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Thegoverningdynamics of supply chains:The impact of

altruistic behaviour ?

Takamichi Hosoda, Stephen M. Disney

Logistics Systems Dynamics Group, Cardiff Business School, Cardiff University, Aberconway Building, Colum Drive, Cardiff
CF10 3EU, Wales, UK.

Abstract

This paper analyses an infinite horizon two-echelon supply chain inventory problem and shows that a sequence of the optimum
ordering policies does not yield globally optimal solutions for the overall supply chain. First-order autoregressive demand
pattern is assumed and each participant adopts the order-up-to (OUT) policy with a minimum mean square error forecasting
scheme to generate replenishment orders. To control the dynamics of the supply chain, a proportional controller is incorporated
into the OUT policy, which we call a generalised OUT policy. A two-echelon supply chain with this generalised OUT policy
achieves over 10% inventory related cost reduction. To enjoy this cost saving, the attitude of first echelon player to cost
increases is an essential factor. This attitude also reduces the bullwhip effect. An important insight revealed herein is that a
significant amount of benefit comes from the player doing what is the best for the overall supply chain, rather than what is
the best for local cost minimisation.

Key words: Multi-echelon inventory, order-up-to policy, collaboration, inventory costs, optimisation, base-stock policy

1 Introduction

Arrow et al. (1951) introduced the (s, S) ordering policy;
Karlin (1960) studies the order-up-to (OUT) policy, that
is, the s = S case of the (s, S) policy. Karlin shows that if
the purchase cost is linear and set-up costs do not exist,
the optimal policy in each period can be characterised by
a single critical number. Assuming an ARIMA (Box et
al., 1994) demand process, minimum mean square error
(MMSE) forecasting, linear inventory holding and stock-
out costs and zero lead-time, Johnson and Thompson
(1975) show that the OUT policy is optimal. The OUT
policy is widely employed in the real business world.
Indeed, at least 2 of the 4 largest UK grocery retailers
use this policy to replenish stores and DC’s (e.g. Potter
et al., 2004). Focusing on the OUT policy, we examine
a collaboration scheme that minimises the total supply
chain costs for a two-echelon case.

For a single echelon of a supply chain, Vassian (1955)
introduced an ordering policy with a Work In Progress
(WIP) feedback loop and showed that this ordering pol-
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icy minimises the variance of the net inventory levels. In
addition, Vassian showed that the minimised variance
of the net inventory level is identical to the variance of
the error in the forecast of demand over the lead-time.
In this paper, we call Vassian’s ordering policy the tradi-
tional OUT policy. Note that several researchers adopt
an alternative expression for the OUT policy that ex-
ploits a time varying OUT target (e.g. Lee et al., 2000;
Alwan et al., 2003; Zhang, 2004), however, the dynam-
ics given by these two expositions is identical (Hosoda,
2005; Hosoda and Disney, 2006).

From Vassian’s seminal contribution, it is obvious that
in a single echelon of a supply chain, the traditional OUT
policy is an optimal policy for minimising the variance
(or standard deviation) of inventory levels over time. In
a multi-echelon supply chain scenario, however, it might
be reasonable to assume that a sequence of the tradi-
tional OUT policies may not be optimal anymore as
there is no guarantee that a succession of local minimi-
sations will result in a global optimum.

The traditional order-up-to policy does not provide
much freedom to manipulate the dynamics of the order-
ing process. By incorporating a proportional controller
into the traditional OUT policy, however, a much richer
policy is created where we have more flexibility to shape
the ordering process. Using control theory techniques,
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several researchers have successfully manipulated the
variances of the net inventory level with the addition of
proportional controllers (e.g. Dejonckheere et al., 2003;
Disney and Towill, 2003; Disney et al., 2004) in a pol-
icy’s feedback loops. A comprehensive review on order-
ing policies with proportional controllers can be seen in
Disney and Towill (2005). This research is motivated by
a question; by incorporating a proportional controller
into the traditional OUT policy and tuning the value of
it properly, can the performance of the traditional OUT
policy supply chain be improved upon? Our research
purpose is to identify whether a particular form of col-
laboration (redistributing inventory costs) can achieve a
better overall performance, and to quantify the benefit
of this collaboration.

Assuming the market demand process follows the first-
order autoregressive (AR(1)) process, Hosoda and Dis-
ney (2006) analyse a three echelon supply chain with
a traditional OUT policy and MMSE forecasting. They
present a formula for the variances of net inventory levels
at each echelon level and conclude that there is no bene-
fit of the information sharing in terms of lowering these
variances. This paper is a sequel to Hosoda and Disney
(2006). From here, we refer it as HD and will use HD’s
model as a benchmark for performance comparisons. 1

2 Literature review

Many types of collaboration between participants in the
supply chain have been studied from the point of reduc-
ing uncertainties in a supply chain. However, counter in-
tuitively, not all results strongly support the benefit of
collaboration.

