVCCD,

and also AVCCD, although not LPFD. The other term arises from the 1-electron

O(T 4) terms that have been mentioned several times. In fact, it is a consequence

of the fact that 2T̂ generates the correct O(T 3) VCCD terms that 1T̂ generates

the correct 1-electron O(T 4) terms. While some of the 2-electron O(T 4) terms are

omitted by QVCCD, these terms are at least fifth-order in perturbation theory

and are also omitted by CCD, and it is impossible to include them without

violating the O(o2v4) complexity criterion.

In order to further justify the point that QVCCD correctly generates the

1-electron O(T 4) terms, which it is necessary to get right if QVCCD is to be

equivalent to VCCD to fourth-order in perturbation theory, consider one of the

O(T 4) terms generated by the C transformation in 〈1T̂ †2 F̂N 1T̂2〉.

〈1T̂ †2 F̂N 1T̂2〉 = 〈1T̂ †2 F̂ 1T̂2〉L

← −1

2
1T

ij
ab 1T

ab
ik f

k
j

← −1

4
(CηT)ijabT

ab
ik f

k
j −

1

4
T ijab(CηT)abikf

k
j

= −1

8
Cη
ij
mnT

mn
ab T

ab
ik f

k
j −

1

8
T ijab Cη

mn
ik T

ab
mnf

k
j

= −1

4
Cη
ij
mn Cη

mn
ik f

k
j −

1

4
Cη
ij
mn Cη

mn
ik f

k
j

= −1

2
Cη
ij
mn Cη

mn
ik f

k
j (7.33)

The coefficient of −1/2 (or −1/8 upon inserting the definition of each Cη), agrees

exactly with the weighting of the generated term as it appears in VCCD, as
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can be confirmed diagrammatically. All the 1-electron O(T 4) terms are simi-

larly captured by QVCCD, and with the correct coefficients, and QVCCD (and

also AVCCD but not LPFD) is therefore equivalent to VCCD to fourth-order in

Møller-Plesset perturbation theory.

With this result, QVCCD inherits the validity of the [T] correction from

VCCD, which was itself inherited from CCD. More precisely, both OQVCCD

and BQVCCD may make use of the same [T] correction as BCCD, with the ef-

fect that OQVCCD[T] and BQVCCD[T], in addition to their numerous other

advantageous methodological properties, are also fully correct to fourth-order in

Møller-Plesset perturbation theory, the same as CCSD[T] or BCCD[T]. It is also

noteworthy that there is no difference between the [T] correction and the (T)

correction when the single excitations vanish, which, of course, occurs for the

OQVCCD scheme, since they differ only in terms that contain single excitations.

This defines the Optimized-orbital Quasi-Variational Coupled Cluster Doubles

with Perturbative Triples (OQVCCD(T)) method, which possesses the following,

extremely theoretically attractive set of methodological properties.

• OQVCCD(T) is a unique theory, containing no arbitrary parameters.

• The iterative step in the calculation of the ground-state energy is performed

by variational minimization of a functional, such that the error is second-

order in any remaining errors in the cluster amplitude parameters.

• The functional and perturbative correction contain fully linked terms only,

such that calculated energies are rigorously extensive.

• It is exactly equivalent to FCI for 2 electrons or 2 holes, systems for which

the cluster operator T̂ = T̂1 + T̂2 is complete.

• The functional yields a scalar energy that is invariant to rotations in the

underlying orbital spaces {ψi} and {ψa}.

• The energy is not a true upper bound on the exact ground-state Schrödinger

energy eigenvalue, but variational minimization of the functional gives a

theory that satisfies the generalized Hellmann-Feynman theorem[67].
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• The doubles-only theory is equivalent to VCCD to O(T 3), and, as a conse-

quence, the one-electron O(T 4) terms are also constructed correctly.

• Furthermore, by construction, balanced VCCD contributions are generated

through all orders of the cluster amplitudes, such that the functional poten-

tially inherits approximate upper bound character from its parent VCCD

method.

• It is correct to fourth-order in Møller-Plesset perturbation theory[3].

• The limiting computational complexity of the method is iterative O(o2v4)

and non-iterative O(o3v4) with O(o2v2) storage, the same as CCSD(T).

The OQVCCD and OQVCCD(T) methods will be thoroughly benchmarked against

their competitors in the section that follows.

7.3 Benchmark Results

As with the other data presented in this thesis, most calculations in this chap-

ter have been performed with the Molpro[86, 87] quantum chemistry software

package. For each molecule studied, one-dimensional cuts of the potential energy

surface obtained with various single-reference coupled-cluster methodologies are

compared with those obtained from internally-contracted multireference configu-

ration interaction[29, 30] (MRCI) calculations. These reference calculations use

complete active space reference wavefunctions where the active space consists of

the atomic valence orbitals, and the energy is corrected using the approximate ex-

tensivity correction of Davidson[113] (MRCI+Q). Using the GAMESS[114] pack-

age, the CR-CC(2,3) method[112] is also examined. CEPA results have addition-

ally been obtained using Orca[115].

To begin, two simple single bond breaking examples are investigated. Calcu-

lated potential energy curves for BH with the cc-pVQZ basis are given in Figure

7.1 and for HF with the aug-cc-pVQZ basis in Figure 7.2. In both examples,

the CCSD(T) method becomes poor as the bond is stretched. This is a well-

known problem associated with the (T) correction, since it becomes singular when
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the highest occupied and lowest unoccupied molecular orbitals become degener-

ate. However, while CCSD and OQVCCD perform similarly, the OQVCCD(T)

method fares significantly better than CCSD(T). While this is promising, com-

parison with BCCD and BCCD(T) shows that this behaviour may be a result

of the different orbitals in use; CCSD(T) uses Hartree-Fock orbitals, whereas

BCCD(T) uses Brueckner orbitals and OQVCCD(T) uses variationally optimal

orbitals. Equivalently, these differences are a result of the different treatment

of single excitations, due to the Thouless theorem[99], which states that any two

single-determinantal wavefunctions, |Φ〉 and |Φ′〉, may be related by |Φ′〉 = eT̂1 |Φ〉.
This behaviour has been noted previously, for example by Nooijen and Le Roy,

who found that the use of Brueckner orbitals improved the triples corrections

substantially in HF, BeO, CN and BN[18]. In the calculations that follow, the

BCCD and BCCD(T) methods are used to identify those systems for which the

choice of orbitals affects the triples corrections more than the differences in the

doubles-only theories. It should be noted, however, that the Brueckner orbitals

are not always close to the variationally optimal orbitals[100], and it has been

checked, for additional clarity, that Brueckner Quasi-Variational Coupled Cluster

Doubles (BQVCCD) performs in agreement with OQVCCD in the examples that

follow.

Next, the spectroscopic constants for a selection of diatomic molecules, are

examined, and presented in Table 7.1. The CCSD and OQVCCD results are

of similar quality, as are the CCSD(T) and OQVCCD(T) results. This is to

be expected due to the similarity of the potential energy curves around equilib-

ria, evident in later figures. It is noteworthy that comparing the spectroscopic

constants obtained from the BQVCCD, BCCD, BQVCCD(T) and BCCD(T)

methods reveals deficiencies that arise in the current QVCCD approximation to

VCCD, which manifest as incomplete recovery of dynamic correlation energy rel-

ative to CCD, leading to a slightly poorer description of the equilibrium region

of potential energy surfaces. These defects are, however, quite small.

A first example involving strong non-dynamic correlation is the case of the

symmetric stretching of a double bond, for which H2Si = SiH2 constrained to a

planar D2h geometry is taken. The Si-H bond length and bond angle are optimized
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Figure 7.1: Calculated potential energy curves for BH with the cc-pVQZ basis

set.

at the CCSD level of theory for each Si-Si distance, and the results of the various

methods are illustrated in Figure 7.3.

The first noteworthy feature of this graph is the strong divergence between

OQVCCD and the TCC methods, CCSD and BCCD, that occurs from around

3.6Å. Näıvely, it may appear that CCSD and BCCD are closer to MRCI+Q, and

therefore perform better than OQVCCD. However, the more slowly decreasing

slope of the OQVCCD curve, in fact, mimics the divergence of VCCSD from FCI

evident in previous examples, such as Figure 2.1, and that can be observed in

other VCCSD minimal basis benchmarking exercises[95]. The difference in this

example is that the TCC methods do not fail as severely. The divergence of

CCSD from OQVCCD therefore reflects the divergence of CCSD from VCCSD.

Further supporting evidence will follow in other examples.

Another point of particular interest, however, is that, correlated with the

divergence of the TCC methods from OQVCCD (or VCCSD) around 3.6Å, is

the onset of a catastrophic failure of the CCSD(T) and BCCD(T) methods to

describe the regime of dissociation. Both triples-corrected TCC methods pre-
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Figure 7.2: Calculated potential energy curves for HF with the aug-cc-pVQZ

basis set.

dict unphysical maxima in the potential energy curve around 3.8Å, and subse-

quently diverge to energies significantly below MRCI+Q. Although insufficient

CR-CC(2,3) points were able to be acquired in order to fully evaluate the per-

formance of this (more advanced) method, which has yielded some impressive

results for the breaking of single bonds[117], by 4.2Å, the CR-CC(2,3) curve has

already crossed the MRCI+Q curve, and it is therefore reasonable to assume that

it performs better than, but qualitatively similarly to CCSD(T). In contrast, the

OQVCCD(T) method displays no significant problems at this, or even longer

bond lengths, and instead continues in a physically correct manner, remaining

just above the MRCI+Q curve throughout.

Another class of systems with which the TCC-based ab initio methods are

known to struggle is the simultaneous breaking of several single bonds. One

classic example is the symmetric stretching of the two O-H bonds in water. For

the purposes of benchmarking, however, it is fitting to examine some more severe

examples of non-dynamic correlation, such as the case of the symmetric stretching

of all 3 of the N-H bonds in ammonia, NH3. Calculated potential energy curves

for this system are given in Figure 7.4.
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Figure 7.3: Calculated potential energy curves for D2h H2Si = SiH2 as a function

of the Si = Si bond length with the cc-pV(D+d)Z basis set.

The CCSD and BCCD methods both encounter difficulties as the bonds in

NH3 are stretched; the BCCD method undergoes a non-variational collapse to

energies below the MRCI+Q curve, and the CCSD curve becomes unstable and

begins to increase in energy too sharply from 2.2 Å. Both curves are clearly

wrong in comparison to the MRCI+Q curve. However, the OQVCCD curve is

smooth and continues fairly parallel to MRCI+Q throughout. These differences

are magnified and made significantly more obvious when the (T) correction is

added to each method; both CCSD(T) and BCCD(T) then diverge unphysically,

whereas OQVCCD(T) is in excellent agreement with MRCI+Q, representing a

significant improvement over the methods based on TCC. While CR-CC(2,3) does

not demonstrate a failure as pronounced as in CCSD(T), it exhibits instabilities

similar to the CCSD method on which it is based. The CEPA-2 method[11, 13]

has additionally been examined for this example, and the results show it to diverge

from MRCI+Q and become catastrophically unphysical at bond lengths even

shorter than for which the breakdown of CCSD(T) occurs.

