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Estimation in supply chain inventory management 
 

Abstract 
 

   Differences in estimation or forecasting procedures could produce dramatically different 

parameter estimates in supply chain inventory management. We show, for example, that 

determining when to introduce estimates of lead times in the calculation of the variance of 

demand during lead time can yield dramatically different safety stocks and order-up-to-levels. 

Also, calculations of supply chain variance amplification using a firewalled, sequential chain 

execution differ markedly from an analysis that considers a k-echelon analysis as a whole, k 

> 2. There is also the issue of forecasting lumpy demand when negative orders are not 

allowed. Our research compares the results in the recent literature and shows how apparently 

equivalent estimation procedures concerning demand during lead time (for example, using 

separate historical lead time and demand rate data versus directly using historical data of 

demand during lead time) are not equivalent; also, that the conventional exponential 

smoothing forecasting may not be appropriate at the higher echelons of supply chains where 

lumpy demand frequently occurs. 

Keywords: supply management, forecasting, lead times, demand during lead time.  

 
 

1. Introduction 
 

   As Zhang (2004), for example, has found, it makes a difference how we forecast supply 

chain demand in terms of detail. It makes a difference whether we introduce lead times 

explicitly into the analysis or whether we imply it in the estimation of the quantity called 

‘demand during lead time (LTD)’.  It makes a difference if we used simple exponential 

smoothing (SES) for forecasting, rather than moving averages (MA) or some other method. It 

makes a difference in the computation of the bullwhip effect (BWE) if the lead time were 

greater or less than the length of the moving average. Also, it makes a difference if we 



Hayya, J.C., Kim, J.G., Disney, S.M., Harrison, T.P. and Chatfield, D., (2006), “Estimation in supply chain inventory management”,  
International Journal of Production Research, Vol. 44, No. 7, pp1313–1330. DOI: 10.1080/00207540500338039. 

 

 - 3 -

insulated adjacent pairs of echelons by not allowing shortfalls or breakdowns to be 

transmitted upward in the supply chain. And the forecasting of lumpy demand, which is 

characteristic of the higher echelons of a supply chain when negative orders are not allowed, 

poses problems that may not be readily resolved by conventional forecasting, such as SES or 

MA. In the context of an AR(1) demand process, Zhang studied the impact of forecasting 

methods, such as moving averages and exponential smoothing, on the bullwhip effect and 

found that these forecasting methods affected average inventory costs. He also found that, for 

demand, a positive autocorrelation favored moving averages and a negative autocorrelation 

favored exponential smoothing. Our present paper focuses on iid demands, i.e., an 

autocorrelation of zero. 

   The paper is organized as follows. Section 2 comments upon and reviews work on 

estimation procedures in the simulation and analysis of the BWE effect. Section 3 is a survey 

of several methods to forecasting lumpy demands, which, in our case, are random non-

negative realizations separated by a random number of zeroes. In this section we use as an 

example a data set of 180 industrial observations from Croston (1972). Section 4 summarizes.    

 
 

2.  Review 
 
Lead-time demand 
 
   Defining lead-time demand correctly is fundamental. LTD is the sum of the (variable) 

demands over the (variable) lead times. For example, suppose that period demand followed a 

gamma distribution with mean 4 and standard deviation 2, that is, period demand is G (4, 

2 2 ), and suppose that the lead time followed a Poisson distribution with mean 3, i.e., P(3). 

Some typical realizations of LTD would be as shown in table 1. 
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Table 1. Lead-time demand is a random sum of random variables 
 

Lead time 
in periods 

Demand in 
1st period  

Demand in 
2nd period 

Demand in 
3rd period 

Demand in 
4th period 

Demand in 
5th period 

LTD 

3 3.2 4.2 4.4 -- -- 11.8 
5 2 2 0.7 5.8 2.3 12.8 
4 2.3 2.4 6.3 5.3 -- 15.3 

By simulation with unit demand gamma-distributed with mean 4 and standard deviation 2and with lead time 
Poisson-distributed with mean 3. 
 
 
   We see that LTD is a random sum of random variables, and the realizations 11.8, 12.8, 15.3 

in table 1 are three values of what would constitute the LTD distribution if we continued to 

generate random lead times and their corresponding random period demands. Let D denote 

period demand and L the lead time; then the LTD may be defined as  


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but, for forecasting purposes, we need to define LTD as  
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But when both L and D are constant, we may write (3) as 

,DLX   (5)
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which could mislead in that one may now consider LTD in the stochastic case to be the 

product of L and D, in which case, when L and D are independent, the mean LTD would be 

(3) and the variance becomes 

222222)( LDDLDLXVar   , (6)
 

which could be substantially larger than the correct LTD variance in (4). For example, let L ~ 

P(3) and D ~ G (4, 2 2 ), then Var(X) under (4) is 60, whereas under (6), it is 96, and thus the 

safety stock for the same nominal service level would be erroneously inflated by a factor of 

60

96
= 1.26. 

