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Abstract

We study a class of two-sector neoclassical growth modelsyhich one sector produces con-
sumption goods and the other sector produces the capitdsdgoo both sectors and in which the
capital-producing sector has sector—specific extereglitiVe show analytically that if the capital
goods for the two sectors aimperfectsubstitutes, then local indeterminacy near the steady istat
impossible for every empirically plausible specificatidiitee model parameters. More specifically,
we show that a necessary condition for local indetermina@ni upward-sloping aggregate labor
demand curve in the capital sector, which requires a coiacteral strength of the externality. We
show numerically that an elasticity of substitution of @inle size implies determinacy near the
steady state for all empirically plausible specificatioigh® model parameters. These findings
differ sharply from the standard result that if the two capitaldgoareperfectsubstitutes, then local
indeterminacy occurs in the two-sector model for a wide eamigplausible parameter values.
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1 Introduction

We study the local stability properties of the neoclassgralwth model at the steady state. Local
stability analysis provides important information abdé tocal uniqueness of equilibrium at the steady
state and about the way in which business cycles can occheimbdel economy. If the steady state
is saddle—path stable, then equilibrium is locally uniquéha steady state. This is called determinacy
and it implies that business cycles must come from shocksetéundamentals of the model (typically
technology shocks). In contrast, if the steady state idestaben a continuum of equilibrium paths
converge to the steady state, implying a severe form of locatuniqueness of equilibrium. This is
called local indeterminacy and it implies that businesdes/can come from self-fulfilling shocks to
individual beliefs. Since both determinacy and local irdetinacy are theoretically possible when
there is some form of non—convexity, we ask which one prevail empirically plausible choices of
parameter values.

We restrict our attention to a class of two-sector neodatasgjrowth models with sector—specific,
positive externalities. In these models, one sector preslacconsumption good and the other sector
produces the capital goods for the two sectors. We therefdt¢hese sectors the consumption sector
and the capital sector. The class of models we consider leasthe focus of the recent research on
local indeterminacy. The main finding of this research is that local indetermingary occur for mild,
empirically plausible externalities in the capital sectahnich are consistent with a downward—sloping
aggregate labor demand curve. In contrast, in the classaatiatd one-sector neoclassical growth
models, local indeterminacy requires strong externalifiat make the aggregate labor demand curve
upward sloping [Benhabib and Farmer (1994) and Farmer ara (B294)]. Such strong externali-
ties are empirically implausible and an upward-slopingreggte labor demand curve has awkward
economic implications [Aiyagari (1995)].

Our main finding is that local indeterminacy depends ciiifjoan whether or not the capital good

1Examples include Boldrin and Rustichini (1994), Benhalsith Barmer (1996), Benhabib and Nishimura (1998), Perli
(1998), Weder (1998), Benhabib et al. (2000), Weder (2086hmitt-Grohé (2000), Harrison (2001), and Harrison and
Weder (2001). Benhabib and Farmer (1999) provide a review.



for the consumption sector and the capital good for the ahpéctor are perfect substitutes. Perfect
substitutability means that the two new capital goods aréepesubstitutes and that the two installed
capital goods are perfect substitutes. The common assoimgitihe literature on indeterminacy is that
this is the case. Perfect substitutability implies that pheduction possibility frontier of the capital
sector is linear and installed capital is not sector spe ipatty—putty”). Imperfect substitutability
means that the two new capital goods are imperfect sulediauid that the two installed capital goods
are imperfect substitutes. This is the empirically plalesdase; see for example Homan and Wynne
(1999). Imperfect substitutability implies that the protan possibility frontier is strictly concave
and installed capital is sector specific (“putty—clay”). Bfeow that imperfect substitutability has two
implications. First, we show analytically that local indehinacy does not occur if the two capital
goods are imperfect substitutes and the aggregate labardkourve slopes downward. Surprisingly,
this holds true whenever substitutability is imperfect ratter what the elasticity of substitutionis. This
result difers sharply from that of the literature, which assumes pegebstitutability and finds that
local indeterminacy can easily occur if the aggregate ldiearand curve slopes downward. Second, we
show numerically that equilibrium is determinate (inste&dnstable) for empirically plausible values
of the elasticity of substitution of the two capital goodslar the externality. This result is robust to
reasonable changes in the parameter values.

Imperfect substitutability of the ffierent capital goods can be due to capital adjustment casts. |
Herrendorf and Valentinyi (2003), we explore the local 8igbproperties of the two—sector model
with the standard capital adjustment costs used by Luca®esstott (1971). We show that it matters
whether the adjustment costs apply to the total capitakstbthe economy or to each sector’s capital
stock: local indeterminacy is easier to obtain in the firgecthan in the second case. All results of
Herrendorf and Valentinyi (2003) are numerical. The pregaper goes beyond it in three aspects.
First, the key result of the present paper is analytical.oBeécthe key result of the present paper is
stronger: given a downward—sloping aggregate labor dermane (which is the empirically plausible
case), we show here that local indeterminacy does not ooc@aniy positive elasticity of substitution

between the dierent capital goods irrespective of where it comes from. dntr@ast, previously we
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have shown only that it does not occur for some typical patanwhoices. Third, the present paper
provides the economic intuition for theéfects of imperfect substitutability, which was missing from
our previous paper.

The intuition follows from the relationship between theatele price of the two capital goods
and the composition of the capital goods production. We stdh the case in which the two capital
goods are perfect substitutes (which happens, for examien it is costly to change total capital
but not each sector’s capital stock). The relative pricevben the two capital goods then is one and
the firms in the capital sector are ifigirent between flierent compositions of their productions. The
composition of the capital goods production is then entiddtermined by the demand for capital
goods. Since there are sector—specific externalities,gefsam beliefs about future returns can then
lead to self—fulfilling changes in the composition of theitalpgoods production. We continue with
the case in which the two capital goods are imperfect suibssiwhich happens, for example, when it
is costly to change each sector’s capital stock). The welgdrice between the two capital goods then
varies with the composition of the capital goods productad the firms in the capital sector are not
indifferent between étierent compositions of their productions. The relativego€ one capital good
in terms of the other then determines the composition of éipial production. Since that relative price
is determined at each point in time by past consumptionagauilecisions, changes in beliefs about
future returns can no longer lead to self—fulfilling changeshe composition of the capital goods
production.

