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[1] Multiple linear regression analysis (MLRA) applied to sediment trap data has been
highly influential in identifying a plausible ‘ballasting’ mechanism that directly links the
settling fluxes of particulate organic carbon (POC) to those of denser, inorganic
minerals. However, analysis to date has primarily been carried out at the global scale,
missing spatial variability in the flux relationships that may be important. In this paper,
Geographically Weighted Regression (GWR) is applied to an updated deep (>1500 m)
sediment trap database (n = 156), using the MLRA approach of Klaas and Archer
(2002) but now allowing the carrying coefficients to vary in space. While the global
mean carrying coefficient values for CaCO3, opal, and lithogenics are broadly consistent
with previous work, the GWR analysis reveals the existence of substantial and
statistically significant spatial variability in all three carrying coefficients. In particular,
the absence of a strong globally uniform relationship between CaCO3 and POC in our
spatial analysis calls into question whether a simple ballasting mechanism exists.
Instead, the existence of coherent spatial patterns in carrying coefficients, which are
reminiscent of biogeochemical provinces, points toward differences in specific pelagic
ecosystem characteristics as being the likely underlying cause of the flux relationships
sampled by sediment traps. Our findings present a challenge to ocean carbon cycle
modelers who to date have applied a single statistical global relationship in their carbon
flux parameterizations when considering mineral ballasting, and provide a further clue
as to how the efficiency of the biological pump in the modern ocean is regulated.
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1. Introduction

[2] Sinking particles transfer particular organic carbon
(POC) and associated nutrients from the upper ocean to the
deep ocean and sediments in a process known as the bio-
logical pump [Honjo et al., 2008]. These particles, ulti-
mately derived from the growth of phytoplankton at the
sunlit surface and carbon fixation through photosynthesis,
are also often associated with biominerals such as biogenic
silica (opal) and calcium carbonate (CaCO3). As these par-
ticles sink, the majority of POC and associated nutrients are
remineralized (predominantly) by bacterial metabolic pro-
cesses and zooplankton flux feeding in the upper �1000 m,
leaving a small (5–10%) fraction (relative to that at 100 m)
sinking to depth [Stemmann et al., 2004; Loubere et al.,

2007; Honjo et al., 2008]. Understanding the processes
that control the efficiency of the biological pump in trans-
porting carbon and nutrients to depth is key to understanding
how the marine carbon cycle functions and regulates atmo-
spheric carbon dioxide (CO2) (e.g. Archer and Maier-
Reimer [1994]).
[3] The ratio of particulate inorganic to organic carbon

(PIC:POC) within sinking particles is known as the ‘rain
ratio’ and is important in communicating changes at the
surface to the deep ocean and sediments. For instance, on
time-scales of a few thousand years, a reduction in the export
rain ratio of 40%, if communicated to the sediments could, in
theory, lead to a 70–90 ppm drawdown of atmospheric CO2

through the increased dissolution of carbonate sediments
[Archer and Maier-Reimer, 1994]. However, studies based
on the analysis of deep sediment trap data have observed a
strong global correlation between mass fluxes of POC and
CaCO3, suggesting some mechanism of coupling exists
between these important parameters at depth [Armstrong
et al., 2001]. The ‘ballast hypothesis’ posits that CaCO3, and
to a lesser extent opal and lithogenic material, aids the sink-
ing of particles through increasing mean aggregate density
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[Armstrong et al., 2001; Klaas and Archer, 2002]. If true,
this would have the effect of buffering changes in the
rain ratio originating at the surface and reducing the
potential for altering atmospheric CO2 [Ridgwell, 2003].
In the context of ocean acidification and the potential for
decreased pelagic calcification driven by falling surface
ocean carbonate saturation, ballasting creates a positive
feedback to CO2 by reducing the efficiency of the bio-
logical pump [Barker et al., 2003; Heinze, 2004; Riebesell
et al., 2009].
[4] Particles have been shown to sink faster under labo-

ratory conditions due to the relatively high density of CaCO3

[Ploug et al., 2008; Engel et al., 2009; Iversen and Ploug,
2010], supporting the statistically-based ballast hypothesis.
However, other lines of evidence point to alternative inter-
pretations. For instance, rolling tank experiments showed the
POC:mineral ratio was dependent on the amount of POC
present acting as a ‘glue’, aggregating mineral fluxes
[Passow, 2004; Passow and De La Rocha, 2006; De La
Rocha et al., 2008] and controlling the sinking of CaCO3

rather than vice versa. Alternatively, variations in surface
ecosystem composition might dictate the packaging and
remineralization of particles [Francois et al., 2002; Lam and
Bishop, 2007; Lam et al., 2011] and give rise to the flux
relationships observed at greater depth. These alternative
explanations significantly challenge our mechanistic under-
standing of the dynamics of POC fluxes and create substan-
tial uncertainty in both the magnitude and sign of carbon
cycle feedbacks to possible future perturbations [Barker
et al., 2003; Riebesell et al., 2009].
[5] The global sediment trap analysis of Klaas and Archer

[2002] has been highly influential in quantifying the corre-
lation between POC and CaCO3 and helping to formulate
the ballasting hypothesis. In that study, the mass flux of
POC was expressed as a linear function of three dominant
mineral fluxes (CaCO3, opal and lithogenic material), using
multiple linear regression analysis (MLRA). The derived
‘carrying coefficients’ (the regression coefficients) were
largest for CaCO3 (0.070–0.094), lowest for opal (0.023–
0.030), and rather variable for lithogenics (0.035–0.071)
[Klaas and Archer, 2002] with the resulting statistical
models able to explain a large proportion of the observed
variability in POC flux. The three mineral model provides a
basis for understanding global variability in POC to mineral
ratios and can replace this term in the mechanistic model of
Armstrong et al. [2001], making this a useful method for
parameterizing particle fluxes in a range of ocean carbon
cycle models [Howard et al., 2006; Oka et al., 2008;
Hofmann and Schellnhuber, 2009].
[6] The underlying assumption when analyzing the global

database in this way is that the statistical relationships (the
coefficient values) are the same for any location in the
ocean, i.e. they are assumed stationary in space. The use of
these global statistical relationships in models then explicitly
makes this same assumption. However, it is reasonable to
expect that these relationships may not be constant in space
(or time) i.e. they may exhibit spatial nonstationarity, which
can be characterized by a non-random distribution of resi-
duals in space [Fotheringham et al., 1998]. This potentially
raises issues for the interpretation of global regression
coefficients and their explicit use as a parameterization in
modeling studies.

