
THEODORAKOPOULOS AND BARAS: ON TRUST MODELS AND TRUST EVALUATION METRICS FOR AD-HOC NETWORKS 1

12

781988
Text Box
“© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

781988
Text Box
Theodorakopoulos, G.; Baras, J.S.; , "On trust models and trust evaluation metrics for ad hoc networks," Selected Areas in Communications, IEEE Journal on , vol.24, no.2, pp. 318- 328, Feb. 2006

doi: 10.1109/JSAC.2005.861390

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1589111&isnumber=33490

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, SECURITYIN WIRELESS AD-HOC NETWORKS

On Trust Models and Trust Evaluation Metrics for
Ad-Hoc Networks

George Theodorakopoulos, and John S. Baras,Fellow, IEEE

Abstract— Within the realm of network security, we interpret
the concept of trust as a relation among entities that participate in
various protocols. Trust relations are based on evidence created
by the previous interactions of entities within a protocol.In this
work, we are focusing on the evaluation of trust evidence in
Ad Hoc Networks. Because of the dynamic nature of Ad Hoc
Networks, trust evidence may be uncertain and incomplete. Also,
no pre-established infrastructure can be assumed. The evaluation
process is modeled as a path problem on a directed graph, where
nodes represent entities, and edges represent trust relations. We
give intuitive requirements and discuss design issues for any
trust evaluation algorithm. Using the theory of semirings, we
show how two nodes can establish an indirect trust relation
without previous direct interaction. We show that our semiring
framework is flexible enough to express other trust models, most
notably PGP’s Web of Trust. Our scheme is shown to be robust
in the presence of attackers.

Index Terms— trust evaluation, trust metric, semiring, trust
model

I. I NTRODUCTION

T HE notion of trust, in the realm of network security, will
for our purposes correspond to a set of relations among

entities that participate in a protocol [1]. These relations are
based on the evidence generated by the previous interactions
of entities within a protocol. In general, if the interactions
have been faithful to the protocol, then trust will ”accumulate”
between these entities. Exactly how trust is computed depends
on the particular protocol (application). The applicationdeter-
mines the exact semantics of trust, and the entity determines
how the trust relation will be used in the ensuing steps of the
protocol. Trust influences decisions like access control, choice
of public keys, etc. It could be useful as a complement to a
Public Key Infrastructure (PKI), where an entity would accept
or reject a public key according to the trustworthiness of the
entities that vouch for it (i.e. have signed a certificate forit)
– this is the idea behind PGP’s Web of Trust [2]. It can also
be used for routing decisions: Instead of the shortest path,we
could be looking for the most trusted path between two nodes
(this has been already proposed in P2P networks [3]).

Manuscript received May 30, 2005; revised August 15, 2005. Work
prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U.S. Army Research Laboratory under
the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. Research also supported by the U.S. ArmyResearch Of-
fice under grant No DAAD19-01-1-0494. The U.S. Government isauthorized
to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation thereon. This work was presented in part at WiSE’04,
Philadelphia, PA, October 2004

The authors are with the Electrical and Computer Engineering Department,
and the Institute for Systems Research, University of Maryland, College Park,
MD 20742 USA (email: gtheodor@isr.umd.edu; baras@isr.umd.edu)

For an illustration associated with Public Keys, suppose
that entity A wants to determine the public key that entity B
controls. In this case, the trust relation would be : ”A does
(or does not) believe that B’s key is KB”. A and B have
had no previous interactions, hence no trust relation, so A
has to contact entities that have some evidence about B’s key.
Relevant pieces of evidence in this case are certificates binding
B’s key to B’s identity. Also, the trustworthiness of the entities
that issued these certificates should be taken into account.

In a regular PKI with a Trusted Third Party (TTP), A
would now contact the TTP for B’s key. Since the TTP is
trusted by everyone, A would believe that B’s key is what
the TTP provided, and that would be the end of the story.
In this work, however, we do not assume the existence of
any globally trusted entity: on the contrary, everything isup
to the individual nodes of the network. They themselves sign
certificates for each other’s keys, and they themselves haveto
judge how much to trust these certificates and, essentially,their
issuers. If A has had previous interactions with these issuing
entities, then their public keys as well as their trustworthiness
will be known to A, who will now decide whether to accept
KB as B’s key or not. Otherwise, the same steps will have
to be repeated to establish a trust relation with the issuing
entities, recursively, until A can reach a decision, which could
very well be that there is not (trustworthy) enough evidence
to establish the relation. This is what the trust computation
algorithm does (Sec III-D.4), but in a forward way: A first
computes trust values for his one-hop neighbors, then two-hop,
and so on until the destination is reached (or, in the general
case, until A has computed a trust value for all other entities).

The specification of admissible types of evidence, the gen-
eration, distribution, discovery and evaluation of trust evidence
are collectively called Trust Establishment. In this work,we
are focusing on the evaluation process of trust evidence in Ad-
Hoc Networks, i.e. we are focusing on the trust metric itself. In
particular, we are not dealing with the collecting of evidence
from the network, and the accompanying communication and
signaling overhead. This issue is important, and obviously
needs to be addressed in a complete system.

We will be using the terms ”trust evaluation”, ”trust compu-
tation”, and ”trust inference” interchangeably. The evaluation
process is formulated as a path problem on a weighted,
directed graph. In this graph, nodes represent users, and edges
represent direct trust relations, weighted by the amount oftrust
that the first user places on the second. Each user has direct
relations only towards the users he has interacted with, so
all interactions are local (in the trust graph). The aim is to
establish an indirect relation between two users that have not

THEODORAKOPOULOS AND BARAS: ON TRUST MODELS AND TRUST EVALUATION METRICS FOR AD-HOC NETWORKS 3

previously interacted; this is achieved by using the directtrust
relations that intermediate nodes have with each other. Hence,
we assume that trust is transitive, but in a way that takes into
account edge weights, too.

Ad Hoc networks are envisioned to have dynamic, some-
times rapidly-changing, random, multihop topologies which
are composed of bandwidth-constrained wireless links. The
nodes themselves form the network routing infrastructure in
an ad hoc fashion [4]. Based on these characteristics, we are
imposing the following three main constraints on our scheme:

First, there is no preestablished infrastructure. The computa-
tion process cannot rely on, e.g., a Trusted Third Party. There
is no centralized Public Key Infrastructure, CertificationAu-
thorities, or Registration Authorities with elevated privileges.

Second, evidence is uncertain and incomplete. Uncertain,
because it is generated by the users on the fly, without lengthy
processes. Incomplete, because in the presence of adversaries
we cannot assume that all friendly nodes will be reachable:
the malicious users may have rendered a small or big part
of the network unreachable. Despite the above, we require
that the results are as accurate as possible, yet robust in the
presence of attackers. It is desirable to, for instance, identify
all allied nodes, but it is even more desirable that no adversary
is misidentified as good.

Third, the trust metric cannot impose unrealistic com-
munication/computation requirements. Although we are not
modeling or measuring the communication in any detail, we
are looking for a scheme that would lend itself to an efficient
implementation. In other words, it should be as light as
possible since it is a complement to the real operation of the
network.

