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Summary 

Wnt signalling components are reported to be deregulated in breast cancer but the 

contribution of this pathway in endocrine resistance is less clearly defined. 

Endocrine resistance is an important clinical challenge affecting up to a quarter of all 

breast cancer patients and is associated with a poorer clinical prognosis.  

This project focussed on exploring the role of Wnt signalling in endocrine resistant 

breast cancer cell models. Wnt pathway elements were deregulated in the acquired 

tamoxifen resistant cell line (Tam-R) compared to tamoxifen sensitive parental cells 

(MCF-7), with changes supportive of Wnt signalling activation in this tamoxifen 

resistant model apparent from Affymetrix HGU-133A gene microarray data and 

Western blot analysis. In contrast, Wnt signalling appeared to be suppressed based 

on Affymetrix data for MCF-7 cells treated with oestradiol for 10 days, with 

equivocal changes in MCF-7 cells treated with tamoxifen for 10 days or a faslodex 

resistant cell model (Fas-R). 

Excitingly, Tam-R cells were also more sensitive than MCF-7 cells to 

pharmacological manipulation of Wnt signalling. While Wnt activation using Wnt3a 

and LiCl did not affect cell growth or migration,  inhibition of Wnt signalling using 

IWP2, PNU 74654 and iCRT14 suppressed Tam-R cell growth and migration.  

There is mounting evidence of cross talk between Wnt and EGFR signalling in 

breast cancer, and EGFR activity is upregulated in Tam-R cells. The project’s 

findings tentatively supported cross-talk between the two signalling pathways in this 

model. Thus, targeting of the Wnt pathway alongside EGFR blockade was superior 

in suppressing cell growth and migration in Tam-R cells. The effect appeared to be 

more pronounced when Wnt signalling was inhibited at the nuclear level using 

iCRT14. 

Collectively, these data suggest that Wnt signalling may play an important role in 

tamoxifen resistance where it may offer an opportunity for more effective 

therapeutic intervention to control relapse and associated tumour aggressiveness.  
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1 Introduction 

1.1 Wnt signalling 

Wnt signalling plays a key role in embryogenesis where it controls cell proliferation 

and stem cell fate. In mature tissues it is responsible for maintaining normal tissue 

architecture and function and regulates stem cell renewal. Germ line mutations of 

Wnt signalling have been linked to congenital defects; in mature tissues, somatic 

mutations resulting in Wnt activation can lead to cancer (Goss K 2011). 

Wnt signalling came into prominence around thirty years ago from studies 

investigating a Drosophila mutant that lacked wings. The mutation was linked to a 

gene which determined anterior posterior polarity within individual embryonic 

segments. This gene was called wingless (Wg) (Sharma and Chopra 1976). It was 

also recognised that most cases of mice mammary tumours were caused by the 

mouse mammary tumour virus (MMTV). MMTV is a retrovirus that can be 

transmitted in milk. The MMTV viral genome is inserted into the host DNA. If this 

DNA is inserted inside or near an oncogene, it can alter the expression of that gene 

and cause cancer. In 1982, Roeland Nusse and Harold Varmus identified a mouse 

gene that was induced by MMTV called Int1 (Nusse and Varmus 1982). The two 

parts of the puzzle came together in 1987. Rij et al. (1987) isolated the Drosophila 

homolog of Int-1 (Dint-1). They found that Dint-1 was identical to Wg. The word 

Wnt was coined (Wg and Int-1) and the protein was called Wnt-1. 

Three main branches of the Wnt pathway are described in the literature: the Planar 

Cell Polarity (PCP) pathway, the Wnt- Calcium Pathway and the Canonical/ β-

catenin pathway. The PCP pathway regulates cytoskeletal movements. The Wnt- 

Calcium pathway is important during the embryonic phase of gastrulation where it 
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regulates cell adhesion and cell movements. The canonical pathway regulates levels 

of cytoplasmic and nuclear β-catenin. 

 

1.1.1 The Planar Cell Polarity Pathway 

The PCP pathway regulates cell movements during gastrulation and cell polarity.  

Signalling is initiated through the Frizzled (Fz) receptor at the cell membrane.  Rho 

GTPases (including Rac) are recruited through the PDZ and DEP domains (see 

section 1.3.5) of Dishevelled (Dvl) and trigger two separate pathways. Daam1 (a 

formin homology protein) is required for activation of Rho, which in turn activates 

Rho- associated kinase (ROCK). Rac activation stimulates Jun kinase (JNK). The 

reactions lead to changes in the cell’s actin cytoskeleton (see Figure 1.1). 

 

1.1.2 The Wnt- Calcium Pathway 

Wnt- Calcium signalling is also initiated through Fz. G- proteins are activated and 

these interact with Dvl, phospholipase C, protein kinase C (PKC) and calcium- 

calmodulin kinase 2 (CamK2). This leads to intracellular release of calcium. The 

process is important for cell adhesions and cell movements during gastrulation (see 

Figure 1.1).  



Figure 1.1 

The Planar cell polarity (PCP) pathway and Wnt- 

Calcium Pathway. Adapted from Habas and Dawid 

(2005). 

PCP pathway: signalling is initiated through the Frizzled (Fz) 

receptor.  Rho GTPases (including Rac) are activated through 

the PDZ and DEP domains of Dishevelled (Dvl) and the 

reaction leads to cytoskeletal changes. 

Wnt- Calcium pathway: signalling is also initiated through Fz. 

G- proteins are activated and these interact with Dvl, 

phospholipase C (not shown), protein kinase C (PKC) and 

calcium- calmodulin kinase 2 (CamK2). 

4 
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1.1.3 The Canonical Pathway 

An outline of the canonical/ β-catenin pathway is described in Figure 1.2. In the 

‘OFF’ state β-catenin forms a complex with adenomatous polyposis gene product 

(APC) and Axin. It is phosphorylated at the N-terminus by glycogen synthase kinase 

3 (GSK-3) and casein kinase 1 (CK1). This forms a binding site for the E3 ubiquitin 

ligase β- Trcp (β-Transducin repeat containing protein) and triggers proteosomal 

degradation of β-catenin. The canonical Wnt pathway is activated through binding of 

Wnt ligands (see section 1.1.3.1.1) to the Fz receptor and lipoprotein receptor related 

protein 5 and 6 (LRP5/LRP6). This triggers phosphorylation of Dvl proteins which 

interact with Fz. LRP5/LRP6 aggregates form at the membrane and CK1 

phosphorylates the intracellular portion of LRP5/LRP6. Axin is then recruited to the 

complex and proteosomal degradation of β-catenin is stopped. As a result, β-catenin 

accumulates in the cytoplasm. It is then free to enter the nucleus where it interacts 

with DNA- bound T- cell factor/ lymphoid enhancer factor (TCF/LEF) and activates 

gene transcription. 

 

  



Figure 1.2a 

Canonical Wnt signalling pathway (OFF state). 

Adapted from MacDonald, Tamai et al. (2009). 

OFF state: β -catenin forms a complex with Axin, APC, GSK- 

3Α/Β and CK1. It is then phosphorylated by CK-1 and GSK- 

3Α/Β in turn. The E3 ubiquitin ligase β –Trcp targets the 

phosphorylated β-catenin for degradation. Wnt gene expression 

is suppressed by TCF-TLE1/Groucho and histone deacetylase 

(HDAC).  
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Figure 1.2b 

Canonical Wnt signalling pathway (ON state). 

Adapted from MacDonald, Tamai et al. (2009). 

ON state: The Wnt ligand binds to Fz and LRP5/6 to form a 

complex. Dvl is recruited by Fz and this leads to 

phosphorylation of LRP5/6 by CK1 and GSK3.  Axin joins the 

complex which in turn disrupts phosphorylation and 

degradation of β-catenin. β-catenin is free to accumulate in the 

nucleus where it acts as a co-activator for TCF and activates 

Wnt responsive genes.  
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1.1.3.1 At the cell surface 

1.1.3.1.1 Wnt ligands 

Most of our current understanding on Wnt ligands comes from studies on the 

Drosophila Wingless. To date, nineteen Wnt ligands have been identified in 

mammals: they are highly conserved proteins containing about 350-400 amino acids.  

Some ligands will activate one pathway (e.g. Wnt5a activates non-canonical Wnt 

signalling); others (e.g. Wnt3) may activate both canonical and non-canonical Wnt 

signalling (Habas and Dawid 2005, Samarzija et al. 2009). In the cytoplasm, Wnt 

ligands undergo glycosylation and are lipid modified in the endoplasmic reticulum 

before being transported by the Golgi apparatus to the plasma membrane for 

secretion (Figure 1.3). Porcupine is a transmembrane protein in the endoplasmic 

reticulum with an O-acyl transferase domain and is important for lipid modification. 

Wntless is a protein complex in the Golgi, endoplasmic reticulum and plasma 

membrane and aids Wnt secretion (MacDonald et al. 2009). 

Once secreted, Wnt proteins may act in an autocrine and paracrine fashion. It is 

thought that lipid modification of the protein may aid diffusion through the 

extracellular space. The exact mechanism for this is not fully understood and most of 

the research has been done for Wingless. Two separate secretory pathways can drive 

autocrine and paracrine signalling. Wingless may bind to lipoprotein particles 

(Panakova et al. 2005) or form  multimers where lipid modifications are internalized 

(Katanaev et al. 2008) (long range signalling). Wingless receptors and heparan 

sulphate proteoglycans may be important for short range signalling (Lin 2004). 

 

 



Figure 1.3 

Wnt ligands: Post-translational modification and 

secretion. Adapted from MacDonald, Tamai et al. 

(2009). 

In the cytoplasm, Wnt ligands are glycosylated and lipid 

modified in the endoplasmic reticulum (EnR). This process 

involves Porcupine. Wntless in the Golgi apparatus transports 

the ligand to the plasma membrane for secretion. Once secreted, 

Wnt binds to heparan sulphate proteoglycans (HSPGs) and 

lipoprotein particles (LP) to form multimers.  

9 
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1.1.3.1.2 Endogenous Wnt agonists 

Norrin and members of the R-Spondin (Rspo) family are proteins which stimulate 

the Wnt pathway. Norrin protein activates the pathway by binding to Fz4 (Clevers 

2004). LRP5 or LRP6 acts as a co-receptor in this process. There are four human 

Rspo proteins with Rspo2 and Rspo3 being the more active isoforms. Wnt ligands 

and LRP6 are required for their activity and Rspo proteins amplify Wnt3a, Wnt1, 

and Wnt7a signalling (Kim et al. 2008).  

 

1.1.3.1.3 Endogenous Wnt antagonists 

Wnt antagonist activity may broadly be divided into two (Kawano and Kypta 2003): 

Secreted frizzled related proteins (SFRPs) and Wnt inhibitory factor 1 (WIF-1) bind 

directly to Wnt proteins and thus prevent their binding to the Wnt receptor complex. 

There are five human SFRPs and have about 300 amino acids. They have a cysteine 

–rich domain similar to that in Fz but are encoded for by separate genes. WIF-1 

binds Wnt ligands through a unique WIF domain. Dickkopf (Dkk) proteins and 

Sclerostin (SOST) on the other hand, inhibit Wnt signalling by binding to the 

LRP5/LRP6 component of the Wnt receptor complex. There are four human Dkk 

proteins. They share two cysteine- rich domains and have 250-350 amino acids 

(Glinka et al. 1998). Dkk forms a complex with LRP5/6 and Kremen and this is 

followed by endocytosis. LRP5/6 is thus removed from the cell surface. 

The exceptions to this rule are Shisha proteins and Insulin- like growth factor 

binding protein 4. Shisha proteins trap Fz proteins in the endoplasmic reticulum and 

prevent maturation of the receptor (He 2005). Insulin- like growth factor binding 

protein 4 binds both Fz and LRP6. 
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1.1.3.1.4 The Receptors 

1.1.3.1.4.1 Frizzled  

There are ten known human Fz receptors (Fz1 to Fz10). They are seven trans-

membrane receptors having an extracellular N-terminus, three extracellular loops, 

seven trans-membrane helices, three intracellular loops and an intracellular C-

terminal domain.  The N-terminal region is a cysteine rich domain; the C-terminus is 

important for signal transduction and recruitment of intracellular effectors (Gunnar 

Schulte 2012). 

 

1.1.3.1.4.2 Lipoprotein Receptor Related Proteins  

LRP6 is important in embryogenesis and LRP5 is essential for adult bone 

homeostasis. LRP5 and LRP6 act as co-receptors with Fz for Wnt ligands 

(MacDonald et al. 2009). A detailed  LRP6 structure has been described in the 

literature (Chen et al. 2011): the extracellular part has four tandem β- propeller- 

EGF-like domain pairs that act as binding sites for Wnt ligands and Wnt antagonists 

such as Dkk1 (Bafico et al. 2001, Ahn et al. 2011) and Sclerostin (SOST) (Li et al. 

2005). Antagonists prevent Wnt-LRP6 binding and thus Fz-LRP6 complex 

formation. Wnt3a and Dkk1 are believed to bind to the third β- propeller- EGF-like 

domain (Chen et al. 2011). 

 

1.1.3.2 In the Cytoplasm 

1.1.3.2.1 Dishevelled 

There are three dishevelled proteins in mammals: Dvl- 1, Dvl- 2 and Dvl- 3. Each 

member has three conserved domains: an amino-terminal DIX domain (Dvl and 
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Axin); a central PDZ domain (Post-synaptic density-95, Discs large and Zonula 

occludens-1);  and a carboxy-terminal DEP domain (Dvl, Egl-10 and Pleckstrin) 

(Habas and Dawid 2005). Dvl is a key component in all three Wnt signalling 

pathways. For the PCP and Wnt- Calcium pathways it functions at the cell 

membrane; for the canonical pathway it functions in the cytoplasm. Dvl may also be 

found in the nucleus: here it forms part of the TCF/ β- catenin complex and 

facilitates TCF/ β- catenin interaction (Gan et al. 2008). 

 

1.1.3.2.2 The Axin degradation complex 

The degradation complex has four key components: Axin, APC, GSK- 3α/β, CK1α. 

It is important for both phosphorylation and proteosomal degradation of β- catenin 

(see Figure 1.4). Axin acts as a scaffolding protein at the heart of the destruction 

complex. It interacts with GSK- 3α/β, CK1α and β-catenin at different sites and 

helps coordinate phosphorylation of β-catenin by the other two molecules (see 

section 1.3.8). It also interacts with APC via a regulator of G protein signalling 

domain. APC binds to Axin and β-catenin. GSK- 3α/β is a protein kinase; in 

mammals there are two isoforms: GSK- 3α and GSK- 3β. Both isoforms need to be 

depleted for a decrease in β- catenin phosphorylation (S33/37).  GSK- 3α/β is 

inactivated by phosphorylation (Vincan 2008). GSK- 3α/β and CK1α phosphorylate 

Axin and APC and this helps further binding of Axin and APC to β- catenin. This 

stabilises the complex and enables degradation of β- catenin.  PP1 and PP2A are two 

serine/ threonine phosphatases which help regulate the complex. They can bind to 

Axin and APC. PP1 dephosphorylates Axin and promotes complex destruction; PP2 

dephosphorylates β- catenin. Both phosphatases thus decrease degradation of β- 
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catenin. APC in turn prevents PP2A activity. APC facilitates Axin degradation and 

vice versa.  

  



Figure 1.4  

Regulation of degradation complex and β- catenin 

phosphorylation. Adapted from MacDonald, Tamai 

et al. (2009). 

The degradation complex consists of Axin, GSK3, CK1 and 

APC. β- catenin is phosphorylated by the complex and then 

destroyed by proteosomal degradation. GSK and CK1 also 

phosphorylate Axin and APC and stabilise the complex. β- 

catenin is dephosphorylated by PP2A. APC in turn prevents 

PP2A activity. APC facilitates Axin degradation and vice versa. 

PP1 dephosphorylates Axin and regulates binding of GSK to 

Axin resulting in complex destruction.  

14 
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1.1.3.2.3 Phosphorylation sites on β-catenin 

The phosphorylation status of β-catenin is central to its intracellular functioning. β- 

catenin possesses a number of potential serine and tyrosine phosphorylation sites the 

phosphorylation of which can promote β-catenin degradation or signal activation. 

Phosphorylation at the amino terminus sites S33, S37, T41 and S45 favour 

degradation; phosphorylation at the armadillo domains S675, S552, Y654, Y487 and 

Y142 alters the adhesion of β-catenin to cadherins and promotes nuclear localization. 

GSK3β is responsible for phosphorylation at S33, S37, T41; CK1α phosphorylates 

S45 (Heuberger J 2010). Activation of the Wnt pathway results in a decrease in 

levels of p- β-catenin in the cytoplasm (Vincan 2008). 

 

1.1.3.2.4 Movement of β-catenin between cytoplasm and nucleus 

Stabilization of β-catenin results in increased cytoplasmic levels of β-catenin. This is 

free to translocate to the nucleus where it can activate gene transcription. Henderson 

(2002) showed that β-catenin can interact directly with nuclear pore proteins to enter 

the nucleus. Ras-related C3 botulinum toxin substrate 1 (Rac1- a member of the Rho 

GTPase family) is also important for nuclear translocation of β-catenin (Wu et al. 

2008). Rac1 and JNK2 (Jun N-terminal kinase 2) form a complex with β-catenin. 

JNK2 phosphorylates β-catenin (serine 191 and 605 and β-catenin is then 

translocated to the nucleus).  

APC (Henderson 2002), Axin (Cong and Varmus 2004) and  RanBP3 (Ran binding 

protein 3) (Hendriksen et al. 2005) can export β-catenin out of the nucleus. Axin and 

APC also help retain β-catenin in the cytoplasm, while B- cell lymphoma 2 (BCL2) 
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and Pygopus increase nuclear levels of β-catenin. BCL2 and Pygopus are TCF and 

β-catenin co-activators. 

 

1.1.3.3 In the Nucleus 

The TCF/LEF family consists of four proteins: LEF-1, TCF1, TCF3 and TCF4. In 

the absence of nuclear β- catenin, TCF/LEF are coupled with transcription repressors 

such as Groucho, TLE1 and C- terminal binding protein 1 (CtBP1). When β- catenin 

enters the nucleus, it displaces Groucho and binds to TCF/LEF. TCF proteins are 

HMG (high mobility group) DNA-binding factors.  They can bind to a DNA 

consensus sequence known as the WRE/ Wnt responsive element and this causes a 

change in the DNA chromatin structure.  Both co-activators (e.g. BCL9 and 

Pygopus) and co-repressors (CtBP1, TLE1 and Histone deacetylase (HDAC)) are 

active during β-catenin-mediated transcription and help regulate the process 

(MacDonald et al. 2009).  

Vlad et al. (2008) have proposed a three tiered cascade model of gene activation 

resulting from activation of β– catenin/TCF transcription. At the first level, TCF 

activation results in transcription of some genes including effectors (e.g. matrix 

metalloproteinase 7, MMP7), transcription regulators (e.g. c-myc) and pathway 

regulators (e.g. vascular endothelial growth factor, VEGF). These genes in turn 

regulate transcription of other effectors (e.g. the c-myc target gene p21) or target 

pathways (e.g. VEGF receptor tyrosine kinase pathway). The third level contains 

effectors of the target pathways (e.g. the VEGF target gene Down syndrome critical 

region gene 1, DSCR1). The original signal can thus be greatly amplified (see Figure 

1.5). Table 1.1 is a list of the main Wnt pathway target genes. Key Wnt signalling 
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components are also regulated by TCF/β-catenin. Activation of Wnt induces Axin2, 

Dkk1 (Chamorro et al. 2005) and Naked (a dishevelled binding protein) and 

suppression of Fz and LRP6 (Khan et al. 2007) thus forming a negative feedback 

loop (Kazanskaya et al. 2004, Logan and Nusse 2004). 

 

  



Figure 1.5 

The three levels of the Wnt targetome. Adapted 

from Vlad, Röhrs et al. (2008). 
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Table 1.1 

Table of some Wnt target genes. (SABiosciences 2012) 
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1.2 Wnt signalling and breast cancer 

Wnt signalling is important in carcinogenesis. Most of our understanding of the Wnt 

pathway activity in breast tissue comes from work on mouse models which explored 

normal mammary embryonic development and postnatal development in puberty and 

around pregnancy (Figure 1.6). Changes are noted both in expression and function of 

individual Wnt pathway components in these contexts.  

  



Figure 1.6 

Expression and function of Wnt signalling pathway 

components during mammary gland development. 

Adapted from Prosperi and Goss (2010). 
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There has also been extensive research into the role of Wnt signalling in breast 

cancer; cell models, animal models and human breast cancer tissue have all been 

used. A selection of the important publications on the role of Wnt signalling in breast 

cancer are highlighted in Table 1.2 (Goss K 2011).   

Wnt signalling may be altered in up to half of all breast cancers (Goss K 2011). Both 

up regulation of Wnt pathway activators and down regulation of pathway inhibitors 

have been identified in breast cancer. As in breast development, these changes may 

be functional changes or changes in expression. Some of these changes are discussed 

below. 

Wnt1 ligand is important for breast carcinogenesis. Transgenic mice overexpressing 

Wnt1 develop spontaneous mammary adenocarcinoma and are used as models for 

studying breast cancer (Liu et al. 2010, Lawson et al. 2010, Baker et al. 2010, Yue et 

al. 2010, Prasad et al. 2009, Huang et al. 2008, Collu and Brennan 2007, Huang et al. 

2006, Bocchinfuso et al. 1999, Li et al. 2000) . Wnt1 signalling is important for 

survival of MCF-7 cells (Wieczorek et al. 2008) and is also one of the target genes of 

oestrogen in MCF-7 cells (Katoh 2003). 

In a study of 1967 breast cancer samples, Dahl et al. (2005) showed that the negative 

Wnt regulator SFRP1 is downregulated in 73% of breast cancer cases and that loss of 

SFRP1 is associated with an unfavourable prognosis in early breast cancer. SFRP1 

gene silencing was a result of promoter methylation.  

Most of our understanding of APC comes from research in colorectal cancer where 

APC mutations are an important link in the adenoma- carcinoma chain. APC 

mutations in breast cancer are reported at 6%- 18% in selected series of sporadic 

human breast cancer (Furuuchi et al. 2000, Kashiwaba et al. 1994). Interestingly, 
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these breast cancer mutations were found outside the mutation cluster region - a 684-

bp region described for colorectal cancers (Furuuchi et al. 2000, Abraham et al. 

2002a, Ho et al. 1999, Kashiwaba et al. 1994). Hypermethylation of the APC 

promoter region (CpGsites) is more common and is reported in up to 70% of breast 

cancer cases and correlates with its epigenetic silencing (Dulaimi et al. 2004, Jin et 

al. 2001, Prasad et al. 2008, Sarrio et al. 2003, Van der Auwera et al. 2008, Virmani 

et al. 2001). Prasad et al. (2008) noted that these mutations were associated with an 

increase in nuclear localization of β-catenin in half the tumour samples. APC 

promoter hypermethylation has also been associated with increased methylation in 

the promoter region of the CDH-1 gene which codes for E –cadherin (Virmani et al. 

2001, Van der Auwera et al. 2008), impacting on cell adhesion.  

Different breast cancer subtypes have been reported to have specific changes in Wnt 

signalling. Khramtsov et al. (2010) showed that Wnt was upregulated in basal type 

cancers (also ER negative). LRP6 is upregulated in triple- negative breast cancers, 

human epidermal growth factor receptor 2 (HER2) negative and oestrogen receptor 

(ER) negative breast cancer cohorts (Liu et al. 2010).  
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Target Study 

type 

Key Summary Points References 

Wnt1 C 

 

 

T 

A 

Wnt and Notch 

Oestradiol and Wnt1 

Wnt1 and cell survival 

Wnt1 and Her2 

Wnt expression in cancer 

(Collu and Brennan 2007) 

(Katoh 2003) 

(Wieczorek et al. 2008) 

(Huang et al. 2006) 

(Wong et al. 2002) 

Wnt2 T Wnt and Twist (Watanabe et al. 2004) 

Wnt3, 

Wnt4, 

Wnt7b 

C gene expression  (Huguet et al. 1994) 

Wnt2, 

Wnt3, 

Wnt4, 

Wnt7b 

T gene expression (Huguet et al. 1994) 

Wnt5a T mRNA expression (Iozzo et al. 1995) 

Wnt5a T gene expression (Lejeune et al. 1995) 

LRP6 A breast development (Lindvall et al. 2009) 

LRP5 C/A/T  receptor as target (Bjorklund et al. 2009) 

β-catenin T 

 

 

A 

C 

basal type breast cancer 

cellular distribution and 

outcome 

interaction with APC 

mutations 

(Khramtsov et al. 2010) 

(Nakopoulou et al. 2006) 

(López-Knowles et al. 2010) 

(Ryo et al. 2001) 

(Ueda et al. 2001) 

β-catenin, 

cyclin D1 

C/T 

T 

prognostic marker 

mutations 

(Lin et al. 2000) 

(Kizildag et al. 2008) 

β-catenin, 

APC, Axin, 

WISP3 

T mutations (Hayes et al. 2008) 

β-catenin, 

APC 

T mutations (Abraham et al. 2002b) 

β-catenin, 

cyclin D1, 

T changes in cancer (Ozaki et al. 2005) 
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Table 1.2 

Table showing some of the Wnt signalling pathway components that have been 

studied in breast cancer (Goss K 2011). T= tissue; C= cell lines; A=animal models. 

  

c-myc  

β-catenin, 

APC,  

E-cadherin 

T genetic mutations (Sarrio et al. 2003) 

CK2 A changes in cancer (Landesman-Bollag et al. 

2001) 

WIF1, 

SFRP 

C/T epigenetic silencing (Ai et al. 2006) 

SFRP1,2,5;  

Dkk1 

C epigenetic silencing (Suzuki et al. 2008) 

SFRP1 C 

 

T 

prognosis 

 

type of breast cancer  

epigenetic silencing 

(Veeck et al. 2006, Veeck et 

al. 2008) 

(Ugolini et al. 2001) 

 (Dahl, Veeck et al. 2005) 

Dkk1 C/T hormone resistance (Forget et al. 2007) 

Axin C/T mutations (Webster et al. 2000) 

Axin2 T gene mapping (Mai et al. 1999) 

APC T 

 

 

 

 

 

 

 

 

 

 

C/T 

mutations 

mutations 

mutations 

reduced protein expression 

mutations 

gene silencing 

gene silencing 

invasive ductal carcinoma 

lobular breast carcinoma 

inflammatory breast cancer 

signalling 

epigenetic silencing 

(Abraham et al. 2002a) 

(Ozaki et al. 2005) 

(Furuuchi et al. 2000) 

(Ho et al. 1999) 

(Kashiwaba et al. 1994) 

(Dulaimi et al. 2004) 

(Jin et al. 2001) 

(Prasad et al. 2008) 

(Sarrio et al. 2003) 

(Van der Auwera et al. 2008) 

(Jönsson et al. 2000) 

(Virmani et al. 2001) 
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1.3 Endocrine therapy in breast cancer 

Breast cancer is the most common cancer in the UK and accounts for about 30% of 

all new female cancers (Cancer_Research_UK 2012). Early detection through breast 

screening programmes and improved treatments have led to improved survival rates. 

For 2005-2009, the age- standardised relative survival rate for breast cancer in the 

UK was 85% and 77% at five and ten years respectively. Despite this, there were 

nearly twelve thousand deaths from breast cancer in 2010 in the UK alone 

(Cancer_Research_UK 2012).   

The oestrogen receptor (ER) is important for normal breast development but also 

plays a key role in breast cancer disease and progression. Endocrine therapies target 

the ER but their benefit in breast cancer is limited by intrinsic (de novo) and acquired 

resistance. In endocrine resistance, the ER pathway is deregulated and cell signalling 

mechanisms are altered. This leads to the activation of alternative escape pathways 

which provide the cells with alternative survival mechanisms.  

 

1.3.1 The Oestrogen Receptor 

The oestrogen receptor alpha (ERα) is expressed in up to 70% of all breast cancers 

and levels are increased in malignant breast tissue compared to normal tissue (Allred 

and Mohsin 2000). There is also another receptor called ERβ. The genes are located 

on chromosome 6 and 14 respectively. The receptors show a differential distribution. 

ERα is mainly expressed in the pituitary gland, ovaries (thecal and interstitial cells), 

uterus, liver, kidneys, adrenals, and the mammary glands whilst ERβ is 

predominantly found in the prostate, bone, ovaries (granulosa cells), lungs, and in 

various parts of the central and peripheral nervous system (Zilli et al. 2009). The 
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ERα receptor is both a predictive and prognostic factor in clinical practise (Thorpe 

SM 1986, Thorpe 1988). The ERα is believed to be the dominant receptor in breast 

cancer (Osborne et al. 2000, Knowlden et al. 2000). 

 

1.3.1.1 Structure 

 ERα is a steroid hormone receptor. It has six functional domains: A to F. The A/B 

domain is at the amino end and it contains a hormone independent transcription 

activation function region (AF-1). Key phosphorylation sites in AF-1 serve to 

maximise transcriptional responses following oestradiol binding to ERα (with AF-1 

synergising with AF-2 in region E); these AF-1 sites can also mediate ERα activation 

by other growth signalling pathways. The C domain is the DNA binding domain 

(DBD) and has two zinc fingers which allow binding of the ER to oestrogen 

response elements (ERE) in target ER-regulated genes. The D domain, or hinge 

region, is important for co-regulatory protein binding, dimerization and heat shock 

protein 90 binding. The ligand dependent transcription activation function region 

(AF-2) and hormone binding domain (HBD) are found in the E domain. The 

carboxy- terminal F domain modulates function of anti-oestrogens (Figure 1.7) 

(Sommer and Fuqua 2001).  



Figure 1.7 

Diagram showing structure of the oestrogen 

receptor and its separate functional domains. 

Adapted from Sommer and Fuqua (2001). 
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1.3.1.2 Activation of the Oestrogen Receptor  

ER signalling can be triggered by genomic and non-genomic mechanisms (see 

Figure 1.8). 

In the absence of oestrogen, nuclear ER is maintained in an inactive state by 

chaperone proteins (e.g. heat shock protein 90). In classical/ genomic ER 

signalling, oestradiol (E2) can diffuse through the cell membrane and into the 

nucleus where it binds to the HBD of the ER. This triggers a conformational change 

in the ER protein and, as a result of this, the Hsp90 chaperone proteins are displaced. 

This is followed by dimerization of the E2-bound ER and the ER binds to the ERE 

on the DNA to initiate gene transcription of target genes, regulated by synergistic 

activity of AF-2 and AF-1. Additional co-activator proteins (Co-A) are also recruited 

to the ER/DNA complex and these can regulate cellular function by promoting or 

suppressing gene transcription (Osborne and Schiff 2005, Björnström and Sjöberg 

2005, Osborne and Schiff 2011). 

In non-classical/ genomic ER signalling, the E2-ER complex binds to DNA 

indirectly by forming protein-protein interactions with other transcription factors 

(TFs) such as activator protein- 1 (AP-1) or specificity protein- 1 (SP-1). This 

strengthens the binding of these transcription factors to their DNA responsive sites 

so ER acts as a co-regulator. This mechanism can thus serve to increase or reduce the 

transcriptional impact of the receptor. Activation of the AP-1 response elements has 

been linked to the development of tamoxifen resistance (Osborne and Schiff 2011). 

Other co-activators may be recruited to the complex: the co-activator SRC-3 is 

overexpressed in two thirds of breast cancer and overexpression of this gene has also 

been linked to tamoxifen resistance (Osborne and Schiff 2005, Björnström and 

Sjöberg 2005, Osborne and Schiff 2011). 



31 

 

ER signalling is also regulated by membrane growth factor receptor tyrosine kinases 

such as the epidermal growth factor receptor (EGFR) and insulin– like growth factor 

receptor (IGFR-1). These receptors can activate downstream kinase signalling 

mechanisms that result in AF-1 phosphorylation of the ER. This is ligand 

independent ER signalling (Osborne and Schiff 2005, Björnström and Sjöberg 

2005, Osborne and Schiff 2011).  

In addition, Membrane activated ER signalling can occur rapidly with oestrogens 

which is independent of genomic ER activity. E2-ER complexes at the cell 

membrane can activate protein kinases and these trigger signalling changes in the 

cytoplasm such as the PI3K/AKT and Ras/ MAPK pathways. Membrane ER binds 

directly to growth factor receptor tyrosine kinases (e.g. EGFR, IGF-1R) and with 

additional signalling molecules (such as src kinase) activates a cascade of 

downstream cellular kinase pathways (e.g. src, PI3K/AKT and Ras/MAPK). These 

kinases in turn phosphorylate various transcription factors to trigger alternative 

response elements (REs). (Osborne and Schiff 2005, Björnström and Sjöberg 2005, 

Osborne and Schiff 2011). However, these kinases may also feasibly interplay with 

nuclear ER (e.g. via AF-1 phosphorylation) to promote ERE-mediated gene 

expression. 

 

  



Figure 1.8 

ER signalling mechanisms 

The oestrogen (E) -  oestrogen  receptor (ER) complex may 

bind to DNA sequences at the oestrogen responsive elements 

(ERE) or indirectly via protein- protein interactions with other 

transcription factors (TFs) at their DNA- responsive sites 

(classical and non-classical genomic ER signalling). Growth 

factor (GF) receptor tyrosine kinases (RTKs) can also activate 

protein kinases that result in phosphorylation of the ER (ligand 

independent ER signalling). Co-activator complexes (CoA) are 

recruited to modulate gene transcription including genes coding 

for RTKs and GFs. 

The E-ER complex may also bind to GF RTKs  (e.g. EGFR, 

IGF1-R) and other signalling molecules (e.g. src) to activate 

downstream kinase pathways (e.g. src, PI3K/ AKT, Ras/ MAPK 

(membrane activated ER signalling). These kinases in turn 

phosphorylate TFs and co-regulators including components of 

the ER pathway that promote gene expression on EREs and 

other responsive elements (REs).  

Adapted from Osborne and Schiff (2011). 
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1.3.2 Endocrine therapy 

Given the importance of ER signalling for sustaining breast cancer cell growth, 

endocrine treatments for ER positive breast cancers seek to disrupt this pathway. 

This may be achieved through the following: 

 Selective oestrogen receptor modulators (SERM) e.g. tamoxifen, which act 

by competitive inhibition of the ER 

 Selective oestrogen receptor down regulators (SERD) e.g. faslodex, which 

act by  competitive inhibition of ER and deplete ER levels 

 Gonadotropin releasing hormone (GnRH) agonists which act as chemical 

castration 

 Aromatase inhibitors (e.g. anastrazole, exemestane, letrozole) which bring 

about severe oestrogen deprivation 

 

Endocrine therapy plays an important role in the treatment of early, advanced and 

metastatic ER positive breast cancer. Following surgical excision of ER positive 

early breast cancer, adjuvant treatments have been shown to improve survival and 

reduce the risk of disease recurrence.  Adjuvant endocrine treatment in ER positive 

disease may be used in combination with chemotherapy and radiotherapy. Endocrine 

therapy is also important in the primary treatment of locally advanced and metastatic 

ER positive breast cancer and in recurrent disease. Although aromatase inhibitors 

(AIs) are increasingly used as primary endocrine therapy in postmenopausal women, 

tamoxifen remains the treatment of choice in ER+ premenopausal women and in 

patients who are intolerant of AIs.   
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1.3.2.1 Tamoxifen  

Tamoxifen competes with oestradiol for the ER. On binding to the HBD, it induces a 

conformational change in the ER. This selectively promotes recruitment of co-

repressors over co-activators and transcription of oestrogen responsive genes is 

inhibited. Tamoxifen inhibits AF-2 activity but genes regulated by AF-1 may still be 

expressed according to tissue context, and so the drug has been termed a partial 

antioestrogen (Osborne et al. 2000, Lewis and Jordan 2005). Tamoxifen is a pro-

drug and is metabolized in the liver by cytochrome P450 to its active metabolites 4-

hydroxytamoxifen and N-desmethyl-4-hydroxytamoxifen. The derivatives have 30-

100 times more affinity to the ER than the parental drug (Jordan and Chem 1982) 

and both metabolites show anti-cancer activity. 4-hydroxytamoxifen acts as an ER 

antagonist in ER positive breast tissue and breast cancers; in the endometrium it 

exerts an agonistic effect and this is linked to the modest increased incidence of 

endometrial cancer. 

Tamoxifen has been used in the treatment of ER positive breast cancer for over thirty 

years. Five years of adjuvant tamoxifen treatment in patients with ER positive breast 

cancers reduces the risk of local recurrence and the incidence of contralateral second 

primary breast cancers by about 40- 50% (Lewis and Jordan 2005). The benefit is 

seen in both pre- and post- menopausal women; in patients with node positive and 

node negative disease; and in patients having chemotherapy (Ravdin PM 1998, Early 

Breast Cancer Trialists' Collaborative 2011). This translates into a survival benefit 

and decreases mortality from breast cancer by about 30% (Early Breast Cancer 

Trialists' Collaborative 2011).  The benefit of tamoxifen treatment is also seen in 

patients with ER positive advanced/ metastatic disease but less than half the patients 

will respond to tamoxifen treatment (Normanno et al. 2005). However, although 
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tamoxifen is clearly an invaluable therapeutic agent in ER+ breast cancer, all patients 

with metastatic disease and around 30%-40% of the patients receiving adjuvant 

tamoxifen will relapse having acquired resistance and ultimately die from their 

disease (Normanno et al. 2005). 