[7] Spatial variability in the relationship between POC and
minerals was noted in sediment trap data by Ragueneau et al.
[2006] and De La Rocha and Passow [2007] who suggested
global MLRA was, therefore, inappropriate and may have
misleadingly resulted in the low carrying coefficients obtained
for opal and lithogenics. Boyd and Trull [2007] also note that
using global annual mean fluxes ignores a large part of vari-
ability resulting from processes like El Niño as well as the
biogeochemical sources of the fluxes. A previous basin-scale
analysis (Table 1) showed considerable regional variability in
the dominance of one mineral over another. Global MLRA
may then be hiding important regional variability which has
implications for how the ballast mechanism is interpreted
and particularly for how it is mechanistically implemented
in global models.
[8] To date there has been no general assessment of the

spatial variability of the carrying coefficients of ballast
minerals. This is important for understanding the previously
observed differences between global coefficients and those
seen from individual sites (Table 1). Ragueneau et al. [2006]
took the first step in this respect and applied MLRA to
sediment trap data divided by major ocean basin. This broad
delineation was reasonably justified but further reduction of
the spatial scale poses particular problems. Smaller spatial
groupings for regression could be justified, such as biogeo-
chemical provinces (see Vichi et al. [2011]) but this intro-
duces a level of subjectivity, as well as problems with the
relatively sparse sampling coverage of sediment trap data
sets compared to the number of biogeographical provinces.
In response to this we describe the novel application of
Geographically Weighted Regression (GWR), that allows
coefficients to vary in space and helps avoid the problems
stated above. The data set and technique are described in
section 2 and applied using the carrying coefficient approach
of Klaas and Archer [2002] to explore the spatial variability
of the these statistical parameters.

2. Methodology

2.1. Sediment Trap Data

[9] An updated global sediment trap data set has been
collated for this study. The flux and metadata from sediment
traps are available in the auxiliary material.1 The majority of
the data set used here is from the U.S. Joint Global Ocean
Flux Study (JGOFS) available online via: http://usjgofs.
whoi.edu/mzweb/syn-mod.htm. A full description of the
JGOFS data set and methodologies can be found in Honjo
et al. [2008]. Other data sets were obtained from addi-
tional studies and the World Data Centre for Environ-
mental Sciences (WDC-MARE) online database.
[10] Sediment traps at relatively shallow depths (approx.

<1000–1500 m) have been shown to be inefficient at trap-
ping particulate material [Scholten et al., 2001; Yu et al.,
2001]. For this reason, and to be consistent with the bulk of
previous work, only flux data at >1500 m were primarily
considered here, although additional analysis with a >1000 m
cut-off depth was carried out to enable comparison to
Ragueneau et al. [2006]. Selected data includes only sedi-
ment traps that sampled over a minimum period of 320 days

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GB004398.
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to maximize the quantity of data and its spatial coverage
while retaining a reasonable annual coverage. Finally, data
were excluded if any observations were missing for major
components (total mass flux, POC, PIC, biogenic silica). The
mass fluxes of CaCO3 and opal were estimated from PIC and
biogenic Si using conversion factors of 8.33 and 2.14
respectively [Mortlock and Froelich, 1989]. The flux of
lithogenic material was estimated as the remaining fraction of
total mass flux when CaCO3, opal and particulate organic
matter are subtracted. In a small number of cases this pro-
duced negative values for lithogenic flux, which were then
treated as zero (as in Salter et al. [2010]).
[11] The resulting data set comprises 156 individual sedi-

ment trap observations which include data on POC, PIC (as
CaCO3), biogenic silica (as opal), lithogenic and total mass
fluxes. The data set includes observations from 25 biogeo-
chemical provinces. In comparison to the previous global
data sets [Francois et al., 2002; Klaas and Archer, 2002],
this data set is larger in size (n = 156 c.f. n = 62–78) and
provides greater spatial coverage, particularly for the
southern hemisphere. The data set is of a comparable size to
a recent sediment trap collation [Honjo et al., 2008]. How-
ever, because approximately half of the data set is in com-
mon with previous analyses, we would not expect the results
of our global analysis to be substantially different from
previous studies.

2.2. Regression Analysis

2.2.1. Global Regression Model
[12] Here we apply the multiple linear regression analysis

used in Klaas and Archer [2002]. The basic regression
analysis expresses the flux of POC at depth (FPOC) as a

function of the fluxes of CaCO3 (FCaCO3 ), Opal (FOpal) and
lithogenic material (Flitho) at depth (z):

FPOC zð Þ ¼ b0 þ bCaCO3
� FCaCO3 zð Þ þ bOpal � FOpal zð Þ þ blitho

� Flitho zð Þ ð1Þ

Previous analyses assumed that the regression passed
through the origin [Ragueneau et al., 2006] requiring that
the flux of POC must be zero when the flux of minerals is
zero. We include an additional intercept term (b0) so that the
analysis is amenable and directly comparable to the geo-
graphically weighted technique we employ (Section 2.2.2)
and also to create a more general model in which it is pos-
sible that there could additional POC not directly associated
with the mineral flux.
2.2.2. Geographically Weighted Regression Model
[13] Geographically weighted regression is a relatively

novel but simple technique of regression which allows the
estimation of local statistical parameters (for a full descrip-
tion see Fotheringham et al. [2002], also Brunsdon et al.
[1998] and Fotheringham et al. [1998]). The global multi-
ple linear regression model can be considered as:

yi ¼ a0 þ
X
k

akxik þ �i; ð2Þ

where k predictors are used to predict y at the ith point in
space. The global model can be re-written to estimate local
parameters as:

yi ¼ a0 ui; við Þ þ
X
k

ak ui; við Þxik þ �i; ð3Þ

Table 1. Carrying Coefficients (i.e., Klaas and Archer [2002]) Derived From Previous Multiple Linear Regression Analyses Applied to a
Range of Global, Regional and Time Series Sediment Trap Datasetsa

Global Annual Average CaCO3 Opal Lithogenicb R2

Klaas and Archer [2002]c n = 78 0.075 0.029 0.052 –
>2000 m 0.064–0.086 0.020–0.037 0.034–0.070

Francois et al. [2002]c n = 62 0.074 0.015 0.074 0.93
>2000 m 0.064–0.084 0.08–0.022 0.051–0.097

Ragueneau et al. [2006] n = 189 0.081 0.031 0.035 0.89
>1000 m 0.073–0.089 0.023–0.039 0.029–0.041

Regional Annual Average

Ragueneau et al. [2006] n = 84 0.077 0.171 0.031 0.87
(Atlantic) >1000 m 0.053–0.101 0.047–0.186 0.023–0.039
Ragueneau et al. [2006] n = 16 0.026d 0.201 0.015d 0.96
(Indian) >1000 m �0.007–0.057 0.123–0.279 �0.079–0.049
Ragueneau et al. [2006] n-89 0.063 0.041 0.024 0.95
(Pacific) >1000 m 0.055–0.071 0.035–0.046 0.018–0.030

Regional Time series

Wong et al. [1999]c 1982–1993 0.021 0.013 0.0233 0.69
(Ocean Station P) 3800 m 0.002–0.039 0.008–0.034 0.170–0.297
Conte et al. [2001]c 1978–1984 0.045 0.063 0.065 0.98
(Bermuda SCIFF) 3200 m 0.038–0.053 0.024–0.102 0.034–0.096
Honda and Watanabe [2010]e 1998–2006 0.025 0.044 �0.006 0.92
(W. Pacific Subarctic Gyre) 4810 n/a n/a n/a

aRanges given indicate 95% range of carrying coefficients (2� standard error).
bAll lithogenic material is estimated as Total Mass� (POC * POM Conversion factor) + CaCO3 + Opal, except Honda and Watanabe [2010] which was

