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ABSTRACT 

Matter can be identified by its interaction with electromagnetic fields.  This can be 

described by its dielectric and magnetic properties, which typically vary with 

respect to frequency in the microwave region.  Microwave-frequency spectroscopy 

is capable of making non-contact, non-destructive, non-invasive and label-free 

measurements with respect to time.  It can be used to characterise all states of 

matter and combinations thereof, such as colloids and microparticulate 

suspensions.  Sensors based upon this technology therefore have great potential 

for (bio)chemical and industrial point-of-sampling applications where existing 

measurement techniques are insufficiently portable, low-cost or sensitive.  

Microfluidics is the manipulation of fluids within microscale geometries.  This 

gives rise to phenomena not observed at the macroscale that can be exploited to 

achieve enhanced control of fluid flow.  This means that microfluidic techniques 

can be used to perform complex chemistry in a completely sealed environment 

with minimal reagent consumption.  Hence, microfluidics offers an ideal sample 

interfacing method for a microwave-frequency sensor.  This work is concerned 

with developing novel, low-cost and highly sensitive probes that be easily 

integrated into a microfluidic device for performing on-chip sample preparation 

and diagnostics for generic (bio)chemical and industrial point-of-sampling 

applications.  To this end, several novel microwave resonant structures were 

designed, optimised and integrated into microfluidic devices in order to 

characterise a variety of liquid-phase samples. 
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1. INTRODUCTION 

Electrically charged particles will experience a force when placed in an electric 

field [1].  Any material will therefore interact with an applied electric field due to a 

subatomic structure comprised, at least in part, of electrically charged particles.  

Although there are several mechanisms by which such action can occur, the net 

result is usually identical: depolarisation.  The applied electric field distorts the 

molecular charge distribution of the material, inducing an opposing (depolarising) 

electric field that reduces the applied field within the material [2].  Permittivity is 

the factor by which the external field is reduced.   

 

Charge redistribution is an inherently dynamic situation that depends on factors 

such as dipole moment, size and molecular mass.  One can imagine how the same 

depolarisation mechanism (e.g. distortion of the electron cloud) may occur at 

different speeds for different molecules.  Similarly, different depolarisation 

mechanisms (e.g. electron cloud distortion versus dipolar reorientation) may occur 

at different speeds when acting upon the same molecule [2].  If the applied electric 

field is alternating, it follows that the induced depolarisation will depend upon its 

frequency. 

 

Since the movement of electric charge within an electric field implies there is work 

done, the redistribution of charge is a dissipative process.  This gives rise to a lag 

between the applied polarising electric field and the induced depolarising electric 

field.  Permittivity is complex-valued to account for the phase difference between 
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the applied and induced fields [3], [4].  From this simple physical description, the 

real component of permittivity quantifies polarisability, or how effectively a 

material can reduce electric field, and the imaginary component quantifies power 

dissipation associated with lossy depolarisation mechanisms. 

 

1.1. Dielectric spectroscopy 

Dielectric spectroscopy is the measurement of complex permittivity with respect 

to frequency.  It is a method unaffected by the state of matter of the material under 

test, and has been demonstrated for solids [5], liquids [6] and gases [7].  The 

sample must occupy a region of electric field, but the propagation of 

electromagnetic radiation means the sample does not necessarily have to be in 

contact with electrodes or a waveguide.  Importantly, the interaction between the 

applied electric field and the material under test is virtually instantaneous.  The 

frequency with which measurements can be taken is a function of how fast data 

can be read with current instrumentation rather than the speed of the 

depolarisation mechanisms [8].   

 

Dielectric spectroscopy is therefore capable of making non-contact, non-

destructive, non-invasive and label-free measurements in real-time and with 

respect to time.  In the case of liquids and particulate suspensions [9], dielectric 

spectroscopy is unaffected by matrix opacity.  Such advantages contrast with more 

ubiquitous spectroscopy techniques, but have not necessarily been realised in one 

device. 

  

1.2. Microfluidics 

Microfluidics is concerned with the manipulation of fluids confined within 

microscale structures [10].  The simplest such structure - a channel – will typically 

have cross-sectional dimensions in the order of microns, although its length may 

be much longer.  Such confinement causes the proportional contributions of 

various forces to fluid behaviour to change in comparison to the macroscale 

situation, leading to otherwise unobtainable fluid behaviour.  The most notable 

effect is probably the increasing dominance of viscous forces.  This allows laminar 
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(non-turbulent) flow, which in turn allows many of the subsequent fluid 

manipulation capabilities. 

 

1.3. Context 

The properties and potential advantages of dielectric spectroscopy are hugely 

enabling.  To date, however, dielectric spectroscopy has remained something of a 

specialised technique owing to the difficulty of interfacing liquid samples in a high-

throughput, robust and repeatable manner.  There have been some efforts to 

incorporate microfluidic techniques for an improved method of sample interfacing 

[9], [11–20], but these have encountered various drawbacks in terms of both 

microfluidics and microwave design.  The overriding objective of this project is to 

better exploit the potential advantages of dielectric spectroscopy with a holistic 

approach incorporating microwave engineering, microfluidics, and biochemistry 

influences. 

 

The presented devices are applicable to solid or gaseous samples, but the concern 

of this work is primarily with liquid-phase systems for biochemical and 

pharmaceutical applications.  Solid-phase experiments (e.g. in vivo human tissue 

characterisation) are equally feasible, but are only discussed with regards to future 

opportunities. 

 

1.4. Aims and objectives 

1.4.1. Aim 

The aim of this project is to develop microwave-frequency measurement 

techniques that can be integrated directly into a widely compatible ‘lab-on-a-chip’ 

device for performing on-chip sample preparation and diagnostics for generic 

(bio)chemical and industrial point-of-sampling applications. 

 

1.4.2. Objectives 

 Identification of a suitable sensing technology for low cost, highly sensitive, 

point-of-sampling characterisation of liquid and microparticulate 

suspension samples. 
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 Development of robust, low cost and easy to fabricate sensor geometries. 

 Optimisation of the sensor geometries for maximum sensitivity.  

 Identification, development and optimisation of a sensor for simultaneous 

dielectric and magnetic characterisation of liquid-phase samples.  

 Identification of suitable microfluidic interfaces for the sensing structures. 

 Characterisation of liquid and microparticulate suspension samples with 

the developed sensors.  

 Characterisation of liquid-phase chemical processes with respect to time. 

 Proof-of-principle demonstration of the deconvolution of the electric and 

magnetic properties of a liquid-phase sample. 

 Development of a suitable user interface to allow a non-expert user to 

operate the sensors. 

 Proposition of further enhancements to the developed sensors. 

 

1.5. Original contributions 

There are five novel aspects to this work, which are briefly described in 

subsections 1.5.1 to 1.5.5.   

 

1.5.1. Evanescently-perturbed coaxial resonator 

First, there are two main ways for obtaining permittivity spectra:  broadband 

methods and resonant methods.  A broadband device measures a continuous 

permittivity spectrum, whereas a resonant technique measures permittivity at a 

single frequency with greatly improved accuracy and sensitivity [21], [22].  An 

overmoded coaxial resonator capable of taking permittivity measurements at 

numerous discrete frequencies has been demonstrated for the first time.  This 

technique can obtain frequency dependence information (akin to a broadband 

technique) with the improved accuracy of a resonant technique.  This structure 

was based upon an optimised coupling structure for performing transmission 

measurements from a single end of a half-wavelength coaxial resonator. 
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1.5.2. Resonant sensor microfluidic interface 

Second, the evanescently-perturbed coaxial resonator has been embedded in a 

compression-sealed polytetrafluoroethylene (PTFE) microfluidic device.  Based 

upon measurements of a serial dilution of acetonitrile in toluene, we have 

demonstrated a limit of detection and resolution orders of magnitude greater than 

other attempts to integrate dielectric spectroscopy techniques into microfluidic 

systems.  Other microfluidic functionalities have also been demonstrated.  These 

include mixing and the generation of segmented flow for continuous liquid-phase 

molecular extraction. 

 

1.5.3. Graphical user interface 

The third novel aspect of this work is the graphical user interface that (a) vastly 

simplifies the measurement procedure to make it suitable for a non-expert user, 

and (b) allows permittivity spectra to be measured with respect to time.  This is a 

powerful technique with many further applications.  It has been demonstrated for 

the in situ quantification of non-specific binding events as a dissolved species is 

extracted by a suspended phase.  A further anticipated application of this 

technique is to monitor molecularly imprinted polymer binding events without the 

need for fluorescent labelling or the sieving process required to assess the quantity 

of bound target via HPLC.   

 

1.5.4. Capillary-perturbed coaxial resonator 

Fourth, the resonant coaxial sensor was modified to allow electric and magnetic 

field effects to be measured simultaneously but in isolation from each other.  

Virtually all current resonator techniques do not separate electric and magnetic 

properties, but rely on the assumption that the two behave independently.  This is 

not valid, as one may expect from Faraday’s law of induction.  This device was used 

to measure various salt solutions, which interact with both electric and magnetic 

fields via different mechanisms.  This method also allowed different cations and 

different anions to be distinguished.  Further applications include the in situ 

monitoring of functionalised magnetic nanoparticle binding events. 
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1.5.5. Improved split-ring resonator 

Fifth, a modified split ring resonator formed from square cross-section silver wire 

was also developed as an extremely simple structure for enhanced dielectric 

sensing.  Owing to its inductive coupling, it is also suitable for simultaneously 

heating and sensing.  When integrated into a microfluidic platform, its 

miniaturisable electronics mean it has great potential as a portable, handheld 

device. 

 

1.6. Thesis overview 

The usual ordering of chapters did not seem entirely appropriate because this 

work details the development of several measurement techniques, each requiring 

its own methods, results and discussion.  Therefore, Chapters 3 through 5 each 

describe an individual measurement technique, where all have self-contained 

methods, results and discussion sections.  Chapter 3 charts the development of a 

novel coupling structure that allowed transmission measurements to be taken 

from one end of an open-ended half-wavelength coaxial resonator.  This coupling 

allowed the evanescent field at the other end of the resonator to be perturbed at 

multiple frequencies and in various ways; most notably, with a compression-sealed 

PTFE microfluidic device.  Chapter 4 also discusses a coaxial resonator, but one 

perturbed in a different fashion.  A sample-filled microfluidic capillary was passed 

through the centre of the resonator in holes drilled perpendicularly to the 

conductor axes.  This method of coupling allowed electric and magnetic field 

effects to be measured simultaneously but independently at multiple frequencies.  

Chapter 5 presents the design of a modified split-ring resonator, which increased 

field confinement and thereby sensitivity.  Although measurements could only be 

performed at a single frequency, such geometry was extremely simple and well 

suited to selectively heating a sample at the same time as characterising it.  A 

general discussion of the three techniques follows in Chapter 6, which forms 

comparative arguments from which the conclusions and suggestions of future 

work of Chapter 7 are drawn.  

 

1.7. Publications 

The following articles have been published throughout the course of this work: 
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2. THEORY AND LITERATURE 

2.1. Spectroscopic methods 

The Handbook of Spectroscopy provides a general definition of spectroscopy as ‘the 

science that deals with interactions between electromagnetic radiation and matter’ 

[23].  A spectroscopic technique is one that uses knowledge of such interactions to 

infer knowledge of material properties from observed changes in the spectra of an 

irradiated material.  There are an uncountable number of ways of achieving such a 

feat, but most methods fall into several main categories.  In order for the 

microwave-frequency techniques of this thesis to have any value, they must be 

placed in context with alternative methods.  

 

An aim of this work is to develop highly sensitive measurement techniques for a 

non-expert user to generate useful, usable information.  A generic diagnostic 

device should be capable of operating in a wide range of environments where 

samples cannot readily be shipped to a laboratory for further assessment: at a 

hospital bedside, at a crime scene, in a food processing plant, or at an exploratory 

oil well, for example.  These can be described as point-of-sampling applications.  In 

these instances, predetermined knowledge of the material under test cannot be 

assumed, so a generic diagnostic device must be able to operate blindly.  This could 

be imagined as a biochemical alternative to the multimeter.  The spectroscopic 

methods under discussion shall be evaluated in relation to this aim.  It is obvious 

that with any spectroscopic technique, sensitivity (i.e. the minimum measurable 
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change of a measurand) is of secondary importance if a rigorous measurement 

cannot be performed under the required conditions. 

 

Spectroscopic methods can be subdivided in various ways, according to the 

frequency of operation, the mechanism of interaction between electromagnetic 

radiation and matter, and the type of matter being interrogated.  For the purposes 

of comparing them with microwave-frequency techniques, the following principal 

categories of spectroscopy shall be considered in subsections 2.1.1 through 2.1.6: 

absorption, emission, scattering, impedance, nuclear magnetic resonance (NMR) 

and mass spectrometry (MS).   

 

Before detailed considerations of each technique, it is useful to qualitatively 

compare them in terms of cost, size, sampling rate and sensitivity.  This was 

performed by comparing available data from the websites of various 

instrumentation manufacturers to loosely define each parameter.  For example, 

typical instrument sizes could be defined as either miniaturised, handheld, 

benchtop or room sized.  Figure 2.1 shows (a) cost versus size and (b) sampling 

rate versus sensitivity per unit sample volume. 
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Figure 2.1: Comparisons of typical instrument parameters for the following 

spectroscopies: mass spectroscopy (MS), nuclear magnetic resonance (NMR), Raman 

scattering (RS), ultraviolet absorption (UV), infrared absorption (IR), microwave-

frequency resonators (MW) and impedance spectroscopy (IS). (a) shows a qualitative 

comparison of cost versus size, where future microwave techniques currently under 

development at Cardiff University are also shown. (b) shows sampling rate versus 

sensitivity per unit sample volume, where sampling rate is the number of 

measurements that can be performed per second.  Note that sensitivity is evaluated 

with respect to an analyte suitable for detection with that particular spectroscopy. 

Also note that ‘impedance spectroscopy’ represents low frequency techniques but not 

microwave frequency techniques, which are labelled separately.   

 

Other current research efforts at Cardiff University include the miniaturisation of 

microwave-frequency spectroscopy instrumentation.  Note that smaller and 

cheaper instrumentation is already available for such measurements, but these 

lack the precision of vector network analyser-based implementations.  It is high 

precision microwave instrumentation that current research is seeking to 

miniaturise.   

 

2.1.1. Absorption spectroscopy 

Absorption spectroscopy refers to a class of techniques that use wavelength-

dependent energy absorption to identify a sample under test.  When a known 
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source of radiation is focussed upon a sample, radiation intensity will reduce at 

certain wavelengths that have energies corresponding to the bandgap of the 

sample.  Such measurements can be taken across the entire electromagnetic 

spectrum, but are most commonly encountered at ultraviolet-visible (UV-VIS) and 

infrared (IR) wavelengths.   

 

The energy of a photon (E) is related to the frequency of its associated 

electromagnetic wave (v) according to the wave-particle duality, and can be 

described by the Planck relation: 

 

 
      

 
2.1 

where h is Planck’s constant.  This is usually rewritten in terms of wavenumber (k), 

the reciprocal of wavelength (λ), according to: 

 

   
 

 
 

 

 
   

 

2.2 

where c is the vacuum speed of light.  Wavenumber is commonly quoted in units of 

cm-1.  Depending on the application, frequency may be scaled by 2π to give angular 

frequency in units of rad s-1 and wavenumber in units of rad m-1. 

 

Within a molecular structure, charge carriers in the ground state can transition to 

an excited state if sufficient energy is transferred to the system.  These transitions 

could, for example, be electronic, rotational or vibrational.  Consider a sample 

irradiated with electromagnetic radiation.  If the wavenumber of incident radiation 

is such that its energy corresponds to a particular transition within the sample 

under test, the radiation will be absorbed and the transition would occur.  This 

situation is illustrated in Figure 2.2.  The transmitted intensity of the sensing 

radiation will decrease at this particular wavenumber.  It is therefore possible to 

identify molecules by plotting transmittance with respect to wavenumber, where 

transition-specific absorptions will be characteristic to particular molecules. 
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Figure 2.2: Energy diagram showing electron excitation from a ground state to an 

excited state from photon absorption.  This occurs when the frequency of incident 

radiation is such that photon energy hv corresponds to the transition energy ΔE. 

 

Absorption spectroscopy remains an extremely popular technique in analytical 

chemistry.  The absorption of radiation at a particular wavelength corresponds to 

an excitation of a particular energy transition.  For example, infrared absorption 

usually corresponds to vibrations of bound atoms, which cause deformations in the 

length and angle of bonds between atoms.   The (mid-)infrared region is taken as 

wavenumbers in the region of 400 – 4000 cm-1, where the near- and far-infrared 

regions exist above and below this range, respectively.  The absorption of organic 

compounds will typically occur at wavenumbers in the region of 1500 – 4000 cm-1, 

although absorptions do exist down to 500 cm-1; the heavier atoms found in 

inorganic compounds give rise to absorptions at significantly lower wavenumbers.   

  

Ultraviolet and visible wavelength absorptions have contributions from both 

electronic and vibrational transitions.  For example, carbon-carbon bonds 

demonstrate peak absorption at a wavelength of approximately 200 nm, where the 

peak may shift with respect to wavelength due to the presence of other chemical 

groups.  UV-VIS techniques are commonly used with respect to time in conjunction 

with liquid chromatography methods.  Chromatographic methods act to separate 

liquid mixtures by exploiting differences in propagation velocities through a 

stationary phase.  The UV-VIS spectroscopy data allows the identification and 

quantification of each analyte as it separates according to its retention time. 
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There are significant obstacles to implementing absorption spectroscopy 

techniques outside of the laboratory.  Perhaps most importantly, liquid-phase 

measurements cannot be performed if a solid-phase suspension is present due to 

scattering of the excitation radiation.  This necessitates the extraction and 

purification of the sample, which is often a skilled procedure requiring knowledge 

of the sample itself.  Absorption spectroscopy is therefore not generally suitable 

for a generic ‘point-of-sampling’ diagnostic device.   

 

A notable exception to the problem of scattering has been demonstrated by a 

method for the diagnosis of HIV [24] and of HIV and syphilis [25], which 

performed an immunoassay by exploiting the opacity of a silver film to infer 

analyte concentration.  Disease-specific antigens were used to immobilise 

pathogens at different detection regions.  Flows of gold nanoparticle-conjugated 

antibodies and silver reagents resulted in the formation of a silver film in the 

presence of the pathogen.   The opacity of the film was a function of its thickness, 

which in turn was shown to be a function of the immobilised antibody 

concentration.  Concentration could therefore be inferred from changes in 

absorption as measured by a laser diode and optical detector.  Separating antigens 

into different detection regions allowed simultaneous screening of multiple 

pathogens.  This method demonstrated a unique way of obtaining quantitative data 

from absorption measurements.  It is good example of how microfluidics can aid 

analytical procedures (as discussed in Section 2.4.3), but also illustrates how a 

functionalised detection technique (which is inherently single use) cannot be used 

for any other purpose.  This enforces the point that absorption spectroscopy is not 

suitable for a generic point-of-sampling diagnostic device. 

 

2.1.2. Emission spectroscopy  

Photons can be emitted upon the relaxation of an excited state to the ground state, 

or possibly to a less energetic excited state.  This provides an alternative 

spectroscopic method: emission spectroscopy.  The initial excitation can occur due 

to thermal or electromagnetic effects; the spectrum of spontaneous emission due 

to thermal excitation at any nonzero temperature is referred to as the blackbody 

spectrum. 
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Fluorescence spectroscopy is the particular case of emission spectroscopy where 

states are excited with electromagnetic radiation (in a fashion similar to 

absorption spectroscopy) before relaxing to less energetic excited states before the 

ground electronic state via smaller intermediary transitions.  It is obvious from 

Equations 2.1 and 2.2 that smaller transitions will result in the emission of longer 

wavelength radiation.  The observed spectra will therefore be in a different region 

of the electromagnetic spectrum (e.g. visible) compared to the excitation radiation 

(e.g. UV).  However, many materials do not naturally fluoresce.  In biological and 

biochemical applications, therefore, this technique is commonly used in 

conjunction with fluorescent markers, or fluorophores.  For example, it is possible 

to add single fluorescent molecules to individual DNA fragments or to individual 

RNA [26].  Target concentration can then be quantified by the intensity of the 

fluorescence due to the marker.   

 

This not only requires predetermined knowledge of the system, but could alter the 

chemistry of the liquid system being interrogated.  The requirements for 

knowledge of the system, for target-specific biomarkers and for pure samples with 

no solid suspension, mean that emission spectroscopy methods are also unsuitable 

for a generic point-of-sampling diagnostic device. 

 

2.1.3. Scattering spectroscopy  

There are two main phenomena that are exploited in scattering spectroscopy: 

Rayleigh scattering and Raman scattering.  Both cause the angle and polarisation of 

incident radiation to vary; they are distinguished by whether the wavelength of 

scattered radiation changes.  The elastic process, where wavelength does not 

change because energy has been conserved, is Rayleigh scattering.  The inelastic 

process, where wavelength changes because the scattered radiation is of a 

different energy to the incident radiation, is Raman scattering.  In Rayleigh 

scattering, the excitation and relaxation transitions are the same, albeit in 

difference directions.  Raman scattering occurs when the excitation and relaxation 

transitions are of different magnitude.  The different frequencies that occur as a 

consequence of Raman scattering (referred to as Raman bands) collectively form a 

Raman spectrum.   
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There are many different subsets of both types (differentiated, for example, by 

whether Raman bands are at longer or shorter wavelengths than that of the 

incident radiation), but several generalisations apply to all.  Perhaps most 

significantly, the nature of the sensing mechanism means it is unsuitable for 

inhomogeneous samples.  The entirety of The Raman Effect (to which the reader is 

referred for a comprehensive treatment of the various types of scattering and their 

associated spectroscopies [27]) is restricted to situations where ‘monochromatic 

radiation… is incident on systems such as dustfree, transparent gases and liquids, 

or optically perfect, transparent solids, [so that] most of it is transmitted without 

change but, in addition, some scattering of the radiation occurs’ [27].  This 

necessitates a requirement for very high sample purity that is not readily 

achievable in the field:  a device incorporating scattering spectroscopy would not 

be practical for the quantitative characterisation of contaminants in an industrial 

process, for example.  The above quote also implies that only a small fraction of the 

incident radiation will scatter by either the Raman or Rayleigh mechanism.  The 

measureable intensity of such phenomena will be of significantly lower magnitude 

than absorption phenomena, for example, so scattering spectroscopies 

consequently require far more sensitive instrumentation (cf. Figure 2.1).  This is 

another prohibitive factor when considering portable spectroscopic techniques for 

low-cost, point-of-sampling applications. 

 

2.1.4. Impedance spectroscopy 

Impedance spectroscopy methods are concerned with how materials reduce 

electric field.  They can also be used for the equivalent quantification of magnetic 

field interactions (magnetisation), although such methods are far less common.  A 

possible reason for this is that magnetic measurements are inherently less widely 

useful than electric field measurements since all matter exhibits nonzero electric 

susceptibility but a most matter has far smaller magnetic susceptibility.   

 

How a reduction in electric field is quantified typically relies on the frequency 

region of interest: as impedance or conductivity at low frequencies (10-4 – 106 Hz); 

as permittivity at radio, microwave and terahertz frequencies (106 – 1013
 Hz) and 

as refractive index at optical frequencies and beyond (>1013 Hz).  These are not 
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truly independent spectroscopic techniques because each of these quantities can 

be calculated from the others according to [28]: 

 

 
 ̃   √    

 

2.3 

where  ̃ is complex refractive index, permeability      ̃ and permittivity   

   ̃.   ̃ is complex relative permeability and  ̃ is complex relative permittivity.  Both 

of these quantities vary with frequency.  Permittivity is also a function of 

conductivity, as explained in the following paragraphs.     is vacuum permeability, 

   is vacuum permittivity,   √   and vacuum speed of light   (    )
    . 

 

It is convenient to talk about impedance spectroscopy methods in terms of 

complex permittivity since it is a meaningful quantity over all frequencies; 

refractive index is conventionally used at IR to UV frequencies and conductivity at 

low frequencies because there is no conductivity contribution above the low GHz 

region.  Impedance spectroscopy is usually referred to as dielectric spectroscopy 

when used to determine complex permittivity. 

 

Complex permittivity can be expressed as: 

 

 
 ̃      (   

 

 
)  

 

2.4 

   is a measure of polarisability, or how much an applied electric field is reduced 

by the depolarisations it induces with a material;    is a measure of dielectric loss, 

and arises as a consequence of the induced polarisation lagging behind the  applied 

electric field.    is angular frequency.  For a lossy material (i.e. one that is 

imperfectly insulating), the imaginary component of permittivity also varies as a 

function of conductivity.  For highly conducting media, one occasionally sees the 

definition       .  For the purposes of this work, it is useful to distinguish 

between conducting and non-conducting loss mechanisms, so the definition of 

complex permittivity according to Equation 2.4 will be used throughout.  A 

detailed study of the origins and implications of    and    can be found in Section 

2.2.1.  For the purposes of comparing dielectric spectroscopy with other 

measurement techniques, it is sufficient to say that these quantities exhibit 
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frequency dependencies according to the dynamics of the various polarisation 

mechanisms that can contribute to complex permittivity. 

 

The polarisation mechanisms that contribute to complex permittivity are, in 

ascending order of their speed of response to a polarising electric field: ionic, 

dipolar, atomic and electronic.  Their contributions to the real component of 

permittivity are shown in Figure 2.3. 

 

 

Figure 2.3: The contribution of various polarisation mechanisms to the real 

component of permittivity with respect to frequency (adapted from [29]).  

Approximate frequency regions are also labelled. 

 

Each mechanism will lag behind the polarising field to a greater or lesser extent 

because of some small but finite inertia associated with the displacement of 

electric charges.  At low frequencies, all of these mechanisms will contribute to 

permittivity.  That is, polarisation will occur via all mechanisms so the reduction in 

applied electric field is maximised.  As the frequency of the polarising electric field 

increases, the lag associated with ionic polarisation becomes sufficiently large that 

the ions can no longer redistribute throughout the material under test, so the 

permittivity contribution of that particular mechanism falls away.  In the 

microwave region, the lag associated with the reorientation of electric dipoles 

becomes large enough that its permittivity contribution also reduces.  Similar 

effects happen for atomic and electronic polarisation distortions at infrared and 

ultraviolet frequencies, respectively.  A more detailed description of the concepts 

of polarisation and permittivity can be found in Section 2.2.1. 
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Ionic polarisations dominate the low frequency impedance spectroscopy response 

and so commonly find usage in electrochemical applications, where the ionic 

behaviour at the electrode-electrolyte interface is of interest [30]. 

 

2.1.5. NMR spectroscopy  

Protons and neutrons are (composite) fermions and therefore exhibit spin.  A 

nucleus is comprised of protons and neutrons and thus will have an overall spin; a 

quantised value described by the spin quantum number I.  Generally, when a 

nucleus has even numbers of protons and neutrons, I = 0.  If there are an odd 

number of protons or neutrons, as found in many isotopes, then I ≠ 0.  Since a 

nonzero spin implies an angular momentum, there will be a magnetic moment 

associated with moving charges.  If the nucleic spins are aligned with a static 

magnetic field and then subjected to a MHz-frequency pulse, properties of the 

nucleus can be inferred from the frequency of absorption, which corresponds to 

the precession frequency of the nucleus under test.  Such information is inferred 

from the fact that, in aligning with the static field, the spin will precess about the 

direction of the applied field; the precession frequency (termed the Larmor 

frequency) is isotope-specific and typically in the radiofrequency region.  The 

nuclear magnetic resonance that the method is named for is the radiation 

absorption that occurs when the nucleus is subject to a pulse at the Larmor 

frequency.  The Larmor frequency is affected by a vast number of other 

parameters, including the spins of other nuclei in close proximity.  In one sense, the 

difficulty of deconvolving such a complex system could be prohibitive, but in 

another sense the level of detail obtainable makes NMR an attractive prospect.   

 

The two most common NMR-active isotopes used in NMR spectroscopy are 1H and 

13C.  The former is somewhat simpler as 1H is the major isotope of hydrogen 

whereas 12C is the major isotope of carbon, but 13C-NMR still finds widespread use 

in organic chemistry applications. NMR spectroscopy can also be divided into 

solution and solid-state (in the physics rather than the electronics sense of the 

phrase) techniques.  The principle of detection remains the same for both: each 

isotope has a clearly defined resonance (in the order of MHz) that will shift by a 

specific amount (in the order of 100 Hz) in relation to a standard (such as 
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tetramethylsilane) depending on the presence of other chemical groups.  Note that 

13C-NMR shifts are typically ten times greater than 1H shifts.  The nuclear magnetic 

resonance frequencies of some common isotopes in a static magnetic field of 9.4 T 

are given in Table 2.1 [31]. 

 

Table 2.1: Nuclear magnetic resonance frequencies, v, of some common isotopes for a 

magnetic flux density of 9.4 T. 

Isotope 1H 2H 13C 19F 31P 

v (MHz) 400.0 61.4 100.6 376.5 162.1 

 

NMR spectroscopy is not affected by radiation scattering or sample opacity in the 

same fashion as absorption and emission spectroscopies.  It does, however, remain 

a prohibitively expensive method.  One contributing factor is the need for very 

uniform and large magnetic fields (9.4 T is typical), required because signal-to-

noise ratio is a function of field strength [32].  A recent study of various 

spectroscopic techniques for characterising suspensions in microfluidic devices 

concluded that NMR was most realistically suitable prospect given the amount of 

useful data that could be obtained, despite the cost [33].  The cost and requirement 

for NMR-active isotopes are incommensurate with the aims and motivation of this 

project. 

 

2.1.6. Mass spectrometry (MS) 

Mass spectrometry differentiates between free gaseous ions according to their 

mass/charge ratio, which is determined by how their motion in vacuum is affected 

by electromagnetic fields.  There are various methods of implementing this 

approach, but all operate on the same principle.  The Lorentz force equation for the 

force F experienced by a particle of charge Q and velocity v in electric field E and 

magnetic flux density B is: 

 

 
   (     ). 

 
2.5 

Newton’s second law for the force F experienced by a mass m undergoing 

acceleration a is: 
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2.6 

It is obvious from Equations 2.5 and 2.6 that the acceleration force experienced by 

an ion due to electric and magnetic fields is dependent on both mass and charge.  

Note that this acceleration is a vector so it also has an associated direction.  

Equations 2.5 and 2.6 can be set equal to each other to obtain: 

 

 

 

 
       . 

 

2.7 

Typically, electric and magnetic fields are used to redirect an ion beam so that it 

impacts upon a detector.  Varying field strength will therefore alter which ions are 

directed at the detector depending on their mass/charge ratio, meaning the ratio 

can be inferred from knowledge of field strength variation.   

 

Many of the experimental difficulties encountered in mass spectrometry are 

because the sample must be gaseous and ionised.  To ionise a sample and transfer 

it to the gas-phase non-destructively is particularly difficult for labile biomolecules.  

The development of new ionisation techniques in recent years have gone some 

way to alleviating these problems.  ‘Soft’ ionisation techniques do not result in the 

fragmentation of the sample molecules, which is of critical importance for the 

ability to characterise complex biomolecules and for retaining their functionality.  

Electrospray ionisation and laser desorption are two examples of such techniques.  

The developers of these techniques (John Fenn and Koichi Tanaka, respectively) 

shared half of the Nobel Prize in Chemistry in 2002 for their contributions to mass 

spectrometry.  However, the measurement process requires extensive sample 

preparation, much of which will be specific to the material under test.  This means 

mass spectrometry is unsuitable for generic, point-of-sampling applications, 

despite the high sensitivity and resolution.  This argument is amply illustrated in 

the qualitative cost versus size and sampling rate versus sensitivity comparisons 

shown in Figure 2.1. 

 

2.2. Microwave-frequency spectroscopy 

This thesis concentrates on microwave-frequency impedance measurements.  The 

majority of this work is concerned with dielectric characterisation, although 

magnetic characterisation will also be considered.  This section of the literature 
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review begins with a discussion of the concepts of permittivity and permeability 

(Section 2.2.1) before a treatment of existing dielectric and magnetic measurement 

techniques (Sections 2.2.2 through 2.2.5). Measurement techniques that 

incorporate microfluidic sample interfaces are discussed in Section 2.5 after the 

principles of microfluidics are introduced in Section 2.4. 

 

Dielectric spectroscopy has been demonstrated to be an extremely useful 

metrological technique for various applications in industry and throughout the 

biological, chemical and pharmaceutical sciences [12], [34–38].  However, the 

majority of recently developed techniques utilise bulk measurements without 

considering the method of sample interfacing in great detail.  This is 

understandable given that, for the purposes of research, a measurement technique 

can be demonstrated without characterising a vast number of samples.  However, 

it seems that many engineers underestimate the sheer number of measurements 

that must be taken in the fields of research where their technique is purportedly 

useful.  In these situations, manually filling a waveguide with tens of millilitres of 

solution is not practical.  Ignoring the need for a high throughput and low-volume 

sample interface required by modern liquid-phase science could be a reason why 

dielectric spectroscopy techniques are not more widely used.  These techniques 

have great potential given the available information and possibility of non-

destructive, non-invasive, non-contact and label-free measurements of multi-phase 

liquid systems [12], [34], [37], [39–41].  These measurements are also unaffected 

by matrix opacity, which is a key shortcoming in optical spectroscopy techniques.  

However, existing dielectric spectroscopy setups remain impractical and prone to 

experimental error and have been unable to establish themselves as standard 

laboratory tools. 

 

Microwave-frequency measurements (around 1 GHz and upwards, i.e. cm-scale 

wavelengths) are ideal for characterizing solvent systems because it is within this 

region that many dipolar molecular relaxations can be observed.  At these 

frequencies, complex permittivity is dominated by electric dipole interactions with 

an applied electric field, meaning ionic and electronic effects can be discounted.  

This is of particular significance with respect to lower frequency measurement 

techniques, where electrode polarisation effects are particularly problematic [42].  
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The effects of dissolved species upon such dipolar relaxations can also be 

quantified through microwave-frequency measurements, as demonstrated for a 

variety of mixtures [41], [43–46]. 

 

It should be noted that dielectric spectroscopy can theoretically be used to directly 

distinguish between any molecules with differing charge distribution.  One 

exception to this is with enantiomers, where the chirality of two molecules means 

they will not be distinguishable using sinusoidal electromagnetic fields.  This is 

discussed in more detail in Section 2.6.1, where a method for indirectly identifying 

the chirality of a molecule based upon its biological function is also considered. 