Wen (1998), Guo and Lansing (2002), and Kim (2003) also stidine implications of capital
adjustment costs for local indeterminacy, but they empldpe one-sector neoclassical growth model
with an externality. They all found a threshold result: giestrength of increasing returns that implies
local indeterminacy, there is a positive, minimum size &f ¢tapital adjustment costs that makes local
indeterminacy impossible The threshold behavior of the one—sector model is similéinedoehavior

of the two—sector model when the adjustment costs applyeddtal capital stock [Herrendorf and

2Lahiri (2001) shows that opening up capital mobility has tipposite &ect as capital adjustment costs: it decreases
the strength of increasing returns required for indeteamyn



Valentinyi (2003)]. The threshold behavior of the one-sentodel is very diferent from the behavior
of the two—sector model when the adjustment costs apply ¢b sactor’'s capital stock separately
and indeterminacy cannot occur for any strength of incrgageturns that leaves the aggregate labor
demand curve downward sloping. The reason is that adjusttosts of each sector’s capital stock lead

to imperfect substitutability of the two capital goods, Be tesults of the present paper apply.

2 Model Economy

Consider the following environment. Time is continuous amds forever. There is a representative
households and two representative firms. One represenfativ produces a perishable consumption
good and the other one produces two new capital goods. Thesegative household is endowed with
the initial capital stocks, with the property rights for tlepresentative firms, and with one unit of time
at each instant. We assume that installed capital is sqméaifgc, which is consistent with the evidence
collected by Ramey and Shapiro (2001) that it is very cosilyeiallocate installed capital to other
sectors. At each point in time five commodities are tradedenusntial markets: the consumption
good, the new capital good suitable for the production ofscomption goods, the new capital good
suitable for the production of new capital goods, workimgetiin the consumption sector, and working
time in the capital sector.

The representative household solves:

{ct,xct,xxt,[Qi)t(,Ka,th}go fo ) e [log C; + (L — Lt — Ly)] dt (1a)
S.t. Ct + PotXet + PueXxt = et + xt + Wotkot + Witlxt + FetKet + MK, (1b)
Ket = Xot — 3cKets Kyt = X — 6xKt, (1c)
Keo = Koo given Kyo = Kyo given (ad)
0 < G4, Let, Lt Xets Xuts Ket, Kt Lot + L < L. (1e)



The notation is as followsp > 0 is the discount rateCC; denotes the consumption good at tine
(which is the numeraire); € (0, o) is the time endowment; the subscriptand x indicate variables
from the consumption and the capital sectog; and L, are the working timesw, andw,; are the
wages, X and X,; are the new capital goodg.; and p,; are the relative prices of the new capital
goods,K andKy; are the installed capital stocks; andry; are the real interest rate&, anddy are
the depreciation rates, ang andrn,; are the profits (which will be zero in equilibrium). Two feeds
of the representative household’s problem deserve fudbermment. First, we restricX,; and X, to
be non-negative, meaning that installed capital is segiecific. Nevertheless the capital stock of a
sector can be reduced by not replacing depreciated capitalose to the steady state (the existence
of which we will prove below) the non—negativity constraintill not be binding. Second, we choose
the functional form for utility that is most commonly usedthre literature. We focus on an infinite
equilibrium labor supply elasticity because the existiglges identify this to be the best case for local
indeterminacy. An economic justification for an infinite ¢asupply elasticity is the lottery argument
of Hansen (1985) and Rogerson (1988).

Denoting byus anduy the current value multipliers attached to the accumulasigumations (1c),

the necessary andficient conditions for a solution to the household’s problem(db)—(1e) and

Soha = (2a)
Ci = Wet = Wy, (2b)
ftet < piex(Bc + p) — % (with equality if X > 0), 20)
i < pe(Sx + ) — ré‘ (with equality if X > 0), (2d)
i e < i Petest =0 @)

Note that, as usual, the dynamic first-order conditions &2c) (2d) hold only fot > 0. Note too that
the wage rates will be equalized across sectors but thenteakst rates will only be equalized across

sectors if the two capital goods are perfect substituteshich case their shadow prices are equal.



We now turn to the production side of the model economy. Tleélpm of the representative firm

of the consumption sector is:

cnllalx Tet = G — ket — Wetl et (3a)
S.t. C = Atkgtlg;-t_a’ Ci, ICta kCt = Oa (3b)

whereA; > 0 denotes total factor productivity in the sector ane (0, 1). The necessary andffaient

conditions for a solution are (3b) and

ree = aAKEHL2, (4a)

Wer = (1 — a)AdGI 8 (4b)

The problem of the representative firm of the capital sestor i

Max 7y = PueXxe + PetXer = Maikue = Wil xe (5a)
Xxt» Xet|xt-Kxt
b 1-b
S.t. f(XCta XXt) = Bthtlxt ) XXI’ XCt’ kXta |Xt > O’ (5b)

whereB; > 0 denotes total factor productivity in the sectore (0,1), andf is a twice continuously
differentiable function that is non-negative, increasing ithtarguments, linear homogeneous, and

quasi-convex. A functional form that satisfies these requirements is
1

F (s ) = (B8 + d063°) 7=, (6)

whereg., ¢, ande are positive constants.

Denoting the multiplier attached to the equation of (5bipyhe necessary andfigient conditions

3Homogeneity is required for the existence of a balanced trpath.



for the solution to problem (5) are (5b) and

N = AbBkGE 5", (7a)
Wyt = (1~ D)BklS, (7b)
Pt < Ade(Xets Xxt) (with equality if X > 0), (7c)
Pxt < Atdx(Xet, Xxt) (with equality if X, > 0), (7d)

whereg. andg, denote the partial derivatives dfwith respect tox; and Xy;.

The assumption of quasi-convexity implies that for a gi\;férzz R, the lower setq(Xy, Xet) €
R2| f (Xt Xet) < f} are convex, so the production possibility frontier betwtgentwo new capital goods,
Xt and Xy, IS concave. In other words, the two new capital goods aresifept substitutes. This is
relevant only if the two installed capital goods are alsoenfigct substitutes, otherwise any reallocation
of total capital between the two sectors can be achieveddlipoating installed capital. It is for this

reason that we have assumed that installed capital is sgmaoific. The standard assumption in the

literature is thaff is linear:

f(Xets Xxt) = PeXet + dxXts (8)

where¢. and¢, are positive constants, which are often set to biffef is linear, then the production
possibility frontier between the two new capital goodsngér too. In other words, the two new capital
goods are perfect substitutes. If this is the case, theniitdkevant for the local stability properties
whether the two installed capital goods are perfect or ifigoesubstitutes. The reason is that installed
capital depreciates, so close to the steady state any clratige capital stocks of the two sectors can
be achieved by a corresponding change in the compositidreaféw capital production. In any case,
we find it convenient to maintain sector—specificity also whe study perfect substitutability of new

capital goods.

4The choice ofp. and¢, amounts to a choice of the units in whigk andx,; are denominated. This choice does not
matter for the local stability properties of the steadyestat

SNote that at = 0 bothk andk,g are given because installed capital is assumed to be sspamific. However, this
does not invalidate the previous argument.



