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Abstract

Background: Southeast Asian deforestation rates are among the world’s highest and threaten to drive many forest-
dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we
examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal
conservation, in isolation and when combined with global climate change mitigation.

Methodology/Principal Findings: Using a long time-series of orangutan nest counts for Sabah (2000–10), Malaysian
Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on
orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we
determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to
identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest
had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in
abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth
in western Sabah by increasing the suitability of presently unoccupied regions.

Conclusions/Significance: We find strong quantitative support for the Sabah government’s proposal to implement
sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80
per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of
a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of
existing forests.
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Introduction

It has been long recognized that deforestation, conversion of

primary or secondary forests to agricultural and other land-use

types, is the biggest threat to insular Southeast Asia’s biodiversity

[1,2]. Yet, despite knowledge that deforestation results in

population extirpation and even species’ extinction, the rate of

deforestation in insular Southeast Asia remains among the highest

in the world [3]. The potential for a massive extinction event in

Southeast Asia is high [2], especially if habitat loss acts

synergistically with other increasingly important extinction drivers,

such as climate change [4]. Evaluating the long-term consequences

of regional deforestation and its interaction with global climate

change in a spatial context is a challenging yet important exercise.

Here, we describe a framework to evaluate the relative influences

of land-cover and climate change on the future spatial abundance

of threatened populations and prioritise individual habitat patches

to maximize the probability of their long-term persistence.

The Bornean orangutan Pongo pygmaeus is threatened with

extinction from habitat loss and degradation (http://iucnredlist.

org/apps/redlist/details/17975). Its population has decreased by

over 50% in the past 60 years [5], and by over 85% in the last

10,000 years following post-glacial sea-level rise [6]. Recent
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population estimates range between 45,000–69,000 individuals

[7]. Despite growing awareness of the orangutan plight, Southeast

Asian deforestation rates continue to increase: the estimated rate of

deforestation in Southeast Asia between 1990–97 was 0.91% per

annum (pa) [8], whereas a more recent estimate for 2000–10 put it

at 2.20% pa [9].

In contrast to the rest of Southeast Asia, the deforestation rate in

Sabah (the northernmost Malaysian state on Borneo) has slowed in

recent years. Sabah was among the first places to develop

industrialized deforestation on Borneo. By the 1980–90s, with the

use of heavy machinery, the rate of deforestation peaked at an

estimated 1.37% pa [10]. Sabah’s post-1990 deforestation rate has

since, however, declined to an average of 0.75% pa [11]. Although

encouraging, this rate reduction might be an artefact of forest

management; Sabah’s Permanent Forest Estate (some 51% of the

state’s land area) is protected from illegal logging while almost all

unprotected forest has already been felled [11].

In an attempt to conserve dwindling timber resources, the

Sabah Forestry Department has committed to implementing

Sustainable Forest Management (SFM) across all their commercial

forest reserves. Compared to conventional timber extraction

techniques that damage non-target trees and seedlings [12],

SFM includes Reduced Impact Logging and selective logging with

minimal collateral damage (ITTO: http://www.itto.int). After

a successful SFM trial in Deramakot forest reserve initiated in

1997, six major forest reserves are now under SFM, approximately

77.5 km2 or 20.2% of Sabah’s Permanent Forest Estate [13].

However, the Sabah government is committed to extending SFM

to all of its forest reserves by 2014, such that 51% of the State land

cover would constitute good quality secondary regrowth forest.

Reducing Emissions from Deforestation and Forest Degrada-

tion (REDD) is a Payment for Environmental Services scheme that

attaches financial value to carbon stored in forests, offering

incentives for developing countries to reduce emissions from

deforestation and forest degradation [14]. Frameworks such as

REDD, therefore encourage SFM and could have important

benefits for biodiversity conservation (e.g., [15]), including

orangutan conservation.

With an estimated 11,000 individuals, Sabah is considered the

stronghold for the Bornean orangutan subspecies P. p. morio [16].

In this study, we develop a framework to examine the

consequences of future SFM implementation scenarios on the

long-term persistence of Sabah’s orangutan population. However,

rather than considering forest management in isolation, we

recognize that the effects of habitat loss will likely be exacerbated

by global climate change [4] and incorporate this synergy in our

model. There is large uncertainty in climate change projections for

the tropics and their consequences for tropical biodiversity [17].