derived from Al measurements.
cAdapted from Table 3a in Boyd and Trull [2007].
dValues from multiple regression analysis were insignificant at p > 0.05.
eData were normalized to average of each time series component before regression analysis.
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where (ui, vi) denotes the coordinates of the ith point in
space. ak(ui, vi) is then a realization of the continuous func-
tion ak(u, v) at point i [Fotheringham et al., 1998]. The
global model can be seen as a case where the parameter
surface is considered constant in space. GWR approximates
the above equation by selecting a subset of data around i
which is weighted according to their distance from i. This
assumes that parameters display a degree of spatial consis-
tency such that parameters become increasingly different as
distance increases from i.
[14] The weighting function (kernal) used in GWR can

take different forms. The simplest approach applies a weight
of 1 to all data within a set distance (d) of i and 0 to data
outside of this area. This function creates artificial boundaries
and could create artifacts in the patterns of parameters esti-
mated. An alternative is to use a continuous weighting
function such as in exponential form or a bi-square function
that approximates a Gaussian weighting within the band-
width and zero beyond this (4):

wij ¼ 1� dij=b
� �2h i2

if dij < b ¼ 0 otherwise; ð4Þ

where the weight applied (wij) is a function of distance (d)
between i and j and a parameter referred to as the bandwidth
(b), defining the total distance of the subset of data
[Fotheringham et al., 2002]. The bandwidth can be defined
either as a fixed distance (fixed kernel) or as a number of
nearest neighbors (adaptive kernel) in the data set and is a
global parameter. The latter definition allows the weighting
function to respond to changes in sampling density where a
fixed kernel may be unsuitable to apply. In both definitions
the weighting function defines a ‘bump of influence’ around
data at point i.
[15] The size of the bandwidth is a critical factor in GWR

as it defines the area of influence of each regression. A larger
bandwidth will lose information about the spatial variability
in coefficients and bias the results toward the global
regression. If regression coefficients are considered to be a
continuous field in space, then each data point in the subset
of data will have a unique coefficient value, but defining a
subset of data around each point forces the coefficient to a
common (essentially an average) value for that subset.
Therefore, coefficients can never be completely unbiased
because there is always a level of spatial averaging. To
minimize the bias of coefficients, a small subset of data close
to i is preferable although this increases the variance and
standard error of the estimate. There is, therefore, a trade-off
between increased variance at small subsets and bias toward
the global coefficients at larger subsets. To address this
issue, the bandwidth can be calibrated using the cross vali-
dation score (CV) or the corrected Akaike Information
Criterion (AICc: see Akaike [1974]). These values express the
overall performance of regression models and can take into
account the bias-variance trade-off, providing an estimate of
the best bandwidth to use [Fotheringham et al., 1998].
[16] A number of statistical tests have been defined to

allow the assessment of GWR models against global
regression models (for full details, see Fotheringham et al.
[2002]). These include Analysis of Variance (ANOVA),
testing the null hypothesis that the GWR model represents
no improvement on the global model, and a Monte Carlo test

to assess the significance of the spatial variability of GWR
coefficients. Under the null hypothesis, any random permu-
tation of the data is equally likely to occur.
2.2.3. Application of GWR to Sediment Trap Data
[17] We suggest that geographically weighted regression

provides a rigorous approach to assessing the spatial vari-
ability of carrying coefficients. Although there has been
extensive work on extending the predictive use of GWR
[Harris et al., 2011; Kumar and Lal, 2011], GWR is applied
here as an exploratory tool. We apply GWR to our updated
sediment trap data set using software (GWR 3.0) kindly
provided by M. Charlton of the National Centre for Geo-
computation at National University of Ireland Maynooth.
An adaptive kernel (defining a subset of data by number of
nearest neighbors) was chosen to group data because a fixed
kernel (defining a subset of data strictly by distance) failed to
produce results due to the sparse sampling density in space.
A fixed bandwidth could not account for the data points in
relative isolation such as those in the Southern Ocean. The
AICc minimization technique was used to find the optimal
bandwidth. Data were weighted using bi-square function.
AMonte Carlo significance test was used to determine whether
regression coefficients were spatially variable [Hope, 1968].

3. Results

3.1. Comparison of Global Regression Model Results

3.1.1. Global Regression Analysis
[18] The sediment trap data set shows similar global rela-

tionships to those obtained previously with smaller data sets
(Figure 1). The correlation between POC and CaCO3 is
strongest (r = 0.60), while the correlation between POC and
opal is weaker (r = 0.35), with lithogenic fluxes being
intermediate (r = 0.45). Visually, the association of POC
with both opal and lithogenic material (Figure 1b) suggests
the presence of two separate distributions, one of high POC
flux and low mineral flux and the second of low POC flux
with high mineral flux (this was originally noted for opal by
Klaas and Archer [2002]). The scatterplot for CaCO3 also
displays more variability than previously recognized
(Figure 1b). All scatterplots display regional differences
when separated into ocean basins as previously noted by
Ragueneau et al. [2006] and De La Rocha and Passow
[2007]. The global POC:mineral ratio is 0.052, close to the
ratio observed by Armstrong et al. [2001].
[19] Multiple linear regression is used on the global data

set to express the flux of POC as a summed linear function
of mineral fluxes, and, as observed previously, suggests a
dominant role for CaCO3 (Table 2). The resulting regression
model is significant at p < 0.001 and predicts 66% of the
variability in POC fluxes (R2 = 0.66). The carrying coeffi-
cient for CaCO3 is close to, although very slightly higher
than, previous estimates (Table 1). The coefficient for opal is
also consistent with previous estimates while the lithogenic
coefficient shows the most variability between studies. The
lithogenic estimate here is much lower than that found by
Klaas and Archer [2002]. Both our estimate and that of
Ragueneau et al. [2006] are derived from significantly larger
data sets (n = 156–189 c.f. n = 62–78) suggesting that this
value could be more globally representative.
[20] The R2 value is relatively low in comparison to the

global studies in Table 1. This is due to the inclusion of the
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Table 2. Carrying Coefficients Calculated Using Multiple Linear Regression With Mass Flux Data for Different Depth Ranges
and Spatial Scalesa

Global Data CaCO3 Opal Lithogenic R2

>1500 m (n = 156) 0.089 0.023 0.027 0.66
0.076–0.102 0.012–0.034 0.017–0.037

>1000 m (n = 186) 0.080 0.017 0.033 0.65
0.068–0.097 0.007–0.028 0.027–0.039

Regional Data (>1500 m)
Atlantic (n = 54) 0.083 0.152a 0.027NS 0.58

0.047–0.118 0.028–0.276 �0.007–0.060
Indian (n = 25) 0.083 0.058a 0.058 0.94

0.058–0.108 0.003–0.113 0.034–0.083
Pacific (n = 63) 0.056 0.033 0.022 0.80

0.041–0.071 0.025–0.041 0.015–0.028
Southern Ocean (n = 12) 0.183NS �0.022NS 0.034NS 0.37NS

�0.065–0.431 �0.139–0.095 �0.050–0.117

aAll coefficients are significant at p < 0.001 except a where p < 0.05. Ninety-five percent confidence intervals are given as 2� standard error. Note that
the model for the Southern Ocean is not significant.

