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Abstract 

CuAu/SiO2 catalysts were prepared in a number of ways, the main route being incipient 

wetness impregnation, but other methods, like deposition precipitation and high dispersion, 

were also used. Bimetallic and monometallic catalysts were prepared for this investigation 

and most were characterised by various techniques such as XRD, SEM, TPR, BET, UV 

visible and TEM.  

Theoretical and characterisation studies of CuAu catalysts have generated considerable 

interest. However, little research has been carried out on their catalytic activity. Therefore, 

propene oxidation was chosen as the principal reaction, as it was previously examined by 

Chimentao and group.
1
  

This study showed that the reduction of the catalysts in H2/Ar was fundamental to alloy 

formation. The most active catalyst was made by a sequential procedure that deposited the 

copper onto the silica support by high dispersion, followed by depositing gold onto the 

support by deposition precipitation. The catalyst was then treated by a Sinfelt thermal 

treatment which involved a reduction in H2/Ar at 315
o
C for 2h followed by a high 

temperature calcination at 676
o
C in air for 15h. Propene oxidation was performed in the 

presence of hydrogen and a propene conversion of 10% was observed at 320
o
C, with a 

selectivity towards acrolein (90%) and some carbon dioxide (10%). 

The purpose of this study was to obtain an understanding of the nature of these CuAu/SiO2 

catalysts and to determine if there were any relationship towards their activity for propene 

oxidation. 

References 

1. J. Llorca, M. Dominguez, C. Ledesma, R. J. Chimentao, F. Medina, J. Sueiras, I. 

Angurell, M . Seco and O. Rossell, Journal of Catalysis, 258 (2005) 187-198. 
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Aims 

 The gain an understanding of bimetallic CuAu/SiO2 samples as oxidation catalysts. 

 To understand the structure and properties of the bimetallic catalysts, compared to the 

monometallic Cu and Au materials. 

 To test the catalysts for propene oxidation and try and determine the effect of catalyst 

preparation on the activity and selectivity. 

 

Objectives 

 To prepare several CuAu/SiO2 catalysts by mainly impregnation, as well as other techniques, 

such as deposition precipitation, precipitation, high dispersion and sol immobilisation. 

 These catalysts will be characterised by various instruments, such as XRD, BET, XPS, SEM 

and TPR to identify their structure and properties. 

 Propene oxidation will be the focus of the catalytic study and all the catalysts will be tested 

for this reaction under different conditions and preparation methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

Contents Page 

Chapter 1: Introduction to topic 

1.1 History of catalysis 11 

1.2 Defining catalysis 12 

1.3 Properties and characteristics of catalysts 14 

1.3.1 Activity and selectivity 14 

1.3.2 Stability 14 

1.3.3 Regeneration and reproducibility 15 

1.3.4 Morphology and particle size 15 

1.3.5 Porosity 16 

1.4 Propene oxidation: An heterogeneous catalytic oxidation reaction 16 

1.5 Reactions with Cu catalysts 21 

1.5.1 Water gas shift reaction 21 

1.5.2 NO reaction 23 

1.5.3 Methanol reforming and synthesis 23 

1.5.4 Propene oxidation 24 

1.6 Reactions of Au catalysts 29 

1.6.1 CO oxidation 29 

1.6.2 Propene oxidation 30 

1.7 Review of AuCu catalysts 37 

1.7.1 Introduction 37 

1.7.2.1 Preparation of CuAu bimetallic as catalysts 38 

1.7.2.2 Preparation methodology for CuAu nanoparticles 42 

1.7.3 Characterisation of AuCu alloys 45 

1.7.3.1 UV/Visible spectroscopy 45 



6 

 

1.7.3.2 Transmission electron microscopy 47 

1.7.3.3 Atomic force microscopy 49 

1.7.3.4 X-Ray Diffraction 50 

1.7.4 Theoretical studies of CuAu alloys 51 

1.7.5 The use of CuAu alloys as catalysts 54 

1.7.5.1 CO oxidation 54 

1.7.5.2 Propene epoxidation 57 

1.7.5.3 Benzyl Alcohol oxidation 60 

1.7.6 Future prospects for the use of CuAu alloys in Catalysis 60 

1.78 References 61 

 

Chapter 2: Experimental 

2.1 Introduction to techniques 71 

2.1.1 X-Ray Diffraction 71 

2.1.1.1 Introduction to XRD 71 

2.1.1.2 Theoretical principles 72 

2.1.1.3 Instrumentation 73 

2.1.2 Surface area determination 74 

2.1.2.1 Introduction to BET 74 

2.1.2.2 Principles of the BET method 74 

2.1.2.3 BET Instrumentation 76 

2.1.3 Temperature programmed reduction 76 

2.1.3.1 Introduction to TPR 76 

2.1.3.2 Principles of TPR 77 

2.1.3.3 Instrumentation 78 



7 

 

2.1.4 Scanning electron microscope (SEM) 78 

2.1.4.1 Introduction to SEM 79 

2.1.4.2 Instrumentation 80 

2.1.4.3 SEM analysis 81 

2.1.5 Inductively coupled plasma analysis (ICP) 82 

2.1.5.1 Preparation of samples and analysis 82 

2.1.6 X-ray photoelectron microscopy (XPS) 82 

2.1.6.1 Introduction to XPS 82 

2.1.6.2 Principles of XPS 83 

2.1.6.3 Instrumentation 84 

2.1.7 Transmission electron microscope (TEM) 85 

2.1.7.1 Introduction 85 

2.1.7.2 Principles 85 

2.1.7.3 Instrumentation 86 

2.1.8 UV/Visible spectroscopy  87 

2.1.8.1 Introduction 87 

2.1.8.2 Principles 87 

2.1.8.3 Instrumentation 88 

2.2 Catalyst preparation 89 

2.2.1 Impregnation method 89 

2.2.2 Precipitation method 89 

2.2.3 Deposition method 90 

2.2.4 Sinfelt method 90 

2.2.5 High dispersion route for the preparation of Cu catalysts 90 

2.2.6 Sol immobilisation 91 



8 

 

2.3 Propene oxidation experimental 91 

2.3.1 Gas phase reactor 91 

2.3.2 Calculations 93 

2.3.2.1 Calibration 93 

2.3.2.2 Carbon balance 94 

2.4 Glycerol alcohol oxidation 95 

2.4.1 Glass reactor 95 

2.4.2 Glycerol experimental procedure 96 

2.5 Autoclave experimental 96 

2.5.1 Hydrogen peroxide synthesis 96 

2.5.2 Hydrogenation reaction 96 

2.5.3 Benzyl alcohol oxidation 97 

2.6 References 97 

 

Chapter 3: Characterisation 

3.0 Introduction 98 

3.1 BET surface area 98 

3.2 Inductively coupled plasma (ICP) 101 

3.3 X-Ray Diffraction 101 

3.3.1 Insitu XRD 116 

3.4 Temperature programmed reduction (TPR) 119 

3.5 SEM images 128 

3.5.1 Direct calcined catalysts 128 

3.5.2 Sinfelt catalysts 134 

3.5.2.1 Cu nitrate precursor 134 



9 

 

3.5.2.2 Cu chloride precursor 141 

3.5.3 Other preparation methods 145 

3.5.3.1 HDC Cu + Au Dp or IW 145 

3.5.3.2 Reduced in NaBH4 147  

3.5.3.3 Reduced in H2 153 

3.5.3.4 Sol immobilisation 157 

3.6 TEM analysis 159 

3.7 XPS analysis 182 

3.8 UV/Visible spectroscopy 186 

3.9 EGA analysis 190 

3.10 Effect of sodium hydroxide reduction with metal salts 192 

3.11 Discussion 193 

3.12 Conclusion 199 

3.13 References 200 

 

Chapter 4: Propene oxidation 

4.0 Propene oxidation 202 

4.1 Introduction 202 

4.2 limitations of experiments and precision of data 202 

4.3 Reaction products 203 

4.4 Results 204 

4.4.1 Effect of different catalysts preparation methods on propene oxidation 204 

4.4.2 Effect of different copper precursor 223 

4.4.3 Stability of catalysts 249 

4.4.4 Effect of different reducing agents 251 



10 

 

4.4.5 Effect of different copper precursor for catalysts reduced by H2 263 

4.4.6 Product selectivity and conversion for different preparation methods 280 

4.5 Discussion 287 

4.6 Conclusion 297 

4.7 References 299 

 

Chapter 5: Other reactions with CuAu catalysts 

5.1 Introduction 300 

5.2 Results 301 

5.2.1 Hydrogen peroxide synthesis and hydrogenation reactions 301 

5.2.1.1 Introduction 301 

5.2.1.2 Hydrogen peroxide synthesis results 303 

5.2.1.2 Hydrogenation reactions results 304  

5.3 Glycerol and Benzyl alcohol oxidation 305 

5.3.1 Introduction 305 

5.3.2 Results 306 

5.3.2.1 Glycerol oxidation 306 

5.3.2.2 Benzyl alcohol oxidation 308 

5.4 Discussion 309 

5.5 Conclusion 311 

5.6 References 312 

 

Chapter 6: Conclusion and future work 

6.0 Conclusions 316 

6.1 Future work 319 



11 

 

6.2 References 323 

 

Appendix 324 

 

 

 

   

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

Chapter 1: Introduction  

 

1.1 History of catalysis 

The first concept of catalysis 
1
 was introduced by Fulhame in 1794, who found that small 

amounts of water were needed for carbon monoxide oxidation and that the water used was 

unchanged after the reaction. Eventually, after some years of studying reactions, it became 

apparent that the use of catalysis could have great industrial gain and this revolutionized 

catalytic chemical processes. 

In 1884, Le Chatelier discovered a relationship between temperature and pressure on the rate 

of reaction.
2
 This, along with other research at the time helped to further understand chemical 

reactions and catalysts.  

In 1898, industrial catalysis increased worldwide and new catalytic processes were 

developed. The ammonia process 
3
 was the biggest reaction at this time and was used to make 

fertilizer. In 1902, Haber stated that for this reaction to operate at the highest efficiency it had 

to be carried out under high pressures. The first, small scale, catalytic production of the 

ammonia reaction was performed in 1905 by Haber, using an iron based catalyst. This initial 

work by Haber and others led onto large scale industrial reactions and also to theories about 

adsorption isotherms by Langmuir, which were based on this early reaction. 

Manufacturing of synthetic fuels and new innovative processes, such as Fischer-Tropsch, 

were a significant development when, in 1922, Franz Fischer and Hans Tropsch produced 

hydrocarbons from hydrogen and carbon monoxide.
4
 They continued their research and, by 

1925, they could achieve high yields by using high pressures. Catalysis took an important 

turn when, in 1927, Hinshelwood introduced a kinetic theory based on earlier work by 

Langmuir and devised the Langmuir-Hinshelwood theory.  
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Due to the high demand for automobiles, the petroleum industry continued to thrive. In 1950, 

the first conference dedicated to heterogeneous catalysis was organized by the Faraday 

Society. After this, further catalytic discoveries were made by Ziegler and Natta, associated 

with polymerization. More studies produced many new catalyst systems with some being 

introduced to the commercial market. In 1965, Wilkinson developed a rhodium metal 

complex which could catalyze alkene hydrogenation reactions.
5
 Today, the main focus of 

research is environmental catalysis and, with new scientific technologies and equipment, new 

branches of catalysis have been created, such as catalytic modeling.  Over the last 30 years 

developments in exhaust gas catalysts have resulted in major reductions in their emissions, 

which have had a positive environmental effect.  Other processes like the Selective Catalytic 

Reduction (SCR) are significant in recent times, controlling the NOx emissions from nitric 

acid and power plants. 

Catalysis is now used in almost every process, from the production of fine chemicals for 

pharmaceutical applications to the production of bulk chemicals and exhaust gas catalysts. 

The future of catalysis is very exciting and will continue to be a vital part in the scientific 

field. 

 

1.2 Defining catalysis 

 

A catalyst is a substance which can affect the rate of a chemical reaction without itself being 

changed in the process. The catalyst participates in the reaction but is unchanged at the end of 

the reaction. Usually the catalytic pathway will have lower activation energy (Ea) than the 

uncatalysed mechanism. 
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Figure 1.1 Catalytic reaction pathways 

 

In homogeneous catalysis, the reaction takes place in one phase whereas in heterogeneous 

catalysis, the catalysed reaction arises at the interface between two phases. The presence of a 

catalyst in a reaction will alter the kinetics and may allow the reaction to occur under lower 

temperature conditions. However, the use of a catalyst will not alter the equilibrium constant 

of a reaction. The equilibrium constant is determined by ΔG
ο
 and as a result, is independent 

of the reaction mechanism. An efficient catalyst must possess certain properties: 

 High activity for a particular reaction. 

 Good selectivity towards a desired product. 

 Stable activity with no substantial deactivation over a long period of time (have a long 

catalyst lifetime). 

 

 



15 

 

1.3. Properties and characteristics of catalysts 

 

Catalytic oxidation is a useful reaction which is quite efficient because it can occur at low 

temperature. However, there are certain properties and characteristics which the catalyst must 

possess in order for it to be considered an effective catalyst on the industrial scale. 

 

1.3.1 Activity and selectivity 

 

It is essential for a catalyst to exhibit a good activity, which is either established in the high 

productivity from a small quantity of sample or by using mild operating conditions 

(especially low temperature) which display a superior selectivity and stability for a desired 

reaction. 

High selectivity is also an important requirement for determining a good catalyst. A catalyst 

that achieves high selectivity towards a product that is wanted from a certain reaction, whilst 

suppressing any other products caused by unwanted side reactions, is very desirable to 

industry. 

 

1.3.2 Stability 

 

A good stability is needed for an effective catalyst, which remains unchanged as the reaction 

proceeds over a period of time and after re-use, so that the catalyst shows resistance and 

durability. Below are a few factors that contribute to a reduced stability:  

 Poisons, reactants or products may interfere with active components or the support to 

reduce activity or selectivity. 
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 Coking can form on some catalysts from reactions like polymerisation and 

hydrogenenolysis. 

 Sintering of the catalyst. 

 

1.3.3 Regeneration and Reproducibility 

 

All catalysts go through some form of ageing after a certain time and it is vital for a process 

to be put into effect that can regenerate the catalyst through an action that will return some or 

all of the catalytic properties of the original sample. The regeneration must try to recover as 

much of the catalyst activity and selectivity, but also maintain its mechanical strength after 

each treatment. 

Reproducing catalyst activity is also important, especially for industrial purposes since a 

catalyst that changes its performance, when a new batch of catalyst is prepared is unreliable 

and economically unacceptable. 

 

 

1.3.4 Morphology and particle size 

 

The shape and grain size of a catalyst can affect the performance of a catalyst in a reaction, 

and different processes will require different morphologies to achieve the best activity. 

Different reactors require different morphologies, e.g. fixed bed reactors use mostly beads 

and pellets. The particle size of a catalyst is also key to its performance as some reactions will 

only proceed when a metal particle size is between a certain range. Haruta and co-workers 
6
 

found that for propene oxidation their Au particles had to be less than 4 nm in size to produce 
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propene oxide with 90% selectivity and a conversion of 1-2% at a temperature between 30 
o
C 

to 120 
o
C. 

 

 

1.3.5 Porosity 

 

Porous materials are widely found in nature and are mainly used in the industrial field and 

research. Chemical industries use porous materials as catalysts and adsorbents, such as 

activated carbon, silica and alumina. These and many other materials require careful 

consideration of their porous structure and physical properties. It is also important to take into 

account their application and performance, as all of these are strongly influenced by their 

pore size, volume and shape. 

 

 

1.4  Propene oxidation: A heterogeneous catalytic oxidation reaction 

 

Heterogeneous oxidation of alkenes, such as propene, have a particular interest because two 

of the major products, propene oxide and acrolein which are formed from the partial 

oxidation, are valuable intermediates for industry.  Many catalysts that have been tested for 

this reaction only generate a low selectivity towards the epoxide over a variety of conditions 

and, as an consequence, propene oxide is currently made either from the chlorohydrin 
7
 

process, which is a old method and environmentally undesirable as it uses chlorine, or the 

hydroperoxide process. Propene oxide is one of the most important feedstocks for the 

production of many useful chemicals, such as polyurethane, polyester resins and surfactants. 

Acrolein is also formed from propene oxidation and requires a C-H cleavage. In industry, 
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acrolein is beneficial as it is used in the preparation of polyester resin, polyurethane, propene 

glycol, acrylic acid, acrylonitrile and glycerol. 

Silver catalysts have been commonly used for the ethene epoxidation process and studies 

found that atomic oxygen was the active species for the reaction. If oxygen is unable to 

dissociate, then epoxidation will not occur.  Due to the success of silver catalysts for ethene 

epoxidation, these catalysts have been tried for propene epoxidation. Silver on calcium 

carbonate, which also consists of promoters, such as, molybdenum, potassium and chloride, 

has been tested for propene epoxidation. There have been a number of reports showing the 

performance of silver catalysts, supported on alkali carbonates. A selective silver catalyst 

(60%), supported on an alkali metal carbonate, formed propene oxide at a conversion of 3% 

when chloroethane, nitrous oxide and carbon dioxide were used.
7
 The effect of a chloride 

promoter was studied and it was reported that preparing a silver catalyst, with chloride from 

AgCl, gave a propene oxide selectivity of 30% and a propene conversion of 11%. However, 

when the catalyst was made without the chloride promoter, a lower activity was observed 

(3.6% propene oxide selectivity and 4.8% conversion).
8
 Lambert and co-workers studied the 

effect of metal particle size for propene epoxidation with K-promoted Ag/CaCO3 catalysts.
9 

They found that unpromoted Ag/CaCO3 catalysts had a 3.7% selectivity towards propene 

oxide, which was lower than the catalyst promoted with 1.7% potassium (15.2% selectivity 

towards propene oxide and a conversion of 6%). This promoted catalyst had the best 

performance and they found that it had silver particle sizes between 20-40 nm. From their 

work, they concluded that the silver particle size was important in achieving the best 

selectivity, and particles had to be between 20-40 nm and not larger or smaller to obtain the 

highest propene oxide selectivity. Silica supported molybdenum oxide has also been used for 

propene epoxidation.
10

 A propene conversion of 17.6% and a propene oxide selectivity of 

43.6% were achieved from a MoOx/SiO2 catalyst with a loading of 0.255 mmol/g at 300
o
C 

http://en.wikipedia.org/wiki/Polyester_resin
http://en.wikipedia.org/wiki/Polyurethane
http://en.wikipedia.org/wiki/Propylene_glycol
http://en.wikipedia.org/wiki/Propylene_glycol
http://en.wikipedia.org/wiki/Acrylic_acid
http://en.wikipedia.org/wiki/Acrylonitrile
http://en.wikipedia.org/wiki/Glycerol
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and with the flow rates: 10/5/10 cm
3
 min

-1 
for propene/oxygen/helium. From their 

characterisation of the catalyst, they concluded that crystalline MoO3 nano-particle species 

was more active than molybdenum oxide species for propene oxide formation.  Different 

molybdenum oxide precursors were studied and it was determined that H2MoO4 had the 

highest activity. The active MoO3 species’ role was to remove hydrogen from propene, and 

the formed radicals could desorb into the gas phase and react with oxygen to form propene 

oxide.  

 Silver supported on titania has also been used. However, this catalyst requires both hydrogen 

and oxygen in the reactor feed.  Wang et al. studied the effects of calcination on Ag/Ti 

catalysts for propene epoxidation.
11

 It was reported that when the catalysts were calcined in 

air, the optimum activity of 0.43% conversion and a 92.8% selectivity towards propene oxide 

was achieved. Calcination in other gases was not as effective and the use of hydrogen and 

nitrogen calcinations decreased the activity.  The XRD analysis showed that a catalyst only 

calcined in air had a weak metal silver reflection. Upon comparison with gold on titania, the 

silver catalyst was not as active as the gold catalyst for propene epoxidation.
6
 

Hydrogen peroxide has been applied instead of oxygen only systems. A money saving benefit 

of this process is that no separation of hydrogen peroxide is required and it can therefore be 

used directly to form propene oxide. Degussa-Headwaters effectively made propene oxide 

with hydrogen peroxide by using hydrogen and oxygen to generate hydrogen peroxide.
12

 An 

alternative oxidising agent that has had considerable research carried out on it is nitrous 

oxide. Conversions of up to 5% were formed with selectivities of 80% for a catalyst 

consisting of potassium-promoted iron oxide on SBA-15.
13

 The FeOx/SBA-15 catalyst was 

prepared by impregnation and after calcination of 600 
o
C, the sample was modified with KCl 

by impregnation, followed by a calcination at 600 
o
C for 6 hours. They suggested that the 

iron was the active site for the reaction since SBA-15, with or without KCl, was inactive. For 
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the FeOx/SBA-15 catalyst without the alkali salt, acrolein was the major product. When KCl 

was added, propene oxide became the major product, with a selectivity of 72% and a 

conversion of 4.51% at 325 
o
C. Their work also showed that an increase in the amount of 

modifier used increased the selectivity towards propene oxide. Further studies into the shift of 

allylic oxidation to epoxidation, were carried out with other potassium modifiers, such as 

KBr and KNO3. These modifiers also showed similar shifts and it was deduced that the 

potassium, not the chlorine, played a significant role in this reaction. They concluded that the 

potassium prevented allylic oxidation by reducing the reactivity of the lattice oxygen. 

Propene epoxidation using molten salts (a mixture of NaNO3 and KNO3) has been studied by 

Olin and co-workers and these achieved a propene conversion of 15% with a propene oxide 

selectivity at 65%. The reactor conditions consisted of a temperature of 200 
o
C and a 

propene- air mixture that flowed through a molten alkali- nitrate salt solution.
14

 Nijhuis and 

group used a number of different molten salt mixtures and additives, like potassium 

hydroxide, to improve selectivity. This paper suggested that the role of the salt was to act as a 

catalyst to generate free radicals necessary for the homogeneous gas-phase reaction, 

occurring in the gas bubbles in the molten salt medium. Other work described the use of 

sodium hydroxide addition to the molten salts, and palladium catalysts increased the 

selectivity.
15,16

 Propene oxide was also found to be produced in a homogeneous gas-phase 

reaction by Olin and co-workers, reaching a propene conversion of 7% with a propene oxide 

selectivity of 65%.
17

 However, it is known that homogeneous gas-phase reactions are 

extremely sensitive to the reactor conditions.  Homogeneous catalysts have also been tested 

in propene oxidation, using hydroperoxides, and a propene conversion of 10% with high 

selectivity can be obtained. The use of oxygen as an oxidant has also been studied but the 

selectivity is greatly reduced (<15%). It appears that homogeneous catalysts are more active 

than the heterogeneous catalysts mentioned so far. However, there are disadvantages for 
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homogeneous catalysts. The two main problems are pressure and separation, since extra 

separation is required to remove the catalyst from the liquid stream. Propene has a high 

vapour pressure and, as a result, a solvent is needed for the reaction. Both these problems can 

be costly and have to be seriously considered when using homogeneous catalysts, compared 

with heterogeneous ones. 

Gold on titania catalysts have been extensively covered by many papers and have shown 

promise for propene epoxidation.
6
 Haruta and co-workers were the first to use gold on titania 

catalysts for this reaction and they discovered that the size and shape of the gold particles was 

significant on the catalytic activity. The highest performance for propene epoxidation was 

observed in catalysts with a particle size between 2-5 nm. An improved propene oxide yield 

could be achieved by using a Ti-Si support. A higher temperature was required (about 50-100 

K more) when compared with gold-titania catalysts but the stability was improved and the 

propene oxide yield increased. A catalyst, consisting of gold supported on titanium and 

dispersed on silica, has been tested for propene epoxidation in the presence of oxygen and 

hydrogen, and showed a good selectivity to propene oxide (greater than 90% selectivity at a 

conversion of 0.2%).
18

 Promoters, such as sodium, lithium and magnesium, have been 

utilized to improve the catalyst and it has been suggested that their role is to block acidic sites 

on the catalyst, which can decompose propene oxide.
19,20

 Platinum and palladium have also 

been reported to improve the activity of gold-titania catalysts. 
1
 

Propene oxidation has recently been studied, using ceria catalysts supported on titania.
22

 The 

ceria loadings (0.004, 0.3, 0.5 and 0.9 wt%) did not appear to affect the reaction temperature 

of propene oxidation and all of the catalysts had propene oxidation ignition at around 195
o
C. 

Baylet and co-workers stated that the lowest light-off temperature was obtained for the 0.5 

wt% Ce sample with a T50 of 284 
o
C. A trend for the T50 order from lowest to highest was as 

follows: 0.5 wt% Ce > 0.9 wt% Ce > 0.4 wt% Ce> 0.3 wt% Ce. For all the catalysts, only 
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carbon dioxide and carbon monoxide were detected as products. The catalyst with a ceria 

loading of 0.5 wt% was the most active for propene oxidation to carbon dioxide.  

 

 

1.5  Reactions using Cu catalysts 

 

Copper is a frequently used metal for industrial catalysis, as it is cheap and readily available. 

The common reactions it is used for are the Water Gas Shift reaction, NO reduction, 

methanol synthesis and propene epoxidation which are discussed below. 

 

1.5.1 Water gas shift reaction 

 

The water-gas shift reaction (WGS) can be expressed as: 

CO + H2O              CO2 + H2            ΔH°= -41.2 kJ/mol     ΔG°= -28.8 kJ/mol   at T= 300 
o
C 

 

This reaction has had much interest because of fuel cell technology, which can convert 

chemical energy into electrical or heat energy, without the need for combustion. The WGS 

process is essential for providing clean hydrogen and is used to remove large amounts of 

carbon monoxide in the automotive industry. Ceria oxide based catalysts are very good WGS 

catalysts and Li 
23

 and co-workers have reported their use for low temperature WGS reaction. 

The presence of Cu (2 wt %) on the Ce (La) Oxide increased the activity greatly with a 90% 

CO conversion at 400 
o
C. At a lower temperature range, the copper modified catalyst had 

similar activity to the commercial Cu-ZnO-Al2O3 catalyst. Cu based mixed oxides for the 

WGS reaction have also been studied by Tanaka 
24

 who discovered that CuMn2O4 had a high 

activity over 225 
o
C, similar to that of Cu/ZnO/Al2O3. CuAl2O4 showed a high activity at 
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lower temperature with an 80% CO conversion at 150 
o
C. Both CuAl2O4 and CuMn2O4 had 

higher rates of CO conversion than the commercial catalyst.  Different metal dopants have 

been added to CuM2O4 and the order of activity was found to be Mn>Al>La>Cr>Fe>Y.  

The type of support has a significant effect on the performance of Cu catalysts, and Yahiro et 

al.
25

 
 
studied the influence of such supports. They showed that Al2O3, MgO and CeO2 were 

all highly active for WGS reaction, whereas others like SiO2-Al2O3 and SiO2-MgO and β-

zeolite showed a lower activity in the temperature range 150-250 
o
C. Other factors that have 

an effect on the activity are calcination temperature and metal oxide additives. The influence 

of calcination temperature on the WGS reaction has been investigated by Yahiro and co-

workers
26

 for Cu/Al2O3 catalysts prepared by an impregnation method. Their studies showed 

that CO conversion increased as the calcination temperature increased, reaching an optimum 

conversion at 800 
o
C and then rapidly decreasing at 900 

o
C. This occurrence is different to 

the commercially available Cu/ZnO/Al2O3 catalyst where the activity decreases with 

increasing calcination temperature.
27,28

 The authors concluded that the main factor controlling 

the catalytic activity for the WGS reaction was the Cu (0) surface area. The catalyst that was 

calcined at 800 
o
C had the highest surface area of Cu

 
(0) and there was a high dispersion of 

CuO on this sample. The group found that spinel CuAl2O4 was formed from the CuO reacting 

with the support. The presence of highly dispersed Cu
 
(0) is very important to the catalytic 

activity of the WGS reaction and as well as calcination temperature, the promotional effect of 

FeOx on Cu/Al2O3
29

 has been reported to form highly dispersed Cu
 
(0) and increase its 

performance. 

Copper oxide catalysts demonstrate a good activity for the WGS reaction, with either Cu or 

Cu
+
 being the active species for the reaction. The preparation conditions, i.e. calcination 

temperature and the type of support used, can have a significant effect on the reactions 

success. 
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1.5.2 NO reduction 

 

Air pollution caused by industrial emissions has generated a lot of concern, as pollutants like 

nitrogen oxides (NOx), are the main contributors to the formation of acid rain and smog. 

Therefore, a method to remove these harmful gases is important and catalytic NO reduction is 

a worthwhile reaction to follow. At present, most use precious metals but these are very 

expensive to utilize, and so a replacement by other metals, like copper, has regenerated new 

interest. 

Bera et al.
30

 studied Cu/CeO2 (5 wt%) catalysts for NO reduction and discovered that they 

could achieve nearly 100% conversion of NO by NH3 below 300 
o
C. NO reduction by CO 

was also carried out and also showed similar conversions below 300 
o
C. Their work also 

showed hydrocarbon oxidation by NO to CO2 N2 and H2O in the low temperature range of 

150-350 
o
C. 

 

 

1.5.3 Methanol reforming and methanol synthesis 

 

There have been a number of studies carried out on copper catalysts, used for steam 

reforming of methanol. Matsumura et al.
31

 studied Cu/ZnO/ZrO2 catalysts that were prepared 

by a co-precipitation method and used for methanol reforming at high temperatures. 

Recently, monometallic Cu/ZrO2 and bimetallic Cu-Ni/ZrO2 have been prepared by 

deposition precipitation and used to produce hydrogen by steam reforming in the temperature 

range 250-360  
o
C.

32
 The bimetallic catalysts had a better activity than the monometallic 

samples and a selectivity of 60% towards hydrogen was observed at the highest temperature. 
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Carbon dioxide is the most well known greenhouse gas and therefore its transformation into 

other chemicals, such as methanol, is favourable. The most popular way to form methanol is 

from CO/CO2/H2 by using Cu/ZnO/Al2O3 catalysts at 250-300 
o
C and 10 MPa.

33
 Other 

groups have also used Cu/ZnO/Al2O3 catalysts but employed a novel low temperature route 

to perform very high methanol activity.
34

 They studied the effect of the preparation method 

and composition on the structure and activity for methanol synthesis. They found that a high 

activity of methanol production from CO2 hydrogenation was achieved at 170 
o
C and 5 MPa 

in a slurry-phase reactor over the copper catalysts prepared by an oxalate-gel co-precipitation 

(OC) method. 

 

 

1.5.4 Propene oxidation 

 

Copper, as a catalyst for propene oxidation, has been studied by numerous groups on 

different supports and under various conditions. A single crystal study of Cu2O was carried 

out by Schultz et al. 
35

 under UHV conditions and at 27 
o
C and 0.01 MPa. Propene, acrolein, 

allyl alcohol, propane and the combustion products CO2 and H2O were detected. Reitz and 

co-workers
36

 have also examined Cu2O catalysts for propene oxidation and have, like 

Schultz, used XPS and TPD to understand this reaction further. They studied cupric and 

cuprous oxide and found that cupric oxide was more reactive for propene oxidation.  They 

also deduced that the rate of propene oxidation on the copper oxide surfaces was proportional 

to the rate of the H atom abstraction step and an increased CuO reduction favoured H atom 

abstraction. 

The role of low basicity oxygen atoms in propene epoxidation has been investigated by 

Torres and co-workers.
37

 A density functional theory (DFT) study was carried out on (111) 
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silver and copper surfaces to deduce the thermochemistry and activation energy barrier for 

combustion and selective oxidation reactions for propene epoxidation. They showed that, 

from the theoretical data, there was a big difference between silver and copper for the 

formation of the intermediates for this reaction. Copper favoured metallacycle formation, 

whereas silver favoured allylic hydrogen abstraction. 

Copper has been introduced to zirconium catalysts by Labaki
38

 et al. and the catalyst was 

used for propene oxidation. Their study mainly focused on the effect that the preparation 

method had on the catalytic performance. The three methods used were: co-precipitation with 

copper nitrate and zirconium oxychloride (Cu/ZrO(OH)2); wet impregnation with copper 

nitrate and zirconium oxyhydroxide (Cu/Zr); and alternatively, impregnation with Cu on 

zirconium oxyhydroxide previously calcined at 600
o
C (Cu/Zr600).  The study revealed that 

the catalysts made via impregnation were more active than the co-precipitation. The catalyst 

activity was enhanced when there was more copper in it. The group also suggested the 

presence of new active sites due to the addition of copper to the zirconium, as the light off 

curve shifted to lower temperature. For the same copper content, the order of activity is: 

Cu/Zr> Cu/Zr600> Cu/ZrO (OH)2. Therefore, the investigation concluded that the best 

catalyst for activity and stability was the impregnated catalyst, previously calcined at 600 
o
C. 

Another study that compared preparation techniques, but solely used Cu for propene 

epoxidation without any additional metal, was carried out by Vaughan and co-workers.
39

 

They made a Cu/silica catalyst in the presence of oxygen without hydrogen addition. A 1 

wt% catalyst was made via a microemulsion route and a 5 wt% catalyst by wet impregnation. 

For the catalyst prepared by the microemulsion method, propene oxide and acrolein were the 

major products and the best selectivity of 53% was achieved at a temperature of 225 
o
C with 

0.25% conversion.  The activity for the other catalyst was similar, although it only reached a 

selectivity of 15% at 225 
o
C and a conversion of 0.24%.  Below a temperature of 250 

o
C, they 
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deduced that dispersed metallic Cu (Cu
 
(0)) was the active species for propene epoxidation 

and that their activity was close to what Haruta had obtained with his Au/TiO2 catalysts. 

Recently, copper phalocyanine has been used as an copper precursor for an active catalyst for 

propene oxidation.
40

 The catalyst was made by wet impregnation on a silica support and the 

best selectivity and activity was observed in the temperature range 475-500 
o
C. The group 

discovered that the key parameters for high acrolein selectivities were copper loading and 

oxygen partial pressure in the gas mixture. As copper content increased, acrolein selectivity 

dramatically dropped from 42% to 11%, when the loadings were increased from 0.06 to 

0.9wt% respectively. As the oxygen partial pressure decreased, the acrolein selectivity 

increased. The group could only hypothesize the state of the copper species, which they 

suggested were copper (II) oxide, although the copper levels during their experiments were 

too low to actually determine. 

A recent investigation of propene epoxidation on a Cu/SiO2 catalyst, using O2 as an oxidant,
41

 

showed that propene oxide was produced below 227 
o
C. However, at higher temperatures, 

acrolein and COx were the major products. From IR studies, they concluded that Cu (0) and 

Cu (1+) were the active species for the formation of propene oxide, and Cu
 
(2+)

 
was an active 

species for forming acrolein and COx. Li et al. 
23

 studied the performance of Cu/SiO2 

catalysts, with the addition of several promoters, for propene epoxidation by oxygen. Out of 

all the promoters used, they found that samples modified with KAc and NaAc showed the 

highest propene oxide selectivity (100%) at the start of the propene reaction. Their work 

suggested that the addition of these modifiers switched the formation form acrolein to 

propene oxide. As the temperature was increased, the conversion increased and the propene 

oxide selectivity decreased. At 1% conversion, the KAc promoted Cu/SiO2 catalyst had a 

propene oxide selectivity of 40%. The group’s work revealed that there was a trend 

associated with the effect of the promoter on the propene oxide selectivity and conversion. 



28 

 

An increase in the propene oxide selectivity and conversion was observed in the order: KCl < 

NaCl < NaAc < KAc. The study also showed that KAc was the best promoter for propene 

oxide formation, which was not dependent on pretreatment in N2 or H2. The size of the 

copper (II) oxide particles was also investigated and the smaller particles were more 

favourable for propene oxide formation, particularly when the catalyst was modified with 

KAc. 

Cu/SiO2 catalysts have recently been prepared by a sol-gel method and tested for propene 

epoxidation by a high throughput screening process.
42

 SiO2 was the support of choice and 

many metals were used to synthesise catalysts for this reaction. The most promising was the 

Cu/SiO2 catalyst. Their work also revealed that multimetallic systems could have a positive 

effect on the reactivity for propene oxidation. The propene oxide yield was increased by 

several fold when copper was promoted with silver, and this suggested a synergy between the 

two metals. Copper and manganese supported on Al2O3 also showed an improvement in the 

catalytic performance. Senkan and team have highlighted the importance of mutimetallic 

systems for this reaction, which needs to be explored in more detail to generate a catalyst that 

fulfils the potential of these metal systems for propene epoxidation. Recently, a new high 

throughput pulsed laser ablation (PLA) study was carried out by Senkan and co-workers, 

which emphasized the capability of Cu-on-Mn/SiO2 for propene epoxidation by oxygen at the 

temperature of 375
o
C.

43
 For the Mn-on Cu/SiO2 catalyst, propene oxide selectivity was 

maintained around 8% and carbon dioxide was the main product. Cu/SiO2 and Mn/SiO2 

propene oxide selectivities of 17% and 8% were observed, at a propene conversion of 

between 0.2 and 0.4% respectively. However, for the Cu/Mn/SiO2 catalyst, propene oxide 

yields were increased by a factor of five, compared to the mono-metallic catalysts. A propene 

oxide selectivity of 22% was observed at a propene conversion of 1%. These investigations 

showed that the sequence of deposition of each metal onto the silica support was vital 
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because it had a major impact on the outcome of the catalyst performance for propene 

epoxidation. Combinational methodologies have been used to identify new formulations for 

propene selective oxidation catalysts.
44

 Senken et al. prepared catalysts by impregnation of 

various metals on standard pellets of γ-Al2O3.  At different loadings, many different catalysts 

were prepared, processed and tested for propene oxidation in oxygen. Initial results showed 

that Rh was an active metal for propene oxide formation and showed good performance, 

when combined with V, Cr, Mo and Sn. Copper was tested and a much lower activity was 

detected which favoured selectivity towards acrolein.  

Copper promoted by vanadium has shown a significant effectiveness for propene 

epoxidation, using oxygen, from work carried out by Yang et al.
45

 This study suggested a 

synergistic effect between the vanadium and the copper, especially with a V/Cu ratio of 0.11-

0.20 which showed the highest activity towards propene epoxidation. One reason for the 

enhanced performance of the copper, when promoted by vanadium, was that the addition of 

the promoter increased the copper dispersion of the catalyst. As previously seen in other 

work,
46

 a pre-reduction of the catalyst, rather than an oxidative pre-treatment, also increased 

the catalytic activity. An in situ XRD study revealed that Cu (0) in the reduced catalyst was 

transformed to Cu (+1), which (they suggested) accounted for propene epoxidation, and the 

presence of VOx encouraged this change. A conversion of 2.7% was observed when using the 

vanadium promoted copper catalyst with a selectivity of 16% towards propene oxide, 

whereas the unsupported copper catalyst, without vanadium addition, gave a conversion of 

0.045% and a selectivity of 9.2% towards propene oxide.  

For copper catalysts to be effective, it is important to consider the type of support used. It was 

previously reported that, for the water gas shift reaction,
25

 an alumina support was more 

active than silica. Other factors that should be considered when using copper catalysts are the 

preparation method, calcination temperature, dispersion and, in the case of propene oxidation, 
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the type of oxidant used. The oxidation state of the copper also seems to be significant, as 

different copper species can give different product selectivities. 

 

 

1.6 Reactions using Au catalysts 

 

1.6.1 CO oxidation 

 

CO oxidation has been extensively researched since Au nanoparticles were shown to be 

active for this reaction.
47,48

 The size (2-5 nm) and shape of the Au particles, as well as the 

type of support used, have been reported by many to be crucial for CO oxidation.
49-51

 The 

typical preparation method is deposition precipitation.
52

 Work carried out on the activity of 

supported Au catalysts for this reaction has revealed that smaller Au nanoparticles are much 

more active than larger particles at 0
o
C , and this activity is not altered by the nature of the 

oxide support (reducible or irreducible). 

Silica was, in the past, believed to be an unsuccessful support to disperse Au for many 

reactions. However, it has been used by Zhu et al. 
53

 to form an active and stable catalyst for 

CO oxidation. The process uses a [Au(en)2]
3+

 (en= ethylenediamine) salt as a precursor in a 

unique deposition precipitation method. 

Recently, CO oxidation has been investigated for oleyamine coated AuAg alloy 

nanoparticles.
54

 A one pot synthesis was devised which involved the simultaneous reduction 

of gold and silver in octadecane. TEM analysis showed that the nanoparticles were 

monodispersed with a size of 8 nm. UV-visible spectroscopy proved that an AuAg alloy was 

formed and not a core shell structure. The Au0.52 Ag0.48 alloy catalyst was the most active for 
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CO oxidation and had a 100% conversion at 150 
o
C. This indicated that the gold performance 

was enhanced by the presence of silver in the catalyst. 

An investigation into the effect of different Au species on a Au/SiO2 catalyst for CO 

oxidation has been carried out by Wu and co-workers.
55

 Diffuse reflectance infrared 

spectroscopy (DRIFTS) and quadrupole mass spectroscopy (QMS) were used to analyse the 

catalysts. They discovered that the choice of pre-treatment, had an effect on the Au species 

and, as a consequence, on the performance for CO oxidation. High temperature calcination 

(500 
o
C) formed cationic Au species which were inactive for CO oxidation. However, a 

reduction in either H2 or CO produced a metallic Au species which was active towards CO 

oxidation. The role of water was also studied and the group concluded that it had a positive 

influence on the activity, facilitating the reduction of the Au cationic species, and on the 

activation of oxygen.  