 

2.2.1. Measurands, defined 

Given that this work is based upon measurements of complex permittivity and 

complex permeability, it seems prudent to discuss the origins and implications of 

these quantities.    

 

Permittivity is best described by first considering the behaviour matter in a static 

(time-invariant) electric field, before extending the description to incorporate 

time-variant behaviour.  A similar approach was taken in the texts of Fröhlich [3] 

and Hasted [4]. 

 

Consider a parallel plate capacitor of separation d and plate surface area A, where 

d is much smaller than the width and length of the plates.  If a potential difference 

is applied to the plates, an equal and opposite charge will accumulate on each 

plate.  This gives rise to an electric field (which will act in the direction of positive 

charge to negative charge) between the plates.  However, if a non-conducting (i.e. 

dielectric) material is placed between the plates, polarisation charges will 

accumulate on the surfaces of the dielectric to reduce the electric field.  If the 

dielectric material is of static relative permittivity εS, the applied electric field E0 

will reduce by a factor of εS: 

 

 
       . 

 
2.8 

The polarisation charges accumulate as a result of electron cloud distortion.  No 

charge flows as there are no free electrons, but the bound electrons are displaced 
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due to their Coulombic attraction to the positively charged plate of the capacitor.  

This distortion means there is a finite displacement between the electron cloud 

and the positive ion core of each molecule, which can be interpreted as an induced 

dipole moment.  If electric field is uniform within the material, the induced charges 

will cancel out with adjacent molecules.  If electric field is not uniform, the 

polarisation will vary throughout the volume of the material so the induced 

charges do not completely cancel.  The remaining charges are termed volume 

polarisation charges.  However, at the edge of the dielectric there are no adjacent 

particles to cause the net charge to sum to zero, so surface polarisation charges 

form.  This situation is illustrated in Figure 2.4.   

 

 

Figure 2.4: Cross-sectional diagram of a dielectric material in an applied electric 

field, showing (a) how electric dipoles are induced and (b) the formation of surface 

polarisation charges. 

 

The macroscopic polarisation P is defined as dipole moment per unit volume: 

 

 
    , 

 
2.9 

where n is the number of atoms per unit volume and p is the individual dipole 

moment of each atom.  The charge accumulated at each of the end surfaces of the 

material shown in Figure 2.4 Qpol is: 

 

 
       , 

 

2.10 

where A is the area of each end surface.  It follows that the incremental area 

element dA experiences an accumulated charge of dQpol: 
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2.11 

Note that polarisation charges only develop on surfaces that are not parallel to the 

electric field.  This is evident from the dot product in Equation 2.11, where the 

surface polarisation charge is maximised when the surface and polarisation are 

perpendicular, and is zero when the surface and polarisation are parallel.  It can be 

shown empirically that polarisation is related to the total electric field inside the 

material.  Specifically, polarisation is proportional to the applied electric field 

minus the induced depolarising field.  The constant of proportionality is the 

electric susceptibility χe, which can be written in terms of permittivity 

by        .  The relationship between polarisation and electric field can be 

expressed as: 

 

 
        (    )   , 

 
2.12 

where ε0 is vacuum permittivity ≃ 8.854 x 10-12
 Fm-1 and εS is the (dimensionless) 

static relative permittivity of the material.  Electric flux density D can be defined 

as: 

 

 
           +P. 

 
2.13 

This quantity is useful because it is defined in terms of free charges only; it is 

independent of induced polarisation charges. 

 

Consider now the case where the potential difference applied across the parallel 

plate capacitor is time variant.   

 

 
          , 

 
2.14 

where ω is angular frequency and t is time.  Assuming any initial transients have 

passed and the dielectric-filled parallel plate capacitor is being excited with E 

according to Equation 2.14 in the steady state, it follows that D will also exhibit 

periodicity.  This does not necessarily have to be (and indeed probably will not be) 

in phase with E.  A phase shift δ can be described by:  
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       (    )                 , 

 
2.15 

where  

 

 
          and          . 2.16 

The quantities of D0 and E0 are usually proportional to each other, although their 

quotient (D0/E0) can be expected to exhibit some frequency dependence.  We can 

therefore introduce two different components of permittivity according to: 

 

 
          and          , 2.17 

where ε1 and ε2 are functions of frequency.  Combining Equations 2.16 and 2.17:  

 

 
     

  

  
 , 2.18 

where δ is the phase lag between D and E, and also between E and P.  The quantity 

tan δ is known as the loss tangent. ε1 and ε2 are the real and imaginary components 

of permittivity, as introduced in Equation 2.4.  They can be shown to quantify the 

energy stored and the energy dissipated by a dielectric, respectively.  This can be 

demonstrated by considering a lossy dielectric between the plates of the parallel 

plate capacitor.  This can be described by an equivalent circuit comprised of an 

ideal, lossless capacitor with a shunt conductance. 

 

Figure 2.5: Equivalent circuit of a lossy capacitor, where C1 and G are ideal.  Charges 

of ±q will accumulate on the plates of the capacitor according to Q=CV. 

 

Consider the circuit in Figure 2.5 with an applied periodic voltage      
   .  This 

will cause a charge      
 (    ).  The effective capacitance C is given by: 
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                 , 
 

 

2.19 

where           .  The stored charge is therefore      (      ) .  Thus, 

the time-averaged stored energy 〈 〉 is: 

 

 
〈 〉  

 

 
    

  
 

 
  *   +  

 

 
        , 2.20 

and the time-averaged power dissipated 〈 〉 is: 

 

 
〈 〉  

 

 
   

  
 

 
     

  
  

 
    *   +  

 

 
         . 2.21 

From this, it can be seen that for a lossless capacitor (i.e. when C = C1), δ = 0 so 

voltage and charge are in phase and no power is dissipated.  However, power will 

be dissipated if there is a conductivity term associated with the dielectric 

according to Equation 2.21.  The greater the value of G and therefore of C2, the 

greater the phase lag δ and the associated power dissipated.  Power dissipation is a 

direct consequence of the phase lag between charge and voltage.  Considering a 

dielectric material experiencing an applied electric field, the phase lag between 

polarisation and electric field (and consequently ε1 and ε2; cf. Equation 2.18) 

similarly implies power dissipation.   

 

We can perform the following substitutions:         and (energy/power)  

 (energy/power) per unit volume.  This means that      
    and      

 (    ).  

Using Equation 2.13, it is possible to rewrite the time-averaged expressions for 

stored energy and power dissipated (Equations 2.20 and 2.21) for a lossy 

dielectric: 

 

 
〈 〉  

 

 
  *   +  
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〈 〉  

  

 
    *   +  

 

 
          

 

 
       

 . 2.23 

Clearly, the energy stored in a lossy dielectric is a function of ε1 and the power 

dissipated is a function of ε2.  There are three main polarisation mechanisms 

through which a dielectric material can interact with an electric field: ionic, dipolar 
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and electronic.  The two components of permittivity are the sum total of the 

contributions of each process to electric energy storage and power dissipation.  

The frequency dependencies of ε1 and ε2 arise from inertial terms associated with 

redistributing charged particles of finite mass.  It follows that at sufficiently high 

frequencies, none of the depolarisation mechanisms can possibly occur.  Under 

these circumstances, the dielectric will not store additional energy or dissipate 

power.  Relative permittivity will reduce to unity and there will be no difference 

between D and E. 

 

A similar process can be applied to magnetisable materials in a region of magnetic 

field.  The macroscopic magnetisation M is defined as magnetic moment per unit 

volume: 

 

 
    , 

 
2.24 

where n is the number of magnetic dipoles per unit volume and m is the individual 

dipole moment of each atom.  A basic view of the atom is of electrons moving in 

orbitals around a nuclear core, where the movement of charge constitutes current 

and gives rise to magnetic effects according to Maxwell’s equations.  The atomic 

scale magnetic moments of a material will attempt to reorientate with magnetic 

field if the material is placed in a region of magnetic field.  This is analogous to how 

electric charge responds to an applied electric field.  Specifically, magnetisation is 

proportional to the applied magnetic field H, where the constant of proportionality 

is the magnetic susceptibility χm.  This can be expressed as: 

 

 
      (    ) , 

 
2.25 

where μr is the (dimensionless) relative permeability of the material.  The 

magnetic flux density B can be introduced in terms of magnetic field and 

subsequently expressed in terms of magnetic field and magnetisation: 

  

 
          (   ), 

 
2.26 

where μ0 is vacuum permeability, defined as            Hm-1.  It is obvious 

from Equation 2.26 that magnetisation can be thought of as the difference between 

magnetic flux density and magnetic field.  Note that H is normally considered the 
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derived field, as D is similarly derived from E.  This is because B and E can 

normally be used to fully describe electric and magnetic fields using Maxwell’s 

equations if sources of current density and charge density are known.  For this 

reason, the relationships between B and H (Equation 2.26) and between D and E 

(Equation 2.13) are referred to as the constitutive relations. 

 

The relative permeability of a magnetic (or magnetisable) material differs from 

relative permittivity in several key respects.  Firstly, it is not unusual for 

permeability to be greater than or less than unity.  Materials with these properties 

that do not exhibit a permanent magnetic moment are known as paramagnetic and 

diamagnetic, respectively.  Naturally-occurring dielectric materials do not exhibit 

sub-unity permittivity and synthetic dielectrics rarely do so over a significant 

portion of the electromagnetic spectrum.  Secondly, some materials retain a 

magnetic moment after the applied magnetic field has been removed.  These 

materials are known as ferromagnetic.  This property depends on the magnitude of 

the applied field and, as such, differs from the permanent dipole moment due to 

molecular charge distribution.  The relative permeability therefore exhibits some 

form of memory, known as hysteresis.  Thirdly, permeability is generally a far 

smaller quantity than permittivity (with the exception of many ferromagnets). 

 

As electric fields store energy, so do magnetic fields.  Permeability can be used to 

quantify the difference between magnetic field and magnetic flux density, and will 

therefore be complex valued if there is a phase lag between the two.  This can be 

demonstrated according to the following substitutions:         and 

(energy/power)   (energy/power) per unit volume.  This means that   

   
    and      

 (    ).  Using Equation 2.13 and taking the loss tangent tan δ 

= μ2/μ1 for complex relative permeability μr = μ2 + jμ2, it is possible to rewrite the 

time-averaged expressions for stored energy and power dissipated (Equations 

2.20 and 2.21) for a lossy magnetic material:  

 

 
〈 〉  
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As discussed in Sections 75 and 77 of [47], the frequencies at which the values of ε 

and μ disperse (that is, exhibit frequency dependence) may be completely 

different.  If a measurement technique is to characterise both parameters, it is 

therefore prudent to select a frequency range most appropriate for measuring 

permittivity rather than permeability given that all matter will have an electric 

field response but not all matter will have a magnetic field response.   

 

2.2.2. Broadband dielectric spectroscopy  

The most common method for performing broadband dielectric spectroscopy is 

the coaxial reflectance sensor, as originally reported by Misra [48].  Propagating 

waves were reflected by the open-circuited termination of a coaxial line, where the 

reflection was shown to be a function of aperture admittance.  This, in turn, was 

shown to be a function of the permittivity of the material occupying the evanescent 

field in the region immediately outside of the probe aperture (i.e. where 

propagating waves were not supported).  This was achieved by matching the 

modes inside and outside the transmission line, which must have the same 

distribution at the aperture; a detailed analysis of various aperture admittance 

models and the subsequent effects on sensitivity was reported in [49]. 

 

An example application for this technique is to monitor oil contaminants (and 

thereby oil quality), which is of obvious interest to the oil and petroleum 

industries.  A broadband coaxial reflectance cell has been demonstrated for this 

purpose [50], [51].  This technique exhibits low uncertainty over a large frequency 

range for bulk samples, which is particularly beneficial for hydrocarbons that have 

dielectric dispersions over many orders of magnitude of frequency.  However, this 

work did not quantify the concentration of contaminants and required the sample 

to be in contact with a metal transmission line, reducing the number of compatible 

solvents and biological species that could be characterised using this technique.  

This problem is common to many coaxial reflectance techniques; the use of a 

separating layer to prevent the sample under test from coming into contact with 

the sensor forms a multi-layer geometry and vastly increases the complexity of the 

analytical problem. 
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A similar approach allows permittivity to be quantified using a coplanar 

transmission line geometry, which has been demonstrated using measurements of 

a solvent of known permittivity (butanol) [52].  This technique benefits from being 

low cost and easy to fabricate, and offered performance comparable to that of a 

commercially available broadband coaxial probe.  However, the large tolerances 

associated with the fabrication technique used by the authors led to decreased 

measurement accuracy.   

 

A related microwave-frequency transmission line technique was functionalised for 

biological specificity and used to (qualitatively) distinguish between surface-

bound macromolecules [53].  The transmission line was surface functionalised 

with guanine bases, which allowed other nucleic acids to be qualitatively 

distinguished based upon whether hybridisation occurred.  The occurrence of such 

an event could be inferred from a change in the dielectric properties of the 

transmission line.  This method was sensitive to picomolar concentrations of 

nucleic acids; an impressive limit of detection achieved because the interactions 

were restricted to the two-dimensional surface of the transmission line.  However, 

the functionalised transmission line could not be used to quantify the number of 

occupied binding sites or the complex permittivity of the sample.  The use of 

functionalised conductors is a tremendously powerful technique but makes the 

sensor entirely application-specific.  This factor, coupled with the reduced 

chemical and biological compatibility inherent to any functionalised technique, 

means such a method is not appropriate for this project. 

  

Another problem encountered with broadband techniques is the requirement for 

careful and frequent calibration of the measurement equipment used to 

interrogate the sensor.  It is for this reason that resonant techniques are 

sometimes preferred as they have a lesser dependence on Vector Network 

Analyser (VNA) calibration and therefore have lower systematic error.  This is 

important if the ‘black box’ dielectric spectroscopy aims of this project are 

considered.  Calibration-dependent techniques are not suitable for the non-

specialist user who wishes to analyse a sample in the field without having to 

perform an intricate and rigorous calibration.  This is of particular significance 

when such a calibration would need to be performed at least once an hour.   
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Alternative broadband techniques have been suggested to alleviate this problem.  

One example was based upon propagation constant measurements [54]; another 

was based upon raw (uncalibrated) S-parameter measurements [55].  These 

methods still suffer from fluid interfacing problems as encountered for other 

broadband techniques: both methods utilise a liquid-filled section of waveguide.  

Such approaches have reduced chemical and biological compatibility (as well as 

exposing the waveguide to potentially corrosive materials) and are not 

appropriate for high-throughput applications.   

 

2.2.3. Resonant dielectric spectroscopy  

Resonant dielectric spectroscopy offers advantages over the broadband equivalent 

in two main respects: by having improved sensitivity through increased signal-to-

noise ratio (SNR) [8] and lesser susceptibility to systematic errors due to a lesser 

dependence on careful network analyser calibration [22].  However, resonant 

techniques are inferior in that they cannot be used to characterise continuous 

permittivity spectra, although it is possible to use several modes to obtain multi-

frequency information.  It is not possible to state that broadband or resonant 

techniques are universally superior, so an informed deliberation is necessary.  

However, it should be noted that dielectric dispersions in the microwave region 

vary slowly with frequency so highly detailed spectral information is not 

necessary.  This decision requires thorough knowledge of the available 

measurement techniques and some knowledge of the application.  The latter 

requirement encompasses information such as the approximate dielectric and 

magnetic properties (or lack thereof) of the material under test; whether the 

sample is solid or fluidic, and how it could be interfaced to the sensor. 

 

There are many different structures that can be used to form electromagnetic 

resonators.  For the sake of brevity, only five of the most common geometries are 

discussed here: cavities, dielectric resonators, hairpin cavities, split-ring cavities 

and coaxial resonators.  Each is discussed in turn. 

 

There are three commonly used types of cylindrical cavity resonator: TM010 mode, 

TE011 mode and re-entrant.  Schematic views of each are shown in Figure 2.6. 
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Figure 2.6: Schematic views of (a) TM010 mode, (b) TE011 mode and (c) re-entrant 

cavities. 

 

The TM010 mode has the lowest frequency resonance.  It is therefore the most 

easily distinguishable mode and, as a consequence, the most commonly used.  The 

electric field lines run parallel to the cylinder axis, where the field magnitude 

diminishes radially to zero at the cylindrical side-wall, as shown in Figure 2.6 a.  

The magnetic field lines form concentric circles about the cylinder axis.  The most 

common way of perturbing this resonator is to position a cylindrical sample 

(either a solid rod or a fluid-filled tube) along the axis.  This occupies maximum 

electric field and causes minimal depolarisation as the cylindrical sample does not 

cross any electric field lines so charge cannot accumulate on its surface and 

thereby oppose the inducing electric field.  Higher order TM0n0 modes can also be 

perturbed in this fashion, although incidences of degeneracy (where modes 

overlap in the transmission spectrum of the resonator) are increasingly common at 

higher frequencies.  From experience, it is difficult to identify and reliably use 

more than two of these modes. 

 

TE011 mode cavities have azimuthal (circularly-polarised) electric field lines 

circulating about the cavity axis, as shown in Figure 2.6 b.  The electric field 

magnitude decays to zero at the cylindrical side-walls.  This field distribution is 

particularly suitable for disc-shaped samples oriented parallel to the ends of the 

cavity, where the sample radius should be (at least approximately) the same as 

that of the cavity.  This is obviously unsuitable for capillaries or microfluidic chips 

(where microchannels run through a bulk substrate), although such cavities do 

also exhibit high quality factors.  More significantly, however, is the fact that this 
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mode is always degenerate with the TM111 mode, necessitating some form of 

filtering.   

 

Re-entrant cavities are a special case of the TM010 cavity, where cylindrical 

conductors protrude inwards from the top and bottom of the cavity to 

approximate a short-circuited coaxial transmission line with an gap in the inner 

conductor.  This situation is shown in Figure 2.6 c.  A thick disc-shaped sample may 

then be inserted into this gap in a similar manner to the TE011 mode cavity.  The 

gap approximates a parallel plate capacitor, albeit one with a large separation in 

comparison with the surface area.  Re-entrant cavities therefore have large 

fringing electric fields.  This can lead to large uncertainties in real permittivity 

measurements unless the effects of the fringing fields are reduced or removed via 

numerical modelling [22] or careful calibration. 

 

All cavities have high quality factors and are therefore suitable for characterising 

low loss materials.  However, resonant frequency is set by the cylindrical cavity 

dimensions which, for microwave frequency operation, are fairly large 

(centimetres to tens of centimetres).  It would be possible to use narrow fluidic 

capillaries for perturbation along the TM010 cavity axis.  The resonant frequency of 

this mode is independent of length but the quality factor (and therefore sensitivity) 

is not.  This results in an undesirable compromise as a long length is necessary for 

decent quality factors but results in poor spatial resolution. 

 

Dielectric resonators are formed from discs of high permittivity, low loss materials.  

Such techniques can be broadly subdivided into the follow types: TE01δ mode, 

whispering gallery mode and split-post.   

 

Other TM and hybrid modes could be used for sensing, but the TE01δ mode 

dielectric resonator remains the most common choice for sensing [56] as it has one 

of the lowest frequency resonances and is consequently one of the most accessible 

modes.  The delta subscript refers to the fact that the height of the resonator is 

much less than the half-wavelength of the resonance.  The high permittivity of the 

resonator allows propagation along the axis of the resonator but not beyond the 

ends of the cylinder, where instead there are rapidly decaying evanescent fields.  



M ICROWAVE-FR EQ UE NCY  S PEC TROS CO P Y  35 

 

This situation is similar to a dielectric rod waveguide supporting a propagating 

TE01 mode where a short length of the dielectric rod is of much higher permittivity 

than the surrounding regions [57].  The low resonant frequency of the TE01δ mode 

resonator is a consequence of the fact that this mode can support a standing wave 

of half-wavelength many times larger than the height of the dielectric cylinder.  For 

a resonator of fixed dimensions, the TE01δ mode will clearly be of lower resonant 

frequency than higher order modes with additional half-wavelengths confined 

within the resonator. 

 

However, unlike cavity resonators, the fields are not completely confined within 

the dielectric resonator.  The TE01δ mode has azimuthal (circularly-polarised) 

electric field.  There are also evanescent fields outside of the dielectric material 

that allow power to be coupled in to and out of the resonator.  This is in contrast 

with cavity resonators, which require invasive couplings in order to access the 

electromagnetic fields.  Note that this type of resonator has to be contained within 

a cavity (where its resonances have to be distinguished from those of the cavity) in 

order to prevent excessive radiative losses and resultant drop in quality factor 

[22]. 

 

The whispering gallery mode is formed when a wave experiences total internal 

reflection in such a way that it forms a standing wave just inside the circumference 

of the dielectric resonator.  This leads to greatly increased evanescent electric field 

confinement, meaning the cavity required for the TE01δ mode can be dispensed 

with.  Note that such modes are typically at much higher frequencies than the TE01δ 

mode (resonances at 36 GHz and 170 GHz were demonstrated in [16]) and, as 

such, may be unsuitable for interrogation the low GHz region where the dielectric 

dispersions of many solvents can be observed. 

 

Split-post dielectric resonators are, as the name would suggest, formed from two 

dielectric resonators oriented so that each resonator has one of its flat edges 

parallel and closely separated from the other [22].  Again, this structure must be 

contained within a cavity.  The two dielectric discs exhibit a coupled TE01δ 

resonance, which gives rise to an azimuthal (circularly-polarised) evanescent 
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electric field in the gap between the two resonators.  Disc-shaped samples can then 

be inserted into the gap. 

 

All dielectric resonators exhibit high sensitivity.  The split-post dielectric resonator 

is extremely simple to construct and remains a popular metrological technique.  

However, they usually require solid, disc-shaped samples (where uncertainty can 

be a function of the machining quality of the sample itself) and are difficult to 

perturb with microchannels.  A recent example went some way to addressing this 

issue, where a circular microchannel was milled in the top of a sapphire disc.  This 

was then bonded to another disc to seal the channel and to form a split-post 

dielectric resonator with  its gap perturbed by the microchannel [17].  This has an 

advantage over many microfluidic dielectric spectroscopy techniques in that the 

channel runs parallel to electric field and therefore does not cause any 

depolarisation.  However, the method used to bond the device together (to form 

the fluidic seal) resulted in such a large drop in quality factor that the expense 

incurred in fabricating the device was not justified by its sensitivity.  This is 

exacerbated by the difficulty in machining quartz. 

 

 

Figure 2.7: Schematic cutaway view of the  /4 hairpin resonator mounted in a 

radiation shield perturbed with a liquid-filled quartz capillary.  The capacitive and 

inductive regions are labelled C and L, respectively.  The resonator is mounted inside 

the cavity on a copper post and inductively coupled using loop-terminated coaxial 

feedlines (not shown). 
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A hairpin resonator can be constructed from a metal sheet formed into a flat-

bottomed U-shape configuration, as shown in Figure 2.7.  This type of structure 

would usually be contained within a radiation shield to prevent excessive losses 

from reducing quality factor to an unusable level.  The electric field region of 

largest magnitude and highest uniformity is located at the open end of the hairpin.  

This can be perturbed with a fluid-filled PEEK capillary, as demonstrated in [18].  

Similarly, magnetic sensing could be performed by passing the capillary through a 

region of high magnetic field (i.e. the inductive region, as labelled in Figure 2.7).  

This structure exhibits excellent field confinement as the electric field has high 

uniformity within the hairpin plates but decays rapidly outside of them.  However, 

the sensitivity of this device suffers as the microchannel is oriented 

perpendicularly to electric field and therefore experiences depolarisation.  

Additionally, this structure offers limited microfluidic functionality and is not 

robust enough (given the long length of suspended capillary) for point-of-sampling 

applications. 

 

Schematic views of the typical implementations of the split ring resonator 

(distinguished by whether the resonator is planar) are shown in Figure 2.8.   

 

 

Figure 2.8:  Typical implementations of the split-ring resonator.  a shows a planar 

structure and b shows an alternative fabricated from a conducting tube, where the 

approximate locations of the inductive (L) and capacitive (C) regions are also 

labelled.  Note that the capacitive regions are strictly in the gap of the split rings. 
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A (square) example of Figure 2.8 a was described in [19].  Thin film samples could 

be detected when deposited in the capacitive loop gap region.  It did not exhibit 

high sensitivity due to low quality factors associated with high conductor losses.  

These arose from having conductors thinner than the skin depth at such 

frequencies (thereby causing increased resistivity) and by using a square ring 

(where all corners caused current bunching and further increased resistivity).  An 

example of Figure 2.8 b is described in [58].  It was perturbed with a liquid sample 

in a similar fashion to the hairpin resonators by passing a PEEK capillary through 

the gap in the resonator.  The loop gap is the region where electric field is highest, 

of uniform magnitude and perpendicular to the axis of the capillary.  The planar 

example had large fringing fields so any material in the loop gap would only 

occupy a small fraction of the electric field.  The non-planar alternative addressed 

this by increasing the surface area of the faces bounding the loop gap.  This has a 

large sensing volume that is inappropriate for microfluidic perturbation as the 

dimensions of the loop gap faces will generally be much bigger than any 

microchannel. 

 

Liquid-filled quarter-wavelength coaxial resonators have been used to evaluate the 

electrical properties of several solvents [59].  This method is suitable for through-

flow measurements, although the dimensions of the resonator mean that a 

microfluidic interface could not be used.  The frequency of interrogation was set by 

the length of the resonator, meaning that multi-frequency measurements required 

the use of different resonators.  A disadvantage shared with many of the other 

dielectric spectroscopy techniques discussed above was that the sample was 

required to be in contact with a copper transmission line. 

 

2.2.4. Related techniques 

Other spectroscopic techniques that also exploit material interactions with a 

microwave-frequency electric field have been combined with microfluidic 

techniques.   

 

A microwave interferometer is a device that measures the difference between 

waves that have traversed a sample-perturbed transmission line and a reference 

transmission line by virtue of their interference.  Such a device has been used to 
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perform differential measurements of sample-filled and reference liquid reservoirs 

in order to determine the composition of ethanol-water and methanol-water 

mixtures [60].  Note that measurements could only be performed at a single 

frequency.  This technique was demonstrated with large changes in molar fraction 

(≥ 5%), which yield correspondingly large (and easily detectable) changes in 

permittivity.  The composition of a biological sample (for example, changes in 

blood glucose concentration) could reasonably be expected to vary by orders of 

magnitude less than this. 

 

A Coulter counter for measuring the number density of biological cells has been 

implemented using MHz frequency impedance measurements [61].  A potential 

problem with this approach is the high power dissipated in the sample during 

measurement.  This could be exploited for the purposes of heating as delivering 

power at a certain frequency will dissipate energy according to the dielectric loss 

of the liquid at that frequency.  This could prove to be an efficient and selective 

method for in situ temperature control of liquids whilst simultaneously 

characterising the sample.  Serendipitously, the peak in imaginary permittivity of 

many common solvents occurs in the microwave-frequency region.   

 

However, with respect to [61], µW power levels are considerable for low-volume 

(microfluidic) samples and could lead to misleading or ambiguous results.  This 

problem will be most significant for liquids with highly temperature-dependent 

permittivity, and for mixtures composed of fluids with different temperature 

dependencies.  This method also requires the sample to be in contact with a metal 

electrode, which reduces biological and chemical compatibility.  Similar cell 

counting devices have also been implemented using GHz frequency measurements 

[62], [63].  The permittivity contribution of ionic content will decrease as the 

frequency of measurement increases.  Therefore, these methods typically have a 

better signal-to-noise ratio than lower frequency techniques.  This has the 

additional benefit of implying that any measured change can be attributed to 

changes in capacitance due to the presence of cells.  The inability to quantitatively 

characterise material properties other than size means that such methods are of 

limited use for point-of-sampling applications.  However, combining cell counting 

methods with dielectrophoretic techniques meant that different cells could be 
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distinguished.  For example, the ability to distinguish between viable and non-

viable yeast cells was demonstrated in [63].  This method requires predetermined 

knowledge of the differences in permittivity between the suspended cells and the 

suspending medium.  The lack of directly accessible and quantitative information 

for an arbitrary sample means this approach is not suitable for generic point-of-

sampling applications.  

 

2.2.5. Magnetic spectroscopy 

All matter must have a non-zero electric susceptibility since only a vacuum can 

have zero susceptibility.  A magnetic material must therefore exhibit dielectric 

properties, and vice versa for a dielectric material.  Given that both electric and 

magnetic susceptibility affect the response of a resonator measurement, it is 

therefore desirable to deconvolve the contributions of the electric and magnetic 

properties of the material under test.  The change in complex resonant frequency 

can be rewritten to acknowledge such dependencies: 

 

   ̃( ̃  ̃)       
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where complex permittivity  ̃ is defined as  ̃        , where    is permittivity 

and    dielectric loss.  Complex permeability is similarly defined to be  ̃        , 

where    is permeability and    magnetic loss.  This type of expression quantifies 

perturbation theory, which is used to extract material properties from resonator 

measurements.  It is necessary to introduce it here for the purposes of discussing 

magnetic microwave-frequency spectroscopy, but perturbation theory is discussed 

in more detail in Section 2.3. 

 

This work is generally restricted to isotropic samples, although anisotropic 

samples (including microflows of extremely diffuse suspensions) would simply 

require directional dependency of the function   ̃.  Expressions of the same form 

as Equation 2.1 apply to all modes if additional harmonics of an overmoded 

resonator are considered. 

 

Magnetic materials are the most obvious type of sample requiring electric and 

magnetic deconvolution.  For microfluidic characterisation, such samples clearly 
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have to be liquid- or gas-phase; note that magnetic liquids are usually suspensions 

where the suspended particles are magnetic but the carrier phase is not.  Of 

particular significance is blood, where erythrocytes have a magnetic response due 

to the iron content of haemoglobin [64].  Oxygenated (diamagnetic), deoxygenated 

and methaemoglobin (both paramagnetic) each exhibit a different magnetic 

moment and can be separated by an applied magnetic field in suspension [65].  

These measurements took place in an artificially simple liquid system.  It is 

proposed that the ability to extract as much information from a sample with as 

little preparation as possible is important for point-of-sampling applications.  To 

be able to characterise the dielectric and magnetic properties of a liquid could be 

tremendously useful for clinical applications. 

 

However, such electric and magnetic deconvolution is also necessary for any 

medium that exhibits a coupled permittivity and permeability response.  For 

example, a detailed theoretical treatment of simultaneous polarisation and 

magnetisation in chiral media is included in [66].  The coupled response of ionic 

solutions is another example, and will be used extensively in this work.  This 

response arises because mobile charge carriers interact with both an applied 

electric field and the induced electric field due to an oscillating magnetic field.   

 

Electric and magnetic deconvolution can be achieved with numerous measurement 

techniques, both broadband and resonant.  Broadband transmission/reflection 

waveguide measurements are well established for such deconvolution.  The 

seminal Nicolson-Ross-Weir method uses measurements of four parameters (the 

amplitude and phase of both power reflection S11 and transmission S21) to 

determine complex permittivity and permeability [67–69].  Such methods are 

often applied to metamaterials research [70–72] in order to demonstrate a 

negative index of refraction, which requires knowledge of both complex 

permittivity and complex permeability. 

 

Similar broadband approaches have also been adopted in disciplines outside of 

metamaterials research.  For example, the complex permittivity and permeability 

of other solids [68], [73], liquids [74] and ferrofluids [75–79] have also been 

demonstrated.  There are, however, several shortcomings with these works.  
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Whilst the problem was formulated in terms of both permittivity and permeability 

in [73], [74], only permittivity measurements of non-magnetic and non-ionic 

samples  were experimentally verified.  Of the ferrofluid characterisation methods, 

only two [75], [78] consider permittivity as well as permeability.   

 

A ferrofluid is a colloidal suspension of superparamagnetic nanoparticles with an 

appropriate surfactant coating to prevent aggregation and allow the formation of a 

monodisperse suspension.  See Section 2.6.3 for more information.  Note that 

ferrofluids are a specific subset of magnetic liquids.  Suspensions such as the 

paramagnetic and diamagnetic erythrocytes usually fall under the more generic 

label of ‘magnetic liquids’. 

 

The techniques described in [68], [70–79] are all broadband and are therefore less 

suitable for low concentration detection in comparison with resonant techniques, 

assuming an equivalent form of deconvolution is possible.  These broadband 

methods are therefore inappropriate for the biochemical and pharmaceutical 

applications of this work due to decreased accuracy and sensitivity.  The 

advantages of resonant techniques are indeed noted by [74] and discussed in 

detail in the section 2.2.3 and in [21], [22].   

 

The deconvolution of electric and magnetic field effects can also be achieved with 

resonant measurement techniques.  The simplest implementation is realised 

through positioning the sample in such a way that it only occupies either electric 

field or magnetic field depending on which mode of the resonator (i.e. which 

frequency) is interrogated.  Peñaranda-Foix et al. [80] have gone some way to 

achieving deconvolution by exploiting the field distributions of a split cavity 

resonator.  However, full deconvolution is not achieved because, despite the 

magnetic properties being isolated at certain frequencies, the electrical properties 

are not separated from the magnetic properties.   

 

A split cavity resonator is formed from a cylinder halved along its height so that a 

solid slab of material can be placed between the two (symmetric) halves.  This can 

be excited in the same way as a normal cavity resonator, but requires an extended 

analytical treatment due to incomplete field confinement in gap between the two 
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halves of the cavity.  In [80], TE0np modes are used.  Magnetic field is maximised 

within the sample region when odd values of p are selected (termed “odd” modes), 

whereas electric field is minimised.  Likewise, both the electric and magnetic fields 

are maximised within the sample region when even values of p are used (termed 

“even” modes).  This only partially addresses the issue of deconvolution because 

the magnetic properties of the sample can be measured independently of the 

electrical properties but the electrical properties cannot be directly isolated from 

the magnetic properties.  This may be acceptable if the variation of magnetic 

properties varied by a known amount within the interrogated frequency range, but 

any requirement for predetermined knowledge is unacceptable for a generic 

device to be used for analysing arbitrary samples with minimal preparation. 