Graves (1999) studies a two-echelon supply chain with
the OUT policy and a non-stationary demand process
and finds that sharing demand information brings no
benefit to the upstream player. Kim and Ryan (2003)
analyse the value of demand information sharing using
a model with an unknown demand process and the ex-
ponential smoothing forecasting mechanism. They con-
clude that sharing demand data can significantly reduce
up-stream costs in the supply chain. However, the ben-
efit is limited when a large amount of historical order
data is available. Assuming a known demand process and
an MMSE forecast, Raghunathan (2001) reports simi-
lar results in that the set of order history data contains
all the necessary information to reduce up-stream costs.
Gavirneni et al. (1999) find that the benefit of informa-
tion sharing increases as capacity increases since higher
capacity provides the supplier with some flexibility in
production planning. Assuming that the manufacturer

1 Due to the space limitation, we have used Hosoda (2005) as
the reference to all proofs in this paper. However, appendices
proving the assertions claimed in this paper are available
upon request.

can receive market demand information from the retailer
even during time periods in which the retailer does not
order, Simchi-Levi and Zhao (2003) report that there is
a benefit of information sharing if the production capac-
ity is very large and that the benefit partially depends
upon the timing of information sharing. In their model,
i.i.d. demand is assumed. Aviv and Federgruen (1998)
conclude that the benefit from sharing demand infor-
mation only is limited and that the Vendor Managed
Inventory (VMI) program (where information on inven-
tory levels is also shared) has much more potential and
can reduce costs on average by 4.7%.

Bourland et al. (1996) study the impact of the frequency
of market demand information sharing on the inventories
in a two-echelon supply chain with normally distributed
demand. They show that in a certain setting, as a re-
sult of more frequent demand information sharing, the
expected inventories at the second echelon can be low-
ered by 26%. However, at the same time, those at the
first echelon have increased by 4.2%. Using a two-echelon
supply chain model, Aviv (2001) studies the benefit of
collaborative forecasting and finds that the reduced level
of uncertainty in the forecasting improves the cost per-
formance of the supply chain. As the traditional OUT
policy ensures that the variance of net inventory levels
and the variance of forecast error over the lead-time are
identical, HD indicates that to minimise the variance of
net inventory levels, the MMSE forecast is an essential
ingredient. They also show that each player does not
necessarily need to share any information to improve
its performance, since all the necessary information re-
quired to increase performance is already contained in
the ordering process.

From the literature review, a useful general insight might
be drawn. If market demand information sharing is al-
ready transmitted to the supply chain frequently, the
benefit coming only from the reduced uncertainties by a
collaboration is at best minor.

3 The objective function and model assump-
tions

We consider an infinite horizon two-echelon inventory
problem. Assuming that the inventory related costs in
the supply chain are directly proportional to standard
deviation of the net inventory levels (e.g. Zipkin, 1995)
at each echelon, we employ an objective function that
is the sum of these standard deviations. The objective
function can be expressed as

J =
√

Var(NS 1) +
√

Var(NS2),

where Var(NSn) is the variance of net inventory lev-
els at echelon n. It should be noted that there is no
fixed ordering cost in our model, as is commonly as-
sumed (e.g. Johnson and Thompson, 1975; Aviv and
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Federgruen, 1998; Gavirneni et al., 1999; Simchi-Levi
and Zhao, 2003). The aim of this paper, therefore, is to
analyse a form of supply chain collaboration between
players that reduces the value of J .

A periodic review system is assumed and all of the results
here are consistent whichever review period is adopted
(day, week, month, etc.). The sequence of events at each
echelon is as follows; at the beginning of a period, the
replenishment orders placed earlier are received, the de-
mand is fulfilled, the inventory levels and the WIP (the
sum of the all orders that are already placed but not yet
received) are reviewed and an ordering decision is made
at the end of the period. Excess inventory is returned
without penalty (i.e., the order quantity can be nega-
tive). This assumption may not be critical as shown in
Lee et al. (1997), especially when the mean demand level
is greater than 4 standard deviations of the demand vari-
ance. Excess demand is back-ordered (i.e., the net stock
level can be negative at the end of time period) until the
necessary stock becomes available. The replenishment
lead-time at echelon n, Ln, is a constant positive integer.
This lead-time includes replenishment, order processing
delays, and a sequence of events delay. Capacity is un-
restricted in our model. If the capacity limit is added to
the model, the quantified benefit herein will be decreased
to a certain level since replenishment decisions at each
echelon will be affected by this limit (e.g. Gavirneni et
al., 1999; Simchi-Levi and Zhao, 2003; Aviv and Feder-
gruen, 1998). Clearly decisions affected in this way can-
not yield the minimum inventory related costs. Similar
discussions can be seen in Cachon and Fisher (2000).

