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Summary 

Endothelium-derived hydrogen peroxide (H2O2) has been suggested to function as a 

freely diffusible endothelium derived hyperpolarizing factor (EDHF). However, in the 

rabbit vasculature, it has been shown that the electrotonic spread of endothelial 

hyperpolarization via myoendothelial and homocellular smooth muscle gap junctions is 

essential for nitric oxide (NO)-prostanoid-independent arterial relaxation. Therefore, a 

series of interlinked experiments, both mechanical and imaging, have been undertaken 

to investigate the role of H2O2 in vascular control, focusing on the mechanisms through 

which H2O2 may regulate intracellular endothelial calcium (Ca2+) homeostasis. These 

studies have shown that exogenous H2O2 does not directly mediate an EDHF-type 

response, but can potentiate electrotonically-mediated relaxations by facilitating the 

elevation of endothelial cell intracellular Ca2+ concentration ([Ca2+]i), thereby promoting 

the activation of hyperpolarizing endothelial Ca2+-activated potassium channels (KCa). 

Mechanistically, this potentiating effect of H2O2 involves enhanced depletion of the 

ryanodine-sensitive endoplasmic reticulum Ca2+ store, through inhibition of 

sarcoplasmic-endoplasmic reticulum Ca2+-ATPase (SERCA) activity, and therefore 

increased extracellular Ca2+ influx through store-operated Ca2+ entry. This effect of 

H2O2 is independent of the nature of the initiating stimulus, as it is observed with both 

the receptor-coupled agonist acetylcholine and the SERCA pump inhibitor 

cyclopiazonic acid. Paradoxically, however, H2O2 was also shown to exert inhibitory 

effects on NO-mediated endothelium-dependent relaxations. Additionally, arsenite was 

found to modulate vascular responses through the elevation of the endogenous 

endothelial-produced H2O2 that is secondary to the activation of NADPH oxidase. This 

thesis provides evidence that H2O2 is a physiological-important signalling molecule in 

endothelial Ca2+ homeostasis. The findings also give further insights into the 

mechanism underlying the compensatory role of the EDHF phenomenon to 

compromised NO-mediated response that are observed in diseased vessels. 
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Chapter 1 

General Introduction 

1.1 THE CARDIOVASCULAR SYSTEM 

The cardiovascular system, comprising of the heart and blood vessels, is the first organ 

system that is formed in an embryo (Levick, 2010). The key function of this system is to 

rapidly transport oxygen, nutrients, water and hormones around the body to the tissue, 

while at the same time, taking away the metabolic waste products such as carbon 

dioxide. The cardiovascular system also has other functions such as helping to 

regulate pH, temperature, salt and water balance in the body and protection of the 

body from diseases and bleeding through various blood cells, proteins and antibodies. 

1.1.1 WHO facts  

Diseases of the cardiovascular system are the biggest cause of death worldwide. 17.3 

million people died from cardiovascular diseases in 2008, primarily coronary heart 

diseases and stroke, this represented 30% of all deaths in that year. More than 3 

million of these deaths occurred in people below the age of 60, and men are more 

likely to develop cardiovascular diseases at an earlier age than women. The 

cardiovascular mortality rate ranges from 4% in high-income countries to 42% in low-

income countries, leading to growing inequalities in the occurrence and outcome of 

cardiovascular diseases between countries and populations. It is estimated that 23.6 

million people will die from cardiovascular diseases annually by 2030 (Mendis et al., 

2011; WHO, 2012).  
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1.1.2 Cardiovascular diseases 

Cardiovascular diseases represent a group of disorders of the heart and blood vessels, 

WHO has defined them into six categories: coronary heart disease, cerebrovascular 

disease, peripheral arterial disease, rheumatic heart disease, congenital heart disease, 

and deep vein thrombosis/pulmonary embolism (WHO, 2012). Smoking, lack of 

exercise, excessive alcohol intake, unhealthy diets, obesity, hypertension, high 

cholesterol and diabetes are among the leading risk factors of cardiovascular diseases. 

1.1.3 Structure and function of the blood vessels 

 

Figure 1.1 Schematic representation of the structure of the blood vessel wall.  

 

The wall of all blood vessels, except capillaries, is made of three layers: (i) Tunica 

Intima: composing of endothelial cells that are in contact with the blood and are 

attached to the internal elastic lamina; (ii) Tunica Media: consists of spindle-shaped 

smooth muscle cells and (iii) Tunica Adventitia: made of collagenous connective 

tissues that contains nerve fibers and fibroblasts and sometimes, an external elastic 
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lamina (Levick, 2010) (Figure 1.1). The wall structure of each type of vessels is 

specially adapted to their function. Large arteries such as aorta and iliac arteries are 

called elastic arteries, they express high levels of elastin protein and collagen, have 

high extensibility, can expand by ~10% during each heart beat to accommodate the 

ejected blood and can recoil during diastole. Medium sized arteries such as femoral 

and coronary arteries are called conduit arteries, they have a thicker smooth muscle 

layer relative to the lumen diameter than in elastic arteries. These muscular arteries 

have low resistance conduits and their thick walls can prevent collapse at sharp bends 

like the knee joint. They normally comply with a rich autonomic nerve supply and can 

dilate or contract actively. They conduct the flow from the large elastic arteries to 

smaller resistance arterioles. The arterioles have high resistance due to the narrow 

lumen and they regulate local blood flow for capillary perfusion. The numerous 

capillaries are called exchange vessels, their wall comprises of a single layer of 

endothelial cells with no media or adventitia, they have a low resistance to flow and 

facilitate transfer of oxygen and nutrients to the tissue. Venous vessels have an intima, 

a thin media of smooth muscle cells and an adventitia, they offer a low resistance to 

flow and are called capacitance vessels because of their large number and size that 

contain about two-thirds of the circulating blood at any one moment. The total length of 

all arteries may exceed 60,000 miles in the human body (Levick, 2010). 

1.2 THE ENDOTHELIUM 

The term ‘endothelium’ was first used by the Swiss anatomist Wilhelm His in 1865 (Aird, 

2007). The endothelium consists of a single layer of endothelial cells lining the luminal 

surface of the entire vasculature (veins, arteries and capillaries) and the lymphatic 

system. It may be considered to be one of the largest organs in the body, its total mass 

may exceed that of the liver and its surface area is over 4000 square metres in the 

human (Andonegui et al., 2009). Endothelial cells are squamous epithelial cell that 

each cell is 0.2-0.3 µm thick, and has a flattened shape (Levick, 2010). 
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1.2.1 Function of the endothelium 

Endothelial cells contribute to cardiovascular regulation in many ways. They (i) serve 

as a permeability barrier that modulates the exchange of oxygen, nutrients and 

metabolic products between plasma and interstitial fluid; (ii) regulate vascular 

haemostasis and platelet function by producing both antithrombotic and pro-clotting 

factors; (iii) secrete growth factors, hormones and cytokines; (iv) contribute to the 

formation and degradation of the extracellular matrix, therefore influencing vascular 

smooth muscle proliferation and angiogenesis and (v) modulate vascular tone 

(Widmaier et al., 2004; Vanhoutte and Feletou, 2005). 

1.2.1.1 Vascular relaxation 

Resistance vessels and large arteries exhibit some degree of smooth muscle 

contraction called basal tone, which determines the diameter of the vessel (Levick, 

2010). Basal tone is regulated by both extrinsic and intrinsic factors. Extrinsic factors 

such as sympathetic neuroeffectors (e.g. noradrenaline) and circulating hormones (e.g 

angiotension II) may preferentially increase vascular tone and cause vasoconstriction. 

Whereas intrinsic factors such as endothelial factors are responsible for local regulation 

and may either increase or decrease vascular tone. Indeed, a significant function of the 

endothelium is regulation of the vascular tone of underlying smooth muscle cells. The 

smooth muscle tone depends primarily on cytosolic/intracellular calcium concentration 

([Ca2+]i) and Ca2+ sensitivity. To initiate contraction, Ca2+ binds to calmodulin to form 

Ca2+-calmodulin complex, which activates myosin light-chain kinase (MLCK) that 

phosphorylates myosin to cause contraction. By contrast, if [Ca2+]i decreased, 

constitutively active myosin light-chain phosphatase (MLCP) will dephosphorylate 

myosin to cause relaxation (Levick, 2010). Arterial endothelium expresses receptors to 

many vasoactive agents such as acetylcholine (ACh), upon stimulation by such an 

agonist, the endothelium produces a spectrum of vasodilators and vasoconstrictors, 

including prostacyclin (PGI2), nitric oxide (NO), EDHF (endothelium-derived 
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hyperpolarizing factor) and endothelin. These endothelium-derived signalling molecules 

may diffuse directly into the underlying smooth muscle cells or through channels such 

as gap junctions. PGI2, NO and EDHF all cause relaxation of the smooth muscles by 

decreasing [Ca2+]i. 

1.2.3 Prostanoids  

 

Figure 1.2 Schematic representations of the agonist-evoked production of PGI2 and its 

downstream signaling pathway. The generation of PGI2 is a calcium-dependent process that 

requires the presence of COX, which catalyses the conversion of arachidonic acid (AA) into 

PGI2. The endothelium-derived PGI2 binds to its adenylate cyclase (AC)-coupled receptor IP on 

the surface of the smooth muscle cells (SMC), leading to accumulation of cyclic adenosine 

monophosphate (cAMP). cAMP activates phosphorylating enzyme protein kinase A (PKA), 

resulting in the reduction of [Ca
2+

]i and deactivation of myosin light chain kinase (MLCK), 

therefore relaxation. EC: endothelial cells, ER: endothelial reticulum.  

 

PGI2 is a potent vasodilator and inhibitor of platelet aggregation that is secreted from 

the endothelium (Moncada et al., 1976; Moncada et al., 1977). In endothelial cells, it is 

a major metabolite of the membrane–bound lipid arachidonic acid (AA). Its synthesis 

requires the presence of the cyclooxygenase enzyme COX. In healthy blood vessels, 
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COX-1 and COX-2 enzymes are expressed by both endothelial and vascular smooth 

muscle cells, COX-1 is the predominate and constitutive isoform for the generation of 

prostacyclin in endothelial cells (Egan and FitzGerald, 2006; Feletou, 2011a). The final 

step in PGI2 synthesis also requires prostacyclin synthase (PGIS), a cytochrome P450 

haemoprotein, which is expressed in both endothelial and vascular smooth muscle 

cells (Wu and Liou, 2005; Egan and FitzGerald, 2006; Tang and Vanhoutte, 2008).  

To dilate the vessel, endothelium-derived PGI2 binds to its Gs-protein coupled receptor 

(IP) on the vascular smooth muscle and transduces the signal through activation of 

adenylate cyclase, leading to the accumulation of the second messenger cyclic 

adenosine monophosphate (cAMP) and activation of phosphorylating enzyme protein 

kinase A (PKA). cAMP-PKA induces vascular relaxation through a number of 

downstream pathways including: (i) stimulation sarcoplasmic-endoplasmic reticulum 

Ca2+-ATPase (SERCA) leads to sequestration of Ca2+ in the sarcoplasmic reticulum; (ii) 

stimulation of plasma membrane extrusion Ca2+-ATPase (PMCA) leads to increased 

efflux of Ca2+; (iii) stimulation of potassium (K+) channels leads to inhibition of Ca2+ 

influx through voltage-operated Ca2+ channels (VOCC); and (iv) inhibition of MLCK 

leads to decreased Ca2+ sensitivity (Levick, 2010; Morgado et al., 2012) (Figure 1.2). 

Genetic deletion or a mutated IP receptor leads to accelerated cardiovascular disease 

such as atherosclerosis (Kobayashi et al., 2004), atherothrombosis (Arehart et al., 

2008) and reperfusion injury (Xiao et al., 2001), whereas deletion of PGIS is associated 

with hypertension (Nakayama et al., 2002).  

PGI2 may also evoke either hyperpolarization and depolarization in certain vascular 

beds (Feletou, 2011a). For example, in the guinea-pig carotid artery (Corriu et al., 

2001), guinea-pig coronary artery (Parkington et al., 1993), guinea-pig aorta (Clapp et 

al., 1998), porcine coronary artery (Edwards et al., 2001) or rat tail artery smooth 

muscle cells (Schubert et al., 1996), relaxation to PGI2 or its analogue is associated 

with a hyperpolarization, possibly through PKA-dependent potassium channel 
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activation. However, in guinea-pig carotid artery (Corriu et al., 2001), rabbit aorta 

(Borda et al., 1983), rat aorta (Borda et al., 1983; Williams et al., 1994), bovine 

coronary artery (Schror and Verheggen, 1986) and human umbilical artery (Pomerantz 

et al., 1978), depolarization or contractile responses to PGI2 are often observed. 

However, it should be noted that in many blood vessels, the transient endothelium-

dependent hyperpolarization following the addition of neurohumoral mediators is 

persistent after inhibition by a non-selective COX inhibitor indomethacin (Quignard et 

al., 1999; Edwards et al., 2001; Burnham et al., 2006; Ng et al., 2008) (See Section 

1.2.5 below). 

1.2.4 Nitric Oxide 

 

Figure 1.3 Schematic representations of the agonist-evoked production of NO in endothelial 

cells (EC) and its downstream signaling pathway. The generation of NO is a calcium-dependent 

process that requires the activation of eNOS, which catalyses the conversion of L-arginine (L-

Arg) into NO and L-citrulline. The endothelium-derived NO activates the soluble guanylate 

cyclase in the smooth muscle cells (SMC), which increases cGMP levels and causes the 

activation of phosphorylating enzyme protein kinase G (PKG), resulting in the reduction of 

[Ca
2+

]i and deactivation of myosin light chain kinase (MLCK), therefore relaxation. ER: 

endothelial reticulum, CaM: calmodulin. 
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The term endothelium-derived relaxing factor (EDRF) was first suggested by Furchgott 

and Zawadzki in 1980 (Furchgott and Zawadzki, 1980), who described the release of 

an unknown endothelial factor that relaxed isolated trips of rabbit aorta in response to 

ACh. Later research has showed that EDRF activated soluble guanylate cyclase (sGC) 

(Rapoport and Murad, 1983; Ignarro et al., 1984), was synthesised and released from 

the endothelium continuously under basal conditions (Griffith et al., 1984), has a half-

life of only a few seconds (Griffith et al., 1984; Rubanyi et al., 1985), was scavenged by 

oxyhemoglobin (Martin et al., 1985) and is inactivated by the superoxide anion 

(Rubanyi and Vanhoutte, 1986). Seven years after the first demonstration of existence 

of EDRF, the true identity of this EDRF was finally revealed to be NO (Ignarro et al., 

1987; Palmer et al., 1987). Using analogues of L-arginine (L-Arg), these workers 

showed that NO production occurred through the L-arginine–NO-synthase (L-Arg–NOS) 

pathway (Ignarro et al., 1987; Palmer et al., 1987; Palmer et al., 1988; Rees et al., 

1989).  

Endothelial NOS (eNOS) is constitutively active and mainly localised in luminal 

membrane invaginations of endothelial cells called caveolae (Forstermann et al., 1991; 

Garcia-Cardena et al., 1996; Shaul et al., 1996). NO contributes to vascular relaxation 

mainly through the activation of soluble guanylate cyclase (sGC), which produces 

cyclic guanosine monophosphate (cGMP). Elevation in cGMP levels leads to the 

activation of phosphorylating enzyme protein kinase G (PKG) (Pfeifer et al., 1998). 

cGMP-PKG has similar actions as cAMP-PKA, it phosphorylates multiple targets such 

as (i) SERCA pump; (ii) PMCA pump; (iii) K+ channels and (iv) MLCK, leading to 

decreased [Ca2+]i and ultimately, the vascular relaxation (Levick, 2010) (Figure 1.3). 

As NO is the most dominant endogenous vasodilator, its deficiency can lead to 

vasoconstriction in vascular beds and an increase in blood pressure. Indeed, reduced 

bioavailability of NO is observed in the endothelial dysfunction that is associated with 

atherosclerosis, hypertension, diabetes and other cardiovascular diseases 
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(Schachinger and Zeiher, 2000; Maxwell, 2002; Barbato and Tzeng, 2004). Genetic 

knockout mice that are deficient of eNOS (eNOS-/-) are hypertensive (Huang et al., 

1995). Although the ACh response in large conductance vessels in these eNOS-/- mice 

is completely abolished (Brandes et al., 2000), it should be noted that, in resistance 

vascular beds such as mesenteric artery, the ACh response is maintained and 

accompanied by a hyperpolarizing effect on the smooth muscle (Huang et al., 2001; 

Scotland et al., 2001). It has been reported that NO itself can induce hyperpolarization 

in guinea-pig coronary artery (Parkington et al., 1993) and rat mesenteric artery 

(Garland and McPherson, 1992), possibly through direct action on a range of 

potassium channels (calcium-activated/KCa, voltage-dependent/Kv, ATP-sensitive/KATP), 

in either a cGMP-dependent or -independent manner (Murphy and Brayden, 1995b; 

Hohn et al., 1996; Yuan et al., 1996). However, it has became clear that 

hyperpolarization induced by exogenous NO is different to that induced by agonist such 

as ACh (Garland and McPherson, 1992; Plane et al., 1995), and in some artery types, 

NO fails to evoke any membrane potential change at all (Zygmunt et al., 1998). 

1.2.5 Endothelium-derived Hyperpolarising Phenomenon 

The endothelium can promote arterial relaxation through a mechanism, distinct from 

NO and prostanoids, in which hyperpolarization of this monolayer results in 

hyperpolarization of underlying vascular smooth muscle cells and closure of voltage-

dependent L-type smooth muscle Ca2+ channels. This endothelium-derived 

hyperpolarizing phenomenon (EDH) has been demonstrated in a variety of vessel 

types, including rabbit mesenteric artery (Hutcheson et al., 1999), rabbit iliac artery 

(Taylor et al., 1998), guinea-pig carotid artery (Corriu et al., 1996), rat mesenteric artery 

(Garland and McPherson, 1992; Randall et al., 1996), rat coronary artery (Randall and 

Kendall, 1997) and human coronary artery (He, 1997). The EDH phenomenon is 

insensitive to eNOS/COX inhibition, is accountable for the dominant vasorelaxation in 

some smaller vessels and has been suggested to be a compensation mechanism for 
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reduced NO bioavailability (Busse et al., 2002). Indeed, an inverse relationship 

between NO release and EDH phenomenon has been demonstrated in many artery 

types, including rabbit ear arteries (Berman et al., 2002), rabbit carotid artery 

(Bauersachs et al., 1996), porcine coronary artery (Bauersachs et al., 1996) and rat 

isolated superior mesenteric arterial bed (McCulloch et al., 1997). 

 

Figure 1.4 Schematic representations of the endothelium-derived hyperpolarizing factor (EDHF) 

signaling pathway. Depletion of the ER store by agonist stimulation leads to an increase in Ca
2+

 

influx through store-operated channel (SOC), which in turn activates KCa, hyperpolarizing the 

endothelial cells (EC). This hyperpolarization propagates to the underlying smooth muscle cells 

(SMC) via myoendothelial gap junctions (GJ). VOCC: voltage-operated calcium channel.  

 

Numerous candidates have been proposed to be an EDHF that is freely diffusible to 

the underlying smooth muscle cells, including NO itself, arachidonate metabolites such 

as epoxyeicosatrienoic acids (EETs) (Campbell et al., 1996) and anandamide (Randall 

et al., 1996), K+ (Edwards et al., 1998), hydrogen peroxide (Matoba et al., 2000), C-

type natriuretic peptide (Chauhan et al., 2003), and hydrogen sulfide (Wang, 2009). 
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However, none could be considered to have emerged as a universal mediator of 

hyperpolarization-dependent relaxation. An alternative hypothesis is that electrical 

signaling via gap junctions plays a crucial role in the EDH phenomenon, indeed, in 

rabbit arteries, EDHF-type relaxations involve direct intercellular communication via 

myoendothelial and homocellular smooth muscle gap junctions that allow passive 

spread of endothelial hyperpolarization through the vessel wall (Chaytor et al., 1998). 

This gap junction-dependent mechanism is now evident in many vessel types in many 

species including rabbit iliac artery (Taylor et al., 1998; Griffith et al., 2002; Chaytor et 

al., 2005), rabbit mesenteric artery (Hutcheson et al., 1999), rabbit ear artery (Taylor et 

al., 2001; Berman et al., 2002), rat mesenteric artery (Sandow et al., 2002) and mouse 

mesenteric artery (Dora et al., 2003). 

EDH/EDHF-type relaxations can be evoked by either receptor-dependent or receptor-

independent pathways. In the case of G protein-coupled agonists that stimulate 

relaxation, including ACh, bradykinin and substance P, two mechanisms contribute to 

the elevation in [Ca2+]i necessary for endothelial KCa channel activation, namely (i) 

transient release of Ca2+ from the endoplasmic reticulum (ER) through the activation of 

phospholipase C (PLC), followed  by the formation of inositol 1,4,5-trisphosphate 

(InsP3), which binds to its receptor InsP3R on the store (Fleming et al., 1996) and (ii) 

sustained influx of extracellular Ca2+ (also called capacitative calcium entry) via store-

operated Ca2+ channels (SOCs) that are regulated by the resulting InsP3-evoked 

depletion of the ER Ca2+ store (Pasyk et al., 1995; Fukao et al., 1997; Tomioka et al., 

2001). Additionally, store-operated Ca2+ influx and relaxation can also be triggered by 

inhibitors of the SERCA pump such as cyclopiazonic acid (CPA) and thapsigargin, 

which selectively block ER Ca2+ uptake thereby promoting direct ER depletion (Pasyk 

et al., 1995). Agents such as Ca2+ ionophore A21387 will also evoke receptor-

independent stimulation of EDH/EDHF-type relaxations (Petersson et al., 1997; 
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Zygmunt et al., 1998; Hutcheson et al., 1999), possibly by depleting the ER Ca2+ store 

directly (Figure 1.4).  

1.2.5.1 Gap Junctions 

 

Figure 1.5 Schematic representations showing the structure of gap junction. Docking of two 

connexon from apposing cells results in the formation of an aqueous pore, that allows the 

transfer of ions and small molecules between coupled cells. Each connexon is formed by six 

connexins, and each connexin possesses four transmembrane domains (M1-4). N: N-terminal, 

C: C-terminal. 

 

Gap junctions are formed by the linking of two hemichannels or connexons, one on 

each cell membrane of two adjacent cells. Each connexon is assembled from six 

subunit proteins called connexins (Cx), each connexin possessing four transmembrane 

segments (M1-4) (Griffith, 2004; Griffith et al., 2004) (Figure 1.5). Four connexin 

subtypes have been demonstrated to be present in the vasculature depends on 

species and vessel type, Cx37, Cx40, Cx43 and Cx45, named after their molecular 

weights. Gap junctions may be homotypic, in which each connexon contains the same 

connexin subtype, or heterotypic, in which each connexon is formed by a different 

connexin subtype, or heteromeric, in which each connexon is constructed from a 

mixture of subtypes. The expression of connexins may vary depending on the species 

and vessel types, for example, Cx37 and Cx40 are often seen co-localized within 
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myoendothelial gap junctions (Haddock et al., 2006) and are abundantly expressed in 

the endothelium of hamster (Hakim et al., 2008) and mice (Looft-Wilson et al., 2004), 

whereas Cx43 expression appears to decrease with vessel size in many species (Hong 

and Hill, 1998; Berman et al., 2002; Looft-Wilson et al., 2004; Matchkov et al., 2006). 

The expression of these connexins is essential in maintaining cardiovascular function, 

as deficiency of Cx43 (display cardiac malformation) (Ya et al., 1998), Cx45 (display 

defect in vessel development, impaired vessel maturation and cardiac malformation) 

(Kruger et al., 2000), or simultaneous knockout of Cx40 and Cx37 (display abnormal 

vascular channels and distended vessels) (Simon and McWhorter, 2002, 2003) in 

genetically engineered mice are lethal. 

Large numbers of individual gap junctions are organized as plaques at the point of cell-

cell contact. Gap junction channels allow propagation of ions and signalling molecules 

<1 kDa in size such as Ca2+ ions and InsP3, and electrical signals such as 

hyperpolarization from endothelial cells to the underlying smooth muscle cells (Griffith, 

2004). In addition, there are reports that suggest substances such as InsP3 and 

possibly Ca2+ ions can also diffuse into the endothelium from activated smooth muscle 

cells, thereby elevating the endothelial [Ca2+]i, promoting KCa activation and resulting in 

reduced contractile responses in the smooth muscles (Dora et al., 1997; Dora et al., 

2000; Yashiro and Duling, 2000; Budel et al., 2001). Evidence that direct endothelial-

smooth muscle electrical coupling contributes to the EDHF phenomenon has been 

provided by studies with short peptides that block myoendothelial gap junctional 

communication by targeting specific connexin. Such short synthetic connexin-mimetic 

peptides possess sequences homologous with the conserved Gap 26 and 27 

extracellular domains of Cxs 37, 40 and 43 (i.e. 37,40Gap26, 43Gap26, 37,43Gap27 and 

40Gap27) (Griffith et al., 2004). When administered individually or in combination, these 

peptides attenuate or abolish EDHF-type relaxations and subintimal smooth muscle 

hyperpolarizations evoked by ACh, ATP, UTP, substance P, bradykinin and CPA in a 
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range of arteries and veins from the rabbit (Chaytor et al., 1998; Chaytor et al., 1999; 

Dora et al., 1999; Berman et al., 2002; Chaytor et al., 2003; Ujiie et al., 2003; Chaytor 

et al., 2005; Griffith et al., 2005; Edwards et al., 2007), rat (Edwards et al., 1999; 

Doughty et al., 2000; Chaytor et al., 2001; Sandow et al., 2002; Matchkov et al., 2006; 

Sokoya et al., 2006), pig (Edwards et al., 2000), guinea-pig (Edwards et al., 1999) and 

human arteries (Lang et al., 2007). It should be noted that connexin-mimetic peptides 

do not depress the initiating endothelial hyperpolarization, and have no effect on the 

smooth muscle membrane potential (de Wit and Griffith, 2010), they act by modulating 

the gating of the gap junctional channels, without disturbing the structure of the plaques 

(Martin et al., 2005). It has been reported that the EDHF phenomenon can also be 

inhibited by derivatives of glycyrrhizic acid (GA) that is found in the liquorice root 

glycyrrhizia glabra, including lipophilic 18α- and 18β-isoforms of GA and the water-

soluble hemisuccinate derivative of 18β-GA carbenoxolone (Taylor et al., 1998; 

Yamamoto et al., 1998; Chaytor et al., 2000; Doughty et al., 2000). 

1.2.5.2 Calcium-activated potassium channels 

It is now generally accepted that the opening of endothelial KCa channels is the key 

initiating electrical event in the EDHF phenomenon (Busse et al., 2002; Griffith, 2004; 

Sandow, 2004; Shimokawa and Matoba, 2004; Feletou, 2011b). There are three 

categories of KCa, the small conductance calcium-activated potassium channels 

subfamily (SKCa), the intermediate conductance calcium-activated potassium channels 

(IKCa) and the large conductance (BKCa) calcium-activated potassium channels. SKCa 

and IKCa channels are tetrameric complexes of four α-subunits, each subunit comprised 

of six-transmembrane domains (S1–S6), with intracellular N- and C-termini (Vergara et 

al., 1998). BKCa channels are also tetrameric, which formed by four pore-forming α-

subunits, each possessing seven transmembrane domains (S0–S6), an extracellular N-

terminus and an intracellular C-terminus (Shen et al., 1994; Wallner et al., 1996; Meera 

et al., 1997; Quirk and Reinhart, 2001). Each α-subunit is co-assembled with a 
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regulatory β-subunit, each displaying two transmembrane domains and intracellular N- 

and C-terminus (Orio et al., 2002). S5 and S6 of α-subunit in SKCa, IKCa and BKCa 

channels are the pore-forming domain (Vergara et al., 1998) (Figure 1.6). 

 

Figure 1.6 Schematic representations showing the structure of subunits that forming the KCa 

channels. Calmodulin (CaM) binds close to the phosphorylation site (shown as yellow circles) in 

SKCa and IKCa. The α-subunit of BKCa channels has 11 (S0-S10) hydrophobic domains, with S0-

S6 located in the cytoplasmic membrane. Ca
2+

 binding sites in BKCa are depicted as purple 

circles. N: N-terminal, C: C-terminal. 

 

SKCa and IKCa channels share many similarities: (i) they are voltage-independent, (ii) 

they do not contain a Ca2+-binding domain, instead, each α-subunit in SKCa and IKCa 

channels are bound by calmodulin, a ubiquitous small Ca2+-binding protein and 

regulated by Ca2+ indirectly (Xia et al., 1998; Fanger et al., 1999; Kong et al., 2000; 

Zhang et al., 2001), (iii) they are constitutively expressed in endothelial cells 

(Marchenko and Sage, 1996; Kohler et al., 2000; Burnham et al., 2002; Bychkov et al., 
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2002; Feletou, 2011a). It is worth noting that, in endothelial cells, SKCa and IKCa 

channels are often localized at the sites of gap junctions. In the rat mesenteric artery, 

SKCa are distributed over the plasma membrane with preferential localization at sites of 

homocellular endothelial gap junctions and in caveolin-rich domains along with other 

components of the classical EDHF pathway such as close to the ER InsP3 receptors 

(Lockwich et al., 2000; Sandow et al., 2006; Absi et al., 2007; Dora et al., 2008; Ledoux 

et al., 2008). In contrast, IKCa are non-caveolar and are localized in proximity to 

myoendothelial gap junctions, and also close to sections of ER densely expressing 

InsP3 receptors (Weston et al., 2005; Sandow et al., 2006; Absi et al., 2007; Dora et al., 

2008; Ledoux et al., 2008; Sandow et al., 2009). 

BKCa channels are both voltage and Ca2+-regulated, unlike SKCa and IKCa channels they 

are not linked with calmodulin and their sensitivity to Ca2+ relies on the direct binding of 

Ca2+ to two high affinity Ca2+-sensing regions in the C-terminus of the α-subunit, while 

the β-subunit modulates their Ca2+ sensitivity (Toro et al., 1998; Schreiber et al., 1999; 

Kohler et al., 2000; Papassotiriou et al., 2000; Xia et al., 2002; Yusifov et al., 2008). 

BKCa channels are mainly expressed in vascular smooth muscle cells, although some 

reports suggest that they are also located in the endothelium of some species, such as 

rat gracilis muscle arterioles (Ungvari et al., 2002), porcine renal artery (Brakemeier et 

al., 2003), rabbit ductus arteriosus (Thebaud et al., 2002), and rat mesenteric artery 

(Hilgers et al., 2006). 

Selective pharmacological inhibition of SKCa, IKCa and BKCa channels has been shown 

to attenuate EDHF-type relaxations, for example, in rat mesenteric artery, EDHF is 

blocked by a combination of apamin (SKCa) and charybdotoxin (IKCa and BKCa) 

(Doughty et al., 1999). And in rabbit iliac and renal artery, when administered 

individually or in combination, apamin, TRAM-34 (IKCa) and iberiotoxin (BKCa) 

attenuates EDHF-type responses to a different extent (Kagota et al., 1999; Edwards et 

al., 2008). Indeed, in some arteries, a specific inhibitor of one KCa channel type may be 
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individually ineffective, whereas used in combination substantial or complete inhibition 

of EDHF-type relaxations is usually achieved. 

1.3 REACTIVE OXYGEN SPECIES 

Reactive oxygen species (ROS), such as unstable free radical superoxide anion (O2
•−) 

and peroxynitrite (ONOO−), or non-free radicals such as H2O2, are by-products of 

oxygen metabolism and have a crucial role in regulating cellular redox status.  In the 

vascular system, ROS has been shown to be an important regulator in controlling 

endothelial function, vascular tone and vascular integrity. Vascular endothelium (Arroyo 

et al., 1990; Kinnula et al., 1991; Sundqvist, 1991; Heinzel et al., 1992; Brandes et al., 

1997) and smooth muscle cells (Zafari et al., 1998; Li and Fukagawa, 2010; Trebak et 

al., 2010) generate significant amounts of ROS, either due to spontaneously metabolic 

processes or in response to receptor-dependent and receptor-independent stimulation. 

Under normal physiological conditions, the rate and magnitude of oxidant formation is 

usually balanced by the rate of oxidant elimination that is provided by activities of 

enzymes such as superoxide dismutase (SOD), catalase and glutathione peroxidase. 

However, oxidative stress results from an imbalance between prooxidants and 

antioxidants often lead to multiple pathological conditions including cardiovascular 

disease. Indeed, disturbed redox cellular status is linked with inflammation, 

angiogenesis, endothelial dysfunction, vascular contraction and arterial remodeling.  

1.3.1 Vascular effects of H2O2 

Historically, H2O2 was considered to be a damaging substance that is implicated in the 

pathological processes such as atherosclerosis and hypertension (Tate and Repine, 

1983; Smith et al., 1992; Halliwell, 1993). However, endothelium-derived H2O2 is now 

thought to participate in the physiological response to endothelium-dependent agonists 

and fluid shear stress (Matoba et al., 2000; Matoba et al., 2002; Liu et al., 2006), and 

can compensate for the loss of NO bioavailability observed in experimental models of 
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hypertension and diabetes and in patients with arterial disease (Cosentino et al., 1998; 

Karasu, 2000; Landmesser et al., 2003; Phillips et al., 2007; Larsen et al., 2009). 

1.3.1.1 Vascular production and degradation of H2O2 

O2
•− is formed from molecular oxygen and is a precursor for several ROS including 

H2O2. Vascular cells contain various O2
•−-producing oxidases including mitochondria, 

COX, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine 

oxidases, lipoxygenases and NOS. As a reducing agent (loss of electrons), O2
•− rapidly 

inactivates NO to form ONOO−. While as an oxidizing agent (gain of electrons), O2
•− is 

degraded to H2O2 spontaneously or through SOD-dependent dismutation. Therefore, 

loss of NO will alter the balance and could lead to enhanced formation of H2O2 through 

increased O2
•− availability. In addition, enzymes such as xanthine oxidase and glucose 

oxidase can directly produce H2O2 by donating two electrons to oxygen (Cai, 2005). 

H2O2 levels in vascular cells are regulated by the endogenous scavengers catalase 

and glutathione peroxidase, which degrade H2O2 into water and oxygen. H2O2 is also 

decomposed to hydroxyl radical (HO•) through a transition metals-dependent pathway 

known as Haber-Weiss/Fenton reaction. 

1.3.1.2 Vasorelaxing effects of H2O2 

Exogenous applied H2O2 itself can induce direct smooth muscle relaxation in many 

vessels including porcine coronary artery (Barlow and White, 1998; Hayabuchi et al., 

1998), rabbit mesenteric small artery (Fujimoto et al., 2001), canine middle cerebral 

arteries (Iida and Katusic, 2000), human mesenteric artery (Matoba et al., 2002) and 

human coronary arterioles (Sato et al., 2003). The mechanism that underpins the 

vasodilatation effect of H2O2 is complex, with both endothelium-dependent and –

independent components being reported. The endothelium-dependent vasorelaxing 

effect of H2O2 in rabbit aorta (Zembowicz et al., 1993; Yang et al., 1999a), canine 

basilar artery (Yang et al., 1998a) and guinea-pig nasal mucosa vasculature (Hirai et 
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al., 2000) involves the NO-cGMP and cytochrome P450 metabolism pathways, that 

may also be related to an increase in endothelial [Ca2+]i. In porcine coronary arterioles, 

this endothelium-dependent effect of H2O2 was reported to involve the COX-

prostaglandin E2 (PGE2) pathway (Thengchaisri and Kuo, 2003). By contrast, the 

endothelium-independent vasorelaxing effect of H2O2 in bovine pulmonary arterial 

(Burke and Wolin, 1987), rabbit pulmonary arterial (Burke-Wolin et al., 1991), rabbit 

mesenteric small artery (Fujimoto et al., 2001), guinea-pig aorta (Fujimoto et al., 2003) 

and human coronary arterioles (Sato et al., 2003) may involve activation of sGC and 

accumulation of cGMP. Whereas in canine middle cerebral arteries, this endothelium-

independent effect of H2O2 was shown to involve COX and cyclic AMP pathway (Iida 

and Katusic, 2000), and in porcine coronary artery, this endothelium-independent effect 

of H2O2 was found to involve phospholipase A2 (PLA2) pathway (Barlow et al., 2000). 

