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Abstract

In this thesis a new computer code is developed to perform non-equilibrium Green’s function

based calculations of electronic transmission, using a Hamiltonian computed from self consistent

extended Hückle theory as input. Individual elements of this code are tested to ensure correctness.

To evaluate its usefulness, the code is tested on porphyrin based systems against the more

traditional density functional theory methods of generating the required Hamiltonian. It is then

used on more complex porphyrin systems, and comments are made on the use of porphyrin

in molecular electronics. Finally it is used on DNA based systems too large to be dealt with

efficiently via density functional theory to provide predictions of the effects of DNA structure on

its conductance.
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Introduction
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Manufacturers of semiconductor devices already offer products built on a 22nm process node.

Even the 45nm process from a few generations ago could have a gate length of as little of 35nm,

with only 1nm of insulation separating the gate from the channel. In pure silicon with its lattice

constant of 0.543nm, this is equivalent to features measuring less than 100 atoms across, with

only a few atoms of insulation. On this scale quantum effects are already important, with leakage

of current from the gate into the channel being a particular problem. As feature sizes shrink

further these effects will become progressively more important, to the point where using existing

materials is not a viable option; a 0.5nm thickness of oxide insulation, which was predicted to

be obtained at the 22nm node, is expected to be the smallest possible [1] preventing further

miniaturisation at least in that aspect without resorting to alternative materials which give a

larger equivalent physical oxide thickness. To ensure their continued ability to shrink compo-

nents and provide increased transistor densities, manufactures are looking for novel materials and

techniques. Replacing the traditional doped semiconductor channel with an individual molecule

is one possibility. Another possibility is identifying molecules which can exist in multiple con-

formations, each of which is stable at room temperature, allowing the production of molecular

memory devices.

The engineering challenges in constructing such a device are formidable, however. Until

the latter part of the twentieth century, no one had even been able to attach contact pads to

very small objects such as these individual molecules in order to investigate their behaviour,

and therefore measurements of their current/voltage characteristics could not be made. These

measurements have now been performed for very small wires and some individual molecules [2,3]

using tools such as scanning tunnelling microscopes (STMs), which work by passing a small

current through a sample, and where the STM tip can be used as a contact. More recently

measurements involving an additional gate contact to investigate transistor-like behaviour have

also been made [4].

Figure 1.1: A schematic of a typical molecular conduction experiment, with an additional gate contact
included.
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These molecules are too small to have a meaningful voltage-independent conductance defined,

and cannot be described by the normal bulk conductivity equation ~J = σ ~E. Hence more complex

models which account for the individual possible electron energy levels are required. These

can lead to results that are not intuitive, such as a resistance that is independent of molecule

length [5], (but is still non-zero, and attributed solely to the molecule-wire contacts [6], in

contrast to true superconductors,) and non-linear relationships between voltage and current,

including negative differential resistance [7]. In the case of carbon nanotubes, even simple logical

circuits have been constructed from molecular transistors [8], although we are still some way from

building complete microprocessors or other devices from molecular building blocks. One of the

most important results is that conductance is quantised: In a conducting channel, conductance

cannot exceed a fixed, finite value (G0) per each available energy level in that channel. The value

of G0 depends only on the charge carried by an electron q and Plank’s constant h (Equation

1.1). This effect can even be measured at room temperature with suitably small wires [9].

G0 =
q2

h
= 25.8kΩ−1 . . (1.1)

Several procedures exist for theoretical modelling of electrical conduction through molecules.

A simple scheme is Simmons’ model [10, 11], which treats a lead-molecule-lead system as a

one dimensional potential barrier problem, with flat lead potentials, separated by the barrier.

A more detailed description of electronic transmission is captured by the Landauer-Büttiker

formalism [12, 13], which is valid for ballistic conductance, where the separation between the

contacts is less than the mean free path of electrons in the scattering region. A more complex

description is the non-equilibrium Green’s function [14–16] (NEGF) approach that computes the

electronic transmission spectra of a system described by a given Hamiltonian at some energy by

computing the Green’s function of that Hamiltonian.

If the system under study is described by a set of atomic positions, which is the likely case

for study of a real molecule, the Hamiltonian must first be obtained from this set of atomic

positions by some other method. One such method is Density Functional Theory [17] (DFT),

which is most often employed for this purpose, but is computationally quite expensive. Other

methods can potentially also be used in its place, subject to the ability to retrieve the Hamiltonian

matrix elements in an appropriate form. Hartree-Fock [18] and its later derivatives collectively
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known as post Hartree-Fock methods [19] are one such group, the more advanced of which can

be considerably more accurate than DFT, at the expensive of computational scaling that places

even small molecules out of the reach of current computational resources. At the other end of the

spectrum are empirical and semi-empirical techniques, which could be far less computationally

expensive, but only at the expense of reduced accuracy, or smaller domains of applicability.

Figure 1.2: A free base porphyrin molecule, in which there the central metal ion is replaced by a pair of
hydrogen atoms. The colour scheme shows the electron density in the plane of the molecule, computed
by DFT.

One particular family of molecules being investigated as possible candidates for molecular

conductors are the porphyrins [20–22], characterised by a planar conjugated ring containing

20 carbon atoms and 4 nitrogen atoms, usually with a metal ion in the centre (Figure 1.2).

This family and its derivatives include many common molecules in biology, including electrically

active molecules such as the chlorophylls1, (which undergo a complex redox reaction using energy

from an absorbed photon,) which would be expected to show interesting transport behaviours. It

may also be possible to construct molecular wires using porphyrins as the building blocks [20,21].

Experiments have shown metal-porphyrins with multiple separate conduction states [23], believed

to be due to conformational changes. Porphyrin have also been studied experimentally, and

also theoretically by the DFT/NEGF approach [24]. This combination of interesting electrical

properties, prior results and wide variety of possible chemical and conformational changes make

the porphyrins a useful tool for benchmarking new systems. Although small enough to run

with DFT individually, the wide variety of these possible structures make exploring all possible

variations a daunting task.

1Chlorophylls are a derivative, rather than a true porphyrin; the ring contains one unsaturated bond, making
it a chlorin. Chlorophylls all also contain a magnesium ion at their centre. The variation between chlorophylls is
in the structure of the side chains of the ring.
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Figure 1.3: A DNA strand ten base pairs in length, containing adenine and thymine base pairs.

Another molecule which has shown interesting electrical transport properties is DNA [25],

possibly the best known of all complex organic molecules. It consists of a twisted backbone pair,

connected together by a ladder of base pairs (Figure 1.3). However, even a fairly short DNA

sequence of eight base pairs contains hundreds of atoms, making theoretical modelling using these

DFT/NEGF techniques difficult with currently available computational resources. It is the DFT

step, an operation that scales as O(N3) with the number of electrons in a system, that normally

consumes the greatest amount of time in this calculation. This raises the question of whether the

computationally complex ab-initio DFT stage could be replaced by a less complex empirical or

semi-empirical step while still obtaining meaningful and useful results. Further more, a smaller

basis set is often used in such simpler calculations, which results in a reduced problem size at the

NEGF step, (which also scales as O(N3), and would become the limiting factor in a calculation

were the DFT stage significantly improved,) speeding that up as a by-product.