 

1.3.3 Tamoxifen Resistance in Breast Cancer 

Endocrine resistance is an important clinical challenge affecting up to 25% of all 

breast cancer patients. It is associated with increased aggressiveness in tumours and 

a poorer clinical prognosis. In order to improve clinical outcome from endocrine 

agents, it is important to understand the underlying mechanisms of resistance 

(Johnston 2010, Ring and Dowsett 2004). Resistance may be de novo (before any 

treatment is given) or acquired (developing after a period of initial treatment 

response).  

Diverse tamoxifen resistance mechanisms have been described, but may broadly be 

described under three main headings: 

1. Modified ER status 

2. Altered drug metabolism 

3. Deregulation of the intracellular signalling environment 

 

1.3.3.1 Modified ER status 

1.3.3.1.1 Loss of ERα expression  

Breast cancer cells must rely on ER activation to drive growth and proliferation in 

order for tamoxifen to exert its effect. Lack of ER expression is found in around 30% 
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of breast cancer patients and is the main cause of de novo endocrine resistance. 

Response to tamoxifen treatment also depends on levels of ER in ER positive 

tumours (Harris 2004). Tumours with high levels of ER show response rates to 

tamoxifen of about 75%, while tumours with low ER levels have a response rate of 

about 5%.  

 

1.3.3.1.2 Mutation of ERα 

Point mutations which result in loss of ER function have been described by Schafer 

et al. (2000) and Wolf and Jordan (1994). Wolf and Jordan (1994) describe how a 

point mutation of tyrosine for aspartate at amino acid 351 leads to tamoxifen 

resistance in MCF-7 xenografts. Fuqua et al. (1993) describe how tamoxifen 

resistance can result from co-expression of wild type ER alongside a variant ER 

lacking exon 5 in the ligand binding domain which is unable to bind to oestrogen. 

However, such mutations are rare and are found in less than 1% of breast cancers 

(Herynk and Fuqua 2004) suggesting a limited contribution to endocrine resistance. 

 

1.3.3.1.3 Altered expression of ERβ 

Expression of ERβ in breast cancer is associated with a better prognosis (Sugiura et 

al. 2007). This is due to a negative feedback on ERα driven transcription (Pettersson 

K 2000). Borgquist et al. (2008) and Hopp et al. (2004) showed that low levels of 

ERβ are predictive of tamoxifen resistance, and the relevance of ERβ remains highly 

controversial in the context of endocrine resistance. 
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1.3.3.2 Altered drug metabolism 

Tamoxifen is metabolised to 4-hydroxytamoxifen and 4-hydroxy-N-desmethyl 

tamoxifen (endoxifen). Endoxifen is up to ten times more abundant than 4-

hydroxytamoxifen at steady state concentrations. It is predominantly metabolised by 

CYP2D6 via hydroxylation of N-desmethyl tamoxifen. Some relationships between 

altered tamoxifen metabolism and resistance have been reported, but in all instances 

these findings remain controversial. 

 

1.3.3.2.1 Pharmacogenomics 

Women with genomic variants for low or absent CYP2D6 activity will have lower 

levels of endoxifen during tamoxifen treatment (Jin et al. 2005). The most frequent 

null allele is 2D6δ4. It is found in about 25% of Caucasians (Zanger et al. 2004) but 

only 1% of Asians (Wang et al. 1993). Patients who are homozygous for CYP2D6 

δ4/δ4 genotype and who are receiving tamoxifen have been reported to be at a higher 

risk of disease recurrence (Goetz et al. 2005). Other variants associated with 

impaired enzyme function are CYP2D6 allele δ5, δ10 and δ41. This was confirmed 

in a recent clinical study by Teh et al. (2012). Patients having CYP2D6δ10δ10 and 

the heterozygous null allele had a higher risk of developing disease recurrence and 

metastases. 

 

1.3.3.2.2 Drug interactions affecting metabolising enzymes 

Some selective serotonin reuptake inhibitors (SSRIs) (paroxetine and fluoxetine) 

have been shown to inhibit CYP2D6 (Stearns et al. 2003) (Otton et al. 1996). Benefit 
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from tamoxifen use has been reported to be reduced in this setting (Goetz et al. 

2007). 

 

1.3.3.3 Deregulation of the intracellular signalling environment 

1.3.3.3.1 Changes in co-regulators 

Several proteins cross talk with the ER to regulate transcription. Many are found in 

the nucleus and up-regulation of coactivators or downregulation of co-repressors 

may result in resistance (Smith et al. 1997). Osborne et al. (2003) have shown that 

patients receiving tamoxifen whose tumours overexpressed the co-activator 

amplified in breast cancer 1 (AIB1) as well as HER2 had a lowered five year disease 

free survival. Similar findings were reported by Kirkegaard et al. (2007) who showed 

that this was true for HER1, HER2 or HER3 overexpressing tumours. Low levels of 

nuclear receptor corepressor 1 (NCOR1) have also been associated with decreased 

relapse free survival in tamoxifen treated patients (Girault et al. 2003).  

 

1.3.3.3.2 Increased growth factor signalling 

Oestrogen can exert a negative feedback on transcription of proliferative genes such 

as EGFR and HER2 (Yarden et al. 2001). When tamoxifen blocks ER, EGFR and 

also HER2 expression increases (Figure 1.9). This activates downstream signalling 

via MAPK and AKT signalling pathways (Knowlden et al. 2003), which in turn 

activates nuclear ER through phosphorylation at activator protein-1 (AP-1) sites 

including Ser118 and Ser167 (Gee et al. 2003).  There is increased expression of ER 

genes such as amphiregulin as a consequence. Amphiregulin is an EGFR ligand and 

completes the autocrine EGFR signalling loop. This results in increased growth of 



39 

 

cells in the presence of tamoxifen and is a mechanism behind the  acquired 

tamoxifen resistance in breast cancer models including the tamoxifen resistant cell 

line, Tam-R, derived from MCF-7 (Knowlden et al. 2003).  

Thus acquired tamoxifen resistance in MCF-7 cells has been linked to increased 

expression of EGFR/ HER2 in models such as Tam-R (Hutcheson et al. 2003, Jordan 

et al. 2004, Knowlden et al. 2003). MAPK and AKT signalling pathways are 

hyperactivated in this model, as is nuclear ER. Activated nuclear ER increases 

transcription not only of amphiregulin but also TGF-α which in turn activate EGFR. 

Insulin-like growth factor-2 (IGF-II) is produced as a further ER-regulated gene; and 

this also regulates EGFR/ MAPK signalling and cell proliferation via insulin- like 

growth factor- 1 receptor (IGF-IR) cross-talk with EGFR.  

However, interplay between growth factor signalling and membrane ER has also 

been implicated in tamoxifen resistance. Membrane ER can activate HER2 and 

downstream kinase signalling (Shou et al. 2004). Tamoxifen stimulates this cross 

talk leading to activation of the EGFR/ HER2 pathway. This effect may be a result of 

redistribution of ER from the nucleus to the cytoplasm and cell membrane (Fan et al. 

2007). MCF-7/ HER2-18 cells overexpress HER2 and have been used as a model of 

de novo tamoxifen resistance. Tamoxifen has a stimulatory effect on these cells 

(Shou et al. 2004). It activates membrane ER, and EGFR/ HER2 signalling is 

substantially increased. Downstream MAPK and AKT signalling pathways are then 

activated and these in turn activate nuclear ER and the co-activator AIB1 to drive 

resistant growth.  

Of note, EGFR and HER2 overexpression are prominent in both de novo and 

acquired tamoxifen resistance experimentally, with some evidence for increased 
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EGFR/HER2 signalling in clinical disease suggesting mechanistic relevance for 

increased growth factor signalling in endocrine resistance (Gee et al. 2005).   

 

1.3.3.3.3 Altered oestrogen sensitivity 

Some breast cancer cells can grow even in very low levels of oestrogen. These cells 

are thus hypersensitive or supersensitive to circulating oestrogen. Changes in growth 

factor signalling are again believed to be relevant in resistance to oestrogen 

deprivation, helping maximise membrane ER signalling and also ligand independent 

activity of the ER. This promotes cell growth even in the presence of very low 

oestradiol levels (Nicholson et al. 2004). This mechanism is potentially important in 

acquired resistance to aromatase inhibitors.  

 

 

  



Figure 1.9 

Autocrine proliferative loop. 

Antiproliferative effect of tamoxifen is limited by activation of 

autocrine signalling loop. Oestrogen activated ER regulates 

transcription of EGFR and HER2. Tamoxifen inhibits ER and 

transcription of EGFR and HER2 is increased. Downstream 

MAPK and AKT signalling pathways are activated and nuclear 

ER activity increases. Persistent ER activation leads to the 

transcription of ER-sensitive genes, including amphiregulin, a 

growth factor that can bind and activate EGFR. This completes 

the autocrine proliferative loop. Adapted from Britton et al. 

(2006). 
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1.4 Project Objectives 

Despite the benefits of endocrine treatment, resistance remains a real clinical 

problem. A better understanding of the complex interactions between different 

growth signalling pathways may help us select targeted therapies to use alongside 

endocrine agents in the treatment of ER positive breast cancer. Considerable 

numbers of trials are exploring relevance of targeting erbB receptors and 

downstream kinases in this context, although it is already clear that many patients are 

de novo resistant to EGFR/HER2 blockade or rapidly acquire resistance to such 

treatment. Superior signalling targets and therapeutic strategies thus remain 

imperative.  

Interestingly, previous work from our lab had shown that β-catenin is deregulated in 

the tamoxifen resistant breast cancer cell model derived from MCF-7 cells. β-catenin 

is also the key effector of canonical Wnt signalling. When Wnt signalling is 

activated, β-catenin accumulates in the nucleus where it acts a coactivator for 

transcription factors of the TCF/LEF family, leading to activation of Wnt responsive 

genes. Wnt signalling plays a role in breast cancer but its role in endocrine resistance 

is less well defined.  The aim of this MD project was thus to explore whether Wnt 

signalling was deregulated in endocrine resistant breast cancer cell models and 

explore its potential as a therapeutic target in this setting.  The main objectives were: 

1. To characterise the Wnt signalling pathway in endocrine-sensitive MCF-7 

cells and their endocrine-resistant tamoxifen resistant (Tam-R) and faslodex 

resistant (Fas-R) counterparts. 

2. To explore the effect of pharmacological manipulation of the Wnt pathway 

on cell signalling in these cells. 
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2 Materials and Methods  

2.1 Materials 

Materials/ Reagents Supplier 

3-(4,5- dimethylthiazol-2-yl)-2-5, diphenyl-

tetrazolium bromide (MTT) 

Sigma-Aldrich, Poole, Dorset, UK 

Acrylamide/bis-acrylamide (30% solution, 

29:1 ratio) 

Sigma-Aldrich, Poole, Dorset, UK 

Agarose Bioline Ltd, London, UK 

Ammonium Persulphate (APS) Sigma-Aldrich, Poole, Dorset, UK 

Amphotericin B  (Fungizone) Invitrogen, Paisley, UK 

Ampicillin Sigma-Aldrich, Poole, Dorset, UK 

Antibiotics: Penicillin/Streptomycin Life Technologies Inc, UK 

Aprotinin Sigma-Aldrich, Poole, Dorset, UK 

AZD 0530 gift from Astra Zeneca, UK 

Bijou vials - sterile (5ml) Bibby Sterilin Ltd, Stone, UK 

Bio-Rad Dc Protein Assay Bio-Rad Laboratories Ltd, Herts, UK 

Bovine serum albumin (BSA) Sigma-Aldrich, Poole, Dorset, UK 

Bromophenol Blue (BPB) BDH Chemicals Ltd, Poole, UK 

Cell culture medium: RPMI 1640 and 

Phenol-red –free RPMI 1640 

Life Technologies Inc, UK 

Cell culture medium: Phenol red free DCCM Biological Industries Ltd, Israel 

Sterile cell culture Corning plasticware 

(flasks, Petri-dishes, 24- and 96-well plates) 

ThermoFisher Scientific, 

Leicestershire, UK 

Cell scrapes Greiner Bio-One Ltd, 
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Gloucestershire, UK 

Chemiluminescent Supersignal® West HRP 

Substrate (Pico, Dura , Femto) 

Pierce and Warriner Ltd, Cheshire, 

UK 

Cignal
TM

 TCF/LEF Reporter Assay Kit cat 

no. 336841 CCS-018L 

SA Biosciences, Qiagen Ltd, West 

Sussex, UK 

Corning Standard Transwell® inserts 

(6.5mm diameter, 8um pore size) 

Fisher Scientific, Leicestershire, UK 

Coulter Counter counting cups and lids 

Sarstedt AG and Co., Nȕmbrecht, 

Germany 

Crystal Violet Sigma-Aldrich, Poole, Dorset, UK 

Di-butylpthalatexylene (DPX) 

Raymond A Lamb Ltd, Eastbourne, 

UK 

Dimethyl sulphoxide (DMSO) Sigma-Aldrich, Poole, Dorset, UK 

Di-potassium hydrogen orthophosphate 

anhydrous (K2HPO4) 

Fisher Scientific UK Ltd, 

Loughborough, UK 

Disposable cuvettes 

Fisher Scientific UK Ltd, 

Loughborough, UK 

Di-thiothreitol (DTT) Sigma-Aldrich, Poole, Dorset, UK 

Dual Luciferase ReporterAssay System 

E1910 

Promega, Southampton, UK 

Dynamo rPCR kit Finnzymes Oy, Espoo, Finland 

5% Ehrlich’s haematoxylin solution Sigma-Aldrich, Poole, Dorset, UK 

Ethidium bromide (EtBr) Sigma-Aldrich, Poole, Dorset, UK 

Ethylene diamine tetraacetic acid (EDTA) Sigma-Aldrich, Poole, Dorset, UK 
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Falcon tubes – sterile (15ml and 50ml) 

Sarstedt AG and Co., Nȕmbrecht, 

Germany 

Fibronectin (from human plasma; 1mg/ml in 

0.05 TBS; pH 7.5) 

Sigma-Aldrich, Poole, Dorset, UK 

Filter paper (Grade 3) Whatman, Maidstone, UK 

Filter paper (Number 4) Whatman, Maidstone, UK 

Foetal calf serum (FCS) Life Technologies Inc, UK 

Gefitinib gift from Astra Zeneca, UK 

Gelatine Sigma-Aldrich, Poole, Dorset, UK 

General laboratory glass and plastic ware 

Fisher Scientific UK Ltd., 

Loughborough, UK 

Glacial Acetic Acid 

Fisher Scientific UK Ltd., 

Loughborough, UK 

Glass coverslips (thickness no. 2, 22mm
2
) 

BDH Chemicals Ltd., Poole, Dorset, 

UK 

Glass slides 

Fisher Scientific UK Ltd., 

Loughborough, UK 

Glycerol 

Fisher Scientific UK Ltd., 

Loughborough, UK 

Glycine Sigma-Aldrich, Poole, Dorset, UK 

Hydrochloric acid (HCl; 5M) 

Fisher Scientific UK Ltd., 

Loughborough, UK 

Hyperladder
TM

 I and Hyperladder
TM

 IV Bioline Ltd, London, UK 

Isoton® II azide-free balanced electrolyte 

solution 

Beckman Coulter Ltd, High 

Wycombe, UK 
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IWP2 Tocris Bioscience, Bristol, UK 

iCRT14 Tocris Bioscience, Bristol, UK 

Ki-67 monoclonal antibody DAKO, Cambridgeshire, UK 

Kodak MXB Autoradiography film (blue 

sensitive; 18cm x 24cm) 

Genetic Research Instrumentation 

(GRI), Rayne, UK 

Leupeptin Sigma-Aldrich, Poole, Dorset, UK 

L-glutamine Life Technologies Inc, UK 

Liquid DAB
+
 substrate chromogen system DAKO, Cambridgeshire, UK 

Lithium Chloride Sigma-Aldrich, Poole, Dorset, UK 

Lower buffer for SDS-PAGE Gels (Tris 

1.5M, pH 8.8) 

Bio-Rad Laboratories Ltd., HERTS, 

UK 

LRP6 construct 

gift from Professor Trevor Dale's 

Lab, Biosciences, Cardiff University, 

UK 

p-LRP6 construct: GST-P3C-ΔNLRP6 His 

(20mM Hepes pH8 12.5 µM MgCl2) 

gift from Professor Trevor Dale's 

Lab, Biosciences, Cardiff University, 

UK 

Lipofectin® reagent Invitrogen, Paisley, UK 

Magnesium Chloride (MgCl2) Sigma-Aldrich, Poole, Dorset, UK 

Matrigel
TM

 Basement Membrane Matrix BD Biosciences, Oxford, UK 

Methyl green Sigma-Aldrich, Poole, Dorset, UK 

Micro-centrifuge tubes (0.5 and 1.5ml) 

Elkay Laboratory Products, 

Basingstoke, UK 

N,N,Nˊ,Nˊ- tetramethylene-diamine Sigma-Aldrich, Poole, Dorset, UK 
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(TEMED) 

Nitrocellulose transfer membrane (Protan® 

BA85; 0.45μm pore size) 

Thermo Fisher Scientific, 

Leicestershire, UK 

pCR script Promega, Southampton, UK 

PD 98059 

Merck Chemicals Ltd, Nottingham, 

UK 

pH calibration buffer tablets (pH4, 7 and 10) 

Fisher Scientific UK Ltd., 

Loughborough, UK 

Phenylarsine oxide Sigma-Aldrich, Poole, Dorset, UK 

Phenlymethylsulfonyl fluoride (PMFS) Sigma-Aldrich, Poole, Dorset, UK 

Phosphate buffered saline – sterile (PBS) Life Technologies Inc, UK 

Pipette tips 

Greiner Bio-One Ltd, 

Gloucestershire, UK 

PNU 74654 Tocris Bioscience, Bristol, UK 

Polyoxyethlene-sorbitan monolaurate 

(Tween 20) 

Sigma-Aldrich, Poole, Dorset, UK 

Ponceau S solution (0.1% in 5% acetic acid) Sigma-Aldrich, Poole, Dorset, UK 

Potassium Chloride (KCl) Sigma-Aldrich, Poole, Dorset, UK 

Potassium di-hydrogen orthophosphate 

(KH2PO4) 

Fisher Scientific UK Ltd., 

Loughborough, UK 

Precision Plus Protein
TM

 All Blue Standards 

(10-250kDa) 

Bio-Rad Laboratories Ltd., Herts, 

UK 

Random Hexamers (RH) Amersham, Little Chalfont, UK 

Recombinant human wnt 3a (5036WN) R and D systems, Abingdon, UK 
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RNase- free H2O Sigma-Aldrich, Poole, Dorset, UK 

RNasin® ribonuclease inhibitor Promega, Southampton, UK 

Serological pipettes - sterile, disposable 

(5ml, 10ml, 25ml) 

Sarstedt AG and Co., Nȕmbrecht, 

Germany 

Sodium Azide Sigma-Aldrich, Poole, Dorset, UK 

Sodium Chloride (NaCl) Sigma-Aldrich, Poole, Dorset, UK 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich, Poole, Dorset, UK 

Sodium Fluoride (NaF) Sigma-Aldrich, Poole, Dorset, UK 

Sodium hydroxide (NaOH; 5M) 

Fisher Scientific UK Ltd., 

Loughborough, UK 

Sodium Molybdate (Na2MoO4) Sigma-Aldrich, Poole, Dorset, UK 

Solvents (acetone, chloroform, ethanol, 

formaldehyde, isopropanol, methanol) 

Fisher Scientific UK Ltd., 

Loughborough, UK 

Syringe filters - sterile (0.2μm) Corning Inc., Corning, NY, USA 

Syringe needles -sterile (BD Microbalance
TM

 

3/ 25G x 5/8’’) 

Becton Dickenson (BD) UK Ltd, 

Oxford, UK 

Syringe needles- sterile (Sherwood Medical 

Monoject; 21G x 1½’’) 

Sherwood- Davis and Geck, Gosport, 

Hampshire, UK 

Syringes -sterile (BD Plastipak
TM

; 1ml, 5ml, 

10ml) 

Becton Dickenson (BD) UK Ltd, 

Oxford, UK 

Sucrose 

Fisher Scientific UK Ltd., 

Loughborough, UK 

Taq DNA polymerase (BioTaq
TM

 ; 5U/μl) Bioline Ltd, London, UK 

Test tubes - sterile (5mls) Fisher Scientific UK Ltd., 
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Loughborough, UK 

TGFα Sigma-Aldrich, Poole, Dorset, UK 

Topflash Reporter assay SA BIosciences, UK 

Tris HCl  Sigma-Aldrich, Poole, Dorset, UK 

Triton X-100 Sigma-Aldrich, Poole, Dorset, UK 

Trizma (Tris) base Sigma-Aldrich, Poole, Dorset, UK 

Trypsin/EDTA 10x solution Life Technologies Inc, UK 

Universal containers - sterile (30ml) 

Greiner Bio-One Ltd, 

Gloucestershire, UK 

Upper Buffer for SDS-PAGE gels (Tris 

0.5M, pH 6.8) 

Bio-Rad Laboratories Ltd., Herts, 

UK 

VectorShield® hard-set mounting medium 

containing DAPI nuclear stain 

Vector Laboratories, Inc., 

Peterborough, UK 

Vybrant® Dil cell labeling solution Invitrogen, Paisley, UK 

Western Blocking Reagent 

Roche Diagnostics, Mannheim, 

Germany 

Wnt3a R and D systems, Abingdon, UK 

X-ray film developer solution (X-O-dev) 

X-O- graph Imaging System, 

Tetbury, UK 

X-ray film fixative solution (X-O-fix) 

X-O- graph Imaging System, 

Tetbury, UK 

  

  

 

Table 2.1 

List of materials used and their suppliers. 
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2.2 Cell media 

‘R5%’ media: RPMI 1640 supplemented with 5% foetal calf serum (FCS), penicillin 

(100units/ml), streptomycin (100µg/ml) and amphotericin B (2.5µg/ml). 

‘W5%f’ media:  Phenol-red- free RPMI 1640 (phenol red absent due to its 

oestrogenic action) supplemented with 5% FCS, L-Glutamine (200mM), penicillin 

(100units/ml), streptomycin (100µg/ml) and amphotericin B (2.5µg/ml).. 

‘W5%s’: Phenol-red- free RPMI 1640 supplemented with 5% charcoal-stripped 

foetal calf serum (SFCS; charcoal-stripped to remove endogenous steroid hormones 

which may compete with endocrine agent for the ER), L-Glutamine (200mM), 

penicillin (100units/ml), streptomycin (100µg/ml) and amphotericin B (2.5µg/ml). 

DMEM: Dulbecco's Modified Eagle Medium supplemented with 10% FCS, 

penicillin (100units/ml), streptomycin (100µg/ml) and amphotericin B (2.5µg/ml).  

 

2.3 Cell lines 

The hormone sensitive MCF-7 wild-type cell line was a kind gift from AstraZeneca 

Pharmaceuticals (Macclesfield, Cheshire), and was originally obtained from ATCC® 

Number HTB-22
TM

. The cells were maintained in R5%. 

Initial characterisation of components of Wnt signalling pathway was done in MCF-

7 cells grown in W5%s and W5%f. There was no difference in results for the two 

groups. Further experiments were carried out using W5%f. This was chosen to 

optimise growth conditions for MCF-7 cells.  

Tamoxifen resistant MCF-7 cell line (Tam-R) is an in-house acquired resistant cell 

line as described by Knowlden et al. (2003). MCF-7 cells were grown in W5%s 
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supplemented with 4-hydroxytamoxifen (tamoxifen; 100nM concentration). Over a 

period of 2-3 months, resistant cells emerged. These cells were grown for a further 3 

months until the fully stable resistant cell line was established. Tam-R cells were 

routinely grown in W5%s supplemented with Tam (100nM).   

Fulvestrant resistant MCF-7 cell line (Fas-R) is another acquired resistance in-house 

cell line as described by McClelland et al. (2001). MCF-7 cells were grown in W5%s 

supplemented with Fulvestrant (Fas; 100nM concentration). Over a period of 2-3 

months, resistant cells emerged. These cells were grown separately for a further 3 

months until the resistant cell line was established. Long term faslodex resistant cells 

were studied at about two years (Nicholson et al. 2005). Fas-R cells were routinely 

grown in W5%s supplemented with Fas (100nM). 

SW480 cells were a gift from Trevor Dale's Lab (Biosciences, Cardiff University, 

UK). Cells were routinely grown in DMEM. This colorectal cancer cell line was 

used as a positive control for the nuclear protein β- catenin. 

 

2.4 Cell culture 

Cell culture was carried out under sterile conditions in a MDH Class II laminar- flow 

safety cabinet (Bioquell UK Ltd, Andover, UK). All equipment and consumables 

were either purchased sterile for single use or sterilised at 119°C using a Denley 

BA852 autoclave (Thermoquest Ltd, Basingstoke, UK). Cells were grown in 25cm
2
 

flasks (T-25) or in 75cm
2
 flasks (T-75) and grown in a Sanyo MCO-17AIC incubator 

(Sanyo E&E Europe BV, Loughborough, UK) at 37°C with a humidified atmosphere 

containing 5% CO2. Culture medium was changed every 3-4 days. The cells were 

passaged on reaching 80-90% confluence. A Nikon eclipse TE200 phase- contrast 
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microscope (Nikon UK Ltd, Kingston- upon- Thames, UK) was used to visually 

assess the cell cultures. 

 

2.4.1 Cell passaging 

The medium was removed and 10mls of trypsin (0.5%)/EDTA (0.02%) in warmed 

Dulbecco’s phosphate-buffered saline (PBS) was added to the flask. The flask was 

then returned to the incubator for 3-5 minutes until the cells were in suspension. 

Trypsin/EDTA was neutralized with an equal volume of appropriate medium (as per 

cell line). Cells were then pelleted by centrifugation (Jouan C312 (Thermo Fischer 

Scientific Inc., MA, USA); 1000rpm for 5 min). The supernatent was aspirated off 

and the cell pellet was re-suspended in 10mls of the medium. A proportion of this 

suspension was diluted in further medium to seed additional flasks (usually 1:10 

dilution). Cell-lines were passaged for up to 25 times and then discarded. Stocks of 

established cell- lines were stored in liquid nitrogen and thawed as necessary. 

For cell seeding for experimental analysis, cells were washed twice with PBS prior 

to trypsin/EDTA dispersion, centrifugation and re-suspension as above. Cells were 

then passed through a sterile 25G syringe needle to obtain a single cell suspension. A 

100µl aliquot of this suspension was added to 10mls of Isoton® II solution. Cell 

numbers were determined using a Coulter
TM

 Multisizer (Beckman Coulter Ltd, High 

Wycombe, UK). Cells were then seeded at the appropriate density as suited to the 

experimental design.  
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2.4.2 Cell lysis for protein analysis 

Cells were seeded into 60mm or 100mm diameter Petri Dishes at an appropriate 

density and cultured to log- phase growth. For lysis, cells were washed twice with 

ice-cold PBS and lysed with Triton-X100 lysis buffer. This buffer contained the 

following protease and phosphatase inhibitors: sodium orthovandate 2mM, 

phenylmethylsulfonyl fluoride 1mM, sodium fluoride 25mM, sodium molybdate 

10mM, phenylarsine 20µM, leupeptin 10µg/ml and aprotinin 8µg/ml). Volume of 

lysis buffer was dependent on the size of the dish and cell confluency. The cells were 

then collected using a cell scraper and transferred to a 1.5ml micro-centrifuge tube. 

The lysate was then left on ice for 10-30 minutes before centrifugation (IEC 

Micromax RF micro-centrifuge (Thermo Electron Corporation, Hampshire, UK); 

13000rpm, 15 minutes, 4°C). The supernatants were removed and stored at -20°C 

until required. 

 

2.5 Protein Analysis 

2.5.1  Protein Concentration Assay 

A BioRad microassay based on the Bradford Assay (Bradford 1976) was used to 

determine protein concentrations in lysate samples. Lysate samples were stored at     

-20°C until required. Bovine serum albumin (BSA) at concentration of 1mg/ml was 

used. This acted as protein standard against which samples were measured. A range 

of dilutions of the protein standard containing from 5 to 25µg/ml was prepared as 

outlined in the table below. 

The test samples were then prepared at an appropriate dilution (usually 1/200); i.e. 

2μl of cell lysate + 398μl of distilled water in an Eppendorf. If samples were very 
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dilute a dilution of 1/100 was used; for concentrated samples a dilution of 1/400 was 

used. 100μl of BioRad Dye Concentrate was then added to 400 μl of standard/test 

sample and vortexed to mix. After 10 min to 1hr,  3 x 150μl  replicates of the 

standard/sample dye reaction mix were transferred to a 96 well plate and light 

absorbance was measured at 595nm (OD595) using a plate reader (Sunrise® 

microplate touch screen reader, Tecan, Reading, UK).  The values were then 

transferred to an Excel spreadsheet template and protein concentration (μg/ml) 

versus the OD595 was plotted. The protein concentration (μg/ml) was read from the 

standard line and the stock concentration of the sample was calculated by factoring 

in the dilution factor (Figure 2.1). 

  



56 

 

BSA conc 

(μg/ml) 

BSA Stock 

(μl) 

dH20 

(μl) 
 

0 0 400 Blank 

5 2 398 

Protein Standards 

10 4 396 

15 6 394 

20 8 392 

25 10 390 

 

Table 2.2 

Serial concentrations for standard samples for BioRad Microassay.  
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Figure 2.1 

Bio-Rad Microassay template. 
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2.5.2 SDS-PAGE Analysis 

Sodium-Dodecyl-Sulphate-Polyacrylamide Gel electrophoresis (SDS-PAGE) was 

performed using Bio-Rad Mini-Protean®III apparatus powered by a Powerpac 

Basic
TM

 power pack (Bio-Rad Laboratories Ltd, Herts, UK) following the 

manufacturer’s instructions. The gel system consisted of a 4%  acrylamide/ bis-

acrylamide stacking gel at pH 6.8 and a 6-10% acrylamide/ bis-acrylamide resolving 

gel at pH 8.8.  

The apparatus was set up as per manufacturer’s instructions. The glass plates were 

cleaned with ethanol (70%) before starting the experiment to prevent cross-

contamination. The resolving gel was prepared (table 2.3); TEMED was only added 

to the mixture after mixing the other components of the gel. The solution was then 

added to the glass plate pair to about 1.5cm below the top. The gel was covered with 

ethanol and allowed to set. This helped prevent evaporation of various components 

of the gel as it polymerised. Once the gel had set, the ethanol was discarded and the 

surface was blotted dry using filter paper. The stacking gel was prepared (see table 

2.4) and added to the top of the resolving gel. A 10- or 15-well comb was inserted at 

the top of the plates. The gel was then allowed to set. The set gel was assembled in 

the electrophoresis apparatus and SDS-PAGE running buffer was added to inner and 

outer reservoirs in the tank. The comb was then removed from the gel.  
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 6% gel 8% gel 10% gel 

Final 

concentration in 

gel 

acrylamide/ bis-acrylamide 

solution* 
2ml 2.7ml 3.3ml  

H2O 5.3ml 4.6ml 4ml  

Tris (1.5M, pH 8.8) 2.5ml 2.5ml 2.5ml 375mM 

SDS (10% solution in H2O) 100µl 100µl 100µl 0.1% 

APS (10% solution in H2O) 100µl 100µl 100µl 0.1% 

TEMED 20µl 20µl 20µl 0.2% 

 

Table 2.3 

Resolving gel used in SDS-PAGE 

 

 4% (for 10mls) Final concentration in gel 

acrylamide/ bis-acrylamide solution* 1.3ml 4% 

H2O 6.1ml  

Tris (0.5M, pH 6.8) 2.5ml 125mM 

SDS (10% solution in H2O) 100µl 0.1% 

APS (10% solution in H2O) 50µl 0.05% 

TEMED 6µl 0.06% 

 

Table 2.4 

Stacking gel used in SDS-PAGE 

*Acrylamide solution used was a 30% solution and acrylamide: bis-acrylamide ratio 

was 29:1  



60 

 

2.5.2.1 Preparation of cell lysates 

Cell lysates with a known amount of protein were added to 2x or 3x Laemmli sample 

loading buffer. Samples were then denatured by heating for 5 min at 100°C. Cell 

samples and a protein molecular weight marker (precision Plus Protein
TM 

All Blue 

standards 10-250kDa) were then loaded into the appropriate wells in the gel. 

Electrophoresis was carried out by running a voltage of 160V through the gel (about 

90 minutes or until the blue dye had reached the bottom of the gel).  

 

2.5.3 Western Blotting 

 A Bio-Rad Mini-Protean® III apparatus powered by a Powerpac Basic
TM

 power 

pack (Bio-Rad Laboratories Ltd, Herts, UK) was used to transfer the proteins onto a 

nitrocellulose membrane. For each gel, four pieces of filter paper and one piece of 

Protran B85 nitrocellulose membrane (0.45µM pore size) were cut to the same size 

as the gel plates. Two Teflon sponges of similar size, the filter paper and 

nitrocellulose membrane were soaked in Western blot transfer buffer for about 30 

minutes. Once electrophoresis was ready, the gel plates were gently separated. The 

stacking gel was removed and the resolving gel carefully transferred to a tray 

containing transfer buffer. A transfer cassette was then set up as per manufacturer’s 

instruction manual. (Figure 2.2) The cassette was then placed into the transfer 

apparatus and run at 100V for 1 hour to allow for transfer of proteins from the gel to 

the nitrocellulose membrane. An ice-block was added to the tank to prevent 

overheating in the process. 

  



Figure  2.2 

Assembly of Western blot transfer apparatus. 
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2.5.4 Immuno-detection 

The membrane was removed from the transfer apparatus and washed briefly in 

Ponceau S to stain proteins. This was then photocopied for a record of protein 

loading. The membrane was then rinsed with Tris- Buffered Saline - Tween (TBST) 

buffer solution to remove all traces of the stain. The membranes were incubated with 

5% Marvel® skimmed milk powder/TBST in a lid for 30 minutes to 1 hour. This 

helped fix the protein onto the membrane. The membrane was washed briefly in 

TBST ((2x 5minutes) and then incubated overnight on a roller in the appropriate 

primary antibody at a temperature of 4°C.  

Primary antibody: Dilutions of 1:1000 or 1:5000 were typically used for the primary 

antibody. For 1:1000 dilutions, 5ul of primary antibody, 5ml of TBST, 250µl of 

western blocking reagent and 50µl of sodium azide. For dilutions of 1:5000, 1µl of 

primary antibody was used instead.  

The next day the membrane was washed briefly for three times in TBST at room 

temperature. It was then incubated with the secondary antibody for 1 hour before 

washing briefly in TBST for 5 times to remove any excess antibody. 

Secondary antibody: Dilutions varied from 1:10 000 to 1:50 000 and mouse, rabbit 

or goat horseradish- peroxidase- linked secondary antibodies were used to match the 

primary antibody. For 1:10 000 dilutions, 1µl of secondary antibody was added to 

10ml of 1% Marvel® skimmed milk powder/ TBST. 

Primary and secondary antibodies are detailed in Table 2.5.  
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2.5.5 Chemoluminescent detection 

Chemoluminescence was performed using a luminol/peroxidase based enhanced 

chemoluminescence reagent (Supersignal
TM

 PICO, Supersignal
TM 

Dura or 

Supersignal
TM 

Femto). The reagents were prepared as per manufacturer’s 

instructions and added to the blot for five minutes. The reagent contained Luminol 

which was oxidised by HRP in the presence of hydrogen peroxide to produce an 

unstable product. This decayed to release photons of light which were captured on 

X- ray film. Exposures varied from one second to several hours depending on the 

strength of the signal. The X-ray films were developed using an X-O-graph Compact 

X2 x-ray developer (X-O-graph imaging system, Tetbury, UK). The films were 

scanned and analysed using a Bio-Rad GS-690 Imaging Densitometer (Bio-Rad 

Laboratories Ltd, Herts, UK) linked to a computer. Densitometry was measured 

using Molecular Analyst Version 1.5 (Bio-Rad Laboratories Ltd, Herts, UK).  