In addition, H2O2 can directly cause hyperpolarizations of the vascular smooth muscle 

cells and therefore vasodilatation of the vessel by opening several K+ channels, 

including KCa channels (Hayabuchi et al., 1998; Barlow et al., 2000; Matoba et al., 2000; 

Brakemeier et al., 2003), KATP channels (Wei and Kontos, 1990; Gao et al., 2003; 

Hattori et al., 2003), KV channels (Gao et al., 2003; Rogers et al., 2006) and/or inwardly 

rectifying potassium channels (Kir) (Bychkov et al., 1999; Iida and Katusic, 2000). In 

endothelial cells, H2O2 has also been shown to modulate K+ channel activity and thus 

the contractile activity of the underlying smooth muscle. In cultured endothelial cells of 

the human umbilical vein, H2O2 elicits both depolarization and hyperpolarization of the 

membrane potential, at low H2O2 concentrations (0.01-0.25 µM) inhibited Kir channel 

activity, whereas higher H2O2 concentrations (1 mM) increased the KCa channel activity. 

(Bychkov et al., 1999). It is worth noting that the oxidative state of amino acid residue 

suphydryl groups is known as to be the determinant factor in ion channel activity, 

therefore the ability of H2O2 to regulate the opening of these K+ channels can be 

attributed to its oxidative modification of the suphydryl groups (Cai and Sauve, 1997).  
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1.3.1.3 Vasoconstriction effects of H2O2 

H2O2 has been shown to cause vasoconstriction in a variety of vessels including rat 

aorta (Rodriguez-Martinez et al., 1998; Sotnikova, 1998; Yang et al., 1998b), rat 

pulmonary artery (Jin and Rhoades, 1997; Gao and Lee, 2001), rat superior mesenteric 

artery (Gao et al., 2003), mouse aorta (Ardanaz et al., 2008), mouse carotid artery 

(Ardanaz et al., 2008), porcine pulmonary artery (Pelaez et al., 2000b), canine basilar 

artery (Katusic et al., 1993; Yang et al., 1998a) and canine cerebral arterial (Yang et al., 

1999b). In addition, there is evidence that the contractile response induced by agonist 

stimulation such as angiotensin II may be mediated by endogenously produced 

H2O2 (Torrecillas et al., 2001; Chin et al., 2007). Indeed, in transgenic mice 

overexpressing catalase, the basal arterial pressure and H2O2 release from the mouse 

aorta were similar to those of wild-type mice. However, in the transgenic mice, the 

angiotensin II-induced pressor response is decreased and accompanied with a 

reduced H2O2 production in the arterial wall, indicating that endogenously produced 

H2O2 may contribute to the vasopressor responses evoked by angiotensin II (Yang et 

al., 2003).  

In arteries such as rat aorta and canine basilar artery, the mechanism involved in H2O2-

evoked vasoconstriction is reported to be Ca2+-dependent (Katusic et al., 1993; Yang et 

al., 1998a; Yang et al., 1998b), as removal of extracellular Ca2+ and addition of voltage-

dependent Ca2+ channel blocker verapamil resulted in a significant attenuation of the 

contractile responses to H2O2 in rat aorta. In addition, cyclooxygenase products, 

protein kinase C and products of protein tyrosine phosphorylation may play some role 

in H2O2-induced contractions, as administration of protein kinase C inhibitor 

staurosporine, treatment with inhibitor of protein tyrosine phosphorylation genistein and 

employment of COX inhibitor indomethacin also resulted in a significant reduction of 

the contractile responses to H2O2 in rat aorta (Yang et al., 1998b). H2O2 has been 

reported to directly increase the [Ca2+]i in smooth muscle cells via various Ca2+ 
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channels, including voltage-operated Ca2+ channel (Tabet et al., 2004), SERCA pumps 

(Grover and Samson, 1997), ryanodine receptor (Favero et al., 1995) and InsP3 

receptors (Wada and Okabe, 1997). Furthermore, there is evidence that H2O2 can 

impair endothelium-dependent vasodilatations, possibly through prevention of eNOS-

NO generation (Andreozzi et al., 2004; Loot et al., 2009), inhibition of the vasodilator 

EETs via cytochrome P450 epoxygenase (Larsen et al., 2008) and attenuation of NO-

dependent activation of BKCa (Brakemeier et al., 2003) and IKCa (Cai and Sauve, 1997). 

It should be noted that, in some artery types such as rat and rabbit pulmonary arteries, 

H2O2 can also induce constriction via Ca2+-independent and endothelium-independent 

pathways (Rhoades et al., 1990; Sheehan et al., 1993; Pelaez et al., 2000a; Pelaez et 

al., 2000b). In these arteries, the constriction evoked by H2O2 was persistent after 

endothelium removal and/or incubation in Ca2+ free solution, although the underlying 

mechanism is not fully identified. 

In arteries such as rat mesenteric artery, the response to H2O2 was found to be 

concentration-dependent. Low concentrations of H2O2 (10-100 µM) evoked only 

contraction, while higher concentrations of H2O2 (0.3-1 mM) caused a biphasic 

response, where a transient contraction was first observed followed by a relaxation 

response. This transient contraction is likely to be mediated through AA metabolite 

thromboxane A2 (TXA2) pathway as inhibitors of PLA2 significantly attenuated this 

contractile response (Gao et al., 2003). The biphasic effect of H2O2 was also reported 

in other artery types such as porcine cerebral artery (Leffler et al., 1990), retinal 

vasculature of newborn and adult pigs (Abran et al., 1995), microvascular lung 

pericytes (Kerkar et al., 2001), and rat gracilis skeletal muscle arterioles (Cseko et al., 

2004).  

1.3.1.4 H2O2 and the EDHF phenomenon 

In 2000, Matoba and colleagues gave the first evidence that suggested H2O2 derived 

from eNOS acts as an EDHF (Matoba et al., 2000). In small mesenteric arteries from 
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eNOS-knockout (eNOS-/-) mice, the ACh-induced relaxation and hyperpolarization, 

resistant to NOS inhibition with L-NNA and COX inhibition with indomethacin, are 

sensitive to catalase, a specific inhibitor of H2O2, and when inactivated at its peroxide-

binding site by aminotriazole, catalase lost its inhibitory effect on this EDHF-type 

relaxation. Exogenous applied H2O2 is able to evoke similar relaxation and 

hyperpolarization in endothelium-denuded arteries of eNOS-/- mice and H2O2/ACh-

evoked relaxation were both inhibited by KCa blocker apamin plus charybdotoxin. It has 

been reported in this study that multiple pathways are involved in endogenous 

production of H2O2, however, it seems that eNOS appears to be the dominant source 

of H2O2 in mouse mesenteric arteries, because these eNOS-/- mice have shown 

markedly reduced levels of ACh-induced H2O2 production. It is worth mentioning that 

the gap junction inhibitor 18β-GA had no significant inhibitory effect on the EDHF-type 

relaxation in mouse small mesenteric arteries (Matoba et al., 2000).  

Further investigations have revealed that in more artery types such as porcine pial 

artery (Lacza et al., 2002), canine coronary artery (Yada et al., 2003), porcine coronary 

artery (Matoba and Shimokawa, 2003), human mesenteric artery (Matoba et al., 2002) 

and human coronary artery (Miura et al., 2003; Liu et al., 2011), H2O2 was also 

reported to relax the adjacent smooth muscle cells by acting as a freely diffusible 

EDHF. These conclusions were reached because in these arteries: (i) the NO and 

prostanoids-independent relaxation is sensitive to catalase; (ii) agonist-evoked EDHF-

type relaxation is associated with catalase-sensitive endothelial production of H2O2 and 

(iii) this relaxation is linked with vascular KCa channel  activation, a key initiating 

electrical event in the EDH phenomenon. 

By contrast, in other artery types including rat coronary artery (Fulton et al., 1997), 

human radial artery (Hamilton et al., 2001), canine coronary artery (Tanaka et al., 

2003), guinea-pig carotid artery (Gluais et al., 2005), rabbit iliac-femoral artery (Chaytor 

et al., 2003), rabbit mesenteric artery (Itoh et al., 2003), and also in results with porcine 
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coronary artery (Pomposiello et al., 1999) and human mesenteric artery (Chadha et al., 

2011) that conflict with those reported in the previous paragraph, H2O2 cannot be 

considered as the EDHF, because EDHF-type relaxation in these arteries are: (i) not 

sensitive to catalase; (ii) H2O2 does not cause hyperpolarization of the vascular smooth 

muscle cells, or (iii) the relaxing effect of H2O2 is not associated with the opening of KCa 

channels. 

In addition, exogenous applied H2O2 or substances that promote H2O2 formation can 

promote depletion of the ER Ca2+ store and amplify increases in [Ca2+]i evoked by 

pharmacological stimulation of the endothelium (Hu et al., 2000). The synergistic 

elevation of [Ca2+]i with H2O2 and agents that deplete the ER store can enhance the 

opening of KCa thereby allowing H2O2 to potentiate “EDHF-type” relaxations that are 

mediated by the spread of endothelial hyperpolarization into the arterial media via 

myoendothelial and homocellular smooth muscle gap junctions (Edwards et al., 2008; 

Garry et al., 2009). 

1.3.2 ROS in disease- arsenic toxicity 

High levels of arsenic are present in drinking water in some parts of the USA, Mexico, 

Chile, Argentina, Peru, Hungary, Bangladesh, India, Thailand, China and Australia, and 

constitute a major public health epidemic that affects more than 140 million people 

(Freeman, 2009; Hall et al., 2009). In the cardiovascular system, exposure to arsenic 

accelerates the development of atherosclerosis and predisposes to hypertension and 

peripheral microvascular abnormalities such as Blackfoot Disease (Balakumar and 

Kaur, 2009; States et al., 2009). Underlying mechanisms have been suggested to 

involve increased oxidant stress, because exposure of endothelial cells to arsenite at 

concentrations within the range found in contaminated drinking water (0.3-15 µM) 

causes excess production of the O2
•− by nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase (Barchowsky et al., 1999; Smith et al., 2001; Qian et al., 2005; 

Straub et al., 2008). While O2
•− may contribute to vascular dysfunction through a rapid 
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interaction with NO (Lassegue and Griendling, 2010), dismutation by SOD also 

generates H2O2, and the production of both ROS increases within minutes of exposing 

endothelial cells to low concentrations of arsenite (5 µM) (Barchowsky et al., 1999; 

Smith et al., 2001; Tsai et al., 2001). The oxidative stress resulting from arsenic toxicity 

may therefore alter endothelium-dependent responses not only as a result of 

decreased NO bioavailability but also through a increased H2O2 production. 

1.4 CALCIUM HOMEOSTASIS IN ENDOTHELIAL CELLS 

Calcium is recognised as the most important messenger in a variety of cells including 

vascular cells and contraction of smooth muscle cells is directly regulated by changes 

in free cytosolic calcium concentration ([Ca2+]i). In endothelial cells, the elevation in 

[Ca2+]i is the initial response to hormonal/chemical transmitter stimulation such as 

angiotensin II and to the changes in physical parameters such as shear stress (Tran 

and Watanabe, 2006) that leads to the production of NO from endothelial eNOS that is 

greatly dependent on the calcium-calmodulin complex (Knowles et al., 1989; Bredt and 

Snyder, 1990). In the events leading to the EDHF phenomenon, the opening of 

endothelial KCa is the key initiating electrical stimuli that leads to the hyperpolarizing 

effects. 

Elevation of [Ca2+]i in the endothelial cells in response to receptor activation or other 

stimuli such as shear stress are often biphasic, with an initial phase of Ca2+ release 

from intracellular stores such as the ER, followed by sustained extracellular Ca2+ influx. 

For example, elevation of intracellular Ca2+ by ACh is achieved in two stages: (i) Ca2+ 

release from the ER that involves InsP3 and (ii) depletion of ER stores initiates Ca2+ 

influx through store-operated Ca2+ entry (SOCE) (Pasyk et al., 1995; Fukao et al., 1997; 

Tomioka et al., 2001). 
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1.4.1 Intracellular Ca2+ stores in endothelial cells 

1.4.1.1 Endoplasmic reticulum store 

 

Figure 1.7 Schematic representations showing the Ca
2+

 channels on the surface of the ER. 

InsP3R: InsP3 receptors, RyR: ryanodine receptors. 

 

The ER extends like a net through the entire cytoplasm and is responsible for the 

biosynthesis of the protein and lipid components of most of the cell's organelles such 

as the ER itself, the Golgi apparatus and the plasma membrane. The ER functions as 

the most important Ca2+ store, and accumulates Ca2+ via SERCA pumps and releases 

it into the cytosol through InsP3 and ryanodine receptors (Figure 1.7). The ER contains 

a large number of Ca2+-binding proteins such as GRP94, BiP (GRP78), RP 60 and 

calreticulin, each of these molecules is able to sequester as many as 30 Ca2+ ions 

(Tran and Watanabe, 2006). When the ER is loaded, the concentration of Ca2+ in the 

ER ([Ca2+]ER) is at least 100 µM, and some reports suggest it might be between 400-

800 µM (Pinton et al., 1998; Alonso et al., 1999). In endothelial cells, the ER accounts 

for ~75% of the total intracellular Ca2+ reserve (Wood and Gillespie, 1998).  
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1.4.1.2 Mitochondria store 

 

Figure 1.8 Schematic representations showing the Ca
2+

 channels on the surface of the 

mitochondria. mNCE: mitochondrial Na
+
-Ca

2+
 exchanger, mCU: mitochondrial Ca

2+ 
uniporter. 

 

Mitochondria are the primary energy producers of the cell, that they combine oxygen 

with glucose to form adenosine triphosphate (ATP), a process known as oxidative 

phosphorylation. Additionally, mitochondria are also important store of intracellular Ca2+ 

in endothelial cells, accounting for ~25% of the total intracellular Ca2+ reserve (Wood 

and Gillespie, 1998). Mitochondria Ca2+ uptake becomes apparent when the [Ca2+]i is 

over 1 µM and the primary driving force for Ca2+ entry into the mitochondria is the 

negative charged inner mitochondria membrane. Mitochondria express a Ca2+ uniporter 

that is responsible for Ca2+ uptake. Ca2+ release occurs via the Na+-Ca2+ exchanger. 

There is evidence that a mitochondria-located ryanodine receptor may also exist in 

cardiomyocytes and neurons (Beutner et al., 2001; Beutner et al., 2005) (Figure 1.8).  

The dynamic role of mitochondria in physiological Ca2+ signalling is reflected by their 

close proximity to the ER InsP3 receptors and the plasma membrane, a spatial 

relationship that allows them to function in concert with the ER to sequester/release 
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cytosolic Ca2+ and supply the immediate ATP requirement for the removal of Ca2+ from 

the cytosol by the SERCA pump and PMCA (Malli et al., 2003; Camello-Almaraz et al., 

2006; Zhang and Gutterman, 2007). It has been shown that InsP3-mediated Ca2+ 

release is very efficient at elevating mitochondria Ca2+ concentration ([Ca2+]m) (Rizzuto 

et al., 1993a; Rizzuto et al., 1998). Each mitochondrial Ca2+ uptake site faces multiple 

InsP3 receptors, activation of these receptors by InsP3 and the subsequent release of 

Ca2+ appear to be required for optimal activation of mitochondrial Ca2+ uptake (Csordas 

et al., 1999). In addition, cross-talk between the ER and mitochondria is found to be 

important in ER Ca2+ refilling, which is depended on the presence of extracellular Ca2+ 

as the source and SERCA pump activity. In the presence of an InsP3-generating 

agonist, ER Ca2+ refilling was prevented by the inhibition of trans-mitochondrial Ca2+ 

flux, either through a mNCE blocker CGP 37157, or by mitochondrial depolarization 

using a mixture of oligomycin and antimycin A (Malli et al., 2005). 

1.4.1.3 Golgi store 

 

Figure 1.9 Schematic representations showing the Ca
2+

 channels on the surface of the Golgi 

apparatus. RyR: ryanodine receptors, InsP3R: InsP3 receptors. 

 

The golgi apparatus is known to be important in intracellular sorting, trafficking and 

targeting of proteins, in the last two decades, more reports suggest that it also 
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represents an important intracellular Ca2+ store, which can store up to ~5% of the total 

intracellular Ca2+ reserve ([Ca2+]Golgi ~300 µM) and more resistance to Ca2+ depletion 

than other organelles (Chandra et al., 1991; Pinton et al., 1998). Golgi apparatus has 

been shown to express a number of receptors, including InsP3 receptors (Yoshimoto et 

al., 1990; Gerasimenko et al., 1996; Petersen, 1996; Pinton et al., 1998; Surroca and 

Wolff, 2000) and ryanodine receptors (Cifuentes et al., 2001), through which it releases 

the Ca2+ into the cytosol. Uptake of Ca2+ in the golgi apparatus is dependent on the 

activity of SERCA pumps and the secretory pathway Ca2+-ATPases (SPCAs) (Figure 

1.9). Furthermore, golgi apparatus has been shown to act in concert with the ER to 

elevate cytosolic Ca2+ in response to agonist stimulation though different kinetics 

(Missiaen et al., 2004). In freshly isolated live pancreatic acinar cells, the golgi 

apparatus and mitochondria structures form very close and stable contacts and their 

co-localization help to support a Ca2+ gradients across the golgi apparatus (Dolman et 

al., 2005). 

1.4.2 Intracellular Ca2+ homeostasis in endothelial cells 

1.4.2.1 InsP3 receptor 

 

Figure 1.10 Schematic representations showing the structure of subunits that forming the 

tetrameric InsP3 channels. InsP3 binding site are illustrated as blue lines. Ca
2+

 binding sites are 

depicted as purple circles, ATP-binding sites are shown as orange circles, and phosphorylation 

sites are shown as green circles. Calmodulin (CaM) binds close to one of the phosphorylation 

sites. N: N-terminal, C: C-terminal. 
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Three types of InsP3 receptors isoforms (types 1, 2 and 3) are known to exist in human 

and other animal cells (Yamada et al., 1994; Yamamoto-Hino et al., 1994). They are 

60-80% homologous in amino acid sequences (Foskett et al., 2007). In mammals, at 

least one isoform of the InsP3 receptors is expressed in each type of cells, and many 

cells express all three isoforms (Furuichi et al., 1993; De Smedt et al., 1994; Fujino et 

al., 1995). InsP3 receptor channels are tetramers comprised of four subunits, each 

containing 2,700 residues with a molecule mass of ~310 kDa (Foskett et al., 2007). 

The structure of InsP3 receptors is divided into three functional domains: the N-terminal 

ligand-binding domain which comprises ~85% of the protein mass, the 

modulatory/coupling domain, and the C-terminal transmembrane/channel-forming 

domain (Furuichi et al., 1989; Furuichi et al., 1994) (Figure 1.10). 

The InsP3 receptors allow the release of Ca2+ ions into the cytoplasm in response to 

InsP3 produced by diverse stimuli. For example, binding of ACh to its receptor on the 

endothelial cell surface leads to the activation of phospholipase C (PLC), which 

hydrolysis the phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is 

located in the plasma membrane, to InsP3 (Streb et al., 1983). InsP3 binds to the InsP3 

receptor on the surface of the ER, opens the InsP3 receptors and Ca2+ ions are 

released into the cytoplasm from the ER. The InsP3 receptor is also modulated by 

[Ca2+]i, high [Ca2+]i is inhibitory to InsP3 receptors activity (Foskett et al., 2007). It 

should be noted that, the expression of InsP3 receptors is not restricted to the ER, other 

organelles such as the Golgi apparatus and secretory vesicles may also function as 

InsP3-sensitive Ca2+ stores (Vermassen et al., 2004). 
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1.4.2.2 Ryanodine receptor 

 

Figure 1.11 Schematic representations showing the structure of subunits that forming the 

tetrameric ryanodine channels. Ryanodine binding site are illustrated as green lines. Ca
2+

 

binding sites are depicted as purple circles. Phosphorylation sites are shown as yellow circles. 

Calmodulin (CaM) binds close to one of the phosphorylation sites. N: N-terminal, C: C-terminal. 

 

RyRs are a family of Ca2+ releasing channels, that are the largest ion channels 

currently known and form a homotetrameric assemblies measuring approximately 2.3 

MDa (565 kD/subunit) (Kimlicka and Van Petegem, 2011) (Figure 1.11). RyRs share a 

significant sequence homology with the InsP3 receptors, with highest homology 

occurring at the sequence forming the channel’s pore (Mignery et al., 1989; Zhao et al., 

1999). In mammals, three isoforms (RyR1, RyR2 and RyR3) have been identified and 

they exhibit subtype-specific expression patterns in tissues. The RyR1 isoform is 

primarily expressed in skeletal muscles (Takeshima et al., 1989; Zorzato et al., 1990), 

but also expressed at low levels in cardiac muscle, smooth muscle (Neylon et al., 

1995), stomach, kidney and many other tissues (Lanner et al., 2010). The RyR2 

isoform is the predominant form of RyR in cardiac muscle (Nakai et al., 1990; Otsu et 

al., 1990), but also expressed at high low levels in cerebellum and cerebral cortex (Lai 

et al., 1992; Nakanishi et al., 1992), and low levels in stomach, kidney and many other 

tissues (Lanner et al., 2010). The RyR3 isoform is mainly expressed in brain 

(Hakamata et al., 1992; Lai et al., 1992).  
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The expression of RyRs has been found in porcine endocardium and thoracic aorta 

endothelial cells (Lesh et al., 1993), and these RyRs exhibit a high homology with the 

cardiac isoform RyR2. The functional role of RyRs in endothelial cells was evident in 

cultured endothelial cells from rat aorta (RAECs), human aorta (HAECs), human 

umbilical vein (HUVECs) and bovine pulmonary artery (BPAECs), because ryanodine 

significantly reduced bradykinin-induced Ca2+ release (Ziegelstein et al., 1994). In 

freshly isolated endothelial cell from rabbit aorta, ryanodine was able to slowly deplete 

the ACh-sensitive store, thus indicating the presence of functional ryanodine receptors 

in these native endothelial cells (Wang et al., 1995). In addition, a number of co-factors 

such as Ca2+, magnesium (Mg2+) and ATP are important small molecule regulators of 

RyRs (Fill and Copello, 2002; Liang et al., 2004). Mg2+ and ATP modulate RyRs in the 

cytoplasm, whereas Ca2+ regulates RyRs both in the cytoplasm and in the lumen of 

SR/ER (Lanner et al., 2010). Ca2+ has direct effects on RyRs and also regulates RyRs 

via calmodulin, which calmodulin also regulates the RyRs by direct binding (Lanner et 

al., 2010). 

1.4.2.3 SERCA pump 

 

Figure 1.12 Schematic representations showing the structure of SERCA pump. 

Phosphorylation sites are shown as yellow circles. Nucleotide binding domain is shown as 

green circles. N: N-terminal, C: C-terminal. 
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SERCA is an ATP-dependent Ca2+ pump located in the ER/SR membrane that is 

responsible for the sequestration of cytosolic Ca2+. It is a single polypeptide with a 

molecular mass of 110 kDa (Periasamy and Kalyanasundaram, 2007). The bulk of the 

protein consists of a cytoplasmic globular headpiece structure (S2-S5) and 10 

membrane-spanning segments (M1–M10). The large globular cytoplasmic part is 

composed of three domains: (i) the β-strand domain, between M2 and M3; (ii) the 

phosphorylation domain, attached to M4 at one end and to the nucleotide binding 

domain at the other and (iii) the nucleotide binding domain runs into a hinge domain 

that is attached to M5 (Figure 1.12). In vertebrates, there are three distinct genes 

encoding SERCA (SERCA1, 2 and 3), producing more than 10 isoforms (Periasamy 

and Kalyanasundaram, 2007). The SERCA1 encoding SERCA1a and SERCA1b are 

expressed in fast-twitch skeletal muscle (Brandl et al., 1986; Brandl et al., 1987). The 

SERCA2 is also alternatively spliced to encode SERCA2a and SERCA2b. SERCA2a is 

expressed predominately in cardiac and slow-twitch skeletal muscle (MacLennan et al., 

1985; Zarain-Herzberg et al., 1990), while SERCA2b is expressed in all tissues at low 

levels including smooth muscle (Gunteski-Hamblin et al., 1988; Lytton and MacLennan, 

1988; de la Bastie et al., 1990). The SERCA3 is known to encode for six isoforms in 

human (Periasamy and Kalyanasundaram, 2007) and its isoforms are expressed 

mainly in non-muscle tissues (Burk et al., 1989; Wuytack et al., 1994). 

Endothelial cells express two isoforms of SERCA (SERCA2b and SERCA3), and they 

are found to be co-expressed (Anger et al., 1993). The SERCA2b isoform is known to 

be the predominate isoform that responsible for sequestration of cytosolic Ca2+, 

however, SERCA3 deficient mice have impaired ACh-induced endothelium-dependent 

relaxation and intracellular Ca2+ signalling (Liu et al., 1997), suggesting that SERCA3 

also plays a critical role in regulating endothelial cell Ca2+ signalling. It should be noted 

that depletion of the ER Ca2+ stores by inhibiting the SERCA pump with compounds 

such as CPA is not associated with increases in InsP3 production, this therefore 
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provides an alternative approach to investigate intracellular Ca2+ signalling in contrast 

to receptor-dependent stimulation (Tran and Watanabe, 2006). 

1.4.2.4 PMCA pump 

 

Figure 1.13 Schematic representations showing the structure of the PMCA. ATP-binding sites 

are shown as orange circles. Phosphorylation sites are shown as yellow circles. Calmodulin 

(CaM) binds close to one of the phosphorylation sites. N: N-terminal, C: C-terminal. 

 

PMCAs are ATP-consuming calmodulin-dependent pumps that eject Ca2+ into the 

extracellular space against a concentration gradient (Carafoli et al., 1990). There are 

four isoforms of PMCA (PMCA1-4, 134 kD) that have been described in humans, they 

share a similar structure consisted of 10 transmembrane domains and four intracellular 

regions: (i) the N-terminal region of low sequence similarity between isoforms; (ii) a 

loop between transmembrane domains 2 and 3 that forms the channel’s Ca2+ pore; (iii) 

a large loop between transmembrane domains 4 and 5 that forms the ATP-binding site 

and (iv) the C-terminal region that contains the calmodulin binding domain (Cartwright 

et al., 2011) (Figure 1.13). Calmodulin is an essential regulator of PMCAs activity, 

binding of it leads to an inhibitory effect on the pump (Falchetto et al., 1992). PMCA1 

and PMCA4 are widely expressed in most cell types (Stauffer et al., 1993; Stauffer et 

al., 1995), while PMCA2 is predominantly expressed in brain (Stahl et al., 1992), 

mammary glands (Reinhardt et al., 2000) and inner ear cilia (Ficarella et al., 2007), and 
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PMCA3 is expressed in brain (Greeb and Shull, 1989; Brown et al., 1996), skeletal 

muscle (Greeb and Shull, 1989; Stauffer et al., 1993) and pancreatic islet cells 

(Kamagate et al., 2000). Endothelial cells have been found to express the PMCA1 

isoform (Szewczyk et al., 2007; Szewczyk et al., 2010). Genetic overexpression of 

PMCA1a in rat aortic endothelial cells is associated with altered expression of other 

Ca2+ regulating components, such that expression and activity of the SERCA pump and 

InsP3 were both down-regulated, and the rate of InsP3-mediated Ca2+ release in 

permeable cells was decreased without affecting the affinity of the channel for InsP3 

(Liu et al., 1996). Inhibition of PMCA1 with the selective inhibitor caloxin 1b3 increased 

cytosolic Ca2+ concentration in endothelial cells (Szewczyk et al., 2010). Oxidant 

regulation of PMCA has been shown in pancreatic acinar cells, as high concentrations 

of H2O2 (0.1-1 mM) have been shown to inactivate the PMCA (Bruce and Elliott, 2007). 

1.4.3 Ca2+ entry into endothelial cells 

1.4.3.1 Voltage-dependent Ca2+ channels 

Endothelial expression of both L-type and T-type voltage-dependent Ca2+ channels has 

been described in bovine endothelial cell (Bossu et al., 1989; Bossu et al., 1992a; 

Bossu et al., 1992b; Vinet and Vargas, 1999). However, due to the non-excitable 

nature of the endothelial cells, these voltage-dependent channels are considered to be 

not functional important (Himmel et al., 1993). Indeed, inhibition of these channels with 

blockers such as diltiazem and verapamil did not affect agonist-induced Ca2+ entry in 

freshly isolated endothelial cells (Luckhoff and Busse, 1990; Yamamoto et al., 1995).  

1.4.3.2 Store operated calcium entry (SOCE) 

The rise in [Ca2+]i brought about by agonist stimulation (ACh) or store depletion (CPA) 

is achieved in two stages: (i) a small and transient rise reflecting the release of Ca2+ 

from intracellular ER stores and (ii) a large and sustained Ca2+ increase that requires 

Ca2+ entry from extracellular space. In endothelial cells, it has been suggested that this 
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sustained Ca2+ entry is most commonly mediated by capacitative Ca2+ entry (CCE), or 

SOCE (Tran and Watanabe, 2006), a model first proposed by Putney (Putney, 1986, 

1990), explaining the mechanism for intracellular Ca2+ store refilling, a phenomenon 

observed earlier (Brading and Sneddon, 1980; Casteels and Droogmans, 1981). SOC 

channels (SOCC) are Ca2+-permeable channels in the plasma membrane that open 

following depletion of intracellular ER Ca2+ stores, the best characterized SOCC is the 

so-called Ca2+ release activated Ca2+ channel (CRAC) (Hoth and Penner, 1992), which 

is highly selective to Ca2+. The CRAC current (ICRAC) has been described in endothelial 

cells (Fasolato and Nilius, 1998; Fierro et al., 2000). 

The SOCE pathway requires two components: the Ca2+ sensor protein named stromal 

interacting molecule (STIM) (Liou et al., 2005; Roos et al., 2005) and the Ca2+ channel 

protein Orai (Prakriya et al., 2006; Yeromin et al., 2006). Orai has been found to be the 

pore forming subunit of ICRAC (Prakriya et al., 2006). There is evidence that various 

endothelial cells from different vascular bed express vascular specific STIM1 and Orai1 

protein isoforms and display SOCE and ICRAC (Abdullaev et al., 2008). The STIM1 

proteins are localized throughout the membrane of the ER with the N-terminal region 

containing the calcium-binding motif inside the ER, while the cytosolic C-terminal 

region contains the amino acid sequence involved in the protein–protein interaction and 

activation of Orai1 (Hewavitharana et al., 2007; Penna et al., 2008). Store depletion 

causes the Ca2+ sensor STIM1 on the ER membrane to oligomerize and translocate to 

regions of the ER situated close to the plasma membrane. Orai1 channels on the 

plasma membrane also move to the same region and are activated by STIM1 

oligomers through direct interaction of C-terminal region of STIM1 to the C- and N-

terminal region of Orai1 (DeHaven et al., 2007; Hewavitharana et al., 2007; Penna et 

al., 2008). 
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1.4.3.3 Non-selective cation channels 

Non-selective cation channels (NSCCs) are widely expressed in endothelial cells, they 

are voltage-independent, poorly discriminating between cations and permeable to both 

monovalent and divalent cations. NSCCs are a heterogeneous family of channels that 

include transient receptor potential cation (TRPC) channels, calcium activated non-

selective channels, hyperpolarization activated cation currents, acid-sensitive cationic 

channels (ASIC) and many more. NSCCs have been shown to activate in a number of 

ways: (i) binding of an agonist to its receptor, such as thrombin, bradykinin (Colden-

Stanfield et al., 1990), serotonin (Brauneis et al., 1992), histamine (Groschner et al., 

1994), ATP (Popp and Gogelein, 1992) and endothelin-1. Using TRPC channels as an 

example, after binding of an agonist to its Gq-protein coupled receptor, the activation of 

PLC leads to the formation of InsP3 and diacylglycerol (DAG), DAG activates TRPC 

channels resulting in receptor-operated Ca2+ entry (Dietrich et al., 2010); (ii) depletion 

of intracellular Ca2+ stores by direct inhibition of SERCA pumps (by CPA or 

thapsigargin) as well as InsP3 applied intracellularly (Gericke et al., 1993; Zhang et al., 

1994). It has been reported that in a patch-clamp study, CPA concentration-

dependently activates a NSCC in human umbilical vein endothelial cells, possibly 

through its action on Ca2+ stores depletion and the subsequent stimulation on Ca2+ 

influx (Zhang et al., 1994), and (iii) by shear stress. Although the mechanisms by which 

shear stress elevates [Ca2+]i in endothelial cells are still unclear, it has been reported 

that in human pulmonary artery endothelial cells (HPAEC), shear stress can induce 

activation of purinoceptors P2X4 through endogenously released ATP and this channel 

may be responsible for the shear stress-dependent Ca2+ influx (Yamamoto et al., 2000; 

Yamamoto and Ando, 2004).  

1.4.3.4 Non-capacitative calcium entry (NCCE) 

In addition to CCE, an alternative non-store-operated or non-capacitative Ca2+ entry 

(NCCE) mode also exists in events such as Ca2+ oscillations and agonist-activated Ca2+ 
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entry (Shuttleworth, 1996; Shuttleworth and Thompson, 1996; Mathias et al., 1997; Zhu 

et al., 1998). The evidence that AA is responsible for this NCCE is given by the facts 

that (i) low concentrations of exogenous AA (3-8 µM) induces Ca2+ entry without any 

detectable depletion of intracellular Ca2+ stores; (ii) agonist stimulation leads to the 

production and release of AA that is independent of InsP3; (iii) pharmacological 

inhibition of agonist-induced generation of AA attenuates NCCE without effect on CCE 

and (iv) the specific action of AA on Ca2+ entry is unaffected by inhibition of the 

enzymes responsible for the metabolism of AA (Shuttleworth, 1996; Shuttleworth and 

Thompson, 1998). An AA-regulated Ca2+ entry current (IARC) has been observed in 

many cell types including endothelial cells (Mottola et al., 2005; Leung et al., 2006). 

The reciprocal regulation of CCE and NCCE was demonstrated by the findings that at 

low agonist concentrations, NCCE was the main Ca2+ entry mechanism, whereas at 

high agonist concentrations, CCE attenuated NCCE (Shuttleworth et al., 2004). 

Furthermore, in A7r5 vascular smooth muscle cells, AA formed in response to agonist 

vasopressin stimulates eNOS and NO produced by eNOS have been shown to 

mediate this reciprocal regulation between CCE and NCCE. In detail, NO directly 

stimulates Ca2+ entry through NCCE and, via protein kinase G, it inhibits CCE (Moneer 

et al., 2003). 

1.5 GENERAL AIMS OF THESIS 

The aim of this thesis is to provide a clearer understanding of the mechanisms 

underlying how H2O2 contributes to the EDH phenomenon and the role that H2O2 plays 

in the regulation of endothelial Ca2+ homeostasis. This idea is based on evidence that 

in an artery where the EDH phenomenon is gap junction-dependent (i) H2O2 

potentiates relaxation and endothelial Ca2+ mobilization, rather than acts as a freely 

diffusible EDHF, and (ii) that potentiation is inhibited by inhibitors of mitochondrial H2O2 

production. Clarification of the pathways involved, and their modulation by NO, will 

therefore provide major new insights into the role of direct intercellular vascular 
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signalling in disease states characterized by increased oxidative stress. Given the 

complex effects of H2O2 on endothelial Ca2+ homeostasis, it is difficult to predict 

dominant interactions at this stage, so that the intention is to focus on key pathways, 

such as the possible central positive feedback loop linking H2O2, the InsP3R, the 

SERCA and [Ca2+]i. 

Four types of preparations will be used in this study, in which the rabbit iliac artery has 

both EDHF and NO-mediated responses, whereas aorta dominantly expresses NO-

mediated response, thus provides possible comparison between the two mechanisms. 

For the ease of selective Ca2+-sensitive dye loading, rabbit aortic valve leaflets were 

used in this study. In addition to the practicality of studying the intact endothelium, 

studying Ca2+ signaling in this preparation is likely to be relevant to physiology and 

clinical medicine for a number of reasons: (i) valves are exposed to intermittent 

turbulent blood flow that can provoke platelet adhesion and lesion formation; (ii) 

valvular endothelium is easily damaged during catheterization and is a frequent target 

for streptococcal infections and (iii) endothelium-derived relaxing factor secretion exerts 

a protective effect that is regulated by fluctuations in endothelial Ca2+ concentration (Li 

and van Breemen, 1996). Human endothelial cellline EA.hy926 was also chosen in this 

study for comparison between intact/cultured and rabbit/human endothelial cells. 
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Chapter 2  

Materials and Methods 

This chapter details the materials and methods used for all experimental work 

described in this thesis. Subsequent chapters will provide a brief outline of the methods 

used together with any specific details of the protocols.  