 

Lead times 

   Where lead times are introduced in the analysis makes a difference. For example, Chen et 

al. (2000a) introduce lead times explicitly in the estimation of order-up-to levels, whereas 

Kim et al. (2005) instead do a p-period moving average (MA(p)) of LTD, which implicitly 

accounts for the lead times. Thus, Chen et al. employ a constant lead time in calculating the 

order-up-to level,  

 tt DLS z L
ets , (7)

 

where D  is an MA of previous realizations of demand, L
ets is the standard deviation of the 

forecast error over the lead time, with te = tt DD   the one-period-ahead forecast error, and 

z ~ )1,0(N the standard normal variable. Note that the lead time, L, in (7) is explicitly 

multiplicative. See also Disney and Grubbström (2004: 3421). Now, let the order placed at 

time t at any echelon (Chen et al. 2000a: 437, and Kim et al., 2005) be 

11   tttt DSSQ . (8)
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Then following Ryan (1997: 19), (8) may be rewritten as (for convenience denote t
L
et ss  ) 

)()/()/1( 111   ttpttt ssLzDpLDpLQ , (9)
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is the sample variance of the most recent p observations of period demand. To compare the 

explicitly multiplicative and implicitly additive lead time, let z = 0 in (9). Then, when D is 

independent, that equation can be expressed as 

11 )/()/1(   pttt DpLDpLQ .    (11)
Hence,  
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   In (14), the lead time is implicitly additive, in which case, since if we assumed that lead 

time were deterministic and z = 0, (8) becomes using (13) 

                        tt XQ  - 111 )]()([   tttt DXsXszX ,  

= tX - 11   tt DX      
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p
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(16)

using (1), or  
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using (2). Thus, from either Eq. (16) or (17) and since the D’s are independent,  

1 1, 12
1

2

1 2
( ) 2 ( ) ( ) ( )

2 ( ) 2
( ) ( ),

L

t i t t t
i

Var Q Var D Var D Cov D D
p p

LVar D
Var D Var D

p p

  


  

  


 

for p L . Hence,  











2
2 22

1)(
p

L

p
QVar Dt  . (18)

But with p < L, the covariances within the bracketed expression in (16) or (17) vanish, and 

we are left with  
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which approximates (18) with p > > L. Hence, ostensibly similar methods [Kim et al. (2005) 

vs. Chen et al. (2000a) and Dejonckheere et al. (2004)] could produce different variance 

amplification (VA), as may be seen in tables 2 and 3.  
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   For between-node sequence, one may choose that events, such as ordering and the like, 

occur simultaneously at each node. Or one may model a ‘staggered start’ to enable sequential 

events, meaning that the modeler delays the start of successive stages by a slight amount of 

time to enable sequential actions.  For example, the customer’s actions would occur at times 

0.0, 1.0, 2.0, ...; the retailer’s actions at 0.001, 1.001, 2.001, ...; the wholesaler’s actions occur 

at 0.002, 1.002, 2.002; and so on. What this may do is to increase the lead time ever so 

slightly and thus inflate the BWE somewhat.  

 

Sequence of events 

   This is a modeling issue that could influence the estimation process. One must consider 

within-node and between-node sequence of events. Within node, one may define one of two 

sequences: 

1. At the beginning of each period, t, the inventory manager observes the inventory 

level and places an order, tQ , to raise the inventory position to tS . After the order is 

placed, customer demand, tD , occurs.  This follows the sequence of events in Chen 

et al. (2000a: 437, 2000b: 271), which came from Ryan (1997: 14). This sequence is 

consistent with (8). 