  



64 

 

Primary 

Antibody 

Company 

(see key in 

legend for 

company 

details) 

Dilution 

Antibody 

Incubation 

conditions 

Source 
Molecular 

mass 

β-actin 
Sigma 

A5316 
1:20 000 1hr RT Mouse 37 kDa 

AKT total cs #9272 1:4000 O/N 4⁰C Rabbit 60 kDa 

p-AKT 
cs #9271 

S473 
1:1000 O/N 4⁰C Rabbit 60 kDa 

active β- 

catenin 

(clone 8E7) 

Millipore 

cat #05-665 

lot #DAM 

1614910 

1:1000 O/N 4⁰C Mouse 92 kDa 

total β- 

catenin 

Sigma 

C2206 

lot 

#059k454 

1:1000 O/N 4⁰C Mouse 92 kDa 

p- β- catenin 

(Ser 33/37 Thr 

41) 

cs #9561 1:1000 O/N 4⁰C Rabbit 92 kDa 

c-myc 
sc 40 

9E10 
1:1000 O/N 4⁰C Mouse 43-55 kDa 

Cyclin D1 
sc 718 

lot F041 
1:1000 O/N 4⁰C Rabbit 37 kDa 

EGFR total cs #2232 1:1000 O/N 4⁰C Rabbit 170 kDa 

p-EGFR 1068 
cs #2234 

T1068 
1:1000 O/N 4⁰C Rabbit 170 kDa 

GAPDH 
sc32233 

lot #D0408 
1:15 000 1hr RT Mouse 40 kDa 

GSK- 3α/β 

total 

sc 7291 

(0011-A) 

lot #222 

1:1000 O/N 4⁰C Mouse 47,51 kDa 

(Ser 21/9) p- 

GSK 3α/β 
cs #9331 1:1000 O/N 4⁰C Rabbit 47,51 kDa 

LRP6 total cs #2560 1:1000 O/N 4⁰C Rabbit 180-210 
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C5C7 kDa 

p-LRP6 
cs #2568 

S1490 
1:1000 O/N 4⁰C Rabbit 

180-210 

kDa 

MAPK p44/42 

total 
cs #9102 1:2000 O/N 4⁰C Rabbit 42-44 kDa 

p- p44/42 

MAPK 

cs #9101L 

Thr 202/ 

Tyr 204 

1:1000 O/N 4⁰C Rabbit 42-44 kDa 

src total 
Biosorce 

44-656G 
1:1000 O/N 4⁰C Rabbit 60 kDa 

p-src 

Biosorce 

44-660G 

T418 

1:1000 O/N 4⁰C Rabbit 60 kDa 

Secondary      

anti- rabbit 

horseradish- 

peroxidase- 

linked (HRP) 

IgG 

cs # 7074 1:1000 1hr RT 
from 

goat 
 

anti- mouse 

horseradish- 

peroxidase- 

linked (HPR) 

IgG  

GE 

healthcare 

NXA931 

1:1000 1hr RT 
from 

sheep 
 

 

Table 2.5 

Antibodies used for immune probing of western blots. 

Abbreviations:  

cs: Cell Signalling; ab: Abcam; sc: Santa Cruz 

O/N: overnight 

RT: room temperature 
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2.5.6 Validation of LRP6 and p-LRP6 antibodies 

LRP6 and p-LRP6 constructs [GST-P3C-ΔNLRP6] (gift from Professor Trevor 

Dale's Lab, Biosciences, Cardiff University, UK) were used to validate secondary 

antibodies to LRP6 and p-LRP6. The ΔNLRP6 (LRP6c) and pΔNLRP6 (pLRP6c) 

constructs were about 53.2 kDa in size. LRP6 can be phosphorylated at multiple 

PPPSP sites including Thr1479, Ser1490 and Thr1493. (Figure 2.3, Table 2.6). The 

pΔNLRP6 construct contained PPPSP motif A whereas the ΔNLRP6 construct 

contained PPPSP motif B (Table 2.6).  

The commercial total LRP6 antibody was produced by immunizing animals with a 

synthetic peptide corresponding to residues around Met1409 (cell_signalling 2012a). 

The commercial p-LRP6 antibody targeted Ser1490 (present in PPPSP motif A) 

(cell_signalling 2012b). 

MCF-7 cells were cultured to log-phase growth and lysed as described in materials 

and methods. SDS-PAGE/ Western blot analyses was carried out using 30µg of 

MCF-7 total soluble protein and 1µg of ΔNLRP6 and pΔNLRP6 constructs (LRP6c 

and pLRP6c). The membranes were probed with antibodies specific to LRP6 or p-

LRP6 The membrane containing pΔNLRP6 construct was probed with antibodies 

specific to p-LRP6 and LRP6 antibodies (Figure 2.4). LRP6 and p-LRP6 in MCF-7 

cell lysates were detected at 180-210 kDa. The ΔNLRP6 construct was detected at 

53-54 kDa; the pΔNLRP6 construct was detected by the commercial p-LRP6 and 

LRP6 antibodies at 53-54 kDa (Figure 2.4). 
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Positions Description 

1487-1493 PPPSP motif A 

1527-1534 PPPSP motif B 

1568-1575 PPPSP motif C 

1588-1593 PPPSP motif D 

1603-1610 PPPSP motif E 

 

Table 2.6 

PPPSP motifs for LRP6 

Accessed online on 19 April 2012 

http://www.uniprot.org/uniprot/O75581  
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 this image has been removed by the author 
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for copyright reasons  



Figure 2.3 

Amino acid sequence for LRP6. 

Accessed online on 20 July 2011. 

http://www.uniprot.org/uniprot/O75581. 
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 this image has been removed by the author 

for copyright reasons  



Figure 2.4 

Validation of LRP6 and p-LRP6 constructs. 

MCF-7 cells were cultured to log-phase growth and lysed as 

described in materials and methods. SDS-PAGE/ Western blot 

analyses were carried out using 30µg of MCF-7 total soluble 

protein and 1µg of ΔNLRP6 and pΔNLRP6 construct (LRP6c 

and pLRP6c). The membranes were probed with antibodies 

specific to LRP6 or p-LRP6. The membrane for pΔNLRP6c 

was probed with both p-LRP6 and LRP6 antibodies. LRP6 and 

p-LRP6 in MCF-7 cell lysate were detected at 180-210 kDa. 

ΔNLRP6c and pΔNLRP6c were detected at 53-54 kDa. 
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2.6 Cell growth assays  

2.6.1  MTT assay 

MTT growth assays rely on the metabolism of 3-(4, 5-dimethlythiazol-2-yl)-2,5-

diphenyl-2H-tetrazolium (a soluble yellow compound) by mitochondrial 

dehydrogenase enzymes in the cell to produce insoluble formazan crystals (purple). 

The cells are then lysed to release these crystals and absorbance of the solution is 

proportional to the cell number. 

Cells were harvested seeded in a 96 well plate at an appropriate density and using the 

appropriate medium. Treatment was added the following day (day 0). The plate was 

incubated at 37°C in humidified atmosphere containing 5% CO2 for six days. 

Medium was changed after 3 days. On day six, the medium was removed, and cells 

were washed with PBS. 150µl of sterile filtered MTT in wRPMI (0.5mg/ml) were 

added to the cells and left in the incubator for four hours. The solution was then 

aspirated and 150µl of Trition-X100 in PBS (10%) was added to each well. This was 

left overnight at 4°C. The following day, the plate was allowed to reach room 

temperature and then read on a plate- reader (Sunrise® microplate touch screen 

reader, Tecan, Reading, UK) at 540nm. 

 

2.6.2 Cell counting 

Cells were harvested using trypsin/EDTA and seeded in a 24 well plate (seeding 

density 40 000/well). Treatments were added after 24 hours. This allowed cells to 

settle in the wells. Cells were allowed to grow for 6-7 days and medium was changed 

every 3-4 days. The plate was incubated at 37°C in humidified atmosphere with 5% 

CO2. At the end of the experiment, the medium was removed and 1ml of 
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trypsin/EDTA was added to each well. Once the cells were in suspension, cells were 

drawn into a 5ml syringe through a 25G needle three times to obtain a single-cell 

suspension. The wells were then washed with 1ml of fresh Isoton II solution and this 

was then drawn up into the syringe. This final wash was repeated twice to give a 

total volume of 4mls in the syringe. The solution was then added to 6 mls of Isoton 

II solution in a counting cup to make up a volume of 10mls. Cells were then counted 

using a Coulter
TM 

Multisizer II. Two counts were taken from each well. The values 

were multiplied by 20 to give the total number of cells per well. 

 

2.6.3 Estimation of half maximal inhibitory concentration (IC50) for IWP2, 

PNU 74654 and iCRT14 

Data from MTT assays was used to determine the half maximal inhibitory 

concentration (IC50) for IWP2, PNU 74654 and iCRT14. A linear effect of the drug 

on cell growth was assumed, and a linear model of interpolation was used (template 

is shown in Figure 2.5).  

 

  



Figure 2.5 

Linear model of interpolation template. 

The half maximal inhibitory concentration (IC50) for 

pharmacological Wnt inhibitors IWP2, PNU 74654 and iCR14 

was estimated using this model. 

1. Enter 2 point values from straight line containing required x value e.g. Pt1 Pt 2 Pt 3 Pt 4

X1,Y1 values X2,Y2 values X 0.5 1 2 3

X1= X2= Y 0.5 1 2 3

Y1= Y2=

2. Corresponding Y value required 

                                              when x=

3. Corresponding X value required 

                                              when y=

Calculate factors in linear equation

M=

C=

RESULTS

For given X value, Y=

For given Y value, X= 

To find the Y value corresponding to X value "2" you need to enter the XY

values for points Pt1 and Pt2

X1= 1 X2= 2

Y1= 1 Y2= 2

and the X value 1

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

74 



75 

 

2.7 Cell Migration Assays 

Cell migration assays were carried out using Corning Transwell® inserts with 

6.5mm diameter and 8µm membrane pore size. The undersides of the Transwell® 

insert membranes were coated with fibronectin. Fibronectin was diluted to 10µg/ml 

in wRPMI (with no additives) and 200µl was added to each well. The inserts were 

then placed in the well, so that the bottoms of the inserts were just submerged in the 

matrix solution (Figure 2.6). The plate was then incubated at 37
o
C for 2 hours. After 

this, the inserts were removed, washed with PBS and allowed to air dry. Cells were 

harvested using Trypsin/EDTA as previously described and seeded into the upper 

Transwell® compartment at a density of 5x10
4
 +/- Tamoxifen (100nM) +/- 

treatments (650µl) and then added to the lower compartment of the insert. The plate 

was then incubated at 37
o
C for 24 hours. The medium in the upper compartment of 

the inserts was then removed and the cells on the top of the membrane (i.e. the non-

migratory cells) were removed using a cotton swab. The cell on the under surface of 

the membrane (i.e. migratory cells) were fixed in 3.7% formaldehyde in PBS for 10 

minutes. The cells were washed with PBS and stained with crystal violet (0.5% in 

water) for 15-30 minutes. The inserts were then washed in PBS to remove excess 

crystal violet stain and air dried at room temperature. Cells were counted in five 

random fields of view at 10x magnification using an Olympus BH-2 phase contrast 

microscope and data was presented as mean cell count/field.    

  

  



Figure 2.6 

Diagram of Corning Transwell® insert in a 24-well 

plate.  

Figure accessed online on 19 April 2012 and adapted from 

http://catalog2.corning.com/Lifesciences/media/pdf/transwell_g

uide.pdf (Corning 2012). 

Transwell® insert 

Upper compartment 

Membrane (coated 

with fibronectin) 

Lower compartment 
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2.8 Immunocytochemistry 

2.8.1 Methanol fix for active β- catenin staining 

Cells were seeded on TESPA-coated coverslips and grown to 70- 80% confluence. 

The cells were then fixed using ice-cold methanol for 10 minutes (for active β-

catenin assay) followed by immunochemical staining. The coverslips were placed in 

a rack and submerged in a bath containing methanol for ten minutes at -10°C to -

30°C and then air dried for twenty minutes before storing at -70°C. For 

immunostaining, coverslips were washed with 0.01M PBS (2 x five minutes) and 

rinsed with 0.02% Tween/ PBS for a further five minutes. Primary antibody for 

active β- catenin was diluted in PBS (dilution optimized for each sample) and 50µl 

added to each coverslip. Samples were incubated overnight in a humidified 

atmosphere at 23°C. The next day the coverslips were washed with PBS (2x five 

minutes) and incubated with one drop of the appropriate HRP- labeled mouse or 

rabbit antibody (Dako EnVision
TM

 system, peroxidase (DAB) kit) for 60 minutes at 

23°C. The coverslips were washed again in PBS for three minutes and then in 

Tween/PBS (2 x five minutes). 2,3-diaminobenzidine (DAB), a chromogenic HRP 

substrate solution, was added to the coverslips for ten minutes, which were then 

washed in distilled water (2 x two minutes). They were counterstained with 5% 

haematoxylin in water for four minutes, rinsed with tap water and submerged in tap 

water for another four minutes. The samples were then air dried and affixed to a 

microscope slide using di-butylpthalatexylene (DPX) adhesive. Slides were assessed 

on an Olympus BH-2 phase- contrast microscope fitted with Olympus DP-12 digital 

camera system (eyepiece magnification x10). Representative images were taken at 

x40 magnifications. 
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H-scores (histological scores) were also calculated for nuclear, cytoplasmic and 

membrane expression of active β- catenin. The score ranged from 0 to 300 for each 

localisation. Percentage positive cells for a localisation were noted and staining 

intensity was subdivided into low, medium or high. The final score was calculated 

using the following formula: (% low) + (% moderate x2) + (% high x3). For 

example, for a 90% positive nuclear stain that was 40% low, 40% moderate and 10% 

high, the H-score would be 40+80+30=150. The experiments were repeated in 

triplicate and the average H-score for each localisation was calculated. 

 

2.8.2 Formal Saline for Ki67 proliferation assays 

To accompany MTT viability assays, we then stained for Ki67, a surrogate for 

cellular proliferation. Cells were seeded on TESPA-coated coverslips and grown to 

70- 80% confluence, following which they were fixed in formal saline (3.7%) for ten 

minutes and stored at -20⁰C. The coverslips were washed with PBS (3 x two 

minutes) and then rinsed with 0.02% Tween/ PBS for a few seconds. Excess buffer 

was removed before applying the primary antibody (Ki-67) which was diluted in 

PBS (optimised for each sample; 1:100 for Dako Ki67 clone MIB-1 (M7240)) and 

then added to each coverslip. After 90 minutes, the samples were washed in PBS for 

three minutes and in PBS/Tween (2 x five minutes). The coverslips were incubated 

with one drop of appropriate HRP- labeled mouse or rabbit antibody (Dako 

EnVision
TM

 system, peroxidase DAB kit) for seventy- five minutes at 23°C. They 

were washed again in PBS for three minutes and then in Tween/PBS (2 x five 

minutes). 2,3-diaminobenzidine (DAB), a chromogenic HRP substrate solution, was 

added to the coverslips for ten minutes which were then washed in distilled water (2 

x two minutes). An aqueous solution of 0.5% methyl green was applied to the 
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sections for one minute and sections were then rinsed with distilled water (2 x three 

minutes). The samples were affixed to a microscope slide using di-

butylpthalatexylene (DPX) adhesive. Slides were assessed on an Olympus BH-2 

phase- contrast microscope fitted with Olympus DP-12 digital camera system 

(eyepiece magnification x10). Representative images were taken at x40 

magnifications. 

 

2.8.3 Verification of active β-catenin antibody 

Active β-catenin (ABC) localisation in the human colon adenocarcinoma cell line 

SW480, is reported to be predominantly nuclear (Maher et al. 2010) and thus SW480 

cells were chosen as a positive control for nuclear β-catenin. Staining of nuclear β-

catenin was performed as follows: SW480 cells were cultured on cover slips until 

they reached log- phase growth. They were then fixed with methanol as described in 

the materials and methods section and assayed for active β- catenin using a specific 

monoclonal antibody. Representative images were taken at x40 magnification 

(Figure 3.2) using an Olympus BH-2 phase contrast microscope fitted with Olympus 

DP-12 digital camera system (eyepiece magnification x10). 

 

2.9 Semi-quantitative reverse transcription polymerase chain reaction 

This was used to investigate mRNA expression of canonical Wnt target genes, cyclin 

D1 and c-myc, in MCF-7 and Tam-R cell lines (Saiki et al. 1988, Saiki et al. 1985). 

 

2.9.1 Extraction of RNA 
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Cells were seeded into 100mm petri dishes at an appropriate density and grown to 

log phase. Total RNA was extracted under sterile conditions in a fume cupboard 

using Sigma TRI reagent (Sigma, UK).  Cell culture medium was removed and cells 

were washed twice with PBS. 1ml of TRI reagent was added to each dish and cells 

were homogenised with a cell scraper. This was then allowed to stand for five 

minutes at room temperature. 1ml of the sterile lysate was then pipetted into a sterile 

eppendorf. Chloroform was added (0.2ml chloroform per ml of TRI reagent) and the 

tube was shaken vigorously for fifteen seconds. The lysate was allowed to stand for 

fifteen minutes at room temperature before being centrifuged at 12000g for fifteen 

minutes at 4
o
C. The aqueous upper phase was then removed to a fresh eppendorf 

tube. 0.5ml isopropanol (2-propanol) per ml TRI reagent was added and this was 

again shaken and allowed to settle at room temperature for ten minutes. The sample 

was then centrifuged at 7500g for five minutes at 4
o
C. The supernatant was 

discarded and the pellet was washed with 1ml 75% ethanol. Following a quick 

vortex, it was then centrifuged at 7500g for five minutes at 4
o
C. This was then stored 

at -70
o
C till further use. 

 

2.9.2 RNA quantification 

The pellet was air dried in a fume cupboard to remove as much ethanol as possible. 

The dry pellet was solubilised in 20-50µl of sterile water. Quantitative spectrometry 

was performed. 0.5-2µl of sample was added to 500µl RNase free water for each 

reading. Optical density (OD) readings were taken at 260 and 280nm (for calculation 

of nucleic acid and phenol/ protein concentrations respectively). A ratio of 1.8-2.0 

was taken to represent pure preparations of RNA. 
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For RNA concentration in µg/ml: [RNA] = OD260 x 40 x dilution factor 

Samples were diluted to 1µg/µl using RNase free water. 

RNA integrity (18S and 28S) was also checked by agarose gel electrophoresis (see 

section 2.9.3).  

 

2.9.3 Agarose gel electrophoresis 

Samples were resolved on 2% agarose gel in Tris-acetate-EDTA buffer (TAE pH 

8.3) containing ethidium bromide (1µl of a 10mg/ml solution per 50ml gel solution. 

Gels were run using a Sub-cell® Agarose Electrophoresis system connected to 

Powerpac 1000 power pack (Bio-Rad Laboratories Ltd, HERTS, UK) according to 

the manufacturer’s instructions. 1µl RNA samples were added to 5µl loading dye 

before loading. A standard marker ladder (Hyperladder
TM

 IV 100-1000bp; Bioline, 

London, UK) was also used. The gel was run at 100V for about twenty- thirty 

minutes. Gels were visualised under UV light using a FOTODYNE 3-3002 UV 

transilluminator and photographed with a Polaroid Gel Cam Camera (both GRI, 

Rayne, UK) for densitometry. The images were scanned using a Bio-Rad GS-690 

Imaging Densitometer (Bio-Rad Laboratories Ltd, HERTS, UK) connected to a 

computer running molecular Analyst Version 1.5 (Bio-Rad Laboratories Ltd, 

HERTS, UK). This enabled us to check the integrity of ribosomal RNA (18S and 

28S). 
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2.9.4 Reverse Transcription (RT) 

Complementary DNA (cDNA) was prepared by reverse transcription (RT) using M-

MLV (Molony-murine leukaemia virus) reverse transcriptase enzyme (Invitrogen). 

The reaction mixture was as follows: 

 Stock Final Volume Added 

1μg RNA 1μg/μl 1μg/tube 1μl 

Pd(N)6 random 

hexamers 
100μM 10μM 2μl 

*dNTP mix 2.5mM 0.5mM 4μl 

RNase free water   5μl 

 

*dNTP mix (0.625mM each of dGTP, dCTP, dATP and dTTP) 

This mixture was denatured by heating in a PTC-100 programmable thermal 

controller (MJ Research Ltd, Massachusetts, USA) at 65
o
C for five minutes and then 

rapidly chilled on ice.  

 

2.9.5 RT Master Mix 

 Stock Final  Volume Added 

5x First strand 

buffer 
5x 1x 4μl 

DTT 0.1M  10mM  2μl 

RNAsin  40U/μl  40U/tube  1μl 

M-MLV (kit)  200U/μl 200U/tube  1μl 

 

8µl of the RT master mix was added to each denatured sample. The final mixture 

was incubated at 37
o
C for fifty minutes, followed by heat inactivation at 70

o
C for 

fifteen minutes. Samples were stored in the freezer until required. 
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2.9.6 Polymerase Chain Reaction (PCR) 

All PCR reaction mixes were set up under sterile conditions. The PCR master mix 

was prepared as outlined below (0.5µl cDNA in 25µl reaction solution): 

 Stock  Final Volume added 

RNase free water   17.8µl 

dNTP mix 2.5mM  0.2mM  2µl 

PCR buffer    10x  1x 2.5µl 

F primer* 20µM 500nM  0.625µl 

R primer**  20µM 500nM  0.625µl 

F actin primer  20µM  500µM  0.2µl (if used) 

R actin primer  20µM 500nM  
0.2µl (if used, 0.4µl water 

removed) 

Biotaq*** 5U/µl 1U/tube 0.2µl 

Mg
2+

  1.5mM  0.75µl 

 

 

*F primer: forward primer 

**R primer: reverse primer 

***Biotaq
TM

 (DNA polymerase)  

All primers and sequences are described in Table 2.7 and Table 2.8. 

The mix was vortexed and centrifuged for a few seconds.  24.5ml of this master mix 

was added to a PCR tube and 0.5ml of cDNA template was then added. The mix was 

again vortexed and centrifuged. A negative control in which cDNA was substituted 

with an equal volume of DNAse free water was used for each experiment. 
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2.9.7 Thermocycling program for PCR amplification 

This was carried out in the PTC-100 programmable thermal controller (MJ Research 

Ltd, Massachusetts, USA) 

Step 1 

1) Initial denaturation 95C  for 2 min 

2) 55°C for 1 min  

3) 72°C 2 min 

 

Step 2 

Step 2 was repeated for 23- 24 cycles depending on the target 

1) Denaturation  94°C 1 min 

2) Annealing 56°C 30 sec  

3) Elongation/extension 72°C 1 min 

23 Cycles for actin 55
o
C 

24 Cycles for c-myc 58
o
C (co amplified with actin at same conditions) 

24 Cycles for cyclin D1 58
o
C 

 

  Step 3   

1) Denaturation         94°C 1 min 

2) Final extension     60C 7min 
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Step 4 

1) Hold  12C         

Samples were resolved using 2% agarose gel as described previously (see Section 

2.9.3). 8µl of PCR product was mixed with 10µl gel loading buffer.  

 

primer used for PCR (amplicon size) Supplier 

β- actin (204bp) MWG biotech, London, UK 

c-myc (468bp) Invitrogen, Paisley, UK 

cyclin D1 (515bp) Invitrogen, Paisley, UK 

 

Table 2.7 

primers used for PCR. 
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Target gene Primer sequence 

Conditions 

(annealing 

temperature and 

cycle number) 

β- actin F 204bp 5’-GGAGCAATGATCTTGATCTT-3’ 
55 

o
C  

23 cycles 

β- actin  R 204bp 5’-CCTTTCTGGGCATGGAGTCCT-3’ 
55 

o
C  

23 cycles 

c-myc F 5’-TTGCAGCTGCTTAGACGCTG-3’ 
58 

o
C  

24 cycles 

c-myc R 5’-CCACATACAGTCCTGGATGA-3’ 
58 

o
C  

24 cycles 

Cyclin D1 F 5’-GGATGCTGGAGGTCTGCGAG-3’ 
58 

o
C  

24 cycles 

Cyclin D1 R 5’-GAGAGGAAGCGTGTGAGGCG-3’ 
58 

o
C  

24 cycles 

 

Table 2.8 

Primer sequences and reaction conditions used for semi-quantitative RT-PCR. 
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2.10 Affymetrix microarray analysis 

The Breast Cancer Molecular Pharmacology Group has an extensive database of 

Affymetrix derived gene expression data sets for endocrine resistant breast cancer 

cell models which was accessed for Wnt pathway profiling in this study. Biological 

replicates were used: RNA had been isolated from triplicate cultures of MCF-7, 

Tam-R, Fas-R cells (during log phase growth), MCF-7 cells treated for 10 days with 

tamoxifen [MCF-7 (tam)] and Tam-R cells treated with gefitinib  [Tam-R (gefitinib)] 

using TriReagent with subsequent minicolumn-based DNase1 treatment and RNA 

clean-up. Following quantification and determination of RNA integrity using 

denaturing gel electrophoresis, samples were used in Affymetrix U133A Genechip 

analysis (Central Biotechnology Services, Cardiff University, Cardiff, UK). 

Hybridised arrays were scanned and data output generated using Microarray Suite 

MAS5.0 software (Affymetrix) and data quality confirmed through analyses of 

internal control gene expression before uploading it onto a Genesifter® analysis 

software package. 

In this project, an online search was done to select genes identified with Wnt 

signalling. An on-line commercially available database of genes (SABiosciences 

2012) was selected for this purpose. This contained 84 genes related to Wnt 

signalling (Table 2.9). 

 

  



 

 

 this image has been removed by the author 

for copyright reasons  

Table 2.9 

List of Wnt gene probe set (adapted from 

SABiosciences, 2012). 

88 



89 

 

The database was cross referenced with genes on GeneCards (2012) to identify  

Affymetrix U133A probe sets matching these genes were identified. A total of 76 

genes had U133A probes and all probes for the genes were included.  A total of 111 

gene probes were identified (see Appendix).  

The in-house database of Affymetrix U133A Genechip data was then assessed for 

these genes in the following models: 

 Log phase MCF-7 cells versus Tam-R cells (stable; 1year) 

 MCF-7 cells +/- 10 days of tamoxifen [10
-7

M] 

 Log-phase MCF-7 cells versus Fas-R cells (stable; 2 years) 

 MCF-7 cells +/- 10 days of oestradiol [10
-9

M] 

 Tam-R cells +/- 10 days of gefitinib [1µM]. 

Comparative gene expression was performed by Lynne Farrow (Breast Cancer 

Molecular Pharmacology Group) on data for each cell model using median-

normalised, log-transformed data using the on-line software package 

(www.genesifter.net). Heatmaps were generated (see Table 9.1, Table 9.2, Table 9.3, 

Table 9.4, Figure 9.1, Figure 9.2, Figure 9.3) and probes with expression >1.5x 

control were selected (i.e. Tam-R vs. MCF-7, tamoxifen treated MCF-7 vs. MCF-7, 

Fas-R versus MCF-7, oestradiol treated MCF-7 vs. MCF-7). For gefitinib treated 

Tam-R versus Tam-R cells, only genes which were differentially expressed in Tam-

R cells compared to MCF-7 cells (see Table 3.2) were explored (see Figure 6.9). Red 

signalled increased expression; green showed decreased expression of mRNA 

compared to MCF-7 or Tam-R controls (black). T-testing was also carried out for 

each probe and a p value </= 0.05 was taken to be significant. 
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2.11 TCF/LEF Reporter Assay 

2.11.1 Transfection procedure 

Cells were plated at an appropriate density into 12 well plates in normal basal 

medium for 24 hours prior to transfection. Volumes of media, lipid, and plasmids 

required for experiment were calculated based on instructions outlined below. 

DCCM with 2% glutamine was prepared for the experiment. For each construct 

used, three 15ml falcon tubes were required (A, B, C).  

Cignal® TCF/LEF reporter (luc) assay kit was used to evaluate the Wnt pathway 

(Biosciences). 

TCF/LEF 

Reporter 

A mixture of inducible TCF/LEF-responsive firefly luciferase 

construct and constitutively expressing Renilla luciferase construct 

(40:1). 

Negative 

control 

A mixture of non-inducible firefly luciferase construct and 

constitutively expressing Renilla luciferase construct (40:1).  

Positive 

control 

A mixture of constitutively expressing GFP, constitutively 

expressing firefly luciferase, and constitutively expressing Renilla 

luciferase constructs (40:1:1). 

 

For each reporter gene construct (see Figure 2.7): 

Tube A: 60µl of DCCM/well was added to tube A. 3µl/well of transfection lipid 

(Lipofectin®) was then added.   

Tube B:  60µl of DCCM/well was added to tube B. A total of 1µg of plasmid DNA 

per well was then added comprising 500ng of TCF/LEF construct and 500ng (0.9µg) 

of pCR script bulk plasmid per well.  
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Tubes A and B were gently shaken to mix and left to equilibrate at 37
o
C for 45 

minutes.   

Tube C: Enough DCCM was added to bring the final volume to 500µl (380µl of 

DCCM+ 60µl A +60µl B per well). 5µl per well DMSO was then added to tube C 

(final concentration of 1%).  

The procedure was then repeated for negative and positive constructs. After 45 

minutes, tubes A and B were mixed and allowed to stand at 37
o
C for 15 minutes. 

Tube C was then added to combined contents of A and B to produce the final 

transfection medium (Figure 2.7: rows 1, 2 and 3). The cell medium was then 

aspirated and the cells were washed with 1ml of DCCM. The medium was then 

removed and 500µl of appropriate transfection medium was added to each well. 

Plates were incubated at 37
o
C for 6 hours. Treatment media were prepared (wRPMI+ 

5%SFCS + 2%glutamine+ pharmacological treatments). Treatments used were 

lithium chloride [10 and 20mM], PNU74654 [10µM] and iCRT14 [6.25µM]. 

Antibiotics and antifungals were excluded.  After 6 hours, the transfected cells were 

washed with 1.5mls of basal medium and then this was replaced with treatment 

medium. Cells were treated for 16-24 hours before proceeding to cell lysis.  

 

2.11.2 Cell lysis/ Reporter gene assay 

2.11.2.1 Cell lysis 

Treatment medium was removed and cells were washed with sterile PBS. This was 

then aspirated and replaced with 200µl of 1xPromega Passive Lysis Buffer for dual 

luciferase assay. Cells were scraped into lysis buffer using the barrel of a 1ml 

syringe and then transferred to a 1.5ml eppendorf tube and kept on ice for 10 
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minutes. Lysates were frozen at -80
o
C for at least 1 hour prior to thawing for reporter 

assay. This freeze-thaw step acted as part of the lysis process.  

 

2.11.3 Luciferase assay (Promega dual luciferase reporter assay kit) 

100µl of assay reporter buffer was added to 100µl of thawed lysate and read for 10 

seconds on the luminometer (Lumet LB 9507; EG and G Berthold). The tube was 

removed and 100µl of Stop and Glo reagent was then added to quench the initial 

reaction and initiate the second phase of the dual luciferase assay. Tubes were again 

read using the luminometer and the process was repeated for each sample. 

Luminometer signal levels were comparable with other signal levels validated in the 

lab (Jarno 2003, Madden 2004). Transfection efficacy information was obtained 

from readout of positive control (GFP) samples using fluorescent microscope. Cells 

were counterstained with Dil cell labelling solution to assess percentage transfection. 

Our transfection rates were 30-40% and these were comparable with other reporter 

assays validated in the lab (Jarno 2003, Madden 2004). 
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2.12 Statistical analysis 

Statistical analysis of results was carried out where data allowed. In comparing 

treatment against suitable control, paired student’s t-test was used and significance 

was determined at p<0.05. For multiple data points, analysis of variance (ANOVA) 

was done followed by post hoc analysis using Tamhane (for unequal variance), 

Dunnett or Tukey tests (for equal variance).  
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Chapter 3 

Characterisation of Wnt signalling components in 

breast cancer cell lines 
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3 Characterisation of Wnt signalling components in breast 

cancer cell lines 

Based on existing data supporting deregulation of beta-catenin in cell models of 

acquired endocrine resistance (Hiscox et al. 2006), we hypothesised that this may 

reflect deregulation of the Wnt pathway, of which beta-catenin is a key downstream 

effector. Thus, we initially interrogated our in-house microarray database for Wnt 

pathway gene changes.  

 

3.1 Affymetrix Analysis 

A list of genes coding for different elements in canonical Wnt signalling were 

selected for detailed analysis from the list in Table 2.9. 

 

AES (TLE/Groucho), APC, AXIN1, BCL9 , CSNK1A1, CSNK1D, CSNK1G1, 

CSNK2A1, CTBP1, CTBP2, CTNNB1, CTNNBIP1 (ICAT), CXXC4, DIXDC1, 

DKK1, DVL1, DVL2, EP300, FRAT1, FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, 

FZD7, FZD8, GSK3A, GSK3B, LEF1, LRP5, LRP6, NKD1, PORCN, PPP2CA, 

PPP2R1A, PYGO1, SENP2, SFRP1, SFRP4, SOX17, TCF7, TCF7L1, WIF1, 

WNT1, WNT10A, WNT16, WNT2, WNT2B, WNT3, WNT3A, WNT4, WNT6, 

WNT7A, WNT7B, WNT8A. 
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3.1.1 Affymetrix HGU-133A gene microarray data analysis:  Tam-R cells 

versus MCF-7 cells 

The genes in section 3.1 were cross- referenced with the Affymetrix data set for 

probes showing >1.5 times differences compared to control (Table 3.1) and a 

separate list was generated consisting of twenty-three gene probes (Table 3.2). 

CTBP2 and EP300 were not included in this table as their effect on canonical Wnt 

signalling is not clear.  Ten gene probes coding for genes which stimulate canonical 

Wnt signalling were up-regulated and two were down- regulated; five gene probes 

coding for genes that inhibit canonical Wnt signalling were up-regulated and one 

was down- regulated.  AXIN1, CSNK1G1 and CSNK1A1 have a dual effect and 

may act as co-suppressors or co-activators. Of the twenty-three genes in this selected 

list, changes in seven probes were significant by t-testing (*). These were WNT4, 

WNT6, APC, CTNNB1, EP300, DKK1 and Axin1. WNT4, WNT6, CTNNB1, 

EP300, DKK1 and Axin1 had only 1 probe set; EP300 had two probe sets; APC had 

four probe sets. Of the two EP300 gene probes, only one probe reached statistical 

significance at >1.5 control. Of the four APC genes probes, only one probe reached 

significance at >1.5 control and by t-testing. The other probes listed in Table 3.2 

showed >1.5 difference compared to control but they failed to reach significance by 

t-testing. This was probably due to inter-sample variation. Assuming equal 

contribution from each gene probe which reached statistical significance, there was 

activation of canonical Wnt signalling in Tam-R cells compared to MCF-7 cells. 
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Row Other ID Gene ID Fold Difference 

1 208606_s_at WNT4* 10.39 

2 221609_s_at WNT6* 9.01 

3 221558_s_at LEF1 5.29 

4 203525_s_at APC* 3.35 

5 220277_at CXXC4 3.02 

6 205990_s_at WNT5A 2.83 

7 201533_at CTNNB1* 2.29 

8 200951_s_at CCND2 1.97 

9 204420_at FOSL1 1.88 

10 212073_at CSNK2A1 1.86 

11 34697_at LRP6 1.81 

12 221455_s_at WNT3 1.78 

13 202210_x_at GSK3A 1.7 

14 213425_at WNT5A 1.69 

15 206459_s_at WNT2B 1.63 

16 201700_at CCND3 1.61 

17 204129_at BCL9 1.57 

18 219993_at SOX17 1.55 

19 208867_s_at CSNK1A1 1.55 

20 203698_s_at FRZB 1.53 

21 209468_at LRP5 1.52 

22 221245_s_at FZD5 1.51 

96 202221_s_at EP300* 1.5 

97 218665_at FZD4 1.51 

98 218759_at DVL2 1.54 

99 218941_at FBXW2 1.63 

100 204901_at BTRC 1.7 

101 215377_at CTBP2 1.86 

102 206796_at WISP1 1.98 

103 212849_at AXIN1* 2 

104 201466_s_at JUN 2.05 

105 220640_at CSNK1G1 2.1 

106 214489_at FSHB 2.21 

107 216060_s_at DAAM1 2.23 

108 204602_at DKK1* 2.35 

109 203220_s_at TLE1 3.22 

110 201465_s_at JUN 3.89 

111 203222_s_at TLE1 4.44 

 

 

Table 3.1 

Gene probes for Tam-R cells versus MCF-7 cells showing >/=1.5 fold difference.     

* Significant by t-test at p</= 0.05. Genes associated with canonical Wnt signalling 

(see section 3.1) are highlighted in yellow. Genes above red line show increased 

expression (red), genes below red line show decreased expression (green). 

Highlighted probes (yellow) were identified for further analysis (see Table 3.2). 

  

yellow: canonical 

Wnt signalling 

red: increased 

expression 

green: decreased 

expression 
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 upregulated 

reported 

impact on 

Wnt 

signalling 

downregulated 

reported 

impact on 

Wnt 

signalling 

Ligands/effectors WNT4* increased DKK1* decreased 

 WNT6* increased   

 WNT3 increased   

 WNT2B increased   

     

Receptors LRP6 increased FZD4 increased 

 LRP5 increased   

 FZD5 increased   

     

Destruction 

complex 
APC* decreased DVL2 increased 

 CXXC4 decreased Axin 1* equivocal 

 
CK1alpha1 

(CSNK1A1) 
equivocal 

CK1gamma1 

(CSNK1G1) 
equivocal 

 
CK2alpha1 

(CSNK2A1) 
decreased   

 GSK3A decreased   

 
β- catenin 

(CTNNB1)* 
increased   

     

Nuclear LEF1 increased   

 BCL9 increased   

 SOX17 decreased   

 

Table 3.2 

Table showing canonical Wnt signalling genes that are differentially expressed in 

Tam-R cells versus MCF-7 cells (highlighted yellow in Table 3.1). * Significant by 

t-test at p</= 0.05. 
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The process was repeated for each comparison group. 