The total factor productivities are specified so that therelwe positive externalities at the level of

each sector:

(o} c\+— X X -b)
A= KEAIEOD B = KGRI, 9)

whereé,, 6, > 0. Substituting (9) back into the production functions, fleetors’ aggregate outputs

become:

C = K32, ay = (1+6)a, a=(1+6.)(1-a), (10a)

x = KMz, 1=(1+6)b, Bo=(1+6)1A-h). (10b)

Note that (9) implies that the externalities on capital amlobl are the sanfe.Note too that the
externalities are not taken into account by the firms, so go&titive equilibrium exists. In equilibrium,
profits are zero and the capital and labor shares are the aisesi’@ = a, % = 1 — g, X = b,
W%'X‘ = 1 - b. Moreover, in equilibrium, the total factor productivisi®@n which the firms base their

decisions must be equal to those that results from thessidesi

Definition 1 (Competitive equilibrium) A competitive equilibrium is price{$Ve, Wy, e, xt, Pets Pxt} g
an allocation{C;, ¢, Xct, Xets Xxt> Xxts Lets et Lts xts Kets Kets Kt Kuthiog, @nd total factor productivitiegA,,
Bi)ioo Such that:

(1) {Ct, Xets Xxt» Lets Lo Ket, Kitlio SOIVe the problem of the representative househ(dld that is, (2a)-
(2e)hold;

(i) {c, let kel SOIVE the problem of the representative firm of the consumstector,(3), that is,
(4a)H4b) hold;

(i11) {Xut Xet, Ixts Kutlog SOIVE the problem of the representative firm of the capitatase(5), that is,
(7a){7d) hold;

(iv) markets clear, that is, C= ¢, Xet = Xet, Xxt = Xxt» Let = lety Lt = ban Ket = Ketw Kyt = Kyt

(v) A and B are determined consistently, that is, the two equatior{S)mold.

5The results of Harrison and Weder (2001) suggest that imgdhis constraint does noffact in an important way the
stability properties of the steady state of the two-sectmttassical growth model without capital adjustment costs
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3 Analytical Results

3.1 Local stability properties

We start by establishing that there is a unique steady stdtbyaderiving the reduced-form equilibrium

dynamics nearby.

Proposition 1 (Reduced—form dynamics)

() There is a unique steady state.

(ii) If f islinear, then there is a neighborhood of the steadtigte such that the equilibrium reduced-
form dynamics can be described by the dynamics of the statblak = ¢k + pxky and the

dynamics of the control variabje.

(i) If f is strictly quasi convex, then there is a neighbodd of the steady state such that the equi-
librium reduced—form dynamics can be described by the dicsaof the two state variablegk

and k; and the two control variableg.; and ;.

Proof. See the Appendix A.

The proposition shows that the equilibrium reduced—formathgics close to the steady state are
two dimensional wherf is linear and four dimensional whehis strictly quasi convex. The reasons
are as follows. With a lineaf the two capital goods are perfect substitutes, so only tted ¢apital
stock and its shadow price are needed to describe the dysawith a strictly quasi—convek the two
capital goods are imperfect substitutes, so both of themaodhadow prices are needed to describe
the dynamics.

We now explore analytically the stability properties of Hteady state. The steady state is saddle—
path stable if there are as many stable roots (i.e. roots magative real part) as states and as many
unstable roots (i.e. roots with positive real part) as aastrlt is stable if there are more stable roots
than states and it is unstable if there more unstable roatsdbntrols. If the steady state is saddle—path

stable then the equilibrium is determinate, that is, giveninitial capital stocks close to the steady
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state values there are unique initial shadow prices su¢litbanodel economy converges to the steady
state. If the steady state is stable, then the equilibriumcally indeterminate, that is, given the initial
capital stocks close to the steady state values there ex@iatinuum of shadow prices such that the
model economy converges to the steady state. Since it igasitfle to compute analytically the four
eigenvalues, we will only compute the determinant and theetrof the linearization of the reduced-
form equilibrium dynamics at the steady state. Althougk ttoes not allow for a full characterization
of the local stability properties, it provides importanfarmation because the determinant equals the
product of the eigenvalues and the trace equals the sum oé#th@arts of the eigenvalues (complex
eigenvalues occur in conjugates, implying that the imagiparts cancel in the summation). This leads

to the next proposition, which constitutes the main resiuttus paper.
Proposition 2 (Local stability properties of the steady sté&e) Suppose thatk 1-b andédy € [0, % .

(i) Suppose that f is linear.

There are constant < (0, %) andéy € (—I%, 10y such that:
(i.a) if

(0 + 30 + (L—b)sy] > 22

béc(o + d¢),

thendy < 6, and the steady state is saddle—path stabl@far [0, 8,), stable ford, € (8, 6y),

and unstable fosy € (6, 22);

(i.b) if
pb+ 6y

(p + 5x)[p + (1 - b)éx] < b5c(P + 60),

then6_'x < 0 < 64 and the steady state is saddle—path stablegfoe [0, A,) and stable for

Oy € (Bx, 12).
(i) Suppose that f is strictly quasi—convex.

(ilLa) 6 €0, ﬁ) is a necessary condition for the steady state to be saddth-gpable;
(ii.b) oy € (rbb, 1;bb) is a necessary condition for the steady state to be stable.

10



Proof. See the Appendix B.

We begin the discussion by noting that calibrations of owr-8&ctor model that are typical in the
literature are consistent with the assumptibrs1 - b andé, < 1—gb.7 The inequalityb < 1 - b ensures
that the capital share in the capital sector’s income is lem#ian one half and thqij—b < 1;bb The
inequality 6, < 1;bb ensures that the aggregate returns to capital are not tge & there cannot be
endogenous growth in steady state. As pointed out befaees tire two relevant subcasegpk %’:
for 6, € [0, ﬁ) the aggregate labor demand curve of the capital sectoesldpwnward and for
Oy € (2. 122) it slopes upward.

We continue the discussion of this proposition with part ilile case of a lineaf. It says that
if the aggregate labor demand curve in the capital sect@esldownward, then the steady state can
be saddle—path stable, stable, or unstiblEhe key part of this statement is that a lindaallows
for a stable steady state and therefore for local indetexayirat the steady state when the aggregate
labor demand curve in the capital sector slogesnwardand capital is sector specific capifalhis
replicates the result of the recent literature on self-Hulfj business cycles; see for example Benhabib
and Farmer (1996) and Harrison and Weder (2001).