2. 2. At the beginning of each period, t, the inventory manager observes the 

demand, tD , for that period, then places an order, tQ , to raise the inventory position 

to tS . That is, we would replace 1tD  in (8) by tD . Hence, 

tttt DSSQ  1 , (20)

but that would not make any difference in the calculation of )( tQVar . 
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Table 2. Variance amplification (VA): a comparison with no information sharing – 
deterministic lead time 

(No Safety Stock, 0z ) 

 
Retailer 

k = 1 

Wholesaler

k = 2 

Distributor

k = 3 

Factory 

k= 4 

Kim et al. 
(2005) 

1.17 1.37 1.60 1.87 

Chen et al.’s 
(2000a) LB 

1.68 2.82 4.74 7.97 

Dejonckheere 
et al.’s (2004) 

1.67 2.99 5.72 11.43 

Multiplier 
1.44 

1.43 

2.06 

2.18 

2.96 

3.58 

4.26 

6.11 

Source: Kim et al. (2005) and Dejonckheere et al. (2004, Table 3, p. 739). L = lead time, deterministic = 

4; )20,50(~ 2ND ; LB = lower bound; k = supply chain echelon; ‘multiplier’ refers to the values in rows 2 

and 3divided by those in row 1—thus, for example, 1.44=1.68/1.17 . 

 

 

Table 3. Variance amplification (VA): a comparison with information sharing – 
deterministic lead time 

 (Safety stock, z = 2) 

 
Retailer 

k = 1 

Wholesaler

k = 2 

Distributor

k = 3 

Factory 

k= 4 

Kim et al. 
(2005) 

1.04 1.06 1.11 1.18 

Chen et al.’s 
(2000a) LB 

1.68 2.64 3.88 5.41 

Dejonckheere 
et al.’s (2004) 

1.67 2.61 3.83 5.32 

Multiplier 
1.62 

1.61 

2.49 

2.46 

3.50 

3.45 

4.58 

4.51 

Source: Kim et al. (2005) and Dejonckheere et al. (2004, Table 3, p. 739). L = lead time, deterministic = 

4; )20,50(~ 2ND ; LB = lower bound; k = supply chain echelon; ‘multiplier’ refers to the values in rows 2 

and 3divided by those in row 1—thus , for example, 1.61=1.67/1.04 . 
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Information sharing 
 
   Disney et al. (2004) caution that information sharing may not have an effect in improving 

supply chain performance, as hoped, and that simply passing on information to businesses in 

a supply chain could be harmful. Nevertheless, the consensus is on the side of information 

sharing. For example, Dejonckheere et al. (2004) find that information sharing reduces the 

variance amplification of order quantities in supply chains, and, in a mixed-integer 

programming model, Dominguez and Lashkari (2004: 2136) find that ‘significant savings 

may indeed be achieved when integrating the supply chain by means of information’. Mitra 

and Chatterjee (2004) model a one-warehouse, two-retailer system and show that costs can be 

reduced in using actual demand information in setting the order-up-to level at the warehouse. 

Some other papers on “information enrichment” have tackled the issue of cost implicitly. For 

example, Mason-Jones and Towill (1997) speak of the speedier response and the dampening 

of demand magnification phenomena due to information sharing.                                                               

   In a numerical study of a model with one supplier and several identical retailers, Cachon 

and Fisher (2000: 1032) examine information sharing, finding that costs were 2.2 % lower on 

average with full information, with a maximum difference of 12.1%. These percentages 

appear to be modest, because we can show that inventory costs are a function of the variance 

of lead-time demand, and since information sharing reduces that variance, information 

sharing should have a significant impact on the overall cost of a supply chain. [Information 

can be defined as the lower bound of the reciprocal of the variance (Kendall and Buckland 

1967: 138); alternatively information could be equated to ‘precision’, also the reciprocal of 

the variance (Cochran 1977: 103)].  

   Kim et al. (2004) posit that the increase in inventory cost due to system variance, lead 

time’s in this case, is less than 
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2

2

)( 
Q

hbD 
, (21)

where b and h are the unit shortage and holding costs. According to (21), if the variance 

increased by 50 percent, with other parameters remaining the same, so would the system cost. 

He et al. (2005) also find that the system costs are nearly linear in the standard deviation of 

lead time. In these scenarios, the demand rate was constant and, thus, the variability of lead 

time can be used as a surrogate for system variability. So, according to the results in table 4, 

the cost at the factory due to the absence of information sharing would be 179.0/52.5 = 3.41 

times that when information is shared. The difference in the results between table 4 and tables 

2 and 3 is that the latter two were based on deterministic lead time, whereas table 4 is based 

on stochastic lead time.   