 

3.1.2 Affymetrix HGU-133A gene microarray data analysis: tamoxifen treated 

MCF-7 cells versus MCF-7 cells 

Table 3.3 is a list of the gene probes that showed >1.5 difference compared to 

control for this analysis. The highlighted probes (yellow) were referenced to the list 

for canonical Wnt signalling (see section 3.1). A list of twenty- six probes was 

identified (see Table 3.4). In the probes which were upregulated, seven probes coded 

for genes which increase canonical Wnt activity, two coded for genes that decrease 

canonical Wnt activity; CSNK1A1 may either increase or decrease canonical Wnt 

signalling. The list of downregulated gene probes included seven probes coding for 

genes that increase canonical signalling, five probes coding for genes down-

regulating canonical Wnt signalling and three coding for genes that may both 

increase or decrease canonical Wnt signalling. Of the twenty- six probes, eight 

probes were significant when compared to MCF-7 controls by t-testing. These were 

LEF1, DVL2, SFRP1, SFRP4, FZD5, LRP5, TCF7L1 and GSK3A. Genes coding 

for LRP5 and TCF7L1 had only one probe, the other genes had two probes. 

Assuming equal contribution from each gene probe which reached statistical 

significance, these changes were equivocal for changes in canonical Wnt signalling 

components between MCF-7 cells treated with [10
-7

M] tamoxifen for ten days and 

MCF-7 cells. 
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Row Other ID Gene ID Fold Difference 

1 221558_s_at LEF1* 3.22 

2 203525_s_at APC 3.21 

3 214724_at DIXDC1 3.07 

4 216060_s_at DAAM1 2.61 

5 203987_at FZD6 2.53 

6 209630_s_at FBXW2 2.42 

7 201465_s_at JUN 2.38 

8 212073_at CSNK2A1 2.18 

9 34697_at LRP6 2.13 

10 213425_at WNT5A 2.05 

11 200951_s_at CCND2 1.94 

12 219683_at FZD3 1.92 

13 201219_at ZRANB1 1.82 

14 201349_at SLC9A3R1 1.74 

15 208865_at CSNK1A1 1.65 

16 208606_s_at WNT4 1.61 

17 202431_s_at MYC 1.59 

18 215517_at PYGO1 1.58 

19 206524_at T 1.5 

89 57532_at DVL2* 1.51 

90 202037_s_at SFRP1* 1.54 

91 208774_at CSNK1D 1.57 

92 212849_at AXIN1 1.64 

93 203081_at CTNNBIP1 1.65 

94 221609_s_at WNT6 1.65 

95 204051_s_at SFRP4* 1.66 

96 206136_at FZD5* 1.7 

97 217729_s_at AES 1.71 

98 210248_at WNT7A 1.77 

99 220277_at CXXC4 1.78 

100 206459_s_at WNT2B 1.81 

101 204420_at FOSL1 1.83 

102 209468_at LRP5* 1.94 

103 203698_s_at FRZB 2.05 

104 221016_s_at TCF7L1* 2.1 

105 203222_s_at TLE1 2.27 

106 202210_x_at GSK3A* 2.38 

107 203697_at FRZB 2.39 

108 40837_at TLE2 2.41 

109 221029_s_at WNT5B 2.54 

110 220640_at CSNK1G1 2.54 

111 214489_at FSHB 2.74 

 

Table 3.3 

Gene probes for MCF-7 cells treated with tamoxifen [10
-7

M] for 10 days versus 

MCF-7 cells showing >/=1.5 fold difference. * Significant by t-test at p</= 0.05. 

Genes associated with canonical Wnt signalling (see section 3.1) are highlighted in 

yellow. Genes above red line show increased expression (red), genes below red line 

show decreased expression (green). Highlighted probes (yellow) were identified for 

further analysis (see Table 3.4). 

yellow: canonical 

Wnt signalling 

red: increased 

expression 

green: decreased 

expression 
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 upregulated 

reported 

impact on 

Wnt 

signalling 

downregulated 

reported 

impact on 

Wnt 

signalling 

Ligands/effectors WNT4 increased WNT6 increased 

   WNT2B increased 

   WNT7A increased 

   SFRP1* decreased 

   SFRP4* decreased 

     

Receptors FZD6 increased FZD5* increased 

 LRP6 increased LRP5* increased 

 FZD3 increased   

     

Destruction 

complex 
APC decreased DVL2* increased 

 DIXDC1 increased CXXC4 decreased 

 
CK2alpha1 

(CSNK2A1) 
decreased AXIN1 equivocal 

 
CK1alpha1 

(CSNK1A1) 
equivocal GSK3A* decreased 

   
CK1delta 

(CSNK1D) 
equivocal 

   
CK1gamma1 

(CSNK1G1) 
equivocal 

     

Nuclear LEF1* increased AES decreased 

 PYGO1 increased TCF7L1* increased 

   CTNNBIP1 decreased 

 

Table 3.4 

Table showing canonical Wnt signalling genes that are differentially expressed in 

[10
-7

M] tamoxifen treated MCF-7 cells versus MCF-7 cells (highlighted yellow in 

Table 3.3). * Significant by t-test at p</= 0.05. 



103 

 

3.1.3 Affymetrix HGU-133A gene microarray data analysis:  Fas-R cells 

versus MCF-7 cells (model for absence of ER activity) 

Similar analysis was done for the data comparing Fas-R versus MCF-7 cells (Table 

3.5). Twenty- three probes were identified for further analysis (Table 3.6). The list of 

up-regulated probes was sub-divided as follows: four probes coded for genes that 

increased canonical Wnt activity; six probes coded for genes decreasing canonical 

Wnt signalling. For the list of down-regulated probes, seven probes coded for genes 

that increased canonical Wnt activity, one coded for a gene that decreased canonical 

Wnt signalling and three probes coded for genes that could increase or decrease 

canonical Wnt signalling. CTBP1 and CTBP2 were not included in this table as their 

effect on canonical Wnt signalling is not clear. The changes identified between 

MCF-7 versus Fas-R were significant by t-testing for eight probes (*): these coded 

for CTNNB1, DVL2, CSNK1D, AXIN1, FZD7 and FZD2. Both probes for 

CSNK1D and DVL2 were positive. CTNNB1, AXIN1, FZD7 and FZD2 had only 

one probe. Assuming equal contribution from each gene probe which reached 

statistical significance, these changes were equivocal for activation of canonical Wnt 

signalling in Fas-R compared to MCF- cells. 
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Row Other ID Gene ID Fold Difference 

1 201700_at CCND3 5.84 

2 204712_at WIF1 2.99 

3 221609_s_at WNT6 2.95 

4 208606_s_at WNT4 2.39 

5 40837_at TLE2 2.25 

6 215310_at APC 2.04 

7 206737_at WNT11 1.83 

8 210248_at WNT7A 1.79 

9 212073_at CSNK2A1 1.66 

10 201533_at CTNNB1* 1.65 

11 208652_at PPP2CA 1.65 

12 220277_at CXXC4 1.61 

13 203525_s_at APC 1.57 

14 209630_s_at FBXW2 1.54 

86 221455_s_at WNT3 1.5 

87 206524_at T 1.5 

88 211312_s_at WISP1 1.5 

89 204452_s_at FZD1 1.52 

90 57532_at DVL2* 1.6 

91 207683_at FOXN1 1.61 

92 201465_s_at JUN 1.69 

93 215377_at CTBP2 1.71 

94 202221_s_at EP300 1.79 

95 214489_at FSHB 1.86 

96 203698_s_at FRZB 1.97 

97 216060_s_at DAAM1 1.97 

98 221558_s_at LEF1 2.03 

99 203220_s_at TLE1 2.05 

100 213980_s_at CTBP1 2.16 

101 208774_at CSNK1D* 2.2 

102 218759_at DVL2* 2.2 

103 220640_at CSNK1G1 2.22 

104 212849_at AXIN1* 2.39 

105 207945_s_at CSNK1D* 2.63 

106 208712_at CCND1 2.86 

107 203705_s_at FZD7* 2.88 

108 203222_s_at TLE1 3.29 

109 210220_at FZD2* 3.51 

110 208711_s_at CCND1 4.59 

111 204420_at FOSL1 9.46 

 

Table 3.5 

Gene probes for MCF-7 cells versus Fas-R cells showing >/=1.5 fold difference.      

* Significant by t-test at p</= 0.05. Genes associated with canonical Wnt signalling 

(see section 3.1) are highlighted in yellow. Genes above red line show increased 

expression (red), genes below red line show decreased expression (green). 

Highlighted probes (yellow) were identified for further analysis (see Table 3.6).   

yellow: canonical 

Wnt signalling 

red: increased 

expression 

green: decreased 

expression 
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 upregulated 

reported 

impact on 

Wnt 

signalling 

downregulated 

reported 

impact on 

Wnt 

signalling 

Ligands/effectors WIF1 decreased WNT3 increased 

 WNT6 increased DVL2* increased 

 WNT4 increased DVL2* increased 

 WNT7A increased   

     

Receptors   FZD7* increased 

   FZD2* increased 

   FZD1 increased 

     

Destruction 

complex 
APC decreased 

CK1delta 

(CSNK1D)* 
equivocal 

 APC decreased 
CK1delta 

(CSNK1D)* 
equivocal 

 
CK2α1 

(CSNK2A1) 
decreased AXIN1* decreased 

 PPP2CA decreased 
CK1gamma1 

(CSNK1G1) 
equivocal 

 
β- catenin 

(CTNNB1)* 
increased   

 CXXC4 decreased   

     

Nuclear   LEF1 increased 

 

Table 3.6 

Table showing canonical Wnt signalling genes that are differentially expressed in 

MCF-7 cells versus Fas-R cells (highlighted yellow in Table 3.5. * Significant by t-

test at p</= 0.05. 
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3.1.4 Affymetrix HGU-133A gene microarray data analysis: MCF-7 cells 

treated with oestradiol (E2) [10
-9

M] for 10 days versus MCF-7 cells 

(model for enhanced ER activity) 

Table 3.7 is a list of the gene probes that showed >1.5 difference compared to 

control for this analysis. The highlighted probes (yellow) were referenced to the list 

for canonical Wnt signalling (see section 3.1). A list of twenty- seven probes was 

identified (see Table 3.8). In the probes which were upregulated, two probes coded 

for genes which increase canonical Wnt activity, two coded for genes that decrease 

canonical Wnt activity; CSNK1A1 and CSNK2A1 may both increase or decrease 

canonical Wnt signalling. The list of downregulated gene probes included eight 

probes coding for genes that increase canonical signalling, six probes coding for 

genes down-regulating canonical Wnt signalling and two coding for genes that may 

both increase or decrease canonical Wnt signalling. Of the twenty- seven probes, ten 

probes were significant when compared to MCF-7 controls by t-testing. These were 

FZD6, DKK1, FZD2, FZD4, LRP5, CSNK1D, FRAT1, PYGO1, AES and TCF7L1. 

Genes coding for FZD6, PYGO1, FRAT1, FZD4, LRP5, AES, TCF7L1, FZD2 and 

DKK1 had only one probe, CSNK1D had two probes. Assuming equal contribution 

from each gene probe which reached statistical significance, there was inhibition of 

canonical Wnt signalling components between MCF-7 cells treated with [10
-9

M] 

oestradiol for ten days and MCF-7 cells. 
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Row Other ID Gene ID Fold Difference 
2 203525_s_at APC 3.59 
3 34697_at LRP6 3.01 
4 208712_at CCND1 2.53 
5 213425_at WNT5A 2.45 
6 203987_at FZD6* 2.44 
7 200952_s_at CCND2 2.21 
8 208711_s_at CCND1 2.08 
9 201466_s_at JUN 1.98 
10 202431_s_at MYC 1.97 
11 212073_at CSNK2A1 1.96 
12 216060_s_at DAAM1 1.91 
13 206562_s_at CSNK1A1 1.8 
14 209630_s_at FBXW2 1.78 
15 208865_at CSNK1A1 1.58 
16 201219_at ZRANB1 1.56 
17 213086_s_at CSNK1A1 1.55 
18 201349_at SLC9A3R1 1.54 
19 208867_s_at CSNK1A1 1.52 
81 202037_s_at SFRP1 1.5 
82 202221_s_at EP300 1.53 
83 208606_s_at WNT4 1.53 
84 218941_at FBXW2 1.54 
85 212849_at AXIN1 1.54 
86 208774_at CSNK1D* 1.54 
87 215517_at PYGO1* 1.57 
88 219889_at FRAT1* 1.59 
89 205254_x_at TCF7 1.62 
90 207683_at FOXN1 1.63 
91 204712_at WIF1 1.71 
92 218665_at FZD4* 1.72 
93 208570_at WNT1 1.76 
94 205648_at WNT2 1.78 
95 209468_at LRP5* 1.79 
96 217729_s_at AES* 2.02 
97 221029_s_at WNT5B 2.04 
98 202210_x_at GSK3A 2.07 
99 221016_s_at TCF7L1* 2.08 
100 203698_s_at FRZB 2.11 
101 207558_s_at PITX2 2.21 
102 210220_at FZD2* 2.23 
103 203697_at FRZB 2.24 
104 202036_s_at SFRP1 2.25 
105 40837_at TLE2 2.48 
106 203222_s_at TLE1 2.8 
107 220640_at CSNK1G1 2.88 
108 214489_at FSHB 2.89 
109 206796_at WISP1 3.3 
110 205990_s_at WNT5A 4.43 
111 204602_at DKK1* 4.63 

 

 

Table 3.7 

Gene probes for MCF-7 cells versus MCF-7 cells treated with E2 [10
-9

M] showing 

>/=1.5 fold difference. * Significant by t-test at p</= 0.05. Genes associated with 

canonical Wnt signalling are highlighted in yellow. Genes above red line show 

increased expression (red), genes below red line show decreased expression (green). 

Highlighted probes (yellow) were identified for further analysis (see Table 3.8). 

yellow: canonical 

Wnt signalling 

red: increased 

expression 

green: decreased 

expression 
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 upregulated 

reported 

impact on 

Wnt 

signalling 

downregulated 

reported 

impact on 

Wnt 

signalling 

Ligands/effectors   SFRP1 decreased 

   SFRP1 decreased 

   WIF1 decreased 

   Wnt1 increased 

   Wnt2 increased 

   Wnt4 increased 

   DKK1* decreased 

     

Receptors LRP6 increased FZD2* increased 

 FZD6* increased FZD4* increased 

   LRP5* increased 

     

Destruction 

complex 
APC decreased Axin 1 decreased 

 
CK2alpha1 

(CSNK2A1) 
decreased 

CK1delta 

(CSNK1D)* 
equivocal 

 
CK1alpha1 

(CSNK1A1) 
equivocal GSK3A decreased 

 
CK1alpha1 

(CSNK1A1) 
equivocal 

CK1gamma1 

(CSNK1G1) 
equivocal 

 
CK1alpha1 

(CSNK1A1) 
equivocal FRAT1* increased 

 
CK1alpha1 

(CSNK1A1) 
equivocal   

     

Nuclear   PYGO1* increased 

   TCF7 increased 

   AES* decreased 

   TCF7L1* increased 

 

Table 3.8 

Table showing canonical Wnt signalling genes that are differentially expressed in 

MCF-7 cells versus MCF-7 cells treated with E2 [10
-9

M] for 10 days (highlighted 

yellow in Table 3.7). * Significant by t-test at p</= 0.05. 
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3.2 SDS-Page/ Western blot 

Affymetrix data suggested differences in mRNA expression for Wnt signalling 

components between the different cell lines. The main focus of the project centred on 

pharmacological manipulation of Wnt signalling. We set out to explore signalling 

changes resulting from such modulation by SDS-Page/ Western blot. It was thus 

important to explore baseline expression and activity of Wnt signalling components. 

We focused on LRP6 (receptor), GSK- 3α/β (component of the destruction complex) 

and β- catenin (main effector of Wnt signalling). 

Western Blot analysis showed up regulation of LRP6 and p-LRP6 in Tam-R 

compared to MCF-7 replicating data suggested by heatmaps (Figure 3.1). Total β- 

catenin was raised in Tam-R cells consistent with previously published data (Hiscox 

et al. 2006) and the mRNA profile (Table 3.2). Analysis of Fas-R cells was also done 

(Figure 3.2). p-LRP6 expression appeared to be reduced compared to parental MCF-

7 cells, but total β- catenin was raised (as for mRNA data, Table 3.8) suggesting a 

possible role for Wnt signalling in this setting too. This was also supported by active 

β- catenin (dephosphorylated on S33 or T41; see Section 1.1.3.2.3 and Section 3.3) 

expression which was highest in Fas-R cells. Total GSK- 3α/β was highest in MCF-7 

cells and lowest in Tam-R cells. Levels of expression for total (active) GSK- 3α/β 

relative to (inactive) p- GSK- 3α/β were lower in Tam-R cells compared to MCF-7 

cells. This would be consistent with more activated Wnt activity in Tam-R cells (see 

Section 1.1.3.2.2).  However, p- GSK- 3α/β level was highest in Fas-R cells 

suggesting decreased β- catenin phosphorylation in this cell line. A representative 

blot for Western blot analysis is shown in Figure 3.1.  

 



Figure 3.1 

Profiling different components of Wnt pathway in 

MCF-7, Tam-R and Fas-R cell lines as determined 

by Western blotting. 

MCF-7, Tam-R and Fas-R cells were cultured to log-phase 

growth. The cells were then lysed. SDS-PAGE/ Western blot 

analyses was carried out using 30µg of total soluble protein and 

the membranes were probed with antibodies specific to LRP6, 

p-LRP6, active β- catenin, total  β- catenin, GSK-3α/β, p- GSK-

3α/β and β- actin. There are differences in the levels of protein 

expression between the three cell lines. Representative blot for 

β- actin is shown. Densitometry was done and data were 

corrected for β- actin. 
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3.3 Immunocytochemistry analysis of beta-catenin in endocrine 

sensitive versus resistant cells 

β-catenin is a key effector of canonical Wnt signalling. Transcriptionally active β-

catenin is β-catenin dephosphorylated at serine 37 (S37) or threonine 41 (T41). It is 

free to migrate to the nucleus where it can bind to TCF/LEF and activate gene 

transcription. Localisation of active β- catenin in MCF-7 and Tam-R cell lines was 

explored using immunocytochemistry. H score for active β- catenin was calculated 

(Figure 3.2, Figure 3.3). Data represents collated data from three separate 

experiments. The average H score for nuclear active β- catenin in Tam-R cells was 

particularly high at 225 and about 40% greater than in MCF-7 cells. This difference 

was significant by paired t-test analysis (p= 0.01). This finding supports prominent 

active Wnt signalling in Tam-R cells. SW480 cells were used as a control for nuclear 

β-Catenin staining (see Section 2.8.3).  

  



Figure 3.2 

Localisation of active β- catenin in MCF-7 and 

Tam-R cell lines as determined by 

immunocytochemistry.  

Active β - catenin (mouse monoclonal 

antibody: 1:30 for MCF-7 and Tam-R; 

1:120 for SW480 ) methanol fix 

MCF-7 

Tam-R 

SW480 

(control) 

MCF-7, Tam-R and SW480 cells were cultured on cover slips 

until they reached log- phase growth. They were then fixed with 

methanol as described in the materials and methods section. 

The cells were then assayed for active (dephosphorylated) β- 

catenin using a specific monoclonal antibody. SW480 cells 

were used as control. Representative images were taken using 

Olympus BH-2 phase contrast microscope fitted with Olympus 

DP-12 digital camera system. Original magnifications x40. 
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Figure 3.3 

H score for active β- catenin in MCF-7 and Tam-R 

cells as determined by immunocytochemistry.   

H score for active β- catenin in MCF-7 and Tam-R cells was 

calculated (see Figure 3.3).  Table (A) shows average H score 

values for the two cell lines. Graph (B) shows H score as % 

MCF-7 control. The difference between the two cell lines was 

significant for nuclear expression of active β- catenin * (p= 

0.01). Error bars show SEM (n=3). 
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3.4 Summary 

3.4.1 Affymetrix HGU-133A gene microarray data 

Findings from the Affymetrix HGU-133A gene microarray data analysis of Tam-R, 

Fas-R, MCF-7 cells treated with tamoxifen and MCF-7 cells treated with oestradiol 

showed changes in mRNA expression for Wnt signalling compared to MCF-7 

controls. This difference was most pronounced for Tam-R cells compared to MCF-7 

cells, and MCF-7 cells treated with oestradiol compared to MCF-7 cells. The 

changes supported a role for increased Wnt signalling in tamoxifen resistance and 

suggested that Wnt signalling may be repressed by oestradiol. 

The on-line gene list selected was chosen as it provided a broad overview of various 

components of Wnt signalling (SABiosciences 2012). More detailed analysis was 

focused on the canonical Wnt pathway of which β- catenin is a main effector. We 

appreciate that a limitation of the analysis is that only t-testing was done. False 

discovery rate (FDR) may be reduced by Bonferroni or Benjamini-Hochberg testing 

(Reiner et al. 2003, Dudoit et al. 2003). Our Affymetrix analysis looked at variations 

in mRNA expression of selected genes. A change in mRNA expression does not 

always translate into altered protein activity, but data are often used as a surrogate to 

help direct further investigations. The data could be further validated using PCR and 

this gives scope for future work. 

 

3.4.2 Western Blot 

Western blotting was used to explore protein levels for LRP6, p-LRP6, GSK- 3α/β, 

p- GSK- 3α/β, total β- catenin and active β- catenin. LRP6 and p-LRP6 antibodies 

were verified with respective constructs (gift from Professor Trevor Dale’s Lab, 
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School of Biosciences, Cardiff University, UK); see Methods section 2.5.6). p-LRP6 

appeared to be increased in Tam-R cells compared to MCF-7 cells as was total β- 

catenin. GSK- 3α/β activity appears to be reduced in both Tam-R cells and Fas-R 

cells suggesting decreased activation of the degradation complex. This would 

support increased nuclear β- catenin activity and enhanced Wnt signalling. Wnt 

signalling is transmitted though dephosphorylated β- catenin (Staal FJ 2002): the 

active β- catenin is dephosphorylated at S37 or T41. 

Western blotting is a qualitative test.  Semi- quantitative analysis was possible by 

running a house- keeping gene (β-actin), and using densitometry as a quantification 

measure for the image.  

  

3.4.3 Immunocytochemistry analysis of beta-catenin in endocrine sensitive 

versus resistant cells 

Staining for active β- catenin was more pronounced in Tam-R cells compared to 

MCF-7 cells and nuclear staining is more prominent. Antibody activity was verified 

using SW480 cells (gift from Professor Trevor Dale’s lab, School of Biosciences, 

Cardiff University, UK; see section 2.8.3). 
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Chapter 4 

Activation of Wnt signalling in endocrine sensitive 

and endocrine resistant breast cancer cells 
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4 Activation of Wnt signalling in endocrine sensitive and 

endocrine resistant breast cancer cells 

Our previous gene and protein analysis pointed to a deregulation of Wnt pathway 

elements in tamoxifen resistant versus tamoxifen sensitive breast cancer cells. To 

further explore the importance of this pathway in these cells, we sought to induce 

Wnt pathway activation in Tam-R and MCF-7 cell models using the Wnt ligand, 

Wnt3a, and also lithium chloride. 

Use of Wnt3a ligand to stimulate Wnt activity is widely reported in the literature. It 

may be used in purified form or as enriched conditioned medium. A commercially 

available purified Wnt3a ligand was used in this project. Both GSK- 3β and β- 

catenin represent suitable endpoints with which to monitor Wnt pathway activity. 

Wnt3a has been shown to activate Wnt signalling (Yun et al. 2005) with resultant 

increase in β-catenin as evidenced by Western blot. GSK- 3β activity has also been 

reported to change as a result of Wnt3a stimulation (Sonderegger et al. 2010). Work 

on HEK 293 cells by Gujral and MacBeath (2010) traced changes in β- catenin from 

as early as 5 minutes. The authors observed two phases of transcription following 

stimulation by Wnt3a: an early phase (at 1 hour) where signalling antagonists were 

downregulated and a late phase (at 24 hours) where some of these antagonists were 

upregulated. Changes were correlated to increased proliferation. 

Similarly, activation of Wnt signalling using lithium chloride (LiCl) results in 

modulation of GSK- 3α/β activity which in turn may act to stabilise β- catenin. LiCl 

is a GSK- 3α/β inhibitor. The exact mechanism of action remains unknown; it is not 

specific to Wnt signalling as GSK- 3α/β interacts with other pathways. GSK- 3α/β is 

inactivated by phosphorylation (serine-9 in GSK-3ß and serine-21 in GSK-3α) 
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(Vincan 2008). LiCl exposure should result in an increase in total β- catenin but 

these changes can be difficult to see in cells expressing high levels of β- catenin 

(Vincan 2008). O’Brien et al. (2009) quote IC50 for lithium inhibition of GSK3 at 

about 1.0 mM whereas Vincan (2008) indicates that 20-30mM levels are required for 

GSK3 inhibition. A range of concentrations up to 40mM were used in these 

experiments. 

We also wanted to explore whether modulation of Wnt pathway signalling would 

affect cellular proliferation in these cells. Thus, MTT assays were used to monitor 

changes in cell growth in response to both Wnt3a and LiCl. 

When Wnt signalling is activated, β- catenin translocates to the nucleus where it is 

free to bind with TCF/LEF and activate gene transcription. This activity may be 

measured using TCF/LEF Reporter assays and these are widely used to explore Wnt 

signalling modulation (Molenaar et al. 1996). Reporter assays were used to assess 

response to LiCl stimulation in this project. 
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4.1 Activation of Wnt signalling in endocrine-sensitive and 

resistant cell models by Wnt3a 

Wnt signalling activation by Wnt3a ligand in MCF-7 and Tam-R cells was assessed 

using Western blot and growth assays. 

4.1.1 Changes in cell signalling when MCF-7 and Tam-R cells were treated 

with Wnt3a 

MCF-7 and Tam-R cells were treated with Wnt3a ligand (0 to 200ng/ml 

concentrations) for 1 hour. Wnt3a activation should result in increased 

phosphorylation of GSK- 3α/β, an increase in active β- catenin (due to decreased β- 

catenin phosphorylation) and an increase in total β- catenin levels. Changes in 

signalling protein expressions were determined by Western blot (see Figure 4.1).  

There was no change in GSK- 3α or active β- catenin expression when MCF-7 cells 

were treated with Wnt3a.  Total β- catenin expression fell at Wnt3a concentration of 

100ng/ml. There was a fall in GSK- 3β expression after treatment at Wnt3a 

concentrations of 100 and 200ng/ml. p-GSK - 3α expression fell at Wnt3a 

concentration of 200ng/ml; there was a rise in p-GSK - 3β expression at Wnt3a 

concentrations of 50ng/ml and 100ng/ml and a fall at Wnt3a concentration of 

200ng/ml.  

When Tam-R cells were treated with Wnt3a, there was no change in total GSK- 3α/β 

and total β- catenin expression. There was a rise in active β- catenin expression at 

Wnt3a concentrations of 50, 100 and 200ng/ml. There was a rise in p- GSK- 3α 

expression at Wnt3a concentration of 100ng/ml and a fall in p- GSK- 3β expression 

at Wnt3a concentration of 200ng/ml.  



Figure 4.1 

Effects of Wnt3a ligand (1 hour) on components of 

Wnt signalling in MCF-7 and Tam-R cell lines as 

determined by Western blotting. 

MCF-7 and Tam-R cells were cultured to log-phase growth and 

then treated with Wnt3a ligand (0- 200ng/ml concentrations) for 

1 hr. The cells were then lysed as described in materials and 

methods. SDS-PAGE/ Western blot analyses was carried out 

using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to GSK-3α/β, p- GSK-3α/β, 

active β- catenin, total  β- catenin and β- actin. The 

representative blot for β- actin is shown. Densitometry was 

done and data were corrected for β- actin. (n=1) 
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4.1.2 Effect of Wnt3a on cell growth 

MCF-7 and Tam-R cells were treated with Wnt3a ligand (200ng/ml) for seven days 

following which an MTT assay was performed to determine effects of Wnt3a on cell 

growth. Various concentrations of Wnt3a have been reported in the literature. The 

chosen concentration for this growth assay was 200ng/ml as this was the 

concentration corresponding to greatest signalling changes in MCF-7 cells (see 

Figure 4.1). The data suggested that there were no significant effects on cell growth 

over this period. This was true for both MCF-7 cells and Tam-R cells (Figure 4.2). 

  



Figure 4.2 

Effects of Wnt3a ligand (7 days) on growth of 

MCF-7 and Tam-R cells as determined by MTT 

assay. 

MTT assay using MCF-7 and Tam-R cells treated with Wnt3a 

ligand (0- 200ng/ml) for 7 days was done as described in 

materials and methods section. No significant difference in 

growth was noted. Error bars show SD (n=1; 24 samples). 
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4.2 Modulation of Wnt activity in endocrine-sensitive and resistant 

cell models by Lithium Chloride 

Wnt signalling activation by LiCl in MCF-7 and Tam-R cells was assessed using 

Western blot, growth assays and reporter assays. 

 

4.2.1 Changes in cell signalling when MCF-7 and Tam-R cells were treated 

with LiCl 

MCF-7 and Tam-R cells were treated with LiCl (0 to 40mM concentrations) for 1 

hour and signalling changes were determined by Western blot (Figure 4.3). When 

MCF-7 cells were treated with LiCl, total β- catenin expression was stable; total 

GSK- 3α/β expression fell at LiCl concentrations of 10, 20 and 40mM; p-GSK- 3α/β 

and active β- catenin expression rose at LiCl concentrations of 10, 20 and 40mM. 

When Tam-R cells were treated with LiCl, total GSK- 3α/β and total β- catenin 

expression were stable; p-GSK- 3α/βand active β- catenin expressions were 

increased at LiCl concentrations of 10, 20 and 40mM. 

  



MCF-7 and Tam-R cells were cultured to log-phase growth and 

then treated with Lithium Chloride (LiCl) 0- 40mM 

concentrations for 1 hour. The cells were then lysed as 

described in materials and methods. SDS-PAGE/Western blot 

analyses was carried out using 30µg of total soluble protein and 

the membranes were probed with antibodies specific to GSK-

3α/β, p- GSK-3α/β , active β- catenin, total  β- catenin and β- 

actin.  Densitometry was done and data were corrected for β- 

actin. (n=1) 

 

Figure 4.3 

Effect of Lithium Chloride (1 hour) on components 

of Wnt signalling in MCF-7 and Tam-R cell lines as 

determined by Western blotting. 
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4.2.2 Effect of LiCl on cell growth 

MCF-7 and Tam-R cells were treated with LiCl (0, 10 and 20mM concentrations) for 

four days and MTT assays were performed to determine effects of LiCl on cell 

growth. The data suggested that there were no significant effects on cell growth over 

this period. This was true for both MCF-7 cells and Tam-R cells (Figure 4.4). 

  



Figure 4.4 

Effects of LiCl (4 days) on growth of MCF-7 and 

Tam-R cells as determined by MTT assay. 

MTT assay using MCF-7 and Tam-R cells treated with LiCl (0- 

20mM) for 4 days was done as described in materials and 

methods section. No significant difference in cell growth was 

noted. Error bars show SEM (n=3; 72 samples). 
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4.2.3 Effect of LiCl on gene transcription using TCF/LEF (luciferase) 

Reporter Assays 

Tam-R cells were treated with LiCl (0, 10 and 20mM concentrations) and TCF/ LEF 

reporter assays were done as described in materials and methods section. There were 

three parallel wells for each treatment and experiments were repeated three times. 

The Renilla luciferase serves as an internal control for normalizing transfection 

efficiencies and monitoring cell viability. Transfection efficiency in Tam-R cells was 

about 30%. Representative images of Tam-R cells were captured using fluorescent 

microscopy at 20x magnification. Green fluorescence indicates transfected cells 

which have taken up and are expressing the green fluorescent protein (GFP). Non- 

transfected cells were counterstained red with Dil cell labelling solution (Figure 4.5).  

 The TCF/LEF-responsive luciferase construct encodes the firefly luciferase reporter 

gene under the control of a minimal (m)CMV promoter and tandem repeats of the 

TCF/LEF transcriptional response element (TRE). Luciferase activities were 

expressed as fold stimulation and were related to respective reporter activities 

obtained with control vector plasmid. There was increased luciferase expression in 

Tam-R cells treated with LiCl. This was in keeping with Wnt pathway activation as a 

result of inhibition of GSK- 3α/β by LiCl and correlates with signalling data (Figure 

4.3). A dose response was observed and the change was significant (Figure 4.6). 

TCF/ LEF reporter assays support Wnt pathway activation by LiCl treatment.   



Figure 4.5 

Picture of Tam-R cells following TCF/LEF reporter 

assay transfection. 

Representative images of Tam-R cells were captured using a 

fluorescent microscopy at 20x magnification. Green dye show 

cells which have taken up the green fluorescent protein (GFP) 

which is coupled to Renilla (about 30%). Non- transfected cells 

were counterstained red with Dil cell labelling solution. 
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Figure 4.6 

Graph showing results of TCF/LEF reporter assay 

for Tam-R cells after treatment with LiCl for 16 

hours.  

Reporter assay was done as described in materials and methods 

section, and Tam-R cells were treated with LiCl (0- 20mM 

concentrations). Luciferase activity was expressed as fold 

stimulation and was related to respective reporter activity 

obtained with control vector plasmid.  

Error bars show SD. *test was significant compared to control 

(<0.05) by post hoc Dunnett 2-sided t-test. (n=2 for LiCl 

10mM; n=3 for LiCl 0 and 20 mM). 
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4.3 Summary for Wnt pathway activation 

4.3.1 Wnt3a activity 

Previous gene and protein expression data on Tam-R cells suggested a deregulation 

of Wnt signalling activity. 

When Tam-R cells were treated with Wnt3a, the rise in active β- catenin expression 

at Wnt3a concentrations of 50, 100 and 200ng/ml would support Wnt activation by 

the ligand, but expression of GSK- 3α/β, p- GSK- 3α/β and total β- catenin were 

again inconclusive. Protein expression data for MCF-7 cells is also inconclusive.  

MTT growth assay data was negative for both MCF-7 and Tam-R cells treated with 

Wnt3a ligand. 

 

A number of limitations need to be considered when interpreting the results: 

1. Number of experiments:  

The experiments were only done once and data cannot be confirmed to be a true 

reflection of Wnt3a activity.  

2. Choice of ligand:  

The subtle changes seen in protein expression in Tam-R cells would suggest that 

these cells were responsive to the ligand. This was however not confirmed with the 

growth assay.  MCF-7 cells failed to respond to the ligand. The ligand may not be 

appropriate for the cell model. Alternatively, Tam-R cells may have a higher 

baseline activity of Wnt activity and cannot achieve further stimulation of activity.  
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3. Timing: 

Cells were exposed to ligand for 1 hour in signalling experiments. Shorter time 

points/ time course experiments may be more suited to pick out earlier signalling 

changes. 

4. Other experiments: 

The use of purified conditioned media is widely reported in the literature and may be 

better suited for investigating Wnt activity. Enriched conditioned medium is 

produced from L-cells. L- cells are located in the mucosa of the distal ileum and 

colon (Goss K 2011) and exhibit constitutive Wnt pathway activation. They are used 

to produce Wnt3a medium (ATCC#CRL-2647) and parental L-cells (ATCC#2648) 

produce control conditioned medium for comparison.  

Reporter assays for transcription activity may add further insight into baseline Wnt 

activity and response to Wnt3a ligand in either cell line. 

 

4.3.2 LiCl activity 

LiCl stimulated Wnt activity in MCF-7 and Tam-R cells: p- GSK-3α/β and active β- 

catenin expression were increased with increasing concentrations of LiCl. Reporter 

assay activity confirmed activation of Wnt signalling by LiCl in Tam-R cells. MTT 

growth assay data was negative for MCF-7 and Tam-R cells treated with LiCl. 

 

The limitations of this experiment were as follows. 

1. Number of experiments:  
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The experiments were only done once and data cannot be confirmed to be a true 

reflection of LiCl activity.  

2. Timing: 

Cells were exposed to ligand for 1 hour in signalling experiments. Shorter time 

points may be more suited to pick out earlier signalling changes. 