We use a general framework for path problems on graphs
as a mathematical basis for our proposed scheme, and also
give intuitive requirements that any trust evaluation algorithm
should have under that framework. The formalism of semirings
highlights that our algorithm is a member of a larger family
of well studied algorithms, collectively described under the
term Factor Graphs [5], or Generalized Distributive Law [6].
Such algorithms include Dijkstra’s shortest path algorithm,
the Viterbi decoding algorithm, the Kalman filter, etc. So,
analytical results about these algorithms can be directly used.
Moreover, because of a particular property of semirings (dis-
tributivity, see Sec. III-D), we can do in-network processing
of trust evidence, thus reducing the amount of data that
needs to reach the source. In other words, local computation
and message exchange is possible, which is a feature of all
algorithms under the Factor Graph umbrella. We argue that it
is especially useful in the context of ad-hoc networks.

This work is organized in five sections. After this Intro-
duction, the second section describes and comments on trust
design issues that frequently appear in related work. The third
section explains our approach, proposes a flexible mathemati-
cal modeling framework for trust computation, and describes
intuitive properties that any scheme under this framework
should have. In the fourth section, our proposed scheme is
used for actual computation scenarios, and the results are
discussed. The fifth section concludes the paper and suggests
future directions for improvement.

II. TAXONOMY OF RELATED WORK

In this section we are examining important issues that
should be considered by designers of trust metrics. For more
specific examples of related work, please see [7].

A. System Model

The most commonly used model is a labeled, directed
graph. Nodes represent entities, and edges represent binary
trust relations. These relations can be (for an edgei → j): a
public key certificate (issued byi for j’s key), the likelihood
that the corresponding public key certificate is valid, the
trustworthiness ofj as estimated byi, etc.

B. Centralized vs decentralized trust

By centralized trust we refer to the situation where a
globally trusted party calculates trust values for every node in
the system. All users of the system ask this trusted party to give
them information about other users. The situation described
has two important implications: First, every user depends on
the trustworthiness of this single party, thus turning it into a
single point of failure. Second, it is reasonable to assume that
different users are expected to have different opinions about
the same target; this fact is suppressed here.

The decentralized version of the trust problem corresponds
to each user being the ”center of his own world”. That is,
users are responsible for calculating their own trust values for
any target they want. This ”bottom-up” approach is the one
that has been most widely implemented and put into use, as
a part of PGP [2] for public key certification.

Note that the distinction just mentioned refers to the seman-
tics of trust. The actual algorithm used for the computationof
trust is a separate issue: all data may be gathered at a single
user, where the algorithm will be executed; or the computation
may be done in a distributed fashion, throughout the network;
or the algorithm may even be localized, in the sense that
each node only interacts with his local neighborhood, without
expecting any explicit cooperation from nodes further away.

C. Proactive vs reactive computation

This is an issue more closely related to the communication
efficiency of the actual implementation. The same arguments
as in routing algorithms apply: Proactive trust computation
uses more bandwidth for maintaining the trust relationships
accurate. So, the trust decision can be reached without delay.
On the other hand, reactive methods calculate trust values only
when explicitly needed. The choice depends largely on the
specific circumstances of the application and the network. For
example, if local trust values change much more often than a
trust decision needs to be made, then a proactive computation
is not favored: The bandwidth used to keep trust values up to
date will be wasted, since most of the computed information
will be obsolete before it is used.

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, SECURITYIN WIRELESS AD-HOC NETWORKS

D. Extensional vs intensional metrics

As mentioned in [8] one possible criterion to classify
uncertainty methods is whether the uncertainty is dealt with
extensionallyor intensionally. In extensional systems, the un-
certainty of a formula is computed as a function of the uncer-
tainties of its subformulas. In intensional systems, uncertainty
is attached to ”state of affairs” or ”possible worlds”. In other
words, we can either aggregate partial results in intermediate
nodes (in-network computation), or we can collect all data
(opinions and trust topology) at the initiator of the trust query
and compute a function that depends on all details of the whole
graph.

For example, the scheme proposed by Jøsang [9] is inten-
sional, whereas ours is extensional. As pointed out by Maurer,
there seems to be a trade-off between computational effi-
ciency and correctness. Extensional systems are more efficient,
whereas intensional are more correct. For more on this, see the
discussion on the distributivity property (Sec III-D).

E. Attack resistance (node/edge attacks)

Levien ([10]) suggested a criterion for measuring the re-
sistance of a trust metric to attackers. First, he distinguished
between two types of attacks: node attacks, and edge attacks.
Node attacks amount to a certain node being impersonated. So,
the attacker can issue any number of arbitrary opinions (public
key certificates in Levien’s case) from the compromised node
about any other node.

Edge attacks are more constrained: Only one false opinion
can be created per each attack. In other words, an attack of
this type is equivalent to inserting a false edge in the trust
graph. Obviously, a node attack is the more powerful of the
two, since it permits the insertion of an arbitrary number of
false edges.

The attack resistance of a metric can be gauged by the
number of node or edge attacks, or both, that are needed before
the metric can be manipulated beyond some threshold. For
instance, in [11] Reiter and Stubblebine show that a single
misbehaving entity (a 1-node attack) can cause the metric
proposed in [12] to return an arbitrary result.

Here an important clarification has to be made: there are
trust graphs that are ”weaker” than others. When, for example,
there exists only a single, long path between the source and the
destination, then any decent metric is expected to give a low
trust value. So, the attack resistance of a metric is normally
judged by its performance in these ”weak” graphs. This line of
thinking also hints at why intensional systems (group metrics)
perform better than extensional: They take into account the
whole graph, so they can identify graph ”weaknesses” more
accurately.

F. Negative and positive evidence (certificate revocation)

It is desirable to include both positive and negative evidence
in the trust model. The model is then more accurate and
flexible. It corresponds better to real-life situations, where
interactions between two parties can lead to either satisfaction
or complaints. When a node is compromised (e.g. its private

key is stolen) the public key certificates for this node should
be revoked. So, revocation can be seen as a special case of
negative trust evidence.

On the other hand, the introduction of negative evidence
complicates the model. Specifically, an attacker can try to
deface good nodes by issuing false negative evidence about
them. If, as a countermeasure to that, issuing negative evidence
is penalized, good nodes may refrain from reporting real
malicious behavior for fear of being penalized.

G. What layer should trust be implemented in?

An important issue that is often glossed over is the layer
at which the trust protocol will operate. That is, the services
required by the protocol and the services it offers should be
made clear, especially its relationship to other security com-
ponents. As pointed out in [13], some secure routing protocols
assume that security associations between protocol entities can
be established with the use of a trust establishment algorithm,
e.g. by discovering a public key certificate chain between
two entities. However, in order to offer its services, the trust
establishment algorithm may often assume that routing can be
done in a secure way. This creates a circular dependency that
should be broken if the system as a whole is to operate as
expected.