 
Table 4. Comparison of information sharing vs. no information sharing: standard 

deviation and variance amplification (VA)  
                                                                                                   

 Std. dev.: 
information Sharing 

VA: info 
sharing  

Std. dev.: no 
information  sharing  

VA: no info 
sharing  

Customer 20 1.00 20 1.00 

Retailer 30.0 2.25 
 

30.0 2.25 

Wholesaler 38.7 3.74 51.1 6.52 

Distributor 46.1 5.31 92.8 21.53 

Factory 52.5 6.89 179.0 80.10 

Source: Kim et al. (2005). D ~ N(50, 400);  L gamma with mean 4 and variance 4  

 
 

 
Sequential echelon pairing 
 

   Echelon pairing is another modeling issue that influences the parameter estimates, because 

some estimation methods of a continuous supply chain multi-stage structure make the 

assumption that each node pairing (customer-retailer, retailer-wholesaler, wholesaler-

distributor, and so on) operates like it is decoupled or “firewalled” from the rest of the supply 
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chain. [This is an example of what Venkateswaran and Son (2004) have called a ‘modelling 

approximation’]. We call the node pairings ‘sequential pairing’. But similar to an electrical 

grid, it does make a difference if we do or do not allow perturbations in a lower echelon to be 

transferred to a higher echelon. Such perturbation, for example, could be inventory shortages. 

In the SISCO simulations (Chatfield, 2001), such perturbation was allowed, but not in Chen 

et al. (2000a). So as seen in table 5, with no information sharing, Chatfield et al.’s (2004) 

results showed greater amplification at higher supply chain echelons than the analytical work 

of Chen et al. (2000a). Also, the bounds provided by Chen et al. (2000a) may have 

overlooked inter-node interactions in a supply chain. Chatfield et al. performed a ‘sequential-

pairs’ simulation to test this interaction hypothesis. In that experiment, they broke the supply 

chain into four pairs (customer-retailer, retailer-wholesaler, wholesaler-distributor, 

distributor-factory), first simulating customer-retailer, observing the variance amplification, 

and using the results as the retailer’s ordering policy for retailer-wholesaler; and so on.  The 

paired simulations were executed hierarchically, and we borrow the results from Chatfield et 

al. (2004) and show them in table 5, noting that sequential pairing gives a smaller BWE than 

a k-node scenario, k > 2, because the sequential pairs avoid the cascading effect of stockouts 

from an upstream pair. The results with information sharing mirror those in Chen et al. 

(2000a), as may be seen in table 6. In comparing with the control engineering work of 

Dejonckheere et al. (2004), Chatfield et al. (2004). mimicked their design, and the results 

were nearly identical, as may be seen in tables 7 and 8. 

Table 5. SISCO simulation vs. Chen et al. (2000a) with no information sharing:  echelon 
standard deviation and amplification ratio (boldface, in parentheses) 

 
 Customer Retailer Wholesaler Distributor Factory 

Chen et al. (2000a) 20.00 27.49 (1.89) 37.78 (3.57) 51.92 (6.74) 71.36 (12.73)
SISCO Simulation 19.99 27.55 (1.90) 40.01 (4.01) 60.27 (9.09) 93.13 (21.70)
“Sequential pairs” 
SISCO Simulation 

20.01 27.63 (1.90) 37.91 (3.59) 51.82 (6.70) 71.70 (12.84)

Source: Chatfield et al. (2004). Demand rate ~ N(50, 20 2 ); protection time = L + R = 4 + 1 = 5, deterministic; 
MA(15)forecasting. The simulation was run for 20 replications of 5200 time periods (-200 for warm-up). 
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Table 6. SISCO simulation vs. Chen et al. (2000a) with information sharing: echelon 
standard deviation and amplification ratio (boldface, in parentheses) 

 

 Customer Retailer Wholesaler Distributor Factory 
Chen et al. (2000a) 20.00 27.24 (1.89) 35.90 (3.22) 44.72 (5.00) 53.75 (7.22) 
“Sequential pairs” 
SISCO Simulation 

19.99 27.54 (1.90) 36.07 (3.26) 45.05 (5.08) 54.24 (7.36) 

Source: Chatfield et al. (2004). Demand rate ~ N(50, 20 2 ); protection time = L + R = 4 + 1 = 5, deterministic; 
MA(15) forecasting. The simulation was run for 20 replications of 5200 time periods (-200 for warm-up). 

 
Table 7.  SISCO simulation vs. Dejonckheere et al. (2004) with no information sharing: 

echelon standard deviation and amplification ratio (boldface, in parentheses)  
 

 Customer Retailer Wholesaler Distributor Factory 
Dejonckheere et al.  

(2004) 
10.0 12.90 (1.665) 17.30 (2.993) 23.91 (5.718) 33.81 (11.43)

SISCO Simulation 10.02 12.93 (1.67) 17.33 (2.99) 23.96 (5.72) 33.88 (11.43)

Source: Chatfield et al.(2004). Demand rate ~ N(100, 10 2 ); protection time = L + R = 4 + 1 = 5, 
deterministic; MA(15) forecasting. The simulation was run for 20 replications of 5200 time periods (-200 for 
warm-up). 
 