For the demand pattern, we assume an AR(1) pattern,
as HD does. This assumption is common when autocor-
relation exists among the demand process (e.g. Kahn,
1987; Lee et al., 2000; Alwan et al., 2003; Kim and Ryan,
2003; Zhang, 2004). The AR(1) process can be expressed
as,

Dt = d + ρ(Dt−1 − d) + εt, (1)

where Dt is the demand at time period t, d is the mean
demand, ρ is the autoregressive coefficient, |ρ| < 1, and
εt is an i.i.d. white noise process with a mean of zero
and a variance of σ2

ε . Var(D), the variance of the AR(1)
process, is given by σ2

ε/(1−ρ2). For the sake of simplicity,
we may set d = 0 without loss of generality.

4 Scenario 1: A supply chain that exploits the
traditional OUT policy

In this scenario we assume that the supply chain consists
of a sequence of traditional OUT policies. Each player
employs the traditional OUT policy and the MMSE fore-
casting scheme. This policy minimises the variance of net
inventory levels for a given demand and order process at

each echelon. This scenario has been studied before in
HD and here we will now summarise their results.

4.1 Traditional Order-up-to policy

The traditional OUT policy can be described as fol-
lows (Vassian, 1955)

Ot = D̂L
t − (WIPt + NSt),

where Ot is the order quantity placed at time period
t, D̂L

t is the conditional estimate of the total demand
over the lead-time, L(= 1, 2, 3, . . .) made at time period
t, WIPt is the total orders that are already placed but
not yet received, and NSt is the net inventory level at
the end of period t. The WIP at time t, WIPt , can be
expressed as;

WIPt =

{
0 if L = 1,
∑L−1

i=1 Ot−i otherwise.

Let us use Var(NSn) to denote the variance of the net in-
ventory levels at the echelon n, in the supply chain where
the traditional OUT policy is exploited. HD provides the
following expressions for Var(NS1) and Var(NS 2);

Var(NS1) =(
L1(1− ρ2) + ρ(1− ρL1)(ρL1+1 − ρ− 2)

)

(1− ρ)2 (1− ρ2)
σ2

ε ,

Var(NS2) =(
L2

(
1− ρ2

)
+

ρL1+1
(
1− ρL2

) (
ρL1+1 + ρL1+L2+1 − 2ρ− 2

)
)

(1− ρ)2 (1− ρ2)
σ2

ε .

Therefore the objective function for Scenario 1, JS1, be-
comes

JS1 =
√

Var(NS 1) +
√

Var(NS 2)

=
√

Var(NS 1) +
√

Var(NS 2)

=

√
(L1(1− ρ2) + ρ(1− ρL1)(ρL1+1 − ρ− 2))

(1− ρ)2 (1− ρ2)
σ2

ε +

√√√√√√√

(
L2

(
1− ρ2

)
+ ρL1+1

(
1− ρL2

)
(
ρL1+1 + ρL1+L2+1 − 2ρ− 2

)
)

(1− ρ)2 (1− ρ2)
σ2

ε .

4.2 The ordering process, MMSE forecasts and the
value of information sharing

In a traditional OUT policy, the accuracy of the forecast
directly affects the variance of the net inventory level.
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HD shows that Ot+1 can be described as an ARMA(1,
1) process

Ot+1 = ρOt + (1 + ρΛL1)εt+1 − ρΛL1εt, (2)

where ΛL1 = (1− ρL1)/(1− ρ) and its variance is given
as

Var(O) =

((
1− ρL1+1

)2 + ρ2
(
1− ρL1

)2−
2ρ2

(
1− ρL1+1

) (
1− ρL1

)
)

(1− ρ)2(1− ρ2)
σ2

ε .

Therefore, we may conclude that if historical data of Ot

is available and it is analysed via the ARMA(1, 1) model
(Box et al., 1994), we can obtain estimated values of ρ
and εt. Thus, from Eq. 2, we find that the unknown error
term in the ordering process is (1 + ρΛL1)εt+1 for the
case of no-information sharing. HD shows that Ot+1 can
also be expressed as

Ot+1 = Dt+1 + ρΛL1(Dt+1 −Dt).