2.1 ANIMALS 

Male New Zealand White (NZW) rabbits (2-2.5 kg) were used in the studies described 

in this thesis. Rabbits were maintained under conventional animal housing conditions 

following a 12 hour light-dark cycle and at an ambient room temperature of 16-20 °C 

and humidity of 55%±10%. Animals received food and drinking water ad libitum. The 

welfare of the animals was carried out by experienced technicians. 

2.1.1 Isolated Tissues 

2.1.1.1 The aorta 

As shown in Figure 2.1, the descending aorta, the largest artery in the body, is divided 

into thoracic and abdominal regions. The thoracic aorta lies between the aortic arch 

and the diaphragm. The abdominal aorta passes through the diaphragm, crossing it via 

the aortic hiatus and ends with its division into left and right common iliac arteries. For 

the experiments described in this thesis, the rabbit descending aorta was dissected 

between the aortic arch and the diaphragm. The isolated thoracic aorta was 

approximately 40 mm in length and 5 mm in diameter. 
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Figure 2.1 Arterial system of the rabbit (ventral view). The heart of the rabbit provides a double 

circuit. The right atrium and ventricle constitute the pulmonary heart, which transport the 

circulated blood to the lungs for oxygenation. The left halves form the systemic heart, where the 

oxygenated blood is pumped by the left ventricle to be circulated to all parts of the body.  

Picture adapted from http://www.tutornext.com/arterial-system-rabbit/8962 
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2.1.1.2 The external iliac arteries 

As shown in Figure 2.1, the left and right common iliac arteries further divide into an 

external and internal iliac artery. The internal iliac artery descends into the pelvic cavity 

whereas the external iliac artery continues beneath the inguinal ligament and becomes 

the femoral artery in the leg. In the rabbits used for the experiments described in this 

thesis, the diameter of the external iliac artery was approximately 1 mm, and the length 

was approximately 30 mm. 

 

 

Figure 2.2 The rabbit aortic valve. Similar to humans, the rabbit aortic valve is tricuspid (it has 

three valve leaflets). It opens during the ventricular systole as the pressure in the left ventricle 

rises above the pressure in the aorta, therefore allowing blood to flow from the left ventricle into 

the aorta. Conversely, when the ventricular systole ends, the rapidly drop in pressure in the left 

ventricle forces the aortic valve to close. 

Picture adapted from (Hall-Craggs and Abeloff, 1995) 
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2.1.1.3 The aortic valve 

The aortic valve is situated at the opening between the left ventricle of the heart and 

the aorta. It has three leaflets attached by its convex margin to the artery wall as shown 

in Figure 2.2. Only the free-floating part of the leaflet was dissected out for imaging 

studies. Aortic valve leaflets have been shown to be composed primarily of endothelial 

lining cells on a matrix of collagen and elastic fibres (Cooper et al., 1966). Studies with 

canine cardiac valves have revealed that there is a continuous basal release of 

vasodilatory prostanoids and endothelium-derived relaxing factor from the valvular 

endothelium, which can be further stimulated with ACh and SOD, and inhibited by 

indomethacin and haemoglobin (Ku et al., 1990). 

2.1.2 Rabbit tissue dissection 

Male New Zealand White (NZW) rabbits were killed with sodium pentobarbitone 

(Euthatal, 150 mg/kg; i.v.) injected to the marginal ear vein (Figure 2.1) and inspected 

for nervous reflexes (corneal reflex of the eye and withdrawal reflex of the toes) 

according to University guidelines that observe strict compliance to UK Home Office 

regulations and the Guide for the Care and Use of Laboratory Animals issued by the 

US National Institutes of Health (NIH Publication No. 85-23, revised 1996).  

The aorta, the iliac arteries and surrounding tissue, and the heart containing the valves 

were carefully dissected and placed in ice cold Holman’s buffer of the following 

composition: NaCl (120 mM), KCl (5 mM), NaH2PO4 (1.3 mM), NaHCO3 (25 mM), 

Glucose (11 mM), Sucrose (10 mM), CaCl2 (2.5 mM), pH 7.4. The buffer was prepared 

in deionised water (dH2O) on the day of experiments and was kept at room 

temperature gassed with 95% O2 and 5% CO2. All chemicals used for the buffer were 

obtained from Fisher Scientific, UK. 



Chapter 2 

43  

2.2 MECHANICAL STUDIES IN RABBIT TISSUE 

The rabbit iliac arteries and the aorta were carefully dissected free of adipose and 

connective tissue in oxygenated Holman’s buffer at room temperature. The arteries 

were cut into rings of 2-3 mm wide and where required, denuded of their endothelium 

by gentle abrasion with a wooden stick. Rings were then mounted on a myograph. 

 

 

Figure 2.3 Myograph units. The myograph model 610M consists of 4 individual units, made of 

aluminium. The 10ml stainless steel chamber is located in the centre of each unit. There are two 

paired tissue supports pins in the middle of each chamber. Gassing pipes are on the side of 

each unit. Heating control and calibration procedures are in the myograph interface.  

Picture and information taken from http://www.dmt.dk 
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2.2.1 Myograph 

In-vitro mechanical studies of rabbit iliac (~1 mm in diameter) and aorta ring 

preparations (~5mm in diameter) were performed using a 4-channel multi myograph 

unit (model 610M) from Danish Myo Technology, Aarhus, Denmark (DMT) (Figure 2.3). 

This multi myograph is based on the small artery isometric wire myograph introduced in 

1976 by Professor M. J. Mulvany and Professor W. Halpern (Mulvany and Halpern, 

1976). A pair of supports pins was positioned in each chamber, one pin was attached 

to the force transducer and the other one was attached to a micropositioner. Each 

chamber can hold a maximum volume of 10 ml of solution and has heating control and 

individual gas inflow. 

2.2.1.1 Calibrating the myograph 

The force calibration kit was used for calibrating the force transducer. It consists of a 2 

g weight, bridge and T-balance. The myograph was turned on and heated up to 37 °C 

for 20 mins with 8 ml of deionised water in each chamber. The bridge/T-balance was 

placed on myograph as illustrated in Figure 2.4. The tip of T-balance was placed as 

close as possible to the pin on the transducer side of the myograph, without touching it. 

In the calibration menu on the Myo-Interface, the force transducer 1 was selected first 

and when the relative force reading in the display was stable, the 2 g weight was 

carefully placed on the pan. This 2 g weight pushed the tip of the T-balance against the 

mounted support pin, and the force produced this way was transferred through the 

force transducer to the myograph. This process aimed to mimic the stretch created by 

the contraction of a mounted ring preparation. When the relative force reading was 

stable, the calibration was selected to finish and an output around 9.81 mN should be 

seen on the display. The same steps were repeated for force transducers 2, 3 and 4. 

The calibration procedure was performed on a weekly basis to ensure the accuracy of 

the recording. 
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Figure 2.4 Myograph calibration units. The force calibration kit consists of a bridge, a T-balance 

and a 2 g weight. Bridge is designed to sit on top of the chamber. It has a groove that will fit the 

T-balance. The 2g weight goes in the pan that located on each side of the T-balance. 

Picture and information taken from http://www.dmt.dk 
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2.2.1.2 Maintenance and cleaning 

The chambers and surrounding surface of the myograph unit were cleaned with 0.8M 

hydrochloride acid (HCl) and then washed thoroughly with deionised water before and 

after each experiment to remove residual chemicals and calcium deposits. 

2.2.2 Experimental procedures  

Iliac artery or aortic rings were mounted in a myograph containing 8ml oxygenated (95% 

O2, 5% CO2) Holman’s buffer at 37˚C, and repeatedly adjusted to maintain a resting 

tension of 2 mN (optimal resting tension for this tissue, Prof. TM Griffith personal 

communication) during a 1h equilibration period.  Some preparations were incubated 

with Nω-nitro-L-arginine methyl ester (L-NAME, 300 μM) and/or 1-(4-Chlorobenzoyl)-5-

methoxy-2-methyl-3-indoleacetic acid (indomethacin, 10 μM) for 30 min as indicated 

(see below). These concentrations of the blockers were previously shown to give 

complete inhibition on rabbit artery in this laboratory [Prof. TM Griffith personal 

communication (Taylor et al., 1998)]. Vessel rings were subsequently pre-incubated for 

further 30 minutes with the drugs of interest when required. In all experiments tone was 

induced by phenylephrine (PE) at 1 μM, this concentration was previously shown to 

give sub-maximum constriction in rabbit artery in this laboratory [Prof. TM Griffith 

personal communication (Taylor et al., 1998)]. To obtain the cumulative concentration-

response curves, the response to a given concentration of the drug was allowed to 

reach a plateau before addition of the next concentration. A brief description of the 

drugs and concentrations employed for the mechanical experiment is described below. 

More detailed information will be described in subsequent chapters. 

 First pre-incubation for 30 minutes: 

o L-NAME (Sigma, UK): L-NAME is an analogue of L-arginine and is 

commonly used as a potent competitive inhibitor of nitric oxide 

synthases type 1, type 2, and type 3 (NOS1/nNOS, NOS2/iNOS, and 
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NOS3/eNOS) (Furfine et al., 1997). Stock solutions of 100 mM were 

freshly made in Holman’s buffer on the day of the experiment and were 

kept on ice at all times. Final bath concentration of 300 μM was used in 

all experiments.  

o Indomethacin (Sigma, UK): Indomethacin is a non-selective 

competitive inhibitor of cyclooxygenase isoenzymes COX-1 and COX-2. 

It works by blocking the arachidonate binding sites. COX-1 and COX-2 

catalyze the conversion of arachidonic acid to prostaglandin. 10 mM 

stock solutions were freshly prepared in absolute ethanol and were kept 

at room temperature. Further dilutions were made in Holman’s buffer to 

give a final bath concentration of 10 μM.  

 Second incubation for 30 minutes: 

o Hydrogen Peroxide (H2O2) (Sigma, UK): H2O2 is the simplest peroxide 

that is naturally produced in organisms as a by-product of oxidative 

metabolism. It is a potent oxidizing agent and is considered as one of 

the reactive oxygen species. Stock concentration of 100 mM was freshly 

made in Holman’s buffer and was kept on ice at all times. 30 or 100 μM 

final bath concentrations were used in experiments.  

o Thimerosal (Sigma, UK): Thimerosal is an organic mercury sulfhydryl 

compound. It exhibits a strong thiol oxidant effect and is known to 

sensitize the InsP3 receptors. Stock solutions of thimerosal were freshly 

prepared in dH2O to a concentration of 10 mM and were kept on ice at 

all times. The final bath concentration used in experiments was 1 or 10 

μM.  

o Sodium (meta) arsenite (arsenite) (Sigma, UK): Sodium arsenite 

(NaAsO2) is a sodium salt of inorganic compound arsenous acid 
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(H3AsO). 100 mM stock arsenite were made freshly in dH2O and were 

kept on ice. In the experiments described in this thesis, 100 μM final 

bath concentrations were applied.  

 Pre-contraction 

o PE (Sigma, UK): PE is a selective α-adrenergic receptor agonist. Stock 

solutions of concentration 1 mM were freshly made in Holman’s buffer 

and were kept at room temperature. Final bath concentration of 1 μM 

was used in the studies described in this thesis.  

 Cumulative concentration-response curves 

o CPA (Ascent, UK): CPA is a specific inhibitor of SERCA pump. Stock 

solutions of CPA were prepared in dimethylsulfoxide (DMSO) at a 

concentration of 100 mM and were stored at -20˚C. Further dilutions 

were made in Holman’s buffer and were kept on ice at all times. Bath 

concentrations between 10 nM to 100 μM were applied to give 

cumulative concentration-response curves.  

o ACh (Sigma, UK): ACh acts through a G protein-coupled receptor (M3 

muscarinic receptors), which is linked to a heterotrimeric GTP-binding 

protein Gq that can activate PLC to produce InsP3 that binds to InsP3 

receptors on intracellular stores to stimulate the release of Ca2+. 10 mM 

stock solutions of ACh were freshly made in dH2O and were kept on ice. 

Further dilutions were prepared in Holman’s buffer and were kept on ice 

at all times. 1 nM to 10 μM final bath concentration was added 

cumulatively for the concentration-response curves.  

o MAHMA NONOate (Sigma, UK): MAHMA NONOate is an exogenous 

nitric oxide (NO) donor, which spontaneously generates NO in a pH 



Chapter 2 

49  

dependent manner, with a half-life of 1 minute at 37°C and 3 minutes at 

22-25°C (pH 7.4) to liberate 2 moles of NO per mole of parent 

compound. 100 mM stock solutions of MAHMA NONOate were made in 

10mM NaOH and were stored at -20˚C, because MAHMA NONOate 

exhibits high stability at high pH. Further dilutions in Holman’s buffer 

were prepared ≤1 hour prior to use due to its short life and were kept on 

ice, in the dark at all times. 1 nM to 30 μM of bath concentration was 

added cumulatively for the concentration-response curves.  

2.2.3 Data collection 

The data from the mechanical experiments were recorded using Myodaq software and 

analysed by Myodata software (DMT, Denmark). Tension values were read and 

collected manually at baseline and after addition of each drug. The percentage of 

relaxation/constriction was calculated with Microsoft Excel software and further 

analysed using Graphpad Prism 4 software. 

2.3 IMAGING STUDIES IN RABBIT TISSUE PREPARATIONS 

2.3.1 Imaging systems 

For the imaging studies described in this thesis, the following microscope systems 

were used. 

2.3.1.1 Confocal laser scanning microscope (CLSM) 

Leica Confocal laser scanning microscope (CLSM) model SP5 was used for imaging 

studies. This system is equipped with a DMI 6000 inverted microscope. The emitted 

light from the sample is passed through a pinhole that prevents the out of focus light 

from being detected by the scan head (Figure 2.5). The electrical signal was recorded 

by the computer equipped with Leica Application Suite Advanced Fluorescence 

(LAS AF) software.  
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Figure 2.5 Outline of the Leica SP5 system. The unique features in Leica TCS SP5 are 

Acousto-Optical Tunable Filter (AOTF), Acousto Optical Beam Splitter (AOBS®) and 

Spectrophotometer Detector (SP-Detector). 

Image taken from www.zmb.uzh.ch/resources/download/CLSM.pdf 
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2.3.1.2 Inverted fluorescence microscope system from Life Science 

Resources 

Imaging experiments for ratiometric measurement of Fura-2 were carried out on a 

Zeiss Axiovert S100 inverted microscope attached to a cooled CCD camera (Astrocam 

Model TE3/A/S). Excitation light was provided by a 75-W integral xenon lamp (Life 

Science Resources, Cambridge, UK). Excitation wavelengths were controlled with a 

computer-driven Spectramaster imaging system and data were recorded using Merlin 

software, version 2.0 (Life Science Resources). 

2.3.1.3 Inverted epifluorescence microscope 

Manganese quench experiments, using Fura-2, were performed with an inverted 

epifluorescence microscope (Nikon eclipse Ti-U) equipped with 

excitation/emission/shutter wheels (Sutter Lambda 10-3 controller) and a CCD camera 

(Photomertics CoolSNAP HQ2). The light source was from OptoLED Lite (CAIRN 

Research) and the software used for recording was InVivo (MediaCybernetics). 

2.3.2 Chemicals used for imaging studies 

A brief description of the drugs and concentrations employed for the imaging studies is 

listed in Table 2.1. More detailed information will be given in subsequent chapters.   
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Table 2.1 Summary of drugs used for imaging studies 

 

2.3.3 Assessing dye responsiveness to calcium 

All the fluorescence probes used for the detection of intracellular calcium were 

obtained from Invitrogen, UK. The following protocols for assessing dye 

responsiveness to calcium were as suggested by Invitrogen. 

The acetoxymethyl (AM) ester-linked dyes (Fluo-4, Mag-fluo-4, Rhod-2 and Fura-2) 

were dissolved in 50 µl of DMSO, an equal volume of methanol and 25 µl of 2M KOH 

(dissolved in dH2O) was then added to de-esterify the probe (hydrolysis of AM esters is 

 

DRUG 
CONCENTRATIONS 

USED 
STOCK MANUFACTURER 

Nω-Nitro-L-arginine methyl 
ester hydrochloride 
―(L-NAME) 

300 µM in buffer 100 mM in buffer Sigma, UK 

1-(4-Chlorobenzoyl)-5-
methoxy-2-methyl-3-
indoleacetic acid  
―(Indomethacin/Indo) 

10 µM in buffer 
10 mM in absolute 
ethanol 

Sigma, UK 

Sodium (meta)arsenite 
―(Arsenite) 

100 µM in buffer 100 mM in dH2O Sigma, UK 

Acetovanillone  
―(Apocynin) 

100 µM in buffer 
100 mM in absolute 
ethanol 

Sigma, UK 

TPEN 100 µM in buffer 10 mM in DMSO Tocris, UK 

Ethylene glycol-bis(2-
aminoethylether)-N,N,N’,N’-
tetraacetic acid 
―(EGTA) 

20 mM in buffer 0.3 M in dH2O Sigma, UK 

Cyclopiazonic Acid 
―(CPA) 

10 nM to 100 µM in 
buffer 

100 mM in DMSO Ascent, UK 

Acetylcholine chloride 
―(ACh) 

1 nM to 10 µM in 
buffer 

10 mM in dH2O Sigma, UK 

4-Bromo Calcium Ionophore 
(4-Br-A23187) 

1 and 3 µM in buffer 10mM in DMSO Sigma, UK 

Hydrogen Peroxide 
―(H2O2) 

100 µM in buffer 100 mM in buffer Sigma, UK 

Thimerosal 10 µM  in buffer 10 mM in dH2O Sigma, UK 

Xestospongin C 
―(Xes C) 

10 µM in buffer 5 mM in DMSO Enzo, UK 

Ryanodine 100 µM in buffer 
100 mM in absolute 
ethanol 

Ascent, UK 
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essential for a full Ca2+-sensitive fluorescence response). If the probe was not fully 

dissolved, more methanol were added. The amount of methanol required at this stage 

was different for each probe, more details are given in Table 2.2. The mixtures were 

allowed to stand for 1 hour in the dark before the pH was adjusted to 7 with HCl. 

In the dye responsiveness test, samples of interests (with or without H2O2) were 

prepared in dH2O or buffers and 100 µl of each sample were mixed with 5 µl of each 

fluorescence probe in a 96-well plate and incubated in the dark at room temperature for 

0-60 minutes. Fluorescence intensities were read using a Fluostar optima 

spectrophotometer (BMG Labtech) and recorded in Fluostar software. Details of the 

excitation/emission wavelength are listed in Table 2.3. Data of intensities were further 

analysed with Excel/Graphpad Prism 4 software. 

2.3.4 Loading of fluorescent indicators 

All the fluorescents indicators used for the studies described in this thesis are listed in 

Table 2.4. The concentration and time used to load each indicator was that found 

previously to be the optimum condition in rabbit aortic valve leaflets (Dr DH Edwards 

personal communication). After loading the fluorescent indicators, the rabbit aortic 

valves leaflets were pinned into a 35mm glass bottomed culture dishes (MatTek 

Corporation, Figure 2.6) to allow imaging with conventional and confocal microscopes. 

To reduce photobleaching, all the loading procedures with rabbit preparations were 

performed in a dark room and were kept in a light tight box between transfers.  
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Table 2.2 Details of the composition and concentrations used for each fluorescence probe in 

the responsiveness test.  

 

 

Table 2.3 Details of the excitation and emission wavelengths used for fluorescence probes. 

 

 

Table 2.4 Fluorescence probes used for imaging studies. 

 DMSO METHANOL 2M KOH 1M HCL 
STOCK 
CONCENTRATION 

WELL 
CONCENTRATION 

Fluo-4 50 µl 175 µl 25 µl 29 µl 1.6x10-4 µM 8 µM 

Mag-Fluo-4 50 µl 100 µl 25 µl 28 µl 3x10-4 µM 15 µM 

Rhod-2 50 µl 150 µl 25 µl 30 µl 1.7x10-4 µM 8.5 µM 

Fura-2 50 µl 50 µl 25 µl 30 µl 3.2x10-4 µM 16 µM 

 

 EXCITATION EMISSION COLLECTION 

Fluo-4 484nm 520-P nm bandpass filter 

Mag-Fluo-4 484nm 520-P nm bandpass filter 

Rhod-2 544nm 590nm bandpass filter 

Fura-2 340-10nm/355nm/380-10nm 520-P nm bandpass filter 

 

 

DRUG CONCENTRATIONS USED STOCK MANUFACTURER 

DHE 5 µM in buffer/DMEM 5 mM in dH2O Sigma, UK 

Fluo-4 2 µM in buffer/DMEM 5 mM in DMSO Invitrogen, UK 

Mag-Fluo-4 2 µM in buffer/DMEM 5 mM in DMSO Invitrogen, UK 

Rhod-2 1 µM or 5 µM in buffer/DMEM 1 mM in DMSO Invitrogen, UK 

MitoTracker Green 0.1 µM buffer/DMEM 5 mM in DMSO Invitrogen, UK 

Fura-2 5 µM in buffer/DMEM 5 mM in DMSO Invitrogen, UK 
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Figure 2.6 Dishes with pins used for imaging of rabbit aortic valve leaflets in confocal 

microscopy. The 35mm glass bottomed culture dish was glued with 3 pairs of pins, which holds 

the valve leaflets against the glass. 

 

2.3.4.1 Dihydroethidium (DHE) for ROS detection 

Rabbit aortic valve leaflets and endothelium-denuded rings of iliac artery and aorta (2-

3mm wide) were placed in oxygenated Holman’s Buffer containing L-NAME (300 µM) 

and indomethacin (10 µM). These preparations were then incubated with arsenite (100 

μM) and/or apocynin (100 μM) for 60 minutes at 37°C. DHE (5 μM) was then added to 

act as a fluorescent indicator of ROS generated in response to the arsenite/apocynin 

treatment for 30 minutes. This protocol was designed to match the total exposure of 

rings preincubated with 100 µM arsenite for 30 min in mechanical experiments in which 

it took a further ~60 min to construct full concentration-relaxation curves. The 
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preparations were then briefly washed three times with phosphate buffered saline 

(PBS), followed by 90 minutes fixation in 4% paraformaldehyde. Valve leaflets were 

immediately mounted on glass slides with FluorSave (Calbiochem, UK). Artery 

preparations were covered with cryo-embedding media OCT (Agar Scientific, UK) and 

stored in liquid nitrogen. Prior to sectioning, the frozen artery block was transferred to a 

cryotome cryostat (-20°C) and the temperature of the frozen artery block was allowed 

to equilibrate to the temperature of the cryostat. Artery slices 10 µm thick, were 

sectioned and mounted on glass slides with FluorSave. 

2.3.4.2 Fluo-4 for cytosolic calcium 

To assess the [Ca2+]i in the endothelial cells, the aortic valve leaflets from the rabbit 

heart were placed in Holman’s buffer gassed with 95% O2 and 5% CO2. The valves 

were then incubated with the Ca2+ indicator Fluo-4 (2 µM) in oxygenated Holman’s 

buffer at room temperature for 2 hours followed by a wash with indicator-free buffer for 

5 minutes. Each valve leaflet was incubated with L-NAME (300 µM) and/or 

indomethacin (10 µM) in indicator-free Holman’s buffer for 30 minutes before the 

experiment protocol. In some cases, the valves were incubated for the 30 minutes 

period with calcium free Holman’s buffer of the following composition: NaCl (120 mM), 

KCl (5 mM), NaH2PO4 (1.3 mM), NaHCO3 (25 mM), Glucose (11 mM), Sucrose (10 

mM), EGTA (0.2 mM, except where indicated), pH 7.4. Buffer solutions were freshly 

prepared in dH2O and were kept oxygenated at room temperature. All chemicals used 

for the buffers were obtained from Fisher Scientific, UK. 

2.3.4.3 Mag-fluo-4 for endoplasmic reticulum calcium 

To assess the [Ca2+]ER in the endothelial cells, the aortic valve leaflets from the rabbit 

heart were placed in Holman’s buffer gassed with 95% O2 and 5% CO2. The valves 

then were incubated with the low-affinity Ca2+ indicator Mag-fluo-4 (2 µM) in 

oxygenated Holman’s buffer at room temperature for 60 minutes. After loading of the 
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dye, the valves were washed for 30 minutes with oxygenated indicator-free buffer at 

37°C, followed by a further 60 minutes wash at room temperature to allow the Mag-

fluo-4 located in the cell cytosol to be taken up into the ER. L-NAME (300 µM) and/or 

indomethacin (10 µM) were added to the valve leaflets and incubated for 30 minutes 

before starting the experiment. In some cases, the valves were incubated for the 30 

minutes with calcium free Holman’s buffer. 

2.3.4.4 Rhod-2 for mitochondria calcium 

To assess the [Ca2+]m in the endothelial cells, aortic valve leaflets from the rabbit heart 

were placed in Holman’s buffer gassed with 95% O2 and 5% CO2. The valves were 

then incubated with the Ca2+ indicator Rhod-2 AM (5 µM) in oxygenated Holman’s 

buffer at 37°C for 30 minutes, followed by 30 minutes washing with indicator-free 

Holman’s buffer to allow for de-esterification at room temperature. Each valve leaflet 

was then incubated with L-NAME (300 µM) and/or indomethacin (10 µM) in indicator-

free Holman’s buffer for 30 minutes before the experiment. 

2.3.4.5 MitoTracker Green for mitochondrial localization 

To assess the cellular localization of the mitochondria, valve leaflets were incubated 

with MitoTracker Green FM (0.1 µM) in oxygenated Holman’s buffer at 37°C for 30 

minutes, followed by a brief wash with indicator-free Holman’s buffer before imaging. 

2.3.4.6 Dual loading of Rhod-2 and MitoTracker Green 

Valve leaflets were incubated with MitoTracker Green FM (0.1 µM) in oxygenated 

Holman’s buffer at 37°C for 20 minutes, followed by washing with indicator-free buffer. 

The valves were then incubated with the Rhod-2 AM (5 µM) in oxygenated Holman’s 

buffer at 37°C for 30 minutes, followed by 30 minutes washing with indicator free 

Holman’s buffer to allow de-esterification at room temperature. Each valve leaflet was 
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incubated with L-NAME (300 µM) and/or indomethacin (10 µM) for 30 minutes in 

indicator-free Holman’s buffer before use. 

2.3.4.7 Fura-2 for cytosolic calcium and Manganese quench 

experiments  

To assess [Ca2+]i in endothelial cells, aortic valve leaflets from the rabbit heart were 

placed in oxygenated Holman’s buffer and incubated with the Ca2+ indicator Fura-2 

(5µM) at room temperature for 2 hours. After loading the dye, the valves were briefly 

washed with indicator-free buffer. From this stage, due to the fact that manganese 

precipitates out in Homan’s buffer, the valves used for the quench experiments were 

washed with HEPES buffer of the following composition: HEPES (10 mM), NaCl (140 

mM), KCl (5 mM), Glucose (10 mM), CaCl2 (1 mM), pH adjusted to 7.4. HEPES buffer 

was freshly prepared in dH2O and were kept at room temperature. All chemicals used 

for this buffer were obtained from Fisher Scientific, UK, except for HEPES (Sigma, UK). 

L-NAME (300 µM) and/or indomethacin (10 µM) were added in indicator-free 

Holman’s/HEPES buffer 30 minutes prior to the experiments. 

2.3.5 Excitation and emission wavelength 

The excitation wavelength and the collection range for emission wavelength were 

optimized individually for each probe, according to the manufacturer’s guideline. Details 

of the wavelength of excitation and emission for each probe are listed in Table 2.5.  
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Table 2.5 Excitation and emission wavelength used for fluorescent dyes and probes. 

 

2.3.6 Data recording of ROS imaging with DHE 

Experiments with DHE were performed using a Leica SP5 confocal microscope with an 

oil immersion 63X objective (Leica HCX PL APO 63X/1.40-0.60 OIL CS), images were 

acquired at 1024x1024 pixel resolution. Ten individual cells and 4 areas of background 

as described in Section 2.3.6 were selected from each valve leaflet for each 

experiment. Recordings of their intensities were analysed in Excel/Graphpad Prism 4 

softwares. 

2.3.7 Data recording of Intracellular Ca2+ signal  

Experiments with Mag-fluo-4 ([Ca2+]ER), Fluo-4 ([Ca2+]i), Rhod-2 ([Ca2+]m) and 

MitoTracker Green (mitochondria localization) were performed using a Leica SP5 

confocal microscope and visualised using a dry 20X objective (Leica HC PL FLUOTAR 

20X/0.50). Image serials (xyt) were acquired every 10 seconds at 512x512 pixel 

resolution. High definition pictures were taken with an oil immersion, 100X objective 

 Excitation Emission collection 

DHE 514nm Argon 560-650nm 

Fluo-4 488nm Argon 500-550nm 

Mag-Fluo-4 488nm Argon 500-550nm 

Rhod-2 514nm Argon 580-650nm 

MitoTracker Green 488nm Argon 500-540nm 

Dual staining with Rhod-2 
and MitoTracker Green 

488nm Argon 500-540nm green / 580-650nm red 

Fura-2 340nm/355nm/380nm 520nm-550nm bandpass filter 
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(Leica HCX PL APO 100X/1.40-0.70 OIL CS) at 1024x1024 pixel resolution. Ten 

individual cells from each experiment were selected for analysis and 4 areas of a 

similar size to the cells were used for background. Signal intensities were recorded with 

LAS AF software and analysed in Excel/Graphpad Prism 4 software. 

Imaging experiments with Fura-2 ([Ca2+]i) were performed using an 40X oil immersion 

objective (Zeiss FLUAR 40X/1.30 OIL) with the Life Science Resources system as 

described in Section 2.3.1. The preparations were excited alternately at 340/380 nm 

and emission was selected by using a 510 nm long pass filter. Images were acquired at 

2s intervals with an exposure time of 100 ms at each wavelength. Due to the low 

resolution image of the camera, an area giving fluorescence signal was selected for 

analysis and an area of no fluorescence signal was used for background. Fluorescence 

intensity was recorded and data were analysed in Excel/Graphpad Prism 4 software.  

All experiments were performed in oxygenated Holman’s buffer (with and without 

calcium as indicated). 

2.3.8 Data recording of manganese (Mn2+) quench imaging 

Mn2+ quench experiments in aortic valve preparations loaded with Fura-2 were imaged 

with an inverted epifluorescence microscope and a 20X dry objective (Nikon PL APO 

20X/0.75). The preparations were excited at 355/380 nm, and a series of images was 

acquired at 10 second intervals. Due to the low resolution image of the camera, an 

area giving fluorescence signal was selected for analysis and an area of no 

fluorescence signal was used for background. Fluorescence intensity was recorded 

and data were analysed in Excel/Graphpad Prism 4 software. 
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2.4 CELL CULTURE  

2.4.1 Cell line descriptions 

The EA.hy926 cell line, is a permanent human cell line that expresses highly 

differentiated functions that are characteristic of human vascular endothelium, such as 

expression of factor VIII-related antigen and cytoplasmic distribution of Weibel-Palade 

bodies. The cell line was originally obtained by fusing primary human umbilical vein 

cells (HUVEC) with a clone of A549/8 (human lung adenocarcinoma epithelial cell line) 

(Edgell et al., 1983; Edgell et al., 1990). Cells were obtained from the American Type 

Culture Collection (Manassas, VA, USA) (ATCC® Catalog No. CRL-2922™).  

 Organism: Homo sapiens (human)  

 Tissue: somatic human umbilical vein endothelial cells  

 Doubling Time: approximately 31 hours  

 Morphology: endothelial  

 Growth Properties: adherent 

2.4.2 Tissue culture medium 

All growth medium, reagents and materials employed for cell culture were purchased 

from Gibco/Invitrogen, UK, except 0.9% w/v Sodium Chloride (NaCl) (Fresenius Kabi, 

UK), sterile culture flasks (Greiner, UK), sterile filling tubes (Uhs/Kwills, UK), sterile 

pipettes (Nunc/Fisher and Alpha laboratories, UK), sterile syringes (BD Plastipak, UK), 

and glass bottomed culture dishes (35mm petri dish; 14mm microwell; 0.085-0.13 mm 

coverglass) (MatTek, USA).  

 Reagents used for the culture of EA.hy926 cells 

 Complete Growth Medium 

o Dulbecco’s Modified Eagle Medium (DMEM). 
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 with 580mg/L L-Glutamine, 4500 mg/L D-Glucose, 110 mg/L 
Sodium Pyruvate 

o Supplemented with  

 10% Heat Inactivated FBS (Fetal Bovine Serum; Origin: 
South America).  

 100U/mL penicillin, 100ug/mL streptomycin and 0.292mg/mL 
L-glutamine. 

 0.05% Trypsin-Ethylenediaminetetraacetic acid (EDTA) (1x). 

 Saline solution, NaCl 0.9% (w/v). 

 Freezing medium 

Cryo.s™ Cryogenic Storage Vials (1ml) were purchased from Greiner, UK. Sterile 

DMSO was obtained from Sigma, UK.  

• The freezing medium for EA.hy926 cells 

o 95% complete growth medium 

o 5% DMSO 

2.4.3 Culturing EA.hy926 cells 

The EA.hy926 cells were maintained in complete growth medium (Section 2.4.2). The 

cells were given fresh medium every 3 days and cells were passaged on a weekly 

basis. Flasks containing the cells were kept in a cell incubator at 37°C with a 5% CO2 

in air atmosphere.  

All the following procedures were performed inside a tissue culture Class II hood 

decontaminated with 70% ethanol. Personal protection equipments including 

specialised lab coat and gloves were worn at all times. 

2.4.3.1 Subculturing Procedure (75 cm2 flask) 

Cells were sub-cultured as soon as they reached confluence (i.e. ~1x105cells/ml). The 

complete growth medium and trypsin were warmed to 37C before the passaging.  
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EA.hy926 are adherent cells therefore the spent cell culture medium was removed from 

the flask and discarded. The cells were briefly washed twice with saline solution (10 ml) 

to remove all traces of serum, which inhibits trypsin. Trypsin-EDTA solution (5 ml) was 

added and the flask was kept at 37°C for 5-10 minutes to facilitate detachment. Cells 

were viewed under a Nikon inverted microscope to make sure the cell layer was fully 

detached and that the cells were dispersed and floating. The side of the flasks was 

gently tapped to release any remaining attached cells. Complete growth medium (10 ml) 

was then added to the flask to neutralise the trypsin-EDTA. Cell suspension (100 µl) 

was placed in a haemocytometer for cell counting; the remainder was transferred to a 

centrifuge tube and spun at 1200 rpm for 3 minutes. The supernatant was discarded 

and the cells were re-suspended in fresh complete growth medium (20 ml) to give a 

concentration of approximately 5x103 cells/ml. The culture flask was then transferred to 

the cell incubator and maintained at 37°C in a 5% CO2 in air atmosphere.  

2.4.3.2 Freezing Procedure 

Cryogenic preservation (storage below -100°C) of cell cultures was performed to 

maintain backup cells and for long term storage when required. The recommended 

concentration for freezing EA.hy926 cells was 5x105cells/ml. Twenty-four hours before 

freezing, the culture medium was renewed and cells should be approximately 80% 

confluence. 

Cells were counted and centrifuged as described in Section 2.4.3.1. The cell pellet was 

resuspended in ice cold freezing medium at the appropriate dilution (i.e. 5x105 cells/ml). 

The final cell suspension was placed into a cryogenic vial and immediately placed on 

ice before transfer to a -20°C freezer for 1 hour. The vials were then placed in a -80°C 

freezer overnight and then transferred to liquid nitrogen for long term storage.  
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2.4.3.3 Thawing Procedure 

The vial containing the EA.hy926 cells was rapidly thawed by gentle agitation in a 37°C 

water bath for 1-2 minutes. As soon as contents were thawed, the vial was removed 

from the water bath and decontaminated by spraying with 70% ethanol. The contents 

were transferred to a centrifuge tube containing pre-warmed (37C) complete growth 

medium and spun at 1200 rpm for 3 minutes. The cell pellet was resuspended in 

further pre-warmed complete growth medium and transferred into a culture flask. The 

flask was then placed in the incubator at 37°C and 5% CO2 in air. 

2.4.3.4 Plating Procedure 

The density of the cells was calculated with the aid of a haemocytometer and cells 

were centrifuged as described in Section 2.4.3.1. The supernatant was discarded and 

cells were re-suspended in fresh complete growth medium to give 1.5x105 cell/ml. Cells 

(2 ml) were seeded into each of the 35mm glass bottomed culture dishes and 

transferred to the cell incubator for 24 hours prior to use. 