Table 8. SISCO simulation vs. Dejonckheere et al. (2004) with information sharing: 
echelon standard deviation and amplification ratio (boldface, in parentheses)  

 
 Customer Retailer Wholesaler Distributor Factory 

Dejonckheere et al. 
(2004) 

10.0 12.90 (1.665) 16.15 (2.607) 19.56 (3.826) 23.07 (5.321)

SISCO Simulation 10.02 12.93 (1.67) 16.19 (2.61) 19.62 (3.83) 23.15 (5.34) 

Source: Chatfield et al. (2004). Demand rate ~ N(100, 10 2 ); protection time = L + R = 4 + 1 = 5, 
deterministic;  MA(19)forecasting. The simulation was run for 20 replications of 5200 time periods (-200 for 
warm-up). 
 
 
Batching 

   Oftentimes, a supply chain echelon may want to take advantage of quantity discounts or of 

full truck load economies of scale. It may then happen that the actual quantity ordered could 

be a multiple of the order quantity calculated in Eq. (8). Also proven by Caplin (1985: 1403) 

that increasing order size increases the BWE, what this tactic does is to exacerbate this 

phenomenon (Potter and Disney 2005), and this batching contingency is seldom taken 

account of in supply chain estimation procedures. According to Potter and Disney, there are 

two types of batching: time-based and order-based. Time-based batching occurs when orders 

are received less frequently than they are placed; quantity-based batching has to do with the 
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use of the Economic Order Quantity (EOQ) or from advantages that accrue from packing in 

bulk or from quantity discounts. Potter and Disney recommend a batch size that is a multiple 

of average demand, with the smallest batch size under the circumstances preferable. But if the 

EOQ is to be used in a stochastic inventory system, it should be the one with backlogging 

(Hax and Candea 1984: 138), because shortages would be inevitable.  

 

3.  Forecasting lumpy demand 

   When negative orders are not allowed, the demand at higher echelons of a supply chain is 

often lumpy in that a positive order, D > 0, is followed by a series of zero orders. We see 

these starting with wholesaler in table 9, generated by SISCO simulation (Chatfield 2001). 

See also Shultz (1987: 453) who says that ‘sporadic demand frequently occurs at higher 

levels of multi-echelon inventory systems as a result of inventory-replenishment decisions at 

lower levels …’. 

But instead of using simulation data, we give in table 10 an industrial example from 

Croston (1972: 297), and the Croston data comprise 180 observations of 29 positive demands 

and 151 zero demands. The behavior of that intermittent demand is as illustrated in figure 1A 

with the subset of the first 15 observations, with the spikes denoting positive demands and the 

flat lines at the bottom denoting zero demands. On the surface, simple exponential smoothing 

of these lumpy data, as seen in figure 1B, does not seem satisfactory, and this proves to be the 

case.  

Croston suggested that we forecast separately the positive demands and the inter-

arrival times. We shall do that here in the following counter-example to the notion that 

moving averages or exponential smoothing would be appropriate for forecasting supply chain 

policy parameters. 
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Table 9. SISCO simulation: lumpy demand at the higher echelons 

 
Customer Retailer Wholesaler Distributor Factory 

75.697 95.514 110.439 127.494 0.000 
9.819 93.955 144.206 154.682 186.131 

63.099 0.000 142.010 218.129 238.356 
34.699 39.035 0.000 212.088 350.651 
61.299 20.150 0.000 0.000 333.541 
55.211 56.194 0.000 0.000 0.000 
44.458 54.564 14.055 0.000 0.000 
14.947 25.368 52.073 0.000 0.000 
84.945 0.000 0.000 0.000 0.000 
46.410 97.177 0.000 0.000 0.000 
93.560 34.758 80.994 0.000 0.000 
35.667 117.229 10.928 0.000 0.000 
27.310 29.294 159.937 0.000 0.000 
50.202 7.793 17.706 173.543 0.000 
42.151 41.734 0.000 9.320 0.000 
77.120 21.715 0.000 0.000 0.000 
29.395 77.037 0.000 0.000 0.000 
71.682 60.238 20.939 0.000 0.000 
47.472 77.208 91.507 0.000 0.000 
60.758 53.341 102.805 0.000 0.000 
32.347 60.397 71.470 40.757 0.000 
57.704 21.330 61.662 102.834 0.000 
62.696 65.117 3.073 83.582 0.000 
47.449 86.061 88.440 0.000 0.000 
73.019 20.188 132.881 113.195 0.000 
51.839 89.357 0.000 208.837 0.000 
37.165 19.766 93.995 0.000 348.589 
49.170 37.950 0.000 99.422 0.000 

 

Negative orders not allowed; customer demand (N 50, 20 2 ); lead time gamma (4, 2 2 ); MA(15). 