After substituting Eq. 1 into the equation above, some
algebraic simplification yields

Ot+1 = ρL1+1Dt + (1 + ρΛL1)εt+1.

From this we can see that even if the up-to-date demand
information Dt and the value of ρ are shared, the value
of the unknown error term, (1 + ρΛL1)εt+1, is the same
as in the case of no-information sharing. Therefore, in
terms of the forecast accuracy, there is no difference be-
tween the case of information sharing and the case of
no-information sharing. Since the MMSE forecast accu-
racy leads to the lower variance of net inventory levels, it
is obvious that information sharing alone does not con-
tribute to a lower standard deviation of net stock levels.

5 Scenario 2: A supply chain that exploits the
generalised OUT policy

Scenario 2 assumes that the first echelon player employs
the OUT policy with a proportional controller, F , added
into the inventory position feedback loop. We call this
ordering policy the generalised OUT policy. The second
echelon player, however, still uses the traditional OUT
policy with an updated MMSE forecasting scheme to
minimise the variance of its own net inventory levels. At
the end of this section, we will discuss the adequacy of
our choice of employing the traditional OUT policy at
the second echelon. In Scenario 2, a collaboration scheme
is assumed. This means that the supply chain players
are concerned only with the overall supply chain cost.
The first echelon player manages its ordering process,
by tuning the value of F , the proportional controller,
to allow the second echelon player to reduce the cost at

the second echelon. As a result of tuning the value of
F , the cost at the first echelon may increase. If the cost
reduction at the second echelon is large enough, however,
the overall supply chain cost may decrease.

5.1 The generalised Order-Up-To policy

To realise our generalised OUT policy, let us begin by
reviewing the traditional OUT policy.

Ot = D̂L1
t − (WIPt + NSt)

= D́L1
t + D̂L1−1

t − (WIPt + NSt)
= D́L1

t +
(
D̂L1−1

t − (WIPt + NSt)
)

= D́L1
t +

(
DIPt − (WIPt + NSt)

)
, (3)

where D́L1
t is the conditional estimate of the demand in

time period t + L1 made at time period t. Therefore,
D̂L1

t = D́L1
t + D̂L1−1

t . DIPt is a Desired Inventory Po-
sition at time period t, that can be described as D̂L1−1

t .
Note that DIP t = 0, if L1 = 1; DIP t = D̂L1−1

t , if L1 >
1. Incorporating a proportional controller, F , into Eq. 3
surrenders a generalised OUT policy

Ot = D́L1
t + F

(
DIPt − (WIPt + NSt)

)
, (4)

where 0 < F < 2 as shown in Hosoda (2005). Obviously,
if F = 1, the generalised OUT policy is identical to the
traditional OUT policy. From here, we will use the ex-
pression Var(ÑSn) for the variance of the net inventory
of the generalised OUT policy at the echelon n, and JS2

for the objective function for Scenario 2. F ∗ represents
the optimum value of F minimising JS2, and the min-
imised value of JS2 is denoted as J∗S2.

Var(ÑS1) can be written as

Var(ÑS1) =

(
L1(1− ρ2)+

ρ(1− ρL1)(ρL1+1 − ρ− 2)

)

(1− ρ)2 (1− ρ2)
σ2

ε +

(
ρL1 − 1

)2 (F − 1)2

(ρ− 1)2 (2− F )F
σ2

ε

= Var(NS1) +
Ω2Ψ2

(ρ− 1)2 (1−Ψ2)
σ2

ε , (5)

where Ψ = 1 − F and Ω = ρL1 − 1. Hosoda (2005)
provides details. Clearly, the second term of the RHS
of Eq. 5 is always equal to or greater than zero. This
means that with the generalised OUT policy the first
echelon inventory investments are never less than with
the traditional OUT policy. From this, it is easy to see
that;
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• If F ∗ is not equal to 1, then
√

Var(ÑS1) >√
Var(NS1). In this paper, we characterise this sit-

uation as altruistic behaviour or an altruistic con-
tribution because the first echelon accepts increased
local costs to enable the total supply chain costs to
be reduced.

• If F ∗ = 1, the supply chains for Scenario 1 and Sce-
nario 2 are identical. In that case, we can conclude that
incorporating proportional controller into the tradi-
tional OUT policy brings no benefit in terms of reduc-
ing our objective function, the sum of the standard
deviations of the net inventory levels.