 

It would be possible to estimate the isolated electrical properties of a sample by 

comparing the responses of electromagnetically- and magnetically-perturbed 

modes, but the two measurements must necessarily be taken at different 

frequencies.  This approach would entirely negate the use of multi-modal 

information for extracting frequency dependence information for permittivity and 

permeability. Although not explicitly stated in [80], complex permittivity is not 

(and cannot be) measured independently of varying permeability.  Additionally, 

the imaginary component of permeability is ignored in [80].  This is perhaps 

understandable given that the imaginary component is normally fairly small, but it 

also means the certain sources of dielectric loss (i.e. dipolar and ionic polarisation) 

cannot be distinguished from each other. 

 

Another cavity perturbation method has also been developed for extracting 

permittivity and permeability simultaneously [81–83].  If more than two or three 

modes are to be interrogated using this method, multiple sections of waveguide 

must be used.  It is also dependent on careful calibration.  For these reasons, such a 

setup is not suitable for the intended biochemical and pharmaceutical applications 

of this work, or for operation by a non-expert user. 

 

2.3. Perturbation theory 

Perturbation theory is usually derived in a manner similar to that set out below.  

This approach is also followed by [84–86].  The quality factor of a resonator is 
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defined as the ratio of energy stored   to power dissipated   at angular frequency 

  (    ). 
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where angle brackets denote a time-averaged quantity.  Resonant frequency is 

denoted as      Frequencies close to resonance can be expressed as          

where         It can be shown that a lossy resonator of resonant frequency    

is equivalent to a lossless resonator of complex resonant frequency  ̃ [57]:  
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for frequencies         where    is small.  This can alternatively be 

expressed in terms of half-power bandwidth           Small perturbations of the 

resonator fields (in terms of permittivity, permeability or shape) will affect a 

change in complex resonant frequency, which can be written as [84–86]:  
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where the subscript 0 denotes an unperturbed quantity.    is the change in 

permittivity due to perturbation relative to the permittivity of the region occupied 

by the resonator field         likewise for the change in permeability      If it is 

assumed that the perturbed fields have the same distribution as the unperturbed 

ones, then Equation 2.32 can be reduced to:  
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The assumption that the fields remain the same is an approximation that does not 

hold for large perturbations (i.e. where the sample is of high permittivity or 

occupies a significant volume fraction of the resonator fields).  Alternative 

inversion techniques will be explored in subsequent sections to account for 

calculation errors arising from such distortions. 
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Note that the denominator terms in Equation 2.33 are related to the energies 

stored within the electric and magnetic fields.  For non-magnetic media, Equation 

2.33 can be rewritten in terms of induced dipole moment and stored (electric) 

energy      
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2.34 

Both sides are complex valued.  It is useful to expand the left-hand side of this 

equation in terms of centre frequency and quality factor:  
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where  ̃ and  ̃  are the perturbed and unperturbed centre frequencies in units of 

Hertz.  Together with Equations 2.9 and 2.12 (to relate dipole moment to 

permittivity), Equations 2.34 – 2.36 can be used to evaluated the dielectric 

properties of a material through measurements of resonator centre frequency and 

bandwidth.  Specifically, the changes in the real and imaginary components of 

normalised complex frequency shift correspond to the real and imaginary 

components of polarisability (and therefore to permittivity) of the material under 

test. 

 

Generally, the change in normalised complex resonant frequency is proportional to 

sample polarisability and hence to sample permittivity.  However, the relationship 

between complex resonant frequency and permittivity is generally non-linear due 

to non-negligible field distortions caused by a sample.  It is necessary to be able to 

describe this relationship in order to calculate the dielectric (and possibly 

magnetic) properties.  This can be achieved in several ways: by analytical, numeric 

and empirical means.  The analytical approach requires accurate modelling of the 

sample polarisability and of the resonator geometry.  The numeric approach 

estimates the complex resonant frequency variation with permittivity using an 

appropriate simulation method such as finite element modelling.  The empirical 

approach uses measurements of materials of known permittivity to interpolate an 
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inversion function or to populate a look up table, as long as complex resonant 

frequency varies smoothly with permittivity. 

 

However, electric and magnetic field perturbation is dependent on the resonator 

geometry, the mode of excitation and the sample polarisability.  The sample 

polarisability is affected by both its dielectric properties and its shape.  Hence, the 

inversion of complex frequency measurements to complex permittivity values is 

unique to each resonant sensor and, to a lesser extent, the material under test.  

There is no universally superior method of measurement inversion as each has its 

own advantages and disadvantages, so this too depends on the resonator and the 

sample.  It is therefore inappropriate to further discuss the use of perturbation 

theory for measurement inversion at this point.  Each of the sensors developed 

during this project utilise perturbation theory in a different way, and specifics of 

such considerations will be dealt with individually for each resonant sensor. 

 

2.4. Microfluidics 

Microfluidics is the study of methods for miniaturised flow.  This is usually 

achieved by confining small volumes (10-9 – 10-18 L) of fluids within channels that 

have cross-sections of micron-scale dimensions [87], although the length of the 

channels may be much greater.  Various forces influence fluid flow, but the 

proportional influence of each force varies as the scale of confinement is reduced.  

Several phenomena arise as a consequence of such confinement.  Perhaps most 

importantly, laminar flow can reduce the effects of turbulence and thereby allow 

fluid behaviour to be more accurately predicted and more precisely controlled in 

comparison with macroscale approaches.  This level of control offers 

unprecedented potential for experiment automation and regulation within an 

enclosed system.  Taken together with the obvious reductions in sample volume, 

equipment footprint, health hazards and the scope for human error, microfluidic 

techniques are ideal for improved fluid handling throughout many disciplines of 

science. 
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2.4.1. Basic principles 

Various types of forces influence fluid flow.  The most influential forces exerted on 

a fluid confined within a channel will be body (e.g. gravitational), inertial, viscous 

and surface forces.  Ratios of these values (which are necessarily dimensionless) 

can be used to assess which forces dominate the others.  Certain ratios can be seen 

to be dependent on some characteristic length of the channel, and are therefore 

useful measures for examining the non-linear behaviour of fluids at different 

length scales.  Of such measures, the most important one is probably the Reynolds 

number xRe.  This quantifies the ratio of inertial forces to viscous forces: 
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Unfortunately, several of these variables are assigned the same letters used for 

other electromagnetic variables elsewhere in this thesis.  The appropriate variable 

should be clear from the context but, generally, it will refer to the electromagnetic 

variable rather than the fluid variable unless otherwise stated.    is flow velocity, 

  is density,   is dynamic viscosity and L is the characteristic length of the channel, 

which is typically the radius for circular cross-sections. Equation 2.37 may also be 

written in terms of the kinematic viscosity        

 

Laminar flow will occur when viscous forces dominate the inertial.  Clearly, this 

situation is described by a low Reynolds number.  A laminar flow is one where the 

fluid flows in layers with little or no lateral motion.  This is shown in Figure 2.9 a.   

Two fluids are eluted into a common channel before being separated into two 

outlet channels (a so-called ‘H-cell’); laminar flow is preserved throughout.  That 

lack of lateral motion means that mixing can only occur via diffusion across the 

interface between the two flows.  If the two flows were the same liquid, and a 

dissolved species were introduced into one of the inlets, the mixing would be a 

function of the diffusion coefficient (diffusivity) and the length of the path where 

the two adjacent flows were in contact with each other.  This is illustrated in Figure 

2.9 b and c.  In case b, there is a dissolved species of arbitrary diffusivity 

introduced into inlet 2.  The path length is insufficient to allow complete mixing to 

occur (i.e. where the analyte concentration would be equal across both flows after 

some time t, assuming constant inflow velocity).  Hence, both outlets have different 
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analyte concentrations, and each outlet exhibits a lateral concentration gradient 

due to the length of time taken for the analyte to diffuse.  In case c, there is a 

dissolved species introduced in the same manner, but of diffusivity fifty times 

greater.  In this instance, the path length is more than enough to allow the 

concentration to equilibrate.  Hence, both outlets have the same analyte 

concentration. 

 

 

Figure 2.9: Schematic view of microfluidic H-cell modelled in COMSOL, where two 

inlets are eluted into a common channel before separating into two outlet channels.  

(a) shows the laminar flow pattern, (b) a colourmap of the concentration of a low 

diffusivity species introduced in inlet 2 and (c) a similar concentration colourmap for 

a high diffusivity species introduced in inlet 2.  Each inlet and outlet channel has a 

100 μm-square cross-section; the main channel has a 200 μm by 100 μm profile. 
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From this example, it can be seen how laminar flow enables mixing to be 

controlled simply by varying path length. 

 

2.4.2. Basic techniques 

Pumps, mixers, reactors and detectors can all be implemented using microfluidic 

techniques.  Devices incorporating some combination of these on a single platform 

to perform a specific function are often described as ‘lab-on-a-chip’, or LoC.  

 

It can be notoriously difficult to ensure mixing of laminar flows, given that 

diffusion is a relatively slow process.  This is somewhat at odds with the purported 

benefits of microfluidics for fast, high-throughput and automated chemistry.  This 

necessitates the use of mixers, which can be implemented in an active or passive 

manner.  Active mixers use some external energy source to enhance mixing, for 

example via ultrasound [88], [89] or electrokinetic [90] means. 

 

Conversely, passive approaches utilise the pumping force through particular 

channel geometries or surface features.  Combining two flows at a T-junction, as 

shown above, is one approach.  Other approaches include: 

 

 Meandering channels, where corners and curves in the channel induce Dean 

flows (at least at high flow rates) that cause lateral flow due to inertial 

effects.  This causes the parallel laminar layers to overlap and interleave 

and thereby increase mixing [91], [92]. 

 Parallel lamination, where alternating laminar flows are introduced side by 

side.  Rather than just having one interface between two flows, this vastly 

increases the surface area across which diffusion can occur. 

 Split-and-recombine mixers, where flows are split into smaller channels 

and subjected to different forces (for example, channels of dissimilar 

curvature to induce different Dean vortices) to enhance mixing of the entire 

flow upon recombination [93], [94]. 

  

All of the above examples of microfluidic techniques have been concerned with 

miscible fluids.  Eluting immiscible fluids into a common channel gives rise to 
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multi-phase microfluidics, or segmented flow.  Given the dominance of interfacial 

surface forces in microfluidic channels, it is energetically unfavourable for two 

immiscible liquids to form a laminar flow because of the large interface between 

the flows and correspondingly high surface area-to-volume ratio [95].  The lowest 

possible surface area-to-volume ratio is that of a sphere, so it is energetically 

favourable for one of the immiscible fluids to form discrete spherical droplets in 

the other fluid.  A variation on this situation is when the diameter of such a sphere 

is less than one or both of the cross-sectional dimensions of the channel.  In this 

case, the droplet becomes elongated and forms a slug.  It is also possible for such 

slugs to completely occlude the channel; although more commonly one phase is 

suspended in the other.  The potency of multi-phase microfluidics lies in that each 

partition demonstrates rapid, well-defined internal mixing, and the interface 

between each segment is continuously refreshed [96].  For example, a multi-phase 

method for continuous molecular enrichment [97] was recently developed at 

Cardiff University.  A segmented flow incorporating a suspension of solid 

adsorbent microparticulates in the organic phase was used to accelerate the 

extraction of a dissolved target in the other, aqueous phase.   

 

In order to fully take advantage of this performance in a practical laboratory or 

point-of-sampling application, it is necessary to be able to isolate the segmented 

phases from each other.  Therefore, a membrane-free microfluidic device for 

continuous-flow operation was subsequently developed to separate a segmented 

flow into its constitutive phases [98].  Total (100% efficient) separation was 

achieved by exploiting the differences in the wetting characteristics of the two 

phases, where the lower contact angle phase could flow down small side channels 

upon the application of a suitable pressure gradient.  The combination of 

molecular enrichment and phase separation techniques allows continuous-flow 

sample enrichment and purification.  

 

2.4.3. Example applications 

To give an exhaustive overview of all applications of microfluidics is beyond the 

scope of this section.  For further information, please see the reviews [87], [96], 

[99], [100].  Such applications include chemical synthesis, digital fluidic logic and 

cell manipulation.  Amongst the most useful work is in the development of low-
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cost systems for the diagnosis of infectious diseases where it is logistically 

infeasible to use large-scale laboratory equipment, as recently demonstrated for 

the simultaneous detection of syphilis and HIV using optical detection methods 

[25].  As noted in [87], microfluidics offers great potential for high-value, high 

impact applications, but it remains a field of research in its infancy that has not yet 

made the transition from proof-of-concept experiments to usable, real world 

devices.  The objectives of this project are in line with these perhaps lofty aims, as 

it seeks to incorporate the many fluid-handling advantages of microfluidics with 

the useful, miniaturisable methods of dielectric spectroscopy. 

 

2.5. Current microfluidic microwave-frequency spectroscopy 

From an interfacing perspective, filling a waveguide with a solvent [101] or 

dipping a reflectance probe [48] into a solution are acceptable only if there are a 

small number of samples to be characterised.  This is incommensurate with the 

applications of modern chemistry and biology, where large-scale and high-

throughput assays are an indispensible laboratory tool.  To utilise the advantages 

of microfluidics would appear to be an ideal way of implementing a highly 

controllable, automated fluid interface. 

  

Whilst microwave-frequency dielectric spectroscopy methods are well established, 

microfluidics is a young but nascent field of research.  Hence, attempts to combine 

the two technologies have only emerged within the last decade.  The most 

commonly encountered method is to perturb the electric field of a coplanar 

waveguide with a liquid delivered via microfluidic channels in a PDMS substrate 

[9], [12], [14], [15], [35], [102], where permittivity is extracted via a number of 

analytical and numeric means.  All of these examples bring the sample into contact 

with the waveguide conductors.  This has been done to avoid covering the coplanar 

waveguide in PDMS, which should be avoided because of its high dielectric loss at 

microwave frequencies, as noted by [9].  This is problematic for two reasons: no 

sample that will react with the conductors can be used (reducing biological and 

chemical compatibility), and the solutions can attack the bond between the 

conductor and the waveguide substrate.  For the coplanar waveguide geometries 

referenced above, this means that the centre conductor in particular (which is 

often made as narrow as possible to increase spatial resolution) is fragile and 
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prone to come away from the substrate, rendering all measurements useless.  

These problems are known to occur [103] for the devices reported in [14], [35], 

[102] and could reasonably be anticipated for the others. 

 

There have also been examples of microfluidic whispering gallery mode dielectric 

resonators.  These devices have been perturbed with microfluidic channels [16], 

droplets [104] and confined nanolitre fluid samples [105].  The resonant 

microfluidic approaches exhibit very low chemical sensitivity.  Despite the fact that 

resonator measurements should be capable of improved sensitivity in comparison 

with broadband techniques (as discussed above), they are less sensitive.  [104] and 

[105] are not capable of continuous flow measurements, which would seem to 

negate much of the usefulness of a microfluidic interface, and reduce chemical 

compatibility through their use of contact measurements and PDMS substrates. 

  

In addition to this, several other microfluidic techniques have been developed for 

resonator perturbation at Cardiff University.  These include the capillary-

perturbed hairpin [18] and split-ring resonators [58], and the split-post dielectric 

resonator with an embedded microchannel [17], as discussed from a measurement 

perspective in Section 2.2.3.  From a microfluidics perspective, these interfaces are 

somewhat limited as the resonators would not be able to be integrated directly 

onto a lab-on-a-chip device.  One of the main attractions of microfluidics for the 

non-expert point-of-sampling applications of this project is that it allows all 

processing and diagnostics technology to be integrated into one box.  To pump a 

sample off chip to a resonator is by no means an impossible feat, but would seem 

to add unnecessary complexity.  For example, the sample tubing would need to be 

maintained at the same temperature as both the resonator and the microfluidic 

chip.  Furthermore, experience has proven that some of the most problematic 

elements of a microfluidic circuit are the fluidic inlet and outlet connections, so 

adding more is undesirable. 
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2.6. Chemistry  

2.6.1. Chirality 

Stereoisomeric molecules are isomers that differ in their spatial arrangement of 

atoms but not in the order of their bonds or in molecular formula.  These are 

distinct from constitutional isomers, which also have the same molecular formula 

but differ in the order of their bonds.  Stereoisomers can be further subdivided 

according to the arrangement of their stereocentres, which are atoms 

asymmetrically bonded to two or more groups where any pair of groups is 

interchangeable.  Stereoisomers can either be enantiomers or diastereoisomers.  

Two molecules are enantiomers when every stereocentre in one molecule is of the 

opposite configuration to the equivalent stereocentre in the other molecule.  For 

example, thalidomide exists as two different enantiomers that exhibit some 

different properties within the human body [106].  Two molecules are 

diastereoisomers when at least one but not all of the stereocentres in one molecule 

are of the opposite configuration to the equivalent stereocentres in the other 

molecule.  For example, cocaine exists as different diastereoisomers, which can be 

useful in distinguishing whether a particular sample is from a natural or synthetic 

source [107]. 

 

A consequence of having oppositely configured stereoisomers is that any two 

enantiomers will be mirror images of each other but will not be superimposable.  A 

commonly used analogy for describing this situation is a pair of hands, where the 

hands are equivalent and mirror images of each other but are not rotationally 

symmetric.  However, the polarisability of two enantiomers in an oscillating 

electric field will be identical.  This problem arises because microwave-frequency 

dielectric spectroscopies typically characterise the rotational movement of 

molecules with sinusoidally varying fields.  Therefore, enantiomers cannot be 

directly distinguished because their charge distributions dictate that their 

polarisabilities will be identical, despite rotating in different directions.  However, 

biological function is often enantiomer specific.  Enantiomers can therefore be 

identified if the dielectric properties of a biological species (such as tissue or a 

membrane) can be interrogated.  An example of this is given in [108], where the 

electrical properties of an erythrocyte membrane are measurably affected by the 

presence of the D-glucose enantiomer but not the L-glucose enantiomer.  Dielectric 
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spectroscopy can therefore be used to indirectly identify glucose enantiomers due 

to their biological action or lack thereof via the electrical properties of erythrocyte 

membranes.  A microelectrode device for performing such measurements in 

demonstrated in [109].  Conversely, diastereoisomers (i.e. not enantiomers) can be 

directly assessed with dielectric spectroscopy techniques because their charge 

distributions differ, as demonstrated for arabinose in [110]. 

 

2.6.2. Molecular imprinting 

Considering recent research at Cardiff University, an area of interest is in the use of 

molecularly imprinted polymers (MIPs) for specific binding [97], [111–113], as 

alluded to in Section 2.4.2.  MIPs are polymers that, due to the presence of a 

template molecule during polymerisation, contain recognition sites that will 

selectively bind to a target ligand [114].  The cavity left in the polymer by the 

removal of the template retains chemically functional groups spatially arranged in 

relief of the target.  The imprinted site will therefore demonstrate chemical affinity 

for structures corresponding to that of the target ligand, and so behave as a type of 

artificial antibody.  Although MIPs typically exhibit lower specificity than their 

biological counterparts, they possess excellent chemical and thermal stability 

[115] and can be used in a wide range of environments. 

 

Current spectroscopic techniques cannot be used to directly assess specific binding 

in solution.  To be able to perform such characterisation in situ (for example, in a 

continuous microfluidic segmented flow such as in [97]) would be tremendously 

enabling.  For example, if MIPs were to be used in a synthetic purification stage by 

removing a dissolved species in segmented flow, dielectric spectroscopy could 

allow automated optimisation of the synthetic procedure by indicating when a set 

level of binding had been achieved without the need to separate the phases and 

subsequently perform an assay.  The potential for in situ continuous flow 

measurements could dramatically reduce the time taken by such procedures. 

 

Microfluidic dielectric spectroscopy could be capable of performing such 

measurements, but the large size of MIPs (~ 4 μm [116]) mean that they are 

unlikely to exhibit significant dielectric dispersion in the microwave-frequency 

region (if at all).  Therefore, it may transpire that dielectric spectroscopy could be 



SUMMARY  55 

 

used to quantify the removal of a measureable target ligand to infer binding rather 

than directly assessing the occupation of ligand-specific sites. 

 

2.6.3. Magnetic nanoparticles 

The applications of magnetic nanoparticles have been the subject of numerous 

extensive reviews, including ones on therapeutic drug delivery [117], cell targeting 

[118], magnetic resonance imaging [119], cancer diagnosis [120] and data storage 

[121].  Simultaneous dielectric and magnetic spectroscopy has been attempted for 

ferrofluid characterisation [122].  However, resonant microwave-frequency 

spectroscopy has not been utilised for such applications.  It is possible that, if such 

a technique can be implemented effectively in a microfluidic environment, it could 

offer an ideal method for performing low-cost but highly accurate point-of-care 

diagnostics. 

 

2.7. Summary 

Various different spectroscopies have been qualitatively compared.  Microwave-

frequency resonators are an excellent sensing technique for a wide range of 

(bio)chemical and industrial point-of-sampling applications in terms of speed, cost, 

sensitivity and potential for miniaturisation.  Significantly, such techniques can 

also be combined with a microfluidic sample interface for precise, automated, and 

high-throughput measurements, although this potential has not yet been fully 

realised.  The aim of this project is to develop a widely compatible ‘lab-on-a-chip’ 

device for fluid identification for a non-expert user. 
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3. EVANESCENTLY-PERTURBED COAXIAL RESONATOR 

The concept of using microwave resonators to measure permittivity and 

permeability was introduced in the previous chapter.  Several key questions were 

also addressed.  Specifically: 

 

 Why use dielectric spectroscopy?  

 Why use microwave-frequency dielectric spectroscopy?  

 Why use resonant microwave-frequency dielectric spectroscopy? 

 

Dielectric spectroscopy has great potential as an alternative, cost effective 

spectroscopic technique because of its capabilities for non-contact, non-invasive, 

non-destructive and label-free measurements of all states of matter and 

combinations thereof.  The microwave frequency region is one where rotational 

dielectric dispersions are dominant and most obviously observable for solvent-

based liquid systems.  It is therefore beneficial for a low-cost spectroscopy device 

for point-of-sampling applications to perform measurements in this region.  

Performing resonant measurements instead of broadband measurements have 

benefits in terms of sensitivity and dynamic range, although only being able to 

perform measurements at a single frequency remains a significant drawback.   

 

This chapter explores the use of an evanescently-perturbed coaxial resonator as an 

alternative geometry for performing rigorous, repeatable measurements for 

biochemical applications.  To fully justify the chosen measurement technique, the 
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use of a coaxial resonator as an implementation of a resonant microwave-

frequency dielectric spectroscopy technique must also be considered. 

 

For most of the previous examples of microwave resonant sensors, the over-riding 

design methodology has been to maximise the quality factor Q in order to improve 

resolution.  The motivation for doing this is best explained by considering that 

heating and sensing are two manifestations of the same phenomenon: the 

interaction of charged particles with an electric field.  Heating occurs when the 

power dissipated via this interaction is sufficient to raise the temperature of a 

sample by a measureable degree.  The principle of sensing via this interaction 

requires some power to be dissipated by the sample so that the reflected (or 

transmitted) signal exhibits a measurable difference due to the properties of the 

sample.  The measurement should be configured to minimise the absolute power 

dissipated in order to prevent any temperature-dependent properties from being 

affected.  Therefore, for dielectric spectroscopy, it is desirable to minimise the 

power dissipated but to maximise the proportion of input power that interacts 

with the sample.  For an input power      unperturbed quality factor    and loaded 

(i.e. sample-filled) quality factor   , the power dissipated in a sample    is: 

 

 
      (       )  

 
3.1 

A smaller value of    for a given     will give rise to a smaller measured response, 

meaning that the device resolution will be reduced.  It is therefore necessary to 

design a sensor so that    is maximised for a given    .  To do this it is necessary to 

minimise     maximise    or both.  The normal design procedure is to focus on the 

maximisation of   .   

 

Increased    gives reduced insertion loss (i.e. the peak of a power transmission 

spectrum of a resonant mode becomes less negative).  This, in turn, makes the 

resonator easier to couple to and increases signal-to-noise ratio.  Although useful, 

this in itself does not increase the sensitivity of a resonator.  Improved sensitivity 

arises from maximising the difference in quality factor between the perturbed and 

unperturbed states of the resonator.  This requires careful design of the resonant 

sensor, so that the proportional volume of perturbed fields occupied by the sample 

is maximised. 
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The coaxial resonator has generally been overlooked in favour of other resonators 

due to the losses associated with the coaxial geometry.  This results in quality 

factors of approximately 1000, which are lower than for cavity or dielectric 

resonators but higher than for planar resonators.  The losses of the coaxial 

resonator arise from the dielectric loss of the spacer and from the surface 

resistance of the conductors.  Any form of power dissipation will reduce Q given 

that Q is proportional to the ratio of energy stored to power loss.  Most coaxial 

cables incorporate a dielectric spacer to keep the axes of the inner and outer 

conductors coincident.  Any spacer with finite dielectric loss ε2 will dissipate 

power. A commonly used spacer material is PTFE which has a loss tangent 

              ≃ 2.5∙10-4 at 1 GHz.  One possible method for counteracting this 

reduction in Q would be to use an air-spaced coaxial line, although this would still 

require dielectric washers to hold the inner conductor in place.  The power 

dissipation arising due to the surface resistance of the conductors could be 

reduced by using higher conductivity materials such as silver or a superconductor.  

Aside from the cost of such an approach, which is likely to be prohibitive for 

miniaturised point-of-sampling measurement devices, superconductors will have a 

so-called crossover frequency when their surface resistance becomes comparable 

to that of a metal, which can occur at microwave frequencies.  The use of a 

superconducting coaxial resonator may therefore not be of any significant 

advantage although it is dependent on many factors including the temperature of 

operation.  The reader is referred to [123] for a detailed consideration of a coaxial 

cavity with a superconducting inner conductor. 

 

However, a resonant sensor design procedure would be more complete if it did not 

focus on the maximisation of Q at the expense of all other experimental 

considerations.  For example, it will be shown that transmission measurements 

can be used to obtain multi-frequency information from one end of a coaxial 

resonator, allowing it to be evanescently perturbed at the other end.  The sensor 

can be perturbed in a multitude of ways given that the sensing fields are not 

located inside the resonator.  The first two chapters argue that such an approach is 

more suitable for the aims of this project. 

 



60    CHAPTE R 3.   EVA NESC E NT LY-PERT UR BED  COA XIAL R ES ONAT OR  
 

 

3.1. Methods 

3.1.1. Electromagnetic design 

Resonators require one coupling port for reflection measurements and two for 

transmission.  This chapter focuses exclusively on transmission measurements, for 

which there are several justifications, to show that such measurements allow the 

use of weak coupling.   

 

Firstly, in weak coupling, the requirement for careful network analyser calibration 

is reduced as only a minor correction is required to convert quality factor 

measurements from loaded to unloaded in order to quantify dielectric loss.  This is 

noteworthy considering the eventual aim of developing ‘black box’ dielectric 

spectroscopy, where a non-specialist user would be able to collect measurements 

without knowing the intricacies of the measurement technique or having to 

perform a rigorous calibration.   

 

Secondly, weak coupling means the coupling structures do not significantly alter 

the electromagnetic field distribution compared to the empty cavity, making the 

extraction of coupling-independent resonator parameters easier.  This reduces the 

experimental procedure by enabling the resonance parameters to be extracted 

unambiguously.   

 

Thirdly, the fact that performing a measurement in transmission rather than 

reflection removes calibration dependence implies that the measurement does not 

necessarily have to be performed with a network analyser.  This means microwave 

frequency devices that have attracted funding for mass-production and 

miniaturisation in other industries (e.g. in wireless communications) could be used 

to implement the associated technology required for resonator measurements.  

This gives rise to the potential for low-cost, miniaturised hardware for point-of-

sampling applications.   

 

In contrast to the benefits associated with transmission methods, reflection 

techniques require much stronger coupling to give a measurable resonance.  This 

is because a large insertion loss under weak coupling conditions would give a 

reflection coefficient too close to 0 dB to allow reliable extraction of experimental 
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parameters.  It is considered poor metrological practice to attempt to measure a 

weakly-coupled resonance in reflection [22], so it is not possible to directly 

compare the two methodologies with a single device. 

 

A transmission line resonator is formed when the end conditions of a section of 

transmission line are such that an incident wave reflects off of both ends to form a 

standing wave.  Consider a transmission line terminated with some arbitrary load 

ZL, as shown below. 

 

 

Figure 3.1: Transmission line, where the incident signal is wholly or partially 

reflected due to mismatch between the line and load impedances. 

 

The incident and reflected voltages are   (   )    
   (     ) and   (   )  

  
   (     ), respectively.  The incident and reflected currents are   (   )  

  
   (     )    and   (   )     

   (     )   , respectively.  It follows that the 

load voltage VL and current IL are given by:  
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3.2 
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3.3 

where the voltage reflection coefficient ρV at the load is defined as:  

 

 
   

  
 

  
  

     

     
  

 

3.4 

and the current reflection coefficient ρI at the load is defined as:  

 

 
   

  
 

  
  

     

     
  

 

3.5 
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The inequality   | |    holds true for both reflection coefficients.  The 

condition | |    implies zero reflection and | |    implies complete reflection.  

Under open circuit conditions (i.e. as     ),  ρV = 1 and ρI = -1.  This means there 

is maximum load voltage (from Equation 2.1) but zero load current (from Equation 

3.3).  Therefore if an electromagnetic wave is to be perfectly reflected by an open-

circuited transmission line (as required for resonance), the open circuit must 

correspond to a point in space where the incident wave has maximum electric field 

and zero magnetic field.  Similarly under short circuit conditions (i.e. as     ),  ρV 

= -1 and ρI = 1.  This means there is zero load voltage (from Equation 2.1) but 

maximum load current (from Equation 3.3).  Therefore if an electromagnetic wave 

is to be perfectly reflected by a short-circuited transmission line, the short circuit 

must correspond to a point in space where the incident wave has zero electric field 

and maximum magnetic field.   

 

A section of transmission line will resonate if the end conditions mean an incident 

wave is repeatedly reflected inside the waveguide in such a way that it 

constructively interferes by forming a standing wave.  Such a resonance is a 

transverse electromagnetic (TEM) mode because there are no electric or magnetic 

field components in the direction of propagation.  That is, the electric and magnetic 

field components are transverse to the direction of propagation.   

 

A coaxial TEM resonator can therefore be formed of a section of coaxial line where 

the end conditions must be comprised of one of three combinations: open-open, 

short-open or short-short.  Cross-sectional schematics of each of these coaxial 

resonator field distributions are illustrated in Figure 3.2, where the red-white 

colourmap represents electric field magnitude and the blue-white colourmap 

represents magnetic field magnitude.  
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Figure 3.2: Cross-sectional views of the electric (a,c,e) and magnetic (b,d,f) field 

distributions for various coaxial resonators.  Each one has different end conditions: 

those shown include open-open (a,b) and short-short (c,d) half-wavelength 

configurations and an open-short (e,f) quarter-wavelength configuration. 

 

If both end conditions are the same, the length of the coaxial section will 

correspond to a half-wavelength of a sinusoidal standing wave because the 

nodes/antinodes required by the boundary conditions will be a half cycle apart.  

Likewise a resonator where the end conditions differ requires maximum electric 

and zero magnetic fields at one end and the opposite situation at the other end.  

The corresponding nodes/antinodes of a sinusoidal electromagnetic wave will be a 

quarter of a cycle apart, so the length of such a resonator will correspond to a 

quarter-wavelength of the standing wave.  In both cases these standing waves are 

of the lowest possible frequency (longest possible wavelength) that can be 

supported.  Both types of resonator will support higher order TEM modes (i.e. 

harmonics) with shorter wavelengths, which can fit an extra half-wavelength or 

integer multiple thereof in between the bounded ends of the resonator. 

 

These resonances can be excited if the internal fields of the resonator can be 

coupled to.  This requires a coupling structure of appropriate field distribution to 

induce an incident wave of appropriate wavelength to resonate within the 

structure.  A structure with both ends short-circuited is necessarily completely 
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enclosed (i.e. all fields are confined), meaning that such a coupling connection will 

be inherently invasive and will require some discontinuity in the transmission line.  

Conversely an open-circuited transmission line will have evanescent fields at both 

ends of the resonator because it is impossible for the fields to remain completely 

confined by a structure that has a gap precisely where the maximum electric field 

is located.  Thus a transmission line resonator with open-open end conditions will 

generally have more easily accessible fields in comparison with a resonator with 

short-short end conditions.  A quarter-wavelength resonator with short-open end 

conditions may or may not be advantageous, depending on how the structure is 

coupled to and perturbed.  This approach would allow smaller resonators to be 

used for operation in the same frequency range as the half-wavelength equivalent.  

However open-circuited half-wavelength resonators are the simplest to couple to 

and perturb, and are generally used in preference to the alternatives throughout 

this work.   

 

There are two methods of coupling to resonator fields: via electric field 

interactions, and via magnetic field interactions.  These are referred to as 

capacitive and inductive couplings, respectively.  Capacitive coupling tends to be 

implemented with an open-ended coaxial termination with a protruding, straight 

inner conductor, as shown in Figure 3.3 a.  Inductive coupling is normally formed 

in a similar fashion, except the protruding inner conductor is curved back on itself 

to form a loop, as shown in Figure 3.3 b. 
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Figure 3.3: SMA connectors featuring protruding inner conductors for (a) capacitive 

and (b) inductive coupling, where the loop would usually be soldered to the ground 

flange of the connector. 

 

These can be used to interrogate a resonator by orienting them so that the 

coupling field distribution corresponds to that of the resonator.  Inductive 

couplings, for example, should be oriented such that the plane of the loop is normal 

to lines of magnetic field.  In comparison with capacitive coupling, inductive 

coupling loops tend to act as a resonator and generally have a less broadband 

response due to parasitic modes.   

 

Coaxial cable is comprised of an inner conductor (of radius a), dielectric spacer, 

and cylindrical outer conductor (of inner radius b).  The characteristic impedance 

Z0 of this type of transmission line is given by: 
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where η0 is vacuum impedance and εr is the relative permittivity of the dielectric 

spacer.  The resonant frequencies of the TEM modes of an open-circuited half-

wavelength coaxial resonator are given by: 
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3.7 

where     is an integer multiple of the fundamental resonance, c is the vacuum 

speed of light and l is the length of the coaxial resonator. 
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The inductive coupling loop field pattern is not well suited to coupling to an open-

circuited half-wavelength coaxial resonator as the loop has to fit between the 

conductors in order to be oriented normally to the magnetic field, which is 

particularly problematic if the coaxial resonator aperture is to be miniaturised.  

Capacitive coupling is rather easier to achieve for a coaxial resonator, as 

demonstrated below, and will therefore be used throughout this work.  