One such semi-empirical method which may be appropriate is the Extended Hückel Theory

[26] (EHT). Despite the popularity of more complex ab-initio methods, EHT remains in common

use, particularly on systems of large size [27–29]. By utilising a set of empirical parameters for

each atomic species in a system, EHT is able to efficiently produce a Hamiltonian suitable for

use in the NEGF equations for systems of large size. Later enhancements to EHT, such as the

self-consistent Extended Hückel Theory [30, 31] (SC-EHT) improve the transferability of these

empirical parameters, improving their domain of applicability.

In this thesis, I report on the development, functioning and usefulness of a new SC-EHT/NEGF

code which I have named EHTransport. Results from EHTransport have been compared to the

existing DFT/NEGF code SIESTA to answer the question of whether the SC-EHT/NEGF com-
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bination is capable of producing useful results, and then it is used on its own for the investiga-

tion of several system types. In chapter two I have described the underpinning theory of DFT,

EHT and NEGF, and then in chapter three the specific algorithmic implementations of these

within EHTransport, and develop the empirical parameter set required where existing parame-

ters are not available. In chapter four I examine the effects of some adjustable parameters within

SIESTA and present tests of each code unit within EHTransport. In chapter five I have applied

the EHTransport code to a selection of porphyrin based systems, which are also investigated

with SIESTA for comparisons of speed and results. In chapter six I have investigated further

porphyrin systems, including a porphyrin-based protein, using only EHT. In chapter seven I have

used the code to investigate DNA based structures, which are too large to study via DFT/NEGF

techniques using currently available computational resources, and have compared the results to

recent experiment. The final chapter lists the conclusions of this thesis, and additional directions

in which EHTransport could be taken.
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Chapter 2

Theory
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2.1 Introduction

In this chapter, I have built up the NEGF description of electronic transport in molecules,

starting from a simple single level model and expanding to the general case of multiple interacting

levels. I have also described the EHT and DFT procedures, and how to use them to construct a

Hamiltonian suitable for performing NEGF calculations.

2.2 Models of conduction

2.2.1 A simple one level model

To build a simple one level model of molecular conduction we consider a three component system,

made up of left and right leads, and a central molecule [32]. Both leads are assumed to contain a

completely flat continuum of states, which extends to all energies, and which is filled up to some

Fermi level µL and µR, which may be different for each lead in order to allow for a potential

difference across the molecule. The molecule is assumed to contain only a single possible state,

at some energy level ε. Both leads are coupled to the molecule with coupling constants γL and

γR, but not to each other. Any electron moving from one lead to another must therefore exist

within the molecular energy state at some instant.

Figure 2.1: An energy level schematic of the one level model.

For one of the leads in contact with the molecule, and assuming that the presence of the

molecule does not have any effect on the lead, electrons will flow between the lead and the

molecule to give an occupancy according to the Fermi function

f(E) =
1

1 + e(E−µ)/kBT
. (2.1)
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At low temperatures, this simply implies that the level ε will be occupied if it is positioned

below µ and unoccupied if above it. The rate of flow of charge between the lead and the molecule

can be written as

I = −eC(2f(ε)−N) , (2.2)

where C is a rate constant of dimension time−1 and N is the number of electrons already on the

molecule. This rate constant is typically written as γ/~, where γ is the previously mentioned

coupling constant, which can now be seen to have units of energy. This seems reasonable:

Connected to one lead, the occupation of the molecule will change over time until f(ε) = N ,

with larger coupling resulting in faster transfer. An analogous equation can also be written for

the second lead, to give a second current. In a steady state the current between the molecule

and one lead must be the negative of that through the other. (i.e. N is constant)

−eγL
~

(fL(ε)−N) = IL = −IR = e
γR
~

(fR(ε)−N) . (2.3)

It can be seen from inspection of equation 2.2 that the system will always tend towards

this steady state, as if the initial occupation of the molecule is not such that IL = IR then the

difference between IL and IR will be in the direction towards the preferred N . It is possible to

factor out this preferred N from equation 2.3, giving an expression for N (and hence the current)

in terms of the coupling constants.

N =
γLfL(ε) + γRfR(ε)

γL + γR

I =
e

~
γLγR
γL + γR

(fL(ε)− fR(ε)) .

(2.4)

At this point, it is obvious that something is wrong. As already mentioned, previous exper-

imental results have shown that there exists a maximum possible conductance through a single

energy level of G0 ≡ e2/h, whereas this result suggests that conductance can be increased in-

definitely by strengthening the coupling between molecule and contact. What has been missed

is a broadening effect caused by the coupling to the leads. Although it may be a reasonable

assumption to make that the leads are unchanged by the presence of the molecule, (being semi-

infinite in size, any finite perturbation can be ignored,) the molecule can be greatly affected by
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the presence of the leads. If the original single energy level is broadened, then some portion of

it will be above (or below) both µL and µR, and hence will not contribute to the conduction. If

we replace the single level with a Lorentzian function centred at ε, integrated area e and with

broadening such that G→ G0 as γL, γR →∞ the broadening turns out to be γL + γR, and the

density of states is given by

Dε(E) =
(γL + γR)/2π

(E − ε)2 + ((γL + γR)/2)2
. (2.5)

The current is now found by an integration over energy.

I =
e

~
γLγR
γL + γR

∫
dEDε(E)(fL(E)− fR(E)) . (2.6)

A further effect which has yet to be accounted for is that adding or removing electrons

modifies the potential in the molecule. In this simple one level model, the result will be that

ε will float up and down around its original value ε0. We can introduce another parameter U

which measures the shift in the energy level for each extra electron added to the channel.

ε = ε0 + U(N −N0) . (2.7)

This sets up a circular dependency between the position of ε and the number of electrons in

the level, forcing the equations to be solved self consistently. Thinking about it as a classical

Coulomb repulsion suggests that it will be reduced the more smeared out the molecular energy

level is in real space.

One final point to address in this ’one’ level model is that an electron feels no interaction due

to itself, so why should the level float around in this way when the only change in the electron

distribution is in itself? The answer of course is that this level in fact contains two electrons (or

holes,) with opposite spins. Up until now it has been implicitly assumed that the occupation

number of these two spins has been equal, but in reality there is no such restriction.

ε↑ = ε↑0 + U(N↓ −N↓0)

ε↓ = ε↓0 + U(N↑ −N↑0) .

(2.8)
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In the limit of small U this reduces back to the restricted equation. For large U however,

there may now be a case where the occupation of one spin is large, which shifts the other spin

to the point where it is no longer accessible to either lead, and no longer plays any role in the

conduction until the potential difference is great enough to overcome the effect. This effect is

known as a Coulomb blockade. The results of these progress effects on the I/V characteristics of

this simple system are displayed in figure 2.2.

Figure 2.2: A plot of current and the differential conductance against voltage at different levels of
complexity of the one level model, assuming that ε lies at the mid point between µL and µR.

