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Abstract  

This paper considers the performance of a production or distribution-scheduling algorithm termed Automatic 
Pipeline, Inventory and Order Based Production Control System (APIOBPCS) embedded within a Vendor Managed 
Inventory (VMI) supply chain where the demand profile is deemed to change significantly over time. A dynamic 
model of the system using causal loop diagrams and difference equations is presented. The APIOBPCS ordering 
algorithm is placed within a VMI relationship and a near saturated search technique evaluates optimum solutions 
based on production adaptation cost, system inventory cost and distributors’ inventory costs. The procedure can also 
cope with supply chains that operate in a localized region (where small, frequent deliveries are possible) or on a 
global scale, where large batch sizes are needed to gain economies of scale in transport costs. Properties of the 
optimal systems are highlighted via various Bullwhip, customer service level and inventory cost metrics. Managerial 
insights are gained and a generic decision support system is presented for “tuning” VMI supply chains. An 
important feature of the optimization procedure is the ability to generate a number of competing ordering algorithm 
designs. Final selection of the “best” system is then made via managerial judgement on the basis of the simulated 
response to typical real-life demands. We finish with a discussion of how the procedure may be used in an industrial 
context to design and strategically manage VMI supply chains. 
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Introduction 

Many companies are now compelled to improve supply chain operation by sharing demand and inventory 
information with suppliers and customers. Different market sectors have coined alternative terms covering 
essentially the same idea of Vendor Managed Inventory (VMI). This is a production/distribution and inventory 
control system where stock positions and demand rates are known across more than one echelon of the supply chain. 
It is this enhanced information which is used for the purposes of setting production and distribution targets. VMI 
comes in many different forms described by terms such as Synchronized Consumer Response, Continuous 
Replenishment Programs, Efficient Consumer Response, Rapid Replenishment (Cachon & Fisher, 1997), 
Collaborative Planning, Forecasting and Replenishment (CPFR), (Holmström, Framling, Kaipia & Saranen, 2000), 
and Centralized Inventory Management (Lee, Padmanabhan & Whang, 1997a) often being used, depending on the 
sector application, ownership issues and scope of implementation. However, in essence, they are all variants on the 
VMI theme. There is also an increasing amount of literature on the way such shared information can be utilized to 
advantage. This is based on findings from computer-based simulation packages, e.g., Mason-Jones & Towill (1997), 
Lambrecht & Dejonckheere (1999a and 1999b), Van Ackere, Larsen & Morecroft (1993), Waller, Johnson & Davis 
(1999), Kaminsky & Simchi-Levi (1998), and from OR based statistical theory, e.g., Chen, Ryan & Simchi-Levi 
(2000) and Lee, So & Tang (2000).  
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Here we use discrete control theory and simulation to design a VMI ordering system. Specifically, the 
performance of the VMI system when coupled with the APIOBPCS (Automatic Pipeline, Inventory and Order 
Based Production Control System) production scheduling system, (John, Naim & Towill, 1994), is investigated 
and optimized. The major assumptions made are that; 
 
 The system is linear, thus all lost sales are backlogged and negative production orders may become 

negative hence excess inventory is returned without cost. 
 demand may be either deterministic (when calculating inventory responsiveness) or stochastic (when 

calculating production adaptation costs), in which case a normal distribution that is independent and 
identically distributed is assumed. 

 The production adaptation cost is proportional to the variance of the orders generated. 
 The cost of holding inventory is proportional to the time weighted inventory deviation following a unit 

step input 
 The ordering policy adapted is APIOBPCS 
 

The APIOBPCS policy is actually a very general rule; for instance the order-up-to policy and many variants of the 
order-up-to model are a special case of APIOBPCS, Dejonckheere, Disney, Lambrecht & Towill, (2001). For 
example APIOBPCS mimics human behavior whilst playing the “Beer Game”, Sterman (1989) and Naim & Towill 
(1995) and is a general descriptor of much of UK industrial practice (Coyle 1977). Specific industrial applications 
are described in Olsmats, Edghill & Towill (1988) and del Vecchio & Towill (1990). The order-up-to policies are 
well known to be optimal in terms of inventory costs, Chen, Drezner, Ryan & Simchi-Levi (2000). However the 
more general APIOBPCS structure is capable of minimizing the sum of the inventory and production adaptation 
costs (Dejonckheere et al, 2001) and is therefore of more general application.  
 
The structure of the paper is as follows: Firstly the VMI supply chain concept is described. Next the supply chains 
dynamic time based performance is quantified. A solution space search appropriate to APIOBPCS operation then 
evaluates most of the possible combinations of decision parameter values to identify good solutions to the 
production-ordering problem within VMI supply chains. The evaluation is based on two types of cost functions. One 
is a surrogate for production adaptation costs; the second is a surrogate for the cost of holding inventory throughout 
the VMI system. Thus, the system is designed to minimise inventory-holding costs and adaptation related costs 
covering the need to ramp production up and down to meet perceived needs. The latter may be seen as due to 
bullwhip type behavior, and the former due to buffering it via inventory positioning. Additionally the optimization 
routine allows for the investigation of different ratios of production adaptation and inventory costs (where 
production adaptation may be weighted more, equal to, or less than inventory costs as shown later in Table 1).  
 
The effect of different delivery frequencies between the two echelons in the VMI supply chain is also investigated. 
As the move to a VMI scenario alters the fundamental structure of the supply chain ordering mechanism, new VMI 
ordering decision needs to be “re-tuned” or optimized. In effect, for supply chains with volatile consumer demands, 
the manner in which inventory is moved from the manufacturer to the distributor in the VMI relationship creates 
extra variation in the demand signal (this is because of the predictive element at the distributor) to which the 
manufacturer has to respond. This paper specifically investigates the manner in which a manufacturer needs to “re-
tune” his production and distribution control system within a VMI context. Additionally good designs are found for 
the case of different transportation lead-times between the manufacturer and the distributor and for different ratios of 
production adaptation and inventory costs. Since the latter are rarely known with great accuracy, studying a range of 
possible ratios yields considerable insight at the systems design stage. The methodology thus enables the final 
choice of parameters to be selected by comparing competing designs responding to real-world demand signals. 
  
In summary, an evaluation and optimization procedure is highlighted “to make the best of”, (or to optimize, Sterman 
1991) the APIOBPCS ordering decision within the VMI context, in order to minimise inventory holding and 
production adaptation costs and account for transportation batch sizes by altering:  
 

 the way in which the re-order point at the distributor is calculated, 
 system forecasting parameters and 
 feedback parameters within the production ordering decision algorithm. 
 

The set of results from the optimization procedure are analysed and some general managerial insights are gained, 
against the constraints that, the real system is linear and our model is representative of the system. These insights 
include the effect of the transportation lead-time, forecasting constants, inventory and WIP feedback on the bullwhip 
effect and inventory responsiveness. An important feature of the optimization procedure is the ability to generate a 
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number of competing designs via changing the weighting between inventory and production adaptation costs. 
Management judgement then assists in determining the “best” solution. This can be cross-checked for robustness by 
conducting a sensitivity analysis.  
 