The symmetric stretching of the C-H bonds in ethene, in which four bonds

are now simultaneously broken, represents an even more extreme test case, and
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Figure 7.4: Calculated potential energy curves for the symmetric stretching of

NH3 with the cc-pVTZ basis set.

results are illustrated in Figure 7.5. All methods tested are capable of treating the

equilibrium region of the potential energy curve to the same level of accuracy, but

the CCSD and BCCD methods both become unphysical and qualitatively incor-

rect in comparison to MRCI+Q from 2.2 Å, even before the corrections for triples

are added. In contrast, OQVCCD does not predict an unphysical maximum, and

the curve continues as one would expect from physical intuition.

When the triples corrections are added, CCSD(T) and BCCD(T) both diverge

even more rapidly. The CR-CC(2,3) performs slightly better, and is apparently

capable of treating the dynamic correlation to the level of CCSD(T), but diverging

at long bond lengths with slope more like that of CCSD. It is still unphysical, and

therefore wrong, at these long bond lengths, however. The OQVCCD(T) method,

however, appears to be just as stable and physically correct as OQVCCD, but also

accounts for much of the remaining dynamic correlation, and therefore remains

not just in qualitative agreement, but also in excellent quantitative agreement

with MRCI+Q. The contrast between the TCC-based methods and OQVCCD(T)

is therefore quite extraordinary in this example.
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Figure 7.5: Calculated potential energy curves for the symmetric stretching of

the C-H bonds in ethene with the cc-pVDZ basis set.

As a further example of simultaneous bond breaking, and of the extent to

which OQVCCD approximates VCCSD well in non-dynamic situations, consider

the stretching of the N-H and O-H bonds in NH2OH, for which results are illus-

trated in Figure 7.6 with the minimal STO-3G basis, with which VCCSD results

can again be obtained. The overall conclusions for this system are the same as

for ammonia and ethene; OQVCCD predicts a physically correct potential en-

ergy curve, whereas CCSD and BCCD do not, and the (T) correction improves

the OQVCCD potential energy curve, whereas its application to either CCSD or

BCCD leads to a huge overestimation of the correlation energy. The effect of

the (T) correction appears to be small, especially for OQVCCD, in this example,

but this is, in fact, simply an artefact of the minimal basis set in use, and the

(T) correction becomes more important as the basis set is made larger. In this

basis, another feature becomes apparent, however; there is a shift towards higher

energies due to the use of either orbital optimization or Brueckner orbitals, which

motivates further development of explicit treatments of single excitations in the

Approximate VCC family of methods.

In order to better understand the degree to which OQVCCD out-performs



146 Perturbative Corrections for Triples and Benchmark Results

0000000

0000033

0000005

0000008

0000000

0000003

0008005

008 000 000 000 004 008 000 000 000

sssssssssssssssssssssss

s
s
s
ss

s
ss

ss
s
ss

ss
s
s

DDDD sDDD DDDDDD DDDDD

DDDD))) sDDD))) DDDDDD))) IDI

Figure 7.6: Calculated potential energy curves for the symmetric stretching of

the N-H and O-H bonds in NH2OH with the STO-3G basis set.

CCSD for the treatment of non-dynamic correlation, a more detailed study of

the predicted potential energy curves of the lowest singlet state of C2 is now

presented, another difficult test of single-reference Post-Hartree-Fock methods.

Calculated potential energy curves for this system are first given in Figure 7.7

with the aug-cc-pVQZ basis.

As in the case of Si2H4, the OQVCCD method diverges from the CCSD

method at long bond lengths; unlike CCSD, the curve does not plateau around

2.4 Å, leading OQVCCD to predict a larger dissociation energy than CCSD. This,

again, reflects the underlying divergence between CCSD and VCCSD that be-

comes apparent if the system is examined in a minimal basis[95]. When the

triples corrections are added, CCSD(T) and OQVCCD(T) are similar around

equilibrium, but CCSD(T) becomes unphysical from approximately 2.3 Å. On the

other hand, OQVCCD(T) remains physically correct throughout, and in excellent

agreement with MRCI+Q even to extremely long bond lengths. It is noteworthy

that, just as in the previous examples, the CCSD(T) and BCCD(T) methods turn

over precisely when CCSD and BCCD begin to diverge from OQVCCD, indepen-

dent of whether the CCSD and BCCD methods themselves become unphysical.
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Figure 7.7: Calculated potential energy curves for C2 with the aug-cc-pVQZ basis

set.

To further support these results, a plot of the calculated forces is additionally

presented in Figure 7.8, calculated by finite-difference differentiation, and shows

the OQVCCD(T) curve to be almost flat, predicting a correct dissociation of

the molecule, well beyond the region in which CCSD(T) and BCCD(T) become

exceedingly inaccurate. Furthermore, a plot of the square norms of the cluster

amplitudes for the methods CCSD, BCCD and OQVCCD is presented in Figure

7.9. The OQVCCD square norm increases slowly with decreasing gradient from

around 2.4 Å, reaching a value of 2.40 at 1000 Å, suggesting that only small

changes will occur at even longer bond lengths. In contrast, the CCSD and BCCD

square norms approach their respective limits more slowly than OQVCCD, and

this appears to be correlated with the failure of the CCSD(T) and BCCD(T)

methods.

In Figure 7.10, calculated potential energy curves for N2 with the aug-cc-pVQZ

basis set are given. This system is a notorious test of single-reference correlation

methods, and both CCSD and BCCD clearly provide inadequate descriptions of

the breaking of the triple bond in this strongly-correlated example. When the (T)

correction is added to either CCSD or BCCD, the problem is magnified. Even
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Figure 7.8: Calculated force curves for C2 with the aug-cc-pVQZ basis set.

CR-CC(2,3) collapses in a non-variational fashion to energies significantly below

the MRCI+Q curve. However, the OQVCCD curve, again, does not manifest the

same unphysical maximum in the potential energy curve as the TCC methods,

and OQVCCD(T) is in outstanding agreement with MRCI+Q out to internuclear

separations where the triple covalent bond is essentially broken.

In Figure 7.11, results are presented with the smaller cc-pVDZ basis, in which

it is possible to perform comparative CCSDT and CCSDTQ calculations using

Kállay’s MRCC program[118]. The results are presented as a plot of the errors

relative to MRCI+Q. From this data, it is apparent that CCSDT also fails com-

pletely, but inclusion of the effects of connected quadruple excitations yields a

qualitatively correct curve. The behaviour of OQVCCD(T) is simply exceptional,

with this iterative O(N6) plus non-iterative O(N7)-scaling theory outperforming

iterative O(N8) CCSDT, and rivalling iterative O(N10) CCSDTQ. Even though

one might expect the perturbative part of OQVCCD(T) to become unreliable as

the highest occupied and lowest unoccupied molecular orbitals approach degener-

acy, the rate at which OQVCCD(T) diverges from MRCI+Q slows at long bond

lengths, and the present results therefore challenge the conventional wisdom that
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Figure 7.9: Amplitude square norms for C2 with the aug-cc-pVQZ basis set.

a full, non-perturbative treatment of triple and quadruple excitations is required

to correctly dissociate this system.

The acetylene molecule, C2H2, which has been used as a prototypical example

of multiple bond breaking throughout this thesis, possesses an electronic structure

that is analogous to the N2 molecule, and thus represents a similarly extreme test

of molecular electronic structure methods when the triple bond is stretched. The

results of calculations on this system are shown in Figure 7.12, for a fixed C-

H bond length of 1.06Å. From approximately 2.2 Å, none of the methods based

on TCC are correct, each predicting an unphysical maximum in the potential

energy curve followed by a non-variational collapse to energies below MRCI+Q.

The effect of the (T) correction on each of these methods is to push the energy

even lower, causing the problem to become magnified. The CEPA-2 method

also diverges to unphysically low energies on stretching, and the onset of this

behaviour occurs at even shorter bond lengths (from around 1.6 Å). In contrast,

the OQVCCD method does not appear to degrade significantly in quality as the

bond is stretched, predicting a potential energy curve with the characteristic

VCCSD shape[95], and the additional (T) perturbative correction of the energy
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Figure 7.10: Calculated potential energy curves for N2 with the aug-cc-pVQZ

basis set.

results in a predicted curve that is in outstanding agreement with MRCI+Q.

As a final example of multiple bond breaking, consider the model system

cyclo-H8, in which eight hydrogen atoms are arranged at the vertices of a regu-

lar octagon, with edge length R. As R is increased, the 8 partial bonds break

simultaneously. In addition, the physically correct behaviour in the dissociation

limit is for one electron to localize on each of the atomic sites, and the restricted

Hartree-Fock reference wavefunction used for each of the single-reference calcu-

lations therefore suffers from severe ionic contamination[59]. With a total of 48

determinants approximately equally important at dissociation, this model system

represents possibly the most severe test of single-reference ab initio methods for

non-dynamic electron correlation examined in this thesis.

This severity is quite apparent in the TCC potential energy curves, presented

in Figure 7.13, with all of CCSD, CCSD(T), BCCD and BCCD(T) nonsensical

from around 1.8Å. It is a testament to the robust nature of electronic structures

that can be calculated with even an approximately-fulfilled variational upper

bound property that OQVCCD should perform at all well in this system, since
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Figure 7.11: Errors relative to MRCI+Q for N2 with the cc-pVDZ basis set.

it is, in fact, physically correct throughout. Dynamic correlation is weak in this

system, since the electrons should be spatially local at long distances, and the

effect of (T) is therefore small, but the agreement of OQVCCD(T) with MRCI+Q

is simply magnificent.
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Figure 7.12: Calculated potential energy curves for the stretching of the carbon-

carbon triple bond in acetylene, C2H2, with the C-H bond length fixed at 1.06Å,

and with the aug-cc-pVTZ basis set.
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Figure 7.13: Calculated potential energy curves for increasing the edge length of

the regular octagonal H8 model with the cc-pVQZ basis.
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Table 7.1: Comparison of equilibrium bond lengths and spectroscopic constants

for some diatomic molecules. Basis set: cc-pV5Z, with correlation energy x−3-

extrapolated using cc-pVQZ and cc-pV5Z.