           Source: Chatfield (2001). 
 
 

 
Table 10. Croston’s (1972: 297) example of intermittent demand 

(sample size, n = 180; zeroes in periods of no positive demand) 
 

Period 1 5 6 7 12 36 39 42 47 56 58 60 67 71  
Demand 5 3 2 5 3 6 6 5 2 1 2 1 3 2  

Time 72 73 78 84 89 94 98 104 110 130 133 155 159 170 176
Demand 4 6 2 3 2 6 3 4 2 6 3 6 2 4 5 
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Figure 1A. Croston’s data: actual Demand, first 15 Periods 
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Figure 1B. Croston’s data: simple exponential smoothing forecasts, first 15 periods 
(smoothing constant,   = 0.2) 

 
 

An experiment 

We divide Croston’s data into two sets of 90 periods each and use the first as the estimating 

or training set. The training set gives the estimates in table 11. We also determine that a 

smoothing constant   = 0.2 or 0.3 would give minimum mean absolute deviation (MAD) of 

the forecast errors, as seen in table 12. The importance of using MAD is that it is a surrogate 

for safety stocks, so that when the forecast errors are normally distributed, the standard 

deviation is (Silver et al. 1998: 112),  

.25.1 MAD  (22)
 

MAD is an appropriate measure; it was the lone performance index in a simulation for 

forecasting lumpy demand by Bartezzaghi et al. (1999); and Venkateswaran and Son (2004) 

used it in examining the impact of modelling approximations in supply chains. 
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Table 11. Statistics from the training set 
(First 90 observations of Croston’s data) 

 
Average inter-arrival interval  3.31 3 

Average size of positive demand (batch size)  3.32 units 
Standard deviation of nonnegative demand  1.70 units 

Time average of demands   0.70 
Probability nonzero demand   0.21 

Overall mean  0.70 units 
Overall standard deviation  1.56 units 
Coefficient of variation, C   2.23 

Skewness   2.29 (vs. 3.10 theoretical). 
Source: (Croston, 1972). 

 
 

Table 12. Optimal smoothing constant 
(first 90 observations of Croston’s data) 

 
 MAD 

0.023, obtained from 
fitting an ARIMA (0,1,1)

1.35 

0.10 1.16 
0.20 1.13 
0.30 1.13 
0.40 1.14 

 

 

Naïve forecasting. When we forecast the second set of 90 observations, we use from table 11 

an interval-arrival of 3 periods (i.e., 3 zeroes) followed by a Demand of 3.32 (mean of the 1st 

90 observations), as in this sequence: 

0, 0, 0, 3.32, 0. 0, 0. 3.32, 0, 0, 0, 3.32, 0, 0, 0, 3.32, … 

Astonishingly, the MAD for this naïve forecasting is 1.00 < 1.13 for the best   in Table 12. 

All zeroes.  Venkitachalam et al. (2002) suggest, among others, the approach of forecasting 

zeroes for all periods.  This would give us a MAD = 0.52 and this method, as we shall see, 

would be appropriate when the probability of positive demand is small. The method carries to 

the limit Schultz’s (1987: 454) suggestion of delaying the “placement of replenishment orders 
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… to achieve holding-cost savings that can outweigh the increased risk or cost of a stockout 

condition.”   

Random walk. In random walk forecasting (Makridakis et al. 1998: 329), today’s realization 

is tomorrow’s forecast. So when we use a random walk forecast, as in this sequence, 

Period:      92     93 94      95    96     97     98      99   100   101   102   103   104    105 

Demand:   0        0        0        6      0       0      0         3      0       0       0       0       0,      4 …, 

we obtain MAD =  0.92. 

9-Period moving average.  Since we shall be using a smoothing constant   = 0.2 for SES, 

we try an equivalent moving average, using (Brown, 1963: 108) 

91
2




p . 

The MAD here is 0.76. 

