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Abstract

Future  energy  supply  infrastructure  schemes  for  the  built 
environment  are  set  to  consist  of  a  diverse  mix  of  distributed 
generation  technologies,  increasingly  stringent  local  emissions 
reduction  targets,  and  potentially  complex  ownership  structures. 
This  thesis  presents  a  new  modelling  method  that  integrates 
technical  design,  green  house  gas  emissions  analysis  and  financial 
analysis models for new build multi energy vector systems. 

The model was used to compare and characterise several alternative 
heating technology options for the carbon constrained design of  a 
generic  UK market  town  residential  development.  Of  the  options 
examined,  natural  gas  combined  heat  and  power  based  district 
heating was shown to provide the least cost solution for projects built 
before 2020.  Beyond 2025, electric heat pumps provided the cheapest 
option  in  response  to  the  decarbonisation  of  the  grid  supplied 
electricity.

The  integrated  model  was  used  as  the  basis  of  an  optimised 
infrastructure design tool.  This was applied to determine the least 
cost  energy  supply  technology  mix  for  a  new  build  community 
redevelopment scheme at Ebbw Vale, South Wales.  It was shown 
that  both  the  optimal  design  and  corresponding  optimal  cost  is 
dependent upon the year of build completion for the project and the 
accounting methodology used for grid supplied electricity emissions.
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DailyDH Daily district heat network demand (kWh/day)

DmdDH District heat network demand at time step (kWh/h)

GCH Heat output from individual gas boilers (kWhth/h)

G Heat output from generator (kWhth/h)
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PeakDH Peak cluster district heat network demand (kWth)
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SH Average space heating demand (kWh/h)
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Chapter 1 

Introduction

 1.1 Background

The provision of energy to the built environment in the UK is undergoing 
significant change.  The majority of buildings within urban environments are 

presently  supplied  via  the  national  gas  and  electricity  transmission  and 
distribution infrastructure.  In recent years the reliance upon fossil fuels has 

given rise to concerns over anthropological climate change, rising fuel prices 
and exposure to political volatility.  In response, a series of mitigatory policies 

and measures have emerged aimed at reducing UK energy consumption and 
carbon emissions including those from buildings.  The  Climate Change Act 

(HM Gov 2008) has set a legally binding 80% reduction target for all UK 
green house gas emissions by 2050 compared to 1990 levels.  The potential 

pathways to an intermediate target reduction of 32% by 2020 was set out by 
the Low Carbon Transition Plan (DECC 2009).  

The energy consumption of buildings accounts for ~48% (29% residential, 19% 
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non-residential)  of  total  UK  emissions.  The  reduction  of  building  energy 

emissions must therefore be central to the UK emissions reduction strategy. 
Emissions savings can be achieved within existing buildings by using more 

efficient lighting and appliances, by retrofitting building insulation materials, 
by  replacing  older  inefficient  boilers  with  more  energy  efficient  heating 

methods  or  by  retrofitting  renewable  electricity  generation  technologies 
(Hinnells 2008a).  The ongoing (at time of writing)  The Future of Heating 

consultation (DECC 2012c) aims to provide a strategic framework for existing 

a future policy measures aimed at heat provision.  Policy measures to effect 
such changes at building level include the Carbon Emissions Reduction Target 

(CERT) scheme (DECC 2010a), and the Green Deal (DECC 2012b) which is 
due  for  implementation towards the end of  2012.   To discourage wasteful 

consumer behaviour, efforts are under way to replace 53 million existing gas 
and electricity meters with smart meters in the UK (DECC 2011c).  

For  new  build  schemes  carbon  critical  or  carbon  constrained  design  is 

emerging as an integral part of UK energy strategy to 2050 as discussed by 
Clarke (2010).  This approach requires the developer to deliver a reduction of 

green house gas (GHG) emissions within the site boundary .  The BedZed 
housing development was a pioneering example of a carbon constrained design 

paradigm by delivering a 90%  emissions reduction using a mix of on site 
technologies (Chance 2009).   In 2007 the  Building a Greener Future policy 

statement (DCLG 2007) set out the requirement for all new build domestic 

dwellings to be “ zero carbon”  from 2016.  The  Definition of Zero Carbon  

Homes consultation  in  2008  (HMGov  2008)  detailed  the  framework  and 

pathway to zero carbon implementation.  This was formalised by the creation 
of  the  Zero  Carbon  Hub (ZCH)  in  2009  which  provides  guidance  and 

compliance standards for the zero carbon homes initiative.
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In response industry concerns following the recent economic downturn, the 

definition of zero carbon has been relaxed to apply to regulated (i.e. space 
heating, cooling and lighting) rather than total emissions.  In its present form 

the ZCH initiative mandates a 70% reduction of regulated emissions compared 
to  the  2006  building  standards  using  on-site  solutions  from  2016.   The 

remaining 30% reduction must  be  met  using “ allowable  off  site  solutions”  
(ZCH 2011). On-site solutions cover a diverse range of technologies.  These 

include individual installations such as PV, solar thermal  and micro CHP 
through to large scale community level solutions such as biomass gasification 

CHP district heating.  Improved building fabrication standards are considered 
an integral  component of  the on-site  solution and a minimum Fabrication 

Energy Efficiency Standard (FEES) applies (ZCH 2009).  

 1.2 Low Carbon Electricity Supply to Buildings

Micro  electricity  generation  technologies  are  anticipated  to  provide  a 
significant  contribution  to  the  future  supply  mix  and  required  emissions 

reduction.  The  recently  introduced  Feed  in  Tarrif  (FiT)  scheme  aims  to 
stimulate  the  uptake  of  renewable  micro-generation  technologies  such  as 

photovoltaic panels, micro wind or  micro hydro (DECC 2010b).  The Green 
Energy  Act  (HM  Gov  2009)  defines  micro-generation  as  installations 

producing  up  to  50kWe or  300kWth.  The  2011 micro  generation  strategy 
(DECC 2011a) sets out a number of actions to promote the uptake of micro-

generation technologies without stipulating any particular targets for uptake.  

The technical  challenges  of  integrating of  distributed electricity generation 
into distribution networks include the voltage rise, power quality and system 

protection.  These  are  considered  in  detail  by  Strbac  et  al  (2009)  and  a 
discussed in a generic sense within the review by Pecas-Lopes et al (2007). 

3



                                                     1  . Introduction  

The effect of embedding significant levels of generic micro generation upon 

local  electricity networks has  been modelled  by Ingram et  al  (2003),  who 
considers the penetration limits of small scale generation (up to 16A) with 

respect to network voltage beyond the 33kV substation. Thompson and Infield 
(2007) provide a simulation of the impact of very high levels of PV upon an 

existing UK 11kV distribution network feeder including all corresponding LV 
networks. Firestone et al (2006) modelled the optimised dispatch of domestic 

storage,  and  distributed  generation  with  PV.  Similar  studies  upon  the 
implications of integrating micro wind has been performed by Behaj et  al 

(2007), Peacock et al (2008) and James et al(2010).  

The  decarbonisation  of  the  UK  centralised  generation  mix  will  have  a 
considerable  indirect  effect  upon  emissions  from  building  electricity 

consumption. The Low Carbon Transition (DECC 2009) targets 40% of UK 
electricity generation using low carbon sources by 2020. This is to be achieved 

through the use of renewable technologies such as large scale wind, a shift 
towards cleaner and more efficient fossil fuel technologies such as CCGT, and 

the  use  of  novel  post  processing  technologies  such as  carbon capture  and 
storage. The Renewables Obligation (Ofgem 2012) has provided a mandatory 

framework  since  2002  for  suppliers  to  generate  using  renewable  resources 
(currently 10.4% rising to 15.4% by 2016).  At the time of writing, a draft 

Electricity Market Reform Bill (DECC 2011e) was published which aims to 
ensure low carbon technologies can compete fairly within the marketplace.

 1.3 Low Carbon Heat Supply to Buildings

Space and hot water heating in buildings accounts for approximately 35% of 

the  total  UK energy  demand (540TWh out  of  1668TWh in  2009,  DECC 
2012c). Several options are emerging to allow a shift away from gas boilers as 
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the  default  supply  technology.   Lowe  (2007)  reviews  the  alternative  heat 

supply options for the existing UK housing stock and suggests that a 60-70% 
carbon reduction may be achieved by re-engineering the energy supply using 

heat pumps, micro CHP or building fabric measures.   A study by Monahan 
(2011) on the other hand considers the potential performance of various heat 

supply technologies for new homes.  The Renewables Heat Incentive (RHI, 
DECC 2011d) is a fiscal measure introduced towards the end of 2011 as a 

replacement for the Low Carbon Buildings program. This aims to encourage 
the uptake of renewable sources such as heat pumps, biomass boilers and solar 

thermal panels.

 1.3.1 Heat Pumps

Heat  pumps  use  electrical  power  to  displace  thermal  energy  from  a  low 
temperature source to a higher temperature sink. The technical issues facing 

heat  pump  implementation  within  the  UK was  examined  by  Singh  et  al 
(2009) who concluded an improvement of  long term viability with reversible 

operation  to  provide  cooling  during  the  summer.  Jenkins  et  al  (2009), 
identifies supply temperature as one of the main constraints for heat pump 

viability  with  improved  prospects  for  new  build  dwellings  applying  lower 
temperature regimes. A UK field trial of air source heat pumps presented by 

Kelly  and Cockroft  (2011)  showed a  12% carbon saving compared to  gas 
boilers  assuming  a  grid  carbon  intensity  of  0.54kg/kWh  and  significantly 

higher savings would be expected with grid decarbonisation. The heat pump 
coefficient  of  performance  (CoP,  the  ratio  of  heat  generated  to  electricity 

consumed) range was found to vary between 2.55 and 3.1. 

Heat pumps are presently a capital intensive technology and installation costs 
vary  considerably  according  to  the  type  of  system.   For  ground  source 

systems, the ground coil or bore hole used to collect heat can comprise up to 
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half of the overall cost (Rawlings 2004). Significant cost savings may therefore 

be achieved with a reduction of capacity.  By shifting the heat demand to 
electricity demand, opportunities may arise for more sophisticated modes of 

system  operation.  Hewitt  (2012),  for  example,  examines  the  potential  for 
using heat  pumps as part  of  a  smart  grid  to balance excess  wind energy 

production. This may lead to more favourable tariffs for participating heat 
pump units.

 1.3.2 District Heat Networks

District  heating  (DH)  is  the  distribution  of  thermal  energy  to  a  set  of 

consumers  using  a  network  of  insulated  hot  water  pipes.   Common heat 
sources include commercial scale gas boilers, biomass boilers and Combined 

Heat  and  Power  (CHP)  plant.  Other  potential  sources  include  Industrial 
waste heat, solar thermal and geothermal energy.  District heating has been 

deployed extensively Northern and Eastern European cities, with Denmark 
often  cited  as  the  leading  example  with  58%  of  households  served  by 

50,000km of DH pipe (Danish Energy Authority 2005).

The case for DH as a vector for delivering sustainable and low carbon heat to 
buildings in the UK has received a resurgence of interest over the past decade. 

Such schemes offer the opportunity to utilise heat from a variety of sources 
local to the point of consumption.  Examples of resources exploited within the 

UK include natural gas CHP (EST 2003), energy from waste (Kirkman et al 
2010),  biomass  (Vital  Energy  2008)  and  geothermal  (SCC  2011).  The 

exploitation  of  the  industrial  waste  heat  at  Port  Talbot  Steelworks  is 
currently  under  consideration  (Upham  &  Jones  2012).  The  diversity  of 

potential  sources  provides  some  protection  against  long  term  supply 
technology  lock  in  so  that  new  technologies  or  resources  may  be  readily 

adopted should they become commercially viable.  The flexibility to switch 
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fuel sources may also protect against fuel poverty, particularly in the event of 

rising fossil fuel costs (Austin 2010).

The viability of retrofitting DH into UK households was examined by Woods 

et al (2005) and by Poyry (2009). These suggest that the high installation 
costs of pre-insulated pipe provides the biggest barrier to uptake compounded 

by a lack of industry wide standards, an undeveloped supply chain and the 
lack of a suitably skilled construction workforce. Schemes deemed suitable for 

DH were those with access  to  a low cost waste heat  source,  with a high 
demand density such as apartments and commercial premises, and dwellings 

currently using electric heating.  A study by the EST (2008) examined the 
case for DH within new build schemes concluding that viability is dependent 

upon the extent of network cost reduction as the energy demand per dwelling 
decreases.

A  number  of  researchers  have  considered  the  regulatory,  financial  and 

organisational  changes  required  to  improve  the  outlook  for  DH  schemes. 
Hinnells  (2008b)  describes  the  lack  of  a  heat  market  and  regulatory 

framework as a key obstacle to the uptake of CHP based schemes. Lee et al 
(2010) focuses upon the use of CHP within completed UK district heating 

schemes,  suggesting  that  high  up front  capital  costs,  a  lack  of  long  term 
contracts and a culture of short term profit as a sources of perceived but 

overstated risk to investors.  A review of CHP-DH prospects by Kelly and 
Pollit  (2010)  identifies  two  key  planning  activities  required  to  overcome 

barriers to uptake: Optimising or improving the engineering design principles 
and selecting the most appropriate organisational framework.

Several  approaches  have  been  examined  for  the  cost  reduction  of  DH 
networks.  Bohm (2008) explored alternatives to the standard configuration 
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for separate supply and return lines.  Dual pipe systems, for example, were 

shown to reduce losses and material  costs and are now widely adopted in 
Scandinavian countries.  Koersman et al (2008) examined the use of plastic 

pipes within a district  heating system. The use of  plastic  pipes for  static 
pressures  of  up  to  6bar  and  temperatures  of  90-95oC  offers  significant 

potential  material  cost  savings  compared  to stainless  steel.   The net  cost 
savings were found to be small, however, due to the undeveloped supply chain 

for plastic products.  Further cost savings can be achieved by optimising the 
network route and design. Jamsek et al (2010), for example, use a non linear 

simplex method to select the least cost subset of possible routes for a DH 
infrastructure. 

 1.3.3 Micro-CHP

Micro CHP is the small scale (<50kWe) simultaneous generation of heat and 

electricity usually installed within the building being supplied. Newborough 
(2004) examined the cost benefits of residential units.  A study by Peacock 

and Newborough (2008) examine the carbon savings for the existing housing 
stock.  The effect of introducing large numbers of micro CHP into the local 

electricity network has been examined by Beddoes et al (2007),  Sulka et al 
(2008) and by Thomson and Infield (2008). 

 1.4 Integration of Energy Vectors

The  growing  range  of  commercially  available  energy  supply  technologies 

increases  the  number  of  potential  points  of  coupling  between  distribution 
networks.  An  understanding  of  this  increased  network  interaction  and 

interdependency  may  lead  to  reductions  of  cost,  energy  consumption  and 
emissions.  Benefits may include increased design flexibility and operational 

degrees  of  freedom,  whilst  disadvantages  include  potential  cross  network 
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vulnerabilities as well as capacity issues for the existing infrastructure.

The point of coupling introduced by combined heat and power with district 

heating (CHP-DH) has been of extensive interest in recent years. Helseth & 
Holen (2009) modelled the structural vulnerabilities of the heat network and 

electricity  interdependency.  Sunberg  &  Karlsson  (2000)  and  Carradore  & 
Turri  (2009)  examine  the  optimal  operation  of  urban  CHP-DH  schemes 

including  heat  and electricity  interactions.   Heat  accumulators  provide  an 
option to improve performance and viability of the system by decoupling the 

output streams. The IEA (2005) developed a dynamic programming approach 
to the optimal cost design of heat accumulators for CHP systems. Fragaki et 

al (2008) showed that the return on investment could be doubled for a UK 
CHP-DH scheme with heat storage when operating in response to market 

electricity price. A similar study was performed by Strekiene et al (2009) for 
the  German  spot  market.  An  interesting  development  from  Denmark  to 

increase large scale wind production by supplying excess generation to CHP-
DH schemes with storage capacity (Lund & Munster 2006, Meibom et al 2007, 

Anderssen & Lund 2007).

Space cooling provides potential option for extending the annual duration of 
operation range for community generation schemes.  Cardona & Piacentino 

(2003) examine the sizing methodology for a trigeneration (heating, cooling 
and power) unit incorporating an adsorption chiller within a hotel. Colonna & 

Gabrielli  (2003)  evaluated  the  design  of  an  industrial  based  trigeneration 
system.   The optimised design for an urban level district heating and cooling 

system was considered by Li et al (2006),  Xu et al (2010), who suggests a 
30% energy saving compared to the seperate provision of heating and cooling, 

and by Kavvadias (2010). Examples of operational analysis for urban level 
integrated cooling and trigeneration systems include Zhang et al (2007), who 
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examine the case with seasonal storage, Lozano (2009), who provides a cost 

optimised  operational  model  for  a  natural  gas  trigeneration  system  and 
Rentizelas et al (2009), who studied the viability of a Biomass trigeneration 

system. 

A  number  of  researchers  have  attempted  to  provide  multi-energy  vector 
models for  infrastructure analysis.  Integrated load flow models have been 

developed  for  gas  and  electricity  distribution  (Salvador  &  Hernandez-
Aramburo 2008), gas and electricity transmission (An et al 2003, Seungwon et 

al 2003, Chaudry et al 2008) and for electricity and heat distribution (Rees et 
al 2010). A generalised approach to the modelling of systems with conversions 

and couplings between several supply streams has been developed by Geidl & 
Andersson  (2005),  using  the  energy  hubs  concept,  and  by  Chicco  & 

Mancerella  (2008a)  who  define  a  multigeneration  approach.   Application 
examples can be found within Geidl and Andersson (2006, 2007), Hajimiragha 

et al (2007) and Chicco & Mancarella (2008b).

 1.4.1 Planning and Design

The  conventional  approach  to  infrastructure  development  under  the 
centralised supply structure is generally consisted of identifying the least cost 

extension of the existing gas and electricity networks. With legally binding 
emissions reduction targets and a shift towards sustainability,  developers are 

now faced  with  the  task  of  delivering  infrastructure  that  provides  on-site 
emissions savings at minimal additional construction cost.  CISBE Guide F 

(2004)  and King and Shaw (2011)  detail  examples  of  whole energy based 
methodology  for  project  delivery  aimed  at  building  developers  (Fig  1.1). 

Established approaches typically consist of a sequential treatment of system 
design,  project  cost  and project  life  emissions and is  often limited to the 

comparison of a few selected alternative options. As the range of commercially 
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viable  energy supply  technologies  increases,  developers  are seeking  a more 

sophisticated design approach (CHPA 2011).  For community level schemes, 
this may be compounded by a diverse mix of building types and infrastructure 

ownership structures.  

Figure 1.1:  An illustrative project development process with the trade-off between 
project risk and project expenditure shown (King and Shaw 2011).

The  need  for  a  more  integrated  approach  to  energy  network  design  and 

planning has been reflected by a growing research interest over recent years. 
The main aim has been to develop methodologies that allows consideration of 

the range of emerging technologies and the design requirements of increasingly 
complex distribution systems, particularly those involving district heating and 

combined heat and power. Earlier efforts tended to focus on cost and energy 
efficiency as design drivers. Examples include the linear programming model 

by Marchand et al (1983) for the optimal investment and operation of an 
urban coal fired steam turbine CHP-DH system with heat storage.  Burdon 

(1998) presented a planning case study for an integrated natural gas based 
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CHP-DH scheme in Newcastle.

More recent models incorporate emissions and environmental impact as one of 
the  main  design  criteria.  Examples  focusing  specifically  upon  structural 

planning  and  design  of  integrated  community  heating  include  work  by 
Soderman and Pettersson (2006,2007)  who provide a MILP model  for  the 

structural  and  operational  planning  of  a  district  heat  and  electricity 
distribution system by optimising the life cycle costs (including heat storage); 

by Vallios  et  al  (2009)  who present  a  whole  system design  of  a  Biomass 
district heating scheme with heat storage; and by Casisi et al (2009) who 

developed a mixed integer linear programming planning model for the optimal 
layout and operation of a CHP-DH network within a city centre with supply 

options including a centralised natural gas engine and a microturbine.

Several researchers have developed planning and design and design models 
that extend to a wider range of networks and technologies.  These invariably 

demonstrate a tradeoff between the detail and the scope of the model. Sakawa 
et al (2001) examined the optimised cost planning of a district heating and 

cooling system; Sugihara et al (2004) examined the cost optimal design of a 
mixed use city scheme with heat pumps, fuel cell trigeneration, PV and solar 

thermal panels;  Bakken and Skjelbred (2007) developed the use of a modular 
model called e-Transport for the optimal outline design of local multi-energy 

vector  infrastructure  (electricity,  natural  gas,  district  heat  and  hydrogen) 
with respect to cost and environmental impact; and Diaz et al (2010) presents 

a model for evaluating the integrated design and operation of a multiple plant 
CCHP system with an adsorption chiller and heat pumps.

The development of tools for the strategic planning of distribution networks 

with embedded generation has  also  been the  focus of  recent  research.  El-
Khattam  (2004,  2005),  provides  a  heuristic  approach  to  the  investment 
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planning of generic distributed sources using a distribution company model; a 

strategic design model by Mancerella et al (2009) used a fractal approach to 
evaluate the investment potential for electricity and district heat networks; 

Ren & Gao (2008, 2010) provided an optimised planning and evaluation study 
for a CHP integrated electricity, gas and heat system; and Mancerella et al 

(2011) details a design and evaluation model for the integration heat pumps 
and CHP into the LV network. 

 1.5 Research Objective and Thesis Structure

A  growing  number  of  tools  are  now  available  for  the  design  of  energy 
distribution  systems,  a  comprehensive  review  of  which  was  provided  by 

Connolly et  al  (2010).   A gap exists  however  for  modelling methods that 
combine technical design with the flexible modelling approach to financial and 

emissions  analysis  required  to  cater  for  the  growing  number  of  possible 
organisational  structures  and  local  low  carbon  energy  strategies.  The 

contribution of the work within this thesis is therefore an integrated modelling 
method for the selection, design and evaluation of new build energy supply 

infrastructure schemes.  The method integrates the following core features:

• An energy supply infrastructure model to represent the the layout of 
the scheme, the building energy demand of each building, all on-site 

generation plant and the local energy distribution infrastructure.

• A  technical  design  model  and  operational  model  for  the  energy 
infrastructure.

• A flexible  model  for  the  analysis  of  on  site  energy  supply  related 

emissions.
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• A flexible model for the financial analysis of each scheme.

Each feature was implemented using a software platform best suited to the 
analysis being performed.  The financial and emissions analysis models, for 

example,  were  implemented  using  spreadsheets  whilst  the  technical  design 
modelling and operational modelling was conducted using a set of analysis 

modules written and compiled as Java programs.  The analysis structure for 
the model is shown by Figure 1.2.

  

Figure 1.2:  Analysis structure for the integrated design and analysis tool.

The structure of the thesis is shown by Figure 1.3.  Chapter 2 details the 
infrastructure model used to represent building energy demand, energy supply 

technologies  and  energy  distribution  networks.   Chapter  3  describes  the 
technical design model and operational modelling for the scheme. Chapter 4 

presents the carbon emissions analysis model used to determine the annual 
and project life on-site green house gas emissions for a community energy 

system.  The model also provides an assessment of the adherence to specific 
emissions  reduction  target  using  the  Zero  Carbon  Homes  initiative  as  an 

example. Chapter 5 describes the financial analysis model used to evaluate the 

14

Integrated
Multi – Energy 
Vector Design

Model 

Technical design

Emissions Analysis
(Spreadsheet)

Financial Analysis
(Spreadsheet)

Design
Modelling

Operation
Modelling

Heat network design

Gas network design

Elec. network design

Supply analysis

Cluster analysis

Energy centre design

Gas pipe flow analysis

Heat pipe flow analysis

Elec. load flow analysis

Generation plant models

Model function Analysis Modules Shared Tools

Spreadsheet Models



                                                     1  . Introduction  

cost of a new build development.  An example ownership structure involving 

an Energy Services Company for the community heating scheme is considered. 
Chapter 6 details the optimisation tool developed to select and design the 

energy supply infrastructure for new build community schemes.  This tool 
uses the work described in the previous chapters and was applied to a case 

study based upon a mixed use community regeneration scheme at Ebbw Vale 
in South Wales, UK.

Figure 1.3:  High level structure of integrated design and analysis model tool and 
outline of thesis.
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Chapter 2

Community Energy Infrastructure 

Modelling 

 2.1 Introduction 

This chapter describes the model used to represent the energy consumption 

characteristic for each building and the on-site supply infrastructure for each 

scheme. The model details the energy demand of each building, the energy 

supply technologies used on site, and the structure of the natural gas, district 

heat and electricity distribution networks.  The model was used as the basis 

for the integrated analysis model detailed within subsequent chapters. 

The energy supply infrastructure model is presented in three sections.  The 

energy demand model defines  the  peak  energy  consumption  and  average 

energy  consumption  profiles  for  each  building  cluster.  The  energy source 
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models were  used  to  represent  each  heating  and  electricity  generation 

technology used by each building and within the energy centre. The network 

models were used to represent the energy distribution networks within the site 

boundary.   The structure and scope of the model  is shown by Fig 2.1.

Figure 2.1:  Scope and structure of Energy Supply Infrastructure model.

 2.2 Energy Demand Modelling 

Each scheme was modelled by grouping the buildings on site into a set of 

consumer clusters. A consumer cluster was defined as geographical area  AC 

containing  a  set  of  NBld buildings  each  of  occupied  floorspace  ABld and of 

identical occupancy type b. The energy supply to each cluster was defined by 

the fraction f of total building floorspace (= Nbld ABld) supplied by each heating 

technology  and  the  total  installed  area  of  photovoltaic  panels,  APV.  The 

energy demand was defined by the annual demand and annual demand profile 

for  each  consumption  type,  the  peak  energy  demand  and  a  building 

fabrication index to model the insulation standard applied for each building. 
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 2.2.1 Energy Demand Profiles

Space heating, hot water, appliance and lighting, space cooling and cooking 

annual consumption profiles were modelled for each building occupancy type. 

Each annual profile  defined the average consumption per unit  of  occupied 

floor space using Nd daily profiles each with Np time steps of length �� �� .  Each 

profile  was  constructed  by  first  defining  a  daily  profile  shape  for  each

occupancy type. A seasonality factor SF was then applied to scale the profile 

for each representative day.  Finally, the annual profile was normalised so that 

the  total  annual  demand  =  1kWh/m2.   The  annual  demand  profile  was 

represented within the model in the following form:
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�� �������
���

� ��� ����
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� � ���� �� ��

����

�� � �������

���
���� �����

� �� ���� � ��� � �����
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���

� ��� � 	
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� � ���� � � ��

�
��

�� ����	��
���

���� � 	��
� ������ ���� ��	��

���
���� � 	��

� ����� � � ��

 (2.1)

such that, using space heating as an example:

� ���


 �

	
�


 �

	
�


�

���

� � �� ���  (2.2)

The load profile per unit floor area for each building was therefore obtained 

by multiplying the normalised profile by the annual demand:

��� �� � � � � ��� 
�����
��� ��� � � � � �

(2.3)

 2.2.2 Seasonal Variation of Energy Demand

The annual demand was modelled using a representative day for each month

of the year.  Table 2.1 shows the seasonality factors used for the space heating 

demand and the domestic appliance and lighting demand. The space heat 

consumption at each time step for each month was calculated using:
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���

�� � � � ��

����

�� � �
���

�� � � �� �

�� ��

��� � ��� �
���

�� � � ��� �

�� ��

����  (2.4)

The  average  domestic  hot  water  consumption  profile  and  the  domestic 

cooking profile was assumed to be unchanged over the year.