III. SEMIRING-BASED TRUST EVALUATION METRICS

A. System Model

We view the trust inference problem as a generalized
shortest path problem on a weighted directed graphG(V, E)
(trust graph). The vertices of the graph are the users/entities
in the network. A weighted edge from vertexi to vertex j
corresponds to theopinion that entity i, also referred to as
the issuer, has about entityj, also referred to as thetarget.
The weight function isl(i, j) : V × V −→ S, whereS is the
opinion space.

Each opinion consists of two numbers: thetrust value, and
the confidencevalue. The former corresponds to the issuer’s
estimate of the target’s trustworthiness. For example, a high
trust value may mean that the target is one of the good guys, or
that the target is able to give high quality location information,
or that a digital certificate issued for the target’s public key is
believed to be correct. On the other hand, the confidence value
corresponds to the accuracy of the trust value assignment. A
high confidence value means that the target has passed a large
number of tests that the issuer has set, or that the issuer has
interacted with the target for a long time, and no evidence for
malicious behavior has appeared. Since opinions with a high
confidence value are more useful in making trust decisions,
the confidence value is also referred to as thequality of the
opinion. The space of opinions can be visualized as a rectangle
(ZERO TRUST, MAX TRUST)×(ZERO CONF, MAX CONF)
in the Cartesian plane (Figure 1, forS = [0, 1]× [0, 1]).

Both the trust and the confidence values are assigned by
the issuer, in accordance with his own criteria. This means
that a node that tends to sign public key certificates without
too much consideration will often give high trust and high
confidence values. The opposite holds true for a strict entity.

THEODORAKOPOULOS AND BARAS: ON TRUST MODELS AND TRUST EVALUATION METRICS FOR AD-HOC NETWORKS 5

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

Opinion: (t, c)

t

c

Fig. 1. Opinion space

When two such entities interact, it is important for the stricter
entity to assign a low enough trust value to the less strict
one. Otherwise, the less strict entity may lead the stricter
one to undesirable trust decisions. This situation is easier to
picture in the context of Certification Authorities and public
key certification. In that context, a certification authority A
will only give a high trust value to B, if B’s policy for
issuing certificates is at least as strict as A’s and has the same
durability characteristics [1].

Also, it is assumed that nodes assign their opinions based on
local observations. For example, each node may be equipped
with a mechanism that monitors neighbors for evidence of
malicious behavior, as in [14]. Alternatively, two users may
come in close contact and visually identify each other, or
exchange public keys, as suggested in [15]. In any case,
the input to the system is local: however, extant pieces of
evidence based on, e.g., previous interactions with no longer
neighboring nodes can also be taken into account for the final
decision. This would come into play when two nodes that
have met in the past need now to make a trust decision for
each other. Of course, the confidence value for such evidence
would diminish over time. One consequence of the locality
of evidence gathering is that the trust graph initially overlaps
with the physical topology graph: The nodes are obviously
the same, and the edges are also the same if the trust weights
are not taken into account. As nodes move, opinions for old
neighbors are preserved, so the trust graph will have more
edges than the topology graph. However, as time goes by,
these old opinions fade away, and so do the corresponding
edges.

In the framework described, two versions of the trust
inference problem can be formalized. The first is finding the
trust-confidence value that a source node A should assign to
a destination node B, based on the intermediate nodes’ trust-
confidence values. Viewed as a generalized shortest path prob-
lem, it amounts to finding the generalized distance between
nodes A and B. The second version is finding the most trusted
path between nodes A and B. That is, find a sequence of nodes

〈v0 = A, v1, . . . , vk = B〉 : (vi, vi+1) ∈ E, 0 ≤ i ≤ k− 1 that
has the highest aggregate trust value among all trust paths
starting at A and ending at B. A high level view of the system
is shown in Figure 2.

Fig. 2. System operation

Both problems are important: finding a target’s trust value
is needed before deciding whether to grant him access to one’s
files, or whether to disclose sensitive information, or whatkind
of orders he is allowed to give (in a military scenario, for
instance). With this approach, a node will be able to rely on
other nodes’ past experiences and not just his own, which
might be insufficient. The second problem is more relevant
when it comes to actually communicating with a target node.
The target node being trustworthy is one thing, but finding a
trusted path of nodes is needed, so that traffic is routed through
them. Note that in the usual shortest path problem in a graph
finding the distance between two nodes, simultaneously finds
the actual shortest path. In the trust case, we will usually utilize
multiple trust paths to compute the trust distance from the
source to the destination, since that will increase the evidence
on which the source bases its final estimate. The first problem
is addressed with what we call ”Distance semiring” (Sec III-
D.3), and the second with the ”Path semiring” (Sec III-D.2).

The core of our approach is the two operators used to com-
bine opinions: One operator (denoted⊗) combines opinions
along a path, i.e. A’s opinion for B is combined with B’s
opinion for C into one indirect opinion that A should have for
C, based on B’s recommendation. The other operator (denoted
⊕) combines opinions across paths, i.e. A’s indirect opinion
for X through pathp1 is combined with A’s indirect opinion
for X through pathp2 into one aggregate opinion. Then, these
operators can be used in a general framework for solving path
problems in graphs, provided they satisfy certain mathematical
properties, i.e. form an algebraic structure called a semiring.
More details on this general framework are in section III-
B. Two existing trust computation algorithms (PGP [2] and
EigenTrust [16]) are modeled as operations on two particular
semirings. Note that our approach differs from PGP in that it
allows the user to infer trust values for unknown users/keys.
That is, not all trust values have to be directly assigned by the
user making the computations. The operators are discussed in
greater depth in section III-D.

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, SECURITYIN WIRELESS AD-HOC NETWORKS

B. Semirings

For a more complete survey of the issues briefly exposed
here, see Rote [17], and also (for more applications in com-
munications and other areas) Kschischang, Frey, Loeliger [5],
and Aji, McEliece [6].

1) Definitions: A semiring is an algebraic structure
(S,⊕,⊗), whereS is a set, and⊕,⊗ are binary operators
with the following properties (a, b, c ∈ S):

• ⊕ is commutative, associative, with a neutral element
0© ∈ S:

a⊕ b = b⊕ a

(a⊕ b)⊕ c = a⊕ (b ⊕ c)

a⊕ 0© = a

• ⊗ is associative, with a neutral element1© ∈ S, and
0© as an absorbing element:

(a⊗ b)⊗ c = a⊗ (b⊗ c)

a⊗ 1© = 1© ⊗ a = a

a⊗ 0© = 0© ⊗ a = 0©

• ⊗ distributes over⊕:

(a⊕ b)⊗ c = (a⊗ c)⊕ (a⊗ c)

a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)

A semiring (S,⊕,⊗) with a partial order relation� that is
monotone with respect to both operators is called anordered
semiring(S,⊕,⊗,�):

a � b anda′ � b′ =⇒ a⊕ a′ � b ⊕ b′ anda⊗ a′ � b⊗ b′

An ordered semiring (S,⊕,⊗,�) is ordered by thediffer-
ence relationif:

∀a, b ∈ S : (a � b ⇐⇒ ∃z ∈ S : a⊕ z = b)