To our knowledge, there have been no studies of orangutan

climate preferences or tolerances, although by comparison to the

other orangutan species and subspecies, it would appear more

drought-tolerant. Climate could, however, be an important

determinant of their fundamental niche if, for instance, ENSO-

induced droughts or fires limit the availability of preferred and

‘‘fallback’’ foods, including barks and leaves [18].

To examine how forest management and climate change might

affect the Sabah orangutan population, we modelled their

distribution and abundance using a Species Distribution Model

(SDM) and projected it onto regional land-cover and global

climate change projections. Our framework improves on biocli-

mate-envelope models by linking them to dynamic land-cover

projections, allowing us to evaluate the relative influence of climate

and land-cover change in a scenario analysis. Due to its spatially-

explicit nature, this framework allows managers to evaluate the

current-day and longer-term importance of individual habitat

patches for population persistence. We predicted that the Sabah

orangutan population would fare best under the scenario

characterising minimum land-cover change and maximum climate

change mitigation, hypothesising that land-cover change will

further degrade primary forest and that climate – particularly

temperature – in currently occupied habitat will change, rendering

the habitat less suitable. We also predicted that land-cover change

would have a greater influence on orangutan population

abundance than climate change because the rate of change in

the later is currently faster than the latter, but that their combined

impact would be higher than when considered in isolation.

Methods

Nest Count Data
To monitor major P. p. morio populations across Sabah, the

Kinabatangan Orangutan Conservation Project has counted

orangutan nests along approximately 3366 km of aerial transects

through 19 forest reserves and parks over six years (2001–3, 2007

and 2009–10) (Figure 1a). Details of the aerial nest count protocol

can be found in [16]. Two details with potential to bias our results

are: (1) surveys were along transect that were occasionally repeat-

surveyed introducing spatiotemporal autocorrelation that might

cause abundance overestimates, and (2) surveys were mostly flown

over forest reserves that were considered prime orangutan habitat

and so might overestimate their distribution.

To guard against spatiotemporal autocorrelation we calculated

average spatiotemporal orangutan habitat suitability. To reduce

any influence of spatial autocorrelation, we aggregated counts to

2.5 km2 grid cells, chosen because it is the average female

orangutan territory size [19] and showed weaker spatial autocor-

relation than at a finer 1 km2 resolution (mean Local Moran’s I:

1 km =0.580, 2.5 km =0.540, range = 21 to +1). To reduce

temporal autocorrelation between repeat surveys, we used the

average nest count in each cell calculated over the entire

monitoring period. The final dataset had 1180 gridded aerial nest

count cells. All spatial data processing was done in R (www.r-

project.org) using packages raster and sp.

Failing to survey over-degraded and unforested areas with few

or no nests introduces a systematic survey bias that will prevent

a statistical model from distinguishing those areas as unsuitable.

Consequently, we selected a number of unsurveyed point locations

to represent ‘‘pseudoabsences’’. These were selected at random

from outside forest reserves, to distinguish them from ‘‘true

absences’’ (i.e., a zero nest count in a forest reserve). To counter

uncertainty in whether the pseudoabsences (or, indeed, observed

absences) were true absences, we used a statistical threshold to

identify model predicted presences that down-weights the in-

fluence of pseudoabsences (the Maximum Sum of Specificity and

Sensitivity threshold; [20]). Our data therefore represented two

processes: (1) information on whether a species is present, and (2)

information on the species’ abundance in areas where it is present.

Predictors of Nest Abundance
We identified a number of variables considered important

predictors of orangutan presence and abundance, and collated

spatial data to represent them (Table 1). We processed them to

match the nest count data resolution (Table S1). The predictors

were uncorrelated for cell values at the locations of nest counts and

for all cells across Sabah (all Spearman correlations #0.68), except

elevation and slope (Spearman r=0.76). We chose to retain both

elevation and slope because orangutan prefer lowland forests

(elevation) and because we expected forest in difficult terrain to

Orangutan and Land Management under Climate Change
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remain standing (slope) (Table 1). We classified the predictors into

three classes: (i) Anthropogenic activities were expected to exile

orangutan from otherwise suitable habitat, (ii) Habitat variables

were expected to influence orangutan densities, and (iii) Climate

variables were expected to delineate orangutan preferred average

seasonal climatic conditions.

