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Abstract

We study a class of two-sector neoclassical growth models, in which one sector produces con-
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goods for the two sectors areimperfectsubstitutes, then local indeterminacy near the steady state is
impossible for every empirically plausible specification of the model parameters. More specifically,
we show that a necessary condition for local indeterminacy is an upward-sloping aggregate labor
demand curve in the capital sector, which requires a counterfactual strength of the externality. We
show numerically that an elasticity of substitution of plausible size implies determinacy near the
steady state for all empirically plausible specifications of the model parameters. These findings
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1 Introduction

We study the local stability properties of the neoclassicalgrowth model at the steady state. Local

stability analysis provides important information about the local uniqueness of equilibrium at the steady

state and about the way in which business cycles can occur in the model economy. If the steady state

is saddle–path stable, then equilibrium is locally unique at the steady state. This is called determinacy

and it implies that business cycles must come from shocks to the fundamentals of the model (typically

technology shocks). In contrast, if the steady state is stable, then a continuum of equilibrium paths

converge to the steady state, implying a severe form of localnon-uniqueness of equilibrium. This is

called local indeterminacy and it implies that business cycles can come from self-fulfilling shocks to

individual beliefs. Since both determinacy and local indeterminacy are theoretically possible when

there is some form of non–convexity, we ask which one prevails for empirically plausible choices of

parameter values.

We restrict our attention to a class of two-sector neoclassical growth models with sector–specific,

positive externalities. In these models, one sector produces a consumption good and the other sector

produces the capital goods for the two sectors. We thereforecall these sectors the consumption sector

and the capital sector. The class of models we consider has been the focus of the recent research on

local indeterminacy.1 The main finding of this research is that local indeterminacycan occur for mild,

empirically plausible externalities in the capital sector, which are consistent with a downward–sloping

aggregate labor demand curve. In contrast, in the class of standard one-sector neoclassical growth

models, local indeterminacy requires strong externalities that make the aggregate labor demand curve

upward sloping [Benhabib and Farmer (1994) and Farmer and Guo (1994)]. Such strong externali-

ties are empirically implausible and an upward–sloping aggregate labor demand curve has awkward

economic implications [Aiyagari (1995)].

Our main finding is that local indeterminacy depends critically on whether or not the capital good

1Examples include Boldrin and Rustichini (1994), Benhabib and Farmer (1996), Benhabib and Nishimura (1998), Perli
(1998), Weder (1998), Benhabib et al. (2000), Weder (2000),Schmitt-Grohé (2000), Harrison (2001), and Harrison and
Weder (2001). Benhabib and Farmer (1999) provide a review.
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for the consumption sector and the capital good for the capital sector are perfect substitutes. Perfect

substitutability means that the two new capital goods are perfect substitutes and that the two installed

capital goods are perfect substitutes. The common assumption of the literature on indeterminacy is that

this is the case. Perfect substitutability implies that theproduction possibility frontier of the capital

sector is linear and installed capital is not sector specific(“putty–putty”). Imperfect substitutability

means that the two new capital goods are imperfect substitutes and that the two installed capital goods

are imperfect substitutes. This is the empirically plausible case; see for example Huffman and Wynne

(1999). Imperfect substitutability implies that the production possibility frontier is strictly concave

and installed capital is sector specific (“putty–clay”). Weshow that imperfect substitutability has two

implications. First, we show analytically that local indeterminacy does not occur if the two capital

goods are imperfect substitutes and the aggregate labor demand curve slopes downward. Surprisingly,

this holds true whenever substitutability is imperfect no matter what the elasticity of substitution is. This

result differs sharply from that of the literature, which assumes perfect substitutability and finds that

local indeterminacy can easily occur if the aggregate labordemand curve slopes downward. Second, we

show numerically that equilibrium is determinate (insteadof unstable) for empirically plausible values

of the elasticity of substitution of the two capital goods and of the externality. This result is robust to

reasonable changes in the parameter values.

Imperfect substitutability of the different capital goods can be due to capital adjustment costs. In

Herrendorf and Valentinyi (2003), we explore the local stability properties of the two–sector model

with the standard capital adjustment costs used by Lucas andPrescott (1971). We show that it matters

whether the adjustment costs apply to the total capital stock of the economy or to each sector’s capital

stock: local indeterminacy is easier to obtain in the first case than in the second case. All results of

Herrendorf and Valentinyi (2003) are numerical. The present paper goes beyond it in three aspects.

First, the key result of the present paper is analytical. Second, the key result of the present paper is

stronger: given a downward–sloping aggregate labor demandcurve (which is the empirically plausible

case), we show here that local indeterminacy does not occur for anypositive elasticity of substitution

between the different capital goods irrespective of where it comes from. In contrast, previously we

2



have shown only that it does not occur for some typical parameter choices. Third, the present paper

provides the economic intuition for the effects of imperfect substitutability, which was missing from

our previous paper.

The intuition follows from the relationship between the relative price of the two capital goods

and the composition of the capital goods production. We start with the case in which the two capital

goods are perfect substitutes (which happens, for example,when it is costly to change total capital

but not each sector’s capital stock). The relative price between the two capital goods then is one and

the firms in the capital sector are indifferent between different compositions of their productions. The

composition of the capital goods production is then entirely determined by the demand for capital

goods. Since there are sector–specific externalities, changes in beliefs about future returns can then

lead to self–fulfilling changes in the composition of the capital goods production. We continue with

the case in which the two capital goods are imperfect substitutes (which happens, for example, when it

is costly to change each sector’s capital stock). The relative price between the two capital goods then

varies with the composition of the capital goods productionand the firms in the capital sector are not

indifferent between different compositions of their productions. The relative price of one capital good

in terms of the other then determines the composition of the capital production. Since that relative price

is determined at each point in time by past consumption–savings decisions, changes in beliefs about

future returns can no longer lead to self–fulfilling changesin the composition of the capital goods

production.

Wen (1998), Guo and Lansing (2002), and Kim (2003) also studied the implications of capital

adjustment costs for local indeterminacy, but they employed the one-sector neoclassical growth model

with an externality. They all found a threshold result: given a strength of increasing returns that implies

local indeterminacy, there is a positive, minimum size of the capital adjustment costs that makes local

indeterminacy impossible.2 The threshold behavior of the one–sector model is similar tothe behavior

of the two–sector model when the adjustment costs apply to the total capital stock [Herrendorf and

2Lahiri (2001) shows that opening up capital mobility has theopposite effect as capital adjustment costs: it decreases
the strength of increasing returns required for indeterminacy.

3



Valentinyi (2003)]. The threshold behavior of the one–sector model is very different from the behavior

of the two–sector model when the adjustment costs apply to each sector’s capital stock separately

and indeterminacy cannot occur for any strength of increasing returns that leaves the aggregate labor

demand curve downward sloping. The reason is that adjustment costs of each sector’s capital stock lead

to imperfect substitutability of the two capital goods, so the results of the present paper apply.

2 Model Economy

Consider the following environment. Time is continuous andruns forever. There is a representative

households and two representative firms. One representative firm produces a perishable consumption

good and the other one produces two new capital goods. The representative household is endowed with

the initial capital stocks, with the property rights for therepresentative firms, and with one unit of time

at each instant. We assume that installed capital is sector specific, which is consistent with the evidence

collected by Ramey and Shapiro (2001) that it is very costly to reallocate installed capital to other

sectors. At each point in time five commodities are traded in sequential markets: the consumption

good, the new capital good suitable for the production of consumption goods, the new capital good

suitable for the production of new capital goods, working time in the consumption sector, and working

time in the capital sector.