 

1.6.2 Propene oxidation 

 

Gold catalysts have been extensively studied for propene oxidation over past 10 to 20 years. 

Haruta and co-workers 
6
 discovered that Au could be an effective catalyst for propene 

epoxidation and the activity was dependent on the size of the Au particles. They used 

Au/TiO2 catalysts, prepared by deposition precipitation (DP) and for comparison, Au 

catalysts were also made by impregnation and on a TiO2/SiO2 support. Hydrogen and oxygen 

were included in the propene reactor feed in the temperature range 30 to 120 
o
C. Conversions 

of 1-2%, with selectivity of 90% towards propene oxide were observed for the Au/TiO2 

catalyst made by DP and the addition of H2 improved the catalyst performance. Au/TiO2 was 

also tested for propene oxidation by Delgass and co-workers 
56

 with H2/O2 and in a 

temperature range of 100 to 200 
o
C. The most promising catalysts were those made by a 
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deposition precipitation route on a titania modified silica support which had an Au particle 

size above 2 nm. Other work by Delgass 
57

 and co-workers, on propene epoxidation for 

Au/TS-1, agreed with earlier work carried out by Haruta and co-workers, based on the size of 

the Au particle for propene epoxidation, and their work stated that an Au size of 2-5 nm was 

critical.  Haruta 
58

 also experimented with Au on a Ti-MCM-41 support and TiO2-SiO2 with 

different ratios. The Au nanoparticles were put on the support by deposition precipitation as 

this appeared to be the most successful method of preparation for this reaction. The Au/ Ti-

MCM-41 catalyst showed increased conversion with an increase in the Ti/Si ratio of 3/100. It 

reached the highest propene oxide yield with a selectivity of 93.5% towards propene oxide 

and 3.2% conversion at 100 
o
C. Their findings showed that the temperature had an effect on 

the propene oxide selectivity because, at temperatures greater than 120 
o
C, the selectivity 

decreased. Haruta and co-workers have written many papers 
6,48,49,52,59

 about Au supported on 

either TiO2, TiO2/SiO2 or titanosilicates for propene epoxidation, which has led to 

improvements on the types of support used for this reaction. Part of these studies 
60,61 

showed 

that 3D mesoporous titanosilicates could be prepared by a sol-gel technique and used as 

effective supports for Au to improve propene oxidation yields, with a conversion of 7% and a 

propene oxide selectivity of more than 90%. The effect of calcination temperature on Au/Ti-

SiO2 support was also investigated 
62

 at 300, 400, 600, 800 and 1000 
o
C, and showed that an 

increase in the heat treatment temperature of the catalyst increased propene oxide selectivity 

and yield. 

The effect of catalyst preparation on propene oxidation performance 
63

 was also tested by 

Sacaliuc and group, who made Au/Ti-SBA-15 catalysts by either grafting or by a 

hydrothermal route. The grafting technique gave an array of products: mainly propene oxide, 

acetaldehyde, acrolein, propane, CO2 and H2O, whereas the hydrothermal method showed 

lower activity, with propane and propene oxide as the main products. 
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Recently, a study by Molina and co-workers 
64

 has shown that Au clusters (Au6-Au10) can be 

selective for propene epoxidation. This work had three major differences, which were as 

follows: alumina film was used instead of TiO2, water vapour was incorporated into the 

reactor feed instead of H2 and sub-nanometer Au clusters were used instead of larger Au 

nanoparticles. They demonstrated that this alternative gold catalyst was effective, even when 

the support was changed from the typical TiO2, which had previously been thought to be a 

key feature of the catalyst activity for propene epoxidation. 

 There are certain factors that have to be considered when trying to develop gold catalysts 

with good catalytic performance.  Gold particles were most active when they were between 

2-5 nm in size for CO oxidation and above 2 nm for propene oxidation. The type of support, 

preparation method and calcination temperature have also all been investigated to optimise 

catalyst performance. The temperature range of experiments can affect the selectivity towards 

particular products and therefore has to be taken into account. 

The influence of different parameters, such as flow rate, nature of metal and type of support, 

have been studied for propene epoxidation.
65 

TEM analysis revealed a particle size between 6 

and 12 nm for the Au catalyst. The effect of flow rate on the propene epoxidation activity was 

investigated with a reactant mixture of 1000 ppm propene and 9% volume of oxygen in 

helium carrier gas. Baylet and group used the flow rates: 40, 60, 100, 120 and 145 ml min
-1

 

which corresponded to 11,700, 17,500, 29,200, 35,000 and 40,800 h
-1

. For all the catalysts, 

only carbon dioxide was the product detected. Their study showed that the higher the contact 

time, the lower the temperature ignition of the reaction. There was a 35-40 
o
C temperature 

difference between the T50 (temperature at 50% of propene conversion) at the lowest and 

highest flow rates. They found that for all the catalysts, at low temperatures equivalent to a 

conversion lower than 20%, the trend between reaction rate and the flow rate had a linear 
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relationship (between 40 and 145 mL min
-1

). They also suggested that the presence of large 

gold particles affected the propene epoxidation activity.   

Gold catalysts have been tested for propene oxidation and several parameters have been 

studied, such as the type of support and the gold metal loading.
66

 Ceria, titania and alumina 

were the supports analysed and only ceria showed activity for propene oxidation and the most 

active catalyst was an Au/CeO2 system. The group also found that, for the Au/CeO2 catalyst, 

the activity was enhanced when the catalyst was activated under H2 at 300 
o
C, compared to 

activation in He/O2 at 500 
o
C. Au/CeO2 (1 wt%) had a T50% (conversion at 50% temperature) 

for propene oxidation at 165 
o
C, compared to Au/Al2O3 (1 wt%) and Au/TiO2 (1 wt%) at 410 

o
C and 320 

o
C respectively. At a gold loading of 4 wt% on the ceria support, a T50% was 

observed at 140 
o
C. 100% conversion towards carbon dioxide could be achieved at 

temperatures as low as 200
o
C for Au/CeO2 catalysts. 

Gold catalysts loaded on a ceria-alumina support (Au/xCeO2-Al2O3) have been tested for 

propene oxidation and the CeO2 loadings and activation treatment investigated.
67

 Loadings of 

1.5, 3, 5 and 10 wt% CeO2 were studied. The Au/CeO2 catalysts were more active than the 

Au/Al2O3 or Au/CeO2/Al2O3 catalysts. This work showed that all the calcined catalysts were 

less active for propene oxidation than the reduced catalysts. They suggested that this could 

have been due to the size of the gold particles because the calcined catalysts had larger 

particles. The activity of the reduced catalysts increased with the ceria loading, whereas the 

activity decreased for the calcined catalysts. The group stated that this was because the 

metallic gold was more active than oxidised Au, and that Au
 
(0) on ceria was more active 

than Au
 
(0) on alumina. 

A density functional theory study on the effectiveness of partial oxidation of propene by gold 

has been reported by Roldan and co-workers.
68

 They deduced that the formation of propene 

epoxide on Au(111) was greatly hindered, with the pathway to allyl radical being more likely 
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than the formation of the oxametallacycle intermediates. Their investigation involved 

carrying out periodic density functional calculations for a modelled Au(111) surface. Roldan 

and co-workers concluded that the Au surface was inefficient for the selective oxidation of 

propene, even when covered by atomic oxygen. Their results showed that the required 

formation of oxametallacycle reaction intermediates was thermodynamically favourable but 

not kinetically favoured. The pathway leading to an adsorbed allyl radical and adsorbed OH 

from hydrogen stripping was more kinetically favourable.  

Transient kinetic experiments have been performed by Nijhuis et al. on gold-titania catalysts 

for the epoxidation of propene, using hydrogen and oxygen.
69

 Their results showed that 

oxygen was playing a role in the reaction mechanism. The side product water also indicated 

that the oxygen was from the support. Oxygen-18 was used to substitute non-labelled oxygen 

and, by analysing the time and rate at which the labeled oxygen appeared in the products, 

information could be deduced on the reaction mechanism. Au/TiO2 and Au/Ti-SBA-15 

catalysts have a large oxygen pool of species which include intermediates and products 

(propene oxide, water and carbon dioxide). Their investigations revealed that carbon dioxide 

was formed by at least two different pathways. They also found that the support oxygen was 

present in the water produced and they suggested this was either due to the role of the support 

oxygen in its formation, or by an exchange with the support afterwards. 

Bimetallic gold catalysts have been prepared and tested for propene epoxidation in the 

presence of hydrogen and oxygen.
70

 Moulijn and group prepared the catalysts three different 

ways: deposition precipitation (DP), ion exchange (IE) and size-controlled gold colloids 

(SGC). It was discovered that the modification of the Au/TiO2/SiO2 catalyst with platinum 

enhanced the selectivity and activity for this reaction. For the catalyst prepared by DP, the 

highest yield of propene oxide was obtained (1.2%). A homogeneous distribution of gold 

particles was observed for both the DP and IE methods. Tetrakis (hydroxymethyl) 



36 

 

phosphonium chloride (THPC) was the stabiliser used for the SGC route and the presence of 

this stabilising agent appeared to reduce the propene epoxidation activity (yield < 0.01%). 

When platinum was added to the gold catalyst, a propene oxide yield of a propene oxide yield 

of 1% was detected and it was reported that the water-propene oxide ratio was reduced, 

whilst the epoxidation activity was kept constant. They also did another study, using 

gold/titania catalysts, that explored ways of increasing the product yield to propene oxide, 

which they deduced was low due to product inhibition.
71

 Moulijn et al. explained the low 

yield of propene oxide (less than 2%) by using a non-Langmuir adsorption model and 

concluded that an increase in the catalyst loading did not lead to higher propene oxide yield, 

which they suggested was due to two possible reasons. The first was due to the consecutive 

reaction over Ti-O-Ti and the second was because of the presence of propene oxide 

adsorption-desorption equilibrium over active epoxidation centres. Therefore, it was reported 

that catalyst development was needed for this reaction and a possible change in the 

temperature and pressure parameters could help improve the propene oxide yield.  

Trimethylamine (TMA) has been used to produce highly efficient epoxidation of propene 

over supported gold catalysts.
72

 TMA is a strong Lewis acid and at very low concentrations 

(10-20 ppm) they have shown an improved activity in terms of catalyst regeneration, lifetime 

and propene oxide selectivity. The results showed lower deactiviation for the 

trimethylsilylated Ba(NO3)2 promoted Au/titanosilicate catalyst in the presence of 13-15 ppm 

TMA in the gas feed. After 5 hours, propene oxide selectivity remained as high as 80%. At 

around 200 
o
C, with trace amounts of the TMA promoter, it was shown that propene 

conversions of 8.5% and propene oxide selectivity of 91% could be achieved in a gas feed of 

propene, oxygen, hydrogen and argon (1:1:1:7).  

The effect of reaction and preparation conditions for propene epoxidation using Ag/ TS-1 has 

been discussed by Wang et al.
73

 Their work revealed that the presence of hydrogen was key 
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in the effective performance of the catalyst. The best activity and selectivity were obtained 

with a 2 wt% Ag loading, a ratio of Si/Ti in TS-1 of 64, a calcination temperature of 450 
o
C 

and the gas feed composition of propene: oxygen: hydrogen: nitrogen of 1:2:3:12, with a 

space velocity of 4000 h
-1

. With these conditions, a propene conversion of 1.37% and 

selectivity towards propene oxide of 93.5% was achieved.  

The reaction of propene epoxidation over Au/Ti-MCM-41 catalysts was studied with and 

without the promoter CsCl.
74

 It was reported that the presence of the promoter increased the 

propene oxide selectivity. Without the promoter, a propene conversion of 3.1% and a propene 

oxide selectivity of 92% were observed, compared to a 1.7% conversion and a selectivity if 

97% with the addition of CsCl. This work suggested that the promoter reduced the reaction of 

hydrogen with oxygen with little effect on the reaction of propene with oxygen. The presence 

of CsCl also caused the gold to agglomerate due to the chloride anions.  

Propene epoxidation with H2 and O2 has been carried out for Au/titanium silicalite (TS-1) 

catalysts and the effect of composition and promoters studied.
75

 The catalysts were prepared 

by deposition precipitation (DP) and the group found that the gold loading and catalytic 

activity were dependent on the pH of the solution used for the DP preparation. Gold catalysts, 

prepared at a low pH close to 7 gave high activity and stability due to formation of the 

surface with an isoelectric point, which improved the capture of anionic gold species. The 

work revealed that group two metal promoters, such as Mg, Sr, Ba and Ca, increased both the 

gold loading and the activity for propene oxidation. The best promoter was Mg, and the 

Au/Mg/TS-1 catalyst gave a propene oxide formation rate of 88 g PO h
-1 

kgcat
-1

, whereas the 

unpromoted Au/TS-1 catalyst had a propene oxide formation rate of 57 g PO h
-1 

kgcat
-1

. 
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1.7 Review of AuCu catalysts 

 

The use of nanoalloys in catalysis is a rapidly expanding field. There has been immense 

interest in the use of supported gold nanoparticles as catalysts and bimetallic catalysts, 

containing gold in combination with other metals, represent an emerging field of research. 

While bulk copper–gold alloys are well-known and, indeed, are much studied systems, 

bimetallic copper–gold nanoalloys have received relatively little attention. 

 

 

1.7.1 Introduction 

 

Copper and gold are metals that have for a long time had many uses in catalysis. 

Superficially, they have similar chemistries - they are coinage metals found in the same group 

of the periodic table. However, their catalytic behaviour is quite different. Heterogeneous 

copper catalysts are well-known hydrogenation and oxidation catalysts, e.g. in the production 

of methanol.
76,77

 

Bimetallic catalysts have attracted considerable attention recently,
78

 in particular, since they 

offer a way to fine-tune the catalytic properties of metals. The structures of bimetallic catalyst 

particles have been analysed by microscopy, and studied using theoretical methods, as well as 

being used as catalysts for many reactions. Understanding the structure–activity relationships 

of these complex systems is a difficult task, but some progress has been made. 
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1.7.2. Preparation of CuAu bimetallic catalysts 

 

A broad range of preparation methods have been discussed in the literature for AuCu 

catalysts, and the papers that have been highlighted indicate that the method chosen can have 

a significant effect on the structure and behaviour of the AuCu catalyst. Of the methods 

studied, impregnation using suitable soluble Au and Cu precursors is possibly the most 

straightforward. With this method, there is also the possibility of modification of the 

calcination and reduction procedures, following impregnation to fine-tune the structure. 

Catalysts, prepared by co-impregnation of silica with copper nitrate and tetrachloroauric acid, 

gave catalysts which were active for acrolein synthesis from propene.
79

 They were activated 

by reduction for 2 h in flowing hydrogen at 315 
o
C, followed by calcination for 15 h at 676 

o
C. The copper–gold catalysts were more selective to acrolein than their monometallic 

counterparts. In addition, these materials could also be used for the selective oxidation of 

other alkenes. The structure of the co-impregnated catalyst after reduction was investigated 

using electron X-ray absorption fine structure spectroscopy (EXAFS),
80

 and a degree of 

mixing was observed between copper and gold. In a reducing hydrogen environment, the 

gold segregated to the surface, whilst, in an oxidising atmosphere, the gold migrated towards 

the core. Such core–shell structures are commonly encountered in bimetallic alloy 

nanoparticles and these structures can be used to control catalyst performance. Similarly, co-

impregnation of zeolites NaY (SiO2/Al2O3 molar ratio = 5) and ammonium mordenite 

(SiO2/Al2O3 molar ratio = 20) was also used to prepare bimetallic CuAu catalysts.
81

 Here, the 

nature of the zeolite influenced the gold particle size markedly. For ammonium mordenite, 

particle sizes of about 8 nm were observed, whereas it was reported that sizes of 80 nm were 

recorded for the NaY zeolite. Transmission electron microscopy (TEM) showed that sintering 

of the nanoparticles did not occur on calcination at 500 
o
C. The nature of the zeolite also 
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affected the catalyst activity for CO oxidation. When supported on NaY, the Cu-only and 

CuAu catalysts exhibit similar activities, whilst the Au-only catalyst is much less active. On 

ammonium mordenite, however, the Cu-only catalyst is more active than the CuAu and Au-

only materials. There was a significant hysteresis for the AuCu/zeolite catalysts, which 

suggests that the structure changes with temperature or time on-stream. Analysis of the 

catalyst after use would be interesting to determine if the catalyst nanoparticles remained 

bimetallic in nature. Co-impregnation of TiO2 with tetrachloroauric acid and copper (II) 

chloride gave catalysts which were active after hydrogen reduction for propene epoxidation, 

with N2O as oxidant.
82

 The presence of copper–gold alloys was confirmed by XRD, the 

lattice parameter changing linearly with the Cu:Au ratio. Temperature programmed reduction 

showed two reduction peaks which were assigned to CuO and isolated Cu (+2) ions. These 

two reductions occur at the same temperatures for AuCu3/TiO2, AuCu/TiO2 and Au3Cu/TiO2. 

Use of pre-formed CuAu core–shell nanoparticles supported on titania, instead of co-

impregnated materials, was found to give an order of magnitude increase in activity.
83

 The 

pre-formed nanoparticles were prepared, using copper nitrate and tetrachloroauric acid 

transferred into toluene and using tetraoctylammonium bromide as phase transfer agent. Cu 

(+2) and Au (+3) were reduced, using sodium borohydride and stabilised with dodecanethiol. 

The particles were impregnated onto titania and calcined at 300–600 
o
C. Thermogravimetric 

analysis (TGA), infrared (IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) 

showed that the stabiliser was not present after calcination. The as-prepared particles were 

confirmed as being bimetallic by electron energy-loss spectroscopy (EELS) and high 

resolution transmission electron microscopy (HRTEM). A detailed HRTEM study of the 

catalysts was performed. The particle size of uncalcined samples was in the range 1.6–2.3 nm 

and this increased on calcination to 6–10 nm. The catalyst with the highest copper content, 

AuCu3/TiO2, sintered the least. Analysis of the lattice fringes confirmed the presence of 
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CuAu alloy particles. EELS showed a signal at 24 eV which is indicative of a CuAu alloy.
82

 

Figure 1.2 shows the TPR profiles for the AuCu3/TiO2 catalyst calcined at different 

temperatures. Calcination at 300 
o
C or 400 

o
C gave similar TPR profiles. 

 

 

 

 

Figure 1.2  TPR profiles of AuCu3/TiO2 catalysts calcined at (a) 300 
o
C, (b) 400 

o
C, (c) 500 

o
C and (d) 600 

o
C.

83 

 

 

The low temperature peak was tentatively ascribed to small copper-rich clusters, whilst the 

main peak was due to the reduction of copper in AuCu nanoparticles. The increase in the low 

temperature peak, when the calcination temperature is raised from 300 
o
C to 400 

o
C, was 

thought to be due to better reduction of the TiO2 support, due to an increased alloy–support 

interaction. The hydrogen uptake is greater than expected from reduction of the metal, and so 
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could be explained by surface adsorption of hydrogen, removal of residual ligands or 

reduction of the support. A further increase of the calcination temperature resulted in a loss of 

the low temperature peak and the appearance of intensity at higher temperature 377 
o
C to 477 

o
C. This was thought to be a consequence of increased particle size, as observed by TEM. 

The AuCu3/TiO2 composition with a loading of 1.2 wt% total metal displayed the best 

catalytic performance, both in terms of propene conversion and propene oxide selectivity. 

The composition of the catalysts, which were calcined at 400
 o

C, affected the propene 

conversion in the following order: AuCu3/TiO2 > AuCu/TiO2 > Au3Cu/TiO2 > Au/TiO2. 

Therefore, it was confirmed that AuCu alloy catalysts were more active than Au/TiO2 

monometallic catalysts after calcination at 400 
o
C. However, when the catalysts were 

calcined at higher temperatures, e.g. 500 
o
C and 600 

o
C, the catalytic performance declined. 

The same trend was observed for the selectivity towards propene oxide. Increasing the copper 

content increased the catalytic activity, which leads to the possibility that well-dispersed 

copper is responsible for the activity observed. Interestingly, this reason for activity can be 

linked to work carried out previously by Smolentseva et al.
81

 which showed that the addition 

of copper stabilised the gold nanoparticles for CO oxidation, whereas, in this paper, the 

addition of gold enabled the formation of finely dispersed copper that enhanced activity. 

Preparation of a monometallic Cu/TiO2 catalyst by this route was not possible. However, 

earlier work
82

 showed that bimetallic AuCu/TiO2 catalysts were more active than Cu/TiO2 for 

propene oxidation. 

CuAu catalysts have also been prepared by a modified impregnation–precipitation route, 

using titania nanotubes as a support.
84

 Copper was first added to the nanotubes by 

impregnation using copper nitrate, followed by deposition of gold using ammonia to 

hydrolyse the tetrachloroaurate. The product was annealed under hydrogen at 150 
o
C. The 

effect of gold doping on the activity of 8% Cu/TiO2 is shown in Figure 1.3. 
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Figure 1.3 CO oxidation activity of (k) 0.5% Au/TiO2, (l) 0.1% Au/TiO2 (m) 0.1% Au-8% 

Cu/TiO2  and (n) 8% Cu/TiO2 
84

 

 

The result of this doping is to slightly lower the temperature at which 100% conversion of 

CO oxidation is obtained. The addition of copper was suggested as a method of thrifting gold. 

It is possible that the redox chemistry of copper would lead to hysteresis in the observed 

catalysis with increasing and decreasing temperature under reaction conditions. 

 

 

1.7.2.1.  Preparation methodology for CuAu nanoparticles 

 

The preparation of nanoalloy particles is a rapidly expanding field, which has recently been 

reviewed.
85

 Materials scientists commonly approach this task in a very different manner to 

catalytic scientists but, typically, the materials produced by the materials science community 
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are not tested as catalysts. Nanoparticles can be prepared by many different methods, from 

those where only a few particles are synthesised through to those used in larger scale material 

preparations. Many of these methods are potentially suited to catalyst preparation but have 

not been exploited, thereby highlighting an interesting possibility where the fields of catalysis 

and materials synthesis can be united to mutual benefit. An illustration of relevant processes 

is given below. Ligands have been used in many reactions to help control the reactivity of 

metals. Suitable ligands (e.g. 1,2-dimyristoyl-snglycero-3-[phospho-rac-(1-glycerol)](sodium 

salt) (DMPG) or hexamethylene-1,6-bis (dodecyldimethylammonium bromide) (12-6-12) are 

often used to control particle growth in liquid phase syntheses of nanoparticles. Schaak et al. 

studied the reduction of copper acetate and tetrachloroauric acid, either by thermolysis in 

tetraethylene glycol
86

 or by borohydride reduction
87,88 

in the presence of polyvinylpyrrolidone 

(PVP) stabiliser, to produce gold–copper colloids of various compositions. XRD was again 

used to demonstrate alloy formation; it also showed that Cu2O was also observed in some 

cases due to re-oxidation. Selected area electron diffraction (SAED) showed that the particles 

were bimetallic, in agreement with bulk XRD data. The particles synthesised by thermolysis 

at 310 
o
C were ordered alloys, whilst those prepared at lower temperatures were disordered. 

CuAu particles with an unusual structure have been prepared by seed growth
88

 using DMPG 

as stabiliser. Gold seed particles were prepared by borohydride reduction of a tetrachloroauric 

acid–sodium citrate solution, and these were used to grow particles from a tetrachloroauric 

acid–copper sulfate–DMPG solution. The amount of copper added to the CuAu growth 

solution affected the structure of the gold particles and, at higher copper concentrations, 

decoration of the gold particles with smaller copper particles was observed. These are similar 

to the species which are believed to form, following reduction and high temperature 

calcination,
79,80 

and so could possess similar catalytic properties. TEM showed that in the 

presence of DMPG, there was a pseudo-core–shell arrangement. Interestingly, when the 
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stabiliser was changed to hexamethylene-1,6-bis (dodecyldimethylammonium bromide), the 

effect of the copper on the structure of the gold particles was small, although some elongated 

particles were observed. In this system, higher copper content led to sintering of the gold 

particles, in contrast to the particles produced by borohydride reduction and dodecanethiol 

capping (described above), where the particles with the highest copper content sintered least 

on calcination. The stabiliser, sodium bis (2-ethylhexyl) sulfosuccinate (AOT), was used to 

prepare bimetallic CuAu particles using anionic microemulsion.
90

 Cu(AOT)2 was added to 

AOT in isooctane–water to form oil-in-water microemulsions. The copper was reduced by 

the addition of hydrazine and then, after 2 h, HAuCl4 was added. The resulting particles were 

stabilised by the addition of 1-dodecanethiol to prevent further agglomeration. 

Characterisation of the nanoparticle solution by TEM and UV/visible spectroscopy 

demonstrated the formation of bimetallic particles. The nanoparticles produced were 

dispersed in polymers for sensor applications. However, a gold-containing polymer 

composite, without copper added, was a more sensitive detector for both ammonium 

hydroxide and hydrogen peroxide. Copper–gold particles in a silica matrix have been 

prepared by a sol–gel reaction of copper nitrate and tetrachloroauric acid with tetraethyl 

orthosilicate.
91

 A high-temperature hydrogen reduction (500–900 
o
C for 5 h) was used to 

produce the alloys after calcination at 250 
o
C. The alloy structure was confirmed by electron 

diffraction, TEM and XRD. Electrodeposition from suitable copper–gold solutions has also 

been used to synthesise AuCu alloy particles.
92

 A cyanoalkaline solution (made up of 6.4–8.0 

g KCN, 6.4–8.8 g KCu(CN)2, and 1.0–3.0 g KAu(CN)2) in de-ionized water was used to 

electroplate a 10–20 mm thick AuCu foil onto a titanium substrate. The as-deposited material 

required a vacuum annealing treatment to form a crystalline CuAu alloy, as demonstrated by 

XRD. The stability of the nanocrystalline grain size of the alloy coating was of interest, as it 

is strongly linked to mechanical properties such as hardness and strength. Physical methods 
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have also been used to prepare CuAu particles. Implantation of Cu
+
 and Au

+
 ions onto a silica 

slide, followed by annealing in hydrogen at 900 
o
C 

93-95
 and sputtering of atoms from gold 

and copper metals onto a suitable support, both gave bimetallic particles.
96-98

 A high 

temperature reduction step was found to be crucial to the alloy formation in systems where 

the particles are produced directly from ions or atoms. Mattei et al. 
99

 showed, using visible 

spectroscopy, that a reduction treatment for their sputtered CuAu/SiO2 materials was required 

to give alloying. For the as-prepared samples, only a gold plasmon band was observed, 

whilst, for the reduced bimetallic systems, the plasmon band position changed monotonically 

with the copper content, showing that the Cu was alloyed with the gold particles. There are 

many synthetic methods which can be applied to the synthesis of bimetallic copper–gold 

particles, from straightforward procedures, such as co-impregnation, through to methods 

which need highly complex and expensive instrumentation. One common theme is that a 

high-temperature reduction step is necessary for the formation of alloyed particles. 

 

 

1.7.3 Characterisation of AuCu alloys 

A number of techniques are typically used to characterise CuAu alloys; in particular, XRD, 

UV/visible spectroscopy and TEM. 

 

1.7.3.1 UV-visible spectroscopy 

 

The key question when analysing copper–gold particles is whether the metals are alloyed, or 

present as separate monometallic species. One way to determine this is to carry out a surface 

plasmon resonance (SPR) study using UV-visible spectroscopy. A number of studies have 

used this characterisation technique.
90,91,99 

Mattei et al.
99 

evaluated the effect of annealing in a 
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reducing atmosphere on AuCu alloys and found that, before annealing, no surface plasmon 

resonance band was observed, except for pure Au which had a minimal plasmon band. They 

suggested that this indicated that the copper was present in an oxidised form. After annealing, 

there were more noticeable plasmon bands for the CuAu materials, confirming alloy 

formation. Del Castillo-Castro et al. 
90

 used UV/visible spectroscopy to examine CuAu 

systems, prepared using a microemulsion technique. Prior to gold addition, no plasmon 

resonance was observed, despite the presence of small copper nanoparticles. The plasmon 

band was thought to be too weak to be observed, due to the low concentration of copper used 

and the small nanoparticle size. However, ten minutes after the addition of HAuCl4, a 

plasmon band was observed at 530 nm intermediate to that for Au (520 nm) and copper (570 

nm). Analysis of the plasmon band position was also used to understand the annealing of 

AuCu particles in a silica thin film,
91

 after high temperature treatment in hydrogen. For the 

AuCu system, the band position moved to shorter wavelength with temperatures from 500 to 

700 
o
C. However, above 700 

o
C, there was no further change, which indicates that AuCu 

nanocrystal formation was complete after annealing at 700 
o
C. Optical spectroscopy has been 

carried out on CuAu nanoparticles in silica glass to assess the effect of thermal annealing.
97

 

Figure 1.4 shows the optical absorption spectra for both pure Cu and Au on silica, as well as 

three compositions of AuCu samples. The study revealed that during the annealing process a 

SPR band was observed. 
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Figure 1.4 UV-visible spectra of annealed (Au + Cu)–silica samples prepared by 

sputtering.
97 

The spectra obtained of the different Au–Cu ratios showed that the band shifted from the 

standard wavelength at 570–580 nm, associated with spherical Cu nanoparticles,
100

 to the 

typical wavelength for spherical Au nanoparticles at 525 nm. The plasmon band position 

increased with increasing copper content. 

 

1.7.3.2 Transmission electron microscopy 

 

Del Castillo-Castro and co-workers 
90

 characterised CuAu nanoparticles, formed from a 

microemulsion technique, using TEM. The study showed CuAu nanoparticles which had an 

average diameter of 8 nm with a particle size range of 4–12 nm. Bakshi and group 
89

 similarly 

used TEM to characterise AuCu nanoparticles, produced using a Cu(SO4)2/HAuCl4 sample 

with a 0.8 ratio that also consisted of the capping agent DMPG. The study revealed that the 

Au nanoparticles were arranged in a necklace-like structure, with copper present in a pseudo-

core–shell arrangement and the shell made up of small Cu nanoparticles. The Cu 
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nanoparticles are not spherical but are observed to be more polyhedral and of size, around 5 

nm. The investigation showed that a higher Cu–Au ratio formed larger Au particles, which is 

interesting, and also that the Cu initiated destabilisation of the Au system. TEM together with 

selected area electron diffraction (SAED) is a powerful tool for understanding the structure of 

AuCu bimetallic particles. An investigation by Sra et al. showed AuCu particles prepared by 

a modified polyol process.
86

 Disordered alloys are formed from reactions performed at 150 

and 250 
o
C in tetraethyleneglycol, and this is supported by their SAED patterns, whereas 

atomic ordering is observed in particles synthesised at 310 
o
C. SAED shows clearly the 

reflections of a face centred tetragonal AuCu structure, as would be observed for a bulk 

AuCu alloy. For the sample formed at 150 
o
C, the nanoparticles appear small and spherical, 

although closer inspection determines that some are elongated. Particle length and width were 

determined as 5 nm and 4 nm respectively, for AuCu at 150 
o
C. The AuCu alloy, formed at 

250 
o
C, exhibited ellipsoidal distortion (6  x 7 nm). The AuCu nanoparticles, formed at 310 

o
C, were more ellipsoidal (8 x 10 nm) than those prepared at lower temperatures. This study 

highlights the ability to control the size, shape and structure of AuCu alloys by using the 

synthesis temperature as a key parameter, which is important for the application of AuCu 

alloys in catalysis. TEM was also used by Gwak et al.
91

 to determine the morphology of an 

AuCu silica thin film, made via a sol–gel method, followed by thermal treatment in air for 10 

h at 250 
o
C and H2 at 500–900 

o
C for 5 h. The study showed the TEM micrograph of an 

AuCu alloy, heat treated to 900 
o
C. The data they obtained from this characterisation method 

showed that the nanoparticles were spherical in shape and had an average diameter of 45 nm, 

and the silica support had a thickness of 165 nm. They concluded that the AuCu nanoparticles 

exhibited a face centred cubic structure, which was supported by XRD. High-resolution TEM 

has been used to analyse CuAu/TiO2 catalysts produced from thiol-capped CuAu particles.
83 

Individual nanoparticles were observed, and the effects of calcination and composition on 
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particle size were determined. EELS showed a signal which was assigned to the presence of a 

CuAu alloy.
82

 

 

1.7.3.3 Atomic force microscopy 

 

Atomic force microscopy (AFM) has been used by Twardowski and Nuzzo 
98

 to study an 

AuCu thin film. The film was produced by co-sputtering onto a Ti-modified glass slide, using 

gold and copper sputtering targets. When the resulting material is cleaned with “piranha 

solution” (3:1 concentrated H2SO4–30% H2O2), followed by treatment with 3:1:16 HCl–

HNO3–H2O, the metal grains increase in size to larger, irregular shaped nanoparticles. 

Copper was shown to be more reactive to the oxidising piranha solution/aqua regia treatment 

than gold; a copper-only sample had all its copper removed after 5 s treatment. However, the 

CuAu samples exhibited some stability to the treatment due to alloy formation. AFM was 

used to probe the surface roughness of the thin films produced. All the CuAu samples showed 

significant crystal growth after the piranha solution–aqua regia treatment, and this increased 

with increasing copper loading. The surface roughness of the films was calculated by analysis 

of the AFM images and found to decrease with increasing Cu loading for the treated thin film 

samples. Maldonado and co-workers 
101

 prepared AuCu alloys by thermal evaporation and 

then annealed the AuCu systems in argon between 100 
o
C and 400 

o
C. The AuCu film 

morphology was analysed using AFM. The AFM images show that after the annealing 

treatment the grain size increased. For an AuCu film thickness below 33 nm, Au coverage 

was not complete and instead islands were formed. The use of AFM allows structural features 

such as grain size to be investigated. This would be less easy to understand using other 

techniques, for example TEM or XRD. 
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1.7.3.4 X-Ray diffraction 

 

XRD characterisation can be readily applied to AuCu alloys and, as long as the nanoparticles 

are sufficiently large, the XRD pattern can be used to determine if alloy formation has 

occurred during synthesis. XRD characterisation has been used to determine the crystalline 

structure of AuCu films (Figure 1.4).
101

 

 

 

Figure 1.4 XRD patterns for AuCu films before and after annealing 
101

 

 

 

Annealing was required to form a CuAu alloy; monometallic Cu and Au were identified in 

non-annealed samples. For calcined samples, CuO (tenorite) can be present, but this is often 

obscured by more highly crystalline gold species. Bogdanovite (Au3Cu) also overlaps with all 

the gold reflections.
102

 XRD analysis of CuAu nanoclusters in a silica matrix 
91

 gave a single 

sharp reflection at 40.28
o
 2θ superimposed on a broad background arising from the silica. The 

sharp reflection was assigned to AuCu with lattice parameter 3.872 Å. Some asymmetry of 

this reflection was observed, especially following a lower temperature annealing treatment 
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(500–700 
o
C), due to the presence of residual amounts of gold. CuAu4 nanoclusters in the 

same system gave three reflections which were assigned to the (111), (200) and (220) 

reflections, with a lattice parameter of 3.995 Å. Kameoka and Tsai 
103

 obtained an active 

Au/TiO2 catalyst for CO oxidation by selective leaching of Cu from ordered AuCu3. Two 

precursors were used for this study: an ordered AuCu3 which is an intermetallic compound 

and a disordered AuCu3 which is a solid solution. The precursors were prepared from the 

pure metals in an arc furnace, and thermally treated in different ways to create or minimise 

structural disorder. By using ordered and disordered forms of AuCu3, the microstructure and 

catalytic activity could be investigated after leaching, without considering the composition. 

The intermetallic AuCu3 was characterised using XRD, before and after the compound was 

leached in 50% HNO3 aqueous solution. The study showed that, after leaching, the ordered 

AuCu3 diffraction peaks disappeared, whereas the initial disordered phase was still present. 

Only Au peaks were observed after leaching; no copper or copper oxide were observed for 

the ordered AuCu3. As with much characterisation, different techniques give information on 

different aspects of CuAu materials. Some are good for determining whether an alloy has 

been formed (e.g. visible spectroscopy or XRD) whilst others give information on particle 

size distribution. Yet each has limitations or drawbacks. Therefore, it is important to consider 

results together, rather than rely on one technique. 

 

1.7.4  Theoretical studies of CuAu alloys 

 

Theoretical investigation of copper–gold particles has given considerable insight into their 

structures and properties. Ferrando et al. 
85

 have recently reviewed the area. Theoretical work 

aims to establish the structure of copper–gold alloy particles and the distribution of gold and 

copper throughout the nanoparticles. Most studies conclude that the particles are not 
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homogeneous alloys, but that there is some degree of segregation of copper into the core and 

gold towards the mantle (outer part of the particle). Bimetallic particles can often be 

significantly different to monometallic ones. For example, the effect of exchanging a copper 

atom into a gold cluster has been investigated.
104

 Pure copper clusters were found to adopt an 

icosahedral geometry, whilst pure gold clusters were significantly less symmetrical and in 

fact, amorphous in some cases. However, substitution of one gold atom by copper was 

enough to change the structure back to an icosahedral fragment. Clusters with compositions 

CuAu and CuAu3 were comprised of layered Cu and Au; whereas those with composition 

Cu3Au had Cu and Au atoms in a more mixed arrangement. For the icosohedral structures, 

Cu was the central atom in the cluster due to its smaller size. 

When layered structures are formed, the surfaces of the clusters comprise mainly gold atoms, 

whereas the copper atoms are located preferentially in the bulk. A trend was observed for the 

bulk cohesive energies that decreased in the order: Au ~3.81 eV > CuAu3 ~3.75 eV > CuAu 

~3.74 eV > Cu3Au ~3.64 eV > Cu ~3.49 eV. Therefore, it was concluded that the atomic 

mixing and segregation was determined by a number of factors e.g. minimisation of surface 

energy, reducing internal strain, atomic packing efficiency and structures that can take 

advantage of strong Au–Au or Au–Cu interactions. Johnston and co-workers 
105 

discovered 

that copper-rich CuAu clusters had more disordered structures. Many geometries were found 

to be possible for the different 34-atom CuAu clusters. An Au34 cluster was disordered, whilst 

perfect core–shell structures are observed for Au28Cu6and Au27Cu7. Joshi and co-workers 
106

 

studied hydrogen peroxide formation from H2 and O2 and investigated the effect of gold–

silver, gold–copper and gold–palladium dimers and trimers. Using DFT methodology, they 

determined the ground state geometries of the clusters and based the reaction pathway on 

these to determine the thermodynamics and kinetics of the reaction. They investigated a total 

of fifteen clusters to observe the thermodynamic and kinetic constraints on H2O2 formation. 
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The first H2 addition to form an OOH species was thermodynamically unfavourable for all 

the Cu-containing dimers and trimers, except CuAu2, and H2O2 formation was unfavourable 

for CuAu2. However, the formation of the OOH and H2O2 species for PdAu and Pd3 

kinetically and thermodynamically favourable and was therefore active for H2O2 production, 

in line with experimental results for PdAu catalysts. The structure of copper–gold clusters 

with three different compositions—Cu3Au, CuAu and CuAu3—has been investigated by 

simulation of their growth, starting from three different seeds.
107

 Atoms of copper and gold 

were added, one-by-one, to the seeds, using molecular dynamics. Interestingly, the structure 

of the CuAu particles was found to depend on the particle size. For clusters of size 160 atoms 

or 200 atoms, the CuAu clusters were all icosahedral; whilst for 100 atoms, the CuAu particle 

was icosohedral, CuAu3 was a double icosohedron and Cu3Au was decahedral. Some 

segregation of copper and gold was also observed in the particles. In a separate experiment, 

copper atoms deposited onto an Au147 core did not migrate into the core. This information is 

very applicable to catalysts; for example, core–shell has been reported for both Aucore–Cushell 

and Cucore–Aushell compositions, depending on the atmosphere.
80

 A molecular dynamic study 

of the bimetallic nanoparticles AuxCuy 
108

 found the structures to be octahedral, decahedral or 

icosahedral. At low cluster sizes, with composition between AuCu3 and Au9Cu1, the AuCu 

clusters were stable icosahedra. However, for compositions between AuCu3 and Au3Cu, a 

(pseudo) cuboctahedral phase was present. It was determined that the main factors that 

affected the structural behaviour of the clusters were the cluster size, alloy composition and 

temperature. It showed the thermal behaviour for different alloy concentrations in a cluster of 

561 atoms. The melting temperature was determined as 277 
o
C and this lowered as the 

particle size decreased. The density and specific heat, for the undercooled liquid AuCu alloys 

in a wide composition range (Au, Au3Cu, AuCu, AuCu3 and Cu), have been studied by a 

molecular dynamic method, 
109

 above and below the melting point. The magnitude and 
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temperature dependence of the alloy density increased with an increase in the Au 

concentration, and the specific heat of the alloys increase exponentially with an increase in 

the copper concentration. The theoretical studies highlighted in this review have concentrated 

on clusters derived from the three well-known stable, bulk AuCu compositions, i.e. AuCu, 

Au3Cu and AuCu3. They also focus on the differences between these AuCu clusters and pure 

Au and Cu clusters. Only one copper atom doped into a gold cluster is required to cause the 

structure of the cluster to rearrange. Clearly, the purpose of these studies has been to try to 

understand the structure, properties and compositional relationships in bimetallic clusters. It 

is anticipated that these theoretical studies will be informative in catalysis with nanoalloys of 

AuCu. 