Outline of the VMI system 
To describe the VMI scenario; a manufacture and a distributor collaborate to operate a particular VMI strategy. The 
consumer buys goods from the distributor’s stock. An important feature of the system is that the manufacturer 
manages the distributor’s stock. The distributor collects information on the downstream sales to the consumer that 
is used to provide a forecast of the future likely sales over the delivery lead-time. This forecast is used to set a 
reorder point, R, which will be used to provide safety stock to ensure high availability of goods at the distributor. 
However when sales increase, the reorder point R should increase (assuming that the delivery lead-time is constant) 
so as to ensure high Customer Service Levels (CSL). So, R is based on a forecast generated by exponentially 
smoothing the customer sales over Tq time periods. This exponential forecast is then multiplied by a safety factor 
(G) that reflects the transportation lead-time between the two VMI echelons and the desired availability to determine 
R. The distributor sales, inventory levels and reorder point are then passed to the manufacturer, who can then 
determine whether or not a delivery is required. When the distributor’s inventory is below R, the manufacturer ships 
goods to inflate the distributor’s stock up to an Order-up-to point (O). However, by the time the delivery arrives the 
distributor’s stock level is not likely to equal the Order-up-to point, due to sales occurring since the time the re-order 
point triggered the dispatch. 
 
The manufacturer then has the responsibility for determining how many products to make in order to balance the 
availability versus excess stock trade-off. This is done by summing the goods in-transit (GIT), the distributor’s 
inventory and the manufacturer’s finished goods inventory minus the re-order point R, (This sum is termed the 
system inventory and is an important driver in VMI control). The system inventory is compared to a target system 
inventory, and a fraction (1/Ti) of the error in system inventory is taken, summed together with a smoothed 
representation of demand (exponentially smoothed over Ta time units) and a fraction (1/Tw) of the Work In Process 
(WIP) error to set the production targets. It is this particular way of using information that mimics the Automatic 
Pipeline, Inventory and Order Based Production Control Systems (APIOBPCS) principles (John et al, 1994). 
Remember, that although the inventory level refers to the inventory at the manufacturer and the distributor, the WIP 
level is specific to the manufacturer only. 
 
It can be appreciated that the value of R should be dynamically updated to track the demand profile of the product. 
As the demand increases/decreases during the product lifecycle it is desirable to increase/decrease R so that the 
safety stock provides good customer service levels at the distributor without driving up inventory holding costs. R 
should be set as a multiple (G) of average demand as forecasted by the exponential smoothing forecasting technique, 
such that there is an adequate cover on demand to protect the customer from the delivery lead-time. Any net changes 
in the stock re-order point, R, therefore have to be added to customer sales. The traditional method, assuming a 

normally distributed demand, of calculating the re-order point R is to set Ri= D iL+ZiL, in time period i, where Z 
is the standard normal variant or the number of standard deviations from the mean corresponding to the CSL 
required to provide the necessary cover, Wilkinson (1996).  is the standard deviation of forecast error in time 

period i, and L is the distribution lead-time plus one time unit to account for the order of events. D  is the average 

demand in time period i. D  is determined via exponential smoothing (with constant Tq), as this is a method 
commonly used within the operations research community, (Chen, Ryan and Simchi-Levi, 2000). Therefore, R is 

related to a gain (G) on average demand, via G = ( D L+ZL)/ D . Thus R can be reduced to a simple multiple (G) 

of average demand ( D ) such that there is an adequate cover on demand to protect the customer from the delivery 
lead-time. This means that, because any net changes made in the R have to be added to customer sales, the 
parameters that affect R, (which have just been reduced to G and Tq) will have an impact on the dynamic 
performance of the system. Additionally, the constant APIOBPCS parameters Ta, Ti, Tw will also have an effect on 
the systems dynamic response. Thus, there is a need to identify “good” sets of algorithmic controller values (Ta, Ti, 
Tq, Tw) for various values of G in order to reduce the sum of inventory costs and production adaptation costs. 
Additionally it is important to define “good” solutions for various ratios (W) of production adaptation costs to 
inventory costs.  
 
The philosophy of our approach to VMI is design summarised in the Input-Output diagram shown in Figure 1. The 
generic optimization process inputs are the VMI-APIOBPCS model, transfer function analysis capability, simulation 
software and a suitable objective function. For any given system application, the distributor re-order point gearing 
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(G), production delay (Tp) and costs weighting function (W) are specified as given. The optimization process then 
produces the recommended system design outputs. These are Tq (distribute sales averaging time); Ta (Factory Sales 
averaging time); Ti (Inventory adjustment time); and Tw (WIP adjustment time). The simulation capability may 
then be used to predict system response to any customer demand. 
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Figure 1. Input-output diagram of the VMI design process 

 

Formal description of VMI as an integrated system 
The APIOBPCS structure can be expressed in words as, “Let the production targets be equal to the sum of an 
exponentially smoothed representation of demand (exponentially smoothed over Ta time units), plus a fraction 
(1/Ti) of the inventory error in echelon stock, plus a fraction (1/Tw) of the WIP error” (John et al, 1994). In a multi-
echelon inventory decision-making environment, the inventory error corresponds to the desired inventory in the 
factory minus the actual inventory in the factory. However to extend the APIOBPCS model into VMI-APIOBPCS, 
the manufacturer’s finished goods now encapsulates the distributor’s inventory, the manufacturer’s finished goods 
as well as the stock in transport, minus the re-order point, R. Defining this as the system stock, the VMI-APIOBPCS 
can be expressed in words as, “Let the production targets be equal to the sum of an exponentially smoothed 
representation of demand (exponentially smoothed over Ta time units), plus a fraction (1/Ti) of the inventory error 
in system stock, plus a fraction (1/Tw) of the WIP error”. Note the difference in the stock calculation in the two 
scenarios, i.e. VMI compared with traditional two-echelon control. Figure 2 illustrates the flow of information in the 
VMI situation.  
 
The previous verbal description can now be turned into a causal loop diagram as shown in Figure 3. This is 
particularly useful as a set of block diagrams and difference equation models can be developed directly from it. 
Difference equations can be used to develop a spreadsheet-based model of the system. The required equations are 
shown in Appendix A. Block diagrams are particularly powerful mathematical models of the system that can also be 
derived from the causal loop diagram and can be used to investigate system performance. More details on this can 
be found in Disney (2001), but are not presented here for sake of brevity. Note that as stated above that the average 
consumer demand (CONS) is estimated via a first order exponential smoothing function. The net change in this 
estimate, from one time period to the next, is then added to the consumer demand. This reflects the distributor’s 
effect on the demand signal in the VMI scenario and is a unique aspect of VMI identified by this contribution. 