The representative household solves:

max
{Ct ,Xct,Xxt,Lct,Lxt,Kct,Kxt}

∞
t=0

∫ ∞

0
e−ρt[log Ct + (L − Lct − Lxt)] dt (1a)

s.t. Ct + pctXct + pxtXxt = πct + πxt + wctLct + wxtLxt + rctKct + rxtKxt, (1b)

K̇ct = Xct − δcKct, K̇xt = Xxt − δxKxt, (1c)

Kc0 = K̄c0 given, Kx0 = K̄x0 given, (1d)

0 ≤ Ct, Lct, Lxt,Xct,Xxt,Kct,Kxt, Lct + Lxt ≤ L. (1e)
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The notation is as follows:ρ > 0 is the discount rate;Ct denotes the consumption good at timet

(which is the numeraire);L ∈ (0,∞) is the time endowment; the subscriptsc andx indicate variables

from the consumption and the capital sector;Lct and Lxt are the working times,wct andwxt are the

wages,Xct and Xxt are the new capital goods,pct and pxt are the relative prices of the new capital

goods,Kct andKxt are the installed capital stocks,rct andrxt are the real interest rates,δc andδx are

the depreciation rates, andπct andπxt are the profits (which will be zero in equilibrium). Two features

of the representative household’s problem deserve furthercomment. First, we restrictXct andXxt to

be non-negative, meaning that installed capital is sector specific. Nevertheless the capital stock of a

sector can be reduced by not replacing depreciated capital,so close to the steady state (the existence

of which we will prove below) the non–negativity constraints will not be binding. Second, we choose

the functional form for utility that is most commonly used inthe literature. We focus on an infinite

equilibrium labor supply elasticity because the existing studies identify this to be the best case for local

indeterminacy. An economic justification for an infinite labor supply elasticity is the lottery argument

of Hansen (1985) and Rogerson (1988).

Denoting byµct andµxt the current value multipliers attached to the accumulationequations (1c),

the necessary and sufficient conditions for a solution to the household’s problem are (1b)–(1e) and

pct

Ct
= µct,

pxt

Ct
= µxt, (2a)

Ct = wct = wxt, (2b)

µ̇ct ≤ µct(δc + ρ) −
rct

Ct
(with equality if Xct > 0), (2c)

µ̇xt ≤ µxt(δx + ρ) −
rxt

Ct
(with equality if Xxt > 0), (2d)

lim
t→∞

pctKct

Ct
e−ρt = lim

t→∞

pxtKxt

Ct
e−ρt = 0. (2e)

Note that, as usual, the dynamic first-order conditions (2c)and (2d) hold only fort > 0. Note too that

the wage rates will be equalized across sectors but the real interest rates will only be equalized across

sectors if the two capital goods are perfect substitutes, inwhich case their shadow prices are equal.
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We now turn to the production side of the model economy. The problem of the representative firm

of the consumption sector is:

max
ct ,kct,lct

πct ≡ ct − rctkct − wctlct (3a)

s.t. ct = Atk
a
ctl

1−a
ct , ct, lct, kct ≥ 0, (3b)

whereAt ≥ 0 denotes total factor productivity in the sector anda ∈ (0, 1). The necessary and sufficient

conditions for a solution are (3b) and

rct = aAtk
a−1
ct l1−a

ct , (4a)

wct = (1− a)Atk
a
ctl
−a
ct . (4b)

The problem of the representative firm of the capital sector is:

max
xxt,xct,lxt,kxt

πxt ≡ pxtxxt + pctxct − rxtkxt − wxtlxt (5a)

s.t. f (xct, xxt) = Btk
b
xtl

1−b
xt , xxt, xct, kxt, lxt ≥ 0, (5b)

whereBt ≥ 0 denotes total factor productivity in the sector,b ∈ (0, 1), and f is a twice continuously

differentiable function that is non-negative, increasing in both arguments, linear homogeneous, and

quasi-convex.3 A functional form that satisfies these requirements is

f (xct, xxt) =
(

φcx
1+ε
ct + φxx

1+ε
xt

)

1
1+ε , (6)

whereφc, φx, andε are positive constants.

Denoting the multiplier attached to the equation of (5b) byλt, the necessary and sufficient conditions

3Homogeneity is required for the existence of a balanced growth path.
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for the solution to problem (5) are (5b) and

rxt = λtbBtk
b−1
xt l1−b

xt , (7a)

wxt = λt(1− b)Btk
b
xtl
−b
xt , (7b)

pct ≤ λtφc(xct, xxt) (with equality if xct > 0), (7c)

pxt ≤ λtφx(xct, xxt) (with equality if xxt > 0), (7d)

whereφc andφx denote the partial derivatives off with respect toxct andxxt.

The assumption of quasi-convexity implies that for a givenf̄ ∈ R+ the lower sets{(xxt, xct) ∈

R
2
+
| f (xxt, xct) ≤ f̄ } are convex, so the production possibility frontier betweenthe two new capital goods,

xct and xxt, is concave. In other words, the two new capital goods are imperfect substitutes. This is

relevant only if the two installed capital goods are also imperfect substitutes, otherwise any reallocation

of total capital between the two sectors can be achieved by reallocating installed capital. It is for this

reason that we have assumed that installed capital is sectorspecific. The standard assumption in the

literature is thatf is linear:

f (xct, xxt) = φcxct + φxxxt, (8)

whereφc andφx are positive constants, which are often set to one.4 If f is linear, then the production

possibility frontier between the two new capital goods is linear too. In other words, the two new capital

goods are perfect substitutes. If this is the case, then it isirrelevant for the local stability properties

whether the two installed capital goods are perfect or imperfect substitutes. The reason is that installed

capital depreciates, so close to the steady state any changein the capital stocks of the two sectors can

be achieved by a corresponding change in the composition of the new capital production. In any case,

we find it convenient to maintain sector–specificity also when we study perfect substitutability of new

capital goods.5

4The choice ofφc andφx amounts to a choice of the units in whichxct andxxt are denominated. This choice does not
matter for the local stability properties of the steady state.

5Note that att = 0 bothkc0 andkx0 are given because installed capital is assumed to be sector–specific. However, this
does not invalidate the previous argument.
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The total factor productivities are specified so that there can be positive externalities at the level of

each sector:

At = kθcact lθc(1−a)
ct , Bt = kθxb

xt lθx(1−b)
xt , (9)

whereθc, θx ≥ 0. Substituting (9) back into the production functions, thesectors’ aggregate outputs

become:

ct = kα1
ct lα2

xt , α1 ≡ (1+ θc)a, α2 ≡ (1+ θc)(1− a), (10a)

xt = kβ1
xt l
β2
xt , β1 ≡ (1+ θx)b, β2 ≡ (1+ θx)(1− b). (10b)

Note that (9) implies that the externalities on capital and labor are the same.6 Note too that the

externalities are not taken into account by the firms, so a competitive equilibrium exists. In equilibrium,

profits are zero and the capital and labor shares are the usualones: rctkxt

ct
= a, wctlxc

ct
= 1 − a, rxtkxt

kt
= b,

wxtlxt
kt
= 1 − b. Moreover, in equilibrium, the total factor productivities on which the firms base their

decisions must be equal to those that results from these decisions:

Definition 1 (Competitive equilibrium) A competitive equilibrium is prices{wct,wxt,rct,rxt,pct,pxt}
∞
t=0,

an allocation{Ct, ct,Xct, xct,Xxt, xxt, Lct, lct, Lxt, lxt,Kct, kct,Kxt, kxt}
∞
t=0, and total factor productivities{At,

Bt}
∞
t=0 such that:

(i) {Ct,Xct,Xxt, Lct, Lxt,Kct,Kxt}
∞
t=0 solve the problem of the representative household,(1), that is,(2a)–

(2e)hold;

(ii) {ct, lct, kct}
∞
t=0 solve the problem of the representative firm of the consumption sector,(3), that is,

(4a)–(4b)hold;

(iii) {xxt, xct, lxt, kxt}
∞
t=0 solve the problem of the representative firm of the capital sector, (5), that is,

(7a)–(7d)hold;

(iv) markets clear, that is, Ct = ct, Xct = xct, Xxt = xxt, Lct = lct, Lxt = lxt, Kct = kct, Kxt = kxt;

(v) At and Bt are determined consistently, that is, the two equations in(9) hold.