2.5 IMAGING STUDIES WITH EA.HY926 CELLS  

2.5.1 Loading of fluorescent indicators 

Twenty four hours prior to the experiment, fresh complete DMEM culture medium was 

given to the cells. All the loading procedures with EA.hy926 cells were performed in a 

dark room to avoid photobleaching. Between transfers, all dishes were kept in a light 

tight box. 

2.5.1.1 Mag-fluo-4 for endoplasmic reticulum calcium 

Cells were incubated with the low-affinity Ca2+ indicator Mag-fluo-4 (2 µM) in DMEM at 

37°C (in a cell incubator) for 30 minutes. After loading of the dye, the cells were 

washed with oxygenated indicator-free Holman’s buffer for a further 40 minutes at room 
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temperature. Each dish of cells was incubated with L-NAME (300 µM) and/or 

indomethacin (10 µM) in oxygenated Holman’s buffer for 30 minutes before the 

experiment. 

2.5.1.2 Fluo-4 for cytosolic calcium 

Cells were incubated with the Ca2+ indicator Fluo-4 (2 µM) in DMEM at 37°C for 45 

minutes in a cell incubator. After dye loading, the cells were briefly washed with 

indicator-free Holman’s buffer before the 30 minutes incubation with L-NAME (300 µM) 

and/or indomethacin (10 µM) in oxygenated Holman’s at room temperature prior to the 

experiment. 

2.5.1.3 Rhod-2 for mitochondria calcium 

Cells were incubated with the Ca2+ indicator Rhod-2 AM (1 µM) in DMEM at 37°C for 

30 minutes in a cell incubator. After loading of the dye, the cells were washed with 

oxygenated indicator-free Holman’s buffer for 30 minutes to allow de-esterification at 

room temperature. Each dish of cells was incubated with L-NAME (300 µM) and/or 

indomethacin (10 µM) in oxygenated Holman’s buffer for 30 minutes before the 

experiment. 

2.5.1.4 MitoTracker Green for mitochondrial localization 

Cells were incubated with the MitoTracker Green FM (0.1 µM) in DMEM at 37°C for 20 

minutes in a cell incubator, and followed by washing with oxygenated indicator-free 

Holman’s buffer at room temperature. 

2.5.1.5 Dual loading of Rhod-2 and MitoTracker Green 

Cells were incubated with the MitoTracker Green FM (0.1 µM) in DMEM at 37°C for 20 

minutes in a cell incubator, followed by a brief wash with indicator-free DMEM. Cells 

were then incubated with Rhod-2 AM (5 µM) in DMEM at 37°C for a further 30 minutes, 

followed by 30 minutes of washing with indicator free Holman’s buffer at room 
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temperature to allow de-esterification of the dye. L-NAME (300 µM) and/or 

indomethacin (10 µM) was added to each dish of cells in oxygenated indicator-free 

Holman’s buffer for 30 minutes prior to the experiment. 

2.5.2 Data recording of Intracellular Ca2+ signal 

A Leica SP5 confocal microscope was used for experiments with EA.hy926 cells. 

Fluorescence imaging of Mag-fluo-4 ([Ca2+]ER), Fluo-4 ([Ca2+]i), Rhod-2 ([Ca2+]m) and 

MitoTracker Green (mitochondria localization) were visualised using a dry 20X 

objective (Leica HC PL FLUOTAR 20X/0.50) and image serials (xyt) were acquired 

every 10 seconds at 512x512 pixel resolution. High definition pictures were taken with 

an oil immersion, 100X objective (Leica HCX PL APO 100X/1.40-0.70 OIL CS), at 

1024x1024 pixel resolution. 

All cell experiments were performed in oxygenated Holman’s buffer. Ten individual 

cells and 4 areas of background as described in Section 2.3.6 were selected from each 

dish for each experiment. Fluorescence intensities were recorded with LAS AF 

software and analysed in Excel/Graphpad Prism 4 softwares. 

2.6 STATISTICAL ANALYSIS 

For mechanical experiments, the maximal percentage reversal of phenylephrine-

induced constriction (Rmax) by CPA, ACh or MAHMA NONOate was determined for 

each experiment. The concentrations of ACh or MAHMA NONOate giving the half 

maximal response (EC50) were obtained from the concentration-response curve fitted 

to a sigmoidal logistic equation (Y=BOTTOM+(TOP-BOTTOM)*X^H/(EC50^H+X^H)) 

using GraphPad Prism. Relaxation of CPA was often preceded by small increases in 

tension which can be attributed to an effect of CPA on smooth muscle Ca2+ stores 

(Chaytor et al., 2005), the concentration giving 50% reversal of whole constrictor 

response (IC50) was therefore determined graphically for each experiment. Rmax, pEC50 
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or pIC50 (negative log molar EC50 or IC50) values were calculated as mean±standard 

error of mean (mean±SEM). 

For imaging studies, the fluorescence intensities were recorded and stored as arbitrary 

unit (A.U.) in spreadsheets and plotted in graphical form using GraphPad Prism 4 

software. Data obtained from conventional microscopes (see Section 2.3.1) were 

analysed as background-corrected F355 (F/F0, see explanation below), F340/380 or 

F355/F380 ratios. Data obtained from confocal microscopy to track the effects of 

interventions on Mag-fluo-4 ([Ca2+]ER), Fluo-4 ([Ca2+]i) or Rhod-2 ([Ca2+]m) fluorescence 

were analysed as fluorescence normalized to its value at the beginning of each 

experiment (F/F0). 

Significance between two groups was calculated using paired or un-paired Student’s t-

test as appropriate (two tail P value) assuming that the data are sampled from two 

populations with the same variance. Statistical comparisons between more than two 

groups were calculated using analysis of variance (ANOVA) followed by an appropriate 

post-hoc tests. p<0.05 was considered significant; n denotes the number of animals in 

each group. 

2.7 HEALTH AND SAFETY 

Personal protective equipment including laboratory coat, masks, gloves and headwear 

was used when performing laboratory work in accordance with COSHH regulations and 

local college regulations. Reagents were handled and stored as recommended by 

manufacturer’s safety guidelines. All GMO work was carried out in accordance with 

GMSC guidelines and all tissue culture waste was disinfected before disposal. 
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Chapter 3 

Modulation of Endothelium-dependent 

Arterial Relaxation by Exogenous Hydrogen 

Peroxide 

3.1 INTRODUCTION 

3.1.1 Background 

It has been suggested that H2O2 functions as a freely diffusible EDHF in some artery 

types. This is because agonist-induced EDHF-type responses in these vessels are 

catalase-sensitive and exogenous/endogenous H2O2 evokes 

relaxation/hyperpolarization of the smooth muscle by activating KCa (Matoba et al., 

2000; Matoba et al., 2003; Shimokawa and Matoba, 2004; Shimokawa and Morikawa, 

2005; Liu et al., 2011). However, in the rabbit iliac artery, a vessel modulated by both 

NO and EDHF, H2O2 cannot be considered as a transferable EDHF as the maximal 

smooth muscle hyperpolarization evoked by exogenous applied H2O2 is much smaller 

than that associated with the authentic “EDH phenomenon” (e.g. ~20 mV for 3 µM ACh; 

~5 mV for 300 µM H2O2) and H2O2-evoked relaxation may be insensitive to a spectrum 

of K+ channel inhibitors (Chaytor et al., 2003). It was shown that H2O2 can potentiate 

CPA-evoked EDHF-type relaxation in this vessel (Edwards et al., 2008), probably 

through enhanced Ca2+ release from the ER in the endothelium (Hu et al., 1998; Zheng 

and Shen, 2005). It has been confirmed the ability of H2O2 to potentiate the 



Chapter 3 

69 

mobilization of Ca2+, by CPA in rabbit aortic valve endothelium (Edwards et al., 2008). 

However, the effects of H2O2 on NO-dependent relaxation remain to be investigated.  

Depressed NO bioavailability is often observed in the vascular dysfunction that occurs 

in disease states such as diabetes, hypertension, heart failure and 

ischemia/reperfusion injury, conditions in which a compensational role for the “EDH 

phenomenon” has been proposed (McCulloch et al., 1997; Katz and Krum, 2001; Wigg 

et al., 2001; Katusic, 2002; Marrelli, 2002). It has been shown that NO depresses 

endothelial-dependent hyperpolarization in the rabbit iliac artery (Griffith et al., 2005), 

and that the relative magnitudes of NO- and gap junction-dependent relaxation are 

inversely related in rabbit arteries of different sizes (Berman et al., 2002). In endothelial 

cells, NO and/or its second messenger cGMP have been reported to decrease [Ca2+]i 

by activating the SERCA pump (Dedkova and Blatter, 2002; Adachi et al., 2004) and 

inhibiting SOCE (Kwan et al., 2000; Dedkova and Blatter, 2002). However, it has also 

been reported that NO may increase endothelial Ca2+ influx by activating TRP channels 

(Yoshida et al., 2006). Since NO can rapidly scavenge the H2O2 precursor O2
•−, the 

potentiating effect of H2O2 on EDHF-type relaxation in the rabbit iliac artery suggests 

that in disease states where NO bioavailability is decreased, the contribution of H2O2 to 

the EDHF phenomenon might be more prominent and then play a “compensatory” role. 

On the other hand, NO production by the Ca2+-dependent enzyme eNOS may be 

increased by H2O2 through enhanced Ca2+ mobilization from the ER. Indeed, there is 

evidence that H2O2 acutely stimulates NO release in rabbit arteries (Zembowicz et al., 

1993; Yang et al., 1998a).  

3.1.2 Aim of this chapter 

The work in this chapter was designed to investigate the mechanical effects that 

exogenous applied H2O2 has upon the rabbit vasculature in either EDHF-type or NO-

mediated responses. In the rabbit iliac artery, the EDHF-type relaxations evoked by 

CPA and ACh can be suppressed either by pharmacological blockade of KCa channels 
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or gap junctional communication and maximal EDHF-type relaxation evoked by CPA 

and ACh are both depressed by exogenous applied catalase (Hutcheson et al., 1999; 

Chaytor et al., 2001; Edwards et al., 2008). It has been shown that CPA depletes the 

ER store by inhibition of the SERCA pump, whereas ACh works through an InsP3-

dependent way, therefore, these two agents that have distinct mechanisms to induce 

vascular relaxation will be used to evaluate the effects of H2O2 in the rabbit arteries.  

It has been shown previously, in rabbit iliac artery, that H2O2 and its thiol oxidant mimic 

thimerosal potentiate CPA evoked EDHF-type responses possibly through sensitization 

of the InsP3 receptors (Edwards et al., 2008). To test whether this effect of H2O2 is a 

universal phenomenon, a series of experiments were performed: (i) CPA (receptor 

independent agent) responses were compared with those induced by ACh (receptor 

dependent agent) in the absence or presence of L-NAME/indomethacin (NO-mediated 

and EDHF-type correspondingly); (ii) exogenous NO-mediated responses were 

examined with a NO donor MAHMA NONOate and (iii) since there is evidence that the 

relative magnitudes of NO- and gap junction-dependent relaxation are inversely related 

in rabbit arteries of different sizes (Berman et al., 2002), the effect of H2O2 and 

thimerosal were also studied in the rabbit aorta. 

3.2 MATERIALS AND METHODS 

3.2.1 Mechanical Responses 

Male NZW rabbits were killed and arterial preparations were dissected and mounted in 

a myograph as described in Section 2.1 and 2.2. Rings of iliac artery and aorta were 

maintained at a resting tension of 2 mN during a 1h equilibration period in oxygenated 

Holman’s buffer at 37˚C. The buffer was replaced, and any subsequent alterations in 

baseline tension due to stress relaxation were corrected. 
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Iliac ring preparations were incubated in the presence or absence of indomethacin (10 

μM) and L-NAME (300 μM) for 30 minutes as required. Aorta ring preparations were all 

incubated in the presence of indomethacin (10 μM) for 30 minutes and as required, 

some were also incubated with L-NAME (300 μM). In some studies, the rings were 

denuded of their endothelium by gentle abrasion and those rings were incubated in the 

presence of indomethacin (10 μM) and L-NAME (300 μM) for 30 minutes. Agents under 

study were added for a further 30 minutes, before tone was induced by phenylephrine 

(1 μM) and relaxation evoked by CPA, ACh or MAHMA NONOate. Cumulative 

concentration-response curves were constructed under control conditions and in the 

presence of the selective KCa channel blocker apamin (1 μM), TRAM-34 (TRAM, 10 μM) 

and iberiotoxin (IbTX, 100 nM) in combinations or alone as required. These 

concentrations of the blockers are known to inhibit the corresponding KCa channel fully 

as previously published in this type of vessel (Edwards et al., 2008). Some rings were 

incubated with H2O2 (30 or 100 μM) or thimerosal (1 or 10 μM) for 30 minutes before 

constriction.  

3.2.2 Data recording and Statistics 

Details of data analysis were described in Section 2.2.3. In mechanical experiments the 

Rmax by CPA, ACh or MAHMA NONOate and IC50 (in the case of CPA in iliac arteries, 

as explained in Section 2.6) or EC50 (in the case of ACh and MAHMA NONOate) were 

determined for each experiment. Rmax, pIC50 and pEC50 values were calculated as 

mean±SEM and compared by the Student's t-test (2 groups), one-way ANOVA 

followed by Bonferroni post-hoc tests (3 or more groups) or two-way ANOVA (whole 

datasets). Details of statistical analyses used for each figure were indicated in figures 

descriptions. 
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3.3 RESULTS 

3.3.1 Mechanisms contributing to ACh-evoked relaxations 

In endothelium-intact iliac rings constricted by 1 µM phenylephrine (PE), maximal 

EDHF-type relaxations (in the presence of L-NAME/indomethacin) evoked by ACh 

were equivalent to 72.5±3.5% of the constrictor response to PE (Rmax) with a pEC50 of 

6.80±0.06 (n=15; Table 3.1). EDHF-type relaxations evoked by ACh were attenuated 

by KCa channel blockade in a channel-type selective manner. Apamin alone gave 

minimal depression in terms of Rmax, but the rings exhibited a progressive decrease in 

Rmax in the presence of TRAM-34, IbTX, the double combination Apamin+TRAM-34 

and the triple combination Apamin+TRAM-34+IbTX. There was no significant 

difference between pEC50 values for those experimental groups where relaxation >50% 

(n=5-9; Figure 3.1; Table 3.1). 

3.3.2 Effects of KCa channel inhibitors on tension in rabbit iliac 

artery. 

In endothelium-intact rings in the presence of L-NAME/indomethacin or endothelium-

denuded rings, apamin and TRAM-34 alone or in combination did not affect basal tone. 

In endothelium-intact rings in the presence of L-NAME/indomethacin, IbTX and 

apamin+TRAM+IbTX increased basal tone to an equivalent extent (both p<0.001), 

though there is a significant difference between the force developed by IbTX and the 

apamin+TRAM+IbTX combination (p<0.05). In rings constricted by PE, force 

development was only increased to a significant extent by apamin+TRAM+IbTX but not 

by IbTX or apamin+TRAM. In endothelium-denuded rings, basal tone was again 

increased to a significant extent by IbTX and apamin+TRAM+IbTX (both p<0.001) with 

no significant difference between these two groups, whereas in rings constricted by 

phenylephrine, none of the combinations of inhibitors had any effect on tone (Figure 

3.2; Table 3.2, data pooled from corresponding experiments).  
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Iliac artery 

 

 
 
Figure 3.1 Inhibition of ACh-evoked relaxation by KCa channel blockers IbTX (100nM), TRAM-

34 (100µM) and apamin (1µM), individually and in combinations. Representative graphs were 

shown in (A) and summary graph was shown in (B). All experiments were performed in 

presence of L-NAME (300µM) and indomethacin (10µM). n denotes the number of animals 

studied.  
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Figure 3.2 Effect of apamin, TRAM-34 and IbTX on basal tone and the contractile response to 

phenylephrine (PE) in rings with (+E) and without (-E) intact endothelium. All experiments were 

performed in presence of L-NAME/indomethacin. The basal tone and contractile response was 

measured at the peak point of the corresponding curve. *** denote p<0.001 compared with 

control; and the 
+ 

denote p<0.05 compared with IbTX alone in one-way ANOVA. 
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Rabbit iliac artery 

Intervention n pEC50 Rmax% 
 
L-NAME+Indo  15 6.80±0.06 72.5±3.5 
L-NAME+Indo+apamin 1 µM 5 6.91±0.20 69.8±8.5 
L-NAME+Indo+TRAM 100 µM 5 6.57±0.25 63.2±10.9 
L-NAME+Indo+IbTX 100 nM 9 Relaxation<50% 43.8±7.7 * 
L-NAME+Indo+Apamin+TRAM 5 Relaxation<50% 44.8±11.3 * 
L-NAME+Indo+Apamin+TRAM+IbTX 6 Relaxation<50% 12.1±1.0 ** 
    

 

Table 3.1 Effects of KCa channel blockers on endothelium-intact arterial relaxations evoked by 

ACh in the presence of L-NAME and indomethacin. Potency (negative logEC50) and maximal 

responses (Rmax) are given as mean±SEM. * and ** denote p<0.05 and 0.01 compared with 

control in one-way ANOVA. n denotes the number of animals studied. 

 

 

 

 

Rabbit iliac artery 

Intervention n 
30mins pre-
incubation 

Addition of PE 

Endothelium intact  Unit mN 

   

L-NAME+Indo 72 6.26±0.69 37.6±1.0 

L-NAME+Indo+apamin 12 7.05±1.39 41.5±2.0 

L-NAME+Indo+TRAM 19 6.64±1.44 38.0±2.1 

L-NAME+Indo+apamin+TRAM 22 8.08±1.70 40.2±1.8 

L-NAME+Indo+IbTX 24 29.05±3.22*** 42.3±2.9 

L-NAME+Indo+apamin+TRAM+IbTX 40 38.01±1.83***,
+
 50.6±2.3

***
,
+
 

    

Endothelium denuded  Unit mN 

   
L-NAME+Indo 12 2.88±0.36 42.4±2.4 
L-NAME+Indo+apamin+TRAM 6 2.85±0.51 38.6±3.3 
L-NAME+Indo+IbTX 6 28.90±6.91*** 47.3±6.5 
L-NAME+Indo+apamin+TRAM+IbTX 12 26.47±3.83*** 43.6±3.0 
    

 

Table 3.2 Effects of KCa channels blockers on tension in rabbit iliac arteries in the presence of L-

NAME and indomethacin. Data given as mean±sem. *** denote p<0.001 compared with control; 

and the 
+ 

denote p<0.05 compared with IbTX alone in one-way ANOVA. 
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3.3.3 Effects of H2O2 on responses to CPA in the absence and 

presence of L-NAME/indomethacin in rabbit iliac arteries. 

In control iliac rings (endothelium-intact iliac rings in the absence of L-

NAME/indomethacin), the additional contribution of NO to CPA-evoked relaxations was 

evidenced by pIC50 values of ~5.1, and increases in Rmax to ~95% from ~85% 

compared to the corresponding EDHF-type concentration-relaxation curves (n=14; 

Table 3.3; control data pooled). In the absence of L-NAME/indomethacin, pre-

incubation with 100 μM H2O2 for 30 minutes had no significant difference in pIC50 and 

Rmax compared to control (n=7; Figure 3.3A; Table 3.3). In the presence of L-

NAME/indomethacin, pre-incubation with 100 μM H2O2 for 30 minutes caused a 

significant potentiation on responses evoked by CPA, such that pIC50 increased from 

4.67±0.05 to 5.36±0.23 (p<0.05; n=5) without alteration in overall Rmax (Figure 3.3B; 

Table 3.3).  

3.3.4 Effects of H2O2 on responses to ACh in the absence and 

presence of L-NAME/indomethacin in rabbit iliac arteries. 

In control iliac rings, the additional contribution of NO to ACh-evoked relaxations was 

evidenced by pEC50 values of ~7.1, and increases in Rmax to ~90% from ~80% 

compared to the corresponding EDHF-type concentration-relaxation curves (n=17; 

Table 3.4; control data pooled). In the absent of L-NAME/indomethacin, ACh-evoked 

responses was not affected by the addition of 100 μM H2O2 for 30 minutes (Figure 3.4A) 

and therefore no significant difference in neither pEC50 nor Rmax (n=11; Table 3.4). In 

the presence of L-NAME/indomethacin, pre-incubation with 100 μM H2O2 for 30 

minutes caused a significant potentiation on responses evoked by ACh, and pEC50 was 

increased from 6.51±0.05 to 7.53±0.10 (p<0.001; n=5) without alteration in overall Rmax 

(Figure 3.4B; Table 3.4).  
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Figure 3.3 Effects of 100 µM H2O2 on relaxations evoked by CPA in endothelium-intact rabbit 

iliac rings. (A) In the absence of L-NAME and indomethacin, 100 µM H2O2 had no effect on 

responses to CPA. (B) In the presence of L-NAME and indomethacin, 100 µM H2O2 significantly 

potentiated CPA-evoked relaxation. ** and *** denote 0.01 and 0.001 compared with 

corresponding control in two-way ANOVA. n denotes the number of animals studied. 
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Figure 3.4 Effects of 100 µM H2O2 on relaxations evoked by ACh in endothelium-intact rabbit 

iliac rings. (A) In the absence of L-NAME and indomethacin, 100 µM H2O2 had no effect on 

responses to ACh. (B) In the presence of L-NAME and indomethacin, 100 µM H2O2 significantly 

potentiated ACh-evoked relaxation. *** denote 0.001 compared with corresponding control in 

two-way ANOVA. n denotes the number of animals studied. 
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Rabbit iliac artery 

Intervention N pIC50 Rmax% 

30 minutes H2O2 incubation    

 
Control 7 5.19±0.09 98.5±0.7 
H2O2 100 µM 7 5.26±0.15 95.3±1.5 
L-NAME+Indo 5 4.67±0.05 85.1±2.7 
L-NAME+Indo+H2O2 100 µM 5 5.36±0.23 * 83.7±2.8 
    

30 minutes thimerosal incubation    

    
Control 7 5.11±0.07 96.7±0.9 
Thimerosal 10 µM 7 6.12±0.16 *** 95.7±1.6 
L-NAME+Indo 5 4.78±0.08 86.2±2.5 
L-NAME+Indo+thimerosal 10 µM 5 5.95±0.17 ** 83.6±2.1 
    

 

Table 3.3 Effects of 100 µM H2O2 and 10 µM thimerosal on endothelium-intact arterial 

relaxations evoked by CPA. Potency (negative logIC50) and maximal responses (Rmax) are given 

as mean±SEM. *, ** and *** denote p<0.05, 0.01 and 0.001 compared with corresponding 

control in one-way ANOVA. n denotes the number of animals studied. 

 

 

 

Rabbit iliac artery 

Intervention n pEC50 Rmax% 

30 minutes H2O2 incubation    

 
Control 11 7.21±0.05 92.7±2.0 
H2O2 100 µM 11 7.42±0.07 91.8±2.9 
L-NAME+Indo 5 6.51±0.05 80.9±4.3 
L-NAME+Indo+H2O2 100 µM 5 7.53±0.10 *** 81.6±2.4 
    

30 minutes thimerosal incubation    

    
Control 6 7.06±0.04 92.7±2.0 
Thimerosal 10 µM 6 7.49±0.04 * 91.6±2.4 
L-NAME+Indo 4 6.53±0.05 78.7±2.4 
L-NAME+Indo+thimerosal 10 µM 4 6.87±0.06 * 77.9±0.5 
    

 

Table 3.4 Effects of 100 µM H2O2 and 10 µM thimerosal on endothelium-intact arterial 

relaxations evoked by ACh. Potency (negative logEC50) and maximal responses (Rmax) are 

given as mean±SEM. * and *** denote p<0.05 and 0.001 compared with corresponding control 

in one-way ANOVA. n denotes the number of animals studied. 
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3.3.5 Effects of thimerosal on responses to CPA in the absence 

and presence of L-NAME/indomethacin in rabbit iliac arteries. 

In endothelium-intact iliac rings in the absence or presence of L-NAME/indomethacin, 

pre-incubation with 10 μM thimerosal for 30 minutes caused a significant potentiation 

on responses evoked by CPA without change in Rmax (n=7 and 5 respectively; Figure 

3.5; Table 3.3). The pIC50 was increased from 5.11±0.07 to 6.12±0.16 (p<0.001; n=7) 

for CPA responses and from 4.78±0.08 to 5.95±0.17 (p<0.01; n=5) for EDHF-type 

responses alone (Table 3.3). 

3.3.6 Effects of thimerosal on responses to ACh in the absence 

and presence of L-NAME/indomethacin in rabbit iliac arteries. 

In endothelium-intact iliac rings in the absence or presence of L-NAME/indomethacin, 

pre-incubation with 10 μM thimerosal for 30 minutes caused a significant potentiation 

on responses evoked by ACh without any alteration in Rmax (Figure 3.6; Table 3.4). The 

pEC50 was increased from 7.06±0.04 to 7.49±0.04 (p<0.05; n=6) for ACh responses 

and from 6.53±0.05 to 6.87±0.06 (p<0.05; n=4) for EDHF-type responses alone (Table 

3.4).  

3.3.7 Effects of H2O2 on responses to MAHMA NONOate in 

rabbit iliac arteries. 

In endothelium-intact iliac rings in the absence or presence of L-NAME/indomethacin, 

responses evoked by MAHMA NONOate was unaffected by 30 minutes incubation with 

100 μM H2O2, with no significant change in pEC50 and Rmax was observed (n=8; Figure 

3.7; Table 3.5). In endothelium-denuded rings, H2O2 did not exert a significant effect 

when relaxation was induced by MAHMA NONOate compared to control, again , no 

significant change in pEC50 and Rmax was observed (n=10; Figure 3.7; Table 3.5). 
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Figure 3.5 Effects of 10 µM thimerosal on relaxations evoked by CPA in endothelium-intact 

rabbit iliac rings. (A) In the absence of L-NAME and indomethacin, 10 µM thimerosal 

significantly potentiated responses to CPA. (B) In the presence of L-NAME and indomethacin, 

10 µM thimerosal significantly potentiated CPA-evoked relaxation. *, ** and *** denote p<0.05, 

0.01 and 0.001 compared with corresponding control in two-way ANOVA. n denotes the number 

of animals studied. 
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Figure 3.6 Effects of 10 µM thimerosal on relaxations evoked by ACh in endothelium-intact 

rabbit iliac rings. (A) In the absence of L-NAME and indomethacin, 10 µM thimerosal 

significantly potentiated responses to ACh.  (B) In the presence of L-NAME and indomethacin, 

10 µM thimerosal significantly potentiated ACh-evoked relaxation.*, ** and *** denote p<0.05, 

0.01 and 0.001 compared with corresponding control in two-way ANOVA. n denotes the number 

of animals studied. 
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Figure 3.7 Concentration-response curves showing that pre-incubation with 100 µM H2O2 for 30 

minutes did not affect (A) endothelium-dependent or (B) endothelium-denuded rabbit iliac ring 

relaxations evoked by MAHMA NONOate in the presence of L-NAME and indomethacin. n 

denotes the number of animals studied. 
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Rabbit iliac artery 

Intervention n pEC50 Rmax% 

30 minutes H2O2 incubation    

 
L-NAME+Indo 8 6.73±0.06 96.3±2.9 
L-NAME+Indo+H2O2 100 µM 8 6.80±0.05 95.3±2.2 
Denuded Control 10 7.01±0.05 97.8±1.9 
Denuded+H2O2 100 µM 10 7.20±0.05 96.8±1.9 
    

30 minutes thimerosal incubation    

    
L-NAME+Indo 6 6.71±0.05 98.0±2.5 
L-NAME+Indo+thimerosal 10 µM 6 6.11±0.06 * 95.9±4.0 
Denuded Control 6 6.87±0.05 98.1±2.6 
Denuded+thimerosal 10 µM 6 6.23±0.03 * 88.1±1.4 ** 
    
L-NAME+Indo 5 6.35±0.07 99.9±4.1 
L-NAME+Indo+thimerosal 1 µM 5 6.57±0.08 102.7±5.3 
Denuded Control 5 6.37±0.07 99.8±4.1 
Denuded+thimerosal 1 µM 5 6.58±0.08 101.6±4.8 
    

 
Table 3.5 Concentration-dependent effects of H2O2 and thimerosal on endothelium-intact 

arterial relaxations evoked by MAHMA NONOate. Potency (negative logEC50) and maximal 

responses (Rmax) are given as means±SEM. * and ** denote p<0.05 and 0.01 compared with 

corresponding control in Student’s t-test. n denotes the number of animals studied. 

 

3.3.8 Effects of thimerosal on responses to MAHMA NONOate 

in rabbit iliac arteries. 

In endothelium-intact iliac rings in the presence of L-NAME/indomethacin and in 

endothelium-denuded rings, pre-incubation with 10 μM thimerosal for 30 minutes 

induced a significant potentiation on responses evoked by MAHMA NONOate. The 

pEC50 decreased from 6.71±0.05 to 6.11±0.06 (p<0.05; n=6) for endothelium-intact 

rings without change in Rmax and pEC50 decreased from 6.87±0.05 to 6.23±0.03 

(p<0.05; n=6) for denuded rings with a significant decrease in Rmax from 98.1±2.6% to 

88.1±1.4% (p<0.01; n=6; Figure 3.8; Table 3.5). However, this attenuation on 

relaxation was rescued when the concentration of thimerosal used decreased from 10 

μM to 1 μM. Pre-incubation with 1 μM thimerosal for 30 minutes has no effect on 

relaxations evoked by MAHMA NONOate in endothelium-intact and -denuded iliac 

rings in terms of pEC50 and Rmax (n=5 for each; Figure 3.9; Table 3.5). 
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Figure 3.8 Concentration-response curves showing that pre-incubation with 10 µM thimerosal 

for 30 minutes attenuated both (A) endothelium-dependent and (B) endothelium-denuded rabbit 

iliac ring relaxations evoked by MAHMA NONOate in the presence of L-NAME and 

indomethacin. *and *** denote p<0.05 and 0.001 compared with corresponding control in two-

way ANOVA. n denotes the number of animals studied. 
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Figure 3.9 Concentration-response curves showing that pre-incubation with 1 µM thimerosal for 

30 minutes did not affect (A) endothelium-dependent or (B) endothelium-denuded rabbit iliac 

ring relaxations evoked or by MAHMA NONOate in the presence of L-NAME and indomethacin. 

n denotes the number of animals studied.  
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3.3.9 Relaxations to exogenous H2O2 and thimerosal in rabbit 

aorta 

In endothelium-intact and -denuded aortic rings in the absence or presence of L-

NAME/indomethacin, relaxations evoked by exogenous H2O2 were evident at 

concentrations ≥ 100 μM (n=5; Figure 3.10A). In comparison, thimerosal did not itself 

evoke relaxation at concentrations ≤ 100 μM in endothelium-denuded rings or in 

endothelium-intact rings in the presence of L-NAME/indomethacin. However, in control 

rings, at concentrations ≥ 3 μM, thimerosal induced a triphasic response consisting of 

an endothelium-dependent relaxation superimposed on a biphasic direct smooth 

muscle response in which constriction preceded relaxation (n=5; Figure 3.10B). This 

thimerosal-induced endothelium-dependent relaxation was peaked ~50% at 10 μM. No 

pEC50 or Rmax can be calculated. 

3.3.10 Effects of H2O2 and thimerosal on responses to CPA in 

rabbit aorta. 

In control aortic rings (endothelium-intact aortic rings in the absence of L-

NAME/indomethacin), maximal relaxations evoked by CPA were equivalent to ~70% 

(n=20; Table 3.6; control data pooled) of PE-induced tone and were mediated by NO 

because no significant EDHF-type component was evident in the presence of L-

NAME/indomethacin (p<0.001; n=5; Table 3.6). In the absence of L-

NAME/indomethacin, pre-incubation with 100 μM H2O2 for 30 minutes caused 

significant inhibition on the relaxation evoked by CPA (Figure 3.11A), thus that the 

pIC50 was not affected but Rmax was decreased from 72.9±2.5% to 59.1±1.8% (p<0.01; 

n=10 and 5 respectively; Table 3.6). Pre-incubation with 10 μM thimerosal for 30 

minutes also caused significant inhibition on the relaxation evoked by CPA (Figure 

3.11B), the Rmax was decreased from 71.4±3.0% to 30.2±2.2% (p<0.001; n=10 and 5 

respectively; Table 3.6). NO pIC50 can be calculated. 
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Figure 3.10 Cumulative Dose-response Curves to (A) H2O2 and (B) thimerosal in rabbit aortic 

rings in the presence of indomethacin. (A) 0-100 µM H2O2 has minimal effect on aorta 

regardless of the presence or absence of endothelium. (B) 10 µM thimerosal caused 

approximately 50% relaxation in control rings with intact endothelium. * denote p<0.05 

compared with corresponding control in two-way ANOVA. n denotes the number of animals 

studied.  
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Figure 3.11 In rabbit aorta, pre-incubation with L-NAME and indomethacin attenuated 

relaxation to CPA. In the presence of indomethacin, CPA evoked concentration-response 

curves were significantly inhibited with 30 minutes pre-incubation by either (A) 100 µM H2O2 or 

(B) 10 µM thimerosal. *, ** and *** denote p<0.05, 0.01 and 0.001 compared with corresponding 

control in two-way ANOVA. n denotes the number of animals studied. 
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Rabbit aorta 

Intervention n pIC50 Rmax% 

30 minutes H2O2 incubation    

 
Control 10 5.15±0.02 72.9±2.5 
H2O2 30 µM 5 5.21±0.05 70.3±5.5 
H2O2 100 µM 5 5.18±0.06 59.1±1.8 ** 
L-NAME+Indo 5 Relaxation<50% 16.8±4.6 *** 
L-NAME+Indo+H2O2 100 µM 5 Relaxation<50% 9.8±1.9 *** 
    

30 minutes thimerosal incubation    

    
Control 10 5.19±0.03 71.4±3.0 
Thimerosal 1 µM 5 6.06±0.17 * 75.0±6.9 
Thimerosal 10 µM 5 Relaxation<50% 30.2±2.2 *** 
    

 
Table 3.6 Concentration-dependent effects of H2O2 and thimerosal on endothelium-intact 

arterial relaxations evoked by CPA. Potency (negative logIC50) and maximal responses (Rmax) 

are given as mean±SEM. *, ** and *** denote p<0.05, 0.01 and 0.001 compared with 

corresponding control in Student’s t-test or one-way ANOVA. n denotes the number of animals 

studied. 

 

3.3.11 Effects of H2O2 and thimerosal on responses to ACh in 

rabbit aorta. 

In control aortic rings, maximal relaxations evoked by ACh were equivalent to ~70% 

(n=20; Table 3.7; control data pooled) of PE-induced tone and were mediated by NO 

because no significant EDHF-type component was evident in the presence of L-

NAME/indomethacin (p<0.001; n=5; Table 3.7). In the absence of L-

NAME/indomethacin, pre-incubation with 100 μM H2O2 for 30 minutes caused 

significant inhibition on the relaxation evoked by ACh (Figure 3.12A), thus that the 

pEC50 was not affected but Rmax was decreased from 73.9±1.4% to 57.9±2.8% (p<0.01; 

n=10 and 5 respectively; Table 3.7). Pre-incubation with 10 μM thimerosal for 30 

minutes also caused significant inhibition on the relaxation evoked by ACh (Figure 

3.12B)., the Rmax was decreased from 72.6±1.3 to 30.0±4.7% (p<0.001; n=10 and 5 

respectively; Table 3.7). No pIC50 can be calculated. 
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Figure 3.12 In rabbit aorta, pre-incubation with L-NAME and indomethacin attenuated 

relaxation to ACh. In the presence of indomethacin, ACh evoked concentration-response curves 

were significantly inhibited with 30 minutes pre-incubation by either (A) 100 µM H2O2 or (B) 10 

µM thimerosal. *, ** and *** denote p<0.05, 0.01 and 0.001 compared with corresponding 

control in two-way ANOVA. n denotes the number of animals studied. 
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Rabbit aorta 

Intervention n pEC50 Rmax% 

30 minutes H2O2 incubation    

 
Control 10 7.28±0.05 73.9±1.4 
H2O2 30 µM 5 6.97±0.08 73.5±2.9 
H2O2 100 µM 5 7.20±0.13 57.9±2.8 ** 
L-NAME+Indo 5 Relaxation<50% 5.9±1.0 *** 
L-NAME+Indo+H2O2 100 µM 5 Relaxation<50% 0.3±1.4 *** 
    

30 minutes thimerosal incubation    

    
Control 10 7.16±0.05 72.6±1.3 
Thimerosal 1 µM 5 7.46±0.10 ** 76.6±2.3 
Thimerosal 10 µM 5 Relaxation<50% 30.0±4.7 *** 
    

Denuded rings 30mins mhama n pEC50 Rmax% 

    
Denuded Control 6 7.31±0.05 99.5±3.0 
Denuded+H2O2 100 µM 6 7.21±0.06 98.1±2.5 
Denuded+thimerosal 10 µM 6 6.82±0.08 *** 82.1±3.0 ** 
    

 

Table 3.7 Concentration-dependent effects of 30 minutes incubation with H2O2 and thimerosal 

on endothelium-intact arterial relaxations evoked by ACh and endothelium-denuded arterial 

relaxations evoked by MAHMA NONOate. Potency (negative logEC50) and maximal responses 

(Rmax) are given as mean±SEM. ** and *** denote p<0.01 and 0.001 compared with 

corresponding control in Student’s t-test or one-way ANOVA. n denotes the number of animals 

studied. 