 



Disney, S.M., and Towill, D.R., (2002), “A procedure for the optimisation of the dynamic response for a Vendor Managed Inventory supply chain”,  
Computers and Industrial Engineering: An International Journal, Vol. 43, No. 1-2, pp27–58. ISSN 0360-8352. DOI: 10.1016/S0360-8352(02)00061-X. 

 5

VMI 
Controls

Business 
Targets

Infinite
Material
 Stocks

Vending
 Stocks(DINV)

Finished 
Goods

 Stocks (FINV)

Sales (CONS)

Factory

Production lead-time Distribution lead-time

D
e

sp
a

tc
h

T
hi

s 
N

um
b

e
r

Set GIT 
Stock

Set Target 
Stock, R

Completions Despatches

Set Target 
Stock (TINV)

Service Levels

Production 
Orders

Deliveries

Total System Stock (SINV)

Fac
to

ry 
Ord

er
 R

ate

(O
RATE)

F
ac

to
ry

 C
o
m

pl
et

io
ns

(C
O

M
R

A
T

E
)

GIT

 

Figure 2. Overview of the VMI scenario 
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Dynamic response of the VMI system 

An illustration of the dynamic response of the system to the unit step in consumption is useful at this stage. Such 
responses provide “rich pictures” of system behavior. In order to economize on the number of figures herein, those 
selected illustrate and anticipate the good dynamic performance discovered using an optimization technique 
developed in a later section. Thus the responses shown serve two purposes: firstly to highlight how the dynamic 
performance changes with various parameter settings as required to illustrate the text in this section and secondly to 
describe the optimal performance as given by our design technique.  
 
Production order rate responses of the VMI-APIOBPCS system to a step input are shown in Figure 4 for various 
values of G, although we only need consider one of these responses now. A unit step input is a particularly powerful 
test signal that control engineers use to determine many properties of the system under study. For example, the step 
is simply the integral of the impulse function, thus understanding the step response automatically allows insight to 
be gained on the impulse response. This is very useful as all discrete time signals may be decomposed into a series 
of weighted and delayed impulses. Additionally the impulse response contains important frequency domain 
information that may be used to gain insights into responses to real-life random demand patterns (Dejonckheere et 
al, 2001). Within a supply chain context, the step response may be thought of as a genuine change in the mean 
demand rates, (for example, as a result of promotion or price reductions).  
 
A detailed description of the individual controller contributions to ORATE within a single echelon APIOBPCS 
structure can be seen in Disney, Naim and Towill (1997). Hence only the effect of the distributor parameters needs 
to be presented here. Manifestly it can be seen that it takes time for the VMI system to adjust to the changes in 
downstream demand. Thus the system temporarily over produces in order to recover inventory deviations as directly 
observable in Figure 5 that shows the corresponding inventory responses for the same system.  
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Figure 4 shows that, as should be expected, reducing the transportation lead-time results in a better dynamic 
response. This is because as lower values of G (which can be used when there are short transportation lead-times) 
produce a response that has less overshoot to the step input and a shorter settling time. Both are desirable features in 
system control. This finding is also supported by Figure 5, which shows that there is significantly less inventory 
required for the optimum designs with lower cover (G) required on average demand when setting the distributor’s 
re-order point.  

VMI performance metrics 
 
In this section the optimal VMI-APIOBPCS control parameters will be determined. This methodology will ensure 
that the ordering system will minimize the sum of; 
 
 the inventory holding costs at the distributor and the manufacturer, i.e. the total VMI holding costs  
and  
 the production adaptation costs at the manufacturer. The production adaptation costs are the costs associated 

with a variable production ordering rate, i.e. those associated with the Bullwhip Effect (Lee, Padmanabhan & 
Whang 1997a and 1997b). 

 
Each will now be discussed in turn. 
 

The production adaptation cost metric 
The noise bandwidth (N) is traditionally a useful measure to characterize the frequency response of a system and 
hence the production adaptation costs. It is defined as the area under the squared frequency response of the system, 
Equation 1. Very importantly the noise bandwidth n is a performance measure that is proportional to the variance 
of the ORATE when sales consist of pure white noise (constant power density at all frequencies), Garnell & East 
(1977) and Towill (1999). In conventional OR terms, pure white noise maybe interpreted as an independently and 
identically distributed (i.i.d.) normal distribution. Thus the noise bandwidth is directly equivalent to the Coefficient 
of Variation measure used by many authors to quantify the Bullwhip Effect when demand is i.i.d., Dejonckheere et 
al (2001). Stalk and Hout, (1990), state that the cost of variable production schedules is proportional to the cube of 
the variance of the schedule which under some conditions this approximates to a square law. Thus, the noise 
bandwidth may be reasonably considered a surrogate metric for production adaptation costs. These costs may 
include such things as such as hiring/firing, production on-costs, over-time, increased raw material stock holdings, 
obsolescence, lost capacity etc.  
We make use of Shannon’s Sampling Theorem, (Shannon, Oliver & Pierce, 1948) which states that sampled data 
systems can only detect inputs of frequencies up to half the Nyquist Frequency of  radians per sampling period 
from the Amplitude Ratio plot alone due to aliasing, hence the integral is only required for the frequencies 0 to . In  
order to calculate the noise bandwidth the frequency response may be calculated at set values of w selected up to the 
Nyquist frequency. wn is thus estimated via numerical integration with strips of 0.001 radians per time period. The 
system ORATE transfer function required can easily be derived from the causal loop diagram via the block diagram 
as in Disney (2001), but is omitted here for brevity. Hence ORATE can be calculated directly from the transfer 
function so simulation is unnecessary when estimating;  

wORATEw fn 
 2

0
 , …………. Eq. 1 

 
Figure 6 illustrates the wn for various values of Ta and Ti for the particular case when G=1 and W=1. It can be seen 
that the Noise Bandwidth of the system decreases as the forecast parameter (Ta) and as the inventory error controller 
(Ti) is increased. In other words a smoother dynamic response will be produced when the average age of the forecast 
is increased and smaller fractions of inventory errors are recovered over the sampling period. This is expected from 
the analysis by Towill (1982), since the feed-forward and feedback controls are both adjusted to produce the “best” 
system performance. Note that the “best” parameter settings selected therein are conservative with little bullwhip 
induced by the system. 
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Figure 6. Noise bandwidth of the system for various values of Ta and Ti with 
optimum parameters when G=1 and W=1 

The distributor’s inventory recovery metric 

As described earlier, the distributor monitors and exponentially smooths sales. This is to determine a forecast of the 
likely future sales that in turn is used to set the re-order point R in a manner that ensures high CSL. The speculative 
stock held at the distributor should naturally be reflective of end consumer demand. Thus a metric is needed that 
reflects how well the safety stock target reflects the actual consumption. Also it needs to account for the cover 
provided on actual consumption to buffer the consumer from the delivery frequency (CONS*G). To obtain a 
realistic measure, a step change in customer demand is assumed. There will be an initial transient error in the reorder 
point calculation. A quantification of its magnitude will be representative of the responsiveness of the system. This 
can be quantified by taking the Integral of Time * Absolute Error (ITAE) (Graham and Lathrop, 1953) of this error 
response. Thus the ITEA is a measure of the amount of inventory that needs to be held in order to be able to cope 
with a step change in demand. A smaller value of the ITAE will imply that less stock is required to buffer the 
demand, and vice versa. Thus the ITAE may be considered to be a surrogate inventory cost metric. 
 