 

1.7.5. Use of CuAu alloys as catalysts 

 

1.7.5.1 CO oxidation 

 

CO oxidation is an exceptionally well studied reaction, due to its importance in many 

applications, e.g. removal of CO from fuel cell feedstocks and CO2 lasers and the water gas 

shift reaction. There has also been intense academic interest in the active species in gold 

catalysts for the reaction and, despite significant effort, this remains a controversial area. In a 

series of Au/TiO2 nanotube catalysts 
84

 with gold added by deposition–precipitation, 

modification of the nanotube with copper nitrate, followed by calcination before the addition 

of gold, gave a more active catalyst than one without copper present. The temperature at 

which there was 100% CO conversion was 70 
o
C for AuCu/TiO2 but was much higher (170 

o
C) for Au/TiO2. The monometallic copper catalyst was also active for CO oxidation but less 

so than the CuAu catalyst. The paper showed that the CuAu catalyst containing 0.1% Au was 
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significantly more active than the 0.1% Au/TiO2 catalyst, and more active than the 

corresponding Cu/TiO2 catalyst. This was ascribed to a synergistic interaction between 

copper and gold, which enhanced the catalytic activity. It was not clear whether both copper 

and gold are active in this catalyst (i.e. the increase in activity was due to one metal aiding the 

dispersion of the second metal), or whether one metal was acting as a promoter for the other. 

The AuCu/TiO2 catalyst was shown to be stable for at least 10 h under reaction conditions. 

Iwasawa and co-workers studied CO oxidation 
110

 for a number of catalysts, containing Au 

precipitated on metal hydroxides, including Cu(OH)2. The catalytic activities were compared 

and Au(PPh3)(NO3)/Mn(OH)2 had a 50% conversion at a temperature less than -70 
o
C and 

100% conversion at 0 
o
C, whereas the Au(PPh3)(NO3)/Cu(OH)2 catalyst did not perform as 

well, achieving 50% conversion at 61 
o
C and 100% conversion at 170 

o
C. However, the 

Au(PPh3)(NO3)/Cu(OH)2 catalyst was more active than similar catalysts based on hydroxides 

of V, Al or Cr. Cu/zeolite materials were found to be more active for CO oxidation than 

either Au/zeolite or Au/Cu/zeolite 
81

 for zeolites NaY and ammonium mordenite. When the 

activity of the Au/Cu/zeolite catalysts was compared at increasing and decreasing reaction 

temperatures, a distinct hysteresis was observed. The decreasing reaction temperature part of 

the experiment showed higher activity than the increasing temperature section for 

Au/Cu/NaY, whereas Au/Cu/ammonium mordenite had a higher activity for the increasing 

temperature section than the decreasing temperature section. The hysteresis showed that the 

structure of the nanoparticles is changing during the experiment. As the monometallic 

Cu/zeolite was the most active catalyst observed in the study, this could relate to Cu 

segregation for Au/Cu/NaY and Au segregation for Au/Cu/ammonium mordenite. AuCu 

catalysts have also been used in a study to generate gold catalysts for CO oxidation, by the 

dissolution of copper from an intermetallic AuCu3 compound.
103

 The performance of the Au 

catalyst, after the Cu was leached from AuCu3, was comparable to the activity of a standard 
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Au/TiO2 catalyst for CO oxidation. It is possible that the activity was due to a residual Cu 

oxide phase which was not detected by XRD. Gold catalysts derived from ordered AuCu3 

were more catalytically active than those generated from disordered AuCu3. This could be 

due to a higher number of low-coordinate kink and step sites in the former sample. 

Recently, Au-Cu alloy nanoparticles supported on silica gel have been studied for carbon 

monoxide oxidation by Liu et al.
111

 Their main aim was to show the effect of different Au/Cu 

ratios between 3:1 and 20:1 on the activity for CO oxidation. The monometallic gold 

catalysts had a larger particle size of 5.7 nm, compared to between 3-3.6 nm for the Au-Cu 

bimetallic catalysts. The Au-Cu catalysts exhibited an enhanced activity, compared to the 

monometallic gold catalysts which, they suggested, indicated a synergy between copper and 

gold. They showed that the silica supported gold catalyst reached a full conversion of CO at 

200 
o
C, whereas, the copper silica catalyst showed a poor activity. Irrespective of the Au/Cu 

ratio, all the bimetallic catalysts reached 100% conversion at a temperature of 30 
o
C. The 

Au20Cu1/SiO2 catalyst had superior activity at room temperature out of all the catalysts tested.  

AuCu silica supported nanoparticle catalysts have, in recent times,
112

 been studied for CO 

oxidation and the effects of their pre-treatments investigated. Dai and group confirmed alloy 

formation by XRD analysis. These catalysts were initially inactive towards CO oxidation. 

However, upon certain pre-treatments, they became highly active with 100% CO conversion 

below room temperature. If the AuCu/SiO2 catalysts were calcined in O2 at 200, 300 and 300 

in 10% O2/He, followed by annealing 10% H2/Ar at 300 
o
C T50, conversions were observed at 

220
o
C, 176

o
C and 167

o
C respectively. They suggested that the suppressed CO oxidation 

activity was due to the low calcination temperatures not removing all of the organic 

surfactants and, therefore, not allowing access to the catalytically active sites. But, if the 

catalysts were calcined at higher temperatures between 400-500 
o
C, the T50 conversions were 

observed at much lower temperatures of 25 
o
C and 6 

o
C. They concluded that the high 
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temperature calcination pre-treatments produced Au and amorphous CuO heterostructures, 

with a high degree of interfacial contact and strong thermal stability. Their work showed the 

importance of experimenting with catalyst pre-treatments to achieve the most effective 

catalytic composition for a chosen reaction. 

 

1.7.5.2 Propene epoxidation 

 

A number of different catalyst systems show activity for propene oxidation. Selectivity to 

acrolein or propene oxide can be observed, depending on whether the reaction proceeds via 

oxidation of the double bond, or via C–H activation. 

Epoxidation of propene with N2O was studied using AuCu/TiO2 catalysts 
82

 at temperatures 

between 250 and 380 
o
C. The most active catalyst was 4% AuCu3/TiO2, giving a propene 

conversion of 40% at 380 
o
C. The major product was propanal with greater than 70% 

selectivity. The formation of propanal may be by isomerisation of propene oxide. The 

Au/TiO2 catalyst was the least active and, at 300
o
C, had a propanal selectivity of 6.4%; at the 

same temperature, 4% AuCu3/TiO2 had 12.7% selectivity to propanal. As the copper content 

increased in the bimetallic catalyst, the propene conversion and selectivity to propene oxide 

increased. As previously mentioned, Cu catalysts are used for propene epoxidation,
62

 but this 

study showed that they were less selective than the AuCu catalysts with the same total metal 

loading. At 300 
o
C, the 4% AuCu3/TiO2 had a propene oxide selectivity of 26.3%, compared 

with 12.6% for the 4% Cu/TiO2 catalyst. The propene conversions were also higher for the 

bimetallic catalysts with 4% AuCu3/TiO2 giving 4.3% conversion at 300 
o
C, compared with 

2.4% conversion for 4% Cu/TiO2 at the same temperature. The use of AuCu/TiO2 catalysts 

prepared from thiol capped nanoparticles 
83

 gave a range of products. Propene oxide was 

observed as the major product, with smaller amounts of propanal, acetone, acrolein and 
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carbon oxides. As expected, the conversion increased as the reaction temperature increased. 

The catalysts deactivated after 10 h, although they could be reactivated if calcined at 300 
o
C 

in oxygen. Propene conversion increased with increasing copper content. The selectivity 

towards propene oxide also increased with increasing copper content. A maximum of 50% 

selectivity to propene oxide at 2.5% propene conversion was observed for AuCu3/TiO2 at 200 

o
C. The catalysts had the following order with respect to the propene oxide selectivity: 

AuCu3/TiO2 > AuCu/TiO2 > Au3Cu/TiO2 > Au/TiO2. The catalysts made from thiol-

stabilised, pre-formed AuCu alloy particles were ten times more active than those prepared 

by impregnation. This effect was explained by the broad size distributions of the particles 

prepared by impregnation, compared to the pre-formed thiol capped method, which had 

nanoparticles of 4–7 nm. The selectivity towards propene oxide was higher for the catalysts 

made via the pre-formed method than impregnation. AuCu3/TiO2 was observed to give the 

highest yields of propene oxide. There was a clear improvement in both the conversion and 

the selectivity towards propene oxide, when the calcination temperature increased from 300 

o
C to 400 

o
C with a AuCu3/TiO2 catalyst. However, once the calcination temperature was 

increased to 500 
o
C above, there was a decrease in activity due to the nanoparticles being 

progressively decorated with oxidised Cu species. 

Recently, a seed-based diffusion method of preparing monodisperse intermetallic CuAu and 

CuAu3 nanocrystals has been designed.
113

 XRD characterisation showed that AuCu3 was 

formed at 300 
o
C when the Cu/Au ratio was set at 3:1. TEM images revealed spherical 

shaped particles for Cu3Au with a particle size of 11±0.3 nm and CuAu with a size of 11±0.6 

nm. They discovered that the size of the Au seeds was important for controlling the size of 

the nanoparticles. Another study has utilized the seed growth method, and rod-shaped copper 

and gold single crystal nanoparticles have been formed by Henkel et al.,
114

 using this 

technique. The process involved the growth of small seeds of gold, which were pre-formed, 
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and a solution containing copper and gold ions was added, with the addition of a surfactant 

and mild reducing agent. Copper-gold alloy formation was confirmed from characterisation 

by TEM, UV-Visible and Dark Field Spectroscopy. They deduced that the particles had 

unique spectral properties and the copper content could control two central plasmon 

properties - the resonance position and line width.  

The preparation and characterisation of an AuCu3 alloy electrode for electrocatalytic 

applications has been designed by Zen and co-workers.
115

 The alloy film was formed by a 

thermal annealing process onto a barrel-plated gold electrode plate (AuBPE). An 

electrochemical activation in alkaline solution formed a nanostructured AuCu3 alloy film. 

They discovered that, after the annealing process, new reflections in their XRD pattern 

appeared which represented an AuCu3 phase. The alloy film was tested for glucose oxidation, 

in pH neutral solution, to study its ability for use in electrochemical sensing applications. 

They showed that the nanostructured AuCu3 alloy film had excellent performance because of 

its high electrocatalytic ability. 

Nieuwenhuys et al. 
116

 investigated the total oxidation of propene and propane over gold-

copper oxide on alumina catalysts and compared the results with Pt/Al2O3 and 

Au/Co3O4/Al2O3. The amount of gold present in the catalysts appeared to be more important 

on the catalytic performance than the copper oxide loading. They determined that the 7.4 

wt% Au/CuO/Al2O3 sample was almost as active as the Pt/Al2O3. For propane oxidation, the 

most active catalysts were the 4 wt% Au/CuO/Al2O3 and 4 wt% Au/Co3O4/Al2O3 samples. 

The propene oxidation study revealed that the activation of O2 was more effective with the 

Au-CuO system than the Au-Co3O4 system because of the ability of CuO to supply active 

oxygen during the catalytic reaction.  
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1.7.5.3 Benzyl alcohol oxidation 

 

The selective oxidation of benzyl alcohol to benzaldehyde, catalysed by bimetallic AuCu 

catalysts, has been reported recently.
102

 One of the most efficient catalysts for this reaction 

was a AuCu/SiO2 sample with AuCu ratio of 4:1 by weight (approximately 4:3 molar ratio) 

and a total metal loading of 1 wt%, which gave a benzaldehyde yield of 98%. The catalysts 

were made by incipient wetness impregnation of SiO2 with HAuCl4 and CuCl2 and reduced 

with NaBH4. The oxidation of benzyl alcohol was performed between 250 and 350 
o
C. The 

monometallic Au catalyst gave 98% selectivity to benzaldehyde at 75% conversion at 326 
o
C, 

whereas the Cu-only catalyst showed the lowest activity with 78% selectivity at 326 
o
C. 

Careful optimisation of the bimetallic catalysts gave 100% selectivity at almost total 

conversion (98%). This was obtained by catalyst with weight ratio of AuCu = 0.25 at 313 
o
C. 

As the Au content of the catalyst increased, the selectivity to benzaldehyde increased. 

 

1.7.6  Future prospects for the use of AuCu alloys in Catalysis 

 

To date, there have only been a few reports on catalysis using supported AuCu nanoparticles 

and these have been limited to the oxidation of CO, benzyl alcohol and propene. A much 

larger proportion of studies have been associated with AuCu nanoparticle synthesis and 

characterisation, as well as fundamental work aimed at understanding the nature of the 

nanoalloy particles. However, in the absence of catalytic data to support these interesting 

studies, AuCu alloys will not be chosen over other catalysts for industrial reactions. 

Therefore, it can be concluded that, whilst the future of AuCu alloy catalysis is promising, 

there is still a considerable effort needed to find the most efficient synthesis strategy for 

AuCu nanoparticles that is effective in producing AuCu catalysts. The parameters that are 
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considered to be important include the particle size, shape and distribution, the type of 

support, preparation method and pre-treatment. In this respect, the requirements for active 

catalysts are similar to many reactions that are catalysed by supported metal nanoparticles. 

Given that gold catalysts display remarkable activity for a broad range of reactions, it can be 

anticipated that CuAu alloy nanoparticles could be of value in fine-tuning some of the 

observed activities. 
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Chapter 2: Experimental  

2.1 Introduction to techniques 

A wide range of techniques have been used to characterise the CuAu/SiO2 bimetallic 

samples, which will help to provide a better understanding of the nature and morphology of 

the catalyst. These techniques will be crucial to understanding the activity of the catalysts in 

the reactions discussed subsequently in this thesis.  

 

2.1.1 X-ray Diffraction (XRD) 

2.1.1.1 Introduction to XRD 

X-ray diffraction is a bulk technique that can provide information about solid materials that 

can be used to determine: 

 Crystal structure of an unknown material 

 Crystallite size and shape 

 Orientation of a crystal or grain 
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2.1.1.2 Theoretical principles 

 

                 

Figure 1 Derivation of the Bragg equation. 

 

Bragg’s Law 

n λ =2dsinӨ 

d - the distance between lattice planes in the crystal 

 λ - the wavelength of the incident X-ray beam 

Ө - the angle of diffraction 

n - an integer 

William Lawrence and William Henry Bragg discovered that crystalline solids generated 

patterns of X-rays. They found that these crystals, at certain specific wavelengths and 

incident angles, produced intense peaks of diffracted radiation called Bragg peaks. Bragg’s 

law explains the condition for constructive interference from crystallographic planes.  For a 

crystalline solid, the X-rays are diffracted from lattice planes separated by the interplanar 

distance d. Where the diffracted waves interfere constructively, they remain in phase since 

the path length of each wave is equal to an integer multiple of the wavelength. 2dsinθ is the 

AB + BC = multiples of nλ 

http://en.wikipedia.org/wiki/Interference_(wave_propagation)
http://en.wikipedia.org/wiki/Integer
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path difference between two waves undergoing constructive interference and θ is the 

diffracted angle. Bragg’s law is a powerful tool for studying crystals in the form of X-ray 

diffraction and can help determine crystal structures. 

 

2.1.1.3 Instrumentation 

 

 

 

Figure 2 Diagram of a Powder X-ray diffractometer 

 

 

Powder XRD was performed on a PANalytical X’pert Pro diffractometer using a Cu source 

operating with 40 mA and 40 kV. A Ge (111) monochromator was used to select Cu Kα X-

rays. The powdered samples were compressed into an aluminium sample holder, which was 

rotated during data collection to compensate for any ordering of crystallite orientation which 

might have occurred during sample packing.  

Data were calibrated against a silicon standard. Qualitative phase analysis can be used to 

match up the line positions and intensities to determine certain phases of the sample using the 

International Centre for Diffraction Data (ICDD) database. Crystallite sizes can be calculated 

using FWHM (full width half maximum) via the Scherrer equation: 
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FWHM = k  x 57.3/ D cos θ                  

FWHM is in θ, k is the crystallite shape form factor, λ is the x-ray wavelength, D is the 

crystallite size and θ is the Bragg angle related to the maximum of the diffraction peak. 

In situ X-ray diffraction was also carried out with the sample placed in a cell and exposed to 

different atmospheres and temperatures. This method allowed the different phase transitions 

to be monitored depending on the temperature and reduction/oxidation environment 

introduced to catalyst. 

 

2.1.2 Surface area determination (BET)  

2.1.2.1 Introduction to BET 

The most widely used method of determining surface areas of solid catalysts is by using the 

B.E.T method which was derived by Brunauer, Emmett and Teller in 1938.  

In this method the sample was first degassed to remove adsorbed contaminated molecules. 

The sample was placed into the vacuum chamber of the machine and Nitrogen flowed over 

the sample at 77 K (-196 
o
C) at different pressures to obtain an adsorption isotherm.  

 

2.1.2.2 Principles of the BET method 

The concept of the BET theory is an extension of the Langmuir theory, which is a theory 

for monolayer molecular adsorption, to multilayer adsorption with the following hypotheses: 

(a) gas molecules physically adsorb on a solid in layers infinitely; (b) there is no interaction 

between each adsorption layer; and (c) the Langmuir theory can be applied to each layer.  

The BET equation is expressed below: 

1/ X ((P0/P) -1) = 1/XmC + C-1/XmC (P/P0) 

            

                                                   

http://en.wikipedia.org/wiki/Langmuir_equation
http://en.wikipedia.org/wiki/Monolayer
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P and P0 are the equilibrium and the saturation pressure of adsorbates at the temperature of 

adsorption.  

 X = quantity of gas adsorbed  

P/P0 = relative pressure 

Xm = quantity of adsorbate as monolayer 

C = BET constant  

A straight line graph can be plotted of 1/[X(P0/P)- 1] against (P/P0). The intercept (I) and 

slope (S) can then be used to solve for Xm and C. 

S = C-1/XmC       I = 1/XmC         Xm = 1/ S + I 

 

Figure 3 An example of a BET plot to derive X and C. 

 

 

The BET method is widely used for the calculation of surface areas of solids by physical 

adsorption of gas molecules.  

http://en.wikipedia.org/wiki/Dynamic_equilibrium
http://en.wikipedia.org/wiki/Saturation_pressure
http://en.wikipedia.org/wiki/Area
http://en.wikipedia.org/wiki/Solid
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BET is a multilayer process and has five assumptions: 

1. Adsorptions occur only on well-defined sites of the sample surface (one per molecule) 

2. The only considered molecular interaction is the following one: a molecule can act as a 

single adsorption site for a molecule of the upper layer. 

3. The uppermost molecule layer is in equilibrium with the gas phase, i.e. similar molecule 

adsorption and desorption rates. 

4. Desorption is a kinetically-limited process. 

5. At the saturation pressure, the molecule layer number tends to infinity (i.e. equivalent to 

the sample being surrounded by a liquid phase) 

 

2.1.2.3 B.E.T Instrumentation 

 

The Micromeritics Gemini 2360 Analyzer was used to determine the surface areas for all the 

catalysts. It is a fully automatic, single- or multi-point surface area analyzer. It uses a 

flowing-gas technique in which the analysis gas flows into a tube containing the sample and 

into a balance tube at the same time, and provides rapid and accurate sample analysis for 

solid material. 

 

2.1.3 Temperature programmed reduction (TPR) 

2.1.3.1 Introduction to TPR 

TPR is used to identify properties and the reactivity of solid material under reducing or 

oxidising atmospheres when the temperature is changed. This technique is used to provide 

useful information on the reduction kinetics of oxidation catalysts. 

TPR involves a catalyst being heated up at a constant rate in a flow of hydrogen diluted in 

argon. The amount of reducible species can be determined from the integration of the 
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hydrogen consumption peaks at specific temperatures. The rate of reduction is constantly 

followed by measuring the consumption of H2 of the reducing gas mixture at the outlet of the 

reactor. 

 

2.1.3.2 Principles of TPR 

Different experimental operating variables used in temperature-programmed reduction (TPR) 

can influence measurements on the reduction profiles. The temperature range and the shape 

of the resulting TPR profiles can be markedly affected by the experimental conditions. A 

characteristic number, K, is defined to aid in selecting the values for the operating variables 

which should be chosen in order to obtain optimum reduction profiles. The number relates 

the heating rate, hydrogen concentration, total flow rate, and the amount of reducible sample 

in such a way that the operating variables can easily be adjusted. Upper and lower limits have 

been determined for this characteristic number, and this can be influenced by variation on the 

sensitivity of the TPR experiment. A peak shape analysis leads to narrower confidence limits 

for the kinetic parameters than an estimation based on the shift of the temperature of the 

maximum reduction rate measured for different heating rates.  
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2.1.3.3 TPR instrumentation 

 

Figure 4 Schematic diagram of a TPR instrument 

All samples were run on a TPDRO 1100 series machine. The reducing gas used in all 

experiments was 10% H2 in Ar, with a flow rate of 50 ml min
−1

. The temperature range 

explored was from room temperature to 600 °C. The heating rate was maintained at 

10 °C min
−1

 for all samples while the sample mass employed was 20 mg. 

 

2.1.3.4 TPR/TPO/TPR analysis 

Temperature programmed reduction followed by temperature programmed oxidation has 

been carried out for the AuCu3/SiO2 catalyst prepared by co-impregnation. For the TPR 

technique, the oxidised catalyst precursor is submitted to a programmed temperature rise, 

while a reducing gas mixture is flowed over it (hydrogen in argon). In the TPO technique, the 

catalysts is in its reduced form and is submitted to a programmed temperature increase, with 

an oxidising mixture of gas (oxygen in helium) flowing over the sample. This technique is 
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useful as the analysis of TPR/TPO can obtain evidence for the interactions between atoms of 

two metallic components. 

 

2.1.4 Scanning electron microscopy (SEM) 

2.1.4.1 Introduction to SEM 

Scanning electron microscopy (SEM), accompanied by X-ray analysis, is considered a 

relatively rapid, inexpensive, and basically non-destructive approach to surface analysis. It is 

often used to survey surface analytical problems before proceeding to techniques that are 

more surface-sensitive and more specialised. High resolution images of surface topography, 

with excellent depth of field, are produced using a highly-focused, scanning (primary) 

electron beam. The primary electrons enter a surface with an energy of 0.5 - 30 keV, and 

generate many low energy secondary electrons. The intensity of these secondary electrons is 

largely governed by the surface topography of the sample. An image of the sample surface 

can thus be constructed by measuring secondary electron intensity as a function of the 

position of the scanning primary electron beam. High spatial resolution is possible because 

the primary electron beam can be focused to a very small spot (< 10 nm). High sensitivity to 

topographic features on the outermost surface (< 5 nm) is achieved when using a primary 

electron beam with an energy of < 1 keV. In addition to low energy secondary electrons, 

backscattered electrons and X-rays are also generated by primary electron bombardment. The 

intensity of backscattered electrons can be correlated to the atomic number of the element 

within the sampling volume. Hence, some qualitative elemental information can be obtained. 

The analysis of characteristic X-rays emitted from the sample gives more quantitative 

elemental information. Such X-ray analysis can be confined to analytical volumes as small as 

1 cubic micron. 
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2.1.4.2  SEM Instrumentation 

 

Figure 5 Photograph of a SEM machine in laboratory 

 

The SEM machine used for analysis was a Carl Zeiss EVO 40 SEM. The conditions used 

were: Detector: Backscattering (BSD), Gun: Electron high tension (EHT) voltage = 10-25 kV 

Iprobe = 250pA 

Essential components of all SEMs include the following:  

 Electron Source ("Gun") 

 Electron Lenses 

 Sample Stage 

 Detectors for all signals of interest  

 Display / Data output devices 

 Infrastructure Requirements: 

 Power Supply 

 Vacuum System 

 Cooling system 

 Vibration-free floor 
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 Room free of ambient magnetic and electric fields 

SEMs always have at least one detector (usually a secondary electron detector), and most 

have additional detectors. The specific capabilities of a particular instrument are critically 

dependent on which detectors it accommodates. 

 

2.1.4.3 SEM Analysis 

 

For each of the catalysts, a small amount of sample was mounted on a carbon stub and 

positioned into the machine. The vacuum pump and the electron gun were switched on. An 

electron backscatter detector (ESBD) was used to obtain an image that could be used to 

determine the crystallographic structure of the specimen and identify the elements in sample. 

 

2.1.4.4 EDX Analysis 

The generation of X-rays from decelerating electrons can be ultilised for elemental analysis 

of the catalyst sample, known as EDX. This analysis involves the detection of X-rays from 

the sample area exposed to the electron incident beam. As this incident beam interacts with 

the sample atom, an inner core electron is removed, followed by relaxation of the electron 

and the production of an X-ray. This will have a specific energy unique to the element and be 

used to quantify the elemental composition of the catalyst. EDX analysis was carried out on a 

Carl Zeiss EVO- 40 and EDX mapping was performed on certain catalysts, using variable 

operating conditions depending on the sample. 
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2.1.5 Inductively coupled plasma analysis (ICP) 

2.1.5.1 Preparation of samples and analysis 

 

This technique was carried out at Johnson Matthey to determine the weight percentage of 

copper and gold in the catalysts. The instrument used was a Perkin Elmer Optima 3300RL 

and the microwave assisted digestion method involved aqua regia leaching of the copper and 

gold. 

Dissolution of the sample was carried out and then the sample solution transported to the 

plasma. Once nebulised and inside the plasma the sample was vaporised, atomised and 

ionised.  The radiation resulting from emission was transferred directly to a spectrometer 

where the various wavelengths were sorted optically, electronically detected and analysed.   

 

 

2.1.6 X-ray photoelectron spectroscopy (XPS) 

2.1.6.1 Introduction to XPS 

 

X-ray photoelectron spectroscopy was developed in the mid 1960s by Siegbahn and his 

research group. The technique was centred on the photoelectric effect where the concept of 

the photon was used to describe the ejection of electrons from a surface when photons were 

imposed upon it. This technique is highly surface specific, due to the short range of the 

photoelectrons that are excited from the solid, and it can provide chemical bonding 

information. 
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2.1.6.2 Principles of XPS 

 

The energy of a photon can be represented as: E = hυ 

h - Planck constant (6.62 x 10
-34

 Js)  

υ - frequency (Hz) of the radiation  

 

In XPS a photon is absorbed by an atom and this causes ionisation which leads to the 

emission of a core electron. 

Every element has a unique binding energy associated with each core atomic orbital which 

gives a characteristic photoelectron spectrum with distinct peaks at certain kinetic energies 

determined by the binding and photon energy. 
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2.1.6.3 Instrumentation 

 

 

Figure 6 Schematic diagram of an XPS instrument 

 

X-Ray photoelectron spectroscopy (XPS) was performed using a VG EscaLab 220i 

spectrometer, using a standard Al-Kα X-ray source (300 W) and an analyser pass energy of 

20 eV. Samples were mounted using double-sided adhesive tape, and 

binding energies were referenced to the C 1s binding energy of adventitious carbon 

contamination, which was taken to be 284.7 eV. 
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2.1.7 Transmission electron microscopy (TEM) 

2.1.7.1 Introduction 

 

TEM was first used by Knoll and Ruska in 1931 as an alternative to light microscopes. TEM 

uses electrons instead of light to image and measure materials at high resolution. This 

technique has many applications in the scientific fields, particularly in surface science. 

 

2.1.7.2 Principles 

 

In theory the maximum resolution (d) that can be achieved from a light microscope is limited 

by the wavelength (λ) of the photons involved and the numerical gap of the system, NA. 

 

It was then realised that electrons could be used instead and their wavelength can be derived 

from the de Broglie equation: 

 
h = Planck’s constant 

m0 = rest mass 

E = energy of the accelerated electron 

c = speed of light 

 

TEM requires a "light source" at the top of the microscope to emit electrons that travel 

through vacuum in the column of the microscope. This technique uses electromagnetic lenses 
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to focus the electrons into a very thin beam and the electron beam travels through the sample. 

The image can be studied directly by the operator or photographed with a camera. 

 

2.1.7.3 Instrumentation 

 

Figure 7 Diagram of a TEM instrument 

 

Johnson Matthey Plc carried out the TEM analysis and line scan on powder samples. A tiny 

amount of each sample was crushed with glass slides and dusted onto a holey carbon 

supported Ni TEM grid. Ni rather than ordinary Cu grid was used because the samples 

themselves contain copper. The Tecnai F20 Transmission Electron Microscope was operated 

at:  

 200kV with a C2 aperture = 30 µm in bright field (BF) and high angle annular dark field 

(HAADF) modes. 

Energy dispersive X-ray spectroscopy (EDX) was also used to determine the sample 

elemental composition.  
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2.1.8. UV-visible spectroscopy 

 

2.1.8.1 Introduction 

 

UV-visible spectroscopy involves the absorption of light in the ultraviolet-visible region. This 

technique can be used for identifying functional groups. UV spectroscopy is widely used in 

laboratories and its assaying ability enables it to be very useful in determining strengths of 

substances in samples and metal content in alloys. 

 

2.1.8.2 Principles 

The method is frequently used in a quantitative way to determine concentrations of an 

absorbing species in solution and uses the Beer-Lambert law: 

A = -log10(I/I0) = ε c L 

A = Absorbance 

I0 = intensity of incident light at given wavelength 

I = transmitted intensity 

L = Path length through sample 

c =concentration of absorbing species 

ε = extinction coefficient 
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2.1.8.3 Instrumentation 

 

Figure 8 Diagram of how a UV-Visible spectrometer works 

 

The basic parts of a spectrophotometer are a light source, a holder for the sample, a 

diffraction grating or monochromator to separate the different wavelengths of light, and a 

detector. The radiation source is often a tungsten filament (300-2500 nm), a deuterium arc 

lamp, which is continuous over the ultraviolet region (190-400 nm) or more recently, light 

emitting diodes (LED) and xenon arc lamps for the visible wavelengths. The detector is 

typically a photodiode or a CCD.  

 

 

2.1.9 Evolved gas analysis (EGA) 

Evolved gas analysis was carried out using a Netszch instrument. A sample of catalyst was 

placed into a sample pan and loaded into the furnace. The system was flushed for 2 hours 

with 50 ml/min of 5% H2/He or air, and then heated under the same gas at 10 °C/min to the 

desired temperature. The mass changes were measured by thermal gravimetric analysis 

(TGA). The gases produced were measured by mass spectrometry. 

  

 

 

http://en.wikipedia.org/wiki/Diffraction_grating
http://en.wikipedia.org/wiki/Monochromator
http://en.wikipedia.org/wiki/Halogen_lamp
http://en.wikipedia.org/wiki/Deuterium_arc_lamp
http://en.wikipedia.org/wiki/Deuterium_arc_lamp
http://en.wikipedia.org/wiki/Xenon_arc_lamp
http://en.wikipedia.org/wiki/Xenon_arc_lamp
http://en.wikipedia.org/wiki/Photodiode
http://en.wikipedia.org/wiki/Charge-coupled_device
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2.2 Catalyst preparation 

 

2.2.1 Impregnation method 

 

Copper (II) nitrate trihydrate (0.93 g) was weighed into a beaker. HAuCl4 (1.84 g) was 

dissolved in distilled water (28 ml) and added to the beaker containing copper (II) nitrate 

trihydrate. The solution was stirred until the copper salt dissolved into the Au solution. Silica 

(19 g) was added to the AuCu solution and stirred until an even mixture was formed. The 

sample was placed in an oven for 2 h at 120 
o
C and calcined in air for 3 h at 400 

o
C unless 

otherwise stated. 

 

  

2.2.2 Precipitation method 

Copper (II) nitrate trihydrate (3.79 g) was weighed into a conical flask and 150 ml distilled 

water added. NaOH pellets (1.38 g) were weighed into a beaker and 100 ml distilled water 

added. The NaOH solution was transferred to a dropping funnel and attached to a clamp 

stand. The copper (II) nitrate trihydrate solution was placed on a stirrer and a stirrer bar added 

to flask. The dropping funnel was placed above the flask and the NaOH solution added 

dropwise, slowly to the copper salt solution. As the hydrolysis took place, the solution 

became more turbid. The pH of the solution was maintained at 11.97. Silica (19 g) was added 

to the stirred mixture and the solution was allowed to stir for 1 h. The slurry was filtered 

through a Buchner funnel and the filtrate was placed back into the conical flask and hot water 

(250 ml) was added. The solution was stirred for 10 minutes and transferred back to the 

Buchner funnel. The sample was washed several times and the pH monitored until a stable 
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pH was obtained (8.5). The sample was placed in a beaker and dried in an oven for 2 h at 120 

o
C. 

 

2.2.3 Deposition precipitation 

A slurry of was prepared by adding 19 g of silica to 800 ml water. A solution of HAuCl4 

(2.35 g) in 150 ml water was made up in a beaker. A solution of 0.1 M K2CO3 (3.45 g K2CO3 

in 250 ml of water ) was made. The silica slurry was heated to 60 
o
C and stirred continuously 

while K2CO3 was added dropwise until a pH of 8 was obtained. Then HAuCl4 was added 

slowly dropwise from the dropping funnel into the beaker and simultaneously K2CO3 was 

pipetted into the beaker with the support to maintain a pH of 8. When the addition was 

completed the solution was stirred for a further 1 h, before the solution containing precipitate 

was decanted and washed with water several times. The sample was placed in a smaller 

beaker and dried in an oven at 90 
o
C. The catalyst was calcined at 500 

o
C for 2 h. 

 

2.2.4 Sinfelt method
1
 

The copper-gold catalyst system was prepared by impregnating silica gel (Grace Davison) 

with a solution containing copper (II) nitrate trihydrate and chloro auric acid. The catalyst 

was dried at 110 
o
C and reduced for 2 h in flowing H2/Ar at 315 

o
C, then finally calcined in 

air for 15 h at 676 
o
C. 

 

2.2.5  High dispersion route for the preparation of copper catalysts 

Ammonium carbonate (1.88 g) was weighed in a 3-necked round bottomed flask and the 

water and ammonia solution added to give a clear solution. Copper hydroxycarbonate was 

added to give an intense blue coloured solution and silica (19 g) was then added. The flask 

was fitted with a condenser for distillation and heated just below boiling (90-95 
o
C). After 3h 
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of heating the reaction was allowed to cool to room temperature and the resultant blue 

suspension was filtered and washed with three 200 ml portions of water. The product was 

transferred to a beaker and dried at 110 
o
C overnight. 

 

2.2.6 Sol immobilisation method 

 

HAuCl4 and PVA solution (1.8 ml PVA for Pd, 3.3 ml PVA for Pt) were added to a large 

beaker. After 3 minutes NaBH4 solution (1 M, 2.9 ml) was added under vigorous stirring. The 

red Au(0) sol immediately formed. After another 3 minutes, 0.099 mmol of stock MCl2 (M= 

Pt or Pd) solution and NaBH4 solution (2 ml) was added forming a brown sol, which could 

possibly represent the presence of boron species in the catalyst.
2,3

After waiting a few minutes 

for the sol generation the solution was acidififed to pH 1 with concentrated sulfuric acid and 

then the colloid was immobilised by adding SiO2 under vigorous stirring. The amount of 

support was calculated as having a total final metal loading of 2.5 wt%. After 2 h the slurry 

was filtered, the catalyst washed thoroughly with distilled water and dried at 120 
o
C for 4 h. 

 

 

2.3 Propene oxidation experimental 

2.3.1 Gas Phase reactor 

For each propene oxidation experiment, 0.2 g of catalyst was weighed and placed into the 

quartz reactor tube, which was plugged with glass wool. The tube was screwed into place in 

the reactor and tested for leaks. The gas feed ratio of C3H6:O2:H2:He was 1:1:1:7, which 

Haruta had successfully used those reaction conditions (1.1% conversion with propene oxide 

selectivity of > 99% using Au/TiO2 catalyst).
4
 Similar experiments were conducted in the 
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absence of H2 with the reactant gases C3H6:O2:He = 22:9:69. This particular gas feed ratio 

was used to compare initial results with previous work in Cardiff.
5
  

 

For the propene oxidation experiments, a continuous flow reactor was used (Figure 9). 

Product analysis was carried out by injecting a small amount of reaction products, using a 6-

port sample valve. He, O2, H2 and C3H6 gases flowed and the temperature thermostat was 

switched on. The top and bottom of the reactor were covered with foil to retain heat. A run 

for an experiment was 25 minutes and four runs for each experiment were carried out at room 

temperature. The temperature was then increased to 200 
o
C and 3 runs taken. After that, the 

temperature was increased at 20 
o
C intervals and 3 runs taken at each new temperature up to 

320 
o
C and then back down to 200 

o
C for hysteresis experiments. At each temperature an 

average of the 3 runs were taken with an error value calculated as ± 3%. The gas hourly space 

velocity (GSHV) was 22,500 h
-1

, unless otherwise stated, with a total flow rate of 75 ml/min. 
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Figure 9 Schematic diagram of reactor for propene oxidation 

MFC- Mass flow controller; T/C - Temperature controller 

 

 

 

2.3.2 Calculations 

 

2.3.2.1 Calibration: 

The calibration and analysis for propene oxide (PO) was performed with an FID detector, 

while the carbon dioxide (CO2) was carried out with a TCD detector. The concentrations, 

vol% of propene oxide and carbon dioxide at time t, [PO]t and [CO2]t, can be calculated using 

equations (1 and 2) where 
PO

At, and 
CO2

At are the counts of the peak at time t. 
PO

Ac and 
CO2 

Ac 

are the counts of peak area at standard concentrations [PO]c and [CO2]c, separately. 
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[PO]t = [PO]c 
PO

At                   (1) 
PO

Ac 

 

[CO2]t = [CO2]c 
CO2

At               (2) 
          CO2

Ac 

 

 

 

2.3.2.2 Carbon balance 

 

The carbon mass balance was calculated as follows: 

Mass balance (%) = ∑[products] / ([propene]out) x 100 

For the carbon mass balance the number of carbon atoms in the products and reactants was 

corrected. 

Below is an example of a carbon balance taken for the propene oxidation experiment. All the 

carbon balances taken during this study were in the range 96-100%. 

 

Temperature (
o
C) Carbon balance % 

200 100.1 

220 98.9 

240 100.3 

260 98.3 

280 98.9 

300 99.4 

 

Table 1 Typical carbon mass balance for propene oxidation experiment 

 

Selectivity for each reactant product was calculated as follows: 

Selectivity of Carbon dioxide (%) = [Carbon dioxide] / ([Carbon dioxide] + [Ethanal] 

+ [propene] + [propene oxide] + [acrolein] + [acetone] ) x 100 

This calculation is on a carbon basis and is therefore corrected for the number of carbons 

present e.g. if CO2 formed from propene there would be 3 moles of carbon per mole of 

propene made so you need to correct for this (multiply by 1/3). 
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Conversion of propene was calculated as follows: 

Conversion (%) = ([propene]in – [propene]out) / [propene]in x 100 

[propene]in = Initial propene counts  

[propene]out = Final propene counts 

 

2.4 Glycerol alcohol experimental 

 
2.4.1 Glass reactor 

A glass reactor was set up for the glycerol oxidation experiments which are illustrated below. 

The set up comprised of a three neck round bottom flask, a condenser, stirrer/hot plate and oil 

bath. Oxygen was supplied to the system from an oxygen cylinder. 

 

 

Figure 10 Schematic diagram of Glycerol experiment 

 

 



96 

 

2.4.2 Glycerol experimental procedure 

Glycerol (0.3 M), 0.42 g, NaOH (0.32 g), water (15 ml), oxygen pressure of 3 bar and an 

Au/SiO2 catalyst (0.08 g) were placed into a 50 ml 3 necked round bottomed flask. A stirrer 

bar was added and the flask was connected to a condenser. The apparatus was refluxed for 4 

h at 60 
o
C or 100 

o
C where specified and a sample taken after 30 minutes and then after each 

hour for 4 hours. The samples were diluted with water and analysed by HPLC to determine 

the products of the reaction. 

 

2.5  Autoclave experimental  

2.5.1 Hydrogen peroxide synthesis 

0.05 g of catalyst was weighed and added to a solution of 2.9 g water and 5.6 g methanol. 

This mixture was placed in an autoclave and screwed shut. 5% H2 in CO2 was passed through 

autoclave to 100 psi three times to purge the system. The pressure was then increased to 420 

psi and vented. The pressure was allowed to drop to 390 psi and then 25% O2 in CO2  was 

added so that the pressure increased to 520 psi. The hydrogen to oxygen ratio was 1:2. An ice 

bath was used to cool the reactor to 2 
o
C and then the stirrer was activated to start the 

reaction, which ran for 30 minutes. Once the reaction was complete the solution was filtered 

to remove the catalyst and obtain a filtrate that was titrated against Ce
IV 

to calculate the H2O2 

productivity. 

 

2.5.2 Hydrogenation reaction 

A standard solution containing H2O2 (0.68g)(50%), 8.5g solvent (MeOH 5.6g and H2O 

2.22g) was made and titrated against Ce
IV

 solution using a ferroin indicator.  