5.2 The ordering process, MMSE forecasts and the
value of information sharing

To minimise the objective function, the second echelon
or supplier who employs the traditional OUT policy,
must complete an MMSE forecast of the orders placed
by the first echelon player. The ordering process at time
period t + 1 placed by the first echelon player can be
written as

Ot+1 = D́L1
t+1 + F

(
DIP t+1 − (WIP t+1 + NS t+1)

)

= (1− F )Ot + ρL1(ρ + F − 1)Dt +(
ρL1 + FΛL1

)
εt+1, (6)

and its variance is

Var(Õ) =




2FρL1(ρ + 1)(ρ + F − 1)−
2ρ2L1(ρ + F − 1)2−
F (ρ + 1) (1 + (F − 1)ρ)




(F − 2) (ρ− 1)2 (ρ + 1) (1 + (F − 1)ρ)
σ2

ε .

Details are shown in Hosoda (2005). Eq. 6 tells us that to
complete the MMSE forecast, the upper-stream player
needs up-to-date information of Dt, and knowledge of
the values of ρ, F and L1, that we assume to be con-
stants herein. It should be noted that Hosoda (2005)
shows that Eq. 6 can be rewritten as an ARMA(1, ∞)
process and interestingly, the value of the autoregressive
coefficient is 1 − F , not ρ. Theoretically, by keeping an
infinite number of historical orders, the second echelon
player can do an MMSE forecast against the ARMA(1,
∞) demand process without the sharing of any up-to-
date information. Therefore, the benefit of the up-to-
date market information sharing decreases as the avail-
ability of the historical order data increases. 2

2 The block diagrams for the case of demand information
sharing and the case of no demand information sharing are
presented in Hosoda (2005). The transfer functions and dy-
namics of these two cases are equivalent. Thus we may con-
clude with our assumptions that there is no value of informa-
tion sharing in our infinite horizon two-echelon supply chain.

5.3 The objective function

Var(ÑS2) can be obtained from the forecast error over
the lead-time, as shown in Hosoda (2005).

Var(ÑS2) =

σ2
ε

(ρ− 1)2

(
L2 +

(
Ψ2L2 − 1

)
Ω2Ψ2

Ψ2 − 1
+

ρL1+1
(
ρL2 − 1

) (
ρL1+L2+1 + ρL1+1 − 2ρ− 2

)

ρ2 − 1
+

2ΩΨ
(

1−ΨL2

1−Ψ
− ρL1+1

(
(ρΨ)L2 − 1

)

ρΨ− 1

))

= Var(NS2) +

σ2
ε

(ρ− 1)2

((
Ψ2L2 − 1

)
Ω2Ψ2

Ψ2 − 1
+

2ΩΨ
(

1−ΨL2

1−Ψ
− ρL1+1

(
(ρΨ)L2 − 1

)

ρΨ− 1

))
. (7)

Thus, using Eq. 5 and Eq. 7, the objective function for
the Scenario 2, JS2, may be written as

JS2 =
√

Var(NS1) +
√

Var(NS 2)

=
√

Var(ÑS1) +
√

Var(ÑS 2)

=

√
Var(NS1) +

Ω2Ψ2

(ρ− 1)2 (1−Ψ2)
σ2

ε +

√√√√√√√√√√√√√

Var(NS 2)+

σ2
ε

(ρ− 1)2

((
Ψ2L2 − 1

)
Ω2Ψ2

Ψ2 − 1
+

2 ΩΨ


1−ΨL2

1−Ψ
−

ρL1+1
(
(ρΨ)L2 − 1

)

ρΨ− 1







. (8)

From Eq. 8, we have the following proposition. It is pos-
sible to prove that F ∗ never has unit value. The proof
is provided in Hosoda (2005). Further analytical results
are difficult to present due to the rather unwieldy ex-
pressions for the roots of Eq. 8. Thus we are now forced
to resort to numerical investigations. However, first let
us conclude this section with an investigation of the con-
sequences of our selection of the traditional OUT policy
at the second echelon.

5.4 On the second echelon ordering policy

Here, we have incorporated another proportional con-
troller, F2, into the second echelon. Thus, the model we
use here is a two-echelon supply chain model where both
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two players employ the generalised OUT policy. Follow-
ing Bellman’s Principle of Optimality (Bellman, 1957,
pp. 83), we will now show that even if we assume both
two echelon players use the generalised OUT policy, the
results from that model reduce to the results from our
model previously considered. In other words, we are now
going to prove the optimal value of F2 is unity. Under
the condition that the values of ρ, σ2

ε , and lead-times
are known, the variance of the net inventory levels at
each echelon can be seen as a function of proportional
controllers. Here, we introduce a new term, fNS2(F2|F )
which represents the variance of the net inventory level
at the second echelon with a proportional controller F2,
subject to F . If F2 = 1, fNS2(F2|F ) becomes identical 3

to Var(ÑS 2). Now, a new objective function for Scenario
2, JS2,F2 can be expressed as

JS2,F2 =
√

Var(ÑS1) +
√

fNS2(F2|F ).