Now ITAE is generally agreed to be the most intuitive criterion following a step, for assessing transient recovery, as 
there is inevitably a large error is present shortly after the step and the ITAE penalizes more heavily, errors that are 
present later, by a suitable weighting in the time domain, (Towill 1970). Furthermore ITAE also penalizes positive 
and negative errors equally, and is the simplest composite measure that is reliable, applicable and selective, (Graham 
& Lathrop 1953). So ITAE is used in our optimization procedure via the defined in Equation 2 as follows;  
 

a

tE
ITAE

VCON

VCON




 0 ,……….Eq. 2. 

 
 where, t = time period, debased at step change, 
  |EVCON|= modulus of the error in speculative safety stock targets at the distributor, 

 a= weight to scale the metric to a similar magnitude of the production adaptation costs , nominally 
set at 250 after some initial experimentation. 

 
Throughout this paper the ITAE was calculated following a unit step input in CONS that increased from 0 to 1 
widgets per time period at time = zero. The ITAE

VCON
 for various settings of G and Tq can be seen in Figure 7. It 
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shows that G has the major impact of the reflectiveness of the distributors stock level target rather than the 
parameter defining the average age of the exponential forecast (Tq). 
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Figure 7. Reflectiveness of the distributors safety stock level as defined by 
the ITAEVCON 

The system inventory recovery metric 
It is desirable to satisfy demands (at the distributor and at the factory) from stock so the dissatisfied customer will 
not have to wait for product to be delivered. It is also important to ensure that the system inventory (i.e. the total 
inventory at the factory, goods in transit and inventory at the distributor, minus R) does not deviate from a target 
level of stock holding. If large deviations occur, large target stock positions will have to be assumed to achieve 
acceptable levels of availability. Specifically, we are looking for parameter settings that will ensure the system 
inventory level will recover quickly from errors in the target inventory levels that result from changes in demand 
levels. Again the ITAE following a unit step in demand is used but in this particular metric we will now be 
measuring the ITAE of the system inventory as defined by Equation 3 as follows:  

b

tE

ITAE
AINV

AINV




 0 ,………..Eq. 3. 

 
where, t = time period, debased at step change, 
 |EAINV|= modulus of the error in system stock levels, 
 b= weight to scale the metric to a similar magnitude of the production adaptation costs , nominally 500. 
 
 
Equation 3 yields a metric that captures supply chain inventory costs and is illustrated by Figure 8. This graph shows 
that the system inventory recovers well with small values of Ti (the rate at which inventory deviations are 
corrected), but if Ti is set too low then the inventory recovery performance rapidly deceases. This is an important 
managerial insight that has been further explored by Dejonckheere et al (2001). The feed-forward path (the forecast) 
seems to have a less important role here. But generally inventory performance is improved with lower values of Ta.  
 

The objective function to be maximized 
As the three performance criteria outlined above are all defined as the smaller the better, the reciprocal of the 
Euclidean distance from zero in three-dimensional space is used as the overall performance vector. This vector is 
thus shown in Equation 4 below. The individual objectives have been weighted by experiment to initially balance 
contributors and thereby ensure that for the particular case when W=1, one metric does not swamp another. 
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Figure 8. System inventory recovery metric as defined by the ITAE  
 
As different values of G can be used within our VMI system, the objective is to maximize the score as given by 
Equation 4 below of the system for different values of G. This was done by conducting a near full solution space 
search using the algorithm shown in Appendix B. Equation 4 shows that the production adaptation cost metric 
incorporates a scaling factor, W. This is nominally set to unity to denote equal emphasis on production adaptation 
costs and inventory costs. However, W has also been set to a range of other values to investigate the optimum 
solutions of inventory cost sensitive scenarios and production adaptation cost sensitive scenarios. Changing W to 
generate a range of scenarios for further comparison is directly analogous to changing the weighting function used 
in “modern” control theory by Christensen & Brogan (1971), for exactly the same purpose. 
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The full optimization procedure is shown in detail in Appendix B. However a summary of the procedure is as 
follows; 
 Set up VMI transfer function model for frequency response 
 Set up integral of frequency response calculation 
 Set up search procedure 

1. Define variables 
2. Get parameter ranges, G and W and the depth of search from user  
3. Reset initial conditions 
4. Calculate the system inventory cost via the ITAE of AINV in response to a step input via a difference 

equation model 
5. Calculate the distributor inventory cost via the ITAE of VCON in response to a step input via a 

difference equations model 
6. Calculate the production adaptation costs by calling the integral of the frequency response calculation 
7. Iterate around the loop 3-6, evaluating sets of parameter values, remembering the “best” set 



Disney, S.M., and Towill, D.R., (2002), “A procedure for the optimisation of the dynamic response for a Vendor Managed Inventory supply chain”,  
Computers and Industrial Engineering: An International Journal, Vol. 43, No. 1-2, pp27–58. ISSN 0360-8352. DOI: 10.1016/S0360-8352(02)00061-X. 

 11

 Repeat the search procedure for difference values of G and W 
 
Because the difference between 1/x and 1/(x+1) is small for large values of x to save analysis time, the density of 
the search was reduced for large values of the parameters (such as Ta, Ti, Tq, and Tw). Specific details of this can 
be determined from Appendix B, which lists the “Mathematica” ( Wolfram Research, Champaign, IL) source code 

used for this optimization procedure.  

Optimization Results 
The results from the application of the optimization procedure are illustrated in Table 1. The results given are for the 
“best” designs for set values of the Weighting Function W, and the re-order point gearing G. They clearly show that 
the dynamic performance of the system is very much related to the value of G used to cover the delivery frequency 
between the distributor and the manufacturer. Note that less frequent deliveries from factory to distributor require 
larger values of G and hence the dynamic performance of the system decreases. However, for larger G’s the 
transport batch size will be increased and transport costs are lowered, so there are further trade-off’s to consider. If 
the delivery lead-time is known and fixed, G is then set to ensure the availability of goods from stock at the 
distributor. This can be easily done by using a traditional reorder point mechanism, as described earlier.  
It is important to stress that it is the ratios of the APIOBPCS parameter (Ta, Ti and Tw) values to the production 
delay (Tp+1) that leads to generic solutions. Hence these ratios should be considered when using Table 1 to “tune” 
real-world VMI systems with different production lead-times. For example, if a particular production delay is 8 
sampling periods and G is set equal to unity, then the appropriate parameters (based on a qualitative judgment of the 
dynamic response) would be Ta=(6/5)*9, Ti=(7/5)*9 and Tw=(42/5)*9. This scaling requirement is often 
overlooked by the OR community. Moreover, note that this scaling issue does not apply to the distributor parameters 
Tq and G, which operate independently from the production delay and only depend on the delivery lead-time 
between the manufacturer and the distributor.  
 