We conclude the discussion with part (i), the case of atdtriquasi convexf. It says that if the
aggregate labor demand curve in the capital sector slopasrd then the steady state can be sta-
ble or unstable but not saddle—path stable; if the aggrdghte demand curve in the capital sector
slopesdownward then the steady state can be saddle—path stable or unktabiet stable. Thus, a
strictly—quasi conveX rules out local indeterminacy at the steady state if theeggge labor demand
curve slopes downward. This is our key analytical resulticviinolds forany strictly quasi—convex

f. In other words, the local stability properties of the tweeter neoclassical growth model with

strictly quasi—conveX differ strikingly from those with a lineaf. In fact, the local stability proper-

"Below we will discuss calibration issues in more detail. B

8Using the results from Appendix B, it is easy to verify thatfib + (1 — b)d,] > bdc(o + 6c), thend < rbb and the steady
state can be unstable under downward sloping aggregatedab@and curve.

%It has already been shown by Christiano (1995) for a disdiete version of a two-sector real business cycle model
that the stability properties of the steady state do not Weéms whether capital is sector specific or fully mobile asros
sectors.
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ties of the two—sector model with strictly quasi—convdeare much more like those of the one-sector
neoclassical growth model without capital adjustments;astwhich local indeterminacy requires an

upward-sloping aggregate labor demand curve [Benhabill-ander (1994)].

3.2 Intuition

Here we seek to understand why imperfect substitutabiliéglpdes the possibility of local indeter-
minacy when the aggregate labor demand of the capital ssicjpes downward. We start by demon-
strating that as the model economies with strictly quasiver f converge to that with a linedr, the
steady states behave continuously. So a discontinuityeadtdrady state cannot be the explanation for

our results. In order to be able to establish this, we neegdoifyy what we mean by convergence.

Definition 2 (Convergence to a linearf) Consider a linear function f R? — R, with (X, Xx),
= fx + fxXe Where §, fy > O, denote the steady state values of the new capital good®iagko-
ciated model economy l§y, Xy), and let U(x., X;) be an open neighborhood ff., x,). Furthermore,
consider a sequendd;}:°, of functions f : R2 — R, that are non-negative, linear homogeneous,
twice continuously dierentiable, and strictly quasi-convex.

We say thatfi}>, converges to f on [k, X,) if and only if each of fi}° , {fci}2, {fxitoy, {fecilioys
{fxxi}i2y, and{fei}2, converge in the supremum norm defined ovéx.k,) to f, ., fy, fe, fxx, and

fox, respectively.

Proposition 3 (Continuity of the steady states)Consider a sequence of functioffg, of the form
described in Definition 2. Then the sequence of the steatlysstd the model economies withcon-

verges to the steady state of the model economy with f.

Proof. See the Appendix C.
To find the explanation for our results, it is useful to re¢av with perfect substitutability local

indeterminacy can occur for mild strengths of the extetn&!i To this end, suppose the model economy

10The arguments of this section follow Christiano (1995).
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is on an equilibrium path to the steady state and ask whdikes tan be another equilibrium path with
the same initial capital stock but temporarily higher calgtocks subsequently. Such a path requires a
different composition of capital output: initially more capdaods for the capital sector and then fewer
capital goods for the capital sector. This results in itlitibwer and then higher capital stocks in the
consumption sector. Consumption growth is therefore fostel and then higher, which is optimal
for the household only if the returns on installed capita enitially higher and then lower. Since
with perfect substitutability the relative price of the twew capital goods is constant irrespective of
the composition of capital output, only the shape of the eggte production possibility frontier (ppf
henceforth) between consumption and the composite cgoital matters. The aggregate ppf is strictly
convex, so a lower ratio of consumption to composite cagitald is associated with a lower relative
price of the composite capital good in terms of consumptiah\ace versa. Along the alternative path,
capital gains can therefore generate the required moverétite returns to capital.

Two crucial ingredients bring about the capital gains whenttvo capital goods are perfect substi-
tutes. First, the aggregate ppf between consumption armbthposite capital good is strictly convex at
the steady state. This ingredient is also present when thedpital goods are imperfect, but arbitrarily

close, substitutes.

Proposition 4 (Continuity of the PPF) Consider a sequence of functioffg:>; of the form described
in Definition 2. Providing ¥, X« > O, the sequence of the production possibility frontiers @& th
economies with; fconverges on (k. Xy) to the production possibility frontier of the model economy

with f.

Proof. See the Appendix D.

The second crucial ingredient that brings about the cagégds with perfect substitutability is the
indeterminate composition of the capital goods productiBarmally this follows from the fact that
the relative price of the two capital goods is constant anthedirm is indtferent between ¢tierent
compositions of its capital production. Hence, the houkBsidemand determines the composition of

the capital production, implying that changes in beliefewtlduture returns can be accommodated by

13



changes in the composition of the capital goods produclibis second ingredient is not present when
the two capital goods are imperfect substitutes. The reesibiat the relative price of one new capital

good in terms of the other then determines the compositidheo€apital goods production. Formally,

this follows by combining (2a), (7¢), and (7d) (the last twithaequality):

P _ g D) (11)

Pxt  Hxt fx(xc‘ 1)

Xxt?

To see how this rules out local indeterminacy, assumesthats,, for simplicity, and use the arbitrage

conditions (2c¢) and (2d) together with (2a) to derive:

fot , Pet _ Tt P

E Pt Pxt  Pxt .

Consequently,

d pct) Pect ( I'xt rct)
—|===|==-—]. 12
dt ( Pxt Pxt \ Pxt  Pect (12)

Consider now an equilibrium path that converges to the gtetate and ask whether there can be
another equilibrium path that too converges to the steadg and that initially has less capital allocated
to the consumption sector, so initialky/ Xy is smaller. (11) shows that initiallg/ px must then be
smaller too. Since with less capital in the consumption®eitte marginal product of capital in the

consumption sector is larger than in the capital sector,lse@lzave that initially

vt Tt

— - =<0
Pxt  Pet

The arbitrage equation (12) therefore implies thatpx: must decrease further and (11) implies that
Xct/ Xt Must decrease further, and so on and so forth. Consequalthg the alternative path, the
capital stock of the consumption sector is ever decreasmglying that the alternative path cannot
converge to the steady state and thus violates the tramdityeiondition. Therefore, it cannot be an

equilibrium path.
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It is important to emphasize that capital gains are possitdspective of whether we have perfect
or imperfect substitutability. The fierence is that with perfect substitutability the capitahgadave
no direct éfect on the composition of the capital goods production. Intiast, with imperfect sub-
stitutability the capital gainsfiect the composition of the capital goods production. Thitheskey
feature of our model that rules out local indeterminacy fowdward-sloping aggregate labor demand

curve.