3. Method: 

Tam-R cells have increased expression of β- catenin compared to the endocrine 

sensitive MCF-7 cells. Work reported by Vincan (2008, pg69) highlights that 

baseline expression of β- catenin is very important in interpreting signalling changes 

by western blotting. β- catenin is highly expressed in Panc04.03 cells. Even though 

they showed depletion of GSK- 3αβ after transfection of the cells by GSK-3α and 

GSK- 3β vectors, the authors failed to show a corresponding increase in levels of β- 

catenin by Western blotting. They suggest that reporter assay may be more 

appropriate to look at Wnt pathway activation in this setting. In contrast when they 

used MiaPaCa2 cells (low levels of baseline β- catenin), they were able to show an 

increase in total β- catenin after similar transfection and inhibition of GSK- 3αβ. Our 

findings would support this hypothesis as we did not show changes in β- catenin 

levels in our Western blotting experiments.  
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Chapter 5 

Inhibition of Wnt signalling in endocrine sensitive 

and endocrine resistant breast cancer cells 
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5 Inhibition of Wnt signalling in endocrine sensitive and 

endocrine resistant breast cancer cells 

Having identified that elements of the Wnt signalling pathway are deregulated in a 

model of tamoxifen-resistant breast cancer versus their endocrine sensitive 

counterparts, we next wished to investigate whether Wnt signalling played a 

dominant role in the Tam-R cells. To pursue this objective, we used two inhibitors of 

the Wnt pathway, IWP2 and PNU 74654 which act at different levels in the pathway. 

IWP2 is an inhibitor of Wnt processing and secretion and thus blocks Wnt ligand 

production (Chen et al. 2009). It is reported to inactivate Porcn, a membrane-bound 

O-acyltransferase (MBOAT), and selectively inhibits palmitoylation of Wnt. It also 

blocks Wnt-dependent phosphorylation of LRP6 receptor and Dvl2, and β-catenin 

accumulation (Chen et al. 2009). LRP6 and Dvl2 gene probes were both deregulated 

in the Affymetrix data set for Tam-R cells compared to MCF-7 cells (Table 3.1). 

Chen et al. (2009) used L-cells to demonstrate IWP2 activity and as yet there is no 

published work on the effect of IWP2 on breast cancer cells. PNU 74654 is reported 

to bind to β-catenin. It inhibits the interaction between β-catenin and T cell factor 4 

(TCF4) and disrupts the Wnt signalling pathway (Trosset et al. 2006). 

We set out the following objectives: 

 to investigate functional activity of Wnt inhibition by looking at growth and 

migration. 

 to investigate underlying mechanisms and signalling pathways. 

 to confirm reported activity of IWP2 and PNU 74654. 

  



135 

 

5.1 Changes in cell function when MCF-7 and Tam-R cells were 

treated with Wnt inhibitors 

5.1.1 IWP2 and PNU 74654 inhibit cell growth 

To determine the importance of Wnt signalling to MCF-7 and Tam-R cells, we first 

performed growth assays in the presence of the two inhibitors of Wnt signalling.  

Data from MTT assays revealed that both IWP2 and PNU 74654 had significantly 

suppressed the growth of Tam-R cells by about 50% but had no effect on MCF-7 cell 

growth at 10µM (Figure 5.1). Both drugs were superior in the Tam-R model. Cell 

counting assays using PNU 74654 showed a reduction in cell growth for both MCF-

7 cells and Tam-R cells, but the effect was again greater in Tam-R cells (Figure 5.2). 

IWP2 growth inhibition in cell counting assays replicated findings in MTT assays 

(Figure 5.2).   



Figure 5.1 

Effects of IWP2 and PNU 74654 (6 days) on growth 

of MCF-7 and Tam-R cells as determined by MTT 

assay. 

MTT assay using MCF-7 and Tam-R cells treated with IWP2 

and PNU 74654 (control and 10µM concentrations) for 6 days 

was done as described in materials and methods section. Error 

bars show SD (n=2, 16 samples). Growth suppression by Wnt 

inhibitors is greater in Tam-R than in MCF-7 cells. 
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Figure 5.2 

Effects of IWP2 and PNU 74654 (6 days) on growth 

of MCF-7 and Tam-R cells as determined by cell 

counting assay. 

Cell counting assay using MCF-7 and Tam-R cells treated with 
IWP2 and PNU 74654 (control and 10µM concentrations) for 6 
days was done as described in materials and methods section. 
Error bars show SD (n=2 experiments, 6 samples). Growth 
suppression by Wnt inhibitors is greater in Tam-R than in MCF-
7 cells. 
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We wanted to explore if tamoxifen had any interaction with the Wnt inhibitors and 

the effects outlined above could have been a result of this interaction. Previous work 

in the lab suggested that Tam-R cells have intracellular tamoxifen reserves for about 

two weeks. Tam-R cells were deprived of tamoxifen supplementation for two weeks 

and MTT assay was repeated.  Growth in Tam-R cells was again reduced by half 

after treatment with IWP2 and PNU 74654. This suggested there was no interaction 

between tamoxifen and Wnt inhibitors in these cells (Figure 5.3). 

  

  



Figure 5.3 

Effects of IWP2 and PNU 74654 (6 days) on growth 

of Tamoxifen deprived Tam-R cells as determined 

by MTT assay. 

Tam-R cells were grown in Tamoxifen deprived medium for 

two weeks before starting MTT assay. These cells were treated 

with IWP2 and PNU 74654 (control and 10µM concentrations) 

for 6 days as described in materials and methods section. Error 

bars show SD (n=2 experiments, 16 samples). Growth of Tam-

R cells was reduced by half after treatment with Wnt inhibitors. 
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Dose effects of IWP2 and PNU 74654 on growth of MCF-7 and Tam-R cell lines 

was determined by MTT assays. MCF-7 and Tam-R cells were treated with IWP2 

and PNU 74654 (0- 10µM concentrations) for 6 days. There was no significant effect 

on growth inhibition in MCF-7 cells treated with the two drugs (Figure 5.4). 

Maximum growth inhibition occurred at 10µM concentration of drugs in Tam-R 

cells (Figure 5.5). The maximum DMSO concentration used in these experiments 

was 2µM (see Appendix). 

  



Figure 5.4 

Effects of IWP2 and PNU 74654 (6 days) on growth 

of MCF-7 cells as determined by MTT assay.  

MTT assays using MCF-7 cells treated with IWP2 and PNU 

74654 (0- 10µM concentrations) for 6 days were done as 

described in materials and methods section. There was no 

significant change in cell growth. Error bars show SEM (n=2, 

16 samples). 
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Figure 5.5 

Effects of IWP2 and PNU 74654 (6 days) on growth 

of Tam-R cells as determined by MTT assay.  

MTT assays using Tam-R cells treated with IWP2 and PNU 

74654 (0- 10µM concentrations) for 6 days were done as 

described in materials and methods section. The greatest 

reduction in cell growth is seen at 10µM concentrations. Error 

bars show SEM (n=2, 16 samples). 
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Using data from MTT assays, the half maximal inhibitory concentration (IC50) for 

IWP2 and PNU 74654 was calculated for Tam-R cells (Figure 5.6) using linear 

interpolation (see Section 2.6.3). An IWP2 IC50 of 27nM is quoted for L-cells 

(Chen, Dodge et al. 2009). IWP2 IC50 for Tam-R cells was 10.2µM. There is no 

IC50 data in the literature for PNU 74654. Our results showed an IC50 of 8.5µM in 

Tam-R cells. IWP2 and PNU 74654 did not have a significant effect on growth of 

MCF-7 cells. This model assumes a linear effect of the drug on the cells: an 

exponential model may be better alternative approach. 

  



The half maximal inhibitory concentration (IC50) for Tam-R 

cells treated with IWP2 and PNU 74654 as determined by linear 

interpolation of data from MTT assays.  

Figure 5.6 

The half maximal inhibitory concentration  for 

Tam-R cells treated with IWP2 and PNU 74654. 
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5.1.2 IWP2 and PNU 74654 inhibit cell migration 

We set out to explore changes in cell migration in Tam-R cells after treatment with 

Wnt inhibitors. Previous experiments done in the lab had shown that MCF-7 cells 

have limited migratory properties, and were therefore not included in these 

experiments. In contrast, Tam-R cells have increased migratory behaviour. 

Migratory capacity of Tam-R cells following treatment with IWP2 and PNU 74654 

was assessed using in vitro migration assays. Representative images of migratory 

cells were captured using light microscopy at 20x magnification. Cells were stained 

purple with crystal violet. For quantification, the number of migratory cells in 5 

random fields of view were counted using a light microscope and presented as % of 

Tam-R untreated control (Figure 5.7). IWP2 and PNU 74654 both significantly 

decreased cell migration in Tam-R cells (p< 0.05). 

  



Figure 5.7 

Effects of IWP2 and PNU 74654 at 24 hours on 

migration in Tam-R cells as determined by cell 

migration assay. 

Migratory capacity of Tam-R following treatment with IWP2 

and PNU 74654 was assessed using in vitro migration assays. 

Representative images of migratory cells were captured using a 

light microscopy at 20x magnification. Cells are stained purple 

with crystal violet. For quantification, the number of migratory 

cells in 5 random fields of view were counted using a light 

microscope and presented as % of Tam-R control. 

Error bars show SD for n=3. p < 0.05 (*) for both IWP2 and 

PNU 74654 compared to control using post hoc 2 sided Dunnett 

t- test. 
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5.2 Changes in cell signalling when MCF-7 and Tam-R cells were 

treated with Wnt inhibitors 

Having established functional activity of Wnt inhibitors, we set out to explore 

underlying mechanisms and signalling pathways using Western Blotting. MCF-7 and 

Tam-R cells were treated with IWP2 and PNU 74654 at concentrations of 0 to 

10µM. Experiments were repeated at 5 minutes and at 1 hour. Equal loading was 

confirmed by Ponceau S staining. Unfortunately, we had persistent problems with β- 

actin and we were unable to obtain a signal in some experiments. GAPDH was used 

in other experiments 

 

5.2.1 IWP2 

5.2.1.1 IWP2 activity 

We wanted to establish proof of activity for IWP2 by Western blotting. As 

previously mentioned, IWP2 blocks Wnt-dependent phosphorylation of LRP6 

receptor. MCF-7 and Tam-R cells were treated with IWP2 for 5 minutes. As 

expected, IWP2 decreased p-LRP6 expression (Figure 5.8). This confirmed IWP2 

activity in both cell lines. 

  



Figure 5.8 

Effect of  IWP2 on LRP6  in MCF-7 and Tam-R 

cells as determined by Western Blotting. 

MCF-7 and Tam-R cells were cultured to log-phase growth and 

then treated with IWP2 (10µM concentration) and DMSO for 5 

minutes. The cells were then lysed. SDS-PAGE/ Western blot 

analyses was carried out using 30µg of total soluble protein and 

the membranes were probed with antibodies specific to LRP6, 

p-LRP6 and β- actin. Densitometry data was corrected for β-

actin. IWP2 decreased p-LRP6 in both MCF-7 and Tam-R cells. 
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5.2.1.2 Effect of IWP2 on Wnt signalling components 

Inhibition of Wnt signalling at the receptor level should result in increased activity in 

the destruction complex of which GSK- 3α/β is a key component. This leads to 

increased phosphorylation of β- catenin at S33, S37, T41 and a decrease in total β- 

catenin. 

When MCF-7 cells were treated with IWP2 (Figure 5.9, Figure 5.10), there was no 

consistent change in expression of total β- catenin and p-β- catenin (S33/37/T41) for 

the two time points and a small drop was noted in p-GSK- 3α/β expression at 1 hour. 

There was a fall in GSK- 3α expression with increasing IWP2 concentrations at 5 

minutes, but a rise was noted at 1 hour (Figure 5.9, Figure 5.10). 

The process was repeated using Tam-R cells. There was no change in expression of 

p-GSK- 3α/β, total β- catenin for the two time points. At five minutes, p-β- catenin 

(S33/37/T41) expression was decreased from 5µM and total GSK-3α/β expression 

was decreased from 1µM (Figure 5.11, Figure 5.12). 

  



Figure 5.9 

Dose dependent effect of  IWP2 on GSK-3α/β  and 

β- catenin in MCF-7 cells  at 5 minutes as 

determined by Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 5 minutes. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to GSK-3α/β, p- GSK-3α/β, β- 

catenin and p-S33 β- catenin. Densitometry data are shown. 

GSK-3α expression decreases with IWP2 treatment. 
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Figure 5.10 

Dose dependent effect of  IWP2 on GSK-3α/β  and 

β- catenin in MCF-7 cells at 1 hour as determined 

by Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 
with IWP2 (0 to10µM concentrations) for 1 hour. The cells 
were then lysed. SDS-PAGE/ Western blot analyses was carried 
out using 30µg of total soluble protein and the membranes were 
probed with antibodies specific to GSK-3α/β, p- GSK-3α/β, β- 
catenin and p-S33 β- catenin. Densitometry data are shown. 
IWP2 increased p- GSK-3α/ expression at 1 hour. 
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Figure 5.11 

Dose dependent effect of  IWP2 on GSK-3α/β  and 

β- catenin in Tam-R cells at 5 minutes as 

determined by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 5 minutes. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to GSK-3α/β, p- GSK-3α/β, β- 

catenin, and p-S33 β- catenin. Densitometry data are shown. 

IWP2 decreased p-S33 β- catenin and total GSK-3α/β 

expression at 5 minutes. 
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Figure 5.12 

Dose dependent effect of  IWP2 on GSK-3α/β  and 

β- catenin in Tam-R cells at 1 hour as determined 

by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 1 hour. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to GSK-3α/β, p- GSK-3α/β, β- 

catenin, and p-S33 β- catenin. Densitometry data are shown.  
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5.2.1.3 Effect of IWP2 on cell cycle proteins 

Binding of β-catenin to TCF/LEF results in transcription of several genes, including 

c-myc and cyclin D1 (Lepourcelet et al. 2004). Cell cycle proteins were assessed 

through cyclin D1and c-myc expression.  

Following treatment of MCF-7 with IWP2, c-myc expression was decreased at 5 

minutes (from 5µM) and increased at 1 hour (from 0.1µM). Cyclin D1 expression 

was decreased at 1 hour from 5µM (Figure 5.13, Figure 5.14). 

When Tam-R cells were treated with IWP2, c-myc expression decreased at 5 

minutes (from 0.5µM), but increased at 1 hour (from 0.1µM). There was a fall in 

cyclin D1 expression at 5 minutes (from 0.5µM) but no change was noted at 1 hour 

(Figure 5.15, Figure 5.16). 

  



Figure 5.13 

Dose dependent effect of  IWP2 on cyclin D1 and c-

myc in MCF-7 cells at 5 minutes as determined by 

Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 5 minutes. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to cyclin D1 and c-myc. 

Densitometry data are shown. IWP2 decreased c-myc 

expression at 5 minutes (from 5µM). 
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Figure 5.14 

Dose dependent effect of  IWP2 on cyclin D1 and c-

myc in MCF-7 cells at 1 hour as determined by 

Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 1 hour. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to cyclin D1 and c-myc. 

Densitometry data are shown. At 1 hour, IWP2 decreased cyclin 

D1 (10µM) and increased c-myc expression (from 0.1µM). 
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Figure 5.15 

Dose dependent effect of  IWP2 on cyclin D1 and c-

myc in Tam-R cells at 5 minutes as determined by 

Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 5 minutes. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to cyclin D1 and c-myc. 

Densitometry data are shown. IWP2 decreased c-myc 

expression at 5 minutes. 
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Figure 5.16 

Dose dependent effect of  IWP2 on cyclin D1 and c-

myc in Tam-R cells at 1 hour as determined by 

Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 
with IWP2 (0 to10µM concentrations) for 1 hour. The cells 
were then lysed. SDS-PAGE/ Western blot analyses was carried 
out using 30µg of total soluble protein and the membranes were 
probed with antibodies specific to cyclin D1 and c-myc.  
Densitometry data are shown. IWP2 increased c-myc 
expression at 1 hour. 
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5.2.1.4 Additional signalling mechanisms 

Previous experiments had shown that Wnt inhibition reduced growth and migration 

in Tam-R cells. We next looked at src and MAPK activity which help drive these 

two processes and are substantial in these cells (Hiscox S 2009, Hutcheson et al. 

2003).  

Following treatment of MCF-7 cells with IWP2, p-src expression was decreased at 5 

minutes (from 5µM).  The rise in p-src expression at 1 hour (from 0.1µM) was 

paralleled by changes in total src expression (Figure 5.17, Figure 5.18).  

For Tam-R cells treated with IWP2, there was a decrease in p-src expression at 5 

minutes (at 10 µM) and a rise at 1 hour (at 1 and 10 µM) (Figure 5.19, Figure 5.20). 

There was a decrease in p-MAPK expression by 10µM (Figure 5.21).  

 

  



Figure 5.17 

Dose dependent effect of  IWP2 on src in MCF-7 cells 

at 5 minutes as determined by Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 5 minutes. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to src and p-src. Densitometry 

data are shown. IWP2 decreased  p-src expression at 5 minutes 

from 5µM. 
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Figure 5.18 

Dose dependent effect of  IWP2 on src in MCF-7 

cells at 1 hour as determined by Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 1 hour. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to src and p-src. Densitometry 

data  are shown. IWP2 increased p-src expression at 1 hour but 

these changes were paralleled by changes in total src  

expression. 
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Figure 5.19 

Dose dependent effect of  IWP2 on src in Tam-R cells at 

5 minutes as determined by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 5 minutes. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to src and p-src. Densitometry 

data are shown. There was no change in p-src expression.  
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Figure 5.20 

Dose dependent effect of  IWP2 on src in Tam-R 

cells at 1 hour as determined by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 1 hour. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to src and p-src. Densitometry 

data are shown. There was no change in p-src expression.  

0

100

200

C D 0.1 0.5 1 5 10

p
ro

te
in

 e
xp

re
ss

io
n

 

[IWP2] µM 

p-src  (1 hour) 

1hr 

total src 

p-src 

Tam-R 

[IWP2] µM   C  D  0.1 0.5  1  5  10 

163 



Figure 5.21 

Dose dependent effect of  IWP2 on MAPK in Tam-R 

cells at 5 minutes as determined by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2 (0 to10µM concentrations) for 5 minutes. The cells 

were then lysed. SDS-PAGE/ Western blot analyses was carried 

out using 30µg of total soluble protein and the membranes were 

probed with antibodies specific to MAPK, p-MAPK and 

GAPDH. Densitometry data are shown and is corrected for 

GAPDH. Expression of p-MAPK decreased when cells were 

treated with IWP2 (10µM) . 
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5.2.2 PNU 74654 

PNU 74654 binds to β-catenin. It is reported to inhibit the interaction between β-

catenin and TCF4. 

 

5.2.2.1 Effect of PNU 74654 on Wnt signalling components 

PNU 74654 acts in the nucleus. We wanted to explore if its activity would have an 

effect on Wnt signalling components. We looked at receptor activity (LRP6), 

destruction complex activity (through GSK3 activity) and p-β- catenin (S33/37/T41). 

When MCF-7 cells were treated with PNU 74654, β- catenin expression remained 

unchanged at the two time points. p-β- catenin (S33/37/T41) expression was 

decreased at 5 minutes (at 10µM) and increased at 1 hour (at 10µM). There was 

decreased p-LRP6 and p-GSK3 (by 10µM) expression after treatment with PNU 

74654 for 5 minutes and decreased p-LRP6, p-GSK- 3α and p-GSK- 3β expression 

(from 0.1µM) after treatment with PNU 74654 for 1 hour (Figure 5.22, Figure 5.23, 

Figure 5.24, Figure 5.25). This suggested that Wnt inhibition at a nuclear level by 

PNU 74654 resulted in feedback to upstream components of Wnt signalling. 

  



Figure 5.22 

Dose dependent effect of  PNU 74654 on GSK-3α/β  

and β- catenin in MCF-7 cells at 5 minutes as 

determined by Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 5 minutes. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific to LRP6, p-

LRP6, GSK-3α/β, p- GSK-3α/β, β- catenin and p-S33 β- 

catenin.  
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Figure 5.23 

Densitometry data. 

Densitometry data for MCF-7 cells treated with PNU 746654 

for 5 minutes are shown. (see figure 5.20). PNU 74654 

decreased p-LRP6 and p-GSK-3 expression (by 10µM) . 

167 



Figure 5.24 

Dose dependent effect of  PNU 74654 on GSK-3α/β  

and β- catenin in MCF-7 cells at 1 hour as 

determined by Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 1 hour. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific to LRP6, p-

LRP6, GSK-3α/β, p- GSK-3α/β, β- catenin and p-S33 β- 

catenin.  
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Figure 5.25 

Densitometry data. 

Densitometry data for MCF-7 cells treated with PNU 746654 
for 1 hour are shown. (see figure 5.22). PNU 74654 decreased 
p-LRP6, p-GSK-3α and p-GSK-3β expression (from 0.5µM) 
but had no impact on p-S33 β- catenin expression.  
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The process was repeated using Tam-R cells (Figure 5.26, Figure 5.27, Figure 5.28, 

and Figure 5.29). PNU 74654 decreased p-LRP6 (from 0.5µM) and p-GSK3 

expression (from 0.1µM) at 5 minutes; expression of p-GSK3 was decreased at 1 

hour (from 0.5µM) as was expression of p-β- catenin (S33/37/T41) (from 0.5µM). 

This supported findings with MCF-7 cells and the suggestion that Wnt inhibition at a 

nuclear level by PNU 74654 resulted in feedback to upstream components of Wnt 

signalling. 

  



Figure 5.26 

Dose dependent effect of  PNU 74654 on GSK-3α/β  

and β- catenin in Tam-R cells at 5 minutes as 

determined by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 5 minutes. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific to LRP6, p-

LRP6, GSK-3α/β, p- GSK-3α/β, β- catenin and p-S33 β- 

catenin.  
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Figure 5.27 

Densitometry data. 

Densitometry data for Tam-R cells treated with PNU 74654 for 

5 minutes are shown (see figure). PNU 74654 decreases p-

LRP6 and p-GSK-3 expression had no impact on p-S33 β- 

catenin expression. 
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Figure 5.28 

Dose dependent effect of  PNU 74654 on GSK-3α/β  

and β- catenin in Tam-R cells at 1 hour as 

determined by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 1 hour. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific to LRP6, p-

LRP6, GSK-3α/β, p- GSK-3α/β, β- catenin and p-S33 β- 

catenin.  
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Figure 5.29 

Densitometry data 

Densitometry data for Tam-R cells treated with PNU 746654 for 

1 hour are shown. (see figure 5.28). PNU 74654 decreased p-

GSK-3 and p- S33 β- catenin expression (from 0.5µM). 
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5.2.2.2 Effect of PNU 74654 on growth signalling 

The impact of PNU 74654 on growth signalling was assessed through cyclin D1and 

c-myc expression.  

Following treatment of MCF-7 cells with PNU 74654, c-myc expression was 

decreased by 1 hour at 10µM. There was no change in cyclin D1 expression at 5 

minutes and 1 hour (Figure 5.30, Figure 5.31). 

Tam-R cells treated with PNU 74654 had decreased expression of c-myc at 5 

minutes (from 0.1µM) and 1 hour (10µM); cyclin D1 expression fell at the two time 

points with 10µM (Figure 5.32, Figure 5.33). 

  



Figure 5.30 

Dose dependent effect of PNU 74654 on cyclin D1 

and c-myc in MCF-7 cells at 5 minutes as 

determined by Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 1 hour. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific to cyclin D1 

and c-myc. Densitometry data are shown.  
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Figure 5.31 

Dose dependent effect of PNU 74654 on cyclin D1 

and c-myc in MCF-7 cells at 1 hour as determined 

by Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 1 hour. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific to cyclin D1 

and c-myc. Densitometry data are shown. PNU 74654 

decreased c-myc expression by 1 hour at 10µM. 
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Figure 5.32 

Dose dependent effect of PNU 74654 on cyclin D1 

and c-myc in Tam-R cells at 5 minutes as 

determined by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 1 hour. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific to cyclin D1 

and c-myc. Densitometry data are shown. PNU 74654 

decreased cyclin D1 expression (10µM) and c-myc expression 

(from 0.1µM) at 5 minutes. 
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Figure 5.33 

Dose dependent effect of PNU 74654 on cyclin D1 

and c-myc in Tam-R cells at 1 hour as determined 

by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 
with PNU 74654 (0 to10µM concentrations) for 1 hour. The 
cells were then lysed. SDS-PAGE/ Western blot analyses was 
carried out using 30µg of total soluble protein and the 
membranes were probed with antibodies specific to cyclin D1 
and c-myc. Densitometry data are shown. PNU 74654 
decreased cyclin D1 (5µM) and c-myc expression at 1 hour 
(10µM). 
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5.2.2.3 Additional signalling mechanisms. 

As with IWP2, we looked at src and MAPK activity following treatment with PNU 

74654. 

When MCF-7 cells were treated with PNU 74654, p-src expression was increased at 

5 minutes (from 0.5µM) but there was no consistent change at 1 hour (Figure 5.34, 

Figure 5.35). 

Similarly, when Tam-R cells were treated with PNU 74654, p-src expression was 

decreased at 5 minutes (from 0.1µM), but there was no change in p-src expression at 

1 hour (Figure 5.36, Figure 5.37). There was a decrease in p-MAPK expression 

(from 0.1µM) following treatment with PNU 74654 for 5 minutes (Figure 5.38). 

  



Figure 5.34 

Dose dependent effect of PNU 74654 on src in 

MCF-7 cells at 5 minutes as determined by Western 

Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 5 minutes. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific to src and p-

src. Densitometry data are shown. PNU 74654 increased p-src 

expression (0.5µM). 
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Figure 5.35 

Dose dependent effect of PNU 74654 on src in MCF-7 

cells at 1 hour as determined by Western Blotting. 

C=control D=DMSO (n=1) 

MCF-7 cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 1 hour. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific src and p-src. 

Densitometry data are shown. There was no consistent change 

in p-src expression. 
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Figure 5.36 

Dose dependent effect of PNU 74654 on src in Tam-R 

cells at 5 minutes as determined by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 5 minutes. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific to src and p-

src. Densitometry data are shown. PNU 74654 decreased p-src 

expression. 
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Figure 5.37 

Dose dependent effect of PNU 74654 on src in Tam-R 

cells at 1 hour as determined by Western Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 1 hour. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific to src and p-

src. Densitometry data are shown. 
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Figure 5.38 

Dose dependent effect of PNU 74654 on MAPK in 

Tam-R cells at 5 minutes as determined by Western 

Blotting. 

C=control D=DMSO (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with PNU 74654 (0 to10µM concentrations) for 5 minutes. The 

cells were then lysed. SDS-PAGE/ Western blot analyses was 

carried out using 30µg of total soluble protein and the 

membranes were probed with antibodies specific MAPK, p-

MAPK and GAPDH. Densitometry data are shown. PNU 74654 

decreased p-MAPK expression at 5 minutes (from 0.1µM). 
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5.3 Changes in signalling as assessed by PCR 

Western blot analysis had suggested changes in c-myc and cyclin D1 expression 

when Tam-R cells were treated with IWP2 and PNU 74654 (see section 5.2.1.3 and 

5.2.2.2). We set out to explore this further by using semi-quantitative reverse 

transcription polymerase chain reaction (RT-PCR) over a longer time frame. 

Tam-R cells were treated with IWP2 and PNU 74654 for 24 and 72 hours 

respectively and expression of these gene targets was examined using RT-PCR. 

Disappointingly, results failed to show a sustained significant change in expression 

of cyclin D1 or c-myc at 24 and 72 hours (Figure 5.39, Figure 5.40).  

  



C=control; D=DMSO; I= IWP2 10µM; P=PNU 74654 10µM; 

N=negative control. (n=1) 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2, PNU 74654 (10µM concentration) or DMSO for 24 

or 72 hours. The cells were then lysed as described in materials 

and methods section, and semi-quantitative reverse 

transcription polymerase chain reaction was carried out. Probes 

for cyclin D1 and β-actin were used. Densitometry data was 

corrected for β-actin.  

Figure 5.39 

Semi-quantitative reverse transcription polymerase 

chain reaction for cyclin D1. 

24 hours      72 hours 

cyclin D1 

β-actin 

C    D     I      P     C     D     I    P   N 
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C=control; D=DMSO; I= IWP2 10µM; P=PNU 74654 10µM; 

N=negative control. (n=2) 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2, PNU 74654 (10µM concentration) or DMSO for 24 

or 72 hours. The cells were then lysed as described in materials 

and methods section, and semi-quantitative reverse 

transcription polymerase chain reaction was carried out. Probes 

for c-myc and β-actin were used. Densitometry data was 

corrected for β-actin. 

Figure 5.40 

Semi-quantitative reverse transcription polymerase 

chain reaction for c-myc. 
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5.4 PNU 74654 activity 

PNU 74654 is reported to inhibit the interaction between β-catenin and TCF4. We 

used TCF/LEF reporter assays to assess PNU 74654 activity in Tam-R cells. 

TCF/ LEF (luciferase) reporter assays were done as described in materials and 

methods section, and Tam-R cells were treated with PNU 74654 and combination 

LiCl- PNU 74654 treatments. Results were normalised to internal control. 

Transfection efficacy was about 35% as assessed by GFP coupled to Renilla (Figure 

5.41). 

There was no corresponding drop in luciferase expression when Tam-R cells were 

treated with PNU 74654 (Figure 5.42). There was an increase in luciferase activity 

suggesting an activation of Wnt signalling by PNU 74654. The experiment was 

repeated using combination LiCl- PNU 74654 in an attempt to stimulate Wnt activity 

prior to PNU 74654 impact on Tam-R cells: again there was no significant drop in 

luciferase activity by PNU 74654 compared to LiCl control (Figure 5.43). 

 

  



Figure 5.41 

Tam-R cells following reporter assay transfection. 

Reporter assay (TCF/LEF) was done in Tam-R cells as 

described in materials and methods section. Representative 

image of Tam-R cells was captured using fluorescent 

microscopy at 20x magnification. Green dye show cells which 

have taken up the green fluorescent protein (GFP). Non- 

transfected cells were counterstained red with Dil cell labelling 

solution. 
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Figure 5.42 

TCF/LEF reporter assay for Tam-R cells treated 

with PNU 74654. 

TCF/LEF reporter assay was done as described in 
materials and methods section, and Tam-R cells were 
treated with PNU 74654 (0 and 10µM concentrations). 
Luciferase activities are expressed as fold stimulation and 
are related to respective reporter activities obtained with 
control vector plasmid. Error bars show SD (n=2). 
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Figure 5.43 

TCF/LEF reporter assay for Tam-R cells treated 

with LiCl and PNU 74654. 

TCF/LEF reporter assay was done as described in materials and 

methods section, and Tam-R cells were treated with LiCl (0 and 

20mM concentrations), PNU 74654 10µM and combination 

treatments. Luciferase activities are expressed as fold 

stimulation and are related to respective reporter activities 

obtained with control vector plasmid.  

Error bars show SD (n=3).  

* changes were significant compared to no treatment arm 

(<0.05) as determined by post hoc Dunnett t-test.  
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5.5 Further Wnt signalling inhibition studies 

Work done on IWP2 and PNU 74654 was encouraging and supported the role for 

Wnt signalling in endocrine resistance. However PNU 74654 activity was difficult to 

interpret. It was disappointing that the reporter assay activity in Tam-R cells treated 

with PNU 74654 did not support published data  (Trosset et al. 2006). Further 

signalling modulation was thus done by using another Wnt inhibitor acting at nuclear 

level of the pathway: iCRT14. 

 

5.5.1 iCRT14 

iCRT14 is a commercially available inhibitor which inhibits the β-catenin- 

responsive element (CRT). It is thought to influence the interaction between β-

catenin and TCF4 possibly by binding to β- catenin. TCF and E- cadherin bind to 

overlapping sites on β- catenin (Bienz and Clevers 2003) (Figure 5.44). Gonsavales 

et al. (2011) showed that the interactions between E-cadherin, α-catenin and β- 

catenin were not affected by iCRT14, thus showing specificity of drug activity.  

The aims were: 

 to establish activity of iCRT14 using reporter assays 

 to further investigate functional activity of Wnt inhibition by looking at the 

effect of iCRT14 on growth and migration.  

 

 

  



Figure 5.44 

Diagram showing structure of β-catenin (adapted 

from Bienz and Clevers (2003). 

Phosphorylation sites for GSK3 and CKI phosphorylation sites 

(small arrows) are found at the N terminus and are required for 

proteasome-mediated destruction; the C-terminal domain is 

required for signalling. Binding sites on β-catenin for 

cytoplasmic APC, Axin, α- catenin and E- Cadherin and nuclear 

TCF are overlapping. 

TAD: transcriptional activation domains  
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5.5.1.1 iCRT14 activity 

Tam-R cells were treated with LiCl (20mM) or combination LiCl (20mM) and 

iCRT14 (6.25µM) and TCF/ LEF (luciferase) reporter assays were done as described 

in materials and methods section 2.11. Luciferase activity was expressed as fold 

stimulation and was related to respective reporter activity obtained with control 

vector plasmid. When Tam-R cells were treated with LiCl there was increased 

TCF/LEF activity (expressed by increased luciferase activity); treatment of Tam-R 

cells with combination LiCl - iCRT14 decreases this activity (Figure 5.45). This 

supports modulation of Wnt signalling at the nuclear level by iCRT14. Transfection 

efficacy was about 30% as determined by GFP coupled to Renilla (similar to Figure 

5.41). 

  



Figure 5.45 

Effects of LiCl and iCRT14 on Wnt signalling 

transduction pathways in Tam-R cells as 

determined by TCF/LEF reporter assay. 

TCF/LEF reporter assay for Tam-R cells treated with LiCl 
(20mM) and iCRT14 (6.25µM). Activities are expressed as fold 
stimulation and are related to respective reporter activities 
obtained with control vector plasmid. LiCl stimulates TCF/LEF 
activity and iCRT14 reduces this activity in the presence of 
LiCl (n=1).  
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5.5.1.2 Effects of iCRT14 on cell growth 

Having established iCRT14 activity, we wanted to explore its effect on cell growth 

and proliferation. Cell growth was assessed by MTT assays and cellular proliferation 

was assessed by ICC through Ki-67 staining. 

 

5.5.1.2.1 MTT assays 

iCRT14 had a differential growth inhibitory effect in MCF-7 cells and Tam-R cell 

lines as assessed by MTT assays. Growth after treatment with inhibitor for 6 days 

was reduced by more than half in Tam-R cells, but there was no corresponding drop 

in MCF-7 cells (Figure 5.46). 

Dose effects of iCRT14 on growth of MCF-7 and Tam-R cell lines were determined 

by MTT assays. Cells were treated with iCRT14 (0- 25µM concentrations) for 6 

days. Growth inhibition was greater in Tam-R cells compared to MCF-7 cells 

(Figure 5.47). 

Using data from growth assays, the half maximal inhibitory concentration (IC50) for 

iCRT14 was determined by interpolation (see section 2.6.3). IC50 for iCRT14 in 

Tam-R cells was 5.5µM and IC50 in MCF-7 cells was 23µM (Figure 5.48).  



Figure 5.46 

Effects of iCRT14 (6 days) on growth of MCF-7 

and Tam-R cells as determined by MTT assay. 

MTT assay was done as described in materials and methods 

section using MCF-7 and Tam-R cells treated with iCRT14 

(control and 6.25µM concentrations) for 6 days. Error bars 

show SD for n=2, 16 samples. Growth suppression by iCRT14 

is greater in Tam-R than in MCF-7 cells. 
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Figure  5.47 

Effects of iCRT14 (6 days) on growth of MCF-7 

and Tam-R cells as determined by MTT assay. 

MTT assays using MCF-7 and Tam-R cells treated with iCRT14 

(0- 25µM concentrations) for 6 days were done as described in 

materials and methods section. Tam-R cells were more sensitive 

to growth inhibition than MCF-7 cells. Error bars show SD 

(n=3, 24 samples). 
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Figure 5.48 

The half maximal inhibitory concentration   for 

MCF-7 and Tam-R cells treated with iCRT14. 

The half maximal inhibitory concentration (IC50) for iCRT14 

in MCF-7 and Tam-R cells was determined by interpolation 

from cell growth data. 
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5.5.1.2.2 Effects of iCRT14 on cellular proliferation. 

Next we explored the effects of iCRT14 on cellular proliferation. MCF-7 and Tam-R 

cells were treated with iCRT14 6.35µM for 3 days and then stained for Ki-67 as 

described in the materials and methods section. There was about 40% decreased 

percentage positive staining in Tam-R cells compared to MCF-7 following iCRT14 

treatment (Figure 5.49, Figure 5.50). This is coupled by weaker nuclear staining. 

  



Figure 5.49 

Effects of iCRT14 treatment on proliferation of 

MCF-7 and Tam-R cells as determined by Ki-67 

antigen staining.  

MCF-7 and Tam-R cells were treated with iCRT14 6.25µM for 

3 days as described in the methods section. Cellular 

proliferation was assessed by staining for Ki-67 antigen. 

Representative images of cells were captured using a light 

microscopy at 20x magnification (n=2). 
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Figure 5.50 

Percentage positivity for Ki67 antigen staining in 

MCF-7 and Tam-R cells. 