Figure 1. (a) Locations of global sediment traps at >1500 m (dots) and additional data at >1000 m (open
circle). Data locations are given in the context of biogeochemical provinces as per Longhurst [1998].
(b) Global annual mass fluxes of particulate organic carbon versus global annual mass fluxes of (left)
CaCO3, (middle) opal and (right) lithogenic material as measured by sediment traps >1500 depth. Flux
data from different ocean basins are indicated by symbols to highlight regional differences (adapted
from Ragueneau et al. [2006]).
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intercept term in equation (1). Repeating the analysis with-
out the intercept term increases R2 to 0.89, a value consistent
with previous studies (Table 1). (The large difference
between these values is due to the calculation of R2 from the
total sum of squares which is uncorrected without an inter-
cept, leading to inflated values of R2 [Montgomery et al.,
2006].) To be consistent and directly comparable with

geographically weighted regression analysis we include the
intercept, justified by the fact the residual mean squares are
very similar and that the derived carrying coefficients only
differ by a factor of 0.0001. Note, therefore, that R2 values in
this paper are not directly comparable to previous studies.
[21] A regional breakdown of the data to an ocean basin

scale is also shown in Table 2 and is comparable to that by

Figure 2. The spatial distribution of residuals from (a) global multiple linear regression and (b) geo-
graphically weighted regression analysis. Fluxes of POC are predicted using mass fluxes of CaCO3, opal
and lithogenic material as in [Klaas and Archer, 2002]. The models predict �66% and �82%, respec-
tively, of the variability in observed POC fluxes.
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Ragueneau et al. [2006] as summarized in Table 1. The
carrying coefficient for opal in the Atlantic displays vari-
ability compared to other basins and is quite distinct from
the global value (0.152 c.f. 0.023). In the Pacific and Indian
basins, our spatial coefficients are more consistent with the
global values. The Indian basin values differ to those found
in Table 1 the reason for which is unclear. The relevant data
set in Table 1 is much smaller (n = 16 c.f. n = 25) and it may
be that these coefficients are more influenced by outliers in
the regression. In particular, it is also worth considering that
the Pacific basin is the largest in size, and potentially
includes multiple sources of variability unlike the smaller
Indian basin (i.e. as indicated by the number of biogeo-
chemical provinces in each). Therefore, it is uncertain
whether the similarity of the Pacific coefficients to global
values may be a product of averaging the potentially large
spatial variability in fluxes or is actually representative of the
values in this area. Table 2 also includes analysis of data
from the Southern Ocean but the resulting model is not
significant. This highlights the difficulties in conducting
regional regression even at the scale of ocean basins. Mak-
ing comparisons between areas like this is problematic
because of varying sample sizes and a lack of consistent
statistical methodology.
[22] An alternative method of assessing whether regional

variability exists in the global data set is to map the residuals
of the global regression model (Figure 2a). An assumption
of regression is that the residuals should have a random
distribution around zero. Extending this logic, if coefficients
are truly global they should also exhibit residuals that are
randomly distributed in space [Fotheringham et al., 2002].
However, we note here that negative residuals appear to
cluster in the low-latitude Atlantic and Pacific as well as the
western sub-arctic Pacific whereas positive residuals cluster
in the Arabian Gulf and Indian Ocean. This supports the
contention that there is potential non-stationarity in the
coefficients which are not truly global.

3.2. Geographically Weighted Regression

[23] Geographically weighted regression analysis was
applied to the global sediment trap data set at depths >1500 m.
The AICc calibration was used to determine an optimal band-
width of 66 nearest neighbors.
3.2.1. Assessing the Performance of GWR
[24] A reduction in the AIC score from the global model

score of 341.6 and an increase in R2 from 0.66 to 0.82
suggest that GWR is an improvement on the global model
(Table 3). The results of the ANOVA statistics show that the
GWR model is a significant improvement on the global
model while the results of the Monte Carlo test suggest there

is significant spatial variability in the regression coefficients.
A visual comparison of the residuals from the GWR
(Figure 2b) against the global regression residuals
(Figure 2a) indicates greater heterogeneity in areas previ-
ously characterized by clustered residuals, such as the
equatorial Pacific, Atlantic and the Indian Ocean. These
metrics suggest that the use of a spatially informed regres-
sion technique is justified here.
[25] GWR calculates regression coefficients and other

statistics at each data point, allowing them to be mapped
(Figure 3). The results show distinct regional groupings of
the coefficients with minimal variability within these groups.
An exception to this are the coefficients for opal in the North
Atlantic, which show a range of values in a relatively small
area with no identifiable spatial trend. In this region, the
bandwidth of 66 nearest neighbors that defines the subsets of
data is relatively large in comparison to the area (see
Figure 6a) and is therefore influenced by significantly dif-
ferent values in the Arctic and equatorial Atlantic. This
highlights a particular issue of using GWR with this data set:
the analysis is limited by the relatively small number of data
points compared to the area sampled, such that areas of low
sampling density may be produce spurious results. Data
points at the edge of ocean basins or in sparsely sampled
areas, such as the Southern Ocean, will also tend to include
data from other basins. The inclusion of data from other
ocean basins is an important caveat for this analysis and
limits the following section to the discussion of large-scale
spatial patterns in coefficients. We hereafter refer to this
caveat as inter-basin influence.
[26] To explore the sensitivity of coefficients to the

bandwidth and inter-basin influence, the bandwidth was
manually changed to 20 and 156 nearest neighbors in com-
parison to the calibrated 66 neighbors (Table 3), and the
results from the most variable mineral, CaCO3, were plotted
(Figures 4a and 4b). A bandwidth of 156 is used to assess if
the GWR technique can recover MLRA global coefficient
values. Although this will include all data points in the data
set they will still be weighted by distance. Figure 4b shows
that most of the coefficients converge toward a global value
around 0.09. The equatorial Pacific is the only area not to
conform to the global value. This is likely to be a result of a
combination of densely sampled data being weighted
heavily but in relative isolation to other data points. The
higher AIC score suggests this model has less ability to
predict POC than the calibrated optimal model, which is also
suggested by the lower R2 value (0.71) although it is still
higher than the global mean MLRA model (0.66) (Table 1).
With a much smaller bandwidth of 20, the R2 value increa-
ses but the higher AIC score indicates other aspects of the

Table 3. Summary Statistics of the GWR Models for Sediment Trap Data at >1500 ma

Bandwidth AIC R2 ANOVA Sig. CaCO3 Opal Lithogenic

66 (optimal) 269.82 0.82 <0.001 0.066*** 0.033*** 0.022***
20 318.04 0.90 <0.001 0.056 0.040*** 0.026***
156 313.41 0.71 <0.001 0.089*** 0.025 0.026

aA bandwidth of 66 is the optimal value chosen from the AICc calibration. Additional bandwidths of 20 and 156 are provided to
explore the sensitivity of the outcomes to bandwidth. ANOVA statistics test the null hypothesis that the GWR model is no
improvement on the global model. ‘Global’ carrying coefficients are the median of the 156 coefficients. Monte Carlo test for
spatial variability rejects the null hypothesis at *p < 0.05, **p < 0.01,*** p < 0.001.
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Figure 3. The spatial distribution of coefficients calculated using geographically weighted regression
analysis for (a) CaCO3, (b) opal, and (c) lithogenic material. The model is the same multiple linear regres-
sion model applied to the global data in Table 2 and Figure 2. The GWR analysis uses a bandwidth of 66
nearest neighbors, defined by an AICc minimization calibration procedure. A bi-square weighting scheme
was used. The GWR model predicts �82% of the variability in POC fluxes and is an improvement on the
global model. The corresponding global coefficient values are 0.089, 0.023 and 0.027 for (a), (b) and (c),
respectively.
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model are worse, such as increased variance (Table 3). We
might expect coefficients to vary significantly at this band-
width because the coefficients represent local values but are
also subject to influence from outliers. However, the large-
scale general spatial patterns (Figure 4a) are comparable to
those in Figure 3a, suggesting these are not an artifact of
bandwidth size. A notable exception to this is the lower
coefficients in the equatorial Atlantic (Figure 4a, cf.