Each hydrogenation reaction required 8.5 ml of the standard solution with a small amount of 

catalyst (0.012 g), which was placed in a container that was put in the autoclave. The 
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autoclave was purged 3 times to 100 psi pressure 5% H2/CO2. The pressure was then 

increased to 420 psi with 5% H2/CO2 and cooled in an ice bath to 2 
o
C. When the desired 

temperature was reached, the stirrer was turned on to start the reaction for 30 minutes. After 

the reaction was complete the catalyst was filtered off and the solution that remained was 

titrated against the Ce
IV 

solution 3 times to get an average titre. From these results the H2O2 

concentration was calculated and the decomposition of H2O2 worked out. 

 

2.5.3 Benzyl Alcohol Oxidation 

50 mg of catalyst was weighed and added to benzyl alcohol (40 ml). This mixture was placed 

in an autoclave and screwed shut. Oxygen was introduced into the autoclave (10 bar) and the 

temperature of the autoclave was set to 140 
o
C with a stirrer speed of 1500 rpm. The 

experiment was run for 3 hours and at 30 minutes and then every hour a sample was to taken 

to be analysed by HPLC. 

 

2.6 References 

1.  J.H. Sinfelt, R.J. Baron, US Pat 3989674 (1976). 

2. R.E. Schaak, A.K. Sra, B.M. Leonard, R.E. Cable, J.C. Bauer, Y.F. Han, J. Means, W. 

Teizer, Y. Vasquez and E.S. Funck, Journal of American Chemical Society, 127 (2005) 3506. 

3. G.N. Glavee, K.J. Klabunde, C.M. Sorensen and G.C. Hadjipanayis, Langmuir, 10 (1994) 

4726. 

4. T. Hayashi, K. Tanaka and M. Haruta, Journal of Catalysis, 178 (1998) 566-75. 

5. Gas-phase selective oxidation of C3- C4 hydrocarbons using only molecular oxygen, 

Zheng-Qian Xuan, PhD 2009. 

 

 



98 

 

 Chapter 3: Characterisation 

3.0 Introduction 

Monometallic and bimetallic Au, Cu and AuCu/SiO2 catalysts have been prepared by 

impregnation, sol immobilisation, precipitation and deposition precipitation. To attempt to 

understand the nature and structure of the catalysts made for this study, this section of the 

thesis will cover the techniques used to characterise the samples. Characterisation techniques 

used included surface area analysis (BET), inductively coupled plasma (ICP), temperature 

programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), 

evolved gas analysis (EGA) and UV-visible spectroscopy. 

 

3.1 BET surface areas measurements 

Most of the catalysts used in this study have been characterised by BET and their surface 

areas are summarised in Table 2. The silica support (Grace Davison) had a high surface area 

of 299 m
2
g

-1
. All of the catalysts tested have high surface areas and the Au/SiO2 catalysts 

prepared by deposition precipitation had the highest at 440 m
2
/g

-1
.
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Catalyst 

Composition 

Uncalcined/ 

Calcined 

Preparation method BET Surface 

Area (m
2
/g

-1
) 

Au/SiO2 Calcined Deposition precipitation 440 

CuAu/SiO2  

(1:1) 

Calcined Impregnation 328 

CuAu/SiO2 

(1:3) 

Calcined Impregnation 333 

CuAu/SiO2 

(3:1) 

Calcined Impregnation 311 

Au/SiO2 Calcined Impregnation 327 

Cu/SiO2 Uncalcined Impregnation (nitrate) 247 

Cu/SiO2 Calcined Impregnation (nitrate) 281 

Cu/SiO2 Uncalcined Impregnation (chloride) 275 

Cu/SiO2 Uncalcined Precipitation 297 

Cu/SiO2 Calcined in 

H2 

Impregnation 302 

Cu/SiO2 Calcined in 

N2 

Impregnation 310 

Cu/SiO2 Calcined in 

air 

Impregnation 294 

1:1 

CuAu/SiO2 

Calcined Co-impregnation (chloride) 302 

1:3 

CuAu/SiO2 

Calcined Co-impregnation (chloride) 299 

3:1 

CuAu/SiO2 

Calcined Co-impregnation (chloride) 283 

1:1 

CuAu/SiO2 

Calcined Co -impregnation  269 

(nitrate) 

1:3 

CuAu/SiO2 

Calcined Co-impregnation 296 

 (nitrate) 
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3:1 

CuAu/SiO2 

Calcined Co-impregnation 294 

 (nitrate) 

1:1 

CuAu/SiO2 

Sinfelt 

(reduced and 

calcined) 

Co-impregnation (chloride) 
255  

1:3 

CuAu/SiO2 

Sinfelt 

(reduced and 

calcined) 

Co-impregnation (chloride) 277 

3:1 

CuAu/SiO2 

Sinfelt 

(reduced and 

calcined) 

Co-impregnation (chloride) 277 

1:1 

CuAu/SiO2 

Sinfelt 

(reduced 

only) 

Co-impregnation 265 

 (nitrate precursor) 

1:1 

CuAu/SiO2 

Sinfelt Co-impregnation  300 

 (reduced and 

calcined) 

(nitrate precursor) 

1:3 

CuAu/SiO2 

Sinfelt 

(reduced 

only) 

Co-impregnation  268 

(nitrate precursor) 

1:3 

CuAu/SiO2 

Sinfelt Co-impregnation  306 

 (reduced and 

calcined) 

(nitrate precursor) 

3:1 

CuAu/SiO2 

Sinfelt 

(reduced 

only) 

Co-impregnation  294 

(nitrate precursor) 

3:1 

CuAu/SiO2 

Sinfelt Co-impregnation  283 

(reduced and 

calcined) 

(nitrate precursor) 

Cu/SiO2 uncalcined High dispersion 173 

 

Table 2 BET surface areas of catalysts 

 

All these calcined samples have high surface areas. For the six catalysts made via the Sinfelt 

method
1
 (reduced 315 

o
C for 2 h in H2/Ar and then calcined at 676 

o
C for 15 h in air) the 
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samples prepared using the copper nitrate precursors have a slightly higher surface area than 

the chloride precursors, whereas, for the catalyst made using the standard methodology 

(calcined 400 
o
C in air 2 h) there was no obvious difference using different copper precursors. 

 

3.2 Inductively coupled plasma (ICP) analysis 

To determine the wt% of gold and copper in each catalyst prepared by different methods and 

compositions, ICP analysis was used and the results are shown in Table 3 (appendix). Most 

of the catalysts have a wt% quite close to that expected ± 1%. The bimetallic CuAu/SiO2 

(C97819A-C) catalysts, prepared by impregnation with copper nitrate and HAuCl4 directly 

calcined, as well as the monometallic gold (C97809) and copper (C97802D) samples by the 

same procedure, have a weight percentage very close to their expected values. The 

CuAu/SiO2 and gold and Cu/SiO2 only catalysts made by co-impregnation with copper 

nitrate, but instead of being calcined, are reduced in H2 (C97893A-E), also show extremely 

good agreement to 5 wt%. However, the gold only catalyst made via deposition precipitation 

(C97836) has an extremely low loading of 0.05%. This could be a consequence of the 

deposition precipitation method not efficiently depositing particles onto the silica support.  

 

3.3 X-ray diffraction 

XRD measurements of catalysts prepared by different methods have been carried out for 

chemical analysis such as phase identification, which have been matched from the 

International Centre Diffraction Data (ICDD) database. 
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Figure 3.1 XRD of monometallic and bimetallic catalysts prepared by impregnation with 

copper nitrate and chloroauric acid and calcined at 400 
o
C for 2 h in air. (C97819A-C and 

C97809, C97802D) __1:1 CuAu/SiO2  __ 1:3 CuAu/SiO2  __3:1 CuAu/SiO2   

  ___Au/SiO2only    ___ Cu/SiO2 only             Au metal reflection   

Copper chloride hydroxide 

                        

An overlay of three bimetallic CuAu/SiO2 and a monometallic Cu and Au/SiO2 catalyst, 

(prepared by impregnation, with HAuCl4 and copper nitrate, calcined at 400 
o
C in air for 2 h) 

is shown in Figure 3.1. XRD characterization for the silica support was carried out to exclude 

the peaks due to the support. All the AuCu/SiO2 catalysts have sharp crystalline reflections. 

For the 1:1 CuAu/SiO2 sample the reflections at 38, 44.5, 64.4, 77.3 and 81.6 
o
 have been 

assigned to Au metal (ICDD PDF No 00-004-0784), and those at 31.5, 32.6, 45
 o

 and many 

smaller peaks are assigned to copper chloride hydroxide (Cu(OH)Cl, ICDD PDF  No 00-023-

1063). The Au crystallite size was found to be 42 nm. For the 1:3 CuAu/SiO2 catalyst the 

diffraction pattern mainly composed of Au metal, a minor amount of poorly crystalline 

● 

● ● 
● 

● 

● 

● 

● 
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(broad not sharp well defined reflections) sodium chloride (NaCl, ICDD PDF No 00-005-

0628) and a significant amount of amorphous material. There is no evidence of any other 

crystalline phases. A gold crystallite size of 42 nm was calculated. The 3:1 CuAu/SiO2 

sample indicated that the sample was mainly composed of gold, a trace amount of poorly 

crystalline sodium chloride, a trace amount of poorly crystalline copper oxide – Tenorite 

(CuO, ICDD PDF No 00-048-1548), a trace amount of poorly crystalline copper chloride 

hydroxide and a significant amount of amorphous material. The gold crystallite size of 45 nm 

and the copper oxide crystallite size of 55 nm were calculated. 

The Au/SiO2 only catalyst (C97809) had a diffraction pattern which indicated that the sample 

was mainly composed of poorly crystalline gold, a minor amount of poorly crystalline 

sodium chloride and a significant amount of amorphous material. A gold crystallite size of 43 

nm was calculated. Another method, deposition precipitation, was also used to form Au/SiO2 

(C978/36); however, the XRD pattern (see appendix Figure 1) was amorphous but had a 

possible trace amount of poorly crystalline gold. 
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Figure 3.2 XRD of monometallic Cu/SiO2 catalysts prepared by impregnation with different 

copper precursors and calcined in air at 400 
o
C for 2 h. 

__ Copper nitrate (C97802D)  __Copper chloride (C97802B) 

 

Since two different copper precursors have been used in this study, the XRD of both copper 

chloride and copper nitrate was compared in Figure 3.2. Both catalysts have some crystalline 

reflections but the copper nitrate sample appeared more crystalline with the presence of some 

copper oxide- Tenorite. From this figure there could be sample packing effects as the 

intensities of the two copper precursors differ quite a bit. XRD relies on the principle that all 

possible crystallographic orientations are presented to the beam. This concept is known a 

random orientation. If there is a bias of orientations of one or more particular crystallographic 

plane, then this is known a preferred orientation. Preferred orientation is likely the most 

common cause of intensity variations in XRD powder experiments. In future to minimise this 

possibility samples should be packed and mounted consistently. 
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Figure 3.3 XRD of Cu/SiO2 catalyst prepared by impregnation with copper nitrate and 

calcined at 400 
o
C for 2 h in air. (C97802D) 

 

As seen from Figure 3.3, the Cu/SiO2 catalyst made with a copper nitrate precursor had a 

diffraction pattern which indicated that the sample was mainly composed of amorphous 

material and a minor amount of poorly crystalline copper oxide – Tenorite. A copper oxide 

crystallite size of 20 nm was calculated. 

 

 The effect of different atmospheric conditions to pre-treat catalysts has also been briefly 

studied. Cu/SiO2 catalysts have been prepared by impregnation using copper chloride 

followed by one of three options:  

 Heated at 400 
o
C in H2 (C97815B1) (XRD in appendix Figure 2 )  

 Heated at 400 
o
C in N2 (C97815B2) (XRD in appendix Figure 3)  
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 Heated at 400 
o
C in air (C97815B3) (XRD in appendix Figure 4) 

 

 The XRD pattern for the treatment in H2 suggested that the sample was mainly composed of 

poorly crystalline copper (Cu, PDF  No 00-004-0836), a minor amount of poorly crystalline 

copper oxide – Cuprite (Cu2O, PDF No 00-005-0667) and a significant amount of 

amorphous material. The copper oxide crystallite size of 6.2 nm and the copper crystallite 

size of 37 nm were calculated. 

The diffraction pattern for the N2 treatment indicated that the sample was mainly composed 

of amorphous material and a possible trace amount of poorly crystalline copper chloride 

hydroxide. This alternative heat treatment appeared to change the copper phase from copper 

oxide – Cuprite. 

Treatment in air (appendix Figure 4) showed that the sample was mainly composed of 

amorphous material and a possible trace amount of poorly crystalline copper chloride 

hydroxide. 

A copper chloride precursor was also used to form another Cu/SiO2 catalyst by a precipitation 

(C97828) route (appendix Figure 5). The diffraction pattern indicated that the sample was 

mainly composed of a major amount of amorphous material and a trace amount of poorly 

crystalline copper oxide – Tenorite. A copper oxide crystallite size of 3.8 nm was calculated. 

A novel approach by Sinfelt and group
1
 involved the preparation of CuAu/SiO2 catalysts by 

co-impregnation followed by a reduction in hydrogen at 315 
o
C for 2 h and then a high 

temperature calcination at 675 
o
C for 15 h to achieve alloy formation (C978101A-C). 
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Figure 3.4 XRD overlay of catalysts with a Sinfelt thermal treatment (reduction at 315 
o
C in 

H2/Ar followed by a calcination in air at 676 
o
C for 15 h). All of the catalysts were prepared 

by impregnation with copper nitrate and chloroauric acid.( C978101A-E) ___ 1:1 CuAu/SiO2    

___ 1:3 CuAu/SiO2    ____ 3:1 CuAu/SiO2   ___ Au only   ___Cu Only 

 

An overlay of the XRD pattern for CuAu/SiO2 catalyst, prepared by a Sinflet 
1
 calcination 

(reduced 2 h in H2/Ar and calcined at 676 
o
C for 15 h in air), together with the monometallic 

Au and Cu only comparisons are shown in Figure 3.4. For the 1:1 CuAu/SiO2 sample, the 

diffraction pattern showed that the sample was mainly composed of a major amount of poorly 

crystalline gold, a minor amount of poorly crystalline copper oxide – Tenorite and a 

significant amount of amorphous material. A gold crystallite size of 37 nm and a copper 

oxide crystallite size of 35 nm were calculated. For 1:3 CuAu/SiO2, the diffraction pattern 

indicated that the sample was mainly composed of a major amount of poorly crystalline gold, 

a minor amount of poorly crystalline copper oxide – Tenorite and a significant amount of 

amorphous material. A gold crystallite size of 32 nm and a copper oxide crystallite size of 
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27.2 nm were calculated. For 3:1 CuAu/SiO2, the diffraction pattern indicated that the sample 

was mainly composed of a major amount of poorly crystalline gold, a minor amount of 

poorly crystalline copper oxide – Tenorite and a significant amount of amorphous material. A 

gold crystallite size of 27 nm and a copper oxide crystallite size of 23.5 nm were calculated. 

 

Catalyst 

Preparation Conditions 

Crystallite 

size nm 

Au/ Cu/AuCu 

phases 

1:1 

CuAu/SiO2    Direct 

calcination(C97819A) 

7 Au, copper 

chloride 

hydroxide 

1:3 

CuAu/SiO2    Direct 

calcination(C97819B) 

6 Au , no other 

major phases 

seen 

3:1 

CuAu/SiO2  

   Direct 

calcination(C97819C) 

11 Au, copper 

oxide Tenorite, 

copper chloride 

hydroxide 

1:1 

CuAu/SiO2     Sinfelt (C978101A) 

70 Au, copper 

oxide Tenorite 

1:3 

CuAu/SiO2     Sinfelt(C978101B) 

33 Au, copper 

oxide Tenorite 

3:1 

CuAu/SiO2     Sinfelt(C978101C) 

26 Au, copper 

oxide Tenorite 

        

 

Table 3.1  the crystallite sizes obtained from the Scherrer equation for CuAu/SiO2 catalyst 

with different molar ratios and different preparation conditions. 

 

Table 3.1 shows the crystallite sizes for the CuAu/SiO2 samples. A larger crystallite size was 

observed for catalysts made by the Sinfelt method, compared to direct calcination. The only 

difference in preparation is that the Sinfelt materials were reduced before calcination and 

were calcined at higher temperatures, at 676 
o
C rather than 400 

o
C, and for 15 h, compared to 

only 2h for the standard procedure. These factors, therefore, must play a role in affecting the 

size of the metal particles. 
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The Sinfelt copper only catalyst was reduced at 315 
o
C for 2 h in H2/Ar and calcined at 676 

o
C for 15 h in air. The sample was quite amorphous but did have clear crystalline peaks at 35 

and 38
 
° which represent CuO (Cu 

2+
). The gold only Sinfelt catalyst was made under the 

same conditions as the copper only sample and had the four main reflections at 38, 44, 65 and 

79
 o
 that represent metallic gold. 

The XRD of a different catalyst preparation, where the copper was deposited by high 

dispersion first, followed by gold via impregnation, showed reflections for metallic gold and 

copper oxide –Tenorite (appendix Figure 14).  
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Figure 3.5 XRD of CuAu/SiO2 catalysts prepared by two different sequential methods 

overlayed with an Au/SiO2 catalyst made by a sol immobilisation route. 

__ HDC Cu +Au DP uncalcined (C97887) __ HDC Cu + Au DP calcined (C97890) 

__ Au/SiO2 sol dried (C978102) 

Another catalyst preparation, used to form CuAu/SiO2 catalysts, was to combine two methods 

consecutively. Firstly, copper was deposited onto the silica support by a high dispersion route 

and then gold was deposited by deposition precipitation (C97887). The uncalcined sample 

was amorphous but did have peaks for metallic gold. However, upon calcination at 400 
o
C for 
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2 h in air, the sample became more crystalline and the metallic gold reflections became more 

apparent in the XRD pattern (Figure 3.5). Another preparation method, known as sol 

immobilisation, was also employed to make an Au/SiO2 catalyst (C978102). Usually, TiO2 

and carbon are the supports commonly chosen for this technique but, as all the previous 

catalysts in this study were deposited on SiO2, the support was kept the same for consistency. 
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                                    (a)                                                                (b) 

Figure 3.6 (a) - CuAu/SiO2 catalyst made with copper chloride and chloroauric acid via co-

impregnation calcined at 400 
o
C for 2 h in air (C97863A-C) (b) XRD of CuAu/SiO2 catalysts 

made by co-impregnation with copper nitrate and chloroauric acid calcined at 400
o
C for 2h in 

air. (C97819A-C) 

 __ 1:1 CuAu/SiO2  __ 1:3 CuAu/SiO2  __ 3:1 CuAu/SiO2 

 

All three catalysts shown in Figure 3.6a have the distinct crystalline peaks of metallic gold 

and the 3:1 CuAu/SiO2 catalyst have reflections for copper chloride hydroxide, probably due 

to the higher copper content. By changing the copper precursor from copper chloride to 
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copper nitrate (Figure 3.6), the presence of the four metallic gold peaks still remained but the 

copper reflections could now be assigned to CuO (Cu
2+

) copper oxide – Tenorite, which had 

more intense reflections as the copper content increased. 
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                                        (a)                                                                       (b) 

Figure 3.7(a) XRD of CuAu/SiO2 catalyst made via co-impregantion with copper chloride 

and chloroauric acid followed by a Sinfelt calcination (C97865A-C) (b) XRD of CuAu/SiO2 

made via co-impregnation with copper nitrate and chloroauric acid followed by a Sinfelt 

calcination (C978101A-C). 

__ 1:1 CuAu/SiO2  __ 1:3 CuAu/SiO2  __ 3:1 CuAu/SiO2 

By choosing to reduce the catalyst in H2/Ar before calcination at a higher temperature (676 

o
C), this appeared to make the samples more crystalline (Figure 3.7). The different copper 

precursor with a Sinfelt calcination did not show any significant changes to the XRD 

patterns. 
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                                    (a)                                                                        (b) 

Figure 3.8(a) CuAu/SiO2 made via co-impregnation with copper chloride and chloroauric 

acid reduced in H2 (C978/99A-E)(b) CuAu/SiO2 made via co-impregnation with copper 

nitrate reduced in H2 (C978/93A-E).  

 __ 1:1 CuAu/SiO __ 1:3 CuAu/SiO2 __  3:1 CuAu/SiO2 __ Au/SiO2   __Cu/SiO2 

 

From XRD analysis, reducing the catalyst with H2, had an interesting effect on the crystalline 

phases of the CuAu/SiO2 catalysts (Figure 3.8). For the CuAu/SiO2 sample, there was a shift 

in the reflections, which was due to an AuCu phase (PDF 03-065-2798). The Cu3Au/SiO2 

catalyst had an AuCu phase (PDF 03-065-2798) (reflections at 31.8, 40.4 45.7, 49.6, 52.4, 

60.2, 66.6, 72.0 and 80.9
o
), as well as an additional phase that can be assigned to cuproauride, 

syn Au3Cu (PDF 01-071-5023) (reflections at 39.2, 45.5, 66.3 and 79.8
o
). The CuAu3/SiO2 

sample also had the two AuCu phases, as stated for the Cu3Au/SiO2 catalyst. The Cu/SiO2 

catalyst had the reflections that are representative of copper oxide (PDF 01-078-0428). 

Therefore, these findings suggested possible alloy formation after a reduction in H2. 
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When the copper precursor was changed from copper chloride (Figure 3.8a) to copper nitrate 

(Figure 3.8b), there appeared to be a difference in the XRD patterns, especially for the 3:1 

CuAu/SiO2 catalysts. The Au/SiO2 catalyst, reduced in H2 (Figure 3.8b), had metallic gold 

reflections and the Cu/SiO2 had been assigned to copper oxide – Tenorite. Figure 3.8b 

illustrates that, for the three different molar ratios of CuAu, both the 1:1 and 1:3 CuAu/SiO2, 

had the AuCu phases (ICDD, PDF 03-065-2798) and cuproauride, syn Au3Cu (ICDD, PDF 

01-071-5023). However, the 3:1 CuAu/SiO2 pattern appeared completely different to the 

other two CuAu catalysts and had characteristic lines that were broad and also revealed an 

AuCu3 phase (ICCD, PDF 00-035-1357) (reflections at 33.7, 41.7, 48.5, 54.6, 60.4, 71.0, 

76.0, 81.0 and 85.8
o
), as well as possible AuCu and Au3Cu phases. Kameoka et al have 

characterized the AuCu3 phase by XRD and observed three distinct lines (40.4, 45.5 and 

51.3).
2
 Their study consisted of forming a fine porous Au catalyst by selectively leaching Cu 

from an ordered AuCu3 intermediate.  
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Figure 3.9 Expansion of the 37-48° 2θ region of the reduced Cu3Au/SiO2 sample with 

distinct alloy compositions marked with an asterisk. The red bars represent the positions of 

reflections due to gold metal, and the green bar represents the position of a reflection due to 

copper metal. 

 

Figure 3.9 shows an expansion of the CuAu alloy region of the XRD for the Cu3Au/SiO2 

prepared by reduction in H2 only (C97893C). For the CuAu/SiO2 and CuAu3/SiO2 catalysts, 

the broad reflection did not have any structure. However, for the Cu3Au/SiO2 composition, 

the broad reflection did have maxima which favoured the presence of alloy formation 

(represented by *). 

 

* 

* 

* 

* 

* 

* 
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                                     (a)                                                                   (b) 

Figure 3.10(a) CuAu/SiO2 made via co-impregnation with copper nitrate and chloroauric 

acid followed by a Sinfelt calcinations (C978101A-E) (b) CuAu/SiO2 catalyst made via co-

impregnation with copper nitrate and chloroauric acid followed by a reduction by 

NaBH4.(C97880A-E). 

 __ 1:1 CuAu/SiO2  __ 1:3 CuAu/SiO2 _  3:1 CuAu/SiO2 __ Au/SiO2   __Cu/SiO2 

 

The preparation technique of using co-impregnation with a copper nitrate precursor and then 

reducing the catalyst for 2 h in H2/Ar, followed by a high temperature firing at 676 
o
C, 

revealed only the metallic gold phases for the CuAu/SiO2 catalyst made in this way (Figure 

3.10a). The Cu/SiO2 sample has phases that can be assigned to copper oxide – Tenorite. An 

alternative reduction with NaBH4 was also incorporated into another preparation method 

(Figure 3.10b) to assess whether using this reagent made any difference, when compared to 

hydrogen reduction. The XRD revealed that the material does give a different XRD pattern to 

the catalyst reduced in H2/Ar. The catalysts reduced in NaBH4 had a similar pattern to the 

directly calcined samples, with phases only assigned to metallic gold. The Cu/SiO2 catalyst 
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made via this method had a weak pattern that is amorphous but did have weak reflections for 

copper oxide –Tenorite.  

3.3.1 In situ XRD 

 

Figure 3.11 In-situ XRD analysis of the decomposition of the dried precursor under flowing 

5% H2/N2. The plots show temperatures of 200 °C (red), 275°C (blue), 300°C (green) and 

then during the hold at 315°C (pink, brown, dark blue, green, orange and pale pink). The 

peaks for Au and CuAu are represented by ● and▲ respectively. 
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Figure 3.12 In situ XRD analysis of the decomposition of the reduced catalyst during high 

temperature oxidation using air. The plots show temperatures of 150 °C (purple), 250 °C 

(red), 325 °C (green), 450 °C (purple) and then during the hold at 675 °C. The peaks for Au, 

CuAu and CuO are represented by ●,▲and ■ respectively. 

 

In situ XRD was utilised to study the formation of the CuAu/SiO2 catalysts with a Sinfelt 

thermal treatment together with a reduction in 5% H2/N2 (Figure 3.11) and a high temperature 

calcination in air (Figure 3.12) (C978101A). During the reduction process, the in situ XRD 

revealed that the main reflections of gold are present throughout the reduction step. At low 

temperatures (<200 
o
C), metallic Au is already present which could have been generated from 

the decomposition step, and this Au species could be the source of the unalloyed gold. These 

in situ XRD patterns suggested that the catalyst could be reduced at lower temperatures to 

attempt to form more alloyed particles and less unalloyed Au particles. The presence of 

CuAu alloy species could also be confirmed by broader reflections at higher angle than the 
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gold reflections at >275 
o
C. As the temperature increased during the reduction step, the 

intensity of the alloy reflection increased. The longer the reaction continued, the more alloy 

species were observed. Therefore, it might be possible to modify the CuAu alloy species by 

adjusting the temperature and length of time of the reduction step. Once the catalyst 

underwent oxidation (Figure 3.12), the alloy phase disappeared as the temperature increased 

and, at the end of the high temperature calcinations, only metallic Au reflections were seen, 

as well as a copper oxide – Tenorite reflection. 
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3.4 Temperature programmed reduction TPR 

 

Temperature programmed reduction has been used as a technique to help understand the most 

appropriate reduction temperature for heterogeneous catalysts in many studies.  

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Overlay of TPR profiles for AuCu/SiO2 and Au only catalysts prepared by 

impregnation calcined at 400 
o
C for 2 h in air (C978/19A-C, C97809, C97802D). 

___ Au/SiO2   ___ CuAu/SiO2  ___Cu3Au/SiO2 ___CuAu3/SiO2 

 

A few CuAu/SiO2 catalysts have been chosen for this analysis and Cu and Au only samples 

have been tested as well for comparison. A trend has been reported by Chimentao et al,
3
 who 

studied CuAu/TiO2 catalysts for propene epoxidation. The TPR analysis showed peaks 

around 167-197 and 356-376 
o
C and, as the Cu content increased, there was a shift to lower 

temperature reduction. They also thought that this suggested that the copper might affect the 

electronic structure of the gold by near neighbour interactions. However, Figure 3.13 shows 

that the AuCu/SiO2 catalyst in this study, with a 3:1 Cu:Au molar ratio (pink line), had a 
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maximum that was shifted to higher temperatures; whereas, increasing the gold content (light 

blue line), shifted the maxima to lower temperature values. This trend was different to what 

Chimentao et al observed. However, there were certain factors that were different in both 

studies, e.g. the support, wt% etc. 

 Yang et al 
4
 observed a major peak at 227 

o
C for CuO/ZnO along with two shoulder peaks at 

187 and 252 
o
C. The major peak corresponded to the reduction of CuO to metallic copper. 

The low temperature shoulder peak at 187 
o
C was assigned to the reduction of CuO to Cu

+
 

and the high temperature shoulder peak at 252 
o
C was assigned to the reduction of Cu

+
 to 

metallic copper. The Cu/SiO2 catalyst (Figure 9 appendix) had two distinct reduction peaks, 

at 240 and 380
o
C, with the higher temperature peak having a shoulder at 450

o
C. The lower 

temperature peak could be due to CuO reduction to Cu
+
, whereas the major higher 

temperature peak could be due to CuO reduction to metallic Cu, with the shoulder peak 

representing Cu
+
 to metallic Cu. For the reduction of CuO and Cu2O different amounts of H2 

are required and are quantified by the TCD which was calibrated.  For their Au/CuO/ZnO 

sample, a broad peak with two unresolved signals at 213 and 227 
o
C was identified. The two 

TPR signals are related to the two step reduction (Cu (II) →Cu (I) →Cu (0)) as suggested by 

Fang et al.
5
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Figure 3.14 TPR profiles of  CuAu/SiO2 catalysts with different molar ratios reduced in 

H2/Ar at 315 
o
C for 2 h and calcined at 676 

o
C for 15 h in air (C978101A-C). 

___ CuAu3/SiO2    ___ Cu3Au/SiO2   ___CuAu/SiO2 

 

For the samples prepared by the Sinfelt methology CuAu 1:1, 1:3 and 3:1 (Figure 3.14), the 

single reduction peak could be assigned to a one step reduction ( CuO to Cu metal) as stated 

by Lian et al.
6 
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___ CuAu/SiO2    ___ Cu3Au/SiO2   ___CuAu3/SiO2 

Figure 3.15 TPR profiles for CuAu/SiO2 catalysts prepared by impregnation with copper 

chloride and chloroauric acid followed by a calcination in air at 400 
o
C for 2 h (C97863A-C). 

 

 However, for the co- impregnated catalyst (Figure 3.15), the major peak could be assigned to 

the reduction of CuO to Cu and the smaller peak Cu
+
 reduction to Cu metal. Lian et al 

6
 have 

also measured the TPR profiles of AuCu catalysts. The profile showed a single peak (190-

290 
o
C) which they explained was due to a one step reduction of CuO to Cu metal. A reason 

why their catalysts differed from the ones in this study could be because they used a different 

preparation route, since Lian used a precipitation method with a calcination at 300 
o
C in 20% 

O2/Ar for 4 h. The absence of any other peak at lower temperatures suggested that the Au 

species must have been already reduced to the metallic form. The reduction peak of CuO in 

the Au/CuO/ZnO sample shifted to a lower temperature, compared with the CuO/ZnO 

sample. This showed that Au promoted CuO reduction, which occurred at lower 

temperatures. It agreed with this study because the copper only sample had a slightly higher 

reduction profile than our AuCu catalysts. Yang et al 
4 

concluded that there was an 
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interaction between Au and CuO in the Au/CuO/ZnO catalysts, which could enhance the 

reducibility of CuO. Figure 3.13 showed that there is a shift towards higher reduction 

temperatures that went in the order 1:3 Au:Cu >  3:1 Au:Cu >  1:1 Au:Cu. This suggested 

that when there was more copper in the sample, lower reduction temperatures were observed 

by Chimentao et al.
3
 

A TPR-TPO-TPR experiment has been undertaken for the AuCu3/SiO2 catalyst (C97819C) to 

observe the effect of re-reduction on catalysts that have been oxidised. Figure 11 (appendix) 

illustrates the initial TPR profile and shows a major reduction peak at 200-250 
o
C and a 

shoulder peak at 270-380 
o
C, which is probably due to CuO reduction to Cu metal and Cu

+
 

reduced to metallic Cu. Upon oxidation (Figure 12 appendix), there seemed to be a broad 

peak. Kameoka et al 
2
 have performed TPO on an AuCu catalyst up to temperatures of 1000 

o
C and noticed an oxidation peak after 400 

o
C. Once the sample was reduced again, two 

reduction peaks appeared and the second peak had shifted to a slightly lower temperature 

(Figure 13 appendix). 

The TPR results showed that for the Cu/SiO2 catalysts made by impregnation (IMP) and high 

dispersion (HD)(appendix Figure 10), two noticeable reduction peaks were seen. For the IMP 

sample, the peaks were from 210-280, 310-450 
o
C and 450-500 

o
C. For the HD catalyst, there 

were reductions at 200-300 and 300-400 
o
C. After the impregnated Cu/SiO2 catalyst was used 

for propene oxidation, only one reduction peak was observed between 200-400 
o
C (appendix 

Figure 9). For the Au/SiO2 catalysts, prepared by impregnation (appendix Figure 8) and 

deposition precipitation (appendix 7), the peaks were less intense and broader. A peak was 

seen between 200-500 
o
C for the impregnated Au/SiO2 catalyst and between 200-450 

o
C for 

the deposition precipitation sample. A silica only TPR (appendix Figure 6) was carried out to 

determine if any peaks appeared and there was a small peak showing reduction at 100-200 
o
C 

that was apparent in most of the catalysts. For the AuCu/SiO2 catalysts, there were two 
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reductions peak around 190-300 and 300–400 
o
C but as the Cu loading increased, the 

maximum of the peaks shifted to higher temperatures. For example, the 1:1 catalyst (Figure 

3.13) had peaks at 190-290 and 300-400 
o
C whereas, the 3:1 CuAu catalyst (Figure 3.13) had 

peaks at 220-350 and 350-420 
o
C. A trend was also been seen by Chimentao et al,

3
 who 

studied CuAu/TiO2 catalysts for PO epoxidation. The TPR analysis showed peaks around 

167-197 and 356-376 
o
C and, as the Cu content increased the shift went to lower values. They 

also thought that this suggested that the copper might affect the electronic structure of the 

gold by near neighbour interactions. However, when looking at our samples the higher 

copper loadings shifted the maxima to higher temperatures, whereas increasing the gold 

shifted the maxima to lower values. 

Comparisons between 1:1 CuAu catalysts with either copper chloride or copper nitrate 

precursors and direct or Sinfelt calcinations are shown in Figure 3.16. Both the chloride 

preparations had reduction peaks at slightly lower temperatures than with the nitrate 

precursors. For the chloride precursor, the calcination technique seemed to have an effect on 

the position of the two reduction peaks. When the catalyst is directly calcined, two reduction 

peaks were around 200 and 500 
o
C. Whereas, if the Sinfelt route is chosen, the reduction 

peaks were around 200 and 350 
o
C. 
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Figure 3.16 Overlay of TPR profiles for catalysts made by co-impregnation with different 

copper precusors and calcination conditions. ___ Cu/SiO2 with copper nitrate and directly 

calcined at 400 
o
C for 2 h in air. (C97802D)  __  1:1 Cu(chloride)Au/SiO2 and directly 

calcined (C97863A)) ___ 1:1 Cu(nitrate)Au/SiO2 and directly calcined (C97819A) ___ 1:1 

Cu(chloride)Au/SiO2 and Sinfelt treated (reduction in H2/Ar followed by high temperature 

calcination)(C97865A) ___ 1:1 Cu(nitrate)Au/SiO2 and Sinfelt treated (C978101A). 
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Catalyst Preparation 

Hydrogen uptake  µ 

mol/g 

Cu/SiO2(C97802D) Impregnation, Cu nitrate, direct calcination 1403 

 

Impregnation, Cu nitrate, direct calcination 884 C97802D after propene 

Cu/SiO2(C97802B) 

 

Impregnation, Cu chloride, direct 

calcinations 1488 

CuAu/SiO2(C97819A) Impregnation, Cu nitrate, direct calcination 191 

CuAu3/SiO2(C97819B) Impregnation, Cu nitrate, direct calcination 738 

Cu3Au/SiO2(C97819C) Impregnation, Cu nitrate, direct calcination 658 

Cu/SiO2 (C97828) Precipitation 615 

Au/SiO2(C97836) Deposition precipitation 277 

Cu/SiO2(CF128) High dispersion 414 

CuAu/SiO2(C978101A) Sinfelt, Cu nitrate 1754 

CuAu3/SiO2(C978101B) Sinfelt, Cu nitrate 2186 

Cu3Au/SiO2(C978101C) Sinfelt, Cu nitrate 1535 

 CuAu/SiO2(C97887) HDC Cu+ AuDP direct calcinations 231 

CuAu/SiO2(C97890) HDC Cu+ AuDP calcination and reduction 111 

 

Table 3.2 Hydrogen consumption data 

 

 

Hydrogen consumption for catalysts prepared in different ways and with different CuAu 

molar ratios are presented in Table 3.2.  In a calibration experiment, TPR data were collected 

and used to quantify the H2 consumption during the reduction, and thus to calibrate the 

response of the TCD. Large consumptions of hydrogen were measured for the Cu/SiO2 

samples, as expected, since these catalysts were reducing copper (II) oxide to Cu (0) metal 

and had a weight percentage close to 5 wt%. However, Sinfelt prepared catalysts also had 

very large consumptions. The lowest consumptions of hydrogen were observed for the 

Au/SiO2 (C97836) catalyst prepared by deposition, and the CuAu/SiO2 sample (HDC Cu and 

Au by DP (C97890)). This was probably due to the technique not dispersing the metal 
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particles on the support as effectively as other methods. Surprisingly, out of the different 

molar ratios, the composition with CuAu3 had the highest consumption. The high 

consumption in the TPR spectrum of the catalyst is due to the high amount of hydrogen 

needed for the reduction of the copper metal. It appeared that the presence of more gold in the 

bimetallic samples enhanced the copper reduction, which may have been because the gold 

helped the hydrogen atoms to dissociate and then reduce the metal oxides. 
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3.5 SEM images 

3.5.1 Direct calcined catalysts: 

            

(a) 

  

(b) 

Figure 3.17  SEM images of CuAu/SiO2 catalyst with direct calcination (C97819A) (a) at 

low magnification (b) at higher magnification  
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(a) 

  

(b) 

Figure 3.18 SEM images of CuAu3/SiO2 directly calcined (C97819B) at (a) low 

magnification (b) higher magnification 
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(a) 

    

(b) 

Figure 3.19 (a) SEM image of Cu3Au/SiO2 directly calcined (C978/19C) at low 

magnification (b) at higher magnification 

SEM images were obtained for catalysts made by direct calcination (400 
o
C for 2 h in air). 

Large needle like ensembles of gold were observed for the CuAu/SiO2 sample (Figure 3.17 a) 

which was many microns in size. On closer inspection, it appeared that they were made up of 

smaller particles of Au. The CuAu3/SiO2 (Figure 3.18a and b) also shows large ensembles, as 
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well as highly dispersed Cu particles on the SiO2 support. In addition to the large clusters, the 

Cu3Au/SiO2 SEM analysis also shows small spherical particles of Cu and Au (Figure 3.19b) 

which were confirmed by EDX analysis (appendix). The Au/SiO2 comparison shows large 

Au clusters and therefore are a result of a weak metal support interaction (Figure 3.20a and 

b). The Cu/SiO2 catalyst equivalent shows highly dispersed Cu particles on the support 

(Figure 3.21 a and b). For this catalyst it does not look the same throughout the sample and it 

appears to show a non homogeneous distribution of the copper. 

 However, SEM only detects larger big particles whereas TEM analysis will reveal if there 

are any smaller particles on the catalysts which is in the next section of this chapter.            

                                                

     

(a) 

Figure 3.20 SEM images for Au/SiO2 impregnated directly calcined (C97809) (a) at low 

magnification 20 µm  
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(b) 

Figure 3.20 SEM images for Au/SiO2 impregnated directly calcined (C97809) (b) Gold 

particles of about 1.9 µm. 
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(a) 

    

(b) 

Figure 3.21 SEM images of Cu/SiO2 by impregnation directly calcined (C97802D) 

(a) at low magnification (b) at higher magnification 
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3.5.2 Sinfelt catalysts 

3.5.2.1 Copper nitrate precursor 

  

     

(a) 

      

 

(b) 

Figure 3.22 (a) and (b) SEM image of CuAu/SiO2 by Sinfelt procedure (C978101A) reduced 

at 315 
o
C in H2 only 
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Figure 3.22(a) and (b) shows the SEM image of CuAu catalyst reduced at 315 
o
C for 3 h in 

H2 and dispersed particles can be seen on the support. Upon high temperature calcination, the 

particles appear to be more highly dispersed (Figure 3.23 (a) and (b)). 

 

        

(a) 

Figure 3.23 (a) SEM image of CuAu/SiO2 by Sinfelt procedure (C978101A) reduced at 315 

o
C in H2 followed by calcined at 676 

o
C for 15 h in air. 