Month Space 

heating

(Oxford 

Uni 2011)

Electric 

appliance /

lighting 

(Elexon 2006)

Month Space 

heating

(Oxford

Uni 2011)

Electric 

appliance /

lighting 

(Elexon 2006)

1 (January) 1 1 7  (July) 0 0.62

2 (February) 0.9 0.92 8  (August) 0 0.63

3 (March) 0.85 0.83 9  (September) 0 0.67

4 (April) 0.68 0.74 10 (October) 0.34 0.77

5 (May) 0.39 0.68 11 (November) 0.65 0.9

6 (June) 0 0.64 12 (December) 0.92 0.98

Table 2.1:  Seasonality factors for space heating demand and electricity appliance

and lighting demand.

 2.2.3 Peak Energy Demand

The peak energy consumption of each building was modelled to determine the 

maximum cluster load upon each network and the installed capacity of each 

heat supply technology. The calculation of peak demand for non residential 

dwellings was based upon indicated values per unit floorspace provided by 

CIBSE guidance (see Appendix 1):  

���������

�� �� � �
���

���

 ���

��� ���������

�� �
 (2.5)

And:

� ����
�

�� �� � �
���

���

 ���

���
	��������
�� �

 (2.6)

For residential buildings, the peak demand was considered in terms of the 
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After  Diversity  Maximum Demand  (ADMD).  This  takes  into  account  the 

coincidence  probability  of  individual  peak  demands  within  a  group  of 

premises.  The ADMD was considered for electrical appliance and lighting 

use, space heating with hot water use, and domestic hot water only. The space 

and hot water heating ADMD assumed a direct wet central heating system 

and was calculated using the empirical relationship provided by IGEM (2008):

�
�������

�� � ������	� 
 ���

��� ����

������
�
�������

�� � 
��
���
������
� 
�������

��� ��
 ���

��� ������ (2.7)

The domestic hot water ADMD was given by:

�

������

� �� �������
	

���

�� � �������
���	�

���

� �� �������

��������

� ��
 (2.8)

The appliance and lighting ADMD within a was calculated using the Central 

Networks design rule of thumb (2006):

� 
���
�

��� �
 ���

��� ������	

	�
 ���

��� ����
��� �  (2.9)

 2.2.4 Building Fabrication Index.

A detailed model of the relationship between building fabric and space

heating demand was beyond the scope of this work. However, a simple 

representation of building insulation was included by defining a Building 

Fabric Index (BFI). This defined the building insulation standard in terms of 

the fractional space heating reduction relative to a reference standard:

���
������

	���

� � � ��

�	���

� � � ���
���

(2.10)

 2.3 Energy Supply Technology Modelling

Two classes of energy supply technology were modelled: those installed within 
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or upon individual buildings and those used for community scale provision. 

 2.3.1 Gas heat only boilers

Domestic and large scale gas boilers were modelled as a simple fuel to heat 

conversion process.  The fuel consumption required to supply a given heat 

demand����was determined using:

� �������� �
 ���� 

 
(2.11)

Where 
 ���� is the fuel to energy conversion efficiency for the boiler.

 2.3.2 Combined Heat and Power (CHP)

For the purpose of this thesis the modelling of combined heat and power was 

limited to natural gas internal combustion engine units.  Such units are widely 

applied for schemes up to ~8MWth. The model consisted a fuel combustion 

stage,  an energy conversion stage and a waste heat recovery stage, as shown 

by Fig 2.2.  

Figure 2.2:  Simple model of an Internal Combustion Engine Combined Heat and 

Power Plant.
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The  electricity  generation  output  PCHP was  defined  in  terms  of  the  fuel 

consumption FCHP using:

���������� ����� ����  (2.12)

Where  �����  is  the  fuel  combustion  efficiency  and  �����  is  the  electrical 

generation efficiency. The heat recovered for distribution to heat consumers, 

���� was given by:

�����! �� �������������� � ���  (2.13)

where  KHE is  the  heat  recovery factor  of  the  heat  exchanger.  Within  the 

integrated model, the heat generation from each plant was used as a known 

variable.  The corresponding  fuel  consumption  was  thus  determined  by re-

arranging Equation 2.13:

� ����
����

����� � �����������
 (2.14)

And the electrical power generation was obtained by substituting for FCHP by 

Equation 2.12:

�����

 ��������

��� ���
 �����
 (2.15)

The electrical efficiency 
����  was defined as empirical functions of part load

and rated plant output. From Figure 2.3. the rated efficiency was modelled as:


 ����� � ���������� �
 ������� ���� �
����
  (2.16)

The part load efficiency was obtained from Figure 2.4 such that:


 �����
 ����� � ��������
	�� �
 � ����

� ����� ����
�
��  (2.17)

22



                                  2  . Community Energy Infrastructure Modelling  

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0.28

0.33

0.38

0.43

0.48

0.53

Caterpillar

Perkins

Wartsila

Jenbacher

data set

Logarithmic Regression 

for data set

Rated power output (kWe)

R
at

ed
el

ec
tr

ic
a l

ef
fi
ci

en
cy

Figure 2.3:  Rated  electricity  generation  efficiency  as  a  function  of  rated  power 

output for commercially available natural gas internal combustion engine combined 

heat and power plant.
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Figure 2.4:  Electrical efficiency of commercially available natural gas Internal 

Combustion Engine Combined Heat and Power Plant as a function of plant 

downturn.
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 2.3.3 Heat Storage

The model of heat storage was limited to the hot water accumulators of the 

type described within (IEA 2005) and (Nielsen 2003).  These are essentially 

large well insulated hot water tanks for the short term storage of thermal 

energy.  Several heat accumulator designs are currently in use worldwide, with 

the variations primarily due to the measures employed to minimise the zone 

separating the hot and cold water sections of the tank.  The cheapest and 

most  common design  is  the  simple  cylindrical  single  vessel  type  stratified 

accumulator (IEA 2005) and is shown schematically by Fig. 2.5.

Each heat  accumulator  was  assumed to  be  hydraulically separated  at  the 

charge / discharge points via heat exchangers.  The tank was assumed to be 

cylindrical with a height/diameter ratio of 1.5 and a separation zone of 1m 

(IEA 2005). Each unit was characterised by the storage capacity (m3), the 

volume of hot water stored at each time step (m3), the temperature of the hot 

water zone (oC) and the temperature of the cold water zone(oC). 

Figure 2.5:  illustration of  a stratification type hot water accumulation tank for 

district heating networks (Soderman and Petterson 2006).
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 2.3.4 Heat Pumps

Heat pumps use electrical power to move heat from a low temperature source 

to a higher temperature sink.  The coefficient of performance (CoP) of a heat 

pump is the thermal energy supplied per unit of electricity consumed.  The 

general form of the heat pump energy conversion process is given by:

� ������ ������

 
(2.18)

Two  types  of  heat  pump  were  modelled.   Ground  source heat  pumps 

(GSHP's) recover thermal energy using pipes buried horizontally at a depth of 

~2m or into boreholes typically sunk to depths of 70m.   Air source heat

pumps (ASHP's) recover heat directly from the outside air. The heat pump 

CoP is dependent upon the temperature difference between the source and 

sink � " �� .   Fig 2.6 is a collation of stated manufacturers CoP data by 

Staffell (2009) for GSHP's as a function of  � " �� . Similar data was also

presented for ASHP's.  The following empirical relationships were derived:  

��������������" 	#���" $%�����
	���

���
��������� �" 	#���" �#%�
��	�
 (2.19)

The ground temperature was estimated by assuming an installation depth of 

2m .  Fig 2.7 illustrates the typical variation of UK ground temperature with 

depth (Staffell 2009).  At depths below 2m the average ground temperature 

varies  between  7°C  and  13°C  over  the  year  and  beyond  8m  the  ground 

temperature range converges to a year round average of 10°C.  
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Figure 2.6:  Collated data of Coefficient of Performance (CoP) against  sink-source 

temperature difference for commercially available ground source heat pumps (Staffell 

2009).

Figure 2.7:  Variation of average UK ground temperature with depth.(Staffell 

2009).

In contrast to the ground temperature, the UK air temperature is subject to 

significant daily and seasonal variation. Average daily temperature for Wales 

ranges from 1.1°C in February to  19.1°C in July.  The minimum ground and
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air temperature determines the minimum CoP values for GSHP's and ASHP's 

respectively for peak electricity demand calculations where heat pumps are 

used.  A minimum air temperature of -3oC (CIBSE 2002) and a minimum 

ground temperature of 5oC (Staffell 2009) was applied.

 2.3.5 Photovoltaic Panels

PV panels were modelled in  terms of the average power generation output 

profile at each time step per installed m2.  Fig 2.9 shows the profile for peak 

summer.  A seasonality factor (SFPV) was applied to determine the average 

generation per time step over the rest of the year.  The monthly seasonality 

factors applied within this work are shown by Table 2.2. It was assumed that 

all  excess  PV electricity generation was exported to the local  distribution 

network.

Figure 2.8:  Schematic  illustration  of  a  residential  photovoltaic  installation 

(ohmicSolarPower 2011).
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Figure 2.9:  Normalised generation profile for solar generation installations(Suna 

2006).

Month Solar

generation

factor

Month Solar

generation 

factor

January 0.15 July 0.98

February 0.19 August 0.95

March 0.47 September 0.88

April 0.67 October 0.3

May 0.97 November 0.17

June 1 December 0.11

Table 2.2:  Seasonality multiplication factors for solar generation outputs (Carbon 

Trust 2009).

Annual Generation Peak Generation

Solar Thermal 450 kWhth/m
2 /yr -

PV 117 kWhel/m
2 /yr 0.14kWel/m

2  

Table 2.3:  Peak and annual generation outputs used for solar technology modeling.

 2.4 Energy Network Modelling

The electricity, natural gas and district heating distribution networks were 

28



                                  2  . Community Energy Infrastructure Modelling  

modelled. Two levels of detail were considered for each:  The primary network 

extends from the grid connection point to the boundary of each cluster.  The 

intra-cluster network, defines the network from the cluster boundary to the 

meter  of  each building.  A generalised approach to network modelling  was 

applied whereby each network was considered as a graph. Thus, using graph

theory terminology, each network consisted of a set of nodes interconnected by 

a set of edges.      

 2.4.1 Electricity Network

The electricity distribution network between the grid connection point and

the metering at each building was modelled.  A generic network configuration 

was used to model the variability of the network within each building cluster. 

This  was  then  reduced  to  the  required  network  configuration  using  the 

electricity network design modules described within Chapter 3. The generic

network configuration and the parameters used to define the network are s 

shown within  Fig.  2.10 and Table  2.4  respectively.   Further  detail  of  the 

network configurations considered by the model are found within Appendix 5. 

Figure 2.10:  Schematic illustration of the electricity distribution network as 

considered within the model.
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Edge Parameters:Length, Impedance, rated current of cable, power rating of transformer, 

current at each time step.  

Node Parameters:Voltage, peak power demand, minimum power demand, power demand 

at each time step.

Table 2.4:  Parameters used to define the nodes and edges within the electricity 

network.

 2.4.2 Gas Distribution Network

The natural  gas  distribution  network  model  comprises  a  set  of  Nk nodes 

interconnected  by  a  set  of  Nl edges.  Each  edge  represented  either  a  gas 

distribution network pipe of length  Ll,  or a pressure reduction installation 

(PRI) of capacity FMaxPRI.  The scope of the natural gas distribution network 

model is shown schematically by Fig. 2.11.  

Figure 2.11:  Schematic illustration of the gas distribution network as considered 

within the Energy Supply Infrastructure Model.

It was assumed that each  pressure reduction installation was configured to 

reduce  the  network  pressure  from  intermediate  pressure  (IP)  or  medium 

pressure (MP) regimes (4-7 bar and 0.5 –  2bar respectively) to 75mbar (Low 

Pressure).  The presence and capacity of each PRI was determined by the 
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pressure at the PRI from node as shown by Table 2.5.

pfrom pto Fl,PRI

>75mbar

<75mbar

75mbar

pfrom

Fl,max

0 (not required)

Table 2.5:  Rules used to determine the capacity of pressure reduction installations 

within the natural gas network

Arc Parameters: Length, pipe diameter, pipe roughness, Pressure reduction installation 

capacity, flow rate, flow velocity

Node Parameters:Pressure, peak gas demand

Table 2.6:  Parameters used to define the nodes and edges of the gas network.

The network configuration used to model the intra-cluster gas is shown by Fig 

2.12.  The model assumes that buildings are evenly distributed within square 

grid of area 
���	��%

���
. Figure 2.12 also shows the reduced arrangement used to 

within the analysis.  The load along the represented branch and sub branch 

was assumed to be evenly distributed between 3 nodes along each.  

        

Figure 2.12:  Simplified cluster  topology used to model  the intra-cluster district 

heating and gas distribution networks.
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The length of each branch and sub branch section was defined, using the gas 

network as an example, as:

���	�%���&

��� �
�

�
�
���	��%

�� �
 (2.20)

The number of consumers along each sub branch section was defined as:


 ��	����%���&

��� �
�

�
�
 ���

���
 (2.21)

The  number  of  consumers  at  each  of  the  remaining branch  nodes  was 

therefore:


 ��	�%���&
���

��� �

 ���

��� ���
 ���

���

�
 (2.22)

A similar set of relationships was obtained for the district heat network.

 2.4.3 District Heat Network

The district heat network model consisted a set of Nm nodes  interconnected 

by Nn edges (supply and return pipes).  A schematic illustration of the district 

heating model is shown by  Fig. 2.13. The heat network was assumed as a 

continuous  hydro-statically  isolated  dual  pipe  system  connecting  each 

consumer to the each energy centre.  The intra-cluster district heat network was

modelled using the same configuration and methodology as that used for the natural 

gas network (Fig 2.12), but this time with each section of network representing a 

supply and return pipe.
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Figure 2.13:  Schematic  illustration  of  the  district  heat  network  as  considered 

within the Energy Supply Infrastructure Model.

Edge Parameters:Length, pipe diameter, pipe insulation thickness, pipe insulation thermal 

conductivity, pipe roughness, mass flow rate, flow velocity

Node Parameters:Pressure, peak heat demand, heat supply, supply temperature, return 

temperature, ground temperature

Table 2.7:  Parameters used to define the edges and nodes of the district heat 

network.
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Chapter 3 

Design  of  Multi  Energy  Vector 

Distribution Systems 

 3.1 Introduction 

A set of technical design models, or  modules, were developed for new build 

multi energy-vector distribution infrastructure. Each module was tasked with 

the design or analysis a particular aspect of the on-site energy distribution 

infrastructure.   These were combined to provide a bottom up distribution 

infrastructure design for a given mix of on-site energy supply technologies. 

The technical design model was applied to a set of infrastructure options for a 

case study developed to represent a generic new build market town residential 

scheme in the UK.  The Energy Supply Infrastructure model described within 

Chapter 2 was implemented in tabular form using a spreadsheet.  Each design 

model  was  therefore  implemented  as  a  compatible  add-in  function. The 
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structure of the model is illustrated by Fig. 3.1.  

Figure 3.1:  Data flow between the technical design models.

 3.2 Technical Design Modules

 3.2.1 Energy Demand Analysis

The  energy  demand  analysis  module  was  used  to  determine  the  average 

network load profile and peak network load for each cluster using the models 

described  by  Chapter  2.   The  structure  of  the  module  is  described  by 

Algorithm 1.
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Algorithm 1: ConsumerLoadAnalysis

Inputs: No. of premises; Occupancy type; Occupied floor space; Cluster area; Building

Fabric Index; PV capacity; heating technologies employed at each premise; reference 

consumption profiles; air and ground temperature profiles.

Begin

1       Look-up �
��
��

���
� �

��
� �

��

2       for all time steps

3             Calculate ������� �	
 �������            

4             Calculate � �



�� � � �
���

��

� � � ��
� � �

��

�� � ��
             

5 end

6             Calculate � ����

�� � � �
� ���	

�� � ��
��������

�� � ��
� � ������

�� � � �
 

End

Outputs: Peak cluster or building electricity, gas and district heat demand; Annual cluster 

or building electricity, gas and district heat demand profile. 

The average cluster electricity demand at each time step was given by:

� �


�� � ���� ��


� �� ����

�� � ������ � ���� ��

� � � ����
� ����

�� � ��

�������
�� � ��

�
� ����

�� �

�������
�� � ��

�����
�� � �������

�� � �� ������
� ��
� ��

��� �  (3.1)

The peak  electricity demand using the of thumb recommended by Central

Networks (2006) such that Speak=Speak,A&L + 0.5(maxSpaceHeating):

� ����

�� � ����

�� �
� ��


�� � ��������� �� ���� � � ����
�� �
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�� �
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�	 ��� ��������

�� �
 (3.2)

The installation of PV panels may result in significant reverse network power 

flows during summer months.  A worst case minimum electricity demand (i.e. 

maximum negative demand) was modelled by assuming the maximum PV 

generation coincided with the minimum daytime demand.

���	

��� �� ��


��� ����


���
� ��	��

��� ����

���
� ������ �  (3.3)

The load upon the natural gas network corresponds to the fuel consumption 

of  the  domestic  gas  boilers.   If � ���
���

is  the  fraction  of  consumers  or 
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floorspace served by gas boilers, the total gas demand for consumer or cluster 

c at time step p was given by:

� �

��

�� � �� ����


���
� ��


���
� ���

��� ���� ������

�� � � ������

�� � �� ������	�  (3.4)

The peak gas demand heat demand for residential clusters was obtained using 

the peak heat demand defined by Eq. 2.5 so that:

� ������

� ��
�
� ���

�� �

����

�� � ���������

�� �
 (3.5)

The average district heat load for each cluster was defined by:
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���

�� � �� ����
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��� ���� ������

�� � � ������

�� � �� �  (3.6)

The peak district heat demand for residential clusters was determined using:

�
�������

� �� � �
���
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��������

�� �  (3.7)

 3.2.2 Energy Centre Generation Plant Design

The  design  parameters  of  each  community  heat  generation  plant  were 

determined using the generation plant sizing module.  The module structure 

including the plant sizing algorithm is shown by Algorithm 2.  The algorithm 

contains  an  iterative  loop  to determine  the  electricity  efficiency and peak 

electrical  output  for  each  CHP unit  corresponding  to  a  given  rated  heat 

output.

Generator 1 within the energy centre was designed to provide 100% back up 

capacity for  the  heat  network.   This  plant  was used to  meet  any supply 

shortfall  during  normal  operation  and to ensure  reserve  capacity  to  cover 

generator  downtime.  The  rated  heat  output  for  the  remaining  units  were 

entered as inputs to the algorithm.  These were set either manually by the 
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user or as the output of a selection process such as the optimisation algorithm 

described within Chapter 6.

Algorithm 2: GenerationPlantSizing

Inputs: Plant Type; Fuel Type;  Plant rated heat output; Peak district heat demand;

Begin

1      look up EHE and � ���	�

2      if(plant Type = CHP)

3            initial estimate: �  ���
 � !�������                                 

4            while error > 0.001

5                  calculate �
 ���


�" �
                                   

6                  re-estimate efficiency �  ���
 � !���

�"�

7                  error = ��
 ���
 � !���

�"� 	�
 ���
 �!���

�"� � �

8           end

9      end

10    calculate �  ���


� " �
                                              

End

Outputs:  Rated  heat  output;  Rated  fuel  consumption;  Rated  electrical  efficiency;  heat 

recovery factor; fuel conversion efficiency

 3.2.3 Electricity Network Design

The design of the 11kV/0.4kV electricity distribution network was performed 

in two stages. A  clusterNetworkSizing  algorithm was used to determine the 

number of 11/0.4kV transformers required per cluster, the number of feeders 

required per transformer, the configuration of each 0.4kV feeder and the cable

size  required  at  each  section  of  the  0.4kV  feeder.  A  separate  algorithm, 

primaryPowerNetworkSizing, was used to determine the configuration of the 

11kV network within each building cluster and the cable size required at each 

section of the 11kV network across the scheme.  Both algorithms use a radial

steady  state  load  flow  algorithm  powerLoadFlow which  is  detailed  within 

Appendix 3. Each network was designed in adherence to mandatory voltage 

tolerances:  0.4kV+10/-6% and 11kV+/-6%. 
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The  clusterNetworkSizing is shown by algorithm 3.  An iterative procedure 

was used to determine the number of substations required at each cluster and 

to ensure that the diversified peak demand was less than or equla to the 

largest available transformer.  The minimum number of feeders required per 

transformer was specified by the following criteria:

i. A  maximum  number  of  dwellings  per  LV  circuit:

�
��
�����


�� � ��
#$�	%

�� � ���
��
�����
�$

�

�&

ii. The maximum current per phase per feeder <= rating of the 

largest available cable.

  

A steady state load flow analysis determined the network currents and voltage 

drops at peak and minimum demand conditions.  The methodology used to 

model the configuration of the 0.4kV feeder is detailed within Appendix 5.

The  primaryPowerNetworkSizing  algorithm  is  shown  by  Algorithm  4.  A 

steady state power load flow was used to determine the cable sizes required 

within each section of the 11kV network. The methodology used to model the 

configuration  of  the  11kV  network  within  each  cluster  is  detailed  within 

Appendix 5.  

To account for the presence of micro-generation and community generation, 

the  design  cases  defined  within  Table  3.1  were  considered  within  each 

algorithm.
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Case Energy centre generation Consumer demand

Case 1 zero minimum

Case 2 zero maximum

Case 3 maximum minimum

Case 4 maximum maximum

Table 3.1:  Generation –  demand combinations used to determine electricity cable 

sizes and transformer ratings.

Algorithm 3: clusterNetworkSizing 

Inputs: number of premises; cluster area; peak cluster demand.

Begin

1      Estimate number of transformers : NTrans = ADMD /(transformer rating)max

2      Estimate number of feeders : � ���
�$%

���
�
�& 
�

�� �
��� ��
�����
 �
�& � �
�&

� ��
��� � �

�� �
� $���	" �
�&�

3      Calculate ADMD through each LV cable

4      Initiate cable sizes for all cables : cable rating = (cable rating)min

5 run powerLoadFlow

6      while bus voltage is outside of tolerance

7          upsize cable : voltage drop = (voltage drop)max

8                  run powerLoadFlow

9            upsize cable : cable current > cable rating

10                         run powerLoadFlow

11          if ( ��'�� $���	"����'�� $���	" �

�&

� ��'��% )

12                   � ���
�$%

�� � �� ���
�$%

��� ��

13                   recalculate feeder lengths and bus loads

14                   run powerLoadFlow

15 end

16      end

End

Outputs:  number  of  transformers;  rating  of  each  transformer;  length  and  rating  of 

additional 11kV cable; length and rating of each feeder cable.

40



                         3. Structural Design of Multi Energy Vector Distribution Systems  

Algorithm 4: primaryPowerNetworkSizing 

Inputs:  primary  network  topology  and  cable  lengths;  peak  demand  for  each 

premise and cluster.

Begin

1      Calculate ADMD at all busbars.

2      Initiate cable sizes for all cables : cable rating = (cable rating)min

3      for all feasible open points

4            run powerLoadFlow

5 while bus voltage is outside of tolerance

6                 upsize cable : voltage drop = (voltage drop)max

7                 run powerLoadFlow

8                 upsize cable : cable current > cable rating

9                             run powerLoadFlow

10          end

10    end

End

Outputs: Cable ratings; transformer ratings

 3.2.4 Gas Network Design

The gas network sizing module (Algorithm 5) was used to determined the 

diameter  of  each  gas  pipe  and  rated  capacity  of  each  pressure  reduction 

installation.  A  steady  state  load  flow  analysis  gasLoadFlow was  used  to 

determine pipe sizes required at maximum demand conditions (see Appendix 

3). 

 3.2.5 Heat Network Design

The district heating pipe diameters and pump ratings were determined by the 

heat network sizing module. Details of the steady state heat network load flow 

algorithm heatLoadFlow are presented within Appendix 3.
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Algorithm 5: GasNetworkSizing

Inputs:  gas  network  topology;  pipe  lengths;  pressure  reduction  installation 

locations; gas grid connection pressure; peak gas demand for each premise / cluster; 

peak gas demand for each energy centre.

Begin

1      calculate pipe flowrates Fl

2     initiate diameters : Dl = (DNG)min  s.t. Gas velocity < (Gas velocity)max

3      While node pressure < (node pressure)min 

4                    run gasLoadFlow

5            identify pipe : pressure drop = (pressure drop)max

6            upgrade pipe to next largest diameter 

7      end

End

Outputs: gas pipe diameters; PRI capacity.

 

Algorithm 6: District Heat network pipe sizing algorithm

Inputs:  Heat network topology; heat network pipe lengths; supply temperature; 

return temperature; peak heat demand for each premise / cluster; Maximum heat 

generation from each energy centre. 

Begin

1      initiate pipe diameters : pipe diameter = (pipe diameter)min

2      run heatLoadFlow

3      While  pressure differential > (pressure differential)max

4            upsize pipe : pressure loss = (pressure loss)max

5            run heatLoadFlow

6      end

End

Outputs: DHN pipe diameters; pump sizes
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 3.2.6 Energy Flow Analysis

It  was  assumed  that  the  energy  centre  was  operated  to  supply  the  heat 

network at  minimum operational  cost.   Two generation scheduling  models 

were used: the stepDispatch Algorithm modelled the case without heat storage 

capacity; the storageDispatch Algorithm modelled the case with heat storage 

operated on a daily cycle. 

(i) stepDispatch (Generation Scheduling, No Storage)

The on-off status of each generation unit was modelled using a binary variable


�	���

�" � ��
. The on/off configuration for the set of Ng generation units at each time 

step was modelled as a bit pattern B with bit 1 corresponding to 
�	���

��� ��
and so 

on. Each plant combination was analysed in turn starting from B = 0...01 and 

increasing B as a binary numeral by 1 until B = 1...11.  The feasibility of each 

combination was first examined using the following tests:

Test  1:  if � 
�	���

�" � � � � ���


�" � ����

��

�� � ��
;  Insufficient capacity  to  meet  network 

demand.  

Test  2:  if �
�	���
�" � � � ���

�" ��
�	�� ��

��
�� � � �

;  Plant  downturn constraints  do  not 

permit supply at the required level. 

An  estimation  of  the  least cost  generation  schedule  for  each  feasible 

configuration  was  performed.   For  configurations  with  only  one  plant 

committed, i.e. �
�	���
�" � � ���  ,  the generation output was simply assigned as

���

��

�� � � �
.   For configurations where  � 
�	���

�" � � ��� ,  the following algorithm 

was applied:

Set all generation plant with 
�

�" � ���� to rated output:

��

�" ���  ���


�" �
 (3.8)

43



                         3. Structural Design of Multi Energy Vector Distribution Systems  

The total operation cost for each plant at each time step was defined as:

���	��%��� �� �(��
�" �

��
�" �	�����

�" � ��
�" �	���)�$

�" �
��

� "��  (3.9)

The cost gradient for each plant is calculated using the backwards difference: 

� *��	��%�
� "� �

� ���

�" ����	��%�	� ���

�" �	� �%���

�" � ���	��%�

� �%���

�" � ���	
�	���

�" � ���  (3.10)

Where PF is a penalty factor used to assign an arbitrarily large cost reduction 

gradient to non committed plant. PF = -999999 was used within the analysis. 

The generation plant for which the highest  cost reduction (or  lowest cost 

increase) is identified and the output reduced. The calculation was repeated 

until the total excess reduction = 0.  The backward difference step size was 

arbitrarily defined for each plant as � �%���

�" � �	��	
 �+ .  