Figure 3a). This suggests that the subset of data defined by a
bandwidth of 66 nearest neighbors may be influenced by
significantly higher values in the Southern Ocean but overall
our ability to capture the global mean MLRA coefficient
values when relaxing the spatial bandwidth gives us
increased confidence in this method.
[27] The basin-scale coefficients in Table 2 appear to

corroborate the GWR coefficients. Furthermore, to test the

Figure 4. Spatial distribution for CaCO3:POC coefficients calculated using geographically weighted
regression as in Figure 3 but with manually altered bandwidth values of (a) 20 and (b) 156 nearest neigh-
bors. Only coefficients for CaCO3 are displayed, as it displays the most variability of the three minerals
considered. For reference, the global CaCO3 coefficient is 0.089.
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validity of large scale patterns of coefficients produced by
GWR we manually selected subsets of data by region and
compared them to the mean GWR coefficients for the
corresponding area (Figure 5). Overall there is general
agreement between the coefficients from both methods,
supporting the results of the GWR analysis. This method of
validation is difficult because some areas have a small
number of data points, which can lead to statistically unre-
liable outcomes and is one reason why GWR is a preferable
technique. Overall, the coefficients show general agreement
with the GWR coefficients, suggesting that the GWR tech-
nique is producing reliable results even when considering
the potential for inter-basin influence.
3.2.2. Spatial Patterns in Regression Coefficients
[28] The geographically weighted regression analysis

defines clear regional patterns in the coefficients for CaCO3,
opal and lithogenic particles (Figure 3). The Atlantic dis-
plays some of the more unexpected results, with coefficients
differing appreciably from global values. Coefficients for
both CaCO3 and opal display a decreasing trend with
increasing latitude between 30 and 60 degrees North in the
North Atlantic. Opal is quantitatively more important than
CaCO3 and lithogenics in the low latitude Atlantic, corrob-
orating the basin-scale approach in Tables 1 and 2. In the

Arctic Ocean however, CaCO3 and lithogenics are quanti-
tatively more important. This is not revealed by the basin-
scale results.
[29] Overall in the Pacific, there is much less difference

between coefficient values, with no mineral showing overall
importance except for the higher coefficients observed for
CaCO3 in the western and equatorial Pacific. These could be
a result of inter-basin influence from the Indian Ocean
although similar behavior is not observed in the lithogenic
coefficients, suggesting that it is probably not an artifact.
The majority of the CaCO3 coefficients in the Pacific are
much lower than the global value of 0.089 (as also high-
lighted in the basin-scale analysis) (Table 2).
[30] The Indian Ocean is one of the only regions that

display similar coefficients to those from the global analysis,
with a quantitative importance identified between both
CaCO3 and lithogenics, and POC. Variability between the
Arabian Gulf and Bay of Bengal is small and is likely a
result of subtle changes in the subsets of data used. Finally,
the Southern Ocean also displays unexpected results, with
quantitative importance between CaCO3 and POC only.
Inter-basin influence may be a large problem for the
Southern Ocean, given the small number of samples and the
relative distances between them (see Figure 6a for indication

Figure 5. Comparison of regression coefficients calculated over manually selected areas and mean
coefficient values calculated using geographically weighted regression for the corresponding area for
(a) CaCO3, (b) opal, and (c) lithogenic material. Errorbars correspond to 2� standard error; 1:1 ratio
lines are shown.
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of bandwidth sizes). This is reflected in both the insignifi-
cant regression result in Table 2 and the relatively low R2

values generated by the GWR analysis (Figure 6b).
[31] Overall the global coefficient for CaCO3 of 0.089

appears to be dominated by the Southern Ocean, the Indian

Ocean, western equatorial Pacific and the Arctic while
regionally displaying much lower values (<0.04–0.05) in the
Atlantic and the remaining Pacific. In contrast, the global
value of 0.023 for opal and 0.027 for lithogenics appear
more consistent over large regions, with exceptions in the

Figure 6. a) Schematic depicting the bandwidth of geographically weighted regression. Circular line
indicates distance at which a weight of 0.75 occurs. Data is weighted ≥0.75 within the area and <0.75
up to the distance of the last nearest neighbor. A bandwidth of 66 nearest neighbors is used. (b) Local
R2 values from the geographically weighted regression in Figure 3 using a bandwidth of 66 nearest neigh-
bors and bi-square weighting scheme.

WILSON ET AL.: SPATIAL VARIABILITY OF PARTICLE FLUXES GB4011GB4011

11 of 15



Atlantic for opal and the Artic and Indian Oceans for
lithogenics.

4. Discussion

[32] Geographically weighted regression (GWR) offers a
promising technique to explore the regional variability of
regression coefficients. However, its application to sediment
trap data is limited both by the amount of data available and
the geographical distribution of sampling, which is some-
what clustered, being a collection of individual projects
focused on specific areas and research questions. The overall
size of the data set is also at the lower end to which GWR
may be successfully applied (M. E. Charlton, personal
communication, 2012). GWR is also subject to some of the
caveats to previous global mean (and annual average) anal-
yses and which may contribute to the observed variability.
For instance, differences in the origin of sinking particles
could have an influence on the degree of coupling between
POC and ballast mineral. Foraminiferal CaCO3 can be
de-coupled from POC due to the reproductive cycle, where
the gametes (contributing POC) abandon the organism,
leaving particles that are predominantly CaCO3 to sink
[Loubere et al., 2007]. Ziveri et al. [2007] showed that the
relationship between POC and CaCO3 in different species of
coccolithophores can also be variable, leading to differences
in regression coefficients. Similarly, Thunell et al. [2007]
observed variable POC to opal ratios in different coastal
diatom species which contributed to variation in regression
coefficients. Because sinking particles captured by sediment
traps are expressed as bulk CaCO3 and opal, it is likely this
could be a source of variability in the data which cannot be
accounted for here. The method of estimating lithogenic
fluxes has also been highlighted as an issue in analyzing
fluxes [Boyd and Trull, 2007]. Defined as the difference
between total mass flux and the main biogenic components,
the lithogenic fraction can be more accurately termed the
residual flux [Salter et al., 2010] and may include material
that is unaccounted for. Unfortunately this is not something
we have been able to address in this study.
[33] Despite these caveats, GWR removes some of the

subjectivity in choosing subsets of data and provides a
framework for dealing with statistical problems, e.g. such as
increased variance of coefficients. GWR therefore offers a
more objective technique and one able to explore spatial
patterns at a finer resolution than the basin-scale analyses
previously possible.