System Method Re/Å ωe/cm−1 ωexe/cm−1

HF CCSD 0.914 4198.7 93.9

BCCD 0.914 4197.9 87.6

BQVCCD 0.914 4200.9 87.9

OQVCCD 0.914 4201.3 89.5

CCSD(T) 0.917 4148.4 95.0

BCCD(T) 0.917 4141.3 87.7

BQVCCD(T) 0.917 4146.5 88.5

OQVCCD(T) 0.917 4150.8 91.9

Empirical[116] 0.917 4138.3 89.9

F2 CCSD 1.388 1025.5 8.7

BCCD 1.386 1030.3 8.7

BQVCCD 1.385 1034.3 8.7

OQVCCD 1.385 1034.6 8.6

CCSD(T) 1.410 929.2 11.4

BCCD(T) 1.410 933.3 11.3

BQVCCD(T) 1.407 942.1 11.2

OQVCCD(T) 1.407 942.9 11.2

Empirical 1.412 916.6 11.2

N2 CCSD 1.092 2445.3 12.8

BCCD 1.091 2456.2 12.6

BQVCCD 1.090 2464.0 12.5

OQVCCD 1.090 2461.0 12.5

CCSD(T) 1.099 2364.9 13.8

BCCD(T) 1.099 2370.5 13.7

BQVCCD(T) 1.097 2384.5 13.4

OQVCCD(T) 1.098 2382.0 13.5

Empirical 1.098 2358.6 14.3
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7.4 The Surprising Implications of the Varia-

tional Upper Bound Property

The OQVCCD(T) method has been demonstrated to be extraordinarily robust

for the prediction of potential energy curves involving the dissociation of multiply-

bonded molecules, remaining in excellent quantitative agreement with MRCI+Q,

and hence with experiment, across entire potential energy curves. Furthermore, it

has been pointed out on several occasions that the onset of the catastrophic per-

formance of CCSD(T) is coincident with the divergence of CCSD from OQVCCD,

which is itself indicative of the divergence of CCSD from VCCSD. The contrast

between the excellent performance of OQVCCD(T) and the problematic unphys-

ical overestimation of the correlation energy by CCSD(T) in these examples pro-

vides compelling evidence that it is the non-variational character of CCSD itself

that instigates the failure of CCSD(T), and not a breakdown of perturbation

theory, to which it is commonly attributed. Put simply, the (T) correction does

not cause the breakdown of CCSD(T), but instead simply magnifies the prob-

lematic lack of upper bound character inherent to CCSD in the multiply-bonded

examples presented in the previous section.

These results therefore give new insight into the physics of the electron cor-

relation problem, because it appears that a Coupled-Cluster-like method that

possesses even an approximately-fulfilled upper bound property can adequately

deal with even severe non-dynamic correlation across a range of systems, and

when this occurs, the remaining effects of dynamic correlation may legitimately

be included perturbatively. A pertinent question, of course, is why the (T) cor-

rection should be so sensitive to the presence of an upper bound property on

the energy at all? It is, after all, a property that perturbation theory itself

destroys; although VCCSD yields a rigorous upper bound on the exact ground-

state Schrödinger energy eigenvalue, this would not be true of even a hypothetical

VCCSD(T) theory.

The conclusion must be that it is not the upper bound property itself, but the

more robust treatment of the electronic structure that this property enforces that
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allows (T) to remain valid for OQVCCD when it fails for CCSD and BCCD. This

makes sense because the only difference between the (T) correction to OQVCCD

and the (T) correction to BCCD is in the values taken by the cluster amplitude

parameters; the functional form of each is identical, as discussed above; the vari-

ational upper bound property on a calculated energy essentially constrains the

values of the cluster amplitudes from which the energy is constructed. In fact,

the difference between the cluster amplitudes calculated by OQVCCD and CCSD

or BCCD is quite apparent in Figure 7.9, in which the square norm of the am-

plitudes is plotted as a function of the bond length of C2. By constraining and

stabilizing the values taken by the cluster amplitudes, the (T) correction itself

inherits additional stability from the variational upper bound property.

It is, of course, still true that the (T) correction can break down when the

highest occupied and lowest unoccupied molecular orbitals become degenerate in

energy, and there is also the important point that more advanced perturbative

corrections, such as (2)[80, 81, 111], exist that more effectively deal with triples

(and quadruples) for non-dynamic cases by further decoupling the perturbative

correction from the Hartree-Fock approximation. However, the variational upper

bound property appears to greatly extend the range of systems for which single-

reference ab initio electron correlation methods involving even the standard (T)

perturbative correction can be appropriate. In particular, it is simply striking that

the OQVCCD(T) method is capable of treating, and with both physical validity

and quantitative accuracy, the complete potential energy curve of systems such

as acetylene and dicarbon from the repulsive regime, through the equilibrium

geometry and to the dissociation limit, and, to the author’s knowledge, at the

time of writing no other O(o2v4) iterative plus O(o3v4) non-iterative method

(based on Restricted Hartree-Fock theory) has treated N2 with accuracy even

comparable to OQVCCD(T).





Chapter 8

Application to the Non-Linear

Optical Properties of Model

Hydrogen Chains†

In previous chapters, it has been discussed how the QVCCD ansatz inherits

pseudo-variational upper bound character from its parent theory, VCCD, such

that it is more robust to the breakdown of the Hartree-Fock approximation than

methods based on Traditional Coupled Cluster theory. It was further demon-

strated that, when combined with variational optimization of the orbitals to ac-

count for the effects of single excitations and a standard perturbative correction

for triples, the resulting OQVCCD(T) method is capable of predicting both a

physically correct and quantitatively accurate potential energy curve for the dis-

sociation of dinitrogen, N2, and other strongly-correlated molecules for which

CCSD(T) and related methods fail catastrophically. In this chapter, a further

pilot application of the Quasi-Variational Coupled Cluster method to the ener-

gies, polarizabilities and second hyperpolarizabilities of model hydrogen chains is

presented, indicating it to be a suitable method also for the black-box treatment

†Relevant publication:

[119] J. B. Robinson and P. J. Knowles, J. Chem. Phys. (2012), “Application of the Quasi-

Variational Coupled Cluster Method to the Non-Linear Optical Properties of Model Hydrogen

Systems”, in press.
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of multiradicals.

8.1 Motivation

The non-linear optical (NLO) properties of a molecule are responsible for macro-

scopic phenomena such as refractive indices[120], and the design of materials ex-

hibiting large or systematically tunable NLO properties is of great interest for use

in both current and future generations of optoelectronic devices[121–126]. Owing

to this interest, a great deal of experimental[127–131] and theoretical[129–133]

work has been targeted at this area. Linearly conjugated organic polymer chains

have been extensively studied due to the discovery of relationships between struc-

tural and NLO properties[134–141], and, for singlet multiradicals in particular,

studies on models have found the second hyperpolarizability to depend strongly

on the diradical character[142, 143]. This has been confirmed theoretically for

systems such as graphene nanoflakes[144, 145], as well as experimentally[146, 147].

The first investigation of molecular NLO properties using highly correlated

wavefunction methods was performed by Bartlett and Purvis[148], and a correct

treatment of electron correlation has since been shown to be essential in obtaining

quantitatively accurate values of NLO properties from theoretical methods[149–

157], especially second hyperpolarizabilities, which Hartree-Fock theory is known

to systematically underestimate. Unfortunately, the common variants of Density

Functional Theory[158, 159] (DFT) overestimate these same NLO properties[160,

161], and while more novel approaches have mitigated this problem, it has yet to

be fully resolved[162, 163].

Due to the size and complexity of many of the systems of interest, ab initio cal-

culations are typically applied to smaller representative test cases[143] or else re-

sort to the investigation of model hydrogen chains as prototypical multiradicals[142,

164–169] in order to benchmark other, less expensive methods[150, 155, 170, 171].

However, since the NLO properties are extremely sensitive to the treatment of

electron correlation[149, 172, 173], it has become important also to benchmark

the ab initio methods amongst themselves on these systems[151, 156]. For this
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purpose, it has become common to use Traditional Coupled Cluster limited to

single and double excitations of the HF reference determinant in order to achieve

a highly correlated approximation to the many-body Schrödinger wavefunction,

sometimes combined with a correction to the calculated energy motivated by

perturbative estimates of the effect of triple excitations.

Unfortunately, as has been discussed extensively throughout earlier chapters,

TCC itself performs poorly when the Hartree-Fock approximation on which it

is based becomes qualitatively wrong and a single-determinantal reference wave-

function becomes a poor model of the exact electronic wavefunction. This is es-

pecially problematic for multiradicals and geometries far from equilibrium, which

are often the systems of interest in the context of applications to non-linear

optics[143]. If the TCC energy becomes poor as a result of this problem, the

effect will be magnified for higher-order properties, such as second hyperpolariz-

abilities. Furthermore, the multireference methods, while more reliable in such

situations, do not operate in a black-box fashion, as discussed previously, and are

thus more difficult to deploy on such large systems.

Therefore, it would be highly desirable if a robust and accurate single-reference

method could be found for application to these systems, and, in this chapter, the

performance of the Quasi-Variational Coupled Cluster method is tested for this

task.

8.2 Methodology

Zero-frequency non-linear optical properties may be calculated from quantum-

chemical methods by finite-difference differentiation of the calculated energies

with respect to the strength of a small applied field; if the molecular Hamiltonian

is perturbed by the application of a weak electric field, F , the total energy, E, of

the molecule may be written as a Taylor series in orders of the field strength[58].

E =
∞∑
n=0

Fn
n!

dnE

dFn
∣∣∣∣
F=0

(8.1)
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The dipole moment of the molecule in the direction of the applied field, a measure

of the separation of charge in the molecule along that axis, is,

〈µ〉 = −dE
dF = −

∞∑
n=1

Fn−1

(n− 1)!

dnE

dFn
∣∣∣∣
F=0

. (8.2)

The first term in this series is the static (or permanent) dipole moment, and

the other terms represent the contributions to the induced dipole moment. The

coefficients of the second, third and fourth terms, which measure the response of

the molecule to an applied field, are the electric polarizability, α, the hyperpolar-

izability, β, and the second hyperpolarizability, γ.

α = − d2E

dF2

∣∣∣∣
F=0

(8.3)

β = − 1

2!

d3E

dF3

∣∣∣∣
F=0

(8.4)

γ = − 1

3!

d4E

dF4

∣∣∣∣
F=0

. (8.5)

In the following sections, results are presented that benchmark the perfor-

mance of QVCC against CCSD, CCSD(T), BCCD and BCCD(T) on several

model hydrogen systems, using either Full Configuration Interaction (FCI) or

Multireference Averaged Quadratic Coupled Cluster[32] (MRAQCC) as the stan-

dard for correct behaviour in each case. The sensitivity of the NLO properties,

in particular, to the treatment of electron correlation in these systems make

them perfect tests of any new quantum-chemical method. In each case, a Re-

stricted Hartree-Fock (RHF) reference wavefunction is used. Although better

results could possibly be achieved by the use of an Unrestricted Hartree-Fock

(UHF) reference wavefunction that correctly describes molecular dissociation, by

instead using RHF in each case, a fair comparison between each of the methods

can be achieved. The effectiveness of the RHF-based and UHF-based quantum-

chemical methods is compared and contrasted separately in section 8.9. Addi-

tionally, in order to further establish a fair benchmark of comparison between

the methods, the optimization of the orbitals in the QVCC calculations is sub-

stituted for the Brueckner condition, so that BQVCCD and BQVCCD(T) may

be compared directly with BCCD and BCCD(T).