(ii) storageDispatch (Generation Scheduling With Storage)

The total daily production was initially estimated as:   

�����,������

���� ���%%�% (3.11)

The number of production time steps is thus given by:  

� �$#�
����
�����,��

� � ���


 (3.12)

The average  generation  within  the  fractional  time step  was  calculated  by 

assuming  rated  plant  output  for that  period.  For  the  case  where 

� �$#�
����� � , the excess production is supplied using back up boilers. Each 

time step was ranked in order of decreasing electricity tariff.  Beginning at the 

time step with rank 1, the heat output of the CHP unit was set to rated 

output until:

1. the daily heat demand was met 

or
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2. all time steps were visited.

The relative heat stored within the heat accumulator was given by

�%��$�"�

� � � ��%��$�"�

� �	�� �� �$���


�" � � �	���� � ��
 (3.13)

With �%��$�"�

��� �� .  The capacity of the heat accumulator required on site was 

defined by: 

�%��$�����
�& ���%��$�"����&	��%��$�"����	�  (3.14)

Algorithm 7: EnergyFlowAnalysis

Inputs:  heat network specifications;  power network specifications;  energy centre 

plant specifications; district heat and electricity demand profiles for each premise/ 

cluster, fuel price, heat price, electricity price.

Begin

1      if(storageIndex = 0)

2            for all time periods

3            run heatDispatch

4      else

5          for all representative days

6            run storageDispatch

7      end

End

Outputs:  Heat and power generation and fuel consumption schedule for each production 

plant;  Heat  accumulator  charge/discharge  schedule;  Heat  accumulator  capacity;  Heat

network losses; power network losses; power flows across grid connection point.

 3.3 Module Implementation

For the purpose of this thesis, the Energy Supply Infrastructure model was 

implemented  as  an  OpenOffice  Calc  (v3.2.0)  spreadsheet.  Each  technical 

design module was therefore written as a Java program and compiled as a 

Calc add-in function using the Netbeans Open Office development extension.  
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 3.4 Design of Example Scheme. 

The design tool was applied to evaluate on-site energy supply options for a 

representative UK new build residential development.  Details of the scheme 

are provided by Appendix 4.  The study was limited to the use of natural gas 

or electricity grid as off site sources of energy.  Chapters 4 and 5 extend the 

results  of  the study to examine the capability and cost of  each option to 

deliver  on  site  emissions  savings.   Table  3.2 presents  a  summary  of  the 

technology mix considered by each option.

Primary 

heating

PV Capacity BFI Gas

Network

DH 

network

Heat 

Storage

Reference NG boilers 0 0 domestic none none

Building Fabric NG Boilers 0-18.7m2 0-0.8 domestic none none

Electrification GSHP/ASHP 0-18.7m2 0-0.8 none none none

Community Co-

generation

ICE-CHP 0-18.7m2 0-0.8 Energy 

Centre

90/50oC, 

16bar

Daily

cycle

Table 3.2:  Options evaluated by example scheme study.

 3.4.1 Reference case

The key results for the reference case infrastructure are shown within Table 

3.3.  The use of  natural gas for cooking and heating results in an annual 

demand of 3,859MWh with a diversified peak gas demand of 1.86MW at the

grid  connection.   The reference electricity usage was composed entirely of 

appliance and lighting with an annual demand of 1,572MWh and a diversified 

peak of 0.78MW at the transformer.  

The gas and electricity networks required for the reference scheme are shown 

by  Fig  3.2.  The  network  design  is  dependent  upon  the  grid  connection 

pressure with 75mbar assumed for the case shown. The effect of reducing the 

grid connection pressure is shown by Fig 3.3. A reduced connection pressure
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results in a reduced density which increases the gas velocity and thus the 

pressure  drop.   The electricity  network  consists  a  95cne  extension  of  the 

existing ring-main system to a single 800kVA substation serving 5 LV feeders.

Annual electricity demand (kWh)

Annual imported electricity(kWh)

Peak Electricity demand(kW)

On site losses(kWh)

Total Losses

No. 11/0.4kV substations

transformer capacity (kVA)

No. of LV feeders per Transformer

Peak load per feeder (kW)

Peak current per phase per feeder(A)

Annual gas consumption (kWh)

Peak gas demand(kW) 

1,572,860

1,620,883

808.61

48,023

86,925

1

800

5

155.67

200.19

3,859,472

1857.41

Table 3.3:  Key design parameters and consumption data for reference case option.

Figure 3.2:  Schematic of the gas network and electricity network designs for the 

reference option.
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Figure 3.3:  Effect of grid connection pressure upon pipe diameters for the reference 

option.

 3.4.2 Building Fabric Option

The building fabric option models the use of improved building insulation to 

reduce the space heat demand combined with the use of PV to reduce the 

annual electricity consumption. The effect of increasing the level of domestic 

building  insulation  is  shown  by  Table  3.4.  The  annual  and  peak  gas 

consumption  decrease  proportionally  to  BFI.  At  BFI  =  0.8,  the  annual 

demand is  decreased  by over  50% to  1.87MWh/year.   The corresponding 

decrease of  gas ADMD is less significant with a 37% reduction to 1.17MW. 

The parasitic electricity demand for the reference heating system and building 

fabric was assumed to be negligible.  The annual and peak electricity demand 

are therefore independent of BFI for this option.

The  impact  of  domestic  PV  capacity  upon  the  reference  electricity 

distribution system was examined.  The key results are summarised by Table 

3.5. Increasing the PV capacity per dwelling has a significant effect on the on-

site demand, with a transition to a net annual export of 17MWh with 4kWe 

PV per dwelling.  The impact of PV capacity upon network electricity losses 

was also examined.  At 1kW per dwelling,  the on site network losses  were 

increased due to the reduction of  on site  demand.   At 2kW and beyond, 
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however,  the  network  losses  increase  as  the  reverse  flows  from  excess 

electricity  production  become  increasingly  significant.   At  4kW,  the  total 

network losses account for approximately 6% of the total PV generation. The 

effect of PV capacity upon the electricity loss profile is shown by Fig. 3.4.

BFI 0 0.2 0.4 0.6 0.8

Annual electricity demand (kWh)

Annual imported electricity(kWh)

Peak Electricity demand(kW)

Annual gas consumption (kWh)

Peak gas demand(kW) 

1,572,860

1,620,883

808.61

3,859,472

1857.41

1,572,860

1,620,883

808.61

3,360,577

1685.63

1,572,860

1,620,883

808.61

2,861,683

1513.85

1,572,860

1,620,883

808.61

2,362,788

1342.06

1,572,860

1,620,883

808.61

1,863,894

1170.28

Table 3.4:  Effect of increased building fabric index upon peak and average energy 

consumption for the building fabric option.

PV Capacity (kW/dwelling) 0 1 2 3 4

Annual electricity demand (kWh)

Annual imported electricity(kWh)

Peak Electricity demand(kW)

On site losses(kWh) 

Total Losses(kWh)

No. 11/0.4kV substations

transformer capacity (kVA)

No. feeders per Transformer

Peak load (kW/feeder)

Peak current (A/phase/feeder)

1,572,860

1,620,883

808.61

48,023

86,925

1

1000

5

153.73

200.19

1,572,860

1,169,219

808.61

36,612

65,646

1

1000

5

155.67

200.19

1,572,860

733,237

-954.51

40,883

66,002

1

1000

5

155.67

200.19

1,572,860

321,964

-1,464.43

69,846

92,908

2

800

3

-269.87

374.82

1,572,860

-17,656

-1,954.96

170,496

192,333

3

800

3

-252.28

350.38

Table 3.5:  Effect of photovoltaic panel capacity upon the key design parameters and 

energy consumption for the building fabric option (BFI = 0).
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Figure 3.4:  Electricity network loss profiles for each representative day at various 

average installed capacities of Photo Voltaic panels (for Building Fabric Index = 0).

The  capacity  of  PV  was  shown  to  have  a  considerable  effect  upon  the 

electricity network design.  At 1kW/dwelling, the network is still designed to

meet the winter appliance and lighting peak demand of 808kWel  as per the 

reference case.  At capacities greater than 2kWe/dwelling, the summer peak 

PV generation exceeds the winter peak demand and therefore dictates the 

network design.  At 3kW PV per dwelling, the peak power exported from the

site rises to 1,464kW, requiring 2 x 800kVA transformers with reverse power 

flow  capability. At  4kW/dwelling  the  number  of  11/0.4kV  substations 

increases further to 3 x 800kVA units each with 3 feeders.  This is illustrated 

by Fig. 3.5.  

50

Jan / Dec Feb  / Mar Apr / Nov May / Oct Jun / Sep Jul / Aug



                         3. Structural Design of Multi Energy Vector Distribution Systems  

Figure 3.5:  Schematic  of  electricity infrastructure  for  the  building  fabric  option 

with 4kW of Photo Voltaic panels installed per dwelling (for Building Fabric Index = 

0).

 3.4.3 Electrification of heat

Table 3.6 shows the results of modelling the supply of space and domestic hot 

water to the example scheme using a mixture of ground source and air source 

heat  pumps.    This  results  in  an  increased  diversified  peak  and  annual 

electricity  demand  to  3,001MWh  and  2MVA respectively  at  an  assumed 

central heating temperature of 55oC.  

The distribution network design for the heat pumps option at BFI = 0 is 

shown by by Fig 3.6.  The increase of peak electricity demand increases the 

number  of  required  substations  to  2  1MVA  units  each  with  4  feeders. 

Increasing BFI to 0.8 reduced the required transformer rating and the number 

off feeders required per transformer the infrastructure requirement is reduced 

to 2 x 800MVA transformers each with 3 feeders.  
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BFI 0 0.2 0.4 0.6 0.8

Annual electricity demand (kWh)

Annual imported electricity(kWh)

Peak Electricity demand(kW)

Onsite losses(kWh)

Total Losses

No. 11/0.4kV substations

transformer capacity (kVA)

No. feeders per Transformer

Peak load (kW/feeder)

Peak current (A/phase/feeder)

3,001,301

3,109,524

2,001.83

108,222

182,851

2

1000

4

250.23

313.23

2,830,274

2,932,441

1,996.51

96,987

167,241

2

1000

4

234.93

295.83

2,659,247

2,7346,280

1991.24

87,032

152,943

2

1000

4

219.81

278.43

2,488,220

2,572,931

1,648.92

84,710

146,461

2

1000

4

206.11

261.04

2,317,193

2,404,620

1,573.12

87,427

145,138

2

800

3

262.19

324.85

Table 3.6:  Key  design  parameters  and  energy  consumption  data  for  the 

electrification option.

Figure 3.6:  Schematic  of  the  on  site  electricity  distribution  network  for  the 

electrification option (for Building Fabric Index = 0).
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Total on site energy losses are increased from 86MWh for the reference case to 

108MWh for heat pumps at BFI = 0, however this corresponds to a decrease 

to 3.5% of total demand.  This is due to the shift to a low load factor winter 

peak demand profile as illustrated by Fig. 3.7 combined with the increased 

cable ratings and number of feeders used . 
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Figure 3.7:  Average electricity demand profile for the reference option and heat 

electrification option for each representative day. (for Building Fabric Index = 0).

The dependence of CoP upon the central heating temperature effects the peak 

and annual electricity demand for the development.  At BFI = 0, a 10oC rise 

of heating temperature to 65oC increases the electricity imported to the site to 

demand to 4,011.9MWh per year (a 28.8% increase) with peak demand of 

2.37MVA.  The use of heat pumps as an energy reduction measure therefore 

necessitates the use of as low a central heating temperature as is practically 

possible.
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 3.4.4 Community Co-generation Option

In  the  absence  of  heat  storage  capacity,  the  energy  centre  is required  to 

operate in heat following mode, i.e. to meet the heat demand at each time 

step. In Fig. 3.8, the annual load duration curve for the district heat network 

is used to illustrate how the heat output of a CHP plant is constrained by the 

load profile for the heat following case.   The bounded areas correspond to the 

annual heat production of each plant which in turn determines the annual 

electricity production.
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Figure 3.8:  Influence of the heat network demand profile upon the heat generation 

output of CHP when operating in heat following mode.

The  effect  of  this  constraint  upon  the  fuel  consumption  and  electricity 

generation characteristics of  the energy centre is  shown by Fig. 3.9.   The 

electric generation efficiency of the CHP plant increases with plant size as 

described by Equation 2.17.  However, the constraint placed by the district 

heat load profile upon the duration of operation results in a plant size at 

which  maximum  annual  electricity  generation  occurs.  At  BFI  =  0  the 
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maximum annual generation output occurs at a CHP plant size of ~1100kWth. 

Increasing BFI to 0.6 impacts the DH demand profile such that the optimal 

plant size decreases to 700kWth.  
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Figure 3.9:  Variation of annual energy generation and consumption with combined 

heat and power plant size for the community co-generation option without storage: 

(a) Building Fabric Index = 0, (b) BFI = 0.2, (c) BFI = 0.4, (c) BFI = 0.6. 

The net annual fuel  consumption of  the energy centre consists of  the fuel 

consumed by the CHP unit and the fuel consumption of the back up heat
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only boiler.  The community co-generation option with NG-CHP results in a 

significant increase of on site fuel consumption compared to the reference case 

with individual gas boilers, with a maximum value coinciding with maximum 

electricity production.  At BFI = 0, the CHP-DH system with an 1100kWth 

ICE  CHP unit  consumed  6147MWh of  natural  gas  per  annum,  a  59.3% 

increase relative to the reference case.  Similar increases are observed at all 

values of BFI, with a 54.6% increase at BFI = 0.6.   

The  addition of a heat accumulator decouples the heat generation from the 

heat consumption allowing CHP operating strategies based upon electricity 

generation rather than heat generation. Fig 3.10 shows the result of modelling 

the  generation  schedule  of  a  500kWth CHP  unit  operating  a  daily  heat 

accumulation cycle and with electricity generation focused at periods of peak

electricity tariff.  
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Figure 3.10:  Heat  generation  profile  and  heat  storage  schedule  for  each 

representative day of the community co-generation option with a 500kWth Natural

Gas Combined heat and Power plant and heat accumulator.
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The effect of CHP plant size upon the annual electricity production and fuel 

consumption of the energy centre is shown by Fig 3.11.  Increasing the plant 

capacity results in a corresponding increase of electrical output as the heat 

load served by the CHP unit is increased together with the plant efficiency. 

At 810kWth, the CHP unit has sufficient capacity to supply the entire annual 

district heat demand. Any further plant size increase results in a much lower 

gain of electricity output corresponding efficiency increase only. 
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Figure 3.11:  Variation of annual electricity production and fuel consumption with 

Combined heat and power plant size for the community co-generation option with

heat storage. (a) Building Fabric Index = 0, (b) BFI = 0.2, (c) BFI = 0.4, (c) BFI = 

0.6. 
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The increased electricity  production results  in  a  corresponding increase  of 

total fuel consumption compared to the case without storage.  At BFI = 0 

and a CHP plant size of  1100kWth the total annual fuel  consumption was 

6,972MWh with  the inclusion  of  a  heat  accumulator.   This  represents  an 

80.7% increase compared to the reference case.

The  design  and  operational  performance of  the  district  heat  network  is 

dependent  upon  the  operating  temperature  and  allowable  system pressure 

regime. An examination of the effect of these system parameters upon the

design were not considered here. Fig 3.12 shows the distribution infrastructure 

that results for for a 90oC/ 50oC temperature regime and a maximum pressure 

differential of 0.6MPa.  

 

Figure 3.12:  Schematic of the gas, district heat and electricity networks for the 

community co-generation option. (For Building Fabric Index = 0).
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 3.5 Conclusions 

A modular design model was developed for multi-energy vector community 

distribution  systems.  This  was  used  to  determine  the  loads  upon  each 

network,  the  ratings  of  the  required  infrastructure  and the  annual  energy 

balance of each network and generation plant.  The model was successfully 

implemented using a spreadsheet user interface and a set of analysis add in 

functions implemented using Java.

The  infrastructure  design  of  a  generic  new  build  residential  scheme  was 

investigated.  The model was shown to be capable of providing the design and 

performance of several infrastructure options based upon the extension of the 

existing natural gas infrastructure or the use of grid connected electricity: 

 

Building fabric option: The effect of the building fabric index and gas source 

pressure upon the gas network design was examined.  The capacity of photo 

voltaic panels installed per premise was shown to significantly effect network 

losses and the required network topology upon exceeding the peak electricity 

demand of each dwelling. 

Electrification  option:  The  use  of  heat  pumps  increased  the  number  of 

transformers  required  for  the development.   Increasing  the building  fabric 

index decreased the required cable ratings and the number of feeders required

per transformer.  The total network losses were shown to be comparable to 

the reference case.  This is attributable to the high peak heat demand which 

results in a low network load factor.

Community Co-generation option: The annual electricity production and fuel 

consumption for the combined heat and power unit is dependent upon the 

plant size and upon whether a heat storage unit was used.  Without heat 
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storage, the combined heat and power unit operates in heat led mode which 

restricts  the  electricity  production  and  results  in  a  maximum  electricity 

production at 1100kWth.  The inclusion of heat storage decouples the heat 

production and heat demand and allows the plant to operate at rated output. 

At a building fabric index of 0, a combined heat and power unit of 810kWth 

generates 100% of the required on site heat demand. 
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Chapter 4

Carbon Emissions Analysis

 4.1 Introduction 

A carbon  emissions  analysis  model  was  developed  to  evaluate  the  energy 

related greenhouse gas (GHG) emissions of new build infrastructure schemes. 

The scope of model was limited to greenhouse gas emissions resulting from 

fuel consumed within the site boundary and electricity supplied to the site 

from the grid.  The model was used to determine the project life emissions for 

each option considered for the residential case study.  

The structure of the GHG emissions model is shown by Figure 4.1.  Three 

sources of emissions were considered:  the electrical power supplied by the 

electricity grid; the fuel consumed within each individual building; and the 

fuel consumed by each generation plant within the energy centre.  For the 

purpose of this thesis,  the model was implemented as an OpenOffice Calc 

spreadsheet. 
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Figure 4.1:  Structure of the carbon emissions analysis model. 

 4.2 Carbon Emissions Modelling 

Initiatives  such  as  Zero  Carbon  Homes aim  to  encourage  low  carbon 

infrastructure design by limiting the energy consumption related project life 

emissions.   With  the  scope  of  such  initiatives  expected  to  widen  and 

mandatory emissions reduction targets likely to increase over time in line with 

the  decarbonisation  strategy  for  the  UK,  the  importance  of  conducting 

project life emission analysis within the project appraisal  process is set to 

grow.

 4.2.1 Grid Electricity Emissions: Literature Review

Several  researchers  have  attempted  to  model  the  factors  that  govern  the 

impact upon green house gas emissions due to small  scale  changes to the 

demand for grid supplied electricity (Hitchin and Pout 2002, Bettle et al 2006, 

Hawkes  2010).  Each  considers  grid  carbon  emissions  using  the  parameter 

referred  to here as  the  carbon emissions  factor  (CEF).   This  defined  the 

quantity of greenhouse gas emissions per unit of electricity as an equivalent 
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mass of CO2.  The widely adopted approach is to consider two components of 

CEF referred to here as the  average grid Carbon Emissions Factor (CEFAve) 

and the  marginal Carbon Emissions Factor (CEFMargin).   CEFAve is used to 

evaluate the baseline emissions for the “business as usual”  or do-nothing case. 

Any deviation from the baseline demand is determined by CEFMargin  (Hitchen 

and Pout 2002, Matsuo and Sato 2004, Levyveld 2010).

CEFAve is  the  average  emissions  intensity  of  the  generation  plant  used  to 

supply the grid over a specified period of time. The forecast of future CEFAve 

values is determined by the projected generation mix and is therefore subject 

to considerable uncertainty.  The Department of Energy and Climate Change 

publish projections of annual CEFAve, currently to 2030 with ongoing yearly 

updates of the forecast generation mix (DECC 2011). Zheng and Li (2011) 

provide a methodology for deriving a projection of annual CEFAve to 2020 

based upon forecasts of the decommissioning rates of existing plant and the 

build rates of new plant.

CEFMargin is  the  average  emissions  intensity  of  plant  used  to  increase  or 

decrease generation in response to a change of demand.  Hitchin and Pout 

(2002) consider the nature of  CEFMargin  for England and Wales, identifying a 

distinction  between  the  short  term  and  long  term  effect  of  demand 

intervention.  In the short term,  CEFMargin  will result from the operation of 

existing  plant  that  are  committed  or  curtailed  as  part  of  the  everyday 

operation  of  the  grid.  This  is  referred  to  as  the  operational  marginal  

component of CEFMargin. For long-term demand intervention a build marginal  

component of CEFMargin was considered to account for the impact upon the 

choice and timing of building new generation capacity or upon the retirement 

rate  of  existing  plant.   This  approach  is  recommended  by  the  Clean 

Development  Mechanism  (CDM)  Executive  board  of  the  UN  Framework 
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Convention on Climate Change Committee (UNFCCC) for assessing projects 

within reporting schemes under the Kyoto protocol (Matsuo and Sato 2004). 

It is  suggested that  CEFMargin   is considered as a weighted average of the 

operational marginal and build marginal components for long term demand 

intervention (Eq. 4.1). 

��� �����	�
�������	����������	�

�������	��� 
�������	  (4.1)

Several attempts have been made to model CEFMargin  projections for the UK. 

Bettle et al (2006) indicated that CEFMargin  may be up to 50% higher than 

CEFAve, but may be sensitive to the type of demand side intervention and also 

to any future changes to the electricity market structure.   Hawkes (2011) 

provides a study that examines the daily and seasonal variation of CEF in 

addition to the that from year to year.  For example,  the average hourly 

CEFMargin was found to vary from ~0.5kgCO2/kWh to  ~0.75kgCO2/kWh.  The 

study primarily focuses upon the operational marginal but also considers the 

build marginal citing the problem of predicting the influence of new plant 

upon future generation  scheduling.  A simplified  approach was adopted  by 

Levyveld (2010) for analysis of the proposed UK zero carbon homes initiative. 

This  estimated CEFMargin  by assuming the operational  and build  marginals 

correspond to a single plant type at any given year within the projection. 

The operating marginal, for example, was assumed to be coal fired plant up 

to 2021. This however appears to be an overestimate compared to the other 

studies included herein. 

It  should be noted that none of  the studies  found in literature provide a 

conclusive treatment of the weighting that should be applied to the build and 

operational components of CEFMargin.  The  CDM guidelines suggest a default 

weight  of  1:1  but  without justification.   This  weighting is  also  arbitrarily 
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applied by Hitchen and Pout (2002),  Bettle et al (2006) and Levyveld (2010).

 4.2.2  Modelling of Grid Supplied Electricity Emissions 

For consistency with methodologies described by the existing literature the 

following assumptions were applied in the emissions model:

1. The emissions factor of grid supplied electricity to the reference case 

was equal to  CEFAve.  

2. The emissions factor  for  any deviation from the  reference  case was 

equal to  CEFMargin.  

3. A negative power flow at the site boundary was considered as power 

exported from the site to the grid.

The net annual emissions resulting from grid supplied electricity was therefore 

determined using:
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� � � � � ��  (4.2)

Where Simport is the electrical power flow across the site grid connection point. 

 4.2.3 Consumer Cluster Fuel Emissions

The fuel consumption of each building resulted from the use of natural gas 

boilers, micro CHP and gas cookers. The total building emissions were given 

by:

����������
�
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�
�

��

��� � ��
�� � ��

 (4.3)

Regulated emissions were defined as those resulting from the supply of space 
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heating, space cooling, domestic hot water and lighting (HMGov 2008).  The 

reduction of emissions for a development are usually defined as a percentage 

of regulated emissions for a reference case (ZCH 2011, WAG 2009a).  For a 

reference  case  consisting  individual  natural  gas  boilers  with  grid  supplied 

electricity the regulated emissions are given by:
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 4.2.4 Energy Centre Emissions 

The  GHG  emissions  directly  attributable  to  the  energy  centre  were 

determined by the sum of the fuel emissions for each installed plant:
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 (4.5)

 4.2.5 Net Emissions Reduction  

The total on-site annual GHG emissions were determined by the sum of the 

energy centre emissions, cluster emissions and grid electricity emissions:

��������������������������  (4.6)

The net emissions reduction relative to the reference case was given by:

���������	���������������	���������  (4.7)

 4.3 Example Study 

The emissions model was applied to determine the annual and project life 

emissions for each option of the example scheme (Table 3.2).  The model was 

also used to determine the capability of each option to meet the proposed 

emissions  reduction  target  of  the  UK Zero  Carbon Homes  initiative.  The 

emissions  reduction  hierarchy  for  the  Zero  Carbon  Homes  initiative  is 

illustrated by Figure 4.2.  This scheme targets the elimination of regulated 
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emissions from all new domestic premises built from 2016, with the 2006 Part 

L building standard used as a benchmark. 70% of this target must be met 

using  on-site  measures  which  includes  a  minimum  housing  construction 

standard referred to as the Fabric Energy Efficiency (FEE) standard. The 

proposed FEE at the time of writing corresponds to a building fabric index 

BFIFEE = 0.3 (ZCH 2009).  

Figure 4.2:  Emissions  reduction  hierarchy  ”pyramid”  illustration  for  the  zero 

carbon homes initiative [ZCH 2011].

 4.3.1 Grid Electricity Emissions Modelling

The  projection  of  grid  supplied  electricity  emissions  used  to  evaluate 

compliance  with  the  zero  carbon  homes  initiative  were  obtained  from 

Levyveld (2010). This applied the IAG projection of CEFAve as shown by Fig. 

4.3.  A linear approximation of the projection was used with a constant a 

minimum of  CEFAve  = 0.05kgCO2e/kWhe beyond  2039.  Fig  4.4  shows  the 

assumed  projection  of  CEFMargin  together  with  its  build  marginal  and 

operational marginal components.  Coal fired plant were assumed to provide 

the operational marginal between 2011 and 2022 before switching to CCGT 
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4. Carbon Emissions Analysis

plant from 2023 to 2035. From 2035 a linear transition to coal fired carbon 

capture and storage (CCS) plant was assumed with the marginal at 2050 = 

0.05kgCO2e/kWhe.  The build marginal between 2011 and 2025 was assumed 

to  be  new build  CCGT with  LNG natural  gas.   Beyond  2025  the  build 

marginal was assumed to be a mix of low carbon plant including nuclear, 

large scale renewables and fossil fuel plant with carbon capture and storage. 

A 1:1 weighting between the build and operating marginal components was 

assumed. 
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Figure 4.3:  Projection of the average carbon emissions factor (CEFAverage) for grid 

supplied electricity in the UK (IAG 2011). 
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Figure 4.4:  Marginal grid electricity carbon emissions factor projection applied 

within carbon emissions analysis model (Levyveld 2010)
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 4.3.2 Reference Case.

The reference case defined the benchmark project life GHG emissions for the 

zero carbon homes target.  The variation of total and regulated emissions 

with CEFAve is shown by Fig 4.5.  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

200

400

600

800

1000

1200

1400

1600

annual emissons:

reference regulated emissions:

CEF_Average (kgCO2e/kWh)

an
n
u
a
l 
em

is
si

o n
s 

(t
C

O
2
e)

Figure 4.5:  Total and regulated on site emissions for the reference option.

Fig 4.6a shows the annual  total  emissions for the reference case and zero 

carbon homes target. Each trajectory is governed by the projection of CEFAve. 