A semiring is called idempotent when the following holds:

∀a ∈ S : a⊕ a = a

2) Semirings for path problems:One way we can see
semirings in action is when computing a generalized shortest
path weight in a weighted graph. In that case,⊗ is the
operator used to calculate the weightw(p) of a pathp =
(v0, v1, . . . , vk) based on the weights of the path’s edges:

w(p) = w(v0, v1)⊗ w(v1, v2)⊗ · · · ⊗ w(vk−1, vk)

The⊕ operator is used to compute the shortest path weight
dij as a function of all paths from the sourcei to the
destinationj:

dij =
⊕

p is a path
from i to j

w(p)

Suppose we want to compute the delay of the shortest path
from i to j in a network. We model the network as a weighted
graph, where edge weights correspond to link transmission
delays. Since link delays are non-negative, the setS is going
to beℜ+∪{∞}. The total delay of a path is equal to thesum
of all link delays (edge weights) along the path. So, the⊗

operator is+, and 1© (neutral element for⊗) is 0: if we add a
zero-delay link in a path, the total delay does not change. This
is regular addition. Now, we have all the path delays fromi
to j, and we want to somehow combine them so as to come
up with theshortestpath delay. The way to combine them is
take theminimumamong their values. So, the⊕ operator is
min, and 0© (neutral element for⊕) is∞, sincemin(x,∞) =
x, ∀x ∈ ℜ+: if we find an infinite delay path, the shortest path
delay does not change. In summary, the semiring we should
use for this situation is (ℜ+ ∪ {∞}, min, +).

Suppose now that we are given all link capacities instead of
delays. We want to compute the highest possible rate of traffic
from i to j along any single path (i.e. all paths are candidates,
but we have to pick one). Link capacities, like link delays, are
non-negative soS is againℜ+ ∪ {∞}. The highest possible
traffic rate along a path (the path capacity) is theminimum
among all links along the path (bottleneck capacity). So, the
⊗ operator ismin, and 1© is∞. Now, we have the capacities
of all paths fromi to j, and we want to find thelargestamong
them. So, the⊕ operator ismax, and 0© is 0: if we find a 0
capacity path, the maximum path capacity does not change.
The semiring is now(ℜ+ ∪ {∞}, max, min).

Note that the⊕ operator may pick a single path weight (as
is case above withmax andmin) or it may explicitly combine
information from all paths (addition or multiplication).

3) Semirings for systems of linear equations:An equivalent
way to describe the previous shortest path problem is by way
of a system of equations that the shortest path weights and the
edge weights should satisfy. Ifaij is the weight of the edge
(i, j), with 0© being the weight of non-existent edges, andxij

is the shortest path weight fromi to j, then the following
equation has to hold (assume there existn nodes):

xij =

n
⊕

k=1

(aik ⊗ xkj)

For example, when edge weights are transmission delays, this
equation becomes:

xij = min
1≤k≤n

(aik + xkj)

Note, also, that if⊕ and⊗ are the usual addition and mul-
tiplication, respectively, then the first of the above equations
becomes exactly matrix multiplication.

xij =
n

∑

k=1

aikxkj ⇔ X = AX

whereX = [xij]n×n
, A = [aij]n×n

We will use this fact in a later section to model an existing
trust computation algorithm.

C. Semirings as a model for trust computations

In order to show the modeling power of this framework,
we now model PGP’s web of trust computations [2] as a
semiring. Remember that PGP computes the validity of an
alleged key-to-user binding, as seen from the point of view
of a particular user, henceforth called the source. The input to
the computation algorithm consists of three things: The source

THEODORAKOPOULOS AND BARAS: ON TRUST MODELS AND TRUST EVALUATION METRICS FOR AD-HOC NETWORKS 7

node, the graph of certificates issued by users for each other,
and the trust values for each user as assigned by the source.
Note that the validity of all key-to-user bindings has to be
verified, since only certificates signed by valid keys are taken
into account, and any certificate may influence the validity of
a key-to-user binding.

The validity of the key-to-user binding for useri will be
deduced from the vectordi ∈ N

k, where k is the number
of different trust levels defined by PGP. It seems thatk
is 4 (”unknown”, ”untrusted”, ”marginally trusted”, ”fully
trusted”), but some include a fifth level : ”ultimately trusted”.
Our analysis is independent of the exact value ofk. The vector
di will hold the number of valid certificates for useri that
have been signed by users of each trust level. For example,
di = (0, 1, 2, 3) means that one ”untrusted”, two ”marginally
trusted”, and three ”fully trusted” users have issued certificates
for useri’s public key. In addition, all six of these certificates
are signed by valid keys, i.e. keys for which the key-to-user
binding has been verified.

In order to verify the actual validity of the binding, we will
use the functionval : N

k → V, whereV is the space of
admissible results. For simplicity, we will be assuming that
V ={”invalid”, ”valid” }, although values such as ”marginally
valid” have also been proposed. The output ofval for a
specific input is determined by thresholds such as: ”A key-
to-user binding is valid if at least two ”marginally trusted”
users have issued a certificate for it”. These thresholds are
incorporated inval and will be transparent to our analysis.
Finally, for computation simplicity we will be assuming that
V = {0, 1}, where ”invalid”= 0, and ”valid”= 1.

The edge weightswij ∈ N
k, 1 ≤ i, j ≤ n, wheren is the

number of users, correspond to the certificate fromi about
j’s alleged public key. A weight can only have one ofk + 1
possible values. Either it consists only of 0s, or of exactly
k − 1 0s and one 1. An all-zero weight means that there is
no certificate fromi aboutj’s key. An 1 in the position that
corresponds to trust levelt means that the source has assigned
trust levelt to i, andi has issued a certificate forj.

The⊗ operator is defined as follows (a, b ∈ N
k):

a⊗ b = val(a)b ∈ N
k

The⊕ operator is defined exactly as vector addition inN
k.

Verification of the semiring properties:For⊗, the absorbing
element is 0© = (0, . . . , 0) ∈ N

k, and the neutral element is
1© = {x ∈ N

k : val(x) = 1}. That is, all such vectors are
mapped to1©; for our purposes, they are equivalent. It is trivial
to prove that 0© is a neutral element for⊕.

The⊗ operator is associative:

a⊗ (b⊗ c) = a⊗ (val(b)c) = val(a)val(b)c

(a⊗ b)⊗ c = (val(a)b)⊗ c = val(val(a)b)c

and these two are equal becauseval(0©)=0.
The⊕ operator is commutative and associative, because it

is vector addition.
The⊗ operator distributes over⊕:

a⊗ (b⊕ c) = val(a)(b + c)

(a⊗ b)⊕ (a⊗ c) = val(a)b + val(a)c

The computation algorithm below uses the above semiring
to compute the validity or otherwise of all keys in the
certificate graph G. The source node iss and the function
w maps edges to edge weights.