6The results of Harrison and Weder (2001) suggest that imposing this constraint does not affect in an important way the
stability properties of the steady state of the two-sector neoclassical growth model without capital adjustment costs.
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3 Analytical Results

3.1 Local stability properties

We start by establishing that there is a unique steady state and by deriving the reduced-form equilibrium

dynamics nearby.

Proposition 1 (Reduced–form dynamics)

(i) There is a unique steady state.

(ii) If f is linear, then there is a neighborhood of the steadystate such that the equilibrium reduced–

form dynamics can be described by the dynamics of the state variable kt ≡ φckct + φxkxt and the

dynamics of the control variableµct.

(iii) If f is strictly quasi convex, then there is a neighborhood of the steady state such that the equi-

librium reduced–form dynamics can be described by the dynamics of the two state variables kct

and kxt and the two control variablesµct andµxt.

Proof. See the Appendix A.

The proposition shows that the equilibrium reduced–form dynamics close to the steady state are

two dimensional whenf is linear and four dimensional whenf is strictly quasi convex. The reasons

are as follows. With a linearf the two capital goods are perfect substitutes, so only the total capital

stock and its shadow price are needed to describe the dynamics. With a strictly quasi–convexf , the two

capital goods are imperfect substitutes, so both of them andtwo shadow prices are needed to describe

the dynamics.

We now explore analytically the stability properties of thesteady state. The steady state is saddle–

path stable if there are as many stable roots (i.e. roots withnegative real part) as states and as many

unstable roots (i.e. roots with positive real part) as controls. It is stable if there are more stable roots

than states and it is unstable if there more unstable roots than controls. If the steady state is saddle–path

stable then the equilibrium is determinate, that is, given the initial capital stocks close to the steady
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state values there are unique initial shadow prices such that the model economy converges to the steady

state. If the steady state is stable, then the equilibrium islocally indeterminate, that is, given the initial

capital stocks close to the steady state values there existsa continuum of shadow prices such that the

model economy converges to the steady state. Since it is not feasible to compute analytically the four

eigenvalues, we will only compute the determinant and the trace of the linearization of the reduced-

form equilibrium dynamics at the steady state. Although this does not allow for a full characterization

of the local stability properties, it provides important information because the determinant equals the

product of the eigenvalues and the trace equals the sum of thereal parts of the eigenvalues (complex

eigenvalues occur in conjugates, implying that the imaginary parts cancel in the summation). This leads

to the next proposition, which constitutes the main result of our paper.

Proposition 2 (Local stability properties of the steady state) Suppose that b< 1−b andθx ∈ [0, 1−b
b ).

(i) Suppose that f is linear.

There are constants
¯
θx ∈ (0, b

1−b) and θ̄x ∈ (− ρb
ρb+δx
, 1−b

b ) such that:

(i.a) if

(ρ + δx)[ρ + (1− b)δx] >
ρb+ δx

ρ
bδc(ρ + δc),

then
¯
θx < θ̄x and the steady state is saddle–path stable forθx ∈ [0,

¯
θx), stable forθx ∈ (

¯
θx, θ̄x),

and unstable forθx ∈ (θ̄x, 1−b
b );

(i.b) if

(ρ + δx)[ρ + (1− b)δx] <
ρb+ δx

ρ
bδc(ρ + δc),

then θ̄x < 0 <
¯
θx and the steady state is saddle–path stable forθx ∈ [0,

¯
θx) and stable for

θx ∈ (
¯
θx,

1−b
b ).

(ii) Suppose that f is strictly quasi–convex.

(ii.a) θx ∈ [0, b
1−b) is a necessary condition for the steady state to be saddle–path stable;

(ii.b) θx ∈ ( b
1−b,

1−b
b ) is a necessary condition for the steady state to be stable.
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Proof. See the Appendix B.

We begin the discussion by noting that calibrations of our two-sector model that are typical in the

literature are consistent with the assumptionsb < 1− b andθx < 1−b
b .7 The inequalityb < 1− b ensures

that the capital share in the capital sector’s income is smaller than one half and thatb1−b <
1−b

b . The

inequalityθx < 1−b
b ensures that the aggregate returns to capital are not too large so there cannot be

endogenous growth in steady state. As pointed out before, there are two relevant subcases ofθx < 1−b
b :

for θx ∈ [0, b
1−b) the aggregate labor demand curve of the capital sector slopes downward and for

θx ∈ ( b
1−b,

1−b
b ) it slopes upward.

We continue the discussion of this proposition with part (i), the case of a linearf . It says that

if the aggregate labor demand curve in the capital sector slopes downward, then the steady state can

be saddle–path stable, stable, or unstable.8 The key part of this statement is that a linearf allows

for a stable steady state and therefore for local indeterminacy at the steady state when the aggregate

labor demand curve in the capital sector slopesdownwardand capital is sector specific capital.9 This

replicates the result of the recent literature on self–fulfilling business cycles; see for example Benhabib

and Farmer (1996) and Harrison and Weder (2001).

We conclude the discussion with part (ii), the case of a strictly–quasi convexf . It says that if the

aggregate labor demand curve in the capital sector slopesupward, then the steady state can be sta-

ble or unstable but not saddle–path stable; if the aggregatelabor demand curve in the capital sector

slopesdownward, then the steady state can be saddle–path stable or unstablebut not stable. Thus, a

strictly–quasi convexf rules out local indeterminacy at the steady state if the aggregate labor demand

curve slopes downward. This is our key analytical result, which holds forany strictly quasi–convex

f . In other words, the local stability properties of the two–sector neoclassical growth model with

strictly quasi–convexf differ strikingly from those with a linearf . In fact, the local stability proper-

7Below we will discuss calibration issues in more detail.
8Using the results from Appendix B, it is easy to verify that ifρ[ρ+ (1− b)δx] > bδc(ρ+ δc), thenθ̄ < b

1−b and the steady
state can be unstable under downward sloping aggregate labor demand curve.

9It has already been shown by Christiano (1995) for a discretetime version of a two-sector real business cycle model
that the stability properties of the steady state do not depend on whether capital is sector specific or fully mobile across
sectors.
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ties of the two–sector model with strictly quasi–convexf are much more like those of the one-sector

neoclassical growth model without capital adjustment costs, in which local indeterminacy requires an

upward-sloping aggregate labor demand curve [Benhabib andFarmer (1994)].

3.2 Intuition

Here we seek to understand why imperfect substitutability precludes the possibility of local indeter-

minacy when the aggregate labor demand of the capital sectorslopes downward. We start by demon-

strating that as the model economies with strictly quasi–convex f converge to that with a linearf , the

steady states behave continuously. So a discontinuity at the steady state cannot be the explanation for

our results. In order to be able to establish this, we need to specify what we mean by convergence.