The variation of 20 year project life emissions against build completion date is 

shown by Fig  4.6b.   The zero  carbon homes  target  is  shown to decrease 

against build completion year but increase as a percentage of total emissions.
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Figure 4.6:  (a) Annual and (b) Project Life of the reference reference option and 

Zero Carbon Homes emissions target.
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 4.3.3 Building Fabric Option

Increasing the building fabric index to reduce the space heat demand will 

correspondingly decrease the building emissions.  The extent of the reduction 

depends upon the type of heat supply technology used in each dwelling. For 

the  reference  case  with  domestic  gas  boilers  installed  at  all  premises  the 

emissions reduction is proportional to the carbon intensity of natural gas and 

independent of grid electricity carbon intensity. This is illustrated by Fig 4.7 

which shows a constant reduction over time for various values of BFI.   
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Figure 4.7:  Effect  over  time  of  Building  Fabric  Index  upon  annual  on-site 

emissions.

The effect of using photovoltaics to reduce on site emissions is illustrated by 

Fig.  4.8.   The addition of  PV results in a decreased consumption of  grid 

supplied  electricity  relative  to  the  reference  case  without  PV.  The 

corresponding  change  to  the  annual  on  site  carbon  emissions  is  therefore 

determined  by  the  marginal  carbon  emissions  factor  of  grid  supplied 

electricity  given  by  Fig.  4.4.   A  given  capacity  of  PV thus  results  in  a 

constant emissions reduction until  2023 at  which point a step decrease of 

CEFMargin occurs from 0.82kgCO2e/kWhe  to 0.5kgCO2e/kWhe. This results in a 

corresponding step decrease of the emissions reduction obtained relative to the 

reference case.  A Further step change is observed as CEFMargin decreases from 
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0.5kgCO2e/kWhe  to 0.25kgCO2e/kWhe in 2026. The accumulative effect is that 

the emissions reduction obtained from PV or any similar  micro renewable 

generation technology diminishes over time.  This is shown by Fig. 4.8b.
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Figure 4.8:  Effect  of  installed  Photo  Voltaic  capacity  per  dwelling  upon  (a) 

annual emissions and (b) project life emissions for the building fabric option.

The effect of  the decreased emissions reduction with CEFMargin  when using 

PV is shown by Fig 4.9. This shows that the capacity of PV required to meet 

the  zero  carbon target  with increases  with year  of  build  completion.  The 

maximum capacity of PV per dwelling is constrained by the total area of roof 

space directly exposed to the sun (for the UK, this corresponds to the roof 

space facing the arc of  direction from south east to  south west).   It  was 

assumed that an equal proportion of houses face each direction so that 25% of 

the available roof space was deemed suitable for PV.  For the market town 

property  mix,  the  average  available  roof  space  is  19.4m2/dwelling  which 

corresponds to a maximum generation capacity of 2.7kW/dwelling. For new 

build dwellings built beyond 2017/2018 the range of allowable BFI values for 

adherence to the zero carbon homes target is therefore restricted.  Projects 

starting 2022, for example, require an average BFI value greater than 0.4 to 

meet the zero carbon homes target when using gas boilers with PV.
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Figure 4.9:  Installed capacity of Photo Voltaic panels required per dwelling to 

meet the zero carbon homes target for the building fabric option.

 4.3.4 Electrification of heat.

Heat pumps increase the electricity demand relative to the reference case by 

shifting  the  burden  of  domestic  heating  to  the  electricity  network.   The 

increase of emissions is therefore governed by the emissions intensity of the 

marginal centralised generation plant, CEFMargin. The extent of the emissions 

change depends upon the heat pump CoP and the emissions factor of the 

reference fuel.  Fig. 4.10 shows the modelled emissions intensity of the heat 

pumps per unit heat generation for a range of typical CoP values. 
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Figure 4.10:  Green  house  gas  emissions  factor  for  heat  delivered  using  heat 

pumps heat against marginal emissions factor of grid supplied electricity.
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The average CoP for the electrification option varied from 2.75 during winter 

to 3.0 during the summer months.  On site emissions savings are therefore 

obtained by using heat pumps instead of gas boilers at CEFMargin values below 

~0.45kgCO2e/kWhe.  The effect upon the example scheme emissions is shown 

by Fig 4.11a for BFI = 0 and assuming a central heating temperature = 55oC. 

The annual on-site emissions exceed those of reference case prior to 2025 with 

CEFMargin > 0.5kgCO2e/kWhe.  Emissions savings are only observed beyond 

2025 with CEFMargin dropping to 0.25kgCO2e/kWhe.
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Figure 4.11:  (a) annual emissions and (b) 20 year project life emissions for the 

electrification option.

Fig 4.11b describes the variation of project life emissions against year of build 

completion.   At BFI = 0,  the project life  emissions for the electrification 

option exceeds the reference case for projects completed prior to 2017 .  This 

is  brought forward to 2013 when BFI is increased to 0.3.    By 2030, the 

electrification option achieves zero carbon homes emissions target using heat 

pumps without PV capacity when BFI > 0.6.  The effect upon the required 

capacity of PV is shown by Fig. 4.12.
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Figure 4.12:  Installed  capacity  of  Photovoltaic  panels  required  to  meet  zero 

carbon homes emissions target for the electrification option.

 4.3.5 Community Co-generation

The  effect  of  CHP  plant  size  upon  energy  centre  fuel  consumption  and 

electricity  production  was  examined  in  chapter  3.  The change of  on-site 

emissions  relative  to  the  reference  case  is  dependent  upon  the  emissions 

intensity of each fuel used and the avoided grid supplied electricity emissions 

determined by CEFMargin.  Figure 4.13 describes the effect of CHP plant size 

upon annual on-site emissions relative to the reference case for the community 

cogeneration option without storage. For CEFMargin > 0.5kgCO2e/kWhe,  the 

emissions  reduction  from the  avoided  grid  supplied  electricity  exceeds  the 

additional  emissions  from  fuel  consumption  at  plant  sizes  greater  than 

100kWth.   At  0.25kgCO2e/kWhe and  below,  the  displaced  grid  electricity 

emissions are exceeded by the additional fuel and the community cogeneration 

option becomes a net contributor to emissions relative to the reference case.  
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Figure 4.13:  Variation of the net annual emissions increase against combined heat 

and power plant size for the community cogeneration option, no heat storage.

The effect of introducing heat storage to the energy centre is shown by Fig. 

4.14.  The increased electricity production results in an decrease of emissions 

compared to the case without storage  when CEFMargin  >  0.25kgCO2e/kWh. 

Figure 4.15 shows that the minimum CEFMargin at which emissions savings are 

observed is reduced with the use of heat storage. At 1100kWth, for example, 

the  addition  of  storage  decreases  the  minimum  CEFMargin required  for 

emissions savings from 0.27kgCO2e/kWhe to  0.23kgCO2e/kWhe.
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Figure 4.14:  Variation of the net annual emissions increase against combined heat 

and power plant size for the community cogeneration option with heat storage.
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Figure 4.15:  Variation  of  minimum  CEFMargin required  to  provide  emissions 

savings against combined heat and power plant size for community generation option.

Figure 4.16 compares the annual and project life emissions for the community 

co-generation option (at BFI = 0) using a 1100kWth CHP plant both without 

and without heat storage.  Fig. 4.16a shows that the bulk of emissions savings 

occur during the period at which coal fired plant and CCGT are assumed as 

the operational and build marginal respectively.  This suggests a window of 

opportunity  to  deliver  zero  carbon homes  targets  using  natural  gas  CHP. 

Natural  gas-CHP  is  however  unsuitable  as  a  long  term  solution  as  the 

marginal plant transition to renewable generation technologies.

Figure 4.16b illustrates the period and extent to which natural gas CHP may 

be  applied  to  deliver  a  reduction  of  emissions.   Without  storage,  a  net 

emissions reduction is achieved until 2023. A build completion beyond this 

point will deliver a net increase of emissions relative to the reference case. 

The use of heat storage has a significant effect upon the shortfall against 20 

year target and results  in a period (to 2017) for which no supplementary 

capacity of PV is required to meet the zero carbon homes target.   The effect 

upon the year at which NG-CHP results in a net contribution of emissions is 

limited however, with a delay of 1 year to 2024.  
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Figure 4.16:  (a)  Annual  emissions and  (b)  project  life  emissions  for  the 

community co-generation option with a 1100kWth combined heat and power plant. 

(Building Fabric Index = 0).

Fig. 4.17 shows the PV capacity required to deliver the zero carbon homes 

target.  The  restriction  of  PV  capacity  to  2.7kW/dwelling  constrains  the 

period for which NG-CHP can be applied for any given BFI.   
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Figure 4.17:  Installed capacity of Photovoltaic panels required to deliver the zero 

carbon  homes  emossions  target  for  the  community  co-generation  option  with  an 

1100kWth combined heat andd power plant. (Building fabric Index = 0).
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 4.4 Conclusions 

The carbon emissions analysis  model  was developed to evaluate the green 

house gas emissions resulting from on site energy usage.  This determined the 

annual and project life emissions for the on site fuel consumption, on site 

electricity  generation  and  grid  supplied  electricity  for  a  community 

development scheme.  The model was used to evaluate the emissions reduction 

obtained  for  each  option  within  the  example  residential  case  study.  This 

included an examination of the capability to meet the 70% target reduction of 

regulated emissions stipulated by the zero carbon homes initiative. 

Building fabric option: Improving the building insulation standard results in a 

constant reduction of carbon emissions when using gas boilers as the space 

heating  technology.   The  effectiveness  of  PV  to  reduce  carbon  emissions 

decreases  proportionally  with  CEFMargin.   This  resulted  in  a  increase  of 

required PV capacity for a given shortfall against the specified target.

Electrification option:  When using heat pumps the total energy demand for 

each dwelling  was proportional  to  the  grid  carbon emissions  factor.   The 

emissions reduction relative to the gas boilers reference case was proportional 

to  CEFMargin.  An  emissions  reduction  was  observed  at  CEFMargin  

<0.25kgCo2e/kWh at  which  the  additional  emissions  from  grid  supplied 

electricity  exceeds  that  of  the  natural  gas  displaced.  At  CEFMargin  

>0.5kgCO2e/kWh,  a net contribution to emissions was observed relative to 

the gas boilers reference.  Project life emissions were shown to be significantly 

sensitive to the year of build completion.  For a building fabric index off 0.3, 

the  electrification  option  transitions  from  providing  a  net  emissions 

contribution  in 2013 to meeting the 70% target without supplementary PV in 

2028.  
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Community generation option: The emissions reduction achieved from the use 

of natural gas CHP- district heating results from the balance between the 

additional  fuel  consumed  and  the  emissions  factor  of  the  avoided  grid 

electricity supply.  The net annual emissions reduction decreases over time 

with  natural  gas  CHP eventually  acting  as  a  net  contributor  to  on  site 

emissions.  The addition  of  storage can  significantly  increase  the  emissions 

reduction performance at high values of  CEFMargin  by increasing the quantity 

of  electricity  produced  per  unit  of  heat  production.  The  diminishing 

performance of CHP-DH over time results in a correspondingly increasing PV 

capacity required to deliver the on site target.  
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Chapter 5

Financial  Analysis  for  Community 

Energy Infrastructure

 5.1 Introduction

A financial analysis model was developed for new build energy distribution 

infrastructure.  A  simplified  organisational  structure  of  an  energy  services 
company for the ownership and operation of the district heating scheme and 

energy centre was considered.  The financial model was implemented as a 
spreadsheet  using  OpenOffice  Calc  and  was  used  to  determine  the  build 

premium for each option considered within the residential new build example 
study. 

 5.2 Energy Services Companies 

An Energy  Services  Company (ESCo)  is  an  entity  created  specifically  for 
activities or services relating to energy provision.  These may be public or 

privately owned and may take one of several forms including a cooperative, an 
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industrial society, a trust or an incorporated body (LEP 2007).    Local area 
energy schemes can be subject to significant investment risk and operational 

learning curves.  The BedZed development is one example where the lack of 
an ESCo has been cited as a hindrance to the successful operation of the 

community energy system(UtilityWeek 2007). A review by Kelly and Pollit 
(2010) observes that ESCo's are now set up in almost all public –  private 

partnerships for energy energy infrastructure developments.  One example is 
the Thamesway development by Woking borough council for which a joint 

public / private ESCo was set up in 1999  for the operation and management 
of a private wire electricity network and a district heating scheme(see Fig. 

5.1).  

Figure 5.1:  Structure of the joint public-private energy services company for the 
Woking Borough private wire and districct heating scheme (Kelly and Pollit 2010).

The level  of  public  or  private  sector  investment desired for  an ESCo will 
depend upon the objectives and priorities of each specific project.   Public 

ESCo's are not bound to profit and may have access to lower interest rates, 
but may also have less direct access to capital and expertise (EACOM  2009). 

Examples of successfully implemented public sector led ESCo`s include the 
1000 dwelling CHP-DH scheme with a not for profit ESCo in Aberdeen and 
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the Southwark Council ESCo responsible for a number of community heating 
schemes in its borough (PAS 2009).  Private ESCo ownership on the other 

hand has the advantage of transferred risk and access to private capital but at 
the  expense  of  a  loss  of  project  and  strategic  control.  The  Southampton 

District Energy Scheme is an example of a private sector led ESCo with a 
profit share allocated to the city council.  

 5.3 Financial Analysis Model 

The organisational structure used to illustrate the financial analysis of new 

build energy distribution infrastructure is shown by Fig. 5.2.    

Figure 5.2:   Structure of the asset ownership and financial model applied  to the 
example study.

The model applied the following simplifying assumptions:

• The district heating network, energy centre and all dwellings were 
constructed by a single actor referred to as the Developer. 
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• An Energy Services Company (or ESCo) was formed to own, manage 

and operate the energy centre and district heat network. 

• Building level supply technologies were assumed to be property of 

the house owner.

• The electricity and gas distribution networks were constructed and 
owned by the DNO. All of the associated capital expenditure was 

passed to the developer.

• All  infrastructure  was  laid  and  installed  within  utility  service 
trenches prepared by the developer.   Street works and excavation 

costs were therefore ignored.

 5.3.1 Gas and Electricity Network Capex

The cost  passed from the DNO to the developer  for a  new build scheme 

depends upon: the revenue received from use of system charges; the extent 
and  complexity  of  any  specialist  engineering  and  construction  works;  the 

extent of any reinforcement to the existing infrastructure; and the charging 
policy of any contractors responsible for any contestable works.  The total 

cost can therefore vary considerably from one similar project to the next.  

For  clarity,  the  model  was  limited  to  the  installed  cost  of  the  on-site 
infrastructure  and  the  apportioned  cost  of  the  local  33/11kV  primary 

substation. The electricity network capex was defined by:

C ElecNET=∑
1

Nj

c j L jcSS , jCPrimSub  (5.1)
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The length of cluster LV branches and sub branches defined using:

if j=LVbranch , L j=N Feeder
c N Trans

c  LLVbranch , j
c 

if j=LVsubBranch , L j=6N Feeder
c N Trans

c  LLVsubBranch , j
c   (5.2)

Similarly for the gas network:

C GasNET=∑ c lL lcPRI , l∑
1

N c

N Bld
c 

10cGasServ
c 

cGasMet
c 

  (5.3)

With cluster branch lengths defined by

if L=GasBranch , L l=2LGasBranch , l
c 

if L=GasSubBranch , L l=12LGasSubBranch , l
c   (5.4)

 5.3.2 Building Capex
The building capex was composed of the cost of the building fabric, the cost 

of each individual heating installation and the cost of the installed capacity of 
PV.  The building fabric premium is the additional cost of insulation required 

to achieve a given value of BFI.  For the example scheme, this was defined 
using the 2006 Part L building standard as the reference.  The zero carbon 

hub provides indicative costs for various levels of building improvements for a 
range of domestic dwelling types (ZCH 2009b).  These were used to define an 

empirical relationship between BFI and fabric premium (Fig. 5.3):

c BFI
c

=9110.72 BFI c1.556496BFI c3.02

C BFI
c

=∑
1

Nc

N Bld
c c BFI

c  (5.5)

A similar treatment was not conducted for non residential clusters due to the 
lack of a suitable data set.
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Figure 5.3:  Plot of average build premium per dwelling against Building Fabric 
Index for a market town residential mix (ZCH 2009b).

The cost of the building level heating technologies was given by:

C HTech=∑
1

Nc

N Bld
c 
 f GSHP

c cGSHP
c

 f ASHP
c cASHP

c
f GCH

c cGCH
c

  (5.6)

The cost of the PV capacity installed within each premise was given by:

C PV=cPV∑
1

Nc

N Bld
c  APV

c  (5.7)

The total building capital expenditure is therefore given by:

C Build=C BFICHTechC PV  (5.8)

 5.3.3 Energy Services Company

The  ESCo  capital  expenditure  consists  of  the  cost  of  the  energy  centre 
generation plant and the installed cost of the district heat network :

C Plant
g 

=∑ cPlant
g 

Rated
g   (5.9)
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C DHN=2∑
1

Nn

cn Ln∑
1

Nc

N Bld
c

20cDHNserv
c 

cDHNmet
c

  (5.10)

The  energy  centre  operational  expenditure  consists  of  the  cost  of  fuel 

consumed and the cost of running and maintaining each generation unit.  The 
fuel cost includes a Climate Change Levy (CCL) is a tax payable for specific 

energy products such as fuels used for lighting, heating and power (HMRC 
2011). Fuel used for CHP may qualify for CCL exemption if classified as good 

quality CHP under the CHP quality assurance scheme (Defra 2007). The total 

expenditure is given by:

C ESexp=C ESopex∑
1

Np

∑
1

Ng

F G
g ,p 

cFuel
g 

cCCL
g 

  (5.11)

The electricity revenue generated by the energy centre was given by:  

C ECelec=∑
1

Np

∑
1

Ng

cPower
g , p SG

g , p   (5.12)

The heat revenue was calculated using:

C Heat=∑
1

Np

∑
1

Nc

cHeatDHdem
c , p

  (5.13)

The total ESCo capex was considered as an annualised expenditure:

C AnnESCo=
1DRESCoC ESCo 

1−1DRESCo
−N Project

 (5.14)

Where DR is the annual discount rate applied to the scheme.  The maximum 

annualised ESCo capex,  CAnnESCo,  was calculated based upon the assumption 

that the annual income was equal to the annual expenditure:
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C AnnESCoC ESexp−C ECelec−C Heat=0  (5.15)

The total ESCo capex was therefore determined by:

C ESCo=CECelecC HeatC ESexp
1−1DRESCo

−N Project

DRESCo

 (5.16)

It  was  assumed  that  any  surplus  capital  expenditure  was  passed  to  the 

developer as a contribution C DHNdev to the build premium given by:

C DHNdev=C PlantC DHN−CESCo  (5.17)

 5.3.4 Infrastructure Build Premium
The financial  viability of  the energy distribution  infrastructure option was 

considered in terms of the overall build premium which the cost relative to 
that  of  a  chosen  reference  case.  This  overall  infrastructure  cost  was 

determined using:

C Infr=C BuildCElecNETC GasNETC DHNdev  (5.18)

The build premium was therefore defined as:

C Premium=C Infr−C Infr Ref (5.19)

For residential developments, it is more useful to consider the infrastructure 

cost in terms of build premium per dwelling:

C Premium=
C Infr−C Infr Ref

∑N Bld
c (5.20)
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 5.4 Example Scheme Analysis

The financial model was used to determine the build premium for meeting the 
zero carbon homes emissions target of  each example scheme option.   The 

energy price assumptions are shown by table 5.1.  The cost data applied for 
the evaluation of infrastructure capex is provided by Appendix 2.  

Electricity domestic retail price
Electricity commercial retail price

Electricity wholesale price
Electricity export price

Electricity climate change levy

Gas domestic retail
Gas commercial retail price

Gas Industrial price (<1,500 MWh/annum)
Gas Industrial price (>1,500 MWh/annum)

Gas climate change levy

12.9p/kWh (DECC 2009)
11.46p/kWh (DECC 2009)

5p/kWh (APX Power 2011)
4p/kWh (assumed ~ 80% of wholesale)

0.485p/kWh (HMRC 2011)

3.74p/kWh (DECC 2010)
3.32p/kWh(DECC 2010)

2.79p/kWh (DECC 2011)
2.24p/kWh (DECC 2011)

0.169p/kWh (HMRC 2011)

Table 5.1:  Price and cost assumptions for financial model

 5.4.1 Reference Case

The cost  breakdown for  the reference  case  is  shown by Table.  4.2.   This 

defines  the  benchmark  used  to  calculating  the  build  premium  of  each 
infrastructure option.

Electricity Network

Gas Network

Gas Boilers

Building fabric cost

Total

£746,295

£351,556

£1,250,000

£0 (benchmark)

£2,347,851
Table 5.2:  Breakdown of infrastructure costs for the reference case
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 5.4.2 Building Fabric Option
The trade-off between BFI and the capacity of PV required to obtain the zero 
carbon homes emissions reduction target was examined in chapter 4. Fig. 5.4 

shows the  resulting  cost  of  the  gas  and electricity  networks.   At  a  build 
completion year of 2012, the PV capacity has little impact upon the electricity 

infrastructure design and cost.  Due to the decreasing reduction of emissions 
obtained by PV, the infrastructure cost increases with build completion year 

for  a  given  BFI.  By  2025  for  example,  the  additional  electricity  network 
premium is £422 per dwelling at BFI = 0 and £194 per dwelling at BFI = 

0.3.  
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Figure 5.4:  Cost  variation  of  gas  and  electricity  distribution  networks  against 
Building Fabric Index for various year of build completion.

The total build premium is a trade-off between the fabric premium, the cost 

of PV and the cost of the energy distribution infrastructure.  Fig. 5.5 shows 
the variation of build premium with BFI at a build completion date of 2012 

with a minimum of £9,156 per dwelling observed at BFI = 0.3.  At 2020 (not 
shown) the increase of required PV capacity increases the minimum cost to 

£12,745 at BFI = 0.4.
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Figure 5.5:  Variation of cost breakdown and build premium with Building Fabric 
Index for the building fabric option (build completion date = 2012)

Figure 5.6 illustrates the variation of the build premium curve with year of 

build completion.  The minimum build premium and the corresponding BFI 
both increase due to the increasing PV capacity required to meet the zero 

carbon homes target.  At 2020, the minimum cost (£12,745) occurs at BFI = 
0.4 and at 2025 further increases to £16,824 at BFI = 0.8.  The building 

fabric option therefore favours a shift towards higher insulation standards over 
time.
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Figure 5.6:  Variation of average build premium per dwelling with Building Fabric 
Index for the building fabric option at various years of build completion.
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 5.4.3 Electrification of Heat 
The  breakdown of build premium for the electrification option is shown by 
Fig. 5.7. The capacity of PV required to meet the zero carbon target, the 

installed cost of heat pumps, and the cost of the electricity infrastructure all 
decrease as BFI increases.  At a project completion of 2012, the minimum 

build premium (£19,321) per dwelling occurs at BFI = 0.3.  This option is 
thus considerably more expensive than the building fabric option.
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Figure 5.7:  Variation of cost breakdown and build premium with Building Fabric 
Index for the electrification option (build completion date = 2012)

Analysis within chapter 4 showed that the capacity of PV required to meet 
the  zero  carbon  target  for  the  electrification  option  decreased  with  grid 

decarbonisation.   Figure  5.8  shows  the  corresponding  effect  upon  build 
premium. At 2020, the minimum build premium is reduced to £17,361 at BFI 

= 0.4 and at 2025 is further reduced to £14,163 at BFI = 0.4, which is below 
that of the building fabric option.  
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Figure 5.8:  Variation of average build premium per dwelling with Building Fabric 
Index for the electrification option at various years of build completion.

 5.4.4 Community Cogeneration
The build premium of the community cogeneration option consisted primarily 

of the energy centre and heat network capex apportioned from the ESCo, the 
fabric premium and the capacity of PV required to meet the zero carbon 

homes target. The ESCo was assumed to operate the heat network with the 
objective of  delivering heat at or below the average price of  domestic  gas 

(taken as 3.74p/kWh).  This places a constraint upon the maximum ESCo 
capital expenditure.  The remaining Capex was apportioned to the developer 

build premium.

The annual financial breakdown for the  ESCo at BFI = 0 is shown by Fig. 

5.9.   Without heat storage, the maximum income occurs at a CHP plant size 
of  1100kWth,  corresponding  to  the  plant  size  for  maximum  electricity 

generation.   The  cost  of  fuel  and  plant  opex  reduces  the  plant  size  for 
maximum annual net revenue (£44,814) to 700kWth.  The use of heat storage 

removes  the  electricity  production  peak  and  results  in  a  67% increase  of 

92



5. Financial Analysis of Community Energy Infrastructure

maximum  net  energy  centre  revenue  (£74,962)  at  1100kWth.  The  capital 
expenditure of the community heating system increases with CHP plant size. 

This suppresses the plant size at which the annual net revenue occurs.  This 
occurs at 400kWth without storage capacity and at 700kWth when storage is 

used.  
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Figure 5.9:  Variation of ESCo revenue and expenditure with combined heat and 
power plant size for the community cogeneration option: (a) no heat storage, (b) 
with storage. (BFI = 0, 6% discount rate, heat price = 3.74p/kWh)

The capital cost apportioned to the developer was determined by assuming 
that the minimum net annualised ESCO revenue is zero.  Thus, any deficit of 

net  annualised  revenue  determines  the  annualised  capex  incurred  by  the 
developer.   The total developer capex for an assumed discount rate of 6% is 

shown by Fig. 5.10. The least cost DH-CHP option is shown to be dependent 
upon the building fabric index.  For the case without storage, an increase of 

BFI to 0.6 decreases the least cost plant to 300kWth whilst increasing the 
scheme cost to £2,013,412.  A similar trend is observed for the option with 

storage with the same increase of BFI resulting in a reduced plant size to 
400kWth and an increased cost to £1,942,242.
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Figure 5.10:  Variation with combined heat and power plant size of capex passed 
to developer from ESCo for the community cogeneration option: (a) without heat 
storage and (b) with storage. (Discount rate = 6%, heat price = 3.74p/kWh). 

The energy centre capex comprises  the cost of  the CHP plant,  peak load 

boiler (determined by peak district heat demand and thus BFI), and storage 
capacity.  Fig. 5.11 illustrates the effect of increasing and using heat storage 

upon the energy centre capex. 
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Figure 5.11:  Variation of energy centre generation plant capex with Combined 
Heat and Power plant size for the community cogeneration option.

The  district heating network capex is dependent upon the peak heat demand 
and therefore BFI.  Fig. 5.12 shows the variation of heat network capex with 
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BFI with an assumed maximum network pressure differential of 14bar. For a 
development of this scale we would anticipate a limited influence of BFI upon 

variation of heat network cost, and the total cost decrease of increasing BFI 
from 0 to 0.9 is 2.5%   
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Figure 5.12:  Effect of building fabric index upon the district heat network capex 
for the community cogeneration option (design pressure = 14 bar).

The total build premium for the community cogeneration option consists the 

cost of the PV capacity required to meet the shortfall against the zero carbon 
homes  emissions  target.   In  Chapter  4  it  was  shown  that  the  minimum 

emissions (and thus minimum required PV capacity) occur for the plant with 
the highest electricity output.  The high capital cost of PV therefore shifts the 

optimal CHP plant size to this point.  This is illustrated by Fig. 5.13 which 
shows  the  net  build  premium  per  dwelling  at  a  2012  build  completion. 