.Static Monte-Carlo. We use P(D > 0) = 0.21, with nonnegative D ~ N(3.32, 1.72 2 ). This 

simulation yields MAD = 0.97. We do this by first simulating a Bernoulli process with 

probability 0.21, which gives a string of 0’s and 1’s. Second, we randomize a normal 

variable, N(3.32, 1.72 2 ), and substitute the simulated normal variates values for the 1’s in the 

Bernoulli string. 

Croston’s algorithm, simplified.  Croston advocates separating the lumpy data into two sets: 

one for positive demands, and another for the length of zero runs, which he calls ‘interval’. 

Then he suggests using exponential smoothing on each set separately. We do this in table 13. 

For the Croston algorithm, we used simple exponential smoothing on the positive demands 

and the intervals (or number of zero demands), with a smoothing constant, 2.0 , in both 

instances. When we put the forecasts against the actual realizations, we get MAD = 0.72. 
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Table 13. A simplified Croston procedure 
(second set of 90 observations from Croston’s data, smoothing constant, 2.0 )  

 

D > 0 
Interval
forecast 

Forecast 
for D > 0

Number
zeroes 

6 4 4.00000 7 
3 4 4.40000 7 
4 6 4.12000 6 
2 6 4.09600 6 
6 20 3.67680 6 
3 3 4.14144 9 
6 22 3.91315 8 
2 4 4.33052 11 
4 11 3.86442 9 
5 6 3.89153 10 

 

The Stuttering Poisson. The stuttering Poisson (sP) is a two-parameter distribution, with 

t the average number of customers in a time interval t, and with each customer requesting an 

amount given by a geometric distribution with parameter,   (Ward 1978: 624). Now the 

average batch size is  

1/(1-  ), (23)
and since the empirical batch size from table 11 is 3.32, this yields  

̂  = 0.70. 

We get ̂  = 0.55 when, instead, we use the formula (Ward 1978: 625). 

1

1
2

2





C

mC ,    (24)

where  

((1 ) / )C t    (25)

is the coefficient of variation of the sP over an interval t, and 

)1/(   tm  (26)
is the mean. We estimate  

)1(

2ˆ
2 


mC

m  (Ward 1978: 625) 

= 0.31 (versus the empirical 30.0
31.3

1
 from table 11). 
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The sP is made up of Poisson customer arrivals with parameter  with each customer 

demanding a geometric order size of mean  . Now the geometric distribution is the discrete 

analog of the exponential. So we generate vectors of 90 Poisson arrivals and exponential 

order sizes, rounded to the nearest integer, and multiply these to arrive at random realizations 

of the sP, which we use as a forecast for the second set of 90 observations. Then for ̂ = 0.31, 

̂ = 0.70, we obtain 

MAD = 0.67, 

and for ̂ = 0.31, ̂ = 0.55, we obtain 

MAD = 0.62. 

 

A comparison 

   We compare in table 14 the various methods we used, employing MAD as the single metric. 

We find in our experiment that where all forecasts are zero gives the smallest MAD, followed 

by the stuttering Poisson (sP), Croston’s algorithm, and MA(9). Astonishingly, simple 

exponential smoothing comes at the bottom of the list in table 14. Its MSE is 49 percent larger 

than the ‘equivalent’ MA(9). No wonder Dejonckheere et al. (2003: 581) found that the BWE  

‘generated by moving average forecasts in order-up-to model (therefore) in much less than 

that generated by exponential forecasts’.  It seems counter-intuitive, because exponential 

smoothing is supposed to be ‘generally superior’ to moving averages (Makridakas et al. 

1998: 145-146). But Sani and Kingsman (1997: 711, 712) also ‘surprisingly’ find in their 

study of  the best periodic inventory control and demand forecasting for lumpy items that the 

moving average method outperforms other forecasting methods, particularly SES.  And using 

thirteen forecasting methods to forecast lumpy-demand airline spare parts, Ghobbar and 

Friend (2003) argue that the choice of a forecasting method should depend on the degree of 
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lumpiness. (We agree with their argument, as we elaborate in the next subsection.) But except 

for the Croston method and SES, the other forecasting methods in their menu included 

seasonality and linear trends, which we do not model in our experiment. Nevertheless, 

Ghobbar and Friend conclude that the use of SES for lumpy demand is questionable, a 

conclusion similar to that in  Johnston and Boylan (1996), who demonstrated that SES was 

outperformed when the average inter-order arrival was greater than 1.25 forecast review 

periods, which could be interpreted to be P(D > 0)   0.44. In our experiment that probability 

was 0.21. 