 

 

Figure 3.4: 3D schematics of different reflection coupling methods for an open-ended 

coaxial resonator. a uses an adjacent feedline for capacitive coupling, b uses an 

adjacent SMA connector with protruding inner conductor and c uses a break in the 

inner conductor to separate the feedline and resonator whilst preventing evanescent 

field from escaping the confines of the structure and therefore shields it from 

interference. 
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A reflection measurement of an evanescently-perturbed coaxial resonator is much 

easier to achieve than a transmission measurement because it only requires one 

port.  The simplest method is to position a feedline adjacent and parallel to the 

resonant section.  Several variations of this method are shown in Figure 3.4. 

 

The size of the gap determines the coupling strength.  The structure with a 

common outer conductor between the feedline and resonator would also achieve 

coupling whilst preventing interference with the coupling field.  A colourmap of 

electric field magnitude for the gap coupled resonator (Figure 3.4 c) shows the 

capacitive coupling interaction in Figure 2.2.  Data were obtained from an HF 

electromagnetics simulation performed in COMSOL Multiphysics (COMSOL, 

Burlington, MA, USA).  The evanescent field, which is sometimes colloquially 

referred to as the fringing field, will exist a significant distance (sub-mm to mm at 

microwave frequencies) because the conductor separation b - a is comparable to 

the length of the resonator l.  The resonator is perturbed simply by placing a 

sample in the evanescent field at one end of the resonator.  The evanescent field at 

the other end allows a capacitive coupling interaction. 

 

 

Figure 3.5: Cross-sectional schematic of an open-ended half-wavelength coaxial 

resonator with a colourmap representing electric field magnitude.  A one port 

reflectance measurement is performed, where the sample occupies the evanescent 

field at the end of the resonant section. 

 

The dynamic range of the reflectance approach can be increased by taking a 

transmission measurement, which necessitates the use of two ports.  There are 

numerous ways of achieving this.  Several examples can be seen in Figure 3.6. 

 



68    CHAPTE R 3.   EVA NESC E NT LY-PERT UR BED  COA XIAL R ES ONAT OR  
 

 

 

Figure 3.6: 3D schematics of different reflection coupling methods for an open-ended 

coaxial resonator.  All use capacitive coupling except d, which uses inductive 

coupling. a uses adjacent feedlines to couple to the evanescent electric field, b uses 

two SMA connectors to invasively interrogate the internal electric field of the 

resonant TEM mode, c uses two SMA connectors to couple to the evanescent electric 

field and d uses two loop-terminated SMA connectors to couple to the evanescent 

magnetic field.  The ground plane between the connectors in c and d is necessary to 

minimise crosstalk. 
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Figure 3.6 a shows obvious similarities with Figure 3.4 a.  In this instance, 

however, this structure is more difficult to perturb because the evanescent fields at 

both ends of the resonator are used for coupling.  It is possible to pass a capillary 

through the gap between the resonator and one of the feedlines in order to perturb 

the coupling field (which is in itself an interesting application), but preliminary 

simulations have shown this method to be unacceptably sensitive to the capillary 

position: the dimensional tolerances of capillaries introduce unacceptable 

uncertainties in the order of ± 10%.  However, end coupling is an appropriate and 

useful configuration for other (differently perturbed) coaxial resonators, as 

discussed in Chapter 4. 

 

Invasive couplings, where receptacles protrude through holes drilled into the 

resonant section as in Figure 3.6 b, are also possible.  This approach maintains the 

simple perturbation of the reflectance measurement.  The invasive coupling 

approach is fundamentally flawed in that it cannot be used to couple to higher 

order modes with nodes located adjacent to the receptacles.  If the coupling 

connectors were placed further in from the ends of the probe (which is desirable 

from an experimental perspective, to allow the probe to be dipped in solution or 

embedded in a microfluidic device), an increasing number of TEM modes would 

not be coupled to.  This has two effects: it limits the usable frequency range of the 

measurement device, and will cause false readings for modes with nodes close to 

the receptacles.  This occurs because a dielectric sample typically causes a 

reduction in resonant frequency, hence causing the nodes to move, which will give 

a false transmission measurement if a node moves closer to or further away from a 

receptacle.   

 

In each of these examples it would be possible to perturb a coaxial resonator by 

passing a sample directly through the resonator or by having a section filled with a 

sample.  However these approaches suffer from high uncertainty due to fabrication 

tolerances and they require a relatively high sample volume with a low 

throughput.  These factors make such an approach unsuitable for the point-of-

sampling applications outlined in the introduction.  Reproducibility would be 

lessened if the filled section had to be disassembled or moved between 

measurements (e.g. to be cleaned, which is likely to be regularly required given the 
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large sample volume).  This problem is shared by a significant number of other 

cavity and dielectric resonator techniques. 

 

 

Figure 3.7: (a) 3D schematic of the invasive transmission coupling for an open-ended 

coaxial resonator and (b) logarithmic colourmap of the electric field, demonstrating 

the capacitive coupling interaction.  

 

Two further methods of performing transmission measurements of an open-

circuited coaxial resonator are shown in Figure 3.6 c and d.  These methods use 

two connectors to couple to the evanescent field at a single end of the device, 

which leaves the other end of the device accessible for sensing.  This alternative 

method of coupling necessitates the introduction of a ground plane to minimise 

crosstalk between the connectors.  Otherwise, the connectors would simply couple 

to themselves and it is unlikely a reading could be obtained from the resonator.  

The inductive coupling approach shown in c will not be used because of the 

reasons outlined above.  Instead, b and d will be developed further because of their 



METHODS  71 

 

 

capability for capacitive coupled transmission measurements and evanescent 

perturbation. 

 

Open-circuited RG401 50 Ω coaxial cable was used to form the open-ended half-

wavelength resonator.  It was cut and polished to a length of 8.4 cm, yielding a 

fundamental resonant frequency of ~ 1.25 GHz according to Equation 3.7.  This 

gives six modes in the frequency region of interest (0.5 to 8.5 GHz) as dictated by 

the network analyser to be used to characterise the resonator power transmission 

response.  This choice of length was also a suitable compromise between being a 

practical size and the resonator losses.  Losses (which reduce Q and therefore 

sensitivity) increase as resistivity increases with resonant frequency and so 

decrease with increasing length.  The cable was formed of copper conductors (of 

6.35 mm outer diameter) and a polytetrafluoroethylene (PTFE) spacer (of 1.6 mm 

inner diameter and 5.4 mm outer diameter).  These dimensions also set the 

aperture size and therefore the evanescent sensing field distribution.  This 

diameter cable was chosen to be large enough to allow standard microwave 

components to be used for the coupling structure (i.e. SMA receptacles at the end 

of the resonator or protruding in from the side), whilst small enough to be 

perturbed with a microfluidic channel.  A tapered narrowing of the aperture or an 

elongated and sharpened inner conductor could be used to further localise the 

evanescent field, which is a method frequently used to improve the spatial 

resolution of the microwave microscope [124], [125].  It has also recently been 

demonstrated with an open-ended rectangular waveguide [126], but a tapered 

aperture was not deemed wholly necessary for this project, particularly due to the 

additional geometric uncertainty that could be introduced. 

 

A resonant device incorporating a mount that can be used to house invasive 

couplings is illustrated in the exploded and cross-sectional views of Figure 3.7.  

The distance of the coupling mount from the end of the probe (and the 

corresponding recesses drilled in the resonator) were set so that one end of the 

resonator could be inserted into a standard fluidic T-piece, so that a fluid flow 

through the fitting would perturb the evanescent field of the resonator.  The two 

connectors must be arranged symmetrically along the length of the resonator to 

minimise the number of modes that could not be coupled to.  The unperturbed end 
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of the resonator was shielded with a conducting flange to prevent accidental 

perturbation (which would not be distinguishable from the desired perturbation at 

the other end of the resonator), which has the fortuitous consequence of increasing 

field confinement and thereby increasing Q.  It is for these reasons that a 

transmission measurement consisting of one adjacent feedline (cf. Figure 3.4 a) 

and one invasive connector was considered inferior to a design with two invasive 

couplings. 

 

The inner conductor of each SMA connector and the hole in the coupling mount 

through which it protrudes essentially form an air-spaced coaxial line.  The 

diameter of the connector conductor is fixed (i.e. of a standard size).  Given that 

cables of 50 Ω characteristic impedance were to be used to connect the resonator 

to measurement equipment, the diameter of the hole in the coupling mount could 

therefore be set by Equation 3.6 (in this case, to 3.0 mm). 

 

The coupling strength was set by the length of the inner conductors of the SMA 

connectors.  These were set empirically to give coupling sufficiently weak to not 

interfere with measurement inversion, but not too weak to render the resonances 

unusable.  In practice this meant achieving an insertion loss of approximately 40 

dB for each resonance in the measureable range. 

 

The concept of taking transmission measurements with a capacitive coupling from 

a single end of the resonator was introduced in Figure 3.6 c.  This can be 

implemented using a coupling mount as follows: 
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Figure 3.8: (a) 3D exploded schematic of non-invasive transmission coupling for an 

open-ended coaxial resonator, (b) complete 3D schematic of the assembled device 

and (c) logarithmic colourmap of electric field, demonstrating the capacitive 

coupling interaction.  

 

Significantly, this demonstrates how single-ended transmission coupling can be 

achieved in order to free the other end of the resonator for liquid measurement 

without having to couple at suboptimal points along the length of the resonator.  

The electromagnetic fields were confined within the structure to prevent 



74    CHAPTE R 3.   EVA NESC E NT LY-PERT UR BED  COA XIAL R ES ONAT OR  
 

 

interference.  Crosstalk between the coupling receptacles was prevented by the 

careful positioning of a ground plane to avoid a reduction in dynamic range, which 

was defined as the difference between the peak of power transmission (at the 

fundamental resonance) and the noise floor.  A series of simulations were used to 

optimise the coupling mount design.  Preliminary simulations showed there were 

five relevant dimensions that dominated the coupling strength.  These are labelled 

in Figure 3.9. 

 

 

Figure 3.9: Cross-sectional view of the coupling structure showing the dimensions 

that dominate coupling strength.  

 

Standard gold-plated SMA receptacles were used, and the receptacle housing 

diameter xR was set to maintain the 50 Ω characteristic impedance of the feedlines 

according to the diameter of the receptacle inner conductor (= 1.28 mm).  This was 

chosen for the same reason as with the invasive coupling mount (i.e. to minimise 

unnecessary reflections by maintaining a characteristic impedance of 50 Ω where 

possible) and therefore has the same diameter (xR = 3.0 mm).   The coupling 

coefficient was chosen to be far less than unity (i.e. the structure is very weakly 

coupled) so that loaded and unloaded Q can be assumed to be identical.  This can 

be interpreted as minimising the dependence of centre frequency and bandwidth 

on coupling so coupling does not have to be accounted for during the inversion 

process.  Through preliminary simulations, coupling strength was found to be 

predominantly determined by the resonator-receptacle separation xRC, resonator-

ground plane separation xGC, receptacle-ground plane separation xRG and the 
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ground plane thickness xG.  Additional parameters were also considered: the angle 

of the coupling receptacles could be tilted so the protruding inner conductor was 

closer to the resonator, for example.  Another modification could be to fork the end 

of the centre line to give stronger coupling and potentially reduce cross-talk.  

Cross-sectional field distributions are shown in Figure 3.10 to compare the effects 

of having a forked rather than a flat profile at the end of the coaxial centre 

conductor. 

 

 

 

Figure 3.10: Cross-sectional view of the coupled end of the coaxial resonator, showing 

the effects of having a flat (a) or forked (b) centre conductor to achieve field 

focussing for improved coupling strength.  A schematic view showing how the forked 

end could be formed by cutting away the flat end of a conductor is also shown (c). 

 

However, the five dimensions labelled in Figure 3.9 were sufficient to vary 

coupling by the desired amount so additional degrees of freedom were not 

necessary.  It is possible that such modifications would be necessary for 
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applications that require stronger coupling such as increased power handling, but 

this issue is discussed further in the Future Work section.   

 

Through a series of correlated simulations, the four dimensions were optimised to 

maximise dynamic range whilst maintaining the weak coupling condition.  It was 

not necessary to sweep xR as its value was dictated by other considerations.  Each 

dimension was assigned a reasonable set of values (i.e. those that could be 

machined with the available equipment) and swept with respect to all the other 

dimensions.  The resulting optimised dimensions are given in Table 3.1.  These 

dimensions were used to fabricate the coupling structure with which the results of 

this paper were obtained.  

 

Table 3.1:  Optimised resonator dimensions (resonator-receptacle separation xRC, 

resonator-ground plane separation xGC, receptacle-ground plane separation xRG and 

the ground plane thickness xG) for the single-ended non-invasive transmission 

coupling structure, as labelled in Figure 3.9.   

xRC xGC xRG xG 

2.86 mm 0.25 mm 1.25 mm 0.5 mm 

 

In contrast to the alternative coupling structures shown in Figure 3.6, this 

transmission coupling structure provides single-ended coupling to allow the 

resonator to be perturbed easily.  It also allows coupling to all available TEM 

modes in the measurable range.  Whilst the coupling was optimised for the 

fundamental mode, all other harmonic TEM modes exhibit the same evanescent 

field distribution so the probe can be used to obtain multi-frequency information.  

This is in specific contrast to all other resonator techniques: results will be shown 

for twelve sensing modes.  Electromagnetically coupling different modes 

simultaneously means that this approach does not require unreliable mechanical 

adjustments (for example to the length of the resonant section) to access different 

frequency measurements.  By perturbing the evanescent field, this resonator does 

not need to be disassembled between measurements.  It does not suffer from large 

uncertainties due to the perturbation or coupling methods.  The coaxial cable is 

easily replaceable, should the user wish to access a different frequency range with 
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a different number of sensing modes.  The coupling structure and ground plane 

were machined from copper. 

 

3.1.2. Microfluidic design 

The simplest way of perturbing the evanescent field of an open-ended coaxial 

resonator with a liquid sample is to dip it in.  This approach has commonly been 

adopted for broadband coaxial probes (cf. Literature and Theory chapter), but is 

generally impractical for high-throughput applications where many samples are to 

be characterised.  In order to have real-world relevance for the intended 

applications of this project, it must be capable of through-flow measurements of 

some sort. 

 

The simplest type of flow measurement is to use a fluidic T-piece.  This approach is 

shown in Figure 3.11, which shows a stainless steel fitting (Swagelok, OH, USA). 

 

 

Figure 3.11:  Schematic view of a resonant coaxial probe mounted in a fluidic T-piece 

for simple through-flow measurements. 

 

Each of the T-piece branches is of a quarter-inch diameter.  This corresponds to the 

coaxial resonator probe aperture (as described in the previous section), and also to 

a widely used size of stainless steel tubing.  This approach is extremely simple and 
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robust, and can easily be implemented in existing flow systems with few 

modifications.  Possible applications include industrial monitoring, where a small 

feedline could run off of and flow parallel to a reactor for continuous process 

control.  A PTFE disc could be included at the end of the probe (i.e. to sit between 

the probe aperture and liquid sample) for several reasons.  It would improve 

chemical compatibility due to the chemically inert properties of PTFE; it would 

also prevent fluid from reacting with the copper conductors or entering the 

resonator via capillary action.  This latter effect would affect the permittivity 

region occupied by the internal fields and therefore the probe resonances in an 

uncontrolled fashion. 

  

However, there are drawbacks to using a fluidic T-piece.  The sensing volume is 

large (in the order of ml) and of irregular shape, and the Reynolds number is too 

high for flow to be laminar.  This means that dead volumes could occur at the 

probe interface, leading to false results where flow composition could be 

drastically altered but not in the vicinity of the evanescent sensing field.  

Therefore, using the T-piece is a useful method for proof-of-principle resonator 

experiments but not for biochemical and pharmaceutical applications. 

 

There are numerous ways of implementing a microfluidic interface, as discussed in 

the Literature and Theory section.  However, an approach based on that 

demonstrated in [98] was chosen for the resonant coaxial probe for several 

reasons.  The use of a compression-sealed PTFE substrate allows for rapid 

prototyping of robust microfluidic devices because it can be micromachined with 

standard circuit board fabrication equipment.  Not only does PTFE offer excellent 

chemical resistance, but it is also preferable to curable resin or glass substrate 

materials from a microwave measurement perspective because of its extremely 

low dielectric loss (             ). It also has a small relative permittivity 

(around 2), leading to minimal electric field modification due to its polarisation. 

 

The fact that evanescent field perturbation (or any form of microwave-frequency 

resonator perturbation) is unaffected by whether a sample is solid, liquid, gas or 

transparent, means it retains key advantages over optical spectroscopic techniques 

for on-chip microfluidic characterisation. This method of sample interfacing is 
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equally capable of characterising suspensions given that the phase separator 

described in [98] was implemented in a similar compression-sealed PTFE 

microfluidic device and used to manipulate 2 μm diameter polystyrene beads in 

suspension.  Earlier sections established that resonator perturbation provides a 

volumetric average of permittivity for a given material under test whilst remaining 

unaffected by the state of matter of the material.  The presence of solid material in 

a liquid sample is therefore of no consequence as long as an even dispersion of 

solid material is maintained.     

 

Thus, embedding the resonant coaxial probe in a microfluidic device provides a 

generic, adaptable method of enabling the potential of dielectric spectroscopy for 

non-contact and non-invasive measurements of liquids and suspensions.  The 

chosen interface is illustrated below: 

 

 

Figure 3.12: (a) Exploded view of the brass compression-seal microfluidic manifold, 

(b) cross-sectional view of the microfluidic PTFE chip and (c) cross-sectional view of 

the integrated microfluidic device with an embedded coaxial resonator. 

 

An exploded diagram of the compression-seal manifold is shown in Figure 3.12.  

The microfluidic chip was formed from an appropriate substrate, chosen in this 

case to be a circular PTFE disc.  This enabled microfluidic channels to be milled in 

the upper side of the disc and a probe recess in the lower side.  Such an approach 

allows many planar microfluidic circuits to be realised whilst providing an 

interface for the resonant probe.  By embedding the probe in the back of a PTFE 
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chip, a constant volume of liquid sample can be maintained at a constant distance 

and at a constant temperature.  By fixing evanescent field perturbation in this way, 

any measured changes must be due to changing fluid composition.  The device 

could then be compression-sealed against the coverplate (and gasket layer, 

included to ensure a reliable seal) within the brass manifold.  The rigidity of the 

manifold and the large number of screws used to provide compression meant the 

force was evenly distributed across the microfluidic device.  A further thin layer of 

transparent film could also be introduced between the coverplate and manifold to 

prevent any slight imperfections on the surface of the manifold from shattering the 

coverplate.   

 

Holes drilled through the device allowed capillaries to be connected via tapped 

holes in the underside of the manifold.  The capillaries could then be attached to 

external pumping devices as required.  The use of appropriate capillary fittings to 

interface the microfluidic circuit allowed a gas-tight seal to be preserved for the 

whole device. 

 

The underside of the manifold had a tapped hole in its centre to allow a fluidic 

fitting (primarily used for quarter-inch stainless steel tubing, but equally useful for 

RG401 coaxial cable) to screw in and hold the resonant probe rigid with respect to 

the manifold.  The probe itself did not come into contact with the fluid: a 100 μm 

separating layer of PTFE was kept between the resonator and the microfluidic 

channel in order to maintain chemical compatibility, to prevent fluid ingress into 

the resonator and to prevent conductor corrosion.  As thin a layer as possible is 

desirable so that the liquid sample can occupy as much of the evanescent field as 

possible.  This increases the filling factor and therefore the sensitivity of the device.  

The 100 μm thickness was chosen because it was the smallest feasible gap that 

could reliably be machined in the microfluidic chip with the available 

micromachining equipment.   

 

The presence of a separating layer between the resonator and the sample under 

test meant the geometry was depolarising, as illustrated in Figure 3.13.   
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Figure 3.13: Cross-sectional schematic of the depolarising microfluidic interface for 

the resonant coaxial probe.  The exploded view shows induced charges on the PTFE 

layer separating the probe and the microfluidic channel.  These charges are induced 

by the applied evanescent electric field EA and give rise to an opposing depolarisation 

field ED. 

 

The separating layer between the probe and the microfluidic channel was included 

for experimental reasons, as described above.  Depolarisation was an inevitable 

consequence of including the separating layer because a boundary between two 

materials of differing permittivity will accumulate bound (i.e. polarisation) charge 

under an applied electric field.  The depolarising charges cause an opposing 

electric field that acts to reduce the applied electric field within the material of 

higher permittivity.  To have the probe recess drilled through to the microfluidic 

channel so that the resonator was in direct contact with the fluidic sample would 

prevent depolarisation, but would also negate the use of a PTFE microfluidic 

substrate. This was an unavoidable design constraint, so the resonant device can 

never be maximally sensitive when implemented in this fashion.  The careful 

design of the coupling structure affords some flexibility with sensing field 

perturbation, so this compromise is considered acceptable. 

 

The low permittivity and dielectric loss of the PTFE substrate ensures the sample 

permittivity is not screened.  The upper layer of quartz has a significantly higher 

permittivity.  If a coverplate of quartz rather than PTFE is used, there will be 
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greater field confinement beyond the boundaries of the microfluidic channel given 

that quartz has a comparably low dielectric loss but higher relative permittivity, 

thereby increasing sensitivity. 

 

3.1.3. Experimental 

Two types of coaxial resonator, using single ended (Figure 3.8) and invasive 

couplings (Figure 3.7), were fabricated according to the designs outlined in Section 

3.1.1.  Each structure incorporated copper coupling mounts, gold-plated SMA 

receptacles and RG401 coaxial cable.  The resonant sections of coaxial cable were 

cut to length and polished with a succession of increasingly fine grit papers.  The 

invasively coupled resonator was cut to a length of 8.4 cm, corresponding to a 

fundamental resonance of approximately 1.25 GHz.  Holes were filed through the 

outer conductor and a recess was then drilled into the PTFE spacer to allow the 

extended inner conductor of the SMA connector to protrude into the resonator.   

 

Resonant sections of coaxial cable were cut and polished in the same way for the 

single ended coupling structure.  One advantage of this coupling structure was that 

the resonant section was interchangeable, so two resonators were used 

throughout.  One resonator had a fundamental resonance of approximately 1.25 

GHz to allow comparison with the invasively coupled resonator.  A longer 

resonator of length 17.5 cm with a fundamental resonance of approximately 0.6 

GHz was also prepared.  This approach provided far more measureable sensing 

modes in the available frequency region.  Note that the coaxial cable could be 

curved with no significant detrimental effects (as long as a constant cross-section 

was maintained) to make the complete device less unwieldy. 

 

The first six TEM modes of the 8.4 cm device had quality factors in the region of 

800 – 900.  The first fifteen modes of the 17.5 cm resonator had Q = 1000 – 1200.  

The higher frequency resonator was to be used for the characterisation of solvents, 

solvent-solvent mixtures and segmented flows, whereas the lower frequency 

resonator was to be used for solute-solvent mixtures.  The longer probe was used 

to interrogate solute-solvent mixtures because of the increased molecular size and 

the anticipated lower frequency of the associated relaxations and interactions.  The 

coupling structures were machined in-house from block copper.  Various 
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microscope measurements were used to ensure the structure was machined 

correctly.  Both coupling structures were then assembled according to Figure 3.7 

and Figure 3.8. 

 

An Agilent E5071B VNA (Agilent, CA, USA) was used to measure the power 

transmission coefficient of the assembled resonant devices.  The shortest, highest 

quality cables and the fewest, highest quality connectors were used to connect the 

resonant devices to the VNA.  A power transmission spectrum for the shorter 1.25 

GHz resonator is shown in Figure 3.14.   

 

 

Figure 3.14: Example power transmission spectrum of the 1.25 GHz coaxial 

resonator, as obtained with a vector network analyzer.  The peaks correspond to a 

fundamental 1.25 GHz resonance and the subsequent five harmonic TEM modes. 

 

This spectrum represents the typical raw data obtained directly from a network 

analyser.  From this type of measurement, centre frequency and quality factor can 

be extracted.  Performing another measurement after the introduction of a sample 

(which is likely to cause each mode to broaden and shift to the left) allows changes 

in complex frequency and therefore permittivity to be computed.  It is obvious 

from this figure how much frequency information is available with the overmoded 



84    CHAPTE R 3.   EVA NESC E NT LY-PERT UR BED  COA XIAL R ES ONAT OR  
 

 

coaxial resonator technique: the centre of each power transmission peak 

represents a discrete frequency at which permittivity can be calculated.  Note that 

a lower fundamental frequency (such as that demonstrated by the longer coaxial 

resonator) would provide more harmonic sensing modes within a given frequency 

region. 

 

For each measurement, the data were exported to LabVIEW (National Instruments, 

TX, USA), where a Lorentzian curve was fitted to the peak of each resonance in 

real-time.   The fitted curve data were then used to measure the resonant 

frequency and bandwidth of all modes.  This was done in preference to using 

bandwidth marker data from the network analyser because the E5071B VNA 

calculated bandwidth from the points nearest to half power.  This is obviously 

undesirable, so an interpolated method was more appropriate.  A very low 

coupling coefficient ensured that the resonance was undistorted by coupling, so 

the peak of power transmission at each resonance was Lorentzian.  A segmented 

frequency sweep was used to measure all modes simultaneously, where each 

segment was maintained at 1.5fB for optimal curve fitting [127].  This means that 

the peak of each mode of Figure 3.14 was characterised, but the majority of the 

power transmission data between each peak was not recorded.  Excluding the data 

not required for calculating permittivity allowed an improved sampling rate.   

 

Because the electromagnetic interaction between the evanescent field and the 

sample is virtually instantaneous, the measurement period is set by the speed of 

the network analyser and the method used to deliver the sample rather than the 

evanescent field interaction.  The measurement period of this experimental setup 

was limited by the USB 2.0 data transfer rate from the network analyser and the PC 

performing the curve fitting algorithms.  The maximum measurement rate was 20 

Hz.  The use of external triggering (for the VNA) could increase this rate to at least 

50 Hz, although a PXI implementation of a vector signal generator-vector signal 

analyser system could markedly improve the measurement rate, to a rate of 1 kHz 

and beyond [8].   
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With an appropriate microfluidic system, the chemical composition of the material 

under test could be changed continuously.  This could be achieved with planar 

mixing techniques on chip, or with some bulk external method.   

 

For the T-piece implementation (Figure 3.11), the resonator was mounted in a 

standard Swagelok fluidic T-piece with quarter-inch fittings in an identical fashion 

to stainless steel tubing.  A 100 µm PTFE disc was placed at the end of the 

resonator to prevent fluid ingress and corrosion of the copper conductors, and 

generally to improve chemical compatibility.  This disc meant that it was only the 

evanescent field at the open end of the resonator that was perturbed with a 

dielectric sample.   

 

For individual (discrete) measurements, it was not necessary to connect the T-

piece into a flow system.  Under these circumstances, a reference air measurement 

was taken first.  The probe aperture was then immediately immersed in a large 

volume (~ 30 ml) of sample solvent to obtain the sample measurement.  The 

sensor was angled to prevent the formation of bubbles at the probe aperture.  The 

temperature of the environment was maintained at 25 °C with a water bath. 

 

For the compression-sealed microfluidic implementation (Figure 3.12), a Protomat 

C10 milling machine (LPKF, Garbsen, Germany) was used to mill microfluidic 

channels in a PTFE disc (of 50 mm diameter and 3 mm thickness; Fluorocarbon, 

Hertford, UK).  A smooth finish was then obtained by polishing the surface of the 

microfluidic chip with a succession of increasingly fine grit papers.  The manifold 

(Figure 3.12 a) was precision machined from brass.  1 mm recesses were machined 

on the inner faces of both parts of the manifold to keep the microfluidic device 

aligned with its coverplate.  In most experiments, coverplates of either quartz or 

PTFE were used.  A 50 μm gasket layer of PFA film (Goodfellow Cambridge, 

Huntingdon, UK) was required between the PTFE and coverplate to ensure a 

reliable seal.  Other fluoropolymer films of similar thickness were also found to 

perform this function equally well. 

 

Two microfluidic chips were used for single-phase fluid measurements.  The first 

was comprised of a single straight channel with 400 μm square cross-section.  The 



86    CHAPTE R 3.   EVA NESC E NT LY-PERT UR BED  COA XIAL R ES ONAT OR  
 

 

second was comprised of a single straight channel with 400 μm square cross-

section that widened out above the coaxial resonator to the full width of the probe 

aperture (≈ 5.4 mm).  Another device was used for multi-phase measurements.  

This was comprised of two inlets combining together at a T-junction, followed by a 

meandering channel terminating in a single outlet.  Segmented flow was generated 

on-chip through the combination of two immiscible inflows at the T-junction, 

causing alternating fluid partitions to flow in the orthogonal branch channel and 

exit the opposite side of the chip after flowing the length of the meandering 

channel.  For the multi-phase flow chip, 400 μm square cross-section channels 

were used throughout.   

 

The upper portion of the manifold (Figure 3.12 a) contained a view hole for 

monitoring device action, assuming a transparent coverplate was used.  The lower 

portion contained a number of tapped holes to allow fittings to be inserted and 

tightened against the underside of the PTFE chip.  The cross-sectional view of 

Figure 3.12 b shows how capillaries can be situated in through-holes drilled in the 

PFTE chip and secured with gas-tight fluidic fittings (Upchurch Scientific, WA, 

USA).  FEP capillaries (Upchurch Scientific) were used to connect syringe pumps. 

KDS 200 series syringe pumps (KD Scientific, MA, USA) were used to pump each 

individual phase at 50 μl min-1.  This flow rate was maintained for multi-phase 

measurements as well, giving an average multi-phase flow rate of 100 μl min-1 for 

the segmented flow experiments.   

 

HPLC-grade solvents (Sigma Aldrich, MO, USA) were used for all presented 

experiments.  Fresh (previously unopened) samples were used for each test, and 

were used as supplied.  The only exception to this was the use of deionised water, 

which was obtained from an ELGA Purelab UHQ system for Type I purified water 

with a resistance of 18.2 MΩ∙cm.  Where solutes were required, the highest 

available purity was purchased and used as supplied.  Where solutions of varying 

(decreasing) concentration were required, a serial dilution was performed with 

the appropriate solvent.  Standard health and safety and fluid handling precautions 

were followed throughout. 
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3.1.4. Measurement inversion 

Generally, complex permittivity can be computed from measured changes in 

complex frequency (defined in Equation 2.31) via analytical, numerical or 

empirical means.  The analytical approach matches the modes either side of the 

probe aperture.  For example, the internal fields of a broadband coaxial probe are 

propagating modes whereas the external fields are evanescent modes [128].  This 

approach is sufficient for simple geometries, such as where the dimensions of the 

sample are large enough that the probe behaves as if it were exposed to an 

infinitely large sample.  For more complex geometries, such as a microfluidic 

channel across the probe aperture, such a task becomes much more complicated.   

 

Additionally, certain assumptions do not hold for the evanescently-perturbed 

coaxial resonator as presented here.  For example, a conducting flange is 

commonly included in broadband measurement techniques.  This will approximate 

to an infinite ground plane (which simplifies the analysis) when the flange is at 

least four times greater than the aperture width [129].   

 

The inclusion of a conducting flange at the aperture of the evanescently-perturbed 

coaxial resonator was considered.  To date, it has not been possible to fabricate a 

flanged device that is capable of interrogating a flow system whilst preserving a 

reliable fluidic seal.  One possible solution would be to use a tapered aperture.  

This would improve spatial resolution by localising the evanescent sensing field in 

a fashion similar to the microwave microscope [130].  This geometry could behave 

as if it had an infinite half-plane by preserving the outer diameter of the outer 

conductor but reducing the other dimensions to narrow the aperture.  Such a 

device could then be implemented in either of the suggested fluidic interfaces, as 

shown in Figure 3.11 and Figure 3.12.  However, inversion techniques were better 

suited to inverting the measurements performed with the evanescently-perturbed 

coaxial resonator, as discussed in the following paragraphs.   

 

The numerical inversion method is based upon simulating changes in the complex 

frequency of a resonant sensor according to a sweep of sample permittivity.  This 

allows permittivity to be estimated from an arbitrary change in complex frequency 

by interpolating the simulation data.  Clearly, this is dependent on the accuracy of 
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the simulation.  This computationally intensive nature of this inversion method 

means that it is somewhat restrictive.  This is particularly significant for the 

integrated microfluidic sensor shown in Figure 3.12, where the use of a new 

microfluidic chip would require all simulations to be repeated.  However, this 

would not be as large a problem for industrial process control applications, for 

example, where the sensor geometry would never change appreciably.  

 

The final inversion method is the empirical approach.  This works by a similar 

principle to the numerical method as it requires the measurement of one or more 

calibration materials of known permittivity.  This allows an inversion function to 

be interpolated from changes in complex frequency associated with the known 

values of complex permittivity.  It is likely that the inversion function would be 

non-linear over large changes in permittivity due to the depolarising geometry.   

 

This method is unaffected by uncertainties in any underlying assumptions in the 

inversion as the calibration and sample measurements are performed in an 

identical geometry.  Any non-linearities due to depolarisation could also been 

accounted for by using calibration materials with a large range of permittivity.  

However, the uncertainties of this method are not traceable to international 

standards so it would be unsuitable for specific tissue absorption measurements of 

tissue equivalent materials, for example [131]. 

 

3.2. Results 

3.2.1. Invasively coupled resonator 

The resonant frequency and quality factor of the first six TEM modes of the 

unloaded invasively coupled resonator are shown in Table 3.2. 

 

 

 

 

 

 

Table 3.2: Unloaded resonant frequency and quality factor of the first six TEM modes 

of the unloaded invasively coupled resonator.  
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Mode 1 2 3 4 5 6 

f0 (GHz) 1.32 2.63 3.94 5.27 6.58 7.88 

Q 341 528 341 576 727 327 

 

The complex frequency response of the invasively coupled resonator is shown 

with respect to percentage volume of acetic acid in toluene in Figure 3.15.  Note 

that the percentage volume refers to the minor component of acetic acid dissolved 

in the major component of toluene.  These data were obtained by dipping the 

probe a fixed distance (≈ 5 mm) into a bulk sample (≈ 20 ml).  This meant a depth 

greater than 1 cm was maintained between the bottom of the fluid-filled vessel and 

the probe aperture so the probe behaved as if it were immersed in an infinitely 

large sample.  This was verified by positioning a finger (which is mostly water) a 

similar distance from the probe aperture: no deviation in complex frequency was 

detected. 
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Figure 3.15: Complex frequency response of the invasively coupled coaxial resonator 

with respect to percentage volume of acetic acid in toluene, where each subplot 

represents one of the first six TEM modes of the device.  The grey markers represent 

the real component of normalised change in complex resonant frequency, to be read 

off of the left y-axis.  Likewise, the white markers represent the imaginary component 

of normalised change in complex resonant frequency, to be read off of the right y-

axis. 