 

3.3.12 Effects of H2O2 and thimerosal on responses to MAHMA 

NONOate in rabbit aorta. 

In endothelium-denuded aortic rings, concentration-relaxation curves evoked by 

MAHMA NONOate were unaffected by pre-incubation with 100 μM H2O2 for 30 minutes 

(n=6; Figure 3.13). However, pre-incubation with 10 μM thimerosal for 30 minutes 

caused a significant inhibition on the relaxation evoked by MAHMA NONOate, such 

that pEC50 decreased from 7.31±0.05 to 6.82±0.08 (p<0.001; n=6) with Rmax decreased 

from 99.5±3.0% to 82.1±3.0% (p<0.01; n=6; Figure 3.13; Table 3.7). 
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Figure 3.13 Effects of 100 µM H2O2 and 10 µM thimerosal in endothelium-denuded rabbit aortic 

rings in the presence of L-NAME and indomethacin. No difference was found on MAHMA 

NONOate-evoked relaxations in rings pre-incubated with 100 µM H2O2, however, a significant 

inhibition in the concentration-relaxation curves was observed with 10 µM thimerosal pre-

incubation. ** and *** denote p<0.01 and 0.001 compared with corresponding control in two-way 

ANOVA. n denotes the number of animals studied.  
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3.3.13 Effects of lower concentrations of H2O2 and thimerosal 

on responses to CPA in rabbit aorta. 

In control aortic rings, pre-incubation with 30 μM H2O2 for 30 minutes had no significant 

effect on responses evoked by CPA in terms of pEC50 and Rmax (n=5; Figure 3.14A; 

Table 3.6). Pre-incubation with 1 μM thimerosal for 30 minutes caused a significant 

potentiation on responses evoked by CPA with a significant increase in pIC50 from 

5.19±0.03 to 6.06±0.17 (p<0.05, n=10 and 5 respectively) without change in Rmax 

(Figure 3.14B; Table 3.6). 

3.3.14 Effects of lower concentrations of H2O2 and thimerosal 

on responses to ACh in rabbit aorta. 

In control aortic rings, pre-incubation with 100 μM H2O2 for 30 minutes had no 

significant effect on responses evoked by ACh in terms of pEC50 and Rmax (n=5; Figure 

3.15A; Table 3.7). Pre-incubation with 1 μM thimerosal for 30 minutes caused a 

significant potentiation on responses evoked by ACh with a significant increase in 

pEC50 from 7.16±0.05 to 7.46±0.10 (p<0.01; n=10 and 5 respectively) without change 

in Rmax (Figure 3.15B; Table 3.7). 
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Figure 3.14 In rabbit aorta, in the presence of indomethacin, CPA evoked concentration-

response curves were not affected with 30 minutes pre-incubation by (A) 30 µM H2O2, but were 

significantly inhibited by (B) 1 µM thimerosal. Representative graphs were shown on top. *** 

denote p<0.001 compared with corresponding control in two-way ANOVA. n denotes the 

number of animals studied. 
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Figure 3.15 In rabbit aorta, in the presence of indomethacin, ACh evoked concentration-

response curves were not affected by 30 minutes pre-incubation with (A) 30 µM H2O2, but were 

significantly inhibited by (B) 1 µM thimerosal. * denote p<0.05 compared with corresponding 

control in two-way ANOVA. n denotes the number of animals studied. 
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3.3.15 Effects of H2O2 and thimerosal on contraction induced by 

PE 

In control iliac rings, the magnitude of the constrictor response to 1 μM PE was 

unaffected by pre-incubation with 100 μM H2O2 or 10 μM thimerosal for 30 minutes. 

PE-induced constriction was not altered by incubation with L-NAME/indomethacin and 

was not changed by pre-incubation with 100 μM H2O2, 1 μM or 10 μM thimerosal in L-

NAME/indomethacin treated iliac rings. In iliac rings that carefully denuded of their 

endothelium, the PE-induced constriction matched the level observed in control rings, 

and this constriction was not affected by pre-incubations with 100 μM H2O2, 1 μM or 10 

μM thimerosal for 30 minutes (Table 3.8, data pooled from all experiments). 

 

Rabbit iliac artery 

Intervention n PE-induced tone (mN) 
   
Control 31 48.5±1.2 
L-NAME+Indo 38 48.7±1.4 
Denuded Control 21 49.5±2.7 
   
30 minutes H2O2 incubation   

   
H2O2 100 µM 20 45.9±1.8 
L-NAME+Indo+H2O2 100 µM 18 48.6±2.0 
Denuded+H2O2 100 µM 10 47.8±4.3 
   

30 minutes thimerosal incubation   

   
Thimerosal 10 µM 13 48.9±2.5 
L-NAME+Indo+thimerosal 1 µM 5 48.6±2.5 
L-NAME+Indo+thimerosal 10 µM 15 50.5±2.1 
Denuded+thimerosal 1 µM 5 48.6±5.7 
Denuded+thimerosal 10 µM 6 49.2±4.0 
   

 

Table 3.8 Effect of L-NAME/indomethacin, H2O2 and thimerosal on arterial tone induced by PE 

in endothelium-intact and endothelium-denuded rabbit iliac rings. There was no significant 

difference between PE-induced tone in rings compared with time-matched preparations 

incubated for the same periods without or without these treatments. Data given as mean±SEM. 

n denotes the number of animals studied. Data pooled from Figure 3.3 to Figure 3.9. 
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In aortic rings, the magnitude of the contraction to 1 μM PE was unaffected by pre-

incubation with L-NAME/indomethacin (although the relaxations were minimal), by 

endothelium removal or by pre-incubation with 100 μM H2O2, 1 μM or 10 μM thimerosal 

(Table 3.9, data pooled from all experiments). 

 

Rabbit aorta 

Intervention n PE-induced tone (mN) 
   
Control 40 23.1±0.6 
L-NAME+Indo 10 24.3±1.2 
Denuded Control 6 22.4±1.9 
   

30 minutes H2O2 incubation   

   
H2O2 30 µM 10 23.7±1.7 
H2O2 100 µM 10 22.4±0.9 
Denuded+H2O2 100 µM 6 22.5±2.4 
   

30 minutes thimerosal incubation   

   
Thimerosal 1 µM 10 22.2±1.3 
Thimerosal 10 µM 10 22.7±1.5 
Denuded+thimerosal 10 µM 6 22.3±1.4 
   

 

Table 3.9 Effect of L-NAME/indomethacin, H2O2 and thimerosal on arterial tone induced by PE 

in endothelium-intact and endothelium-denuded rabbit aorta. There was no significant difference 

between PE-induced tone in rings compared with time-matched preparations incubated for the 

same periods without or without these treatments. Data given as mean±SEM. n denotes the 

number of animals studied. Data pooled from Figure 3.11 to Figure 3.15. 
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3.4 DISCUSSION 

3.4.1 Current investigations 

To summarize the main findings of the current chapter: (i) Vascular KCa channels 

participate in an interactive manner in the EDHF phenomenon in the rabbit iliac artery; 

(ii) H2O2 can amplify EDHF-type relaxations evoked by ACh in the rabbit iliac artery, 

confirming previous findings with CPA; (iii) H2O2 had no effect on relaxations mediated 

by NO in response to CPA or ACh, (i.e.) in the absence of L-NAME/indomethacin, or to 

the NO donor MAHMA NONOate in the rabbit iliac artery; (iv) Relaxations to CPA and 

ACh in the rabbit aorta were sensitive to L-NAME therefore mediated exclusively by 

NO, and (v) H2O2 exerted a concentration-dependent inhibitory effect on NO-

dependent relaxations evoked by CPA and ACh in the rabbit aorta through an as yet 

unknown action on endothelial cells. 

Incubation of rabbit iliac artery with selective inhibitors of vascular KCa channel blockers, 

namely apamin (SKCa), TRAM-34 (IKCa) and IbTX (BKCa), provided evidence that all 

three channel subtypes contribute to the EDHF-type response in the rabbit iliac artery. 

In the EDHF-type relaxations evoked by ACh, minimal inhibition was apparent with 

apamin or TRAM-34 alone, whereas IbTX or the double combination (apamin+TRAM) 

caused ~30% reduction to the maximal relaxant response and further reduction to ~90% 

was achieved with all three inhibitors present. Similar observations have been reported 

with CPA-evoked relaxations in the presence of L-NAME/indomethacin (Edwards et al., 

2008), thus the results in this chapter confirm the generality of the findings in this artery 

type between receptor-dependent and –independent stimulation. It should be noted 

that the expression of SKCa, IKCa and BKCa, in native arterial endothelium exhibits both 

species and vessel heterogeneity (Rusko et al., 1992; Murphy and Brayden, 1995a; 

Crane et al., 2003; Hilgers et al., 2006), and that the relative functional importance of 

these different subtypes may also vary according to the prevailing level of arterial 
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activation. In rat mesenteric artery, only SKCa attributes to ACh-induced endothelium-

dependent hyperpolarization, whereas IKCa has a role during the ACh-mediated 

repolarization phase observed after depolarization (Crane et al., 2003). 

IbTX elicited a significant smooth muscle contractile response when applied under 

baseline conditions, indicating that smooth muscle BKCa channels are tonically active in 

the rabbit iliac artery. Further evidence for synergistic endothelial SKCa, IKCa and BKCa 

channel activity in the rabbit iliac artery was provided by observations that in 

endothelium-intact rings, the tone elicited by IbTX was enhanced by the triple 

apamin+TRAM+IbTX combination, but not by Apamin and TRAM alone or in 

combination. This was also true for conditions with phenylephrine-induced contraction. 

By contrast, apamin+TRAM+IbTX did not enhance IbTX-induced contraction in 

endothelium-denuded rings suggested that the effect of the combined inhibitors was an 

endothelium-dependent component. In 3rd order rat mesenteric arteries, modulation of 

phenylephrine-induced contraction by the endothelium has previously been attributed 

to diffusion of Ca2+ ions and/or InsP3 from smooth muscle via myoendothelial gap 

junctions, with the resulting elevation in endothelial [Ca2+]i stimulating SKCa activity, and 

that contraction could be selectively enhanced by apamin (Dora et al., 2000). 

Furthermore, in theory, conducted hyperpolarizations and diffusible EDHFs will both 

mediate relaxation by closing the L-type VOCCs that are necessary to sustain smooth 

muscle Ca2+ influx and contraction. However, in the case of agents, such as a diffusible 

EDHF that activate smooth muscle BKCa channels, IbTX will always block relaxation, 

whereas a conducted hyperpolarizing signal will progressively reduce the open state 

probability of BKCa channels and reduce the sensitivity to IbTX. As in the rabbit iliac 

artery, iberiotoxin also induced direct smooth muscle constriction, and in theory an 

associated depolarization could be transmitted via myoendothelial gap junctions and 

attenuate endothelial hyperpolarization. In practice this mechanism does not seem to 
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be universal, since IbTX fails to modulate EDHF-type relaxations in the rat small 

mesenteric artery (Hilgers et al., 2006). 

It was previously shown that there is a potentiating effect of H2O2, and its thiol oxidant 

mimic thimerosal, on EDHF-type responses (Edwards et al., 2008). As there is a 

common pathway for NO production and the EDHF response, namely a rise in 

endothelial [Ca2+]i, these two functions of the endothelium were examined. 

Investigation into the modulation of endothelium-dependent arterial relaxations by 

exogenous H2O2 in the iliac artery revealed different effects between NO-mediated and 

EDHF-type relaxations. In the absence of L-NAME/indomethacin, 100 µM H2O2 had no 

effect on relaxations to CPA, whereas the EDHF-type component, isolated by the 

addition of L-NAME/indomethacin, was increased. Similar results were obtained in rings 

where relaxations were induced by ACh. In the presence of L-NAME/indomethacin, 

100 µM H2O2 potentiated the relaxations to ACh. These findings demonstrated that the 

effect of H2O2 on receptor-independent CPA-evoked responses and receptor-

dependent ACh-evoked responses are universal.  

By contrast, CPA-evoked relaxations were potentiated in iliac rings pre-incubated with 

10 µM thimerosal both in the absence or presence of L-NAME/indomethacin. Further 

experiments showed that this potentiation effect also occurred with ACh-evoked 

relaxations both in the absence or presence of L-NAME/indomethacin. In the rabbit 

superior mesenteric artery, a lower concentration of thimerosal (300 nM) was 

previously reported to amplify EDHF-mediated relaxations evoked by ACh and the Ca2+ 

ionophore A23187, which also acts through a receptor-independent mechanism 

(Hutcheson et al., 1999). These findings suggested the possibility of a common target 

in the endothelium for H2O2 and thimerosal, to which the latter is more potent. It should 

be noted that 100 µM H2O2 may only corresponds to 1-15 µM intracellular H2O2, since 

glutathione peroxidase, catalase and other mechanisms together limit cytosolic [H2O2] 

to 1-15% of that applied extracellularly (Schroder and Eaton, 2008). Indeed, EDHF-
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type relaxations induced by ACh and CPA were not affected by lower concentrations of 

H2O2 (≤ 30 µM) in rabbit iliac artery (Garry et al., 2009).  

To test whether the difference between the effect of H2O2 and thimerosal on the 

endothelial-mediated NO relaxation in iliac artery is due to the interaction of H2O2 with 

NO directly, experiments were carried out where relaxations were induced with the NO 

donor MAHMA NONOate. In endothelium-intact rings in the presence of L-

NAME/indomethacin and in rings denuded of their endothelium, incubation with 100 µM 

H2O2 had no effects on MAHMA NONOate-evoked relaxations, and therefore its effects 

in iliac artery could not be attributed to interaction with NO directly. In contrast, pre-

incubation with 10 µM thimerosal induced a small but significant inhibition on 

relaxations evoked by MAHMA NONOate. This inhibition was endothelium-independent, 

but concentration-dependent, as experiments repeated with 1 µM thimerosal showed 

no such attenuation effect.  

To study the effect of H2O2 on endogenous NO-mediated responses and to eliminate 

the complexity of having simultaneous NO-dependent and EDHF-type responses as 

seen in the iliac artery, where EDHF may compensate for the loss of NO, studies with 

H2O2 and thimerosal were performed in rabbit aortic rings, a preparation in which there 

is a minimal EDHF-type response. Exogenous H2O2 at concentrations ≤ 100 µM did not 

relax the aortic rings, but higher concentrations evoked an NO-independent, 

endothelium-independent relaxation, which was not affected by the absence or 

presence of eNOS inhibitor L-NAME and/or prostaglandin synthesis inhibitors 

indomethacin, as reported in other type of vessels (Mian and Martin, 1995; Wheal et al., 

2012). However, when thimerosal was added to aortic rings, it induced concentration-

dependent relaxations between 3 µM and 10 µM, but only in endothelium-intact rings, 

as suggested by earlier reports (Forstermann et al., 1986a). For comparison, in rabbit 

iliac artery, endothelium independent relaxations were also observed with exogenous 

applied H2O2 at concentrations ≥ 100 µM (Edwards et al., 2008), which is consistent 
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with earlier reports that H2O2 is not an EDHF in this type of vessel (Chaytor et al., 2003). 

Thimerosal itself evoked EDHF-type responses at concentrations ≥ 30 µM in the rabbit 

iliac artery, although this relaxation was preceded by a constrictive effect on the smooth 

muscle (Edwards et al., 2008).  

The combination of L-NAME and indomethacin failed to unmask a residual EDHF-type 

response to CPA or ACh in the rabbit aorta as expected. “Paradoxically”, in this vessel, 

the exclusively NO-dependent relaxations were attenuated with exogenous H2O2 at 

100 µM and thimerosal at 10 µM. To determine whether this attenuation was due to a 

direct effect on the smooth muscle, experiments were performed in denuded rings with 

exogenous NO generated by MAHMA NONOate. Pre-incubation with 100 µM H2O2 was 

shown to have no effect on MAHMA NONOate-evoked relaxations in denuded aortic 

rings, thus suggesting that the inhibitory effects of H2O2 were at the level of the 

endothelial cell. However, 10 µM thimerosal attenuated relaxations to exogenously 

applied NO, consistent with those seen in preparations with endogenously NO-

mediated responses. Decreasing the concentration of H2O2 to 30 µM was without 

inhibitory effect on CPA and ACh induced relaxations seen with 100 µM H2O2. 

Decreasing the concentration of thimerosal to 1 µM abolished the attenuation seen with 

10 µM thimerosal, in fact, caused a significant potentiation of both CPA and ACh 

induced relaxations. Therefore, the results suggested that the attenuation observed 

with 10 µM thimerosal was likely due to its constrictive effect on the smooth muscle 

cells. As well as the ability to sensitize the InsP3 receptor, sulfhydryl reagents 

thimerosal is reported to stimulate endothelial NO synthesis (Beny, 1990), and to inhibit 

the acylcoenzyme A:lysolecithin acyltransferase by interacting with thiol group of the 

enzymes thereby elevate free arachidonic acid levels within the cell (Irvine, 1982; 

Forstermann et al., 1986b). The present findings suggested that these actions were 

likely to be involved in the potentiation of endothelium-dependent relaxation of this 

compound at its sub-threshold concentration of 1 µM. It was also noticed that pre-
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incubation with L-NAME (300 µM) and indomethacin (10 µM), H2O2 (30 and 100 µM), 

thimerosal (1 and 10 µM) or denudation of the endothelium was without effect on basal 

tone or the contractile response to phenylephrine in rabbit iliac artery and aorta.  

Increased levels of H2O2 production and impaired endothelial-derived NO bioactivity are 

often seen in vascular diseases characterized by dysfunctional endothelium but the 

role of this increase in H2O2 is unclear. There is conflicting evidence suggesting that 

H2O2 either, enhances endogenous NO generation by increasing the expression of 

eNOS (Drummond et al., 2000) or that it impairs NO production in response to 

receptor-dependent and receptor-independent agonists such as bradykinin, adenosine 

diphosphate and the calcium ionophore A23187, by inactivation of oxidant-sensitive 

eNOS cofactors (Jaimes et al., 2001). It has been reported that free radical scavengers 

and iron chelators can reverse the H2O2-induced impairment of NO bioactivity in PAEC 

(Thomas et al., 2006). However, the extracellular iron chelator deferoxamine (1mM), 

the intracellular iron chelator deferiprone (1mM) or the catalase inhibitor aminotriazole 

(50mM) was unable to reverse the inhibitory effects of H2O2 on NO-mediated response 

in the rabbit aorta, thus suggesting that generation of OH· through the Fenton reaction 

is not the primary cause of H2O2 toxicity in this vessel (Prof. TM Griffith personal 

communication).  

In addition, it has previously been shown that relaxations to ACh are depressed by ~10% 

in the presence of exogenous catalase (an enzyme that catalyses the decomposition of 

H2O2), whereas responses to CPA are suppressed by ~30% (Chaytor et al., 2003; 

Edwards et al., 2008). Although it was not tested in the present study, evidence that 

endogenously-generated H2O2 amplifies electrotonic hyperpolarization-mediated 

relaxation evoked by CPA and ACh in rabbit iliac artery (Edwards et al., 2008; Garry et 

al., 2009), and by endocannabinoids in rat small mesenteric arteries (Wheal et al., 

2012) is reported. 
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3.4.2 Conclusions 

The current study extends the previous findings with CPA, by showing that exogenous 

H2O2 potentiates receptor dependent EDHF-type responses evoked by the G-protein 

coupled receptor agonist ACh. Both CPA and ACh evoke EDHF-type responses 

through the elevation of endothelial [Ca2+]i, therefore the present findings give further 

evidence that H2O2 is likely to potentiate the EDHF-type responses by facilitating an 

increase in [Ca2+]i (Edwards et al., 2008). The results presented in this chapter also 

demonstrated that in large arteries, H2O2 might partially impair NO-dependent 

relaxations by directly interacting with the endogenous generation of NO. 

3.5 CHAPTER SUMMARY 

1. In the rabbit iliac artery, vascular KCa channels participate in an interactive 

manner in the EDHF phenomenon.  

2. In the rabbit iliac artery, H2O2 can amplify EDHF-type relaxations evoked by 

various modes of stimulation.  

3. H2O2 exerts inhibitory effects on NO-mediated endothelium-dependent 

relaxations.  
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Chapter 4 

Potentiation of the EDHF Phenomenon by 

Inorganic Arsenite: Role of Hydrogen 

Peroxide 

4.1 INTRODUCTION 

Environmental exposure to arsenic induces an accelerated development of 

cardiovascular abnormalities such as atherosclerosis, hypertension and blackfoot 

diseases (Balakumar and Kaur, 2009; States et al., 2009). This physiological effect of 

arsenite in the cardiovascular system has been linked with excessive production of O2
•− 

by NADPH oxidase (Barchowsky et al., 1999; Smith et al., 2001; Qian et al., 2005; 

Straub et al., 2008). O2
•− itself induces limited signalling and its effect is mostly local 

because it only has a half-life of a few seconds and due to its negative charge, it does 

not readily cross membranes. But in general it contributes to vascular dysfunction 

through a rapid interaction with NO to form ONOO−, and through a dismutation to H2O2 

in the presence of SOD (Lassegue and Griendling, 2010): 

  
               

   
      

   
           

Indeed, H2O2 apparently is of much greater importance for signalling. In the previous 

chapter it was noted that exogenous applied H2O2 can promote EDHF-type relaxations 

of rabbit iliac arteries. Endogenous H2O2 has recently been suggested to play a role in 

the mediation of EDHF-type relaxant responses to endocannabinoid mediators in rat 
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mesenteric arteries (Wheal et al., 2012). There is now evidence, from this laboratory, 

that sodium arsenite (NaAsO2/AsIII) enhances EDHF-type relaxations evoked by CPA 

and ACh in the presence of L-NAME/indomethacin, probably through the generation of 

endogenous H2O2 from endothelium. The study carried out in the current chapter was a 

further investigation to these findings. It should be noted that absorbed arsenate (AsV) 

from environmental exposure is fairly rapidly reduced in blood to AsIII, which is 

intrinsically more toxic (Vahter, 2002). 

4.1.1 Preliminary investigation of arsenite responses in rabbit 

iliac artery 

In a study from this laboratory (Dr. DH Edwards personal communication) and results 

presented in the thesis of Dr. DC Ellinsworth in 2010 (Ellinsworth, 2010), the effects of 

arsenite on endothelial function were compared in the presence and absence of 

endogenous NO production in rabbit iliac arteries. Preliminary data have shown that 

EDHF-type relaxations evoked by CPA and ACh were unaffected by exposure to 30 

µM arsenite for 30 minutes, whereas exposure to 100 µM arsenite for 30 minutes 

caused a potentiation in sensitivity to both agents. In control rings, relaxations to CPA 

and ACh were unaffected by incubation with 100 µM arsenite for 30 minutes but the 

magnitude of the constrictor response to 1 µM PE was reduced by ~15% (p<0.01).  

The functional role of H2O2 was investigated with catalase and a manganese-based 

SOD/catalase mimetic MnTMPyP. The role of NADPH oxidase was investigated with 

apocynin, which blocks the assembly of specific forms of this enzyme, and is known to 

prevent the generation of O2
•− and H2O2 in cultured endothelial cells treated with 

arsenite (Barchowsky et al., 1999; Touyz, 2008). To investigate the mechanisms 

responsible for the selective potentiation of relaxations elicited in the presence of L-

NAME/indomethacin, rings were preincubated with 2000 Units/ml catalase, 100 µM 

MnTMPyP or 100 µM apocynin. None of these agents alone significantly affected pIC50 
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and Rmax values for relaxation in the absence of arsenite, whereas the enhancement of 

relaxation observed following exposure to 100 µM arsenite for 30 minutes was fully 

prevented in each case. 

4.1.2 Aim of this chapter 

The aim of the current chapter was to further investigate how inorganic AsIII affects 

EDHF-type and NO-mediated relaxations via the generation of O2
•− and H2O2 with the 

aid of the ROS-sensitive probe DHE (Zielonka and Kalyanaraman, 2010). To achieve 

this: (i) endothelium-dependent relaxations of aortic rings were studied with receptor-

dependent agonist ACh and receptor-independent agent CPA. In rabbit iliac arteries 

such relaxations consist of dual NO-mediated and EDHF-type gap junction-dependent 

components (Mulvany and Halpern, 1976; Griffith et al., 2004; Chaytor et al., 2005; 

Griffith et al., 2005), whereas in the aorta the EDHF-type component is negligible, thus 

allowing separation of the two mechanism of relaxation (Ruiz et al., 1997; Fernandez-

Rodriguez et al., 2009), and (ii) ROS production in the different layers of the arterial 

wall and in the endothelial cells on the surface of the aortic valves was compared in the 

presence or absence of arsenite/apocynin (NADPH oxidases inhibitor).  

4.2 MATERIALS AND METHODS 

4.2.1 Mechanical Responses  

Aorta was obtained from male NZW rabbits as described in Section 2.1 and 2.2. Rings 

of aorta 2-3 mm wide were mounted in a myograph containing oxygenated Holman’s 

buffer at 37oC and maintained at a resting tension of 2 mN over a 60 minutes 

equilibration period, with frequent readjustments in baseline tension to correct for 

stress relaxation. Aortic rings were then incubated with indomethacin (10 µM) for 30 

minutes. To evaluate EDHF-type responses, preparations were incubated for 30 

minutes with L-NAME (300 µM) in addition to indomethacin. Arsenite (100 µM) was 



Chapter 4 

109 

then added for 30 minutes prior to constriction with PE (1 µM). Once constrictor 

responses had reached a stable plateau, relaxation was studied by constructing 

cumulative concentration-response curves to CPA or ACh in the continued presence of 

arsenite. These full concentration-relaxation curves were generally completed within 

~60 minutes so that total cumulative exposure to arsenite was ~90 minutes using this 

protocol. (Preliminary experiments had demonstrated that lower concentrations of 

arsenite [10 µM and 30 µM] did not affect relaxation under these experimental 

conditions.)  

4.2.2 Detection of superoxide/hydrogen peroxide  

Detailed staining and imaging procedures were described in Section 2.3.4 and 2.3.7 of 

Chapter 2. This protocol was designed to match the total exposure time of rabbit aortic 

rings to 100 µM arsenite in the mechanical experiments (90 minutes). It should be 

noted that oxidation of DHE can generate two products, ethidium and 2-

hydroxyethidium, which possess overlapping emission spectra and whose fluorescence 

is enhanced by binding to DNA (Zielonka and Kalyanaraman, 2010). Although H2O2 

does not oxidize DHE directly and the formation of 2-hydroxyethidium is specific for O2
•-, 

H2O2 may promote the formation of ethidium in the presence of peroxidase activity or 

haem proteins so that increased fluorescence in DHE-loaded vascular smooth muscle/ 

endothelial cells may reflect production of both O2
•− and H2O2 (Fernandes et al., 2007; 

Ray et al., 2011). All imaging data presented were acquired in the presence of L-NAME 

in order to avoid potentially confounding effects of NO which has been reported to 

promote the formation of ethidium in the presence of molecular oxygen (Zielonka and 

Kalyanaraman, 2010).  

4.2.3 Data recording and Statistics  

Details of data recording were described in Section 2.2.3 and Section 2.3.7. In 

mechanical experiments the Rmax by CPA or ACh and IC50 (in the case of CPA in iliac 



Chapter 4 

110 

arteries, as explained in Section 2.6) or EC50 (in the case of ACh) were calculated for 

each experiment. Details of statistical analyses used for each figure were indicated in 

figures descriptions. 

4.2.4 Reagents 

Chemical reagents were purchased from Sigma-Aldrich (UK), except CPA (Ascent 

Scientific), and were dissolved in Holman’s buffer, except apocynin and indomethacin 

(absolute ethanol), and CPA and DHE (DMSO). 

4.3 RESULTS 

4.3.1 Effects of arsenite on NO-mediated aortic relaxation 

evoked by CPA 

In control aortic rings (endothelium-intact rings in the absence of L-

NAME/indomethacin), maximal relaxations evoked by CPA were equivalent to 82.4±1.7% 

of PE-induced tone and were mediated by NO because no significant EDHF-type 

component was evident in the presence of L-NAME/indomethacin (Figure 4.1; Table 

3.6). Rmax and pIC50 values for concentration-relaxation curves constructed for CPA 

were unaffected by pre-incubation with 100 µM arsenite for 30 minutes (Table 4.1).  

4.3.2 Effects of arsenite on NO-mediated aortic relaxation 

evoked by ACh 

In control aortic rings, maximal relaxations evoked by ACh were equivalent to 63.0±1.2% 

of PE-induced tone and were mediated by NO because no significant EDHF-type 

component was evident in the presence of L-NAME/indomethacin (Figure 4.2; Table 

3.7). Rmax and pEC50 values for concentration-relaxation curves constructed for ACh 

were unaffected by pre-incubation with 100 µM arsenite for 30 minutes (Table 4.1).  
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Aorta 

  

  

 

Figure 4.1 Effects of arsenite on CPA-evoked relaxation in aortic rings with intact endothelium. 

(A) EDHF-type relaxations in the presence of L-NAME and indomethacin were <5% of induced 

tone so that endothelium-dependent relaxation in this vessel can be attributed to NO. (B) 

Concentration-relaxation curves for CPA constructed in the absence of L-NAME were 

unaffected by exposure to 100 µM arsenite for 30 minutes. n denotes the number of animals 

studied. 
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Aorta 

  

  

 

Figure 4.2 Effects of arsenite on ACh-evoked relaxation in aortic rings with intact endothelium. 

(A) EDHF-type relaxations in the presence of L-NAME and indomethacin were <5% of induced 

tone so that endothelium-dependent relaxation in this vessel can be attributed to NO. (B) 

Concentration-relaxation curves for ACh constructed in the absence of L-NAME were 

unaffected by exposure to 100 µM arsenite for 30 minutes. n denotes the number of animals 

studied. 
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Rabbit aorta    

Intervention N pIC50 Rmax % 

    
CPA-evoked relaxations    

    
Control 6 4.73±0.24 82.4±1.7 
Arsenite 6 5.00±0.12 78.1±4.1 
    

ACh-evoked relaxations N pEC50 Rmax % 
    
Control 8 7.09±0.03 63.0±1.2 

Arsenite  8 7.19±0.07 69.5±2.5 
    

 

Table 4.1 Effects of 100 μM arsenite for 30 minutes on endothelium-dependent relaxations to 

CPA and ACh in the rabbit aorta in the presence of indomethacin. Potency (negative logIC50 or 

logEC50) and maximal responses (Rmax) are given as mean±SEM. n denotes the number of 

animals studied. 

 

 

 

 

 

Rabbit aorta 

Intervention N PE-induced tone (mN) 

   
Control 14 27.0±1.6 
Arsenite 14 22.9±1.3** 
   

 

Table 4.2 Effect of 100 μM arsenite for 30 minutes on endothelium-intact rabbit aorta tone 

induced by PE. There was ~15% difference between PE-induced tone in rings compared with 

time-matched preparations incubated for the same periods without or without arsenite 

treatments. Data given as means±SEM. ** denote p<0.01 compared with corresponding control 

in Student’s t-test. n denotes the number of animals studied. 
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4.3.3 Effects of arsenite on contraction induced by PE 

In control aortic rings, the magnitude of the constrictor response to 1 µM PE was 

reduced by ~15% following exposure to 100 µM arsenite for 30 minutes (from 27.0±1.6 

mN to 22.9±1.3 mN; data pooled from all experiments; p<0.01; n=14; Table 4.2). 

4.3.4 Fluorescence imaging of ROS production 

Exposure to 100 µM arsenite for 90 minutes significantly enhanced endothelial nuclear 

fluorescence in the rabbit aortic valve leaflets loaded with DHE in the presence of L-

NAME/indomethacin, an effect that was fully prevented by pre-incubation with 100 µM 

apocynin (Figure 4.3). Exposure to 100 µM arsenite for 90 minutes did not increase 

fluorescence in either the media or adventitia of endothelium-denuded rabbit iliac 

arteries and aortic rings loaded with DHE (Figure 4.4).  
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Rabbit aortic valve 

A 
L-NAME+Indo +100µM Arsenite +100µM Apocynin +Arsenite+Apocynin 

    

B 

 

Figure 4.3 Endothelial ROS production in rabbit isolated aortic valve leaflets loaded with DHE in 

the presence of L-NAME and indomethacin. (A) Nuclear fluorescence increased following 

exposure to 100 µM arsenite for 90 minutes, but was unaffected by apocynin or arsenite in 

combination with apocynin. (B) Bar graphs confirming statistical significance. * denotes p<0.05 

compared with corresponding control in one-way ANOVA. n denotes the number of animals 

studied. AU stands for arbitrary unit.  
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A  Rabbit iliac artery 

L-NAME+Indo 

 
+100 µM Arsenite 

 

 

 

B  Aorta 

L-NAME+Indo 
 

+100 µM Arsenite 

 

  

 

Figure 4.4 Fluorescence studies of endothelium-denuded rabbit iliac arteries and aortic rings 

loaded with DHE in the presence of L-NAME and indomethacin. (A,B) Images and bar graphs 

showing that neither artery type exhibited evidence of excess ROS production in the media of 

the vessel wall following exposure to 100 µM arsenite for 90 minutes. The adventitia of both 

vessels exhibited autofluorescence, but its appearance was unaltered by exposure to arsenite. 

Scalebars identify the vessel lumen. n denotes the number of animals studied. AU stands for 

arbitrary unit. 
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4.4 DISCUSSION  

Arsenite has been shown to potentiate EDHF-type but not NO-mediated relaxations in 

the rabbit iliac artery by stimulating endothelial NADPH oxidase activity and thereby 

promoting the formation of H2O2 from O2
•-. The present chapter has extended the 

previous evidence and provided new insights into the mechanisms through which 

short-term exposure to inorganic arsenic can modulate endothelial function in the rabbit 

vasculature by generating H2O2 in the endothelium.  

4.4.1 Potentiating effects of arsenite on the EDHF phenomenon  

Summarising the results obtained previously from this group and the results from this 

chapter, the following findings may be described: (i) EDHF-type relaxations evoked by 

the SERCA inhibitor CPA in rabbit iliac artery rings was amplified by arsenite in a 

concentration-dependent manner, with potentiation being evidenced following exposure 

to 100 µM, but not 30 µM arsenite for 30 minutes; (ii) the central role for endogenously-

generated H2O2 was confirmed in experiments where arsenite-mediated potentiation 

was prevented by catalase and the catalase/SOD mimetic MnTMPyP; (iii) The 

enhanced relaxation by 100 µM arsenite was prevented with the NADPH oxidase 

inhibitor apocynin, which also abolished the arsenite-induced increases in endothelial 

fluorescence in the rabbit aortic valve leaflets loaded with the ROS sensitive probe 

DHE, and (iv) EDHF-type relaxations to ACh were enhanced by arsenite, although this 

effect was less prominent than those obtained with CPA.  

Taken together, these findings indicate that excess O2
•− generated by the activation of 

endothelial NADPH oxidase by arsenite can serve as a source of H2O2 that modulates 

the EDHF phenomenon. Previous analyses have demonstrated that exogenous H2O2 

(either authentic or generated by the oxidation of ascorbic acid or tetrahydrobiopterin) 

synergistically enhances depletion of the ER Ca2+ store by CPA and amplifies 

electrotonically conducted relaxations by promoting endothelial KCa channel opening 

(Edwards et al., 2008; Garry et al., 2009). The present study extends these 
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observations by demonstrating that endogenously generated H2O2 can enhance the 

biological role of the EDHF phenomenon under conditions of increased oxidative stress. 

The observation that is consistent with previous reports that exogenous H2O2 amplifies 

EDHF-type relaxations to ACh at a higher threshold (30 µM H2O2) compared with CPA 

(10 µM H2O2) (Garry et al., 2009). 