But Chen et al. (2000b: 283-284) should cast away any doubts in proving that in 

supply chain forecasting SES is outperformed by an equivalent MA(p). Let )( )(SESQVar and 

)( )( pMAQVar denote the respective variances with
1

2




p
 . Then, for iid demands with 

variance 2  

)1(

44
1

)( 2

2

)(




pp

L

p

LQVar SES





, (27)

greater than 

2

2

2

)( 22
1

)(

p

L

p

LQVar pMA




. (28)

 

Many have examined the conundrum of lumpy demand. For example, Venkitachalam 

et al. (2002) found that Croston’s method coupled with bootstrapping (Davison and Hinkley 

1999) yielded superior results. Prior to that, Willemain et al. (1994) found that Croston’s 

method was ‘robustly superior to exponential smoothing’. We add that it is not quite so 

simple: that the choice of method should depend on the degree of lumpiness as Ghobbar and 

Friend (2003) have asserted. In the present paper, we implied that that degree could be 

measured by P(D > 0).`  
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Table 14. A comparison 
 

Method MAD Comments 
All Zeroes 0.52 All Forecasts put to zero 

Stuttering Poisson 
0.67 
0.62 

Traditional characterization 
of lumpy demand 

Croston’s (simplified) 0.72 
Use exponential smoothing separately on the set of positive 

demand and the set of intervals between. 

MA(9) 0.76 
Simple Moving Average that is equivalent to simple 

exponential smoothing with  = 0.2 

Random Walk 0.92 
Today’s realization is 
tomorrow’s forecast 

Static Monte Carlo 0.97 
Use a Bernoulli string with the 
probability of positive demands 

Naïve Forecasting 1.00 
Using estimated from the1st set of 90 observations, 
repeat using an interval of 3 and a demand of 3.32 

Simple Exponential 
Smoothing 

1.13 
Smoothing constant, 

 = 0.2 
MAD: Mean Absolute Deviation 

 

The type of lumpy demand examined here consisted of zeroes/non-zeroes, with the 

non- zeroes stationary. We did not consider the type of lumpy demand characterized by 

sudden demand peaks as Miragliotta and Staudacher (2004) have done. And we are mindful 

as these authors have insisted that isolated techniques applied to forecasting procedures, 

rather than to inventory control, may be ineffective. 

 

Degree of Lumpiness 

  Ghobar and Friend (2003) advance the common-sense hypothesis that, in forecasting lumpy 

demand, the method used should depend on the degree of lumpiness. We test this hypothesis 

in Chatfield and Hayya (2005), a factorial study where the degree of lumpiness is taken at 

three levels: high, with P(D > 0) =  0.1; mid, with P(D > 0) = 0.5; and low with P(D > 0) =  

0.9. Included in the experiment at different levels are these factors: ordering cost, holding 

cost, shortage cost, and the coefficient of variation of positive demands. The criteria of 

goodness of forecast method were the following: a modified MAPE (mean absolute 
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percentage error); MSE (mean square error); Theil’s U-statistic (Makridakis et al., 1998:48); 

and inventory cost (ordering + holding + shortage).  The forecast methods were the 

following: all-zero; the MA; SES; a Croston-type MA; the Croston SES; and the Stuttering 

Poisson (sP).  See Table 14. 

Indeed, we find Ghobar and Friend to be correct. With all factor levels operating, we find that 

all-zero forecasts outperform other methods in terms of forecasting error for high and mid-

lumpiness when using MAPE as the criterion. In addition, the all-zero method produces the 

lowest cost when lumpiness is high, and also for mid-lumpiness if the unit shortage cost is 

greater than the unit holding cost, which is usually the case. 

    

4.  Summary 

   We should be aware that different procedures in estimation methods for supply chain 

inventory parameters could lead to dramatically different results, as we illustrate in this 

paper. For example if we considered lead times explicitly in the analysis, rather than 

subsuming it into the estimation of the mean and standard deviation of demand during lead 

time, then that would inflate the bullwhip effect and lead to excessive inventories. Also, the 

way we analyze a supply chain, for example, sequential pairs versus a holistic system, makes 

a difference, because sequential pairs build firewalls within the supply chain and these tend to 

attenuate any flash floods that could sweep through. 

 Also significant is the phenomenon of lumpy demand at the higher echelons of the 

supply chain. By that we mean that the demand series is characterized by one random string 

of positive demands, followed by a random string of zero demands, when negative demands 

(or reverse logistics) are not allowed. Exponential smoothing of the entire set of data 

performs poorly in this situation, and as the conventional forecasting method that sets the 
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order-up-to levels is usually exponential smoothing, this could lead to inflation of the mean 

absolute deviation and of the safety stocks.  
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