 

3.2.2. Non-invasively coupled resonator and T-piece fluid interface 

Two main sets of results were obtained with the non-invasively coupled resonator 

using the T-piece fluid interface.  These were (a) step changes of fluid composition 

in real-time in a continuous flow environment and (b) measurements of bulk 
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solvents to assess sensitivity, stability and the effectiveness of the inversion 

procedures.  In both instances, a 100 μm thick PTFE disc was placed over the end 

of the resonator and held in place by the fluidic fixture.  Solvents were delivered 

from bulk reservoirs via HPLC pumps.   

 

The device was characterised using measuring microscopes and simulated as 

accurately as possible to provide a numerical inversion for the continuous flow 

measurements.  The motivation for this was that it was not practical to continually 

remove and replace the probe for reference air measurements.   

 

 

Figure 3.16: Variation in the real (blue surface) and imaginary (grey surface) 

components of normalised complex frequency of the non-invasively coupled resonant 

sensor.  Data were obtained at the fundamental frequency and plotted with respect 

to the real and imaginary parts of sample permittivity (ε).  Each vertex of the grids 

represents a simulated data point, and the contour of each grid represents an 

interpolated function for estimating permittivity between the simulated values. 
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The device was then used to characterise a continuous flow of toluene and acetic 

acid, where the amount of acetic acid varied with respect to time.  Permittivity 

values were calculated using the simulated inversion protocol summarised in 

Figure 3.16. 

 

 

Figure 3.17: The change in sample permittivity (blue trace, to be read off of the left y-

axis) as the volume fraction of acetic acid in toluene varies (green trace, to read off of 

the right y-axis) with respect to time.  The parts per million value refers to a minor 

component of acetic acid and a major component of toluene. 

 

To test the empirical inversion procedure, a series of measurements of bulk 

solvents were performed.  These measurements were performed using a T-piece 

submerged in a beaker of solvent rather than in a continuous flow system.  This 

was carried out to simplify the measurement process as composition did not need 

to be varied continuously.  This will not affect the performance of the sensor 

because the entire fluidic system demonstrates great rigidity and the fluidic seals 

are designed to withstand massive pressures, which are far in excess of those 

required to perform the measurement shown in Figure 3.17, for example. 

 

Measurements of ethanol, methanol, propan-2-ol and toluene were performed 

with this setup.  Each solvent was of known permittivity, and measurements of the 

three alcohols were to be used to invert the measurement data of toluene to obtain 

permittivity values.  This forms an alternative approach to simulating data for 
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obtaining a lookup table for continuous measurement inversion.  These solvents 

were chosen in order to exercise the device over a large and useful range of 

permittivity.  The dielectric dispersion data for the alcohols were obtained from 

[6], where the frequency-dependent complex permittivity  ̃( ) was given by a 

multi-relaxation Debye model: 

 

 
 ̃( )     ∑

      

        

 

   
  

 

3.8 

where each of the n distinguishable dispersions has a dispersion amplitude    

    and relaxation time   .     is    in the infinite frequency limit and          .  

The parameters for ethanol, methanol and propan-2-ol for n = 3 are given in Table 

3.3.  The uncertainty in the real and imaginary components of permittivity of each 

of the inversion solvents was shown to be ± 3% [6].  Device accuracy will be 

quantified by comparing measurements of toluene with dielectric dispersion data 

from [132].   

  

Table 3.3: Debye parameters of the solvents used for resonator measurement 

inversion.  

Solvent                       

Methanol  2.79 32.50 51.5 5.91 7.09 4.90 1.12 

Ethanol  2.69 24.32 163 4.49 8.97 3.82 1.81 

Propan-2-ol  2.42 19.40 359 3.47 14.5 3.04 1.96 

 

The raw measurement data of the solvents are shown in Figure 3.18.  The inverted 

permittivity values are shown in Figure 3.19. 
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Figure 3.18: (a) Real and (b) imaginary components of normalised frequency shift for 

ethanol, methanol, propan-2-ol and toluene, shown for the first six modes of the 

device with respect to TEM mode number.  These measurements were performed 

with the T-piece fluid interface and the non-invasively coupled coaxial resonator with 

a fundamental resonance ≈ 1.25 GHz.  Measurement noise is too low for error bars to 

be appropriate. 
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Figure 3.19: (a,b) Real and (c,d) imaginary permittivity spectra for ethanol, 

methanol, propan-2-ol and toluene, where (b) and (d) have a finer scale on the y-axis 

to only represent toluene measurements.  Grey lines show Debye spectra obtained 

from literature; ‘+’ markers show expected permittivity values (i.e. those used to 
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invert toluene measurements) at the measurement frequencies.  ‘x’ markers show 

permittivity measurements of toluene.  Star shapes occur when expected and 

measured markers overlap. (b) shows the real component of toluene measurements 

to agree with values from literature within the margin of error attributable to the 

uncertainty of permittivity values from literature.  (d) shows the dielectric loss of 

toluene to be below the limit of detection due to measurement noise.  This 

demonstrates why the imaginary component of permittivity of this particular solvent 

cannot be resolved in this frequency range. 

 

Statistical parameters for bulk solvent measurements taken with the non-

invasively coupled coaxial resonator are given in Table 3.4.  Noise was taken as one 

standard deviation from the mean value.  A limit of detection and a resolution at 

the limit of detection were extrapolated by taking the maximum measurement 

noise and inverting it to permittivity.  The limit of detection (i.e. the minimum 

change in permittivity that can be distinguished above measurement noise) was 

obtained directly as this permittivity.  The resolution at the limit of detection was 

taken as the difference between the lowest measurable permittivity and the 

vacuum permittivity (i.e. εr = 1).  A series of correlated simulations were used to 

model fabrication tolerances of the resonator and coupling structure, and the 

resulting effect on complex resonant frequency.  The maximum change was used to 

estimate the geometric uncertainty, which can be assumed to be the dominant 

source of uncertainty within the device [21].  However, the empirical method used 

to invert frequency data (Figure 3.18) to permittivity (Figure 3.19) accounts for 

geometric uncertainty.  Furthermore, this value will be fixed for any given probe so 

does not need to be considered in the calculation of complex permittivity.  The 

values of maximum measurement noise, limit of detection, resolution and 

geometric uncertainty are given below. 

 

Table 3.4:  Device characteristics for bulk solvent measurements performed in the T-

piece fluid interface with the non-invasively coupled coaxial resonator. 

xRC xGC xRG xG 

2.86 mm 0.25 mm 1.25 mm 0.5 mm 
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The performance of the device (including the empirical inversion procedure) can 

be studied by examining the error in the inverted permittivity measurements of 

toluene (plotted in Figure 3.19 b).  The measurement error according to the 

difference between the measured and expected values of toluene permittivity is 

given in Table 3.5.  Note that only the real component of permittivity is shown; the 

imaginary component is below the limit of detection. 

 

Table 3.5:  Measurement error in the real component of permittivity of toluene.  The 

error in the expected values from literature is 3% [132]. 

Mode 1 2 3 4 5 6 

Expected ε1 2.384 2.384 2.385 2.386 2.386 2.387 

Measured ε1 2.313 2.316 2.338 2.350 2.324 2.416 

Error (%) 2.98 2.88 1.95 1.50 2.60 1.21 

 

3.2.3. Integrated microfluidic device with non-invasively coupled resonator 

Figure 3.20 shows permittivity and normalised change in frequency with respect 

to concentration for a dilution series of acetonitrile in toluene.  These data were 

obtained with the 1.25 GHz non-invasively coupled coaxial resonator embedded in 

the manifold with a single-phase microfluidic chip and quartz coverpiece.  

Measurements were performed with respect to pure toluene so that any measured 

changes would be solely due to acetonitrile.  This allowed permittivity values to be 

calculated according to the assumption that complex frequency varies linearly with 

permittivity for small changes in permittivity.  Each subplot represents one of the 

first six TEM modes of the device.  The traces show the real and imaginary 

components of both normalised complex frequency shift (to be read off of the left 

y-axis) and of complex permittivity shift relative to pure toluene (to be read off of 

the right y-axis.  Note that the markers are joined for ease of interpretation but are 

discrete rather than continuous data.  Also note that the complex permittivity of 

toluene is approximately 2.385 - j0.006 in this frequency range [132].   
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Figure 3.20: Complex frequency and permittivity response of the 8.4 cm non-

invasively coupled coaxial resonator with respect to concentration of acetonitrile in 

toluene.  Each subplot represents one of the first six TEM modes of the device.  The 

two traces on each subplot represent the real and imaginary components of both 

normalised complex frequency change (when read off of the left y-axis) and 

permittivity (when read off of the right y-axis.  Note that the concentration refers to 

the minor component of acetonitrile dissolved in the major component of toluene.   

 

The complex frequency and permittivity responses for a serial dilution of caffeine 

in toluene are shown with respect to frequency in Figure 3.21.  These data were 

obtained with the 0.6 GHz non-invasively coupled coaxial resonator embedded in 

the manifold with a single-phase microfluidic chip and quartz coverpiece.  This 

graph illustrates a different method of interpreting multi-frequency coaxial 
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resonator, where each trace represents a different concentration of caffeine.  Note 

that concentration refers to the minor component of caffeine dissolved in the 

major component of toluene.  

 

 

 

Figure 3.21: Complex frequency response of the 17.5 cm non-invasively coupled 

coaxial resonator with respect to frequency for a serial dilution of caffeine in toluene.  

Each trace represents a different concentration of caffeine and each subplot 

represents either the real or imaginary components of their complex-valued y-axes. 
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Note that     (    ) is plotted for the left hand y-axes in Figure 3.20 a, and 

    (   )is plotted for the right hand axis in Figure 3.20 b.  This approach was 

used for the sake of brevity, to allow the same traces to be read off of two axes. 

 

The y-axes of these results are similar to those shown in Figure 3.20, in that the 

data are presented with respect to a reference measurement of pure toluene.  This 

allowed the inversion of frequency data to permittivity values (assuming a small 

variation in permittivity), and also allows the same traces to be read off of both 

axes.  In this instance, however, the two subplots respectively represent the real 

and imaginary components of both permittivity and resonant frequency.  Each 

trace represents a different concentration of caffeine; pure toluene is necessarily 

represented by a flat line.  Data are presented in this quasi-spectral manner to 

illustrate an alternative method of using measurement data.   

 

An organic phase of chloroform and an aqueous phase of water were used to 

generate segmented flow. At equilibrium, the chloroform was saturated with 

water, where the solubility of chloroform in water at 20 °C is 0.815% and the 

solubility of water in chloroform at 20 °C is 0.056%.  The liquid phases were 

segmented on chip, whereupon they flowed the length of an excessively long 

meandering channel to ensure equilibrium was reached.  The equilibrated flow 

was then interrogated with the embedded 1.25 GHz coaxial resonator using non-

invasive coupling.  Only the fundamental resonance was interrogated to ensure 

maximum temporal resolution was attained. 
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Figure 3.22: Centre frequency trace for a chloroform-water segmented flow, 

interrogated using the fundamental resonance of the 8.4 cm coaxial resonator 

embedded in a multiphase microfluidic device. 

  

3.3. Discussion  

3.3.1. Invasively coupled resonator 

The resonant frequency and quality factor of the first six TEM modes of the 

unloaded invasively coupled resonator are shown in Table 3.2.  The large 

differences in Q are a consequence of unequal coupling due to the connections part 

way along the resonator.  This is an indication of how sensitivity will vary 

dramatically between each mode.  The fact that this effect was due to the coupling 

structure could be verified using the same section of coaxial line (i.e. with recesses 

drilled through the outer conductor) with the non-invasive coupling structure, 

where the first six modes were all observed to have Q ≈ 750. 

 

The unequal coupling (and consequent variation in sensitivity between modes) 

makes the invasive coupling structure unsuitable for the intended applications of 

this device.  In particular, it is necessary to have the receptacles a significant 

distance from the end of the probe so it can be plumbed in to a (micro)fluidic 
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environment., which exacerbates the problem of variable coupling strength that is 

inherent within the invasive coupling design. 

 

The variation of normalised frequency shift with respect to permittivity can be 

assumed to be linear over small variations in permittivity.  Considering the results 

of Figure 3.15, this assumption holds true given that the relative permittivities of 

acetic acid and toluene are approximately 6 and 2 respectively and that the largest 

percentage volume change characterised is 1%.  Therefore, any observed non-

linear behaviour must instead be due to permittivity being a non-linear function of 

fluid composition.  This reasoning can account for non-linearities but not for any 

non-monotonic behaviour.  It is possible for a bulk liquid to screen the permittivity 

contribution of very small dissolved species (such as trace biological molecules in 

water), but it is nonsensical to attribute a drop in permittivity to the addition of a 

higher permittivity material.  This is exactly the effect implied by the non-

monotonic results for all modes except the first.  That this effect is not displayed 

consistently across all the measured modes would imply that the coupling (which, 

being set in from the ends of the probe, will affect each mode differently) could be 

a cause.  The combination of the results of Table 3.2 and Figure 3.15 lead to the 

conclusion that invasive coupling is incommensurate with the intended aims and 

applications of this project.  Thus, no microfluidic integration or further 

experiments were performed with the invasively coupled resonator. 

 

3.3.2. T-piece fluid interface with non-invasively coupled resonator 

Figure 3.16 clearly illustrates how a series of correlated simulations can be used to 

invert resonator measurements of a continuous flow regime to obtain permittivity 

values with respect to time.   

 

The simulated normalised frequency shift attributable to toluene was verified via 

comparison with a measurement of the pure solvent.  The simulated value was 

within three significant figures of the measured value, which was taken as 

justification for using the simulated inversion protocol for the continuous flow 

measurements. 
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There are numerous unusual features in Figure 3.17.  There is a lag between the 

change in flow composition and resonator response due to the time taken for the 

solution to reach the resonator from the pumps.  The curvature of each step can be 

attributed to dispersion between the different concentration phases.  The 

permittivity response was systematic in that the calculated data were proportional 

to the volume fraction of acetic acid, which was anticipated because acetic acid has 

a higher permittivity than toluene.  This is justification for using the single-ended 

coupling structure over the invasive one, which did not exhibit a monotonic 

response for a similar test shown in Figure 3.15 and discussed in Section 3.3.1.  

However, a lack of repeatability was demonstrated for the single-ended coupling 

with the T-piece interface in Figure 3.17 as permittivity values were different for 

the same composition, depending on whether the composition had increased or 

reduced to the volume fraction in question.  This effect occurs for all of the 

different volume fractions used.  Similarly, it can be seen that step changes in 

concentration produce differing changes in permittivity.  It is possible that 

permittivity is a non-linear function of composition, but this would not be 

dependent on previous composition: permittivity, unlike permeability, does not 

exhibit hysteresis.  The effects in question did not show any correlation with 

temperature change, which varied erratically but did not exhibit any general 

upward or downward trend.  The flow cell was completely sealed, and care was 

taken to prevent any bubbles from forming in the system.  It is not thought that 

these effects were due to other solvents remaining within the flow system as the 

cleaning solvents used (water and acetone) were invariably of higher permittivity 

than either toluene or acetic acid.  The PTFE spacer is sufficiently hydrophobic to 

prevent ingress of solution between the layers of the coaxial cable.   

 

It is therefore likely that the effects of uneven and inconsistent changes are a 

consequence of flow.  This could be due to the inner geometry of the T-pieces, 

which could disturb flow in a way that prevents complete circulation of fluid 

within the flow cell.  Also, no specific effort was made to maintain back pressure in 

the fluidic circuit, so it cannot be assumed that the pumps behaved perfectly and 

mixed solutions to the programmed concentrations.  However, a later experiment 

with a higher back pressure showed the same variation exhibited in Figure 3.17. 
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The complex frequency measurements of bulk solvents (Figure 3.18) alone could 

be used to distinguish between solvents without the need for inversion for 

permittivity.  This could be of use in real-time applications such as industrial 

process control, where the inversion could be omitted altogether if absolute 

permittivity values were not required.  This would not affect the maximum 

achievable temporal resolution.  Similarly, such an approach could also be of use 

for monitoring chemical reactions in situ. Note that the network analyser used in 

this experiment could resolve frequencies to sub-kHz accuracy.  The fact that 

frequency resolution is fixed means that bandwidth measurements have 

significantly higher noise as they are typically three orders of magnitude lower in 

comparison with resonant frequency measurements.   

 

Statistical measures of the resonant device performance are given in Table 3.4.  

The data were obtained over the course of several minutes.  The low noise of the 

measurement over this length of time illustrates the temporal stability of the 

device.  Measuring data over this length of time is required for point-of-sampling 

biochemical applications, but is not something generally required for microwave-

frequency measurement techniques. 

 

The significance and usefulness of this particular measurement technique lies in its 

low resolution limit.  This could best be demonstrated through quantifying 

permittivity changes of decreasing volume fractions of one solvent in another, as 

attempted for the invasively-coupled probe.  The results of Figure 3.19 are 

intended as a demonstration of the measurement technique only.  The T-piece 

interface has obvious shortcomings for more complex fluid systems, as evidenced 

by the result in Figure 3.17.  Therefore, the data shown throughout Section 3.3.2 

have not been taken in an environment which reflects those for which this device 

is intended to be incorporated.  Thus, the ultimate measurement resolution is not 

best demonstrated with discrete bulk measurements, but rather in a flow 

environment in a microfluidic device.   

 

3.3.3. Integrated microfluidic device with non-invasively coupled resonator 

Figure 3.20 shows complex resonant frequency and permittivity changes for 

varying composition of acetonitrile in toluene.  The imaginary component of 
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normalised change in complex resonant frequency can be interpreted qualitatively 

as showing dielectric loss to be proportional to the concentration of acetonitrile.  

This is to be expected from a brief examination of the permittivity spectra of the 

two solvents: acetonitrile demonstrates higher permittivity and dielectric loss in 

comparison with toluene throughout the entire microwave frequency region.   

  

It should be noted that concentration is shown on a logarithmic scale in Figure 

3.20, so normalised frequency change and permittivity are clearly non-linear 

functions of composition within the range of the experiment.  Because permittivity 

and normalised frequency change are linearly proportional to each other over this 

(very small) range of permittivity, the non-linear response must be a consequence 

of the relationship between permittivity and concentration.  That is, it is implied 

that the permittivity of an acetonitrile-toluene solution does not vary linearly with 

concentration at the measured concentrations (560 μM – 43 nM acetonitrile).  This 

is perhaps to be expected from other previously obtained results.  In one example, 

some of the Havriliak-Negami parameters extracted from the dielectric spectra of 

2-propanol-water mixtures were shown to vary linearly with changing volume 

fraction [133].  Note that the Havriliak-Negami equation is an empirical 

modification of the Debye response that includes an additional exponent for an 

improved fit to the measured data.  It was not possible to extract equivalent 

parameters from the presented acetonitrile-toluene data because of the relatively 

narrow frequency range of the coaxial resonator (one order of magnitude, limited 

by the measurement equipment) in comparison with the dielectric dispersions 

exhibited by toluene [132] (many orders of magnitude).  It would be possible to 

compare the results of [133] with those obtained here by evaluating the Havriliak-

Negami responses at a particular frequency.  However, in this case such a 

comparison would be useless as the smallest change in concentration examined in 

[10] exceeds the largest investigated here by several orders of magnitude.  The 

permittivity of 2-propanol-water mixtures does not, in fact, vary as a linear 

function of concentration when evaluated at a constant frequency of 1.25 GHz 

when concentration is varied by molar fractions of 0.03 and above.   

 

The data presented in Figure 3.20 are a clear demonstration of the suitability of an 

embedded microfluidic dielectric spectroscopy device for detecting low and trace 
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concentrations of liquid-liquid mixtures.  All of the measured permittivity 

components (i.e. both real and imaginary components at six discrete frequencies) 

exhibited a repeatable linear response with respect to log(concentration) over five 

orders of magnitude.  The detection limit of acetonitrile in toluene was shown to be 

approximately 400 nM.  This is considered a vindication of the balanced design 

methodology described in Section 3.1.1.  It demonstrates that highly sensitive 

measurements can be performed in a robust, adaptable platform without focussing 

exclusively on the maximisation of quality factor.  This performance shows that the 

embedded microfluidic approach offers a unique and useful alternative to ultra-

high quality factor resonators despite the depolarising sample interface and 

inherently modest quality factors associated with the losses of a coaxial resonator. 

  

Figure 3.21 shows changes in complex resonant frequency and permittivity with 

respect to caffeine concentration.  The effect is generally systematic for the real 

components of both values, although some modes can be observed to be partially 

non-monotonic.  Using the same interpretation as for the acetonitrile-toluene 

measurements, these results indicate that increasing caffeine concentration causes 

a reduction in the overall polarisability of the sample.  This would suggest that the 

addition of a material that is non-polarisable at microwave frequencies will act to 

reduce the effective (volumetric average of) sample permittivity.  One unusual 

feature of Figure 3.21 is that there is a small increase in permittivity at the second 

and third modes for some concentrations of caffeine.  Again, this appears to be 

systematic as the effect is reproduced for different samples, but is focused in an 

unusually small frequency region.  A shortcoming of this particular experiment is 

that is does not exercise the entire dynamic range of the system by not 

characterising low enough concentrations.  Unlike the measured solvent-solvent 

mixtures, all of the measured concentrations of caffeine were clearly 

distinguishable from pure toluene.  This implies that the limit of detection is below 

the lowest measured concentration of approximately 6 μM.   

 

In contrast with the real component of sample permittivity, the imaginary 

component does not exhibit any systematic or meaningful behaviour with respect 

to caffeine concentration.  This result can be therefore be interpreted as meaning 
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that caffeine has little effect on dielectric loss in the microwave region given that 

imaginary permittivity is a measure of dielectric loss.   

 

Figure 3.22 shows resonant frequency of the fundamental TEM of the 8.4 cm 

coaxial resonator with respect to time for a segmented flow of chloroform and 

water.  Because the real component of permittivity of water exceeds that of 

chloroform by a factor of approximately 20, this result clearly illustrates how a 

decrease in resonant frequency can be interpreted as demonstrating an increase in 

polarisability.  Unlike Figure 3.20 and Figure 3.21, the change in resonant 

frequency does not vary linearly with permittivity because the change in 

permittivity is very large.  The fluid sample was not brought into contact with the 

aperture of the sensor.  The field distribution of the open-ended coaxial resonator 

meant that the gap between the probe aperture and the microfluidic channel 

caused the sample to cross lines of evanescent electric field.  This allowed 

polarisation charges to accumulate and therefore cause depolarisation. This meant 

that the measured polarisability (as described in Chapter 2) was not a function of 

sample polarisability alone.  This effect is constant for small changes in 

permittivity (which is why permittivity values could be calculated for acetonitrile 

and caffeine dissolved in toluene) but is exaggerated for large changes.  Such non-

linear behaviour is manifested in the measured response of a segmented flow of 

chloroform and water, where first order perturbation theory does not hold 

because of the large variation in permittivity.  It is for this reason that permittivity 

values have not been calculated.  This effect was circumvented by the empirical 

inversion used to obtain permittivity values for bulk solvents as shown in Figure 

3.19, except it required measurements to be taken relative to air.  Such 

measurements were not practical in segmented flow within the time limits of this 

project, although that is not to say that it is impossible.  Potential implementations 

for invertable segmented flow measurements are discussed in the section on 

future work. 

 

Figure 3.22 also demonstrates the temporal stability of the probe when embedded 

in the microfluidic interface.  The aqueous fluid segment measurements are rising, 

which can be attributed to a slight temperature difference between the fluidics and 

the microfluidic manifold.  Segmented flow is characterised by a continually-
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refreshing fluid interface, which means sample temperature will equilibrate in far 

less time than in single-phase measurements.  A similar effect is not observed in 

the organic phase measurements because the temperature dependence of the 

permittivity of water vastly exceeds that of chloroform.  This is a direct example of 

the need for improved temperature control, particularly for the highly 

temperature-dependent aqueous samples anticipated in biological applications. 

 

Prior to this paragraph, most of Sections 3.3.2 and 3.3.3 have been concerned with 

very specific aspects of the presented data.  A more general perspective is also 

necessary.  The caffeine measurements vindicate the considerable efforts in 

developing a method for obtaining multi-frequency information with a single 

resonator.  The sensitivity of resonator methods is highly desirable, but 

measurements performed at a single frequency are like to be ignored upon being 

judged spurious.  Consider the caffeine-toluene measurements at 1.75 GHz in 

Figure 3.21.  If measurements had not been performed at any other frequency, a 

reasonable conclusion would be that this measurement technique could not be 

used for characterising the composition of solvent-solvent systems.  If the rest of 

the available frequency information is also considered, systematic effects can be 

observed with respect to both frequency and concentration whilst simultaneously 

retaining the sensitivity of a resonant technique over a broadband one.  This is 

particularly important when more complex systems such as blood are considered: 

the data presented in this work are from artificially simple chemical systems, 

whereas complexity will be vastly increased for biological applications.   

 

The error of the measured frequency data can be used to estimate the limit of 

detection and resolution of the embedded microfluidic device in terms of 

permittivity by considering that normalised frequency change and permittivity are 

linear over small changes in permittivity.  If error is taken as the maximum noise of 

all measured frequency components at the 99% confidence interval, the calculated 

permittivity components have a resolution of 2  10-4 and a limit of detection of 

1.0002.  The permittivity resolution and the acetonitrile detection limit of 400 nM 

can be used to compare this device with various other techniques discussed 

earlier, as shown in Table 3.6.   
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Table 3.6: Comparison of device resolution and sensitivity.  Note that several 

examples of detection are given in [11, 13, 15].  Only the highest molar sensitivity has 

been included for the sake of brevity. 

Paper ε resolution Molar Sensitivity 

Gubin et al. [16] - 150 μM BSA in water 

Sharforost et al. [105] - 750 μM BSA in water  

Sato et al. [134] - 30 mM propan-2-ol in water 

Kapilevich et al. [46] - 800 μM MgSO4 in water 

Song et al. [60] - 50 mM ethanol in water 

Folgero et al. [50] ~ 0.001 - 

Hoog-Antonyuk et al.[59] ~ 0.01 - 

This work 2 x 10-4 400 nM acetonitrile in toluene 

 

It is necessary to use measures of both permittivity resolution and molar 

sensitivity due to the various ways in which the other authors have presented their 

data.  Note that [14], which is probably the most sophisticated microfluidic 

dielectric spectroscopy technique discussed in the Literature section, has not been 

included because the error treatment was concerned with the accuracy of the 

transmission line model and quantitative error data was not provided in terms of 

permittivity or composition.  Where several examples of solute detection were 

given (as in [16], [46], [105]), the highest demonstrated molar sensitivity (i.e. the 

lowest detected concentration) is quoted in Table 3.6.  The resolution of [60] could 

not be established given the lack of quantitative error analysis.  The performance 

of the non-invasively coupled coaxial resonator and the PTFE microfluidic 

interface compares favourably with all other existing techniques. 
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4. CAPILLARY-PERTURBED COAXIAL RESONATOR 

Chapter 2 introduced perturbation theory, as well as various spectroscopic 

methods for characterising the dielectric and/or magnetic properties of a material.  

Although resonator perturbation is most commonly used for dielectric 

spectroscopy, a change in complex resonant frequency can in fact be affected by 

various intrinsic or extrinsic material properties, or some combination thereof.  

Intrinsic properties can be electrical (complex permittivity, electrical conductivity) 

or magnetic (complex permeability); extrinsic properties include the shape  and 

volume of a given sample.  This project is largely concerned with developing 

sensing techniques for monitoring fluidic (bio)chemical and pharmaceutical 

processes.  Although shape affects depolarisation, it will depend on the vessel in 

which the fluidic sample is contained and is constant for each device developed 

here.  Instead, this chapter concentrates on dielectric and magnetic 

characterisation. 

 

Several important points were raised within the consideration of existing 

spectroscopic methods for simultaneously characterising the dielectric and 

magnetic properties of a material in isolation from each other.  Whilst such an 

approach is well established for broadband techniques [67–77], [122], they lack 

the accuracy and sensitivity of their resonant counterparts [22].  This is chiefly 

because broadband techniques require careful and frequent calibration of the 

measurement equipment used to interrogate the sensor, whereas resonant 
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techniques are sometimes preferred as they have a lesser dependence on Vector 

Network Analyser (VNA) calibration and therefore have lower systematic error.  

 

Existing resonant techniques [80–83] offer great potential but suffer from different 

problems.  One approach, using an analytical deconvolution, was heavily 

calibration dependent and required the use of several waveguides to obtain a 

significant amount of frequency dependence information [81–83].  Another 

approach, which sought to exploit the field distributions of different modes to 

isolate electric and magnetic field effects, managed to separate magnetic 

properties from electric ones, but not vice versa [80].  It is proposed that a coaxial 

resonator incorporating the coupling structure introduced in Chapter 3 can be 

perturbed in such a way that it allows electric and magnetic deconvolution.  This 

does not suffer from any of the problems associated with existing techniques, but 

allows a microfluidic sample interface and retains most of the advantages of the 

evanescently-perturbed coaxial resonator. 

 

4.1. Methods 

4.1.1. Electromagnetic design 

The non-invasive coupling structure developed and tested in Chapter 3 allows 

multi-modal measurements to be taken in order to extract information on the 

frequency-dependence of sample permittivity.  It was shown to compare 

favourably with related and alternative measurement techniques in terms of 

sensitivity, versatility and robustness.  It also compares favourably with the 

existing techniques for simultaneous dielectric and magnetic characterisation.  

This approach is virtually calibration independent and offers a large number of 

available modes with a single section of coaxial waveguide (potentially >15).  This 

means it is better suited to the intended applications of this project than 

previously stipulated methods. 

 

Consider a cylindrical sample passed orthogonally through the centre of a coaxial 

resonator.  As its cross-section tends towards zero, the sample will occupy electric 

field maxima and magnetic field minima for all even TEM modes, and magnetic 

field maxima and electric field minima for all odd TEM modes. This is illustrated in 
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Figure 4.1, where colourmaps of electric and magnetic field are shown for the first 

two TEM modes of the coaxial resonator.   
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Figure 4.1: Device construction and field distributions.  a shows a cutaway view of the 

resonator perturbed with a sample-filled quartz capillary.  b and c show cross-

sectional colourmaps of electric field magnitude for the first and second TEM modes 

of the device, respectively.  d and e show the equivalent colourmaps of magnetic field 

magnitude.  It can be seen that the sample perturbs zero electric field (b) and 

maximum magnetic field (d) for the first TEM mode, and maximum electric field (c) 

and zero magnetic field (e) for the second TEM mode. 

  

The liquid-filled capillary is positioned so that it only occupies either electric or 

magnetic field depending on which mode is interrogated.  In practice, a sample 

cannot have an infinitely small cross section (as required for total field separation) 

so it cannot be completely isolated from either field.  The sample and capillary 

must cross lines of electric field and will therefore accumulate charge at their 

boundaries.  Hence, the sample will experience some degree of depolarisation.  The 

design procedure must therefore optimise resonator perturbation in some fashion 

in order to maximise field separation and minimise depolarisation.   

 

The initial design of this device uses the non-invasive coupling structure from the 

previous chapter.  In Section 3.1.1, it was stated that the coupling structure 

allowed the user to change the coaxial resonator as desired, for example to adjust 

the frequency of the available sensing modes.  From a practical perspective, this is 

extremely useful when assembling a device that requires a drilled hole in which to 

mount the sample-filled capillary.  This is useful because the perturbation can be 

adjusted by changing the resonator rather than having to remake a complete 

coupled sensor.  Such an approach was adopted to simplify the experimental 

aspects of this work.   

 

It would be equally feasible to fabricate a variation on this design with a simpler, 

fixed end-coupling design.  This is akin to the end-coupled design shown in Figure 

3.5 a. Such a design was not adopted for the previous coaxial resonators because of 

the difficulties associated with perturbing the evanescent field whilst using 

adjacent feedlines at both ends for transmission coupling.  This is clearly not a 

problem for perturbation as shown in Figure 4.1.  An implementation of this 
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approach is shown in Figure 4.2, where coupling is achieved with SMA tab 

connectors.   

 

 

 

Figure 4.2: Gap-coupled air-spaced open-ended half-wavelength coaxial resonator 

for simultaneous dielectric and magnetic characterisation of a liquid-filled quartz 

capillary passing orthogonally through the centre of the resonator.  The coupling 

mount doubles as the outer conductor of the coaxial cable. 

 

The coupling strength could be adjusted by bending the copper tab. This would 

make it possible to optimise coupling for every individual measurement, but also 

confines the user to a more restrictive microfluidic interface and a fixed set of 

harmonic TEM sensing modes.  This design still allows multi-modal measurements 
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for the deconvolution of electrical and magnetic properties, in addition to 

extracting frequency-dependence information for the two properties. 

 

This approach would also allow sensitivity to be improved.  This is because 

increasing quality factor can lead to higher sensitivity measurements of material 

properties, which can be achieved by using lower resistivity conductors (such as 

silver) and lower loss dielectric spacers.  Although PTFE has a very low dielectric 

loss, air- or even vacuum-spaced coaxial cable (if it were possible to hermetically 

seal the device) would give improved performance.  In addition to this 

enhancement of performance, one of the motivations for using a weakly-coupled 

resonator was to reduce the calibration dependence of the measurement 

inversion.  In this work, the calculation of permittivity and permeability is not 

attempted due to time constraints (although it could be) so it would not be 

particularly detrimental to use the stronger coupling that could be achieved with 

simple capacitive coupling as shown in Figure 4.2.  Indeed, large perturbations (for 

example, with a polar solvent such as water) will cause a large increase in insertion 

loss, which can lead to a resonance becoming unmeasurable if its power 

transmission reduces to a level close to the noise floor of the spectral 

measurement.  This would necessitate stronger coupling (such as the end coupling 

shown in Figure 4.2) in order to achieve a measurable perturbation since 

increased coupling strength reduces insertion loss. 