NADPH oxidase (Nox) enzymes are important sources of O2
•−, a precursor of reactive 

oxygen species and their family consists of 7 catalytic homologues. Currently four 

members have been identified in the vasculature: Nox1, Nox2, Nox4, and Nox5 

(Lassegue and Griendling, 2010). These enzymes catalyzes the generation of O2
•− 

from oxygen and NADPH: 

                      
   

The classical phagocytic Nox comprises a membrane-bound flavocytochrome b558 

component and a number of cytosolic regulatory subunits (p47phox, p67phox, p40phox and 

the small GTPase(s) Rac1 or Rac2, phox stands for phagocyte oxidase) that are 

required for the activation of the enzyme. The heterodimeric b558 itself is constructed 

from a catalytic subunit Nox and a p22phox subunit (except for Nox5) (Babior et al., 2002; 

Ray and Shah, 2005; Lassegue and Griendling, 2010). Upon Nox activation, the 

cytosolic regulatory subunits are translocated to the cell membrane where they 

associate with the b558 in a cascade that can be interrupted by apocynin at the level of 

p47 phox (Stefanska and Pawliczak, 2008; Touyz, 2008). There is evidence that 

exposure to low level of arsenite increases the overall Nox catalytic activity of 

membrane fractions from cultured intact porcine aortic endothelial cells (PAEC) by 

twofold within 1 h, whereas treatment of isolated endothelial membranes is without 

effect (Smith et al., 2001). More specifically, it has been reported the cytosolic subunits 

(p47phox, p67phox and Rac1) and the membrane-bound gp91phox (the Nox2-based 

oxidase protein complexes) are required for arsenite to stimulate endothelial O2
•− 

production (Smith et al., 2001; Qian et al., 2005; Straub et al., 2008). It should be noted 

that in unstimulated cultured endothelial cells, the Nox-2-based oxidase can be 
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detected in a perinuclear distribution where it exists as a preassembled intracellular 

complex associated with the cytoskeleton, rather than being plasma membrane-bound 

as in neutrophils (Li and Shah, 2002). Therefore, it can be suggested that these Nox-2-

based oxidases might contribute to the intracellular O2
•− production directly (Ray and 

Shah, 2005).  

In large arteries, Nox2 and Nox4 are the dominant subtypes found in the endothelium, 

whereas the Nox1 and Nox4 are found in smooth muscle (Brandes and Schroder, 2008; 

Lassegue and Griendling, 2010). Endothelial cells show a high expression of Nox4, 

markedly exceeding that of other Nox proteins (Ago et al., 2004). In contrast to Nox2, 

the Nox4 homologue, of which four splice variants have been identified (Nox4B, NoxC, 

Nox4D and Nox4E) (Montezano et al., 2011), has a number of differences: (i) it is the 

only constitutively active NADPH oxidase (Brandes and Schroder, 2008); (ii) it localizes 

to the endoplasmic/sarcoplasmic reticulum (Chen et al., 2008); (iii) it generates H2O2 in 

preference to O2
•- in vitro and in vivo (Dikalov et al., 2008; Ray et al., 2011) and (iv) its 

catalytic activity depends on Nox4/p22phox; this lack of p47phox component from the 

structure makes Nox4 insensitive to apocynin. The present findings therefore imply that 

the Nox4-based oxidase does not contribute to the potentiating effects of arsenite on 

EDHF-type relaxations in the rabbit iliac arteries, as these were fully blocked by 

apocynin. It has been suggested that apocynin might act as an antioxidant rather than 

an inhibitor of NADPH oxidase in HEK-293 cells. But in cell free assays using DHE to 

quantify O2
•− accumulation, antioxidant effects of apocynin were detected only at 1 mM 

and were absent at the 100 µM concentration employed in the present study 

(Heumuller et al., 2008).  

4.4.2 Differential effects of arsenite on EDHF-type and NO-

mediated relaxations  

Since NO can rapidly scavenge the O2
•− to form ONOO−, activation of endothelial 

NADPH oxidase by arsenite should in theory impair NO-mediated arterial relaxations. 
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Evidence of tissue protein nitrosation, presumably by peroxynitrite, has been detected 

from the endothelial cells taken from mice that have been exposed to drinking water 

with sodium arsenite (Straub et al., 2008). In the present chapter, despite the fact that 

relaxations evoked by CPA and ACh in rabbit aorta were mediated exclusively by NO 

and that elevated fluorescence of DHE (i.e. increased ROS production) were seen with 

arsenite treatment in the rabbit aortic valve endothelium, no differences were observed 

in aortic relaxations evoked by CPA and ACh in the presence or absence of arsenite. In 

addition, as suggested by the work from this laboratory described in the introduction of 

this chapter, while arsenite potentiated EDHF-type relaxations evoked by CPA or ACh 

in the rabbit iliac arteries, no evidence of potentiation was observed in the absence of 

L-NAME/indomethacin. Taken together, these observations suggest (i) the rate of 

formation of O2
•− induced by arsenite may be substantially slower than the flux of NO 

generated by CPA or ACh in rabbit endothelial cells, and (ii) the availability of O2
•− to 

form H2O2 by dismutation may be limited by the presence of NO, thereby compromising 

the ability of arsenite to potentiate any co-existent EDHF-type component of relaxation.  

Indeed, there was no evidence of increased ROS generation by arsenite in the media 

of the vessel wall in both the rabbit iliac arteries and aorta, regardless of elevated ROS 

production detected by the endothelium of the rabbit aortic valve. This further explained 

the inability of arsenite to impair NO-mediated relaxations. This finding is supported by 

other studies where, despite the significantly increased endothelial O2
•− production in 

transgenic mice with targeted endothelial overexpression of Nox2, the endothelium-

dependent and -independent relaxations to ACh or nitroprusside were not different 

compared to wild-type mice (Bendall et al., 2007). Whereas in endothelium-targeted 

Nox4 overexpression transgenic mice, significantly greater ACh- or histamine-induced 

vasodilatation was observed in comparison with the wild-type, resulting from increased 

H2O2 (but not O2
•-) production and H2O2-induced hyperpolarization without altering NO 

bioavailability (Ray et al., 2011). By contrast, angiotensin II treatment is often 

associated with a depressed NO-mediated endothelium-dependent relaxation and it is 
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well-documented that in angiotensin II induced hypertension, a global increase in ROS 

production by Nox protein is often observed, of which the smooth muscle-specific 

Nox1-based oxidase and the endothelial Nox2-based oxidase are apparent to play a 

role (Lassegue et al., 2001; Touyz, 2008; Lassegue and Griendling, 2010; Takac et al., 

2012). In addition, there is evidence that angiotensin II may also stimulate ROS 

generation through vascular adventitial cells (Pagano et al., 1997), whereas in the 

present study, no evidence for excess arsenite-induced adventitial DHE fluorescence 

was observed.  

4.4.3 Conclusions and further studies 

In this chapter of the thesis, the complex effects of short-term inorganic arsenic 

exposure have been identified on EDHF-type and NO-mediated arterial relaxations. 

Arsenite was found to potentiate EDHF-type responses through the elevation of the 

endogenous endothelial-produced H2O2 that is secondary to the activation of NADPH 

oxidase. And selective increase in endothelial O2
•− production appeared to be 

insufficient to impair smooth muscle relaxations induced by endothelium-derived NO.  

To correlate with the present in vitro observations, further in vivo studies are needed to 

test the long term vascular effects of arsenic ingestion, preferably at levels found in 

contaminated drinking water. Because there is evidence that arsenic in vivo can 

convert to more toxic metabolites such as monomethylarsonous acid that may result in 

direct inhibition of eNOS (Vahter, 2002; Lee et al., 2003; Sumi et al., 2005), more work 

is required to clarify these conflicting reports. In addition, given the fact that arsenic 

trioxide is now widely used in the treatment of haematological conditions such as acute 

promyelocytic leukaemia (Jing et al., 1999), possible iatrogenic effects of trivalent 

arsenic on vascular function also remain to be investigated. 
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4.5 CHAPTER SUMMARY 

1. Arsenite has minimal effect on NO-mediated responses. 

2. Arsenite potentiates EDHF-type responses through the elevation of the 

endogenous endothelial-produced H2O2 that is secondary to the activation of 

NADPH oxidase. 

3. Selective increase in endothelial O2
•− production appeared to be insufficient to 

impair smooth muscle relaxations induced by endothelium-derived NO. 
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Chapter 5 

Application of Fluorescent Probes for 

Sensing and Imaging Calcium Signal – The 

Dye Responsiveness Test with Hydrogen 

Peroxide 

5.1 INTRODUCTION 

5.1.1 The development of calcium indicators 

It is accepted that calcium is the most important second messenger in many types of 

cells including vascular smooth muscle and endothelial cells. The elevation of free 

[Ca2+]i is the key event for both NO and EDHF induced vessel relaxations. However, it 

was not until 1979, the development of the fluorescent Ca2+-specific indicators started 

by Roger Y. Tsien in Cambridge (Tsien, 1980) . Those early indicators such as BAPTA 

and Quin2 were designed based on the structure of the Ca2+ chelator EGTA (Meldolesi, 

2004). To make them membrane-permeant to allow imaging of the live cells, an AM 

group was attached to their chemical structure (Tsien, 1981). Masking of the carboxylic 

residues with AM ester groups results in an uncharged molecule that can permeate cell 

membranes and accumulate progressively within the cytosol. Once inside the cell, 

these AM groups are cleaved off by nonspecific esterases, resulting in a charged 

membrane-impermeant form that remains trapped within the cytosolic compartment of 

the cell (Tsien, 1981; Meldolesi, 2004). Nowadays, these AM ester derivatives and their 

analogous acetate groups of fluorescent Ca2+ indicators have made a major 
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contribution to advances in the understanding of the role of calcium in cellular 

regulation. 

5.1.2 The probes applied in the studies described in this thesis 

To identify the calcium signalling pathway inside the endothelial cells upon treatment 

with H2O2, a number of well-validated fluorescent probes, in their cell-permeant AM 

form, were used for the studies described in this thesis. 

5.1.2.1 Fluo-4 

Fluo-4 is an analogue of Fluo-3 that was originally developed by Tsien and his 

colleagues (Minta et al., 1989). It is a high affinity Ca2+ indicator and has a dissociation 

constant (Kd) value of ~345 nM. Compared to Fluo-3, Fluo-4 has a greater 

fluorescence excitation at 488 nm and therefore higher signal levels for applications 

such as confocal laser-scanning microscopy (Johnson and Spence, 2010). Intracellular 

Ca2+ measurements using Fluo-4 have been previously tested with rabbit aortic valve in 

this group (Fernandez-Rodriguez et al., 2009). 

5.1.2.2 Mag-fluo-4 

Mag-fluo-4 is an analog of Fluo-4 with a low Ca2+-binding affinity (Kd value of ~22 μM 

for Ca2+), making it suitable for detecting high Ca2+ concentrations in the 1 µM to 1 mM 

range such as those found in the ER (Johnson and Spence, 2010). To obtain 

differential loading into the ER as required in the present studies, the cells were 

incubated with the probe initially at 37 °C and then washed with indicator-free solution 

at room temperature to allow the cytosolically located Mag-fluo-4 to enter the ER (see 

Section 2.5.1, Chapter 2 for details). This loading method was previously developed 

and verified by others in the ER of isolated mouse pancreatic acinar cells and in the SR 

of isolated rat uterine smooth muscle cells (Park et al., 2000; Shmigol et al., 2001). In 

earlier studies presented in this group (Edwards et al., 2008), this probe was used as a 

[Ca2+]ER indicator in rabbit aortic valve. 
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5.1.2.3 Rhod-2/MitoTracker Green 

Rhod-2 is a Ca2+ indicator that has a Kd value of ~570 nM. The dye has characteristics 

that make it possible to detect Ca2+ concentrations inside mitochondria as required in 

the present study: (i) it has a long-wavelength that is higher than the autofluorescence 

wavelength of oxidised flavoproteins (FAD++) of mitochondria redox state (Dumollard et 

al., 2004) (Prof. K Swann personal communication) and (ii) it has a net positive charge 

that can promote its sequestration into mitochondria via membrane potential-driven 

uptake (Johnson and Spence, 2010).  

To verify that the Rhod-2 fluorescence distribution pattern is characteristic of 

mitochondria, MitoTracker Green (MTG) was loaded along with Rhod-2. The cell-

permeant labelling reagent MTG can passively diffuse across the plasma membrane 

and accumulate in active mitochondria as it contains a mildly thiol-reactive 

chloromethyl moiety, which covalently reacts with accessible thiol groups on peptides 

in active mitochondria matrix (Poot et al., 1996; Presley et al., 2003; Johnson and 

Spence, 2010). It should be noted that MTG is relatively insensitive to H2O2 

(Pendergrass et al., 2004). 

5.1.2.4 Fura-2 

Fura-2 (Kd value of ~0.14 μM for Ca2+) was first designed by Tsien and his colleagues 

in 1985 (Grynkiewicz et al., 1985). Unlike the other Ca2+ indicators described above, it 

is used as a ratiometric dye, as such it is excited at two different wavelengths and the 

ratio of resulting emissions, at a single wavelength, is calculated. Ratiometric 

measurements can minimize distortions in data caused by events such as variations in 

probe loading and retention, unequal cell thickness in mixed populations, 

photobleaching and instrumental factors (Hanson and Hanson, 2008; Johnson and 

Spence, 2010). 340/380 nm excitation ratio of Fura-2 allows accurate measurements of 

the intracellular Ca2+ concentration, whereas 355nm excitation is at the Ca2+ insensitive 

isobestic point, which is used for quantify the Ca2+ entry through non-selective cation 
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channels by quenching of Fura-2 with Mn2+ (Prof. K Swann personal communication). 

Intracellular Ca2+ measurements with Fura-2 were previously reported in rabbit aortic 

valve (Edwards et al., 2008). 

5.1.3 Aim of this chapter 

The aim of the present chapter is: (i) to test the responsiveness of each fluorescent 

probe to low level and high level of calcium, and to check whether H2O2, a strong 

oxidative agent, has any ability to interfere with their Ca2+ detection. The 

responsiveness test will be performed in a spectrophotometer compatible multi-well 

plate for parallel screening, and (ii) each probe will be loaded into rabbit aortic valve 

leaflets and EA.hy926 cells according to manufacturer guidelines. After loading, the 

fluorescence distribution and intensity will be compared. 

5.2 MATERIALS AND METHODS 

5.2.1 Accessing dye responsiveness 

As described in Section 2.3.3, the AM dyes Fluo-4, Mag-fluo-4, Rhod-2 and Fura-2 

were first hydrolysed to remove the AM group and the responses of the individual dyes 

to high-calcium buffer (HEPES buffer and/or Holman’s buffer), low-calcium buffer 

(Ca2+-free HEPES buffer and/or Ca2+-free Holman’s buffer), in the absence or presence 

of H2O2 (100 µM or 1mM) were examined in a cell free system. The fluorescence 

intensity of each sample was recorded at 0 minutes, 5 minutes, 20 minutes, 30 minutes 

and 60 minutes. All samples were prepared at room temperature. The wavelengths 

used for the spectrophotometer were listed in Table 2.3. 

5.2.2 Imaging of rabbit aortic valve leaflets  

Fluorescent dyes Fluo-4, Mag-fluo-4, Rhod-2 and MTG were loaded into the aortic 

valve as described in Section 2.3.4. Fluorescence images at high definition (Leica HCX 

PL APO 100X/1.40-0.70 OIL CS objective) and normal experimental definition (Leica 

HC PL FLUOTAR 20X/0.50 objective) were obtained as described in Section 2.3.6. 
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Valve leaflets were incubated in Holman’s buffer for Mag-fluo-4 and Rhod-

2/MitoTracker Green imaging, and in Ca2+-free Holman’s buffer for Fluo-4 imaging. 

5.2.3 Imaging of EA.hy926 cells 

Fluorescent dyes (Fluo-4, Mag-fluo-4, Rhod-2 and MTG) were loaded into the 

EA.hy926 cells as described in Section 2.5.1. Fluorescence images at high definition 

(Leica HCX PL APO 100X/1.40-0.70 OIL CS objective) and normal experimental 

definition (Leica HC PL FLUOTAR 20X/0.50 objective) were taken as described in 

Section 2.5.2. Cells were incubated in Holman’s buffer for Mag-fluo-4 and Rhod-

2/MitoTracker Green imaging, and in Ca2+-free Holman’s buffer for Fluo-4 imaging. 

5.3 RESULTS 

5.3.1 Effect of H2O2 on Fluo-4 responses to calcium 

H2O2 100 µM or 1 mM did not affect Fluo-4 fluorescence in Holman’s buffer  or Ca2+-

free Holman’s buffer over a 60 minutes period. The average fluorescence intensity was 

approximately 18000 A.U. in Holman’s buffer and was approximately 11000 A.U. in 

Ca2+-free Holman’s buffer (Figure 5.1). 

5.3.2 Effect of H2O2 on Mag-fluo-4 responses to calcium 

Over a 60 minutes period, H2O2 100 µM or 1 mM had no effect on Mag-fluo-4 

fluorescence in Holman’s buffer (CaCl2 2.5 mM) or in Ca2+-free Holman’s buffer 

(without addition of CaCl2). The average fluorescence intensity was approximately 

60000 A.U. in Holman’s buffer and was approximately 5000 A.U. in Ca2+-free Holman’s 

buffer (Figure 5.2). 

5.3.3 Effect of H2O2 on Rhod-2 responses to calcium 

Over a 60 minutes period, H2O2 100 µM or 1 mM had no effect on Rhod-2 fluorescence 

in Holman’s buffer or in Ca2+-free Holman’s buffer. The average fluorescence intensity 



Chapter 5 

128 

was approximately 9000 A.U. in Holman’s buffer and was approximately 5000 A.U. in 

Ca2+-free Holman’s buffer (Figure 5.3).  

 

 

 
Figure 5.1 Effect of H2O2 on dye responsiveness test for Fluo-4 at 484nm. 100 µM and 1 mM 

H2O2 has no effect on Fluo-4 fluorescence over a 60 minutes period for (A) Holmans and Ca
2+

-

free Holmans buffer and (B) Bar graph of all data regardless of time confirmed this result. n 

denotes the number of tests examined. AU stands for arbitrary units. 
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Figure 5.2 Effect of H2O2 on dye responsiveness test for Mag-fluo-4 at 484nm. 100 µM and 1 

mM H2O2 has no effect on Mag-fluo-4 fluorescence over a 60 minutes period for (A) Holman’s 

and Ca
2+

-free Holman’s buffer and (B) Bar graph of all data, regardless of time, confirmed this 

result. n denotes the number of tests examined. AU stands for arbitrary units. 

 

 
Figure 5.3 Effect of H2O2 on dye responsiveness test for Rhod-2 at 544nm. 100 µM and 1 mM 

H2O2 has no effect on Rhod-2 fluorescence over a 60 minutes period for (A) Holman’s and Ca
2+

-

free Holman’s buffer and (B) Bar graph of all data regardless of time confirmed this result. n 

denotes the number of tests examined. AU stands for arbitrary units. 
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5.3.4 Effect of H2O2 on Fura-2 responses to calcium  

With excitation at 340 nm, over a 60 minutes period, H2O2 100 µM or 1 mM did not 

affect Fura-2 fluorescence in Holman’s buffer, Ca2+-free Holman’s buffer, HEPES buffer 

(CaCl2 1 mM), or Ca2+-free HEPES buffer (without CaCl2). The average fluorescence 

intensity was approximately 26000 A.U. in Holman’s buffer and HEPES buffer and was 

approximately 15000 A.U. in Ca2+-free Holman’s buffer and Ca2+-free HEPES buffer 

(Figure 5.4). 

With excitation at 380nm, over a 60 minutes period, the Fura-2 fluorescence was not 

altered with the addition of H2O2 (100 µM or 1 mM) in Holman’s buffer, Ca2+-free 

Holman’s buffer, HEPES buffer or Ca2+-free HEPES buffer. The average fluorescence 

intensity was approximately 3500 A.U. in Holman’s buffer and HEPES buffer and was 

approximately 17000 A.U. in Ca2+-free Holman’s buffer and Ca2+-free HEPES buffer 

(Figure 5.5). 

With excitation at 355 nm, over a 60 minutes period, H2O2 100 µM or 1 mM had no 

effect on Fura-2 fluorescence in Holman’s buffer, Ca2+-free Holman’s buffer, HEPES 

buffer or Ca2+-free HEPES buffer. The average fluorescence intensity was 

approximately 24000 A.U. in Holman’s buffer and HEPES buffer and was 

approximately 19000 A.U. in Ca2+-free Holman’s buffer and Ca2+-free HEPES buffer 

(Figure 5.6). 
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Figure 5.4 Effect of H2O2 on dye responsiveness test for Fura-2 at 340nm. 100 µM and 1 mM 

H2O2 has no effect on fura-2 fluorescence at 340nm over a 60 minutes period for (A) Holman’s 

and Ca
2+

-free Holman’s buffer and (B) Bar graph of all data regardless of time confirmed this 

result. (C and D), similar for HEPES and Ca
2+

-free HEPES buffer, H2O2 did not cause any 

change in fura-2 fluorescence. n denotes the number of tests examined. AU stands for arbitrary 

units.  
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Figure 5.5 Effect of H2O2 on dye responsiveness test for Fura-2 at 380nm. 100 µM and 1 mM 

H2O2 has no effect on fura-2 fluorescence at 380nm over a 60 minutes period for (A) Holman’s 

and Ca
2+

-free Holman’s buffer and (B) Bar graph of all data regardless of time confirmed this 

result. (C and D), similar for HEPES and Ca
2+

-free HEPES buffer, H2O2 did not cause any 

change in fura-2 fluorescence. n denotes the number of tests examined. AU stands for arbitrary 

units.  
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Figure 5.6 Effect of H2O2 on dye responsiveness test for Fura-2 at 355nm. 100 µM and 1 mM 

H2O2 has no effect on fura-2 fluorescence at 355nm over a 60 minutes period for (A) Holman’s 

and Ca
2+

-free Holman’s buffer and (B) Bar graph of all data regardless of time confirmed this 

result. (C and D), similar for HEPES and Ca
2+

-free HEPES buffer, H2O2 did not cause any 

change in fura-2 fluorescence. n denotes the number of tests examined. AU stands for arbitrary 

units.  
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5.3.5 Confocal laser-scanning microscopy imaging using the 

intracellular Ca2+ indicators 

Fluo-4 fluorescence was equally distributed inside the cell for both rabbit aortic valve 

leaflets and EA.hy926 cells incubated with Ca2+-free Holman’s buffer (Figure 5.7).  

Mag-fluo-4 fluorescence was seen at all parts of the cell except the site of the nuclei in 

both rabbit aortic valve leaflets and EA.hy926 cells incubated with Holman’s buffer. 

Upon treatment with 30 µM CPA, a decrease in Mag-fluo-4 fluorescence was observed 

in both tissue (Figure 5.8). It was noted that after CPA treatment, a “dot” of condensed 

residual Mag-fluo-4 fluorescence was observed at site close to the cell nuclei in the 

rabbit aortic valve leaflets. This residual fluorescence was persistent after 100 µM 

TPEN and 20 mM EGTA treatment (Figure 5.9). 

In aortic valve leaflets incubated with Holman’s buffer, identical loading distribution was 

seen with co-localization of fluorescent loading by Rhod-2 and mitochondrion-selective 

MTG (Figure 5.10 A). In comparison, in EA.hy926 cells, the Rhod-2 fluorescence was 

minimal (Figure 5.10 B). 
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A Rabbit aortic valve  
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B EA.hy926 cell 
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Figure 5.7 Fluo-4 loading in (A) rabbit aortic valve leaflets and (B) EA.hy926 cells. Bar 

represents 20 µm at 100X or 100 µm at 20X magnification.  
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Mag-fluo-4 
A Rabbit aortic valve 
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B EA.hy926 cell 
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Figure 5.8 Mag-fluo-4 loading in (A) rabbit aortic valve leaflets and (B) EA.hy926 cells. Bar 

represents 20 µm at 100X or 100 µm at 20X magnification. 
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Figure 5.9 Effect of 100 µM TPEN and 20mM EGTA on residual Mag-fluo-4 fluorescence 

observed in rabbit aortic valve leaflets. Bar represents 20 µm at 100X or 100 µm at 20X 

magnification. 
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Figure 5.10 Rhod-2 loading in (A) rabbit aortic valve leaflets and (B) EA.hy926 cells. Bar 

represents 20 µm at 100X or 100 µm at 20X magnification. MTG represents dual loading with 

MitoTracker Green. 
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5.4 DISCUSSION 

The main findings of the present chapter: (i) the strong oxidant H2O2 has no direct 

effect on response of fluorescence probes Fluo-4, Mag-fluo-4, Rhod-2 and Fura-2 to 

calcium; (ii) for probe Fluo-4 and Mag-fluo-4, the distribution of fluorescence inside the 

cells was similar for rabbit aortic valve leaflets and EA.hy926 cells and (iii) the Rhod-2 

fluorescence distribution observed in rabbit aortic valve leaflets and EA.hy926 cells 

were identical to mitochondrion-selective MTG. 

In the dye responsiveness test for fluorescence probe Fluo-4, Mag-fluo-4 and Rhod-2, 

the fluorescence intensity was shifted 1.6 fold, 12 fold and 1.8 fold respectively 

between Ca2+-rich Holman’s buffer and Ca2+-free Holman’s buffer. The addition of 100 

µM or 1 mM H2O2 had no effect on the responses of the probes to calcium. For the 

ratiometric fluorescence probe Fura-2, three excitation wavelengths were examined in 

the responsiveness test. At 340 nm and 355 nm, the difference in fluorescence 

intensity was 1.7 fold and 1.2 fold between Ca2+-rich buffer and Ca2+-free buffer 

respectively. At 380 nm, the difference in fluorescence intensity was 4.9 fold between 

Ca2+-free buffer and Ca2+-rich buffer. 100 µM or 1 mM H2O2 did not affect Fura-2 

responses to calcium. These findings suggested that H2O2, as an oxidant, does not 

chemically alter the fluorescence spectrum of these probes. 

Following the procedures and concentrations suggested by supplier Invitrogen, these 

fluorescence probes were loaded into the rabbit aortic valve leaflets and EA.hy926 

cells for comparison. In Ca2+-free Holman’s buffer, weak Fluo-4 fluorescence was 

observed and the intensity was equally distributed across the cell for both aortic valve 

leaflets and EA.hy926 cells, this demonstrated a low level of cytosolic free Ca2+ 

concentration under Ca2+-free condition. Under high definition (100X) confocal imaging, 

it was found that in both rabbit aortic valve leaflets and EA.hy926 cells, the Mag-fluo-4 

fluorescence was seen at all parts of the cell except the site of the nuclei, indicating a 

high level of Ca2+ concentration in the intracellular stores and a low level of resting 
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cytosolic free Ca2+ concentration in the cytosol. Similar findings have been reported in 

other type of cells (Park et al., 2000; Petersen et al., 2001; Edwards et al., 2008), thus 

confirming the success of this dye loading technique.  

Interestingly, after CPA treatment, a “dot” of condensed residual Mag-fluo-4 

fluorescence was observed in each cell of the rabbit aortic valve leaflets that it is 

located at site close to the cell nuclei. It was suggested that this may be caused by 

heavy metal such as zinc ion (Zn2+) that binds to the Mag-fluo-4 molecule (Prof. Karl 

Swann personal communication). However, neither the intracellular Zn2+ chelator TPEN 

nor the subsequent addition of Ca2+ chelator EGTA had any effect on these dots. Due 

to the fact that the site of these dots was close to the cell nuclei, it was also suggested 

that they might be the golgi apparatus that plays a role in storing Ca2+ that is released 

from the ER upon CPA treatment (Prof. Karl Swann personal communication). 

However, it was not feasible to test this hypothesis in the present study due to the 

absence of a suitable antibody. 

The dual loading of Rhod-2 and mitochondria specific MTG in rabbit aortic valve had an 

identical fluorescence distribution, therefore suggesting that Rhod-2 was indeed loaded 

inside the mitochondria. It should be noted that the intensity of fluorescence observed 

in EA.hy926 cells was much lower compared with rabbit aortic valve, a possible 

explanation is that the mitochondria Ca2+ store in the intact tissue has a higher capacity 

for Ca2+ than those in cultured cells. 

5.5 CHAPTER SUMMARY 

1. H2O2 does not interfere with the ability of fluorescence probes Fluo-4, Mag-

fluo-4, Rhod-2 and Fura-2 on Ca2+ detection in cell-free condition. 

2. The distributions of Fluo-4, Mag-fluo-4, Rhod-2 and Fura-2 fluorescence are 

identical in rabbit aortic valve leaflets and EA.hy926 cells. 
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Chapter 6 

Interactive Roles of Hydrogen Peroxide and 

Calcium in the Endothelial Signalling 

Network that Underpins the EDHF 

Phenomenon 

6.1 INTRODUCTION 

6.1.1 General backgrounds 

The studies reported in Chapter 3 showed that exogenous applied H2O2 potentiated 

electrotonically-mediated EDHF-type relaxation both with receptor-dependent and –

independent activation. While in Chapter 4, it was confirmed that the potentiating effect 

of arsenite on the EDHF-type response was due to the generation of endogenously 

produced endothelial H2O2 by stimulating endothelial NADPH oxidase activity. It has 

been shown that H2O2 contributes to the potentiation of CPA evoked EDHF-type 

responses by enhancing ER Ca2+
 release thus elevating endothelial cell [Ca2+]i, thereby 

activating hyperpolarizing KCa channels (Edwards et al., 2008). The enhanced elevation 

of [Ca2+]i with H2O2 was closely mimicked by thimerosal, a thiol reagent known to 

sensitize the InsP3 receptor, thus suggesting that H2O2 may also work by sensitizing the 

InsP3 receptors on the ER (Edwards et al., 2008). However, the findings of the 

mechanical studies presented in Chapter 3 suggest that thimerosal did not fully mimic 

the responses to H2O2. Whereas thimerosal promoted the potentiation of both EDHF-
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type and NO-mediated responses, H2O2 only enhanced the EDHF-type response. 

These differences in the mechanisms of action of H2O2 and thimerosal raise the 

question, so how does H2O2 elevate the intracellular Ca2+? Does H2O2 work by 

modulating intracellular Ca2+ release through InsP3 receptors, have an effect on 

ryanodine-gated channels or SERCA pumps? Ca2+ influx via SOCE is triggered 

secondary to the emptying of ER Ca2+ stores, which is also influenced by modulation of 

these channels, so it is important to understand the role H2O2 plays in SOCE.  

In Chapter 5, a number of fluorescence probes were validated to use in rabbit 

preparations, and they will be used to identify key Ca2+ signaling interactions. In order 

to have better spatial resolution, confocal microscopy and confocal friendly probes 

such as Fluo-4, Mag-fluo-4 and Rhod-2 will be employed in the present study. To 

monitor extracellular Ca2+ influx through non-selective cation channels (Lin et al., 2007), 

a Mn2+ quench technique will be used, this technique also advances as the use of Mn2+ 

ions avoided the selective Ca2+ extrusion pathways such as Sodium-Calcium 

exchanger (NCX) and PMCA (Jardin et al., 2009).  

In addition, increase in [Ca2+]i promote mitochondria uptake via the Ca2+ uniporter, 

which lead to elevated [Ca2+]m that increase O2
•−/H2O2 production (Brookes et al., 2004; 

Zhang and Gutterman, 2007). Therefore, the relationship between mitochondrial Ca2+ 

uptake/H2O2 production and the elevated [Ca2+]i results from the ER store depletion 

through H2O2-mediated mechanism will also be investigated. As shown in Chapter 3, 

ACh at low concentrations causes transient relaxations in the rabbit iliac artery, 

whereas the responses evoked by CPA are sustained. To allow imaging of a 

concentration-dependent effect, I will therefore use CPA to indentify the effects of H2O2 

on [Ca2+]i, [Ca2+]ER and [Ca2+]m.  

Most experiments in this chapter will involve imaging in the rabbit aortic valve leaflets. 

As explained in Chapter 2, this preparation consists of a double layer of endothelial 
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cells and possesses the major advantage of circumventing the complicating effects of 

signals transmitted from subjacent smooth muscle cells via myoendothelial gap 

junctions. In vessels such as rabbit iliac artery, these gap junction channels allow 

diffusion of Ca2+/InsP3 from smooth muscle cells and/or the electrotonic transmission of 

changes in smooth muscle membrane potential and may profoundly influence 

endothelial responses in intact arterial segments (Dora et al., 1997; Murai et al., 1999). 

Although it has previously been shown that “residual” L-NAME-insensitive NO activity 

does not contribute to EDHF-type responses in the rabbit iliac artery (Griffith et al., 

2005; Edwards et al., 2007), the studies proposed in this chapter will be performed in 

the presence of L-NAME and indomethacin to inhibit eNOS and COX.  

6.1.2 Aim of this chapter 

The aim of the present chapter was to investigate the influence of H2O2 in the Ca2+ 

mobilization that underpins the EDHF phenomenon. Experiments in this chapter 

involve confocal and conventional imaging in the rabbit aortic valves with the Ca2+ 

sensitive fluorescent probes Fluo-4, Fura-2, Mag-fluo-4 and Rhod-2. The Ca2+ 

mobilization between: (i) intracellular free Ca2+; (ii) ER Ca2+ stores and (iii) mitochondria 

Ca2+ stores via InsP3 receptors, SERCA pumps and Ca2+ influx pathways will be 

examined in this study. 

6.2 MATERIALS AND METHODS  

6.2.1 Imaging studies with rabbit aortic valve 

Fluorescent probes under study were loaded into the rabbit aortic valves as described 

in Section 2.1.2 and 2.3.4. After loading, the valves were washed 3 times with 

indicator-free Holman’s buffer or HEPES buffer as required before incubating with L-

NAME/indomethacin for 30 minutes. Each leaflet was mounted on a customised 35mm 

glass bottomed culture dish, which has 3 pairs of pins to hold the leaflets in place. 
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6.2.2 Imaging studies with EA.hy926 cells 

The fluorescent probes under study were loaded into the EA.hy926 human endothelial 

cells as described in Section 2.4.3 and 2.5.1 in 35mm glass bottomed culture dishes 24 

hours prior to experiment. After loading, cells were washed 3 times with indicator-free 

Holman’s buffer before incubating with L-NAME/indomethacin for 30 minutes. 

6.2.3 Data recording and Statistics 

Details of data analysis for confocal imaging and conventional microscopy studies were 

described in Section 2.3.7, 2.3.8, 2.5.2 and 2.6. Details of statistical analyses used for 

each figure were indicated in figures descriptions. 

6.3 RESULTS 

6.3.1 Effect of H2O2 on CPA-evoked elevation of [Ca2+]i in the 

rabbit aortic valve leaflets. 

In Fluo-4 loaded rabbit aortic valve leaflets incubated with Holman’s buffer, CPA 

caused an increase in Fluo-4 fluorescence signal at 30 µM but not at 10 µM. Higher 

concentrations of CPA at 100 µM or 3 µM 4-Br-A23187 had no additional effect on the 

response. Subsequent treatment with 15 mM EGTA fully diminished the fluorescence 

signal (Figure 6.1).  

Due to the low sensitivity of Fluo-4 on Ca2+ responses evoked by CPA and 4-Br-

A23187 compared with results previously obtained in the laboratory with Fura-2, the 

experiment on [Ca2+]i was switched to Fura-2. In Fura-2 loaded rabbit aortic valve 

leaflets incubated with Holman’s buffer, CPA caused a concentration-dependent 

increase in Fura-2 340/380 ratio, with the maximum reached at 30 µM. 100 µM H2O2 by 

itself caused a small rise of [Ca2+]i, however, a significantly synergistic elevation of 

[Ca2+]i by H2O2 and 1-10 µM CPA was observed, whereas H2O2 was ineffective after 30 

µM CPA (Figure 6.2). 
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[Ca

2+
]i with Fluo-4 

 

 

Figure 6.1 CPA-evoked elevation of [Ca
2+

]i in Holman’s buffer with the rabbit aortic valves. (A) 

Representative images showing effect of CPA, 4-Br-A23187 and EGTA on Fluo-4 fluorescence. 

(B) Summary traces showing concentration-dependent elevation of [Ca
2+

]i by CPA, whereas 3 

µM 4-Br-A23187 was having no additional effect. Subsequent treatment with EGTA caused a 

strong reduction in fluorescence which was likely to be the result of the chelation of free 

intracellular calcium. (C) Bar graphs confirming a small increase of [Ca
2+

]i by 30 µM CPA. 

Scalebars denote 50 µm. n denotes the number of animals studied. Error bars were 

represented by dotted lines. 
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[Ca
2+

]i with Fura-2 

 
Figure 6.2 Effect of 100 µM H2O2 on CPA-evoked elevation of [Ca

2+
]i in the rabbit aortic valves. 