4 Numerical Results

The analytical results derived so far for imperfect subsivility show that a necessary condition for
local indeterminacy is an upward—sloping aggregate laborahd curve and a necessary condition for
determinacy is a downward—sloping aggregate labor demana.c Since our dynamical system is
four dimensional, it is impossible to fully characterize tlocal stability properties at the steady state
analytically. Thus, we now calibrate the model and then aaenfhe four eigenvalues numerically. We
use the functional forms and most parameter values dfritan and Wynne (1999), who calibrate a
two-sector model similar to our’s but with constant returmboth sectorsf. = 6y = 0. This diference
does not ffect the usefulness of their calibration for our purposesbse the degrees of increasing
returns do not fiect the calibration of the other parameters. The specificraggons of Héfman and
Wynne is thatf is of the form displayed in (6). Using quarterly, postwaredtigit US data, Hfiman
and Wynne calibraté; = 0.018,6, = 0.020,a = 0.41,b = 0.34, ando = 0.01. Moreover, they calibrate

e =0.1ore = 0.3, depending on the procedure. We adopt their calibraticegwe sep = 0.02. The
reason is thab = 0.02 implies more reasonable steady—state ratios betweeuegrtion and output
and between capital and output thas 0.01: 081 and 259 versus (5 and 34511

The equations for the linearization with imperfect sulsaibility, (B.7)—(B.9), show that the re-

11To avoid confusion, note that the imperfect substitutgbilf the two capital goods can come from intratemporal @apit
adjustment costs, which make changes in the allocatiorsmfat across sectors costly but leave changes in the it
stock costless. Htman and Wynne (1999) adopt this interpretation.
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Figure 1: Local stability if capital goods are imperfect stitutes and
p =0.02,6. = 0.018,64 = 0.020,a=0.41,b = 0.34.
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duced—form equilibrium dynamics are independert.p60 we do not need to choose a valuedof?
The available evidence @k is somewhat mixed. However, it is clear that Hall's (198&)ahestimates

of aggregate increasing returns of abol® @ere upward biased. More recent empirical studies find
estimates between constant returns and milder increasiogns up to (B; see e.g. Bartelsman et al.
(1994), Burnside et al. (1995), Burnside (1996), Basu arrddie (1997), and Harrison (2003). Ac-
cording to Basu and Fernald (1997) and Harrison (2003) taggesgate increasing returns are mainly
due to increasing returns in the capital sector; specifidhkty estimate non-durable manufacturing
to have constant (or decreasing) returns and durable manufay to have mildly increasing returns.
Sinced, is a key parameter determining the local stability propsrof the steady state and since it
is hard to draw a sharp line between empirically plausible iamplausible values for it, we will vary

it extensively together with the other key parameteBSpecifically, we will explore the local stability

properties of the steady state for @lle (0.00Q 0.900) ands € (0.000, 0.500)*2

12This is standard, see Weder (2000) and Harrison (2001).
13¢ = 0.000000001 is the closest value to zero that we use in thesputations.
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Our numerical results are reported in Figure 1. The figurplays the stability properties of the
economy fore > 0 only, which is indicated by the small distance between tlagled area and the verti-
cal axis. The numerical results confirm the analytical oz #im upward-sloping (downward-sloping)
aggregate labor demand curve in the capital sector is a segesondition for local indeterminacy
(determinacy)* The numerical results go beyond the analytical ones in thespects. First, they
show that an upward-sloping (downward-sloping) aggrefgdter demand curve in the capital sector
becomes a dticient condition for local indeterminacy (determinacy) whie substitutability between
the capital goods are ficiently low (¢ > 0.411). Second, they show that for capital adjustment costs
within the range calibrated by Hiiman and Wynnes € [0.1, 0.3], the steady state is determinate if the
increasing returns do not excee@03. The rangé, < [0, 0.313] includes most values of increasing re-
turns that are usually considered reasonable. So, givej®.1, 0.3], the local stability properties with
a strictly quasi—convex are summarized by determinacy for every empirically plalesspecification
of 6y. Third, our numerical results show that= 0.000000001 makes the equilibrium determinate for
0x € (0,0.078). In contrast, Proposition 2 shows thatfot O the equilibrium is locally indeterminate
for 6, € (0.053 0.078). Thus, the steady state with small degree of impertdzdtgutability is saddle—
path stable in the region of increasing returns in which teady state with perfect substitutability is
stable!®

We complete this section with a brief discussion of the rotess of our numerical findings, which
we have explored in two directions. First, we have shown ¢latnumerical determinacy result sur-
vives for reasonable variations of the parameter valued abeve. Second, we have shown that our
numerical determinacy result survives when the imperfebsstutability comes from capital adjust-
ment costs of the form suggested by Lucas and Prescott (19fé)details can be found in Herrendorf

and Valentinyi (2003).

14For the calibration used here the equilibrium labor demamdecslopes upward if and onlyéf, > 0.51.

5Note the possibility for global indeterminacy, which we dut pursue any further in this paper. This follows from the
additional piece of information that at the bifurcation tnstability” two of the eigenvalues are complex and the# fgarts
change sign, that is, a Hopf bifurcation occurs. The Hopifrgiition theorem implies the existence of limit cycles, athi
may or may not be stable. If they are stable, then a form ofajlislaleterminacy occurs.
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5 Conclusion

We have explored the conditions under which indetermin&egailibrium occurs near the steady state
in a class of two-sector neoclassical growth models withosespecific externalities. Our main finding
has been that imperfect substitutability of the two new t@goods precludes local indeterminacy
for every empirically plausible specification of the modatgmeters. This analytical result contrasts
sharply with the standard result that with perfect subtgtiiility local indeterminacy can occur in the
two—sector model for a wide range of plausible parametare&l It can be interpreted to mean that
local indeterminacy is not a robust property of the classwofsector neoclassical growth models with
sector—specific externalities. We conjecture that thiglteés likely to carry over to models with more
than two sectors and more than two capital goods.

Our findings are relevant for several reasons. To begin Vithgal indeterminacy is impossible for
plausible specifications of the parameter values, therfgiilfing business cycles are impossible for
plausible specifications of the parameter values. Thisrasitant implications for the debate about
whether or not government policy should aim to stabilizetess cycles; see Christiano and Harrison
(1999). Second, models from the class of two-sector nesiclsggrowth models that we have studied
here are widely used; see for example Fisher (1997} rklan and Wynne (1999), and Boldrin et al.
(2001). Our results provide a better understanding of tkallstability properties of this important
class of models. Finally, the results of this paper contealio a recent debate about the robustness
of multiple and indeterminate equilibria. Even though M®and Shin (1998) and Herrendorf et al.
(2000) studied rather fferent environments with externalities, they share a comtheme with the
present paper: the introduction of frictions can substdigtreduce the scope for the multiplicity or

local indeterminacy of equilibrium.
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Appendix

A Proof of Proposition 1

A.1 Strictly quasi—convexf
A.1.1 Reduced-form dynamics

Suppose that all first-order conditions hold with equality) and (2b)-(2d) then imply

kct = Xet — OcKet, Kt = Xxt — OxKxts (A.1la)

ﬂct = ,Uct(éc +P) - \,r\,ictt, lllxt = th(éx +P) - \,rlett (A-lb)

To represent the model economy as a dynamical systeky, iRy, e, anduy, we need to express
all endogenous variables, .8y, Xxt, lct, Ity Fety Ixt» Petr Pxt» Wet, @NdWy, as functions of these four
variables. Establishing this is the first step of the proof.