Without capacity, the minimum build premium of £7,311 occurs at BFI = 0 
with a CHP plant size of 1000kWth.  Using heat storage, the minimum build 

premium is reduced to £5,524 at BFI = 0 with a CHP plant size at 700kWth. 
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Figure 5.13:  Variation of average build premium per dwelling with combined heat 
and power plant size for the community cogeneration option (a) without heat storage 
and (b) with heat storage.  (Build completion 2012,  discount rate 6%, heat price 
3.8p/kWh)

The effect of grid decarbonisation and BFI upon the minimum build premium 

for  the  community  cogeneration  option  is  illustrated  by  Fig  5.14.   The 
proposed minimum insulation standard for zero carbon homes corresponds to 

a BFI ~ 0.3.  This results in a increased of minimum build premium from 
£11,405  per  dwelling  to  £12,279  without  storage  and  from  £5,527  per 

dwelling  to  £7,360  per  dwelling  when storage  is  included.   By  2020,  the 
increase  of  required  PV capacity  results  in  a  significant  increase  of  build 

premium for the case without and with storage to £16,530 per dwelling and 
£11,506 per dwelling respectively at BFI = 0.3.
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Figure 5.14:  Variation of minumum build premium with Building Fabric Index 
for the community cogeneration option: (a) without storage, (b) with storage.

 5.5 Conclusions 

An financial analysis model for community energy distribution systems was 

developed.   The model was used to provide an indicative evaluation of build 
premium for each infrastructure option within the example study under a 70% 

regulated emission reduction design criteria.  A summary of the findings based 
upon the assumed financial structure and energy prices are as follows:

Building  fabric  option:  The  total  cost  of  the  building  fabric  option  was 

characterised by a trade-off between the cost of the required PV capacity and 

the cost of implementing building fabric improvement.  A minimum cost was 
observed for which the corresponding building fabric index increases with year 

of  build  completion due to the diminishing contribution of  PV to on site 
emission reduction. 

Electrification option: The electrification option was also characterised by the 

trade-off between PV capacity and fabric cost.  This was exacerbated by the 

high installation cost of heat pumps which drives the minimum cost solution 
towards a higher building fabric index.  The electrification option relies on 
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electricity  grid  decarbonisation  for  its  carbon  reduction  capability  which 
decreases the installed cost of PV and thus total cost with build completion 

date.  The electrification option was found to be the most expensive option at 
present.  

Community Co-generation option: The cost of the natural gas  district heating 

option was found to depend upon the interaction between plant size, annual 

heat demand, annual electricity generation and the required capacity of PV. 
The inclusion of heat storage capacity was shown to significantly reduce the 

associated build premium for the option and for a project completion of 2012 
was found to be the least cost option of those examined.  The extent to which 

natural gas engine combined heat and power is able to contribute to emissions 
savings  is  dependent  upon  the  carbon  intensity  of  the  grid  imported 

electricity.  It was found that the diminished contribution of both PV and 
natural gas engine combined heat and power over time results in a significant 

increase of the net development cost with year of build completion.  This 
implies a narrow window of opportunity to use natural gas engine combined 

heat and power alone as a low carbon technology for new build community 
schemes.  
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Chapter 6 

Optimised  Design  of  Ebbw  Vale 

Community Redevelopment

 6.1 Introduction 

A heuristic optimisation algorithm was applied within the integrated design 

and  analysis  model  described  within  chapters  2  to  5.   This  was  used  to 

determine the least  cost mix of  energy supply technologies  subject  to the 

technical, emissions and financial constraints of the scheme.  The integrated 

optimisation model was applied to a case study based upon a community 

redevelopment scheme at Ebbw Vale in the South Wales Valleys, UK.   

 6.2 Integrated Optimisation Model

 6.2.1 Structure of Integrated Optimised Model

The Solver For Non-linear Programming is an open source extension for the 

OpenOffice  Calc  spreadsheet.  The  solver  was  thus  incorporated  into  the 
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spreadsheet of the integrated design and analysis model.  The structure of the 

integrated optimisation model is shown by Fig. 6.1.  

Figure 6.1:  Structure of the integrated optimisation model.

The  solver  implements  one  of  three  optimisation  algorithms:   Differential 

Evolution  Optimisation  (DE);  Particle  Swarm  Optimisation(PSO);  Social 

Cognitive  Optimisation(SCO).   A hybrid  Differential  Evolution  –  Particle 

Swarm algorithm was also available as a fourth option. Each algorithm applies 

a heuristic search methodology to identify the optimal (in this case minimum 

cost) location within a defined solution space.  Through trial and error, the 
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SCO algorithm was found to display the fastest convergence to an optimal 

solution  for  the  problem  described  within  this  chapter  and  was  applied 

exclusively. 

 6.2.2 Social Cognitive Optimisation

Social Cognitive Optimisation is an evolutionary algorithm developed by  Xie 

et al (2002). The method was developed as a progression from methods based 

upon biological selection (such as genetic algorithms) and swarm intelligence 

by  modelling  human  observation  and  learning  traits  into  the  search 

process(Fig 6.2).  

Figure 6.2:  ”Evolution”  of heuristic algorithms (Xie 2002)

SCO selects a library of feasible knowledge points from the solution space each 

defined by its location and fitness (i.e. objective function value).  A set of 

learning agents perform the optimisation search with each holding a single 

knowledge point. Each agent performs a search for an improved point based 

upon a comparative operation between its current knowledge point and two or 

more neighbouring points within the library.  A flow chart summarising the 

method is given by Fig 6.3.  
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Figure 6.3:  Illustrative flow chart for Social  Cognitive Optimisation angorithm 

(Xie 2002)

 6.3 The Works Ebbw Vale Scheme 

The Works Ebbw Vale  is a £350m publicly funded community regeneration 

scheme for the redevelopment of a disused steelworks at Ebbw Vale in South 

Wales, UK. The project is a joint venture between Blaenau Gwent Council 

and the Welsh Assembly Government to build 720 new homes, a local general 

hospital, primary and secondary schools, an adult education centre, an arts 

centre,  business  units,  a  leisure  centre  and  council  offices  and  is  due  for 

completion by 2016. Sustainable development forms one of the key objectives 

of the scheme that includes (WAG 2009a):

� Maximising the economic benefit to the local area and Blaenau Gwent 

region.

� Maximising the social benefit to the local community by strengthening 

communities,  health  and  well  being,  local  culture  and  improved 

housing.

� The stewardship and enhancement of the natural, built and historic 
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environment.

� The  efficient  use  of  local  and  global  resources  and  minimise  the 

environmental footprint

The sustainable energy strategy for the development was based upon  three 

fundamental principles:  (i) to minimise the demand for energy; (ii) to supply 

energy  efficiently  and  (iii)  to  use  renewable  energy  (WAG 2009a).   The 

mission statement for the sustainable energy strategy states that:

“The project will be an exemplar for the sustainable use of energy and will  

contribute  to  Wales's  sustainable  development.   It  will  demonstrate  how  

projects can move towards being carbon neutral over time.” (WAG 2009b).

The development strategy also considers the use of a local Energy Centre to 

utilise local energy resources and to distribute heat to the area using district 

heating.  The high level concept is illustrated by Fig 6.4.

 

Figure 6.4:  Community  energy  provision  concept  for  The  Works  Ebbw  Vale  

development (WAG 2009b).
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 6.3.1 Scheme Model

Table  6.1  details the  building  clusters  used  to  model  the  scheme.   The 

demand profiles  used to model  each occupancy type can be found within 

Appendix A1.

Cluster 

ID Consumer

No. of 

Buildings

Occupancy Type Occupied floor 

space (m2)

No. 

floors

Cluster 

Area (m2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

General Offices

Learning Centre

Arts Centre

Comprehensive School

Leisure Centre

Residential

Residential

Business Park

Business Park

Hospital

Business Park

Primary School

Residential

Business Park

Residential

1

1

1

1

1

245

255

10

30

1

30

1

160

15

60

Office

Education

Education

Education

Leisure Centre

Residential

Residential

Offices

Offices

Hospital

Offices

Education

Residential

Offices

Residential

3,940

13,000

5,200

9,500

9,500

77.6

77.6

450

450

10,695

450

7,400

77.6

450

77.6

3

4

2

2

2

2

2

1

1

2

1

2

2

1

2

5,000

8,000

10,400

19,000

9,500

110,250

114,750

12,225

68,270

53,475

42,069

32,718

72,000

31,912

27,000

Table 6.1:  Building clusters modelled within The Works Ebbw Vale case study.

The layout and utility  routes  for  the  development are  shown by  Fig  6.5. 

Figures 6.6 to 6.8 show the proposed network layout for each energy vector 

required to serve all clusters on site from which a sub set was selected (see 

Appendix 4 for data tables).   The development was divided by a railway line 

with the  main site located to the West and the  Lower Sidings  to the East. 

The electricity network was therefore modelled as two separate 11kV ring-

main systems each connected to the grid via an existing 11kV system. The 

proposed  gas  distribution  network  was  modelled  as  a  radial  configuration 

connected  to  the  existing  natural  gas  infrastructure  via  a  single  2bar 

connection at the site boundary.  The proposed district heating network was 

as a radial dual pipe system with a supply/return regime of 90oC/50oC during 

the  heating  season  (October  to  May)  dropping  to  80oC/50oC during  the 

summer period.  
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Figure 6.5:  Proposed development layout (WAG 2009c).
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Figure 6.6:  Electricity Network Superstructure for The Works Ebbw Vale case 

study.
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6. Case Study

Figure 6.7:  Gas Network Superstructure for The Works Ebbw Vale case study.
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6. Case Study

Figure 6.8:  District Heat Network Superstructure for The Works Ebbw Vale case 

study.
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6. Case Study

The construction of the buildings and infrastructure was carried out in stages 

over the development period.  For the purpose of this study, however, it was 

assumed  that  the  construction  was  completed  at  a  single  year  with  full 

building occupancy from the following year.

 

 6.3.2 Financial Model

The financial structure described by  Fig. 6.9 was assumed to apply to the 

scheme.  The Developer was responsible for the construction of each premise, 

the installation and commissioning all building level supply technologies and 

all  on  site  civil  engineering  works.  The  gas  and  electricity  distribution 

networks were assumed to be installed, owned and operated by the regional 

gas DNO and electricity DNO respectively.  It  was assumed that the total 

capital  expenditure  incurred  for  each  was  passed  to  the  developer.   An 

independent not for profit  ESCo was set up to build, operate and maintain 

the energy centre and the district  heating network,  and manage the heat 

contracts with all connected premises.  

Figure 6.9:  Illustration of financial structure modelled within  The Works Ebbw 

Vale case study
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6. Case Study

A simplified supply arrangement was considered for public sector buildings 

using building level supply technologies connected to a DNO owned system 

(gas boilers, heat pumps, PV).  This assumed that the associated revenues 

obtained by the ESCo (FiT, RHI, electricity exported from PV, electricity 

and gas revenue from public sector) were equal to the expenditure from plant 

maintenance and payment to the gas and electricity suppliers.  A detailed 

financial treatment for these technologies was therefore not considered.

 6.3.3 Design Objectives

A 60% reduction of regulated emissions relative to 2006 building standards 

was specified as part of the energy strategy for the scheme.  The objective of 

the optimisation study was to identify the energy infrastructure that delivers 

the emissions target at minimum cost to the developer assuming construction 

at the anticipated build completion date of 2016.  The study then examined 

the effect of build completion date upon the optimal infrastructure design by 

considering an early build completion date of 2012 and late build completion 

date  of  2020  for  the  project.   Finally,  the  effect  of  applying  alternative 

electricity grid carbon emissions intensity projections was examined.

The study  investigated  the  delivery  of  an  on-site  carbon reduction  target 

without  developing  new  energy  or  fuel  supply  chains  such  as  biomass, 

municipal waste or industrial waste. The model was thus constrained to the 

use of  domestic building fabric improvement, individual natural gas boilers, 

PV,  ground  sourced  heat  pumps,  air  sourced  heat  pumps  as  building 

integrated options, and natural gas boilers or CHP  as options for the energy 

centre supply.  A non-domestic building fabric index was not considered due 

to the lack of available data to model a relationship between space heating 

demand and building fabric cost.  
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 6.4 Optimisation Problem

 6.4.1 Reference Case

A reference case was defined with all buildings constructed to 2006 Part L 

building  standards.  The  peak  and  annual  energy  consumption  for  each 

building  type  is  shown  in  Table  6.2.   Space  heating  and  hot  water  was 

assumed  to  be  provided  using  gas  boilers  at  all  premises.  The remaining 

energy demand was met using grid supplied electricity.

Consumer type

Space heat

(kWh/m2/yr)

Hot water

(kWh/m2/yr)

Space 

cooling

(kWh/m2/yr)

Appliance 

& lighting

(kWh/m2/yr)

Peak Heat 

demand3

(W/m2)

Peak 

Electricity 

demand

(W/m2)

Education1 

Hospital1

Offices1

Leisure Centre1

Residential2

51.5

87.6

103.9

0

65.1

30.9

46.4

15.5

159.8

25.0

0

0

13.9

69.8

0

74.5

234.9

116.3

118.7

40.5

1103

903

903

1103

-

304

354

604

904

-

1.  Annual values adapted from HM Gov(2008)       

2.  ZCH 2009                                                    

3.  CIBSE Guide F (2005) 

4.  CIBSE Guide K (2005)

Table 6.2:  Average  annual  and  peak  energy  consumption  rates  for  buildings 

constructed to 2006 Part L standards. 

 6.4.2 ESCo Model 

The ESCo cost model described within chapter 5 was modified for use within 

the optimisation tool. The variable Kcapex as used to represent the fraction of 

total heat network capex passed on to the developer.  The cost apportioned 

between the developer and the ESCo was therefore given by:

C
Dev

�K
capex

�C
DHN

�C
plant

�  (6.1)
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C
ESCo

��1�K
capex

��C
DHN

�C
plant

�  (6.2)

The annualised ESCo capex was determined using:

C
AnnESCo

�
�1�K

capex
��1�DR

ESCo
��C

DHN
�C

plant
�

1��1�DR
ESCo

�
N

Project

 (6.3)

The average heat price was determined using:

c
heat

�
C

AnnESCo
�C

ESexp
�C

ESincome

�
1

Nc

�
DHN

�c�  (6.4)

 6.4.3 Grid Electricity Emissions Model

The DECC projection (DECC 2011) of the average carbon emissions factor 

(CEFAVE) was used throughout the study. Three alternative projections for the 

marginal carbon emissions factor of grid supplied electricity were considered 

within the study.  These are shown within Fig. 6.10.  The first projection is 

the marginal carbon emissions factor published by DECC (DECC 2011). This 

was assumed to be the projection used by default for the analysis of the Ebbw 

Vale scheme. The second projection is that recommended for use within the 

Zero Carbon Homes initiative by the Zero Carbon Hub (Levyveld 2010).  The 

final projection follows the assumption that the marginal and average carbon 

emissions factors are equal as applied within various  studies (e.g. AEA 2008, 

Carbon Trust 2009, Poyry 2009).
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Figure 6.10:  The projections of marginal carbon emissons factor for grid supplied 

electricity used within The Works Ebbw Vale case study. 

 6.4.4 Optimisation Design Variables

A summary  of  the  optimisation  variables  is  provided  by  Table  6.3.   The 

fraction of penetration for heat pumps and district heating  (fHP, fDHN) were 

applied as binary design variables for each cluster.  Gas boilers were assumed 

to be the default building level supply technology within each cluster so that 

fGCH = 1 - fHP - fDHN.  The Building Fabric Index was applied as a continuous 

variable for all  residential  clusters.   A Building Fabric Index was was not 

considered for non-domestic dwellings due to the lack of available data, so 

that BFINonRes = 0.  The installed area of PV within each cluster was defined 

as  a  continuous  optimisation  variable.   The  rated  heat  output  of  each 

generation plant was applied as a continuous optimisation variable for the 

energy centre.
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Heating technology penetration (fHP, fmicroCHP, fDHN)

Domestic building fabric index BFI

Installed PV capacity (m2) APV 

CHP plant size (kWth) �
CHP ,max  (kWth)

Apportioned ESCo cost K

Table 6.3:  Design variables applied within The Works Ebbw Vale optimisation study

 6.4.5 Design Constraints

The  optimisation  constraints  are  summarised  by  Table  6.4.   The  model 

limited the allocation of building level heating technologies to one per cluster. 

The heat technology penetration was therefore considered as a binary variable 

so  that � f
HP

�c� � f
GCH

�c� �f
DH

�c � �1 and f
HP

�c �
, f

GCH

�c �
, f

DH

�c� 	
0,1� .   Adherence  to  the 

residential Fabric Energy Efficiency Standard described within Chapter 5 was 

assumed so that BFI
Res

�0.3 .  The PV capacity for each building was limited 

by the available roof space so that  �A
PV

�
Res

�c� 
18.6m2�dwelling  for residential 

dwellings and  �A
PV

�
NonRes

�c� 
�A
Bld

�c� �2N
floors

�c� �  for non domestic builidngs.  The 

design of the district heat network was constrained by the maximum allowable 

head of pressure at the energy centre.    The working pressure limit of the 

steel  district  heating  pipes  was  assumed   to  be  16bar.   The  system was 

pressurised to 2bar to avoid boiling and cavitation. The design head pressure 

constraint of h
max


14bar was therefore applied.

The  emissions  reduction  target  was  defined  as �
target

���
Total

�0.6�
regulated

�
ref . 

This was implemented within the optimisation model as a penalty function 

rather than a hard constraint which aids the solver by expanding the feasible 

solution space  to  include  cases  where  the  emissions  target  is  exceeded.  A 

penalty factor of £5,000/tCO2e was selected as an arbitrarily high cost of 
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exceeding the emissions target. The emissions function was therefore defined 

as:

PF
emissions

�
5000��
Total

��
reference

� if �
Total

��
target

0 if �
Total

��
target

� (6.5)

The  maximum  price  of  heat  served  by  the  district  heating  system  was 

assumed to be equal  to  the price of  natural  gas that  would otherwise be 

consumed by the use of gas boilers:

�c
Heat

�
max

�
c

NG,Res
��

DmdDHN ,Res
��

GCH ,Res
��c

NG,Com
��

DmdDHN ,Com
��

GCH ,Com
�

��
DmdDH

(6.6)

 

Constraint Feasible range

Heating technology capacity f
HP

, f
DHN

	
0,1�

f
HP

�f
DHN


1

PV capacity �A
PV

�
Res

�c� 
18.6m2�dwelling

�A
PV

�
public

�c� 
�A
Bld

�c � �2N
floors

�c � �

Building Fabric Index 0.3
BFI
Res


1

CHP plant size (kWth) �
Rated


��
PeakDH

Average heat price (£/kWh) c
Heat


�c
Heat

�
Max

Maximum DHN pressure head h
max


14bar

Total project life emissions (tCO2e) �
Total

���
Total

�0.6�
regulated

�
ref

Table 6.4:  Summary of design constraints applied within The Works Ebbw Vale case 

study.
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 6.4.6 Objective Function

The objective function was defined as the sum of the infrastructure cost and 

the penalty function.  The optimisation objective was therefore:

minimise y�C
total

��PF (6.7)

 6.5 Results 

 6.5.1 Reference Case

A breakdown of the infrastructure cost for the reference case is  shown by 

Table 6.5.  This was used within the optimisation tool as the benchmark cost 

to the developer and consisted of the capital expenditure for the gas network, 

electricity network and gas boilers.  It was assumed that each building was 

constructed to 2006 Part L standards and thus defined the baseline building 

fabric  cost.   The  infrastructure  design  for  the  on-site  natural  gas  and 

electricity networks is shown by Fig. 6.11.  

Annual Electricity Consumption

Annual regulated electricity consumed

Peak Electricity Consumption

Annual Gas consumption

Annual regulated gas consumption

Peak Gas consumption

Electricity network Capex

Gas Network Capex

Gas Boilers Capex

Building fabric cost

Total Capex

14,508,134kWh/yr

6,139,345kWh/yr

5,691kW

15,699,808kWh/yr

15,380,848kWh/yr

13,673kW

£1,921,625

£931,190

£2,841,500

£0 (baseline)

£5,694,315

Table 6.5:  Key  consumption  and  cost  parameters  for  The  Works  Ebbw  Vale 

reference case infrastructure. 
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Figure 6.11:  Energy distribution infrastructure design for reference case

117



6. Case Study

 6.5.2 Optimal Infrastructure Design

Table 6.6 provides a summary of the key design parameters for the optimal 

infrastructure design determined by the integrated optimisation model.

Cluster ID

2016

Heating 

Type

PV 

capacity BFI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

DH

DH

GB

DH

DH

DH

DH

DH

DH

DH

DH

DH

DH

DH

GB

83.2

137.3

54.9

100.3

300.1

0.11

0.11

51.6

288.4

94.1

296.1

78.1

0.11

144.9

0.11

0

0

0

0

0

0.3

0.3

0

0

0

0

0

0.3

0

0.3

ESCo Capex

Capex Passed to Developer

Electicity Network

Gas Network

Intra-Building Capex

Additional infrastructure cost

£8,847,779

£7,277,853

£1,855,886

£114,055

£9,744,600

£13,267,253

GB – Gas Boilers DH –  district heating

Table 6.6:  Optimal  infrastructure  design  results  for  The  Works  Ebbw  Vale case 

study (Build completion = 2016; ESCo discount rate = 3.5%).

The  optimal  design  consists  a  district  heating  network  extending  to  all 

clusters with the exception of clusters 3 and 15 where gas boilers are fitted 

into each domestic dwelling.  The heat network is supplied by a 4,075kWel 

natural gas combined heat and power unit with 11.8MWth of back up boilers 

and a 714m3  heat storage tank.  A total of 1,630kW of PV was allocated to 

non domestic premises and an average of 0.11kW per domestic dwelling.  A 

schematic of the optimal infrastructure design is shown by Fig. 6.12.
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Figure 6.12:  Optimal  Infrastructure  design  for  The  Works  Ebbw  Vale with  a 

build completion date of 2016.
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 6.5.3 Effect of Build Completion Date

It was shown within chapter 4 that the starting year for the project analysis 

period has a significant effect upon the performance of each energy supply 

technology.   This  was due to the decrease of  the  grid  supplied electricity 

emissions factor over time.  The effect of a change of build completion year 

upon the optimal design for the Ebbw Vale development was examined.  This 

considered an early completion of 2012 and a late completion of 2020.  The 

emissions  targets,  assumed  building  standards  and  cost  parameters  were 

unchanged.  The key results of the study are summarised by Table 6.7.

Cluster ID

2012 2016 2020

Heating 

Type

PV BFI Heating 

Type

PV BFI Heating 

Type

PV BFI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

DH

DH

GB

DH

DH

DH

DH

DH

DH

DH

DH

DH

GB

DH

GB

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.3

0.3

0

0

0

0

0

0.3

0

0.3

DH

DH

GB

DH

DH

DH

DH

DH

DH

DH

DH

DH

DH

DH

GB

83.2

137.3

54.9

100.3

300.1

0.11

0.11

51.6

288.4

94.1

296.1

78.1

0.11

144.9

0.11

0

0

0

0

0

0.3

0.3

0

0

0

0

0

0.3

0

0.3

DH

DH

DH

DH

ASHP

HP

GB

GSHP

GSHP

GSHP

GSHP

GSHP

GB

GSHP

GB

102.8

169.5

67.8

123.9

750.2

1.53

1.53

95.6

534.2

255.7

548.6

214.5

1.53

268.4

1.53

0

0

0

0

0

0.53

0.53

0

0

0

0

0

0.53

0

0.53

ESCo Capex

Capex Passed to Developer

Electicity Network

Gas Network

Intra-Building Capex

Additional Developer Cost

£6,990,132

£5,508,745

£1,855,866

£285,333

£1,224,363

£3,149,184

£8,847,779

£7,277,853

£1,855,886

£114,055

£9,744,600

£13,267,253

£782,091

£736,727

£2,152,570

£436,869

£32,159,297

£29,760,320

DH = district heating

GB = gas boilers

ASHP = Air source 

             heat pumps

GSHP = ground source

             heat pumps

HP =50% GSHP  

       + 50% ASHP

Table 6.7:  Optimal  infrastructure  design  results  for  The  Works  Ebbw  Vale case 

study (ESCo discount rate = 3.5%).
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Early  build  completion  of  2012: In  this  case  the  optimal  design  consists 

primarily of a district heating system but without the requirement for any 

supplementary PV capacity.  The increased emissions reduction obtained by 

the natural gas CHP plant also reduces the extent of the required district heat 

network with gas boilers specified at residential clusters 13 and 15 and at the 

arts  centre  (cluster  3).  The energy centre  was  specified  with a  2390MWel 

natural gas CHP unit, 10.9MWth of gas boilers and 430m3 of storage capacity. 

The cost of the optimal infrastructure to the developer was was decreased 

significantly by £15,773,212 to £3,149,184.

Build  completion  delayed  to  2020: In  this  case  the  infrastructure  design 

determined by the integrated optimisation model is a mix of district heating 

and heat pumps. This solution balances the lower cost of provision for the 

district  heating  system  and  the  higher  emissions  reduction  capability  of 

ground sourced heat pumps. The heat network was limited to clusters 1,2,3 

and 4 with a 415kWel natural gas CHP plant and 95m3. Residential clusters 

7,13 and 15 were supplied using domestic boilers with the remaining clusters 

supplied by ground sourced heat pumps. The insulation standard for domestic 

dwellings was increased to a corresponding BFI of 0.53 as part of the solution. 

The optimal design also relies upon a larger capacity of PV to meet the on 

site  target  than  the  2016  case  (3137kW on  public  buildings,  1.53kW per 

residential dwelling).  This together with the use of heat pumps results in a 

significant increase of optimal cost to £29,760,320.

The reason for the technology mix results from a balance between the cost of 

provision and the capability of each technology to deliver on site emissions 

savings.  The heat network is a cost effective means for supplying heat to the 

site  at  ~£0.45/kWh/year  compared  to  ground  source  heat  pumps  at 

~£0.8/kWh/year.  Heat pumps are however a more cost effective means for 
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delivering  carbon  savings  at  this  carbon  projection  at 

0.187kgCO2e/kWhServed/year  compared  to   0.096kgCO2e/kWhServed/year  for 

district  heating.   The  emissions  reduction  contribution  from  each  supply 

technology is illustrated by Figure 6.13.
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Figure 6.13:  Emissions  reduction  contribution  of  PV,  district  heating  and  heat 

pumps for projection 3 optimal solution with 2012 build completion.

 6.5.4 Effect of Emissions Projection 

It was also shown in chapter 4 that the method and assumptions used to 

calculate  the grid  supplied  electricity emissions can significantly effect  the 

performance of energy supply options for new build schemes.  The effect upon 

the optimal design for the Ebbw Vale scheme was investigated by considering 

two alternative projections.  The first considers the projection of  CEFMARGIN 

(see section 4.3.1) recommended by the Zero Carbon Hub. The second applies 

the assumption that the average grid electricity emissions factor was used for 

account for all grid electricity supplied by and to the grid.
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Cluster ID

DECC projection ZCH projection

Average emissions 

factor

Heating 

Type

PV BFI Heating 

Type

PV BFI Heating 

Type

PV BFI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

DH

DH

GB

DH

DH

DH

DH

DH

DH

DH

DH

DH

DH

DH

GB

83.2

137.3

54.9

100.3

300.1

0.11

0.11

51.6

288.4

94.1

296.1

78.1

0.11

144.9

0.11

0

0

0

0

0

0.3

0.3

0

0

0

0

0

0.3

0

0.3

GB

DH

DH

DH

DH

DH

DH

DH

DH

DH

DH

DH

GB

DH

GB

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.3

0.3

0

0

0

0

0

0.3

0

0.3

ASHP

ASHP

ASHP

GSHP

ASHP

HP

HP

GSHP

GSHP

GSHP

GSHP

GSHP

HP

GSHP

HP

30.8

91.6

36.6

36.6

99.9

2.25

2.25

12.7

71.2

34.1

73.1

28.6

2.25

35.6

2.25

0

0

0

0

0

0.38

0.38

0

0

0

0

0

0.38

0

0.38

ESCo Capex

Capex Passed to Developer

Electicity Network

Gas Network

Intra-Building Capex

Additional Developer Cost

£8,847,779

£7,277,853

£1,855,886

£114,055

£9,744,600

£13,267,253

£6,626,846

£5,193,842

£1,885,886

£266,108

£1,219,244

£2,809,939

£0

£0

£2,397,482

£0

£27,013,291

£23,685,631

DH = district heating

GB = gas boilers

ASHP = Air source 

             heat pumps

GSHP = ground source

             heat pumps

HP = 50% GSHP  

       + 50% ASHP

Table 6.8:  Optimal  infrastructure  design  results  for  The  Works  Ebbw  Vale case 

study  under  alternative  emissions  projections  (Build  completion  =  2016;  ESCo 

discount rate = 3.5%).