 

4.1.2. Perturbation optimisation 

This section shows, firstly, how dielectric properties can be extracted from electric 

sensing mode measurements and, secondly, how the magnetic sensing mode 

response is a function of conductivity but not of complex permittivity for a non-

magnetic sample.  The combination of these results demonstrates the principle of 

electric and magnetic deconvolution on which the capillary-perturbed coaxial 

resonator is based.  Whilst the finite element modelling in COMSOL gives better 

agreement with the experimental results, the simplified analytical approach that 

follows gives the correct dependencies on the geometrical factors (e.g. coaxial line 

cross-section and capillary dimensions), which are important in the optimisation 

of this design. 
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Consider a coaxial resonator as represented in Figure 4.3.  If all fields have      

time dependence, the electric and magnetic field amplitudes can be written as: 
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4.2 

where E0 is the peak magnitude of electric field Er (located at the ends of the 

resonator) for the nth TEM mode.  η0 is the vacuum impedance (i.e. η0 = 376.7 Ω).  

Co-ordinates and all other dimensions are labelled in Figure 4.3. 

 

 

 

Figure 4.3: Air-filled coaxial resonator schematic (not to scale).  The hole for the 

liquid-filled capillary is perpendicular to the conductors’ axis and located halfway 

along the length of the resonator (z =  l/2). 

 

From first order perturbation theory, the normalised change in centre frequency 

can be written as: 
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where dp is the dipole moment of a volume element of the fluid and U is the time-

averaged stored energy.  Evaluating the right-hand side of Equation 4.3 as shown 

in Appendix 1 allows the expression for normalised change in centre frequency to 

be rewritten in terms of sample permittivity and device dimensions: 
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4.5 

where d is the inner diameter of the capillary, a is the diameter of the coaxial inner 

conductor, b is the inner diameter of the coaxial outer conductor and l is the length 

of the coaxial resonator.  By a similar process, the normalised change in half-power 

bandwidth can be shown to be dependent on the dielectric loss of the sample: 

 

 
 

   
  

        

 

4.6 

These expressions can be used to theoretically predict the change in complex 

resonant frequency for a sample of known permittivity.   

 

It is obvious from Maxwell’s equations that an alternating magnetic field will 

induce an electric field in a conducting material.  It is not possible to induce an 

electric dipole (defined as      ) since the induced electric field necessarily 

has a non-zero curl.  Physically, this means that the induced electric field 

distribution will consist of concentric circles.  This is not an alternating field and 

therefore cannot be used to quantify alternating polarisation mechanisms such as 

dipolar reorientation or the associated losses.  This can be proven by 

demonstrating that the magnetic field response depends on conductivity but not 

on either component of complex permittivity. 

 

The quality factor of a resonator Q can be defined as: 

 

 
 

  
     

 
  

 

4.7 

where P is the time-averaged power dissipation.  Evaluation of the right-hand side 

of Equation 4.7 allows an expression for change of inverse quality factor to be 

derived.  This change is caused by a change in power dissipation rather than stored 

energy given that the latter is constant.  Power dissipation depends on 
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conductivity, so evaluating the right-hand side of Equation 4.7 as shown in 

Appendix 1 gives the result: 

 

 
 

            
 

4.8 

where 
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4.9 

where μ0 is vacuum permeability.  Equations 4.8 and 4.9 can be used for a 

theoretical prediction of the change of inverse quality factor for a sample of known 

conductivity.  This can be achieved using the approximation for resonant 

frequency         √  , where n is mode number and εr is the relative 

permittivity of the coaxial spacer.  In practice, however, it is likely that f0 will be 

known to a greater degree of accuracy than εr so Equation 4.8 is probably best 

used in its given form. 

 

It can be seen that a conductive liquid, such as saline, will interact with both 

electric and magnetic sensing modes from Equations 4.4, 4.6 and 4.8.  The ability to 

deconvolve electric and magnetic field effects will be proven if it can be 

demonstrated that two conditions are satisfied for a conducting liquid such as an 

ionic solution.  The conditions are that the electric sensing mode response must be 

a function of complex permittivity only and that the magnetic sensing mode 

response must be a function of conductivity only. 

 

As the title of this chapter may imply, the coaxial resonator was to be perturbed 

with a capillary.  The capillary dimensions corresponding to optimal perturbation 

were determined with finite element modelling in COMSOL.  The primary 

motivation for using quartz capillaries was because of their extremely low value of 

dielectric loss.  Capillary action provides an extremely effective method of 

introducing the sample to the resonator without having to physically manipulate 

the sensor: the quartz tube will readily fill with a wide range of organic and 

aqueous liquids by dipping the end of an empty capillary in a liquid sample.  

Capillary action draws up the liquid sample and fills the tube and thereby the 
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sensing volume of the resonator.  This means the resonator and the capillary do 

not need to be touched, filled or otherwise disturbed.  This is particularly useful 

because it means that the reference (empty capillary) and sample measurements 

(filled capillary) are taken from an identical volume.  This is significant because 

any useful data from the sensor will be taken from differences between the 

reference and sample volumes. 

 

Resonator simulations were performed in COMSOL.  Eigenmode simulations were 

used to investigate the effects of varying capillary dimensions on the behaviour of 

the resonator.  The ability to take aqueous-phase measurements was vital 

considering the intended point-of-sampling applications, and potentially 

problematic due to the large permittivity of water.   

 

An appropriate optimisation figure of merit was therefore required to give the 

maximum decrease in centre frequency in the electric sensing (second TEM) mode 

upon the introduction of water into the capillary.  It was also required to give the 

minimum centre frequency change in the magnetic sensing (first TEM) mode 

under the same conditions.  The sample would interact with the second TEM mode 

but not the first if the water was of sufficient purity (i.e. no with no ionic content) 

and cross-section (i.e. tending towards zero).  It is desirable to maximise the 

frequency shift of the electric sensing mode because it will give increased 

measurand resolution when the power transmission spectrum of the sensor is 

characterised by a network analyser of fixed frequency resolution.   

 

In practice, the sample cannot be completely removed from the magnetic field 

because of its finite cross-section, so the magnetic field response due to any 

corresponding interaction must also be accounted for by the figure of merit.  

Hence, the optimisation figure of merit was taken as the frequency change in the 

second TEM mode divided by the frequency change in the first TEM mode.  It is 

vitally important for this figure of merit to be maximised to ensure maximum 

sensitivity and unambiguous deconvolution of electric and magnetic field effects.  

These values (referred to as modal ratios) are shown in Table 4.1 for the available 

dimensions of quartz capillary from VitroCom (NJ, USA).   
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Table 4.1: The change in centre frequency affected by the introduction of water was 

simulated for the first two TEM modes of the resonant coaxial device.  The 

simulations were repeated for several quartz capillaries, where the simulated 

dimensions were those available for purchase.  The outer diameter (O.D.) and inner 

diameter (I.D.) are shown for each capillary.  The modal ratios were obtained by 

dividing the response of the second TEM mode by the first for a figure of merit for the 

difference in sensitivity between the modes.  The maximisation of this figure 

represents an optimisation with respect to field separation.  This is necessary for the 

deconvolution of the electrical and magnetic properties of a material under test. 

O.D./I.D. (μm) 400/300 700/500 1000/800 

Modal ratio 250 440 110 

 

It can be seen that a capillary of inner and outer diameters of 500 μm and 700 μm, 

respectively, gave the highest ratio.  This unusual result could be because of 

increasing capillary diameter affecting an increase in electric field perturbation 

and a decrease in field separation. 

 

4.1.3. Experimental 

The sensor using the single-ended coupling structure with a separate coaxial 

section (Figure 4.1) was used instead of the purpose-built coaxial structure formed 

from a single block of aluminium (Figure 4.2) because of the time constraints of the 

project.  A length of RG401 50 Ω coaxial cable was used to form the half-

wavelength resonator.  This was open circuited at both ends to allow capacitive 

coupling to the evanescent field.  The coaxial cable was cut and polished to a length 

of 3.8 cm for a fundamental TEM resonance at ~ 2.8 GHz, giving two modes in the 

frequency region of interest (0.5 to 6 GHz, the upper limit set by the network 

analyser used to perform the measurement).  More modes could have been used to 

further examine the frequency dependence of permittivity and permeability.  

However, the minimum number of modes required (for magnetic and electric 

sensing, respectively) were used for maximum frequency separation between the 

sensing modes.  This was considered necessary because of the fact that separating 

mode dependencies could cause two modes to overlap and possibly lead to 

degeneracy (that is, where two modes have the same resonant frequency).  For 
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example, two adjacent modes could overlap if the centre frequency of the higher 

mode decreased as a function of permittivity and the centre frequency of the lower 

mode increased as a function of permeability.  This device clearly has potential for 

obtaining multi-frequency information on both the electric and magnetic 

properties of the material.  This chapter is restricted to the simplest case where the 

different properties are characterised by one mode apiece because the use of many 

modes for multi-frequency determination of complex permittivity has already 

been demonstrated. 

 

RG401 coaxial cable is comprised of copper conductors (of 6.35 mm outer 

diameter) and a polytetrafluoroethylene (PTFE) spacer (of 1.6 mm inner diameter 

and 5.4 mm outer diameter).  The resonator was constructed from cable of this 

size so that the previously designed single-ended coupling structure (cf. Chapter 3) 

could be used to perform power transmission measurements of the resonator.  A 

copper cap was placed over the uncoupled end of the resonator.  An image of the 

complete assembled device is in Figure 4.4.  

 

 

Figure 4.4:  Cutaway schematic showing a conducting cap placed over the uncoupled 

end of the coaxial resonator in order to prevent accidental perturbation and increase 

field confinement. 

 

The cap was placed over the uncoupled end of the resonator for increased 

confinement of the evanescent field, which increased sensitivity by reducing the 

effective volume of the resonator and increasing its Q factor.  Note that the cap 
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does not short circuit the coaxial conductors (which would cause a quarter rather 

than a half-wavelength resonance).  This was considered acceptable as the 

evanescent field at the uncoupled end was not to be perturbed for any of the 

measurements presented in this chapter.  Including the cap shown in Figure 4.4, 

the first two TEM modes of this resonator had unperturbed quality factors of 

approximately 1200. 

 

A ZVL vector network analyser (VNA) (Rohde and Schwarz, Munich, Germany) was 

used to measure the transmission coefficient of the assembled device.  The 

shortest, highest available quality cables and the fewest, highest available quality 

connectors were used to connect the resonant devices to the VNA.  The data were 

exported to LabVIEW (National Instruments, TX, USA), where a Lorentzian curve 

was fitted to the peak of each resonance in real-time.   The fitted curve data were 

then used to measure the resonant frequency and bandwidth of all modes.  As with 

the measurements reported in Chapter 3 that were performed with an E5071B 

network analyser, the measurement period of this experimental setup was limited 

by the USB 2.0 data transfer rate from the network analyser and the PC performing 

the curve fitting algorithms, and the maximum measurement rate was 20 Hz.  

 

The resonator was mounted on a hot plate for temperature control.  This was 

capable of maintaining a specified temperature to within 0.1 K, regulated by a 

control loop with a period of approximately 40 seconds.  This is a reasonably 

significant temperature variation, but the liquid sample is effectively buffered from 

such changes by the large thermal mass of the resonant device.  The samples and 

capillaries were stored on the hot plate overnight prior to measurement to allow 

thermal equilibration. Under these circumstances, the sample, capillary and 

resonator were considered to be at the same temperature for the duration of the 

measurement, which was experimentally verified with an infra-red thermometer.  

All measurements were taken at a slightly elevated temperature of 303 K, which 

was used to ensure the hot plate (rather than the laboratory environment) was the 

dominant thermal source.  

 

Deionised (DI) water was obtained with an ELGA Purelab UHQ system for Type I 

purified water.  The highest available purity salts were obtained from Sigma 
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Aldrich (Sigma Aldrich, MO, USA) and were used as supplied.  Magnetite was 

synthesised according to the procedure described in Section 2.6.4.  Stock solutions 

and suspensions were made and serially diluted with the same batch of solvent.  

Quartz capillaries of 700 μm outer diameter, 500 μm inner diameter and 10 cm 

length were obtained from VitroCom (NJ, USA) and used as provided.  

 

For each sample, an empty capillary was introduced into the resonator and a 

reference air measurement was recorded.  The sample was then introduced via 

capillary action.  This was achieved by tilting a liquid-filled Eppendorf tube to dip 

the end of the capillary in the sample without touching the capillary with the 

sample vessel.  Sample measurements were then recorded.  In each instance, 100 

data were logged for each reference and sample measurement to provide a 

sufficiently large dataset for statistical analysis.  New quartz capillaries were used 

for each sample due to difficulties in cleaning them effectively. 

 

The quantification of ionic content of an electrolytic solution is easily achieved 

with existing techniques such as conductivity measurements.  These usually 

require direct contact to the liquid (unlike our method, which is non-invasive) and 

cannot distinguish between anions or cations that have the same charge.  Practical 

experience has shown that ionic content can be a significant obstacle to microwave 

frequency dielectric spectroscopy, particularly at low GHz frequencies.  Therefore, 

the presented approach is not intended to supersede existing conductivity 

techniques, but rather to render microwave-frequency resonant methods more 

useful by determining additional information.  Furthermore, ionic solutions are 

convenient for demonstrating simultaneous electrical and magnetic 

characterisation given that they interact with both fields via different polarisation 

mechanisms. 

 

The device shown in Figure 4.2 was successfully fabricated and assembled, but 

time restrictions meant experiments to compare its performance with the single-

ended coupling approach were not possible.   
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4.2. Results 

COMSOL simulations yielded the result that the introduction of pure water into the 

capillary-perturbed coaxial resonator would affect a centre frequency change of 

118 MHz  at the second TEM mode.  The measured change was 115 MHz. 

 

 

Figure 4.5: Measurement data for serial dilutions of aqueous NaCl solutions. The 

change in centre frequency is shown with respect to NaCl concentration for the (a) 

first and (b) second TEM sensing modes, representing electrical and magnetic 

sensing respectively.   Likewise, the change in inverse quality factor is shown with 

respect to NaCl concentration for the (c) first and (d) second TEM sensing modes. 

Note that logarithmic y-axes have been used in (c) and (d) to emphasise that there is 

still a discernable shift between the lowest measured concentrations.  Measured 

estimates of complex permittivity are shown on the right y-axes of the electric sensing 

modes responses.  Error bars are too small to be visible. 
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Values of        and      are shown with respect to concentration for increasing 

dilute saline solutions in Figure 4.5.  An empirical model of the permittivity 

variation of aqueous sodium chloride solutions with respect to frequency, 

concentration and temperature was developed in [135].  This model fitted a 

Debye-type dispersion equation to measurement data taken from all existing 

sources of information, and as such is considered the most complete source 

available.  Unfortunately, the sodium chloride concentrations were invariably high: 

only the highest of the concentrations presented here was within the valid range of 

the model (taken as the range of data to which the model was fitted).  This meant 

the literature values could not be used as a comparison for the presented 

measurements.  However, this did mean that the response for the highest 

concentration could be used to calculate complex permittivity from the other 

measurements.  

 

Complex permeability was not calculated from the magnetic sensing mode 

response because the sample was not magnetic.  

 

Error bars are too small to be observed.  Measurement uncertainty, limits of 

detection and measurement error are listed in Table 4.2.  The same device has 

been used to measure each solution so any geometric uncertainty (for example, 

that due to fabrication tolerances) is constant and therefore irrelevant.  The 

temperature can be assumed to be constant, as discussed in Section 

Experimental4.1.3.  The only source of variation between each measurement is the 

capillary.  Simple repeatability measurements (i.e. measuring ten different empty 

capillaries) have shown the measurement uncertainty due to volume variation to 

be approximately ±1%.  The limits of detection are the smallest changes in centre 

frequency and quality factor that can be distinguished above the reference 

measurement error. Measurement error is the highest experimental value of noise 

(one standard deviation). 

 

Table 4.2: Device characteristics. 

Measurement 

uncertainty u 

Detection limit 

Δf0/f0 

Detection limit 

ΔQ-1 

Max. error 

Δf0/f0 

Max. error 

ΔQ-1 

± 1 % 8 x 10-7 2 x 10-6 4 x 10-5 2 x 10-5 
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The two quantities of interest from these experiments are changes in centre 

frequency and in inverse quality factor.  Modal ratios of these quantities are 

obtained by dividing the either one of the measured quantities  at the second TEM 

mode by the same quantity measured at the first TEM mode.  Such modal ratios are 

shown in Figure 4.6.  These quantities represent a measure of the difference in 

sensitivity between the modes. 

 

 

Figure 4.6: Modal ratios have been computed for changes in both centre frequency 

and inverse quality factor at all concentrations of aqueous NaCl solutions. The modal 

ratios were obtained by dividing the response of the second TEM mode by the first for 

a figure of merit for the difference in sensitivity between the modes.  The data are 

joined to emphasise that there are coincident markers at 10-3 g/ml NaCl.  Error bars 

are too small to be visible.   

 

Changes in inverse quality factor for all salts are shown with respect to 

concentration in Figure 4.7. Serial dilutions of three salts have been used: sodium 

chloride, calcium chloride and sodium acetate.   
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Figure 4.7: The change in inverse quality factor is shown for the magnetic sensing 

(first TEM) mode for several aqueous salt solutions.  Note that different cations 

(sodium and calcium) and different anions (chloride and acetate) can each be 

distinguished from each other.  The highest NaCl concentration gives a much larger 

change of inverse quality factor that all other salts and concentrations and has 

therefore been excluded from the main figure.  The inset includes this datum as part 

of the full NaCl dilution series, where the axes are of the same quantities and units as 

the main figure. 

 

To investigate the characterisation of magnetic liquids, a 5 mg/ml suspension of 

magnetite in hexane was prepared according to the synthesis described in Section 

2.6.4.  Using the same experimental procedure as above, measurements were 

obtained for pure hexane and the magnetite suspension to investigate the effects of 

adding a solid ferromagnetic phase to a liquid system.  Hexane was chosen as the 

solvent because it is extremely non-polar and demonstrates a very low dielectric 

constant across the entire microwave frequency region, meaning that any relative 

changes due to the suspended particles would be more easily detected.  The 

resulting data are plotted in Figure 4.8. 
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Figure 4.8: Comparison of the change in centre frequency (a and b) and in inverse 

quality factor (c and d) of the first two TEM modes for hexane (green) and magnetite 

suspended in hexane (yellow).  The first TEM mode is for magnetic sensing; the 

second TEM mode for electric sensing.  Error bars represent the 95% confidence 

interval.  The insets in a and b have the same axis quantities and units as the main 

figures, and are included to illustrate whether the measured quantities are 

distinguishable at the given confidence interval (in b, the error bars are too small to 

be seen).   

 

The use of the capillary-perturbed coaxial resonator for temporal binding studies 

was also investigated.  Non-specific binding was attempted before targeted binding 

(such as with molecularly imprinted polymers) for the simplest possible dynamic 

chemical system.  A 5 mg/ml suspension of 5 μm diameter Si100 (silica) in 

deionised water and aqueous solutions of propranolol were prepared separately.  

Their concentrations were adjusted so that, when added together, each sample 

would have the same volume of water and suspended silica particles, but varying 
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concentration of propranolol.  Concentrations of 10 – 100 μM propranolol (i.e. 

comfortably above the limits of detection) were used to ensure a measureable 

signal.  Empty capillary reference measurements were taken as the liquids were 

being mixed together.  After being added together and mechanically excited to 

ensure mixing, each sample was introduced into the resonator via capillary action 

in the same manner as the previous experiments.  The ends of the capillary were 

sealed with wax to prevent evaporation, where a small region of air was 

maintained between the wax and the liquid sample to prevent foreign species 

interfering with the measurement.  Changes in centre frequency and quality factor 

were then logged with respect to time.   

 

 

Figure 4.9: Change in centre frequency with respect to time for varying 

concentrations of propranolol in an aqueous suspension of silica microparticles. 

 

Inverse quality measurements have not been included because they did not show 

any meaningful results.  It should be noted that these results could not be 

reproduced.  Similar experiments were performed several times, resulting in 

traces of tending downwards rather than upwards; no change in        or erratic 

and unpredictable variation in         over many orders of magnitude. 

 

4.3. Discussion 

In Section 4.1.2, it was shown that the normalised change of centre frequency 

(      ) is proportional to the real component of either permittivity or 

permeability, depending on the sensing mode being interrogated.  Likewise, the 

change of inverse quality factor (    , where        ) is proportional to the 
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imaginary component of either permittivity or permeability, depending on the 

sensing mode interrogated.  The response of the magnetic sensing mode is also a 

function of sample conductivity.  Calculating        and      allows the electric 

and magnetic sensing modes to be compared in order to demonstrate electric and 

magnetic deconvolution.   

 

The centre frequency response will be considered first.  Figure 4.5 a shows the 

magnetic sensing (first TEM) mode to exhibit very small changes in comparison 

with the electric sensing mode.  This is to be expected given that Na+ and Cl- ions 

do not have any magnetic polarisability.  However, the centre frequency response 

does also show a linear trend with logarithmic concentration.  One physical 

interpretation of this result could be that these results show increasing magnetic 

polarisability for decreasing NaCl concentration.  Such an explanation is clearly 

nonsensical given that all components of the solution are non-magnetic, so the 

results in Figure 4.5 a shall be treated as negligible.  The centre frequency 

response of the second TEM model can be seen in Figure 4.5 b. This exhibits a non-

monotonic response above the limit of detection.  The saline solutions were 

obtained by serial dilution with the same batch of deionised water and measured 

at a constant temperature.  Therefore, it would be reasonable to expect any 

permittivity variation above the limit of detection to be monotonic.  This 

expectation may not be valid for large changes in composition measured using a 

depolarising geometry.  However, such depolarisation (occurring when the sample 

capillary is oriented parallel to the sensing field and therefore crosses field lines) 

can account for non-monotonicity in the change of inverse quality factor but not in 

centre frequency.  Therefore, any non-monotonic response above the limit of 

detection does not have any meaningful interpretation.  Whilst the responses 

shown in Figure 4.5 a and b are above the limit of detection, such responses are in 

line with the author’s experience characterising ionic solutions with microwave-

frequency resonators, where quality factor changes exhibit systematic variation 

but centre frequency changes do not.   

 

However, of note is the fact that        is much greater for the electric sensing 

mode (Figure 4.5 b) in comparison with the magnetic sensing mode (a).  Values of 

approximately -21 x 10-3 (ignoring non-systematic variation) correspond to a 130 



132    CHAPTE R 4.   CAPIL LARY-PER TU RBED  COA XIAL  RES ONA TOR  
 

 

MHz decrease in centre frequency.  From experience, this is an extremely large 

change.  It is to be expected given the high real permittivity of water, which is 

roughly 75 at the frequencies considered.  The far smaller values for the magnetic 

sensing mode (approximately -5 x 10-5) imply that the electrical properties of the 

sample are not being interrogated, since the presence of water (with the 

correspondingly large value of real permittivity) would exaggerate any such 

response.  This can be investigated qualitatively using the modal ratio, as 

introduced in Section 4.1.2.   

 

The quotient of the electric and magnetic sensing mode responses (i.e. TEM mode 

2 response divided by the TEM mode 1 response) is shown for changes in both 

centre frequency and inverse quality factor in Figure 4.6.  The modal ratio for 

centre frequency change is approximately 440 over the entire range of measured 

concentrations.  The response is not completely linear, but any deviation is an 

artefact of the non-systematic responses discussed above.  This experimental 

modal ratio corresponds with the simulated value for deionised water.  This means 

that the expected amount of field separation occurs, but does not conclusively 

prove that the modes are interrogating different loss mechanisms.  The modal ratio 

for the change of inverse quality factor is also shown in Figure 4.6, and clearly 

demonstrates a dependence on salt concentration.  This means that the different 

modes must be interrogating different loss mechanisms because, otherwise, their 

responses would have to be proportional (from perturbation theory) and the 

modal ratio would be constant with respect to concentration.  Instead, the ratio 

tends toward unity at high concentrations, which can be interpreted as increasing 

competition between the different loss mechanisms being interrogated by the two 

sensing modes.  An inverse quality factor modal ratio value of approximately 800 

was extracted from simulations.  This was obtained for DI water in the same way 

as the value for centre frequency.  The saline solution response approaches this 

estimated value as the salt concentration tends toward zero.  The combination of 

these results proves that satisfactory mode separation occurs for dielectric and 

magnetic deconvolution. 

 

The change of inverse quality factor can be seen to vary with NaCl concentration 

for both sensing modes in Figure 4.5 c and d.  The magnetic sensing mode 
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response is the smaller of the two, but still exhibits significant systematic variation.  

However, the modal ratio for change in inverse quality factor demonstrated that 

the two modes were interrogating different loss mechanisms.  Therefore, any 

responses observed in the imaginary frequency component of either mode must be 

due to different causes.  The electric sensing mode response is to be expected given 

the dielectric losses associated with dipolar reorientation within an ionic solution.  

The magnetic sensing mode losses can only be attributed to induced eddy currents 

for two reasons: the sample occupies maximal magnetic field but exhibits 

negligible change in magnetic polarisability. 

 

Figure 4.7 shows how this measurement technique can also be used to distinguish 

different salts.  The change of inverse quality factor for the magnetic sensing mode 

is probably the most useful measured quantity given that it is dependent on 

conductivity but not on electric polarisability or dielectric loss.  This essentially 

removes the permittivity of the solvating medium from the measurement, which is 

particularly useful for high permittivity solvents such as water.  This is significant 

for the aqueous samples commonly encountered in biological applications because, 

particularly for depolarising resonators for dielectric characterisation, the large 

permittivity of water can drive the resonator response into non-linearity and mask 

subtle effects of trace concentrations. 

 

The solutions of three salts (sodium chloride, calcium chloride and sodium acetate) 

were serially diluted.  These particular salts were chosen to show that this 

technique can differentiate between cations (sodium and calcium) and between 

anions (chloride and acetate).  In Figure 4.7, the changes in inverse quality factor 

with respect to concentration for sodium acetate and sodium chloride are 

different.  Dissociation of the salts into ions means that the cations and anions 

behave independently, meaning that the conductivity contribution of sodium is the 

same for both serial dilutions (i.e. it is unaffected by the cation).  The differences in 

ΔQ-1 can therefore be attributed to the different anions, which is to be expected 

given that the acetate and chloride ions will have different ion mobilities as 

described by the Einstein relations [136].  The differences between the responses 

of sodium chloride and calcium chloride can similarly be attributed to the different 

cation.     
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Being able to differentiate between cations and anions could find use in point-of-

care applications for identifying an unknown salt solution independently of the 

solvating medium.  A practical implementation of this approach could be for a user 

to dilute the sample by a known amount and then compare the resulting plot of 

     with a lookup table of previously characterised solutions. 

 

More generally, the capabilities of the presented device could also render it useful 

for metamaterial and ferrofluid research.  The latter application is demonstrated in 

Figure 4.8, which shows the centre frequency (a and b) and inverse quality factor 

(c and d) changes in the first two TEM modes for hexane and a 5 mg/ml 

suspension of magnetite in hexane.  The electric sensing mode results show the 

two to be distinguishable in their respective changes in centre frequency but not in 

quality factor, since their error bars overlap for the latter.  The magnetic mode 

response shows the somewhat surprising result where the two samples are clearly 

distinguishable in inverse quality factor (c) but not in centre frequency (a).  There 

are two possible reasons for this.   

 

The first possible explanation for the results in Figure 4.8 is that ferrofluids exhibit 

ferromagnetic resonance, due to the Larmor precession of superparamagnetic 

magnetic dipoles.  At the resonant frequency, susceptibility goes from a positive 

value to a negative one, meaning permeability transitions from a value above 1 to a 

value below 1.  At this point, the imaginary component of permeability is non-zero.  

This effect occurs at low GHz frequencies [122], [137], [138].  If the first TEM mode 

corresponded to the ferromagnetic resonant frequency, it would explain why a 

difference was observed in imaginary permeability but not in real permeability.  

The electric sensing mode would be entirely isolated from such responses, so the 

slight increase in polarisability without any measurable difference in loss would 

reasonably correspond to a diffuse suspension.   

 

The second possible explanation for the results in Figure 4.8 is that the apparent 

lack of magnetisation is because the magnetic field of the coaxial resonator is not 

high enough to cause measurable magnetisation of the superparamagnetic 

particles.  This would mean the particles would simply behave as conducting 



DISCUSSIO N  135 

 

 

particles, leading to a similar interpretation of the results as for the ionic solutions 

characterised in Figure 4.5.  Specifically, the lack of change in centre frequency of 

the magnetic sensing mode would imply there is no magnetisation.  The change in 

inverse quality factor of the magnetic sensing mode must therefore be due to 

conductivity, which must be contributed by the suspended particles as hexane is 

non-conducting.  One could also expect the electric sensing mode to exhibit a 

similar dependence of inverse quality factor on conductivity, since its response is a 

function of both dielectric and conductive losses.  However, it is important to 

distinguish that the electric sensing mode characterised the entire sample whereas 

the magnetic sensing mode only characterised the suspended phase.  The 

magnetite could be sufficiently diffuse to not give a discernable change above the 

electric sensing measurement noise. 

 

The second explanation of the ferrofluid results seems entirely coincidental, but 

whether either reason (or indeed any other reason) is valid requires further 

experimental verification.  To this end, it would be extremely useful to obtain 

broadband permeability spectra of the ferrofluid. 

 

The temporal measurements of non-specific propranolol-silica binding shown in 

Figure 4.9 illustrate the great potential of the capillary-perturbed coaxial resonator 

measurement technique.  In particular, each concentration shows a systematic 

trend towards some equilibrium value, which is all the more significant because 

each measurement was taken with a different capillary, causing a slightly different 

sample volume for each measurement.  The results seem to show a decrease in 

permittivity as propranolol is extracted from solution to bind to the surface of the 

silica microparticles.  The time taken for binding varies with concentration as 

higher concentration solutions are able to fill the available binding sites quicker.  

However, these results should not be considered reliable because it has not been 

possible to reproduce them.  This technique is undoubtedly capable of performing 

interesting, useful measurements, but more rigorous work is required for 

quantitative analysis. 
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5. SPLIT-RING RESONATOR 

The notion of using a split-ring resonator for dielectric spectroscopy is well 

established.  There are two main types of split-ring resonator, as discussed in 

Literature and Theory, and they differ in whether or not they have a planar 

implementation.  The planar version is usually etched onto conductor-clad circuit 

board, where the resonator is formed by a C-shaped section of transmission line.  

The alternative is to take a metal tube and machine a gap in the conductor.  Both 

versions are illustrated in Figure 5.1, where resonant frequency is a function of 

ring radius. 

 

 

Figure 5.1:  Typical implementations of the split-ring resonator.  a shows a planar 

structure and b shows an alternative fabricated from a conducting tube, where the 

approximate locations of the inductive (L) and capacitive (C) regions are also 

labelled. 
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A (square) example of Figure 5.1 a was described in [19], where thin film samples 

could be detected when deposited in the capacitive loop gap region.  An example of 

Figure 5.1 b is described in [58], where a liquid-filled capillary was passed through 

the loop gap to assess the composition of an acetonitrile-toluene mixture.  Further 

examples and analysis of split-ring resonators are given in [139–145]. 

 

The split-ring resonator can be described by an equivalent parallel LC circuit.  In 

both cases shown in Figure 5.1, the inductive region is approximately bounded by 

the circumference of the ring, and the capacitive region is the region between the 

two parallel faces either side of the gap in the loop.  Therefore, in order to perform 

dielectric spectroscopy it is necessary to perturb the electric field within the loop 

gap.   

 

These implementations of the split-ring resonator are both problematic in 

different ways.  The planar approach is relatively simply to fabricate using 

standard PCB etching techniques.  However, it suffers from extremely high 

conductor losses due to the thin conducting layer, which is less than skin depth 

and vastly increases resistance in the low GHz region.  In addition to this, the 

corners of the etched conductors cause current bunching and further exacerbate 

the conductor losses.  The second approach typically has an electric field region 

that occupies a much large volume.  It is difficult to perturb the capacitive region 

effectively if the resonator is to be perturbed with a fluid-filled channel, as 

intended.  The reason for this is that the length and width (i.e. the surface area) of 

the conductors bounding the loop gap will generally be much bigger than the 

distance between them.  To pass a fluidic channel (particularly a microfluidic 

channel) through this region would diminish sensitivity, which will scale with the 

fraction of the electric field volume that is perturbed.  Note that for the planar 

implementation, the sample perturbation is a function of the width of the 

transmission line (which essentially forms the width of a capacitor). 

 

An example of how a split-ring resonator could be perturbed with a microfluidic 

capillary is shown in Figure 5.2. 
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Figure 5.2: View of the electric field distribution in the loop gap of a split-ring 

resonator.  Depolarisation charges (which will give rise to a depolarising electric 

field) will accumulate on the inner and outer boundaries of the capillary because it 

crosses electric field lines. 

 

It can be seen in Figure 5.2 that the obvious way of introducing a fluidic sample 

into the loop gap of a split-ring resonator will always cause depolarisation because 

the capillary is orientated perpendicularly to the lines of electric field.  This 

problem is common to all of the split-ring resonators discussed in this chapter. 

 

 

Figure 5.3: Split-ring resonator formed from a single piece of curved wire.  This 

geometry is similar to those seen in Figure 2.8, including having a capacitive region 

located in the loop-gap and an inductive region opposite the loop-gap.  The single 

wire approach is simpler to fabricate and less lossy than the planar implementation 

(Figure 2.8 a), but demonstrates reduced electric field confinement in comparison 

with Figure 2.8 b. 
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An alternative method to those shown in Figure 5.1 would be to use wire formed 

into a ring, which could alleviate the problems with both existing techniques.  A 

simple example is shown in Figure 5.3.  This method is low cost, simple to 

fabricate, and could be embedded in an appropriate recess in a microfluidic device.  

This approach would greatly reduce the problem of conductor losses associated 

with etched planar split-ring resonators, particularly if high conductivity wire, 

such as silver, is used.  An issue with the wire resonator approach is that the 

electric field confinement suffers because the surface area of the faces bounding 

the loop gap is comparable to the gap separation.  This means that much of the 

electric field will exist as evanescent fringing fields rather than as the uniform field 

within a parallel-plate capacitor.  This would imply that passing a fluidic channel 

through the loop gap would not perturb a large fraction of the volume occupied by 

electric field.  A solution to this would be to extend the conductors to form a larger 

capacitive region.  Two potential examples are shown in Figure 5.4. 