To begin with, note that (2a) implies thﬁfg = Z—ﬁ so (7c) and (7d) (with equality) together with the

strict quasi—convexity afimply that there is a functiog such that:

o) = (£) " (&) = 2. (A.2a)

Next, observe that dividing (4a) by (4b) and (7a) by (7b) asish@ (A.3a), we can express the factor

price ratios as functions of the corresponding factors:

fa _ '

i
Wt 1-a

(=)

: i ba (A.2b)

I _ b
Wyt 1-b Kyt *

g

Now, we derive labor in the consumption sector. Combinirg),(2he first equation of (3b), and
(4b) gives:
le=1-a (A.3a)
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Turning to labor in the capital sector, observe that (2a)@bdlimply 1= uxt%. Substituting (7b) and

(7b) into this leads to
_ -1
1= (- bkl ™ [ f(a(52). )]
where we used the fact th&{-, - ) is homogeneous of degree one, and (A.2a). Rearranging tead

the reduced form for labor in the capital sector:

1 1 B
e = (Kt et 1) = [(1 = )] T2 (g (42), 1)t 2. (A.3b)

Hxt

Substituting (A.3a) and (A.3b) into (A.2b) foéy andly, rearranging and plugging the result into (A.1b)

gives:
Her = ch(kct, Kts tcts xt) = (0 + O¢)pler — %, (A.4a)
1 1 BrtBa-1
it = Fox(Kets Kuts et 1) = (0 + Ot — 125 [(1 = D)paa] T2 £ (9(42), 1) k™. (A.4b)

Next, we derive the expressions for each type of investm®uhbstituting (9) and (A.2a) into the

equation of (5b) gives

Mot
i = e i) -t (g(22) 1)

/ﬂ) Mxt
g(llxt

To eliminately; from these expressions, we use (A.3b). Solving afterwards.f and x,; gives:

B2
B ofHet)g (o Bet) 1)B-1  LL
Xet = Xe(Ksts tets pxt) = [(1 — D)puxe] 172 g(ﬂXt)f((@lgz(’ﬁt)?ll)) kjt_ﬁz,

HMxt

B2
Bo_ggf ) q)Be LL
Xt = Xx(Kuts ety iixt) = [(1 = D) aye] 152 %K}t_ﬁz

Hxt

Substituting the above reduced forms %gt X, into (A.1a) and rearranging, we find the reduced—form
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equilibrium dynamics:

B2
) Bo oMt Met\ \Bo—1 _B1_
Ket = Fre(Kets Kuts et pixe) = [(1 — D)pae] 172 (#Xt) ((?(/Zf)) l) k>:(Lt & — OcKet, (A.4c)
HMxt
B2
B2 f, Het m B
k = Fix(Ket, Kxts teets tixt) = [(1 = D)pexe] 152 (g((#)((t)c‘l)) ) l " ~ ok A40
Hxt

A.1.2 Existence and uniqueness of steady state

Representing variables in steady state by dropping the itishex t and assuming that all first-order

conditions hold with equality, the steady state version@odb) and (A.4d) are found to be:

B2

1-p1-p2 Hc 1),32_—1
o = [(1— by (A.52)

(ol 14

1-B1-B2 8o 1
(o + 6k 72 = b[(1 - b)u] T2 £, (g (L), 1)L (A.5b)
Dividing the second equation by the first one leads to

proe _ 101 (A.6)

Given the assumed properties fafthis expression can be solved uniquely f;g)r so the steady state
shadow price ratio is uniquely determined by the parametbtee model. ¢From now on we will
therefore writef, fy, andg for the unique steady state values of these functions. Wehmmwrite

(A.4a), (A.4c), and (A.4d) evaluated at the steady statelisAs:

Het = pf5c kgtl, (A7a)
B2 % b1
by B2 gtP L 1g;
ok, = 0t oot 1o (A.7b)
—b)u] 182 1 1—
Sk = (0Dl ki2. (A.7¢)
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To show uniqueness, we will show tHat uy, andu. are functions ok,. We will then show thak is
uniquely determined by the parameters of the model. DigdM7b) by (A.7¢) gives< as a function
of Ky:

ke = 25K (A.8)

Since from (A.7a). is a function ofk., (A.8) implies thaiu. is a function ofk,. Since from (A.6)uy
is a function ofuc, (A.8) implies thatu, is a function ofk,. Finally, substituting,(ky) into (A.7c), we
find thatk, is uniquely determined by the parameters of the model.

We complete this part of the proof by noting that the non-tiefaconstraints on the capital goods
are not binding in either steady state, becaxjse dik; is strictly positive fors; € (0, 1). This justifies
the above assumption that all first-order conditions holthwequality at the steady state. This also
implies that there will be neighborhood of the steady statghich all first-order conditions hold with

equality.

A.2 Linear f
A.2.1 Reduced-form dynamics

Assuming interior solutions and following the same stepsefere, one can show that with a linefar

the equilibrium dynamics are characterized by the follayequations:

l-<ct = Xet — OcKets l.<xt = Xxt — OxKxt, kﬁ%'if = feXet + fiXue, (A.9a)
1 A

o= (1-a), =[S ] k2, (A.9b)

Z_z = ]]:_;, Het = petlp + 6c) — ﬁ%, Hxt = pxi(o + 0x) — %)L_ft (A.9c)
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If none of the non-negativity constraints ag and x,; binds, then we can reduce these equations to

three equations ik, ky, andug that describe the reduced—form equilibrium dynamics:

_ _ B B
foko + fukor = [%]w K2 — foocket — Fudxkoes (A.10a)
,L-‘ct = ,uct(p + 50) - %, (A.lOb)

1 BaiBe-l
0 = fugtc(Ox — 0c) + 5 — 12 [ Ea |1 o 1P (A.10c)

Note that unlike for a strictly quasi—convdx we cannot analytically reduce these three equations to

two equations that characterize fully the reduced—formléguum dynamics.