Species Distribution Modelling
Over 43% of the aggregated orangutan nest counts were zero,

and this increased to 73% when pseudoabsences were included.

We modelled these zero-augmented data as originating from

a hurdle process characterizing two separate processes: (1)

presence across the landscape depending on whether or not

habitat is suitable, and (2) abundance in suitable habitat. We

assumed a hurdle approach because it has been shown to

outperform alternatives [21]. A hurdle model is a two part, mixed

model that predict probability of presence (and absence) and then

abundance contingent on presence. This allowed us to identify

factors influencing presence and abundance separately; an

important benefit when examining the spatial abundance of rare

or declining species.

Figure 1. Observed and predicted orangutan nest distributions. Maps showing (a) the distribution of orangutan nest counts across Sabah in
all survey years and (b) the hurdle Species Distribution Model predictions for the present day.
doi:10.1371/journal.pone.0043846.g001

Table 1. Spatial predictors used to build the Species Distribution Model with notes on their perceived importance for orangutan
and data source.

Name Class Description Relation to orangutan Source

popdist Anthropogenic distance to a major population centre
(250000+ people)

population centres are unsuitable habitat and
a source of disturbance

SWD

roaddist Anthropogenic distance to a main road roads increase mortality and reduce dispersal SFD

riverdist Habitat distance to a river rivers are used as dispersal routes and provide
native riverine vegetation

SFD

protectarea Habitat areas in which logging is prohibited protected areas will be vital for long-term
orangutan persistence

SWD & SFD

elevation Habitat meters above sea level orangutans prefer habitats at lower altitudes SRTM

slope Habitat degrees of inclination from the horizontal steep slopes are difficult to develop and might
provide refuge

SRTM

forest Habitat 2009–10 forest cover includes the forest reserves and unprotected
forest

CRISP

degraded Habitat 2009–10 degraded cover severely degraded vegetation areas including
small-scale plantations

CRISP

mangrove Habitat 2009–10 mangrove cover considered suboptimal orangutan habitat but
less prone to development

CRISP

climate Climate mean 1989–2009 annual temperature and
monthly wet dry season rainfall

included to quantify orangutan climatic
tolerances

CRU TS v3

doi:10.1371/journal.pone.0043846.t001
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We built a boosted regression tree SDM because they readily fit

non-linear and interacting processes and have been used to model

hurdle processes [22]. We fitted a saturated hurdle model using

fitting parameters: learning rate (lr) = 0.01, bag fraction (bf) = 0.7,

first-order interactions (tc) = 2 and number of trees in the range nt

[[10, 35, …, 15000]. In essence, parameters lr, bf and nt control

the contribution of each term to the regression model, the

proportion of data randomly selected to build the regression model

and the number of regression terms, respectively. To determine

the optimum nt, we compared the out-of-sample predictive

performance of models fitted with increasing nt where predictive

performance was calculated as mean prediction deviance over 10

cross-validation subsets (Dcv). We used the model with nt that

minimized Dcv [23]. Models were fitted in R using package gbm

and dismo.

To optimize the predictive performance of the saturated hurdle

model, we fitted the binomial and Poisson parts separately using all

possible fitting parameter combinations in the space defined by lr

[[0.01, 0.005, 0.001], tc [[1,2,3] and bf=0.7. Again, we varied nt

[[10, 35, …, 15000]. The optimized model was that with the

combination of fitting parameters that minimized Dcv. Finally, we

compared the optimized saturated model to models simplified by

removing the least influential predictors until the change in Dcv

exceeded the original cross-validation prediction deviance SE,

repeating this for the binomial and Poisson parts separately and

together [23].

We calculated model explanatory performance for the Binomial

part of the hurdle model using confusion matrix-based statistics

Kappa and AUC, and mean square error (mse) and relative mean

prediction error (rmpe) for the Poisson part [24].

Model Validation
We built the SDM using all available nest count survey data and

so had no unused data with which to validate its predictions.

Instead, we validated our model by examining the relationship

between our nest count predictions and an independent aerial nest

count data set [25] collected in 2007–10 along transects spaced

3 km apart (c.f. 5 km for the main dataset) using GLM and

Iterative Re-weighted Least Squares in R package MASS.