Each model system is assigned two degrees of freedom, and, in each case,
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insight is gained into how the properties of interest vary through the examination

of 1-D cuts of the potential energy surfaces or the surfaces of the polarizability

or second hyperpolarizability. For several of the systems the accuracy of each of

the single-reference electronic structure methods is then systematically gauged by

obtaining a set of errors (computed by taking the value of the property of interest

and subtracting from it the value obtained from a more accurate calculation, such

as FCI) over a representative region of the corresponding potential energy surface.

From each set of errors, {εi} with i ∈ {1, 2, . . . , N}, three measures of the average

error are computed; the mean signed error,

ε̄ =
1

N

N∑
i=1

εi (8.6)

the mean absolute error,

|̄ε| = 1

N

N∑
i=1

|εi| (8.7)

and the root mean square error,

√
ε̄2 =

√√√√ 1

N

N∑
i=1

εi2, (8.8)

and a measure of the spread of the errors, the standard deviation of the signed

errors,

σ =

√√√√ 1

N

N∑
i=1

(εi − ε̄)2. (8.9)

In addition, a further indication of the distribution of errors is contained in the

maximum (or most positive) error, dεe, and the minimum (or most negative) error,

bεc, which, particularly for the case of the calculated energies, also describe the

degree to which the upper bound property is in effect. The average error measures

are taken to indicate the accuracy of the method, while the measures of the spread

are taken to indicate the reliability (or consistency) of the method, such that a

smaller spread indicates that whatever level of accuracy is achieved varies by a

smaller amount over the potential energy surface. A supporting selection of FCI

and MRAQCC energies, polarizabilities and second hyperpolarizabilities for each
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Table 8.1: Calculated energies, polarizabilities and second hyperpolarizabilities

for a selection of geometries of the various model hydrogen systems with the aug-

cc-pVDZ basis, quoted in atomic units, and calculated with either the FCI (H4)

or MRAQCC (H6) methods.

D∞h H4 R1/Å R2/Å E α γ

1.00 1.00 -2.258545 9.891×10+0 5.206×10+1

1.00 4.00 -2.283675 1.158×10+1 5.107×10+1

2.00 1.75 -2.048722 1.615×10+1 8.584×10+1

2.50 2.50 -2.008549 1.673×10+1 1.072×10+2

3.00 4.00 -1.999858 1.688×10+1 1.055×10+2

C2v H4 R/Å θ/◦ E α γ

2.25 0.0 -2.020093 1.593×10+1 8.977×10+1

2.50 0.0 -2.009633 1.626×10+1 1.016×10+2

2.75 0.0 -2.003707 1.643×10+1 1.070×10+2

3.00 0.0 -2.000577 1.653×10+1 1.075×10+2

3.25 0.0 -1.998985 1.661×10+1 1.055×10+2

D2h H4 R/Å θ/◦ E α γ

1.75 80.0 -2.017706 1.632×10+1 9.883×10+1

2.00 70.0 -2.016094 1.668×10+1 1.050×10+2

2.00 80.0 -2.005927 1.655×10+1 1.078×10+2

2.25 70.0 -2.005764 1.675×10+1 1.084×10+2

2.25 80.0 -2.000833 1.664×10+1 1.074×10+2

C2h H4 R/Å θ/◦ E α γ

1.0 45.0 -2.253203 9.792×10+0 7.684×10+1

1.5 45.0 -2.130547 1.441×10+1 6.347×10+1

2.0 45.0 -2.040944 1.641×10+1 8.920×10+1

2.5 45.0 -2.008522 1.671×10+1 1.068×10+2

3.0 45.0 -2.000026 1.676×10+1 1.056×10+2

D∞h H6 R1/Å R2/Å E α γ

1.0 1.2 -3.400172 1.471×10+1 6.743×10+1

1.2 1.8 -3.325041 1.895×10+1 7.127×10+1

1.4 1.6 -3.234402 2.065×10+1 7.499×10+1

1.6 1.6 -3.165001 2.217×10+1 7.866×10+1

1.8 1.8 -3.105677 2.370×10+1 8.935×10+1
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of the models is supplied in order to allow the scale of the errors presented to be

established. This is given in Table 8.1.

Although much of the interest in model hydrogen systems is in the NLO

properties of linear chains parallel to the longitudinal axis, here, this constraint

is relaxed and several different model hydrogen systems are investigated. How-

ever, only the perpendicular NLO properties of each of the model systems are first

treated. This is done for several reasons. First, in each of the models tested, there

is a unique axis perpendicular to the plane of the system, whereas, for several

of the models, no such unique axis exists in the plane. Thus, the perpendicular

polarizabilities yield a single representative test for each system. Second, the

perpendicular non-linear optical properties are less sensitive to the applied field

strength and are thus more amenable to calculation by finite-difference differen-

tiation. Third, the polarizabilities perpendicular to a bond axis are interesting

in their own right, since they give a measure of the shape of the electronic struc-

ture, and, in particular, the contraction of the electron distribution as atoms are

brought together to form covalent bonds. Finally, the goal of this chapter is only

to present further evidence that the new and robust Quasi-Variational Coupled

Cluster electronic structure ansatz allows the more accurate prediction of NLO

properties when TCC fails to perform adequately, making it potentially valuable

for future investigations. Perpendicular properties suffice for this.

Four of the model systems tested are illustrated in Figure 8.1, which are, in

clockwise order from the top-left, D∞h, C2v, D2h and C2h arrangements of four

hydrogen atoms. Also investigated is the 6-atom equivalent of the D∞h model.

It is further established that the findings extend to parallel polarizabilities and

hyperpolarizabilities by investigating the metal-insulator transition in D∞h H10

as the nearest-neighbour separation of the atoms is increased.

8.3 The D∞h H4 Model

The D∞h H4 model consists of four hydrogen atoms arranged linearly, with R1

corresponding to the distance between the outer and inner atoms, and with R2
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Figure 8.1: Clockwise from top-left, the D∞h, C2v, D2h and C2h H4 models.

corresponding to the distance between the two inner atoms, as is illustrated by

the top-left diagram of Figure 8.1. For large R2, the system corresponds to two

isolated hydrogen molecules, each with bond length R1, whereas for large R1, the

outer hydrogen atoms become isolated, leaving an inner hydrogen molecule with

bond length R2.

In Figure 8.2 it is shown how the energies vary for a uniform (R1 = R2)

arrangement of the atoms as the common bond length is increased. In the case of

the energy, BQVCCD clearly out-performs both CCSD and BCCD; the BQVCCD

curve remains above FCI throughout, and the peak BQVCCD error, located

around 2.2Å, is significantly smaller in magnitude than the TCC peak errors.

The BQVCCD curve also remains fairly parallel to the FCI curve, and the error

therefore remains uniform throughout, whereas both CCSD and BCCD display

large fluctuations in accuracy relative to FCI. Furthermore, it is apparent that the

addition of the triples correction to BQVCCD improves the overall description of

the potential energy curve, resulting in smaller errors throughout, whereas it has

the opposite effect on the TCC methods, magnifying their errors.

The error analysis for the D∞h H4 model is given in Table 8.2, and sup-

ports the observations already made. BQVCCD(T) possesses the smallest mean

signed, mean absolute and root mean square errors of the methods tested, and

by roughly an order of magnitude in some cases. It is noteworthy that the low-

est (or most negative) BQVCCD energy error is, in fact, positive, with a value
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Figure 8.2: Calculated energies of the D∞h H4 model with R1 = R2 and the

aug-cc-pVDZ basis.

of just 9 microHartrees, indicating that the approximately-fulfilled upper-bound

property of the BQVCCD approach is in action here. The standard deviation

of the BQVCCD(T) energy errors is also the smallest of any of the methods,

indicating that BQVCCD(T) maintains roughly the same level of accuracy over

the potential energy surface, whereas the TCC methods are far less predictable

or reliable. The polarizability errors are similarly in favour of BQVCCD(T). The

BQVCCD(T) mean signed error is, at 50 µa.u., at least two orders of magnitude

smaller than any of the TCC values, and the mean absolute and root mean square

errors are between 3 and 4 times smaller than the values predicted by BCCD,

the best of the TCC methods in this case. The second hyperpolarizabilities are

more interesting, however. For this property, the (T) correction does very little,

and, in fact, makes the BQVCCD(T) root mean square error slightly worse, by

approximately 0.14 a.u. However, of all the methods tested, BQVCCD still pre-

dicts the second hyperpolarizabilities closest in value to FCI, with a root mean

square error roughly 6 times smaller than both CCSD and BCCD.
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Table 8.2: Errors relative to FCI for calculated energies of, and polarizabilities

perpendicular to the D∞h H4 model with the aug-cc-pVDZ basis. Results were

obtained from the set of points {(R1, R2)} where R1 ∈ {1.0, 1.5, 2.0, 2.5, 3.0}Å
and R2 ∈ {1.0, 1.75, 2.5, 3.25, 4.0}Å.

CCSD CCSD(T) BCCD BCCD(T) BQVCCD BQVCCD(T)

E ε̄ -3.42×10−3 -6.61×10−3 -1.20×10−3 -2.96×10−3 1.87×10−3 5.24×10−4

|̄ε| 4.49×10−3 6.65×10−3 2.33×10−3 3.01×10−3 1.87×10−3 7.07×10−4
√
ε̄2 9.97×10−3 1.47×10−2 5.48×10−3 7.87×10−3 2.94×10−3 1.21×10−3

dεe 3.60×10−3 2.31×10−4 3.50×10−3 2.31×10−4 9.49×10−3 3.98×10−3

bεc -4.16×10−2 -5.80×10−2 -2.33×10−2 -3.31×10−2 9.36×10−6 -2.05×10−3

σ 9.56×10−3 1.34×10−2 5.45×10−3 7.44×10−3 2.31×10−3 1.11×10−3

α ε̄ -1.80×10−1 -2.36×10−1 1.43×10−2 3.25×10−2 -3.04×10−3 -5.76×10−5

|̄ε| 1.82×10−1 2.49×10−1 1.02×10−1 1.24×10−1 4.17×10−2 3.06×10−2
√
ε̄2 4.29×10−1 5.89×10−1 2.95×10−1 3.74×10−1 8.71×10−2 6.97×10−2

dεe 6.51×10−3 9.18×10−2 1.19×10+0 1.54×10+0 3.46×10−1 2.88×10−1

bεc -1.50×10+0 -2.18×10+0 -8.46×10−1 -1.03×10+0 -2.06×10−1 -1.68×10−1

σ 3.97×10−1 5.51×10−1 3.00×10−1 3.81×10−1 8.89×10−2 7.12×10−2

γ ε̄ 6.56×10−1 -7.40×10−1 2.06×10+0 1.25×10+0 7.43×10−1 4.53×10−1

|̄ε| 4.43×10+0 5.24×10+0 3.74×10+0 3.67×10+0 1.12×10+0 1.11×10+0
√
ε̄2 9.64×10+0 1.09×10+1 1.02×10+1 1.00×10+1 1.63×10+0 1.77×10+0

dεe 3.56×10+1 3.10×10+1 3.97×10+1 3.43×10+1 3.91×10+0 3.79×10+0

bεc -2.00×10+1 -2.76×10+1 -1.77×10+1 -2.55×10+1 -2.42×10+0 -5.21×10+0

σ 9.82×10+0 1.11×10+1 1.02×10+1 1.02×10+1 1.48×10+0 1.74×10+0

8.4 The C2v H4 Model

The C2v model, illustrated by the diagram in the top-right of Figure 8.1, corre-

sponds to a ‘cis’ arrangement of the four hydrogen atoms, with the degrees of

freedom chosen to be the distance between nearest neighbours and the angle sub-

tended by lines from an outer atom to an inner atom and along the perpendicular

to the line joining the two inner atoms.