(A) Summary traces showing synergistic elevation of [Ca
2+

]i by H2O2 and 1-10 µM CPA, 

whereas H2O2 was ineffective after 30 µM CPA. (B) Bar graphs confirming potentiation of [Ca
2+

]i 
by H2O2. ** denotes p<0.01 compared with corresponding control in Student’s t-test. n denotes 

the number of animals studied. Error bars were represented by dotted lines. 
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6.3.2 Effect of thimerosal on CPA-evoked elevation of [Ca2+]i in 

the rabbit aortic valve leaflets. 

In Fura-2 loaded rabbit aortic valve leaflets incubated with Holman’s buffer, thimerosal 

caused a concentration-dependent increase in Fura-2 340/380 ratio over the 

concentrations of 30 to 300 µM. Incubation with 10 µM thimerosal by itself did not affect 

the [Ca2+]i, however, a further significant synergistic elevation of [Ca2+]i by thimerosal 

and 1-10 µM CPA was observed. There was no increase in response to 30 µM CPA 

seen with thimerosal (Figure 6.3). 

6.3.3 Effect of H2O2 on CPA-evoked depletion of [Ca2+]ER in the 

rabbit aortic valve leaflets. 

In Mag-fluo-4 loaded rabbit aortic valve leaflets incubated with Holman’s buffer, CPA 

caused a concentration-dependent decrease in Mag-fluo-4 fluorescence signal over the 

range 3 to 30 µM. Incubation with 100 µM H2O2 by itself caused a small decrease in 

[Ca2+]ER, however, a further significant synergistic depletion of [Ca2+]ER by H2O2 and 10 

µM CPA was observed. There was no increase in response to 30 µM CPA seen with 

H2O2 (Figure 6.4). 

6.3.4 Effect of thimerosal on CPA-evoked depletion of [Ca2+]ER 

in the rabbit aortic valve leaflets. 

In Mag-fluo-4 loaded rabbit aortic valve leaflets incubated with Holman’s buffer, 

incubation with 10 µM thimerosal by itself did not affect the [Ca2+]ER, however, a further 

significant synergistic depletion of [Ca2+]ER by thimerosal and 3-10 µM CPA was 

observed. There was no increase in response to 30 µM CPA seen with thimerosal 

(Figure 6.4). 
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[Ca
2+

]i with Fura-2 
 

 
 

Figure 6.3 Effect of thimerosal on CPA-evoked elevation of [Ca
2+

]i in the rabbit aortic valves. (A) 

Summary traces showing that direct mobilization of Ca
2+

 by thimerosal and concentration-

dependent elevation of [Ca
2+

]i by CPA in the absence and presence of 10 µM thimerosal. (B) 

Bar graphs confirming direct mobilization of Ca
2+

 by thimerosal. (C) Bar graphs confirming 

concentration-dependent elevation of [Ca
2+

]i by CPA in the absence and presence of 10 µM 

thimerosal. ** denotes p<0.01 compared with corresponding control in Student’s t-test. n 

denotes the number of animals studied. Error bars were represented by dotted lines. 
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[Ca
2+

]ER with Mag-Fluo-4 

 
Figure 6.4 Effect of 100 µM H2O2 and 10 µM thimerosal on CPA-evoked depletion of ER Ca

2+
 

stores in the rabbit aortic valves. (A) Summary traces showing that concentration-dependent 
depletion of stores by CPA in the absence and presence of H2O2 and thimerosal. (B) Bar graphs 
confirming that store depletion by CPA was potentiated to an equivalent extent by H2O2 and 
thimerosal. (C) Bar graph showing direct effect of H2O2 and thimerosal on [Ca

2+
]ER compared 

with time control at 900s. ** and ***denote p<0.01 and 0.001 compared with 10 µM CPA alone 
in Student’s t-test. n denotes the number of animals studied. Error bars were represented by 
dotted lines.  
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6.3.5 Effect of H2O2 on ACh-evoked depletion of [Ca2+]ER in the 

rabbit aortic valve leaflets. 

In Mag-fluo-4 loaded rabbit aortic valve leaflets incubated with Holman’s buffer, 1 and 3 

µM ACh decreased Mag-fluo-4 fluorescence signal to a similar extent. Incubation with 

100 µM H2O2 by itself caused a small decrease on [Ca2+]ER (with reference to the time 

control), however, a further significant potentiated depletion of [Ca2+]ER by H2O2 and 1-3 

µM ACh was observed  (Figure 6.5). 

6.3.6 Effect of H2O2 on Ca2+ re-entry by CPA in the rabbit aortic 

valve leaflets. 

In Fluo-4 loaded rabbit aortic valve leaflets incubated with Ca2+-free Holman’s buffer, 

CPA caused a small transient increase in Fluo-4 fluorescence signal at 10 and 30 µM, 

the addition of 100 µM H2O2 after CPA did not affect the [Ca2+]i. In the presence of 

H2O2, upon addition of Ca2+, the Ca2+ re-entry in the presence of 10 µM CPA was 

significantly increased. There was no increase in response with 30 µM CPA seen with 

H2O2 (Figure 6.6). 

6.3.7 Effect of thimerosal on Ca2+ re-entry by CPA in the rabbit 

aortic valve leaflets. 

In Fluo-4 loaded rabbit aortic valve leaflets incubated with Ca2+-free Holman’s buffer, 

CPA caused an small transient increase in Fluo-4 fluorescence signal at 10 and 30 µM, 

the addition of 10 µM thimerosal after the CPA did not affect the [Ca2+]i. In the presence 

of thimerosal, the Ca2+ re-entry by 10 µM CPA was significantly increased. There was 

no increase in response to 30 µM CPA seen with thimerosal (Figure 6.7). 
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[Ca
2+

]ER with Mag-Fluo-4 

 
 

Figure 6.5 Effect of 100 µM H2O2 on ACh-evoked depletion of ER Ca
2+

 stores in the rabbit 

aortic valves. (A) Summary traces showing that concentration-dependent depletion of stores by 

ACh in the absence and presence of H2O2. (B) Bar graphs confirming that store depletion by 

ACh was potentiated by H2O2. ** and ***denote p<0.01 and 0.001 compared with corresponding 

control in Student’s t-test. n denotes the number of animals studied. Error bars were 

represented by dotted lines. 

  

0 300 600 900 1200 1500 1800 2100
0

20

40

60

80

100

120

140

160

180

200

ACh 1M

H2O2

n=3

Time (seconds)

M
a
g
-F

lu
o
-4

 (
A

.U
.)

0 300 600 900 1200 1500 1800 2100
0

20

40

60

80

100

120

140

160

180

200
n=5

H2O2

ACh 3M

Time (seconds)

M
a
g
-F

lu
o
-4

 (
A

.U
.)

0 300 600 900 1200 1500 1800 2100
0

20

40

60

80

100

120

140

160

180

200

H2O2

n=4

ACh 1M

Time (seconds)

M
a
g
-F

lu
o
-4

 (
A

.U
.)

B
as

el
in
e M

1

A
C
h

M
3

A
C
h

B
as

el
in
e M


10

0

2 O
2H

M
1

+A
C
h

2 O
2H

M
3

 +
A
C
h

2O
2H

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

***
**

M
a
g
-F

lu
o
-4

 (
F

/F
0
)

A B



Chapter 6 

152 

 [Ca
2+

]i with Fluo-4 

 

 

Figure 6.6 Ca
2+

 re-entry experiments 

in rabbit aortic valves with Ca
2+

-free 

buffer. (A-D) Summary traces and 

representative images comparing 

effects of 100 µM H2O2 on increases 

in fluorescence following addition of 

2.5 mM Ca
2+

 in the presence of 10 or 

30 µM CPA. (E) Bar graphs showing 

that Ca
2+

 re-entry by 10 µM CPA was 

increased by H2O2. Scalebars denote 

25 µm. * denote p<0.05 compared 

with Ca
2+

 re-entry in the presence of 

10 µM CPA in Student’s t-test. n 

denotes the number of animals 

studied. Error bars were represented 

by dotted lines. 
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Figure 6.7 Ca
2+

 re-entry experiments in 

rabbit aortic valves with Ca
2+

-free buffer. 

(A-B) Summary traces and representative 

images comparing effects of 10 µM 

thimerosal on increases in fluorescence 

following addition of 2.5 mM Ca
2+

 in the 

presence of 10 or 30 µM CPA. (C) Bar 

graphs showing that Ca
2+

 re-entry by 10 

µM CPA was increased by thimerosal. 

Scalebars denote 25 µm. * denote p<0.05 

compared with Ca
2+

 re-entry in the 

presence of 10 µM CPA in Student’s t-

test. n denotes the number of animals 

studied. Error bars were represented by 

dotted lines. 
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6.3.8 Effect of CPA on non-selective divalent cation entry in the 

rabbit aortic valve leaflets. 

In Fura-2 loaded rabbit aortic valve leaflets incubated with HEPES buffer, application of 

250 µM Mn2+ induced a slow quenching of Fura-2 355nm fluorescence, however, it was 

without effect on [Ca2+]i represented by Fura-2 355/380 ratio. Depletion of ER stores 

with 3 to 30 µM CPA caused a concentration-dependent increase in the rate of Mn2+-

induced quenching of Fura-2 355nm fluorescence (Figure 6.8B) with an increase on 

Fura-2 355/380 ratio. 

6.3.9 Effect of H2O2 and CPA on non-selective divalent cation 

entry in the rabbit aortic valve leaflets. 

In Fura-2 loaded rabbit aortic valve leaflets incubated with HEPES buffer, incubation 

with 100 µM H2O2 by itself did not affect the rate of Mn2+-induced quenching of Fura-2 

355nm fluorescence or [Ca2+]i as indicated by Fura-2 355/380 ratio. However, the 

presence of H2O2 amplified the effect of 10 µM CPA on increasing the rate of Mn2+-

induced Fura-2 355nm quenching. This amplifying effect of H2O2 on 10 µM CPA was 

not apparent with 30 µM CPA (Figure 6.9). 

6.3.10 Effect of thimerosal and CPA on non-selective divalent 

cation entry in the rabbit aortic valve leaflets. 

In Fura-2 loaded rabbit aortic valve leaflets incubated with HEPES buffer, incubation 

with 10 µM thimerosal by itself did not affect the rate of Mn2+-induced quenching of 

Fura-2 355nm fluorescence or [Ca2+]i as indicated by Fura-2 355/380 ratio. However, 

the presence of thimerosal decreased the rate of Mn2+ quenching induced by 10 and 30 

µM CPA (Figure 6.10). 
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 quench with Fura-2 

 

 

Figure 6.8 Effect of CPA on non-

selective divalent cation entry measured 

by Mn
2+

 quenching of Fura-2 

fluorescence in rabbit aortic valves with 

HEPES buffer. (A) Summary traces 

showing increase of 250 µM Mn
2+ 

influx 

rate (presenting as 355 F/F0) and an 

indication of [Ca
2+

]i (presenting as ratio 

355/380) by 3, 10 or 30 µM CPA. (B) 

Bar graphs confirming concentration-

dependent effect of CPA. n denotes the 

number of animals studied. Error bars 

were represented by dotted lines. 
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Mn
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 quench with Fura-2 

 

 

Figure 6.9 Effect of H2O2 and CPA 

on non-selective divalent cation entry 

measured by Mn
2+

 quenching of 

Fura-2 fluorescence in rabbit aortic 

valves with HEPES buffer. (A) 

Summary traces comparing 250 µM 

Mn
2+ 

influx rate (presenting as 355 

F/F0) and an indication of [Ca
2+

]i 

(presenting as ratio 355/380) by H2O2 

in the absence of presence of 10 and 

30 µM CPA. (B) Bar graphs 

confirming increase of Mn
2+ 

influx 

rate by H2O2 with 10 µM CPA, but 

not by H2O2 alone or H2O2 plus 30 

µM CPA. n denotes the number of 

animals studied. Error bars were 

represented by dotted lines. 
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Figure 6.10 Effect of thimerosal and 

CPA on non-selective divalent cation 

entry measured by Mn
2+

 quenching of 

Fura-2 fluorescence in rabbit aortic 

valves with HEPES buffer. (A) 

Summary traces comparing 250 µM 

Mn
2+ 

influx rate (presenting as 355 

F/F0) and an indication of [Ca
2+

]i 

(presenting as ratio 355/380) by 

thimerosal in the absence of presence 

of 10 and 30 µM CPA. (B) Bar graphs 

confirming decrease on Mn
2+ 

influx rate 

by thimerosal with 10 and 30 µM CPA. 

n denotes the number of animals 

studied. Error bars were represented 

by dotted lines. 

 

  

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Thimerosal

n=15

Mn

Time (seconds)

F
u
ra

-2
 (

3
5
5
 F

/F
0
)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Thimerosal

n=12

Mn

Time (seconds)

F
u
ra

-2
 (

3
5
5
/3

8
0
)

0 300 600 900 1200 1500 1800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Thimerosal

n=5

Mn

CPA 10M

Time (seconds)

F
u
ra

-2
 (

3
5
5
 F

/F
0
)

0 300 600 900 1200 1500 1800
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Thimerosal

n=5

Mn

CPA 10M

Time (seconds)

F
u
ra

-2
 (

3
5
5
/3

8
0
)

0 300 600 900 1200 1500 1800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Thimerosal

n=7

Mn

CPA 30M

Time (seconds)

F
u
ra

-2
 (

3
5
5
 F

/F
0
)

0 300 600 900 1200 1500 1800
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Thimerosal

n=7

Mn

CPA 30M

Time (seconds)

F
u
ra

-2
 (

3
5
5
/3

8
0
)

A

 C
on

tro
l

2+

M
n

M


Thi
m

er
os

al
 1

0
M


C
P
A 1

0

Thi
m

er
os

al
+C

P
A10 M



C
P
A 3

0

Thi
m

er
os

al
+C

P
A30

0

100

200

300

400

500

R
a
te

 o
f 
M

n
2
+
 i
n
fl
u
x
 e

x
p
re

s
s
e
d

a
s
 %

 o
f 
re

s
p
e
c
ti
v
e
 c

o
n
tr

o
l

B



Chapter 6 

158 

6.3.11 Effect of H2O2 and thimerosal on depletion and refilling of 

[Ca2+]ER in the rabbit aortic valve leaflets. 

In Mag-fluo-4 loaded rabbit aortic valve leaflets incubated with Ca2+-free Holman’s 

buffer, the Mag-fluo-4 fluorescence signal was slowly reduced over the time, the ER 

store was refilled by the addition of 2.5 mM Ca2+, as a small but significant increase on 

Mag-fluo-4 fluorescence was observed (Figure 6.11A, 6.11F).  

In Ca2+-free condition, 100 µM H2O2 caused a significant increase on the rate of ER 

store depletion (with reference to the respective control), however, the ER store was 

not refilled by the addition of 2.5 mM Ca2+ after the H2O2 treatment (Figure 6.11B, 

6.11F). The increase on the rate of store depletion caused by H2O2 was not prevented 

by 10 µM Xestospongin C (XesC) (Figure 6.11C, 6.11F). 

In Ca2+-free condition, 10 µM thimerosal caused a significant increase on the rate of ER 

store depletion (with reference to the respective control and the ER store was refilled 

by the addition of 2.5 mM Ca2+ after the thimerosal treatment (Figure 6.11D, 6.11F). 

The increase on the rate of store depletion caused by thimerosal was fully prevented 

by 10 µM XesC (Figure 6.11E, 6.11F). 
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[Ca
2+

]ER with Mag-Fluo-4 

 

Figure 6.11 Effect of 100 µM H2O2 and 10 µM thimerosal on depletion and refilling of ER Ca
2+

 

store in rabbit aortic valves with Ca
2+

-free buffer. (A-E) Summary traces and bar graphs 

comparing effects of H2O2 and thimerosal on depletion of ER Ca
2+

 store, and on increases in 

fluorescence following addition of 2.5 mM Ca
2+

, in the absence and presence of 10 µM XesC. (F) 

Bar graphs confirming Ca
2+

 refilling following addition of 2.5 mM Ca
2+

, however, the refilling was 

blocked in the presence of H2O2, * and ** denote p<0.05 and 0.01 compared with corresponding 

control in Student’s t-test. n denotes the number of animals studied. Error bars were 

represented by dotted lines.  
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6.3.12 Effect of ryanodine on non-selective divalent cation entry 

and depletion/refilling of [Ca2+]ER in the rabbit aortic valve 

leaflets. 

In Fura-2 loaded rabbit aortic valve leaflets incubated with HEPES buffer, incubation 

with 100 µM ryanodine by itself did not affect the rate of Mn2+-induced quenching of 

Fura-2 355mm fluorescence or Fura-2 355/380 ratio. Presence of ryanodine did not 

influence the effect of 30 µM CPA on increasing the rate of Mn2+-induced quenching 

(Figure 6.12A). 

In Mag-fluo-4 loaded rabbit aortic valve leaflets incubated with Holman’s buffer, 

ryanodine slowly but fully depleted the ER store (with reference to the time control). 

100 µM H2O2 did not affect the rate of store depletion induced by ryanodine, vice versa, 

ryanodine did not affect the rate of store depletion induced by H2O2 (Figure 6.12B). 

In Ca2+-free condition, 100 µM ryanodine caused a significant increase on the rate of 

ER store depletion (with reference to the respective control) and the ER store was 

refilled by the addition of 2.5 mM Ca2+ after the ryanodine treatment (Figure 6.12C).  

6.3.13 Effect of CPA, ACh and A-Br-23187 on [Ca2+]m in the 

rabbit aortic valve leaflets. 

In Rhod-2 loaded rabbit aortic valve leaflets incubated with Holman’s buffer, incubation 

with 30 µM CPA, 3 µM ACh or 3 µM A-Br-23187 was without effect on Rhod-2 

fluorescence signal (Figure 6.13A, 6.13B). In Ca2+-free condition, incubation with 30 µM 

CPA and subsequent 3 µM 4-Br-A23187 did not affect Rhod-2 fluorescence signal 

(Figure 6.13C). 
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Figure 6.12 Effect of 100 µM ryanodine on Mn
2+

 

quenching and depletion of ER Ca
2+

 stores in 

rabbit aortic valves. (A) Summary traces 

comparing Mn
2+ 

influx rate and [Ca
2+

]i by 

ryanodine and 30 µM CPA. (B) Summary traces 

and bar graphs showing competitive effect of 

ryanodine and H2O2 on depletion of ER Ca
2+

 

stores. (C) Summary traces and bar graphs 

confirming Ca
2+

 refilling following addition of 2.5 

mM Ca
2+

 in the presence of ryanodine. * 

denotes p<0.05 compared with corresponding 

control in Student’s t-test. n denotes the number 

of animals studied. Error bars were represented 

by dotted lines. 
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[Ca
2+

]m with Rhod-2 

 

  

 

Figure 6.13 Effect of CPA, ACh and 4-Br-A23187 on [Ca
2+

]m in the rabbit aortic valves. (A) 

Summary traces showing 30 µM CPA, 3 µM ACh and 3 µM 4-Br-A23187 was having no effect 

on [Ca
2+

]m in normal or Ca
2+

-free Holman’s buffer. (B) Representative images showing no 

change on Rhod-2 fluorescence with 30 µM CPA in normal Holman’s buffer. (C) Bar graphs 

confirming the above findings. Scalebars denotes 25 µm. n denotes the number of animals 

studied. Error bars were represented by dotted lines.  
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6.3.14 Effect of H2O2 and CPA on [Ca2+]m in EA.hy926 cells. 

In Rhod-2 loaded EA.hy926 cells incubated with Holman’s buffer, CPA caused a 

concentration-dependent increase in Rhod-2 fluorescence signal, with maximum 

reached at 3 µM. Incubation with 100 µM H2O2 by itself caused a small raise of [Ca2+]m, 

however, it synergistically elevated [Ca2+]m with 1 µM CPA. There was no increase in 

response to 3 µM CPA seen with H2O2 (Figure 6.14). 

6.3.15 Effect of thimerosal on CPA-evoked elevation of [Ca2+]m 

in EA.hy926 cells. 

In Rhod-2 loaded EA.hy926 cells incubated with Holman’s buffer, incubation with 10 

µM thimerosal by itself caused a small raise of [Ca2+]m. In the presence of thimerosal, 

the elevation of [Ca2+]m by 10 or 30 µM  CPA was not affected (Figure 6.15). 

6.3.16 Effect of H2O2 and CPA on [Ca2+]ER in EA.hy926 cells. 

In Mag-fluo-4 loaded EA.hy926 cells incubated with Holman’s buffer, CPA caused a 

concentration-dependent decrease in Mag-fluo-4 fluorescence signal, with maximum 

reached at 30 µM. Incubation with 100 µM H2O2 by itself caused a small decrease of 

[Ca2+]ER, however, a further significant synergistic depletion of [Ca2+]ER by H2O2 and 1-

10 µM CPA was observed. There was no significant increase in response to 30 µM 

CPA seen with H2O2 (Figure 6.16). 

6.3.17 Effect of thimerosal on CPA-evoked depletion of [Ca2+]ER 

in EA.hy926 cells. 

In Mag-fluo-4 loaded EA.hy926 cells incubated with Holman’s buffer, incubation with 10 

µM thimerosal by itself caused a small decrease of [Ca2+]ER, however, a further 

significant synergistic depletion of [Ca2+]ER by thimerosal and 10 µM CPA was observed. 

There was no significant increase in response to 30 µM CPA seen with thimerosal 

(Figure 6.17).  
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EA.hy926 cells                              [Ca
2+

]m with Rhod-2 

 

Figure 6.14 Effect of 100 µM H2O2 on CPA-evoked elevation of [Ca
2+

]m in the EA.hy926 cells. 

(A) Summary traces showing synergistic elevation of [Ca
2+

]m by H2O2 and 1 µM CPA, whereas 

H2O2 was ineffective after 3 µM CPA. (B) Representative images showing H2O2 caused minimal 

effect on [Ca
2+

]m but facilitated elevation in the presence of 1 µM CPA. (C) Bar graphs 

confirming the above findings. Scalebars denotes 25 µm. * denotes p<0.05 compared with 1 µM 

CPA alone in Student’s t-test. n denotes the number of experiments studied. Error bars were 

represented by dotted lines.  
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EA.hy926 cells                              [Ca
2+

]m with Rhod-2 
 

 
 

 

Figure 6.15 Effect of 10 µM 
thimerosal on CPA-evoked 
elevation of [Ca

2+
]m in the 

EA.hy926 cells. (A) Summary 
traces showing thimerosal was 
having no effect on 10 and 30 
µM CPA-evoked increase on 
[Ca

2+
]m. (B) Representative 

images showing thimerosal itself 
caused minimal effect on 
[Ca

2+
]m. (C) Bar graphs 

confirming the above findings. 
Scalebars denotes 50 µm. n 
denotes the number of 
experiments studied. 
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EA.hy926 cells                      [Ca
2+

]ER with Mag-Fluo-4 

 

Figure 6.16 Effect of 100 µM H2O2 on CPA-evoked depletion of ER Ca
2+

 stores in the EA.hy926 

cells. (A) Summary traces showing concentration-dependent depletion of stores by CPA in the 

absence and presence of H2O2. (B) Representative images showing H2O2 itself caused minimal 

effect on [Ca
2+

]ER but facilitated depletion of stores in the presence of 10 µM CPA. (C) Bar 

graphs confirming store depletion by CPA was potentiated by H2O2. Scalebars denotes 50 µm. 

** and *** denote p<0.01 and 0.001 compared with corresponding controlin Student’s t-test. n 

denotes the number of experiments studied. Error bars were represented by dotted lines. 
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EA.hy926 cells                      [Ca
2+

]ER with Mag-Fluo-4 
 

 

 

 

Figure 6.17 Effect of 10 µM thimerosal on 

CPA-evoked depletion of ER Ca
2+

 stores 

in the EA.hy926 cells. (A) Summary 

traces showing concentration-dependent 

depletion of stores by CPA in the absence 

and presence of thimerosal. (B) 

Representative images showing 

thimerosal itself caused minimal effect on 

[Ca
2+

]ER but facilitated depletion of stores 

in the presence of 10 µM CPA. (C) Bar 

graphs confirming store depletion by 10 

µM CPA was potentiated by thimerosal. 

Scalebars denotes 50 µm. ** denotes 

p<0.01 compared with 10 µM CPA alone 

in Student’s t-test. n denotes the number 

of experiments studied. Error bars were 

represented by dotted lines. 
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6.3.18 Effect of H2O2 and CPA on [Ca2+]i in EA.hy926 cells. 

In Fluo-4 loaded EA.hy926 cells incubated with Holman’s buffer, CPA caused a 

concentration-dependent increase in Fluo-4 fluorescence signal, with maximum 

reached at 30 µM. Incubation with 100 µM H2O2 by itself caused a small raise of [Ca2+]i, 

however, a further significant synergistic elevation of [Ca2+]i by H2O2 and 1-10 µM CPA 

was observed. There was no significant increase in response to 30 µM CPA seen with 

H2O2 (Figure 6.18). 

6.3.19 Effect of thimerosal on CPA-evoked elevation of [Ca2+]i in 

EA.hy926cells. 

In Fluo-4 loaded EA.hy926 cells incubated with Holman’s buffer, incubation with 10 µM 

thimerosal by itself caused a small increase of [Ca2+]i, however, a further significant 

synergistic elevation of [Ca2+]i by thimerosal and 10 µM CPA was observed. There was 

no increase in response to 30 µM CPA seen with thimerosal (Figure 6.19). 
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EA.hy926 cells                                 [Ca
2+

]i with Fluo-4 

 

Figure 6.18 Effect of 100 µM H2O2 on CPA-evoked elevation of [Ca
2+

]i in the EA.hy926 cells. (A) 

Summary traces showing concentration-dependent elevation of [Ca
2+

]i by CPA in the absence 

and presence of H2O2. (B) Representative images showing H2O2 itself caused minimal effect on 

[Ca
2+

]i but facilitated elevation of [Ca
2+

]i in the presence of 10 µM CPA. (C) Bar graphs 

confirming elevation of [Ca
2+

]i by CPA was potentiated by H2O2. Scalebars denotes 50 µm. * 

denotes p<0.05 compared with corresponding control in Student’s t-test. n denotes the number 

of experiments studied. Error bars were represented by dotted lines. 
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EA.hy926 cells                                 [Ca
2+

]i with Fluo-4 
 

 

 

 

Figure 6.19 Effect of 10 µM thimerosal on 

CPA-evoked elevation of [Ca
2+

]i in the 

EA.hy926 cells. (A) Summary traces showing 

concentration-dependent elevation of [Ca
2+

]i 

by CPA in the absence and presence of 

thimerosal. (B) Representative images 

showing thimerosal itself caused minimal 

effect on [Ca
2+

]i but facilitated elevation of 

[Ca
2+

]i in the presence of 10 µM CPA. (C) Bar 

graphs confirming elevation of [Ca
2+

]i by 10 

µM CPA was potentiated by thimerosal. 

Scalebars denotes 50 µm. * denotes p<0.05 

compared with 10 µM CPA alone in Student’s 

t-test. n denotes the number of experiments 

studied. Error bars were represented by 

dotted lines. 
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6.4 DISCUSSION 

In the studies presented in Chapters 3 and 4, H2O2 has been shown to potentiate the 

EDHF-type responses but not NO-mediated responses in the rabbit iliac and aorta 

artery. The present chapter has extended the previous observations and provided new 

evidence that H2O2 may contribute to such potentiation by promoting the elevation of 

[Ca2+]i, possibly through inhibition of SERCA activity and depletion of ryanodine-

sensitive Ca2+ stores. 

6.4.1 Current investigations 

To summarize the main findings of the current chapter: (i) H2O2 has a minimal effect on 

[Ca2+]i but synergistically elevates [Ca2+]i with CPA; (ii) H2O2 has a minimal effect 

[Ca2+]ER but synergistically depletes ER Ca2+ stores  with CPA and ACh; (iii) Ca2+ re-

entry in the presence of CPA is synergistically increased by H2O2; (iv) Non-selective 

divalent cation entry rate is not affected by H2O2 alone, increased by CPA and 

enhanced by H2O2 plus CPA; (v) In Ca2+-free buffer, H2O2 depletes the ER Ca2+ stores 

and prevents the store refilling; (vi) XesC is unable to reverse the store depletion by 

H2O2; (vii) H2O2 depletes the ER Ca2+ store through a ryanodine-sensitive pathway; (viii) 

H2O2 synergistically elevates [Ca2+]m with CPA in cultured endothelial cells. 

100 µM H2O2 itself has a minimal effect on [Ca2+]i in rabbit aortic valve leaflets, 

however, pre-incubation with H2O2 significantly potentiated the elevation of [Ca2+]i 

evoked by 1-10 µM CPA. This [Ca2+]i was maximized at 30 µM CPA at which point 

there was no further increase by H2O2. Thimerosal has been shown to mimic the 

responses of H2O2 in the EDHF-type relaxations in the previous Chapter 3, at 

concentrations ≥ 30 µM, thimerosal itself caused an increase in basal [Ca2+]i. Pre-

incubation with a sub-threshold concentration of 10 µM thimerosal caused a synergistic 

response with 1-10 µM CPA. This was similar to that observed with H2O2, and again 

[Ca2+]i was maximized at 30 µM CPA. These experiments measuring [Ca2+]i in the 
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rabbit aortic valve were carried out with Fura-2, as the preferred confocal microscopy 

friendly probe Fluo-4 failed to give a sensitive measure on [Ca2+]i in Holman’s buffer. It 

is known that the extracellular Ca2+ concentration is >1 mM, whereas the [Ca2+]i is ~100 

nM at the resting state (Roy and Hajnoczky, 2008). In rabbit aortic valve, upon 

treatment, the [Ca2+]i can be raised to ~600 nM (Edwards et al., 2008), however, Fluo-4 

only has a Kd value of ~ 345 nM.  

Two principal mechanisms are thought to contribute to the elevation in [Ca2+]i that 

underpin the endothelium-dependent responses to agonists: (i) transient Ca2+ release 

from the ER secondary to the formation of InsP3 following activation of PLC and (ii) 

sustained influx of extracellular Ca2+ secondary to depletion of the ER Ca2+ store. To 

test the effect of H2O2 on ER Ca2+ store, the rabbit aortic valve was first loaded with an 

ER-specific Ca2+ indicator Mag-fluo-4. Pre-incubation with 100 µM H2O2 significantly 

amplified the ER Ca2+ store depletion evoked by 10 µM CPA, whereas H2O2 itself has 

minimal effect on [Ca2+]ER. Similarly, 10 µM thimerosal minimally affected [Ca2+]ER, but 

pre-incubation with thimerosal amplified the store depletion evoked by 3-10 µM CPA. In 

the presence of H2O2 or thimerosal, no further decrease in [Ca2+]ER evoked by CPA at 

concentrations ≥ 30 µM was observed. These findings thus matching the range over 

which H2O2 and CPA elevate [Ca2+]i. To test whether this effect of H2O2 is a universal 

phenomenon, the store depletion evoked by ACh was also examined, pre-incubation 

with 100 µM H2O2 significantly potentiated the ER Ca2+ store depletion evoked by 1 and 

3 µM ACh.  

A well-tested Ca2+ re-entry protocol (Fernandez-Rodriguez et al., 2009) and Mn2+ 

quench technique (Chen and van Breemen, 1993; Li and van Breemen, 1996) was 

used to investigate the effect of H2O2 on influx of extracellular Ca2+ in rabbit aortic valve 

leaflets. Mn2+ ions were often used as a substitute for Ca2+ in defining extracellular Ca2+ 

influx, because they share common entry pathways with Ca2+ across the plasma 

membrane, but will not be taken up by ER or SR, and therefore are a good indicator for 
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non-selective divalent cation entry (Gomes da Costa and Madeira, 1986; Merritt et al., 

1989; Missiaen et al., 1990). The SERCA inhibitor CPA was used to deplete stores, as 

in this way, the potential confounding effects of H2O2 on receptor-coupled pathways 

mediated via PLC was avoided (Hong et al., 2006). In the presence of 100 µM H2O2, 

the Ca2+ re-entry evoked by 10 µM CPA was significantly increased, whereas no further 

increase in Ca2+ re-entry evoked by 30 µM CPA was observed. Again, these findings 

matched the range over which H2O2 and CPA elevate [Ca2+]i. Similarly, 10 µM 

thimerosal increased the Ca2+ re-entry evoked by 10 µM but not 30 µM CPA.  

At a wavelength of 355 nm, (the isosbestic wavelength for Fura-2 as suggested by Prof. 

Karl Swann), where the Fura-2 fluorescence intensity is not influenced by [Ca2+]i 

changes (Hallam et al., 1988; Chen and van Breemen, 1993; Li and van Breemen, 

1996), the application of Mn2+ caused a steady quench in Fura-2 fluorescence. Fura-2 

ratio 355/380 was also calculated as an indication for [Ca2+]i levels. Addition of 3 to 30 

µM CPA induced a concentration-dependent increase in Mn2+ quench rate, and 

corresponding concentration-dependent elevations in [Ca2+]i were observed. In the 

presence of 100 µM H2O2 the Mn2+ quench rate evoked by 10 µM CPA was 

significantly increased, whereas no further increase was evoked by 30 µM CPA but a 

drop in Mn2+ quench rate was observed. Again, these findings matched the range over 

which H2O2 and CPA elevate [Ca2+]i. In contrast, 10 µM thimerosal decreased the Mn2+ 

quench rate evoked by both 10 µM and 30 µM CPA. These findings on Ca2+ re-entry 

and Mn2+ quench experiments thus suggest that H2O2 and CPA synergistically elevate 

the [Ca2+]i by depletion of ER store, and consequently increase Ca2+ influx via the 

SOCE. High level of [Ca2+]i may in fact inhibit the Ca2+ influx through NSCCs. 

There are three pathways that regulate the ER Ca2+ store, Ca2+ accumulates via 

SERCA and Ca2+ is released through RyRs and InsP3Rs (Laude and Simpson, 2009). 

The synergism of H2O2 and thimerosal with CPA and ACh in [Ca2+]i, [Ca2+]ER and Ca2+ 

influx therefore suggests that H2O2 may inhibit SERCA activity, sensitize the InsP3 
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receptor and/or RyRs. Direct evidence that H2O2 sensitizes the InsP3 receptor in 

endothelial cells is suggested by finding that the InsP3 receptor inhibitor heparin 

abolishes H2O2-evoked Ca2+ release from ER stores in permeabilized ECV304 cells 

(Zheng and Shen, 2005). However, the cellline ECV304 is genetically confirmed not to 

be of HUVEC origin and is therefore an inappropriate cellline to study endothelial cell 

biology (Brown et al., 2000). H2O2 has been shown to cause a decrease on the 

activities of SERCA pumps in rat ventricular myocytes (Greensmith et al., 2010; Kuster 

et al., 2010) and increase the sensitivity of HAECs to thapsigargin (Lock et al., 2012). 

Although there is evidence that RyR blockade with ryanodine inhibits H2O2-induced 

increase in [Ca2+]i in cultured pulmonary arterial smooth muscle cells (PASMCs) (Lin et 

al., 2007), no report on the effect of H2O2 on RyR is published in endothelial cells. 

Therefore, a series of experiments were performed to study the role H2O2 played in 

these three mechanisms. 

In order to separate the ER store depletion and extracellular Ca2+ influx, [Ca2+]ER was 

examined in Ca2+-free buffer. In Ca2+-free conditions, Ca2+ slowly leaks out of the ER 

and the store then refills upon addition of 2.5 mM extracellular Ca2+. 100 µM H2O2 

significantly increased the rate of store depletion in comparison with time-control, 

however, application of InsP3 receptors antagonist XesC was unable to reverse this 

accelerated depletion evoked by H2O2. By contrast, 10 µM thimerosal also significantly 

increased the rate of store depletion in comparison with time-control, but this 

accelerated depletion was fully blocked by XesC. Interestingly, H2O2 but not thimerosal 

abolished the store refilling following addition of 2.5 mM extracellular Ca2+, thus 

suggesting that H2O2 promotes CPA-evoked elevation in [Ca2+]i through decreased 

activity of SERCA pumps rather than InsP3 receptors.  