Now Table 1 can be used as a decision support system to design a VMI ordering system as follows. Suppose that in 
a given situation we have as is given the following parameters; 
 

 the transportation lead-time is four time periods  
 a suitable customer service level can be achieved by setting G to 8, 
 the production adaptation costs are considered to be slightly more important than the two inventory based 

costs, 
 

Then we proceed to investigate the cell in the column when G=8 and the row when W = (say) 5. This gives a set of 
numbers (7,27,6,63,0.14502), which are the parameter values for Ta, Ti, Tq, and Tw followed by the “score” 
achieved via the optimisation procedure the particular parameters. In practice the system designer would then 
undertake a cross-check to display important dynamic responses associated with this parameter set. In particular the 
systems designer should make a qualitative judgment on the suitability of the dynamic response in terms of 
inventory and production adaptation costs, whilst endeavoring to match the system response to economics of the 
value stream.  
 
It is noted that the “slice” of the solution space used in Table 1 suggests that the result when W=0.01 and G=4 
appear somewhat strange. Therefore further investigation and conformation for values close to this case are 
presented in Disney (2001) that verifies that this result is indeed correct.  

Insights drawn from the optimization results 
Summarizing the optimization results shown in Table 1 in the manner shown in Figures 9 to 12 enables some 
general managerial insights on VMI design to be gained. Specifically: 
 

 Figure 9 shows that if high production adaptation costs or infrequent deliveries are present, factory demand 
should be forecasted via a larger smoothing constant. This is an intuitively obvious result as by slowing 
down forecasts smoother dynamic responses are expected.  

 Figure 10 implies using a longer smoothing history to set the re-order point at the distributor in the 
presence of high production adaptation costs. Again this is as expected and for the same reason as before. 
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W G=1 G=2 G=4 G=8 G=16 G=32 

0 1,1,0,1,9.09091 2,1,0,1,9.09091 4,1,0,1,9.09091 8,1,0,1,9.09091 16,1,0,1,9.09091 32,1,0,1,9.09091 

0.01 1,3,1,3,3.219 1,5,1,5,3.10331 1,14,1,14,3.13879 9,3,1,4,2.06788 18,3,2,4,1.43107 34,6,1,14,0.9301 

0.05 3,3,2,4,1.83515 4,3,2,4,1.72783 1,18,2,49,1.69016 5,24,1,7,1.22998, 18,6,2,14,0.87217 34,8,2,28,0.5772 

0.2 4,4,4,6,1.05867 5,4,3,6,0.97431 2,16,3,35,0.91216 5,26,1,63,0.75703 18,10,2,63,0.5008 30,21,1,63,0.3227 

1 6,7,6,42,0.47486 7,7,6,35,0.44609 4,14,4,63,0.40140 6,25,3,63,0.36293 14,27,2,63,0.26644 30,26,3,35,0.1874 

5 7,10,6,63,0.17548 7,12,6,63,0.1664 7,15,6,63,0.15384 7,27,6,63,0.14502 14,27,6,14,0.1203 30,27,6,14,0.0879 

20 10,14,6,63,0.0722 10,16,6,63,0.068 10,20,6,63,0.0622 14,24,6,63,0.0551 22,27,6,63,0.04570 38,27,6,7,0.03281 

100 18,23,6,63,0.0272 18,27,6,63,0.026 22,27,6,63,0.0245 30,27,6,42,0.0214 38,27,6,7,0.01659 38,27,6,6,0.00793 

Infinity 38,27,6,4,7.09773 38,27,6,4,6.5077 38,27,6,4,5.43479 38,27,6,5,3.8157 38,27,6,5,2.03059 38,27,6,6,0.8011 
 

Table 1. Optimization results for different weights between production 
adaptation and inventory costs (W) and different delivery frequencies (G). 

The results presented are in the format of [Ta,Ti,Tq,Tw,Score]. 
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Figure 9. Optimum parameter values 

for Ta 

0

0.01

0.05

0.2

1

5

20

100

Infinity

1

2

4

8

16

32
0

1

2

3

4

5

6

Optimum 
Parameter 

Value

Weighting

G

 

Figure 10. Optimum parameter values 

for Tq 
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Figure 11. Optimum parameter values 

for Tw 
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Figure 12. Optimum parameter values 

for Ti 
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 Figure 11 demonstrates that it is likely to be beneficial if high production adaptation costs are present to 
use WIP information in the VMI scenario (due to there being costs to enable WIP information to be 
collected). It is intuitive that WIP information would be beneficial in situations where production 
adaptation costs are higher. Additionally the graph also shows that it is important to use WIP information 
when inventory costs are heavily weighted if there are infrequent deliveries between the two echelons (i.e. 
when G is large).  

 Figure 12 shows that inventory errors should be recovered slowly if infrequent deliveries or high 
production adaptation costs are present. This again is an obvious result in accordance with our previous 
intention. 

Experiments in which a number of variables are held constant whilst the effects of others are determined are helpful 
in understanding system behavior. But they are not a substitute for using the power of the optimization process 
across a wide range of variables. However, Figures 9 through 12 are helpful in deciding how many alternative 
designs may be considered before the final parameter selection. They may also highlight potential areas of conflict 
when there are constraints imposed on system performance such as restrictions inherent in the production and 
distribution functions. 
 
 
Bullwhip and CSL estimation in VMI systems 
It is useful at this stage to highlight the performance of the various optimum designs via some key performance 
indicators as illustrated in Tables 2 to 6. System performance is highlighted by illustrating the performance of the 
nominally weighted scenario (W=1), the case where production adaptation costs are five times as important (W=5), 
the case where inventory holding costs are five times as important (W=0.2) and the case where ratio is 100 to 1 
(W=0.01 and W=100), for a range of values of G. Table 7 highlights the performance characteristics for optimal 
systems with differing values of W (W=0 to ) when G =1. This has been normalized to emphasize the available 

range of solutions.  
The key performance indicators can be broadly split into two areas, the first in relation to the Bullwhip Effect, and 
the second to CSL. The following Bullwhip measures have been selected: 
 Peak ORATE overshoot to a unit step input. This is a useful measure to identify the transient response in the 

time domain to a change in demand rates.  
 Maximum amplitude in the ORATE frequency response. This describes the worst-case scenario of a systems 

performance at amplifying the Bullwhip Effect as the system performance at the resonant frequency is 
highlighted.  