PGP-SEMIRING-CALCULATION (G, w, s)

1 for i← 1 to |V |
2 do d[i]← 0©
3 d[s]← 1©
4 S ← {s}
5 while S 6= ∅
6 do u← DEQUEUE(S)
7 for eachv ∈ Neighbors [u] with val(d[v]) = 0
8 do
9 d[v]← d[v]⊕ (d[u]⊗ w(u, v))

10 if val(d[v]) = 1
11 then ENQUEUE(S, v)

The computation starts at the sources, and progressively
computes the validity of all keys reachable froms in the
certificate graph. The queueS contains all valid keys for which
the outgoing edges (certificates signed with these keys) have
not been examined yet. When a key is extracted fromS, its
certificates to other keys are examined, and theird-vectors are
updated. Only certificates to so-far-invalid keys are examined,
since adding a certificate to thed-vector of a key already
shown to be valid is redundant. If a so-far-invalid key obtains
enough certificates to become valid, it is added to the queue for
future examination. Each key is enqueued at most once (when
it becomes valid), and all keys in the queue are eventually
dequeued. Ergo, the algorithm terminates. After termination,
all valid keys have been discovered.

Note that ifs is only interested in the validity of a particular
key-to-user binding, then the algorithm can stop earlier: as
soon as its validity is determined, or after all certificatesfor
that key have been examined.

We can also model the EigenTrust algorithm [16] as a
semiring. Using the system of linear equations interpretation
of a semiring, the EigenTrust algorithm solves the following
matrix equation forT :

T = CT ⇔ tij =

n
∑

k=1

ciktkj

where the semiring operators are the usual addition and
multiplication.

D. Trust Semirings

1) Trust Interpretation of Semiring Properties:Based on
intuitive concepts about trust establishment, we can expect the
binary operators to have certain properties in addition to those
required by the semiring structure.

Since an opinion should deteriorate along a path, we require
the following for the⊗ operator(a, b ∈ S):

a⊗ b � a, b

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, SECURITYIN WIRELESS AD-HOC NETWORKS

where� is the difference relation defined in Section III-B.
Note that the total opinion along a path is ”limited” by the
source’s opinion for the first node in the path.

Regarding aggregation across paths with the⊕ operator,
we generally expect that opinion quality will improve, since
we have multiple opinions. If the opinions disagree, the more
confident one will weigh heavier. In a fashion similar to the⊗
operator, we require that the⊕ operator satisfies(a, b ∈ S):

a⊕ b � a, b

The 0© element (neutral element for⊕, absorbing for⊗)
corresponds to the opinion ”I don’t know” (not the most neg-
ative opinion). This corresponds to non-existent trust relations
between nodes. The rationale is that if a0© is encountered
along a path, then the whole path ”through” this opinion
should have weight equal to0©. Also, such opinions should
be ignored in⊕-sums.

The element1© (neutral element for⊗) is the ”best” opinion
that can be assigned to a node. This can also be seen as the
opinion of a node about itself. If encountered along a path,1©
effectively contracts the corresponding edge and identifies the
nodes at its endpoints for the purposes of the concatenation.

The associativity property for both operators allows the
incremental calculation of results: If one more opinion needs
to be aggregated into the current ”total”, then it can be
done in one step, without having to recall all opinions that
were aggregated for the current total. The same goes for
concatenation. Commutativity for aggregation makes irrelevant
the order in which opinion are taken into account (i.e. which
one is first, which one is second, etc.)

The distributivity property is potentially more double-edged,
in the sense that its desirability has been disputed by Jøsang
[9]. Briefly stated, the argument is that distributivity ignores
opinion dependence when aggregating. To visualise the sit-
uation, consider the following two graphs (Figs. 3 and 4). If
distributivity holds, then the source cannot distinguish between
the two topologies, and, in fact, for the source all topologies
are indistinguishable from the one in Fig. 4. So, even though
the intermediate nodes are depending on the same node (the
question-marked) for information on the destination, thisfact
is hidden from the source. This is called opinion dependence,
and it is a problem because the real trust topology becomes
equivalent to the topology that is perceived by the source
(for an appropriate assignment of numerical values to the
opinions). In other words, the question-marked node becomes
a single point of failure, borrowing a term from the distributed
systems terminology.

The situation at hand is an example of the extensional versus
intensional approach (see Section II). Clearly, if complete
information about the graph is available to the source, thenthe
decision will be better. However, this means that all opinions in
the trust graph will have to be sent to the source. On the other
hand, if we make use of the distributivity property, in-network
computation is possible: each node will only pass a single
aggregate opinion to the upstream neighbor (the node on the
way back to the source). This will save a significant amount
of bandwidth, which is particularly suitable for resource-
constrained ad-hoc wireless networks.

Fig. 3. Real topology

Fig. 4. Topology as perceived by the source

Finally, distributivity is defensible from the trust perspec-
tive, too. Namely, the shaded node is indeed a single point of
failure, on which the source’s opinion depends, but it is also
a node with multiple independent trust paths leading to it. So,
if this node would turn out to be, say, malicious, it would
mean that all other nodesindependentlyvouching for it would
be simultaneously wrong. That said, it is certainly better if
there exist completely independent paths all the way from the
source to the destination. But this is not always the case.

2) Path semiring: In our first semiring, the opinion space
is S = [0, 1]× [0, 1] Our choice for the⊗ and⊕ operators is
as follows (Figure 5):

(tik, cik)⊗ (tkj , ckj) = (tiktkj , cikckj) (1)

(tp1

ij , cp1

ij)⊕ (tp2

ij , cp2

ij) =







(tp1

ij , cp1

ij) if cp1

ij > cp2

ij

(tp2

ij , cp2

ij) if cp1

ij < cp2

ij

(t∗ij , c
p1

ij) if cp1

ij = cp2

ij

,(2)

where(tp1

ij , cp1

ij) is the opinion thati has formed aboutj along
the pathp1, andt∗ij = max(tp1

ij , tp2

ij).
Since both the trust and the confidence values are in the

[0, 1] interval, they both decrease when aggregated along a
path. When opinions are aggregated across paths, the one with
the highest confidence prevails. If the two opinions have equal
confidences but different trust values, we pick the one with

THEODORAKOPOULOS AND BARAS: ON TRUST MODELS AND TRUST EVALUATION METRICS FOR AD-HOC NETWORKS 9

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

A⊗B = C

A

BC

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

A⊕B = A

A

B

Fig. 5. ⊗ and⊕ operators for the Path semiring

the highest trust value. We could have also picked the lowest
trust value; the choice depends on the desired semantics of the
application.

This semiring essentially computes the trust distance along
the most confident trust path to the destination. An important
feature is that this distance is computed along a single path,
since the⊕ operator picks exactly one path. Other paths are
ignored, so not all available information is being taken into
account. One of the advantages is that if the trust value turns
out to be high, then a trusted path to the destination has
also been discovered. Also, fewer messages are exchanged for
information gathering.