 



136 

 

  

   

(b) 

Figure 3.23  (b) SEM image of CuAu/SiO2 by Sinfelt procedure (C978101A) reduced at 315 

o
C in H2 followed by calcined at 676 

o
C for 15 h in air. 
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(a) 

    

 

(b) 

Figure 3.24 (a) and (b) SEM image of CuAu/SiO2 by Sinfelt procedure (C978101B) reduced 

at 315 
o
C in H2 only. 
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(a) 

 

 

(b) 

Figure 3.25 (a) and (b) SEM image of CuAu/SiO2 by Sinfelt procedure (C978/101B) reduced 

at 315 
o
C in H2 followed by calcined at 676 

o
C for 15 h in air. 
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(a) 

  

(b) 

Figure 3.26 (a) and (b) SEM image of CuAu/SiO2 by Sinfelt procedure (C978101C) reduced 

at 315 
o
C in H2 only 
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(a) 

      

 

(b) 

Figure 3.27 (a) and (b)SEM images of Cu3Au/SiO2 by a Sinfelt procedure (C978101C) 

reduced at 315 
o
C in H2 followed by calcined at 676 

o
C for 15 h in air. 
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The CuAu3/SiO2 catalyst (Figure 3.24 (a) and (b)) is similar to the CuAu/SiO2 catalyst 

(Figure 3.22 (a) and (b)) because, when reduced, the metal particles are not as dispersed on 

the support until there has been a high temperature calcination, when the particles are highly 

dispersed over support (Figure 3.25 (a) and (b)). For the Cu3Au/SiO2 catalyst (Figure 3.27 a 

and b), copper and gold particles are present but are more highly dispersed after the high 

temperature calcination. 

 

3.5.2.2 Copper chloride precursor 

  

(a) 

Figure 3.28 (a) SEM images of CuAu/SiO2 by Sinfelt method (C97865A) reduced at 315 
o
C 

in H2 followed by calcined at 676 
o
C for 15 h in air. 
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(b) 

Figure 3.28 (b) SEM images of CuAu/SiO2 by Sinfelt method (C97865A) reduced at 315 
o
C 

in H2 followed by calcined at 676 
o
C for 15 h in air. 

 

(a) 

Figure 3.29 (a) SEM images of CuAu3/SiO2 by Sinfelt method(C978/65B) reduced at 315 
o
C 

in H2 followed by calcined at 676 
o
C for 15 h in air. 



143 

 

 

 

(b) 

Figure 3.29 (b) SEM images of CuAu3/SiO2 by Sinfelt method(C978/65B) reduced at 315 
o
C 

in H2 followed by calcined at 676 
o
C for 15 h in air. 

  

(a) 

Figure 3.30 (a)  SEM images of Cu3Au/SiO2 by Sinfelt method (C97865C) reduced at 315 

o
C in H2 followed by calcined at 676 

o
C for 15 h in air. 
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(b) 

Figure 3.30 (b) SEM images of Cu3Au/SiO2 by Sinfelt method (C97865C) reduced at 315 
o
C 

in H2 followed by calcined at 676 
o
C for 15 h in air. 

 

The copper nitrate precursor was replaced with copper chloride and a Sinfelt style method 

was used to make CuAu, CuAu3 and Cu3Au catalysts (Figures 3.28 - 3.30). There does not 

appear to be any significant difference in the SEM images as a result of altering the precursor 

for this preparation. All the samples after high temperature calcination in air had highly 

dispersed metal particles ranging in sizes. Spherical metal particles were observed for  the 

catalyst made with the copper chloride precursor. 
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3.5.3 Other preparation methods 

3.5.3.1 HDC Cu + Au DP or Au IW 

  

(a) 

  

(b) 

Figure 3.31 (a) and (b) SEM images of CuAu/SiO2 high dispersion (HDC) Cu + Au 

Deposition precipitation (DP) (C978/87) 
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(a) 

   

(b) 

Figure 3.32 (a) and (b) SEM images of CuAu/SiO2 by high dispersion (HDC) Cu + Au 

incipient wetness impregnation (IW) (C978/90) 

A sequential preparation method (Figure 3.31 and 3.32) was attempted by loading the Cu 

onto the support and using a high dispersion route, followed by loading the Au onto the 
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support by either incipient wetness impregnation or deposition precipitation. The SEM 

images show that when the latter of the two routes is chosen, the metal particles are dispersed 

on the support, although some of the particles may have been too small to be seen by SEM. 

However, when the Au is prepared by impregnation, large ensembles can be observed, as 

well as highly dispersed particles. 

 

3.5.3.2 Reduced in NaBH4 

 

(a) 

Figure 3.33 (a) SEM images of CuAu/SiO2 reduced by NaBH4 (C97880A) 
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(b) 

Figure 3.33 (b) SEM images of CuAu/SiO2 reduced by NaBH4 (C97880A) 

 

(a) 

Figure 3.34 (a) SEM images of CuAu3/SiO2 reduced in NaBH4 (C97880B) 

 



149 

 

 

(b) 

Figure 3.34 (b) SEM images of CuAu3/SiO2 reduced in NaBH4 (C97880B) 

 

(a) 

Figure 3.35 (a) SEM images of Cu3Au/SiO2 reduced by NaBH4 (C97880C) 
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(b) 

Figure 3.35 (b) SEM images of Cu3Au/SiO2 reduced by NaBH4 (C97880C) 

 

(a) 

Figure 3.36 (a) SEM images of Au/SiO2 reduced by NaBH4 (C97880D) 
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(b) 

Figure 3.36 (b) SEM images of Au/SiO2 reduced by NaBH4 (C97880D) 

 

(a) 

Figure 3.37 (a) SEM images of Cu/SiO2 reduced by NaBH4 (C97880E) 
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(b) 

Figure 3.37 (b) SEM images of Cu/SiO2 reduced by NaBH4 (C97880E) 

 

As well as using hydrogen to reduce the catalysts, sodium borohydride was also used as a 

reducing agent. From the SEM images (Figure 3.33-3.37), large micron sized clusters were 

apparent as well as some smaller dispersed particles. The Au/SiO2 catalyst showed the 

presence of large Au ensembles of 82 µm across and smaller Au particles 500-700 nm. The 

Cu/SiO2 SEM images showed a mixture of large Cu ensembles and small dispersed particles. 
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3.5.3.3 Reduced by H2 

 

(a) 

  

 

(b)                                                                         

Figures 3.38 (a) and (b) SEM images of CuAu/SiO2 reduced in H2 (C97893A) 
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(a) 

  

 

(b) 

Figure 3.39 (a) and (b) SEM images of CuAu3/SiO2 reduced in H2 (C97893B) 
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(a) 

 

 

(b) 

Figure 3.40 (a) and (b) SEM images of Cu3Au/SiO2 reduced in H2 (C978/93C) 
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SEM images for AuCu, Au3Cu and Cu3Au have been reduced in H2 at 400 
o
C for 2 h (Figure 

3.38 - 3.40). The reduction leads to the formation of highly dispersed particles over the 

support which TEM analysis will be able to show. The gold rich catalyst consists of large 

ensembles around 120 µm. However, the Cu rich composition does not have large ensembles 

and forms round metal particles. 

 

 

Figure 3.41 SEM image of Au/SiO2 reduced in H2 (C97893D) 

 

The SEM image for the Au/SiO2 catalyst reduced in H2 (Figure 3.41) shows the formation of 

large gold ensembles of about 182 µm in size, in addition to some dispersed particles. 
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3.5.3.4 Sol immobilisation 

   

(a) 

 

(b) 

Figure 3.42 SEM image of (a) Au/SiO2 (C978102) (b) CuAu/SiO2 (C978103) 
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Sol immobilisation was used as another preparation method because it has been utilized by 

others to generate nanometer particles of gold, for use in size dependent reactions.
7
 It is not 

very clear on the structure of the Au from the SEM image (Figure 3.42a) of the Au/SiO2 

catalyst, but we note the presence of Au regions on the support from the bright contrast in the 

image, which is due to the Au. The AuCu/SiO2 SEM image (figure 3.42 b) shows highly 

dispersed metal particles on the support. However, smaller particles can not be seen by the 

SEM technique so TEM analysis has been carried out and discussed below. 
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3.6 TEM Analysis 

 

This technique can identify if there are smaller active particles on the catalysts which are 

order of magnitudes smaller than the particles and clusters observed by SEM analysis. 

 

Figure 3.43 TEM images of 1:1 CuAu/SiO2 calcined. (C978/19A) 

 

 

TEM analysis was investigated for CuAu/SiO2 calcined in air (Figure 3.43) and reveals large 

clusters on the support. EDX analysis (Figure 3.44) confirms that the large clusters are Au-

rich although there is a small amount of Cu present. 
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Figure 3.44 TEM/EDX analysis of calcined CuAu/SiO2 (C978/19A). The background 

catalyst contains Cu. The Ni observed arises from the grid used to support the sample. 
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Figure 3.45 TEM images of CuAu/SiO2 reduced only part of the Sinfelt method 

(C978/101A) 
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Figure 3.46 TEM/EDX analysis of reduced only part of the Sinfelt method for CuAu/SiO2 

(C987101A). The Ni is observed because it is the grid used to load sample. 
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Figure 3.47 TEM/EDX analysis of reduced only part of the Sinfelt method for CuAu/SiO2 

(C978/101A). The Ni is observed because it is the grid used to load sample. 

 

 
TEM images of CuAu/SiO2 catalyst reduced at 315 

o
C for 2 h in H2 showed the average 

particle size was 13 nm. The particles tended to exist in clusters that were fused to different 
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degrees (Figure 3.45). EDX analysis showed that the more open clusters contained both Cu 

and Au particles (Figure 3.46). However, the more compact clusters were rich in Cu content 

but only contained a little Au (Figure 3.47).  TEM analysis showed that the interaction 

between copper and gold was high and that alloy formation was present as supported by the 

linescan (Figure 3.48). The EDX line scan clearly shows that some of the particles have 

surface layers of copper rich and their interior regions contain both Cu and Au. 

 

 

Figure 3.48 TEM/Linescan of reduced only CuAu/SiO2 by Sinfelt method (C978/101A). 
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Figure 3.49 TEM images of CuAu/SiO2 catalyst made by the Sinfelt method (C978/101A). 
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Figure 3.50 TEM/EDX CuAu/SiO2 made by the Sinfelt method (C978/101A). The Ni is 

observed because it is the grid used to load sample. 
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Figure 3.51 TEM-EDX analysis of CuAu/SiO2 Sinfelt method (C978/101A). The supported 

material is predominantly Cu. The Ni observed arises from the grid used to support the 

sample. 

 

TEM-EDX analysis shows that, after high temperature calcination the structure of the catalyst 

is different with irregular shaped copper particles of between 20-40 nm. The high temperature 

de-alloys the catalyst, leading to bimetallic Au and Cu particles. Clusters were observed 

which appeared to be rich in copper, as shown by the EDX analysis (Figure 3.50 and 3.51). 

The gold particles seem to have little interaction with the support. 
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Figure 3.52 TEM image of CuAu/SiO2 prepared by the Sinfelt method using a copper 

chloride precursor (C978/65A) 

TEM analysis for a CuAu/SiO2 catalyst by Sinfelt route but with copper nitrate replaced by 

copper chloride can be seen in Figure 3.52.  CuAu alloy particles (Figure 3.53 and 3.54) can 

be found of micron size and the EDX line scan shows that some of the particles have surface 

layers that are copper rich, with their interior regions consisting of Cu and Au (Figure 3.55). 
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Figure 3.53 TEM/EDX analysis for CuAu/SiO2 catalyst made by the Sinfelt route with 

copper chloride (C978/65A). 
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Figure 3.54 TEM/EDX analysis for CuAu/SiO2 catalyst made by the Sinfelt route with 

copper chloride (C978/65A). 
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Figure 3.55 TEM/line scan analysis for CuAu/SiO2 prepared by the Sinfelt method with 

copper chloride precursor (C978/65A). 
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(a)                                                                       (b) 

Figure 3.56 TEM images of CuAu/SiO2 reduced in NaBH4 (C978/80A) (a) low 

magnification (b) at higher magnification 
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Figure 3.57 EDX HAADF and line scan for CuAu/SiO2 reduced by NaBH4 (C978/80A). 

 TEM analysis showed that there was alloy formation (Figure 3.57) but some particle 

illustrated Au concentration variation. Particle clusters (Figure 3.56 b) were seen occasionally 

on the surface of silica particle. 
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(a)                                                                    (b) 

   

                            (c) 

Figure 3.58 TEM images of HDC Cu + Au DP (C978/87) (a) at high magnification  (b) at 

low magnication (c) at lower magnication 
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Figure 3.59 EDX HAADF and line scan  for CuAu/SiO2 made by HDC Cu + Au DP 

(C978/87). 
 

 
Cu and Au form alloys as seen as well as clusters on the silica support. Some copper rich 

patches have been found (Figure 3.59) on the support silica. Moreover, the CuAu particle size 

distribution is bimodal. The majority of the particles are small but some particles are several 

times larger. 
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Figure 3.60 TEM image of CuAu/SiO2 made by HDC Cu + Au IW (C978/90) 
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Figure 3.61 EDX HAADF and line scan for CuAu/SiO2 made by HDC Cu + Au IW 

.(C978/90) 

TEM analysis shows some pure Cu patches. Wormlike big CuAu particles (Figure 3.60) are 

common in addition to small alloy particles. 
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(a)                                                                   (b) 

Figure 3.62 TEM images of CuAu/SiO2 reduced by NaBH4 (C978/80A) and calcined in air. 
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Figure 3.63 EDX for CuAu/SiO2 reduced by NaBH4 and calcined in air 
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Figure 3.64 EDX HAADF and line scans for CuAu/SiO2 reduced in NaBH4 and calcined in 

air 

TEM analysis of the CuAu/SiO2 catalyst, reduced in NaBH4 and calcined in air (Figure 3.63), 

showed that Cu and Au seemed to be separated as two phases, although some Cu particles 

were seen in contact with Au particles, as seen in the EDX line scan. 

 

Sample Mean Minimum Maximum 

Reduced NaBH4
 
(C978/80A) 24 11 42 

HDC Cu + Au DP (C978/87) 9 2 71 

HDC Cu + Au IW (C978/90) 11 3 107 

Reduced NaBH4 and calcined in 

air 24 11 33 

 

Table 3.4 Particle size (nm) of different preparation methods 
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Table 3.4 displays the particle size variations for four different preparation methods. 

CuAu/SiO2 catalyst reduced in NaBH4 has the largest particle diameter of 24 nm. The 

smallest particle size is formed as a result of a high dispersion route for Cu followed by Au 

deposition precipitation method, with an average size of 9 nm. This agreed much better with 

the sizes observed by XRD which showed smaller particles compared with SEM which 

showed bigger particles and if bulk Au then they are probably not contributing to the catalytic 

activity. More than 500 particles were counted for TEM particle size data whilst for XRD 

analysis, more than 1000 particles were counted. It is important that many particles are 

measured for these characterization techniques so that statistically reliable mean size data can 

be presented. 
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3.7  XPS Analysis 

                                                                                        

 

 

 

 

 

 

 

 

 

 

 

Figure 3.65 XPS spectra for series of catalysts in table 1 (appendix). The Cu
2+

 satellite peak 

is represented on spectra by *. 

. 

The XPS Cu(2p) spectra of a series of AuCu/SiO2 catalysts as well as the Au and Cu only 

versions, have been analysed (Figure 3.65). The Cu/SiO2 catalyst, made by a precipitation 

method (8), had the most intense spectrum which might suggest highly dispersed Cu on the 

silica support. This catalyst also clearly showed the presence of a Cu
2+

 species on surface. 

For directly calcined AuCu/SiO2 (4) and Au3Cu/SiO2 (5) there did not appear to be a Cu
2+

 

satellite peak, suggesting the presence of a Cu
+
 species. The Cu (2p3/2) peak was more 

920                       b.e. (eV)                          960             

Au/SiO2 (C97809) 

Cu/SiO2 (C97828) 

Cu/SiO2 (C97802D) 

Cu3Au/SiO2 (C97819C) 

CuAu3/SiO2 (C97819B) 

CuAu/SiO2 (C97819A) 

Cu/SiO2 in air (C97815B (3)) 

Cu/SiO2 in H2 (C97815B (1)) 

Cu/SiO2 in N2 (C97815B (2)) 

* * 
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intense for the Cu3Au/SiO2. The directly calcined Cu/SiO2 catalyst (7) confirmed the 

presence of Cu
2+ 

species. 

   

(a)                                                              (b) 

Figure 3.66 XPS spectra for Cu3Au/SiO2 (C97819A) before and after propene oxidation (a) 

Au (4f) spectra (b) Cu (2p) spectra. 

 

The Au(4f) and Cu(2p) XPS spectra for the Cu3Au/SiO2 catalyst before (fresh) and after 

propene oxidation are shown in Figure 3.66 a and b. These spectra suggest that the reduction 

in the Au:Cu ratio after use was due to an increase in the Cu(2p) signal (Cu(2p):Si(2p) ratio) 

rather than a loss in the Au.  
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Figure 3.67 XPS analysis of calcined catalysts (C97819A-C, C97809, C97802D) showing 

(left) Cu(2p) and (right) Au(4f) spectra: (a) CuAu3/SiO2, (b) CuAu/SiO2, (c) Cu3Au/SiO2, (d)  

Cu/SiO2, (e) Au/SiO2. The position of the Cu
2+

 satellite peak in the Cu(2p) spectra is marked 

with a dot. 

 

 

 

 

 

 

 

Figure 3.68 XPS analysis of reduced catalysts showing (left) Cu(2p) and (right) Au(4f) 

spectra: (a) CuAu3/SiO2, (b) CuAu/SiO2, (c) Cu3Au/SiO2, (d) Cu/SiO2, (e) Au/SiO2 

(C978/93A-E) 
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Figure 3.69 XPS analysis of reduced and calcined catalysts showing (left) Cu(2p) and (right) 

Au(4f) spectra: (a) CuAu3/SiO2, (b) CuAu/SiO2, (c) Cu3Au/SiO2, (d) Cu/SiO2, (e) Au/SiO2 

(C978/10A-E) 

 

 

XPS spectra for the three molar ratios of CuAu/SiO2 catalysts calcined in air are shown in 

Figure 3.67. The surface Cu:Au ratio increases monotonically with the expected bulk ratio 

(Table 3 appendix); however, there is a large increase in Cu enrichment. The XPS spectra of 

reduced catalysts are represented in Figure 3.68. The Cu(2p) spectra are extremely intense, 

when compared with the calcined catalyst spectra, which may be a consequence of higher Cu 

dispersion on the silica support caused by the reduction step. Cu
2+

 satellites are very weak as 

expected. The reduced Cu3Au/SiO2 catalyst has a significant enhancement in surface Cu 

concentration which could be explained by highly mobile metallic Cu (0) during the 

reduction method. Similar to the reduced catalysts, the XPS data for the Sinfelt catalysts 

(Figure 3.69) confirmed the presence of Cu
+
 species due to the absence of the Cu

2+
 satellite 

peak. However, unlike the directly calcined and reduced catalysts, the Sinfelt samples have 

Cu:Au ratios close to the expected bulk values, with the Cu rich composition being the only 

exception (appendix). 

Sinfelt catalyts 
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3.8 UV-Visible Plasmon analysis 

 

Figure 3.70 UV-Visible spectroscopy of calcined catalysts (C97819A-C, C97809, C97802D) 

(a) Au/SiO2 (b) CuAu3/SiO2 (c) CuAu/SiO2 (d) Cu3Au/SiO2 and (e) Cu/SiO2. 

 

Visible spectroscopy has been used to investigate the interaction between gold and copper in 

the calcined catalysts (Figure 3.70). The spectra showed that the interaction between the 

metals was negligible, as the position of the plasmon bands was not shifted when the copper-

gold ratio was changed. 

 

 
 

 

 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 3.71 Plasmon bands for borohydride treated catalysts (C978/80A-E) (a) AuCu/SiO2 

(b) AuCu/SiO2 with no ice treatment (c) CuAu3/SiO2 (d) Cu3Au/SiO2 (e) Au/SiO2 (f) Cu only. 

Comparisons with other methods (g) HDC Cu dried only (CF128) (h) Au/SiO2 direct 

calcination (C97809) 

 

UV-Vis spectroscopy has been carried out for catalyst treated with NaBH4 as a reducing 

agent instead of H2 (Figure 3.71) and compared with Au/SiO2 calcined in air (g) and HDC Cu 

dried only (f). All the AuCu/SiO2 borohydride reduced catalysts shifted plasmon positions, 

suggesting a strong interaction between Cu and Au. Sodium borohydride reduction appeared 

to have an effect on the plasmon band as the Au only catalyst (e) had a different band width 

than the calcined in air Au sample (g). The more Cu rich the AuCu ratio, the further the peak 

maximum shifted to higher wavelength. 

 

 

(a) 

(b) 

(c) 

(d) 

(h) (e) 

(g) 

(f) 
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Figure 3.72 UV-Visible spectroscopy of reduced catalysts (C978/93A-E) (a) Au/SiO2 

(b) CuAu3/SiO2 (c) CuAu/SiO2 (d) Cu3Au/SiO2 (e) Cu/SiO2 and (f) Au/SiO2 calcined. 

 

Visible spectroscopy revealed the formation of bimetallic particles (Figure 3.72) as the 

position of the plasmon peak shifted away from the position of the gold as the copper-gold 

ratio changed. This was previously seen by Liu and co workers when their characterised 

borohydride reduced CuAu/SBA-15 catalysts by visible spectroscopy.
8
 

 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 3.73 UV-Visible spectroscopy of reduced and calcined catalysts (C978/101A-E)(a) 

Au/SiO2 (b) CuAu3/SiO2 (c) CuAu/SiO2 (d) Cu3Au/SiO2 

 

For the CuAu/SiO2 catalysts prepared by a Sinfelt thermal treatment, the visible spectroscopy 

agrees with the TEM and XRD data as there does not appear to be much interaction between 

the gold and copper particles. This is suggested as there is not a shift in the plasmon peak 

when the copper-gold ratio is altered (Figure 3.73). 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 
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3.9 EGA Analysis 

 

Figure 3.74 MS Profile of gases formed in the decomposition of the dried precursor under 

5% O2/He. Masses are 30 (NO, blue), 36 (H
35

Cl, brown) and 38 (H
37

Cl, orange). 
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Figure 3.75 MS Profile of gases formed in the decomposition of the dried precursor under 

5% H2/N2. Masses are 30 (NO, blue), 36 (H
35

Cl, brown) and 38 (H
37

Cl, orange). 

 

To get a greater understanding of the AuCu/SiO2 catalyst made, EGA analysis is of interest as 

it can help to explore the processes which lead to the different structures already suggested. 

When the catalysts are directly calcined in air, copper nitrate decomposes to copper oxide at a 

lower temperature and chloride is removed from the Au precursor (Figure 3.74). When the 

catalyst undergoes a reduction in H2, the copper nitrate (Figure 3.75) is decomposed first with 

a major product loss of NO. But instead of forming copper oxide, as in the oxidation 

procedure, it forms copper metal. 
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3.10 The effect of sodium hydroxide reduction with metal salts 

It has been well documented that metal boride impurities can be formed by the use of sodium 

borohydride reduction with metal salts. Sodium borohydride has been used in the preparation 

of copper and gold nanoparticles, and Schaak and group
9
 prepared copper nanocomposites 

using the precursors Cu(C2H3O2)2.H2O and HAuCl4.3H2O and added these to distilled water. 

After the mixture was stirred, NaBH4 was added to form a mixture of copper and gold 

nanoparticles. XPS analysis was carried out for the AuCu and AuCu3 samples and they 

concluded that there was no detection of impurities generated from the precursors. Boron, 

sodium and chloride were the main elements that were chosen to be checked, if present in the 

sample. ICP data confirmed that they were all absent. 

Glavee and group 
10 

studied the aqueous and non aqueous reduction of Cu
2+

 as well as Fe
3+

, 

Fe
2+

, Co
2+

 and Ni
2+

. The precursors CuCl2.2H2O (Cu 2+(aq)) and CuBr2 in Diglyme (Cu
2+

 

(diglyme)) were reacted with NaBH4. Glavee and group found that the light green Cu
2+

 

solution changed to a yellow brown solution upon first addition of NaBH4 and then went to a 

brown-black precipitate with gas evolution. The product was filtered and dried to form a 

powder. XRD analysis was performed on the powder and showed metallic copper with a 

crystallite size of 30 nm. Their work suggested that, because of the positive redox potential of 

copper, metallic copper was formed when reacted with NaBH4 instead of the borohydride. A 

scheme was derived for this reaction: 

2 Cu
2+

(aq) + 4 BH
4-

(aq) +12 H2O                  2 Cu(s) + 14 H2 + 4B(OH)3 

For the reaction with CuBr2 in diglyme, vigorous gas evolution was seen and a coppery film 

on the walls of the glass was observed. XRD analysis detected metallic copper with a 

crystallite size of 24 nm. The group also studied reactions with cobalt and nickel, and found 

that boride compounds were formed which could be due to the more negative redox 

potentials. In the diglyme case, a colourless complex was formed when reacted with NaBH4 
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but, upon thermal decomposition at 90 
o
C, a brown-black precipitate with gas evolution was 

generated. Glavee and group represented the reaction as: 

2 Cu
2+

 (diglyme) + 4BH4
-
  

Diglyme
    2 Cu(BH4)2(diglyme)n   

90 °C
 
 
   2 Cu(s) + 2H2 +2B2H6 

From the results in this thesis, after a sodium borohydride reduction, a brown-black colour 

change was observed and gas was evolved. However, from XPS and ICP analysis, no boron 

was detected in the catalysts. This appears to agree with a prior study carried out by Schaak 

and group
9
. For future work, the complete hydrolysis of the borohydride could be achieved 

rapidly by the addition of acid to the aqueous solution. 

                                                                                                                                                                                                                                                                                                                          

 3.11 Discussion 

Catalysts have been characterised by several techniques to try to determine their structure and 

the relationship between the preparation method and catalyst composition. Most catalysts for 

this study were made by incipient wetness impregnation, as it is a simple and reliable method 

for making supported catalysts. The only disadvantage to this technique is that the metal 

particles are not highly dispersed on the support, but are when made via deposition as 

observed from XRD. All catalysts were either calcined directly in air, reduced with either H2 

or NaBH4 or reduced and calcined by the Sinfelt procedure
1
 (315 

o
C in H2/Ar followed by 

calcination at 676 
o
C in air). All the catalysts had high surface areas and gold and copper 

loadings were close to expected values. 

Catalysts directly calcined in air were found to contain large ensembles of gold which were 

clearly shown in SEM images and on closer inspection, the ensembles were made up of 

smaller gold particles. The Au/SiO2, directly calcined, catalyst also comprised these large 

ensembles, which suggested that there was a weak metal interaction due to the preparation 

method. XRD analysis also supported this finding, since strong reflections due to gold 

crystallites were present. These intense reflections overlapped with copper crystallites, 
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making them harder to observe in the XRD pattern. TEM and SEM analysis uncovered well-

dispersed copper particles with large clusters that were gold rich. Gold metal and copper 

oxide were confirmed by XPS analysis for the copper only and Cu3Au/SiO2 catalyst, as a 

result of a distinctive satellite structure. Copper and gold interaction was weak and this was 

shown in the UV-vis spectrum, exhibiting no plasmon shift. 

The TPR spectra for a typical Cu/SiO2 catalyst prepared by impregnation with copper nitrate, 

followed by drying and direct calcination, revealed two copper species: bulk-like CuO and 

dispersed Cu
2+

 ions.
11

 The relative amounts of these species and the degree of interaction 

with the support was  influenced by factors, such as metal loading, solution pH and the nature 

of the silica used.
8,12,13

 Both of these forms of Cu(II) reduced directly to copper metal but 

there was no evidence of Cu(I) intermediates.
11

  

The TPR of our Cu/SiO2 catalyst was in general agreement with the literature,
11

 with peaks at 

276 °C and 362 °C for Cu
2+

 ions and CuO particles respectively. There was also a shoulder at 

237 °C which was tentatively assigned to small, easy-to-reduce CuO clusters.
13

 However, the 

TPR was changed when gold was present in the catalyst. The peaks were all due to copper 

reduction. TPR showed that an Au/SiO2 sample did not generate any peaks. XRD confirmed 

the presence of metallic gold in the samples after calcination. The major peak in the 

CuAu/SiO2 catalysts was a broad peak at 227 °C, and a very broad peak or succession of 

peaks from 400-650 °C. These high temperature peaks were reminiscent of Cu
+
 reduction in 

Cu/SiO2 catalysts
12

 and it might be that gold was able to stabilise this oxidation state.  

A TEM study of the oxidation of bulk and nanoparticulate CuAu alloys found that islands of 

Cu2O – rather than CuO – were produced
14,15 

after vacuum annealing and oxidation in 

gaseous oxygen. The large low-temperature peak might be related to Au promotion of copper 

(II) by hydrogen spillover in the large Au-rich bimetallic particles. The hydrogen 

consumption for this study was calculated and the CuAu/SiO2, CuAu3/SiO2 and Cu3Au/SiO2 
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catalyst had consumptions of 191, 738 and 638 µ mol/g respectively. One reason for the 

difference might be the introduction of chloride into the system via tetrachloroauric acid 

solution. That would decrease the pH of the impregnating solution and also potentially 

change the copper speciation. The TPR spectra were broadly similar to those observed for 

CuAu/TiO2 catalysts, prepared by co-impregnation with copper chloride and gold chloride.
16

 

The peaks in that study were at higher temperature which may suggest an effect of changing 

the support used for the catalyst. However, the TiO2-supported catalysts were reduced at 

400ºC and then re-oxidised at 350 ºC prior to analysis, which could be responsible for the 

differences observed.  

Reduction of the catalysts instead of calcination in air gave a different structure. The 

reduction step resulted in the formation of a CuAu alloy phase, which was present in the 

XRD analysis as a broad reflection, with the addition of some unalloyed gold reflections too. 

However, the broad reflection altered, depending on the Cu:Au ratio. The gold rich and 

CuAu/SiO2 catalysts had a broad reflection with no structure, suggesting a variety of 

structures. But the copper rich catalyst had maxima in the broad reflection, implying that 

alloy formation was favoured. The formation of bimetallic particles was also confirmed from 

UV-vis spectroscopy as a consequence of the plasmon band peak maximum moving away 

from the gold plasmon band, as the Cu:Au ratio changed. This characterisation technique 

compared the reduction method with other pre-treatment conditions and determined that the 

strongest copper-gold interaction was after reduction only. A high temperature calcination de-

alloyed the catalyst and showed no plasmon position change in the UV-vis spectrum. SEM 

analysis showed the formation of large clusters and well-dispersed smaller particles on the 

silica support. The EDX linescans revealed that the large clusters contained both copper and 

gold and that some of the particles had surface layers of pure copper, and their interior 

regions contained both copper and gold. Alloy formation was not 100% and there were some 



196 

 

monometallic particles observed by TEM. XPS spectra were also different when compared to 

the directly calcined samples, as their Cu (2p) spectra were much more intense, and it was 

concluded that the absence of the Cu
2+

 satellite peak proved the presence of Cu
+
 species as an 

outcome of the reduction procedure. The copper rich bimetallic catalyst had a significant 

enhancement in copper which could be due to highly mobile copper species on the support 

formed from the reduction step. 

High temperature calcination of reduced catalysts caused major structural changes too. XRD 

analysis showed that the copper gold alloy phase changed to monometallic gold reflections. 

TEM analysis showed different structures than the calcined and reduced catalysts with 

irregularly shaped copper particles of about 20-40 nm in size. The high temperature 

calcination de-alloyed the copper and gold, leading to gold and copper bimetallic particles. 

Unlike the SEM images for the directly calcined catalysts, there were no large gold 

ensembles present, although rounded gold particles are observed. The copper-gold interaction 

was weaker compared to the reduced samples. As with the reduced catalysts, the Sinfelt 

samples had no Cu
2+

 satellite which suggested the presence of Cu
+
 species. This has been 

observed in other studies
15,17 

as Au has been seen to stabilise the Cu2O in alloy nanoparticles, 

which have been prepared by oxidation of a CuAu alloy. EGA analysis was carried out to 

explore the processes which led to the different structures observed. In the direct calcination 

samples, copper nitrate decomposed to copper oxide at a lower temperature than that at which 

the chloride was removed from gold. However, the gold and copper oxide did not interact, 

and so the gold formed large ensembles instead of highly dispersed CuO particles, due to the 

weak interaction with the silica support. When the decomposition occurred under hydrogen, 

again the copper was decomposed first, with the loss of NO as the major product. However, 

this led to the formation of copper metal, which interacts strongly with gold as it formed to 

give an alloy. The copper-gold alloy phase is very stable and needed calcination at high 
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temperatures to decompose it to copper oxide and gold metal. TPO analysis of a CuAu inter-

metallic compound
1
 found that the oxidation of the copper present proceeded between 650 ºC 

and 800 ºC, forming Au metal and CuO. 

In situ XRD was studied for the AuCu/SiO2 Sinfelt catalyst to investigate the changes in the 

metal species during the reduction and high temperature calcination. During the reduction 

step, the main reflections of gold metal were observed throughout the experiment. It was 

interesting to see that gold metal was already present at lower temperatures (<200 
o
C), maybe 

by decomposition in the drying step. This could be the source of the unalloyed Au particles 

observed. Changes to the preparation to reduce the copper at lower temperatures could lead to 

greater degrees of alloying and so better catalysts. EGA showed that NO was produced at 100 

°C on reduction, with HCl from the decomposition of the gold precursor, observed above 200 

°C. By XRD, however, broad reflections were observed at higher 2 theta than the gold 

reflection, starting from 275 °C. These were assigned to the formation of copper-gold alloy 

species. The reduced catalyst therefore contained a mixture of gold and copper-gold species. 

The intensity of the broad XRD reflection increased as the temperature and reaction time 

increased. It is possible that changes in the temperature and times of the reduction could be 

used to modify the CuAu nanoparticles produced. On oxidation, the alloy reflections 

disappeared and the final material contained crystalline gold. A copper (II) oxide reflection 

was also observed at the end of the high temperature calcination. XPS showed the presence of 

Cu
+
 on the surface of the catalyst. This has been observed before in Cu-based oxidation 

catalysis,
18

 where a copper-ceria catalyst was found to contain Cu
+
 after contact with CO for 

thirty minutes. 

Other preparation methods were also investigated to try and determine their structure and find 

out if the method of making a catalyst changed its structure. A sequential method for making 

CuAu/SiO2 catalysts was created, where copper was deposited onto the support by high 
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dispersion, followed by gold deposited onto the support by deposition precipitation. XRD 

analysis was carried out on this sample and the fresh catalyst was amorphous, whereas the 

catalyst calcined in air had reflections for metallic gold. SEM images showed dispersed metal 

particles on the support. However, when the Au was deposited on the support by 

impregnation instead of deposition precipitation, larger ensembles of Au were apparent and 

more agglomeration of particles occurred. 

TEM analysis for the HDC Cu + Au DP catalyst revealed alloy formation, as well as clusters 

on the silica support. Some pure copper patches were found in the silica support. Moreover, 

the CuAu particle size distribution was bimodal because the majority of the particles were 

small, but some particles were several times larger. TEM analysis of the HDC Cu + Au 

impregnation catalyst showed some pure copper patches. Wormlike big CuAu particles were 

common in addition to small alloy particles. This characterization technique also illustrated 

that, when gold was deposited by deposition precipitation instead of impregnation, smaller 

particles were detected (9 nm). 

The XRD analysis for the Au/SiO2 sol immobilisation catalyst was amorphous and showed 

no gold reflections. SEM analysis showed regions of Au on the support but the structure was 

unclear. The AuCu/SiO2 catalyst, made by this method, displayed highly dispersed metal 

particles from the SEM images. 

Sodium borohydride was used as an alternative to hydrogen for the reduction process and 

CuAu/SiO2 catalysts was thermally treated with this reducing agent. UV-Visible 

spectroscopy showed that that there was a strong interaction between the gold and copper as 

the plasmon peak shifted, as the copper-gold ratio changed. The TEM analysis showed larger 

particles than those prepared by sequential HDC and either DP or impregnation methods. 

This technique also showed alloy formation but some particles illustrated Au concentration 

variation. Particle clusters could be seen occasionally on the surface of silica particles. From 
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the SEM images, large micron sized clusters were apparent, as well as some smaller 

dispersed particles. There was a difference observed in the XRD pattern for the catalysts 

reduced in NaBH4, rather than H2. Unlike the hydrogen reduced samples, no alloy species 

were detected and only metallic gold reflections were observed. 

3.12 Conclusions 

Monometallic and bimetallic copper and gold catalysts have been characterised by several 

techniques to determine their structure. This characterisation study has contributed to 

understanding relationships between the preparation method, reduction treatment or copper 

precursor and the nature of the supported catalyst. Analysis of the catalysts has shown the 

presence of a CuAu alloy phase as a result of a reduction step (315 
o
C for 2 h in H2/Ar). De-

alloying was observed when the catalyst was calcined at higher temperatures in air (676 
o
C 

for 15 h). Generally, catalysts that were directly calcined in air formed large ensembles on the 

support, whereas a reduction procedure still showed the presence of clusters; yet there were 

more highly dispersed particles on the support. 

Other preparation methods were also carried out, such as sequential procedures, which 

involved the deposition of copper onto the support by high dispersion, followed by gold 

deposited onto the support by either deposition precipitation or impregnation. Copper-gold 

alloy particles were present in these catalysts and the preparation method of the gold seemed 

to suggest an effect on the structure of the catalyst. When the gold was deposited by 

deposition precipitation, smaller metal particles were observed than when impregnation was 

chosen. 
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Chapter 4: Propene Oxidation 

4.1 Introduction 

Propene epoxidation is one of the most sought after goals in industrial chemistry. This 

reaction produces propene oxide, generating 7 million tons per year worldwide and is used in 

the production of polyethers and glycols. There are two current industrial processes already 

used: 

1. Chlorohydrin process 
1
 

2. Hydroperoxide process 
1
 

The disadvantages of these reactions are that they are not environmentally favourable, as their 

by-products are harmful. Therefore, it would be highly desirable to find a catalyst that could 

produce propene oxide, using direct epoxidation with oxygen that forms environmentally 

friendly by-products. Silver catalysts have previously been used for epoxidation reactions.
1-3 

However, Haruta et al 
4
 discovered that Au could be active for propene epoxidation. Lambert 

and co workers have also shown that copper can be an effective catalyst for this reaction.
5
 

Since gold is expensive, it would be beneficial to study its activity when alloyed with copper, 

as a possible catalyst, to achieve selective oxidation of propene.  

 

4.2. Limitations of experiments and precision of data 

 

Duplicate experiments were not performed in this study, due to time constraints. Therefore, 

the accuracy of the data collected in the absence and presence of hydrogen did have 

limitations. Future tests on the catalysts, using different feed ratios and compositions would 

be beneficial to get a better understanding of the results. Ideally, carbon balances should have 

been taken after every catalytic data set but, due to the time constraints carbon balances were 

only taken at certain times throughout reactor use. 
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 Although repeat experiments were not carried out, the analysis each temperature point, 

during the propene tests, was carried out three times to give an average reading. The error for 

most of the catalysts was in the range ± 1-6% and therefore the results obtained are 

reasonably consistent and unless otherwise stated, the product distribution and conversions 

observed can be taken as fairly reliable for a single experiment. Although it must be noted, 

that repeat tests would have given more precise results and single experiments mean it is 

difficult to be certain how reproducible the results are. 

 

4.3 Reaction products 

There are several reaction products that can be formed from reactions using propene as a 

starting point (Figure 4.2); the main route of interest is epoxidation to produce propene oxide, 

which is one of the most challenging chemical reactions. The reason it is a difficult reaction 

is because of the allylic H atoms, which are easily removed, favouring combustion rather than 

selective oxidation. Propene oxide (CH3-CHCH2-O) was made as a result of activation of the 

carbon-carbon bond. Acrolein (CH2=CH-CHO) was formed by the cleavage of the C-H bond. 

Complete combustion formed CO2 and H2O and a hydrogenation reaction formed propane 

(CH3-CH2-CH3). Ethanal (CH3-CHO) was a product produced by certain catalysts in this 

study and was produced from a C-C bond and from other possible side reactions. 
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Figure 4.1  Reaction scheme of possible products from the oxidation of propene.  

[H] represents hydrogenation reactions with H2-O2 

 

4.4 Results 

4.4.1 Effect of different catalyst preparation methods on propene oxidation 

In this section, monometallic Cu/SiO2 and Au/SiO2 catalysts have been made mainly by 

impregnation but also by other routes such as precipitation and high dispersion. Their activity 

for propene oxidation was studied to determine if the catalytic activity was dependent on the 

preparation method. Sequential methods to form CuAu/SiO2 catalysts involving high 

dispersion and either deposition precipitation (DP) or incipient wetness impregnation (IW) 

were also tested for propene oxidation. Sol immobilisation was also employed to form a 

CuAu/SiO2 catalyst, and its activity is discussed in this section.  

 

 

 



205 

 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

200 220 240 260 280 300 320

0

20

40

60

80

100

Temperature (
o
C)

S
e

le
c
ti
v
it
y
 (

%
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 
C

o
n

v
e

rs
io

n
 (%

)

 

Figure 4.2 Copper nitrate /SiO2 by impregnation and directly calcined (C97802D).  