Zero Carbon Homes Projection: optimal infrastructure design in this case was 

comprised of  a  district  heating scheme to serve the majority of  consumer 

clusters for the main development using a 1600kWel natural gas CHP unit 

with 270m3 of storage capacity.  The general office, residential cluster 7 and 

the  lower  sidings  (clusters  12-15)  were  supplied  using  gas  boilers.   The 

increase  of  MEFMARGIN relative  to  the  DECC  projection  eliminates  the 

requirement for PV on site.   The result is a decrease of the optimal cost to 

the developer relative to the reference case by £10,387,314 to £2,809,939.
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Average  Emissions  Factor:  For  this  case  the  design  determined  by  the 

integrated optimisation model selects heat pumps as the heating technology at 

all  clusters.   At  the  lower  marginal  emissions  factor  for  grid  imported 

electricity compared to the DECC projection natural gas CHP becomes a net 

contributor to on site emissions so that any cost benefit is  off  set by the 

additional  required  capacity  of  PV.  Ground  source  heat  pumps,  however, 

provide a high and accelerating emissions reduction rate such that by 2033 

the annual emissions reduction exceeds the target as illustrated by Fig. 6.14. 

The  infrastructure cost primarily consists the installations costs of the heat 

pumps (£13,652,750) and PV (£9,393,477).  This results in an increase of the 

optimal infrastructure cost relative to the reference case by £10,418,378 to 

£23,685,631.
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Figure 6.14:  Emissions  reduction  contribution  of  PV  and  heatpumps  for 

projection 3 optimal solution with 2020 build completion.
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 6.6 Conclusions

An integrated optimisation model for new build energy infrastructure schemes 

was successfully implemented using OpenOffice Calc.  The tool applied the 

design and evaluation models presented within previous chapters to determine 

the least cost energy supply infrastructure for a community redevelopment 

case  study  in  at  Ebbw  Vale  in  South  Wales.   An  optimal  design  was 

determined for  an  anticipated  build  completion  date  of  2016  with  a  60% 

reduction of regulated emissions and an additional cost to the developer of 

£13,267,253 relative to the reference solution of gas boilers at all premises.

The optimal infrastructure design and corresponding cost was shown to be 

strongly  dependent  upon  the  year  of  build  completion.   At  an  early 

completion date of 2012, the requirement for PV was removed and the cost 

relative to the reference case reduced to £3,149,184. A delayed completion 

date resulted in an optimal solution requiring heat pumps and an increased 

use of PV.  This increased the optimal cost to £29,760,320.

A  similar  dependency  was  shown  for  the  choice  of  emissions  accounting 

method  and  projection  for  grid  supplied  electricity.   Using  a  marginal 

emissions  factor  approach  with  the  projection  recommended  by  the  Zero 

Carbon Hub,  a solution based on natural gas district heating without PV 

was identified with a cost of £2,809,939 relative to the reference.  Using the 

average grid carbon intensity to account for the electricity imported to and 

exported from the site resulted in an optimal solution based entirely on heat 

pumps and PV.  The additional cost to the developer was correspondingly 

increased to £23,685,631.
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Chapter 7 

Conclusions

 7.1 Conclusions

A new modelling method for the design and analysis of multi-energy vector 
distribution systems was demonstrated. The method provides an integrated 

framework for the technical design, carbon emissions analysis and financial 
analysis modelling of new build schemes. The model was also shown to be 

capable of capturing the interactions between the infrastructure design drivers 
for different energy supply technologies. The integrated model consists of the 

following key components:

• An  Energy Supply Infrastructure Model to  represent the layout  and 

composition of each scheme;
• A Technical Design Model to provide the infrastructure design and the 

energy flow analysis inclusive of the interactions between technologies 

and networks.
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• A  Carbon  Emissions  Analysis  Model  to  evaluate  the  energy 

consumption related greenhouse gas emissions; 

• A Financial Analysis Model to evaluate the cost of the scheme and the 

performance of each actor within the ownership structure;
• An Integrated Optimisation Model  to determine the least cost carbon 

constrained design of the energy supply infrastructure.

Two case studies were used to demonstrate the capability of the modelling 

method.  A generic residential case study was devised to represent a typical 
new build market town residential development in the UK. This was used to 

examine  the  underlying  design  and  performance  drivers  behind  four 
competing on site infrastructure options:

• A reference case, which was defined with all buildings built to 2006 

standards and heated using natural gas boilers.
• A  building  fabric  option,  which  examined  the  use  of  improved 

insulation standards alone.
• An electrification  of  heat  option,  which  used  a  mixture  of  ground 

source  and  air  source  heat  pumps  to  supply  space  and  hot  water 
heating.

• A community heating option,  using natural  gas combined heat  and 
power to supply all dwellings via a district heat network.

A second real life case study was used to demonstrate the capability of the 

model as a fully integrated optimised infrastructure design tool.  This was 
based upon The Works, Ebbw Vale community regeneration scheme in South 

Wales.  This  scheme  is  scheduled  for  build  completion  by  2016  with  a 
mandatory 60% target  reduction of  regulated emissions  compared to 2006 

building standards with gas boilers. 
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 7.1.1 Energy Supply Infrastructure Model

Future  energy  systems  are  set  to  consist  of  a  diverse  mix  of  heat  and 
electricity supply technologies implemented at building or community level. 

There is  therefore a growing requirement for a  whole system approach to 
infrastructure  modelling  within  planning  and  design  activities.  This  was 

achieved  within  the  integrated  framework by the  use  of  an  infrastructure 
model which consisted of:

• The  grouping  of  buildings  into  clusters  to  model  building  level 

technologies and building energy consumption characteristics.
• Models of the energy distribution networks required to serve the entire 

site.
• An energy centre  model  containing  community  generation  and heat 

storage units.

This modelling approach allowed the simultaneous consideration of all energy 
distribution networks and energy supply technologies on site including any 

interactions between them. For the purpose of this research the model was 
implemented successfully by using Open Office Calc. This software platform 

provided  the  necessary  analytical  functionality,  but  also  demonstrated  the 
modular form of  the model.   This suggests that the model is  suitable for 

future  development  using  database  platforms  such  as  Geographical 
Information System software.

 7.1.2 Technical Design Modelling

The  mix  of  energy  supply  technologies  chosen  for  each  scheme  may 

significantly effect the peak energy demand and energy flow variation over 
time for each network. A technical design and operational model of the energy 
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supply infrastructure was therefore required to capture the performance of 
each  technology  option  and  the  interactions  between  them.  A  modular 

technical design modelling approach was applied that used a set of analysis 
algorithms which consisted of:

• A  cluster  analysis  algorithm  to  determine  the  peak  demand  and 

network demand variation over time.
• Network design algorithms to specify the electricity, gas and district 

heat network components required on site.
• An energy centre design algorithm for the generation and heat storage 

installed within the energy centre.
• Operation modelling algorithms to determine the generation schedule 

of plant within the energy centre and the load flow variation over time 
for each distribution network.

Each analysis algorithm was successfully integrated into the Energy Supply 

Infrastructure Model.  This was achieved by compiling a set of Java programs 
as add-in functions for direct use within OpenOffice Calc. The capability of 

the technical design model was demonstrated by evaluating the design of each 
option within the residential case study.  It was able to show that:

• The increased peak electricity demand when using heat  pumps can 

effect the design of the electricity distribution network by increasing 
the number of distribution substations and number of feeders required 

per transformer.
• Increasing the building fabric standard decreases the peak and annual 

electricity  consumption  when using  heat  pumps.  The effect  of  heat 
pumps upon the design of the electricity network is therefore decreased.

• Using co-generation district heating without storage results in a heat 
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led mode of operation constrained by the shape of the demand profile. 
This results in an optimal combined heat and power plant size with 

regards to electricity generation.
• Using  heat  storage  with  natural  gas  engine  community  generation 

results in a decoupling of heat generation and the heat demand curve. 
This allows the gas engine combined heat and power plant to operate 

at rated heat generation output and for longer periods, and therefore 
increases the corresponding annual electricity production.

• Increasing the building fabric standard decreases the peak and annual 
heat  demand  but  also  reduces  the  corresponding  electricity  output 

when  using  natural  gas  engine  co-generation  district  heating.   The 
quantity  of  electricity  imported  annually  from the  grid  is  therefore 

increased.
• Increasing the capacity of PV results in an increase of peak electricity 

network flow during the summer months.  This can significantly effect 
the  design  of  the  electricity  network  by  increasing  the  number  of 

transformers and the number of feeders required.
• The capacity of PV that may be accommodated without effecting the 

design of the electricity network is increased when used in conjunction 
with heat pumps.  

  

 7.1.3 Carbon Emissions Modelling

Building developments are set to become increasingly subject to mandatory 

emissions  reduction  targets  through  initiatives  such  as  the  Zero  Carbon 
Homes. A detailed model of the annual and project life energy related carbon 

emissions for new build schemes is therefore an increasingly important part of 
the planning and design process. 

A carbon emissions analysis model was implemented within the integrated 
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framework.   It  was found that  the contribution of  four  sources  of  energy 
related  emissions  were  required  for  the  analysis  of  each  scheme:  the  fuel 

consumed within each cluster; the fuel consumed by the energy centre; the 
electricity imported from the grid; and the electricity exported to the grid. 

To determine the adherence to the emissions reduction targets, the model was 
required to evaluate both regulated and total emissions for each scheme.

The emissions model was shown to be suitable for integration with the Energy 

Supply Infrastructure model using the output data from the Technical Design 
models.  The  scope  and  capability  of  the  model  was  demonstrated  by 

examining the mechanism and extent of the emissions reduction obtained for 
each option within the residential case study.  It was able to show that: 

• For the electrification of heat using heat pumps the on-site emissions 

decrease proportionally with the emissions factor of the grid supplied 
electricity.  

• At marginal grid carbon emissions intensities above ~0.5kgCO2e/kWh a 
net  emissions  increase  occurs  when  using  heat  pumps  instead  of 

individual natural gas boilers.  
• At marginal grid carbon emissions intensities below ~0.2kgCO2e/kWh, 

heat pumps are capable of delivering the emissions saving alone. The 
accumulative zero carbon homes emissions reduction target over a 20 

year period may therefore be met by only using heat pumps from 2030.
• There is a synergistic relationship between the use of heat pumps and 

building fabric improvement with regards to achieving a reduction of 
on site emissions.

• For  the  community  co-generation  option,  the  emissions  reduction 
results from the trade-off between the increased fuel consumption of 

the combined heat  and power plant and the avoided grid imported 
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electricity.  
• At  the  high  marginal  grid  carbon  emissions  intensity  of 

0.8kgCO2e/kWh assumed within the zero carbon homes initiative for 
the current generation mix, the emissions reduction using the natural 

gas engine community co-generation with heat storage option exceeds 
that required by the annual zero carbon homes emissions target. The 

aggregated   project  life  emissions  target  over  a  20  year  period  is 
therefore  met  without  using  supplementary technologies  for  projects 

completed before 2018.
• At marginal grid carbon emissions intensities <0.25kgCO2e/kWh, the 

community  generation  option  results  in  a  net  increase  of  annual 
emissions compared to individual gas boilers. Beyond 2025 therefore, 

this option was shown to provide a net contribution to emissions over a 
20 year project period compared to individual gas boilers. 

• As the marginal grid carbon emissions factor decreases, the emissions 
reduction obtained from electricity generated on site using photovoltaic 

panels  is  also  decreased.   The  capacity  of  PV  required  per  unit 
reduction  of  emissions  therefore  increases  with  year  of  build 

completion.  This suggests that initiatives such as the Zero Carbon 
Homes may not be conducive to the uptake of PV in the long term. 

 7.1.4 Financial Modelling

The  use  of  community  level  generation  technologies  and  district  heating 

schemes  gives  rise  to  potentially  complex  organisational  and  ownership 
structures.  These may include a diverse mix of actors that may also vary 

considerably from scheme to scheme.  Typical actors may include the building 
construction  contractors,  distribution  network  operators  and  local  energy 

services companies.  A flexible approach to financial analysis was therefore 
required  by  the  integrated  model  for  an  adequate  consideration  of  such 
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schemes.
 An example financial analysis model was devised to reflect a mix of actors 

typically  involved  with  community  developments.   The  total  cost  of  the 
scheme  was  considered  in  terms  of  the  additional  total  scheme  cost  per 

dwelling relative to the reference case.  The model was integrated into the 
OpenOffice Calc framework developed for this thesis. The generic residential 

scheme was used to demonstrate the capability of the model which was able 
to show that:

• At  a build completion of 2012, the minimum additional cost for the 

community co-generation option was £7,360 per dwelling. This was a 
consequence  of  PV  not  being  required  together  with  the  revenues 

obtained from electricity generation. This compared to £9,156 for the 
building fabric option and £19,321 for the electrification of heat. 

• At 2020, the cost of the community generation option was increased to 
£11,506 due to an increasing reliance upon PV.  A similar increase to 

£12,745  was  shown  for  the  building  fabric  option  due  to  the 
diminishing performance of PV.  The electrification of heat remains the 

most expensive option, but with a reduced cost of £17,361 due to a 
reduced reliance upon PV.  

• At  2025  and  beyond,  the  electrification  option  incurs  the  lowest 
additional cost of those options considered at £14,163 per dwelling.  

The results suggest that a window of opportunity exists for the use of natural 

gas community generation as the solution for new build schemes under the 
zero  carbon  homes  initiative.   This  may  therefore  provide  a  short  term 

transitional technology for the development of district heating schemes.  In 
the long term, heat pumps can take advantage of any significant measures to 

de-carbonise  the  grid.   However  the  high  installation  costs  still  present  a 
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significant obstacle to developers.

 7.1.5 Integrated Optimal Infrastructure Design

The ability to identify the least  cost  energy supply infrastructure for new 

build schemes has always been a fundamental requirement of the planning and 
design process.  With the growing number of energy technology options and 

increasingly  stringent  environmental  constraints,  this  is  becoming  an 
increasingly challenging task beyond the capability of existing design tools.

The modular structure of the modelling approach developed within this thesis 

was not suited for use with gradient based optimisation methods. The search 
for an optimal solution instead required the use of non derivative based search 

algorithms. For the purpose of this thesis, a Social Cognitive Optimisation 
Solver extension for OpenOffice Calc was successfully implemented within the 

modelling framework and applied to the The Works, Ebbw Vale case study.

The optimal energy supply infrastructure was determined for the scheme at a 
build completion date of 2016 using the DECC projection for grid supplied 

electricity emissions.  The optimal  solution primarily  consisted of  a district 
heat network supplied using a 4,075kW natural gas combined heat and power 

with  heat  storage.  Individual  natural  gas  boilers  were  specified  for  60 
residential  dwellings  and  1.6MW  of  PV  was  required  on  site.   The 

corresponding additional cost to the developer was  ~£13.2m compared to the 
reference case with individual gas boilers at all premises.

The effect of build completion year upon the optimal design was examined. 

An early completion of 2012 reduced the extent of the required heat network 
and eliminated the requirement for any photovoltaic panels. This was due to 

the higher emissions factor of the marginal grid electricity production replaced 
by local CHP. By avoiding the use of PV to meet the emissions target, a 
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significant reduction of the optimal cost by ~£10m to £3.15m was obtained.
A delayed completion to 2020 reduces the emissions factor of the marginal 

grid electricity generators.   This increases the capacity of PV required for 
natural gas combined heat and power and decreases that required for heat 

pumps. The resultant optimal solution was thus a mix of district heating, heat 
pumps, individual natural gas boilers and PV.  The corresponding optimal 

cost was increased by more than £16m to £29.7m reflecting the high capital 
cost of heat pumps and the reduced emissions reduction capacity of natural 

gas combined heat and power. 

The high sensitivity of optimal cost to the emissions factor of grid supplied 
electricity emissions was also shown to manifest within the choice effect of 

emissions factor projection.   By using the average emissions intensity for all 
grid supplied electricity, an optimal solution is obtained that specifies only 

heat pumps and PV with a cost increase >£10m to £23.7m.  Applying the 
Zero Carbon Hub methodology on the other hand was shown to eliminate the 

need  for  PV  and  reduce  the  required  extent  of  the  heat  network.  The 
corresponding optimal cost was reduced to £2.8m.

 7.2 Summary of Contributions

• A  new  integrated  modelling  framework  was  demonstrated  which 

combines the technical design, emissions analysis and financial analysis 
of new build energy supply infrastructure schemes.

• The use of a new Energy Supply Infrastructure model for new building 
schemes was demonstrated.

• The drivers  underlying  the  carbon  constrained  design  of  new build 
residential  developments  were  studied.   The  interactions  between 

different technology options were shown.  Natural gas combined heat 
and power district heating was shown to be viable in the near term, 
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whilst  the  viability  of  heat  pumps  requires  a  significant  level  of 
decarbonisation of grid supplied electricity. 

• The use  of  the model  as  an optimal  infrastructure design  tool  was 
shown for a real mixed use community redevelopment scheme in South 

Wales. 
• The sensitivity of the optimal infrastructure solution and corresponding 

cost to year  of  build  completion was shown, reflecting the different 
responses  of  competing  technologies  to  the  grid  carbon  emissions 

projection.
• The high sensitivity of the optimal infrastructure solution and cost to 

the choice of emissions projection was shown, illustrating the potential 
impact of applying an incorrect emissions accounting methodology.

 7.3 Future Work

 7.3.1 Framework development 

It is anticipated that the modular structure of the model will be suitable for 

application within other platforms used for infrastructure planning and design 
including  propriety  geographical  information  systems  such  as  ArcGIS. 

Further work may therefore examine the requirements for implementing the 
framework of the model within a wider range of platforms.

 7.3.2 Modelling 

The scope and detail of the model has been limited for the purpose of this 
thesis.   Several  areas  of  improvement  have  however  been  recognised.  The 

cluster  approach to modelling the built  environment may be improved by 
including:

• An  extended  treatment  of  solar  based  technologies  including  solar 

thermal  heating.   This  may  include  more  sophisticated  models  of 
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generation output verses penetration levels.
• A model of building insulation improvements for commercial premises 

and an inclusion of other building efficiency measures such as lighting.
• A model of the effect of electric vehicle penetration within schemes.

• A consideration of the effect of smart metering and distribution level 
control schemes.

• The modelling of a local micro-grid as a building cluster.

The models  used for  the energy centre and distribution networks  may be 
extended by:

   
• The  inclusion of district cooling, adsorption chillers and tri-generation 

for schemes with a significant space cooling demand. 
• An extension of the model to include biomass conversion technologies 

such as biomass boilers, integrated biomass gasification combined heat 
and power, integrated anaerobic digestion combined heat and power, 

gas grid integrated anaerobic digestion and energy from waste.  These 
models could be used to examine the use of sustainable local resources 

for meeting energy emissions reduction targets.  

The emissions analysis model was limited to those directly resulting from on 
site energy consumption and generation. Further work may extend the model 

to  evaluate  the  full  life-cycle  emissions  for  each  infrastructure  component. 
The financial model was limited to new build schemes with all construction 

complete at the start of year 1.  Further development may therefore include:

• A multi-time period analysis for schemes developed in phases and to 
consider the replacement / upgrade of generation units.

• Consideration  of  the  cost  of  retrofit  schemes  including  construction 
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costs etc.
• An expansion of the cost model to include DNO costs and charges, end 

user costs and private wire ownership structures. 

138



                                                          References  

References

ACHA, S. and HERNANDEZ-ARAMBURO, C., 2008. Integrated modelling 
of  gas  and  electricity  distribution  networks  with  a  high  penetration  of 
embedded generation, IET Seminar Digest 2008. 

AN, S., LI, Q. and GEDRA, T.W., 2003. Natural Gas and Electricity Optimal 
Power  Flow,  Proceedings  of  the  IEEE  Power  Engineering  Society  
Transmission and Distribution Conference 2003, pp. 138-143. 

ANDERSEN,  A.N.  and LUND,  H.,  2007.  New CHP partnerships  offering 
balancing of fluctuating renewable electricity productions. J Clean Prod, 15  
(2007), pp. 288– 293.

AUSTIN, I.M., 2010. Potential for District Heating as a Solution to Energy 
Poverty in the UK. Reykjavík Energy Graduate School of Sustainable Systems,  
REYST report 5-2010, 2010.

BAHAJ,  A.S.,  MYERS,  L.  and  JAMES,  P.A.B.,  2007.  Urban  energy 
generation: Influence of micro-wind turbine output on electricity consumption 
in buildings. Energy and Buildings, 39(2), pp. 154-165. 

BAKKEN, B.H. and SKJELBRED, H.I., 2007. Planning of distributed energy 
supply to suburb,  2007 IEEE Power Engineering Society General Meeting,  
PES 2007. 

BEDDOES, A., GOSDEN, M., POVEY, I., 2007. The performance of an LV 
network  supplying  a  cluster  of  500  houses  each  with  an  installed  1kWe 
Domestic Combined heat and Power Unit. 19th International Conference on  
Electricity Distribution, paper 0030, Vienna, 21-24 May 2007.

BETTLE, R., POUT, C.H. and HITCHIN, E.R., 2006. Interactions between 
electricity-saving measures  and carbon emissions from power generation in 
England and Wales. Energy Policy, 34(18), pp. 3434-3446. 

BOHM B.  2008.  District  Heating  Distribution  in  Areas  With  Low  Heat 
Demand  Density,  IEA R&D Programme on District  Heating  and Cooling  
including the Integration of CHP, Annex VIII Project 8DHC-08-03, 2008.

BOICEA, A.-.,  CHICCO,  G.  and  MANCARELLA,  P.,  2009.  Optimal 
operation of a microturbine cluster with partial-load efficiency and emission 

139



                                                          References  

characterization,  2009 IEEE Bucharest PowerTech: Innovative Ideas Toward  
the Electrical Grid of the Future 2009. 

BURDON, I.P.,  1998.  CHP  planning  for  Newcastle  upon  Tyne.  Power 
Engineering Journal, 12(4), pp. [d]165-170. 

CARBON TRUST, 2008. Biomass Heating:  A Practical Guide for Potential 
Users. CGT012, 2008.

CARBON TRUST 2009,  Solar thermal Technology: A guide to Equiptment 
eligiable for Enhanced Capital  Allowances. Technology Information Leaflet,  
ECA770, 2009.

CARDONA, E. and PIACENTINO, A.,  2003.  A methodology for sizing a 
trigeneration  plant  in  mediterranean  areas.  Applied  Thermal  Engineering,  
23(13), pp. 1665-1680. 

CARRADORE, L. and TURRI, R., 2009. Modeling and simulation of multi-
vector  energy systems,  2009 IEEE Bucharest  PowerTech:  Innovative Ideas  
Toward the Electrical Grid of the Future 2009. 

CASISI,  M., PINAMONTI, P. and REINI, M., 2009. Optimal lay-out and 
operation of combined heat & power (CHP) distributed generation systems. 
Energy, 34(12), pp. 2175-2183. 

CENTRAL  NETWORKS 2006,  “ Network  Design  Manual ” ,  www.eon-
uk.com/downloads/  network  _  design  _  manual  .pdf   [Last  accessed 
14.12.2011], 2006.

CHANCE,  T.,  2009.  Towards  sustainable  residential  communities;  the 
Beddington Zero Energy Development (BedZED) and beyond.  Environment  
and Urbanization, 21(2), pp. 527-544. 

CHAUDRY, M., JENKINS, N. and STRBAC, G., 2008. Multi-time period 
combined gas and electricity network optimisation.  Electric Power Systems  
Research, 78(7), pp. 1265-1279. 

CHICCO, G. and MANCARELLA, P., 2008a. A unified model for energy and 
environmental performance assessment of natural gas-fueled poly-generation 
systems. Energy Conversion and Management, 49(8), pp. 2069-2077. 

CHICCO, G. and MANCARELLA, P., 2008b. Evaluation of multi-generation 
alternatives: An approach based on load transformations,  IEEE Power and 
Energy Society 2008 General Meeting: Conversion and Delivery of Electrical  

140

http://www.eon-uk.com/downloads/network_design_manual.pdf
http://www.eon-uk.com/downloads/network_design_manual.pdf
http://www.eon-uk.com/downloads/network_design_manual.pdf
http://www.eon-uk.com/downloads/network_design_manual.pdf
http://www.eon-uk.com/downloads/network_design_manual.pdf
http://www.eon-uk.com/downloads/network_design_manual.pdf
http://www.eon-uk.com/downloads/network_design_manual.pdf
http://www.eon-uk.com/downloads/network_design_manual.pdf


                                                          References  

Energy in the 21st Century, PES 2008. 

CHOW, Y., 2009. Utilizing district energy system as a cost-effective measure 
in meeting UK domestic 'zero carbon' targets. International Journal of Low-
Carbon Technologies, 4(3), pp. 169-174. 

CHPA 2011. Integrated Energy , The role of CHP and district heating in our 
energy  future  .  http://www.chpa.co.uk/integrated-energy_199.html ,  [last  
accessed 03.04.2012], 2011.

CIBSE, 2002. Guide J: Weather, Solar and Illuminance Data. CIBSE Guide J  
(CD ROM), GVJCD,  2002.

CIPCIGAN, L.M., TAYLOR, P.C., 2007.  A Generic Model of a virtual Power 
Station Consisting of Small Scale Energy Zones, 9th International Conference  
on Electricity Distribution, paper 0692, Vienna, 21-24 May, 2007.

CLARKE,  B.,  2010.  Briefing:  Carbon  critical  design.  Proceedings  of  the  
Institution of Civil Engineers: Engineering Sustainability, 163(2), pp. 57-59. 

COLONNA,  P.  and  GABRIELLI,  S.,  2003.  Industrial  trigeneration  using 
ammonia-water  absorption  refrigeration  systems  (AAR).  Applied  Thermal  
Engineering, 23(4), pp. 381-396. 

DANISH ENERGY AUTHORITY, 2005.  Heat  Energy  in  Denmark:  Who, 
What, Where and Why, Danish Energy Authority, ISBN 87-7844-498-5, 2005.

DCLG, 2007. Building a Greener Future - Towards Zero Carbon Development 
–  Consultation.  Department of Communites and Local Government, Product  
Code 06 SCDD 04276, 2007.

DECC, 2010a. Paving the way for a  Green Deal –  extending the Carbon 
Emissions  Reduction  Target  supplier  obligation  to  December  2012, 
http://www.decc.gov.uk/en/content/cms/consultations/cons_cert/cons_cert.
aspx , [last accessed 02.12.2012], 2010.