Definition 2 (Convergence to a linearf) Consider a linear function f: R2
+
−→ R+ with f(xct, xxt),

= fcxct + fxxxt where fc, fx ≥ 0, denote the steady state values of the new capital goods in the asso-

ciated model economy by(xc, xx), and let U(xc, xx) be an open neighborhood of(xc, xx). Furthermore,

consider a sequence{ fi}∞i=1 of functions fi : R2
+
−→ R+ that are non-negative, linear homogeneous,

twice continuously differentiable, and strictly quasi-convex.

We say that{ fi}∞i=1 converges to f on U(xc, xx) if and only if each of{ fi}∞i=1, { fc,i}
∞
i=1, { fx,i}

∞
i=1, { fcc,i}

∞
i=1,

{ fxx,i}
∞
i=1, and{ fcx,i}

∞
i=1 converge in the supremum norm defined over U(xc, xx) to f , fc, fx, fcc, fxx, and

fcx, respectively.

Proposition 3 (Continuity of the steady states)Consider a sequence of functions{ fi}∞i=1 of the form

described in Definition 2. Then the sequence of the steady states of the model economies with fi con-

verges to the steady state of the model economy with f .

Proof. See the Appendix C.

To find the explanation for our results, it is useful to recallhow with perfect substitutability local

indeterminacy can occur for mild strengths of the externality.10 To this end, suppose the model economy

10The arguments of this section follow Christiano (1995).
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is on an equilibrium path to the steady state and ask whether there can be another equilibrium path with

the same initial capital stock but temporarily higher capital stocks subsequently. Such a path requires a

different composition of capital output: initially more capital goods for the capital sector and then fewer

capital goods for the capital sector. This results in initially lower and then higher capital stocks in the

consumption sector. Consumption growth is therefore first lower and then higher, which is optimal

for the household only if the returns on installed capital are initially higher and then lower. Since

with perfect substitutability the relative price of the twonew capital goods is constant irrespective of

the composition of capital output, only the shape of the aggregate production possibility frontier (ppf

henceforth) between consumption and the composite capitalgood matters. The aggregate ppf is strictly

convex, so a lower ratio of consumption to composite capitalgood is associated with a lower relative

price of the composite capital good in terms of consumption and vice versa. Along the alternative path,

capital gains can therefore generate the required movements of the returns to capital.

Two crucial ingredients bring about the capital gains when the two capital goods are perfect substi-

tutes. First, the aggregate ppf between consumption and thecomposite capital good is strictly convex at

the steady state. This ingredient is also present when the two capital goods are imperfect, but arbitrarily

close, substitutes.

Proposition 4 (Continuity of the PPF) Consider a sequence of functions{ fi}∞i=1 of the form described

in Definition 2. Providing xct, xxt > 0, the sequence of the production possibility frontiers of the

economies with fi converges on U(xc, xx) to the production possibility frontier of the model economy

with f .

Proof. See the Appendix D.

The second crucial ingredient that brings about the capitalgains with perfect substitutability is the

indeterminate composition of the capital goods production. Formally this follows from the fact that

the relative price of the two capital goods is constant and sothe firm is indifferent between different

compositions of its capital production. Hence, the household’s demand determines the composition of

the capital production, implying that changes in beliefs about future returns can be accommodated by

13



changes in the composition of the capital goods production.This second ingredient is not present when

the two capital goods are imperfect substitutes. The reasonis that the relative price of one new capital

good in terms of the other then determines the composition ofthe capital goods production. Formally,

this follows by combining (2a), (7c), and (7d) (the last two with equality):

pct

pxt
=
µct

µxt
=

fc
(

xct

xxt
, 1

)

fx

(

xct
xxt
, 1

) . (11)

To see how this rules out local indeterminacy, assume thatδc = δx, for simplicity, and use the arbitrage

conditions (2c) and (2d) together with (2a) to derive:

rct

pct
+

ṗct

pct
=

rxt

pxt
+

ṗxt

pxt
.

Consequently,
d
dt

(

pct

pxt

)

=
pct

pxt

(

rxt

pxt
−

rct

pct

)

. (12)

Consider now an equilibrium path that converges to the steady state and ask whether there can be

another equilibrium path that too converges to the steady state and that initially has less capital allocated

to the consumption sector, so initiallyxct/xxt is smaller. (11) shows that initiallypct/pxt must then be

smaller too. Since with less capital in the consumption sector the marginal product of capital in the

consumption sector is larger than in the capital sector, we also have that initially

rxt

pxt
−

rct

pct
< 0.

The arbitrage equation (12) therefore implies thatpct/pxt must decrease further and (11) implies that

xct/xxt must decrease further, and so on and so forth. Consequently,along the alternative path, the

capital stock of the consumption sector is ever decreasing,implying that the alternative path cannot

converge to the steady state and thus violates the transversality condition. Therefore, it cannot be an

equilibrium path.
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It is important to emphasize that capital gains are possibleirrespective of whether we have perfect

or imperfect substitutability. The difference is that with perfect substitutability the capital gains have

no direct effect on the composition of the capital goods production. In contrast, with imperfect sub-

stitutability the capital gains affect the composition of the capital goods production. This isthe key

feature of our model that rules out local indeterminacy for downward-sloping aggregate labor demand

curve.

4 Numerical Results

The analytical results derived so far for imperfect substitutability show that a necessary condition for

local indeterminacy is an upward–sloping aggregate labor demand curve and a necessary condition for

determinacy is a downward–sloping aggregate labor demand curve. Since our dynamical system is

four dimensional, it is impossible to fully characterize the local stability properties at the steady state

analytically. Thus, we now calibrate the model and then compute the four eigenvalues numerically. We

use the functional forms and most parameter values of Huffman and Wynne (1999), who calibrate a

two-sector model similar to our’s but with constant returnsin both sectors,θc = θx = 0. This difference

does not affect the usefulness of their calibration for our purposes because the degrees of increasing

returns do not affect the calibration of the other parameters. The specific assumptions of Huffman and

Wynne is thatf is of the form displayed in (6). Using quarterly, postwar, one-digit US data, Huffman

and Wynne calibrateδc = 0.018,δx = 0.020,a = 0.41,b = 0.34, andρ = 0.01. Moreover, they calibrate

ε = 0.1 orε = 0.3, depending on the procedure. We adopt their calibration except we setρ = 0.02. The

reason is thatρ = 0.02 implies more reasonable steady–state ratios between consumption and output

and between capital and output thanρ = 0.01: 0.81 and 2.59 versus 0.75 and 3.45.11

The equations for the linearization with imperfect substitutability, (B.7)–(B.9), show that the re-

11To avoid confusion, note that the imperfect substitutability of the two capital goods can come from intratemporal capital
adjustment costs, which make changes in the allocations of capital across sectors costly but leave changes in the total capital
stock costless. Huffman and Wynne (1999) adopt this interpretation.
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Figure 1: Local stability if capital goods are imperfect substitutes and
ρ = 0.02,δc = 0.018,δx = 0.020,a = 0.41,b = 0.34.
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duced–form equilibrium dynamics are independent ofθc, so we do not need to choose a value forθc.12

The available evidence onθx is somewhat mixed. However, it is clear that Hall’s (1988) initial estimates

of aggregate increasing returns of about 0.5 were upward biased. More recent empirical studies find

estimates between constant returns and milder increasing returns up to 0.3; see e.g. Bartelsman et al.

(1994), Burnside et al. (1995), Burnside (1996), Basu and Fernald (1997), and Harrison (2003). Ac-

cording to Basu and Fernald (1997) and Harrison (2003) theseaggregate increasing returns are mainly

due to increasing returns in the capital sector; specifically they estimate non-durable manufacturing

to have constant (or decreasing) returns and durable manufacturing to have mildly increasing returns.