Propene oxidation with H2:  ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  

 ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease  

____ Ethanal Tincrease  ----- Ethanal Tdecrease ____ Conversion T increase   

---- Conversion T decrease 
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Figure 4.3 Copper nitrate /SiO2 by impregnation directly calcined (C97802D). Propene 

oxidation without H2 ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- 

CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease 

 ____ Ethanal Tincrease ----- Ethanal Tdecrease ____ Conversion T increase   

---- Conversion T decrease 

 

Impregnation was the standard preparation technique used for most of the propene oxidation 

experiments in this investigation. However, other features such as high dispersion catalysts 

and methods like deposition precipitation were carried out. Cu/SiO2 catalysts made by 

impregnation, using copper nitrate and calcined in air at 400 
o
C for 2 h, were tested with 

(Figure 4.2) and without H2 addition (Figure 4.3). Upon addition of hydrogen in the reactor 

feed the conversion was higher (0.32% ± 2% (0.3 – 0.34)) at 320 
o
C. However, due to the 

different feed ratios used for the presence of hydrogen experiments, there are limitations 

when comparing the results with and without hydrogen in the reactor feed throughout this 

study, as the feed ratios were not the same. It would be beneficial if experiments were done in 

the absence of hydrogen with the same feed ratios to identify if there was a real effect of 
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hydrogen on the catalysts performance. However, I am reasonable confident with the 

experiments carried out in the absence of hydrogen even with the low conversions i.e. 0.04% 

as there was little difference between the data collected for the 3 runs at each temperature. As 

the temperature of the experiment increased so did the conversion which was expected. The 

catalyst was selective to both acrolein and ethanal at higher temperatures in the presence of 

hydrogen. Propene oxide was also observed as the temperature increased between 240 and 

280 
o
C, reaching about 40% selectivity at 260 

o
C. Without H2, acrolein is only detected at 

320 
o
C and the main products were CO2, as the temperature increased and propene oxide, as 

the temperature decreased during the hysteresis. At each temperature three runs were taken 

and the error between these was low (±2%). 
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Figure 4.4 Cu/SiO2 with copper chloride by impregnation with H2 (C97802B)  

       ____Acrolein T increase ___CO2 T increase  ___ Propene oxide T increase  T decrease ____ 

Ethanal Tincrease  ____ Conversion T increase 

  

A comparative Cu/SiO2 catalyst was also studied which used copper chloride for the 

impregnation. (Figure 4.4) The reaction was carried out with H2 and showed a conversion of 

0.9% ± 1.4% which was higher than with a copper nitrate precursor, although no hysteresis 

experiment was done. At lower temperatures ethanal and propene oxide were formed, whilst 

at higher temperatures acrolein was also detected. For the copper nitrate catalyst, as the 
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temperature was increased acrolein was only detected at 300 
o
C (80%). As the temperature 

decreased during the hysteresis experiment propene oxide became the major product between 

240 -280 
o
C (> 70%). Therefore, the choice of copper precursor used to make the catalyst 

could play a role in determining the product selectivity and conversion of propene. 
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Figure 4.5 Copper nitrate /SiO2 by Sinfelt treatment (C978/101E) Propene oxidation with H2 

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  

----- Ethanal Tdecrease ____ Conversion T increase  ---- Conversion T decrease 
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Figure 4.6 Copper nitrate /SiO2 by Sinfelt treatment (C978/101E) Propene oxidation without 

H2 ___Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ____ 

Conversion T increase  ---- Conversion T decrease 

 

 

If a Cu/SiO2 catalyst underwent a Sinfelt treatment (rather than direct calcination), which 

involved reduction in 5% H2/Ar at 315 
o
C followed by a high temperature calcination of 676 

o
C for 15 h, the conversion and product distribution were different. Without H2 (Figure 4.6) 

in the reactor, the conversion was lower than in the presence of H2, which was seen with the 

other Cu/SiO2 catalysts and CO2 was virtually the only product observed across the 

temperature range. But, when H2 was added (Figure 4.6), the catalyst became very active to 

propene oxidation (2% ± 1.8% conversion) and showed high selectivity towards acrolein. At 

260 
o
C both ethanal and acrolein were observed, with selectivities of 8% ± 2.5% and 43% ± 

2.5% respectively.  This catalyst showed little hysteresis with temperature. When the same 

catalyst was tested without H2 (Figure 4.6), selectivity was 100% towards CO2 and was 

inactive with a conversion of 0.003% ± 3%.  

The Sinfelt treatment does appear to have an effect on the catalyst’s performance and this is 

similar to what was observed for the bimetallic Cu3Au/SiO2 catalysts, which are discussed 
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later in this chapter. For the directly calcined Cu3Au/SiO2 samples, with and without H2, 

acrolein and propene oxide are both detected. However, when a Sinfelt treatment is used only 

acrolein is the major product with little hysteresis. 
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Figure 4.7 Copper nitrate /SiO2 made by precipitation with (C97828). Propene oxidation with 

H2 

____ Acrolein T increase ___CO2 T increase  ___ Propene oxide T increase  T decrease  

____ Ethanal Tincrease  ____ Conversion T increase   

 

Precipitation was another preparation method used to form a Cu/SiO2 catalyst, and this 

technique involved the use of copper nitrate and NaOH. For the precipitation catalyst, only 

propene oxidation with H2 was tested for this method and no hysteresis data was collected. A 

propene conversion of 0.45% ± 1.5% observed (Figure 4.7) for this sample and at lower 

temperatures ethanal formation was favoured, whereas at higher temperatures acrolein and 

CO2 were the major products.  
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Figure 4.8 Cu/SiO2 high dispersion route (CF128). Propene oxidation with H2 

____ Acrolein T increase ___CO2 T increase  ___ Propene oxide Tincrease  
 ____ Ethanal Tincrease  ____ Conversion T increase   

 

When the Cu/SiO2 catalyst had high dispersion (CF128) the product selectivity was altered 

(Figure 4.8). The catalyst was formed by using ammonium carbonate, copper 

hydroxycarbonate and water. The mixture was distilled and heated to obtain the catalyst. In 

the presence of hydrogen, the catalyst prepared this way gave a good activity with a 

conversion of 0.5% ± 3% at 350 
o
C and a selectivity towards acrolein (~65%) and ethanal 

(~20%). Propene oxide was detected with a selectivity of 40% at a temperature of 250 
o
C. 

There was a significant change in propene conversion and selectivity to different products 

associated with the type of preparation method employed. The most active Cu/SiO2 catalyst 

was made by impregnation followed by a Sinfelt treatment obtaining a 2% propene 

conversion although there was no propene oxide formation and selectivity to acrolein and 

ethanol was ~30% and ~7% respectively. Hydrogen addition into the reactor feed was crucial 

to obtain an active catalyst. Other methods like precipitation and high dispersion route were 

not as simple to carry out but they did give catalysts with a moderate selectivity. 
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Figure 4.9 Au/SiO2 by impregnation and direct calcination (C97809). Propene oxidation with 

H2 

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  

----- Ethanal Tdecrease ____ Conversion T increase  ---- Conversion T decrease 
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Figure 4.10 Au/SiO2 by impregnation and direct calcination (C97809). Propene oxidation 

without H2 addition. ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- 

CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease  

____ Ethanal Tincrease  ----- Ethanal Tdecrease ____ Conversion T increase   

---- Conversion T decrease 

 

Monometallic Au/SiO2 catalysts have been made mainly by impregnation as it was a simple 

technique, but other methods like deposition precipitation have also been utilized. An 

Au/SiO2 catalyst, prepared by impregnation and followed by direct calcination in air at 400 

o
C for 2h, has been tested for propene oxidation (Figure 4.9 and 4.10). In the presence of H2, 

a propene conversion of ~0.17% ± 3% (0.164 – 0.175) at 320 
o
C could be achieved. At this 

temperature, the catalyst was selective towards ethanal (~27%) and acrolein (50%). No 

propene oxide was formed and acrolein formation was quite stable, as the temperature 

increased. When there was no addition of hydrogen, the propene conversion was greatly 

diminished to ~ 0.024% ± 2% at 320 
o
C. However, propene oxide was detected at 260 

o
C at a 
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selectivity of 52% with a conversion of 0.019% ± 21%. As the error is larger for this result 

this experiment should be repeated for this catalyst at 260 
o
C.  
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Figure 4.11 Au/SiO2 by Deposition precipitation (C97836). Propene oxidation with H2 

addition.  

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  

----- Ethanal Tdecrease ____ Conversion T increase  ---- Conversion T decrease 

 

If the preparation route was changed from impregnation to deposition precipitation (Figure 

4.11) and an experiment run for propene oxidation in the presence of H2, the propene 

conversion did not appear to alter much. However, propene oxide was formed at 260 
o
C with 

a selectivity of 60%. At 320 
o
C propene oxide had a selectivity of 57% but this result could 

be an anomaly due to a large error ( ± 17%) between the three readings at this temperature. 

Therefore, the presence of propene oxide at 320
o
C may not be accurate and this experiment 

should be repeated. Acrolein formation was stable around 65% between 260 
o
C and 320 

o
C. 

No ethanal was formed using this catalyst. 
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Figure 4.12 Au/SiO2 Sinfelt (C978/101D). Propene oxidation with H2   

___CO2 T increase  ---- CO2 T decrease   

____ Conversion T increase  ---- Conversion T decrease 

 

 

Unlike the Cu/SiO2 catalyst, which was prepared by impregnation, followed by the Sinfelt 

treatment, there was little activity when this technique was applied to the Au/SiO2 

monometallic sample (Figure 4.12), and carbon dioxide was the only product formed. 

 Preparation techniques that incorporated two different methods were attempted to determine 

whether this route could lead to an active AuCu/SiO2 catalyst for propene oxidation. These 

combined methods involved copper deposited onto the SiO2 support by a high dispersion 

route (HDC) (which involved using copper hydroxycarbonate and ammonium carbonate and 

heating to 90-95
o
C for 3hours), as this method previously showed good propene conversion 

in the oxidation reactions. Followed by a choice of gold being deposited by either 

impregnation or deposition precipitation. 
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Figure 4.13 CuAu/SiO2 HDC Cu + Au DP fresh catalyst (C978/87). Propene oxidation with 

H2 addition. ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  

 ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease  

____ Ethanal Tincrease  ----- Ethanal Tdecrease ____ Conversion T increase  

 ---- Conversion T decrease  -------    Acetone T decrease   ____Acetone T increase 

 

The fresh CuAu/SiO2 catalyst made by high dispersion (HDC) for Cu and deposition 

precipitation (DP) for Au was tested for propene oxidation in the presence of H2 (Figure 

4.13). No direct calcination or reduction was applied to this catalyst. A propene conversion of 

1% ± 2% was observed at 320 
o
C with acrolein (80%) and a small amount of ethanal (6%) 

being detected at this temperature. Propene oxide was formed only at 300 
o
C with a 

selectivity of ~10%. Unlike any of the other propene oxidation experiments, acetone was 

another product observed in this reaction. The appearance of this product at 260 
o
C can be 

justified since the error was only ±3%. 
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Figure 4.14 CuAu/SiO2 HDC Cu + Au DP followed by a Sinfelt treatment . Propene 

oxidation with addition of H2 ____  Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___Ethanal T increase   ---- Ethanal T decrease 

___ Propene oxide T increase  ---- Propene Oxide T decrease  ____ Acetone T increase 

 -----  Acetone T decrease ____Conversion T increase  ---- Conversion T decrease 

 

When the CuAu/SiO2 catalyst was treated by the Sinfelt method (Figure 4.14) its propene 

conversion went up dramatically to over 6% ± 1% which would be considered an active 

catalyst for this reaction. The hysteresis experiment showed that the catalyst was stable as the 

temperature increased and decreased, with the acrolein selectivity remaining between 80 to 

90% between 220 
o
C and 320 

o
C. At higher temperatures, the catalyst was only selective 

towards acrolein but at temperatures lower than 220 
o
C it was selective towards propene 

oxide (14% ± 3%) and ethanal (45% ± 2%) which seemed to be a true result from the small 

error. 

If this catalyst was directly calcined in air (Figure 4.15) rather than the Sinfelt treatment, the 

activity of the catalyst did not improved, compared to the freshly untreated catalyst. A 

propene conversion of 0.8% ± 2% was achieved. At higher temperatures, the catalyst was 
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selective to acrolein (80%) and propene oxide was detected at 300 
o
C with a selectivity of 

about 10%. 
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Figure 4.15 CuAu/SiO2 HDC Cu + Au Dp calcined. Propene oxidation with H2 addition. 

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  

___Ethanal T increase   ---- Ethanal T decrease  ___ Propene oxide T increase    ---- Propene 

Oxide T decrease ___Conversion T increase ---- Conversion T decrease 
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Figure 4.16 HDC Cu + Au Dp calcined. Propene oxidation without  H2 addition. 

____Acrolein T increase ---- Acrolein Tdecrease___CO2 T increase  ---- CO2 T decrease  

___Ethanal T increase   ---- Ethanal T decrease 

___ Propene oxide T increase  ---- Propene Oxide T decrease 

____ Acetone T increase ----- Acetone T decrease  ____Conversion T increase  

          ---- Conversion T decrease 

  

 

Direct calcination of the HDC Cu and Au DP catalyst for propene oxidation without H2 

(Figure 4.16) was carried out to compare the catalyst activity in the absence of hydrogen. The 

propene conversion only reached half the value (0.4% ± 3%) at 320 
o
C that was produced in 

the presence of hydrogen. Propene oxide was between 260 
o
C and 280 

o
C with a selectivity of  

nearly 20% but the acrolein selectivity at higher temperatures was not as stable as when 

hydrogen was present. 
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Figure 4.17 CuAu/SiO2 by HDC Cu + Au Dp reduced in H2. Propene oxidation with H2  

addition. ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___Ethanal T increase   ---- Ethanal T decrease 

___ Propene oxide T increase  ---- Propene Oxide T decrease 

____ Acetone T increase ----- Acetone T decrease  ____Conversion T increase  

 ---- Conversion T decrease 

 

 

An alternative treatment of the CuAu/SiO2 HDC and DP catalyst, being directly calcined or 

undergoing the Sinfelt treatment, is a direct reduction in H2 at 400 
o
C for 2h. The CuAu/SiO2 

catalyst was reduced in this way and tested for propene oxidation with the addition of H2 

(Figure 4.17). A propene conversion of about 2.3% ± 1% was achieved at 320 
o
C and this 

catalyst was selective towards mostly acrolein at higher temperatures. At 220 
o
C, propene 

oxide was formed with a selectivity of 58% and acetone was observed at 280 
o
C (35%). 

Acetone was observed after each injection into the GC at 280 
o
C with this catalyst, and had 

an error of ± 2%. Therefore it can be taken as a reliable product at this temperature. 
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A CuAu/SiO2 catalyst was prepared by the combined method, using high dispersion to 

deposit the copper. But, instead of deposition precipitation to deposit the gold onto the 

support, incipient wetness impregnation was employed. The catalyst was directly reduced in 

H2 at 400 
o
C for 2h. The activity of this catalyst for propene oxidation was investigated 

(Figure 4.18) in the presence of H2. Compared to when the gold was loaded onto the support 

by a DP method, using impregnation resulted in a lower propene conversion of 0.11% ± 3% 

at 320 
o
C. Acrolein (80% at 320 

o
C) and CO2 are the only products that this catalyst was 

selective towards. 
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Figure 4.18 CuAu/SiO2 HDC Cu + Au IW (C978/90) reduced in H2. Propene oxidation with 

H2 addition. ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ____Conversion T increase  

 ---- Conversion T decrease 
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If the CuAu/SiO2 catalyst, made via HDC and incipient wetness impregnation, underwent a 

Sinfelt treatment (Figure 4.19) instead of a direct reduction in H2, the propene conversion was 

increased to 0.27% ± 3% at 320 
o
C. Acrolein was still the major product formed at higher 

temperatures, but other products, were present; such as propene oxide, which was produced at 

280 
o
C (~32%) and ethanal at 300 

o
C (~20%). 
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Figure 4.19 CuAu/SiO2 HDC Cu + Au IW (C978/90)  Sinfelt treatment. Propene oxidation 

with H2 addition. ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___Ethanal T increase   ---- Ethanal T decrease 

___ Propene oxide T increase  ---- Propene Oxide T decrease 

____Conversion T increase  ---- Conversion T decrease 
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Figure 4.20 AuCu/SiO2 by sol immobilisation fresh catalyst (C978/103) Propene oxidation 

with H2 addition. ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___Ethanal T increase   ---- Ethanal T decrease 

___ Propene oxide T increase  ---- Propene Oxide T decrease 

____ Acetone T increase ----- Acetone T decrease  ____Conversion T increase  ---- Conversion 

T decrease 

 

 

A new preparation method chosen was a sol immobilisation technique, which had been 

reported by other groups to form small metal particles in a narrow size-range.
6
 A AuCu/SiO2 

catalyst was made by this route and analysed for propene oxidation in the presence of H2. 

When the fresh catalyst was tested (Figure 4.20), a propene conversion of 0.27% ± 3% was 

reached at 320 
o
C. Acrolein (79%), ethanal (10%) and CO2 (11%) were the only products 

observed at this temperature. Propene oxide was quite selective at lower temperatures 

between 260 
o
C and 280 

o
C (70-80%). 
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Figure 4.21 AuCu/SiO2 by sol immobilisation (C978/103) calcined. Propene oxidation with 

H2 addition. ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___Ethanal T increase   ---- Ethanal T decrease 

___ Propene oxide T increase  ---- Propene Oxide T decrease 

____ Acetone T increase ----- Acetone T decrease  ____Conversion T increase  

 ---- Conversion T decrease 

 

The fresh CuAu/SiO2 catalyst made by sol immobilisation method was directly calcined in air 

at 400 
o
C for 3h and then investigated for propene oxidation in the presence of H2 (Figure 

4.21). The direct calcination improved the propene conversion from 0.27% ± 3% to 2.5% ± 

1% at 320 
o
C. At higher temperatures, the catalyst was very selective towards acrolein (80-

90%) and was stable during the hysteresis experiment. Acetone was detected at 220 
o
C (29%) 

and propene oxide was formed between 220 
o
C and 260 

o
C (30% decreasing to 18%) and 

their presence could be justified as they had an error of ±2% and ± 2.7% respectively. 
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4.4.2 Effect of different copper precursors 

 

In this section, copper chloride or copper nitrate has been used as the copper precursor to 

make CuAu, CuAu3 and Cu3Au, bimetallic catalysts supported on silica. Propene oxidation 

was investigated for all these catalysts in the presence and in the absence of hydrogen in the 

reactor feed. The type of copper precursor used as well as the preparation method was 

studied. 
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(a) 

 

Figure 4.22 (a) CuAu/SiO2 copper chloride direct calcination (C978/63A) Propene oxidation 

with H2   ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease   ____Conversion T increase  ---- Conversion T decrease 

 

 

 

 



226 

 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

200 220 240 260 280 300 320

0

20

40

60

80

100

Temperature (
o
C)

S
e

le
c
ti
v
it
y
 (

%
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 
C

o
n

v
e

rs
io

n
 (%

)

 
                                                   (b) 

Figure 4.22 (b) CuAu/SiO2 copper chloride direct calcination (C978/63A) Propene oxidation  

without H2  .  ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease   ____Conversion T increase  ---- Conversion T decrease 

 

The most obvious difference between the CuAu/SiO2 catalyst, using copper chloride and 

directly calcined (Figure 4.22 (a) and 4.22 (b)) for propene oxidation with and without H2, 

was that the conversion was greatly improved with the addition of H2 (0.15% ± 3% at 320 

o
C). The only products formed in the presence of hydrogen were acrolein and CO2. The 

selectivity towards acrolein remained quite stable as the temperature increased during the 

hysteresis (80%). In the absence of hydrogen, propene oxide was the major product but 

acrolein was still present.  

 



227 

 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

200 220 240 260 280 300 320

0

20

40

60

80

100

Temperature (
o
C)

S
e

le
c
ti
v
it
y
 (

%
)

0.00

0.05

0.10

0.15

0.20

0.25

 
C

o
n
v
e

rs
io

n
 (%

)

 
(a) 

 

Figure 4.23 (a) CuAu3/SiO2 copper chloride direct calcination (C978/63B) Propene 

oxidation with H2  ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease  ____ Conversion T increase  ---- Conversion T decrease 
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Figure 4.23 (b) CuAu3/SiO2 copper chloride direct calcination (C978/63B) Propene 

oxidation without H2 addition  ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease  ____ Conversion T increase  ---- Conversion T decrease 

 

Propene oxidation for the Au rich bimetallic catalyst (CuAu3/SiO2) with a copper chloride 

and a direct calcination (Figure 4.23 (a) and 4.23 (b)) was carried out. Again, like the 

CuAu/SiO2 catalyst prepared the same way, acrolein and carbon dioxide were the only 

products in the presence of hydrogen. A propene conversion of 0.22% ± 3% was reached at 

300 
o
C with an acrolein selectivity of 80%.  The propene oxidation experiment without H2 

showed that propene oxide and acrolein were detected at higher temperatures. At 280 
o
C, 

propene oxide had a selectivity of 80% but at 300 
o
C that selectivity fell to 46% as acrolein is 

detected at 40%. 
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(a) 

 

Figure 4.24 (a) Cu3Au/SiO2 copper chloride direct calcination (C978/63C).Propene 

oxidation with H2 addition   ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease  ____ Conversion T increase  ---- Conversion T decrease 
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(b) 

 Figure 4.24 (b) Cu3Au/SiO2 copper chloride direct calcination (C978/63C).Propene 

oxidation without H2 addition    ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease  ____ Conversion T increase  ---- Conversion T decrease 

  

   

The Cu rich bimetallic catalyst Cu3Au/SiO2 had a different product selectivity than the CuAu 

and CuAu3 catalysts (Figure 4.24 (a) and 4.24 (b)). In the presence of H2, propene oxide was 

formed with a selectivity of nearly 50% at 240 
o
C. Acrolein was more selective at higher 

temperatures and reached 77% at 300 
o
C with a conversion of 0.21% ± 3%. Propene 

oxidation without hydrogen had a much lower propene conversion of 0.026% at 300 
o
C and 

was only selective towards acrolein and CO2. 
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(a) 

 

Figure 4.25 (a) CuAu/SiO2 copper nitrate direct calcination (C97819A) Propene oxidation 

with H2    ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease  ____ Conversion T increase  ---- Conversion T decrease 
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 Figure 4.25 (b) CuAu/SiO2 copper nitrate direct calcination (C97819A) Propene oxidation 

without H2   ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease  ____ Conversion T increase  ---- Conversion T decrease 

                                                               

The copper precursor was changed from copper chloride to copper nitrate and the material 

prepared the same way as the other catalysts, by direct calcination (Figure 4.25 (a) and 4.25 

(b)). Propene oxidation for the CuAu/SiO2 catalyst in the presence of H2 showed a propene 

conversion of 0.14% ± 3% at 300 
o
C. Both propene oxide and acrolein were observed at 

higher temperatures between 280 
o
C and 300 

o
C. In the absence of H2, propene oxide and 

acrolein were still seen but propene oxide was more selective at lower temperatures between 

260 
o
C and 300 

o
C (78%).  
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Figure 4.26 (a) CuAu3/SiO2 copper nitrate direct calcination (C97819B) Propene oxidation 

with H2  ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease  ____ Conversion T increase  ---- Conversion T decrease 
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(b) 

 

Figure 4.26 (b) CuAu3/SiO2 copper nitrate direct calcination (C97819B) Propene oxidation 

without H2  ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease  ____ Conversion T increase  ---- Conversion T decrease 

 

Propene oxidation for directly calcined CuAu3/SiO2, using copper nitrate, was tested (Figure 

4.26 (a) and 4.26(b)) and, in the presence of hydrogen, a propene conversion of 0.13% ± 

3.5% was achieved at 300 
o
C. At this temperature, acrolein and propene oxide were formed 

with selectivities at 52% and 30% respectively. Without H2, the conversion was much lower 

but still both propene oxide and acrolein were detected at 300 
o
C. Propene oxide was formed 

at 260 
o
C with a selectivity of 79% and this result appeared reliable as it was observed after 

each GC at 260 
o
C with an error of ±2%.  
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(a) 

 

Figure 4.27 (a) Cu3Au/SiO2 copper nitrate direct calcination (C97819C). Propene oxidation 

with H2  ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease  ____ Conversion T increase  ---- Conversion T decrease 
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Figure 4.27 (b) Cu3Au/SiO2 copper nitrate direct calcination (C97819C). Propene oxidation 

without H2  ____Acrolein T increase ---- Acrolein Tdecrease 

___CO2 T increase  ---- CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T 

decrease  ____ Conversion T increase  ---- Conversion T decrease 

 

 

The Cu rich Cu3Au/SiO2 catalyst had the highest propene conversion of 0.4% ± 1% at 300 
o
C 

in the presence of H2 (Figure 4.27 (a)). This catalyst had a stable acrolein selectivity during 

the hysteresis and, as the temperature decreased, the acrolein selectivity increased to 90% at 

220 
o
C. Acrolein was the major product but propene oxide was formed at 300 

o
C (10%). In 

the absence of hydrogen in the reactor feed, as with all the catalysts the conversion was much 

lower. Both propene oxide and acrolein were detected with propene oxide having a higher 

selectivity at lower temperatures and an error of ± 3%. 
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Figure 4.28 (a) CuAu/SiO2 copper chloride Sinfelt (C978/65A) Propene oxidation with (a) 

and with H2  ____Acrolein T increase ---- Acrolein Tdecrease ___CO2 T increase  ---- CO2 T 

decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease  ____ Conversion T increase  

---- Conversion T decrease 
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(b) 

 

Figure 4.28 (b) CuAu/SiO2 copper chloride Sinfelt (C978/65A) Propene oxidation with (a) 

and without H2  ____Acrolein T increase ---- Acrolein Tdecrease ___CO2 T increase  ---- CO2 

T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease  ____ Conversion T 

increase  ---- Conversion T decrease 

     

The Sinfelt treatment (reduction at 315 
o
C for 2h in H2/Ar followed by high temperature 

calcinations at 676 
o
C for 5h in air) was applied to the different molar ratios of CuAu/SiO2 

catalysts using copper chloride precursors. For the CuAu/SiO2 sample, in the presence of 

hydrogen (Figure 4.29) and without H2, only acrolein and carbon dioxide were produced. A 

propene conversion of nearly 0.15% ± 3% was observed with addition of hydrogen at 300 
o
C 

and a selectivity towards acrolein of 60%.  The catalyst without H2 in the reactor feed was 

stable and maintained an acrolein selectivity of 80%.                                           
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(a) 

 

Figure 4.29 (a) CuAu3/SiO2 copper chloride Sinfelt (C978/65B). Propene oxidation with H2  

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease  ____ Conversion T increase  

 ---- Conversion T decrease 
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(b) 

 

Figure 4.29 (b) CuAu3/SiO2 copper chloride Sinfelt (C978/65B). Propene oxidation without 

H2  

____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease  ____ Conversion T increase  

 ---- Conversion T decrease 

 

The CuAu3/SiO2 catalyst prepared with a copper chloride precursor, followed by the Sinfelt 

treatment, showed a propene conversion of 0.28% ± 3% at 300 
o
C and an acrolein selectivity 

of 85%. This catalyst appeared stable during the hysteresis experiment. In the absence of H2, 

acrolein and carbon dioxide were still the only products formed but the catalyst had a low 

stability. The propene conversion was much lower at 0.23% ± 3% at 300 
o
C.  
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Figure 4.30 (a) Cu3Au/SiO2 copper chloride Sinfelt (C978/65C). Propene oxidation with H2  

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease  ____ Conversion T increase 

---- Conversion T decrease 
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(b) 

 

Figure 4.30 (b) Cu3Au/SiO2 copper chloride Sinfelt (C978/65C). Propene oxidation without 

H2  

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease  ____ Conversion T increase 

---- Conversion T decrease 

 

A similar trend was observed for the Cu rich Cu3Au/SiO2 catalyst made with a copper 

chloride precursor and the Sinfelt treatment (Figure 4.30 (a) and 4.30 (b)). With or without 

the presence of hydrogen in the reactor feed, the only products formed were acrolein and 

CO2. A propene conversion of 0.15% ± 3% was obtained by the catalyst in the presence of H2 

at 300 
o
C.  
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Figure 4.31 (a) CuAu/SiO2 copper nitrate Sinfelt (C978/101A) Propene oxidation with H2  

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease  

 ____ Conversion T increase ---- Conversion T decrease 
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(b) 

 

Figure 4.31 (b) CuAu/SiO2 copper nitrate Sinfelt (C978/101A) Propene oxidation without H2 

. ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease  

 ____ Conversion T increase ---- Conversion T decrease 

 

CuAu/SiO2 catalysts were prepared with copper nitrate, followed by the Sinfelt treatment 

(Figure 4.31 (a) and 4.31 (b)). Unlike the copper chloride catalysts prepared by this method, 

propene oxide was formed by this catalyst at 260 
o
C without the presence of H2. A propene 

conversion of 0.2% ± 2 % at 300 
o
C was achieved with the addition of hydrogen. Only 

acrolein and CO2 were produced in the presence of H2.  
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(a) 

Figure 4.32 (a) CuAu3/SiO2 copper nitrate Sinfelt (C978/101B). Propene oxidation with H2 

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease  ____ Conversion T increase 

---- Conversion T decrease 
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(b) 

Figure 4.32 (b) CuAu3/SiO2 copper nitrate Sinfelt (C978/101B). Propene oxidation without 

H2  

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease  ____ Conversion T increase 

---- Conversion T decrease 

 

As with the CuAu/SiO2 catalyst, the CuAu3/SiO2 sample, made with a copper nitrate 

precursor and Sinfelt treatment, formed propene oxide between 260 and 300 
o
C in the 

absence of H2. Propene oxide was more selective at lower temperatures, whereas acrolein 

formation is favoured at higher temperatures. In the presence of H2, the catalyst was quite 

stable with acrolein retaining its selectivity as the temperature decreased. 
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(a) 

Figure 4.33 (a) Cu3Au/SiO2 copper nitrate Sinfelt (C978/101C). Propene oxidation with H2  

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease   

____ Conversion T increase ---- Conversion T decrease 
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(b) 

Figure 4.33 (b) Cu3Au/SiO2 copper nitrate Sinfelt (C978/101C). Propene oxidation without 

H2  ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  

___ Propene oxide T increase  ---- Propene Oxide T decrease   

____ Conversion T increase ---- Conversion T decrease 

 

 

The copper rich Cu3Au/SiO2 catalyst prepared with a copper nitrate precursor and Sinfelt 

treatment (Figure 4.33 (a)) reached a propene conversion of 0.094% ± 2% in the presence of 

H2 at 300 
o
C. As the temperature increased from 220 

o
C to 300 

o
C, the selectivity towards 

acrolein was around 70%. Without the addition of H2, acrolein was more selective at lower 

temperatures (70% at 260 
o
C), whereas propene oxide is detected at temperatures above 260 

o
C. 
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4.4.3 Stability of the catalysts 

   CuAu               CuAu3              Cu3Au 

 

 

 

 

 

 

 

 

 

Figure 4.34 Prepared using copper chloride with direct calcination (C97863). Propene 

oxidation with H2 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35 Prepared using copper chloride with direct calcination (C97863). Propene 

oxidation without H2 
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Figure 4.36 Prepared using copper chloride with Sinfelt treatment (C97865). Propene 

oxidation with H2. 
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Figure 4.37 Prepared using copper chloride with Sinfelt treatment (C97865). Propene 

oxidation without H2. 

 

The conversion graphs above are examples of the general trend for all conversions for the 

catalysts studied in this section. The catalysts either have a copper nitrate or chloride 

precursor and are directly calcined or have a Sinfelt treatment. The most obvious difference is 

that in the presence of H2 the conversions are much higher than without hydrogen. This 

suggests that the catalysts used with H2 are more stable during the reaction. Another 

observation is that the equi molar ratios are less stable since their conversion fluctuate a 

Temperature 
o
C 

Temperature 
o
C 
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significant amount during the temperature increase and decrease. Whereas, catalysts that have 

conversions that gradually increase and decrease during their hysteresis can be considered 

more stable as they hold their activity better. The more copper rich the sample, the more 

durable the catalyst. The most stable catalyst appears to be the Sinfelt treated sample that uses 

a copper chloride precursor for propene oxidation in H2 (Figure 4.37). 

 

4.4.4 Effect of different reducing agents 

Each catalyst was either reduced directly by hydrogen for 2h at 400 
o
C or with sodium 

borohydride. Monometallic Cu/SiO2 and Au/SiO2 catalysts were also prepared and reduced in 

the same way for comparison.  
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(a) 

Figure 4.38 (a)_ CuAu/SiO2 reduced with NaBH4 (C978/80A) with H2 addition  

 ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  ----- Ethanal 

Tdecrease  ____ Conversion T increase  

 ---- Conversion T decrease 
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(b) 

Figure 4.38 (b) CuAu/SiO2 reduced with NaBH4 (C978/80A)   without H2 addition. ____ 

Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  ----- Ethanal 

Tdecrease  ____ Conversion T increase  

 ---- Conversion T decrease 

 

A CuAu/SiO2 catalyst made by impregnation with copper nitrate and reduced in NaBH4, has 

been tested for propene oxidation with and without H2 (Figure 4.38 (a) and 4.38 (b)). In the 

presence of H2, a propene conversion of 0.55% ± 1% could be reached at 320 
o
C. At this 

temperature acrolein (78%), CO2 (15%), ethanal (3%) and propene oxide (4%) were formed. 

Propene oxide was most selective at 260 
o
C (26%). In the absence of H2, acrolein (80%) and 

CO2 were the only products formed with this catalyst. 
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Figure 4.39 catalyst CuAu/SiO2 reduced by NaBH4 (C978/80A)with H2 with 9000 GSHV 

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  

----- Ethanal Tdecrease ____ Conversion T increase  ---- Conversion T decrease 

 

All of the propene oxidation reactions in the presence of H2 had a gas hourly space velocity 

(GSHV) of 25,500h
-1

. The GSHV of the reaction was altered to 9000h
-1

 for the CuAu/SiO2 

catalyst and the data collected (Figure 4.39). At 320 
o
C, only acrolein and CO2 were detected 

but at 300 
o
C propene oxide was formed at ~10%. The conversion had increased to ~ 1.2% ± 

1% and acrolein selectivity was more stable than when the GSHV is higher. 
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(a) 

Figure 4.40 (a) CuAu3/SiO2 reduced with NaBH4 (C978/80B)  with H2 addition 

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  ----- Ethanal 

Tdecrease ____ Conversion T increase ---- Conversion T decrease 
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(b) 

Figure 4.40 (b) CuAu3/SiO2 reduced with NaBH4 (C978/80B)  without H2 addition. 

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  ----- Ethanal 

Tdecrease ____ Conversion T increase  

 ---- Conversion T decrease 

 

In the presence of H2, the Au rich CuAu3/SiO2 catalyst reduced by NaBH4 had a propene 

conversion of ~0.44% ± 2% at 320 
o
C. Propene oxide had a high selectivity (77%) at 220 

o
C 

and similarly ethanal had a selectivity of 79% at 240 
o
C. Acrolein was only formed at 

temperatures higher than 240 
o
C 
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(a) 

Figure 4.41 (a) Cu3Au/SiO2 reduced with NaBH4 (C978/80C)  with H2 addition 

 ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease 

 ____ Ethanal Tincrease  ----- Ethanal Tdecrease ____ Conversion T increase ---- Conversion 

Tdecrease 
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(b) 

Figure 4.41 (b) Cu3Au/SiO2 reduced with NaBH4 (C978/80C)  without H2 addition.  ____ 

Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease 

 ____ Ethanal Tincrease  ----- Ethanal Tdecrease ____ Conversion T increase  

---- Conversion T decrease 

 

In the presence of H2, the Cu rich Cu3Au/SiO2 catalyst, reduced by NaBH4, had a propene 

conversion of 0.53% ± 1% at 320 
o
C. Acrolein was the major product with this catalyst but 

propene oxide was also detected at 260 
o
C (12%). Without hydrogen in the reactor feed, 

propene conversion, as with all the catalysts, was much lower (0.063% ± 4%) at 320 
o
C. No 

propene oxide was formed when H2 was not added and only acrolein and CO2 were produced. 
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(a) 

Figure 4.42 (a) Au/SiO2 reduced in NaBH4 (C978/80D)  with H2 addition.  

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ___ Conversion T increase  ---- 

Conversion T decrease 
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(b) 

Figure 4.42 (b) Au/SiO2 reduced in NaBH4 (C978/80D)  without H2 addition. 

____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ___ Conversion T increase  ---- 

Conversion T decrease 

 

A monometallic Au/SiO2 catalyst reduced by NaBH4 was also prepared (Figure 4.42 (a) and 

4.42 (b)) and with addition of H2 there was a propene conversion of 1.2% ± 1% at 320 
o
C. At 

this temperature, acrolein (60%), CO2 (27%), ethanal (10%) and propene oxide (3%) were 

formed. In the absence of H2, a propene conversion of 0.03% ± 3% at 300 
o
C was observed. 

Both acrolein and propene oxide were produced at this temperature but the catalyst was not 

active at any other temperature. 
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(a) 

Figure 4.43 (a) Cu/SiO2 reduced in NaBH4 (C978/80E) with H2 addition  

 ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  

----- Ethanal Tdecrease ____ Conversion T increase  ---- Conversion T decrease 
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(b) 

Figure 4.43 (b) Cu/SiO2 reduced in NaBH4 (C978/80E) without H2 addition. 

 ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  

----- Ethanal Tdecrease ____ Conversion T increase  ---- Conversion T decrease 

 

Cu/SiO2 reduced by NaBH4 (Figure 4.43 (a) and 4.43 (b)) was tested for propene oxidation 

with the addition of H2. A propene conversion of 0.21% ± 3% at 320 
o
C was detected. Both 

acrolein (68%) and propene oxide (29%) were produced at this temperature. Without the 

presence of H2, propene conversion was only 0.05% ± 4% at 300 
o
C. No propene oxide was 

formed. Only acrolein and carbon dioxide were observed. 
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4.4.5 Effect of Cu precursor for catalysts reduced by H2 

In this study, another set of catalysts relied on both copper chloride and copper nitrate as their 

precursors to make CuAu/SiO2 catalysts by an impregnation procedure, followed by a 

reduction in H2 for 2h at 400 
o
C. In this section, propene oxidation was investigated, with and 

without H2, and the copper precursor was changed to identify whether any modification in 

product selectivity and conversion occurred. 
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(a) 

Figure 4.44 (a) CuAu/SiO2 with copper nitrate precursor and reduced in H2 (C978/93A) with 

H2 addition   ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T 

decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease  ____ Ethanal Tincrease  ---

-- Ethanal Tdecrease  ____ Conversion T increase   

---- Conversion T decrease 
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(b) 

Figure 4.44 (b) CuAu/SiO2 with copper nitrate precursor and reduced in H2 (C978/93A)  

without H2 addition ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- 

CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease  ____ Ethanal 

Tincrease  ----- Ethanal Tdecrease  ____ Conversion T increase   

---- Conversion T decrease 

 

CuAu/SiO2 prepared with a direct reduction, using copper nitrate (Figure 4.44 (a) and 4.44 

(b)), had a propene conversion of 0.3% ± 2% at 320 
o
C with the presence of H2. Both acrolein 

and propene oxide had selectivity. However, at 240 
o
C the error for the selectivity of propene 

oxide was ± 18% which would affect the reliability of this result. Therefore, there was some 

uncertainty with this result and repeat experiments at this temperature are necessary. Propene 

oxidation in the absence of H2 for this catalyst gave a conversion of 0.055% ± 3% at 300 
o
C. 
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Propene oxide was more selective than acrolein as the temperature increased to 300 
o
C, 

whereas as the temperatures decreased, acrolein became more selective. 
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(a) 

Figure 4.45 (a) CuAu3/SiO2 with copper nitrate precursor and reduced in H2 (C978/93B) 

with H2 addition   ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- 

CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease  Ethanal Tdecrease 

____ Conversion T increase   ---- Conversion T decrease 
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(b) 

Figure 4.45 (b) CuAu3/SiO2 with copper nitrate precursor and reduced in H2 (C978/93B)  

without H2 addition ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- 

CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease  Ethanal Tdecrease 

____ Conversion T increase   ---- Conversion T decrease 

 

The CuAu/SiO2 had an effective propene conversion of 0.75% ± 1% at 320 
o
C. Acrolein 

(67%) and propene oxide (28%) were produced at this temperature.  In the absence of H2, the 

conversion reached 0.13% ± 2% which was much higher than other catalyst tested without 

H2. Propene oxide was the product most selective under these conditions but acrolein was 

also detected at 300 
o
C (22%). 
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(a) 

Figure 4.46 (a) Cu3Au/SiO2 with copper nitrate precursor, reduced H2 (C978/93C). Propene 

oxidation with H2 addition    

 ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease  ____ Conversion T increase   

---- Conversion T decrease 
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(b) 

Figure 4.46 (b) Cu3Au/SiO2 with copper nitrate precursor, reduced H2 (C978/93C). Propene 

oxidation without H2 addition  

 ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T decrease  ___ 

Propene oxide T increase  ---- Propene Oxide T decrease  ____ Conversion T increase   

---- Conversion T decrease 

 

A Cu3Au/SiO2 catalyst reduced directly by H2 was studied for propene oxidation, with and 

without H2 (Figure 4.46 (a) and 4.46 (b)). With the addition of H2, a propene conversion of 

1.1% ± 1% was obtained at 320 
o
C, which was the highest activity for catalysts prepared 

under these conditions. Acrolein and propene oxide were both detected. Without H2 in the 

reactor feed, the propene conversion was about 0.03% ± 3% at 300 
o
C and only acrolein and 

CO2 were formed at this temperature. Propene oxide was very selective at 260 
o
C (78%). No 

ethanal was observed with this catalyst. 
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(a) 

Figure 4.47 (a) Au/SiO2 with copper nitrate precursor, reduced H2 (C978/93D) with H2 

addition  ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T 

decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease   

____ Conversion T increase  ---- Conversion T decrease 
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(b) 

Figure 4.47 (b) Au/SiO2 with copper nitrate precursor, reduced H2 (C978/93D) without H2 

addition  ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T 

decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease   

____ Conversion T increase  ---- Conversion T decrease 

 

In the presence of H2, the propene conversion for an Au/SiO2 catalyst was 0.35% ± 2% at 320 

o
C. Acrolein and CO2 were the only products that were formed with this catalyst. In the 

absence of H2, acrolein and propene oxide were both produced but acrolein was most 

selective at 260 
o
C (72%). 
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(a)             

Figure 4.48 (a) Cu/SiO2 with copper nitrate precursor, reduced H2 (C978/93E)  with H2 

addition  ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T 

decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  ----

- Ethanal Tdecrease ____ Conversion T increase  

 ---- Conversion T decrease 
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(b) 

Figure 4.48 (b) Cu/SiO2 with copper nitrate precursor, reduced H2 (C978/93E)  without H2 

addition. ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T 

decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  ----

- Ethanal Tdecrease ____ Conversion T increase  

 ---- Conversion T decrease 

 

In the presence of H2, the Cu/SiO2 catalyst had a propene oxidation of 0.48% ± 2% at 320 
o
C. 