Scenario Testing
We converted nest count predictions to abundances for scenario

testing. The relationship between the number of nests per km of

aerial transect (Ai) and orangutan density (Dou) is given by Dou =

exp(4.730+ (0.980 6 ln(Ai)))/(p6r6t), where p=0.9 is the pro-

portion of nest building individuals, r=1.084 is the daily rate of

nest production and t=286.3 days is the nest decay rate [16].

We developed a spatially-explicit land-cover change model that

projected observed regional 2000–10 deforestation and forest

regeneration rates to 2100 under the SFM scenarios described in

Table 2. We calculated and projected these rates for Sabah forest

reserves and unprotected forest separately. Deforestation in forest

reserves represented forest degradation due to timber harvesting

and was modelled as a constant harvest, independent of remaining

forest. Forest reserves were allowed to regenerate after <60 years

[26]. Deforestation in unprotected forest represented the perma-

nent conversion of forest to degraded or cleared land and was

modelled as an annual transition matrix projected as a discrete

transition Markov Chain [27]. We calculated deforestation rates

from 2000–10 observed land-cover raster layers [28] restricted to

areas outside nationally and internationally designated protected

areas in which any extraction is strictly prohibited.

To identify which raster cells would be changed at each time

step and to which class they would change, we used 2010 land-

cover prediction probabilities from random forest models built

using spatial predictors of land-cover change (Table S2; [29]).

Random forest models assign each raster cell a probability of class

membership to each land-cover class calculated as the proportion of

iterations in which they were assigned membership to that class. A

cell’s predicted 2010 land-cover class is that which has the highest

probability of class membership. We calculated each cell’s

vulnerability to change as the maximum probability of membership

to any other land-cover class [30]. For each time step, the land-

cover change model calculated how many and which raster cells to

change from the deforestation rate projections and cell vulner-

abilities, and changed their land-cover class to that with the second

highest probability of class membership. Forest reserves were

deforested in sequence, as a decreasing function of the vulnera-

bility of their constituent cells.

Both SFM scenarios were tested under two contrasting global

climate change scenarios: (1) a no-climate-policy reference

scenario (MiniCAM Ref.; hereafter ‘Ref’), and (2) a corresponding

policy (stabilization) scenario (MiniCAM, Level 1; hereafter ‘Pol’)

[31]. MAGICC/SCENGEN v.5.3 (http://www.cgd.ucar.edu/

cas/wigley/magicc), a coupled gas-cycle/aerosol/climate model,

was used to generate the climate anomalies that were an ensemble

of seven GCMs chosen on the basis of their skill in reproducing

seasonal rainfall (1980–1999) at global and regional (Southeast

Asia) scales [32]. The GCMs selected were: BCCRBCM2,

CCCMA-31, CSIR0-30, GFDLCM20, MIROCMED, CCSM-

30 and UKHADGEM.

Results

Orangutan Distribution and Abundance
The optimized saturated hurdle model explained 68% of the

deviance in aerial orangutan nest counts and had an overall

relative mean prediction error (rmpe) of 24% (Table 3). The

Poisson part had a higher deviance explained (70.0%) than the

binomial part (45.5%) and required second-order interactions (i.e.,

tc=3). The explanatory power of the binomial part was robust

(Kappa= 0.639 calculated using a mean threshold over five

methods; AUC=0.917), as was the Poisson part (mean square

error [mse] = 4.504, rmpe=20.7%). Model residuals were largest

where the model estimated a nest count (Figure S1) and their

spatial autocorrelation was low (Global Moran’s I=0.129, range

= 21 to +1).
The model correctly predicted that the current-day orangutan

population is restricted largely to forested areas in eastern Sabah,

primarily in Kinabatangan Wildlife Sanctuary, Malua Biobank,

Kulamba, Ulu Segama and Deramakot forest reserves and Tabin

Wildlife Reserve (Figure 1b). The optimized saturated hurdle

model could not be simplified without loss of predictive and

explanatory power (Table 3), suggesting that current-day orang-

utan distribution and abundance is affected by climate, habitat

and anthropogenic factors. Orangutan nest presence was most

likely in forest further from major roads that were warmer and less

disturbed (Figure 2a). Orangutan nests were most abundant at low

elevations further from population settlements and major roads

where the slope was shallow (Figure 2b). Distance from rivers,

mangrove habitat and whether forest was protected or not were

scarcely important (Figure 2).