3) Distance semiring:Our second proposal, the distance
semiring, is based on theExpectation semiringdefined by
Eisner in [18], and used for speech/language processing:

(a1, b1)⊗ (a2, b2) = (a1b2 + a2b1, b1b2)

(a1, b1)⊕ (a2, b2) = (a1 + a2, b1 + b2)

The opinion space isS = [0,∞]× [0, 1]. Before using this
semiring, the pair (trust, confidence)=(t, c) is mapped to the
weight(c/t, c). The motivation for this mapping becomes clear

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

A⊗B = C

A

B
C

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

A⊕B = C

A

B

C

Fig. 6. ⊗ and⊕ operators for the Distance semiring

when we describe its effect on the results of the operators. The
binary operators are then applied to this weight, and the result
is mapped back to a (trust, confidence) pair. For simplicity,we
only show the final result without the intermediate mappings.

(tik, cik)⊗ (tkj , ckj) →

(

1
1

tik
+

1

tkj

, cikckj

)

(

tp1

ij , cp1

ij

)

⊕
(

tp2

ij , cp2

ij

)

→





c
p1

ij
+c

p2

ij

c
p1

ij

t
p1

ij

+
c
p2

ij

t
p2

ij

, cp1

ij + cp2

ij





So, when aggregating along a path, both the trust and the
confidence decrease. The component trust values are combined
like parallel resistors. Recall that two resistors in parallel offer
lower resistance than either of them in isolation. Also, a zero
trust value in either opinion will result in a zero trust value
in the resulting opinion (absorbing element), while a trust
value equal to infinity will cause the corresponding opinion
to disappear from the result (neutral element). On the other
hand, the component confidence values are between 0 and 1,
and they are multiplied, so the resulting confidence value is
smaller than both.

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, SECURITYIN WIRELESS AD-HOC NETWORKS

When aggregating across paths, the total trust value is the
weighted harmonic average of the components, with weights
according to their confidence values. So, the result is between
the two component values, but closer to the more confident
one. Note, also, the behavior caused by extreme (zero or
infinity) trust values: A zero trust value dominates the result
(unless its corresponding confidence is zero); a trust value
equal to infinity results in an increase in the trust value given
by the other opinion. In order for the resulting trust value
to be the maximum possible, both opinions have to assign
the maximum. So, in general, we can say that this operator is
conservative. A zero confidence value (neutral element) causes
the corresponding opinion to disappear from the result.

4) Computation algorithm:The algorithm below, due to
Mohri [19], computes the⊕-sum of all path weights from a
designated nodes to all other nodes in the trust graphG =
(V, E).

Revisiting the illustrative example described in the Intro-
duction, remember that entity A wanted to judge the validity
of entity B’s public key based on certificates signed by other
entities in the network. Using the trust computation algorithm,
A will compute those entities’ trustworthiness. If they are
trustworthy enough, then A will believe their certificates are
true, and will accept B’s key. If not, A will not accept it. Of
course, the above assumes that A already knows the public
keys of the entities that issued the certificates for B. If that is
not the case, then the whole process will be repeated for the
public key of each one of the unknown issuers.

GENERIC-SINGLE-SOURCE-SHORTEST-DISTANCE(G, s)

1 for i← 1 to |V |
2 do d[i]← r[i]← 0©
3 d[s]← r[s]← 1©
4 S ← {s}
5 while S 6= ∅
6 do q ← head(S)
7 DEQUEUE(S)
8 r′ ← r[q]
9 r[q]← 0©

10 for eachv ∈ Neighbors [q]
11 do if d[v] 6= d[v]⊕ (r′ ⊗ w[(q, v)])
12 then d[v]← d[v]⊕ (r′ ⊗ w[(q, v)])
13 r[v]← r[v] ⊕ (r′ ⊗ w[(q, v)])
14 if v /∈ S
15 then ENQUEUE(S, v)
16 d[s]← 1©

This is an extension to Dijkstra’s algorithm [20]1. S is a
queue that contains the vertices to be examined next for their
contribution to the shortest path weights. The vectord[i], i ∈ V
holds the current estimate of the shortest distance froms to
i. The vectorr[i], i ∈ V holds the total weight added tod[i]
since the last timei was extracted fromS. This is needed
for non-idempotent semirings, such as the one proposed. Its
computational complexity depends on the semiring used, and

1Note that Dijkstra’s algorithm is essentially the base for the OSPF protocol
[21], as pointed out by Reviewer 1. The extrar vectors take care of the
contributions of additional paths to the trust value of a node.

also on the actual topology of the network. As the reader can
see in [19], the crucial parameter of the topology is the number
of paths from the source to the other nodes. So, the more sparse
the network, the more efficient the algorithm. But, in any case,
the algorithm can be executed in a distributedfashion just like
OSPF [21] with local data exchanges only.

Our computation algorithm is based on Mohri’s, but with
three adjustments which are needed when considering the
problem from the perspective of trust. Lines 11-13 of the
algorithm will be referred to as ”nodeq votes for nodev”.

First of all, some nodes may be prevented from voting. Only
if a node’s trust value exceeds a predefined trust threshold,is
the node allowed to vote. This is motivated from the common
sense observation that only good nodes should participate in
the computation, and bad nodes should be barred. Note that
there is no restriction on the corresponding confidence. This
will initially lead to bad nodes being allowed to vote, but after
some point they will be excluded since good nodes will acquire
evidence for their maliciousness.

Second, no node is allowed to vote for the source (s). Since
it is s that initiates the computation, it does not make sense
to computes’s opinion for itself.

Third, no cyclic paths are taken into account. If that were
the case, we would be allowing a node to influence the opinion
about itself, which is undesirable. Unfortunately, there is no
clear way to discard any single edge-opinion of the cycle. So,
the approach taken is to discard any edges that would form a
cycle if accepted. As a result, the order in which the voters
are chosen in line 6 is important. We argue that it makes sense
to choose the node for which the confidence is highest.

These adjustments introduce characteristics from the Path
semiring into the Distance semiring. For example, the node
with the maximum confidence gets to vote first. Moreover,
some paths are pruned which means that fewer messages
are exchanged, thus saving bandwidth, but also some of the
existing information is not taken into account.

IV. EVALUATION AND EXPERIMENTAL RESULTS

In this section, we are describing the scenarios that were ex-
amined in the simulations. The results obtained are discussed,
and explained in terms of the parameters and properties of the
algorithms.

A. Good and Bad Nodes

We assume that some nodes are Good, and some are Bad.
Good nodes adjust their direct opinions (opinions for their
neighbors) according to some predefined rules (explained in
Section IV-B). Bad nodes, however, always have the best
opinion (1, 1) for their neighboring Bad nodes, and the worst
opinion (0, 1) for their neighboring Good nodes.

We expect that the opinions of a Good node for all other
nodes would evolve as in Figure 7. That is, all Good and all
Bad nodes will be identified as Good and Bad, respectively.

B. Simulation details

When the network is ”born”, the nodes are partitioned into
Good and Bad. We pick a Good node, which will be computing

THEODORAKOPOULOS AND BARAS: ON TRUST MODELS AND TRUST EVALUATION METRICS FOR AD-HOC NETWORKS 11

Trust

C
o
n
fi
d
en

ce

BAD GOOD

0

1

1

Fig. 7. Opinion convergence. Opinions for good nodes are drawn as crosses,
opinions for bad nodes as squares.

indirect opinions to all other nodes. Initial direct opinions are
all set to values randomly distributed in(0.5, 0.1), i.e. medium
trust and low confidence. The trust threshold, which decides
which nodes are allowed to vote, is empirically set to0.3.
Time is discrete and is measured in rounds.