Sinceθx is a key parameter determining the local stability properties of the steady state and since it

is hard to draw a sharp line between empirically plausible and implausible values for it, we will vary

it extensively together with the other key parameterε. Specifically, we will explore the local stability

properties of the steady state for allθx ∈ (0.000, 0.900) andε ∈ (0.000, 0.500).13

12This is standard, see Weder (2000) and Harrison (2001).
13ε = 0.000000001 is the closest value to zero that we use in these computations.
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Our numerical results are reported in Figure 1. The figure displays the stability properties of the

economy forε > 0 only, which is indicated by the small distance between the shaded area and the verti-

cal axis. The numerical results confirm the analytical one that an upward-sloping (downward-sloping)

aggregate labor demand curve in the capital sector is a necessary condition for local indeterminacy

(determinacy).14 The numerical results go beyond the analytical ones in threerespects. First, they

show that an upward-sloping (downward-sloping) aggregatelabor demand curve in the capital sector

becomes a sufficient condition for local indeterminacy (determinacy) when the substitutability between

the capital goods are sufficiently low (ε ≥ 0.411). Second, they show that for capital adjustment costs

within the range calibrated by Huffman and Wynne,ε ∈ [0.1, 0.3], the steady state is determinate if the

increasing returns do not exceed 0.313. The rangeθx ∈ [0, 0.313] includes most values of increasing re-

turns that are usually considered reasonable. So, givenε ∈ [0.1, 0.3], the local stability properties with

a strictly quasi–convexf are summarized by determinacy for every empirically plausible specification

of θx. Third, our numerical results show thatε = 0.000000001 makes the equilibrium determinate for

θx ∈ (0, 0.078). In contrast, Proposition 2 shows that forε = 0 the equilibrium is locally indeterminate

for θx ∈ (0.053, 0.078). Thus, the steady state with small degree of imperfect substitutability is saddle–

path stable in the region of increasing returns in which the steady state with perfect substitutability is

stable.15

We complete this section with a brief discussion of the robustness of our numerical findings, which

we have explored in two directions. First, we have shown thatour numerical determinacy result sur-

vives for reasonable variations of the parameter values used above. Second, we have shown that our

numerical determinacy result survives when the imperfect substitutability comes from capital adjust-

ment costs of the form suggested by Lucas and Prescott (1971). The details can be found in Herrendorf

and Valentinyi (2003).

14For the calibration used here the equilibrium labor demand curve slopes upward if and only ifθx > 0.51.
15Note the possibility for global indeterminacy, which we do not pursue any further in this paper. This follows from the

additional piece of information that at the bifurcation to “instability” two of the eigenvalues are complex and their real parts
change sign, that is, a Hopf bifurcation occurs. The Hopf bifurcation theorem implies the existence of limit cycles, which
may or may not be stable. If they are stable, then a form of global indeterminacy occurs.
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5 Conclusion

We have explored the conditions under which indeterminacy of equilibrium occurs near the steady state

in a class of two-sector neoclassical growth models with sector–specific externalities. Our main finding

has been that imperfect substitutability of the two new capital goods precludes local indeterminacy

for every empirically plausible specification of the model parameters. This analytical result contrasts

sharply with the standard result that with perfect substitutability local indeterminacy can occur in the

two–sector model for a wide range of plausible parameter values. It can be interpreted to mean that

local indeterminacy is not a robust property of the class of two-sector neoclassical growth models with

sector–specific externalities. We conjecture that this result is likely to carry over to models with more

than two sectors and more than two capital goods.

Our findings are relevant for several reasons. To begin with,if local indeterminacy is impossible for

plausible specifications of the parameter values, then self-fulfilling business cycles are impossible for

plausible specifications of the parameter values. This has important implications for the debate about

whether or not government policy should aim to stabilize business cycles; see Christiano and Harrison

(1999). Second, models from the class of two-sector neoclassical growth models that we have studied

here are widely used; see for example Fisher (1997), Huffman and Wynne (1999), and Boldrin et al.

(2001). Our results provide a better understanding of the local stability properties of this important

class of models. Finally, the results of this paper contribute to a recent debate about the robustness

of multiple and indeterminate equilibria. Even though Morris and Shin (1998) and Herrendorf et al.

(2000) studied rather different environments with externalities, they share a commontheme with the

present paper: the introduction of frictions can substantially reduce the scope for the multiplicity or

local indeterminacy of equilibrium.
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Appendix

A Proof of Proposition 1

A.1 Strictly quasi–convexf

A.1.1 Reduced-form dynamics

Suppose that all first-order conditions hold with equality.(1c) and (2b)-(2d) then imply

k̇ct = xct − δckct, k̇xt = xxt − δxkxt, (A.1a)

µ̇ct = µct(δc + ρ) −
rct
wct
, µ̇xt = µxt(δx + ρ) −

rxt
wxt
. (A.1b)

To represent the model economy as a dynamical system inkct, kxt, µct, andµxt, we need to express

all endogenous variables, i.e.xct, xxt, lct, lxt, rct, rxt, pct, pxt, wct, andwxt, as functions of these four

variables. Establishing this is the first step of the proof.

To begin with, note that (2a) implies thatpct

pxt
=
µct

µxt
, so (7c) and (7d) (with equality) together with the

strict quasi–convexity oft imply that there is a functiong such that:

g
(

µct

µxt

)

≡
(

fc
fx

)−1 (

µct

µxt

)

=
xct
xxt
. (A.2a)

Next, observe that dividing (4a) by (4b) and (7a) by (7b) and using (A.3a), we can express the factor

price ratios as functions of the corresponding factors:

rct

wct
=

a
1−a

lct

kct

rxt

wxt
=

b
1−b

lxt

kxt
. (A.2b)

Now, we derive labor in the consumption sector. Combining (2b), the first equation of (3b), and

(4b) gives:

lct = 1− a. (A.3a)
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Turning to labor in the capital sector, observe that (2a) and(2b) imply 1= µxt
wxt

pxt
. Substituting (7b) and

(7b) into this leads to

1 = (1− b)µxtk
β1
xt l
β2−1
xt

[

fx

(

g
(

µct

µxt

)

, 1
)]−1
,

where we used the fact thatf ( · , · ) is homogeneous of degree one, and (A.2a). Rearranging leads to

the reduced form for labor in the capital sector:

lxt = lx(kxt, µct, µxt) ≡ [(1 − b)µxt]
1

1−β2 fx

(

g
(

µct

µxt

)

, 1
)

1
β2−1 k

β1

1−β2
xt . (A.3b)

Substituting (A.3a) and (A.3b) into (A.2b) forlc andlx, rearranging and plugging the result into (A.1b)

gives:

µ̇ct = Fµc(kct, kxt, µct, µxt) ≡ (ρ + δc)µct −
a

kct
, (A.4a)

µ̇xt = Fµx(kct, kxt, µct, µxt) ≡ (ρ + δx)µxt −
b

1−b

[

(1− b)µxt
]

1
1−β2 fx

(

g
(

µct

µxt

)

, 1
)

1
β2−1 k

β1+β2−1
1−β2

xt . (A.4b)

Next, we derive the expressions for each type of investment.Substituting (9) and (A.2a) into the

equation of (5b) gives

kβ1
xt l
β2
xt = xct

f
(

g
(

µct

µxt

)

,1
)

g
(

µct

µxt

) = xxt f
(

g
(

µct

µxt

)

, 1
)

.