 Noise Bandwidth. As described earlier, the noise bandwidth is a useful measure of production adaptation costs. 
 Coefficient of Variation. In response to real inputs the Coefficient of Variation measure (Chen, Ryan & Simchi-

Levi, 2000) is often used by the OR community to quantify the Bullwhip Effect as follows.  

)(

)(

CONSVAR

ORATEVAR
Bullwhip  , ……… Eq 5. 

 The Coefficient of Variation is defined as the ratio of the variance of the output (ORATE) to the variance of the 
input (CONS). A random, normally distributed demand signal was used in this bullwhip measure. The signal had a 
mean of 16.003 and a variance of 2.544 for 100 time periods, thus it may not be i.i.d. (if it were, this simulation 
based coefficient of variation measure would be exactly equal to the noise bandwidth measure dividing by , 

(Dejonckheere et al, 2001)). This metric was realized by developing a spreadsheet model of the difference equations 
shown in Appendix A.  
 

 
To evaluate CSL the measures chosen were: 

 % Availability. Using the same demand signal as for the Co-efficient of Variation measure above, the % 
availability was estimated via as the percentage of time system inventory levels was below zero when the 
target inventory position was set to equal the mean demand, as first outlined by Cheema (1994). 

 Maximum deficit following a step increase in demand. The maximum deficit in actual systems inventory 
is a useful measure of system responsiveness to changing demands. 

 ITAE. As described earlier, the ITAE of the systems inventory is a useful measure of inventory recovery. 
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Type Design @ G=1 @ G=2 @G=4 @G=8 @G=16 @G=32 
Bullwhip 
measures 

Peak ORATE overshoot to a unit 
step 

2.5 2.51 2.4541 3.5417 4.4545 5.83 

Max amplitude in frequency 
response 

3.0425 2.99308 2.88697 5.2254 6.68916 8.75075 

Noise Bandwidth 17.3271 16.5514 15.5854 27.8812 35.3112 54.7947 
Co-efficient of variation 5.3884 5.1689 4.875 8.9898 11.6292 18.1556 

CSL 
measures 

% Availability 100 100 100 88.45 77.5 65.56 
Maximum deficit following a unit 
step 

-5.9688 -6.9375 -8.875 -12.75 -18.89 -36 

ITAE 0.2680 0.4440 2.3185 0.7762 1.3371 3.8734 
Table 2. Properties of optimal systems when W=0.01 

 
 

Type Design @ G=1 @ G=2 @ G=4 @ G=8 @ G=16 @ G=32 
Bullwhip 
measures 

Peak ORATE overshoot to a 
unit step 

1.831 1.966 1.78232 1.81621 2.788 2.699 

Max amplitude in frequency 
response 

2.25446 2.4633 2.01439 2.0118 3.57042 3.0209 

Noise Bandwidth 2.99408 3.66923 3.48058 4.6024 6.36021 8.35595 

Co-efficient of variation 1.0113 1.2366 1.1513 1.4991 2.1795 2.7591 

CSL 
measures 

% Availability 100 99.8 99.8 96.87 84.15 70.65 

Maximum deficit following a 
unit step 

-6.03786 -6.6265 -8.4202 -12.796 -19.6075 -36.1083 

ITAE 0.699956 0.8518 2.96105 10.5947 4.00452 25.5316 

Table 3. Properties of optimal systems when W=0.2 
 
 

Type Design @ G=1 @ G=2 @ G=4 @ G=8 @ G=16 @ G=32 

Bullwhip 
measures 

Peak ORATE overshoot to a 
unit step 

1.69 1.75 1.70 1.69 1.85 2.22 

Max amplitude in frequency 
response 

2.02 2.1 1.93 1.87 2.02 2.49 

Noise Bandwidth 1.48115 1.61538 1.90241 2.07832 2.63246 3.00962 

Co-efficient of variation 0.4974 0.5443 0.6321 0.6882 0.8750 1.0275 

CSL 
measures 

% Availability 100 100 99.2 97.85 88.65 80.23 

Maximum deficit following a 
unit step 

-6.8094 -7.4114 -8.757 -12.3784 -20.2425 -33.471 

ITAE 1.48753 1.5176 1.57631 1.76783 2.64735 4.12833 

Table 4. Properties of nominally weighted optimal systems (W=1) 
 
 

Type Design @ G=1 @ G=2 @ G=4 @ G=8 @ G=16 @ G=32 
Bullwhip 
measures 

Peak ORATE overshoot to a 
unit step 

1.488 1.4837 1.53168 1.56213 1.66264 1.9471 

Max amplitude in frequency 
response 

1.65016 1.64274 1.70452 1.71692 1.84925 2.2051 

Noise Bandwidth 0.9052 0.904365 1.01884 1.15326 1.27588 1.60367 
Co-efficient of variation 0.3087 0.3067 0.3448 0.3885 0.4218 0.5331 

CSL 
measures 

% Availability 100 100 99.41 99.43 97.46 87.26 
Maximum deficit following a 
unit step 

-7.3492 -8.04096 -9.3010 -12.035 -18.167 -30.779 

ITAE 3.1644 4.1392 5.62214 15.6780 32.6348 66.0079 
Table 5. Properties of optimal systems when W=5 
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Type Design @ G=1 @ G=2 @ G=4 @ G=8 @ G=16 @ G=32 

Bullwhip 
measures 

Peak ORATE overshoot to a unit 
step 

1.2162 1.2127 1.2234 1.2436 1.25 1.6474 

Max amplitude in frequency 
response 

1.2707 1.2674 1.28481 1.31149 1.32976 1.78629 

Noise Bandwidth 0.2570 0.2577 0.2798 0.33069 0.47308 1.23267 

Co-efficient of variation 0.0782 0.0786 0.0862 0.1036 0.1493 0.3974 

CSL 
measures 

% Availability 99.6086 99.02 98.24 97.06 96.48 92.37 

Maximum deficit following a unit 
step 

-11.033 -11.92 -13.373 -16.279 -22.4504 -32.346 

ITAE 39.9941 49.84 60.2386 84.1731 156.160 145.21 

Table 6. Properties of optimal systems when W=100 
 

 
Inspection of the simulation results of the optimal systems show that as the more weight is given to the production 
adaptation costs, Bullwhip reduces (however it is measured). Additionally, reducing the transportation lead-time 
between the manufacturer and the distributor reduces Bullwhip. This verifies the Time Compression paradigm, 
Towill (1996). Also reducing the distribution lead-time increases all of the inventory responsiveness or CSL metrics. 
As expected the CSL measures all degrade as more emphasis is placed on the production adaptation costs. Thus, 
managers may use the decision support system in Table 1 with some confidence.  
 