The final point that needs to be addressed for this simple model is what exactly it means to

apply a voltage across the molecule. It is clear that µL − µR = V , but this says nothing about

the relationship of µL and µR with ε. In reality it will depend on how the system is set up. For

example a third gate contact could be added to the system, fixing the molecular energy level

at some ground voltage. (And indeed, transistor action would be observed if the voltage was

varied to shift ε towards and away from the lead potentials.) In the completely isolated case

with symmetrical contacts, ε will remain fixed while µL = µL0 + V/2 and µL = µR0 − V/2, but

alternative behaviours can lead to interesting effects, such as asymmetries in the current-voltage

curves.

2.2.2 A realistic model: The Non-equilibrium Green’s function method

The simple one level model may have a use in reality for some tiny molecule at low temperature

and bias which has only one energy level within a few kBT of the lead potentials, but in general a

multi-level model will be needed. Such a model could be trivially built from the one level model
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Figure 2.3: An example system of a monatomic gold wire between bulk contacts, with the scattering
region marked.

by making the assumption that different energy levels within the molecule do not interact, leading

to a simple summation of one level model calculations with differing ε, but this is unlikely to

prove successful as energy levels within the molecule will typically interact with each other more

strongly than with the leads. Generalising the logic of the unrestricted model suggests that we

will need an N ×N matrix where N is the number of available levels in the molecule to describe

the potential shifts of each level due to the occupation of each other level, with the energy

becoming a vector of length N , (or 2N , if spins are still to be treated separately,) along with

the coupling energies. This is already a much harder to solve self-consistency problem than the

two variable case from the unrestricted one level model, but it nevertheless fails to capture other

interactions beyond the classical Coulomb repulsion, such as the effects of electrons hopping

from one molecular level to another, rather than from one lead, to a single level, and directly to

another lead. Furthermore, we would still have the issue that the leads are described by a flat

continuum of states, rather than a realistic surface which will have some structure and possibly

even gaps.

Figure 2.4: An example system showing the extent of the lead and scattering regions. In this example,
each large circle represents one principal layer of the lead, and the two smaller circles represent the
molecule of interest.

First a description of the layout of a more realistic system is needed. Instead of talking only

about energy levels, it will be described in terms of orbitals localised in real space, in order to
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more easily see the effects of the leads. The system consists of some molecule, connected on two

sides to a much larger lead. The leads are taken to be semi-infinite, having some periodic layered

structure that extends away from the molecule. Rather than a vector of energy levels, the full

Hamiltonian matrix is required. Including the contribution from the leads, this will be infinite in

size, but it can be built up from an infinitely repeating series of finite and calculable components.

The system is described with a localised basis set such that the range of H is limited, and only

off-diagonal elements between basis functions in some finitely separated layers of the lead are

non-zero. Furthermore, there are no non-zero elements coupling functions in the left hand lead to

the right hand lead. For each lead a principal layer is chosen, which is at minimum the smallest

integer number of the periodic layers required so that no coupling exists between next nearest

principal layers. Each principal layer now has a finite Hamiltonian Hl and Hr, and another

matrix which describes the coupling between each principal layer Hlc and Hrc. The molecule

also has a finite Hamiltonian Hs and coupling matrices between itself and each lead Hslc and

Hsrc. The infinite Hamiltonian describing the system can then be written as

H =



. . . Hlc 0 0 0 0 0

Hlc
† Hl Hlc 0 0 0 0

0 Hlc
† Hl Hslc 0 0 0

0 0 Hslc
† Hs Hsrc 0 0

0 0 0 Hsrc
† Hr Hrc 0

0 0 0 0 Hrc
† Hr Hrc

0 0 0 0 0 Hrc
† . . .



. (2.9)

This Hamiltonian can now be constructed by analysing three separate finite sized systems.

First are two principal layers of the left hand lead with periodic boundary conditions, giving a

matrix

H1 =

 Hl Hlc

Hlc
† Hl

 . (2.10)

The same calculation can be performed for the right hand lead. The final section, the extended

molecule, or the scattering region, contains not only the molecule under study, but also enough

layers of the lead on each side that the coupling between one principal layer and the next has
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returned to the bulk value.1 The matrices Hslc and Hsrc are then equal to Hlc and Hrc, and the

extended molecule can be analysed for the final required element Hs.

To convert this infinite matrix into something tractable, the non-equilibrium Green’s function

(NEGF) formalism is used. The Green’s function equation for the full (infinite) system is given

by

(E+S−H)G(E) = I , (2.11)

where G is the Green’s function and S is the overlap matrix:

Sij = 〈ψi|ψj〉 , (2.12)

where ψ are are the functions of the basis set.

S is the identity matrix for normalised orthogonal basis functions. E+ is the energy at which

the Green’s function is being calculated with a positive infinitesimal imaginary component added,

which is only a mathematical device to avoid a singularity in the calculation rather than having

physical significance.2 In terms of the Hamiltonian we have previously constructed, this equation

reads


E+



. . . Slc 0 0 0

Slc
† Sl Slc 0 0

0 Slc
† Ss Src 0

0 0 Src
† Sr Src

0 0 0 Src
† . . .


−



. . . Hlc 0 0 0

Hlc
† Hl Hlc 0 0

0 Hlc
† Hs Hrc 0

0 0 Hrc
† Hr Hrc

0 0 0 Hrc
† . . .






. . .

... . .
.

. . . Gs(E) . . .

. .
. ...

. . .

 = I .

(2.13)

The central block of the Green’s function is what is required for the calculation of current.

We could write a reduced version of the Green’s function equation using only the region of the

Hamiltonian corresponding to the basis functions present in the scattering region of the system

1Boundary conditions on this scattering region are more complex; periodic conditions are only acceptable if
the left and right leads have identical principal layers. If not, there is no periodicity used, and additional principal
layers are added to each lead to hide any surface effects. In this case the Hamiltonian output from the calculation
needs to be modified to strip out any elements due to these extra principal layers before use.

2There are actually advanced and retarded Green’s functions, dependent on if E+ or E− is in use. In this
work only the advanced Green’s function is used.
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(E+Ss −Hs −Σl −Σr)Gs(E) = I → Gs =
[
E+Ss −Hs −Σl −Σr

]−1
, (2.14)

where Σ is an additional term such that Gs becomes equal to the result from equation 2.13. This

term is known as a self-energy matrix, and can be calculated from the sections of the Hamiltonian

related to the leads. For the left lead it has the form

Σl = (E+S†lc −H†lc)Gl(E
+Slc −Hlc)/mathcomma (2.15)

where Gl is the surface Green’s function of the lead, which is the bottom right block of the full

semi-infinite Green’s function representing the lead. With the scattering region Green’s function

known, the current is given by an integration over energy.

I =
e

h

∫
dE Tr

[
ΓlG

†
sΓrGs

]
(f(E − µl)− f(E − µr)) /mathcomma (2.16)

where Γ is just the anti-hermitian part of the self-energy matrix, and is the equivalent of the

broadening term γ from the the one level model

Γ = i
[
Σ− Σ†

]
. (2.17)

The trace term Tr
[
ΓlG

†
sΓrGs

]
gives the electronic transmission through the scattering

region at energy E. We now have an expression for the current which is equivalent to equation

2.6 in the one level model, with the original single broadened energy level replaced by the Green’s

function. The final step is calculating the surface Green’s functions of each lead. Since calculating

the whole semi-infinite Green’s function is not possible, another method is required exploiting the

periodicity of the leads. Several such techniques have been developed [33–35], and the algorithm

used in EHTransport will be described in chapter 3.