To eliminatelxt from these expressions, we use (A.3b). Solving afterwards for xct andxxt gives:

xct = xc(kxt, µct, µxt) ≡ [(1 − b)µxt]
β2

1−β2
g
(

µct

µxt

)

fx
(

g
(

µct

µxt

)

,1
)

β2

β2−1

f
(

g
(

µct

µxt

)

,1
) k

β1

1−β2
xt ,

xxt = xx(kxt, µct, µxt) ≡ [(1 − b)µxt]
β2

1−β2
fx
(

g
(

µct

µxt

)

,1
)

β2

β2−1

f
(

g
(

µct

µxt

)

,1
) k

β1

1−β2
xt .

Substituting the above reduced forms forxct, xxt, into (A.1a) and rearranging, we find the reduced–form
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equilibrium dynamics:

k̇ct = Fkc(kct, kxt, µct, µxt) ≡ [(1 − b)µxt]
β2

1−β2
g
(

µct

µxt

)

fx
(

g
(

µct

µxt

)

,1
)

β2

β2−1

f
(

g
(

µct

µxt

)

,1
) k

β1

1−β2
xt − δckct, (A.4c)

k̇xt = Fkx(kct, kxt, µct, µxt) ≡ [(1 − b)µxt]
β2

1−β2
fx
(

g
(

µct

µxt

)

,1
)

β2

β2−1

f
(

g
(

µct

µxt

)

,1
) k

β1

1−β2
xt − δxkxt. (A.4d)

A.1.2 Existence and uniqueness of steady state

Representing variables in steady state by dropping the timeindex t and assuming that all first-order

conditions hold with equality, the steady state versions of(A.4b) and (A.4d) are found to be:

δxk
1−β1−β2

1−β2
x = [(1 − b)µx]

β2

1−β2
fx
(

g
(

µc

µx

)

,1
)

β2

β2−1

f
(

g
(

µc

µx

)

,1
) , (A.5a)

(ρ + δx)k
1−β1−β2

1−β2
x = b[(1 − b)µx]

β2

1−β2 fx

(

g
(

µc

µx

)

, 1
)

1
β2−1 . (A.5b)

Dividing the second equation by the first one leads to

ρ+δx
bδx
=

f
(

g
(

µc

µx

)

,1
)

fx
(

g
(

µc

µx

)

,1
) . (A.6)

Given the assumed properties off , this expression can be solved uniquely forµc

µx
, so the steady state

shadow price ratio is uniquely determined by the parametersof the model. ¿From now on we will

therefore writef , fx, andg for the unique steady state values of these functions. We canthen write

(A.4a), (A.4c), and (A.4d) evaluated at the steady state as follows:

µct =
a
ρ+δc

k−1
ct , (A.7a)

δckc =
[(1−b)µx]

β2

1−β2 g f

β2

β2−1
x

f k
β1

1−β2
x , (A.7b)

δxkx =
[(1−b)µx]

β2

1−β2 f

β2

β2−1
x

f k
β1

1−β2
x . (A.7c)
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To show uniqueness, we will show thatkc, µx, andµc are functions ofkx. We will then show thatkx is

uniquely determined by the parameters of the model. Dividing (A.7b) by (A.7c) giveskc as a function

of kx:

kc =
δx
δcg

kx. (A.8)

Since from (A.7a)µc is a function ofkc, (A.8) implies thatµc is a function ofkx. Since from (A.6)µx

is a function ofµc, (A.8) implies thatµx is a function ofkx. Finally, substitutingµx(kx) into (A.7c), we

find thatkx is uniquely determined by the parameters of the model.

We complete this part of the proof by noting that the non-negativity constraints on the capital goods

are not binding in either steady state, becausexi = δiki is strictly positive forδi ∈ (0, 1). This justifies

the above assumption that all first-order conditions hold with equality at the steady state. This also

implies that there will be neighborhood of the steady state in which all first-order conditions hold with

equality.

A.2 Linear f

A.2.1 Reduced-form dynamics

Assuming interior solutions and following the same steps asbefore, one can show that with a linearf

the equilibrium dynamics are characterized by the following equations:

k̇ct = xct − δckct, k̇xt = xxt − δxkxt, kβ1
xt l
β2
xt = fcxct + fxxxt, (A.9a)

lct = (1− a), lxt =

[

(1−b)µxt

fx

]

1
1−β2 k

β1

1−β2
xt , (A.9b)

µct

µxt
=

fc
fx
, µ̇ct = µct(ρ + δc) − a

1−a
lct

kct
, µ̇xt = µxt(ρ + δx) − b

1−b
lxt

kxt
. (A.9c)
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If none of the non-negativity constraints onxct and xxt binds, then we can reduce these equations to

three equations inkct, kxt, andµct that describe the reduced–form equilibrium dynamics:

fck̇ct + fxk̇xt =

[

(1−b)µct

fc

]

β2

1−β2 k
β1

1−β2
xt − fcδckct − fxδxkxt, (A.10a)

µ̇ct = µct(ρ + δc) − a
kct
, (A.10b)

0 = fxµct(δx − δc) +
a fx
kct
−

fcb
1−b

[

(1−b)µct

fc

]

1
1−β2 k

β1+β2−1
1−β2

xt . (A.10c)

Note that unlike for a strictly quasi–convexf , we cannot analytically reduce these three equations to

two equations that characterize fully the reduced–form equilibrium dynamics.

A.2.2 Existence and uniqueness of steady state

In steady state, the three equations in (A.10) become:

0 =
[

(1−b)µc

fc

]

β2

1−β2 k
β1

1−β2
x − fcδckc − fxδxkx, (A.11a)

0 = µc(ρ + δc) − a
kc
, (A.11b)

0 = fxµc(δx − δc) +
a fx
kc
−

fcb
1−b

[

(1−b)µc

fc

]

1
1−β2 k

β1+β2−1
1−β2

x . (A.11c)

The existence and uniqueness of the steady state can be shownas follows. First, (A.11b) implies that

kc is a function ofµc. Second, substituting the result into (A.11c) implies thatkx too is a function ofµc.

Third, substituting these two expressions into (A.11a) andrearranging gives the steady state value for

µc. Finally, (A.9) shows that all other steady state variablesare functions ofkc, kx, andµc.

We complete the proof by noting that the non-negativity constraints on the capital goods are not

binding in either steady state, becausexi = δiki is strictly positive forδi ∈ (0, 1). This justifies the above

assumption that all first-order conditions hold with equality at the steady state. This also implies that

there will be neighborhood of the steady state in which all first-order conditions hold with equality.
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B Proof of Proposition 2

B.1 Linear f

B.1.1 Computation of the determinant and the trace

We start with the linearization of (A.10) at the steady state:

k̇t =
β2

1−β2

fcδckc+ fxδxkx

µc
(µct − µc) +

[

β1

1−β2

fcδckc+ fxδxkx

kx
− fx(δx − δc)

]

(kxt − kx) − δc(kt − k),

µ̇ct = (ρ + δc)(µct − µc) −
fx(ρ+δc)µc

fckc
(kxt − kx) +

(ρ+δx)µc

fckc
(kt − k),

0 =
[

−(ρ + δc) + (ρ + δx) − 1
1−β2

(ρ + δx)
]

(µct − µc)

+

[

fx(ρ+δc)µc

fckc
−
β1+β2−1

1−β2

(ρ+δx)µc

kx

]

(kxt − kx) +
(ρ+δc)µc

fckc
(kt − k)

wherekt ≡ fckc + fxkx. Rearranging gives:

k̇t =
β2

1−β2

ρ+δx
b

fxkx

µc
(µct − µc) +

[

β1

1−β2

ρ+δx
b − (δx − δc)

]

fx(kxt − kx) − δc(kt − k),

µ̇ct = (ρ + δc)(µct−µc) −
(ρ+δc)[ρ+(1−b)δx]

δxb
µc

kx
(kxt−kx) +

(ρ+δx)δcb
ρ+(1−b)δx

µc

fxkx
(kt−k),

0 = −
[

(ρ + δc) +
β2

1−β2
(ρ + δx)

]

(µct − µc)

+

[

fx(ρ+δc)δcb
ρ+(1−b)δx

−
β1+β2−1

1−β2
(ρ + δx)

]

µc

kx
(kxt − kx) +

(ρ+δc)δcb
ρ+(1−b)δx

µc

fxkx
(kt − k).