Besides SERCA and InsP3 receptors, RyRs are also localized in the ER membrane, 

and play a role in mediating SOCE (Paltauf-Doburzynska et al., 1998). Several studies 

have confirmed the presence of functional RyRs in rabbit aortic endothelial cells 
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(Ziegelstein et al., 1994; Wang et al., 1995). At low concentrations, e.g., 1 µM, 

ryanodine acts as a RyR agonist, however, at higher concentrations, e.g.,100 µM, 

ryanodine initially opens RyR and subsequently locks it in a low-conductance or closed 

state and Ca2+ release is inhibited (Fill and Copello, 2002; Liang et al., 2004). In the 

present studies, 100 µM ryanodine itself did not increase Mn2+ quench rate or [Ca2+]i, 

and no further increase but a drop in Mn2+ quench rate evoked by 30 µM CPA was 

observed. Compared to time matched controls, ryanodine induced a slow depletion of 

ER stores, and the rate of store depletion evoked by ryanodine was not affected by 100 

µM H2O2, and vice versa, the rate of rate of store depletion evoked by H2O2 was not 

affected by ryanodine. In Ca2+-free conditions, ryanodine also significantly increased 

the rate of store depletion in comparison with respective control, and the store is refilled 

following addition of 2.5 mM extracellular Ca2+. These finding suggests that H2O2 also 

promotes CPA-evoked elevation in [Ca2+]i through ryanodine-gated channels, because 

they competitively accelerated the rate of store depletion. Interestingly, it has been 

proposed that SERCA and RyR are components of the same pathway, because the 

RyR-mediated Ca2+ extrusion is effectively blocked once SERCA is inhibited (Liang et 

al., 2004). 

In addition to their role as the main energy-producing organelles, mitochondria are 

considered as storage site for Ca2+ in addition to the ER. Their role in Ca2+ mobilization 

is revealed by their close localization to ER InsP3 receptors and the plasma membrane. 

And indeed, much recent work has established that mitochondria function in concert 

with the ER to take up Ca2+ that has been released from intracellular stores by the 

opening of either InsP3 or ryanodine-sensitive Ca2+ channels rapidly following 

stimulation and then subsequently sequester/release this Ca2+ slowly back into the 

cytosol (Rizzuto et al., 1993b; Jouaville et al., 1995; Hajnoczky et al., 1999; Tinel et al., 

1999; Glitsch et al., 2002; Montero et al., 2002). However, in rabbit aortic valve leaflets 

loaded with [Ca2+]m indicator Rhod-2, the application of intracellular Ca2+ stimulator 
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CPA, ACh or non-fluorescent A23187 analogue 4-Br-A23187 failed to give any 

elevation in Rhod-2 fluorescence. It was thought the Kd value of Rhod-2 was the cause 

of this result, but in Ca2+-free condition, CPA and 4-Br-A23187 also failed to give any 

rise in Rhod-2 fluorescence.  

By contrast, in EA.hy926 cells, used as a positive control, a concentration-dependent 

elevation of [Ca2+]m was observed with 1 to 3 µM CPA. Pre-incubation of 100 µM H2O2 

significantly potentiated the elevation of [Ca2+]m evoked by 1 µM CPA, whereas, no 

further increase in Rhod-2 fluorescence signal after 3 µM CPA was observed. When 

imaged using the same parameters, it was noted that rabbit aortic valve leaflets have a 

much higher basal level of Rhod-2 fluorescence compared with cultured EA.hy926 cells 

in normal physiological buffer. This might indicate that, in intact tissue like aortic valve, 

the mitochondria store a large amount of residual Ca2+ and are unable to take up any 

more Ca2+ that is released by store depletion. Nevertheless, because of the uncertainty 

of the loading and de-esterification of Rhod-2 in these two different preparations, this 

need to be further investigated using a different [Ca2+]m indicator. 

To test the Ca2+ mobilization in EA.hy926 cells, the experiments were repeated as in 

rabbit aortic valves. Pre-incubation with 100 µM H2O2 significantly amplified the ER 

Ca2+ store depletion evoked by 1 to 10 µM CPA, whereas H2O2 itself has minimal effect 

on [Ca2+]ER in these cultured cells. Similarly, 10 µM thimerosal minimally affect the 

[Ca2+]ER, but pre-incubation with thimerosal amplified the store depletion evoked by 10 

µM CPA. In the presence of H2O2 or thimerosal, no further decrease in [Ca2+]ER evoked 

by CPA at concentrations ≥ 30 µM was observed.  

Furthermore, 100 µM H2O2 itself has minimal effect on [Ca2+]i in EA.hy926 cells, 

however, pre-incubation with H2O2 significantly potentiated the elevation of [Ca2+]i 

evoked by 1-10 µM CPA. Similarly, pre-incubation with 10 µM thimerosal, a synergism 

was observed with thimerosal and 10 µM CPA. When [Ca2+]i was maximized at 30 µM 
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CPA, no further elevation in [Ca2+]i was found in the presence of H2O2 or thimerosal. 

These findings thus match the range over which H2O2 and CPA depleting the [Ca2+]ER. 

6.4.2 Conclusions and further studies 

The principal finding of the present chapter is that H2O2 may contribute to the 

potentiation of EDHF-type relaxations observed in the rabbit iliac artery by promoting 

the elevation of intracellular Ca2+ level, through inhibition of SERCA activity and the 

depletion of ryanodine-sensitive Ca2+ stores, and therefore increases extracellular Ca2+ 

influx. However, due to the limited responses of the fluorescence indicator Rhod-2 to 

agonists (ACh, CPA and 4-Br-A23187) treatment, it was unclear whether mitochondria 

played a role in regulating the Ca2+ that has been release by internal stores in rabbit 

aortic valves. Further investigations will be needed in search for an appropriate 

indicator. 

6.5 CHAPTER SUMMARY 

1. H2O2 may contribute to potentiated EDHF-type response by promoting the 

elevation of endothelial [Ca2+]i and extracellular Ca2+ influx.  

2. The effect of H2O2 on Ca2+ mobilization may be affected through inhibition of 

SERCA and activation of ryanodine-sensitive Ca2+ stores.  

3. In cultured EA.hy926 human endothelial cells, mitochondria play a role in 

Ca2+ mobilization.  
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Chapter 7 

Summary and Discussion 

7.1 OVERVIEW 

In cardiovascular diseases such as hypertension, atherosclerosis and diabetes, a 

decreased NO bioavailability, characteristic of endothelial dysfunction is often observed, 

and it has now been widely proposed that the EDHF pathway can play a  

compensatory role for the depressed NO bioavailability (Feletou, 2011b). Although the 

true identity of EDHF is still questionable, there is growing evidence to suggest that gap 

junctional communication has an important role in the transduction of this electronic 

event (Griffith, 2004; Griffith et al., 2004). Indeed, in rabbit arteries of different sizes, a 

reciprocal relationship between NO- and gap junction-dependent relaxation has been 

reported (Berman et al., 2002). Decreased NO bioavailability is often associated with 

excessive generation of ROS, which were regarded as toxic by-products of cell 

metabolism that contributed to the disrupted endogenous defence mechanisms 

underlying endothelial dysfunction (Perez-Vizcaino et al., 2010). Nevertheless, in 

recent years, opinion on the role of ROS in the vascular modulation has changed, in 

that they have also been shown to act as putative mediators in signalling pathways 

(Cai, 2005; Schroder and Eaton, 2008). EDHF-mediated vasodilatation is believed to 

be less sensitive to oxidative stress than NO, and can persist and may compensate for 

the loss of other vasodilator pathways in disease state (Bagi, 2009). Indeed, H2O2 itself 

induces vasodilatation in many vessel types and was even suggested to be an EDHF 

(Matoba et al., 2000; Matoba et al., 2002). In rabbit iliac artery, although H2O2 did not 

induce the level of hyperpolarization seen with an authentic EDHF-type response, it 
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has been shown to enhance Ca2+ release from the ER therefore potentiating the 

EDHF-type relaxation, an action that was mimicked by the thiol oxidant and InsP3 

receptor sensitizing agent thimerosal (Chaytor et al., 2003; Edwards et al., 2008). To 

characterize the interactive roles of H2O2 and Ca2+ homeostasis in the EDHF 

phenomenon, this thesis had two aims. 

The first aim of this thesis was to elucidate further the role H2O2 played in the EDHF-

type relaxations in rabbit iliac artery, and also elucidate the interaction between H2O2 

and NO in this signalling network. To achieve this goal, the receptor-dependent agent 

ACh and the receptor-independent agent CPA were employed in order to stimulate 

vascular dilatation by different pathways to assess contribution of H2O2 to EDHF-type 

and NO-mediated relaxation. The direct interaction between H2O2 and NO was 

investigated with L-NAME and the NO donor MAHMA NONOate, distinguishing 

between the endogenous produced NO and exogenous NO. There is evidence that an 

inverse relationship was found between NO and EDHF-type responses in the rabbit 

arteries (Berman et al., 2002), by identifying the role of H2O2 in this signalling network 

will clarify the cellular interactions observed in association gap junction-dependent 

relaxation and may suggest new therapeutic strategies in the many disease states 

where NO bioavailability is decreased and EDHF dominates. 

The second aim of this thesis was to identify the principal interactions that interlink Ca2+ 

mobilization, influx and H2O2 in the endothelial signaling network. To achieve this goal, 

investigations were carried out with endothelium in order to indentify the effect of H2O2 

on CPA-evoked increase in [Ca2+]i, ER store depletion, store-operated Ca2+ entry, non-

selective divalent cation entry and [Ca2+]m. There is evidence that endothelial cells of 

different species express functional ryanodine receptors (Lesh et al., 1993; Ziegelstein 

et al., 1994; Wang et al., 1995), however, their role in native tissue has yet to be 

confirmed and it is important to know the effect of H2O2 on this signalling mechansim. 

The use of rabbit aortic valve leaflets in this part of the study gave great advantage 
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over the complicating effects of signals such as Ca2+/InsP3 transmitted from subjacent 

smooth muscle cells via myoendothelial gap junctions. For some experiments, 

EA.hy926 cells had to be used because of technical problems with the Ca2+-sensitive 

probes in native tissue. 

The results of the investigations carried out in this thesis demonstrated that: 

4. In the rabbit iliac artery, vascular KCa channels participate in an interactive 

manner in the EDHF phenomenon. This finding was supported by data showing 

that SKCa, IKCa and BKCa synergistically contribute to (i) the EDHF-type 

hyperpolarizing response evoked by ACh; (ii) the basal tone and (iii) the 

phenylephrine-induced contraction (Chapter 3, Figure 3.1 and 3.2).  

 

5. In the rabbit iliac artery, H2O2 can amplify EDHF-type relaxations evoked by 

various modes of stimulation. This finding was supported by data showing that 

exogenous H2O2 potentiates receptor dependent EDHF-type responses evoked 

by the receptor-dependent agonist ACh, extending previous findings with 

receptor-independent stimulus CPA (Chapter 3, Figure 3.3 and 3.4). Both CPA 

and ACh evoke EDHF-type responses through the elevation of endothelial 

[Ca2+]i, therefore the findings gave further evidence that H2O2 is likely to 

potentiate the EDHF-type responses by facilitating this increase in [Ca2+]i 

 

6. H2O2 exerts inhibitory effects on NO-mediated endothelium-dependent 

relaxations. The finding was supported by data showing that in rabbit iliac artery, 

H2O2 had no effect on relaxations to CPA or ACh in the absence of L-

NAME/indomethacin or to the NO donor MAHMA NONOate, whereas in rabbit 

aorta, H2O2 exerted a concentration-dependent and endothelium-dependent 

inhibitory effect on NO-dependent relaxations evoked by CPA and ACh 

(Chapter 3, Figure 3.11, 3.12, 3.14 and 3.15). These results demonstrated that 
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in large arteries such as aorta, exogenous H2O2 might directly interact with the 

endogenous generation of NO, as it can partially impair NO-dependent 

relaxations in response to both ACh and CPA in rabbit aorta, whereas in smaller 

arteries such as iliac, EDHF may compensate for the loss of NO. 

 

7. Arsenite potentiates EDHF-type responses through the elevation of the 

endogenous endothelial-produced H2O2 that is secondary to the activation of 

NADPH oxidase. This finding was supported by data showing that arsenite 

induced potentiation in EDHF-type relaxation in the rabbit iliac artery was 

prevented by catalase, the catalase/SOD mimetic MnTMPyP and NADPH 

oxidase inhibitor apocynin, and that the arsenite-induced increases in DHE 

fluorescence were prevented with the NADPH oxidase inhibitor apocynin in 

endothelium (Chapter 4, Figure 4.3 and 4.4). 

 

8. H2O2 may contribute to potentiated EDHF-type response by promoting the 

elevation of endothelial [Ca2+]i and extracellular Ca2+ influx. This finding was 

supported by data showing that H2O2 by itself has minimal effect on [Ca2+]i, 

however in combination with 10 µM CPA (but not 30 µM CPA), they 

synergistically (i) elevated [Ca2+]i (Chapter 6, Figure 6.2); (ii) depleted [Ca2+]ER 

(Chapter 6, Figure 6.4); (iii) increased the Ca2+ re-entry (Chapter 6, Figure 6.6); 

and (iv) increased the rate of non-selective divalent cation entry (Chapter 6, 

Figure 6.9). 

 

9. The effect of H2O2 on Ca2+ mobilization may be affected through inhibition of 

SERCA and activation of ryanodine-sensitive Ca2+ stores. This finding was 

supported by data showing that (i) In Ca2+-free buffer, H2O2 by itself depleted 

[Ca2+]ER and prevented the ER store refilling (Chapter 6, Figure 6.11B); (ii) the 

InsP3 receptor antagonist XesC is unable to reverse the depletion of [Ca2+]ER by 
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H2O2 (Chapter 6, Figure 6.11C and 6.11F); and (iii) H2O2 and ryanodine 

competitively depleted [Ca2+]ER (Chapter 6, Figure 6.12). 

 

10. In cultured EA.hy926 human endothelial cells, mitochondria play a role in Ca2+ 

mobilization. This finding was supported by data showing that (i) H2O2 

synergistically elevated the [Ca2+]m with 10 µM CPA (Chapter 6, Figure 6.14);. 

and (ii) H2O2 synergistically depleted the [Ca2+]ER and elevates the [Ca2+]i with 1-

10 µM CPA (Chapter 6, Figure 6.16 and 6.18). 

The principal findings of this study led to the conclusion that H2O2 contributes to the 

potentiation of both receptor-dependent and –independent EDHF-type relaxations 

observed in the rabbit iliac artery by promoting the elevation of intracellular Ca2+ level, 

through inhibition of SERCA activity and the activation of ryanodine-sensitive Ca2+ 

stores, and therefore the sustained extracellular Ca2+ influx required to activate KCa 

channels on the endothelium. The inhibitory effect of H2O2 on SERCA pump activity is 

perhaps one of the major findings of this thesis, since it added another possibility by 

which H2O2 plays a role in the endothelial Ca2+ homeostasis. Indeed, it was thought 

that sensitization of the InsP3 receptor underlies the H2O2-induced potentiation 

(Redondo et al., 2004; Zheng and Shen, 2005; Edwards et al., 2008), however, in this 

study the InsP3 receptor antagonist XesC failed to reverse H2O2-evoked depletion of 

the [Ca2+]ER. Instead, H2O2 attenuated Ca2+ refilling of the ER stores in experiments 

following re-addition of extracellular Ca2+. The ability of H2O2 to promote Ca2+ release 

was attributed to its oxidative function on sulphydryl groups that are present in many 

Ca2+ channels such as the InsP3 receptor and the SERCA pump. It has been shown 

that, in human platelet, Ca2+ release from agonist-sensitive stores by H2O2 is mediated 

by both, InsP3 receptor sensitisation and inactivation of SERCA (Redondo et al., 2004). 

However, it has also been shown that, in muscle cells, the inhibitory effect of H2O2 on 

the activity of SERCA was independent of sulphydryl group oxidation (Moreau et al., 
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1998). In addition, this study provides direct evidence for the presence of a functional 

ryanodine-sensitive Ca2+ store in the intact endothelium of rabbit aortic valve leaflets 

(Figure 7.1). 

 

 

Figure 7.1 Schematic presentations of the complex effects of H2O2 and CPA on endothelial 

Ca
2+

 mobilization. EC: endothelial cell; ER: endoplasmic reticulum; InsP3R: InsP3 receptor; 

RyR: ryanodine receptor; SERCA: sarcoplasmic-endoplasmic reticulum Ca
2+

-ATPase; SOC: 

store-operated Ca
2+

 channel; NSCC: non-selective Ca
2+

 channel; KCa: Ca
2+

-activated 

potassium channel;  

 

There are a number of limitations of the current study that should be considered. As 

introduced in Chapter 1, the dynamic role of mitochondria in physiological Ca2+ 

signalling is reflected by their close proximity to ER InsP3 receptors and the plasma 

membrane, a spatial relationship that allows them to function in concert with the ER to 

sequester/release cytosolic Ca2+ and supply the immediate ATP requirement for the 

removal of Ca2+ from the cytosol by the SERCA and PMCA pump (Malli et al., 2003; 

Camello-Almaraz et al., 2006; Zhang and Gutterman, 2007). However, due to limitation 

on fluorescence indicator Rhod-2 in that the probe was saturated due to high basal 
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[Ca2+]m in the native tissue, it was impossible to determine whether mitochondria 

played a role in regulation of the Ca2+ that has been release by internal stores in rabbit 

aortic valves. Further investigations are needed to find for an appropriate indicator, and 

there are newer probes (e.g.) Rhod-FF, X-rhod-1 and X-rhod-5F coming on the market. 

In addition, endothelial [H2O2]i was not able to be measured to correlate the findings 

with Ca2+ homeostasis. Cytosolic Ca2+ plays an important role in regulating 

mitochondrial H2O2 production, since increases in [Ca2+]i promote mitochondrial Ca2+ 

uptake via the Ca2+ uniporter leading to elevated [Ca2+]m that increase O2
•−/H2O2 

production (e.g.) by stimulating multiple Ca2+-regulated dehydrogenases in the Krebs 

cycle and thereby enhancing substrate production and electron flow into the respiratory 

chain and electron leak to molecular O2 (Brookes et al., 2004; Zhang and Gutterman, 

2007). Indeed, in Chapter 4, it was demonstrated that the endogenous endothelial-

produced H2O2 from activated NADPH oxidase underlies the arsenite-induced 

potentiates of EDHF-type responses. However, there was no reliable endogenous 

H2O2 indicator for use in this present study: (i) DCF was unable to detect fluorescence 

changes upon treatment with 10 or 30 µM CPA or 100 µM H2O2 in the rabbit aortic 

valve leaflets and its specificity to H2O2 was questioned as it can also be oxidized by 

other ROS (Crow, 1997; Wang and Joseph, 1999); (ii) DHE is reported to detect both 

O2
•− and H2O2 (Fernandes et al., 2007; Ray et al., 2011), (iii) Amplex Red assay was 

not for real time measure of [H2O2]i; and (iv) PG1 and PC1 had low sensitivity and long 

reaction time to [H2O2]. A genetically encoded fluorescent sensor HyPer has shown a 

promising result in the cultured EA.hy926 cells, nevertheless, further studies will be 

needed to investigate the use of HyPer in intact tissue (see Appendix for details). 

The findings of the present study suggest a number of possibilities for further research 

into the role of H2O2 plays in the EDH phenomenon that compensates for the 

decreased NO availability/activity in endothelial dysfunction underlying cardiovascular 

disease. The present study has provided evidence that exogenous H2O2 can potentiate 
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the EDHF phenomenon, as well as partially impair NO-dependent relaxations in 

response to both ACh and CPA in rabbit aorta. Further investigations could be carried 

out to determine if exogenous H2O2 also impairs the endogenous NO production and if 

exogenous NO has any effect in cytosolic [H2O2], mitochondrial [O2
•−] and [Ca2+]m in the 

rabbit aortic valve leaflets or EA.hy926 cells. In detail, the effects of graded 

concentrations of H2O2 on endogenous NO production could be assessed using 

diaminofluoresceins (DAF) imaging [a group of fluorescent NO-sensitive dyes that were 

developed by Kojima and colleagues, which can be used routinely to directly measure 

low-output NO, detection limit: 3–10 nM NO, (Kojima et al., 1998a; Kojima et al., 1998b; 

Kojima et al., 1998c; Kojima et al., 1999)]. In parallel, the effects of endogenous NO 

production and exogenous NO (e.g. generated by administering spermine NONOate in 

the presence of L-NAME) on changes in cytosolic [H2O2] (imaging with HyPer), 

mitochondrial [O2
•−] (imaging with MitoSox Red), [Ca2+]m (imaging with Mag-fluo-4) and 

membrane potential (∆ψm, imaging with JC-1) could also be assessed in the 

endothelial cells induced by ACh and CPA. Such experiments would be performed over 

a range of ambient O2 tensions because there is evidence that O2 availability affects the 

ability of NO to modulate mitochondria activity (Quintero et al., 2006; Erusalimsky and 

Moncada, 2007). Protocols employing the sGC inhibitor ODQ, and a cell permeant 

cGMP analogue (8-Br-cGMP) would allow distinct effects of NO and cGMP to be 

dissociated, and findings could be correlated with corresponding measurements of cell 

membrane potential, [Ca2+]i and [Ca2+]ER which are themselves regulated by NO/cGMP, 

as introduced in Section 1.2.4. Use of the agents ACh and CPA would differentially 

affect specific components of the intracellular signalling network [e.g. CPA will oppose 

stimulatory effects of NO on the SERCA pump (Adachi et al., 2004)] allowing a 

composite picture of the effects of NO to be assembled. In HEK cells an analogous 

approach has shown that NO depolarizes mitochondria and suppresses mitochondrial 

Ca2+ uptake through a cGMP-independent mechanism, with the resulting elevation in 
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[Ca2+]i directly inhibiting the SOCC channel (Thyagarajan et al., 2002). Whether similar 

mechanisms operate in endothelial cells remains to be established. 

Furthermore, electrophysiological and mechanical studies with connexin-mimetic 

peptides have revealed the essentially electrotonic nature of the EDHF phenomenon in 

the rabbit iliac artery (Griffith et al., 2002; Chaytor et al., 2005). H2O2 has been 

variously reported to inhibit (Upham et al., 1997) or enhance gap junctional 

communication (Rouach et al., 2004). While the ability of H2O2 to potentiate NO-

independent, CPA and ACh-evoked relaxation in the rabbit iliac artery suggests that 

H2O2 does not significantly impair electrotonic signalling via vascular gap junctions, its 

effects on direct intercellular communication in the arterial wall have yet to be 

investigated formally. It is also theoretically possible that H2O2 modulates the 

functionality of connexin hemichannels present in the endothelial cell membrane which 

there is evidence that hemichannels opening is enhanced by H2O2 (Ramachandran et 

al., 2007). In addition, there is also evidence that open hemichannels can also facilitate 

the influx of extracellular Ca2+ ions (Li et al., 2001). Whether hemichannels contribute to 

the ability of H2O2 to elevate [Ca2+]i in native endothelial cells following stimulation in 

normal [Ca2+] buffer, and thereby enhance relaxation, remains to be explored. In detail, 

the possible modulatory role of H2O2 on gap junctional communication in this vessel 

could be investigated using a previously validated strategy (i.e.) dye transfer with 

calcein AM (Griffith et al., 2002), that the inhibitory/stimulatory effects of H2O2 on dye 

transfer in the rabbit iliac artery would be quantified. The presence of hemichannels in 

the rabbit aortic valve endothelium would also be tested using the established protocol 

of promoting the opening of such channels by incubation in low Ca2+ buffer (Li et al., 

2001) and then assessing uptake of tracers such as calcein, and their efflux from 

preloaded cells (e.g.) after incubation with calcein AM. If evidence for functional 

hemichannels is forthcoming, connexin-mimetic peptides and glycyrrhetinic acid 

derivatives, which are both known to block hemichannels, could be used to investigate 
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their ability to mediate Ca2+ influx in Ca2+ re-entry experiments. The correct choice of 

peptide(s) would be determined by identifying the expression of Cxs 37, 40 and 43 in 

the rabbit aortic valve by immunostaining with specific antibodies, as previously 

described (Chaytor et al., 2005). 

7.2 CONCLUDING REMARKS 

This thesis provides evidence that contributes to the notion that H2O2 is a 

physiologically-important signalling molecule that is already known to play a crucial role 

in arterial function through oxygen sensing, cell growth and proliferation and apoptosis. 

Data from mechanical and imaging studies confirms a role for H2O2 in the Ca2+ 

homeostasis of the endothelial cells, whereby this ROS may compensate for the 

decreased NO bioavailability by modulating the EDH phenomenon. The finding of the 

present investigations also gives further insights into the mechanism underlying the 

compensatory role of the EDH phenomenon to compromised NO-mediated response 

that are observed in many vessels. Considering that the EDH phenomenon dominate in 

many small arteries, the modulation of its action are of critical importance for the 

regulation of blood flow, vascular resistance and blood pressure, and an identification 

of vessel-specific nature of the EDH phenomenon, its modulation of biological activity 

by selective activators or inhibitors might have a significant impact to the understanding 

of vascular maintenance in health and disease, and provide basis for new therapeutic 

strategies. 
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Appendix 

Limitation and Potential Methods of Direct 

Imaging of Intracellular Hydrogen Peroxide 

Concentration 

A.1 INTRODUCTION 

Although this group is interested in the mechanisms by which reactive oxygen species 

H2O2 functions in endothelial cells, it has yet establish a reliable and sensitive way of 

sensing and imaging intracellular H2O2. In this Appendix, both the unsuccessful and 

promising investigations performed in this group by author of this thesis and colleagues 

in the search for a reliable H2O2 sensor will be discussed. Mechanisms for sensing 

H2O2 in intact tissues and cultured cells included 2',7'-dichlorodihydrofluorescein 

diacetate (H2DCFDA or DCF), DHE, Amplex Red, PG1, PC1 and a protein based 

sensor HyPer.  

A.2 RESULTS AND DISCUSSION 

A.2.1 DCF 

H2DCFDA or DCF is a fluorescent probe that has been widely used for imaging [H2O2]i. 

To assess [H2O2]i in endothelial cells, rabbit aortic valve leaflets were incubated with 

DCF (5 µM) at room temperature in oxygenated Holman's buffer for 30 minutes. After 

loading of the dye, the valves were briefly rinsed with indicator-free buffer. As shown in 

Figure A1, DCF was unable to detect fluorescence changes upon treatment with 10 or 
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30 µM CPA or 100 µM exogenous applied H2O2 in the rabbit aortic valve leaflets, 

whereas increased DCF fluorescence was observed at 1 mM H2O2. Indeed, the 

specificity of this compound to H2O2 has been questioned, and several reports have 

demonstrated that DCF can be oxidized by other ROS, such as HO•, and by reactive 

nitrogen species, such as nitric oxide (•NO) and ONOO− (Crow, 1997; Wang and 

Joseph, 1999). Therefore, this probe should be considered as a marker of cellular 

oxidative stress rather than an indicator of [H2O2]i (Jakubowski and Bartosz, 2000; 

Tarpey et al., 2004).  

 

Figure A1 Effects of 30 µM CPA and 100 µM H2O2 in rabbit aortic valves loaded with 10 µM 

DCF for 30 min at room temperature. Confocal imaging demonstrated that 1 mM H2O2 were 

required to increase fluorescence. Figure taken from (Edwards et al., 2008) 
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A.2.2 DHE 

DHE is a fluorescent probe that is used for detecting O2
•−, due to its relative specificity 

for this ROS (Bindokas et al., 1996; Benov et al., 1998). When DHE is oxidized by O2
•−, 

it produces two products, ethidium and 2-hydroxyethidium, these compounds possess 

overlapping emission spectra and their fluorescence is enhanced by binding to DNA 

(Zielonka and Kalyanaraman, 2010). However, ethidium can also be oxidized by H2O2 

via non-specific peroxidase (horseradish peroxidase and myeloperoxidase) catalysis or 

haem proteins, forming fluorescent oxidation products (Munzel et al., 2002). Therefore, 

the increased fluorescence in DHE-loaded vascular smooth muscle/ endothelial cells 

may reflect production of both O2
•− and H2O2 (Fernandes et al., 2007; Ray et al., 2011). 

Indeed, the findings in Chapter 4 have shown an elevated DHE fluorescence upon 

treatment with arsenite, which increase the endogenous endothelial-produced H2O2 

secondary to the activation of NADPH oxidase. 

A.2.3 Amplex Red 

 

Figure A2 Bar graph showing buffer [H2O2] 

was unchanged at the conclusion of the 

tension myograph experiments. Figure taken 

from (Garry et al., 2009) 

 

 

N-Acetyl-3,7-dihydroxyphenoxazine (Amplex Red) is itself a non-fluorescent molecule, 

however, when oxidized by H2O2 in presence of horseradish peroxidase, it produces 

the highly fluorescent product resorufin (Mohanty et al., 1997; Zhou et al., 1997). 
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Samples of buffer (300 μl) were collected at the beginning and end of relaxation 

protocols in experiments with ACh into a 96-well plate. Amplex Red (10 μM) and 

horseradish peroxidase (0.6 U/mL) were added into each sample and incubated in the 

dark at room temperature for 15 minutes. Fluorescence was read at 560 nm using a 

Fluostar optima spectrophotometer and the corresponding H2O2 concentrations were 

derived from a standard curve. Experiments to obtain the standard curves were 

performed in the absence of arterial rings with oxygenated buffer maintained at 37oC to 

match the relaxation protocols. As shown in Figure A2, Amplex Red assay can be used 

for detecting [H2O2] in the buffer system. However, due to the nature of this probe, i.e. 

needing to be mixed with horseradish peroxidase, the real time measure of intracellular 

[H2O2] is not possible. 

A.2.4 PG1 and PC1 

Peroxy Green 1 (PG1) and Peroxy Crimson 1 (PC1) are two newly developed 

fluorescent dyes that are reported to have high selectivity for H2O2 (Miller et al., 2007). 

They are designed to be activated by a single boronate deprotection (i.e. deprotection 

is the removal of a protecting group which represents a chemically modified functional 

group, deprotection is used to obtain chemoselectivity in the subsequential chemical 

reaction) and these H2O2-mediated boronate deprotections of PG1 and PC1, in theory, 

should generate two fluorescent products, 2-methyl-4-O-methyl Tokyo Green and 

resorufin, respectively. The dyes are a gift from Dr Miller. Rabbit aortic valve leaflets 

were incubated with PG1 or PC1 (5 µM) at room temperature in oxygenated HEPES 

buffer for 15 minutes. After loading of the dye, the valves were briefly washed with 

indicator-free buffer.  

In PG1 and PC1 loaded rabbit aortic valve leaflets, PG1 fluorescence was increased by 

addition of H2O2 at concentrations ≥10 mM, whereas PC1 fluorescence was elevated 

by addition of H2O2 at concentrations ≥100 µM (Figure A3, A and B). In spectroscopic 
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and sensitivity experiments, H2O2 caused a concentration and time-dependent increase 

in both PG1 and PC1 fluorescence (Figure A4, C-E). 

 

 

 

Figure A3 Effect of H2O2 on PG1 and PC1 fluorescence. (A) Traces illustrating the 

concentration-dependent increase in PG1 fluorescence by H2O2 in the rabbit aortic valve leaflets. 

(B) Traces illustrating the concentration-dependent increase in PC1 fluorescence by H2O2 in the 

rabbit aortic valve leaflets. (C-E) Traces illustrating the concentration-dependent increase in 

PG1 and PC1 fluorescence by H2O2 at 0, 20 and 40 minutes after incubation measured by Fluo-

star spectrophotometer. 
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The real time confocal microscopy imaging of rabbit aortic valve leaflets loaded with 

PG1 and PC1 was disappointing. As shown in Figure A3, PG1 fluorescence was only 

elevated when exogenous applied H2O2 at concentrations ≥10 mM. H2O2 caused a 

concentration-dependent increase on PC1 fluorescence at concentrations ≥100 µM. In 

test-tube experiments with the aid of a spectrophotometer, both dyes were able to 

detect H2O2 in a concentration and time-dependent manner. However, in order to 

observe nM or µM levels of H2O2, a reaction time of 40 minutes or longer was required. 

Therefore, due to their low sensitivity and long reaction time, PG1 and PC1 may not be 

the preferred fluorescent probes for real time imaging of intracellular H2O2 in tissue 

culture. 

A.2.5 HyPer 

 

 

Figure A4. pHyPer-cyto vector design and HyPer construct design 

pHyPer-cyto vector was obtained from Evrogen and transformed into competent TOP10 (E. coli) 

cells using heat shock. The bacterial colonies were collected and subsequently scaled up using 

the Qiagen Maxi Prep Kit (large scale plamid isolation kit). The result DNA concentration was 

2.3μg/µl. This procedure was kindly performed by collaborator Dr Raul Gonzalez-Garcia under 

the supervision of Prof Karl Swann. 

Figure taken from http://evrogen.com 

 



Appendix 

194 

HyPer is a genetically encoded fluorescent sensor capable of detecting intracellular 

hydrogen peroxide. It was designed by inserting the circularly permuted yellow 

fluorescent protein into the regulatory domain of Escherichia.coli (E.coli) protein OxyR 

(OxyR-RD) (see Figure A4 for information on HyPer vector) (Belousov et al., 2006). 

The E.coli OxyR transcription factor senses hydrogen peroxide and is activated through 

the formation of an intramolecular disulfide bond (Choi et al., 2001). HyPer allows 

ratiometric measurement of hydrogen peroxide as it has two excitation peaks, with 

maximum at 420nm and 500nm, while having one emission peak with maximum at 

516nm. When HyPer is exposed to hydrogen peroxide, the excitation peak of 420nm 

decreases proportionally to the rise in intensity at the excitation peak of 500nm. The 

oxidized HyPer is capable of reducing inside cells like wild-type OxyR (Evrogen, 2010).  

EA.hy926 (2 ml) cells were seeded in 35mm glass bottomed culture dishes in their 

corresponding complete growth medium at the concentration of 1.5x105 cell/ml for 24 

hours, and reached 80-90% confluency at the time of transfection. Plasmid DNA (8 µg) 

was dissolved in serum/antibiotics free medium to a total volume of 250 µl. 

LipofectamineTM 2000 (10 µl) was also dissolved with the same medium to 250 µl. Both 

mixtures were incubated at room temperature for 5 minutes. The lipid and DNA 

mixtures were then combined (drop wise over a period of 30 seconds) for a further 20 

minutes at room temperature to allow the formation of the DNA-Carrier complexes. 

During this time, the cells were washed twice with 0.9% w/v saline solution before 

addition of 2 ml serum/antibiotics free medium containing the transfection complexes, 

followed by 6 hours incubation at 37°C in a 5% CO2 in air atmosphere. The complete 

growth medium was given to the cells after removal of the transfection reagents, and 

the cells were kept in a cell incubator for 24-48 hours prior to testing for transgene 

expression. 

Experiments with HyPer were carried out with an inverted epifluorescence microscope 

and visualized with an oil immersion 40X lens. HEPES buffer was used for all 
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experiments. The successfully transfected EA.hy926 cells (strong and evenly 

distributed fluorescence appearing across the whole cell) were selected and the 

intensity was calculated after subtracteion of background. Data were recorded and 

analysed with Excel/Graphpad Prism 4 software. 

In HyPer transfected EA.hy926 cells, 100 µM H2O2 caused a ~3 fold increase on HyPer 

490/420 ratio, with maximum reached ~1 minute. As shown in Chapter 4, arsenite 

stimulates intracellular H2O2 production, and 100 µM arsenite caused a ~3 fold increase 

on HyPer 490/420 ratio, with the maximum fluorescence achieved in ~90 minutes. The 

addition of 100 µM H2O2 on top of arsenite, caused a further increase (~5 fold) in the 

HyPer 490/420 ratio, with maximum reached in ~1 minute (Figure A5).  

These findings matched the time over which arsenite potentiates the CPA-evoked 

EDHF-type responses (30 minutes pre-incubation, 15 minutes PE constriction and ~45 

minutes CPA-evoked relaxations) and matched the time over which exposure to 100 

µM arsenite (90 minutes) significantly enhanced endothelial nuclear fluorescence in the 

rabbit aortic valve leaflets loaded with DHE. 

A.2.6 CONCLUSIONS AND FURTHER STUDIES 

The preliminary data with HyPer transfected endothelial cells showed promising 

sensitivity to exogenous applied H2O2. Further studies will be needed to verify the 

sensitivity of Hyper to H2O2 at lower concentrations. It would be beneficial to test for 

transfecting of HyPer vector into the rabbit aortic valve leaflets, thus the [H2O2]i can be 

correlated with effects of exogenous applied H2O2 on the Ca2+ mobilization in the tissue, 

as discussed in Chapter 6. 
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Figure A5 Transfected EA.hy926cells expressing HyPer. (A) Traces and images illustrating the 

increased fluorescence following addition of 100 µM H2O2. (B) Traces and images illustrating 

the increased fluorescence following addition of 100 µM arsenite and 100 µM H2O2.  
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