This procedure is now equivalent to the one level model at the point broadening was added,

but is still missing charging effects. A density matrix ρ can be calculated simply by integrating

the Green’s function over energy, and plays the role of the level occupancy N from the one level

model.
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ρ =
1

2π

∫
dE G(E) . (2.18)

As well as the density matrix, an equivalent of the charging energy U from the single level

model is also required, to relate the density matrix to an energy shift. This is a more complex

task, and its method of calculation depends on the method of obtaining the Hamiltonian. Once

obtained however, its effects are identical to the one level model; we simply add the potential

matrix to the Hamiltonian, so that the Green’s function becomes

Gs =
[
E+Ss −Hs −U−Σl −Σr

]−1
. (2.19)

The Green’s function now needs to be calculated self-consistently, as was the case with the

one level model.

Although this provides a method of calculating the current, a method of constructing the

input is still needed. Specifically the five repeated elements that make up the infinite Hamilto-

nian matrix, and their corresponding overlap matrices are required. This requires solving the

Schrödinger equation for the lead and scattering regions, a many-body quantum problem. For

this we will initially use density functional theory.

2.3 Density functional theory

2.3.1 Introduction

In physics there are many problems which do not have analytic solutions, and must be solved by

numerical methods. One of the best known is the classical many body problem, where even three

objects moving non-relativistically with a simple gravitational attraction between each object

cannot be solved analytically in the general case. How much harder then must be an electronic

structure problem, which even for small molecules may contain hundreds of interacting quantum

particles, interacting in far more complex ways than simple Newtonian gravity. Here, even an

attempt at a numerical solution to the Schrödinger equation will fail due to the sheer scale of

the problem, and approximate theories are required. Density Functional Theory (DFT) [17, 36]

is one of the most popular; although other methods such as Hartree-Fock [37] and quantum
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Monte-Carlo [38] also exist, DFT tends to offer a good balance between calculation quality and

the required computational effort [39]. DFT is a method that is interested in the total electronic

density at each point in space, rather than attempting to obtain the many-particle wave-function

directly.

2.3.2 The Born-Oppenheimer approximation

In an example molecular system, we have one or more nuclei, surrounded by an electron cloud,

with no external interactions. This system has the Schrödinger equation

(T̂e + T̂n + Ûee + Ûnn + Ûne)Ψ = EΨ , (2.20)

which includes the kinetic energy of the electrons and nuclei, an electron-electron interaction

term, a nuclei-nuclei interaction term and a nuclei-electron interaction term. This is a function

of 3(Ne + Nn) coordinates, and is analytically insoluble for any system more complex than a

single hydrogen atom. Approximations must be sought to make any headway.

A first item of note is that the mass of the electrons is several orders of magnitude less than

that of the nuclei, (even the case of a hydrogen atom, the lightest possible nuclei, the mass ratio

between an electron and the nucleus is already near 2000 to 1,) and at a given temperature will

have greater velocity. If we only desire to calculate electronic properties, a useful assumption we

can make in this case is that there is a separation of the time and energy scales between these

fast moving electrons and the much slower nuclei, and that the electrons instantly adapt to any

movement of the nuclei. This is the Born-Oppenheimer approximation [40], and is equivalent

to saying that the electron energies are determined by a static external potential due to the

nuclei, which are now considered fixed classical particles for the purposes of calculating the

electronic structure, removing three of the terms from our Schrödinger equation; T̂n, Ûnn and

Ûne. In exchange, we gain one additional term V̂ , describing the effect on the electrons of the

static external potential. This approximation removes our ability to see effects due to quantum

interactions between electrons and nuclei, such as electron-phonon scattering, but it reduces the

total number of particles in the system, as well as ensuring that only a single particle type (the

electron) exists in the system.

This separation of energies is easy to see in molecules, where electron excitation energies are
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typically around two orders of magnitude larger than the vibrational modes of the nuclei, which

are in turn another couple of orders of magnitude greater than rotational energies. In an insulator,

the picture is muddied by the broadening of electron energy levels into bands within which there

exist a continuum of states with arbitrarily small energy differences, but due to Pauli’s exclusion

principle preventing electrons moving into already occupied states, and without any temperature

effects the only electronic excitations allowed will be across a band gap which is still large in

comparison with nuclei energies, and so the separation still holds. In a conductor however there

is no band gap, and arbitrarily small electronic excitations are allowed. In this case it is not

obvious that the Born-Oppenheimer approximation should be valid, although in practice it is still

generally used3, and provides reasonable results because at normal temperatures only a small

number of electrons near the the Fermi surface are affected, and do not have a great deal of

influence on the properties of interest of the system.

2.3.3 The Hohenberg-Kohn theorem

Applying the Born-Oppenheimer approximation, the nuclear related terms in the Schrödinger

equation are replaced by a new external potential term V , leading to

(T̂ + Û + V̂ )Ψ = EΨ , (2.21)

where T̂ is the operator for kinetic energy, Û the operator for the interaction between electrons,

V̂ the operator for external potential and Ψ is a many-particle wave-function that describes all

electrons in the system but no other particles. It is obvious from inspection of the Schrödinger

equation that a given value of the external potential will lead to a wave-function which is a

solution of the equation, which will in turn lead to some total electronic density. The basic

premise of DFT is that the reverse is also possible; i.e. given a total electronic density there

exists a functional with which one can calculate the external potential, (and hence the full

Hamiltonian,) of a system. The Hohenberg-Kohn theorem [17], essentially the proof of the

existence of this functional, is simple for non-degenerate and non-relativistic systems. Firstly, to

3Indeed, until recently its use was required for DFT, independent of any computational restraints. Moving
beyond the Born-Oppenheimer approximation results in more than one particle type in the system, and requires
a multi-component formulation of DFT, which was not well developed until the last ten years [41, 42] and is not
discussed here.
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prove that knowing the wave-function leads to a unique potential we assume that the opposite

is true, that there exists some wave-function which is a solution to two different potentials:

(T̂ + Û + V̂ )Ψ = EΨ

(T̂ + Û + V̂ ′)Ψ = E′Ψ .