Remember that Var(ÑS 1) is a function of F , as shown by
Eq. 5. Therefore, J ∗S2,F2

, the minimised value of JS2,F2 ,
can be written as

J ∗S2,F2
= min

F,F2

[√
Var(ÑS1) +

√
fNS2(F2|F )

]

= min
F

[√
Var(ÑS1) + min

F2

[√
fNS2(F2|F )

]]
.

From Vassian’s finding that the traditional OUT policy
minimises the variance of the net inventory levels, we can
deduce that setting F2 = 1 yields the minimum value of
fNS2(F2|F ) at any given value of F . Now, we will have
the final expression.

J ∗S2,F2
= min

F

[√
Var(ÑS1) +

√
fNS2(F2 = 1|F )

]

= min
F

[√
Var(ÑS1) +

√
Var(ÑS2)

]

= J ∗S2.

By expanding this result, we can have more general con-
clusion: In supply chains of greater than two echelons,
when the downstream echelons use the generalised OUT
policy, then the upper echelon should always use the tra-
ditional OUT policy to minimise the overall objective
function, the sum of the standard deviations of the net
inventory levels at each echelon.

6 Numerical investigations

In this section, we will enumerate the two objective func-
tions, JS1 and J∗S2, for different lead-time settings of

3 In Hosoda (2005), after showing that the net inventory
level follows ARMA(1, Ln−1) process, the exact expressions

of fNS2(F2|F ) and fNS2(F2 = 1|F ) = Var(ÑS2) are shown.
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Fig. 1. The value of JS2 when L1 = 2, L2 = 2
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Fig. 2. The value of JS2 when L1 = 1, L2 = 3

L1 = L2 = 2 and L1 = 1, L2 = 3. In all cases, we
have set σ2

ε = 1. Using Eq. 8, we have plotted the val-
ues of JS2 in Fig. 1 and Fig. 2 with the restriction that
0 < F < 2, when ρ = 0.7, 0.0 and −0.7 for both lead-
time settings. From these figures, we can see that JS2

has a unique minimum value for the given values of ρ, L1

and L2. Using the cylindrical algebraic decomposition
algorithm (i.e. Caviness and Johnson, 1998), the value of
F ∗, which minimises JS2 under the model settings, has
been obtained. Tables 1–2 show the results of two sce-
narios with the lead-time setting L1 = 2, L2 = 2 and Ta-
bles 3–4 highlight the case of L1 = 1, L2 = 3. In Table 3,
the value of

√
Var(NS1) is independent from the value

of ρ. This is because in the traditional OUT policy with
unit lead-time, if an AR (or ARMA) demand process is
assumed, the variance of the forecast error over the unit
lead-time is identical to the variance of the error term in
the demand process, σ2

ε for all ρ. From Tables 1−4, we
can conclude that

• J∗S2 < JS1 for all values of ρ. This means that our gen-
eralised OUT policy supply chain always outperforms
the traditional OUT policy supply chain.

• F ∗ never has unit value, as expected.
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Table 1
Calculated values of JS1: L1 = 2, L2 = 2

Scenario 1

ρ
√

Var(NS1)
√

Var(NS2) JS1

−0.9 1.005 0.928 1.933

−0.8 1.020 0.902 1.922

−0.7 1.044 0.908 1.952

−0.6 1.077 0.935 2.012

−0.5 1.118 0.976 2.094

−0.4 1.166 1.031 2.197

−0.3 1.221 1.098 2.319

−0.2 1.281 1.182 2.463

−0.1 1.345 1.286 2.632

0.0 1.414 1.414 2.828

0.1 1.487 1.570 3.057

0.2 1.562 1.759 3.321

0.3 1.640 1.985 3.625

0.4 1.720 2.252 3.972

0.5 1.803 2.565 4.368

0.6 1.887 2.929 4.815

0.7 1.972 3.348 5.321

0.8 2.059 3.830 5.889

0.9 2.147 4.378 6.526

• Value of F ∗ is affected by the value of ρ and lead-time
settings.

• J∗S2 < JS1 is achieved by altruistic behaviour
of the first echelon player. That is, by accepting√

Var(ÑS1) >
√

Var(NS1).