At each round, two things happen. First, the direct opinions
of each node for his neighbors approach the correct opinion,
which is (0, 1) for the bad neighbors, and(1, 1) for the
good neighbors. The motivation is that the longer two nodes
interact, the better they can estimate each other’s trustworthi-
ness. Second, the designated good node calculates his indirect
opinions for all other nodes. These indirect opinions are
the experimental results shown inFigures 8 and 9. Also, the
confidence for some indirect opinions may be too low (within
ǫ = 0.01 of zero), so these nodes are not assigned any opinion.

The most important evaluation metric is whether the nodes
are correctly classified as good and bad. In other words, we
want the opinions for all bad nodes to be close to(0, 1) and
the opinions for all good nodes close to(1, 1). Moreover,
we want this to happen as soon as possible, i.e. before all
direct opinions converge to the correct ones, since the users
in the real network may be forced to make an early trust
decision. Furthermore, a failsafe is desirable: If trust evidence
is insufficient, we prefer not to make any decision about a
node, rather than make a wrong one. Of course, we have to
evaluate the robustness of each of the above mentioned metrics
as the proportion of bad nodes increases.

The trust topology we are using is a Small World-type
topology: The total number of nodes is 100, a few of which
have a high degree, and all the rest have many fewer neighbors.
The average degree is 8, but the highest is 19. The Small World
topology for trust has also been used in [22]. A comparison
with two other topologies, as well as the complete list of
obtained results, is in [7].

C. Results and Discussion

We now present and discuss some representative results
obtained through simulations. The percentage of bad nodes is
increased from10% to 50% to 90%. Figures 8 and 9 show the
opinions of the source node (s) for every other node after the
computations of rounds30 and70 for a50% percentage of Bad
nodes. The nodes originally designated as Good are pictured
as crosses, whereas the Bad ones as squares. The aim is, first
and foremost, for the Good nodes to be separated from the Bad
ones. Also, the Good nodes should be as close as possible to
the upper right corner (GOOD corner, corresponding to the
(1, 1) opinion), and the Bad nodes to the upper left corner
(BAD corner,(0, 1) opinion).

BAD GOOD

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trust

C
o
n
fi
d
en

ce

Fig. 8. 50% Bad nodes, round 30.

BAD GOOD

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trust

C
o
n
fi
d
en

ce

Fig. 9. 50% Bad nodes, round 70.

We were able to observe some general trends in the results
obtained. First of all, in the early rounds Good and Bad nodes
are intermixed: there is no clear separating line. Moreover,
Bad nodes seem to be given better opinions than Good nodes,
which is clearly undesirable. The explanation for this is based

12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, SECURITYIN WIRELESS AD-HOC NETWORKS

on two aspects of the scheme; namely, the trust threshold and
the Bad nodes’ way of assigning direct opinions. Initially,Bad
nodes are allowed to vote, since the trust threshold (0.3) is
lower than the initial default trust value (0.5), i.e. they have
not been ”discovered” yet. So, their(0, 1) opinions for Good
nodes are taken into account and the result is that Good nodes
appear to be bad. Also, Bad nodes give(1, 1) opinions to each
other, hence reinforcing each other.

The situation in later rounds improves. The Good nodes
move towards the upper right corner, the Bad ones towards the
upper left. There is also a clear separating line between the
two groups of nodes. For an actual implementation a practical
guideline could be derived from the above observation, i.e.to
be especially careful when making important trust decisions in
early rounds. The trust computation may be based on too little
raw evidence (direct opinions) to be relied upon. In all cases,
however, the Good and Bad nodes are separated eventually
(in the last rounds). This serves as a sanity check for the
algorithm.

As the percentage of Bad nodes increases, we can see
that the separation is still successful sooner or later, butthe
main observation is that the number of classified nodes is
decreasing. Classified nodes are those for which the evidence
was sufficient, i.e. the confidence of the source’s opinion for
them was more thanǫ = 0.01. The following graphs show the
number of nodes classified, for different percentages of Bad
nodes, after every round of computation. The general effect
of Bad nodes on the number of classified nodes is that, after
they are discovered, they block the trust paths they are on since
they are not allowed to vote. So, nodes that are further away
from the source than these Bad nodes can be reached by fewer
paths. They may even be completely isolated. In any case, the
confidence in the source’s opinion for them is decreased, so
some of them cannot be classified.

In our Small World topology the average path length is
short, since there are some highly connected nodes. However,
it is exactly these highly connected nodes that degrade the
performance of the computation when they are Bad. The
reason is, again, that they block many paths and affect opinions
for most nodes. If the majority of these highly connected nodes
are Bad, few trust paths will be able to be established.

For the 50% and 90% Bad node cases, there is a noticeable
drop in the number of classified nodes between rounds 30 and
40. This is so, because at this point the opinions for Bad nodes
acquire trust values that are lower than the trust threshold, so
they become ineligible to vote and block the paths they are on.
This effect is more pronounced in the 90% case, but despite
the Bad node preponderance, almost 40 nodes are classified.
This happens because the source node is one of the highly
connected nodes (19 neighbors, when the average degree is
8). So, all of the 19 neighbors, and some of the nodes that are
two hops away are classified for a total of about 40 nodes. A
practical guideline for the Small World topology would then
be that highly connected nodes should be protected, better
prepared to withstand attacks, or, in general, less vulnerable.

10%

50%

90%

0 20 40 60 80 100

0
20
40
60
80

100

Round

%
o
f
cl

a
ss

ifi
ed

n
o
d
es

Fig. 10. Node classification,10% − 50% − 90% bad nodes

V. CONCLUSION AND FUTURE WORK

We have presented a scheme for evaluating trust evidence
in Ad-Hoc networks. Our scheme is entirely based on infor-
mation originating at the users of the network. No centralized
infrastructure is required, although the presence of one can
certainly be utilized. Also, users need not have personal, direct
experience with every other user in the network in order to
compute an opinion about them. They can base their opinion
on second-hand evidence provided by intermediate nodes, thus
benefitting from other nodes’ experiences. Of course, we are
taking into account the fact that second-hand (or third, or
fourth...) evidence is not as valuable as direct experience. In
this sense, our approach extends PGP, since PGP only uses
directly assigned trust values.

At each round of computation, the source node computes
opinions for all nodes. This means that information acquired at
a single round can be stored and subsequently used for many
trust decisions. If there is not enough evidence to determine
an opinion, then no opinion is formed. So, when malicious
nodes are present in the network they cannot fool the system
into accepting a malicious node as benevolent. A failsafe
state exists that ensures graceful degradation as the number
of adversaries increases.