DECC, 2010b. Feed-in Tariffs Government’ s Response to the Summer 2009 
Consultation, Crown Copyright URN 10D/535, 2010.

DECC, 2011a.  Microgeneration Strategy,  Crown Copyright  URN 11D/791, 
2011.

DECC,  2011b. Updated  Energy  and  Emissions  Projections  2011,  Crown 
Copyright URN 11D/871,  2011.

141

http://www.decc.gov.uk/en/content/cms/consultations/cons_cert/cons_cert.aspx
http://www.decc.gov.uk/en/content/cms/consultations/cons_cert/cons_cert.aspx
http://www.chpa.co.uk/integrated-energy_199.html


                                                          References  

DECC, 2011c. Implementation  Plan  –  Smart  Metering  Implementation 
Program, Crown Copyright URN 11D682, 2011. 

DECC, 2011d. Renewable Heat Incentive,  Crown Copyright URN 11D/0017, 
2011.

DECC,  2011e. Planning  our  electric  future:  a  White  Paper  for  secure, 
affordable, and low-carbon energy, Crown Copyright URN 11D/823, 2011.

DECC 2012a.  Climate  Change  Act  2008. 
http://www.decc.gov.uk/en/content/cms/legislation/cc_act_08/cc_act_08.a
spx , [last accessed 02.04.2012], 2012a.

DECC 2012b, Green Deal Providers Guide. Crown Copyright URN 12D/064, 
2012. 

DECC 2012c. The Future of Heating: A strategic framework for low carbon 
heat in the UK, Crown Copyright URN 12D/020, 2012.

CONNOLLY  D,  LUND  H,  MATHIESEN  BV,  LEAHY  M.  A  review  of 
computer tools for analysing the integration of renewable energy into various 
energy systems. Applied Energy, 87(4):1059-1082. 2010.

DEFRA, 2007. The CHPQA standard Issue 2,  Crown Copyright PB12873, 
2007.

DTI, 2006.  Network  Losses  and  Distributed  Generation.  Distributed  
generation Program DG/CGI/00038/00/00, January, 2006.

DOBERSEK, D. and GORICANEC, D., 2009. Optimisation of tree path pipe 
network with nonlinear optimisation method.  Applied Thermal Engineering,  
29(8-9), pp. 1584-1591. 

EACOM,  2009. Canada  Water  Area  Action  Plan  –  Energy  Study. 
http://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCYQFjAB&url=http
%3A%2F%2Fwww.southwark.gov.uk%2Fdownload
%2F4223%2Fcanada_water_draft_report-
part_3&ei=1sR4T7SkFuHL0QWM3O2YDQ&usg=AFQjCNG9HjC-
9FfMYSbbI53rgkOdPRJpGg&sig2=HEztSbL50vBxh8NV3Z4lvg,  [last  
accessed 30.03.2012], 2009.

ELEXON, 2006.  Load  profiles  and  their  use  in  electricity  settlements, 
www.elexon.co.uk/ELEXON%20Documents/  load  _  profiles  .pdf   [last  accessed 

142

http://www.elexon.co.uk/ELEXON%20Documents/load_profiles.pdf
http://www.elexon.co.uk/ELEXON%20Documents/load_profiles.pdf
http://www.elexon.co.uk/ELEXON%20Documents/load_profiles.pdf
http://www.elexon.co.uk/ELEXON%20Documents/load_profiles.pdf
http://www.elexon.co.uk/ELEXON%20Documents/load_profiles.pdf
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCYQFjAB&url=http%3A%2F%2Fwww.southwark.gov.uk%2Fdownload%2F4223%2Fcanada_water_draft_report-part_3&ei=1sR4T7SkFuHL0QWM3O2YDQ&usg=AFQjCNG9HjC-9FfMYSbbI53rgkOdPRJpGg&sig2=HEztSbL50vBxh8NV3Z4lvg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCYQFjAB&url=http%3A%2F%2Fwww.southwark.gov.uk%2Fdownload%2F4223%2Fcanada_water_draft_report-part_3&ei=1sR4T7SkFuHL0QWM3O2YDQ&usg=AFQjCNG9HjC-9FfMYSbbI53rgkOdPRJpGg&sig2=HEztSbL50vBxh8NV3Z4lvg
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCYQFjAB&url=http%3A%2F%2Fwww.southwark.gov.uk%2Fdownload%2F4223%2Fcanada_water_draft_report-part_3&ei=1sR4T7SkFuHL0QWM3O2YDQ&usg=AFQjCNG9HjC-9FfMYSbbI53rgkOdPRJpGg&sig2=HEztSbL50vBxh8NV3Z4lvg
http://www.decc.gov.uk/en/content/cms/legislation/cc_act_08/cc_act_08.aspx
http://www.decc.gov.uk/en/content/cms/legislation/cc_act_08/cc_act_08.aspx


                                                          References  

14.12.2011] , 2006.

EL-KHATTAM, W., BHATTACHARYA, K.,  HEGAZY, Y. and SALAMA, 
M.M.A., 2004. Optimal investment planning for distributed generation in a 
competitive electricity market. IEEE Transactions on Power Systems, 19(3), 
pp. 1674-1684. 

EL-KHATTAM,  W.,  HEGAZY,  Y.G.  and  SALAMA,  M.M.A.,  2005.  An 
integrated distributed generation optimization model for distribution system 
planning. IEEE Transactions on Power Systems, 20(2), pp. 1158-1165. 

ENERGY SAVINGS  TRUST  2008. The  Applicability  of  District  Heating 
Within New Dwellings. CE299, September 2008.

FAVRE-PERROD, P., GEIDL, M., KLÖCKL, B. and KOEPPEL, G., 2005. A 
vision of  future  energy networks,  Proceedings  of  the Inaugural  IEEE PES  
2005 Conference and Exposition in Africa 2005, pp. 13-17. 

FRAGAKI,  A.,  ANDERSEN,  A.N.  and  TOKE,  D.,  2008.  Exploration  of 
economical  sizing of  gas engine  and thermal  store for  combined heat  and 
power plants in the UK. Energy, 33(11), pp. 1659-1670. 

GAN, C.K., MANCARELLA, P., PUDJIANTO, D. and STRBAC, G., 2011. 
Statistical appraisal of economic design strategies of LV distribution networks. 
Electric Power Systems Research, 81(7), pp. 1363-1372. 

GBU  mbH,  1999.  Adsorption  chiller  NAK. Technical  publication, 
http://www.adsorption.de [last accessed 14/12/2011], January, 1999.

GEIDL, M. and ANDERSSON, G.,  2007. Optimal  power flow of  multiple 
energy carriers. IEEE Transactions on Power Systems, 22(1), pp. 145-155. 

GEIDL,  M.  and  ANDERSSON,  G.,  2006.  Operational  and  structural 
optimization  of  multi-carrier  energy  systems.  European  Transactions  on  
Electrical Power, 16(5), pp. 463-477. 

HAWKES, A.D., 2010. Estimating marginal CO2 emissions rates for national 
electricity systems. Energy Policy, 38(10), pp. 5977-5987. 

HELSETH, A. and HOLEN, A.T., 2009. Structural vulnerability of energy 
distribution  systems:  Incorporating  infrastructural  dependencies. 
International Journal of Electrical Power and Energy Systems, 31(9), pp. 531-
537. 

143

http://www.adsorption.de/


                                                          References  

HEWITT, N.J., 2012. Heat pumps and energy storage - The challenges of 
implementation. Applied Energy, 89(1), pp. 37-44. 

HINNELLS, M., 2008. Combined heat and power in industry and buildings. 
Energy Policy, 36(12), pp. 4522-4526. 

HINNELLS,  M.,  2008.  Technologies  to  achieve  demand  reduction  and 
microgeneration in buildings. Energy Policy, 36(12), pp. 4427-4433. 

HITCHIN, E.R. and POUT, C.H., 2002. The carbon intensity of electricity: 
How  many  kgC  per  kWhe?  Building  Services  Engineering  Research  and  
Technology, 23(4), pp. 215-222. 

HMGOV, 2008.  Definition  of  Zero  Carbon  Homes  and  Non  Domestic 
Buildings. Communities and Local Government Consultaion, December, 2008.

HMGOV,  2009a. Green  Energy  (Definition  and  Promotion)  Act  2009. 
http://www.legislation.gov.uk/ukpga/2009/19/contents ,  [last  accessed  
02.04.2012], 2009.

HMGOV, 2009b. The UK Low Carbon Transition Plan : National Strategy for 
Climate and Energy, Published by TSO, ISBN 978-0-10-850839-4, July 2009.

HMRC,  2011. Climate  Change  Levy  rates  from  1  April  2011. 
http://customs.hmrc.gov.uk/channelsPortalWebApp/channelsPortalWebApp.
portal?
_nfpb=true&_pageLabel=pageExcise_ShowContent&id=HMCE_PROD1_0
31183&propertyType=document , [last accessed 01.04.2012], 2011.

IAG,  2011. Valuation  of  Energy  Use  and  Greenhouse  Gas  Emissions  for 
Appraisal and Evaluation, Guidance Tables 1 –  24: Supporting the Toolkit 
and  the  Guidance.  http://www.decc.gov.uk/publications/basket.aspx?
filetype=4&filepath=Statistics%2fanalysis_group%2f81-iag-toolkit-tables-1-
29.xls&minwidth=true#basket  [last accessed 05/01/2012], 2011.

IEA 2005,  “ Two-step  decision  and  optimisation  model  for  centralised  or  
decentralised thermal storage DH&C systems ” , …  , 2005.

IGEM, 2008. Planning of Gas Distribution Systems of MOP not exceeding 16 
bar. Guidence on Gas Legislation IGE/GL/1 ed 2. , 2008.

INGRAM, S.,  PROBERT, S.,  JACKSON, K.,  2003. The Impact  of  Small 
Scale Embedded Generation Upon The Operating Parameters of Distribution 
Networks. DTi  New and  Renewable  Energy  Program,  K/EL/00303/04/01, 

144

http://www.decc.gov.uk/publications/basket.aspx?filetype=4&filepath=Statistics%2Fanalysis_group%2F81-iag-toolkit-tables-1-29.xls&minwidth=true#basket
http://www.decc.gov.uk/publications/basket.aspx?filetype=4&filepath=Statistics%2Fanalysis_group%2F81-iag-toolkit-tables-1-29.xls&minwidth=true#basket
http://www.decc.gov.uk/publications/basket.aspx?filetype=4&filepath=Statistics%2Fanalysis_group%2F81-iag-toolkit-tables-1-29.xls&minwidth=true#basket
http://customs.hmrc.gov.uk/channelsPortalWebApp/channelsPortalWebApp.portal?_nfpb=true&_pageLabel=pageExcise_ShowContent&id=HMCE_PROD1_031183&propertyType=document
http://customs.hmrc.gov.uk/channelsPortalWebApp/channelsPortalWebApp.portal?_nfpb=true&_pageLabel=pageExcise_ShowContent&id=HMCE_PROD1_031183&propertyType=document
http://customs.hmrc.gov.uk/channelsPortalWebApp/channelsPortalWebApp.portal?_nfpb=true&_pageLabel=pageExcise_ShowContent&id=HMCE_PROD1_031183&propertyType=document
http://www.legislation.gov.uk/ukpga/2009/19/contents


                                                          References  

2003.

JAMES, P.A.B., SISSONS, M.F., BRADFORD, J., MYERS, L.E., BAHAJ, 
A.S., ANWAR, A. and GREEN, S., 2010. Implications of the UK field trial of 
building mounted horizontal axis micro-wind turbines. Energy Policy, 38(10), 
pp. 6130-6144. 

JAMSEK, M., DOBERSEK, D., GORICANEC, D. and KROPE, J., 2010. 
Determination  of  optimal  district  heating  pipe  network  configuration. 
WSEAS Transactions on Fluid Mechanics, 5(3), pp. 165-174. 

JENKINS,  D.P.,  TUCKER,  R.  and RAWLINGS,  R.,  2009.  Modelling  the 
carbon-saving  performance  of  domestic  ground-source  heat  pumps.  Energy 
and Buildings, 41(6), pp. 587-595. 

STRBAC,  G.,  EKANAYAKE,  J.,  NICK JENKINS,  N.,  2009.  Distributed 
Generation, Institution of Energy and Technology, ISBN-10 0863419585, 2009.

KAVVADIAS, K.C., TOSIOS, A.P. and MAROULIS, Z.B., 2010. Design of a 
combined  heating,  cooling  and  power  system:  Sizing,  operation  strategy 
selection  and  parametric  analysis.  Energy  Conversion  and  Management,  
51(4), pp. 833-845. 

KELLY, N.J. and COCKROFT, J., 2011. Analysis of retrofit air source heat 
pump performance: Results from detailed simulations and comparison to field 
trial data. Energy and Buildings, 43(1), pp. 239-245. 

KELLY, S. and POLLITT, M., 2010. An assessment of the present and future 
opportunities for combined heat and power with district heating (CHP-DH) in 
the United Kingdom. Energy Policy, 38(11), pp. 6936-6945. 

KING, M., SHAW, R., 2010, Community Energy: Planning, development and 
Delivery, CHPA publication, 2010.

KIRKMAN,  R.,  DUVAL,  D.  and  STEPHENS,  D.,  2010.  Sheffield  energy 
recovery facility and district  energy network.  Proceedings  of  Institution of  
Civil Engineers: Energy, 163(2), pp. 69-78. 

KORSMAN, H.,  DE BOER, S.,  SMITS, I.,  2008.  Cost Benefits and Long 
Term Behaviour  of  a  New All  Plastic  Piping  System.  IEA Implementing  
Agreement  on  District  heating  and  Cooling,  Including  The  Integration  of  
CHP, Annex 8/2005/T5, 2008.

LEE,  R.,  2010.  Combined heat  and power  in  a  carbon-constrained world. 

145



                                                          References  

Proceedings of Institution of Civil Engineers: Energy, 163(1), pp. 31-39. 

LEP, 2007. Making ESCo's Work: Guidance and Advice on Setting Up and 
Delivering an ESCo, London Energy Partnership, ISBN: 1-85261-984-8, 2007.

LEVYVELD, T., WOODS, P., 2010.  Carbon Emissions Factors for Fuels –  
Methodologies and Values for 2013 and 2016, Zero Carbon Hub Job Number  
60102149, 2010.

LI, H., NALIM, R. and HALDI, P.-., 2006. Thermal-economic optimization of 
a  distributed  multi-generation  energy  system  -  A  case  study  of  Beijing. 
Applied Thermal Engineering, 26(7), pp. 709-719. 

LOWE, R.,  2007.  Technical  options  and  strategies  for  decarbonizing  UK 
housing. Building Research and Information, 35(4), pp. 412-425. 

LOZANO,  M.A.,  CARVALHO,  M.  and  SERRA,  L.M.,  2009.  Operational 
strategy and marginal costs in simple trigeneration systems. Energy, 34(11), 
pp. 2001-2008. 

LUND, H. and MÜNSTER, E.,  2006. Integrated energy systems and local 
energy markets. Energy Policy, 34(10), pp. 1152-1160. 

MANCARELLA,  P.,  GAN,  C.K.  and  STRBAC,  G.,  2009.  Energy  and 
economic evaluation of power systems with heat networks,  IET Conference 
Publications 2009. 

MARCHAND, M., PROOST, S. and WILBERZ, E., 1983. A model of district 
heating using a CHP plant. Energy Economics, 5(4), pp. 247-257. 

MATSUO, N.,  and  SATO,  S.,  2004.  CDM  Methodologies  Guidebook, 
Ministry  of  the  Environment,  Japan,  Global  Environmental  Centre  
Foundation, 2004.

MEIBOM, P., KIVILUOMA, J., BARTH, R., BRAND, H., WEBER, C. and 
LARSEN, H.V., 2007. Value of electric heat boilers and heat pumps for wind 
power integration. Wind Energy, 10(4), pp. 321-337. 

MONAHAN, J. and POWELL, J.C., 2011. A comparison of the energy and 
carbon implications of new systems of energy provision in new build housing 
in the UK. Energy Policy, 39(1), pp. 290-298. 

NEWBOROUGH, M., 2004. Assessing the benefits of  implementing micro-
CHP  systems  in  the  UK.  Proceedings  of  the  Institution  of  Mechanical  

146



                                                          References  

Engineers, Part A: Journal of Power and Energy, 218(4), pp. 203-218. 

NIELSEN, K.,  2003.  Thermal Energy Storage: A State of the Art.  A report  
within the research program Smart Energy –  Efficient Buildings and NTNU  
and SINTEF, Trondheim, January, 2003.

OXFORD UNIVERSITY,  2011.  Degrees  Days  for  Data  management. 
http://www.eci.ox.ac.uk/research/energy/degreedays.php [last  accessed 
14.12.2011], 2011.

OFGEM, 2012. Renewables Obligation: What is the Renewables Obligation? 
http://www.ofgem.gov.uk/Sustainability/Environment/RenewablObl/Pages/
RenewablObl.aspx , [last accessed 02.04.2012], 2012.

PAS, 2009. Creating Local Area Energy Networks. 
http://www.pas.gov.uk/pas/core/page.do?pageId=119208 , [last accessed  
01.04.2012], 2009.

PEACOCK, A.D., JENKINS, D., AHADZI, M., BERRY, A. and TURAN, S., 
2008. Micro wind turbines in the UK domestic sector. Energy and Buildings,  
40(7), pp. 1324-1333. 

PEACOCK, A.D.  and  NEWBOROUGH,  M.,  2008.  Effect  of  heat-saving 
measures on the CO2 savings attributable to micro-combined heat and power 
(μ CHP) systems in UK dwellings. Energy, 33(4), pp. 601-612. 

POYRY, 2009.  The  Potential  and  Costs  of  District  Heating  Networks. A 
report to the Department of Energy and Climate Change, Faber Maunsell,  
April 2009.

RAWLINGS, R., PARKER, J., BREEMBROEK, G., CHERRUAULT, J-Y., 
CURTIS,  R.,  FREEBORN,  R.,  MOORE,  P.,  SINCLAIR,  J.,  WOOD,  R., 
SANDSTROM, B., 2004. Domestic Ground Source Heat Pumps –  Design and 
Installation  of  Closed  Loop  Systems. Energy  Efficiency  Best  Practice  in  
Housing, BRE sustainability centre, 2004.

REES, M.T., WU, J. and AWAD, B., 2009. Steady state flow analysis for 
integrated urban heat and power distribution networks,  Proceedings of the  
Universities Power Engineering Conference 2009. 

REES, M.T., WU, J., AWAD, B., EKANAYAKE, J. and JENKINS, N., 2011. 
A total energy approach to integrated community infrastructure design, IEEE 
Power and Energy Society General Meeting 2011. 

147

http://www.pas.gov.uk/pas/core/page.do?pageId=119208
http://www.ofgem.gov.uk/Sustainability/Environment/RenewablObl/Pages/RenewablObl.aspx
http://www.ofgem.gov.uk/Sustainability/Environment/RenewablObl/Pages/RenewablObl.aspx
http://www.eci.ox.ac.uk/research/energy/degreedays.php


                                                          References  

REN, H. and GAO, W.,  2010.  Economic and environmental  evaluation of 
micro CHP systems with different operating modes for residential buildings in 
Japan. Energy and Buildings, 42(6), pp. 853-861. 

REN, H., GAO, W. and RUAN, Y., 2008. Optimal sizing for residential CHP 
system. Applied Thermal Engineering, 28(5-6), pp. 514-523. 

RENTIZELAS, A.,  TOLIS,  A.  and  TATSIOPOULOS,  I.,  2009.  Biomass 
district  energy  trigeneration  systems:  Emissions  reduction  and  financial 
impact. Water, Air, and Soil Pollution: Focus, 9(1-2), pp. 139-150. 

ROBERTS,  S.,  2008.  Infrastructure  challenges  for  the  built  environment. 
Energy Policy, 36(12), pp. 4563-4567. 

ROQUE  DÍAZ,  P.,  BENITO,  Y.R.  and  PARISE,  J.A.R.,  2010. 
Thermoeconomic  assessment  of  a  multi-engine,  multi-heat-pump  CCHP 
(combined  cooling,  heating  and power  generation)  system -  A case  study. 
Energy, 35(9), pp. 3540-3550. 

SAKAWA, M., KATO, K., USHIRO, S. and INAOKA, M., 2001. Operation 
planning of district heating and cooling plants using genetic algorithms for 
mixed integer programming. Applied Soft Computing, 1(2), pp. 139-150. 

SHANEB, O.A., COATES, G. and TAYLOR, P.C., 2011. Sizing of residential 
μ CHP systems. Energy and Buildings, 43(8), pp. 1991-2001. 

SINGH, H., MUETZE, A. and EAMES, P.C., 2010. Factors influencing the 
uptake  of  heat  pump  technology  by  the  UK  domestic  sector.  Renewable  
Energy, 35(4), pp. 873-878. 

SPEIRS, J.,  GROSS,  R.,,  DESHMUHK,  S.,  HEPTONSTALL,  P., 
MUNUERA, L., LEACH, M., TORRITI, J., 2010.  Building a Roadmap For 
Heat 2050 Scenarios and Heat Delivery in the UK. Independent report for the  
CHPA, University of Surrey and Imperial College London, 2010.

SÖDERMAN, J., 2007. Optimisation of structure and operation of district 
cooling  networks  in  urban  regions.  Applied  Thermal  Engineering,  27(16 
SPEC. ISS.), pp. 2665-2676. 

SÖDERMAN, J. and PETTERSSON, F., 2006. Structural and operational 
optimisation  of  distributed  energy  systems.  Applied  Thermal  Engineering,  
26(13), pp. 1400-1408. 

STAFFELL,  I.,  2009.  A  review  of  Domestic  Heat  Pump  Coefficient  of 

148



                                                          References  

Performance.  http://imperial.academia.edu/IainStaffell/Papers, [last accessed  
28.05.2012].

STRECKIENE, G., MARTINAITIS, V., ANDERSEN, A.N. and KATZ, J., 
2009.  Feasibility  of  CHP-plants  with  thermal  stores  in  the  German  spot 
market. Applied Energy, 86(11), pp. 2308-2316. 

SUGIHARA, H.,  KOMOTO,  J.  and  TSUJI,  K.,  2004.  A  multi-objective 
optimization model for determining urban energy systems under integrated 
energy service in  a specific  area.  Electrical  Engineering in Japan (English  
translation of Denki Gakkai Ronbunshi), 147(3), pp. 20-31. 

SULKA, T., CHAUDRY, M., EKANAYAKE,J., 2008. Advanced Optimisation 
for Domestic CHP, More Microgrids Contract PL019864, 2008.

SUNDBERG, G.  and  KARLSSON,  B.G.,  2000.  Interaction  effects  in 
optimising a municipal energy system. Energy, 25(9), pp. 877-891. 

THOMSON, M.  and INFIELD, D.,  2008.  Modelling  the  impact  of  micro-
combined  heat  and  power  generators  on  electricity  distribution  networks. 
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of  
Power and Energy, 222(7), pp. 697-706. 

THOMSON, M. and INFIELD, D.G., 2007. Network power-flow analysis for a 
high  penetration  of  distributed  generation.  IEEE  Transactions  on  Power  
Systems, 22(3), pp. 1157-1162. 

UPHAM, P. and JONES, C., 2012. Don't lock me in: Public opinion on the 
prospective use of waste process heat for district  heating.  Applied Energy,  
89(1), pp. 21-29. 

UTILITY WEEK, 2009. BedZed at Seven Demonstrates the Need for ESCo's. 
http://www.utilityweek.co.uk/news/news_story.asp?
id=71348&title=BedZed+at+seven+demonstrates+the+need+for+Escos , 
[last accessed 01.04.2012], October, 2009.

VALLIOS, I., TSOUTSOS, T. and PAPADAKIS, G., 2009. Design of biomass 
district heating systems. Biomass and Bioenergy, 33(4), pp. 659-678. 

WAG,  2009a.   The  Works  Publications:  Sustainable  Energy. 
http://wales.gov.uk/docs/theworks/publications/10sustainableenergy.pdf [last  
accessed 28.03.2012], 2009.

WOODS,  P.,  RILEY,  O.,  OVERGAARD,  J.,  VRINS,  E.,  SIPILA,  K., 

149

http://wales.gov.uk/docs/theworks/publications/10sustainableenergy.pdf
http://www.utilityweek.co.uk/news/news_story.asp?id=71348&title=BedZed+at+seven+demonstrates+the+need+for+Escos
http://www.utilityweek.co.uk/news/news_story.asp?id=71348&title=BedZed+at+seven+demonstrates+the+need+for+Escos
http://imperial.academia.edu/IainStaffell/Papers


                                                          References  

STOBART, R.,  COOKE, A., “ A comparison of  distributed CHP-DH with  
large  Scale-DH ” ,  IEA  District  heating  and  Cooling  Project,  Annex  VII, 
Report 8DHC-05.01, May 2005.

XU, J., SUI, J., LI, B. and YANG, M., 2010. Research, development and the 
prospect of combined cooling, heating, and power systems.  Energy,  35(11), 
pp. 4361-4367. 

ZCH, 2009a. Defining a Minimum Fabric Energy Efficiency Standard For Zero 
Carbon Homes, Zero Carbon Hub Task Group Recommendations, 2009.

ZCH, 2009b. Defining a Minimum Energy Efficiency Standard: Appendix D: 
Cost Analysis, Zero Carbon Hub , 2009.

ZCH,  2011.  Allowable  Solutions  For  Tomorrows  New  Homes:  Towards  a 
Workable Framework, Zero Carbon Hub, July, 2011.

ZHANG, H.-., GE, X.-. and YE, H., 2007. Modeling of a space heating and 
cooling system with seasonal energy storage. Energy, 32(1), pp. 51-58.

ZHENG, Z. and LI, F., 2011. Assessment of carbon dioxide efficiencies for 
UK's electricity generation, IEEE Power and Energy Society General Meeting 
2011. 