4.1. Why is there Spatial Variability in Carrying
Coefficients?

[34] If there was a systematic mechanism linking increased
sinking velocity of particulate organic matter with CaCO3 or
between the efficiency of export to depth and protection from
remineralization [Armstrong et al., 2001; Klaas and Archer,
2002], we would expect to observe consistent relationships
between POC and the presence of minerals at a global scale.
However, in the GWR analysis used here we have identified
significant spatial variability in the carrying coefficients but
with generally coherent large-scale spatial relationships.
If we are to improve models of the ocean carbon cycle and
hence better quantify feedbacks and potential impacts of
global change, we need to understand why any coherent

patterns occur at all and why regions differ from one another.
The underlying complexity and challenge in mechanistic
interpretation is illustrated by considering the quantitative
importance observed for opal in the Atlantic and CaCO3 in
the Southern Ocean, which is somewhat counterintuitive
considering the global distribution of productivity by major
plankton groups, with relatively little opal exported from the
surface of the Atlantic and relatively little CaCO3 exported in
the Southern Ocean. The inference is that fluxes of POC are
quantitatively associated with fluxes of opal in the Atlantic
despite this being an area of very low opal fluxes. The inverse
applies to the Southern Ocean and CaCO3. This suggests that
there is more to the controls of sinking POC than just the
dominant mineral phase being produced at the surface.
[35] Multiple linear regression reflects the joint variability

between all three minerals and POC and therefore coeffi-
cients reflect variability related to the specific combination
of all flux components and should not be interpreted in terms
of any one mineral component in isolation. Honjo et al.
[2008] demonstrated that the relationships between the pro-
portions of POC, CaCO3 and opal within mass fluxes are
broadly aligned with regional patterns such as biogeochem-
ical provinces. They used this to define broad regions that
are dominated either by POC, CaCO3 or opal. The patterns
of coefficients in Figure 3 define broad regions and appear
consistent with this interpretation, being visually comparable
to biogeochemical provinces (and which we have demon-
strated are not artifacts of the statistical method or inter-basin
influence; see Figure 5). The regional regression coefficients
we observe here may then reveal variability derived from the
specific combinations of flux components that ultimately
derive from specific ecosystem characteristics.
[36] Recent studies have built on this alternative interpre-

tation of the observed relationships between POC and
minerals, focusing on the variability originating from eco-
system processes. Francois et al. [2002] originally sug-
gested that differences in the biodegradability of POC
derived from CaCO3-dominated ecosystems resulted in
efficient POC transfer rather than from the direct presence of
CaCO3 itself. Developing this methodology further with
satellite data, Henson et al. [2012] found that the export
efficiency of particles from the surface is low in carbonate
dominated regions but transfer efficiency of POC to depth is
high, with the reverse being true in regions dominated by
diatoms. This complements similar findings in the Southern
Ocean [Lam and Bishop, 2007] and the identification of
similar variability through the interaction between the timing
and intensity of activity in producer and consumer commu-
nities [Lam et al., 2011]. Our results are consistent with the
relationships between mass flux components being derived
from ecosystem characteristics, and support the findings of
these studies in suggesting that the key factor in the vari-
ability of POC reaching the deep ocean is the interaction
between producer and consumer communities in different
ecosystems, possibly reflecting the resulting differences in
exported organic matter biodegradability. In ecosystems
with highly seasonal productivity, mismatches in the timing
of producer and consumer activity can result in labile
organic matter being exported which is then readily remi-
neralized in the water column. Likewise, in non-seasonal
ecosystems more constant production and consumption can
result in the export of relatively refractory material which is
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more resistant to remineralization in the water column and
sinking to depth [Lam et al., 2011]. Our spatial analysis
suggests that even within diatom and carbonate dominated
regions there are distinct variations which may relate to
specific differences in this packaging function, such as the
distribution of different species and behavior of zooplankton
present, and the subsequent action of bacteria [Lam and
Bishop, 2007; Buesseler and Boyd, 2009].

4.2. Implications for the Ballast Hypothesis
and Modeling

[37] The ballast hypothesis has been highly influential in
proposing that fluxes of POC can be mechanistically linked
to fluxes of ballast minerals such as CaCO3. The basis of this
hypothesis is the observed strong global quantitative rela-
tionship observed between POC and CaCO3. However,
we have shown that this strong relationship does not apply to
all regions (or even sub-regions) in the ocean and is not
constrained to CaCO3 alone. In effect, the strong relation-
ship appears to be an artifact of averaging fluxes on a global
scale, masking important regional variability. This could
occur because globally there is a large range of flux mag-
nitudes in both POC and CaCO3 which is larger than the
variability of the regional POC:CaCO3 ratios. This is evident
in Figure 1b, where different basin scale ratios can be seen
within the global data distribution. Using the relative stan-
dard deviation (RSD) as a comparable measure of the vari-
ation within each data set, the individual fluxes of CaCO3

and POC have RSD values of 0.62 and 0.71 respectively
whereas the RSD of the CaCO3 carrying coefficients is
smaller at 0.45. As such, we suggest the appearance of a
global correlation between CaCO3 and POC could be
exaggerated as a result of considering data at a global scale.
Equally, this may bias the interpretation of such relation-
ships without information on spatial variability. In a similar
manner, Lam et al. [2011] produced global coefficient
values when averaging particle concentration data through
time but which masked important temporal variability, sug-
gesting a different mechanistic interpretation. The analyses
of temporal variability [Lam et al., 2011], transfer efficien-
cies of POC [Francois et al., 2002; Henson et al., 2012] and
the regional variability highlighted in this study all suggest
that ecosystem-based mechanisms are influential in setting
the efficiency of the biological pump. While this does not
rule out ballasting as a mechanism (e.g. Ploug et al. [2008];
Engel et al. [2009]; Iversen and Ploug [2010]) it shifts the
focus away from a simple causal physical explanation.
[38] The ballast hypothesis has inspired specific para-

meterizations using the global statistical coefficients to be
adopted in a number of global ocean carbon cycle models
(e.g. HAMOCC5.1 [Howard et al., 2006], CCSR COCO
4.0 [Oka et al., 2008] and POTSDAM-C [Hofmann and
Schellnhuber, 2009], see also PISCES [Gehlen et al.,
2006]). Our results suggest that using these global statisti-
cal parameters explicitly in models requires careful recon-
sideration. However, moving away from a common global
mechanism to parameterizations able to capture spatial vari-
ability in the flux relationships is not trivial. Application of a
simple prescribed map (distribution) of carrying capacities,
while potentially improving the simulation of dissolved nutri-
ent and carbon distributions in the ocean interior, is likely
to fail to provide an appropriate response to global change.

Instead, there needs to be a shift in the focus away from a
geochemical-based understanding and parameterization
approaches toward a more ecological-based understanding of
fluxes [Ragueneau et al., 2006; Boyd and Trull, 2007], which
will require alternative mechanistic representations in mod-
els. Reflecting ecosystem function will then lead to poten-
tially very different feedback mechanisms when considering
ocean acidification and climate change [Henson et al., 2012].
Further work will be needed to develop flux parameteriza-
tions that link aspects of ecosystem function with organic
matter particle fluxes. In this respect, Riley et al. [2012]
recently suggested a model that considers suspended parti-
cles, slow sinking particles that are subject to remineraliza-
tion in the water column, and fast sinking particles that may
be subject to ballasting. Considering the range of mechanistic
interpretations and inherent uncertainty this introduces, fur-
ther work is needed to quantitatively constrain the range of
feedback processes through modeling. This may offer a new
method of evaluation when applied to events in the paleo-
record, which may be analogous to current ocean
acidification.