The most interesting degree of freedom to vary in this system is the angle θ;

the outer hydrogen atoms are nearby for θ < 0◦, but as the system is distorted

through θ = 0◦, corresponding to the square geometry, the outer atoms swing

apart and the optimum Hartree-Fock reference wavefunction changes. This results

in cusps in the potential energy curves predicted by the single-reference methods

at θ = 0◦, as can be seen in Figure 8.3. The CCSD and BCCD methods level

off too quickly, forming concave cusps, whereas the BQVCCD cusp is convex and

the curve mimics the FCI shape more correctly overall. It is again true that

the (T) correction to the BQVCCD method results in an improved curve, even
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Figure 8.3: Calculated potential energy curves for the C2v H4 model with R =

2.25Å, and with the aug-cc-pVDZ basis.

flattening the cusp, whereas the (T) correction to the TCC methods pushes the

curves further from FCI quality and sharpen the cusps.

The error analysis for C2v H4 is given in Table 8.3. As can be expected

from the plot, the BQVCCD(T) method possesses the smallest errors in the

calculated energies across all the main categories. It is particularly striking that

the BQVCCD(T) root mean square error, at 0.7 milliHartrees, is 20 times smaller

than the CCSD(T) error, at 14 milliHartrees, and 11 times smaller than the

BCCD(T) value, at 8 milliHartrees.

The polarizability errors are also quite impressive; the BQVCCD(T) mean

absolute error for the perpendicular polarizability is 0.025 a.u., whereas the

CCSD(T) and BCCD(T) errors are larger by factors of approximately 13 and 5

respectively. The standard deviations of the polarizability errors are also roughly

an order of magnitude smaller for BQVCCD and BQVCCD(T) than for the TCC

methods. The BCCD method predicts just slightly better second hyperpolar-

izability values than BQVCCD for this system, as measured by mean absolute

and root mean square errors. However, the standard deviation of the errors indi-
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Table 8.3: Errors relative to FCI for calculated energies, and polarizabili-

ties perpendicular to the plane, in the C2v H4 model with the aug-cc-pVDZ

basis. Results were obtained from the set of points {(R, θ)} where R ∈
{2.25, 2.5, 2.75, 3.0, 3.25}Å and θ ∈ {0,±2,±4,±6,±8}◦.

CCSD CCSD(T) BCCD BCCD(T) BQVCCD BQVCCD(T)

E ε̄ -7.14×10−3 -1.12×10−2 -4.28×10−3 -6.81×10−3 1.65×10−3 1.68×10−4

|̄ε| 7.17×10−3 1.12×10−2 4.32×10−3 6.81×10−3 1.65×10−3 4.35×10−4
√
ε̄2 9.34×10−3 1.38×10−2 5.04×10−3 7.73×10−3 1.99×10−3 6.75×10−4

dεe 6.52×10−4 -1.13×10−3 6.64×10−4 -1.08×10−3 5.69×10−3 2.80×10−3

bεc -2.17×10−2 -3.07×10−2 -1.00×10−2 -1.58×10−2 5.77×10−4 -5.51×10−4

σ 6.10×10−3 8.18×10−3 2.68×10−3 3.70×10−3 1.12×10−3 6.62×10−4

α ε̄ -1.45×10−1 -2.48×10−1 1.87×10−2 4.33×10−2 -3.25×10−2 -1.89×10−2

|̄ε| 2.32×10−1 3.29×10−1 9.78×10−2 1.18×10−1 3.26×10−2 2.48×10−2
√
ε̄2 3.09×10−1 4.57×10−1 1.16×10−1 1.41×10−1 4.35×10−2 3.52×10−2

dεe 2.37×10−1 2.50×10−1 1.84×10−1 2.37×10−1 1.22×10−3 3.70×10−2

bεc -7.17×10−1 -1.04×10+0 -2.23×10−1 -2.66×10−1 -1.26×10−1 -1.07×10−1

σ 2.77×10−1 3.88×10−1 1.16×10−1 1.35×10−1 2.91×10−2 3.00×10−2

γ ε̄ 3.32×10+0 5.11×10+0 -1.05×10+0 -2.28×10+0 1.75×10+0 1.72×10+0

|̄ε| 5.23×10+0 6.84×10+0 1.57×10+0 2.60×10+0 1.77×10+0 1.79×10+0
√
ε̄2 7.12×10+0 9.81×10+0 2.08×10+0 3.42×10+0 2.21×10+0 2.65×10+0

dεe 1.46×10+1 1.98×10+1 1.85×10+0 1.56×10+0 6.06×10+0 9.35×10+0

bεc -4.40×10+0 -5.30×10+0 -5.43×10+0 -8.38×10+0 -4.72×10−1 -8.88×10−1

σ 6.36×10+0 8.47×10+0 1.81×10+0 2.58×10+0 1.37×10+0 2.04×10+0

cates that the BQVCCD method still has the smallest spread of errors, so that

it remains the most reliable method for calculating second hyperpolarizabilities,

despite its slightly poorer mean accuracy here.

8.5 The D2h H4 Model

Next, the D2h H4 model[44], shown in the bottom-right of Figure 8.1 is exam-

ined, in which four hydrogen atoms are arranged in a rectangle that can be

defined by the parameters R, which controls the distance of each H atom from

the centre of mass, and θ, the angle subtended at the centre of mass by radii

to two neighbouring vertices of the rectangle. The system is symmetric about

θ = 90◦, and the optimum Hartree-Fock reference wavefunction differs on either

side of this line. Thus, the Hartree-Fock approximation breaks down around

θ = 90◦ as two determinants become equally important to the description of the

ground-state electronic structure, and this makes the system an excellent test of
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single-reference post-Hartree-Fock electron correlation methods.

It has been previously shown that the QVCCD method mimics the behaviour

of VCCD (and thus FCI) well in this system[95], and the improved shape of the

potential energy curve relative to the TCC methods around the square geometry

can be seen in Figure 8.4. However, the BQVCCD method additionally mod-

els the non-linear optical properties of this system extremely well, achieving the

correct shape for the second hyperpolarizability around θ = 90◦ despite a dis-

placement in the curve position, as can be seen in Figure 8.5. The cusp present

in the BQVCCD and BQVCCD(T) potential energy curves has also almost van-

ished in the second hyperpolarizability curves. In contrast, the poor quality of

the CCSD and BCCD methods in the interval [80, 100]◦ that is apparent in the

calculated energies deteriorates even further for this more challenging property,

with CCSD, CCSD(T), BCCD and BCCD(T) all predicting curves with incorrect

slope relative to FCI, and possessing even sharper cusps.

As measured by the mean absolute and root mean square error data pre-

sented in Table 8.4, it is clear that BQVCCD(T) predicts the potential energy

curves and second hyperpolarizabilities that best approximate the FCI values

overall, and that BQVCCD predicts the best polarizabilities. Similarly, the

BQVCCD and BQVCCD(T) standard deviations are smaller than the equivalent

TCC values, from which it is possible to infer that not only are the accuracies

of BQVCCD-calculated energies, polarizabilities and second hyperpolarizabilities

greatly improved, but that the calculations are also stabilized, resulting in more

systematically predictable, consistent errors.

8.6 The C2h H4 Model

The C2h model is a simple modification of the C2v model such that one of the

outer hydrogens is on the opposite side, forming a ‘trans’ structure. The diagram

is given in the bottom-left of Figure 8.1. Increasing the angle θ causes the outer

hydrogen atoms to swap to opposite sides, with θ = 90◦ corresponding to the

linear geometry.
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Table 8.4: Errors relative to FCI for calculated energies of, and polarizabilities

perpendicular to the D2h H4 model with the aug-cc-pVDZ basis. Results were

obtained from the set of points {(R, θ)} where R ∈ {1.0, 1.75, 2.0, 2.25}Å and

θ ∈ {70, 72, 74, 76, 78, 80, 82, 84, 86, 87, 88, 89}◦.
CCSD CCSD(T) BCCD BCCD(T) BQVCCD BQVCCD(T)

E ε̄ -7.69×10−4 -2.59×10−3 -1.09×10−3 -2.83×10−3 1.36×10−3 2.89×10−5

|̄ε| 1.85×10−3 2.63×10−3 2.16×10−3 2.89×10−3 1.36×10−3 3.01×10−4
√
ε̄2 2.60×10−3 3.96×10−3 3.04×10−3 4.39×10−3 1.79×10−3 3.96×10−4

dεe 3.88×10−3 1.78×10−4 3.33×10−3 2.28×10−4 5.98×10−3 9.36×10−4

bεc -7.15×10−3 -1.15×10−2 -8.56×10−3 -1.27×10−2 5.98×10−4 -1.50×10−3

σ 2.51×10−3 3.03×10−3 2.87×10−3 3.39×10−3 1.18×10−3 3.99×10−4

α ε̄ 4.36×10−2 2.92×10−2 8.18×10−3 1.79×10−2 -1.53×10−2 -1.37×10−2

|̄ε| 6.33×10−2 5.74×10−2 4.71×10−2 5.68×10−2 2.35×10−2 2.46×10−2
√
ε̄2 8.91×10−2 8.95×10−2 6.85×10−2 8.68×10−2 3.42×10−2 3.74×10−2

dεe 2.24×10−1 2.32×10−1 1.71×10−1 2.21×10−1 2.43×10−2 2.61×10−2

bεc -1.58×10−1 -2.03×10−1 -1.77×10−1 -2.16×10−1 -1.05×10−1 -1.30×10−1

σ 7.85×10−2 8.55×10−2 6.88×10−2 8.58×10−2 3.09×10−2 3.51×10−2

γ ε̄ -1.07×10+0 -6.49×10−1 -2.04×10−1 -7.80×10−1 9.81×10−1 7.74×10−1

|̄ε| 1.59×10+0 1.09×10+0 9.08×10−1 1.27×10+0 9.88×10−1 8.18×10−1
√
ε̄2 1.92×10+0 1.61×10+0 1.41×10+0 1.94×10+0 1.26×10+0 1.07×10+0

dεe 3.94×10+0 2.32×10+0 3.68×10+0 2.27×10+0 2.48×10+0 2.16×10+0

bεc -4.01×10+0 -4.71×10+0 -3.75×10+0 -5.98×10+0 -1.06×10−1 -5.54×10−1

σ 1.61×10+0 1.49×10+0 1.41×10+0 1.79×10+0 7.92×10−1 7.42×10−1
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Figure 8.4: Calculated potential energy curves for the D2h H4 model with R =

1.75Å, and with the aug-cc-pVDZ basis.
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Figure 8.5: Calculated second hyperpolarizabilities perpendicular to the plane of

the D2h H4 model with R = 1.75Å, and with the aug-cc-pVDZ basis

A plot of the potential energy curves obtained by varying the angle θ is shown

in Figure 8.6. Both the CCSD and BCCD curves lie below FCI throughout, and

the effect of the (T) correction is to push the curves lower still, further from FCI.