(2.22)

Subtracting these two equations gives:

(V̂ − V̂ ′)Ψ = (E − E′)Ψ . (2.23)

Since E and E′ are simple numbers, the difference in the external potential must be the same

except for a constant.4 Likewise, assuming that there exist two wave-functions differing by more

than a phase term which each give rise to the same density η leads to

〈Ψ|Ĥ|Ψ〉 = E < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′ + V̂ − V̂ ′|Ψ′〉 = E′ +

∫
d3r η(r)(v(r)− v′(r)) , (2.24)

where we’ve used the result from the first stage of the proof that if the wave-functions differ

then so must the external potentials. Substituting the roles of the two wave-functions gives the

similar expression

E′ < E +

∫
d3r η(r)(v′(r)− v(r))/mathcomma (2.25)

and finally, adding these leads to the contradiction

E + E′ < E′ + E/mathstop (2.26)

Since the electronic density uniquely determines the Hamiltonian, it also determines the

wave-function and all other ground states properties of the system such as energy. There must

therefore exist some functional of the electron density F [η] that maps the density to the ground

4Without further information on the nature of the operator V̂ , it is possible to conceive a system where Ψ is
an eigenfunction of each of V̂ , V̂ ′ and the combination V̂ − V̂ ′. The external potential operator is multiplicative
however, so with the assumption that there’s at least one particle in the system (and hence Ψ 6= 0) Ψ cancels and
the proof holds.

19



state energy. This functional is currently unknown, and is almost certainly extremely complex

since it encapsulates the whole of the interacting many-body problem. It can however be written

more simply in terms of another functional G[η] which maps the density to its wave-functions.

F [η] = 〈G[η]|T̂ + Û + V̂ |G[η]〉 = 〈G[η]|T̂ + Û |G[η]〉+

∫
d3r n(r)v(r) . (2.27)

This in itself is not useful since the functional G[η] is also not known. It does however

prove that the form of the functional F [η] is independent of the potential, (since T̂ and Û are

independent,) and also provides the stage for the proof of the second of the Hohenberg-Kohn

theorems, which states that for a given function v(r) (i.e. a known potential,) then the functional

F [η] is minimised by the ’correct’ electronic density, as long as the number of particles in the

system is kept constant.

F [η′] > F [η] for η′ 6= η . (2.28)

This follows trivially from the Rayleigh-Ritz variational principle, since T̂ and Û are not

dependent on the density, and so fixing the external potential fixes the whole Hamiltonian.

〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉 . (2.29)

These proofs can also be extended to finite temperatures [43], degenerate [44] or relativistic

[45] systems, although the maths becomes correspondingly more complex. It’s also a point of

note that the exact forms of T̂ and Û do not matter in the proof, as long as their forms are

not dependent on the density. At this point we could start with a guess for the total electronic

density, perhaps just a sum of the densities of the atomic orbitals of isolated atoms, or from

some simple tight binding model, and perform a minimisation to find the ground state density.

Unfortunately, although the Hohenberg-Kohn theorem guarantees the existence of some density

functional which can be minimised to find the ground state properties, it does not give any clues

as to the form of the functional, or how to construct approximations to it.
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2.3.4 The Kohn-Sham equations

Since the proof of the existence of the density functional does not depend on the exact forms of T̂

and Û , it is reasonable to imagine the existence of a hypothetical system that lacks inter-particle

interactions, (and hence Û is always zero,) but where the density remains unchanged from the

original problem. Since there is now no interaction between particles, the many-body problem

vanishes and the system can be treated as a set of independent particles. The kinetic energy

functional can be written exactly in terms of the single particle orbitals ψi5, which are the first

N solutions of a one particle Schrödinger equation.

T [η] =
−~2

2m

N∑
i=1

〈ψi|∇2|ψi〉 . (2.30)

The Schrödinger equation for this system contains only the single particle kinetic energy and

the external potential, and no electron-electron interaction term.

(
−~2

2m
∇2 + v[η]

)
ψ = Eψ . (2.31)

And finally the density is just the sum of the squared magnitudes of the occupied single

particle wave-functions.

η(r) = e
N∑
i=1

|ψi|2 , (2.32)

where N is the number of electrons in the system.

It is then possible to construct a new effective external potential v[η] such that the ground

state energy and density matches that of the original interacting system. This is the Kohn-Sham

scheme [46], which has proved successful at simplifying DFT calculations. In order for this to be

useful as a method of solving the interacting electron problem, some way of creating this new

effective potential is needed. We can start by writing down the system energy in its functional

form

E[η] = T [η] +

∫
d3r vext(r)η(r) +

1

2

∫ ∫
d3rd3r′

η(r)η(r′)

|r− r′|
+ EXC [η] , (2.33)

5Although this is exact for the non-interacting system, it is missing terms compared to the energy from the
interacting system. The missing fraction is added back via the exchange-correlation functional.
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where the first term is the kinetic energy, the second is the external potential from the original

interacting system, the third is the classical Coulomb energy6, and the final term is the exchange-

correlation functional containing everything else that is unknown about the system. The effective

potential is required to result in this energy, along with the original density, and is obtained by

applying the variational principle to the energy functional.

v[η] = vext(r) +
1

2

∫
d3r′

η(r′)

|r− r′|
+
δEXC [η]

δη
. (2.34)

As this expression is both dependent on the density and required for the calculation of it,

the equations must be solved self-consistently.

Since the exchange-corrilation term EXC is unknown, an approximation must be used. For-

tunately, it is easier to construct these than for the original problem of interacting particles, and

there are many well tested functionals in common use. The most basic is the local density ap-

proximation (LDA), which depends only on the electronic density at each point in space, and not

on its derivatives or any other terms. It is most commonly derived from a homogeneous electron

gas, resulting in an expression which is exact in the limit of zero electronic density gradient, and

then applying that expression at each point in space.

EXC [η] =

∫
d3r η(r)ehomxc (η(r)) , (2.35)

where ehomxc (η(r)) is the exchange-correlation energy density of a homogeneous electron gas of

density η(r).

This works surprisingly well, even in cases where the true electron density is far from homoge-

neous. It can be shown that the LDA is the first term in an expansion of the exchange-correlation

energy in terms of the gradient of the density [46, 47], but later attempts to add in additional

terms turned out to produce worse results than the LDA. There are various sum rules that the

true exchange-correlation functional obeys, such as the fact that the exchange hole should dis-

place exactly one electron, and on closer examination it turned out that although the LDA obeyed

these rules adding in additional gradient terms was breaching them [48]. More advanced func-

6This term is no longer an electron-electron interaction, but is a functional of density. As such it contains
a spurious self interaction between single electrons and themselves. It can be partially fixed by the exchange-
correlation functionals, but due to its non-local nature to remove it completely requires a non-local functional,
something which is generally avoided for efficiency reasons.
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tionals such as PBE [49] were created to include terms dependent on the gradient of the density

while still preserving the most important of these sum rules, the so-called generalized gradient

approximation (GGA). There also exist even more complex functionals such as metaGGA class

which includes terms dependent on the kinetic energy density, an exact-exchange functional, and

hybrid functionals [50] such as B3LYP which add in part of the Hartree-Fock energy, but these

require much greater computational resources.

While these Kohn-Sham states have no direct link to any single particle orbitals in the

interacting problem, (which, as has been mentioned, are not physical and do not actually exist,)

it is common to think of them as such. Similarly the energies of these orbitals are thought

of as single particle energies in the interacting problem, and are commonly used for calculating

excitation energies or plotting band structures. In fact, it turns out that these energies are indeed

a reasonable approximation, and can give good band plots for the occupied states. Agreement

with unoccupied states is typically not as good, however.