Now, let us employ the equation ∆J = (JS1− J∗S2)/JS1

as a measure of the benefit of altruistic behaviour and
information sharing in the supply chain. The calculated
values of ∆J are shown in Fig. 3. The maximum value of
∆J , 18.3%, is achieved at ρ = 0.0 when the lead-time set-
ting is L1 = 2, L2 = 2. The average values of the ∆J are
15.0% and 11.6% for each lead-time settings. If we intro-
duce an assumption that the value of autocorrelation co-
efficient ρ is positive, these average values become 15.8%
and 11.1%, respectively. 4 Table 5 shows variance ratios
of order rates; a measure of the bullwhip effect. The vari-
ance ratio for Scenario 1 is obtained by Var(O)/Var(D)
and that for Scenario 2 is Var(Õ)/Var(D). If the vari-
ance ratio is greater than unit value, we conclude the
bullwhip has occurred. Under both lead-time settings,

4 The assumption of positive values of autocorrelation co-
efficient is more realistic assumption from the point of the
real business world. See Lee et al. (1997), Lee et al. (2000)
and Disney et al. (2003).

Table 2
Calculated values of J∗S2: L1 = 2, L2 = 2

Scenario 2

ρ F ∗
√

Var(ÑS1)
√

Var(ÑS2) J∗S2

−0.9 0.14180 1.019 0.831 1.850

−0.8 0.18193 1.059 0.704 1.762

−0.7 0.20502 1.116 0.609 1.724

−0.6 0.22104 1.186 0.540 1.726

−0.5 0.23410 1.267 0.495 1.762

−0.4 0.24597 1.354 0.470 1.824

−0.3 0.25708 1.447 0.463 1.910

−0.2 0.26707 1.544 0.476 2.019

−0.1 0.27553 1.645 0.507 2.152

0.0 0.28237 1.750 0.561 2.311

0.1 0.28787 1.859 0.642 2.501

0.2 0.29238 1.971 0.756 2.727

0.3 0.29618 2.085 0.907 2.993

0.4 0.29945 2.202 1.102 3.304

0.5 0.30230 2.320 1.344 3.664

0.6 0.30483 2.440 1.639 4.079

0.7 0.30711 2.561 1.993 4.554

0.8 0.30921 2.561 1.993 4.554

0.9 0.31117 2.805 2.899 5.704
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Fig. 3. ∆J : Objective function reduction (%)

Scenario 1 always generates bullwhip when ρ is positive.
On the other hand, in Scenario 2, for almost any values
of ρ, the bullwhip is mitigated and the variance ratio is
less than unit value. This means that the variance of or-
ders placed by the first echelon is less than that of mar-
ket demand. Furthermore, the variance ratio of Scenario
2 is always lower than that of Scenario 1 when ρ ≥ −0.5.
If we again exploit the assumption of positive value of ρ,
we may conclude that the properly managed altruistic
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Table 3
Calculated values of JS1: L1 = 1, L2 = 3

Scenario 1

ρ
√

Var(NS1)
√

Var(NS2) JS1

−0.9 1.000 0.933 1.933

−0.8 1.000 0.924 1.924

−0.7 1.000 0.956 1.956

−0.6 1.000 1.017 2.017

−0.5 1.000 1.097 2.097

−0.4 1.000 1.192 2.192

−0.3 1.000 1.302 2.302

−0.2 1.000 1.428 2.428

−0.1 1.000 1.570 2.570

0.0 1.000 1.732 2.732

0.1 1.000 1.917 2.917

0.2 1.000 2.130 3.130

0.3 1.000 2.373 3.373

0.4 1.000 2.652 3.652

0.5 1.000 2.971 3.971

0.6 1.000 3.337 4.337

0.7 1.000 3.755 4.755

0.8 1.000 4.232 5.232

0.9 1.000 4.773 5.773

behaviour at the first echelon reduces not only the over-
all inventory related costs in a supply chain but also the
bullwhip related costs at the second echelon. This is the
case despite the fact that no bullwhip cost information
was included in the objective function. In Fig. 4, an ex-
ample of the discrete simulation results is shown in order
to demonstrate the impact of the altruistic behaviour at
the first echelon on the supply chain dynamics. 5

7 Conclusions

We have investigated an infinite horizon two-echelon in-
ventory problem assuming the OUT policy and AR(1)
demand pattern. By incorporating a single controller, F ,
into the traditional OUT policy at the first echelon, we
may obtain significant savings in the total supply chain
cost, as measured by the sum of the standard deviations
of the net stock levels at each echelon. To enjoy this high
benefit, we show that altruistic behaviour by the first
echelon is essential. In addition, this behaviour can mit-
igate the bullwhip effect. Since the benefit at the second
echelon is large enough to compensate for the loss at the