A.2.2 Existence and uniqueness of steady state

In steady state, the three equations in (A.10) become:

B B
0= [%] 1P |2 fSoke — fudyKs, (A.11a)
0 = pelo + dc) — %, (A.11b)
1 putferl
0= fuuc(dy — 6c) + & — 13 | S| e k72 (A.11c)

The existence and uniqueness of the steady state can be ssdalfows. First, (A.11b) implies that
k. is a function ofu.. Second, substituting the result into (A.11c) implies thabo is a function ofu.
Third, substituting these two expressions into (A.11a) eeairanging gives the steady state value for
ue. Finally, (A.9) shows that all other steady state variallesfunctions ok, ky, andc.

We complete the proof by noting that the non-negativity ¢@msts on the capital goods are not
binding in either steady state, because dk; is strictly positive for; € (0, 1). This justifies the above
assumption that all first-order conditions hold with eqtyadit the steady state. This also implies that

there will be neighborhood of the steady state in which at4arder conditions hold with equality.
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B Proof of Proposition 2

B.1 Linear f
B.1.1 Computation of the determinant and the trace

We start with the linearization of (A.10) at the steady state

b = g2 Bl (i) 4 | 4 Ioeerbdd £, (5, - 50) | (ke — k) = Ocke = K),

1—,32 HMc 1—52
ftet = (0 + 6c) (et — pc) — 2EEoee (e — k) + L30de (i — K),
= [~(o +60) + (0 + 6) — (0 + 6] (ttex — pec)

fX 6C C 1 6)( C 6(: C
n [ (pf:kc)/l B11+ﬁ/§2 (o+ X)/l ](k — k) + (P+ )/1 (oclie (1, — k)

wherek; = fck. + fyky. Rearranging gives:

ke = 2200 2 (g — prg) + [ 22528 — (8= 60)] Fulkt = k) — Gk = ),
fitet = (p + 6) (et —pac) — LML e (k) + Lrpeed e (g k),
(P+5C)+ (P+5x) (uct — )
=-|

fx(p+6c)dc B +,B c (p+6c)dcb e
+ [l — B o+ 09 feloe — ko) + 5 i (k — K.

The last equation can be solved fqf — ky

Scb(p+dc) _pe
o — k= @ ﬁ2>(p+5c)+ﬁz(p+s;)](2um ;lc)+(1 ST
e (1) P o+ 61 +42-1)

Substituting this back to the two dynamic equations leads to

kt _ a;1 ap|| k—k (B.1)

et Ap1 A22||Mct — Mc
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where

(oroc)slpron AP0 (1, 5,) 5y 4p-1)

di; = Boo(p+0. , (BZa)
e =
B1 p+ox
18, b +(5c—5x)}[(P+5C)—52(5c—5x)]
a = 1 520+ e, (B.2b)
(1_ﬁ2);0+(1—b)5x —(p+6x)(B1+B2-1) ¢
)
(Br+Bo—1b(p-+6c) —o
1 = — Doc(p+0c) ZALESILE %, (BZC)
(1_ﬂ2)p+(l—b)5x —(p+8x)(B1+B2-1)
bdc(o+0x
(00| ) o581 482-1)
dxp = — Boc(o+oc) . (BZd)
(1_ﬁ2)p+(1—b)5x —(p+6x)(B1+B2-1)
The determinant and the trace of the matrix in (B.1) are fdorok:
_ Ic(p+dc)[p+(1-0)dx](1-51)
Dt = s 05,6121 bocoe ) (B.3a)
Tr = P(p+0x)[p+(1-0)dx](B1+82—1)+dc(5c+p) [D(dx+082) —B1(0+5x)] ) (B.3b)

(p+6x)[p+(1-b)ox](B1+B2—1)—06c(Sc+p)(1-p2)

B.1.2 Characterization of the stability properties

The steady state is saddle—path stable if Red, it is stable if Tr< 0 < Det, and it is unstable if
Tr,Det > 0. In order to characterize thefifirent cases, first note that the denominators of the trace
and the determinant are the same. Second, the numerata @étbrminant is always positive. So the
local stability properties will depend only on the signstog humerator of the trace and on the common
denominator. ThrougB; andg, they both depend ofy, so we will writeN(6x) andD(6y). To find their

signs, we first find the values 6f for which they become zero:

-0 e g = b?6c(p+6c)
D(QX) =0 ty = (o+6x)[p+(1-b)6x] +(1-b)bdc(0+6¢c) (B'4a)
N(Gy) = 0 = 6, = Pocottel (B.4b)
(o+6x)[o+(1-b)ox]— - bc(o+6c)
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We can see thdd(6,) < 0 if and only if6, < 6y, D(6,) > 0 if and only if6, > 6y, N(6,) < O if and only
if 6, < 6y, andN(6y) > 0 if and only if6, > 6. Now, if the condition in (i.a) holds then© &, < 65 and
if the condition in (i.b) holds thef, < 0 < 6,. Using this to determine the signs of the determinant and

the trace proves our claims.

B.2 Strictly quasi—convexf
B.2.1 Computation of the determinant and the trace

We again represent the steady valued pfj, and their derivatives by dropping their arguments, so
f=f (X& 1), g= g(xﬁ) etc. We start the proof by listing some helpful identitieatthave to hold in

our model. First, the definition af as the inverse o{i implies that

g = - (B.5a)

fCC fX_ fC fXC :

Second, the linear homogeneity bfmplies:
f=gf + 1, 0=gfec+ fex, 0= fux + gfex. (B.5b)

Third, (A.6) and (B.5b) give

p+ox(1-b) _ gk p+ox(1-b) _ gk
box . fx® ooy f0° (B.6a)

Finally, using this and (B.5a), we find:

fxe /e _ fycfe _ __9fc _ _ p+ix(1-b)
fxg pux — feefi—fefxe = fx+gfe = p+0x (B6b)

The first step of the derivation of the determinant and theetiia to linearize the reduced-form

dynamics at the steady state. Indicating steady stateblesily dropping the time subscript, the result
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Ket a1 A a3 || ke —ke

kxt ap1 Ay Az apal| ke — K«
= (B.7)

Het dz; Az Azz Aza||Mct — Mc

flxt_ Q41 Q42 Q43 Saa||Hxt — Mx]

wherelt
- 1 Ocke _[Q_&_ﬁZ L /@_g_fcg_’/ﬁ]%
1 = 50’ A2 = 182 ky A3 = g ux 1-82 fx g Hx f g uxl pe
—[Ba _ S e | B2 Fepype L /&]&kc _ B Oxkx
Qg = [1_ﬁ2 g fx + 18, fx g Lix F g x| Ty 2 a1 =0 a2 18 k Oxs
_[ B2 fxc e T /#c]% _[ﬁz B2 fxe o e 9_1%9_'&]5xkx
a23 [1 —B2 fx g Hx f g Hx pe a24 - 1-62 1-62 fx g Hx f g ux Hx ’
_ (ptdcu _ _ _
Az = 2, azgy; =0, Az3 = p + O, ags =0,

ke
— _ BitBa=1 (p+5x)ux _ 1 f o Hc (o+0xdux
an =0, a42_1——ﬁzk—x’ M3=145 79 0 .