5. Conclusions

[39] Geographically weighted regression (GWR) has
allowed us to explore the spatial variability in the particulate
organic carbon carrying coefficients associated with ballast
mineral fluxes in the deep ocean. GWR reveals significant
spatial variability in the relationship between POC and
minerals that is obscured when using a global multiple linear
regression analysis (MLRA) approach. This leads us to
conclude that the strong and apparently near-uniform rela-
tionship between POC and CaCO3 observed at a global scale
is an artifact of high degree of spatial averaging. Regional
MLRA goes some way to resolving the spatial variability
that exists in coefficients, but still hides significant spatial
variability within large regions.
[40] The nature of the spatial patterns in carrying coeffi-

cients observed using GWR may result from unique com-
binations of flux components reaching depth which are in
turn derived from specific properties of the surface ecosys-
tem. This has important implications for modeling studies
which parameterize a ballasting mechanism based directly
on global MLRA. New parameterizations (and understand-
ing) need to be developed that link aspects of ecosystem
function with organic matter particle fluxes. As there are
multiple hypotheses that may explain the observations and
patterns of correlations between fluxes, new models will be
needed that can explore different mechanisms and quantita-
tively evaluate their implications against observations and
ultimately to quantify the nature and strength of feedbacks in
the system.

[41] Acknowledgments. This work was conducted as part of a proj-
ect studentship (JW) associated with the UK Ocean Acidification Research
Programme (UKOARP) grant NE/H017240/1 to AR and SB. AR acknowl-
edges support from a Royal Society University Research Fellowship. We
thank two anonymous reviewers for their helpful comments.

References
Akaike, H. (1974), A new look at the statistical model identification, IEEE
Trans. Autom. Control, 19(6), 716–723, doi:10.1109/TAC.1974.1100705.

WILSON ET AL.: SPATIAL VARIABILITY OF PARTICLE FLUXES GB4011GB4011

13 of 15



Archer, D., and E. Maier-Reimer (1994), Effect of deep-sea sedimentary cal-
cite preservation on atmospheric CO2 concentration, Nature, 367(6460),
260–263, doi:10.1038/367260a0.

Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham
(2001), A new, mechanistic model for organic carbon fluxes in the ocean
based on the quantitative association of POC with ballast minerals, Deep
Sea Res., Part II, 49(1–3), 219–236.

Barker, S., J. A. Higgins, and H. Elderfield (2003), The future of the car-
bon cycle: Review, calcification response, ballast and feedback on
atmospheric CO2, Philos. Trans. R. Soc. A, 361(1810), 1977–1999,
doi:10.1098/rsta.2003.1238.

Boyd, P. W., and T. W. Trull (2007), Understanding the export of biogenic
particles in oceanic waters: Is there consensus?, Prog. Oceanogr., 72(4),
276–312, doi:10.1016/j.pocean.2006.10.007.

Brunsdon, C., A. S. Fotheringham, and M. E. Charlton (1998), Geographi-
cally weighted regression-modelling spatial non-stationarity, Statistician,
47(3), 276–312, doi:10.1111/1467-9884.00145.

Buesseler, K., and P. Boyd (2009), Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54(4), 1210–1232, doi:10.4319/lo.2009.54.4.1210.

Conte, M., R. Ralph, and E. Ross (2001), Seasonal and interannual var-
iability in deep ocean particle fluxes at the Ocean Flux Program (OFP)/
Bermuda Atlantic Time Series (BATS) site in the western Sargasso
Sea near Bermuda, Deep Sea Res., Part II, 48(8–9), 1471–1505,
doi:10.1016/S0967-0645(00)00150-8.

De La Rocha, C. L., and U. Passow (2007), Factors influencing the sinking
of POC and the efficiency of the biological carbon pump, Deep Sea Res.,
Part II, 54(5–7), 639–658, doi:10.1016/j.dsr2.2007.01.004.

De La Rocha, C. L., N. Nowald, and U. Passow (2008), Interactions
between diatom aggregates, minerals, particulate organic carbon, and dis-
solved organic matter: Further implications for the ballast hypothesis,
Global Biogeochem. Cycles, 22, GB4005, doi:10.1029/2007GB003156.

Engel, A., J. Szlosek, L. Abramson, Z. F. Liu, and C. Lee (2009), Investi-
gating the effect of ballasting by CaCO3 in Emiliania huxleyi: I. Forma-
tion, settling velocities and physical properties of aggregates, Deep Sea
Res., Part II, 56(18), 1396–1407, doi:10.1016/j.dsr2.2008.11.027.

Fotheringham, A. S., M. E. Charlton, and C. Brunsdon (1998), Geographically
weighted regression: A natural evolution of the expansion method for spatial
data analysis, Environ. Plan. A, 30(11), 1905–1927, doi:10.1068/a301905.

Fotheringham, A. S., C. Brunsdon, and M. E. Charlton (2002), Geograph-
ically Weighted Regression: The Analysis of Spatially Varying Relation-
ships, Wiley, Chichester, U. K.

Francois, R., S. Honjo, R. Krishfield, and S. Manganini (2002), Factors con-
trolling the flux of organic carbon to the bathypelagic zone of the ocean,
Global Biogeochem. Cycles, 16(4), 1087, doi:10.1029/2001GB001722.

Gehlen, M., L. Bopp, N. Ernprin, O. Aumont, C. Heinze, and O. Raguencau
(2006), Reconciling surface ocean productivity, export fluxes and sedi-
ment composition in a global biogeochemical ocean model, Biogeos-
ciences, 3(4), 521–537.

Harris, P., C. Brunsdon, and A. S. Fotheringham (2011), Links, comparisons
and extensions of the geographically weighted regression model when
used as a spatial predictor, Stoch. Environ. Res. Risk Assess., 25(2),
123–138, doi:10.1007/s00477-010-0444-6.

Heinze, C. (2004), Simulating oceanic CaCO3 export production in the green-
house, Geophys. Res. Lett., 31, L16308, doi:10.1029/2004GL020613.

Henson, S., R. Sanders, and E. Madsen (2012), Global patterns in efficiency
of particulate organic carbon export and transfer to the deep ocean,
Global Biogeochem. Cycles, 26, GB1028, doi:10.1029/2011GB004099.

Hofmann, M., and H. J. Schellnhuber (2009), Oceanic acidification
affects marine carbon pump and triggers extended marine oxygen
holes, Proc. Natl. Acad. Sci. U. S. A., 106(9), 3017–3022, doi:10.1073/
pnas.0813384106.

Honda, M. C., and S. Watanabe (2010), Importance of biogenic opal as
ballast of particulate organic carbon (POC) transport and existence of
mineral ballast-associated and residual POC in the Western Pacific
Subarctic Gyre, Geophys. Res. Lett., 37, L02605, doi:10.1029/
2009GL041521.

Honjo, S., S. J. Manganini, R. A. Krishfield, and R. Francois (2008), Particu-
late organic carbon fluxes to the ocean interior and factors controlling the
biological pump: A synthesis of global sediment trap programs since
1983, Prog. Oceanogr., 76(3), 217–285, doi:10.1016/j.pocean.2007.11.
003.

Hope, A. C. A. (1968), A simplified Monte Carlo significance test proce-
dure, J. R. Stat. Soc. B, 30(3), 582–598.