In future work, we plan to implement more elaborate models
for the attackers’ behavior, and for the measures taken against
nodes that are being assigned low trust values (i.e., detected
to be bad). So, the attackers will be facing a tradeoff between
the amount of damage they can inflict, and the possibility of
being, for instance, isolated from the rest network. Suitable
strategies will be developed for Good as well as Bad nodes.

ACKNOWLEDGMENT

The authors would like to thank the editors of the journal,
and the anonymous reviewers for their cooperation and their
comments that helped improve the presentation of the material.

REFERENCES

[1] L. Eschenauer, V. D. Gligor, and J. Baras, “On trust establishment
in mobile ad-hoc networks,” in10th International Security Protocols
Workshop, Cambridge, UK, April 2002, ser. Lecture Notes in Computer
Science, B. Christianson, B. Crispo, J. A. Malcolm, and M. Roe, Eds.,
vol. 2845. Springer-Verlag, 2004, pp. 47–66.

[2] P. R. Zimmermann,The Official PGP User’s Guide. MIT Press, 1995.
[3] S. Marti, P. Ganesan, and H. Garcia-Molina, “Sprout: P2Prouting with

social networks,” Stanford University, Tech. Rep., January 2004.

THEODORAKOPOULOS AND BARAS: ON TRUST MODELS AND TRUST EVALUATION METRICS FOR AD-HOC NETWORKS 13

[4] S. Corson and J. Macker, “Mobile ad hoc networking (manet): Routing
protocol performance issues and evaluation considerations ,rfc 2501,
IETF,” January 1999.

[5] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,”IEEE Transactions on Information Theory,
vol. 47, February 2001.

[6] S. M. Aji and R. J. McEliece, “The generalized distributive law.” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 325–343, 2000.

[7] G. Theodorakopoulos, “Distributed trust evaluation inad-hoc networks,”
Master’s thesis, University of Maryland, 2004. [Online]. Available:
http://techreports.isr.umd.edu/ARCHIVE/

[8] U. Maurer, “Modelling a public-key infrastructure,” inProc. 1996
European Symposium on Research in Computer Security (ESORICS’
96), ser. Lecture Notes in Computer Science, E. Bertino, Ed., vol. 1146.
Springer-Verlag, 1996, pp. 325–350.

[9] A. Jøsang, “An algebra for assessing trust in certification chains,” in
Proceedings of the Network and Distributed Systems Security (NDSS’99)
Symposium, 1999. [Online]. Available: citeseer.nj.nec.com/200003.html

[10] R. Levien and A. Aiken, “Attack-resistant trust metrics for public key
certification,” in Proceedings of the 7th USENIX Security Symposium,
San Antonio, Texas, January 1998, pp. 229–242. [Online]. Available:
http://www.usenix.org/publications/library/proceedings/sec98/levien.html

[11] M. K. Reiter and S. G. Stubblebine, “Authentication metric analysis and
design,”ACM Trans. Inf. Syst. Secur., vol. 2, no. 2, pp. 138–158, May
1999.

[12] T. Beth, M. Borcherding, and B. Klein, “Valuation of trust in open
networks,” inProceedings of the European Symposium on Research in
Computer Security, ESORICS94, 1994, pp. 3–18.

[13] R. B. Bobba, L. Eschenauer, V. Gligor, and W. Arbaugh, “Bootstrap-
ping security associations for routing in mobile ad-hoc networks,” in
Proceedings of IEEE Globecom 2003, San Francisco, CA, December
2003.

[14] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior
in mobile ad-hoc networks,” inProceedings of MOBICOM 2000, 2000,
pp. 255–265.

[15] S. Čapkun, J.-P. Hubaux, and L. Buttyán, “Mobility helps security in
ad hoc networks,” inProceedings of the ACM Symposium on Mobile
Ad Hoc Networking and Computing (MobiHOC 2003), Annapolis, MD,
June 2003.

[16] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust
algorithm for reputation management in p2p networks,” inWWW2003,
May 2003.

[17] G. Rote, “Path problems in graphs,”Computing Supplementum,
vol. 7, pp. 155–189, 1990. [Online]. Available: http://www.inf.fu-
berlin.de/ rote/Papers/postscript/Path+problems+in+graphs.ps

[18] J. Eisner, “Parameter estimation for probabilistic finite-state transduc-
ers,” in Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia, July 2002.

[19] M. Mohri, “Semiring frameworks and algorithms for shortest-distance
problems,”J. Autom. Lang. Comb., vol. 7, no. 3, pp. 321–350, 2002.

[20] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[21] J. Moy, “OSPF version 2, RFC 2704,” July 1991.
[22] J.-P. Hubaux, L. Buttyán, and S.̌Capkun, “The quest for security in

mobile ad hoc networks,” inProceedings of the ACM Symposium on
Mobile Ad Hoc Networking and Computing (MobiHOC 2001), 2001.

George Theodorakopoulosreceived the B.S. degree
from the National Technical University of Athens,
Greece, and the M.S. degree from the University
of Maryland, College Park, MD, both in Electrical
Engineering, in 2002 and 2004, respectively.

He is the co-recipient of the Best Paper award at
the ACM Workshop on Wireless Security, October
2004. He is currently working towards the Ph.D.
degree at the University of Maryland, focusing on
ad-hoc and peer-to-peer network security issues.

John S. Barasreceived the B.S. in Electr. Eng. from
National Technical University of Athens, Greece,
1970, and the M.S. and Ph.D. in Applied Math. from
Harvard University 1971, 1973.

Professor Baras was the founding Director of the
Institute for Systems Research (one of the first six
NSF Engineering Research Centers) from 1985 to
1991. Since August 1973 he has been with the
Electrical and Computer Engineering Department,
and the Applied Mathematics Faculty, at the Uni-
versity of Maryland, College Park. In 1990 he was

appointed to the Lockheed Martin Chair in Systems Engineering. Since 1991
Dr. Baras has been the Director of the Center for Hybrid and Satellite
Communication Networks (a NASA Research Partnership Center).

Among his awards are: the 1980 Outstanding Paper Award, IEEEControl
Systems Society; 1978, 1983, 1993 Alan Berman Research Publication
Awards, NRL; 1991, 1994 Outstanding Invention of the Year Awards, Univer-
sity of Maryland; the Mancur Olson Research Achievement Award, University
of Maryland; 2002, Best Paper Award 23rd Army Science Conference; 2004,
Best Paper Award 2004 WiSe Conference. Dr. Baras holds threepatents. He
is a Fellow of the IEEE.

Professor Baras’ research interests include: wireless networks and MANET,
wireless network security and information assurance, integration of logic
programming and nonlinear programming for trade-off analysis, multi-criteria
optimization, non-cooperative and cooperative dynamic games, robust control
of nonlinear systems and hybrid automata, mathematical andstatistical physics
algorithms for control and communication systems, distributed asynchronous
control and communication systems, object oriented modeling of complex
engineering systems, satellite and hybrid communication networks, network
management, fast Internet services over hybrid wireless networks, stochastic
systems, planning and optimization, intelligent control and learning, biologi-
cally inspired algorithms for signal processing and sensornetworks.