fxc / c

To simplify these expressions, it is useful to define theteliég of the investment ratio with respect to

the relative price evaluated at the steady state. Dendtiagniverse of that elasticity by > 01" we

have:
He
o =—.1
o= dutly (8.8)
g (,Ux’ ) Mx
Now, using (B.6a) and (B.6b), the previous terms can be t&mri
— _ B sk _ |8 1 1-(A+e)Ba 6xb | dcke
a1 = —0c, 2= 714 G @13= [1_—ﬂ2 te T, [T(;x] e (B.9a)
Qg = _1 1-(0+e)Br Scke Oxb a1 =0, ay= 6XM (ng)

e 1B Hx  p+ox’ -5 7

18To find these expressions we have repeatedly used the fadt #hfnction is of the formh(xy, Xo, X3) = x‘fxg - axg,

then its partial derivative can be written g% M
"Note that iff is parameterized by according to (6) then the inverse elasticity in the casésis given bye.
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_ 1 1-(1+£)B2 Sxks p+ox(1-h) _ B2 1 1-(1+£)B2 p+6x(1-b) | sxk«
3= "5 T8 we prox o 4= [1-_,32 tE T oo ]u_ (B.9¢)
a1 = —(p+|f§)ﬂ°, a32=0, ag=p+d;, au=an=0, (B.9d)
-1 ux X
o= P2 (p +6), a=-thlo+o(1-b)]L, aw=(p+5)-Eob.  (B.9e)

The second step is to combined the terms just derived andliotompute the determinant and the

trace. Using the fact thak, = as4 = a4; = 0, the determinant can be written as

Det = agiauz(ay3dos — 814823) + 82831(814843 — A13844)

+ a11833(a22844 — A24847) + A12831(A238U4 — B24843).

Using the previous expressions, the four terms in that oetemt are found to equal:

1
ag18u2(813824 — A14823) = —= 16—22 % 0c0x(o + 0c)(p + 6x),

— Xb_ X
822831(814843 — A13844) = ﬂlfﬂzz ! 1%2 (e ~ Aot 5.654(0 + 6¢),
a11833(A20844 — A4842) = —[%;2_1 2 5,5c(0 + 6c)[p + 6x(1 - b)],

a12831(823844 — A4843) = ]f_;gz ﬁ—zz 2 5540 + 6c)[p + 6x(1 - b)].

Using these expressions and simplifying, we find the detaanti

Det = 1_:9 5c5x(P""Sc)[ﬁ’]‘_"fgz(l—b)](l—ﬁl). (B.10)

In general form the trace is given by:

Tr = ay1 + Ay + az3 + aas.
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Substituting in the previous expressions &y we find the trace:
b
Tr = 20 + 655 (B.11)

B.2.2 Characterization of the stability properties

We start with the casg; € [0, l—?b), implying thatg, < 1. Then Det> 0 and Tr> 0.® Now suppose that
the steady state were stable. Then (B.7) would have thremuoeigenvalues with negative real parts.
If (B.7) had four eigenvalues with negative real parts, tthentrace would have to be negative, which
is a contraction. If (B.7) had three eigenvalues with negatal part, then the determinant would have
to be negative, which is a contradiction.

We continue with the cas# € [, &), implying thats, > 1. Then Det< 0. Suppose that the
steady state were saddle—path stable. Then (B.7) wouldthaveigenvalues with negative real part

and two eigenvalues with positive real part. Irrespectivgloether they are real or complex conjugates,

this would imply that the determinant must become positiigch is a contraction.

C Proof of Proposition 3

The proof of this proposition follows because usﬁiig: ]f—c one can show that the limits of the steady
state versions of the four equations in (A.4), which chanmaze uniquely the steady state with quasi-
convexf, imply the three equations in (A.11), which characterizejualy the steady state with linear
f. In particular, f; times (A.4c) plusf, times (A.4d) converges to (A.11a). Second, (A.4a) is icehti
to equation (A.11b). Thirdf; times (A.4b) minusf, times (A.4a) converges to (A.11c).

18Recall thaBy = (1 + 6y)b, s0B1 — b = 6,b > 0.
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D Proof of Proposition 4

We start by defining the production possibility frontier ween the consumption good, and the

composite capital goods = (X, Xxt):

max  x(c) (D.1a)
Xet—At-Xxt-AtsIxtslct

st ox <KHZ g <k, g+l <y, (D.1b)

Ket < (Xet-at — 5cEct—At)At + Ketoats Kut < (Xxt-at — AxExt—At)At + Kyeats (D.1c)

f (Xetats Xxt-at) < Xe-at» (D.1d)

wherely, ket Ke_ats Xe_at are given. The solution to this problem determines for gifieaisiblec, the
maximal level ofx. We useAt in writing this problem because of the sector—specificitycapital,
which means that at some tirhe At, A being small, the two new capital goods need to be chosen.

Now rewrite the problem as:

- =P
max [(th—At — OxKt-at) At + kxt—At] ' |€f (D.2a)
Xet—At-Xxt—Ats|xt
— — a 1— a2
S.t. C = [(Xct—At — OcKe-at) A + kct—At] [It - |xt] ; (D.2b)
Xe-at = T (Xetats Xxt-at)- (D.2¢c)

The necessary first-order conditions are:

— — B1
X = [th—At — OxKyeat) At + kxt—At] |€f_m (D.39)
— — artr— (0%
C = [(Xct—At — OcKet-at) At + kct—At] [lt - Ixt] (D.3b)
b xt fe(Xet-at.Xxt-at) _ @ I
b (X-arOxKa-a)Atkeat Fx(Ret-atXatat) 1@ (Xe-arOcker-at) Atker-at ’ (DSC)
Xe-at = T (Xet-ats Xx-at)- (D.3d)

These four equations define the production possibilitytfesrbetweerc; andx;.
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Inspecting the optimization problem in (D.2) fd{x., X«) = foXt + fxX«, We can see that the

constraint (D.2c) becomes

Xeeat = feXetoat + FxXxoat- (D.2c)

Therefore the first-order conditions are (D.3a) and (D.3®)efore and

b le+At fc a E+At_|xt+At D 3 /
= --a : 3c
1-b (Xut-at—0xkxt-at) At+kee_at fx 1-a (Xet-at—0cKet-at) At+Kee-at ( )

foXeat + FxXxat = Xeoat- (D.3d")

(D.3c) and (D.3d) converge to (D.3c’) and (D.3d") fis—> f in U(X, Xy).
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