Howard, M. T., A. M. E. Winguth, C. Klaas, and E. Maier-Reimer (2006),
Sensitivity of ocean carbon tracer distributions to particulate organic flux
parameterizations, Global Biogeochem. Cycles, 20, GB3011, doi:10.1029/
2005GB002499.

Iversen, M. H., and H. Ploug (2010), Ballast minerals and the sinking
carbon flux in the ocean: Carbon-specific respiration rates and sinking
velocity of marine snow aggregates, Biogeosciences, 7(9), 2613–2624,
doi:10.5194/bg-7-2613-2010.

Klaas, C., and D. E. Archer (2002), Association of sinking organic matter
with various types of mineral ballast in the deep sea: Implications for
the rain ratio, Global Biogeochem. Cycles, 16(4), 1116, doi:10.1029/
2001GB001765.

Kumar, S., and R. Lal (2011), Mapping the organic carbon stocks of surface
soils using spatial interpolator, J. Environ. Monitor., 13, 3128–3135,
doi:10.1039/c1em10520e.

Lam, P. J., and J. K. B. Bishop (2007), High biomass, low export regimes in
the Southern Ocean, Deep Sea Res., Part II, 54(5–7), 601–638,
doi:10.1016/j.dsr2.2007.01.013.

Lam, P. J., S. C. Doney, and J. K. B. Bishop (2011), The dynamic ocean bio-
logical pump: Insights from a global compilation of particulate organic
carbon, CaCO3, and opal concentration profiles from the mesopelagic,
Global Biogeochem. Cycles, 25, GB3009, doi:10.1029/2010GB003868.

Longhurst, A. (1998), Ecological Geography of the Sea, Acad. Press, San
Diego, Calif.

Loubere, P., S. A. Siedlecki, and L. I. Bradtmiller (2007), Organic carbon
and carbonate fluxes: Links to climate change, Deep Sea Res., Part II,
54(5–7), 437–446. doi:10.1016/j.dsr2.2007.02.001.

Montgomery, D. C., E. A. Peck, and G. G. Vining (2006), Introduction to
Linear Regression Analysis, 4th ed., Wiley, Hoboken, N. J.

Mortlock, R., and P. Froelich (1989), A simple method for the rapid deter-
mination of biogenic opal in pelagic marine sediments, Deep Sea Res.,
Part A, 36(9), 1415–1426, doi:10.1016/0198-0149(89)90092-7.

Oka, A., S. Kato, and H. Hasumi (2008), Evaluating effect of ballast min-
eral on deep-ocean nutrient concentration by using an ocean general cir-
culation model, Global Biogeochem. Cycles, 22, GB3004, doi:10.1029/
2007GB003067.

Passow, U. (2004), Switching perspectives: Do mineral fluxes determine
particulate organic carbon fluxes or vice versa?, Geochem. Geophys.
Geosyst., 5, Q04002, doi:10.1029/2003GC000670.

Passow, U., and C. L. De La Rocha (2006), Accumulation of mineral ballast
on organic aggregates, Global Biogeochem. Cycles, 20, GB1013,
doi:10.1029/2005GB002579.

Ploug, H., M. H. Iversen, and G. Fischer (2008), Ballast, sinking velocity,
and apparent diffusivity within marine snow and zooplankton fecal pel-
lets: Implications for substrate turnover by attached bacteria, Limnol.
and Oceanogr., 53(5), 1878–1886, doi:10.4319/lo.2008.53.5.1878.

Ragueneau, O., S. Schultes, K. Bidle, P. Claquin, and B. La Moriceau
(2006), Si and c interactions in the world ocean: Importance of ecological
processes and implications for the role of diatoms in the biological pump,
Global Biogeochem. Cycles, 20, GB4S02, doi:10.1029/2006GB002688.

Ridgwell, A. J. (2003), An end to the “rain ratio” reign?,Geochem. Geophys.
Geosyst., 4, 1051, doi:10.1029/2003GC000512.

Riebesell, U., A. Kortzinger, and A. Oschlies (2009), Sensitivities of marine
carbon fluxes to ocean change, Proc. Natl. Acad. Sci. U. S. A., 106(49),
20,602–20,609, doi:10.1073/pnas.0813291106.

Riley, J., R. Sanders, F. Marsay, C. Moigne, E. Achterberg, and A. Poulton
(2012), The relative contribution of fast and slow sinking particles to
ocean carbon export, Global Biogeochem. Cycles, 26, GB1026,
doi:10.1029/2011GB004085.

Salter, I., A. Kemp, R. Lampitt, and M. Gledhill (2010), The association
between biogenic and inorganic minerals and the amino acid composition
of settling particles, Limnol. Oceanogr., 55, 2207–2218, doi:10.4319/
lo.2010.55.5.2207.

Scholten, J. C., et al. (2001), Trapping efficiencies of sediment traps from
the deep eastern North Atlantic: The 230th calibration, Deep Sea
Res., Part II, 48(10), 2383–2408, doi:10.1016/S0967-0645(00)00176-4.

Stemmann, L., G. Jackson, and G. Gorsky (2004), A vertical model of par-
ticle size distrubutions and fluxes in the midwater column that includes
biological and physical process—Part II: Application to a three year sur-
vey in the NWMediterranean Sea, Deep Sea Res., Part I, 51(7), 885–908,
doi:10.1016/j.dsr.2004.03.002.

Thunell, R., C. Benitez-Nelson, R. Varela, Y. Astor, and F. Muller-Karger
(2007), Particulate organic carbon fluxes along upwelling-dominated
continental margins: Rates and mechanisms, Global Biogeochem. Cycles,
21, GB1022, doi:10.1029/2006GB002793.

Vichi, M., J. I. Allen, S. Masina, and N. J. Hardman-Mountford (2011), The
emergence of ocean biogeochemical provinces: A quantitative assess-
ment and a diagnostic for model evaluation, Global Biogeochem. Cycles,
25, GB2005, doi:10.1029/2010GB003867.

Wong, C., F. Whitney, K. Crawford, K. Iseki, R. Matear, W. Johnson,
J. Page, and D. Timothy (1999), Seasonal and interannual variability in
particle fluxes of carbon, nitrogen and silicon from time series of sediment
traps at Ocean Station P, 1982–1993: Relationship to changes in subarctic

WILSON ET AL.: SPATIAL VARIABILITY OF PARTICLE FLUXES GB4011GB4011

14 of 15



primary productivity, Deep Sea Res., Part II, 46(11–12), 2735–2760,
doi:10.1016/S0967-0645(99)00082-X.

Yu, E. F., R. Francois, M. P. Bacon, S. Honjo, A. P. Fleer, S. J. Manganini,
M. M. R. van der Loeff, and V. Ittekot (2001), Trapping efficiency of bot-
tom-tethered sediment traps estimated from the intercepted fluxes of

230Th and 231Pa, Deep Sea Res., Part I, 48(3), 865–889, doi:10.1016/
S0967-0637(00)00067-4.

Ziveri, P., B. de Bernardi, K. H. Baumann, H. M. Stoll, and P. G. Mortyn
(2007), Sinking of coccolith carbonate and potential contribution to
organic carbon ballasting in the deep ocean, Deep Sea Res., Part II,
54(5–7), 659–675, doi:10.1016/j.dsr2.2007.01.006.

WILSON ET AL.: SPATIAL VARIABILITY OF PARTICLE FLUXES GB4011GB4011

15 of 15



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