Acrolein, CO2 and propene oxide were all detected at this temperature. Without H2, the 

conversion dropped to 0.06% ± 5% at 300 
o
C and acrolein and propene oxide were observed 

between 260 and 300 
o
C. 
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(a) 

Figure 4.49 (a) CuAu/SiO2 with copper chloride precursor, reduced in H2 (C978/99A)  with 

H2 addition (b) ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 

T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  --

--- Ethanal Tdecrease ____ Conversion T increase  ---- Conversion T decrease 
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(b) 

Figure 4.49 (b) CuAu/SiO2 with copper chloride precursor, reduced in H2 (C978/99A)  

without H2 addition. ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- 

CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal 

Tincrease  ----- Ethanal Tdecrease ____ Conversion T increase   

---- Conversion T decrease 

 

CuAu/SiO2 reduced by H2 was tested for propene oxidation (Figure 4.49 (a) and 4.49 (b)) but 

the copper precursor was changed to copper chloride. In the presence of H2, a propene 

conversion of 0.22% ± 3% was obtained at 320 
o
C. Propene oxide was not detected and only 

acrolein. CO2 and ethanal were selective. In the absence of H2, propene oxide and acrolein 

were produced but the catalyst had little activity, the conversion being low as anticipated. 



275 

 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

200 220 240 260 280 300 320

0

20

40

60

80

100

Temperature (
o
C)

S
e

le
c
ti
v
it
y
 (

%
)

0.0

0.2

0.4

0.6

0.8

1.0

 
C

o
n
v
e

rs
io

n
 (%

)

 

(a) 

Figure 4.50 (a) CuAu3/SiO2 with copper chloride precursor, reduced in H2 (C978/99B) with 

H2 addition ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T 

decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  ----

- Ethanal Tdecrease ____ Conversion T increase  ---- Conversion T decrease 
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(b) 

Figure 4.50 (b) CuAu3/SiO2 with copper chloride precursor, reduced in H2 (C978/99B)   

without H2 addition. ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- 

CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal 

Tincrease  ----- Ethanal Tdecrease ____ Conversion T increase  

 ---- Conversion T decrease 

 

 

The Au rich CuAu3/SiO2 catalyst, reduced in H2 with copper chloride, had a propene 

conversion of 0.9% ± 2% at 320 
o
C, which was higher than when copper nitrate precursor 

was used. Acrolein was the most selective product (90% at 300 
o
C). Without H2, only 

acrolein and CO2 were observed at 300 
o
C.  
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(a) 

 

Figure 4.51 (a) Cu3Au/SiO2 with copper chloride precursor, reduced in H2 (C978/99C) with 

H2 addition  ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T 

decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease ----

- Ethanal Tdecrease ____ Conversion T increase  ---- Conversion T decrease 
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(b) 

Figure 4.51 (b) Cu3Au/SiO2 with copper chloride precursor, reduced in H2 (C978/99C) 

without H2 addition.  ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- 

CO2 T decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal 

Tincrease ----- Ethanal Tdecrease ____ Conversion T increase   

---- Conversion T decrease 

 

The Cu rich Cu3Au/SiO2 catalyst, reduced in H2 with copper chloride, had a higher propene 

conversion (1.7% ± 1%) than when copper nitrate was used (0.7% ± 1.6%). Acrolein was the 

most selective product but ethanal was also detected at about ~5%. In the absence of H2 only 

acrolein and carbon dioxide were formed, whereas when copper nitrate was used propene 

oxide was also observed. 
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(a) 

Figure 4.52 (a) Cu/SiO2 with copper chloride precursor, reduced in H2 (C978/99D)  with H2 

addition ____ Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T 

decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  ----

- Ethanal Tdecrease ____ Conversion T increase   

---- Conversion T decrease 
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(b) 

Figure 4.52 (b) Cu/SiO2 with copper chloride precursor, reduced in H2 (C978/99D) without 

H2 addition.  ____Acrolein T increase ---- Acrolein Tdecrease  ___CO2 T increase  ---- CO2 T 

decrease  ___ Propene oxide T increase  ---- Propene Oxide T decrease ____ Ethanal Tincrease  ----

- Ethanal Tdecrease ____ Conversion T increase   

---- Conversion T decrease 

 

 

Cu/SiO2 was also prepared with copper chloride and reduced in H2 (Figure 4.52 (a) and 4.52 

(b)). In the presence of H2, a propene conversion of 1.8% ± 1% was obtained at 320 
o
C which 

was the most active out of all the catalysts made under these conditions. This catalyst had a 

stable activity with acrolein selectivity of about 70 to 80% between 220 to 320 
o
C. No 

propene oxide was observed but ethanal was detected between 220 
o
C and 320 

o
C at about 

10% selectivity. In the absence of H2, acrolein and CO2 were the only products obtained 

whereas, when copper nitrate was used, propene oxide was also produced. 
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4.4.6 Product selectivity and conversion for different preparation methods 

The presence or absence of hydrogen for the propene oxidation experiments had a significant 

effect on the propene conversion. The choice of copper precursor and the preparation 

conditions could also affect the product selectivity. In this section, bar charts have been used 

to illustrate the selectivity and conversions of different catalysts, which were all made by 

impregnation, and either reduced by H2 or NaBH4 and which had different copper precursors. 
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Figure 4.53 Catalysts reduced with NaBH4 (C978/80A-E) with H2 addition at 320 
o
C. 

____ Acrolein   ___CO2 ___ Propene oxide ____ Ethanal  ____ Conversion  

For all the catalysts prepared by impregnation using copper nitrate and reduced in NaBH4, 

acrolein was the main product of propene oxidation in the presence of H2 at a temperature of 

320 
o
C. No propene oxide was detected for the copper rich Cu3Au/SiO2 catalyst. Propene 
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oxide was most selective for the monometallic Cu/SiO2 catalyst and ethanal was only seen in 

the Au/SiO2, CuAu3/SiO2 and AuCu/SiO2 samples tested. Propene conversion was the 

highest for the Au/SiO2 catalyst (1.2% ± 1%) and lowest for the Cu/SiO2 catalyst (0.2% ± 

3%). 
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Figure 4.54 Catalysts reduced with NaBH4 (C978/80A-E) without H2 addition at 320 
o
C.  

____Acrolein   ___CO2 ___ Propene oxide ____ Ethanal  ____ Conversion 

  

When the catalysts were used for propene oxidation without H2 (Figure 4.54), the most 

notable effect was that the conversion was greatly reduced. All the catalyst were still 

selective towards acrolein, as they were in the presence of H2. However, Au/SiO2 was the 

only catalyst selective towards propene oxide and no catalyst produces ethanal. 
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Figure 4.55 Catalysts made with a copper nitrate precursor by impregnation, reduced in H2 

(C978/93A-E).  

____Acrolein   ___CO2 ___ Propene oxide ____ Ethanal  ____ Conversion  

 

 

If the catalysts were reduced in H2, instead of NaBH4, then the selectivities of the products 

are changed (Figure 4.55). All the series of catalyst were selective towards acrolein. Apart 

from the Au/SiO2 catalyst, all the other samples were selective to propene oxide. Ethanal was 

only one with selectivity for the Cu/SiO2 catalyst. The Cu rich Cu3Au/SiO2 had the highest 

conversion of 1.1% ± 1%. 
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Figure 4.56 Catalyst made with a copper nitrate precursor reduced in H2 (C978/93A-E). 

Propene oxidation at 300 
o
C without H2.  

____Acrolein   ___CO2 ___ Propene oxide ____ Ethanal  ____ Conversion  

 

 

When H2 was not present in the reactor feed, all the catalyst were selective to both acrolein 

and propene oxide, except for the Cu3Au/SiO2. The Au rich bimetallic catalyst had the 

highest propene conversion of 0.13% ± 4%. 
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Figure 4.57 Catalysts made with a copper chloride precursor by impregnation, reduced in H2 

(C978/99A-D). Propene oxidation at 320 
o
C with H2.  

____Acrolein   ___CO2 ___ Propene oxide ____ Ethanal  ____ Conversion  

 

 

If the copper precursor was changed from copper nitrate to copper chloride, then all the 

catalysts were selective towards ethanal and acrolein. Only the Cu rich and Au rich catalysts 

formed propene oxidation.  The Cu3Au/SiO2 and the Cu/SiO2 catalyst had higher conversions 

than the Au rich Cu3Au/SiO2 and Au/SiO2.  
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Figure 4.59  Catalysts made with a copper chloride precursor reduced in H2. 

 (C97899A-D). Propene oxidation at 300 
o
C without H2.  

____Acrolein   ___CO2 ___ Propene oxide ____ Ethanal  ____ Conversion  

 

 

If the catalyst had first been reduced in H2 and a copper chloride precursor used (Figure 4.58) 

then, in the absence of H2, only the CuAu/SiO2 catalyst was selective towards acrolein and 

propene oxide. The Cu/SiO2 catalyst had the highest propene conversion of 0.04% ± 6%. 
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4.5 Discussion 

 
For all the catalysts tested for propene oxidation only single experiments were carried out due 

to time constraints. However, for each experiment three injections were used at each 

temperature to give an average result. Unless otherwise stated, the error was in the range of 

between ±1- 6% of the value quoted which gave data that could be justified, as long as the 

limitations from the absence of repeat experiments were taken into account. Duplicate 

experiments would be required to confidently confirm the findings in this study. 

The activity and selectivity of the catalysts studied for propene oxidation with and without 

hydrogen addition, showed that they could be affected by their composition and thermal 

treatment. Most of the catalysts possessed low propene conversions, compared with past 

catalysts used to test for this reaction. This was due to the high gas space velocity used in the 

experiments. Gas space velocity can affect the catalyst performance and this has been 

observed by Zhan and group.
7
 They found that with increasing space velocity the propene 

conversion decreased but the selectivity towards propene oxide increased. This could be 

explained because with the space velocity increasing, the contact time of propane and 

propylene with the catalyst became short and therefore part of them left the catalyst surface 

without reacting. Therefore, propane conversion decreased. Different gas feed ratios for 

reactions with and without hydrogen were used and this may have an effect on the catalyst’s 

performance. Therefore, it was difficult to compare the results in the absence versus presence 

of hydrogen, as the reaction conditions varied and caused limitations with the results. 

 

Effect of different catalyst preparation and copper precursor 

Different preparation methods and the use of either copper chloride or copper nitrate 

precursors were used to make monometallic Cu/SiO2 catalysts. A simple Cu/SiO2 catalyst 

prepared by impregnation with copper nitrate and directly calcined, was investigated for 
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propene oxidation. With the addition of hydrogen, a propene conversion of 0.3% (at 320 
o
C) 

was obtained with a selectivity to only acrolein and ethanal. In the absence of hydrogen, the 

conversion was much lower and propene oxide was detected as the temperature of the 

hysteresis experiment decreased. XPS analysis for the directly calcined Cu/SiO2 catalyst  

confirmed the presence of Cu
2+ 

species. Modifying the catalyst, so that the copper chloride 

was the chosen precursor used, led to a much higher propene conversion of 0.9% ± 1.4% 

(320 
o
C) with the addition of H2. This catalyst was selective to acrolein at higher 

temperatures and propene oxide at lower temperatures, which was the general trend for most 

of the catalysts tested. Instead of a direct calcination in air, some catalysts had the Sinfelt 

thermal treatment applied (reduction at 315 
o
C for 2h in 5% Ar/H2 followed by high 

temperature calcination at 676 
o
C for 15h in air). This thermal treatment was used for a 

Cu/SiO2 catalyst and analysed for propene oxidation. With the addition of hydrogen, the 

copper catalyst was active with a propene conversion of 2.3% ± 1% (at 320 
o
C). The main 

product was acrolein, although ethanal was detected at 260 
o
C (10%). When hydrogen was 

not present in the reactor feed, there was little activity and only CO2 was formed. The XPS 

data for the Sinfelt catalysts confirmed the presence of Cu
+
 species due to the absence of the 

Cu
2+

 satellite peak. Whereas for the directly calcined AuCu/SiO2 and Au3Cu/SiO2 there did 

not appear to be a Cu
2+

 satellite peak, suggesting the presence of a Cu
+
 species. 

XRD analysis showed that there were differences between directly calcined and Sinfelt 

treated catalysts. All the Sinflet CuAu/SiO2 compositions (1:1, 1:3 and 3:1) had metallic gold 

and copper oxide – Tenorite phases. For all the directly calcined bimetallic catalysts, Au 

metal was present but for the CuAu/SiO2 sample a copper chloride hydroxide phases were 

also observed. For the CuAu3/SiO2 sample sodium chloride was detected, whereas copper 

chloride hydroxide and copper oxide –Tenorite were observed for the Cu3Au/SiO2 catalyst. 

There was also a trend with the copper crystallite sizes calculated by the Scherrer equation. 



289 

 

Directly calcined bimetallic catalysts were smaller in size than the Sinfelt treated samples. 

However the directly calcined samples had Au particles slightly larger (42-45nm) compared 

to the Sinfelt bimetallic catalysts (27-37nm). The different copper phases and crystallite sizes 

could account for the enhanced performance of the Sinfelt catalysts compared to the directly 

calcined treatments.  

From looking at the characterisation and the activity for copper catalysts with different 

preparation treatments it can be suggested that the best oxidation state for the copper is Cu(I). 

In this state an increased propene conversion can be observed. Also a Sinfelt treatment in 

most cases increased the activity and made the catalysts more stable with less hysteresis 

compared to the directly calcined samples. 

Making a Cu/SiO2 catalyst by precipitation gave a propene conversion of 0.4% ± 3% (320 

o
C) and a selectivity towards acrolein at higher temperatures and ethanal at lower 

temperatures. The diffraction pattern indicated that the sample was mainly composed of a 

major amount of amorphous material and a trace amount of poorly crystalline copper oxide – 

Tenorite. The copper oxide crystallite size of 3.8 nm was calculated. The Cu/SiO2 catalyst, 

made by a precipitation method had the most intense XPS spectrum which might suggest 

highly dispersed Cu on the silica support. This catalyst also clearly showed the presence of a 

Cu
2+

 species on surface 

A high dispersion route was also employed to generate a Cu/SiO2 catalyst and, in the addition 

of hydrogen, this catalyst gave an activity similar to the precipitation method (0.5% ± 3%). 

However, propene oxide was favoured at lower temperatures and acrolein at higher 

temperatures. Another CuAu/SiO2 catalyst, prepared by a sequential preparation method that 

consisted of high dispersion for copper and incipient wetness impregnation for gold, was also 

analysed for propene oxidation. In the presence of hydrogen, only acrolein and carbon 

dioxide were observed, with acrolein reaching a selectivity of ~74% between 300 – 320 
o
C 
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and a propene conversion of 0.12% ± 3% (320 
o
C). XRD analysis only revealed metallic gold 

phases. From the SEM study large ensembles of gold as well as highly dispersed particles 

could be seen on the support. There was also evidence of small CuAu alloy particles. When 

the catalyst was Sinfelt treated, propene oxide was detected at 280 
o
C (30%) and ethanal at 

300 
o
C (~20%). Acrolein was the major product using this catalyst. A propene conversion of 

0.25% ± 3% (at 320 
o
C) was achieved in the presence of hydrogen, which was higher than 

when the catalyst was directly reduced in hydrogen. The Sinfelt treatment appears to make 

the particles more disperse which improves their activity for propene oxidation. 

Generally, directly calcined CuAu/SiO2 catalysts showed a modest activity when compared to 

other catalysts that were investigated, which increased with the co-feeding of hydrogen. The 

type of copper precursor used and the composition of the catalyst used had a consequence on 

the product selectivity and conversion. SEM analysis showed no major difference between 

copper nitrate and chloride precursors. For the directly calcined bimetallic catalysts, the 

CuAu and CuAu3 samples both showed the presence of large gold ensembles whereas the 

Cu3Au/SiO2 catalyst had small spherical particles of copper and gold. All catalysts were more 

active in the presence of hydrogen. For the CuAu and CuAu3 catalysts made with a copper 

chloride precursor, only acrolein and CO2 were formed, whereas propene oxide was also 

detected for the Cu rich Cu3Au catalyst. If the precursor was changed to copper nitrate, all of 

the CuAu compositions were selective towards both acrolein and propene oxide but the 

copper rich catalyst was the most active, with a propene conversion of 0.4% ± 3% (at 320 

o
C). Altering the thermal treatment also affected the selectivity. All the catalysts that were 

Sinfelt treated showed moderate activity and only formed acrolein and CO2 independent of 

the copper precursor used. The nitrate precursor catalysts were also selective to propene 

oxide in the absence of hydrogen. In the presence of hydrogen, unlike the trend seen with the 

catalysts that were directly calcined, the copper rich bimetallic sample had the lowest 
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conversion of 0.095% ± 4% (at 320 
o
C). With exception of the copper rich composition, the 

high temperature calcination of the Sinfelt procedure did not decrease the activity of the 

catalysts, as might have been expected. 

Comparing all the AuCu/SiO2 catalysts (1:1, 1:3 and 3:1) either directly calcined or Sinfelt 

treated showed differences with their XRD and SEM analysis which could be linked to their 

catalytic performance. For the Sinfelt treated bimetallic catalysts metallic gold and copper 

oxide – Tenorite were detected whereas for the directly calcined samples copper chloride 

hydroxide was detected which was undesirable and chloride could act as a poison or a 

promoter on the catalytic activity. Referring to the propene activity the Sinfelt catalyst 

performed better which could be due to the absence of this chloride phase which some of the 

bimetallic catalysts possessed. 

Both the AuCu/SiO2 and Au3Cu/SiO2 directly calcined compositions had large gold 

ensembles from SEM analysis whereas the AuCu3/SiO2 catalyst had smaller spherical metal 

particles. This different feature of the catalyst could account for changes in the activity 

because the absence of these large clusters in the copper rich bimetallic sample resulted in the 

highest propene conversion. 

 

Effect of monometallic versus bimetallic catalysts 

Monometallic Au/SiO2 was also prepared by various methods. When the catalyst was 

prepared by impregnation and tested for propene oxidation with the addition of H2, a propene 

conversion of 0.18% ± 3% (320 
o
C) was achieved. This catalyst was selective to acrolein and 

ethanal but did not form propene oxide. SEM analysis showed the presence of large gold 

clusters which was a result of a weak metal support interaction. In the absence of H2, propene 

conversion was low at 0.024% ± 2% (300 
o
C). Acrolein was formed between 260 

o
C to 300 

o
C, whereas propene oxide was observed at 260 

o
C (50%). Deposition precipitation was 
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another procedure used to prepare an Au/SiO2 catalyst and a propene conversion of 0.15% ± 

3% (320 
o
C) was produced. At higher temperatures, acrolein was formed and at 260 

o
C 

propene oxide was formed, although it was also detected at 320 
o
C (48%). The Sinfelt 

thermal treatment did not improve the activity of an Au/SiO2 catalyst and, instead, the only 

product formed was carbon dioxide. 

Procedures to form effective CuAu/SiO2 bimetallic catalysts were implemented for this study 

and one route was to combine the use of two sequential methods. One example that formed 

CuAu/SiO2, was to firstly deposit copper onto the support via a high dispersion pathway, 

followed by depositing Au onto the support by deposition precipitation.  The untreated 

catalyst was tested for propene oxidation, along with a catalyst subjected to different thermal 

treatments. The fresh catalyst was quite active with a propene conversion of 1% (320 
o
C) 

with the addition of hydrogen in the reactor feed and the main product was acrolein. Acetone 

was produced at 260 
o
C (30%) and propene oxide was formed at 300 

o
C (10%). TEM/EDX 

analysis was carried out on this sample and showed that copper and gold formed alloy as well 

as some clusters on the support. The majority of the particles were small but there were some 

larger particles present, the mean diameter was 9nm. When the fresh catalyst had the Sinfelt 

treatment applied to it, its activity went up greatly (6%  ± 1% at 320 
o
C) and became an 

effective catalyst for propene oxidation in the presence of hydrogen. This thermal treatment 

appeared to help improve the dispersion of the metal particles and this was key for an 

effective propene activity. Acrolein was selective around 80% at lower temperatures and 

maintained its selectivity, increasing to 90% as the temperature decreased. Ethanal had a 

selectivity at 240 
o
C (~45%). Directly calcining the catalyst gave a lower conversion of 0.8% 

± 2% with the addition of hydrogen. Acrolein, again, was the major product and ethanal and 

propene oxide were detected at higher temperatures as well. In the absence of hydrogen, the 

directly calcined catalyst had a lower conversion of 0.35% ± 3% which, although low, was 
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considerably better without the addition of hydrogen in the experiment. In addition to 

acrolein, acetone and propene oxide were also produced. A direct reduction in H2 gave an 

improved conversion of 2.3% ± 1% (320 
o
C) with selectivity towards acrolein, acetone 

(~35% at 280 
o
C) and propene oxide (~53% 220 

o
C).  

CuAu/SiO2 catalysts prepared by high dispersion method (HDC) for copper followed by gold 

deposition precipitation were compared to catalysts made by HDC copper and gold incipient 

wetness impregnation. SEM analysis showed that the metal particles were much more 

dispersed and smaller in size when gold was deposited by deposition precipitation. Whereas, 

large clusters and some smaller particles were observed for the impregnation gold method. 

The existence of more highly dispersed particles could have accounted for the larger propene 

conversion (1% at 320
o
C) for the Au DP (fresh catalyst) sequential method compared to the 

Au IW preparation (0.12% at 320
o
C). 

It was concluded that the best method for making an effective catalyst for propene oxidation 

was from the AuCu/SiO2 catalyst made from copper prepared by a high dispersion route 

followed by deposition precipitation of gold onto the support. The above characterisation and 

catalytic activity showed that this method had the most promise because the fresh catalyst 

even before thermal treatment had a 1% conversion at 320
o
C. The fresh catalyst had a 

copper-gold alloy present which was confirmed from TEM and EDX analysis. Utilizing the 

Sinfelt thermal treatment (315
o
C in H2/Ar for 2h and calcined in air at 676

o
C for 15h), the 

activity improved to 6% at 320
o
C. From TEM analysis, it appeared that after the high 

temperature calcination at 676
o
C for 15h de-alloying occurred leaving small gold and copper 

metal particles and these particles appear to be the most active towards acrolein formation out 

of all the catalysts prepared for this thesis. 
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Effect of different reducing agents 

For the bimetallic catalysts reduced by NaBH4, the product selectivity was not generally 

changed as acrolein, propene oxide and ethanal were observed, except for the case of the 

copper rich sample which did not produce ethanal. The activity of the catalysts was improved 

with the directly calcined and Sinfelt treated catalysts. A TEM study showed that alloy 

formation was present for the CuAu/SiO2 catalyst reduced by NaBH4. If this sample was 

calcined in air, copper and gold appeared to be separated into two phases. TEM analysis 

revealed that the mean diameter was 24nm and calcination in air had no effect on the size. 

The monometallic Au/SiO2 catalyst was the least active (0.12% ± 3% at 320 
o
C). In general, 

in the absence of hydrogen, only acrolein and CO2 were detected.  

When catalysts were reduced in H2 and then tested for propene oxidation, the product 

selectivity for the nitrate-containing samples seemed to be unaffected by the absence or not of 

hydrogen in the reactor feed. Only the monometallic Au and Cu catalysts had a slight 

variation in selectivity that was dependent on the addition of hydrogen. All the bimetallic 

catalysts with a nitrate precursor were selective to acrolein and propene oxide, the most 

active catalyst being the copper rich sample (1.1% ± 1% at 320 
o
C). If the nitrate precursor 

was substituted for the chloride equivalent, then ethanal was formed. SEM characterisation 

showed the presence of large gold ensembles for the CuAu/SiO2 and Au rich bimetallic 

catalysts. But for the Cu rich bimetallic sample no large clusters were seen and only round 

metal particles were detected. The copper rich bimetallic catalyst (CuAu3/SiO2) was the most 

active bimetallic catalyst but the monometallic sample had the overall highest activity. 

 

Effect of hydrogen co- feeding 

A key observation from the results of this study showed that the addition of hydrogen 

increased the propene conversion and in some cases changed the product distribution. 
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However, the different gas feed ratios with and without hydrogen need to be noted and to 

definitively support this observation experiments in the absence of hydrogen with a ratio of 

1:1:7 propene: oxygen: helium should be carried out.  

The effect of hydrogen co-feeding was also investigated and, regardless of the preparation 

method or thermal treatment, all the catalysts had a large increase in activity. This could 

possibly be due to more active oxidising species on the surface, when there is the addition of 

hydrogen in the system. The presence of hydrogen might allow the formation of a 

hydroperoxide (OOH) species
8
 which might then react with the propene directly or 

decompose before the reaction into another active oxidising species. The active oxidising 

species in the absence of hydrogen could be similar to the one involved for carbon monoxide 

(atomic oxygen).
9,10

 The role of the hydrogen could be to dissociate molecular oxygen and 

leave water, as well as an active oxygen species, at the catalyst’s surface. 

 However, the reactive oxygen species appeared to be dependent on the catalyst. Sometimes, 

similar selectivity to products, with and without hydrogen was observed. This observation 

could be attributed to the hydroperoxide species decomposing to atomic oxygen, before the 

reaction with propene and therefore acting like a catalyst without hydrogen. When the 

selectivity was different with the addition of hydrogen, different oxidising intermediates 

could be formed to those generated in its absence.  

 

Potential active sites 

The catalytic investigation of propene oxidation suggested the presence of several different 

types of active site for the reaction. A copper (I) active site was observed for the three molar 

ratios of Sinfelt treated CuAu/SiO2 catalysts. These catalyst had a high stability which was 

represented by little hysteresis. This active site had a high selectivity towards acrolein which 

has be shown before.
11

 Zhu and group found that K-promoted monometallic Cu/SiO2 a Cu(I) 
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species and this improved the selectivity towards propene oxide over acrolein at 250-300 

o
C.

12
 The group suggested the reason for this was that Cu (I) was not as active for the 

oxidation of propene oxide to acrolein and other products.  

A copper (II) active site was linked to low activity and selectivity towards acrolein and 

propene oxide. This could possibly be the active site for the CuAu/SiO2 catalysts calcined 

directly with air and for the Sinflet treated Cu/SiO2 catalyst, as they exhibited low selectivity 

and favoured combustion. This has been noted in work carried out by others
11

 which suggests 

that CuO leads to the combustion of propene. The addition of hydrogen and promotion of 

gold increased the selectivity to acrolein in the bimetallic catalysts. A CuAu alloy active site 

was associated with the reduced CuAu bimetallic catalyst which generated a variety of 

products. The mixed selectivity could also be linked to the possible presence of some Cu (I) 

in the catalyst. The presence of hydrogen in the reactor feed significantly increased the 

activity of these catalysts. A mixed selectivity was also seen by Llorca and co workers
13

 who 

made CuAu/TiO2 catalysts with thiol-stabilised nanoparticles. The more copper rich catalysts 

were more active which concurred with the results in this study, even though they used N2O 

instead of O2 or O2 and H2 as their oxidant. A metallic gold active site was observed for the 

reduced, directly calcined and Sinfelt treated monometallic catalyst and, generally, led to 

more combustion than the copper sites. This was enhanced by hydrogen in the reactor feed. 

However, this was not found by Haruta and team 
4
 and the difference could be accounted for 

by the functionality of the support. The Cu/SiO2 catalyst reduced directly in H2 had a metallic 

Cu(0) active site which gave a low conversion and a wide product selectivity. This result was 

confirmed in the work by Vaughan et al 
5 

who prepared a Cu/SiO2 catalyst with selectivity 

towards acrolein, propene oxide and CO2, when the catalyst was reduced. However, they 

made their catalyst by a different method (microemulsion) which could justify any 

differences in results, since this technique produced a more highly dispersed catalyst. 
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The active site which gives the best catalytic structure was the Cu(I) active site which was 

present when the bimetallic catalysts were Sinfelt treated. This thermal treatment produced 

highly dispersed small metal particles which gave a stable activity towards acrolein 

formation. Propene conversion was higher for the Sinfelt bimetallic catalysts when compared 

to the directly calcined samples which had a Cu(II) active site. Monometallic catalysts didn’t 

perform as well as the bimetallic catalysts suggesting that there was a possible synergy 

between the copper and gold in the bimetallic catalysts which improved its activity. 

 

4.6 Conclusion 

Monometallic and bimetallic copper and gold catalysts were tested for propene oxidation in 

the presence and absence of hydrogen in the reactor feed. The effect of different preparation 

methods, copper precursors and reduction conditions were investigated to determine if there 

was a change in the performance of the catalyst. The most catalytically active sample was 

made by a sequential method, which involved copper deposited onto the support by a high 

dispersion route, followed by gold being deposited by deposition precipitation. A thermal 

Sinflet treatment (reduction in H2/Ar at 315 
o
C for 2h and calcination at 676 

o
C for 15h in air) 

was carried out on this catalyst before it was tested for propene oxidation. This step played an 

important role in the improved activity of the catalyst. From SEM analysis the thermal 

treatment appeared to make the catalyst particles more dispersed compared to the directly 

calcined catalysts that had large clusters of particles present. TPR characterisation showed 

only a single reduction peak for the reduction of CuO to Cu metal. However, for the directly 

calcined samples two peaks were observed suggesting a two step reduction with the major 

peak representing CuO to metallic Cu and the other peak for Cu(II)O to Cu(I). A propene 

conversion of over 6% was achieved at 320 
o
C in the presence of hydrogen. This catalyst was 

mainly selective towards acrolein at higher temperatures and propene oxide and ethanal at 
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lower temperatures. Hydrogen co-feeding increased the activity for all experiments and was 

needed to produce reasonable conversions. In the absence of hydrogen, all catalysts showed 

very low conversions of propene (<1%). There were limitations in this study because time 

constraints meant it was not possible to repeat the experiments. Furthermore, different reactor 

feed ratios were used, with and without hydrogen for propene oxidation.  

From this thesis, the catalyst with the highest activity for propene oxidation was a AuCu/SiO2 

catalyst made by a high dispersion route for copper followed by gold prepared by deposition 

precipitation (figure 4.15). A Sinfelt thermal treatment was carried out on this catalyst and 

gave a conversion of over 6% at 320
o
C in the presence of hydrogen in the co-feed. Loading 

copper onto the catalyst by a high dispersion route followed by gold by deposition 

precipitation improved the catalysts activity when compared to the standard impregnation 

method. However, there was not enough characterisation carried out on this particular 

catalyst preparation to get a full understanding of its structure and activity. Therefore, future 

studies into this route would be beneficial to better understand what features of this catalyst 

give it enhanced performance over the other catalysts. Compared to the literature the propene 

conversion was close to the commercially desirable 7% obtained by Haruta
14 

from a sol-gel 

method.  However, in our study acrolein was the major product with a selectivity over 80% 

between 240
o
C and 320

o
C, whereas for Haruta’s work a selectivity towards propene oxide 

greater than 90% was achieved. 

The most effective catalysts appeared to benefit from the Sinfelt thermal pre-treatment and 

from TEM analysis of the CuAu/SiO2 catalyst made via impregnation and Sinfelt treated, 

alloy formation was seen after the reduction in hydrogen. But after the high temperature 

calcination de-alloying occurred which resulted in the presence of bimetallic gold and copper 

particles. The Sinfelt method appeared to generate highly dispersed small metal particles that 

were the most stable and had the least hysteresis for propene oxidation. Cu(I) was suggested 
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as the possible active site for the Sinfelt bimetallic catalysts and gave better activity than the 

directly calcined bimetallic catalysts. 
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Chapter 5: Other reactions with CuAu catalysts   

 

5.1 Introduction 
 

Oxidation is an important method for the synthesis of chemical intermediates. Using oxygen 

from air for catalytic reactions is favoured as it is environmentally benign and is often used in 

‘green’ chemistry. Gold catalysts have shown promise for the synthesis of hydrogen 

peroxide
1,2 

and alcohol oxidation.
3,4

 Au nano-crystalline materials have been found to be 

highly effective for selective and total oxidation. Supported gold catalysts have recently 

shown 100% selectivity towards glyceric acid in the oxidation of glycerol when NaOH is 

used in the reaction.
5-7

 Benzyl alcohol oxidation has also been linked to the use of Au/SiO2 

catalysts and demonstrated a high selectivity (greater than 95%) for benzyl alcohol oxidation 

with air with conversions between 50-75%.
8 

Copper catalysts have not been studied greatly for most of the preliminary reactions. 

However, in contrast, gold catalysts have been studied for all of these reactions. Copper and 

gold have been used together for benzyl alcohol oxidation to make CuAu/SiO2 bimetallic 

catalysts.
9
 A yield of 98% and selectivity towards benzylaldehyde of 99% were attained from 

this catalyst.  They also reported a synergy between the copper and gold which contributed to 

the increase in activity, compared to the monometallic catalysts. Cu-Cr catalysts have been 

used for glycerol oxidation and have shown a high selectivity and activity.
10

 The catalysts 

have been made by a non-alkoxide sol-gel method and could achieve a glycerol conversion of 

52% and selectivity towards 1,2- propanediol above 88% at 210 
o
C and 4.15 MPa H2 

pressure. A copper complex has also been used for the oxidation of glycerol under mild 

conditions.
11

 In this study, tetracopper(II) triethanolaminate complex was reacted with t-

BuOOH, TBHP and water in a homogeneous system for the oxidation of glycerol to 

dihydroxyacetone.  
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 Huang and co-workers 
12

 have used highly dispersed copper silica catalysts (CuO/SiO2) for 

glycerol hydrogenolysis and the paper concluded that catalysts prepared by a precipitation-

gel method were more active than catalysts made via an impregnation route. 

In this chapter, the study of a few preliminary reactions is presented to uncover if any of the 

catalysts prepared were active for reactions other than propene oxidation. The reactions 

investigated were: hydrogen peroxide synthesis and hydrogenation, glycerol oxidation and 

benzyl alcohol oxidation. These reactions were chosen because gold catalysts have shown 

potential or are already active for these reactions. 

 

5.2 Results 
 

5.2.1 Hydrogen peroxide synthesis and hydrogenation reactions 

 

5.2.1.1 Introduction 

 

Highly dispersed Au catalysts have been reported to be active for many significant reactions 

in the chemical industry such as oxidation reactions. Hydrogen peroxide synthesis is of 

commercial interest and its production has been studied by Dissanayake and co-workers 
13,14

 

from Pd catalysts. Au, Pd and Pd-Au catalysts have also been prepared and successfully used 

for hydrogen peroxide synthesis in liquid phase at low temperatures 
15,16 

between 1-2 
o
C. 

In the past, Pd has attracted a lot of interest for this reaction but a major disadvantage of 

using supported Pd catalysts is that they are also active for the hydrogenation reactions. 
17,15

 

Previously, additives have been used which has caused concern, as their removal is not 

environmentally friendly. Au has recently been added to Pd catalysts and has increased the 

activity and selectivity for hydrogen peroxide formation
. 18-20

 The support used has been 

shown to have an effect on the size of the Au-Pd nanoparticles, as well as their shape.
21,22

 In 

general, carbon supports have demonstrated a much better activity than TiO2 supports.
21
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However, Au-Pd/TiO2 catalysts have been prepared that have an activity equivalent to highly 

dispersed carbon supported catalysts by changing preparation parameters.
23

 

Hydrogen peroxide decomposition performance has been greatly affected for Pd supported 

catalysts due to the presence of additives such as halides 
17

 and their oxidation.
24-27

 A study 

on the factors affecting the activity of the decomposition of hydrogen peroxide by Pd/carbon 

and other supports has been discussed. 
28

 But these Pd studies have not been investigated 

fully, which has led to detailed work on factors affecting the decomposition 
29

 and the effect 

of using different mineral acids in addition to other factors, like the presence or absence of 

different halide anions and/or protons, concentration of acid (protons) and/or halide anions 

and different reaction temperatures.
30

 

 

                                                                                                     2H2O 

 

                                     H2 + O2                  H2O2 

 

                                                                                                        H2O + 1/2O2 

 

Figure 5.1 Reaction involved in the synthesis of H2O2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

decomposition 

hydrogenation 
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5.2.2 H2O2 Synthesis results 

 

Catalyst    mmol/h/mol Au Average mmol/h/mol Au 

Au:Cu/SiO2 

(C97819A)             581   

 583 582 

   
Au3Cu/SiO2 

(C97819B) 508  

 602 532 

 485  
AuCu3/SiO2 

(C97819C) 1069 984 

 898  
Au/SiO2 DP 
(C97836) 545  

 325 435 

  434   

 

Table 1 Hydrogen peroxide synthesis of Au and AuCu silica supported catalysts. See 

appendix (Table 1) for catalyst codes. 

 

Catalysts were tested for H2O2 synthesis and their activity was low, compared to conventional 

catalysts used in this reaction. Supported Au catalysts are active for the direct synthesis of 

hydrogen peroxide and in depth studies have been carried out.
31

 From Table 1, the 

AuCu3/SiO2 prepared by direct calcination in air, had the highest productivity per mole of Au 

(984 mmol/h/mol Au), whereas, the catalyst prepared via the deposition precipitation method 

had the lowest activity (435 mmol/h/mol Au). The H2O2 synthesis reactions seemed to 

suggest a trend which was unexpected. The Au/SiO2 only catalyst made via the deposition 

precipitation had the lowest productivity of 435 mmol/h/mol, but, as the Cu content increased 

in the catalyst, the activity increased. The AuCu/SiO2 had a productivity of 582 mmol/h/mol 

and rose significantly to 984 mmol/h/mol for the AuCu3/SiO2 catalyst. This was unexpected 

because Cu/SiO2 are not commonly used for this reaction because they have low activity, 
32

 

and Au only catalysts have been shown to achieve good productivity for H2O2.
31

 These 

results suggest a possible AuCu active site for the bimetallic catalysts but can only be 

speculated on in this study. The accuracy for these experiments was poor as the results did 

deviate quite a bit after each run and therefore averages of the results were taken with large 
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differences. These initial experiments gave us a general feel for how the catalyst might react 

but more experiments would be needed to give accurate productivity that can be reproduced 

for each catalyst. 

 

5.2.3 Hydrogenation results 

 

Catalyst Standard wt% 

H2O2 before 

hydrogenation 

Average wt%  

H2O2 after 

hydrogenation 

Wt% decrease 

Cu3Au/SiO2(C97819C) 4.2 4.0 0.2 

CuAu3/SiO2(C97819B) 4.2 3.9 0.3 

CuAu/SiO2(C97819A) 4.2 3.6 0.6 

Au/SiO2 (C97809) 4.2 3.7 0.5 

Cu/SiO2(C97802D) 4.2 3.9 0.3 

Au/SiO2 DP(C97836) 4.2 3.5 0.7 

Cu/SiO2 in H2 

(C97815B1) 

 

4.9 

 

3.6 1.3 

Cu/SiO2 in N2 

(C97815B2) 

 

            4.9 4.5 0.4 

Cu/SiO2 in air 

(C97815B3) 

 

            4.9 4.6 0.3 

Cu3Au/SiO2 

(C97819C) fired at 

900
o
C 

 

4.9 4.5 0.3 

CuAu3/SiO2 

(C97819B) fired at 

900
o
C 

4.9 4.7 0.2 

 

Table 2 Hydrogenation data. See appendix (Table 1) for catalyst codes. 

 

Copper supported on SiO2 and other supports were shown to be an effective catalyst for 

hydrogenation reactions.
33

 Out of all the catalysts tested for hydrogen peroxide hydrogenation 

(table 2), Cu/SiO2 (1.3%) was the most productive catalyst that was prepared using copper 

(II) chloride, made by impregnation and reduced at 400 
o
C in H2. The lowest activity (0.2 

wt%) was observed from the Au3Cu/SiO2 sample calcined in air at 400 
o
C and 900 

o
C.  These 
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results seem promising because the Cu/SiO2 catalyst performed better than any of the 

Au/SiO2 catalysts. Samples with more Cu content were more active than ones with less Cu, 

when fired at 900 
o
C in air. Catalysts calcined at 400 

o
C in air showed a different trend as the 

CuAu/SiO2 catalyst achieved the best hydrogenation activity. 