 

 

Figure 5.4: Split-ring resonators with extended conductors to enlarge the capacitive 

region and increase electric field confinement.  Although the conductors could be 

orientated to any direction in 3D space, the simplest approach is to maintain the 

extensions in the same plane as the ring and have them protrude directly in to or out 

of the ring.   

 

Investigating and optimising this novel idea will form the bulk of this chapter.  The 

way the capacitive and inductive regions are effectively isolated from each other 

makes it possible to orientate the extended conductors in any direction in three-

dimensional space.  For the purposes of integration, it would seem prudent to use a 

planar device rather than pointing the conductors upwards or downwards.  To 
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have the extensions protruding into the ring is obviously more compact, which 

would be beneficial on a planar microfluidic chip where space is likely to be at a 

premium.  Whether such extensions have an adverse effect on the magnetic field 

distribution of the device has not been investigated due to time constraints of this 

project, though it would certainly be a worthwhile task. 

 

5.1. Methods 

5.1.1. Electromagnetic design 

There are two main aspects of split-ring resonator design: the resonator and the 

coupling.  They are discussed in that order within this section. 

 

A split-ring resonator with extended conductors can be fully described by the 

dimensions labelled in Figure 5.5. 

 

 

Figure 5.5: Split-ring resonator dimensions.  Note that, as a matter of convenience, 

the radii r1 and r2 and the leg length x3 are taken from the centre of the wire but the 

leg separation x2 is not. 

 

The centre frequency of the split-ring resonator is set by the ring radius r1.  The 

extended legs will also have a minor effect on centre frequency (i.e. a longer 
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protrusion will decrease centre frequency), but this is not a primary concern.  The 

leg separation x2 is analogous to the separation of a parallel plate capacitor:  

reducing this value will increase the electric field magnitude within the gap.  The 

thickness of the wire x1 will be the diameter for circular cross-section wire and the 

width for square cross-section wire.  The radius of curvature r2 depends on how 

the ring is formed.  In practice, it can never be zero since the wire would snap, but 

it is desirable to minimise this radius in order to maximise electric field uniformity.  

The dimension x3 describes the length of the extended conductors.  Note that the 

volume occupied by the electric field is also a function of leg width x1 and radius of 

curvature r2 (cf. Figure 5.6 a). 

 

This structure will have electric and magnetic field distributions as shown in 

Figure 5.6. 

 

 

Figure 5.6: (a) Electric field colourmap (blue = zero |E|, red = maximum |E|) and (b) 

magnetic field colourmap (white = zero |H|, brown = maximum |H|) for the split-ring 

resonator with extended conductors. 

 

It can be seen that the majority of the electric field energy is stored in the parallel 

region between the two extended conductors (Figure 5.6 a).  Within this region, 

the field is formed of straight lines from one conductor to the other, where the 

direction of the field varies with sinusoidal excitation.  The magnetic field is 

distributed away from the loop gap around the rest of the ring (Figure 5.6 b).  It is 

particularly focussed about the ring on the opposite side to the loop gap.  The field 

lines form concentric circles around the wire. 

 

Three design considerations were highlighted for optimally sensitive dielectric 

characterisation with this structure.  First, did the use of square cross-section wire 

improve the performance of the sensor?  Second, did the extended legs improve 
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the performance of the sensor?  Third, what ring dimensions gave optimal 

sensitivity?  Coupling considerations (such as the effects of coupling on dynamic 

range, as discussed for the evanescently-perturbed coaxial resonator) were treated 

separately.  The reason for this was that coupling could be affected easily and in 

many different ways depending on the application.  Because the coupling 

conditions were expected to vary widely, and to be adjusted empirically, the split-

ring resonator design deliberately did not account for a fixed set of coupling 

conditions. 

 

As with the design procedures of the previous chapters, it is necessary to define a 

figure of merit that can be used to assess whether the novel aspects of this 

structure offer an enhancement in sensitivity.  The split-ring resonator with 

extended conductors was suggested as a method for increasing field confinement 

and thereby sensitivity by ensuring that a larger fraction of the electric field 

volume was perturbed.  An appropriate figure of merit can be defined according to 

first order perturbation theory, where the normalised change in centre frequency 

and bandwidth can be written as:  
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5.2 

where U is the time-averaged stored energy, defined as: 
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5.3 

and p is induced electric dipole moment, defined as:    

 

 
          

 
5.4 

where α is sample polarisability and VS is the volume of electric field occupied by 

the sample.   
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If the resonator is to be perturbed with a liquid-filled capillary of inner diameter a, 

the sample volume becomes             where      is the effective length of the 

sample in maximal electric field.  For the split-ring resonator with extended 

conductors,      is the length of the legs, assuming the sample runs the entire 

length of the capacitive section.  Substituting Equations 5.3 and 5.4 into 5.1 and 4.3 

gives:  
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5.6 

where the effective volume      (that is, the volume occupied by maximum electric 

field) is defined as: 

 

 
     ∫

  

  
     

 

5.7 

The filling factor β can therefore be defined as          , which quantifies the 

fraction of the effective volume occupied by the dielectric sample.  Increasing 

filling factor β will increase the corresponding changes in centre frequency and 

inverse quality factor for a given perturbation, thereby enhancing sensitivity.  β 

also describes any improvement in field confinement, i.e. when       decreases for 

constant   .   

 

The centre frequency and quality factor of various designs were obtained via 

simulations performed in COMSOL.  Each simulation was performed for the 
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idealised case where the split-ring resonator was placed in the centre of a hollow, 

vacuum-filled, conducting cavity with a 38 mm inner diameter and 30 mm depth.  

The dimensions of the cavity were identical for each simulation and set so that the 

lowest frequency cavity resonance was significantly above the mode of the split-

ring resonator to be interrogated, to avoid degeneracy.  The experimental setup 

described in later sections will be seen to correspond to the simulated 

environment.  The results of various dimension split-ring resonators are given in 

Table 5.1.  The conductivity of the split-ring resonators was set to the default value 

for silver at 300 K. 

 

Table 5.1: The effect of varying dimensions on split-ring resonator centre frequency, 

quality factor and stored energy. Leg length = n/a denotes a ring without extended 

conductors. The cylindrical cavity had a 38 mm inner diameter and 30 mm depth. 

 a b c d e 

Ring radius r1 (mm) 12.5 12.5 12.5 10.0 7.5 

Wire profile circle circle square circle circle 

Wire thickness x1 (mm) 1.0 1.0 1.0 1.0 1.0 

Leg separation x2 (mm) 1.5 1.5 1.5 1.5 1.5 

Leg length x3 (mm) n/a 6.0 6.0 6.0 6.0 

f0 (GHz) 1.76 1.54 1.52 1.85 2.37 

Q 1520 1410 1200 1710 1900 

Stored energy U (10-11 J) 4.9 4.7 2.9 - - 

 

The wire thickness and gap separation were kept constant throughout the 

simulations.  The wire thickness was kept constant at 1.0 mm as it was the only 

dimension available in both circular and square cross-sections, and allowed a 

consistent comparison to be made between the two profiles.  The gap separation 

was kept at a constant value of 1.5 mm primarily as a matter of convenience, since 

the initial practical experiments were to be of split-ring resonators perturbed with 

quartz capillaries of 1.0 mm outer diameter.  Again, maintaining a constant value 

for this dimension also allowed a consistent comparison whilst other parameters 

were varied.  However, the wire thickness and gap separation do offer additional 

degrees of freedom for further optimisation for the intended applications of this 
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device, where it is envisaged that the split-ring resonator would be embedded in a 

microfluidic chip. 

  

The simulated centre frequency and quality factor data can also be plotted with 

respect to ring radius, as shown in Figure 5.7.  Trendlines can be fitted to the data 

to extract simple design equations for such resonators, at least within the range of 

simulated values (i.e. 7.5 mm ≤ r1 ≤ 15 mm). 

 

 

Figure 5.7: Simulated values of centre frequency and quality factor plotted with 

respect to ring radius r1.  The equations of the fitted trendlines, given below, can be 

used to estimate centre frequency and quality factor in the region 7.5 mm ≤ r1 ≤ 15 

mm.  These equations hold for circular cross-section wire of 1.0 mm thickness, where 

the split-ring resonator has a leg separation of 1.5 mm and leg length of 6.0 mm. 

 

The trendlines fitted to the data in Figure 5.7 can be used to estimate the centre 

frequency and quality factor of a split-ring resonator.  Equations 5.8 and 5.9 can be 

used to estimate f0 and Q, respectively: 

 

 
           

                
 

5.8 
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5.9 

where f0 is in GHz and r1 is in mm.  Note that Equations 5.8 and 5.9 only hold for 

the conditions given in the caption of Figure 5.7. 

 

Introducing extended conductors was expected to increase sensitivity over a split-

ring resonator with no legs (b compared with a in Table 5.1).  Similarly, a square 

cross-section wire was expected to have increased sensitivity over circular cross-

section wire (c compared with b in Table 5.1).  However, it can be seen that Q 

decreases in both of these cases.  Any improvement in field confinement must 

therefore be described by changes in the filling factor β. 

 

It was not possible to directly quantify the ratio VS/Veff for filling factor in the 

COMSOL simulations.  However, by inspection of Equations 5.3 and 5.7, it is 

obvious that filling factor and therefore sensitivity are inversely proportional to 

stored energy U for a given excitation and sample volume.  It is for this reason that 

stored energy was included in Table 3.3.  The introduction of extended conductors 

yielded a slight increase in sensitivity in comparison with a split-ring resonator 

with no legs (b compared with a in Table 3.3).  However, the use of extended 

conductors formed from square cross-section wire (case c) gave a marked increase 

in sensitivity in comparison with the other cases. 

 

Stored energy was not computed for cases d and e in Table 3.3 because only ring 

radius varied between them.  The effective volume was constant, so quality factor 

is an appropriate figure of merit for comparing the effects of reducing radius.  It 

can be seen that sensitivity increases as radius decreases.  Note that, from a 

practical perspective, such rings become increasingly difficult to manufacture 

accurately when radius is decreased.   

 

Two methods of performing transmission coupling (via capacitive and inductive 

methods) are shown in Figure 5.8. 
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Figure 5.8: (a) Capacitive and (b) inductive transmission coupling to a silver split-

ring resonator. 

 

For coaxial resonators, capacitive coupling is generally preferred because it can be 

used at higher frequencies, where inductive coupling loops tend to act as 

resonators at sufficiently high frequencies.  However, the use of extended 

conductors and square cross-section wire in the split-ring resonator both 

increased electric field confinement.  This made capacitive coupling much less 

effective.  The coupling structure shown in Figure 5.8 a suffered from high 

crosstalk between the connectors.  This reduced the dependence of power 

transmission on the dielectric properties of the loop gap and rendering the 

structure unusable.  Conversely, the magnetic field distribution of the split-ring 

resonator made inductive coupling much simpler and far less prone to crosstalk.  

This also meant that higher coupling strengths (i.e. approaching critical coupling) 

were achievable.  This reason, together with the potential for high filling factors 
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according to Equations 5.5 and 5.6, made the split-ring resonator suitable for 

greatly increased power handling.  This would allow simultaneous heating and 

characterisation, which could be of use in biomedical and chemical synthesis 

applications.  However, for the purposes of this work, variable inductive couplings 

were used.  Loops were inserted through the sides of the cavity as shown in Figure 

5.8 b so they could be moved closer to the split-ring resonator and reoriented as 

labelled.  These two variables allowed the same coupling strength to be maintained 

for all split-ring resonators, regardless of ring diameter.  This allowed 

measurements to be performed under the same conditions with different split-ring 

resonators, allowing measurements to be rigorously compared.  In practice, this 

was achieved by moving the coupling loops until a specified value of insertion loss 

(e.g. 30 dB) was achieved.  This is valid because insertion loss varies as a function 

of coupling strength. 

 

5.1.2. Microfluidic design 

The simplest method for perturbing a split-ring resonator was to pass a capillary 

through the loop gap.  This was realised using quartz capillaries in a similar 

fashion to the capillary-perturbed coaxial resonator, where the empty capillary 

was inserted into the resonator for a reference measurement, before being filled 

via capillary action for the sample measurement.  This removed the need for 

pumps or manual insertion of the liquid, and meant the sample could be 

introduced without touching or otherwise disturbing the resonator setup.   

 

The split-ring resonators were mounted in the centre of an aluminium cavity on 

top of a piece of polystyrene foam.  Polystyrene has a very low dielectric constant 

and its foam is mostly air by volume, meaning it is effectively invisible to 

microwave frequency measurements. The cavity was designed so that its lowest 

mode was above that of the split-ring resonator to avoid degeneracy.  Inductive 

coupling loops were then inserted through holes drilled in the sides of the cavity.  

The feedlines were oriented at 180° from each other to maximise their separation 

and thereby minimise crosstalk.  The capillary could be inserted through another 

hole drilled in the cavity.  Assuming the top of the polystyrene foam block was level 

with the underside of this hole, the capillary would lie flat and parallel to the split-
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ring resonator inside the extended loop gap region.  A schematic view of this 

resonator setup is given in Figure 5.9. 

 

 

Figure 5.9: Cutaway schematic view of the split-ring resonator perturbed with a 

liquid filled capillary.  The polystyrene block fits tightly into the cavity and forms a 

rigid platform on which to mount the resonator.  The split-ring resonator was also 

secured to the polystyrene block with a small piece of tape opposite the loop gap. 

 

The cavity can be seen to have an open top.  It was possible to cover this with a 

conducting plate to completely shield the resonator from external interference, 

which caused a slight decrease in centre frequency but no significant change in 
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quality factor.  It was therefore necessary to be consistent in the use of such a 

cover.  To leave the cover off was not deemed to be detrimental to the performance 

of the sensor as long as reasonable precautions were taken not to disturb or 

electrically interfere with the resonator.  It was decided to leave the cavity open to 

allow the filling of the sample capillary to be visually monitored, which is of critical 

importance for maximum sensitivity and unambiguous results. 

 

 

Figure 5.10: (a) Exploded view of the split-ring resonator embedded in a 

compression-sealed PTFE microfluidic device, with (b) a close-up schematic view of 

the liquid-filled microchannel perturbing the split-ring resonator and (c) a cutaway 

view of the recess for inductive coupling to the resonator.  The manifold is similar to 

those discussed in Chapter 3; the upper half uses several smaller holes rather than 

one large viewing hole in order to spread force more evenly over the surface of the 

device to reduce the likelihood of shattering the quartz cover. 

 

The split-ring resonator is ultimately intended for point-of-sampling applications.  

Capillary perturbation is sufficient for proof-of-principle experiments, but lacks 

the robustness of an integrated microfluidic device.  Instead, the split-ring 

resonator could be embedded in a recess milled into a PTFE disc.  Additional fluidic 

channels (for example, passing through the extended loop gap region) could also 
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be milled into the surface of the chip.  This could be compression sealed in a 

similar manner to the evanescently-perturbed coaxial resonator. A schematic view 

of this resonator setup is given in Figure 5.10. 

 

The integrated microfluidic approach is more difficult to couple to, given that the 

resonator is completely enclosed within compressed solid material.  Side coupling 

(as shown in Figure 5.9) could potentially be achieved by milling large recesses 

into the PTFE chip and the quartz cover to clamp the coupling cables in place.  

Preliminary investigations showed that this approach could not reliably form a 

gas-tight compression seal, and the quartz cover was easily shattered due to the 

additional stresses.  However, the inductive coupling loops did not necessarily 

have to be oriented in the same plane as the split-ring resonator.  They could be 

rotated about the edge of the split ring as long as the loops remained 

perpendicular to the magnetic field lines of the resonator.  The embedded 

approach shown in Figure 5.10 c meant the coupling loops could then be 

reoriented or moved closer to the ring to vary coupling strength in the same 

manner as for the capillary-perturbed approach.  The thin layer of PTFE shown 

between the coupling recess and the split-ring resonator was probably not 

necessary, particularly as it was likely to reduce coupling strength, but could be 

required to provide extra support to the wire ring to maintain an effective 

compression seal.  

 

5.1.3. Resonator perturbation 

In Section 2.2.1, it was shown that the polarisation (i.e. dipole moment per unit 

volume) of a material was proportional to the internal electric field.  For the 

purposes of resonator measurements, however, this is caused by an external field 

that is affected by depolarisation due to the shape of the material under test.  The 

internal field magnitude   due to an external field    can be written:    

 

 
  

  

   (    )
  

 

5.10 

N is the (dimensionless) depolarisation factor dependent on the shape of the 

sample in relation to the applied field.  Long, thin shapes parallel to the applied 

field do not cause significant depolarisation and therefore have    .  For a 
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cylindrical sample perpendicular to the applied electric field (i.e. as for the 

capillary-perturbed split-ring resonator),   
 

 
   Equation 5.10 therefore becomes:    
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The macroscopic sample dipole moment is:    
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5.12 

where    is the relative permittivity of the sample and VS is the volume it occupies.  

Substituting for E, the dipole moment can be written as: 

 

 
   

    

    
        

 

5.13 

Comparing this with the general form of dipole moment (Equation 5.4), it is 

obvious that the macroscopic polarisability of a cylindrical sample oriented 

perpendicularly to the applied electric field is:  

 

 
   

    

    
  

 

5.14 

where both   and    are complex valued.  This expression allows measurements of 

change in centre frequency and quality factor to be used to extract permittivity 

according to Equations 5.5 and 5.6. 

 

Clearly, non-linear responses of centre frequency and quality factor with respect to 

permittivity are to be expected.  This means that, for a given (frequency) 

measurement resolution, sensitivity will be reduced as permittivity increases.  This 

is an inevitable consequence of utilising a depolarising geometry.   

 

5.1.4. Experimental 

Split-ring resonators were fabricated from silver-coated copper wire.  The various 

types of wire required were obtained from the Scientific Wire Company (Essex, 

UK).  The thickness of the silver layer was greater than the skin depth at low GHz 
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frequencies, so all resonators had an effective conductivity identical to that of 

silver.  In the presented experiments, a wire thickness of 1.0 mm and leg 

separation of 1.5 mm was used throughout.  Resonators of varying ring diameter 

(15, 20, 25 mm) and cross-section (circular, square) were fabricated by manually 

twisting wire around a former, as shown in Figure 5.11. 

 

 

Figure 5.11: (a) Trimetric and (b) top views of the ring former used to fabricate the 

resonators from silver wire.  The dimensions of the ring former are shown in terms of 

the wire thickness x1, leg separation x2 and ring radius r1 as defined in Figure 5.5. 

 

The cavity (for mounting the resonators) was precision machined from aluminium 

to have an inner diameter of 38 mm and a depth of 30 mm.  Holes were drilled 

through the cavity walls in order to accept the coupling cables and quartz capillary.  

A 1.2 mm hole drilled at a depth of 15 mm (facing towards the centre of the cavity) 

was used to accept the capillaries.  Two 4 mm holes for the coupling cables were 

also drilled through the cavity walls.  These were positioned at the same height but 

oriented 90 degrees either side of the capillary hole about the axis of the 

cylindrical cavity.  A block of polystyrene foam was cut to a radius slightly larger 

than 38 mm and a thickness of 14.5 mm and subsequently tightly packed into the 

cavity.  This ensured the resonators would be positioned in the centre of the cavity.  

Semi-rigid RG402 coaxial cable was used to form the coupling cables.  The outer 

conductor and spacer were cut away (and filed for a smooth finish) to expose a 

length of inner conductor, which was twisted and soldered to the outer conductor 
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to form the inductive coupling loop.  The other end of the coupling cables were 

terminated with SMA connectors.  Quartz capillaries of 0.8 mm inner diameter and 

1.0 mm outer diameter were sourced from VitroCom (NJ, USA).  The resonant 

sensor was then assembled according to Figure 5.9.   

 

An Agilent E5071B VNA (Agilent, CA, USA) was used to measure the power 

transmission coefficient of the assembled resonant devices.  The shortest, highest 

available quality cables and the fewest, highest available quality connectors were 

used to connect the resonant devices to the VNA.  The data were exported to 

LabVIEW (National Instruments, TX, USA), where a Lorentzian curve was fitted to 

the peak of each resonance in real-time.   The fitted curve data were then used to 

measure the resonant frequency and bandwidth of all modes.  For each split-ring 

resonator, the distance of coupling loops from the ring was adjusted to maintain an 

insertion loss of 20 dB, ensuring the coupling was symmetric and the loops 

remained parallel to the plane of the resonator. 

 

HPLC-grade solvents (Sigma Aldrich, MO, USA) were used for all presented 

experiments.  Fresh (previously unopened) samples were used for each test, and 

were used as supplied.  Standard health and safety and fluid handling precautions 

were followed throughout. 

 

For each sample, an empty capillary was introduced into the resonator and a 

reference air measurement was recorded.  The sample was then introduced via 

capillary action by tilting a liquid-filled Eppendorf tube in such a way to dip the 

end of the capillary in the sample without touching the capillary with the sample 

vessel.  Sample measurements were then recorded.  In each instance, 100 data 

points were logged for each reference and sample measurement to provide a 

sufficiently large dataset for statistical analysis.  New quartz capillaries were used 

for each sample due to difficulties in cleaning them effectively. 

 

The capillary method of perturbation for the split-ring resonator was tested, but 

time constraints meant that the embedded microfluidic approach was not.  
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5.2. Results 

Initial, unloaded measurements of the split-ring resonators of various dimensions 

were taken first.  Measured and simulated centre frequency and quality factor are 

tabulated in Table 5.2. 

 

Table 5.2: The effect of varying dimensions on the measured centre frequency and 

quality factor of the split-ring resonator.  Simulated results are included for 

comparison.  Leg length = n/a denotes a ring without extended conductors.  All rings 

had a wire thickness of 1.0 mm and a leg separation of 1.5 mm. 

 a b c d e 

Ring radius r1 (mm) 12.5 12.5 12.5 10.0 7.5 

Wire profile circle circle square circle circle 

Leg length x3 (mm) n/a 6.0 6.0 6.0 6.0 

Simulated f0 (GHz) 1.76 1.54 1.52 1.85 2.37 

Measured f0 (GHz) 1.72 1.40 1.35 1.58 n/a 

Simulated Q 1520 1410 1200 1710 1900 

Measured Q 1580 1420 1300 1520 n/a 

 

Rings a, b and c were used to perform dielectric measurements of several solvents 

of known permittivity.  The power transmission spectra are shown in Figure 5.12. 
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Figure 5.12: Resonator power transmission spectra for various solvents.  The subplots 

a, b and c correspond to the rings a, b and c of dimensions given in Table 5.2.  Note 

that the x-axis of each subplot has the same range (150 MHz), allowing comparison 

of the different changes in centre frequency and quality factor between the 

resonators. 
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Figure 5.13: Changes in (a) centre frequency and (b) inverse quality factor with 

respect to the permittivity of the measured solvents.  The legend refers to the 

extended conductors of the rings.  No legs, circular cross-section legs and square 
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cross-section legs correspond to the rings a, b and c, respectively, as given in Table 

5.2.  Although the data are discrete, they are shown joined in subplot a for clarity. 

 

The changes in centre frequency and inverse quality factor of rings a, b and c were 

also plotted with respect to permittivity in order to investigate the effects of 

depolarisation, as shown in Figure 5.13.  Permittivity data at the relevant 

frequencies were obtained from the Debye-type responses given in [6], [39], [132]. 

 

An alternative way of interpreting the measured data is to compute the filling 

factor.  This can be computed from complex frequency measurements according to 

Equations 5.5 and 5.6 if the complex polarisability is known.  This can be computed 

from permittivity values of the appropriate solvents taken from literature [6], [39], 

[132] according to Equation 5.14.  Filling factor was computed in this way for 

measurements obtained with each resonator, as shown in Table 5.3.  Given that the 

filling factor represents a constant of proportionality between changes in complex 

frequency and components polarisability, it was expected to be the same for the 

respective real and imaginary components of these two quantities (i.e. identical for 

Equations 5.5 and 5.6).  In order to examine whether the split-ring resonators 

demonstrated such behaviour, the filling factor was computed from both centre 

frequency and quality factor measurements.  Only three solvents (encompassing a 

large range of permittivities) are shown for brevity.  

 

Table 5.3: Filling factors for different solvents and resonators.  These were obtained 

using measured values of the change in complex frequency and permittivity values 

taken from literature.  Rings a, b and c correspond to the dimensions given in Table 

3.3.  β1 was the filling factor computed from the real components of complex 

frequency shift and polarisability; β2 was the filling factor computed from the 

imaginary components.   

 ring a ring b ring c 

filling factor β       β1 β2 β1 β2 β1 β2 

ethanol 9.4 13 51 81 83 140 

methanol 9.3 16 70 130 90 170 

water 9.6 13 74 190 91 210 
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5.3. Discussion 

Table 5.2 shows that the measured values of unloaded centre frequency and 

quality factor agree very closely with the simulated values.  Several of the rings 

show the somewhat surprising result of having a quality factor higher that 

predicted.  This is probably due to having a ring radius r1 slightly smaller than 

expected rather than demonstrating any unusual loss-reducing mechanism.  Note 

that the split-ring resonator with r1 = 7.5 mm could not be made accurately using 

the wire former method shown in Section 5.1.4 and therefore could not be coupled 

to.  In particular, this was because x2 was kept constant (to allow the performance 

of the different rings to be compared) and r2 does not scale with ring diameter.  

The combination of these two factors meant that the angle between the extended 

conductors and the main ring was much smaller than for the other resonators.  

These sharp bends may have led to fractures within the wire, which would 

massively decrease conductivity.  However, not being able to couple to the 

resonator is entirely a consequence of the fabrication procedure.  The associated 

problems would be alleviated, for example, if the split-ring resonator was formed 

from sputtered metal rather than a bent wire.  In Figure 5.10 b, the micromachined 

recess for embedding a wire split-ring resonator could be filled with highly 

conductive sputtered material such as gold.  If the recess was filled from the 

bottom up, the discrete layers formed as a consequence of the sputtering process 

would not introduce any discontinuities and therefore would not significantly 

reduce conductivity because the main direction of flow of charge is around the 

circumference of the ring (i.e. parallel to the sputtered layers). 

 

It is obvious from Figure 5.12 that, for rings of constant wire thickness and loop 

gap, the change in centre frequency and quality factor is greatly increased for split-

ring resonators with extended conductors (b and c) compared to those without 

(a).  This is a vindication of the hypothesis that such structures would increase 

electric field confinement and therefore increase sensitivity by increasing the 

filling factor of the resonator. 

 

Figure 5.13 shows the changes in centre frequency and inverse quality factor for 

measurements of several solvents of known permittivity, as obtained with several 
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different resonators.  Note that this comparison serves to investigate the effects of 

the geometry of the extended conductors rather than the effects of reducing ring 

radius.  Two factors contributed to this decision: that the rings could not be made 

very accurately, and that the extended conductors offered a more elegant way of 

enhancing sensitivity.  The low cost and simple fabrication procedure of the 

presented split-ring resonators are greatly appealing. 

 

Both types of ring with extended conductor offer significant enhancements over 

the resonator with no such modification, as expected.  The square cross-section 

resonator exhibited an increased response to changes in permittivity over the 

entire measured range in comparison with the circular cross-section one, but also 

demonstrates increased non-linearity.  This could be advantageous or detrimental, 

depending on the application.  For analytical chemistry applications where the 

bulk sample material is an organic solvent, the square-cross section rings offer 

enhanced sensitivity (i.e. increased change in complex frequency for a given 

change in permittivity) at lower permittivities (ε1 < ~20).  For biomedical 

applications where a wider range of permittivities are likely to be encountered 

(particularly for aqueous samples), the more uniform sensitivity of the circular 

cross-section split-ring resonator could be more appropriate. 

 

The data obtained from the change in inverse quality factor is more problematic.  

Two of the three resonators (both with circular cross-section wire) exhibit a non-

monotonic response with respect to the imaginary component of permittivity.  The 

resonator with square cross-section wire demonstrates a greatly exaggerated 

response at higher values of imaginary permittivity.  It is possible that errors could 

have occurred due to fluid handling: for example, ionic contaminants could affect 

quality factor but not centre frequency measurements.  However, reasonable 

precautions were followed (akin to those used in previous chapters) so this seems 

unlikely.  The standard error of the measurements was greatest for the lowest loss 

liquids (hexane and toluene), which have loss comparable to that of the quartz 

capillary.   

 

Changing volume between capillaries was accounted for by taking measurements 

with respect to the empty capillary.  It is true that the differing volumes 
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encountered could lead to different levels of depolarisation, but this would be 

expected to manifest itself in the measurements of both components of complex 

permittivity.  Clearly, it does not.  Therefore, this source of error does not 

satisfactorily explain the response shown in Figure 5.13 b. 

 

An obvious discrepancy in the theory used to predict the degree of depolarisation 

due to the sample geometry is that it does not account for the additional 

depolarisation due to the capillary containing the sample.  This effect, however, is 

likely to be consistent between each experiment given that the permittivity of the 

quartz capillary is fixed.  However, it could be that the depolarisation due to the 

capillary gives rise to a screening effect that means low loss solvents cannot be 

measured effectively. 

 

Filling factor was also computed for several solvents using the split-ring 

resonators.  As filling factor is the constant of proportionality between the complex 

frequency shift and complex permittivity, it was expected to be constant and to be 

the same when calculated from either the real or imaginary components of 

resonant frequency and permittivity.  This is implicitly shown to be false by the 

non-linear responses plotted in Figure 5.13 and explicitly expressed in Table 5.3. 

 

Filling factor is a characteristic measure of sensitivity for each resonator, but its 

variation is also a measure of the non-linearity of the resonator.  Resonators b and 

c offer a significant enhancement in sensitivity over resonator a.  Resonator c 

appears to exhibit less variation in both β1 and β2, but this is simply because the 

sample permittivity is sufficiently high to take the resonator response into the 

highly non-linear region (cf. Figure 5.13 a) where large changes in permittivity 

affect reduced changes in complex frequency.  A similar argument applies to the 

low variation in β1 and β2 for resonator a.   

 

In Table 5.3, β2 is consistently lower than β1, but the factor by which it is reduced 

varies.  It should be noted that there is a significant difference between ε1 and ε2 

for each solvent: water, for example, demonstrates an extremely large value of ε1 

(leading to a large depolarisation and consequent non-linearity in real frequency 

shift) but a moderately low value of ε2 (ε1/ ε2 ≈ 15).  If the depolarisation analysis 
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does not properly describe the relationships between polarisability and the two 

components of permittivity, the difference between ε1 and ε2 will exaggerate any 

differences between the real and imaginary components of frequency shift.   

 

An extended analysis can be applied to the depolarising geometry where a liquid-

filled capillary is oriented perpendicularly to an applied electric field, where the 

capillary also contributes to depolarisation[146].  This gives the general result for 

the polarisability α of a cylindrical sample of complex permittivity εS confined 

within a capillary of inner diameter a, outer diameter b and complex permittivity 

εC:  

 

 
   

(     )(    )  (     )(    )  

(     )(    )  (     )(    )  
  

 

5.15 

where q = a2/b2.  This provides an alternative expression for polarisability that can 

be substituted into Equations 5.5 and 5.6.  Note that this analysis assumes the 

capillary occupies a uniform field and, as such, will only be applied to the square 

cross-section split-ring resonator as it demonstrates greatly enhanced field 

confinement over the circular cross-section alternative.  Schematic cross-sectional 

views of the electric field distribution in the capacitive region of split-ring 

resonators with different wire profiles are shown in Figure 5.14.   

 

 

Figure 5.14: Electric field distribution in the capacitive sensing region of split-ring 

resonators with (a) circular and (b) square wire profiles. 

 

(This analysis was not included earlier in the chapter precisely because it is not 

applicable to the majority of the tested resonators.)  Therefore, filling factor can be 

recalculated for split-ring resonator c.  The new filling factors, as calculated from 
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the respective real and imaginary components of complex resonant frequency and 

permittivity, shall be written as γ1 and γ 2 rather than β1 and β2 for clarity. 

 

Table 5.4: Recalculated filling factors for different solvents using split-ring resonator 

c.  These were obtained using measured values of the change in complex frequency 

and permittivity values taken from the literature.  γ1 was the filling factor computed 

from the real components of complex frequency shift and polarisability according to 

Equation 5.15; γ 2 was the filling factor computed from the imaginary components.   

 ethanol methanol water 

 γ1 γ2 γ1 γ2 γ1 γ2 

filling factor γ       101 240 110 270 112 300 

 

A potentially more useful method of interpreting this data, and to compare the 

different analyses of polarisability, is to examine changes in centre frequency and 

inverse quality factor with respect to polarisability.  These are shown in Figure 

5.15 a and b. 

 

 

 

Figure 5.15: Changes in (a) centre frequency and (b) inverse quality factor with 

respect to polarisability.  The different traces represent different analyses of 

polarisability, distinguished by whether the depolarisation contribution of the 

capillary was considered.  Measurements were obtained with a square cross-section 

split-ring resonator. 

 



DISCUSSIO N  165 

 

 

Of particular note are the empty measurements (i.e. those exhibiting zero centre 

frequency change) in Figure 5.15 a.  The polarisation analysis including the 

contribution of the capillary agrees better with the other measurements:  the 

response of centre frequency change is linear with polarisation, as expected.  

Conversely, the polarisation analysis excluding the contribution of the capillary 

does not exhibit a linear response as it cannot account for the fact that 

depolarisation still occurs when the sample has zero permittivity. 

 

This behaviour is not demonstrated in the inverse quality factor responses in 

Figure 5.15 b.  This is to be expected, given that the dielectric loss of quartz is 

extremely low, so its inclusion in the depolarisation analysis has little effect on the 

imaginary component of complex resonant frequency shift.  The change in inverse 

quality factor remained the same for polarisabilities that were, in fact, smaller than 

predicted by the incomplete depolarisation analysis.  However, this apparent 

increase in sensitivity is due to a more refined interpretation of results and is not 

representative of any improvement in physical performance. 

  



166    CHAPTE R 5.   SPLIT-RING RESO NAT OR  
 

 

  



 

167 

 

6. DISCUSSION 

6.1. Comparison with cavity techniques 

This discussion is a holistic consideration of the three measurement techniques 

developed in this work in the context of existing methods, and of the implications 

for microwave-frequency spectroscopy.  In-depth analysis of individual results and 

the limitations of each new technique are included in the discussion sections of the 

relevant chapters. 