Model Validation
Our model validated well, as evident by a strong positive linear

relationship with independent data [25] (OLS fit:

y=0.288+0.311x, IWLS fit: y = 20.03+0.309x; Figures 3 and S2).

Orangutan and Land Management under Climate Change
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Scenario Testing
The 2000–10 annual deforestation rate in Sabah was 1.18% pa.

The rate in unprotected forest (1.26) was higher than in forest

reserves (1.13) (Figure S3a). These differences were not, however,

reflected in the current-day SFM implementation land-cover

change projections because all unprotected forest was deforested

within 10 years, while some forest remained in non-SFM forest

reserves until 2085 (Figure S3b). In contrast, complete implemen-

tation of SFM in all forest reserves resulted in quite different

deforestation patterns because forest was not degraded (Figure S4).

Details of the importance of spatial predictors and land-cover

classification errors are given in supplementary material (Figure

S5, Table S3).

By 2100, Sabah mean annual temperature was forecast to

increase by 2.5 and 1.2uC under the Ref and Pol scenarios

respectively. In contrast, mean seasonal precipitation (wet season:

October to March; dry season: April to September) was forecast to

remain relatively stable under both scenarios. A notable weakness

in projecting SDM is their uncertainty when extrapolating to

unobserved conditions. Our precipitation forecasts were always

within the observed current-day range (Figures S6 and S7) but

mean temperature exceeded maximum observed temperature by

2060. By 2100, the Ref temperature forecast for eastern Sabah was

up to 2.2uC above the maximum observed temperature (this was

less than 0.8uC under the Pol scenario; Figure S8).

Sabah orangutan population projections under the different

SFM and climate change scenarios are shown in Figure 4. The

population was projected to decrease by 82 and 36% by 2100

under the ‘‘No Intervention’’ and ‘‘Climate Intervention’’

scenarios but grow by 10% under the ‘‘Combined Intervention’’

scenario. This projected increase was due largely to SFM

implementation, as evidenced by the similar Combined and

‘‘Habitat Intervention’’ trajectories, although the population was

projected to increase by 22% by 2070 under the latter – the

explanation for this appears to be in the spatial pattern of

abundance through time.

Compared to the 2010 spatial abundance pattern (Figure 1b),

the orangutan population generally moved west by 2100 across all

tested scenarios (Figure 5). In contrast to the Climate and No

Intervention scenarios, forest in the west remained standing under

the Combined and Habitat Intervention scenarios and was

colonised by orangutan. In contrast to the Combined and Climate

Intervention scenarios, temperature in the eastern forests increased

beyond current-day extremes under the Habitat and No In-

tervention scenarios and orangutan populations in these forests

declined.

Discussion

By linking regional dynamic land-cover and global climate

change models, we were able to evaluate the relative influence of

Table 2. Future land-cover and climate change scenarios evaluated for their effect on orangutan spatial abundance in Sabah.

Scenario Description Justification

No Intervention Sustainable Forest Management (SFM) is implemented only in current SFM
forest reserves others are converted to degraded sequentially and regenerate
after 60 years. CO2 emissions continue to increase under a no-climate-policy
scenario and climate changes unabated

Current SFM is adequate to safeguard the
orangutan population, which will not be
affected by climate change

Habitat Intervention SFM is implemented in all forest reserves but CO2 emissions continue to
increase under a no-climate-policy scenario and climate changes unabated

Safeguarding the orangutan population
requires complete SFM implementation
even under no climate change

Climate Intervention SFM is implemented only in current SFM forest reserves but CO2 emissions
stabilize at 450 ppm by 2100 under a stabilization-policy scenario and
climate change slows

Current SFM is adequate to safeguard the
orangutan population but only if climate
change can be slowed

Combined Intervention SFM is implemented in all forest reserves the Sabah Forest Department
plans to implement this scenario by 2014. CO2 emissions are cut and
stabilize at 450 ppm under a stabilization policy scenario and
climate change slows

Safeguarding the orangutan population
requires complete SFM implementation
as climate change affects habitat suit

doi:10.1371/journal.pone.0043846.t002

Table 3. Results of the hurdle boosted regression tree simplification procedure.