Making the final selection 
Table 7 compares the properties of the optimal systems generated by varying W when G=1. To highlight these 
“best” values these results have been normalized. For example, if we are using ORATE peak as our bullwhip 
measure, then the increase as W is varied is greater than 6:1. On the other hand selecting W=1 gives an ORATE 
peak only about 50% greater than the minimum (for W=0). Note that the standard deviation ratios calculated from 
noise bandwidth (n) and from the coefficient of variation (cv) are, as expected, in close agreement. So either may 

be used with confidence to estimate the range in ORATE amplitude observable in response to random demand. 
Again comparing W=1 and W= 0 solutions, we see that the amplitude range is increased by nearly 4:1 with respect 
to the minimum value. So the normalized format is very helpful in determining simple rules of thumb relating cause-
and-effect. 
 

Type Design @ W=0 @W=0.01 
@W=0.

05 
@W=0.

2 
@W=1 @ W=5 @W=20 

@W=10
0 

@ 

W= 

Bullwhip 
measures 

Peak ORATE 
overshoot to a unit 

step 

6.059 2.164 1.749 1.585 1.463 1.288 1.151 1.053 1.000 

Max amplitude in 
frequency response 

10.979 2.569 2.255 1.904 1.706 1.394 1.200 1.073 1.000 

Noise Bandwidth/ 2390.421 155.122 50.522 26.804 13.260 8.104 4.847 2.301 1.000 

Co-efficient of 
variation 

2605.605 158.950 54.802 29.832 14.673 9.106 5.245 2.307 1.000 



n 48.892 12.455 7.108 5.177 3.641 2.847 2.202 1.517 1.000 

CV 51.045 12.608 7.403 5.462 3.830 3.018 2.290 1.519 1.000 

CSL 
measures 

% Availability 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.902 

Maximum deficit 
following a unit step 

-0.320 -0.318 -0.313 -0.322 -0.363 -0.392 -0.443 -0.588 -1.000 

ITAE 0.000 0.001 0.002 0.003 0.007 0.014 0.039 0.182 1.000 

Table 7. Properties of optimal systems when G=1 normalized to highlight 
“best” values of each performance criterion 

 

Figure 13 shows the ORATE responses of the optimal system when G=1 and when W=1, W=0.01 and W=100. The 
system was driven by the previously mentioned normally distributed random demand signal (with a mean of 16.003 
and a variance of 2.544). Note that the range of the responses varies as expected from Table 7: the range is 
proportional to n. The effect of W on the required production variation is clearly shown, with larger W producing a 

smoother order rate. This is a good example of the use of the optimization procedure to produce a set of competing 
designs. Then the “best” of the competing designs is selected to match the business strategy of the value stream. In 
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current management language this strategy can cover the complete spectrum from “agile” to “lean” supply 
(Christopher & Towill, 2000). For example, the practical implication in the selection of the optimum VMI 
parameters corresponding to W = 0.01 results in an “agile” system with high capacity requirements. In contrast 
selecting the optimum parameters corresponding to W = 100 generates a “lean” type response with quasi-level 
scheduling. Setting W = 1 is a good compromise design requiring relatively smooth changes in production levels 
coupled with the need for minimum reasonable system inventory. 
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Figure 13. Various optimal (when G=1) ORATE responses to a random demand with 
different inventory/production weights (W). Note W=100 yields a “level 

schedule” type design; W=0.01 yields an “agile” type design; W=1 gives a good 
compromise design 

If required the optimization process may be used in an iterative mode to make the final selection of system 
parameters. So responses such as Figure 13 can be repeated for a range of “weights” inventory and production 
adaptation costs. In this context Tables 2 through 7 provide ideas on how the parameters affect bullwhip and other 
system performance criteria. The iterative mode is summarized in Figure 14 and charts the system design starting at 
the business context level and ending with VMI implementation. Note that there are two feedback loops in the 
design methodology. The VMI design loop assumes that production and distribution processes are fixed and gives 
the “best” design under these particular conditions. However, if the “best” design is still not good enough, then 
either the production facility, or the distribution facility (or both) must be re-engineered to remove these constraints 
on VMI performance.  
 

Conclusions  

This paper has designed a VMI system for various different ratios of production adaptation costs and inventory 
holding costs. A decision support system has been proposed to determine the optimum design parameters in the 
VMI-APIOBPCS system by relating it to the gain on demand when setting safety stocks at the distributor via a look-
up table (Table 1) and summarized in Tables 2 to 7. The benefits of achieving frequent deliveries between the 
customer and the supplier can be clearly seen. This is because dynamic performance, judged by both via the 
evaluation metric and via other Bullwhip and CSL measures, improve significantly as G decreases, i.e. as more 
frequent deliveries are made. Some managerial insights have been gained consequential to the use of information 
within the VMI scenario. The paper offers guidelines for setting VMI system “controller” values to minimise 
particular profiles of production adaptation costs and inventory holding costs.  
 
Thus, this contribution has presented a Decision Support System that allows the appropriate “tuning” of a VMI 
system's parameters across the whole spectrum inventory and production adaptation cost-sensitive supply chains. 
This is so whether they operate in a localized region (where more frequent deliveries are economical, and hence 
there are low values of G), or on a global scale (where distribution costs are significantly higher), and where high 
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values of G are needed to gain economies of scale in transport costs. The optimization procedure can be used to 
search out a range of competitive systems that can then be compared for effectiveness in response to simulated 
“real-world” inputs. The final choice of design parameters would then be based on the results of the dummy “real-
world” tests. Finally, we have highlighted how the VMI design procedure may be used within an industrial context. 
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Figure 14. Using the VMI optimization routine within the business context 
 

 
Nomenclature 
AINV Actual systems inventory 
APIOBPCS Automatic Pipeline, Inventory and Order Based Production Control System  
AVCON Average Virtual Consumption. 
COMRATE Completion Rate 
CONS Consumption or Market Demand 
CSL Customer Service Levels 
DES Dispatches between the Manufacturer and the Distributor 
DINV Distributors Inventory Holding 
DSS Decision Support System 
dSS  Incremental change in the Reorder point R 
DWIP Desired Work In Progress 
E Error 
EINV Error in Inventory Holding 
EWIP Error in Work In Progress 
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FINV Factory Inventory 
G Gain (Distributors Safety Stock/Average Consumption) 
GIT Goods In Transit 
ITAE Integral of Time*Absolute Error. 
ITAE Integral of Time * Absolute Error 
O Order-up-to-point 
OR Operations Research 
ORATE Order Rate 
R Re-order point 
T Transport Quantity 
Ta Consumption Averaging Time Constant 
Tbarp or pT  Estimate of the production lead-time 