The last equation can be solved forkxt − kx

kxt − kx =
kx

µc

[(1−β2)(ρ+δc)+β2(ρ+δx)](µct−µc)+(1−β2)
δcb(ρ+δc)
ρ+(1−b)δx

µc

fxkx
(kt−k)

(1−β2)
bδc(ρ+δc)
ρ+(1−b)δx

−(ρ+δx)(β1+β2−1)
,

Substituting this back to the two dynamic equations leads to























k̇t

µ̇ct























=























a11 a12

a21 a22













































kt − k

µct − µc























, (B.1)
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where

a11 =

(ρ+δc)(β1(ρ+δx)−(1−β2)bδx)
ρ+(1−b)δx

+(ρ+δx)(β1+β2−1)

(1−β2)
bδc(ρ+δc)
ρ+(1−b)δx

−(ρ+δx)(β1+β2−1)
, (B.2a)

a12 =



















β2

1−β2

ρ+δx
b +

[

β1

1−β2

ρ+δx
b +(δc−δx)

]

[(ρ+δc)−β2(δc−δx)]

(1−β2)
bδc(ρ+δc)
ρ+(1−b)δx

−(ρ+δx)(β1+β2−1)



















fxkx

µc
, (B.2b)

a21 = −
(β1+β2−1)b(ρ+δc)

ρ+δx
ρ+(1−b)δx

(1−β2)
bδc(ρ+δc)
ρ+(1−b)δx

−(ρ+δx)(β1+β2−1)

µc

fxkx
, (B.2c)

a22 = −
(ρ+δc)

[

bδc(ρ+δx)
ρ+(1−b)δx

+(ρ+δx)(β1+β2−1)

]

(1−β2)
bδc(ρ+δc)
ρ+(1−b)δx

−(ρ+δx)(β1+β2−1)
. (B.2d)

The determinant and the trace of the matrix in (B.1) are foundto be:

Det= δc(ρ+δc)[ρ+(1−b)δx](1−β1)
(ρ+δx)[ρ+(1−b)δx](β1+β2−1)−bδc(δc+ρ)(1−β2) , (B.3a)

Tr = ρ(ρ+δx)[ρ+(1−b)δx](β1+β2−1)+δc(δc+ρ)[b(δx+ρβ2)−β1(ρ+δx)]
(ρ+δx)[ρ+(1−b)δx](β1+β2−1)−bδc(δc+ρ)(1−β2) . (B.3b)

B.1.2 Characterization of the stability properties

The steady state is saddle–path stable if Det< 0, it is stable if Tr< 0 < Det, and it is unstable if

Tr,Det > 0. In order to characterize the different cases, first note that the denominators of the trace

and the determinant are the same. Second, the numerator of the determinant is always positive. So the

local stability properties will depend only on the signs of the numerator of the trace and on the common

denominator. Throughβ1 andβ2 they both depend onθx, so we will writeN(θx) andD(θx). To find their

signs, we first find the values ofθx for which they become zero:

D(
¯
θx) = 0⇐⇒

¯
θx =

b2δc(ρ+δc)
(ρ+δx)[ρ+(1−b)δx]+(1−b)bδc(ρ+δc) (B.4a)

N(θ̄x) = 0⇐⇒ θ̄x =
b2δc(ρ+δc)

(ρ+δx)[ρ+(1−b)δx]−
ρb+δx
ρ

bδc(ρ+δc)
(B.4b)
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We can see thatD(θx) < 0 if and only if θx <
¯
θx, D(θx) > 0 if and only if θx >

¯
θx, N(θx) < 0 if and only

if θx < θ̄x, andN(θx) > 0 if and only ifθx > θ̄x. Now, if the condition in (i.a) holds then 0<
¯
θx < θ̄x and

if the condition in (i.b) holds then
¯
θx < 0 < θ̄x. Using this to determine the signs of the determinant and

the trace proves our claims.

B.2 Strictly quasi–convexf

B.2.1 Computation of the determinant and the trace

We again represent the steady values off , g, and their derivatives by dropping their arguments, so

f ≡ f
(

xc

xx
, 1

)

, g ≡ g
(

xc

xx

)

, etc. We start the proof by listing some helpful identities that have to hold in

our model. First, the definition ofg as the inverse offcfx implies that

g′ = f 2
x

fcc fx− fc fxc
. (B.5a)

Second, the linear homogeneity off implies:

f = g fc + fx, 0 = g fcc + fcx, 0 = fxx + g fcx. (B.5b)

Third, (A.6) and (B.5b) give

ρ+δx(1−b)
bδx

=
g fc
fx
,

ρ+δx(1−b)
ρ+δx

=
g fc
f , (B.6a)

Finally, using this and (B.5a), we find:

fxc

fx
g′ µc

µx
=

fxc fc
fcc fx− fc fxc

= −
g fc

fx+g fc
= −

ρ+δx(1−b)
ρ+δx

(B.6b)

The first step of the derivation of the determinant and the trace is to linearize the reduced-form

dynamics at the steady state. Indicating steady state variables by dropping the time subscript, the result
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where:16

a11 = −δc, a12 =
β1

1−β2

δckc
kx
, a13 =

[

g′

g
µc

µx
−

β2

1−β2

fxc

fx
g′ µc

µx
−

g fc
f

g′

g
µc

µx

]

δckc
µc
,

a14 =
[

β2

1−β2
−

g′

g
µc

µx
+

β2

1−β2

fxc

fx
g′ µc

µx
+

fc
f g′ µc

µx

]

δckc

µx
, a21 = 0, a22 =

β1

1−β2

δxkx

kx
− δx,

a23 =
[

β2

1−β2

fxc

fx
g′ µc

µx
−

fc
f g′ µc

µx

]

δxkx

µc
, a24 =

[

β2

1−β2
−

β2

1−β2

fxc

fx
g′ µc

µx
+

g fc
f

g′

g
µc

µx

]

δxkx

µx
,

a31 =
(ρ+δc)µc

kc
, a32 = 0, a33 = ρ + δc, a34 = 0,

a41 = 0, a42 =
β1+β2−1

1−β2

(ρ+δx)µx

kx
, a43 =

1
1−β2

fxc

fx
g′ µc

µx

(ρ+δx)µx

µc
,

a44 = (ρ + δx) − 1
1−β2

(ρ + δx) − 1
1−β2

(ρ + δx)
fxc

fx
g′ µc

µx
.