2.3.5 Pseudopotentials

There is one more important approximation that can be made before the scheme is used. As

two distant atoms are brought closer together, it is their outermost electrons which interact with

each other most strongly. As long as the atoms are not brought in too close, the core electrons

remain relatively unperturbed from the isolated atom case. This suggests that instead of treating

all electrons in the problem explicitly, we could ’freeze’ the core electrons, merging them in with

the orbital and making them a part of the static potential. The combined potential due to the

combined nucleus and core electrons becomes the pseudopotential. This greatly reduces the size

of the problem, as with all but the first two rows of the periodic table of elements more than half

of the electrons are removed from the system. By constructing the pseudopotentials in such a

way that they are slowly varying in space it also greatly improves efficiency when representing the

Kohn-Sham orbitals in a plane wave basis set, as the tightly bound core electron wave-functions

are normally quickly varying in space and require large numbers of plane waves to represent

accurately (Figure 2.5). Furthermore, the orthogonality condition of valence electrons would

force them to also curve sharply near the core electrons.

One downside from using pseudopotentials is that some information is lost from the final
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Figure 2.5: Comparison of the n = 2 single particle wavefunctions computed using all-election DFT and
using a pseudopotential. Beyond a cutoff distance the two overlap exactly.

results. One important example is that it is no longer known what the total system energy is,

although comparisons can still be made between a systems containing the same set of atoms

in different configurations. Also it assumes that core electrons are completely unperturbed

from the isolated atom case, which may not be a good approximation for systems under very

high pressures, or which are strongly ionic. All the work here is done with norm-conserving7

pseudopotentials supplied with SIESTA.

2.3.6 Geometry optimisation

We now have a method of calculating the electronic properties of a system, but even though we

are working within the Born-Oppenheimer approximation we may still want to allow the nuclei

to move, particularly for finding the ground state configuration of atomic positions for problems

such as discovering how a molecule is likely to bind to the leads. It would be possible to simply

perform the same electronic structure calculation repeatedly with the nuclei in different positions,

but there is a large many-dimensional space to explore and so the process would be inefficient.

As an alternative, we can apply the Hellmann-Feynman theorem [51], which proves that we can

calculate forces on the nuclei by performing the electronic structure calculation at a single point

∂E

∂λ
=

∫
d3r Ψ∗(λ)

∂Ĥλ

∂λ
Ψ(λ) . (2.36)

In this case the parameter λ that we are varying relates to the positions of the nuclei. The
7i.e. the integral of the wavefunction is kept the same as the all electron wavefunction.
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full theorem is not actually required here; the only terms in the Kohn-Sham Hamiltonian with

a dependence on the nuclear positions are the nuclei-nuclei interactions, and the interaction

between the density and the external potential, so a simple derivative of the energy functional is

sufficient. Explicitly including the nuclei-nuclei interaction term and dropping the insignificant

terms gives

E[η] =

∫
d3r

η(r)
∑
i

Zie

|r−Ri|
+

1

2

∑
i 6=j

ZiZje
2

|Ri −Rj |
+ . . .

 . (2.37)

This can be differentiated with respect to Ri to give the force on nucleus i8

Fi =
∂E[η]

∂Ri
=

∫
d3r

η(r)
Zie

(r−Ri)2
+

1

2

∑
j

ZjZie
2

(Rj −Ri)2

 . (2.38)

While this form looks simple, as usual practical issues introduce further complications. Extra

Pulay forces [52] are introduced if the movement of the nuclei affects the overlap of the basis

functions, as is the case with any non-complete set of localised orbitals centred around the nuclei.

There are also further terms introduced if the density used isn’t the exact solution of the system,

and we will generally be working with pseudopotentials, and hence moving the whole atomic

core rather than the bare nuclei. Nevertheless, with appropriate corrections this does provide a

method to locate a minimum in energy by moving the atoms in the direction of the forces until

the forces become zero, or by defining a timestep, keeping track of the velocities of the nuclei and

applying accelerations due to the forces, first principles Born Oppenheimer molecular dynamics

(BOMD) simulations can be carried out.

A major issue with using this method to locate a ground state geometry is that without some

idea of the ground state positions to start with, starting from a random atomic configuration is

far more likely to reach a local minimum than the real ground state of a system. In the case of

our systems, it would mean that although a geometry optimisation could be used to give you

the height a molecule prefers to sit above a site, (e.g. hcp, fcc, bridge, etc.) the molecule would

typically not move between sites. In that sort of calculation it is common to start with many

randomised states, or to use finite temperature molecular dynamics together with a method to

remove energy from the system.

8This needs to be multiplied by a sign term to account for the ordering of the nuclei.
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2.3.7 Extensions

Since the Hohenberg-Kohn theorem ensures that all ground state properties are functionals of

the electronic density, there should also exist functionals to extract individual spin densities

or other order parameters. In practice these would be complicated, as would be exchange-

correlation functionals encapsulating the effects of such symmetry breaking, so extensions to

DFT in the form of additional densities are used instead. These range from the commonly used

spin-DFT, which includes a (η↑ − η↓) density in addition to the (η↑ + η↓) term from standard

DFT and is useful for magnetic or open shell systems, through to multi-body DFT which allows

the inclusion of additional particle types and which is required for going beyond the Born-

Oppenheimer approximation, to even an ab-inito description of superconductivity including order

parameters as densities [53].

Implementations acting directly on the density rather than introducing some sort of virtual

non-interacting particle are also available [54],9 (which has become known as orbital-free DFT

to differentiate it from Kohn-Sham based schemes,) but since only fairly crude approximations

to the real energy functional are known, (in particular, and in addition to exchange-correlation

problems, the kinetic energy has no obvious expression in terms of the density,) it tends to be

less accurate than Kohn-Sham based DFT. It is still used because, by its nature, it tends to scale

linearly with atom count without further approximations, making it very efficient for large sys-

tems. Since there are now well developed linear scaling Kohn-Sham based implementations this

advantage has been partially lost, however. The majority of DFT calculations performed today

use the Kohn-Sham formalism to specify an equivalent problem of N non-interacting particles

with orbital-free DFT mainly reserved for large scale metallic systems, which tend to be difficult

to treat using linear scaling Kohn-Sham DFT, which often fails in the absence of a large band

gap between occupied and unoccupied electronic states.

In the case of modelling electrical properties of systems, one extension that is likely to be

important is time dependence. Traditional DFT asks the question of what the electronic density

looks like in the presence of a static external potential, but does not answer what happens if that

9In fact, the first attempt at constructing this functional was made by Thomas and Fermi in 1927, before
the Hohenburg-Kohn theorem had even put DFT onto a sound theoretical footing. This took the kinetic energy,
exchange and correlation terms from the homogeneous electron gas in a manner equivalent to the Kohn-Sham
version of the LDA, but proved too inaccurate for practical use. It could not reproduce atomic shells, gave
divergent densities at the nuclei sites, and gave incorrect decaying behaviour away from the system.
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potential is varying with time. IBM have reported transistors operating of speeds of 155GHz,

which is equivalent an on-off-on transition time of 6.5 pico-seconds. A transistor operating at the

upper limit of its operational frequency will never achieve a steady state, and Time Dependent

Density Functional Theory (TDDFT) would need to be invoked in order to describe what happens

as the transistor switches between states.10 There is a Runge-Gross theorem [55]which, in an

analogous way to the Hohenberg-Kohn theorem, proves that the time dependent wavefunction

of a system has a one to one mapping to the time dependent electron density of a system, given

a time dependent external potential. Some work on combining TDDFT with NEGF to calculate

time dependent transport behaviour has already been carried out [56].