Model simplification Binomial Poisson Hurdle

Dcv SE Dcv Dcv SE Dcv Dnull Dresid mse rmpe

saturated 0.696 0.021 3.512 0.272 2.429 0.787 2.417 0.240

binomial 0.944 0.014 3.442 0.435 2.661 0.870 3.040 0.302

Poisson 0.695 0.016 3.822 0.348 2.361 0.896 3.087 0.307

binomial and Poisson 0.946 0.012 3.880 0.304 2.668 1.106 3.866 0.384

Hurdle models were fitted as a two-step process: a binomial and Poisson part. These results show that the saturated model using all spatial predictors for both binomial
and Poisson parts had lower prediction deviance (e.g., Dcv) and explanatory deviance (e.g., mse) compared to hurdle models for which the binomial, Poisson or both
parts were built using only the most influential spatial predictors.
Abbreviations: Dcv and SE Dcv are the mean and standard error of the 10-fold cross-validation residual deviances, Dnull and Dresid are the mean null and residual
deviances, mse is the mean square error and rmpe is the relative mean prediction error.
doi:10.1371/journal.pone.0043846.t003
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land-cover and climate change on the future spatial abundance

patterns of a threatened tropical species and identify potentially

important habitat for its long-term persistence. We show that only

complete implementation of SFM across all forest reserves

(Combined and Habitat Intervention scenarios) will ensure

Sabah’s orangutan population does not decline in the long term,

Figure 2. Relationships between nest presence and abundance and their four most influential predictors. Figures showing the
relationship between (a) orangutan nest presence and (b) orangutan nest abundance and their four most influential predictors in the final saturated
hurdle Species Distribution Model. Solid lines are the robust linear regression fit using Huber weights and fitted by Iterated Re-weighted Least
Squares and indicate the direction of the relationship between the response and predictor variables. The relative importance of each predictor is
given in parentheses on the x-axis. Note: abundance fitted values are ln transformed and zero values are not presented.
doi:10.1371/journal.pone.0043846.g002

Figure 3. Validation of predicted nest counts on an independent orangutan nest count dataset. Maps showing the spatial
correspondence between orangutan nest counts calculated from (a) [25] and (b) our model predictions. Note that the model-predicted nest counts
are generally lower than the empirically derived estimates.
doi:10.1371/journal.pone.0043846.g003

Orangutan and Land Management under Climate Change
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and that the population will fare best under a climate change

mitigation scenario. Spatially, our model predicted that eastern

forest reserves currently support highest orangutan numbers but

that, even if they remain forested under complete SFM

implementation, their suitability for orangutan will gradually

decline as temperature increases under Ref, and to a lesser extent

Pol, climate change scenarios. Instead, currently unoccupied

western forests might become a future orangutan climate refuge.

If Sabah honours its commitment to implement SFM in all its

forest reserves by 2014 [13], then our modelling predicts a positive

outlook for the orangutan, with a potential increase in population

size by up to 22%, and likely ‘umbrella’ benefits to other species

[33] and ecosystem services [34]. If, however, these pledges are not

met, then Sabah’s orangutan population is forecast to decline

substantially by 2100. For instance, failing to implement SFM in

all forest reserves might cause an 80% decline in the orangutan

population by 2100 (compare Habitat and No Intervention,

Figure 4). Our findings show that climate change and its

interaction with habitat loss are likely to be important to

orangutan conservation; an important insight beyond existing

orangutan population and habitat viability assessments in Borneo

[35] and Sumatra [36]. Failure to stabilize global CO2 emissions at

around 450 ppm might cause the orangutan population to decline

by an additional 46% by 2100 (compare Climate and No

Intervention, Figure 4). If SFM were implemented in all forest

reserves, then the effect of climate change would be felt mostly in

eastern Sabah, which will become hotter and less hospitable

approaching 2100 (compare Combined and Habitat Intervention,

Figure 4).