Percentage positivity for Ki67 staining in MCF-7 and Tam-R 

cells treated with iCRT14 (0 or 6.25µM). (see Figure 5.49). 
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5.5.1.3 iCRT14 inhibits cell migration in Tam-R cells 

Migratory capacity of Tam-R cells following treatment with iCRT14 was assessed 

using in vitro migration assays. For quantification, the number of migratory cells in 5 

random fields of view were counted using a light microscope and presented as % of 

Tam-R control.  Treatment with iCRT14 significantly reduced migration of Tam-R 

cells (p<0.001) (Figure 5.51). 

  



Figure 5.51 

Effects of iCRT14 on migration in Tam-R cells as 

determined by cell migration assay at 24 hours. 

Migratory capacity of Tam-R following treatment with iCRT14 

was assessed using in vitro migration assays. Representative 

images of migratory cells were captured using a light 

microscopy at 20x magnification. Cells are stained purple with 

crystal violet. For quantification, the number of migratory cells 

in 5 random fields of view were counted using a light 

microscope and presented as % of Tam-R control. Error bars 

show SD for n=3 (p< 0.001). 
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5.6 Summary for Wnt inhibition 

 

5.6.1 Activity of Wnt inhibitors 

 IWP2 is reported to inhibit phosphorylation of p-LRP6 (Chen et al. 2009). 

This was demonstrated for both MCF-7 and Tam-R cells (Figure 5.8). 

Phosphorylation of LRP6 was taken as internal control for proof of drug 

activity in further experiments. 

 

 PNU 74654 is reported to bind to β- catenin and inhibit the interaction 

between β-catenin and (TCF4). Our experiments have failed to show 

consistent modulation of β– catenin or transcriptional activity (as assessed by 

Western blotting, PCR and TCF/LEF (luciferase) reporter assay). As 

described previously, changes in protein expression for β-catenin as 

determined by Western blotting can be difficult to demonstrate in cells 

having a high baseline expression of β-catenin (see Chapter 4). Western 

blotting experiments showed a decrease in c-myc and cyclin D1 expression 

when Tam-R cells were treated with PNU 74654 for 1 hour (Figure 5.33); but 

these results were not reproducible with RT-PCR (Figure 5.39, Figure 5.40). 

Cyclin D1 and c-myc expression are not exclusive to Wnt signalling 

modulation and this may explain why we failed to show a change in 

transcription for both IWP2 and PNU 74654. Leproucelet et al. (2004) 

analysed a number of compounds which inhibit β-catenin and TCF 

interaction.  Interestingly, they report a selective inhibition of c-myc and 

cyclin D1 by different compounds and one compound did not show inhibition 
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of either target. They also failed to show a reduction in cellular levels of β-

catenin by Western Blot analysis. This selectivity may explain why IWP2 

and PNU 74654 failed to reduce expression of c-myc and cyclin D1 by RT-

PCR. 

TCF/LEF (luciferase) assays failed to confirm PNU 74654 activity (Figure 

5.42, Figure 5.43). Initial drug characterisation experiments with this drug 

suggested a dose dependent effect of the drug on Tam-R cell growth, with 

lower concentrations having a stimulatory effect (Figure 5.5). The reporter 

assay process involves addition of RNA material to the cell. One possible 

explanation is that this results in a dilution of PNU 74654 concentrations 

relative to β-catenin/TCF binding site. This could be further explored by dose 

response reporter activity. Another explanation may be a differential effect of 

PNU 74654 on different cell lines. This could be further investigated by 

repeating reporter assays with human colorectal adenocarcinoma cell lines 

(e.g. SW480 [APC mutation] or HCT116 [Ser45-mutant β-catenin]).  

 

 iCRT14 is reported to inhibit the β-catenin- responsive element (CRT). It is 

thought to influence the interaction between β-catenin and TCF4. TCF/LEF 

(luciferase) reporter assays showed decreased activity following treatment 

with iCRT14 (Figure 5.45). Regretably the reporter assay experiments could 

only be performed once. Repeat experiments will help confirm iCRT14 

activity.  
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5.6.2 Effect of Wnt inhibitors on cell signalling 

Signalling experiments were only done once and data cannot be confirmed to be a 

true reflection of IWP2 and PNU 74654 activity. Effects of iCRT14 on cell 

signalling were not explored due to time constraints and this is scope for future 

work.  

Western blotting experiments were challenging. We noted that baseline expression 

of signalling components such as GSK- 3α/β, p-GSK- 3α/β, LRP6, p-LRP6, p-β- 

catenin (S33/37/T41), src and p-src in MCF-7 and Tam-R cells was not always 

consistent among controls. Immunoblotting for β- actin was particularly 

troublesome.  

Treatments were given for 5 minutes or 1 hour. Wnt activation can occur quickly 

though exact time schedules are difficult to determine and can vary between different 

cell lines. Compensatory mechanisms complicate interpretation of results for longer 

time schedules. 

Whilst signalling changes could reflect a hierarchical relationship with the Wnt 

pathway, it more probably revealed inherent variability of individual blots. This 

would be explored by further experiments. The general changes following treatment 

of MCF-7 and Tam-R cells with IWP2 and PNU 74654 are summarised in Table 5.1 

and Table 5.2.  
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[10µM] IWP2-MCF-7 IWP2-MCF-7 IWP2-Tam-R IWP2-Tam-R 

 5 minutes 1 hour 5 minutes 1 hour 

Wnt 

signalling 
    

p-LRP6 decreased  decreased  

p-GSK- 3α/β NC decreased NC decreased 

p- β- catenin 

(S33/37/T41) 
NC NC decreased NC 

     

growth 

signalling 
    

cyclin D1 NC decreased decreased NC 

c- myc decreased increased decreased increased 

     

other 

signalling 
    

p-src decreased increased decreased increased 

p-MAPK   decreased  
 

Table 5.1 

Summary of signalling changes in MCF-7 and Tam-R cells following treatment with 

IWP2 (10µM) for 5 minutes and 1 hour as determined by Western blotting.  

green= decreased protein expression; pink= increased protein expression; NC= no 

change. 

 

Decreased Wnt activity following treatment with IWP2 is supported by decreased 

expression of p-LRP6. Changes in cyclin D1 and c-myc expression at 5 minutes 

cannot as yet be explained. Decreased p-MAPK expression in Tam-R cells supports 

findings in growth and migration assays.  
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[10µM] PNU-MCF-7 PNU-MCF-7 PNU-Tam-R PNU-Tam-R 

 5 minutes 1 hour 5 minutes 1 hour 

Wnt 

signalling 
    

p-LRP6 decreased decreased decreased NC 

p-GSK- 3α/β decreased decreased decreased decreased 

p-β- catenin 

(S33/37/T41) 
decreased increased NC decreased 

     

growth 

signalling 
    

cyclin D1 NC NC decreased decreased 

c- myc decreased decreased decreased decreased 

     

other 

signalling 
    

p-src increased NC decreased NC 

p-MAPK   decreased  

 

Table 5.2 

Summary of signalling changes in MCF-7 and Tam-R cells following treatment with 

PNU 74654 (10µM) for 5 minutes and 1 hour as determined by Western blotting. 

green= decreased protein expression; pink= increased protein expression; NC= no 

change. 

 

PNU 74654 acts in the nucleus. Surprisingly there appears to be feedback to 

components higher up in the signalling pathway and Wnt inhibition is supported by 

decreased expression of p-LRP6, cyclin D1 and c-myc. Decreased p-MAPK 

expression in Tam-R cells supports findings in growth and migration assays. 
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5.6.3 Targeting different levels of Wnt signalling pathway has the same effect 

on cell function 

Wnt signalling can be targeted at different levels with similar effect. Differential 

growth and migration were observed in MCF-7 and Tam-R cells after treatment with 

IWP2, PNU 74654 and iCRT14, with Tam-R cells being more sensitive to Wnt 

inhibition than MCF-7 cells.  In the seminal paper by Hanahan and Weinberg (2000) 

on the hallmarks of cancer, growth and migration are two major features of cancer 

cells. This highlights the potential clinical benefit for use of Wnt inhibitors in this 

setting. 

Cell growth for IWP2 and PNU 74654 was assessed using MTT and cell counting 

assays (Figure 5.1, Figure 5.2). Each experiment was carried out twice, but results 

from MTT and cell counting assays were complementary. There are no models for 

direct comparison of the two growth assays. In cell counting assays, the final cellular 

concentration exceeded seeding density, suggesting that IWP2 and PNU 74654 had a 

cytostatic rather than a cytotoxic effect. We noted that cell counting assays were 

particularly challenging as drug treatment seemed to affect cell viscosity. We were 

worried about reproducibility of these results and further growth assays were done 

using MTT assays. Tamoxifen did not appear to affect activity of IWP2 or 

PNU74654.  When Tam-R cells were deprived of tamoxifen and treated with the two 

inhibitors, a similar pattern of growth inhibition was observed. Cell growth 

inhibition was significant in Tam-R cells treated with iCRT14 (p<0.001) as assessed 

by MTT assays (Figure 5.46). Cellular proliferation was also reduced in Tam-R cells 

following treatment with iCRT14 and this was reflected in the percentage positivity 

(Figure 5.49, Figure 4.50). 
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IWP2, PNU 74654 and iCRT14 all inhibited cell migration in Tam-R cells. Results 

were statistically significant at <0.05 (Figure 5.7, Figure 5.51). The effects on cell 

migratin could also occur via cell growth inhibition. However migration was 

assessed at 24 hours and growth inhibition/ cell viability was assessed at 6 days. The 

data supports suppression of cell migratory capacity following treatment with Wnt 

inhibitors. 
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Chapter 6 

Exploration of Wnt and EGFR signalling pathway 

interplay in tamoxifen resistant breast cancer cells 
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6 Exploration of Wnt and EGFR signalling pathway 

interplay in tamoxifen resistant breast cancer cells  

The Wnt signalling pathway is known to interact with a number of other pathways 

including those mediated by growth factors, the resultant effect of which may be 

receptor transactivation and/or elevated activity of downstream signalling elements 

(Goss K 2011). In breast cancer, there is evidence of cross talk between Wnt and the 

human epidermal growth factor receptor (EGFR) pathway. This is of particularly 

interest in the context of tamoxifen resistance, as EGFR activity is known to be 

upregulated in Tam-R cells (Hutcheson et al. 2006) and also clinical material from 

tamoxifen resistant tumours (Gee et al. 2005). In this chapter, we wished to 

determine whether crosstalk between the EGFR and Wnt pathways represented a 

mechanism for increased Wnt activity in Tam-R cells.  

 

6.1 Effect of dual EGFR and Wnt pathway inhibition on cell 

growth 

All three Wnt inhibitors (IWP2, PNU 74654 and iCRT14) had shown significant 

effects on Tam-R cell growth (see Figure 5.1, Figure 5.44). However we were unable 

to reliably determine the effect of PNU 74654 on Wnt signalling. IWP2 and iCRT14 

were therefore used for further experiments. Gefitinib (an EGFR kinase inhibitor and 

kind gift from Astra Zeneca, UK) was used to inhibit EGFR signalling and will 

subsequently be referred to as TKI.  

MCF-7 and Tam-R cells were exposed to IWP (10µM) and TKI (1µM) as 

monotherapies and as combined agents and cellular growth determined by MTT 
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assay (Figure 6.1).  IWP2, TKI and TKI – IWP2 treatments all significantly reduced 

Tam-R cell growth. There was a significant further growth inhibition for TKI when 

IWP2 was compared to TKI, and between IWP2 and TKI- IWP2, but the difference 

between TKI and TKI – IWP2 was not significant. The findings support an additive 

rather than a synergistic effect. 

  



Figure 6.1 

Effects of IWP2 and EGFR tyrosine kinase 

inhibition (TKI/ gefitinib) on growth of MCF-7 and 

Tam-R cells as determined by MTT assay. 

MCF-7 and Tam-R cells were treated with IWP2 (10µM), TKI 

(1µM) or combination TKI - IWP2 treatments for 3 days. 

Inhibition of cell growth was assessed using MTT assays as 

described in the materials section. IWP2 and TKI both inhibit 

cell growth. Tam-R cells were more sensitive to inhibition than 

MCF-7 cells. 

Error bars show SD for n=3 experiments. *test was significant 

compared to untreated control by post hoc statistical analysis. 

Other significant comparisons in Tam-R cells were IWP2 

compared to IWP2 – TKI and TKI compared to IWP2 (**). 
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MCF-7 and Tam-R cells were treated with iCRT14 (6.25µM), TKI (1µM) or 

combination TKI – iCRT14 (Figure 6.2). Again, Tam-R cells were more sensitive to 

single and dual inhibition than MCF-7 cells. In MCF-7 cells, TKI and TKI – iCRT14 

treatments had a significant effect on cell growth. For Tam-R cells, all three 

treatment arms were significant. Combined inhibition of Wnt and EGFR resulted in a 

greater suppression of cell proliferation versus inhibition of each of these pathways 

alone (iCRT14 alone versus TKI – iCRT14 and TKI versus TKI – iCRT14) in Tam-

R cells. The findings support a synergistic effect. 

  



Figure 6.2 

Effects of iCRT14 and EGFR tyrosine kinase 

inhibition (TKI/ gefitinib) on growth of MCF-7 and 

Tam-R cells as determined by MTT assay. 

MCF-7 and Tam-R cells were treated with iCRT14 (6.25µM), 

TKI (1µM) or combination TKI - iCRT14 treatments for 3 days. 

Inhibition of cell growth was assessed using MTT assays as 

described in the methods section. iCRT14 and TKI both inhibit 

cell growth and the effect with combination treatments is 

additive. Tam-R cells were more sensitive to this inhibition than 

MCF-7 cells. 

Error bars show SD for n=3 experiments. * post hoc statistical 

analysis was significant compared to untreated control. For 

MCF-7 cells, difference between iCRT14 and TKI - iCRT14 

was also significant (**); for Tam-R cells, difference between 

iCRT14 and TKI - iCRT14 and difference between TKI and 

TKI - iCRT14 were also significant (**). 
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6.2 Effect of dual inhibition on cellular proliferation: Ki-67 

staining 

Having investigated the effect of dual inhibition on cell growth using MTT assays, 

subsequent experiments were performed in order to confirm these observations by 

looking at changes in cellular proliferation through Ki-67 staining. 

In these experiments, MCF-7 and Tam-R cells were treated with TKI (1µM), 

iCRT14 (6.25µM) or the two agents in combination for a period of 3 days. The 

resulting cells were then stained for Ki-67.  MCF7 cells showed little change in Ki-

67 staining with any of the treatments over this time period with the percentage 

positivity being approximately 100% for all treatment arms (Figure 6.3). In contrast 

to this, Tam-R cells exposed to TKI or iCRT14 as single agents lost Ki-67 positivity 

whereas the combination treatment substantially reduced this to 20% (Figure 6.4). 

  



Figure 6.3 

Effects of iCRT14 and EGFR tyrosine kinase 

inhibition (TKI/ gefitinib) on proliferation of MCF-

7 cells as determined by Ki-67 antigen staining.  

MCF-7 cells were treated with iCRT14 (I, 6.25µM), TKI (T, 

1µM) or combination TKI - iCRT14 (T-I) treatments for 3 days 

as described in the methods section. Cellular proliferation was 

assessed by staining for Ki-67 antigen. Representative images 

of cells were captured using a light microscopy at 20x original 

magnification (n=2). Percentage positivity for Ki-67 antigen 

staining is shown in the graph. 
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Figure 6.4 

Effects of iCRT14 and EGFR tyrosine kinase 

inhibition (TKI/ gefitinib) on proliferation of Tam-

R cells as determined by Ki-67 antigen staining.  

Tam-R cells were treated with iCRT14 (I, 6.25µM), TKI (T, 

1µM) or combination TKI - iCRT14 (T-I) treatments for 3 days 

as described in the methods section. Cellular proliferation was 

assessed by staining for Ki-67 antigen. Representative images 

of cells were captured using a light microscopy at 20x 

magnification (n=2). Percentage positivity for Ki-67 antigen 

staining is shown in graph. 
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6.3 Effect of EGFR inhibition on Wnt pathway activity and 

exploration of dual Wnt/ EGFR inhibition 

Growth data supported interaction between Wnt and EGFR signalling in Tam-R 

cells. We next set out to explore 

(i) whether Wnt inhibition affected EGFR pathway activity;   

(ii) whether EGFR inhibition affected Wnt pathway activity and  

(iii) whether combined Wnt and EGFR inhibition resulted in a greater 

suppression of EGFR and Wnt pathways than when these treatments were 

used as single agents.   

 

Tam-R cells were treated with IWP2 (10µM), gefitinib/ TKI (1µM) or combination 

of these agents (TKI - IWP2) for 5 minutes. Signalling changes were determined by 

Western blotting. We used LRP6 and p-LRP6 as read out for Wnt signalling 

modulation. MAPK and AKT were identified as downstream signalling elements 

common to the two pathways.  

Having previously established activity of IWP2 in Tam-R cells (see Section 5.2.1.1), 

a fall in expression of p-LRP6 was used as control for IWP2 activity. We have also 

shown that IWP2 inhibits MAPK activity in Tam-R cells (see section 5.2.1.4).  

Gefitinib [4-(3-chloro-4-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy) 

quinazoline] selectively inhibits the EGFR tyrosine kinase (Wakeling et al. 2002) 

and its activity on Tam-R cells has been previously described by Knowlden et al. 

(2003). A fall in p-EGFR expression was used as a control for gefitinib (TKI) 

activity. Gefitinib also inhibits MAPK and AKT activity in Tam-R cells (Knowlden 

et al. 2003). 
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6.3.1 Effect of Wnt inhibition on EGFR activity 

When Tam-R cells were treated with combination TKI- IWP2, there was a fall in p-

EGFR expression but this was not substantially different to the effect seen following 

treatment with either IWP2 or TKI alone (Figure 6.5). 

 

6.3.2 Effect of EGFR inhibition on Wnt activity 

Treatment of Tam-R cells with IWP2, TKI and combination TKI- IWP2 all resulted 

in a fall in p-LRP6 expression (Figure 6.6). The change in expression following 

treatment with IWP2 was greater than that seen following treatment with TKI; and 

treatment with combination TKI- IWP2 showed similar activity to IWP2 treatment 

alone.  

 

6.3.3 Effect of dual inhibition on MAPK activity 

When Tam-R cells are treated with IWP2, TKI or combination TKI- IWP2, there is a 

fall in p-MAPK expression (Figure 6.7). This is greater for TKI than IWP2, but the 

effect following combination TKI or TKI- IWP2 is similar.  

 

6.3.4 Effect of dual inhibition on AKT activity 

Treatment of Tam-R cells with IWP2, TKI and combination TKI- IWP2 resulted in a 

fall in p-AKT expression and the effect was similar in all treatment groups (Figure 

6.8). 

  



Figure 6.5 

Effect of IWP2, gefitinib and combination 

treatments on EGFR activity in Tam-R cells. 

C=control, T-I = sequential TKI and IWP2 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2 10µM, TKI (gefitinib) 1µM, or sequentially with 

TKI and IWP2 for 5 minutes. The cells were then lysed as 

described in materials and methods. SDS-PAGE/ Western blot 

analyses was carried out using 30µg of total soluble protein and 

the membranes were probed with antibodies specific to EGFR. 

p-EGFR and GAPDH. Densitometry data is shown and 

corrected for GAPDH. Error bars show SEM (n=2).  

EGFR activity was suppressed with single and dual inhibition. 
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Figure 6.6 

Effect of IWP2, gefitinib and combination 

treatments on LRP6 activity in Tam-R cells. 

C=control, T-I = sequential TKI and IWP2 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2 10µM, TKI (gefitinib) 1µM, or sequentially with 

TKI and IWP2 for 5 minutes. The cells were then lysed as 

described in materials and methods. SDS-PAGE/ Western blot 

analyses was carried out using 30µg of total soluble protein and 

the membranes were probed with antibodies specific to LRP6, 

p-LRP6 and GAPDH. Densitometry data is shown and 

corrected for GAPDH. Error bars show SEM (n=2). 

LRP6 activity was suppressed with IWP2 and dual inhibition.  
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C=control, T-I = sequential TKI and IWP2 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2 10µM, TKI (gefitinib) 1µM, or sequentially with 

TKI and IWP2 for 5 minutes. The cells were then lysed as 

described in materials and methods. SDS-PAGE/ Western blot 

analyses was carried out using 30µg of total soluble protein and 

the membranes were probed with antibodies specific to MAPK, 

p-MAPK and GAPDH. Densitometry data is shown and 

corrected for GAPDH. Error bars show SEM (n=2).  

MAPK activity was suppressed with TKI and dual inhibition. 

Figure 6.7 

Effect of IWP2, gefitinib and combination 

treatments on MAPK activity in Tam-R cells. 

total MAPK 

p-MAPK 

GAPDH 

C     TKI   IWP2  T-I 

0

20

40

60

80

100

120

C TKI IWP T-I

p
ro

te
in

 e
x

p
re

ss
io

n
 

(%
 c

o
n

tr
o

l)
 

p-MAPK 

226 



C=control, T-I = sequential TKI and IWP2 

Tam-R cells were cultured to log-phase growth and then treated 

with IWP2 10µM, TKI (gefitinib) 1µM, or sequentially with 

TKI and IWP2 for 5 minutes. The cells were then lysed as 

described in materials and methods. SDS-PAGE/ Western blot 

analyses was carried out using 30µg of total soluble protein and 

the membranes were probed with antibodies specific to AKT, p-

AKT and GAPDH. Densitometry data is shown and corrected 

for GAPDH. Error bars show SEM (n=2).  

AKT activity was suppressed with single and dual inhibition.  

Figure 6.8 

Effect of IWP2, gefitinib and combination 

treatments on AKT activity in Tam-R cells. 
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6.4 Affymetrix HGU-133A gene microarray data analysis:  Tam-R 

cells treated with gefitinib [1µM] versus Tam-R cells 

Encouraged by these data, we looked at Affymetrix HGU-133A gene microarray 

data for Tam-R cells treated with gefitinib [1µM] for 10 days (Figure 6.9). Our 

search was guided by previous findings in Tam-R cells (see Section 3.1.1) and was 

limited to probes identified in Table 3.2.  

DKK1, Wnt6 and Wnt4 probe sets were upregulated in gefitinib treated Tam-R cells 

versus Tam-R cells (>1.5 fold change compared to control). These changes were 

significant by t-testing (p< 0.05). DKK1 inhibits Wnt signalling; Wnt6 and Wnt4 

promote Wnt signalling. These changes support Wnt activation in Tam-R cells 

following treatment with gefitinib and this activation is in addition to changes 

previously reported between Tam-R cells and MCF-7 cells.  

 

 

  



Figure 6.9 

Heatmap for Wnt signalling probe set showing 

changes in gene expression between Tam-R cells 

treated with Gefitinib and Tam-R cells.  

Red signalled increased expression compared to Tam-R control 

(black). 

DKK1, Wnt6 and Wnt4 probes were upregulated in Gefitinib 

treated Tam-R cells versus Tam-R cells (>1.5 fold change 

compared to control) . These changes were significant by t-

testing (p< 0.05). 

Tam-R vs Gefitinib treated Tam-R 
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6.5 Summary 

Growth assays showed that Wnt and EGFR inhibitors were inhibitory both as single 

agents and particularly in combination in Tam-R cells. These findings suggested 

increased Wnt activity in Tam-R cells compared to MCF-7 cells. Affymetrix HGU-

133A gene microarray data for Tam-R cells treated with gefitinib [1µM] for 10 days 

also supported a link between the two pathways in this model. Growth suppression 

by Wnt inhibition may represent indirect targeting of EGFR signalling given the 

cross talk between the two pathways. Growth data using IWP2 and TKI would 

support this. However, combination iCRT14 and TKI had greater inhibitory effect on 

Tam-R growth than either inhibitor alone. This may be due to a degree of 

independent pathway activity. Data also suggests that targeting Wnt activity at the 

nuclear level (iCRT14) may be more effective than targeting Wnt signalling at the 

ligand/ receptor level (IWP2). These findings were supported by Ki-67 staining. 

Further evidence for cross- talk between the two signalling pathways comes from 

Affymetrix HGU-133A gene microarray data for Tam-R cells treated with gefitinib 

for 10 days, where changes suggest increased Wnt activation following gefitinib 

treatment. 

Early signalling data suggests that the interaction between EGFR and LRP6 may be 

bi-directional. This has led to the proposed model of Wnt and EGFR signalling in 

Tam-R cells (Figure 6.10). Unfortunately we were unable to explore the effect of 

signalling changes with iCRT14 and TKI combinations due to time constraints and 

this provides scope for further work.  

  



Figure 6.10 

Possible interaction between EGFR and Wnt 

signalling pathways. 

Wnt EGFR 

growth growth 
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Chapter 7 

Discussion 
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7 Discussion 

The data in this study shows that: 

(i) Wnt pathway elements are deregulated in a cell model of acquired 

tamoxifen resistance (Tam-R) compared to their tamoxifen sensitive 

parental cells (MCF-7). 

(ii) Tamoxifen resistant breast cancer cells are sensitive to pharmacological 

Wnt inhibitors, resulting in suppression of growth and migration; these 

agents have no effect on tamoxifen sensitive cells. 

(iii) A level of cross-talk appears to exist between the EGFR and the Wnt 

pathway in tamoxifen resistant cells. 

Collectively, these data suggest that Wnt signalling may play an important role in 

tamoxifen resistance where it may offer an opportunity for therapeutic intervention 

to control relapse and associated tumour aggressiveness.  
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Human breast cancer cell lines represent important tools in breast cancer research to 

study signalling pathways and mechanisms that can promote an endocrine- 

insensitive state and identify potential means to circumvent these phenomena and/ or 

to treat it (Lacroix M 2004). The tamoxifen resistant MCF-7 cell line (Tam-R) has 

been extensively characterised and has been shown to be a good model for acquired 

clinical endocrine resistance (Simstein et al. 2003, Gee et al. 2005b). Tam-R cells 

have a more aggressive phenotype accompanied by deregulated β- catenin (Hiscox et 

al. 2006). It has also been reported that there is increased coupling of β- catenin to 

LEF-1 with increased basal expression of c-myc, cyclin-D1 and CD44 catenin 

(Hiscox et al. 2006). β- catenin is a major effector of canonical Wnt signalling where 

it acts as a cofactor to modulate TCF/LEF transcription factor activity. This model 

was chosen to evaluate the importance of Wnt signalling in the context of tamoxifen 

resistance in this project.  

 

Initial observations from Affymetrix microarray data using the established Tam-R 

cells revealed changes in the expression of Wnt signalling components in these cells 

versus their parental, tamoxifen sensitive MCF-7 cells. These data therefore 

suggested that Wnt pathway activity might also be deregulated in these resistant 

cells, and thus might represent a mechanism which contributed to their resistant 

growth and aggressive behaviour. 

 

We subsequently wanted to explore if Wnt pathway deregulation occurred in 

response to tamoxifen treatment or if this was only present in the resistant 

phenotype, since tamoxifen is known to induce changes in signalling pathway 
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activity (e.g. EGFR) in response to short term treatment (Hiscox et al. 2006). 

Although some Wnt signalling components were deregulated in MCF-7 cells 

following 10 days of tamoxifen treatment, assuming an equal contribution from each 

gene change observed, the overall effect on canonical Wnt signalling remained 

equivocal during the endocrine response, contrasting with more prevalent changes by 

the time resistance emerges in Tam-R cells.  

 

Since both MCF-7 and Tam-R cells are ER positive breast cancer models, possible 

changes in Affymetrix data for Wnt signalling following modulation of ER activity 

over and above treatment with tamoxifen were explored. MCF-7 cells treated with 

oestradiol (E2) [10
-9

M] for 10 days were chosen as a model for enhanced ER 

activity; faslodex resistant MCF-7 (Fas-R) cells are ER negative and were used as a 

model for absence of ER activity (de novo tamoxifen resistance). Affymetrix data for 

MCF-7 cells treated with 10
-9

M E2 for 10 days suggested a reduction in Wnt 

signalling compared to MCF-7 cells. This is supported by data from Katoh (2002) 

who showed that in MCF-7 cells, Wnt3a was downregulated after treatment with 

oestradiol.  This confirms some aspect of Wnt signalling may be repressed by 

oestradiol. To further investigate whether there might be a link between ER 

expression and Wnt pathway regulation, Wnt pathway expression in Fas-R cells 

(which are ER negative) was investigated. Although a number of changes were 

observed in Wnt pathway components in Fas-R cells when compared to the parental 

MCF-7 cell model, the overall effect on canonical Wnt signalling remained 

equivocal in this model. The data implies that ER must be present for Wnt 

signalling. Increases seen in acquired endocrine resistance begin during early 
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treatment with tamoxifen and are maintained after development of tamoxifen 

resistance.  

 

An on-going working collaboration has been established with the Bioinformatics 

group at Philips Research Laboratories, Eindhoven, Netherlands. They have 

developed a computational model of the Wnt pathway using Affymetrix 

U133Plus2.0 gene microarrays and this has been validated in clinical material 

(Verhaegh et al. 2012). Preliminary exploration of our Affymetrix U133 gene 

microarray data for MCF-7 and Tam-R cells on their model, predicted that the 

probability of Wnt activation in Tam-R cells was higher than in MCF-7 cells, but 

results were inconclusive (personal correspondence). The limitations of this analysis 

were that the U133 microarrays have less probe sets than the U133Plus2.0 

microarrays (60 out of 80) and that it was challenging to normalise the U133A data 

to the U133APlus2.0 data. Though these are preliminary results, they are further 

independent exploratory confirmation of our findings. 

 

Our data suggests a role for Wnt signalling in Tam-R cells.  Published data supports 

a role for early Wnt signalling activation in the promotion of tamoxifen resistance. 

Schlange et al. (2007) showed that Wnt1 could rescue MCF-7 breast cancer cells 

from growth arrest following a seven day treatment with tamoxifen. This rescue was 

mediated by Wnt1 transactivation of EGFR activity via src, which our group has 

shown is also induced by tamoxifen (Gee et al. 2003, Borley et al. 2008). Tamoxifen 

treatment may thus induce signalling changes which make MCF-7 cells more 

sensitive to modulation by Wnt ligands (e.g. our Affymetrix data showed increased 
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LRP6 expression in Tam-R cells compared to MCF-7 cells). Wnt signalling may 

thus be an early target in helping to prevent acquired tamoxifen resistance. It also 

highlights an important potential interaction between Wnt and EGFR signalling. This 

interaction has been extensively described in the literature (although not in the 

setting of acquired tamoxifen resistance) and will be described in more detail in a 

later section. 

 

Published clinical data further supports observations seen in these cellular models. 

Joo et al. (2011) showed that in patients with invasive ductal carcinoma of the breast, 

neo-adjuvant tamoxifen treatment for twenty-six days prior to surgery produced 

changes in Wnt signalling components as determined by immunocytochemistry. In 

contrast, treatment with anastrazole failed to induce Wnt pathway expression. This 

may have important clinical implications and parallels changes in Wnt signalling 

noted during tamoxifen treatment in vitro and ultimately  in the acquired tamoxifen 

resistance model. Tamoxifen is often used as second line treatment following failure 

of aromatase inhibitors in the treatment of breast cancer. Targeting Wnt alongside 

treatment with tamoxifen may thus improve prognosis in this setting.  

 

Differences between MCF-7 and Tam-R cells as evidenced by Western blotting and 

immunocytochemistry further supported a role for deregulated Wnt signalling in 

Tam-R cells. Western blot showed increased p-LRP6 and total β- catenin, and 

immunocytochemistry showed increased nuclear activated beta catenin in Tam-R 

cells. Exploration of baseline TCF/LEF reporter assay activity in MCF-7 and Tam-R 

cells provides scope for further work. 
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Guided by these changes, the impact of modulating Wnt signalling in MCF-7 and 

Tam-R cells was compared. Both Wnt activators and Wnt inhibitors were used to 

further determine the relevance of this pathway and hence gauge potential targeting 

value. 

 

Wnt3a ligand is believed to play a key role in activating canonical Wnt signalling 

(Yamamoto H 2008) by binding to LRP6 (Yamamoto et al. 2006). Lithium Chloride 

inhibits GSK-3 activity (Stambolic et al. 1996) and has been extensively used to 

study modulation of β- catenin. When MCF-7 cells were treated with Wnt3a ligand, 

there was no change in GSK- 3α or active β- catenin expression. Total β- catenin 

expression fell at Wnt3a concentration of 100ng/ml. There was a fall in GSK- 3β 

expression after treatment at Wnt3a concentrations of 100 and 200ng/ml. p-GSK - 3α 

expression fell at Wnt3a concentration of 200ng/ml; there was a rise in p-GSK - 3β 

expression at Wnt3a concentrations of 50ng/ml and 100ng/ml and a fall at Wnt3a 

concentration of 200ng/ml. When Tam-R cells were treated with Wnt3a ligand, 

active β- catenin expression was increased, supporting Wnt signalling activation. 

Total β- catenin and total GSK- 3α/β expressions were unchanged, and expression of 

p- GSK- 3α/β differed with varying ligand concentrations. 

 

Treatment of MCF-7 and Tam-R cells with LiCl resulted in increased expressions of 

p-GSK- 3α/β and active β- catenin which would support Wnt activation. Total β- 

catenin expression remained unchanged. Activation of Wnt signalling by LiCl in 

Tam-R cells was confirmed using a TCF/ LEF (luciferase) reporter assay. However, 

there was no significant change in growth for both MCF-7 and Tam-R cells after 
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stimulation with Wnt3a ligand or LiCl. These preliminary findings suggest that 

canonical Wnt signalling can be further activated in both MCF-7 and Tam-R cell 

lines, but that this activation is not linked to increased cell growth. We propose that 

Wnt signalling is already maximal in Tam-R cells and so no further increase in 

growth is seen when cells are treated with LiCl and Wnt3a ligand. Wnt5b ligand has 

been shown to increase invasive properties in MCF-7 cells and this occurs through 

activation of the planar cell polarity pathway  (Klemm et al. 2011). In addition, 

growth in MCF-7 cells has been reported to be independent of β- catenin (Covey et 

al. 2012) and this is in agreement with our findings with LiCl and Wnt3a. 

 

Inhibition of Wnt signalling was explored using commercially available 

pharmacological inhibitors.  LRP6 expression was increased in Tam-R cells 

compared to MCF-7 cells as evidenced by Western blot and Affymetrix data: IWP2 

was chosen to inhibit the Wnt pathway at this level. IWP2 has been reported to  

inhibit porcupine, block Wnt- dependent phosphorylation of LRP6 receptor and 

Dvl2, and block β-catenin accumulation (Chen et al. 2009a) but this has not been 

explained in the context of Tam-R cells.  Treatment of MCF-7 and Tam-R cells with 

IWP2 resulted in decreased expression of p-LRP6 as evidenced by Western blot. As 

β- catenin was increased in Tam-R cells, we also targeted nuclear transcriptional 

activity of β- catenin. PNU 74654 is reported to bind to β-catenin; inhibit the 

interaction between β-catenin and T cell factor 4 (TCF4) and disrupt the Wnt 

signalling pathway (Trosset et al. 2006). Expression of p- GSK- 3α/β was decreased 

in both MCF-7 and Tam-R cell lines after treatment with IWP2 ((at 1 hour) and PNU 

74654 (at 5 minutes and 1 hour), but there was no consistent change in p-β- catenin 

(S33/37/T41) expression for the two drugs. Unfortunately there was no reduction in 
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TCF/ LEF (luciferase) reporter assay activity in Tam-R cells following treatment 

with PNU 74654. Cyclin D1 and c-myc expression were reduced following treatment 

with PNU 74654 but these findings were not reproducible with RT-PCR. Another 

agent targeting the nuclear Wnt activity was therefore selected: iCRT14. This 

molecule is reported to inhibit β-catenin- responsive element (CRT), disrupting the 

interaction between β-catenin and TCF4 possibly by binding to β- catenin  

(Gonsalves et al. 2011). TCF/ LEF (luciferase) reporter assay activity in Tam-R cells 

was reduced following treatment with iCRT14.   

 

When MCF-7 and Tam-R cells were treated with Wnt inhibitors some interesting 

differences emerged. Treatment with IWP2, PNU 74654 and iCRT14 decreased cell 

growth in Tam-R cells, but there was no significant effect in MCF-7 cells. This is 

supported by published data for IWP2 and iCRT14 activity on MCF-7 cells. Covey 

et al. (2012) showed that Wnt inhibition did not affect MCF-7 cell viability or cell 

growth. These findings were seen following treatment with IWP2 and knockdown of 

β-catenin respectively. Similarly, iCRT14 did not affect growth or proliferation in 

MCF-7 cells (Gonsalves et al. 2011). Preliminary growth data for Fas-R cells treated 

with iCRT14 shows that their response is similar to that seen in MCF-7 cells (see 

Appendix, Figure 9.6).  Tam-R cells, however, appear to be growth- sensitive to Wnt 

inhibition and this is in contrast to lack of growth following further Wnt stimulation. 

Tam-R cells withdrawn from tamoxifen were equally susceptible to Wnt inhibition 

and Tam-R cells showed similar growth suppression. Inhibition of Wnt signalling is 

thus able to deplete tamoxifen agonistic effects in this model. These findings show 

that Wnt signalling appears to have a distinct role in Tam-R cells and the pathway 

may be targeted at the ligand/ receptor level (IWP2) and in the nucleus (PNU 74654 
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and iCRT14) to decrease cell growth. iCRT14 also decreased cellular proliferation in 

Tam-R cells as assessed by Ki-67 staining. This supports growth assay data for this 

compound and the importance of Wnt signalling to such cells.  