 

In Chapter 2, the difficulties associated with the perturbation of cavity resonators 

were cited as a reason why it would be inappropriate to combine them with a 

microfluidic interface.  For this work to be relevant, it is necessary to show that the 

presented measurement techniques do not suffer the same problem.  Throughout 

the course of this work, two main methods of microfluidic sample interfacing were 

investigated.  The capillary-perturbed coaxial resonator and split-ring resonator 

both utilised a fluidic interface of a rigid capillary situated so that it passed through 

maximum electric or magnetic field, depending on the resonator and mode of 

excitation.  The sample could be introduced via capillary action, meaning that the 

resonator and microchannel did not need to be removed and replaced or 

otherwise disturbed.  This provided a simple and cost-effective method of inserting 

a fixed volume of fluid into a resonator.  The second approach utilised a PTFE 

microfluidic device.  Microchannels were machined in a PTFE disc before a gasket 

film and quartz cover layer were placed on top and compression sealed within a 

brass manifold.  The evanescently-perturbed coaxial resonator could then be 
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embedded in the underside of the PTFE device for continuous flow 

characterisation of the fluidic sample.  It was also proposed that the split-ring 

resonator could be fitted in an appropriately sized recess that had a channel 

passing through its capacitive region.  Implementing the evanescently-perturbed 

coaxial resonator in a compression-sealed microfluidic device greatly improved its 

sensitivity and resolution, despite the additional depolarisation caused by the 

inclusion of a thin PTFE layer over the probe aperture.  This improvement was due 

to the vastly reduced variation in temperature as the thermal mass of the fluid 

sample was much less than that of the entire microfluidic device, which would 

otherwise affect measurement repeatability due to the temperature dependence of 

permittivity of most solvents.  The compression-sealed PTFE approach also 

provided a flexible platform (suitable for rapid prototyping) for integrating more 

complex microfluidic circuits, such as a phase separator.  It is possible that, for a 

future mass-produced implementation of an embedded split-ring resonator, the 

resonator itself would be best produced by sputtering or otherwise depositing the 

conductor in the microfluidic substrate.  This approach may be more suitable for 

existing fabrication techniques as opposed to bending a wire into shape as the 

latter approach is likely to cause fractures in the wire, particularly as the ring 

radius is reduced to increase the quality factor (and therefore the sensitivity) of 

the device. 

 

A cavity resonator, however, is not particularly well suited to being perturbed with 

microfluidic chips.  One reason is that a large chip would cause a significant 

perturbation of the electric field, reducing quality factor (if the dielectric loss of the 

chip material is taken into account) and therefore sensitivity.  Also, the motivation 

for using a chip rather than, say, a liquid-filled capillary is to exploit microfluidic 

handling techniques for additional sample processing such as mixing.  To do so 

within a cavity, however, would be inadvisable as the entire circuit would occupy 

some fractional volume of electric field and hence contribute to the complex 

resonant frequency response of the resonator.  It could then be problematic to 

extrapolate which part of the circuit was contributing to a measured response, 

particularly if composition varied throughout the course of the microfluidic circuit. 
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It would be possible to use a solid capillary interface to perturb a cavity resonator, 

in a similar fashion to that described above for the capillary-perturbed coaxial and 

split-ring resonators.  For a cylindrical cavity, this would be achieved by orienting 

the capillary axis along that of the cavity, as previously demonstrated in [147], 

[148].  However, the split-ring resonator capillary perturbation in Chapter 5 was 

used for the sake of simplicity, but was not the intended final implementation of 

the device.  An embedded microfluidic implementation would not rely on the user 

being careful to not disturb the sample capillary whilst filling it via capillary action.  

Similarly, the capillary perturbation was only included in Chapter 4 for the sake of 

obtaining magnetic and dielectric information simultaneously.  For the capillary-

perturbed coaxial resonator, however, flexible PEEK or PTFE tubing could equally 

be used for a continuous flow system as the capillary is rigidly held in place in the 

hole drilled through coaxial cable.  This would be beneficial for point-of-sampling 

applications, where the user could syringe the sample into the resonator rather 

than filling the sensor via capillary action.   

 

These examples are relevant to the microfluidic perturbation of a cavity resonator 

in that the large dimensions required for accessible microwave-frequency 

resonances would make it difficult to ensure that a flexible capillary remained 

along the cavity axis.  The larger thermal mass associated with a cavity resonator 

makes it more difficult to achieve and maintain a consistent temperature 

throughout its volume, although this also means it is less prone to random thermal 

fluctuations.  Whilst continuous flow measurements could probably be achieved 

with a cavity resonator perturbed with a solid tube, as in [147], [148], it would also 

require extensive temperature control using apparatus unsuitable for a portable 

device. 

 

For the sake of a completely integrated point-of-sampling device (one that 

included a microfluidic sample interface, microwave-frequency sensor and 

associated electronics for automated measurements), a cavity resonator cannot be 

suitably miniaturised given that the resonant frequency of its sensing modes are 

defined by the cavity dimensions [22].  Despite all of these factors, it is possible to 

obtain extremely high quality factors with cavity resonators.  This (together with 

the corresponding increase in sensitivity) occurs because of the use of low 
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resistivity conductors and because the unperturbed electric and magnetic fields 

are occupied by air rather than by some lossy microfluidic substrate [57].  The use 

of a cavity resonator for multimodal measurements (to extrapolate frequency 

dependence information or to allow the deconvolution of electric and magnetic 

sample properties) therefore has potential for extremely accurate reference 

measurements. 

 

6.2. Comparison with existing microfluidic microwave-frequency 

methods 

The benefits of dielectric spectroscopy in relation to other spectroscopic methods 

were discussed in Chapter 2.  It was shown to be useful for a variety of biological 

and chemical applications [12], [14], [34], [37], [38], [122], [137], [149], [150] and, 

additionally, had potential for non-destructive, non-contact and label-free 

measurements of all states of matter (and combinations thereof, such as colloids 

and suspensions) [6], [9], [151], [152].  Each of the presented techniques 

addresses some of the shortcomings associated with existing microfluidic 

microwave-frequency sensors [9], [11–20].  The primary advantage of the new 

devices is that they allow non-contact measurements.  The sample does not come 

into contact with a metal conductor at any point, but remains in contact with either 

PTFE or quartz (both of which are chemically inert) throughout the entire 

measurement procedure.  Existing broadband techniques [14], [12], [9], [13], [11], 

[15] usually exploit a coplanar waveguide, where the centre conductor is fragile, 

exposed to the sample and prone to come away from the substrate.  If this 

happens, the fully integrated approach means that the whole device cannot be 

reused.  The integrated microfluidic interfaces of the new devices are not 

permanently bonded to the resonant sensors.  The most expensive and time-

consuming part of the fabrication process is to form the resonator and coupling 

structure owing to the precision with which they must be made.  To have a 

replaceable and low-cost microfluidic interface is a key advantage for the intended 

point-of-sampling applications.  From experience, problems in operation are most 

likely to occur in the microfluidic parts of an integrated device, rather than the 

electronics.  One of the most commonly occurring problems is with channel 

blockages.  These can usually be removed by sonication or by pumping through an 

appropriate cleaning solvent such as acetone, but this type of operation is 
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undesirable for the intended applications.  To have an easily replaceable 

microfluidic interface would be preferential for non-expert point-of-sampling 

operation. 

 

Resonant microwave-frequency sensors have also previously been combined with 

microfluidic techniques [16–20].  Of the published examples, few are suitable for 

continuous-flow measurements.  Many of the unique fluid behaviours observed at 

the microscale arise as a consequence of the motion of a fluid through a channel, so 

measurement techniques without the capacity for continuous flow (as in [105] and 

[104], for example) cannot be considered truly microfluidic.  Microchannels have 

been used to perturb whispering gallery mode [16] and split-post [17] dielectric 

resonators at microwave frequencies.  At higher frequencies (i.e. THz and above), 

whispering gallery modes can also be excited in microsphere resonators [153], 

[154].  The discussion of evanescent filling factor and spatial resolution that 

follows is formulated in terms of microwave-frequency techniques, but equally 

applies to the higher frequency methods. 

 

The approach described in [17] implemented a circular microchannel that ensured 

the sample remained parallel to the electric field distribution to minimise any 

depolarisation.  This microchannel was embedded in the resonator itself.  To use 

part of the electromagnetic structure to form the microfluidic channel is less of a 

disadvantage here than for the coplanar waveguide broadband techniques as the 

sample is not in contact with a conductor.  This fluidic interface was somewhat 

restrictive but not completely prohibitive.  Sapphire (from which the dielectric 

pucks were formed) is fragile, expensive and notoriously difficult material to 

machine and bond.  In [17], the discs were bonded using spin-coated Teflon AF, 

which was sufficient for proof-of-principle experiments although its reliability was 

not extensively tested.  It is for these reasons that, despite the elegant 

electromagnetic design of the sapphire split-post resonator, it is not suitable for 

low cost, point-of-sampling applications.  Forming the dielectric resonator from a 

different material could solve these issues and allow the advantages of a non-

depolarising geometry to be fully realised.  However, the new measurement 

techniques have other advantages.  For example, the evanescently-perturbed 

coaxial resonator has a far greater number of available sensing modes and a less 



172    CHAPTE R 6.   DISCUSSIO N  
 

 

restrictive fluid interface.  The split-ring resonator is simpler to perturb and could 

be suitable for selective, highly localised heating.  The capillary-perturbed coaxial 

resonator can be used to extrapolate the frequency-dependent electric and 

magnetic properties of a sample simultaneously.   

 

The whispering gallery mode dielectric resonator with an integrated microchannel 

[16] was formed of a resonator bolted to a separate microfluidic substrate that had 

an embedded microchannel.  There are several problems with this approach.  The 

microfluidic substrate covered the entire dielectric resonator, which had two 

effects.  Firstly, the microfluidic chip perturbed the entire evanescent field of the 

mode, reducing Q and therefore sensitivity.  The volume occupied by a capillary, 

for example, would be far smaller.  Secondly, it provides additional surface area on 

which depolarisation charges can accumulate to oppose the sensing field and 

thereby reduce sensitivity.   

 

Another problem with the whispering gallery mode resonator approach lies in the 

fact that the electric field is mostly contained within the dielectric resonator, 

whereas the sample is only used to perturb the evanescent field.  This means the 

sensor has a reduced filling factor and a correspondingly reduced sensitivity.  A 

similar criticism could be levelled at the evanescently-perturbed coaxial resonator.  

There is, however, an important difference in the fraction of the evanescent field 

that is perturbed:  it is significantly higher for the evanescently-perturbed coaxial 

resonator technique.  The evanescent field of the whispering gallery mode 

essentially follows the circumference of the dielectric resonator, so only a small 

fraction is perturbed if the channel passes across the top of the resonator.  This 

also leads to poor spatial resolution as the sample must be homogeneous as the 

channel crosses both edges of the resonator.  The sensitivity of the whispering 

gallery mode approach could be greatly increased if the channel followed the 

circumference of the dielectric resonator.  The capillary-perturbed coaxial 

resonator and the split-ring resonator both have significantly higher filling factors 

because they do not utilise evanescent sensing fields.  

 

Spatial resolution is a topic frequently encountered in the development of 

microwave microscopes [155], [156].  Such devices use highly-localised 
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evanescent fields to attempt to quantify electric properties and topology of a 

sample.  These devices scan an open-ended coaxial resonator (where [155] also 

has a pointed tip attached to the end of the inner conductor) over the sample 

under test.  The use of evanescent sensing fields allows the distinction of features 

that are orders of magnitude smaller than the wavelength of operation.  These 

devices are provided as an example of how evanescent fields can be used to 

enhance the spatial resolution of a sensor.  In comparison with microwave 

microscopes, continuous flow sensors can be thought of as moving the sample 

relative to the probe rather than the other way around.  The microfluidic 

implementation of the whispering gallery mode resonator described in [16] 

negates any improvement in resolution because, if the sample is not homogeneous 

across the resonator, its variation cannot be extracted from a single measurement. 

 

From a practical perspective, the microfluidic interface of the whispering gallery 

mode resonator could also be unreliable as there is no method for aligning the 

channel with the resonator.  Given that the channel had a cylindrical cross-section 

of 200 μm diameter, any movement of the channel relative to the resonator would 

cause a wildly different perturbation.  The open geometry is simple to perturb but 

prone to interference: a resonance change could be caused by the operator holding 

the unit in their hand, for example.   

 

6.3. Comparison of the new measurement techniques 

The three new measurement techniques presented in this work each have their 

own advantages and disadvantages.  To compare the three is somewhat contrived 

as a greater period of time was spent developing and testing the evanescently-

perturbed coaxial resonator, but such a comparison is useful for exploring 

potential applications.   

 

The evanescently-perturbed coaxial resonator has been used to characterise a 

segmented flow and a variety of solvents and mixtures in a compression sealed 

microfluidic device.  It has also been proposed that the split-ring resonator would 

be appropriate for this type of integration.  However, care must be employed if 

additional flow functionality is included in the planar microfluidic device.  The 
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electric sensing fields of both devices is not completely localised within the 

designated sensing volume (the channel over the coaxial aperture, or the channel 

in the capacitive region of the split-ring resonator).  Although these fields decay 

rapidly to a negligible magnitude, it is possible for a channel outside of the sensing 

regions to affect a measurable perturbation.  In addition, the magnetic field of the 

split-ring resonator occupies a large volume fraction of the entire microfluidic 

device.  In the same way that the ionic content of a liquid could be assessed by the 

magnetic sensing modes of the capillary-perturbed coaxial resonator, an ionic 

sample could interact with the magnetic field of the split-ring resonator.  This 

interaction could cause an ambiguous change in complex resonant frequency and 

could possibly heat the sample at higher power levels.   These are undesirable 

effects that could be reduced with appropriate shielding.  The simplest way of 

implementing this would be to use a polished metal sheet (rather than a quartz or 

PTFE disc) as the coverplate for the microfluidic device. 

 

It is possible that the increased field confinement caused by this approach would 

increase the quality factor and therefore sensitivity of both devices; although it 

would also mean that the microfluidic operation could not be visually monitored 

or irradiated with an ultraviolet source. 

 

The potential for accidental perturbation (which would be most important if fluid 

composition or temperature were changing on-chip) is most significant for the 

split-ring resonator.  For this reason, the evanescently-perturbed coaxial resonator 

is more suitable for performing additional complex on-chip fluid processing.  It 

also allows for complex permittivity information to be obtained at multiple 

frequencies.  The high electric field confinement and adjustable coupling of the 

split-ring resonator make it most suitable for heating (and simultaneous heating 

and sensing) applications.  It also has the simplest construction and, of the three 

devices, is the one best suited for mass production.  A compromise is necessary, 

however, if the ability to perform multi-frequency measurements is also important. 

 

Of the three devices, the capillary-perturbed coaxial resonator suffers from the 

most restrictive fluid interface but also allows the most information to be 

extracted.  The fluid interface could be considered an advantage for point-of-
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sampling applications where extensive sample processing was not required, but 

simplicity for non-expert operation was required.  Under such circumstances, it 

could be that the ability to deconvolve electric and magnetic field interactions 

would negate the need for complex sample processing given that ionic and 

dielectric effects could be separated.  Such applications could include disease 

diagnosis in deprived regions.   

 

The spatial resolution of the capillary-perturbed coaxial resonator can be 

improved more readily that the other two techniques.  However, this may not 

always be an advantage.  When characterising suspensions, it is necessary to have 

an even dispersion throughout the entire sensing volume for unambiguous 

measurements.  As the sensing volume is reduced, it becomes more likely that 

homogeneity will not be preserved, for example with low volume fraction 

dispersions of relatively large solid particles, which could be anticipated for 

geological measurements performed in the field.   

 

Despite all of the above practical considerations, the ultimate figure of merit for 

determining which of the three new methods is best is probably sensitivity.  This 

requires further experimentation for the capillary-perturbed coaxial resonator and 

the split-ring resonator: a serial dilution of one solvent in another could be 

consecutively characterised by the three methods in continuous flow to determine 

the lowest possible limit of detection. 
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7. CONCLUSION 

Microwave-frequency measurements are highly useful for the dielectric and 

magnetic characterisation of liquids and suspensions across a range of scientific 

disciplines [12], [14], [34], [37], [38], [122], [137], [149], [150].  In comparison 

with broadband techniques (i.e. those yielding a continuous spectra), resonant 

methods generally have improved accuracy and reduced uncertainty [21], [22], but 

can only obtain data at a single, discrete frequency.  Some resonator techniques 

allow multi-frequency data measurements though exploitation of two or three 

higher order modes [81], [82], [157].  A novel coupling structure for the 

overmoded coaxial resonator was introduced in Chapter 3.  This was designed to 

give optimal weakly-coupled transmission measurements from one end of the 

device, allowing the other end to be perturbed evanescently.  This method could be 

used to simultaneously interrogate upwards of fifteen modes.  The overmoded 

coaxial resonator can therefore be seen to combine the accuracy and sensitivity of 

resonant methods with the multi-frequency capabilities of broadband methods. 

 

An adaptation of the planar split-ring resonator [19] was also introduced in 

Chapter 5.  This was formed of a single piece of wire where the two ends of the ring 

were bent inwards to form a parallel capacitive region.  This had the effect of 

increasing field confinement and filling factor, and therefore dielectric 

measurement sensitivity, over an equivalent split-ring resonator without the 

extended conductors. 

 



178    CHAPTE R 7.   CO NCL USIO N  
 

 

Additionally, it should be remembered that dielectric spectroscopy is a subset of 

microwave-frequency spectroscopy, where magnetic-field interactions can also be 

quantified.  Previous work has yielded simultaneous measurements of dielectric 

and magnetic material properties using both broadband [67], [69], [70], [158] and 

resonant [80–83] techniques, where same considerations of accuracy, sensitivity 

and availability of frequency information still apply.  In Chapter 4, the capillary-

perturbed coaxial resonator was introduced.  This exploited the differences in field 

pattern between TEM modes to provide the capability for simultaneous dielectric 

and magnetic sensing at many different frequencies, rather than the two or three 

frequencies available with cavity techniques.    

 

The confinement of fluids in channels of micron-scale cross-sectional dimensions 

leads to behaviour not observed at the macroscale [10].  Fluid handling and 

controllability issues associated with microwave-frequency resonator techniques 

(for example, retaining a constant sample temperature for an extended length of 

time) can be addressed through the adoption of suitable microfluidic techniques.  

Basic microfluidic sample interfaces have been realised for both broadband [9], 

[11–15] and resonant [16–20] dielectric spectroscopy techniques.  In this work, 

different microfluidic interfaces were investigated for each of the new sensing 

techniques as appropriate.  These methods, together with a LabVIEW graphical 

user interface that allowed rapid time-dependent measurements to be obtained 

with a vector network analyser, gave much greater control of the fluid regimes 

used to perturb the resonant sensors.  This means that the hitherto unfulfilled 

potential of microwave-frequency spectroscopy for the in situ characterisation of 

chemical and biological processes can now be realised. 

 

The evanescently-perturbed coaxial resonator demonstrated multi-modal 

operation for highly accurate measurements at numerous discrete frequencies.  

The resonator response was shown for bulk solvents; with respect to 

concentration for liquid-liquid mixtures and dissolved species, and also for 

segmented flows of immiscible fluids.   

 

The capillary-perturbed coaxial resonator was the first example of a resonant 

technique being used for simultaneous dielectric and magnetic characterisation 
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with a microfluidic sample interface.  The resonator response was shown with 

respect to concentration for several salt solutions, and used to demonstrate 

adequate separation of electric and magnetic field effects due to the interaction of 

ionic content with both fields.  Measurements of a magnetic nanoparticle 

suspension suggested that such particles exhibited negligible magnetisation at the 

frequency of interrogation, although this interpretation was somewhat speculative.  

The resonant device was also used to non-invasively characterise non-specific 

adsorption with respect to time.  These measurements were not easily 

reproducible, but offered a tantalising hint of what such a device could be capable 

of.  The ability to separate electric and magnetic field effects is particularly useful 

because the cause of the changes affected in centre frequency and bandwidth for 

most resonant dielectric spectroscopy techniques (where the sample occupies 

both electric and magnetic field) cannot be distinguished.  

 

Various split-ring resonators were investigated to demonstrate the improvement 

in performance offered by extending the conductors to form an elongated 

capacitive region.  The use of square cross-section wire was also shown to improve 

filling factor and therefore sensitivity.  An extended analysis of the depolarisation 

due to having the sample oriented perpendicularly to the sensing electric field 

allowed a more rigorous interpretation of the results (specifically, the non-

linearity arising as a consequence of depolarisation).   

 

Each of the presented techniques offers a unique contribution to the field of 

microfluidic microwave-frequency measurements. 

 

7.1. Further work 

Each of the three new measurement techniques are ripe for development in three 

areas: (bio)chemical/pharmaceutical applications, electromagnetic design and 

microfluidic design.  Each technique is discussed in turn. 

 

7.1.1. Evanescently-perturbed coaxial resonator  

The single-ended coupling structure was designed to couple to coaxial cable of 

6.35 mm outer diameter.  This was chosen as a compromise between being big 
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enough to allow standard microwave components to be used to connect to the 

device, whilst being small enough to give a probe aperture suitable for microfluidic 

perturbation.  In reality, it may be preferable to reduce the diameter of the coaxial 

resonator (which does not affect its resonant frequency) to enhance the spatial 

resolution of the device.  The coupling structure for such a device could be 

designed using the same procedure described in Chapter 3.  It is possible that the 

effects of changing the probe aperture diameter could provide an extra degree of 

freedom for optimising the filling factor of the device for a microfluidic channel of 

given dimensions. 

 

Of the sample interfaces considered, the compression-sealed PTFE one offers the 

most scope for implementing more complex microfluidic circuits.  For any passive 

or active device that can be realised in the planar, micromilled substrate (be it 

PTFE or some other low loss material), the evanescently-perturbed coaxial 

resonator can be included at any point in the fluidic circuit by fixing it in place in a 

recess underneath the desired location.  For example, it could be used in 

conjunction with a phase separator [98] to monitor how efficiently the two 

constituent phases of a segmented flow were being separated.  It may be necessary 

to use two resonators: one to ensure breakthrough was not occurring on the 

organic outlet and one to ensure the entire organic phase was being extracted 

before the aqueous outlet.  A conceptual diagram of this device shown in Figure 7.1 

 

The evanescently-perturbed coaxial resonator could be used to investigate the 

varying composition of an individual fluid partition in segmented flow.  

Composition can vary as fluid recirculates within each partition.  This causes (a) 

rapid mixing and (b) the inter-partition fluid interface to continually refresh.  

Given that partition recirculation is a function of path length for a fixed fluid 

velocity, it is necessary to perform measurements at different distances along the 

channel if changing composition is to be characterised.  There are two ways this 

can be achieved.  Firstly, the probe could be moved.  This is inherently impractical 

for a device embedded in a compression-sealed manifold.  Secondly, the segmented 

flow could be passed back over the same probe.  This could be achieved by 

delivering the carrier (organic) phase of the segmented flow with a push-pull 

pump, which would allow a train of fluid partitions to be moved back and forth 



FURT HER  WOR K  181 

 

 

about the probe aperture.  This ‘back and forth’ principle was first introduced in 

[159]. 

 

 

 

Figure 7.1:  Schematic diagram (a) showing two evanescently-perturbed coaxial 

resonators used to interrogate the outlets of a phase separator.  It is assumed the 

inlet channel carries a segmented flow of two immiscible liquids.  The phase 

separator is a linear array of fifty small channels that will carry the liquid with the 

lower contact angle upon application of an appropriate pressure difference between 

the outlet channels.  It is envisaged that the compression-seal manifold used 

throughout this work would be used to provide the compression forces labelled, 

although it is not shown for clarity.  Also shown are (b) a close-up view of the phase 

separator channel array and (c) a cutaway view exposing one of the resonators.  

 

7.1.2. Capillary-perturbed coaxial resonator  

The device used to obtain the measurements presented in Chapter 4 was 

comprised, in part, of the single-ended transmission coupling structure and a piece 

of RG401 (PTFE spaced) coaxial cable.  A second device was also discussed.  This 

device was air-spaced to reduce dielectric losses and had adjustable end couplings 

that allowed the coupling coefficient to be manually adjusted for maximum 
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dynamic range for an arbitrary material under test.  Time constraints meant that 

this could not be adequately tested, so further optimisation is necessary to see if it 

is advantageous. 

 

It is possible that the filling factor (and therefore sensitivity) of this method could 

be optimised through variation of the radial dimensions of the coaxial resonator.  

For a coaxial resonator of inner conductor radius a and outer conductor inner 

radius b perturbed with a sample in the form of a capillary aligned parallel to the 

electric field, the volume occupied by the sample scales with b – a whereas the 

total volume occupied by electric field scales with b2 – a2.  

 

Independently of the coupling methodology, it may transpire that different 

capillaries (varying in material and in radial dimensions) give the optimum 

response for resonators of different fundamental frequency (i.e. of different 

length).  For example, a much longer resonator would be required to yield multi-

frequency information for both the electric and magnetic sensing modes using the 

equipment available.  It could also be beneficial to use flexible capillaries in order 

to perform continuous flow measurements: a back and forth segmented flow could 

be implemented with a push-pull pump, as described in Section 7.1.1. 

 

The capillary-perturbed coaxial resonator has a less flexible microfluidic interface 

than the evanescently-perturbed alternative, but it can also be used to obtain more 

information.  For example, it could be used to characterise ferrofluids (e.g. to 

monitor selective binding to the surface of functionalised magnetic nanoparticles) 

or to analyse the properties of and distinguish between erythrocytes.  

  

The use of a square or rectangular cross-section coaxial device, as shown in Figure 

7.2, could result in reduced depolarisation.  For a circular cross-section device, the 

radial electric field distribution means that passing a cylindrical capillary through 

the centre of the resonator must always cross some lines of electric field and 

therefore cause depolarisation.  The use of flat conductors could reduce this effect 

by increasing the electric field uniformity in the parallel regions.  However, this 

approach would experience current bunching at the edges of the conductors.  This 

will cause the electric field to distort in the regions close to the conductor edges, 
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which will be a sizable effect given that the radial dimensions are likely to be small.  

Current bunching could also lead to a significant drop in electric field magnitude at 

the midpoints of the conductor faces.  This would mean a sample passed through 

the centre of the resonator would occupy a smaller volume fraction of the electric 

field, reducing the filling factor and therefore sensitivity of the device.   

 

 

Figure 7.2:  Cutaway view of a square cross-section coaxial resonator.  It is suggested 

that this device could reduce the depolarisation encountered in the circular cross-

section capillary-perturbed coaxial resonator of Chapter 4. 

 

7.1.3. Split-ring resonator 

The split-ring resonator only allows resonator measurements at a single 

frequency.  It does, however, possess other advantages that could be useful in 

other applications.  The most immediately obvious improvement of the split-ring 

resonator would be to improve the fluid handling capabilities by embedding it in a 

compression-sealed microfluidic manifold in a similar fashion to that used for the 

evanescently-perturbed coaxial resonator.   

 

The adjustable inductive coupling means that near-critical coupling can readily be 

achieved.  This is of relevance to heating applications, where critical coupling is 

necessary to maximise power transfer from the feedlines to the resonator.  The 

resonator would then deliver power to a sample in its capacitive region according 

to the dielectric loss of the material.  It would then be possible to simultaneously 

perform dielectric spectroscopy whilst heating the material, as first demonstrated 

with a cavity resonator in [160].  There are many high-power heating applications 

for the split-ring resonator, as evidenced by microwave-assisted chemistry. 
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The applicability of this device for biomedical applications could be improved by 

pointing the extended outer conductors out of the centre of the split-ring 

resonator, rather than inwards.  Such a device could then be used to pinch a 

material between the extensions or to be injected into animal tissue in order to 

perform cauterisation.  However, injecting this device would require pointed tips, 

which would focus the electric field at the wire tips rather than in the parallel 

capacitive region.  This could be achieved via other, simpler, means and is unlikely 

to be advantageous.  It would be preferable to heat the material within the parallel 

capacitive region rather than just at the tips of the wire, which would require the 

wire itself to not be pointed.  Instead, a separate needle tip could be added to the 

ends of the resonator wire.  This could be a cap formed of a plastic with low 

dielectric loss.  Alternatively, it may be possible to deposit biocompatible 

microneedles on the ends of the wire that would dissolve upon insertion into an 

aqueous environment such as human tissue.   

 

7.1.4. Long-term projections 

Dielectric spectroscopy has the potential to be a powerful tool in the laboratory, 

but experimental difficulties have traditionally restricted such measurements to 

specialist groups.  The ability to characterise fluids in a microfluidic environment 

with respect to time is tremendously enabling.  Any one of the three new 

techniques could be used to this end, although each has its own particular benefits. 

 

Extensive chemical studies have not yet been undertaken.  A particularly exciting 

aspect of these systems is that they allow reactions to be monitored in situ.  

Perhaps more significantly, such measurements can be non-contact, non-

destructive, non-invasive and label-free.  This approach could fundamentally 

change the way analytical chemistry is performed: the usual current practice is to 

perform an experiment and characterise the remains.  The ability to directly and 

non-invasively access the kinetics of a reaction provides additional information not 

currently available.  One implication of routinely obtaining such information could 

be speeding up the time taken to perform chemical syntheses.  It may not be 

necessary, for example, to wait 24 hours for equilibrium to be obtained.  
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Of course, only proof-of-principle results have been achieved throughout this 

work.  Nevertheless, the use of these measurement techniques in a ‘chemical 

multimeter’ remains a worthy aim.  This term is used by way of analogy with its 

electrical equivalent, where the basic quantities of voltage, current and resistance 

can be measured to a usable degree of accuracy with a low-cost, portable, durable 

and battery powered unit without requiring any great degree of knowledge or 

expertise.  The chemical multimeter would allow a small fluidic sample to be 

identified via its dielectric and magnetic properties.  A reading would be available 

instantly and could be logged with respect to time if composition was changing.  As 

well as the obvious biological and chemical applications, such a device could be of 

use in applications as diverse as geology, sports science and forensics.   

 

If this long-term aim is to be realised, much more work is necessary.  It may be that 

one of the resonant sensors is reasonably close to being usable in a chemical 

multimeter, as long as it could be mass produced.  The implementation of all of the 

associated electronics, such as a miniaturised network analyser, may take far 

longer to realise.  A possible solution could be to avoid using a dedicated 

instrument: for example, the National Instruments PXI chassis (National 

Instruments, Texas, US) allows the necessary vector network analyser 

functionality with standard modules and boards [8].  A multitone readout system 

for low-cost, high-speed measurements with microwave-frequency resonators was 

recently developed by [8] and simultaneously by [161].  The accuracy of the 

system in  [8] was comparable to that of a calibrated network analyser, but also 

offered a sampling rate of up to 500 Hz.  Although this value was limited by the 

data transfer rate of the system, no theoretical reason exists as to why the 

sampling rate could not be close to the bandwidth of the resonant sensor itself [8].  

For example, the coaxial and split-ring resonators in this work have bandwidths in 

the order of 1 MHz. 
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APPENDIX 1 

In Chapter 4, the capillary-perturbed coaxial resonator was introduced as a 

method for simultaneously quantifying the dielectric and magnetic properties of a 

liquid-phase sample.  It was stated that evaluating the right-hand side of Equation 

4.3 gave Equation 4.4, although the workings were not shown. They are given in 

full in Section A1.1, where Equations 4.3 and 4.4 correspond to Equations 4.3 and 

4.4, respectively.  Similarly, it was also stated that evaluating the right-hand side of 

Equation 4.7 gave Equation 4.8.  The full workings are given in Section A1.2, where 

equations 4.7 and 4.8 correspond to Equations 4.7 and 4.8, respectively. 

 

A1.1 Electric sensing mode 

 

 

 

Figure 0.1: Coaxial resonator schematic (not to scale).  The hole for the liquid-filled 

capillary is perpendicular to the conductors’ axis and located halfway along the 

length of the resonator (z =  l/2). 

 

Consider a coaxial resonator as represented in Figure 4.3.  If all fields have      

time dependence, the electric and magnetic field amplitudes can be written as: 
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where E0 is the peak magnitude of electric field Er (located at the ends of the 

resonator) for the nth TEM mode.  η0 is the vacuum impedance (i.e. η0 = 376.7 Ω).  

Co-ordinates and all other dimensions are labelled in Figure 4.3.   

 

For the electric sensing (i.e. even TEM) modes, the fields at the centre of the 

resonator (z=l/2) are:  
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Figure 0.2: (a) Cross-sectional schematic through the centre of the capillary-

perturbed coaxial resonator (z =  l/2) and (b) schematic of a small element of the 

fluidic sample under test. 

 

The dipole moment dp of a fluid element of volume dV and permittivity 

         (as shown in Figure 0.2) is:  
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where    is vacuum permittivity.  Hence, the dipole energy E dp is:  
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Hence,  
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where the factor of two arises because there are two fluid sections: one either side 

of the centre conductor.  Evaluating the integral:  
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The time averaged stored energy U is given by:  
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From first order perturbation theory, the normalised change in centre frequency 

can be written as: 
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Substituting Equations 0.8 and 4.3 into Equation 4.4 gives: 
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where 
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Hence, 
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These expressions can be used to theoretically predict the change in complex 

resonant frequency for a sample of known permittivity.   

 

A1.2 Magnetic sensing mode 

For odd TEM modes, the fields at the centre of the resonator (z=l/2) are:  
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Considering the fluid volume element in Figure 0.2 b, it is necessary to divide the 

fluid element into strips parallel to the magnetic field, as shown in  

 

 

Figure 0.3: Cross-sectional view of the fluid volume element shown in Figure 0.2 b.  

The element is divided into strips parallel to magnetic field, which forms concentric 

circles about the coaxial centre conductor. 

 

The volume of the fluid element strip in Figure 0.3 is:  



MAGNETIC  S ENSING MOD E  191 

 

 

 

 
 

                 
 

        
        

 

0.14 

The induced electric field at the position of the strip is:  
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where    is the vacuum permeability.  The time-averaged power dissipation dP in 

the element dV is:  
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where   is the conductivity of the sample.  It can be written that:  
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Therefore, the total power dissipation is:  
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The quality factor of a resonator Q can be defined as: 
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The time averaged stored energy U is given by:  
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Substituting Equations 0.18 and 0.20 into Equation 4.7 and rearranging gives: 
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where 
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Equations 4.8 and 4.9 can be used for a theoretical prediction of the change of 

inverse quality factor for a sample of known conductivity. 
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