However, the BQVCCD curve lies significantly above the FCI curve throughout,

and the effect of the correction remains to push the energy down, resulting in the

BQVCCD(T) curve being almost coincident with FCI. The calculated polarizabil-

ities are also shown in Figure 8.7, and although each of the methods deteriorates

in quality for the calculation of this more difficult property, BQVCCD(T) remains

in extremely good agreement with FCI throughout.

These graphs add credence to the error analysis presented in Table 8.5, which

indicate that BQVCCD(T) performs best for each of the properties and for almost

all error measures. For example, the BQVCCD(T) root mean square energy error

is 18 and 9 times smaller than the CCSD(T) and BCCD(T) errors respectively.

The polarizabilities and second hyperpolarizabilities are similarly impressive, with

errors 14 and 7 times smaller for the polarizabilities and by 5 and 4 times for the

second hyperpolarizabilities respectively.
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Figure 8.6: Calculated potential energy curves for the C2h H4 model with R =

2.0Å, and with the aug-cc-pVDZ basis.
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Figure 8.7: Calculated polarizabilities perpendicular to the plane of the C2h H4

model with R = 2.0Å, and with the aug-cc-pVDZ basis.

8.7 The D∞h H6 Model

Analogous to the D∞h H4 model, the more severe test case of the D∞h H6 model

has additionally been studied, in which six hydrogen atoms are arranged linearly,
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Table 8.5: Errors relative to FCI for calculated energies of, and polarizabilities

perpendicular to the C2h H4 model with the aug-cc-pVDZ basis. Results were

obtained from the set of points {(R, θ)} where R ∈ {1.0, 1.5, 2.0, 2.5, 3.0}Å and

θ ∈ {−15, 0, 15, 30, 45, 60, 75, 90}◦.
CCSD CCSD(T) BCCD BCCD(T) BQVCCD BQVCCD(T)

E ε̄ -6.31×10−3 -1.04×10−2 -2.97×10−3 -5.53×10−3 2.45×10−3 6.55×10−4

|̄ε| 7.54×10−3 1.05×10−2 4.13×10−3 5.64×10−3 2.45×10−3 6.55×10−4
√
ε̄2 1.07×10−2 1.53×10−2 5.14×10−3 7.62×10−3 2.59×10−3 8.55×10−4

dεe 2.59×10−3 3.11×10−4 2.24×10−3 3.13×10−4 4.05×10−3 1.81×10−3

bεc -2.38×10−2 -3.39×10−2 -9.90×10−3 -1.42×10−2 1.27×10−3 5.71×10−5

σ 8.70×10−3 1.13×10−2 4.25×10−3 5.30×10−3 8.43×10−4 5.57×10−4

α ε̄ -2.57×10−1 -3.78×10−1 -4.57×10−2 -5.20×10−2 1.31×10−2 1.33×10−3

|̄ε| 2.58×10−1 3.78×10−1 1.33×10−1 1.79×10−1 5.23×10−2 2.74×10−2
√
ε̄2 3.67×10−1 5.24×10−1 2.05×10−1 2.70×10−1 7.48×10−2 3.75×10−2

dεe 1.59×10−2 -3.14×10−3 2.14×10−1 3.00×10−1 1.59×10−1 7.67×10−2

bεc -8.88×10−1 -1.24×10+0 -4.31×10−1 -5.53×10−1 -6.18×10−2 -5.21×10−2

σ 2.66×10−1 3.68×10−1 2.02×10−1 2.68×10−1 7.46×10−2 3.80×10−2

γ ε̄ 4.67×10−1 -3.17×10−1 7.54×10−1 -2.97×10−1 -2.03×10−1 -2.84×10−1

|̄ε| 6.87×10+0 9.08×10+0 6.14×10+0 7.63×10+0 2.14×10+0 1.95×10+0
√
ε̄2 9.93×10+0 1.35×10+1 8.69×10+0 1.12×10+1 2.88×10+0 2.76×10+0

dεe 1.48×10+1 1.73×10+1 1.44×10+1 1.57×10+1 2.85×10+0 2.40×10+0

bεc -2.16×10+1 -3.12×10+1 -1.77×10+1 -2.55×10+1 -6.11×10+0 -6.65×10+0

σ 1.00×10+1 1.36×10+1 8.77×10+0 1.13×10+1 2.91×10+0 2.78×10+0

with bond lengths alternating as R1, R2, R1, R2, R1.

First, the line along the potential energy surface defined by R1 = R2 is investi-

gated, for which the potential energy curves are given in Figure 8.8. All methods

perform similarly well until approximately 1.6Å. At this bond length, the TCC

methods begin to degrade significantly in quality, dropping below the MRAQCC

energy in a non-variational fashion. However, the BQVCCD and BQVCCD(T)

energies, supported by the approximately-fulfilled upper bound property, remain

in excellent agreement with MRAQCC throughout and do not appear to degrade

at all.

These findings extend also to the perpendicular polarizabilities, given in Fig-

ure 8.9, and second hyperpolarizabilities, given in Figure 8.10. The TCC methods

predict a decreasing polarizability from approximately 1.8Å, which is clearly at

odds with the smooth and monotonically increasing MRAQCC polarizability.

The BQVCCD predicted polarizabilities, on the other hand, are far superior, and

although the polarizability decreases around 2.2Å, this is quickly corrected such
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Figure 8.8: Calculated potential energy curves for the D∞h H6 model with R1 =

R2 and with the aug-cc-pVDZ basis.

that the BQVCCD curve remains near the MRAQCC curve thoughout. The

second hyperpolarizabilities are even more striking, with the TCC methods pre-

dicting values several times too large for 1.8-2.2Å. The BQVCCD curves again

experience crossings with the MRAQCC curve, but the predicted values remain

quantitatively accurate at all points.

The error analysis for this system is given in Table 8.6. An examination of the

mean absolute errors for each of the three properties confirms that BQVCCD(T)

is the most accurate of the single-reference methods, and by an order of mag-

nitude in each case. The standard deviations also attest the reliability of the

BQVCCD(T) method, with CCSD values factors of 5, 8 and 8 worse for the

energy, polarizability and second hyperpolarizability respectively. Finally, once

again, for this set of data, the addition of the (T) correction to the BQVCCD

method yields smaller errors overall, whereas its addition to the TCC methods

tends to have the opposite effect.
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Figure 8.9: Calculated polarizabilities for the D∞h H6 model with R1 = R2 and

with the aug-cc-pVDZ basis.
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Figure 8.10: Calculated second hyperpolarizabilities for the D∞h H6 model with

R1 = R2 and with the aug-cc-pVDZ basis.

8.8 Towards the Metal-Insulator Transition: H10

As a last example, the NLO properties parallel to the D∞h H10 model system

as a function of the separation between sites are examined. Thus, this example
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Table 8.6: Errors relative to MRAQCC for calculated energies of, and polarizabili-

ties perpendicular to the D∞h H6 model with the aug-cc-pVDZ basis. Results were

obtained from the set of points {(R1, R2)} whereR1, R2 ∈ {1.0, 1.2, 1.4, 1.6, 1.8}Å.

CCSD CCSD(T) BCCD BCCD(T) BQVCCD BQVCCD(T)

E ε̄ 3.03×10−3 -4.09×10−3 2.54×10−3 -3.29×10−3 5.42×10−3 1.12×10−4

|̄ε| 3.52×10−3 4.33×10−3 3.74×10−3 3.53×10−3 5.42×10−3 5.57×10−4
√
ε̄2 4.24×10−3 7.70×10−3 4.64×10−3 6.94×10−3 6.56×10−3 6.27×10−4

dεe 8.74×10−3 4.35×10−4 8.34×10−3 4.15×10−4 1.25×10−2 9.52×10−4

bεc -4.33×10−3 -2.21×10−2 -1.18×10−2 -2.60×10−2 6.29×10−4 -1.18×10−5

σ 3.03×10−3 6.65×10−3 3.97×10−3 6.24×10−3 3.77×10−3 6.29×10−4

α ε̄ -1.35×10−1 -2.35×10−1 -1.61×10−1 -2.16×10−1 9.16×10−3 -2.40×10−2

|̄ε| 1.36×10−1 2.35×10−1 1.61×10−1 2.18×10−1 4.20×10−2 2.50×10−2
√
ε̄2 2.68×10−1 4.39×10−1 3.63×10−1 4.96×10−1 6.02×10−2 3.89×10−2

dεe 7.80×10−3 -5.09×10−3 6.09×10−4 2.41×10−2 1.49×10−1 8.07×10−3

bεc -9.27×10−1 -1.36×10+0 -1.56×10+0 -2.08×10+0 -1.14×10−1 -9.86×10−2

σ 2.36×10−1 3.79×10−1 3.32×10−1 4.56×10−1 6.07×10−2 3.13×10−2

γ ε̄ 5.74×10+0 5.82×10+0 6.23×10+0 5.90×10+0 9.74×10−1 1.09×10−1

|̄ε| 5.74×10+0 6.43×10+0 6.24×10+0 6.62×10+0 1.13×10+0 7.70×10−1
√
ε̄2 1.12×10+1 1.32×10+1 1.46×10+1 1.68×10+1 1.52×10+0 1.18×10+0

dεe 3.99×10+1 4.86×10+1 6.17×10+1 7.16×10+1 3.69×10+0 2.87×10+0

bεc -1.49×10−3 -6.61×10+0 -1.29×10−1 -4.58×10+0 -1.63×10+0 -3.28×10+0

σ 9.79×10+0 1.21×10+1 1.35×10+1 1.61×10+1 1.19×10+0 1.20×10+0

is used to investigate whether the extremely positive findings for the calculation

of perpendicular polarizabilities using the BQVCCD and BQVCCD(T) methods

are reflected in parallel polarizabilities also. The H10 system, along with other

hydrogen chains of similar length, have been investigated previously in the context

of metal-insulator transitions, for example in reference [174]. In order to closely

reproduce the results of this paper, and in order to make the FCI calculations

practical, use has been made of the minimal STO-3G basis set, rendering the

calculated polarizabilities of qualitative validity only.