5 Simplified versions of our supply chain simulation models
can be seen at http://www.bullwhip.co.uk/bwExplorer.htm.

Table 4
Calculated values of J∗S2: L1 = 1, L2 = 3

Scenario 2

ρ F ∗
√

Var(ÑS1)
√

Var(ÑS2) J∗S2

−0.9 0.65464 1.066 0.840 1.905

−0.8 0.54418 1.124 0.721 1.844

−0.7 0.46560 1.183 0.629 1.812

−0.6 0.40500 1.244 0.560 1.805

−0.5 0.35655 1.306 0.512 1.818

−0.4 0.31807 1.367 0.487 1.854

−0.3 0.28993 1.420 0.496 1.916

−0.2 0.27300 1.456 0.550 2.007

−0.1 0.26509 1.475 0.653 2.127

0.0 0.26207 1.482 0.796 2.278

0.1 0.26105 1.484 0.974 2.458

0.2 0.26074 1.485 1.186 2.671

0.3 0.26067 1.485 1.432 2.917

0.4 0.26073 1.485 1.718 3.203

0.5 0.26091 1.485 2.048 3.532

0.6 0.26126 1.484 2.426 3.910

0.7 0.26181 1.482 2.859 4.341

0.8 0.26257 1.481 3.351 4.832

0.9 0.26356 1.478 3.910 5.389

first echelon, a central planner should provide an incen-
tive to the first echelon player for his altruistic contri-
bution. An important insight from our results is that a
significant amount of benefit comes from each player in
the supply chain doing what is the best for itself and the
supply chain, rather than doing what is the best for its
own selfish interests.

In terms of the shared information, in addition to the
values of ρ and F , we used up-to-date demand informa-
tion Dt to enable the upper-stream player to complete
an MMSE forecast. This leads to not only the minimum
inventory related cost at the second echelon, but also to
the minimisation of inventory costs in the overall sup-
ply chain. We also show that instead of up-to-date de-
mand information sharing, the historical order data also
enables the second echelon player to achieve the same
performance in the supply chain. The benefit, therefore,
does not depend on reducing the uncertainties in a sup-
ply chain. Instead, it has been achieved by governing the
dynamics of the supply chain through the process of min-
imising the objective function. This point is the most sig-
nificant difference from other relevant research schemes
that usually exploit the well-known principle that less
uncertainty leads to a more efficient supply chain.
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Table 5
Measured bullwhip in the first echelon player’s order

L1 = 2, L2 = 2 L1 = 1, L2 = 3

ρ Scenario1 Scenario2 Scenario1 Scenario2

−0.9 0.689 0.659 0.658 0.732

−0.8 0.516 0.421 0.424 0.545

−0.7 0.436 0.265 0.286 0.403

−0.6 0.416 0.170 0.232 0.293

−0.5 0.438 0.119 0.250 0.210

−0.4 0.489 0.098 0.328 0.151

−0.3 0.569 0.098 0.454 0.114

−0.2 0.677 0.111 0.616 0.100

−0.1 0.820 0.133 0.802 0.112

0.0 1.000 0.164 1.000 0.151

0.1 1.220 0.208 1.198 0.214

0.2 1.476 0.270 1.384 0.301

0.3 1.759 0.355 1.546 0.409

0.4 2.048 0.472 1.672 0.535

0.5 2.313 0.624 1.750 0.673

0.6 2.505 0.810 1.768 0.817

0.7 2.564 1.014 1.714 0.954

0.8 2.405 1.196 1.576 1.063

0.9 1.927 1.261 1.342 1.106

The success of the altruistic behaviour in a real business
is completely dependent on the redistribution of the cost
savings, since the benefit will be generated at the second
echelon only. Thus, without the promised redistribution
of benefit, the first echelon player has no incentive for
his altruistic contribution. A VMI type of scheme, where
the first echelon player lets the second echelon player
own and manage all inventory in a supply chain, might
be a suitable scheme in which to exploit this altruis-
tic behaviour. Under a VMI scheme, the second echelon
player is solely responsible for the overall inventory re-
lated costs so that the redistribution of costs between
players is not necessary.

Finally, let us highlight the limitations of our research.
We have recognised that the results shown herein are
conditional upon our model settings; a known demand
process, no capacity limitations, and no incentive con-
flicts between the two players. We have assumed that the
sum of the standard deviations of the net inventory levels
represents the costs of the total supply chain. However,
adding order standard deviations (to capture, for exam-
ple, bullwhip costs) into the objective function might be
more reasonable. If the unit cost of the inventory at the
first echelon is different from that at the second echelon,
an alternative objective function (that includes weights
for the standard deviations) might be a better choice.
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Fig. 4. An example of model behaviour: ρ = 0.7, and
L1 = 2, L2 = 2
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