Our model predicts a gradual re-population of forest reserves in

western Sabah where populations have been extirpated by hunting

([37]; Figure 5). Under the Climate and No Intervention scenarios,

these areas become heavily degraded and unsuitable for orang-

utan. If, however, these areas remain forested under SFM, then

they might become important under climate change. Compared to

the current-day, eastern Sabah is forecast to experience hotter

conditions by 2100 but the west will remain climatically suitable

(Figure S8). There have been no studies of orangutan climate

preferences, tolerances or its effect on their abundance. Our model

suggests that climate, specifically mean annual temperature and

wet season precipitation, are important determinants of orangutan

abundance. If our model captures the orangutan preferred climate

niche, and can be extrapolated to novel climates (that arise in

eastern Sabah after 2060 for the Ref scenario), then western forests

might become a future orangutan climate refuge, underscoring the

need to protect them despite their current lack of orangutan.

The validity of our forecasts rests on the assumption that our

hurdle model captured the spatial pattern of orangutan distribu-

tion and abundance and correctly identified their main drivers.

Our SDM was a good descriptor of the highly variable aerial nest

count data, explaining almost 70% of their variation, and its

predictions embodied SWD wildlife warden on-ground knowledge

of orangutan distribution in Sabah. It identified drivers of

orangutan presence and abundance supported by expert opinion

and the literature. For example, it is well-documented that roads

promote deforestation [37] and that orangutan are forest-dwelling

animals [38] and our hurdle model predicted highest orangutan

presence and abundance in forested areas away from major roads

[39]. Although habitat loss is the major threat to orangutan

persistence on Borneo, it is closely followed by hunting and illegal

trade [37]. Our results indicate that orangutan nests were most

abundant away from large human settlements (.250,000 people)

suggesting that hunting has left its legacy in orangutan distribution

and abundance in Sabah.

There is a growing body of evidence suggesting that orangutan

can occupy degraded, even agricultural, landscapes, albeit at lower

numbers (e.g., [40]). For example, orangutan have been found

living in Acacia spp. plantations harvested for paper and pulp [41].

Our model predicted low-density sparse orangutan ‘‘patches’’

outside sustainably managed forest reserves. Only a few small and

isolated populations were forecast to persist by 2100 and this seems

realistic given reported extirpation of population groups in

repeatedly and extensively logged forest in Malua BioBank [42].

Linking dynamic land-cover and climate change projections has

been attempted rarely (but see [43]). The concern is that the added

uncertainty from the land-cover models will render projections

unreliable [44]. By employing a scenario-based analysis our

framework will allow – at least – qualitative comparison of feasible

management scenarios. Whether static models, such as SDM, are

the best modelling approach for such analyses is questionable.

There is growing concern that SDM yield unreliable estimates of

a species’ fundamental niche and future abundance because they

omit highly influential factors, such as harvest and dispersal [45].

Our SDM is not immune to these drawbacks. For instance, it does

not incorporate past or future hunting pressure, calling in to

question the nest predictions in western forest reserves where

orangutan have been extirpated by hunting [37] and assuming

that hunting pressure will remain negligible into the future.

Although currently inconceivable, even a small increase in hunting

pressure could cause a long-term decline in the population (e.g.,

[36]).

Importantly, our model assumes that dispersal is no constraint

on patch colonization. All patches, whether large and connected

or small and isolated, have an equal probability of being

colonised. In reality many patches will be unreachable by

dispersing individuals because they are too far or too isolated

[46]. Regarding long-term movements, our SDM was con-

strained to project orangutan abundance within the political

boundary of Sabah. In reality, political boundaries are in-

consequential for orangutan that can move through contiguous

forest linking countries. Brunei, located to the south west of

Figure 4. Orangutan population projections under the four
intervention scenarios. Time series of total Sabah orangutan
population projections under intervention scenarios described in
Table 2.
doi:10.1371/journal.pone.0043846.g004
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Sabah, retains a high proportion of standing primary forest

currently unoccupied by orangutan. If our model projections

prove accurate, then orangutan could migrate into Brunei,

particularly if climate change continues unabated. On the other

hand, orangutan could migrate south into East Kalimantan,

Indonesian Borneo, where hunting pressure remains high and

populations would likely be extirpated [47].

To incorporate the effects of extraneous factors, such as hunting

and fires, and dispersal and migration into population dynamics

and – ultimately – orangutan abundance projections, we

recommend that future work focuses on extending these SDMs

to a stochastic coupled niche-population modelling such as has

already been suggested [48].