The calculated energies for this system are given in Figure 8.11, and polariz-

abilities in Figure 8.12, in which it is clear that each of the methods is capable

of describing the short bond length region (the region of increasing slope), where

the system is thought to be metallic, but the methods based on TCC struggle in

the region of decreasing slope of the polarizability, becoming catastrophically in-

correct around a bond length of 1.5Å. The BQVCCD and BQVCCD(T) methods,

however, are in good agreement with FCI throughout, despite underestimating

the value of the polarizability itself. Thus, not only is the BQVCCD ansatz sim-
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Figure 8.11: Calculated energies of the D∞h H10 model with R1 = R2 and the

STO-3G basis.

ilarly impressive for the evaluation of parallel polarizabilities, but this example

illustrates an application of the method to a metal-insulator transition; a problem

of widespread interest. For completeness, a plot of the second hyperpolarizability

parallel to the longitudinal axis of the molecule in Figure 8.13 is given, which

shows similar accuracy.

8.9 Comparison with UHF-CCSD

Finally, as has already been noted, all calculations presented so far have used RHF

reference wavefunctions. However, very good results for these model systems can

be obtained at extended interatomic distances by the use of a UHF reference

wavefunction, which, unlike the RHF wavefunction, is qualitatively correct at

dissociation; in RHF theory, the α and β electrons are constrained to occupy the

same spatial orbitals. If a molecule dissociates into open-shell fragments, which

should be uncharged on physical grounds, this restriction necessarily leads to

ionic contamination of the wavefunction as the molecule dissociates[59]. In UHF

theory, this constraint is relaxed.
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Figure 8.12: Calculated longitudinal polarizabilities of the D∞h H10 model with

R1 = R2 and the STO-3G basis.
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Figure 8.13: Calculated longitudinal second hyperpolarizabilities of the D∞h H10

model with R1 = R2 and the STO-3G basis.

Thus, it is of interest to explore whether this pseudo-variational method that

appears to predict quantitatively accurate potential energy curves for these mod-
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Figure 8.14: Errors relative to FCI for calculated energies of the D∞h H4 model

with R1 = R2 and the cc-pVDZ basis.

els produces results comparable to a UHF-based post-Hartree-Fock method. In

order to assess this, additional UHF-CCSD calculations were performed on the

D∞h H4 model. These results, illustrated in Figure 8.14, are quite surprising;

as is to be expected, the UHF-CCSD results are in agreement with the RHF-

CCSD results at short bond lengths and approach FCI quality at dissociation,

but there are large errors in the interval 1.2-2.4Å. This can be ascribed to spin

contamination effects[175, 176]. In contrast, an RHF wavefunction is always an

eigenfunction of Ŝ2, so that the RHF-CCSD and RHF-BQVCCD methods yield

exact spin eigenstates, and therefore have the advantage over UHF-CCSD that

they do not suffer from spin contamination. However, while RHF-CCSD diverges

at sufficiently long bond lengths, RHF-BQVCCD displays an accuracy rivalling

UHF-CCSD and even exceeding it over regions of the potential energy curve,

despite the fact that the reference wavefunction becomes qualitatively wrong.

A more extreme system demonstrating this behaviour can be constructed by

arranging six hydrogen atoms uniformly on the circumference of a circle and al-

lowing the radius of the circle to increase; the six-atom equivalent of the H8 model

of the previous chapter. The potential energy curves for this system are given in
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Figure 8.15: Errors relative to FCI for calculated energies for 6 H atoms equally

spaced on the circumference of a circle as a function of the radius of the circle,

with the STO-3G basis set.

Figure 8.15, with identical conclusions; the UHF-based methods perform better

than the RHF-based methods at long interatomic separations, as is to be ex-

pected, but there exists an interval of radii for which RHF-CCSD is qualitatively

wrong due to the breakdown of the Hartree-Fock approximation, and UHF-CCSD

is poor due to spin-contamination, but for which RHF-BQVCCD performs ex-

ceptionally well. This suggests the closed-shell-reference QVCC approach to be

generally useful and applicable to problems in which an adequate treatment of

dissociation is required and a wavefunction that is a spin eigenfunction would also

be desirable. In addition, it is clear that UHF-VCC mitigates the effects of spin

contamination in comparison to UHF-TCC, as has been noted previously[28].

This gives impetus to the further development of a UHF-QVCC theory.

8.10 Summary

Throughout this chapter, a systematic study of the energies and perpendicu-

lar NLO properties of singlet multiradicals, using model hydrogen systems as
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prototypical examples, has been carried out. Considering the potential energy

curves and associated errors alone, it is clear that RHF-based BQVCCD and

BQVCCD(T) significantly out-perform the equivalent RHF-based TCC meth-

ods. In the case of the H4 models, the partially-satisfied variational upper

bound property appears to be in effect, allowing the BQVCCD method to re-

main quantitatively accurate in comparison to FCI, whereas CCSD and BCCD

typically fall below FCI and predict poor values. For the cases of H6 and H10,

this poor performance becomes magnified into a readily apparent and catas-

trophic breakdown of the TCC methods, whereas no corresponding deterioration

of BQVCCD or BQVCCD(T) is observed. These results strongly imply that the

Quasi-Variational Coupled Cluster ansatz is a suitable black-box method for the

highly-correlated treatment of multiradicals, superior to even UHF-based meth-

ods at intermediate bond lengths, at which spin contamination can be problem-

atic.

Furthermore, the polarizability study makes apparent the robust nature of

the electronic structures calculated by Approximate Variational Coupled Cluster

Theories; not only are the calculated energies superior, but high-order properties,

such as the second hyperpolarizability, that depend strongly on the quality of the

calculated electronic structure are significantly more quantitatively accurate also,

sometimes by an order of magnitude, as in the case of H6. This can be attributed

to the approximate enforcement of the variational upper bound property, which

appears not just to affect the calculated energies, but, since the bounding of the

energy constrains the values of the cluster amplitudes, it has the effect of making

the overall description of the electronic structure more robust. In the previous

chapter, the stabilization of the perturbative correction for triple excitations,

(T), could be explained by this effect, whereas when the same correction is ap-

plied using TCC-calculated amplitudes, the correlation energy is catastrophically

overestimated. The excellent performance of the BQVCCD method for describing

high-order NLO properties can be ascribed to this same effect, and appears to

extend not just to perpendicular NLO properties, but to the parallel properties

also, such that this family of methods may be of widespread interest.





Chapter 9

Concluding Remarks

This thesis has presented a new family of ab initio electronic structure models,

entitled Approximate Variational Coupled Cluster Theories, which represent new

numerical methods for the approximate solution of the electronic Schrödinger

equation within the Born-Oppenheimer approximation. These methods are for-

mulated through the minimization of an extensive energy functional that is exact

for limiting systems, invariant to rotations in the underlying orbital spaces, and

which possesses an intimate relationship with the Variational Coupled Cluster

method. As discussed in Chapter 3, starting with the Linked Pair Functional,

this family is unlike earlier attempts to construct such approximations that relied

on simple truncation of the exponential operator, and instead exploit the internal

mathematical structure of VCC; the existence of relationships between VCCD

terms guarantees that limiting systems can be treated correctly with only a sub-

set of those terms, albeit an infinite one. These methods are also distinct from

improvements upon a TCC framework, since they do not involve the use of the

non-Hermitian similarity-transformed Hamiltonian, and do not exceed O(o2v4)

complexity.

Chapter 4 gave further technical details of the Linked Pair Functional method-

ology, including the necessary scheme for the correct minimization of the func-

tional, involving the solution of the eigenproblem for the transformation matrix.

In the case of QVCCD, this same procedure is valid, but must be applied to

each of the four transformation matrices in turn. The necessity of constructing
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positive-definite transformation matrices was additionally discussed, along with

the use of optimization of the orbitals or the application of a Brueckner condition

for the treatment of single excitations.

In Chapter 5, it was discussed how it is insufficient simply to acquire a rep-

resentative subset of the terms present in VCCD (even if this subset is correct

for limiting systems) if the method does not agree with VCCD well at low or-

ders, and that corrections to the method to improve the low-order approximation

of VCCD must be applied. This was extended in Chapter 6, by noting that

not only is it necessary to match VCCD at low orders, but in order to avoid the

breakdown of the method, the infinite subset must contain balanced contributions

through all orders. This has resulted in the construction of the Quasi-Variational

Coupled Cluster method, the current state of the art, which does not make a

distinction between those terms necessary for correct behaviour in the 2-electron

limit, and those necessary for the correct low-order behaviour. In fact, this has

the effect of restoring hole-particle symmetry, such that the QVCCD functional

becomes equivalent to that of CID for a 2-hole system also. It has been conclu-

sively demonstrated that this method inherits pseudo-variational upper bound

character from its parent theory, VCCD, and that, in practice, QVCCD predicts

potential energy curves analogous to those of VCCD, and distinct from those of

CCD when non-dynamic correlation becomes strong.

It was demonstrated in Chapter 7 that the QVCCD (and also AVCCD but

not LPFD) method is equivalent to both CCD and VCCD through fourth-order

of Møller-Plesset perturbation theory, and (ignoring singles) fully correct to third

order, each omitting only those terms containing triple excitations from fourth-

order. This allows QVCCD to make use of the same [T] perturbative correction

as CCD, which is equivalent to (T) when either optimization of the orbitals or

the Brueckner condition is in use, such that the single excitations vanish. The re-

sulting OQVCCD(T) method gives results almost identical with BCCD(T) when

Hartree-Fock theory is a good approximation to the true electronic structure.

When the Hartree-Fock approximation is invalid, however, and non-dynamic cor-

relation becomes strong, such as when modelling the dissociation of multiply-

bonded molecules, not only does OQVCCD significantly out-perform the TCC
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methods by predicting physically correct potential energy curves, but the pertur-

bative triples corrections do not significantly deteriorate, unlike when applied in

conjunction with CCSD or BCCD, for which a catastrophic overestimation of the

correlation energy then occurs; see, for example, Figure 7.12. In particular, the

OQVCCD(T) method is capable of predicting a quantitatively accurate potential

energy curve for dinitrogen, N2, challenging the conventional wisdom that a full

treatment of quadruple excitations is required to correctly treat this system with

a Coupled Cluster methodology based on Restricted Hartree-Fock theory. Fur-

thermore, that a quantitatively accurate complete potential energy curve, from

the repulsive domain, through the equilibrium geometry to the dissociation limit,

of molecules with electronic structures as complicated as acetylene or dicarbon

can be obtained from a strictly single-reference method is simply remarkable.