 

Cell migration in Tam-R cells was also decreased following Wnt inhibition by 

IWP2, PNU 74654 and iCRT14. Inhibition of Wnt signalling by sFRP1 has been 

reported to decrease cell migration in MDA-MB-231 cells and this is in agreement 

with our findings with IWP2 in Tam-R cells (Matsuda et al. 2009). Wnt signalling 

modulates transcription of several genes and some of these are important for 

migration. Examples of such genes are: CD44, CTGF, EFNB1, EGFR, FGF7, FN1, 

GDNF, IGF1, IL6, IRS1, JAG1, MMP9 (Gelatinase B), NRCAM, NRP1, PDGFRA, 

PPAP2B, PPARD, SIX1, SMO, TWIST1, VEGFA some of which are increased in 

Tam-R cells (SABiosciences 2012). For example, EGFR and IGF signalling play key 

roles in tamoxifen resistance and contributes to their aggressive behaviour 

(Knowlden et al. 2008, Nicholson et al. 2007, Jones et al. 2006). Moreover, Tam-R 

cells show increased expression of CD44 (Hiscox et al. 2006) and this has been 

linked to a more aggressive phenotype. All three Wnt inhibitors inhibited migration 

and this would suggest that the Wnt pathway may be inhibited at multiple levels with 

similar effect on this end point. Treatment with IWP2 and PNU 74654 reduced 

expression of p-MAPK in Tam-R cells, an element which contributes to growth and 

migration in this model (Knowlden et al. 2003). These findings support decreased 

growth and migration following Wnt inhibition. Similar findings have been reported 

in other breast cancer cell lines following disruption of Wnt signalling at the receptor 

level, e.g. cellular proliferation was decreased and MAPK activity was reduced 

(Schlange et al. 2007). 



242 

 

Tam-R cells are ER positive but rely heavily on EGFR signalling for growth (Gee et 

al. 2005a).  The interactions of activated growth factor pathways with ER function 

are important in understanding endocrine resistance in breast cancer. EGFR, HER2, 

phosphatidylinositol 3-kinase (PI3K) and insulin- like growth factor 1 receptor (IGF-

1R) are recognised key players in this cross-talk (Knowlden et al. 2008, Nicholson et 

al. 2007, Jones et al. 2006). The role of Wnt signalling in established endocrine 

resistance is less clearly defined. However Wnt can interact with the oestrogen 

receptor (El-Tanani et al. 2001, Inadera et al. 2002, Mastroianni et al. 2010, 

Kouzmenko et al. 2004, Mulholland et al. 2005) and EGFR signalling (Hu and Li 

2010) in this setting. Figure 7.1 summarises the key interactions between EGFR and 

Wnt signalling reported in cancer.  

  



Figure 7.1 

Five possible interactions between Wnt Signalling 

and EGFR pathway in cancer.  

(1) Wnt ligand binds to LRP6 and Frizzled to activate the 

Canonical Wnt pathway. (2) Frizzled activates EGFR signalling 

through metalloproteinase- mediated release of soluble EGFR 

ligands such as TGFα. (3) EGFR can activate β- catenin via 

AKT/ PI3K pathway. (4) β- catenin can form a heterodimer 

with EGFR to activate the EGFR pathway. (5) Naked 2 binds to 

TGF-α and escorts it to plasma membrane where it is released. 

NKD2 can then bind Dvl and the two are mutually degraded. 

Adapted from  Hu  et al. (2010). 
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In the next section, the evidence for Wnt and EGFR signalling cross talk within 

breast cancer is explored, with emphasis on the potential for this interaction in Tam-

R cells.  EGFR can be activated by the following ligands: EGF, transforming growth 

factor- α (TGF-α), amphiregulin, betacellulin, heparin-binding epidermal growth 

factor-like growth factor (HB-EGF) and epiregulin (Hynes and Lane 2005). 

Activated EGFR signalling in turn activates other pathways such as Ras-Raf-MAPK 

and PI3K/Akt which are important for cellular growth, proliferation, survival and 

motility (Hynes and Lane 2005). However, there is also literature evidence for 

activation of EGFR signalling by the Wnt pathway. 

 

Activation of Wnt signalling increases phosphorylation of EGFR in breast cancer 

(Schlange et al. 2007) and this EGFR activation occurs via metalloproteinase (MMP) 

mediated release of soluble EGFR ligands (Musgrove 2004, Faivre and Lange 2007).  

Increased MAPK activity is downstream of EGFR activity and results in increased 

levels of cyclin D1 (Musgrove 2004, Civenni G 2003). One possible EGFR ligand 

target for MMP activity in breast cancer may be HB-EGF (Civenni G 2003). Work 

on prostate cancer showed that a target for MMP activity may be proHB- EGF 

(Prenzel et al. 1999); and work on squamous cell cancers showed that MMPs also 

cleave proamphiregulin by metalloprotease-disintegrin tumour necrosis factor- -

converting enzyme (TACE) (Gschwind et al. 2003). Amphiregulin is also highly 

expressed by Tam-R cells and drives an EGFR autocrine growth signalling loop in 

these cells (Britton et al. 2006). Contribution for Wnt in this remains unknown. 
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Schroeder et al. (2002) showed that β- catenin could directly bind to EGFR/ HER2 

heterodimers in MMTV-Wnt1 mammary tumours (mammary tumours in transgenic 

mice with expression of int-1 gene). In tumours driven by Wnt1, EGFR was always 

involved. However in tumours driven by EGFR, β-catenin was not always involved.  

Tam-R cells have upregulated β- catenin and EGFR activity (Hutcheson et al. 2006). 

There is also preferential EGFR/ HER2 dimerization (Knowlden et al. 2003). Future 

work would thus be to look into identifying whether this dimerization could be 

disrupted by Wnt signalling inhibition as part of the growth inhibition mechanism. 

 

Katoh (2001) showed that Naked 1 (NKD1) and Naked 2 (NKD2) were upregulated 

in gastrointestinal tumours. Once TGF-α was processed by the Golgi apparatus, the 

C-terminal end could interact with NKD2 (Li et al. 2004). Vesicles coating TGF-α 

were formed and these were then transported to the cell membrane (Li et al. 2007, 

Cao et al. 2008, Hu et al. 2006).  NKD2 was then downregulated by Dvl in 

HEK293T cells (Hu et al. 2010). Tam-R cells have increased expression of TGF-α 

(Knowlden et al. 2003, Hiscox et al. 2006). Stimulation of Tam-R cells with TGF-α 

results in src dependent  phosphorylation of  EGFR (Y1068) (Knowlden et al. 2005) 

and increased p-AKT (Hiscox et al. 2006). Thus, it is possible that TGF-α may be 

the ligand linking Wnt and any activation of EGFR signalling.  

 

Based on the considerable potential for Wnt/ EGFR cross-talk in this setting, and 

having established that Wnt inhibition decreased cell growth in Tam-R cells, we thus 

wanted to begin to explore if these changes resulted from interaction of Wnt and 

EGFR signalling, or if there was independent pathway activity. As growth in MCF-7 
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cells is not affected by Wnt inhibition or TKI treatment (previous data from our lab) 

and has decreased Wnt and EGFR signalling compared to Tam-R, we did not explore 

dual inhibition in this model but focussed on the Tam-R model that shows 

deregulation of both Wnt and EGFR pathways.  

 

IWP2 was used to target Wnt signalling at the ligand/ receptor and iCRT14 was used 

to target nuclear pathway activity. Interesting differences were noted on dual 

inhibition using TKI – IWP2 and TKI – iCRT14. In growth assays using IWP2, TKI 

and TKI – IWP2 growth suppression was greatest by TKI or combination TKI – 

IWP2. There was a significant difference in growth suppression between TKI and 

IWP2 and between IWP2 and TKI - IWP2 with superiority for the TKI subgroups. 

This suggested that EGFR activity was the dominant pathway. However, treatment 

with combination TKI – iCRT14 was significantly better than treatment with either 

agent alone and there was no significant difference in Tam-R growth inhibition 

following treatment with iCRT14 or TKI alone with both agents growth inhibitory. 

This suggested that targeting Wnt signalling at the nuclear level may be more 

effective than inhibition at the ligand/ receptor level and may be able to add to the 

EGFR blockade effect.  

 

Dual Wnt and EGFR inhibition reduced cellular proliferation in Tam-R cells. 

Percentage positivity for Ki67 staining, assessed by immunocytochemistry, was 

lower for dual inhibition than for individual iCRT14 or TKI treatment. This again 

suggests that targeting Wnt signalling at the nuclear level may be more effective than 

inhibition at the ligand/ receptor level and supports our growth data. 
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When Wnt signalling is activated, resulting in effects at the nuclear level and Wnt 

regulated gene expression, there is increased transcription of growth factor genes 

including growth factor pathway elements (see Figure 7.2). EGFR and IGF-1R 

cross-talk are important for growth in Tam-R cells (Knowlden et al. 2008, Nicholson 

et al. 2007, Jones et al. 2006) with preferential recruitment of IRS1 to EGFR 

triggering the dominant EGFR growth mechanism in Tam-R cells. Nuclear inhibition 

of Wnt signalling may result in a more effective disruption of this mechanism. 

  



Figure 7.2  

Wnt and crosstalk with other growth signalling 

pathways. 

Activation of Wnt signalling increases transcription of 

epidermal growth factor receptor (EGFR), insulin receptor 

substrate 1 (IRS-1), vascular endothelial growth factor (VEGF) 

and fibroblast growth factor (FGF). This results in crosstalk 

between Wnt and other growth signalling pathways: epidermal 

growth factor (EGF), insulin- like growth factor 1 (IGF-1), 

VEGF and FGF.  

Adapted from Hu  et al. (2010), Goss et al. (2011). 
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Signalling changes by Western blot also tentatively support interplay between Wnt 

and EGFR signalling. Treatment of Tam-R cells with TKI decreases MAPK and 

AKT phosphorylation (Hutcheson et al. 2006) which contribute to Tam-R growth. 

Our data suggest that MAPK and AKT activity is suppressed following treatment of 

Tam-R cells with IWP2, TKI or combination TKI – IWP2 suggesting significant 

pathway overlap at the level of these downstream kinases (Figure 6.7, Figure 6.8). 

 

Further support for cross talk between the two signalling pathways in Tam-R cells 

comes from Affymetrix HGU-133A gene microarray data for Tam-R cells treated 

with gefitinib for 10 days, where changes support Wnt activation in Tam-R cells 

following treatment with gefitinib, and this activation was in addition to changes 

previously reported between Tam-R cells and MCF-7 cells. This signalling pathway 

interplay may be further explored through modulation of Wnt and EGFR activity in 

siRNA-mediated LRP6, β- catenin and EGFR knockdown models (Zhang et al. 

2008, Zeng G 2007). 

 

Interaction between Wnt and EGFR signalling may be important clinically. EGFR 

has been targeted in the context of tamoxifen resistance with limited success 

(Agrawal et al. 2005). Work on cellular models had suggested that combination 

gefitinib and tamoxifen was superior to tamoxifen treatment in MCF-7 cells as 

evidenced by cell growth inhibition (Gee et al. 2003). This has not been substantially 

replicated in phase II clinical trials. Though some success was reported in one study 

(Gutteridge et al. 2010), limited or no clinical benefit was generally reported 

following gefitinib treatment alone (Green et al. 2009) or treatment with tamoxifen 
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and gefitinib (Osborne et al. 2011). Work by Jones et al. (2006) has shown that 

MCF-7 cells develop resistance to sequential tamoxifen and gefitinib treatment and 

that this is coupled to increased IGF-1R activity. As Wnt can crosstalk with both 

EGFR and IGF-1R, targeting of Wnt alongside EGFR signalling may be a better 

approach in the context of tamoxifen resistance. Indeed Wnt inhibition is able to add 

to the effect of TKI in Tam-R cells. 

 

However, the challenge to find the right Wnt inhibitor for clinical use is 

multifaceted. Wnt signalling is deregulated in several disease processes including 

several cancer types. The underlying mechanisms of action are diverse and often 

tissue dependent. Signalling may be altered as a result of genetic mutation (e.g. APC 

in colon cancer) or, more commonly, due to altered expression of various signalling 

components (e.g. downregulation of the negative Wnt regulator SFRP in breast 

cancer (Dahl et al. 2005)). Wnt signalling is also important for development and 

inhibition of some key functions and may not be compatible with normal 

physiological activity (Filipovich et al. 2011). It relies on a fine balance of negative 

and positive regulators making the choice of target level particularly challenging. 

Several Wnt modulators have been described in the literature but as yet none are in 

regular clinical use. It is estimated that 88 Wnt targeting drugs are currently being 

investigated for use in cancer (MarketResearch 2012).  Some of these molecules are 

described in Table 7.1 and Table 7.2 (Nusse 2010). 
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Drug Action Disease target 
Types of 

studies 
Reference 

Deoxycholic 

acid 

β- catenin 

activator 
colon cancer cell lines 

(Pai et al. 

2004) 

WAY-316606 
inhibits 

SFRP 
osteoporosis 

cell lines, 

animal models 

(Bodine et al. 

2009) 

BIO (6-

bromoindirubin-

3'-oxime 

inhibits 

GSK3 
stem cells 

cell lines, 

animal models 

(Sato et al. 

2004) 

SB-216763 
inhibits 

GSK3 
 cell lines 

(Coghlan et al. 

2000) 

RNF146 

increases 

axin 

degradation 

 cell lines 
(Zhang et al. 

2011) 

 

Table 7.1 
Wnt pathway activators.  
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Drug Action Disease target 
Types of 

studies 
Reference 

ICG-001 

CREB 

binding 

protein 

colon cancer 
cell lines, 

animal models 

(Emami et al. 

2004) 

Ant1.4Br and  

Ant 1.4Cl 

inhibits free 

Wnt ligands 
 

cell lines, 

animal models 

(Morrell et al. 

2008) 

Niclosamide inhibits Fz  cell lines 
(Chen et al. 

2009b) 

Apicularen and 

bafilomycin 

inhibit 

vacuolar 

ATPase 

 animal models 

(Cruciat et al. 

2010) 

 

IWR 
activates 

Axin 
 

cell lines, 

animal models 

Chen et al. 

2009a) 

2,4-diamino-

quinazoline 

inhibits 

TCF/β- 

catenin 

colon cancer 
cell lines, 

animal models 

(Chen et al. 

2009c) 

Quercetin inhibits TCF colon cancer cell lines 
(Park et al. 

2005) 

NSC668036 inhibits Dvl  animal models 
(Shan et al. 

2005) 

OMP-18R5 
antibody to 

Fz7 

colon, breast, 

lung, 

pancreatic 

cancers 

animal models 

(Gurney et al. 

2012) 

 

Pyrvinium inhibits CK1 colon cancer cell lines 
(Thorne et al. 

2010) 

XAV939 
stabilizes 

actin 
 cell lines 

(Huang et al. 

2009) 

 

Table 7.2 

Wnt pathway inhibitors. 
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A number of Wnt inhibitors are currently in Phase 1 clinical trials (see Table 7.3). 

BHQNVP-LGK974 is being trialled in breast cancer and (like IWP2) it is a 

porcupine inhibitor.  

 

Drug Action 
Patient 

subgroup 
Reference 

BHQ880 
anti- DKK1 

antibody 

multiple 

myeloma 
(Ettenberg S 2008) 

BHQNVP-

LGK974 

porcupine 

inhibitor 

melanoma and 

lobular breast 

cancer 

(Wang et al. 1993, Novartis 

2011)  

βC2059 

disrupts 

stabilization of  

β– catenin 

 
(The_βeta_Catenin_Company 

2011) 

OMP-18R5 

antibody 

targeting 

Frizzled 7 

receptor 

solid tumours 
(OncoMed_Pharmaceuticals 

2011) 

 

Table 7.3 

Small molecule Wnt inhibitors currently in Phase I clinical trials.  
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Our data needs to be validated in the context of clinical material. Access to matched 

response clinical material may be challenging. Other labs are looking at ways of 

identifying Wnt pathway activation in clinical material using immunohistochemistry 

(personal communication with Dr A van de Stolpe, Philips Research Laboratories, 

Eindhoven, Netherlands): such a tool would allow us to further explore Wnt 

signalling in clinical relapse following tamoxifen treatment and EGFR inhibition. 

Work in our lab is currently underway to explore Wnt activity in other endocrine 

resistant breast cancer cell models. 

 

In conclusion, our data appears to highlight an important role for Wnt signalling in 

the context of acquired tamoxifen- resistance. Targeting of the Wnt pathway alone, 

or particularly alongside the EGFR, appears an effective and selective strategy for 

suppressing proliferation of tamoxifen resistant cells, at least in vitro. The emergence 

of clinical Wnt inhibitors signals the start of an exciting phase in the fight against 

breast cancer and this project proposes these agents may be of benefit in the context 

of endocrine resistance. 
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9 Appendix  

9.1 Affymetrix 

Table 9.1 

Heatmap data for MCF-7 cells versus Tam-R cells.  

Rows 1-22 and rows 96 onwards show > 1.5 fold change. 

Note: row 96 = 1.5 fold difference 

 

Row Other ID Gene Name Gene ID Multiple 

probes 

Significa

nce by t-

test 

1 208606_s_at wingless-type MMTV 

integration site family, 

member 4 

WNT4 1,,,,,,,,,, * 

2 221609_s_at wingless-type MMTV 

integration site family, 

member 6 

WNT6 2,,,,,,,,,, * 

3 221558_s_at lymphoid enhancer-

binding factor 1 

LEF1 3,81,,,,,,,,

, 

  

4 203525_s_at adenomatous 

polyposis coli 

APC 4,40,65,9

1,,,,,,, 

* 

5 220277_at CXXC finger 4 CXXC4 5,,,,,,,,,,   

6 205990_s_at wingless-type MMTV 

integration site family, 

member 5A 

WNT5A 6,14,,,,,,,,

, 

* 

7 201533_at catenin (cadherin-

associated protein), 

beta 1, 88kDa 

CTNNB1 7,,,,,,,,,, * 

8 200951_s_at cyclin D2 CCND2 8,37,,,,,,,,

, 

* 

9 204420_at FOS-like antigen 1 FOSL1 9,,,,,,,,,, * 

10 212073_at casein kinase 2, alpha 

1 polypeptide /// 

casein kinase 2, alpha 

1 polypeptide 

pseudogene 

CSNK2A1 10,48,62,

,,,,,,, 

  

11 34697_at low density 

lipoprotein receptor-

related protein 6 

LRP6 11,,,,,,,,,,   

12 221455_s_at wingless-type MMTV 

integration site family, 

member 3 

WNT3 12,,,,,,,,,,   
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13 202210_x_at glycogen synthase 

kinase 3 alpha 

GSK3A 13,63,,,,,,

,,, 

  

14 213425_at wingless-type MMTV 

integration site family, 

member 5A 

WNT5A 6,14,,,,,,,,

, 

  

15 206459_s_at wingless-type MMTV 

integration site family, 

member 2B 

WNT2B 15,53,,,,,,

,,, 

  

16 201700_at cyclin D3 CCND3 16,,,,,,,,,,   

17 204129_at B-cell CLL/lymphoma 

9 

BCL9 17,,,,,,,,,,   

18 219993_at SRY (sex determining 

region Y)-box 17 

SOX17 18,,,,,,,,,,   

19 208867_s_at casein kinase 1, alpha 

1 

CSNK1A1 19,23,33,

35,,,,,,, 

  

20 203698_s_at frizzled-related 

protein 

FRZB 20,92,,,,,,

,,, 

  

21 209468_at low density 

lipoprotein receptor-

related protein 5 

LRP5 21,,,,,,,,,,   

22 221245_s_at frizzled homolog 5 

(Drosophila) 

FZD5 22,49,,,,,,

,,, 

  

23 206562_s_at casein kinase 1, alpha 

1 

CSNK1A1 19,23,33,

35,,,,,,, 

  

24 208652_at protein phosphatase 2 

(formerly 2A), 

catalytic subunit, 

alpha isoform 

PPP2CA 24,,,,,,,,,,   

25 214724_at DIX domain 

containing 1 

DIXDC1 25,,,,,,,,,, * 

26 205254_x_at transcription factor 7 

(T-cell specific, 

HMG-box) 

TCF7 26,82,,,,,,

,,, 

  

27 218318_s_at nemo-like kinase NLK 27,,,,,,,,,, * 

28 203705_s_at frizzled homolog 7 

(Drosophila) 

FZD7 28,,,,,,,,,,   

29 40837_at transducin-like 

enhancer of split 2 

(E(sp1) homolog, 

Drosophila) 

TLE2 29,,,,,,,,,,   

30 215517_at pygopus homolog 1 

(Drosophila) 

PYGO1 30,,,,,,,,,,   

31 210248_at wingless-type MMTV WNT7A 31,,,,,,,,,,   



284 

 

integration site family, 

member 7A 

32 204712_at WNT inhibitory factor 

1 

WIF1 32,,,,,,,,,,   

33 213086_s_at casein kinase 1, alpha 

1 

CSNK1A1 19,23,33,

35,,,,,,, 

  

34 202431_s_at v-myc 

myelocytomatosis 

viral oncogene 

homolog (avian) 

MYC 34,,,,,,,,,,   

35 208865_at casein kinase 1, alpha 

1 

CSNK1A1 19,23,33,

35,,,,,,, 

  

36 203230_at dishevelled, dsh 

homolog 1 

(Drosophila) /// 

hypothetical 

LOC642469 

DVL1 36,,,,,,,,,, * 

37 200952_s_at cyclin D2 CCND2 8,37,,,,,,,,

, 

  

38 212863_x_at C-terminal binding 

protein 1 

CTBP1 38,46,,,,,,

,,, 

  

39 203987_at frizzled homolog 6 

(Drosophila) 

FZD6 39,,,,,,,,,,   

40 203526_s_at adenomatous 

polyposis coli 

APC 4,40,65,9

1,,,,,,, 

  

41 204451_at frizzled homolog 1 

(Drosophila) 

FZD1 41,85,,,,,,

,,, 

  

42 209456_s_at F-box and WD repeat 

domain containing 11 

FBXW11 42,47,,,,,,

,,, 

* 

43 218122_s_at SUMO1/sentrin/SMT

3 specific peptidase 2 

SENP2 43,,,,,,,,,,   

44 203081_at catenin, beta 

interacting protein 1 

CTNNBIP

1 

44,,,,,,,,,,   

45 219483_s_at porcupine homolog 

(Drosophila) 

PORCN 45,,,,,,,,,,   

46 213980_s_at C-terminal binding 

protein 1 

CTBP1 38,46,,,,,,

,,, 

  

47 209455_at F-box and WD repeat 

domain containing 11 

FBXW11 42,47,,,,,,

,,, 

  

48 212072_s_at casein kinase 2, alpha 

1 polypeptide 

CSNK2A1 10,48,62,

,,,,,,, 

  

49 206136_at frizzled homolog 5 

(Drosophila) 

FZD5 22,49,,,,,,

,,, 
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50 208774_at casein kinase 1, delta CSNK1D 50,75,,,,,,

,,, 

  

51 221673_s_at casein kinase 1, 

gamma 1 

CSNK1G1 51,105,,,,

,,,,, 

  

52 217729_s_at amino-terminal 

enhancer of split 

AES 52,,,,,,,,,,   

53 206458_s_at wingless-type MMTV 

integration site family, 

member 2B 

WNT2B 15,53,,,,,,

,,, 

  

54 221016_s_at transcription factor 7-

like 1 (T-cell specific, 

HMG-box) 

TCF7L1 54,,,,,,,,,,   

55 207558_s_at paired-like 

homeodomain 2 

PITX2 55,,,,,,,,,,   

56 209630_s_at F-box and WD repeat 

domain containing 2 

FBXW2 56,99,,,,,,

,,, 

  

57 210554_s_at C-terminal binding 

protein 2 

CTBP2 57,80,84,

101,,,,,,, 

  

58 206524_at T, brachyury homolog 

(mouse) 

T 58,,,,,,,,,,   

59 221113_s_at wingless-type MMTV 

integration site family, 

member 16 

WNT16 59,,,,,,,,,,   

60 213579_s_at E1A binding protein 

p300 

EP300 60,96,,,,,,

,,, 

  

61 209945_s_at glycogen synthase 

kinase 3 beta 

GSK3B 61,,,,,,,,,,   

62 206075_s_at casein kinase 2, alpha 

1 polypeptide 

CSNK2A1 10,48,62,

,,,,,,, 

  

63 632_at glycogen synthase 

kinase 3 alpha 

GSK3A 13,63,,,,,,

,,, 

  

64 208712_at cyclin D1 CCND1 64,93,,,,,,

,,, 

  

65 215310_at adenomatous 

polyposis coli 

APC 4,40,65,9

1,,,,,,, 

  

66 202036_s_at secreted frizzled-

related protein 1 

SFRP1 66,76,,,,,,

,,, 

  

67 204052_s_at secreted frizzled-

related protein 4 

SFRP4 67,68,,,,,,

,,, 

  

68 204051_s_at secreted frizzled-

related protein 4 

SFRP4 67,68,,,,,,

,,, 

  

69 219683_at frizzled homolog 3 

(Drosophila) 

FZD3 69,,,,,,,,,,   
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70 201349_at solute carrier family 9 

(sodium/hydrogen 

exchanger), member 3 

regulator 1 

SLC9A3R

1 

70,,,,,,,,,,   

71 216587_s_at frizzled homolog 8 

(Drosophila) 

FZD8 71,,,,,,,,,,   

72 201219_at C-terminal binding 

protein 2 

ZRANB1 72,,,,,,,,,,   

73 207683_at forkhead box N1 FOXN1 73,,,,,,,,,,   

74 200695_at protein phosphatase 2 

(formerly 2A), 

regulatory subunit A, 

alpha isoform 

PPP2R1A 74,,,,,,,,,,   

75 207945_s_at casein kinase 1, delta CSNK1D 50,75,,,,,,

,,, 

  

76 202037_s_at secreted frizzled-

related protein 1 

SFRP1 66,76,,,,,,

,,, 

  

77 219889_at frequently rearranged 

in advanced T-cell 

lymphomas 

FRAT1 77,,,,,,,,,,   

78 206737_at wingless-type MMTV 

integration site family, 

member 11 

WNT11 78,,,,,,,,,,   

79 217681_at wingless-type MMTV 

integration site family, 

member 7B 

WNT7B 79,,,,,,,,,,   

80 210835_s_at C-terminal binding 

protein 2 

CTBP2 57,80,84,

101,,,,,,, 

  

81 221557_s_at lymphoid enhancer-

binding factor 1 

LEF1 3,81,,,,,,,,

, 

  

82 205255_x_at transcription factor 7 

(T-cell specific, 

HMG-box) 

TCF7 26,82,,,,,,

,,, 

  

83 205648_at wingless-type MMTV 

integration site family 

member 2 

WNT2 83,,,,,,,,,,   

84 201220_x_at C-terminal binding 

protein 2 

CTBP2 57,80,84,

101,,,,,,, 

  

85 204452_s_at frizzled homolog 1 

(Drosophila) 

FZD1 41,85,,,,,,

,,, 

  

86 216091_s_at beta-transducin repeat 

containing 

BTRC 86,100,,,,

,,,,, 

  

87 210220_at frizzled homolog 2 FZD2 87,,,,,,,,,,   
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(Drosophila) 

88 208570_at wingless-type MMTV 

integration site family, 

member 1 

WNT1 88,,,,,,,,,,   

89 221519_at F-box and WD repeat 

domain containing 4 

FBXW4 89,,,,,,,,,,   

90 57532_at dishevelled, dsh 

homolog 2 

(Drosophila) 

DVL2 90,98,,,,,,

,,, 

  

91 216933_x_at adenomatous 

polyposis coli 

APC 4,40,65,9

1,,,,,,, 

  

92 203697_at frizzled-related 

protein 

FRZB 20,92,,,,,,

,,, 

  

93 208711_s_at cyclin D1 CCND1 64,93,,,,,,

,,, 

  

94 211312_s_at WNT1 inducible 

signaling pathway 

protein 1 

WISP1 94,102,,,,

,,,,, 

  

95 221029_s_at wingless-type MMTV 

integration site family, 

member 5B 

WNT5B 95,,,,,,,,,,   

96 202221_s_at E1A binding protein 

p300 

EP300 60,96,,,,,,

,,, 

* 

97 218665_at frizzled homolog 4 

(Drosophila) 

FZD4 97,,,,,,,,,,   

98 218759_at dishevelled, dsh 

homolog 2 

(Drosophila) 

DVL2 90,98,,,,,,

,,, 

  

99 218941_at F-box and WD repeat 

domain containing 2 

FBXW2 56,99,,,,,,

,,, 

  

100 204901_at beta-transducin repeat 

containing 

BTRC 86,100,,,,

,,,,, 

  

101 215377_at C-terminal binding 

protein 2 

CTBP2 57,80,84,

101,,,,,,, 

  

102 206796_at WNT1 inducible 

signaling pathway 

protein 1 

WISP1 94,102,,,,

,,,,, 

  

103 212849_at axin 1 AXIN1 103,,,,,,,,,

, 

* 

104 201466_s_at jun oncogene JUN 104,110,,

,,,,,,, 

  

105 220640_at casein kinase 1, 

gamma 1 

CSNK1G1 51,105,,,,

,,,,, 
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106 214489_at follicle stimulating 

hormone, beta 

polypeptide 

FSHB 106,,,,,,,,,

, 

  

107 216060_s_at dishevelled associated 

activator of 

morphogenesis 1 

DAAM1 107,,,,,,,,,

, 

  

108 204602_at dickkopf homolog 1 

(Xenopus laevis) 

DKK1 108,,,,,,,,,

, 

* 

109 203220_s_at transducin-like 

enhancer of split 1 

(E(sp1) homolog, 

Drosophila) 

TLE1 109,111,,

,,,,,,, 

* 

110 201465_s_at jun oncogene JUN 104,110,,

,,,,,,, 

* 

111 203222_s_at transducin-like 

enhancer of split 1 

(E(sp1) homolog, 

Drosophila) 

TLE1 109,111,,

,,,,,,, 

* 
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Figure 9.1 

Heatmap for Wnt signalling probe set showing 

changes in gene expression between MCF-7 and 

Tam-R cells.  

Rows 1-22 and rows 96 onwards show >1.5 fold change. Note: 

row 96 = 1.5 fold difference. 

Red signalled increased expression; green showed decreased 

expression of mRNA compared to MCF-7 controls (black).  
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Table 9.2 

Heatmap data for MCF-7 cells versus MCF-7 cells treated with tamoxifen 

[10
-7

M] for 10 days. 
Rows 1-19 and rows 89 onwards show >1.5 fold change. 

Note: row 19 = 1.5 fold difference. 

 

 

Row Other ID Gene Name Gene ID Multiple 

probes 

Significan

ce by t-

test 

1 221558_s_

at 

lymphoid enhancer-

binding factor 1 

LEF1 1,56,,,,,,,,, * 

2 203525_s_

at 

adenomatous 

polyposis coli 

APC 2,25,33,63,,,,,,

, 

  

3 214724_at DIX domain 

containing 1 

DIXDC1 3,,,,,,,,,,   

4 216060_s_

at 

dishevelled 

associated activator 

of morphogenesis 1 

DAAM1 4,,,,,,,,,, * 

5 203987_at frizzled homolog 6 

(Drosophila) 

FZD6 5,,,,,,,,,,   

6 209630_s_

at 

F-box and WD 

repeat domain 

containing 2 

FBXW2 6,80,,,,,,,,,   

7 201465_s_

at 

jun oncogene JUN 7,29,,,,,,,,,   

8 212073_at casein kinase 2, 

alpha 1 polypeptide 

/// casein kinase 2, 

alpha 1 polypeptide 

pseudogene 

CSNK2A

1 

8,37,78,,,,,,,,   

9 34697_at low density 

lipoprotein 

receptor-related 

protein 6 

LRP6 9,,,,,,,,,,   

10 213425_at wingless-type 

MMTV integration 

site family, member 

5A 

WNT5A 10,83,,,,,,,,,   

11 200951_s_

at 

cyclin D2 CCND2 11,39,,,,,,,,, * 

12 219683_at frizzled homolog 3 

(Drosophila) 

FZD3 12,,,,,,,,,,   

13 201219_at C-terminal binding ZRANB1 13,,,,,,,,,, * 
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protein 2 

14 201349_at solute carrier family 

9 (sodium/hydrogen 

exchanger), 

member 3 regulator 

1 

SLC9A3R

1 

14,,,,,,,,,, * 

15 208865_at casein kinase 1, 

alpha 1 

CSNK1A

1 

15,20,22,28,,,,

,,, 

  

16 208606_s_

at 

wingless-type 

MMTV integration 

site family, member 

4 

WNT4 16,,,,,,,,,,   

17 202431_s_

at 

v-myc 

myelocytomatosis 

viral oncogene 

homolog (avian) 

MYC 17,,,,,,,,,, * 

18 215517_at pygopus homolog 1 

(Drosophila) 

PYGO1 18,,,,,,,,,,   

19 206524_at T, brachyury 

homolog (mouse) 

T 19,,,,,,,,,,   

20 206562_s_

at 

casein kinase 1, 

alpha 1 

CSNK1A

1 

15,20,22,28,,,,

,,, 

  

21 221245_s_

at 

frizzled homolog 5 

(Drosophila) 

FZD5 21,96,,,,,,,,,   

22 213086_s_

at 

casein kinase 1, 

alpha 1 

CSNK1A

1 

15,20,22,28,,,,

,,, 

  

23 208652_at protein phosphatase 

2 (formerly 2A), 

catalytic subunit, 

alpha isoform 

PPP2CA 23,,,,,,,,,,   

24 201533_at catenin (cadherin-

associated protein), 

beta 1, 88kDa 

CTNNB1 24,,,,,,,,,, * 

25 203526_s_

at 

adenomatous 

polyposis coli 

APC 2,25,33,63,,,,,,

, 

  

26 204451_at frizzled homolog 1 

(Drosophila) 

FZD1 26,30,,,,,,,,,   

27 208712_at cyclin D1 CCND1 27,44,,,,,,,,,   

28 208867_s_

at 

casein kinase 1, 

alpha 1 

CSNK1A

1 

15,20,22,28,,,,

,,, 

  

29 201466_s_

at 

jun oncogene JUN 7,29,,,,,,,,,   

30 204452_s_ frizzled homolog 1 FZD1 26,30,,,,,,,,, * 
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at (Drosophila) 

31 209945_s_

at 

glycogen synthase 

kinase 3 beta 

GSK3B 31,,,,,,,,,,   

32 210554_s_

at 

C-terminal binding 

protein 2 

CTBP2 32,36,38,45,,,,

,,, 

  

33 216933_x_

at 

adenomatous 

polyposis coli 

APC 2,25,33,63,,,,,,

, 

  

34 218318_s_

at 

nemo-like kinase NLK 34,,,,,,,,,,   

35 209455_at F-box and WD 

repeat domain 

containing 11 

FBXW11 35,81,,,,,,,,,   

36 210835_s_

at 

C-terminal binding 

protein 2 

CTBP2 32,36,38,45,,,,

,,, 

  

37 212072_s_

at 

casein kinase 2, 

alpha 1 polypeptide 

CSNK2A

1 

8,37,78,,,,,,,,   

38 201220_x_

at 

C-terminal binding 

protein 2 

CTBP2 32,36,38,45,,,,

,,, 

  

39 200952_s_

at 

cyclin D2 CCND2 11,39,,,,,,,,,   

40 203705_s_

at 

frizzled homolog 7 

(Drosophila) 

FZD7 40,,,,,,,,,,   

41 207558_s_

at 

paired-like 

homeodomain 2 

PITX2 41,,,,,,,,,,   

42 202036_s_

at 

secreted frizzled-

related protein 1 

SFRP1 42,90,,,,,,,,,   

43 204712_at WNT inhibitory 

factor 1 

WIF1 43,,,,,,,,,,   

44 208711_s_

at 

cyclin D1 CCND1 27,44,,,,,,,,,   

45 215377_at C-terminal binding 

protein 2 

CTBP2 32,36,38,45,,,,

,,, 

  

46 218122_s_

at 

SUMO1/sentrin/SM

T3 specific 

peptidase 2 

SENP2 46,,,,,,,,,,   

47 218759_at dishevelled, dsh 

homolog 2 

(Drosophila) 

DVL2 47,89,,,,,,,,,   

48 221519_at F-box and WD 

repeat domain 

containing 4 

FBXW4 48,,,,,,,,,,   

49 206796_at WNT1 inducible 

signaling pathway 

WISP1 49,82,,,,,,,,,   
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protein 1 

50 204901_at beta-transducin 

repeat containing 

BTRC 50,65,,,,,,,,,   

51 213579_s_

at 

E1A binding 

protein p300 

EP300 51,68,,,,,,,,,   

52 219483_s_

at 

porcupine homolog 

(Drosophila) 