To simplify these expressions, it is useful to define the elasticity of the investment ratio with respect to

the relative price evaluated at the steady state. Denoting the inverse of that elasticity byε ≥ 0,17 we

have:

ε ≡
g
(

µc

µx
,1
)

g′
(

µc

µx
,1
)

1
µc

µx

. (B.8)

Now, using (B.6a) and (B.6b), the previous terms can be rewritten:

a11 = −δc, a12 =
β1

1−β2

δckc

kx
, a13 =

[

β2

1−β2
+

1
ε

1−(1+ε)β2

1−β2

δxb
ρ+δx

]

δckc

µc
, (B.9a)

a14 = −
1
ε

1−(1+ε)β2

1−β2

δckc
µx

δxb
ρ+δx
, a21 = 0, a22 = δx

β1+β2−1
1−β2

, (B.9b)

16To find these expressions we have repeatedly used the fact that if a function is of the formh(x1, x2, x3) = xα1 xβ2 − ax3,

then its partial derivative can be written as∂h
∂x1
= α

f (x1,x2,x3)+ax3

x1
.

17Note that if f is parameterized byε according to (6), then the inverse elasticity in the case is also given byε.
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a23 = −
1
ε

1−(1+ε)β2

1−β2

δxkx

µc

ρ+δx(1−b)
ρ+δx

, a24 =
[

β2

1−β2
+

1
ε

1−(1+ε)β2

1−β2

ρ+δx(1−b)
ρ+δx

]

δxkx

µx
, (B.9c)

a31 =
(ρ+δc)µc

kc
, a32 = 0, a33 = ρ + δc, a34 = a41 = 0, (B.9d)

a42 = −
β1+β2−1

1−β2

µx

kx
(ρ + δx), a43 = −

1
1−β2

[ρ + δx(1− b)] µx

µc
, a44 = (ρ + δx) − 1

1−β2
δxb. (B.9e)

The second step is to combined the terms just derived and actually compute the determinant and the

trace. Using the fact thata32 = a34 = a41 = 0, the determinant can be written as

Det= a31a42(a13a24− a14a23) + a22a31(a14a43− a13a44)

+ a11a33(a22a44− a24a42) + a12a31(a23a44 − a24a43).

Using the previous expressions, the four terms in that determinant are found to equal:

a31a42(a13a24− a14a23) = −1
ε

β2

1−β2

β1+β2−1
1−β2

δcδx(ρ + δc)(ρ + δx),

a22a31(a14a43− a13a44) =
β1+β2−1

1−β2

β2

1−β2

(1+ε)δxb−ε(ρ+δx)
ε

δcδx(ρ + δc),

a11a33(a22a44− a24a42) = −
β1+β2−1

1−β2

1+ε
ε
δxδc(ρ + δc)[ρ + δx(1− b)],

a12a31(a23a44− a24a43) =
β1

1−β2

β2

1−β2

1+ε
ε
δcδx(ρ + δc)[ρ + δx(1− b)].

Using these expressions and simplifying, we find the determinant:

Det= 1+ε
ε

δcδx(ρ+δc)[ρ+δx(1−b)](1−β1)
1−β2

. (B.10)

In general form the trace is given by:

Tr = a11+ a22 + a33 + a44.
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Substituting in the previous expressions foraii , we find the trace:

Tr = 2ρ + δx
β1−b
1−β2
. (B.11)

B.2.2 Characterization of the stability properties

We start with the caseθx ∈ [0, b
1−b), implying thatβ2 < 1. Then Det> 0 and Tr> 0.18 Now suppose that

the steady state were stable. Then (B.7) would have three or four eigenvalues with negative real parts.

If (B.7) had four eigenvalues with negative real parts, thenthe trace would have to be negative, which

is a contraction. If (B.7) had three eigenvalues with negative real part, then the determinant would have

to be negative, which is a contradiction.

We continue with the caseθx ∈ [ b
1−b,

1−b
b ), implying thatβ2 > 1. Then Det< 0. Suppose that the

steady state were saddle–path stable. Then (B.7) would havetwo eigenvalues with negative real part

and two eigenvalues with positive real part. Irrespective of whether they are real or complex conjugates,

this would imply that the determinant must become positive,which is a contraction.

C Proof of Proposition 3

The proof of this proposition follows because usingµx

µc
=

fx
fc

, one can show that the limits of the steady

state versions of the four equations in (A.4), which characterize uniquely the steady state with quasi-

convex f , imply the three equations in (A.11), which characterize uniquely the steady state with linear

f . In particular, fc times (A.4c) plusfx times (A.4d) converges to (A.11a). Second, (A.4a) is identical

to equation (A.11b). Third,fc times (A.4b) minusfx times (A.4a) converges to (A.11c).

18Recall thatβ1 = (1+ θx)b, soβ1 − b = θxb ≥ 0.
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D Proof of Proposition 4

We start by defining the production possibility frontier between the consumption good,ct, and the

composite capital good,xt ≡ f (xct, xxt):

max
xct−∆t ,xxt−∆t ,lxt,lct

xt(ct) (D.1a)

s.t. xt ≤ kβ1
xt l
β2
xt , ct ≤ kα1

ct lα2
ct , lct + lxt ≤ l̄ t, (D.1b)

kct ≤ (xct−∆t − δck̄ct−∆t)∆t + k̄ct−∆t, kxt ≤ (xxt−∆t − ∆xk̄xt−∆t)∆t + k̄xt−∆t , (D.1c)

f (xct−∆t, xxt−∆t) ≤ x̄t−∆t, (D.1d)

wherel̄ t, k̄ct−∆t, k̄xt−∆t, x̄t−∆t are given. The solution to this problem determines for givenfeasiblect the

maximal level ofxt. We use∆t in writing this problem because of the sector–specificity ofcapital,

which means that at some timet − ∆t, ∆ being small, the two new capital goods need to be chosen.

Now rewrite the problem as:

max
xct−∆t ,xxt−∆t ,lxt

[

(xxt−∆t − δxk̄xt−∆t)∆t + k̄xt−∆t

]β1
lβ2
xt (D.2a)

s.t. ct =

[

(xct−∆t − δck̄ct−∆t)∆t + k̄ct−∆t

]α1
[

l̄ t − lxt

]α2
, (D.2b)

x̄t−∆t = f (xct−∆t, xxt−∆t). (D.2c)

The necessary first-order conditions are:

xt =

[

xxt−∆t − δxk̄xt−∆t)∆t + k̄xt−∆t

]β1
lβ2

xt−∆t (D.3a)

ct =

[

(xct−∆t − δck̄ct−∆t)∆t + k̄ct−∆t

]α1[

l̄ t − lxt

]α2
(D.3b)

b
1−b

lxt

(xxt−∆t−δxk̄xt−∆t)∆t+̄kxt−∆t

fc(xct−∆t ,xxt−∆t)
fx(xct−∆t ,xxt−∆t)

=
a

1−a
l̄t−lxt

(xct−∆t−δck̄ct−∆t)∆t+̄kct−∆t
, (D.3c)

x̄t−∆t = f (xct−∆t, xxt−∆t). (D.3d)

These four equations define the production possibility frontier betweenct andxt.
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Inspecting the optimization problem in (D.2) forf (xct, xxt) = fcxct + fxxxt, we can see that the

constraint (D.2c) becomes

x̄t−∆t = fcxct−∆t + fxxxt−∆t. (D.2c′)

Therefore the first-order conditions are (D.3a) and (D.3b) as before and

b
1−b

lxt+∆t

(xxt−∆t−δxkxt−∆t)∆t+kxt−∆t

fc
fx
=

a
1−a

l̄t+∆t−lxt+∆t

(xct−∆t−δckct−∆t)∆t+kct−∆t
. (D.3c′)

fcxct−∆t + fxxxt−∆t = x̄t−∆t. (D.3d′)

(D.3c) and (D.3d) converge to (D.3c’) and (D.3d’) asfi → f in U(xc, xx).
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