As discussed more thoroughly in Section 7.4, these surprising results can be

ascribed to the approximately-fulfilled variational upper bound property of the

OQVCCD method; an upper bound criterion on the energy effectively acts as a

constraint on the cluster amplitudes, from which the energy is constructed. In

this sense, it can be said that the OQVCCD method allows more robust elec-

tronic structures to be predicted than by the TCC methods, and this becomes

especially apparent when non-dynamic correlation is strong. The perturbative

corrections are themselves constructed from the cluster amplitdes, and therefore

benefit indirectly from even the partially-fulfilled upper bound constraint. The

presented results also give an important new insight into the nature of the elec-

tron correlation problem, because it appears that a Coupled-Cluster-like method

that possesses such an approximate upper bound property can adequately cap-

ture the essential physics of even severe non-dynamic correlation across a range

of systems, and that the remaining dynamic correlation effects then remain legit-

imately tractable to treatment by perturbation theory.

In Chapter 8, a pilot application of the QVCC methodology (using BQVCCD

for direct comparison with BCCD) to the energies, polarizabilities and second

hyperpolarizabilities of several model hydrogen systems was presented. The re-

sults strongly imply that BQVCCD is an excellent method for the treatment of

such systems, and that not only are the predicted energies of these prototypical
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multiradicals significantly improved by the upper bound property, but the more

robust electronic structures allow the prediction of highly accurate NLO prop-

erties also, and this is true not just of perpendicular properties, but of parallel

properties, which are of widespread general interest. Since spin contamination

is not an issue for the RHF-based methods, the BQVCCD method has been

shown also to be highly competitive with UHF-based CCSD methods, which, in

contrast to RHF, correctly describe the electron localization that should occur

at long bond lengths. It therefore appears that the Quasi-Variational Coupled

Cluster method is suitable for the black-box treatment of multiradicals when cur-

rent single-reference methods perform inadequately, and for which multireference

methods are impractical.

The above findings indicate Approximate Variational Coupled Cluster Theo-

ries to be a promising family of ab initio methods, and it is the author’s view that

significant additional research should be targeted at the further development of

these methods. In particular, a few areas of potential improvements and further

work can be highlighted.

• At the doubles-only level, QVCCD first differs from VCCD in the 2-electron

O(T 4) terms, or fifth-order in Møller-Plesset theory. This leading-order dif-

ference cannot be corrected (at least in the iterative part of the QVCCD

calculation) without violating the O(o2v4) complexity criterion, since ac-

counting for the omitted terms would be of O(v6) complexity, and are re-

lated to the terms captured by the Quadratic Coupled Cluster method[55].

It may be feasible, however, to include such terms in a non-iterative cor-

rection to the energy, and to combine it with a more robust perturbative

correction for higher excitations, such as (2)[80, 81] or (TQf)[51, 177], which

also scale with O(v6) complexity. Such an a posteriori inclusion of these

omitted VCCD terms, however, would not further improve the “variational

nature” of the QVCCD converged cluster amplitudes, and would therefore

lead to no further “surprising” improvement in the efficacy of perturbative

corrections, other than that noted for QVCCD alone.

• Despite this limitation, it may be possible to further improve upon the
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QVCCD doubles-only approximation to VCCD by accounting for more of

the presently omitted higher-order terms, that is, by further enlarging the

subsets of VCCD terms captured by QVCCD through all orders. One po-

tential way to do this is to note that, starting first at O(T 5), some VCCD

terms appear to be mixtures of at least two of the terms generated by the

A, B, C and D transformations. These terms are not captured by QVCCD,

since it includes only a linear combination of these transformations. Al-

though these “mixing” terms must cancel for 2 electrons or 2 holes (since

QVCCD is exact in those limits), in more general cases they may represent

important contributions to the correlation energy, in the same way that the

A and D terms cancel for 2 electrons, but do not cancel more generally and

can therefore become important. Accounting for these omitted terms by

allowing for products of the different transformations through some scheme

may therefore further improve upon the already excellent QVCCD approx-

imation of VCCD. Whether additional transformations must be introduced

to fulfill this goal, and whether it can be achieved without destroying any

of the important methodological properties already in place, remains to be

seen.

• Since the replacement of single excitations with orbital optimization has

an associated increased computational cost, a more thorough investiga-

tion of the possibility of explicitly including single excitations should be

carried out, with possible further generalization of the method to arbi-

trary excitation rank. The theory should additionally be extended to treat

open-shell systems and excited states, and modern developments in elec-

tronic structure theory such as explict correlation[64], which significantly

improves the convergence of calculated energies with basis set size, and

local correlation[68], which allows the treatment of systems typically far

outside the reach of the O(N6)-scaling Coupled Cluster methods, should

be embraced. Furthermore, the potential of extending the Approximate

Variational Coupled Cluster family of methods to use multireference wave-

functions (as opposed to the single-determinantal reference wavefunctions

assumed throughout this thesis) should be investigated; at present, consen-
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sus has not been reached on the most appropriate solution to the problem

of constructing a multireference Coupled Cluster method that preserves all

of the important methodological properties of the single-reference Coupled

Cluster paradigm, but since the functional form of the Approximate Varia-

tional Coupled Cluster Theories discussed in this thesis has more in common

with Configuration Interaction and Coupled Pair theories, they may turn

out to be feasible alternatives.

With these additional refinements of the theory, this family of methods may be-

come indispensable new tools for a black-box treatment of strongly-correlated or

multireference situations, or problems for which CCSD performs inadequately.

Further improvements to the quality of the QVCCD approximation to VCCD,

in particular, may lead to further surprising improvements in the performance

of perturbative corrections for higher excitations, allowing an accurate treatment

of problems typically thought to be well outside the reach of single-reference

approaches, especially useful when the application of multireference methods be-

comes problematic.

In conclusion, it is appropriate to devote a final few words to how this thesis

should influence the design of future generations of ab initio electronic structure

models. As evidenced by the fundamental shift that has occurred from the use

of Configuration Interaction theory to Traditional Coupled Cluster theory, the

contemporary view appears to be that it is acceptable to discard the property

of a variational upper bound on the exact ground-state Schrödinger eigenvalue

if this allows for the satisfaction of other important properties, such as rigorous

extensivity. However, this thesis has conclusively demonstrated even a partially

fulfilled variational upper bound property to be extremely effective at extend-

ing the range of problems that can be treated within a strictly single-reference

Coupled Cluster methodology. The additional enhancement of the efficacy of

perturbative corrections for higher excitations that occurs when the physics of

a system is then more completely captured by the electronic structure ansatz

prompts the re-evaluation of the relative importance of the various methodolog-

ical features of ab initio schemes. The powerful property of a variational upper

bound should not, and indeed need not, be entirely sacrificed.
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1.75Å, and with the aug-cc-pVDZ basis. . . . . . . . . . . . . . . 170

8.5 Calculated second hyperpolarizabilities perpendicular to the plane

of the D2h H4 model with R = 1.75Å, and with the aug-cc-pVDZ
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[22] J. Č́ıžek, Advan. Chem. Phys. 14, 35 (1969).
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WIREs Comput. Mol. Sci. 2, 242 (2012).

[88] R. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291 (2007).

[89] P. J. Knowles and B. Cooper, J. Chem. Phys. 133, 224106 (2010).

[90] J. M. Howie, Real Analysis, Springer, 1st edition, 2001.



200 Bibliography

[91] J. M. Howie, Complex Analysis, Springer, 1st edition, 2003.

[92] W. Meyer, J. Chem. Phys. 58, 1017 (1973).

[93] W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 110, 2800 (1998).

[94] J. B. Robinson and P. J. Knowles, J. Chem. Phys. 135, 044113 (2011).

[95] J. B. Robinson and P. J. Knowles, J. Chem. Phys. 136, 054114 (2012).

[96] N. C. Handy, J. A. Pople, M. Head-Gordon, K. Raghavachari, and G. W.

Trucks, Chem. Phys. Lett. 164, 185 (1989).

[97] K. A. Brueckner, Phys. Rev. 96, 508 (1954).

[98] R. K. Nesbet, Phys. Rev. 109, 1632 (1958).

[99] D. J. Thouless, The Quantum Mechanics of Many-Body Systems, Aca-

demic, New York, 1961.

[100] C. Kollmar and A. Heßelmann, Theor. Chem. Acc. 127, 311 (2009).

[101] L. Adamowicz, W. D. Laidig, and R. J. Bartlett, Int. J. Quantum Chem.

Symp. 18, 245 (1984).

[102] C. Hampel, K. Peterson, and H.-J. Werner, Chem. Phys. Lett. 190, 1

(1992).

[103] T. D. Crawford and J. F. Stanton, J. Chem. Phys. 112, 7873 (2000).

[104] J. B. Robinson and P. J. Knowles, Phys. Chem. Chem. Phys. 14, 6729

(2012).

[105] J. B. Robinson and P. J. Knowles, J. Chem. Theory Comput. (2012),

“Benchmark Quasi-Variational Coupled Cluster Calculations of Multiple

Bond Breaking”, in press.

[106] M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett, J. Chem. Phys. 83, 4041

(1985).

[107] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem.

Phys. Lett. 157, 479 (1989).



Bibliography 201

[108] J. F. Stanton, Chem. Phys. Lett. 281, 130 (1997).

[109] M. J. O. Deegan and P. J. Knowles, Chem. Phys. Lett. 227, 321 (1994).

[110] W. D. Laidig, P. Saxe, and R. J. Bartlett, J. Chem. Phys. 86, 887 (1987).

[111] S. R. Gwaltney and M. Head-Gordon, Chem. Phys. Lett. 323, 21 (2000).

[112] P. Piecuch and M. W loch, J. Chem. Phys. 123, 224105 (2005).

[113] S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974).

[114] M. W. Schmidt et al., J. Comput. Chem. 14, 1347 (1993).

[115] F. Neese, Orca - an ab initio, density functional and semiempirical program

package, version 2.6, 2008.

[116] K. P. Huber and G. Herzberg, Constants of Diatomic Molecules, Van

Nostrand Reinhold, 1979.

[117] Y. Ge, M. Gordon, and P. Piecuch, J. Chem. Phys. 127, 174106 (2007).
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52, 178 (1995).

[171] B. Champagne, D. H. Mosley, M. Vračko, and J.-M. André, Phys. Rev. A
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