There has been a trend, where a catalyst that is active for H2O2 synthesis will not perform 

well for the hydrogenation reaction (H2O2 + H2 + Cat → 2H2O). From Table 1, showing the 

hydrogen peroxide synthesis activity, the Cu3Au/SiO2 had the highest productivity (984 

mmol/h/mol) but had one of the lowest hydrogenation results. Furthermore, the Au/SiO2 

catalyst, made via deposition precipitation, had the lowest hydrogen peroxide synthesis 

activity but had a higher hydrogenation activity than all the other catalysts that were tested 

for H2O2 synthesis. 

 

5.3 Glycerol and Benzyl Alcohol Oxidation 
 

5.3.1 Introduction 

 

For glycerol oxidation, there are several factors that can affect the direction of the oxidation 

pathway from either the primary or secondary hydroxyl group, which are: temperature, pH or 

metal loading. Primary oxidation is favoured over secondary when using platinum catalysts 

supported on active charcoal and the major product is glyceric acid (55% at 90% conversion). 

Au-Pt bimetallic catalysts have a 72% selectivity to glyceric acid at 50% conversion and 31% 

at 100% conversion.
34

 It has been found 
35

 that basic reaction conditions are essential for the 

gold catalysis, since the initial step of the oxidation and the dehydrogenation of glycerol 

cannot proceed in the absence of a base. In the presence of a base, the H
+
 is readily abstracted 

from one of the primary hydroxy groups to form glyceric acid. The oxidation products of 

glycerol can be converted into products for polymers or biodegradable emulsifiers and 

glyceric acid can be used for skin disorders. 
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The oxidation of benzyl alcohol in air, in a vapour phase process, gave a high selectivity and 

yield of benzaldehyde using 1% Au-Cu/SiO2.
9
 One of the most efficient catalysts for this 

reaction was a AuCu/SiO2 sample with AuCu ratio of 4 : 1 by weight (approximately 4 : 3 

molar ratio) and a total metal loading of 1% which gave a benzaldehyde yield of 98%. The 

catalysts were made by incipient wetness impregnation of SiO2 with HAuCl4 and CuCl2 and 

reduced with NaBH4. Chen and co workers have also investigated the oxidation of benzyl 

alcohol but without the presence of a solvent.
36

 The study revealed that the Au–Pd bimetallic 

catalysts had an enhanced catalytic performance compared to the Au and Pd monometallic 

catalysts. The highest turnover frequency of 8667 h
−1

 was achieved over a bimetallic catalyst 

with Au:Pd molar ratio of 1:5. It was also suggested that a synergetic effect between Au and 

Pd nanoclusters could have accounted for the better catalytic activity of bimetallic catalysts. 

 

 

 

5.3.2 Results 

 

5.3.2.1 Glycerol Oxidation 

 

 
 

Figure 5.2 Scheme of possible pathways from glycerol starting material 
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From Table 3 (appendix) it can be deduced that CuAu/SiO2 catalyst prepared by Sinfelt 

treatment had a conversion to glycerol that increased from 2.01 to 2.36% after 3h but then 

decreases back to 2.05% at the end of the reaction. The oxalic acid selectivity increases from 

0.57% after 30 mins to 0.97% after 4 h. Formic acid selectivity also increases from 8.6 to 

11% after 4h. Glyceric acid is the product observed with highest selectivity for glycerol 

oxidation using this catalyst (65-66%) followed by glycolic acid (21%-24%). 

The CuAu/SiO2 catalyst directly calcined gave a glycerol conversion that was lower than the 

previous Sinfelt sample and dropped from 1.77 to 1.46% after 4 h. Oxalic acid selectivity 

increased from 0.77 to 0.81% and formic acid increased from 4.37 to 13.75 % after 4 h. 

Glyceric acid was the most selective product for this reaction and had the highest selectivity 

after 2 h (65%). 

 

Figure 5.3  Glycerol oxidation at 60 
o
C ( green line) and 100 

o
C (red line) with Au/SiO2 

catalyst  sol catalyst (C978102) 

 

 

A monometallic Au/SiO2 catalyst made by a sol immobilisation method was tested for 

glycerol oxidation (Figure 5.3). This reaction was carried out at two temperatures: 60 and 100 

o
C for 4 h. Both reaction temperatures formed a glycerol conversion of nearly 50% after 4 

hours, although the Au/SiO2 catalyst tested at the lower temperature reached higher 
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conversions quicker. Therefore, when the catalyst was made via this route, its activity was 

enhanced, although it didn’t perform as well as platinum catalysts previously studied by 

others.
35

 The sol immobilisation technique is an effective way of controlling the size of the 

nano particles 
37

 and this factor could be the reason this catalyst is much more active than the 

catalysts made by impregnation independent of calcination or reduction treatments.  

 

 

5.3.2.2 Benzyl Alcohol Oxidation 

 

 

 
 

Figure 5.4 Benzyl alcohol conversion with Au/SiO2 sol catalyst (C978102) 

 

The Au/SiO2 catalyst prepared by sol immobilisation, was also analysed for benzyl alcohol 

oxidation (Figure 5.4). After 3 hours a conversion of 2.5% was acheived which is low 

compared to AuCu/SiO2 
38

 and Au/Pd catalysts.
39
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5.4 Discussion  
 

A few preliminary reactions were chosen to be investigated using selected catalysts. Catalysts 

tested for hydrogen peroxide synthesis showed low activity, but there was a trend observed. 

The more Cu rich the bimetallic catalysts, the more active the catalyst was towards formation 

of hydrogen peroxide. The catalyst made by decomposition precipitation was the least active. 

However, in the hydrogenation reactions for hydrogen peroxide, the opposite was true. The 

Au/SiO2 catalyst prepared by deposition precipitation had the highest activity for the 

decomposition of hydrogen peroxide. The Cu3Au/SiO2 catalyst which showed the best 

performance during hydrogen peroxide synthesis had one of the lowest productivities for 

hydrogenation. This trend was expected and has been suggested previously. 

The oxidation of glycerol was tested for AuCu/SiO2 catalysts directly calcined or treated by 

Sinfelt thermal conditions. Both these catalysts showed low glycerol conversion and the 

major products were glyceric and glycolic acid. However, an Au/SiO2 catalyst, prepared by a 

sol immobilisation method, was also analysed for this reaction. At temperatures of 60 
o
C and 

100 
o
C, conversions of almost 50% were observed after 4 hours. This is very promising, as it 

shows that when a catalyst is made in an alternative way, the Au particles perform differently 

to those made by a simple impregnation method. From the characterisation data in Chapter 3, 

SEM analysis didn’t appear to show many visible metal particles, which suggested the 

presence of smaller particles that could be detected by TEM analysis. However, both the 

CuAu/SiO2 catalysts, either calcined directly or treated by the Sinfelt method (reduction at 

315 
o
C in H2/Ar followed by calcination at 676 

o
C for 15 h in air), formed large clusters of 

gold particles, observed by SEM analysis. For the CuAu/SiO2 catalyst treated by the Sinfelt 

procedure, the average particle size was 13 nm, which is larger than would be expected for a 

catalyst prepared by a sol immobilisation method. The sol immobilisation method has been 

compared with deposition precipitation for Au/TiO2 catalysts and tested for glycerol 



310 

 

oxidation.
40

 That study revealed that the reduction method and the use of protective agents 

(PVA) affected the catalytic performance. The highest activity was observed for an Au/TiO2 

catalyst with a low temperature reduction that was prepared by deposition precipitation. It has 

been shown by Porta et al. 
41

 that the sol preparation method can form particles, with particle 

size ranges between 4 and 6 nm, and can possess active sites that are active for total 

oxidation. However, the impregnation method gave a better catalytic performance for 

propene oxidation (conversion of 33–32% for impregnation method versus 17% for sol 

preparation method). The group stated that a reason for the lower activity, when using sol 

immobilisation, could be due to the presence of PVA or boron derivatives poisoning the 

active sites for the reaction. A study on the particle size effect on glycerol oxidation has been 

reported 
37

 and an increase in the particle size from 2 to 16 nm decreased the activity of this 

reaction. Therefore, a possible explanation for the increased activity for glycerol oxidation 

with a sol immobilisation catalyst may be due to the presence of smaller particles. 

Benzyl alcohol oxidation was also tested using this Au/SiO2 catalyst, but showed very little 

activity towards benzyladehyde reaching a conversion of 2.5% after 3 hours. Benzyl alcohol 

oxidation has been previously studied using an Au supported catalyst prepared by sol 

immobilisation.
42

 The technique formed Au particles that were small in size with narrow size 

distribution, which resulted in a high selectivity and activity for benzyl alcohol oxidation. 

They concluded that the type of support and heat pre-treatment affected the performance. The 

best activity was seen when using Au/carbon, and heat treating this catalyst beforehand 

enhanced its activity. Therefore, a reason for the Au/SiO2 catalyst not showing a high activity 

towards benzylaldehyde could be due to the silica support used and the absence of any heat 

pre-treatment. 

The preliminary studies in this thesis have shown that monometallic and bimetallic 

CuAu/SiO2 catalysts aren’t very active for hydrogen peroxide synthesis and hydrogenation. 



311 

 

However, a trend was observed with the catalysts presented. For hydrogen peroxide 

synthesis, the most copper rich (Cu3Au/SiO2) catalyst was the most active, whilst the 

Au/SiO2 sample prepared by deposition precipitation was the least active. The opposite 

pattern was observed for the hydrogenation reactions, since the Au/SiO2 catalyst showed the 

best performance, whereas the copper rich (Cu3Au/SiO2) catalyst had one of the lowest 

performances for this reaction. Glycerol oxidation and benzyl oxidation were tested using a 

Au/SiO2 catalyst prepared by the sol immobilisation method. Benzyl alcohol performance 

was low with this catalyst but, for glycerol oxidation, this catalyst reached a reasonable 

conversion of nearly 50% after 4 hours at 60 
o
C. Out of all the reactions investigated, the 

Au/SiO2 sol catalyst had the best potential. Bimetallic Au/Pd catalysts have been tested for 

glycerol oxidation, prepared by sol immobilisation.
37,43

 The use of bimetallic catalysts, 

compared to monometallic samples, increased the activity. Therefore, it would be beneficial 

for the CuAu/SiO2 bimetallic catalyst, prepared by sol immobilisation, to be tested for this 

reaction. 

 

5.5 Conclusion 

Hydrogen peroxide synthesis and hydrogenation reactions were chosen to test a select few 

catalysts. Both reactions showed low activity overall but there was a trend observed between 

the two reactions. The Au/SiO2 catalyst prepared by deposition precipitation was the least 

active for hydrogen peroxide synthesis but had the highest performance when tested for 

hydrogenation. However, the CuAu/SiO2 copper rich catalyst had the best activity towards 

hydrogen peroxide synthesis and, therefore, had the lowest activity for the hydrogenation 

reaction.  

Benzyl oxidation was studied on the Au/SiO2 catalyst prepared by sol immobilisation but 

unfortunately showed a low activity (2.5% conversion after 3 hours) towards benzylaldeyhde. 
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This reaction had been previously tested on catalysts made by this technique, 
42

 but other 

studies used different supports and pre-treatments which could have influenced the catalyst’s 

performance. 

Glycerol oxidation was used to test the activity for a few of the CuAu/SiO2 catalysts, either 

prepared by direct calcination or the Sinfelt treatment. Similarly, these catalysts showed little 

activity. However, the Au/SiO2 catalyst, made by the sol immobilisation method, was also 

tested for this reaction and, at temperatures of 60 
o
C and 100 

o
C, a conversion of ~ 50% was 

observed after 4 hours. The performance of this catalyst has potential, as the sol 

immobilisation technique can form small particles in narrow size ranges and has already been 

used in other glycerol oxidation studies.
41
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Chapter 6: Conclusions and future work 

6.0 Conclusions 

Copper and gold are metals that have had many uses in catalysis. Heterogeneous copper 

catalysts are well known hydrogenation and oxidation catalysts. The use of nanoalloys in 

catalysis is a rapidly expanding field. There has been immense interest in the use of supported 

gold nanoparticles as catalysts and bimetallic catalysts, containing gold in combination with 

other metals, represent an emerging field of research. Therefore, the aim of this thesis was to 

try and determine the structure and nature of the gold and copper catalysts prepared, and to 

reveal any promising catalytic performance for propene oxidation. 

Monometallic and bimetallic AuCu/SiO2 catalysts were prepared, mainly by an impregnation 

method. Other techniques, such as deposition precipitation, high dispersion, sol 

immobilisation and sequential procedures, involving the combination of two preparation 

pathways, have been utilised. These catalysts were characterised by several techniques, such 

as XRD, BET, XPS, TEM, SEM and UV visible spectroscopy to try to determine the 

structure of the catalysts. The catalysts were tested for propene oxidation in the presence and 

absence of hydrogen to investigate their activity and selectivity towards acrolein and propene 

oxide. Other preliminary reactions, such as hydrogen peroxide synthesis and glycerol 

oxidation, were also analysed for the purpose of suggesting other potential reactions that 

could be further investigated. 

Different thermal treatments of the dried copper and gold precursors on the silica were 

studied. The different thermal treatments gave catalysts with significantly different structures 

and properties. Direct calcination gave a CuAu/SiO2 catalyst which contained very large gold 

ensembles with minimal interaction with the copper particles. The presence of copper-gold 

particles, containing some copper with copper (II) ions on the silica support, was also 

observed. EGA analysis showed copper nitrate precursor decomposed to copper oxide. These 
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catalysts generally had a low activity with a selectivity towards acrolein, CO2 and propene 

oxide.  A hydrogen reduction led to the formation of copper-gold alloy particles. The 

difference from the direct calcination procedure was that the copper reduced to copper metal 

straight after decomposition, followed by interaction with reduced gold.  Successive high 

temperature calcination in air (at 676 
o
C for 15 h) resulted in the de-alloying of the copper 

from the gold. There was some evidence that the presence of gold in the catalyst stabilised 

the formation of Cu
+
 against further oxidation. These catalysts showed moderate activity but 

were selective to acrolein, especially in the presence of hydrogen in the reactor feed.  The 

conversion of the catalysts for propene oxidation was greatly altered in the presence or 

absence of hydrogen. With the addition of hydrogen, the conversion was greatly enhanced. 

The presence of hydrogen increased the catalytic activity, possibly because the surface 

coverage of oxygen species increased. The selectivity towards different products was 

probably due to the presence of different oxidising species involved. 

 The most active CuAu/SiO2 catalyst was made by a sequential method (Figure 4.15), which 

involved copper being deposited on the silica support by high dispersion, followed by gold 

deposited by deposition precipitation. TEM analysis suggested the presence of copper-gold 

alloy particles. The above characterisation and catalytic activity showed that this method had 

the most promise because the fresh catalyst even before thermal treatment had a 1% 

conversion at 320 
o
C. A thermal treatment, that involved a reduction in H2/Ar for 2 h at 315 

o
C followed by a high temperature calcination at 676 

o
C for 15 h in air (Sinfelt method), 

produced a propene conversion of nearly 6% and 320 
o
C in the presence of hydrogen. This 

catalyst had a high selectivity towards acrolein and carbon dioxide.  

Another interesting feature of the reduced and calcined catalysts were there stability, as there 

was little hysteresis observed, with the reaction temperature systematically increased and 

decreased. In most cases, propene oxide was only detected at lower temperatures (200 to 260 
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o
C) and, if it was observed at higher temperatures, it only had a low selectivity. This could be 

because of the fundamental instability of propene oxide. When the temperature was 

increased, the propene conversion also increased, as might be expected, but it produced less 

selectivity towards the epoxidation of propene and favoured acrolein formation. 

The different products formed for propene oxidation in this thesis were a consequence of 

different surface reactions. Acrolein, propene oxide and carbon dioxide were the major 

products in this study. Acrolein was a result of C-H cleavage, whereas propene oxide was 

formed by the activiation of the C=C bond. Carbon dioxide was formed by the total oxidation 

of propene and required both the C-C bonds to be broken without the release of any 

intermediates. Catalysts that had high selectivity towards carbon dioxide, like the Au/SiO2 

catalyst reduced with NaBH4 in the absence of hydrogen for propene oxidation, suggested 

that the propene was too strongly bound to the surface of the catalyst. The propene oxidation 

experiments carried out showed no hydrogenation reaction products, like propane, and the 

changes in the selectivity confirmed that the effect of different preparation techniques 

affected the properties of the active sites. Ethanal and acetone were the only other products 

produced and could have been formed as a result of a series of reactions. 

Several active sites were observed in this study which could have accounted for different 

selectivities and activities towards propene oxidation. One of the active sites suggested was a 

bimetallic CuAu site which was very active towards propene oxidation but tended to form a 

variety of products. The activity was markedly improved by co-feeding hydrogen in the 

reactor feed. The reason for this was unclear but it could have been associated with changes 

in the reaction mechanism. 

Preliminary investigation of the use of CuAu catalysts for other reactions was also discussed. 

Monometallic Au and AuCu/SiO2 bimetallic catalysts were analysed for hydrogen peroxide 

synthesis, but only gave a low activity when compared to the conventional Au/Pd catalysts 
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studied. Au/SiO2 catalysts prepared by sol immobilisation were tested for glycerol and benzyl 

alcohol oxidation. This procedure is well known for forming small particles that have a 

narrow size distribution. A conversion of almost 50% was achieved after 4 hours and its 

activity appeared to be unaffected by the reaction temperature. At both temperatures (60 
o
C 

and 100 
o
C), the main selectivity was towards glyceric acid. Benzyl alcohol oxidation was 

also investigated and showed minimal activity but this could have been due to the support 

used and the absence of any thermal treatment. 

 

6.1 Future work 

In this section, studies of potential interest for future work are outlined to show what areas 

could be more extensively explored. In addition, new experiments are discussed that could 

improve the performance of the catalysts studied in this thesis. 

The characterisation techniques - temperature programmed reduction (TPR) and X-ray 

diffraction (XRD) - should be carried out before and after reduction for the AuCu/SiO2 

catalyst, made by sol immobilisation, to get a more in depth understanding of the structure, as 

this sample showed a promising performance for propene oxidation. Testing the bimetallic 

AuCu/SiO2 catalysts made by sol immobilisation, with and without hydrogen, would be 

useful for the propene oxidation study to obtain a complete set of this data. It would also be 

interesting to investigate the effect on selectivity and conversion of the AuCu/SiO2 bimetallic 

catalysts for propene oxidation, when the gas space hourly velocity of the reaction is varied. 

For our catalytic experiments, a gas space hourly velocity of 25,500 h
-1

 was used that was 

higher than many previous propene oxidation studies, 
1,2  

which normally used a GSHV 

between  9000-24000 h
-1

 and resulted in low propene conversions.
 
These studies could help 

to optimize the reaction conditions for propene epoxidation. The reaction conditions are a key 

factor that could affect the function of a catalyst, as a potentially good catalyst with 
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unsuitable reaction conditions could lead to a poor selectivity towards propene oxide or 

acrolein. Performing experiments at iso-conversion would be beneficial to our investigation 

to determine the effect of temperature on the selectivity of the catalysts at a constant 

conversion. Studying the effect of calcination temperature on the activity for propene 

oxidation could be further explored since, in this thesis, only direct calcination at 400 
o
C for 2 

h was carried out. Previously, Llorca and co-workers
3
 prepared an AuCu/TiO2 catalyst from 

thiol-capped nanoparticles and analysed it for propene oxidation. The catalysts were calcined 

for 2 h and the effect of thermal treatment was studied, by varying the temperatures between 

300-600 
o
C. They found that high yields of propene oxide could be formed when the catalysts 

were calcined at 400 
o
C. At calcination temperatures above 400 

o
C, alloy particles were seen 

that were covered with oxidised Cu species, which decreased their activity for propene 

oxidation.  

Duplicate experiments were not performed in this study, due to time constraints. Therefore, 

the accuracy of the data collected in the absence and presence of hydrogen did have 

limitations. It would be beneficial for future research to carry out more propene oxidation 

experiments with all the catalysts mentioned in this thesis to obtain more data to help 

understand the way the catalysts perform more fully. 

Hydrogen and oxygen were used for our propene oxidation experiments but it has been 

shown
1
 that N2O can be an effective oxidant for this reaction. Therefore, it might be useful to 

try and use N2O to explore the performance and selectivity of the catalysts with different 

oxidants. If the use of N2O showed equivalent activity when using our catalysts (propene 

conversion of 4.3% at 300 
o
C), this would be extremely promising, as N2O is only converted 

to N2 which is environmentally benign.  

Preparation of more CuAu/SiO2 catalysts made by alternative routes would be an idea 

because the novel Sinfelt method that was used in this study produced propene oxide and 
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acrolein. It also revealed the need for a reduction step in the catalyst’s formation in order to 

improve its performance. A sol-gel technique has been used by Zhu to prepare CuO-SiO2 

catalysts.
4
 Propene oxidation was carried out and showed a selectivity of 78% towards 

propene oxide in an oxygen rich environment, without the need for pre-reduction. Propene 

oxidation has been studied by Lambert and co-workers 
2
 and who prepared a Cu/SiO2 catalyst 

by a microemulsion process. This formed a catalyst that had good selectivity and conversion 

at low temperatures for propene oxidation, without the need for hydrogen in the co-feed (at 

225 
o
C 53% selective to propene oxide and conversion of 0.25%).  Such a study on different 

preparation methods could help to establish a general relationship between the catalyst’s 

structure and its performance for propene oxidation. Preparing Cu/SiO2 and AuCu/SiO2 

catalysts in the above ways could potentially produce an active catalyst. 

One of the results from the present investigation for monometallic Cu and Au and bimetallic 

CuAu/SiO2 catalysts, was that a reduction stage was vital for an effective catalyst. However, 

whilst this type of reduction method was not investigated greatly, and this could be important 

factor in finding the way of reducing a catalyst and revealing its catalytic potential. Drying 

the catalyst in air at 60 °C for 12 h and a reduction at 200 °C in 5%H2/He for 1 hour 
2 

is an 

example of a different reduction procedure than was used in this study. 

Another worthwhile investigation might be to try and establish the factors which are 

responsible for limiting the selectivity to partial oxidation products, as the conversion 

increases. Some factors have already been studied in heterogeneous reactions but more 

studies in this area would be beneficial for progress in the field of selective oxidation. More 

work on indentifying the active sites for selective oxidation is needed, in order to produce 

more efficient catalysts with more selective active sites. 

Silica was the only support used in our study but the use of other supports, such as TiO2 or 

carbon would be interesting as a comparison. Previous investigations for propene oxidation 
3
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have mainly used TiO2, although other studies have also used supports such as Ti-doped high 

surface area SiO2 (Ti-SiO2), and micro- and meso-porous titanosilicates (TS-1 and Ti-MCM). 

Comparing the catalytic activity of CuAu/SiO2 with copper-gold catalysts, using these other 

supports, could show the dependence on the choice of support for the selectivity and 

conversion for propene oxidation. It might also help to look at the support effect and the 

interface effect between Cu and Au nanoparticles. 

An extended X-ray absorption fine structure (EXAFS) study on copper-gold alloys has been  

by Maurizio et al. 
5
  They investigated the correlation between crystalline structure and 

interatomic distances for each pair of atomic species (Au–Cu, Au–Au, Cu–Cu), in order to 

detect a possible deviation from the virtual crystal approximation (VCA). The VCA is a 

tractable way of studying configurationally disordered systems; traditionally, the potentials 

which represent atoms of two or more elements are averaged into a composite atomic 

potential. Semiconductors and ferroelectric materials are two important areas in which small 

changes in atomic composition dramatically change material properties and the VCA 

theoretical approach has been formulated to carryout studies in this scientific area. 

Performing such an EXAFS study on the AuCu/SiO2 catalysts in this study might give more 

structural and chemical information about the alloys, and why certain catalysts perform better 

than others. 

The catalytic activity for propene oxidation was the main focus of the research reported in 

this thesis, although preliminary reactions were considered. Most of these reactions, apart 

from the activity of the sol immobilisation catalyst for glycerol oxidation, didn’t show any 

remarkable performance and were therefore not studied any further. However, supported gold 

and copper catalysts have previously been studied for CO oxidation.
6,7

 In a report by Zhu 
6
 

catalysts were synthesised by deposition precipitation and they proved that the Au-Cu/TiO2 

nanotubes performed better than the Au/TiO2 nanotubes. Therefore, the possibility of 
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carrying out experiments for CO oxidation could reveal another potential direction to pursue, 

especially as this reaction is used in a wide range of applications, e.g the automobile industry. 

Gold-copper alloys have great capability as redox catalysts and, in this thesis, new ground has 

been covered to show this potential. 
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Appendix 

 
Catalyst Code Composition Preparation 

Method 

Calcination 

Conditions 

C97802B Cu(Cl)2/SiO2 Impregnation 400 
o
C 2h in air 

C97802D Cu(NO3)2/SiO2 Impregnation 400 
o
C 2h in air 

CF09 Au/SiO2 Impregnation 400 
o
C 2h in H2/Ar 

C97815B 

(1) Cu(Cl)2/SiO2 Impregnation 400 
o
C in H2 

C97815B 

(2) Cu(Cl)2/SiO2 Impregnation 400 
o
C in N2 

C97815B 

(3) Cu(Cl)2/SiO2 Impregnation 400 
o
C in air 

C97819A Au:Cu/SiO2 1:1 

Co-

Impregnation 400 
o
C 2h in air 

C97819B Au:Cu/SiO2 3:1 

Co-

impregnation 400
o
C 2h in air 

C97819C Au:Cu/SiO2 1:3 

Co-

Impregnation 400
o
C 2h in air 

C97828 Cu(NO3)2/SiO2 Precipitation 400
o
C 2h in air 

C97836 HAuCl4/SIO2 

Deposition 

precipitation 500
o
C 2h in air 

CF128 Cu/SiO2 High 

dispersion 

Calcined 400
o
C 2hrs in H2/Ar 

C97863 A 1:1 

Cu(Cl)Au/SiO2 

Co-

impregnation 

Calcined 400
o
C 2h in air 

C97863B 1:3 

Cu(Cl)Au/SiO2 

Co-

impregnation 

Calcined 400
o
C 2h in air 

C97863C 3:1 

Cu(Cl)Au/SiO2 

Co-

impregnation 

Calcined 400
o
C 2h in air 

C97865A 1:1 

Cu(Cl)Au/SiO2 

Co-

impregnation 

Reduced 315
o
C 2h and 

calcined 676
o
C for 15h in air 

C97865B 1:3 

Cu(Cl)Au/SiO2 

Co-

impregnation 

Reduced 315
o
C 2h and 

calcined 676
o
C for 15h in air 

C97865C 3:1 

Cu(Cl)Au/SiO2 

Co-

impregnation 

Reduced 315
o
C 2h and 

calcined 676
o
C for 15h in air 

C978/80A 1:1 

Cu(NO3)2Au/SiO2 

Co-

impregnation 

Reduced in NaBH4 

C987/80B 1:3 Co- Reduced in NaBH4 
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Cu(NO3)2Au/SiO2 impregnation 

C978/80C 3:1 

Cu(NO3)2Au/SiO2 

Co-

impregnation 

Reduced in NaBH4 

C978/80D Au/SiO2 Impregnation Reduced in NaBH4 

C978/80E Cu(NO3)2/SiO2 Impregnation Reduced in NaBH4 

C978/87 1:1 

Cu(NO3)2Au/SiO2 

HDC + Au DP 

prep 

400
o
C 2h in air 

C978/90 1:1 

Cu(NO3)2Au/SiO2 

HDC + Au IW 

impregnation 

400
o
C 2h in air 

C978/93A 1:1 

Cu(NO3)2Au/SiO2 

Co-

impregnation 

Reduced in H2 

C978/93B 1:3 

Cu(NO3)2Au/SiO2 

Co-

impregnation 

Reduced in H2 

C987/93C 3:1 

Cu(NO3)2Au/SiO2 

Co-

impregnation 

Reduced in H2 

C978/93D Au/SiO2 Impregnation Reduced in H2 

C978/93E Cu(NO3)2/SiO2 Impregnation Reduced in H2 

C978/99A 1:1 

Cu(Cl)Au/SiO2 

Co-

impregnation 

Reduced in H2 

C978/99B 1:3 

Cu(Cl)Au/SiO2 

Co-

impregnation 

Reduced in H2 

C978/99C 3:1 

Cu(Cl)Au/SiO2 

Co-

impregnation 

Reduced in H2 

C978/99D Cu(Cl)/SiO2 Impregnation Reduced in H2 

C978/102 Au/SiO2 Sol 

immobilisation 

Dried at 110
o
C 

C978/103 CuAu/SiO2 Sol 

immobilisation 

Dried 110
o
C 

C978/101A 1:1 

Cu(NO3)2Au/SiO2 

Co-

impregnation 

Reduced 315
o
C 2h and 

calcined 676
o
C for 15h in air 

C978/101B 1:3 

Cu(NO3)2Au/SiO2 

Co-

impregnation 

Reduced 315
o
C 2h and 

calcined 676
o
C for 15h in air 

C978/101C 3:1 

Cu(NO3)2Au/SiO2 

Co-

impregnation 

Reduced 315
o
C 2h and 

calcined 676
o
C for 15h in air 

C978/101D Au/SiO2 Impregnation Reduced 315
o
C 2h and 

calcined 676
o
C for 15h in air 

C978/101E Cu(NO3)2/SiO2 Impregnation Reduced 315
o
C 2h and 

calcined 676
o
C for 15h in air 

 

Table 1 List of catalyst preparations with catalyst codes. 
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Catalyst 

Composition 

Uncalcined/ 

Calcined Preparation method 
BET Surface 

Area (m
2
/g

-1
) 

Au/SiO2 Calcined Deposition 

precipitation 

440 

CuAu/SiO2  (1:1) Calcined Impregnation 328 

CuAu/SiO2 (1:3) Calcined Impregnation 333 

CuAu/SiO2 (3:1) Calcined Impregnation 311 

Au/SiO2 Calcined Impregnation 327 

Cu/SiO2 Uncalcined Impregnation (nitrate) 247 

Cu/SiO2 Calcined Impregnation (nitrate) 281 

Cu/SiO2 Uncalcined Impregnation 

(chloride) 

275 

Cu/SiO2 Uncalcined Precipitation 297 

Cu/SiO2 Calcined in H2 Impregnation 302 

Cu/SiO2 Calcined in N2 Impregnation 310 

Cu/SiO2 Calcined in air Impregnation 294 

1:1 CuAu/SiO2 Calcined Co-impregnation 

(chloride) 

302 

1:3 CuAu/SiO2 Calcined Co-impregnation 

(chloride) 

299 

3:1 CuAu/SiO2 Calcined Co-impregnation 

(chloride) 

283 

1:1 CuAu/SiO2 Calcined Co -impregnation  

(nitrate) 

269 

1:3 CuAu/SiO2 Calcined Co-impregnation 

 (nitrate) 

296 

3:1 CuAu/SiO2 Calcined Co-impregnation 

 (nitrate) 

294 

1:1 CuAu/SiO2 Sinfelt (reduced 

only) 

Co-impregnation 

 (nitrate precursor) 

265 

1:1 CuAu/SiO2 Sinfelt 

 (reduced and 

calcined) 

Co-impregnation  

(nitrate precursor) 

300 

1:3 CuAu/SiO2 Sinfelt (reduced 

only) 

Co-impregnation  

(nitrate precursor) 

268 
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1:3 CuAu/SiO2 Sinfelt 

 (reduced and 

calcined) 

Co-impregnation  

(nitrate precursor) 

306 

3:1 CuAu/SiO2 Sinfelt (reduced 

only) 

Co-impregnation  

(nitrate precursor) 

294 

3:1 CuAu/SiO2 Sinfelt 

 (reduced and 

calcined) 

Co-impregnation  

(nitrate precursor) 

283 

Cu/SiO2 uncalcined High dispersion 173 

 

Table 2 BET surface areas of catalysts 

 

 

 

 

Catalyst Au wt% Cu wt% 

C97819A 4.10 1.19 

C97819B 4.71 0.46 

C97819C 3.45 2.82 

C97809 5.42  

C97802D 5.02  

C97836 0.05  

C978 15B(1)  3.96 

C97815B(2)  2.47 

C97815B(3)  4.56 

C97828  3.03 

CF02B  4.21 

CF128  3.99 

C978 63A 3.1 1.3 

C97863B 3.5 0.56 
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C978 63C 1.8 2.3 

C978 65A 4.04 1.30 

C978 65B 4.33 0.52 

C978 65C 2.65 2.53 

C978 80A 2.98 0.63 

C978 80B 4.16 0.02 

C978 80C 2.23 0.49 

C978 80D 2.47  

C978 80E  1.69 

C978 93A 3.50 1.15 

C978 93B 5.15 0.48 

C978 93C 2.43 2.20 

C978 93D 5.71  

C978 93E  4.78 

C978 64A 3.01 1.42 

C97864B 5.23 1.59 

C978 87 2.36 1.48 

C978 90 3.35 1.45 

C978 101A 3.39 0.66 

C978101B 3.83 0.01 

C978 101C 2.12 0.52 

C978 101D 4.07  

C978 101E  2.23 

 

Table 3 ICP analysis 
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Figure 7 : CF09

00-005-0628 (*) - Halite, syn - NaCl - Y: 8.34 % - d x by: 1. - WL: 1.5406 - Cubic - a 5.64020 - b 5.64020 - c 5.64020 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm-3m (225) - 4 - 179.425 - I/Ic PDF 4.4 - F1

00-004-0784 (*) - Gold, syn - Au - Y: 64.59 % - d x by: 1. - WL: 1.5406 - Cubic - a 4.07860 - b 4.07860 - c 4.07860 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm-3m (225) - 4 - 67.8474 - F9=128(0.0078,9)

Operations: Background 0.000,1.000 | Import

CF09 - File: A0802807.raw - Type: 2Th/Th locked - Start: 10.000 ° - End: 90.000 ° - Step: 0.020 ° - Step time: 4.8 s - Temp.: 27 °C - Time Started: 88 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 mm - Y
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Figure 1 Au/SiO2 (C97836) XRD 

 

 
Figure 1 : C97815B(1)

00-005-0667 (*) - Cuprite, syn - Cu2+1O - Y: 3.13 % - d x by: 1. - WL: 1.5406 - Cubic - a 4.26960 - b 4.26960 - c 4.26960 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pn-3m (224) - 2 - 77.8326 - F13= 56(0.0117,2

00-004-0836 (*) - Copper, syn - Cu - Y: 35.42 % - d x by: 1. - WL: 1.5406 - Cubic - a 3.61500 - b 3.61500 - c 3.61500 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm-3m (225) - 4 - 47.2416 - F8= 89(0.0112,

Operations: Background 0.000,1.000 | Import

C97815B(1) - File: A0802801.raw - Type: 2Th/Th locked - Start: 10.000 ° - End: 90.000 ° - Step: 0.020 ° - Step time: 4.8 s - Temp.: 27 °C - Time Started: 93 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 
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Figure 2 C97815B1 Cu/SiO2 

 



330 

 

Figure 2 : C97815B(2)

00-023-1063 (I) - Copper Chloride Hydroxide - Cu(OH)Cl - Y: 5.22 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 6.12700 - b 6.67100 - c 5.55500 - alpha 90.000 - beta 114.880 - gamma 90.000 - Primitive - P21/c (14) - 4 - 205.978

Operations: Background 0.000,1.000 | Import

C97815B(2) - File: A0802802.raw - Type: 2Th/Th locked - Start: 10.000 ° - End: 90.000 ° - Step: 0.020 ° - Step time: 4.8 s - Temp.: 27 °C - Time Started: 87 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 
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Figure 3 C97815B2 Cu/SiO2 

 

 

Figure 1 : C97815B(1)

00-005-0667 (*) - Cuprite, syn - Cu2+1O - Y: 3.13 % - d x by: 1. - WL: 1.5406 - Cubic - a 4.26960 - b 4.26960 - c 4.26960 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pn-3m (224) - 2 - 77.8326 - F13= 56(0.0117,2

00-004-0836 (*) - Copper, syn - Cu - Y: 35.42 % - d x by: 1. - WL: 1.5406 - Cubic - a 3.61500 - b 3.61500 - c 3.61500 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm-3m (225) - 4 - 47.2416 - F8= 89(0.0112,

Operations: Background 0.000,1.000 | Import

C97815B(1) - File: A0802801.raw - Type: 2Th/Th locked - Start: 10.000 ° - End: 90.000 ° - Step: 0.020 ° - Step time: 4.8 s - Temp.: 27 °C - Time Started: 93 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 
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Figure 4 C97815B1 Cu/SiO2 
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Figure 4 : C97828

00-048-1548 (*) - Tenorite, syn - CuO - Y: 4.18 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 4.68830 - b 3.42290 - c 5.13190 - alpha 90.000 - beta 99.506 - gamma 90.000 - Base-centered - C2/c (15) - 4 - 81.2237 - F30= 66(0.01

Operations: Background 0.000,1.000 | Import

C97828 - File: A0802804.raw - Type: 2Th/Th locked - Start: 10.000 ° - End: 90.000 ° - Step: 0.020 ° - Step time: 4.8 s - Temp.: 27 °C - Time Started: 88 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 mm 
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Figure 5 Cu/SiO2 precipitation 
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Figure 6 Silica TPR profile 

 



332 

 

 

-350

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400 500 600 700

Sample temp oC

D
e

te
c

to
r 

s
ig

n
a

l 
m

V

 
Figure 7 TPR profile of Au/SiO2 DP (C97836) 
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Figure 8 TPR profile of Au/SiO2 IMP (C97809) 
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Figure 9 TPR profile of Cu/SiO2 IMP (C97802D) 
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Figure 10 TPR profile of Cu/SiO2 High dispersion (Cf128) 
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Figure 11 TPR 1 profile of AuCu/SiO2 (C97819C) 

 

 

 
Figure 12 TPO profile AuCu/SiO2 (C97819C) 
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Figure 13 TPR 2 profile AuCu/SiO2 (C97819C) 
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Figure  14  CuAu/SiO2 made by HDC Cu + Au IW (C978 90A) 
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Figure 15 EDX analysis for Cu3Au/SiO2 catalyst (C97819C) with direct calcinations in air. 

 

 

XPS data 

 

Heat 

Treatment 

Cu/Au molar ratio 

Theory ICP XPS 

Fresh After use in propene 

oxidation 

Without H2 

addition 

With H2 

addition 

Calcination 0.33 0.34 0.83 2.5 11.4 

1 0.97 3.8 0.66 3.2 

3 2.66 6.4 10.1 12.1 

Reduction 0.33 0.36 3.5 0.21 0.45 

1 0.95 3.3 5.69 5.0 

3 2.79 22.4 6.52 27.1 

Reduction 

and 

Calcination 

0.33 0.29 0.37 1.4 2.3 

1 1.02 1.6 4.4 1.1 

3 2.81 7.5 8.0 4.2 

 

 Table 4 Analysis of Cu/Au molar ratio by ICP and XPS before and after propene oxidation 

experiments. 
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XPS no. Au:Cu Calc Binding energy             

   
Cu(2p3/2) Au(4f7/2) Cu(2p3/2)/ Au(4f)/ Au(4f)/ C(1s)/ O/Si Au/Cu 

          Si(2p) Si(2p) Cu(2p) Si(2p)   molar 

1 0/1 H2 932.57 
 

0.036 
  

0.10 2.26 
 2 0/1 N2 933.32 

 
0.106 

  
0.25 2.26 

 3 0/1 air 933.19 
 

0.132 
  

0.28 2.21 
 4 1/1 air 933.92 83.64 0.047 0.023 0.49 0.16 2.27 0.41 

5 3/1 air weak 83.65 0.025 0.010 0.39 0.28 2.32 0.33 

6 1/3 air 933.87 83.95 0.064 0.023 0.36 0.21 2.27 0.30 

7 0/1 air 933.37 
 

0.140 
  

0.21 2.27 
 

8 0/1 air 
932.93 
935.23 

 
0.585 

  
0.27 2.40 

 9 1/0 air   weak   0.003   0.18 2.31   

 

Table 5 XPS data for figure 3.63 in chapter 3 
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EDX data 

         

                 

    

Figure 16 (i) SEM image Cu and Au particles, EDX maps of: (ii) Oxygen (iii) Cu  (iv) Si (v) 

Au 
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Figure 17 (C978 90) HDC Cu + Au IW (i) SEM image Cu and Au particles, EDX maps of: 

(ii) Cu (iii) Au  (iv) Si 
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Figure 18 C978 99A 1:1 Cu:Au Cu chloride reduced in H2 (i) SEM image Cu and Au 

particles, EDX maps of: (ii) Oxygen (iii) Si  (iv) Cu (v) Au 
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Figure 19 C978 99B 1:3 Cu:Au with Cu chloride reduced in H2 (i) SEM image Cu and Au 

particles, EDX maps of: (ii) Oxygen (iii) Si  (iv) Au (v) Cu 
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Figure 20 C978 99C 3:1 Cu:Au Cu chloride reduced in H2  (i) SEM image Cu and Au 

particles, EDX maps of: (ii) Oxygen (iii) Si (iv) Au (v) Cu 
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Figure 21 C978 99D Cu/SiO2 Cu Chloride reduced in H2.(i) SEM image Cu and Au 

particles, EDX maps of: (ii) Oxygen (iii) Si  (iv) Cu 
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