PORCN 52,,,,,,,,,,   

53 206458_s_

at 

wingless-type 

MMTV integration 

site family, member 

2B 

WNT2B 53,100,,,,,,,,,   

54 219993_at SRY (sex 

determining region 

Y)-box 17 

SOX17 54,,,,,,,,,,   

55 221455_s_

at 

wingless-type 

MMTV integration 

site family, member 

3 

WNT3 55,,,,,,,,,,   

56 221557_s_

at 

lymphoid enhancer-

binding factor 1 

LEF1 1,56,,,,,,,,,   

57 632_at glycogen synthase 

kinase 3 alpha 

GSK3A 57,106,,,,,,,,,   

58 204129_at B-cell 

CLL/lymphoma 9 

BCL9 58,,,,,,,,,,   

59 201700_at cyclin D3 CCND3 59,,,,,,,,,,   

60 205648_at wingless-type 

MMTV integration 

site family member 

2 

WNT2 60,,,,,,,,,,   

61 219889_at frequently 

rearranged in 

advanced T-cell 

lymphomas 

FRAT1 61,,,,,,,,,,   

62 203230_at dishevelled, dsh 

homolog 1 

(Drosophila) /// 

hypothetical 

LOC642469 

DVL1 62,,,,,,,,,,   

63 215310_at adenomatous 

polyposis coli 

APC 2,25,33,63,,,,,,

, 

  

64 221673_s_

at 

casein kinase 1, 

gamma 1 

CSNK1G

1 

64,110,,,,,,,,,   

65 216091_s_ beta-transducin BTRC 50,65,,,,,,,,,   
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at repeat containing 

66 205254_x_

at 

transcription factor 

7 (T-cell specific, 

HMG-box) 

TCF7 66,70,,,,,,,,,   

67 203220_s_

at 

transducin-like 

enhancer of split 1 

(E(sp1) homolog, 

Drosophila) 

TLE1 67,105,,,,,,,,,   

68 202221_s_

at 

E1A binding 

protein p300 

EP300 51,68,,,,,,,,,   

69 217681_at wingless-type 

MMTV integration 

site family, member 

7B 

WNT7B 69,,,,,,,,,,   

70 205255_x_

at 

transcription factor 

7 (T-cell specific, 

HMG-box) 

TCF7 66,70,,,,,,,,,   

71 216587_s_

at 

frizzled homolog 8 

(Drosophila) 

FZD8 71,,,,,,,,,,   

72 218665_at frizzled homolog 4 

(Drosophila) 

FZD4 72,,,,,,,,,,   

73 204052_s_

at 

secreted frizzled-

related protein 4 

SFRP4 73,95,,,,,,,,,   

74 212863_x_

at 

C-terminal binding 

protein 1 

CTBP1 74,76,,,,,,,,,   

75 207945_s_

at 

casein kinase 1, 

delta 

CSNK1D 75,91,,,,,,,,,   

76 213980_s_

at 

C-terminal binding 

protein 1 

CTBP1 74,76,,,,,,,,,   

77 210220_at frizzled homolog 2 

(Drosophila) 

FZD2 77,,,,,,,,,,   

78 206075_s_

at 

casein kinase 2, 

alpha 1 polypeptide 

CSNK2A

1 

8,37,78,,,,,,,, * 

79 206737_at wingless-type 

MMTV integration 

site family, member 

11 

WNT11 79,,,,,,,,,,   

80 218941_at F-box and WD 

repeat domain 

containing 2 

FBXW2 6,80,,,,,,,,, * 

81 209456_s_

at 

F-box and WD 

repeat domain 

containing 11 

FBXW11 35,81,,,,,,,,,   



297 

 

82 211312_s_

at 

WNT1 inducible 

signaling pathway 

protein 1 

WISP1 49,82,,,,,,,,,   

83 205990_s_

at 

wingless-type 

MMTV integration 

site family, member 

5A 

WNT5A 10,83,,,,,,,,,   

84 200695_at protein phosphatase 

2 (formerly 2A), 

regulatory subunit 

A, alpha isoform 

PPP2R1A 84,,,,,,,,,,   

85 208570_at wingless-type 

MMTV integration 

site family, member 

1 

WNT1 85,,,,,,,,,,   

86 204602_at dickkopf homolog 1 

(Xenopus laevis) 

DKK1 86,,,,,,,,,,   

87 221113_s_

at 

wingless-type 

MMTV integration 

site family, member 

16 

WNT16 87,,,,,,,,,,   

88 207683_at forkhead box N1 FOXN1 88,,,,,,,,,,   

89 57532_at dishevelled, dsh 

homolog 2 

(Drosophila) 

DVL2 47,89,,,,,,,,, * 

90 202037_s_

at 

secreted frizzled-

related protein 1 

SFRP1 42,90,,,,,,,,, * 

91 208774_at casein kinase 1, 

delta 

CSNK1D 75,91,,,,,,,,,   

92 212849_at axin 1 AXIN1 92,,,,,,,,,,   

93 203081_at catenin, beta 

interacting protein 1 

CTNNBI

P1 

93,,,,,,,,,,   

94 221609_s_

at 

wingless-type 

MMTV integration 

site family, member 

6 

WNT6 94,,,,,,,,,,   

95 204051_s_

at 

secreted frizzled-

related protein 4 

SFRP4 73,95,,,,,,,,, * 

96 206136_at frizzled homolog 5 

(Drosophila) 

FZD5 21,96,,,,,,,,, * 

97 217729_s_

at 

amino-terminal 

enhancer of split 

AES 97,,,,,,,,,,   

98 210248_at wingless-type WNT7A 98,,,,,,,,,,   
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MMTV integration 

site family, member 

7A 

99 220277_at CXXC finger 4 CXXC4 99,,,,,,,,,,   

100 206459_s_

at 

wingless-type 

MMTV integration 

site family, member 

2B 

WNT2B 53,100,,,,,,,,,   

101 204420_at FOS-like antigen 1 FOSL1 101,,,,,,,,,, * 

102 209468_at low density 

lipoprotein 

receptor-related 

protein 5 

LRP5 102,,,,,,,,,, * 

103 203698_s_

at 

frizzled-related 

protein 

FRZB 103,107,,,,,,,,,   

104 221016_s_

at 

transcription factor 

7-like 1 (T-cell 

specific, HMG-box) 

TCF7L1 104,,,,,,,,,, * 

105 203222_s_

at 

transducin-like 

enhancer of split 1 

(E(sp1) homolog, 

Drosophila) 

TLE1 67,105,,,,,,,,,   

106 202210_x_

at 

glycogen synthase 

kinase 3 alpha 

GSK3A 57,106,,,,,,,,, * 

107 203697_at frizzled-related 

protein 

FRZB 103,107,,,,,,,,,   

108 40837_at transducin-like 

enhancer of split 2 

(E(sp1) homolog, 

Drosophila) 

TLE2 108,,,,,,,,,, * 

109 221029_s_

at 

wingless-type 

MMTV integration 

site family, member 

5B 

WNT5B 109,,,,,,,,,, * 

110 220640_at casein kinase 1, 

gamma 1 

CSNK1G

1 

64,110,,,,,,,,,   

111 214489_at follicle stimulating 

hormone, beta 

polypeptide 

FSHB 111,,,,,,,,,, * 
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Figure 9.2 

Heatmap for Wnt signalling probe set showing 

changes in gene expression between MCF-7 cells 

and MCF-7 cells treated with tamoxifen for 10 

days. 

Rows 1-19 and rows 89 onwards show >1.5 fold change. 

Note: row 19 = 1.5 fold difference. 

Red signalled increased expression; green showed decreased 

expression of mRNA compared to MCF-7 controls (black).  
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Table 9.3 

Heatmap data for MCF-7 cells versus Fas-R cells 

Rows 1-14 and rows 86 onwards show >1.5 fold change 

Note: row 86 to 88 = 1.5 fold difference 

 

Row Other ID Gene Name Gene ID Multiple 

probes 

Significan

ce by t-

test 

1 201700_at cyclin D3 CCND3 1,,,,,,,,,, * 

2 204712_at WNT inhibitory 

factor 1 

WIF1 2,,,,,,,,,,   

3 221609_s_

at 

wingless-type 

MMTV integration 

site family, member 

6 

WNT6 3,,,,,,,,,,   

4 208606_s_

at 

wingless-type 

MMTV integration 

site family, member 

4 

WNT4 4,,,,,,,,,,   

5 40837_at transducin-like 

enhancer of split 2 

(E(sp1) homolog, 

Drosophila) 

TLE2 5,,,,,,,,,,   

6 215310_at adenomatous 

polyposis coli 

APC 6,13,15,54,,,,,,

, 

  

7 206737_at wingless-type 

MMTV integration 

site family, member 

11 

WNT11 7,,,,,,,,,, * 

8 210248_at wingless-type 

MMTV integration 

site family, member 

7A 

WNT7A 8,,,,,,,,,,   

9 212073_at casein kinase 2, 

alpha 1 polypeptide 

/// casein kinase 2, 

alpha 1 polypeptide 

pseudogene 

CSNK2A

1 

9,48,57,,,,,,,,   

10 201533_at catenin (cadherin-

associated protein), 

beta 1, 88kDa 

CTNNB1 10,,,,,,,,,, * 

11 208652_at protein phosphatase 

2 (formerly 2A), 

catalytic subunit, 

PPP2CA 11,,,,,,,,,,   
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alpha isoform 

12 220277_at CXXC finger 4 CXXC4 12,,,,,,,,,,   

13 203525_s_

at 

adenomatous 

polyposis coli 

APC 6,13,15,54,,,,,,

, 

  

14 209630_s_

at 

F-box and WD 

repeat domain 

containing 2 

FBXW2 14,76,,,,,,,,, * 

15 203526_s_

at 

adenomatous 

polyposis coli 

APC 6,13,15,54,,,,,,

, 

* 

16 206562_s_

at 

casein kinase 1, 

alpha 1 

CSNK1A

1 

16,19,22,33,,,,

,,, 

* 

17 206459_s_

at 

wingless-type 

MMTV integration 

site family, member 

2B 

WNT2B 17,74,,,,,,,,,   

18 203987_at frizzled homolog 6 

(Drosophila) 

FZD6 18,,,,,,,,,,   

19 208867_s_

at 

casein kinase 1, 

alpha 1 

CSNK1A

1 

16,19,22,33,,,,

,,, 

  

20 213579_s_

at 

E1A binding 

protein p300 

EP300 20,94,,,,,,,,,   

21 203697_at frizzled-related 

protein 

FRZB 21,96,,,,,,,,,   

22 208865_at casein kinase 1, 

alpha 1 

CSNK1A

1 

16,19,22,33,,,,

,,, 

  

23 205990_s_

at 

wingless-type 

MMTV integration 

site family, member 

5A 

WNT5A 23,34,,,,,,,,,   

24 200952_s_

at 

cyclin D2 CCND2 24,39,,,,,,,,,   

25 218122_s_

at 

SUMO1/sentrin/SM

T3 specific 

peptidase 2 

SENP2 25,,,,,,,,,,   

26 218318_s_

at 

nemo-like kinase NLK 26,,,,,,,,,, * 

27 217729_s_

at 

amino-terminal 

enhancer of split 

AES 27,,,,,,,,,,   

28 209456_s_

at 

F-box and WD 

repeat domain 

containing 11 

FBXW11 28,46,,,,,,,,,   

29 201219_at C-terminal binding 

protein 2 

ZRANB1 29,,,,,,,,,,   
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30 210835_s_

at 

C-terminal binding 

protein 2 

CTBP2 30,50,55,93,,,,

,,, 

  

31 205254_x_

at 

transcription factor 

7 (T-cell specific, 

HMG-box) 

TCF7 31,70,,,,,,,,,   

32 221245_s_

at 

frizzled homolog 5 

(Drosophila) 

FZD5 32,64,,,,,,,,,   

33 213086_s_

at 

casein kinase 1, 

alpha 1 

CSNK1A

1 

16,19,22,33,,,,

,,, 

  

34 213425_at wingless-type 

MMTV integration 

site family, member 

5A 

WNT5A 23,34,,,,,,,,,   

35 214724_at DIX domain 

containing 1 

DIXDC1 35,,,,,,,,,,   

36 221673_s_

at 

casein kinase 1, 

gamma 1 

CSNK1G

1 

36,103,,,,,,,,,   

37 201466_s_

at 

jun oncogene JUN 37,92,,,,,,,,,   

38 219993_at SRY (sex 

determining region 

Y)-box 17 

SOX17 38,,,,,,,,,,   

39 200951_s_

at 

cyclin D2 CCND2 24,39,,,,,,,,,   

40 205648_at wingless-type 

MMTV integration 

site family member 

2 

WNT2 40,,,,,,,,,,   

41 218665_at frizzled homolog 4 

(Drosophila) 

FZD4 41,,,,,,,,,,   

42 206796_at WNT1 inducible 

signaling pathway 

protein 1 

WISP1 42,88,,,,,,,,,   

43 217681_at wingless-type 

MMTV integration 

site family, member 

7B 

WNT7B 43,,,,,,,,,,   

44 204602_at dickkopf homolog 1 

(Xenopus laevis) 

DKK1 44,,,,,,,,,,   

45 204451_at frizzled homolog 1 

(Drosophila) 

FZD1 45,89,,,,,,,,,   

46 209455_at F-box and WD 

repeat domain 

FBXW11 28,46,,,,,,,,,   
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containing 11 

47 204052_s_

at 

secreted frizzled-

related protein 4 

SFRP4 47,77,,,,,,,,,   

48 206075_s_

at 

casein kinase 2, 

alpha 1 polypeptide 

CSNK2A

1 

9,48,57,,,,,,,,   

49 221113_s_

at 

wingless-type 

MMTV integration 

site family, member 

16 

WNT16 49,,,,,,,,,,   

50 210554_s_

at 

C-terminal binding 

protein 2 

CTBP2 30,50,55,93,,,,

,,, 

  

51 34697_at low density 

lipoprotein 

receptor-related 

protein 6 

LRP6 51,,,,,,,,,,   

52 221557_s_

at 

lymphoid enhancer-

binding factor 1 

LEF1 52,98,,,,,,,,,   

53 200695_at protein phosphatase 

2 (formerly 2A), 

regulatory subunit 

A, alpha isoform 

PPP2R1A 53,,,,,,,,,,   

54 216933_x_

at 

adenomatous 

polyposis coli 

APC 6,13,15,54,,,,,,

, 

  

55 201220_x_

at 

C-terminal binding 

protein 2 

CTBP2 30,50,55,93,,,,

,,, 

  

56 202037_s_

at 

secreted frizzled-

related protein 1 

SFRP1 56,69,,,,,,,,,   

57 212072_s_

at 

casein kinase 2, 

alpha 1 polypeptide 

CSNK2A

1 

9,48,57,,,,,,,,   

58 219889_at frequently 

rearranged in 

advanced T-cell 

lymphomas 

FRAT1 58,,,,,,,,,,   

59 632_at glycogen synthase 

kinase 3 alpha 

GSK3A 59,67,,,,,,,,,   

60 216587_s_

at 

frizzled homolog 8 

(Drosophila) 

FZD8 60,,,,,,,,,,   

61 221519_at F-box and WD 

repeat domain 

containing 4 

FBXW4 61,,,,,,,,,,   

62 204901_at beta-transducin 

repeat containing 

BTRC 62,71,,,,,,,,,   

63 201349_at solute carrier family SLC9A3R 63,,,,,,,,,,   
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9 (sodium/hydrogen 

exchanger), 

member 3 regulator 

1 

1 

64 206136_at frizzled homolog 5 

(Drosophila) 

FZD5 32,64,,,,,,,,,   

65 204129_at B-cell 

CLL/lymphoma 9 

BCL9 65,,,,,,,,,,   

66 207558_s_

at 

paired-like 

homeodomain 2 

PITX2 66,,,,,,,,,,   

67 202210_x_

at 

glycogen synthase 

kinase 3 alpha 

GSK3A 59,67,,,,,,,,,   

68 221029_s_

at 

wingless-type 

MMTV integration 

site family, member 

5B 

WNT5B 68,,,,,,,,,,   

69 202036_s_

at 

secreted frizzled-

related protein 1 

SFRP1 56,69,,,,,,,,,   

70 205255_x_

at 

transcription factor 

7 (T-cell specific, 

HMG-box) 

TCF7 31,70,,,,,,,,,   

71 216091_s_

at 

beta-transducin 

repeat containing 

BTRC 62,71,,,,,,,,,   

72 221016_s_

at 

transcription factor 

7-like 1 (T-cell 

specific, HMG-box) 

TCF7L1 72,,,,,,,,,,   

73 208570_at wingless-type 

MMTV integration 

site family, member 

1 

WNT1 73,,,,,,,,,,   

74 206458_s_

at 

wingless-type 

MMTV integration 

site family, member 

2B 

WNT2B 17,74,,,,,,,,,   

75 203230_at dishevelled, dsh 

homolog 1 

(Drosophila) /// 

hypothetical 

LOC642469 

DVL1 75,,,,,,,,,,   

76 218941_at F-box and WD 

repeat domain 

containing 2 

FBXW2 14,76,,,,,,,,,   

77 204051_s_ secreted frizzled- SFRP4 47,77,,,,,,,,,   
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at related protein 4 

78 219483_s_

at 

porcupine homolog 

(Drosophila) 

PORCN 78,,,,,,,,,, * 

79 212863_x_

at 

C-terminal binding 

protein 1 

CTBP1 79,100,,,,,,,,,   

80 203081_at catenin, beta 

interacting protein 1 

CTNNBI

P1 

80,,,,,,,,,,   

81 209945_s_

at 

glycogen synthase 

kinase 3 beta 

GSK3B 81,,,,,,,,,,   

82 202431_s_

at 

v-myc 

myelocytomatosis 

viral oncogene 

homolog (avian) 

MYC 82,,,,,,,,,,   

83 215517_at pygopus homolog 1 

(Drosophila) 

PYGO1 83,,,,,,,,,,   

84 209468_at low density 

lipoprotein 

receptor-related 

protein 5 

LRP5 84,,,,,,,,,,   

85 219683_at frizzled homolog 3 

(Drosophila) 

FZD3 85,,,,,,,,,,   

86 221455_s_

at 

wingless-type 

MMTV integration 

site family, member 

3 

WNT3 86,,,,,,,,,,   

87 206524_at T, brachyury 

homolog (mouse) 

T 87,,,,,,,,,,   

88 211312_s_

at 

WNT1 inducible 

signaling pathway 

protein 1 

WISP1 42,88,,,,,,,,,   

89 204452_s_

at 

frizzled homolog 1 

(Drosophila) 

FZD1 45,89,,,,,,,,,   

90 57532_at dishevelled, dsh 

homolog 2 

(Drosophila) 

DVL2 90,102,,,,,,,,, * 

91 207683_at forkhead box N1 FOXN1 91,,,,,,,,,,   

92 201465_s_

at 

jun oncogene JUN 37,92,,,,,,,,,   

93 215377_at C-terminal binding 

protein 2 

CTBP2 30,50,55,93,,,,

,,, 

  

94 202221_s_

at 

E1A binding 

protein p300 

EP300 20,94,,,,,,,,, * 

95 214489_at follicle stimulating FSHB 95,,,,,,,,,,   
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hormone, beta 

polypeptide 

96 203698_s_

at 

frizzled-related 

protein 

FRZB 21,96,,,,,,,,,   

97 216060_s_

at 

dishevelled 

associated activator 

of morphogenesis 1 

DAAM1 97,,,,,,,,,, * 

98 221558_s_

at 

lymphoid enhancer-

binding factor 1 

LEF1 52,98,,,,,,,,,   

99 203220_s_

at 

transducin-like 

enhancer of split 1 

(E(sp1) homolog, 

Drosophila) 

TLE1 99,108,,,,,,,,, * 

100 213980_s_

at 

C-terminal binding 

protein 1 

CTBP1 79,100,,,,,,,,,   

101 208774_at casein kinase 1, 

delta 

CSNK1D 101,105,,,,,,,,, * 

102 218759_at dishevelled, dsh 

homolog 2 

(Drosophila) 

DVL2 90,102,,,,,,,,, * 

103 220640_at casein kinase 1, 

gamma 1 

CSNK1G

1 

36,103,,,,,,,,,   

104 212849_at axin 1 AXIN1 104,,,,,,,,,, * 

105 207945_s_

at 

casein kinase 1, 

delta 

CSNK1D 101,105,,,,,,,,, * 

106 208712_at cyclin D1 CCND1 106,110,,,,,,,,, * 

107 203705_s_

at 

frizzled homolog 7 

(Drosophila) 

FZD7 107,,,,,,,,,, * 

108 203222_s_

at 

transducin-like 

enhancer of split 1 

(E(sp1) homolog, 

Drosophila) 

TLE1 99,108,,,,,,,,,   

109 210220_at frizzled homolog 2 

(Drosophila) 

FZD2 109,,,,,,,,,, * 

110 208711_s_

at 

cyclin D1 CCND1 106,110,,,,,,,,, * 

111 204420_at FOS-like antigen 1 FOSL1 111,,,,,,,,,, * 
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Figure 9.3 

Heatmap for Wnt signalling probe set showing 

changes in gene expression between MCF-7 and 

Fas-R cells. 

Rows 1-14 and rows 86 onwards show >1.5 fold change. 

Note: row 86 to 88 = 1.5 fold difference. 

Red signalled increased expression; green showed decreased 

expression of mRNA compared to MCF-7 controls (black).  

M MCF-7 vs log phase Fas-R 
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Table 9.4 

Heatmap data for MCF-7 cells versus MCF-7 cells treated with E2 [10
-9

M] for 

10 days 

Rows 1-19 and rows 82 onwards show > 1.5 fold change. 

Note: row 81 = 1.5 fold difference. 

 

Row Other ID Gene Name Gene ID Multiple

probes 

Sig 

by t-

test 

1 201465_s_at jun oncogene JUN 1,9,,,,,,,,, * 

2 203525_s_at adenomatous polyposis coli APC 2,27,65,7

0,,,,,,, 

 

3 34697_at low density lipoprotein 

receptor-related protein 6 

LRP6 3,,,,,,,,,,  

4 208712_at cyclin D1 CCND1 4,8,,,,,,,,, * 

5 213425_at wingless-type MMTV 

integration site family, 

member 5A 

WNT5A 5,110,,,,,,

,,, 

 

6 203987_at frizzled homolog 6 

(Drosophila) 

FZD6 6,,,,,,,,,, * 

7 200952_s_at cyclin D2 CCND2 7,45,,,,,,,,

, 

* 

8 208711_s_at cyclin D1 CCND1 4,8,,,,,,,,,  

9 201466_s_at jun oncogene JUN 1,9,,,,,,,,, * 

10 202431_s_at v-myc myelocytomatosis 

viral oncogene homolog 

(avian) 

MYC 10,,,,,,,,,, * 

11 212073_at casein kinase 2, alpha 1 

polypeptide /// casein kinase 

2, alpha 1 polypeptide 

pseudogene 

CSNK2

A1 

11,28,54,

,,,,,,, 

 

12 216060_s_at dishevelled associated 

activator of morphogenesis 

1 

DAAM1 12,,,,,,,,,, * 

13 206562_s_at casein kinase 1, alpha 1 CSNK1

A1 

13,15,17,

19,,,,,,, 

 

14 209630_s_at F-box and WD repeat 

domain containing 2 

FBXW2 14,84,,,,,,

,,, 

 

15 208865_at casein kinase 1, alpha 1 CSNK1

A1 

13,15,17,

19,,,,,,, 

 

16 201219_at C-terminal binding protein 2 ZRANB

1 

16,,,,,,,,,, * 

17 213086_s_at casein kinase 1, alpha 1 CSNK1

A1 

13,15,17,

19,,,,,,, 

 

18 201349_at solute carrier family 9 

(sodium/hydrogen 

exchanger), member 3 

regulator 1 

SLC9A3

R1 

18,,,,,,,,,, * 

19 208867_s_at casein kinase 1, alpha 1 CSNK1 13,15,17,  
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A1 19,,,,,,, 

20 208652_at protein phosphatase 2 

(formerly 2A), catalytic 

subunit, alpha isoform 

PPP2CA 20,,,,,,,,,,  

21 220277_at CXXC finger 4 CXXC4 21,,,,,,,,,,  

22 218759_at dishevelled, dsh homolog 2 

(Drosophila) 

DVL2 22,63,,,,,,

,,, 

 

23 218318_s_at nemo-like kinase NLK 23,,,,,,,,,, * 

24 201533_at catenin (cadherin-associated 

protein), beta 1, 88kDa 

CTNNB

1 

24,,,,,,,,,,  

25 219683_at frizzled homolog 3 

(Drosophila) 

FZD3 25,,,,,,,,,,  

26 209945_s_at glycogen synthase kinase 3 

beta 

GSK3B 26,,,,,,,,,,  

27 203526_s_at adenomatous polyposis coli APC 2,27,65,7

0,,,,,,, 

 

28 212072_s_at casein kinase 2, alpha 1 

polypeptide 

CSNK2

A1 

11,28,54,

,,,,,,, 

 

29 215377_at C-terminal binding protein 2 CTBP2 29,30,31,

32,,,,,,, 

 

30 210835_s_at C-terminal binding protein 2 CTBP2 29,30,31,

32,,,,,,, 

 

31 210554_s_at C-terminal binding protein 2 CTBP2 29,30,31,

32,,,,,,, 

 

32 201220_x_at C-terminal binding protein 2 CTBP2 29,30,31,

32,,,,,,, 

 

33 221558_s_at lymphoid enhancer-binding 

factor 1 

LEF1 33,73,,,,,,

,,, 

 

34 221609_s_at wingless-type MMTV 

integration site family, 

member 6 

WNT6 34,,,,,,,,,,  

35 218122_s_at SUMO1/sentrin/SMT3 

specific peptidase 2 

SENP2 35,,,,,,,,,,  

36 204451_at frizzled homolog 1 

(Drosophila) 

FZD1 36,49,,,,,,

,,, 

 

37 203230_at dishevelled, dsh homolog 1 

(Drosophila) /// hypothetical 

LOC642469 

DVL1 37,,,,,,,,,,  

38 214724_at DIX domain containing 1 DIXDC1 38,,,,,,,,,,  

39 221519_at F-box and WD repeat 

domain containing 4 

FBXW4 39,,,,,,,,,,  

40 203705_s_at frizzled homolog 7 

(Drosophila) 

FZD7 40,,,,,,,,,,  

41 221673_s_at casein kinase 1, gamma 1 CSNK1

G1 

41,107,,,,

,,,,, 

 

42 209456_s_at F-box and WD repeat 

domain containing 11 

FBXW1

1 

42,48,,,,,,

,,, 

 

43 204420_at FOS-like antigen 1 FOSL1 43,,,,,,,,,,  

44 217681_at wingless-type MMTV WNT7B 44,,,,,,,,,,  
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integration site family, 

member 7B 

45 200951_s_at cyclin D2 CCND2 7,45,,,,,,,,

, 

 

46 210248_at wingless-type MMTV 

integration site family, 

member 7A 

WNT7A 46,,,,,,,,,,  

47 201700_at cyclin D3 CCND3 47,,,,,,,,,,  

48 209455_at F-box and WD repeat 

domain containing 11 

FBXW1

1 

42,48,,,,,,

,,, 

 

49 204452_s_at frizzled homolog 1 

(Drosophila) 

FZD1 36,49,,,,,,

,,, 

 

50 632_at glycogen synthase kinase 3 

alpha 

GSK3A 50,98,,,,,,

,,, 

 

51 206524_at T, brachyury homolog 

(mouse) 

T 51,,,,,,,,,,  

52 216091_s_at beta-transducin repeat 

containing 

BTRC 52,56,,,,,,

,,, 

 

53 219993_at SRY (sex determining 

region Y)-box 17 

SOX17 53,,,,,,,,,,  

54 206075_s_at casein kinase 2, alpha 1 

polypeptide 

CSNK2

A1 

11,28,54,

,,,,,,, 

 

55 211312_s_at WNT1 inducible signalling 

pathway protein 1 

WISP1 55,109,,,,

,,,,, 

 

56 204901_at beta-transducin repeat 

containing 

BTRC 52,56,,,,,,

,,, 

 

57 213579_s_at E1A binding protein p300 EP300 57,82,,,,,,

,,, 

 

58 216587_s_at frizzled homolog 8 

(Drosophila) 

FZD8 58,,,,,,,,,,  

59 206459_s_at wingless-type MMTV 

integration site family, 

member 2B 

WNT2B 59,74,,,,,,

,,, 

 

60 212863_x_at C-terminal binding protein 1 CTBP1 60,64,,,,,,

,,, 

* 

61 203081_at catenin, beta interacting 

protein 1 

CTNNBI

P1 

61,,,,,,,,,,  

62 221245_s_at frizzled homolog 5 

(Drosophila) 

FZD5 62,80,,,,,,

,,, 

 

63 57532_at dishevelled, dsh homolog 2 

(Drosophila) 

DVL2 22,63,,,,,,

,,, 

* 

64 213980_s_at C-terminal binding protein 1 CTBP1 60,64,,,,,,

,,, 

 

65 216933_x_at adenomatous polyposis coli APC 2,27,65,7

0,,,,,,, 

 

66 203220_s_at transducin-like enhancer of 

split 1 (E(sp1) homolog, 

Drosophila) 

TLE1 66,106,,,,

,,,,, 

 

67 206737_at wingless-type MMTV WNT11 67,,,,,,,,,,  
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integration site family, 

member 11 

68 221455_s_at wingless-type MMTV 

integration site family, 

member 3 

WNT3 68,,,,,,,,,,  

69 219483_s_at porcupine homolog 

(Drosophila) 

PORCN 69,,,,,,,,,,  

70 215310_at adenomatous polyposis coli APC 2,27,65,7

0,,,,,,, 

 

71 204052_s_at secreted frizzled-related 

protein 4 

SFRP4 71,79,,,,,,

,,, 

 

72 200695_at protein phosphatase 2 

(formerly 2A), regulatory 

subunit A, alpha isoform 

PPP2R1

A 

72,,,,,,,,,, * 

73 221557_s_at lymphoid enhancer-binding 

factor 1 

LEF1 33,73,,,,,,

,,, 

 

74 206458_s_at wingless-type MMTV 

integration site family, 

member 2B 

WNT2B 59,74,,,,,,

,,, 

 

75 221113_s_at wingless-type MMTV 

integration site family, 

member 16 

WNT16 75,,,,,,,,,,  

76 205255_x_at transcription factor 7 (T-cell 

specific, HMG-box) 

TCF7 76,89,,,,,,

,,, 

 

77 207945_s_at casein kinase 1, delta CSNK1

D 

77,86,,,,,,

,,, 

* 

78 204129_at B-cell CLL/lymphoma 9 BCL9 78,,,,,,,,,, * 

79 204051_s_at secreted frizzled-related 

protein 4 

SFRP4 71,79,,,,,,

,,, 

 

80 206136_at frizzled homolog 5 

(Drosophila) 

FZD5 62,80,,,,,,

,,, 

 

81 202037_s_at secreted frizzled-related 

protein 1 

SFRP1 81,104,,,,

,,,,, 

 

82 202221_s_at E1A binding protein p300 EP300 57,82,,,,,,

,,, 

 

83 208606_s_at wingless-type MMTV 

integration site family, 

member 4 

WNT4 83,,,,,,,,,,  

84 218941_at F-box and WD repeat 

domain containing 2 

FBXW2 14,84,,,,,,

,,, 

 

85 212849_at axin 1 AXIN1 85,,,,,,,,,,  

86 208774_at casein kinase 1, delta CSNK1

D 

77,86,,,,,,

,,, 

* 

87 215517_at pygopus homolog 1 

(Drosophila) 

PYGO1 87,,,,,,,,,, * 

88 219889_at frequently rearranged in 

advanced T-cell lymphomas 

FRAT1 88,,,,,,,,,, * 

89 205254_x_at transcription factor 7 (T-cell 

specific, HMG-box) 

TCF7 76,89,,,,,,

,,, 

 



316 

 

90 207683_at forkhead box N1 FOXN1 90,,,,,,,,,,  

91 204712_at WNT inhibitory factor 1 WIF1 91,,,,,,,,,,  

92 218665_at frizzled homolog 4 

(Drosophila) 

FZD4 92,,,,,,,,,, * 

93 208570_at wingless-type MMTV 

integration site family, 

member 1 

WNT1 93,,,,,,,,,,  

94 205648_at wingless-type MMTV 

integration site family 

member 2 

WNT2 94,,,,,,,,,,  

95 209468_at low density lipoprotein 

receptor-related protein 5 

LRP5 95,,,,,,,,,, * 

96 217729_s_at amino-terminal enhancer of 

split 

AES 96,,,,,,,,,, * 

97 221029_s_at wingless-type MMTV 

integration site family, 

member 5B 

WNT5B 97,,,,,,,,,,  

98 202210_x_at glycogen synthase kinase 3 

alpha 

GSK3A 50,98,,,,,,

,,, 

 

99 221016_s_at transcription factor 7-like 1 

(T-cell specific, HMG-box) 

TCF7L1 99,,,,,,,,,, * 

100 203698_s_at frizzled-related protein FRZB 100,103,,

,,,,,,, 

 

101 207558_s_at paired-like homeodomain 2 PITX2 101,,,,,,,,,

, 

* 

102 210220_at frizzled homolog 2 

(Drosophila) 

FZD2 102,,,,,,,,,

, 

* 

103 203697_at frizzled-related protein FRZB 100,103,,

,,,,,,, 

 

104 202036_s_at secreted frizzled-related 

protein 1 

SFRP1 81,104,,,,

,,,,, 

 

105 40837_at transducin-like enhancer of 

split 2 (E(sp1) homolog, 

Drosophila) 

TLE2 105,,,,,,,,,

, 

* 

106 203222_s_at transducin-like enhancer of 

split 1 (E(sp1) homolog, 

Drosophila) 

TLE1 66,106,,,,

,,,,, 

* 

107 220640_at casein kinase 1, gamma 1 CSNK1

G1 

41,107,,,,

,,,,, 

 

108 214489_at follicle stimulating 

hormone, beta polypeptide 

FSHB 108,,,,,,,,,

, 

* 

109 206796_at WNT1 inducible signalling 

pathway protein 1 

WISP1 55,109,,,,

,,,,, 

 

110 205990_s_at wingless-type MMTV 

integration site family, 

member 5A 

WNT5A 5,110,,,,,,

,,, 

 

111 204602_at dickkopf homolog 1 

(Xenopus laevis) 

DKK1 111,,,,,,,,,

, 

* 
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9.2 Growth assays 

Wnt inhibitors were prepared by dissolving the powdered drug in DMSO. We 

wanted to show that DMSO did not affect MCF-7 or Tam-R growth. Dose response 

MTT growth assays were done using the two cell lines. 

. 

9.2.1 DMSO does not affect cell growth of MCF-7 and Tam-R cells in 

concentrations below 5µM 

MCF-7 and Tam-R cells were treated with DMSO (0 to 20µM concentrations) for 6 

days and MTT assay was done as described in the materials and methods section. 

There was no significant change in cell growth with DMSO concentrations up to 

5µM (Figure 9.4, Figure 9.5). Maximum DMSO concentration used in experiments 

was 2µM.  

  



Figure 9.4 

Effects of DMSO (6 days) on growth of MCF-7 cells 

as determined by MTT assay.  

MTT assay using MCF-7 cells treated with DMSO (0- 20 µM 

concentrations) for 6 days was done as described in materials 

and methods section. There is no significant change in cell 

growth with DMSO concentrations up to 5µM. Error bars show 

SD (n=3, 24 wells). 
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Figure 9.5 

Effects of DMSO (6 days) on growth of Tam-R cells 

as determined by MTT assay.  

MTT assay using Tam-R cells treated with DMSO (0- 20 µM 

concentrations) for 6 days was done as described in materials 

and methods section. There is no significant change in cell 

growth with DMSO concentrations up to 5µM. Error bars show 

SD (n=2, 16 wells except for DSMO 5µM where n=1; 8 wells). 

0

20

40

60

80

100

120

0 1 5 10 20

m
ea

n
 c

el
l 

g
ro

w
th

 

(%
 c

o
n

tr
o
l)

 

[DMSO] µM 

319 



320 

 

9.2.2 Dose effects of iCRT14 on growth of MCF-7 and Fas-R cell lines were 

determined by MTT assays 

Fas-R and MCF-7 cells show a similar growth response when treated with iCRT14 

(Figure 9.6). There is some growth inhibition above iCRT14 concentrations of 

12.5µM. 

  



Figure  9.6 

Effects of iCRT14 (6 days) on growth of MCF-7 

and Fas-R cells as determined by MTT assay. 

MTT assays using MCF-7 and Fas-R cells treated with iCRT14 

(0- 25µM concentrations) for 6 days were done as described in 

materials and methods section. Fas-R cells and MCF-7 cells 

show similar  inhibition of cell growth following treatment with 

iCRT14. 

 Error bars show SD (n=3, 24 wells for MCF-7 cells; n=2, 16 

samples for Fas-R cells). 
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