The Bornean orangutan population has declined .50% over

the past 60 years due to habitat loss and fragmentation. Further

decline might be avoided with REDD+ support [15]; we show that

complete implementation of SFM across Sabah’s forest reserves

will sustain the orangutan population in the long-term without

substantial decline. Sabah, however, constitutes only a small

fraction of the total orangutan distribution on Borneo, and illegal

deforestation and conventional timber logging outside Sabah is

widespread. For example, over 56% of lowland forest in

Kalimantan was lost between 1985–2001 [49]. To safeguard the

Bornean orangutan from extinction (as opposed to local extirpa-

tion), we encourage the other countries and provinces on Borneo

to follow Sabah’s lead and seek REDD+ support to implement

SFM across their timber-producing forest reserves and reconnect

fragmented and isolated forest fragments.

Conclusion
This study provides a framework with which wildlife population

managers, including those involved with orangutan conservation

on Borneo and Sumatra, can evaluate the relative influence of

future regional land-cover and global climate change on the spatial

abundance patterns of threatened species and identify regions –

even habitat patches – that should be conserved to maximize the

probability of their persistence. This framework could help

Figure 5. Spatial orangutan abundance in 2100 under the four intervention scenarios. Maps showing 2100 abundance projections for
each intervention scenario described in Table 2. The polygons are the sustainably managed forest reserves under each scenario.
doi:10.1371/journal.pone.0043846.g005
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countries justify applications to payment for environmental

services schemes, such as REDD and REDD+.

Supporting Information

Figure S1 Predicted nest count residuals. Map of Sabah

showing the residuals from the hurdle boosted regression tree

Species Distribution Model. Note that the residuals are highest

were the model predicted a nest count and lowest were the model

predicted a nest presence. Shaded areas are commercials forest

reserves and protected areas.

(TIFF)

Figure S2 Relationship between nest count predictions
and an independent orangutan nest count dataset. Plot

showing the ordinary least squares (OLS) and robust iterative re-

weighted least squares (IWLS) fits when predicting our SDM

model predictions with data published in [25].

(TIFF)

Figure S3 Land-cover class gains and losses and
projected changes between 2010–2100. Plots showing (a)

the observed gains and losses of cells in each land cover class, and

(b) the projected changes in each land class between 2010–2100 in

forest reserves and unprotected forests for the current-day SFM

scenario. Absolute gains and losses in least-widespread classes were

negligible compared to changes in degraded land and forest cover.

Consequently, projected changes in these land-cover class were

inconsequential compared to projected gains and losses in

degraded and forest land cover, respectively.

(TIFF)

Figure S4 Land-cover change projections. Maps showing

land cover change projections at 2011, 2041, 2071 and 2100

under (a) current-day SFM and (b) complete SFM implementa-

tions.

(TIFF)

Figure S5 Predictor importance for predicting 2010
observed land-cover. Plots showing the relative importance

of spatial predictors in predicting observed 2010 land cover in (a)

forest reserves and (b) unprotected forests.

(TIFF)

Figure S6 Per cent wet season precipitation delta maps
under each CO2 mitigation scenario. Per cent wet season

precipitation delta maps at 2041, 2071 and 2100 relative to 2010

for Ref and Pol scenarios.

(TIFF)

Figure S7 Per cent dry season precipitation delta maps
under each CO2 mitigation scenario. Per cent dry season

precipitation delta maps at 2041, 2071 and 2100 relative to 2010

for Ref and Pol scenarios.

(TIFF)

Figure S8 Degree Centigrade temperature delta maps
under each CO2 mitigation scenario. Degrees Centigrade

temperature delta maps at 2041, 2071 and 2100 relative to 2010

for Ref and Pol scenarios.

(TIFF)

Table S1 Spatial predictors. Spatial predictors used to build

the Species Distribution Models and notes on their processing.

(DOC)

Table S2 Land cover change predictors. Table of variables
considered important predictors of land cover change.

(DOC)

Table S3 Accuracy statistics for the random forest
models of 2010 land-cover predictions. Prediction error

rates were low for the most-widespread land-cover classes but high

for the least-widespread classes (e.g., mangrove and cleared land)

because they constituted less than 5% of the land cover.

(DOC)
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