Ti Inverse of Inventory Based Production Control Law Gain 
TINV Target System Inventory Holding 
Tp The production lead-time in units of sampling intervals 
Tq Exponential smoothing constant used at the distributor to set R 
Tw Inverse of WIP Based Production Control Law Gain 
VAR Variance 
VCON Virtual Consumption 
VMI Vendor Managed Inventory 
VMI-APIOBPCS Vendor Managed Inventory, Automatic Pipeline, Inventory and Order Based Production 

Control System 
W Ratio of production adaptation to inventory costs 
w Frequency 
WIP Work In Progress 
wn Noise Bandwidth 

 

Appendix A. The difference equations required for VMI-APIOBPCS 
 
Description Difference Equations 
Consumption Forecast 

AVCON AVCON
Ta

VCON AVCONt-1 t t-1t  



1

1
( ) , 

Target (desired) WIP pT*AVCONDWIP tt  , 

Actual WIP 
tt1tt COMRATEORATEWIPWIP   , 

Error in WIP 
ttt WIPDWIPEWIP   

Inventory error 
ttt AINVDINV=EINV  , 

Order Rate 

Tw

EWIP

Ti

EINV
AVCONORATE 1-t1-t

1-tt  ,  

Completion Rate  ,ORATECOMRATE (Tp)-tt   

Actual Inventory Level AINV AINV COMRATE CONSt t-1 t t   , 

Virtual Consumption  





















)VCON)CONS*((G
Tq+1

1
VCON

-)VCON)CONS*((G
Tq+1

1
+VCON+CONSVCON

2-t1-t2-t

1-tt1-ttt

 

Typical Test Input 










0> tif 1

0<= tif 0
CONSt  for a step input. 

Typical Target Inventory ,0DINVt   
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Alternatively when modeling disaggregate inventory levels and transportation dispatches in the VMI-APIOBPCS 
model the following difference equations can be used: 
 
Description Difference Equations 
Forecasted Re-order point at the distributor 

)R)CONS*((G
Tq+1

1
+RR 1-tt1-tt   

Order-up-to point at the distributor 
ttt TQRO  , 

Distributor's inventory level 
Ttt1tt DESCONSDINVDINV   , 

Goods In Transit between factory and distributor  




1Tti

ti it DESGIT , where T is the transportation lead-

time, 
Dispatches 

















1t1t1-t

1t1t1-t1t
t RGITDINV if 0

RGITDINV if TQ
DES , 

Transport quantity 
ttt ETQor CONSTQ  ,  

System inventory levels 
tttt DINV GIT FINVSINV  , 

Factory inventory levels 
tt1tt DESCOMRATEFINVFINV   , 

Virtual consumption 
ttt dSSCONSVCON  , 

Net changes in the distributor's safety stock level 
1ttt RRdSS  , 

Forecasted consumption for the factory 
AVCON AVCON

Ta
VCON AVCONt-1 t t-1t  




1

1
( ) , 

Desired WIP pT*AVCONDWIP tt  , 

Actual WIP 
tt1tt COMRATEORATEWIPWIP   , 

Error in WIP 
ttt WIPDWIPEWIP   

Order rate 

Tw

EWIP

Ti

EINV
AVCONORATE 1-t1-t

1-tt  , 

Completion rate  ,ORATECOMRATE (Tp)-tt   

Error in system inventory levels 
ttt SINVTINV=EINV  . 

Typical Test Input 












0> tif 10

0< tif 0
CONSt , for a step input 

Typical Target inventory 0=TINVt  

 

Appendix B. Description of the optimization routine 
The Mathematica source code required for the optimization routine is as follows; 
 
apiobpcs[Ta_,Ti_,Tq_,Tw_,Tbarp_,G_]=  

 
 
score[Ta_,Ti_,Tq_,Tw_,Tbarp_,G_]=((Sum[(Abs[apiobpcs[Ta,Ti,Tq,Tw,Tbarp,G]])^2
, {w, 0.0001, Pi,0.0001}])*0.0001); 
 
 
seafind=Compile[{{maxcon},{G},{W}},Module[{Ta=0,Ti=1,Tw=1,Tq=0,Tbarp=4,prevma
x=10000.0,Taopt=0,Tiopt=1,Twopt=0,Tqopt=0,consd=0.0,vecond=0.0,itaed=0.0,nd=0
,scored=0.0,cons=0.0,avcon=0.0,dwip=0.0,wip=0.0,ewip=0.0,einv=0.0,ainv=0.0,or
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ate=0.0,comrate=0.0,cr1=0.0,cr2=0.0,cr3=0.0,cr4=0.0,dss=0.0,pvecon=0.0,vecon=
0.0,itae=0.0,n=0,loopcount=0},  
 
While[Ta<(maxcon*3),  
While[Ti<(maxcon*2),  
While[Tw<maxcon*5,  
While[Tq<(maxcon/2),  
 
While[n<60, cons=If[n>2,1.,0.];vecon=vecon+((1/(1+Tq))*((G*cons)-
vecon));dss=vecon-pvecon;pvecon=vecon;vcon=dss+cons;avcon=avcon+ 
((1/(1+Ta))*(vcon-avcon));comrate=cr4;cr4=cr3; cr3=cr2;cr2=cr1; 
cr1=orate;ainv=ainv-cons+comrate;einv=((0-ainv)/Ti); dwip=avcon*4; 
wip=wip+orate-comrate; ewip=((dwip-wip)/Tw);orate=avcon+einv 
+ewip;itae=itae+(Abs[ainv]*(n-2));If[orate>50,n=60];n++]; 
 
 
While[nd<60,consd=If[nd>2,1.,0.];vecond=vecond+((1/(1+Tq))*((G*consd)-
vecond)); itaed=itaed+((Abs[vecond-(G*consd)])*(nd-2));nd++]; 
scored=score[Ta,Ti,Tq,Tw,Tbarp,G]+(itae/500)+(itaed/250); 
scored=1/(((((score[Ta,Ti,Tq,Tw,Tbarp,G])^2)*W)+(itae/500)^2+(itaed/250)^2)^0
.5); 
 
If[scored<prevmax,prevmax=scored;Taopt=Ta;Tiopt=Ti;Tqopt=Tq;Twopt=Tw;]; 
 
 
loopcount++;consd=0.0;vecond=0.0;itaed=0.0;nd=0;scored=0.0;cons=0.0;avcon=0.0
;dwip=0.0;wip=0.0;ewip=0.0;einv=0.0;ainv=0.0;orate=0.0;comrate=0.0;cr1=0.0;cr
2=0.0;cr3=0.0;cr4=0.0;dss=0.0;pvecon=0.0;vecon=0.0;itae=0.0;n=0;Tq++];Tq=0;If
[Tw<7,Tw++,Tw=Tw+7]];Tw=1;Ti++];Ti=1;If[Ta<10,Ta++,Ta=Ta+4]];{Taopt,Tiopt,Tqo
pt,Twopt,prevmax,loopcount}]]; 
 
seafind[12,1,1];  
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