150



                                                        Appendix A1  

Appendix A1

Energy Demand Data

 A1.1 Daily Demand Profiles

0000 - 0300 0300-0600 0600-0900 0900-1200 1200-1500 1500-1800 1800-2100 2100-0000

Space Heat 0.2 0.2 1 1 1 1 0.4 0.4

Hot Water 0 0 1 1 1 1 1 1

Appliance 0.25 0.25 0.93 0.93 1 1 0.81 0.81

Cooling 0 0 0 0.25 1 1 0.5 0.25

Table A1.1:  Daily profile shape for Offices

0000 - 0300 0300-0600 0600-0900 0900-1200 1200-1500 1500-1800 1800-2100 2100-0000

Space Heat 1 1 1 1 1 1 1 1

Hot Water 0 0 1 1 1 1 1 1

Appliance 0.74 0.74 0.93 0.93 1 1 0.74 0.74

Cooling 0 0 0 0 0 0 0 0

Table A1.2:  Daily profile shape for Small Education 

0000 - 0300 0300-0600 0600-0900 0900-1200 1200-1500 1500-1800 1800-2100 2100-0000

Space Heat 1 1 1 1 1 1 1 1

Hot Water 0 0 1 1 1 1 1 1

Appliance 0.74 0.74 0.93 0.93 1 1 1 1

Cooling 0 0 0 0 0 0 0 0

Table A1.3:  Daily profile shape for Large  Education 

0000 - 0300 0300-0600 0600-0900 0900-1200 1200-1500 1500-1800 1800-2100 2100-0000

Space Heat 1 1 1 1 1 1 1 1

Hot Water 1 1 1 1 1 1 1 1

Appliance 0.53 0.53 0.74 0.74 1 1 0.74 0.74

Cooling 0 0 0 0 0 0 0 0

Table A1.4:  Daily profile shape for Health
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0000 - 0300 0300-0600 0600-0900 0900-1200 1200-1500 1500-1800 1800-2100 2100-0000

Space Heat 1 1 1 1 1 1 1 1

Hot Water 0 0 0 0 0 0 0 0

Appliance 0.2 0.2 1 1 1 1 0.65 0.65

Cooling 0 0 0 0.25 1 1 0.5 0.25

Table A1.5:  Daily profile shape for Retail

0000 - 0300 0300-0600 0600-0900 0900-1200 1200-1500 1500-1800 1800-2100 2100-0000

Space Heat 0 0 0 0 0 0 0 0

Hot Water 0 0 1 1 1 1 1 1

Appliance 0.43 0.43 0.78 0.78 0.95 0.95 1 1

Cooling 0 0 0 0.25 1 1 0.5 0.25

Table A1.6:  Daily profile shape for Leisure

0000 - 0300 0300-0600 0600-0900 0900-1200 1200-1500 1500-1800 1800-2100 2100-0000

Space Heat 0.16 0.74 1 0.36 0.49 0.84 0.81 0.14

Hot Water 0 0 1 1 1 1 1 1

Appliance 0.26 0.19 0.53 0.82 0.78 0.89 1 0.79

Cooling 0 0 0 0 0 0 0 0

Cooking 0 0 1 0.5 0 0.5 1 0

Table A1.7:  Daily profile shape for Domestic 

 A1.2 Annual Demand

Building 

Usage Type

Space heating

(kWh/m2)

Hot Water 

(kWh/m2)

Appliance and lighting
Space Cooling 

(kWh/m2)
Auxilliary 
(kWh/m2)

Lighting 
(kWh/m2)

Equipt.
(kWh/m2)

Office

Education
Health

Retail
Leisure

103.9

51.5
87.6

56.7
0

15.5

30.9
46.4

0
159.8

9.3

4.7
27.9

18.6
34.9

46.5

34.9
62.8

158.2
51.2

60.5

34.9
144.2

30.2
32.6

13.9

0
0

113.9
69.8

Table A1.8:  Annual demand for non domestic premises (2006 building standards, HMGov 

2008) 
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Building Usage 
Type

Dwelling Size
(m2)

Space heating
(kWh/m2)

Hot Water 
(kWh/m2)

Cooling
(kWh/m2)

Appliance and lighting

Appliance 
(kWh/m2)

Lighting 
(kWh/m2)

Apartment

Terrace
Semi detached

detached

Market Town

43

76
76

118

77.6

49.6

72.8
72.8

61.5

65.1

35.4

26.5
26.5

19.1

25.0

4.9

3.5
3.5

2.7

3.5

48.5

32.9
32.6

24.4

31.7

9.3

7.6
8.7

9.3

8.8

Table A1.9:  Annual demand for domestic premises (2006 building standards)  (derived 
DCLG 2008).

 A1.3 Peak Demand

Building Usage Type
Peak Heat Demand

(W/m2)
Peak Electricity Demand

(W/m2)

Office 

Small Education
Large Education

Health
Retail

Leisure

901

901

1101

1101

1101

1101

602

603

603

40
602

903

Table A1.10:  Estimated Peak demand for non-domestic premises (1, CIBSE Guide F; 2, 
CIBSE Guide K; 3, DECC CHP Plant Sizer).

 A1.4 Seasonality factors

Month Space heat1 Electric appliance / 

lighting2

Space cooling1 Solar3

January
February

March
April

May
June

July
August

September
October

November
December

1.00
0.90

0.85
0.68

0.39
0

0
0

0
0.34

0.65
0.92

1.00
0.92

0.83
0.74

0.68
0.64

0.62
0.63

0.67
0.77

0.90
0.98

0
0

0
0.04

0.78
1

0.83
0.69

0.29
0.05

0
0

0.11
0.19

0.47
0.67

0.97
1

0.98
0.95

0.88
0.3

0.17
0.1

Table A1.11:  Seasonality factors for building energy demand. (1, Oxford Uni 2011;  2, 

Elexon 2006; 3, Carbon Trust 2009).
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Appendix A2

Technical and Cost Data

 A2.1 Electricity Network Data
Rating (A) Size (mm2) R(Ω/km)1 X(Ω/km)1 Cost (£/m)2

233
337
442

95 XLPE
185 XLPE
300 XLPE

0.32
0.164
0.1

0.119
0.108
0.101

50
55
60

Table A2.1:  11kV  cable  parameters.  All  cables  assumed  to  be  aluminium  XLPE  Triplex (1, 
Central Networks 2006; 2, Green 1999 (adjusted for inflation)).

Rating (A) Size (mm2) R(Ω/km)1 X(Ω/km)1 Cost (£/m)2

201
292
382

95 Wavecon
185 Wavecon
300 Wavecon

0.32
0.164
0.1

0.075
0.074
0.073

50
55
60

Table A2.2:  0.4kV  cable  parameters  (1,  Central  Networks  2006;  2,  Green  1999  (adjusted  for 
inflation)).

Capacity (kVA) Type R(Ω)1 X(Ω)1 Cost (£)2

7500
15000
315
500
800
1000

33/11kV
33/11kV
11/0.4kV
11/0.4kV
11/0.4kV
11/0.4kV

-
-

0.009
0.0051
0.0029
0.0022

-
-

0.0268
0.0171
0.0107
0.0086

383,160
494,760
26,784
27,404
29,140
30,504

Table A2.3:  Electricity transformer parameters. Impedances are refered to the low voltage side of 
the transformer (1, Central Networks 2006;  2, Green 1999 (adjusted for inflation)).

 A2.2 Gas Network Data
Pipe Diameter (mm) Roughness Installed Cost (£/m)

32
63
90
125
180
250
315
375
450
600

0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08

5.83
7.33
13.66
26.21
62.25
100.6
138.56
173.9
216.65
302.15

Table A2.4:  PE Gas pipe parameters (www.pipestock.com)
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Component Cost (£)

Grid Connection
PRI
Domestic service connection
commercial service connection

10,000
7,500
590 (/dwelling)
10 (/kW)

Table A2.5:  Miscellaneous Gas network  costs

 A2.3 Heat Network Data

Pipe diameter (m) Roughness Insulation 
Thickness (mm)

Insulation 
Thermal 

Conductivity 
(W/m/K)

Installed Cost (£/m)

0.032
0.040
0.050
0.065
0.080
0.100
0.125
0.150
0.200
0.250
0.300
0.400
0.600

0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.028
0.028
0.028
0.028
0.028
0.028
0.028
0.028
0.028
0.028
0.028
0.028
0.028

134
140
146
151
161
182
209
259
325
488
626
765
1040

Table A2.6:  Data for polyurathane insulated steel district heat pipes (http://www.hevac.ie/calpex-

pipe.php).

 A2.4 Building Level installation Costs

Installation type Cost 

Gas Boilers (Domestic)1

Gas Boilers (Commercial)1

Ground Source Heat Pumps (Domestic)2

Ground Source Heat Pumps (Commercial)1

Air Source Heat Pumps (Domestic)1

Air Source Heat Pumps (Commercial)1

District Heating (Domestic)1

District heating (Commercial)1

PV3

£2500/dwelling
£45/kW
2560Φ0.6 £/dwelling 

£1000/kW
£600/kW
£600/kW
£4820/dwelling
£20/kW
£725/m2

Table A2.7:  Building level supply costs (1, Poyry 2010; 2, derived from Rawlings 2004; 3, data 
obtained from  http://info.cat.org.uk/solarcalculator) 
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 A2.5 Energy Centre Plant

Plant Type Fuel conversion 
efficiency

Heat recovery 
factor

Maximum 
Downturn

NG Boiler
NG-ICE-CHP

0.941

0.942
0.82

0.82
0.21

0.52

Table A2.8:  Energy  Centre  Plant  Parameters  (1,  HVAC  2012;  2,  NREL  2003  (adjusted  for 

inflation))

The data set used to model the relationship between large scale natural gas 

boiler cost and rated plant output is shown by Fig. A2.1.   The corresponding 
empirical relationship was determined as:

C NGB=7,171Rated

1,000 
0.93

3,365  (A2.1)

0 500 1000 1500 2000 2500 3000 3500
0

5000

10000

15000

20000

25000

30000

35000

RatedOutput (kWth)

Pl
an

t 
C

os
t 

(£
)

Figure A2.1:  Variation of cost against plant size for large scale heat only gas boilers. (From Hevac 
2012)

Figure A2.2 Shows typical cost data for natural gas CHP.  The corresponding 
empirical equation is:

cCHP=1,712 PRated
−0.11  (A2.2)
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Figure A2.2:  Variation  of  plant  cost  with  rated  power  output  for  natural  gas 
internal combustion engine combined heat and power plant (Data obtained from: 1, 
NREL 2003; 2, Poyry 2010).

The pump cost  was  determined  using  the  following empirical  relationship 
obtained from Vallios et al (2009):

C Pump=4,000 P rated36 
0.21

 (A2.3)

 A2.6 Building Fabric costs

This section presents the data used to model fabric costs.  This was obtained 
from (ZCH 2009).

Building 
Standard

Ventillation 
Type

Annual space heat 
demand (kWh/yr)

Fraction 
reduction

Build Premium 
(£/dwelling)

Base
A
B
B
C
C
D

NV
NV
NV

MVHR
NV

MVHR
MVHR

2,132
1,125
880
424
532
72
81

0.00
0.47
0.59
0.80
0.75
0.97
0.96

0
675

1,417
3,117
4,100
5,800
6,159

Table A2.9:  Building fabrication cost data for Small Apartments (occupied floor space = 43m2)

157



                                                        Appendix A2  
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Figure A2.3:  Variation of cost with fraction reduction of space heating for appartments.

Building 
Standard

Ventillation 
Type

Annual space heat 
demand (kWh/yr)

Fraction 
reduction

Build Premium 
(£/dwelling)

Base
A
B
B
C
C
D

NV
NV
NV

MVHR
NV

MVHR
MVHR

5,532
2,780
2,271
1,336
1,610
493
197

0.00
0.50
0.59
0.76
0.71
0.91
0.96

0
675

1,417
3,117
4,100
5,800
6,159

Table A2.10:  Building fabrication cost data for mid terraced houses (occupied floor space=76m2).
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Figure A2.4:  Variation of cost with fraction reduction of space heating for mid terrace 
houses.

Building 
Standard

Ventillation 
Type

Annual space heat 
demand (kWh/yr)

Fraction 
reduction

Build Premium 
(£/dwelling)

Base
A
B
B
C
C
D

NV
NV
NV

MVHR
NV

MVHR
MVHR

5,320
3,724
2,736
1,900
2,627
828
296

0.00
0.30
0.49
0.64
0.51
0.84
0.94

0
1,297
3,602
5,402
8,410
10,210
12,284

Table A2.11:  Building fabrication cost data for semi detached houses (occupied floor space = 

76m2).
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Figure A2.5:  Variation of cost with fraction reduction of space heating for semi detached 
houses.

Building 
Standard

Ventillation 
Type

Annual space heat 
demand (kWh/yr)

Fraction 
reduction

Build Premium 
(£/dwelling)

Base
A
B
B
C
C
D

NV
NV
NV

MVHR
NV

MVHR
MVHR

7,257
5,865
4,803
3,599
3,563
1,864
849

0.00
0.19
0.34
0.50
0.51
0.74
0.88

0
1,946
5,851
8,051
13,380
15,580
19,541

Table A2.12:  Building fabrication cost data for detached houses (occupied floor space = 118m2)
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Figure A2.6:  Variation  of  cost  with  fraction  reduction  of  space  heating for  sdetached 
houses.
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The market town residential mix was defined as a development scenario by 

the Department for Communities and Local Governments as 25% Detached 
houses, 27% terraced houses, 21% semi detached and 27% Apartments.  This 

weighting was applied to each of the derived curves to obtain the following 
data set and empirical relationship:

Fraction reduction Cost 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
263
801
1579
2608
3912
5517
7455
9759
12464
15607

Table A2.13:  Weighted build premium for Market town residential mix
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Figure A2.7:  Variation of cost with fraction reduction of space heating for market town 
property mix.
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 A2.7 Energy price data

Fig.  A2.8 shows the daily variation of  electricity tariff  used to model  the 

participation of a CHP plant with the electricity market via an aggregator. 
This was obtained by assuming that the price varied proportionally with the 

variation of daily electricity demand.  The percentage range of variation from 
the daily average price was taken to be that used by Fragaki et al (2008). 
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Figure A2.8:  Variation of electricity tarrif for electricity exported to the grid by 
community scale combined heat and power.
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Appendix A3

A3.1 Electricity network Load flow analysis

A backwards –  forwards sweep method was employed for the analysis of the 

electricity distribution networks.

The selected algorithm was a two-step iterative process consisting a backward 

sweep to determine the line currents from the currents injected  from each bus 

and a forwards sweep to update the voltages at each bus.  

1. Backwards Sweep:

The  current  per  phase  corresponding  to  a  balanced  three  phase  power 

consumption S at bus j is given by:

I phase=
S *

3V *
 (A3.1)

By kirchoffs current law, the injected into each bus is given by:

I in , j=∑ I out , j∑ I load , j  (A3.2)
This  summation  is  repeated  for  all  busbars  traced  back  to  the  root  bus 

(slack). 

2. Forwards Sweep:

The forwards sweep uses the line currents to determine the voltage drop along 

each line from the root bus to each of the terminal busbars.  For each line, the 

voltage drop along each phase is given by:

V phase=I phase Z phase  (A3.3)
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The updated voltage at each bus is therefore:

V phase ,to=V phase , from−V phase  (A3.4)
The  backwards  sweep  is  then  repeated  using  the  updated  voltages  to 

recalculate the bus load currents.

A3.2 Gas Network Load Analysis

A radial pipe flow algorithm was used to analyse the natural gas network. 

This involved a backwards sweep from the points of consumption to the grid 

connection point followed by a single forwards sweep to determine the flow 

velocity and the pressure drop within each pipe.  

Consider  a  gas  pipe  of  length  L (m)  and  diameter  D  (m)  connecting  a 

demand node  node 2   with a supply node node1.  The demand at  node2  is 

Fnode2 (kJ/s).  If the Gross Calorific Value of the gas = GCVgas (kJ/mol), then 

the molar flow rate Fmol (mol/s) of the gas through the pipe is given by:

F mol=
F node2
GCV gas

 (A3.5)

The gas volumetric flow rate  V̇  (m3/s) was estimated using the ideal gas 

equation by assuming a negligible pressure drop across the pipe:

V̇=
F mol RT

pnode1
 (A3.6)

Where R is the gas constant, T is the absolute temperature (K), and pnode1 is 

the pressure at the source node node1. The flow velocity u (m s-1) of the gas 

through the pipe was thus given by:

u=
4 V̇
D

 (A3.7)

The density of the gas  (kg/m3) within the pipe is given by

163



                                                        Appendix A3  

=
pnode1M gas

RT
 (A3.8)

Where MNG is the molecular mass of natural has (kg/mol). The pressure drop 

due to friction  pl was calculated using the Darcy equation:

 p friction=
f D L

D
u2

2
 (A3.9)

Where fD is the dimensionless Darcy friction factor for the pipe. 

A3.3 District heat network Load flow

A radial pipe network flow and heat loss analysis was employed within district 

heat  network analysis  algorithm.  This  performed the  network analysis  in 

three stages.  The first stage determines the fluid flow rate along each pipe. 

The second stage  calculates  the  temperature  drop.   An iteration  between 

stages 1 and 2 are performed until convergence.  The third stage determines 

the pressure drop along each pipe due to friction.

Stage 1:

The flow rate through each pipe within a hydraulically isolated radial district 

heat network is obtained from:

Aṁ=q  (A3.10)
Where  A is the network incidence matrix,  ṁ is the vector of pipe mass 

flows, and q is vector of flows entering and leaving the network at each node. 

The flow at each demand node is given by:

ṁDmd=
Dmd

c pT s−T r
 (A3.11)

Where  is the heat demand (kW) Ts is the supply temperature (oC), Tr is 
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the return temperature (oC), and cp is the specific heat of water (kJ kg-1 K-1). 

The flows entering the point of supply are calculated such that:

∑ ṁsup=∑ ṁdem  (A3.12)

 Stage 2:

The second stage is a forward sweep to determine the temperature drop across 

the network.  For each pipe this is given by:

T endNode=T startNode−T ambe
−
hD L
4 ṁ  T amb  (A3.13)

Where k is the overall heat transfer coefficient for the pipe (W/m2 K).   This 

is calculated from the thermal conductivity k (W/mK) of the pipe insulation 

using:

h=
2k

Dinner ln Douter /Dinner 
 (A3.14)

By assuming perfect mixing, the temperature of water leaving any given node 

is given by:

T out=
∑ T in ṁin

∑ ṁout
 (A3.15)

Having obtained the updated node temperatures of the supply and return 

lines, stage 1 is repeated to obtain new estimates of the flows at consumers.

Stage 3:

After  a  convergence  of  nodal  temperatures,  the  pressure  loss  across  the 

network is calculated using the mass flow form of the Darcy equation:

 p friction=
f D L

D5
8 ṁ2


2


 (A3.16)
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A3.4 Calculation of the Darcy friction factor.

The friction factor for a pipe transporting a fluid is a function of the Reynolds 

number Re. For circular pipes this is given by:

Re=
u D


 (A3.17)

Where   is the fluid density, u is the fluid velocity (ms-1),  D is the pipe 

diameter (m) and  is the dynamic viscosity of the fluid (kg m-1 s-1).

For Re <2000 (Laminar flow):

f D=
64
Re  (A3.18)

For Re > 4000 (turbulent flow):

1

√ f D
=−2 log10( e

3.7D
+

2.51
Re√ f D )  (A3.19)

Where e is the pipe roughness. 
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Appendix A4

Case Study data

 A4.1 Residential Case Study

Figure A4.1:    Schematic of example scheme.

Cluster Area:
Number of dwellings:

Annual Space heat demand:
Annual domestic hot water demand:

Annual appliance and lighting demand:
Annual cooking demand:

225000 m2

500

4490kWh/dwelling
2014kWh/dwelling

3145kWh/dwelling
443kWh/dwelling

Table A4.1:  Residential cluster properties
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0

0 1

3

2

456

7

8

9

1234

5

6

7

Residential Cluster
500 dwellings
(25% detached, 27% semi, 21% terraced, 27% flats)

Cluster 11/0.4kV 
Network

Energy
Centre

Energy Centre 11kV
Grid connection point

Connection to existing
11kV grid

Gas Grid
Connection
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Line Type from To length

0
1
2
3
4
5
6
7
8
9

XLPE cable
XLPE cable
XLPE cable
XLPE cable
XLPE cable
XLPE cable
XLPE cable

11/0.4kV sub 
XLPE cable
XLPE cable

0
1
2
3
4
5
6
7
7
1

1
2
3
4
5
6
7
8
1
0

Table A4.2:  11kV Electricity network

Arc Number Arc type from To Length

0
1
2
3
4
5
6
7
8

PE Pipe
PE Pipe
PE Pipe
PE Pipe
PE Pipe
PE Pipe
PE Pipe
PE Pipe
PE Pipe

0
1
1
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

50
50
240
80
80
80
80
80
80

Grid connection pressure: 65mbar (Low Pressure)

Table A4.3:  Gas network

Pipe from To Length

0
1
2
3
4
5
6

0
1
2
3
4
5
6

1
2
3
4
5
6
7

240
80
80
80
80
80
80

Supply temperature:
Return temperature:

Maximum head of pressure:

90oC
50oC
14bar

Table A4.4:  Heat Network
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 A4.2 Ebbw Vale Case Study Data

Cluster Arc No. From To Length Cluster Arc No. From To Length

Hospital

Energy C.

PRI
PRI
PRI
PRI
PRI

4A
4A
4A
4A
4A
4A

3Cb
3Cb
3Cb
3Cb
3Cb
3Cb

5D
5D
5D
5D
5D
5D

3D

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

0
1
2
2
4
5
1
7
7
9
9
11
11
3
5
8
12
13
14
19
20
21
22
23
24
15
26
27
28
29
30
31
32
26
34
35
36
37
38
39
8
41
41

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

200
250
80
100
150
400
150
90
130
150
200
75

1500
-
-
-
-
-

200
45
45
45
45
45
45
200
70
20
20
20
20
20
20
250
35
35
35
35
35
35
50
75
100

3Cr
3Cr
3Cr
3Cr
3Cr
3Cr

1G
3B

1A
2B

3A
3A
3A
3A
3A
3A

2D

4B

5C
1F
4B
4B
4B
4B
4B
4B
5C
5C
5C
5C
5C
5C
1F
1F
1F
1F
1F
1F

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

43
44
45
46
47
48
12
50
51
51
51
54
54
50
57
58
59
60
61
62
13
64
64
66
66
68
68
67
71
72
73
74
75
69
77
78
79
80
81
70
83
84
85
86
87

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

57
57
57
57
57
57
50
50
150
100
100
100
100
250
56
56
56
56
56
56
100
50
400
100
200
80
300
45
45
45
45
45
45
30
30
30
30
30
30
30
30
30
30
30
30

Grid connection Pressure
PRI outlet pressure

2bar
75mbar

Table A4.5:  The Works Gas Network topology and arc lengths
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Cluster Arc No. From To Length Cluster Arc No. From To Length

Energy C.

Cluster 3A
3A
3A
3A
3A
3A

2D

4B
4B
4B
4B
4B
4B

5C
5C
5C
5C
5C
5C

1F
1F
1F
1F
1F
1F

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0
1
2
2
4
4
6
6
4
9
10
11
12
13
14
15
9
17
17
19
20
21
22
23
24
25
19
27
35
36
37
38
39
40
27
35
36
37
38
39
40

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
36
37
38
39
40
41
35
36
37
38
39
40
41

80
70
15
50
120
30
15
70
60
150
56
56
56
56
56
56

1500
60
400
80
45
45
45
45
45
45
60
80
30
30
30
30
30
30
210
30
30
30
30
30
30

3Cr
3Cr
3Cr
3Cr
3Cr
3Cr

3D

4A
4A
4A
4A
4A
4A

Hospital

3Cb
3Cb
3Cb
3Cb
3Cb
3Cb

5D
5D
5D
5D
5D
5D

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

1
42
43
44
45
46
47
48
42
50
50
52
53
54
55
56
57
58
59
60
61
61
60
64
65
66
67
68
69
70
64
72
73
74
75
76
77

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

190
100
57
57
57
57
57
57
80
50
270
110
44
44
44
44
44
44
160
270
15
60
200
70
19
19
19
19
19
19
300
35
35
35
35
35
35

Supply temperature:
Return temperature:

Maximum head of pressure:

90oC
50oC
14bar

Table A4.6:  The Works district heat network topology and arc lengths
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Appendix A5

Electricity Distribution Network modelling

This section describes the methodology used to model the configuration of the 

electricity distribution network within a new building scheme. The modelling 

methodology was devised to accommodate the use of  the parameters  that 

govern  the  network  topology  as  design  variables.  A  generic  network 

configuration was defined and applied to each cluster within the scheme as 

illustrated by Fig. A5.1.  This generic configuration was then reduced to the 

configuration required for the scheme.

Figure A5.1:  Illustration of  the generic  network configuration applied to 

initiate the design of electricity distribution network.
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 A5.1 Configuration of 0.4kV feeders

The configuration used to model each 0.4kV feeder was dependent upon the 

number of transformers required per cluster, NTrans, and the number of feeders 

required per transformers Nfeeder.   These parameters were determined by the 

clusterNetworkSizing algorithm (see Chapter 3).  A rule base system was then 

used to collapse the generic 0.4kV feeder configuration to the configuration 

required.  This is detailed within Tables A5.1 and A5.2 and illustrated by Fig. 

A5.2.

Table A5.1: Rule system used to determine the lengths of each 0.4kV feeder 

section:

NB / Nss/ NFeeders LSection1 LSection2 LSection3 LSection4 LSection5 LSection6

 � 1

 � 2

 � 3

 � 4

 � 5

 � 11

 � 17

 � 18

√Afeeder/2

√Afeeder/2

√Afeeder/2

√Afeeder/4

√Afeeder/4

√Afeeder/3

√Afeeder/3

√AFeeder/3

0

√Afeeder/4

√Afeeder/4

√Afeeder/2

√Afeeder/4

√Afeeder/3

√Afeeder/3

√AFeeder/3

0

0

0

√Afeeder/4

√Afeeder/4

√Afeeder/3

√Afeeder/3

√AFeeder/3

0

0

0

0

0

√Afeeder/4

√Afeeder/6

√AFeeder/8

0

0

0

0

0

0

√Afeeder/6

√AFeeder/8

0

0

0

0

0

0

0

√AFeeder/8
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Table  A5.2:  Rule  system used  to  determine  loads  at  each  0.4kV feeder 

busbar:

NB / Nss/ NFeeders Pbus1 Pbus2 Pbus3 Pbus4 Pbus5 Pbus6

 � 1

 � 2

 � 3

 � 4

 � 5

 � 11

 � 17

 � 18

Pc/Nss/ Nfeed

Pc/Nss/ Nfeed/2

2Pc/Nss/ Nfeed/3

Pc/Nss/ Nfeed/2

2Pc/Nss/ Nfeed/5

Pc/Nss/ Nfeed/3

Pc/Nss/ Nfeed/3

Pc/Nss/ Nfeed/3

0

Pc/Nss/ Nfeed/2

Pc/Nss/ Nfeed/3

Pc/Nss/ Nfeed/4

2Pc/Nss/ Nfeed/5

Pc/Nss/ Nfeed/3

Pc/Nss/ Nfeed/3

Pc/Nss/ Nfeed/3

0

0

0

Pc/Nss/ Nfeed/4

Pc/Nss/ Nfeed/5

Pc/Nss/ Nfeed/6

Pc/Nss/ Nfeed/6

Pc/Nss/ Nfeed/6

0

0

0

0

0

Pc/Nss/ Nfeed/6

Pc/Nss/ Nfeed/12

Pc/Nss/ Nfeed/18

0

0

0

0

0

0

Pc/Nss/ Nfeed/12

Pc/Nss/ Nfeed/18

0

0

0

0

0

0

0

Pc/Nss/ Nfeed/18

Figure A5.2: Possible 0.4kV feeder configurations modelled by generic feeder 

configuration. 
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 A5.2 Configuration of 11kV distribution network

It was assumed that the route of the 11kV ring-mains interlinking the grid 

connection point to the Nc building clusters was known. Within each building 

cluster,  the  configuration  of  the  11kV  network  was  dependent  upon  the 

number of 11/0.4kV transformers required, NTrans.  This was determined by the 

clusterNetworkSizing algorithm. The configuration of the 11kV network within 

each cluster was determined within the primaryPowerNetworkSizing algorthm 

(Chapter 3) using the rule system described by Table A5.3.  The possible 

11kV configurations obtained from the generic configuration within the model 

are illustrated by Fig. A5.3.

Table A5.3: Rule system used to determine 11kV network:

Cable  of  generic 

network:

Rule:

1

2

3

4

If Nss >3 then Lcable1 = √AC/2, else  Lcable1 = 0.

If Nss >2 then Lcable2 = √AC/2, else  Lcable2 = 0.

If Nss >1 then Lcable3 = √AC/2, else  Lcable3 = 0.

If Nss >1 then Lcable4 = √AC/2, else  Lcable4 = 0.
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Figure  A5.3: Possible  11kV  network  configurations  modelled  for  each 

building cluster.
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