2.4 Extended Hückel Theory

Extended Hückel Theory [26] (EHT) is a semi-empirical linear combination of atomic orbitals

(LCAO) method for studying the electronic configuration of a structure. As the name suggests,

EHT is an extension of an earlier (non-extended) Hückel theory [57–60], which was a simple

LCAO method very restricted in its applicability, developed to study conjugated hydrocarbons.

The ’extension’ however had more to do with the range of systems of applicability than the actual

mathematical technique, which is markedly different between the two. Hückel theory uses no

explicit real-space orbitals and instead assumes that the overlap matrix is the identity matrix,

and then the Hamiltonian is parametrised based on atomic type and position. By comparison,

the defining feature of EHT is the assumption that the each element of the Hamiltonian matrix

is directly proportional to the corresponding element of the (non-diagonal) overlap matrix.

Hij = 〈ψi|Ĥ|ψj〉 ≈ cij〈ψi|ψj〉 = cijSij , (2.39)

where ψ are the functions of the basis set, which in comparison to the original Hückel theory must

now have some definition that allows the calculation of these overlaps. There are a few variations

on the form of the values cij , but they are always parameter based and do not depend on the

properties of ψ, removing the requirement for any complex three or higher centre integrals, and

10This frequency of transistor operation is still substantially slower than typical molecular vibration frequencies,
calling into question the usefulness of applying TDDFT to this case while still under the Born-Oppenheimer
approximation. In using this, the assumption is made that effects of molecular vibration on the properties of the
system are insignificant compared to the effects of, e.g., the widely swinging electric fields on a gate electrode.

27



limiting the two centre integrals to simple overlaps between basis functions, which can normally

be efficiently calculated by analytical methods.

In a standard EHT calculation, the basis set chosen is a set of Slater orbitals positioned at

the site of each atom, representing each of the valence states of the atom. The outermost (i.e.

highest n) filled or partially filled orbitals of each angular momentum are used.

φnlm(~r − ~R0) = (2ζnl)
n

√
2ζnl
(2n)!

∣∣∣~r − ~R0

∣∣∣n−1
e−ζnl|~r−~R0|Y m

l (~r − ~R0) , (2.40)

where ~R0 is the location of the orbital and n, l and m are the usual quantum numbers. ζnl is

the Slater exponent; an empirically chosen parameter. Like the orbitals which result from the

use of pseudopotentials in DFT, these Slater orbitals match the form of the hydrogenic orbitals

at high r, but are smoother at lower r, without nodes (Figure 2.6).

A second empirically chosen parameter I is assigned to each n and l combination of each

atomic species, and can loosely be regarded as an ionisation energy from that orbital. Since

normally only valence orbitals are considered, there will not be two orbitals for one atomic species

with the same l but different n, leaving 2max(l) empirical parameters per atomic species.11 The

diagonal elements of H will have Cii = Ii. The cij of the off-diagonal elements will have an

average of Ii and Ij , which may be either arithmetic or geometric, multiplied by a further scaling

factor k, which is known as the Wolfsberg-Helmholtz constant, and is usually chosen to have a

fixed value of 1.75.

Hii = Ii (2.41)

Hij = kSij
Ii + Ij

2

or Hij = kSij
√
IiIj .

(2.42)

The parameters are chosen to match some behaviour, such as band structure, energy levels

of some molecule, etc.

The transferability of the EHT parameters can be an issue, for example a carbon atom in

the backbone of an octane molecule is likely to behave differently to a carbon atom in a slice

11From inspection of equation 2.40 it can be seen that the overlap between two orbitals positioned at the same
site with different n but equal l will not be zero, so in any case where additional core or empty levels are included
special care needs to be taken.
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Figure 2.6: Comparison of the Slater radial wave-function with the hydrogenic one for n = 3, l = 0.
The angular part is identical in both cases.

of graphene. One major source of these errors is the charge transfer that occurs between atoms

of different electronegativities in a molecule. To some extent, this can be taken care of by

the parameter choice; since fluorine atoms typically become negatively charged, their ionisation

energy can be adjusted appropriately. This has negative effects on transferability though; e.g. a

carbon bonded to the fluorine will likely have a more positive charge than if it were bonded to a

hydrogen, and the same ionisation potential could not be used in both cases. One solution to this

problem is to employ an iterative scheme, in which corrections to the Hamiltonian are calculated

at each step, and the new Hamiltonian used to compute new corrections, until self-consistency is

reached. In one simple self-consistent Extended Hückel Theory scheme [30,31], the on-site energy

of each orbital is assumed to be a linear function of the charge ∆q on the atom upon which the

orbital is centred, adding one additional empirical parameter α per atomic species (The s, p and

higher orbitals are assumed to share the same value of α) .

Ii = I0
i + ∆qiαi . (2.43)

Many schemes are available for estimating the atomic charges, from the simple Mulliken

population analysis [61] to natural charges [62] to integrating the electronic charge density in

real space. Other schemes for calculating the corrections to the ionisation potential Ii also exist,

ranging from the simple addition of additional parameters multiplied by higher powers of ∆qi to

more complex Poisson solvers [63] or NEGF methods [64].
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2.5 Periodic systems

The DFT and EHT equations described so far have been in the general terms of a system

of unspecified composition and size. In the NEGF formalism described, the leads at least are

required to have an infinite extent in the direction of conduction, and both the leads and scattering

regions have no bounds on their size in directions orthogonal to conduction. Obviously a real

calculation on an infinite system cannot be conducted directly, so an alternative is required. In

this work, all systems studied that have infinite extent along one or more axis are assumed to

be completely periodic along those axis; i.e. that we can define a single finite unit cell, and

then build up the full infinite system by repeating it periodically12. We can therefore apply the

concept of Bloch waves [65] to obtain an approximation to the infinite Hamiltonian.

Bloch’s theorem states that the wave-function of an infinite periodic system can be written

as the product of two functions, one with periodicity equal to the system under study, and the

other a plane wave. First we define a set of Hamiltonians Hn where n is a label for the periodic

images of the unit cell, and H0 is equivalent to the non-periodic Hamiltonian.

Snij = 〈ψ0
i |ψnj 〉

Hn
ij = 〈ψ0

i |Ĥ|ψnj 〉 .
(2.44)

A second set of Hamiltonians H′k can then be defined, where ~Rn is the vector pointing from

the original unit cell to unit cell n, and φ~R is a (possibly complex) phase factor.

S′
~k =

∑
n

φ~k(
~Rn)Sn

H′
~k =

∑
n

φ~k(
~Rn)Hn .

(2.45)

The ~k here is a k-point, describing a point in the reciprocal lattice vector. The k-point defines

the plane wave part of the wave-function, so the more k-points used the more Bloch states are

included in the calculation. This is a controlled approximation; as the range of n and as the

12We have in fact already made this assumption implicitly for the leads in the direction of conduction by the
existence of the lead ’principal layer’ in the NEGF formalism.
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density of k-points tends to infinity, results from the set of Hamiltonians tends towards the results

which would be obtained from the original infinite Hamiltonian. Since it is not computationally

feasible to sample an infinite number of k-points, a subset needs to be chosen which provides

a good approximation for the number of points. Algorithms such as Monkhorst-Pack [66] exist

for picking this set of k-points. It is also obvious from inspection that the Hamiltonian at the Γ

point (i.e. at ~k = 0) of a system in which interactions between the periodic images are negligible

reduces back to the original form.

The matrices at each k-point have a number of elements equal to what would exist in the

Hamiltonian of a single isolated periodic cell. Since the calculation time scales linearly with the

number of k-points, but as O(N3) with the number of orbitals involved in the system, for a given

calculation quality it is vastly faster to obtain e.g. a density of states from a minimal unit cell

and many k-points than it is to obtain the same thing by performing a Γ point calculation with

a much larger unit cell.
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Chapter 3

Description of Code
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3.1 Software

Two software packages capable of computing transmission spectra were used; SIESTA [67–70],

(Spanish Initiative for Electronic Simulations with Thousands of Atoms,) and EHTransport.

SIESTA is an MPI-based DFT code which uses a numerical localised basis set. This set has a

strictly limited range; i.e. rather than the exponentially decaying tail that may be expected for

a localised atomic orbital, the basis set is constructed to be exactly zero beyond a certain cutoff

distance [71,72]. This is advantageous for the NEGF calculations, as the computed Hamiltonian

is already in a localised form which makes the calculations straightforward, and the strict cutoff

ensures that the matrix is sparse, ensuring the existence of a principal layer that doesn’t require

neglecting any matrix elements, and improving the efficiency of the matrix operations involved

in the Green’s function calculations. SIESTA also includes the subcomponents Transiesta and

TBTrans, which perform the required Green’s function calculations [64,73].

EHTransport is my own custom written OpenMP based code which uses the semi-empirical

Extended Hückel Theory (EHT) to compute the Hamiltonian of a given system in a localised

basis set of Slater orbitals, and then uses the NEGF method to compute transmission spectra.

It is written in C++, and currently totals approximately 6000 lines of code. It is described in

detail in the following sections.

3.2 EHTransport

EHTransport is divided up into 3 main modules, along with a number of specialised utility

modules. The first is the input/output module, responsible for reading user input and using

it to build the parameters for other modules, calling them, then processing the raw results

obtained into useful output files. The second is the EHT module, which takes a list of atomic

species and positions as input and delivers as its primary output a Hamiltonian and overlap

matrix, along with the estimated Fermi level of the system. The third module is responsible

for NEGF calculations. It accepts as input a set of three Hamiltonian and overlap matrices,

representing the leads and scattering region, along with the Fermi levels of the leads and the

potential difference between them. It provides as output a transmission spectra and density of

states in the scattering region. Additional cross links are available between the EHT and NEGF
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module to allow charge consistent EHT calculations for the scattering region, but this code is

not currently active. Utility modules provide representations of collections of atoms and the

means to perform manipulations such as rescaling or the construction of the super-cells. This

strict subdivision allows modification and testing of one part of the code without risking breaking

another. The aim of the application is to provide results which, given an appropriately chosen

parameter set, are in reasonable agreement with Transiesta. This might be for investigation

of systems to large to be accessible to Transiesta, or for large numbers of smaller systems, the

most interesting of which may warrant further study with far more computationally intensive

Transiesta.

3.2.1 The input/output module

EHTransport’s input/output module is responsible for reading an input file from disc, reading

a job type and parameters from that file, and then setting up and running the appropriate

calculation. Once the calculation is complete, it also takes the raw data obtained and processes

it to create useful output files. The input files use the same FDF format as SIESTA, including

using many of the same keywords. In most cases, this overlap, combined with the flexibility of

the FDF format that ignores unrecognised keywords, allows the same input file to be processed

with both SIESTA and EHTransport, which is a useful feature for performing comparisons. FDF

is a plain text, human readable format, allowing for visual inspection of scripts. Full details of

the format are available in appendix 1, or in the SIESTA documentation.

3.2.2 The EHT module

The EHT module takes as its primary input a list of atomic species and positions, and the size

of the cell containing the calculation. It also requires a number of parameters: the k-point grid

on which to perform the calculation, the size of the super-cell to use for periodicity, a cutoff

range beyond which orbital overlaps are assumed to be zero, the type of self-consistency to use

and the criteria for deciding when convergence has been reached. It also requires a set of EHT

parameters for each atomic species involved in the calculation. Its main task is to provide overlap

and Hamiltonian matrices to represent the system. (Or more than one, in the case of a periodic

calculation with multiple k-points.) It can also provide the system Fermi level, projected and
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total density of states, self-consistent atomic charges, band structures, and a representation of

charge movement and potential in real space.

Computing the overlap matrix

The first step is the computation of an overlap matrix Sij

Sij =< φi|φj > . (3.1)

EHTransport exclusively uses Slater orbitals [74] centred around each atom in the system as its

basis set. Tesseral harmonics are used for the angular part, rather than the spherical harmonics.

φnlm(~r − ~R0) = (2α)n

√
2ζ

(2n)!

∣∣∣~r − ~R0

∣∣∣n−1
e−α|~r−~R0|Zlm(~r − ~R0) , (3.2)

where ~R0 is the location of the atom, n, l and m are the usual quantum numbers, Zlm are

the tesseral harmonics and α is the Slater exponent; an empirically chosen parameter. As the

basis set is normalised, the diagonals are taken to be 1. Slater orbitals with the same centre

and differing l or m are orthogonal, so overlaps of different orbitals centred around the same

atom are taken to be 0. A distance cutoff may also be applied, with overlaps between orbitals

centred around atoms separated by more than a specific distance also taken as 0. If none of

these rules apply, the overlap can be calculated for arbitrary atomic numbers either via a fast

analytic method, [75] or, for testing purposes, code also exists for calculating them via much

slower volume integrals for arbitrary n and l ≤ 2. Since EHTransport uses tesseral harmonics

for the angular part of the orbitals, the overlap matrix is real and symmetric. The overlap matrix

is also positive definite, and so care needs to be taken with applying a distance cutoff as it can

destroy this property.

The original expression for the analytic overlaps is given by the system of equations from

3.3 to 3.12, where ni, li and mi are the usual quantum numbers, αi is the Slater exponent of

the orbital, and ~R the vector joining the first orbital centre to the second. Y m
l are the spherical

harmonics. u and v are the transformed coordinates u = (α2 +α1)|~R|/2 and v = (α2−α1)|~R|/2.

The quantities in square brackets in equations 3.3 are the 3-j coefficients and the bracketed

quantities in equation 3.10 represent the binomial coefficients. In equation 3.6 any non-integer
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values resulting from the divisions by 2 are rounded towards zero before performing the factorial.

I(n1, l1,m1, α1, n2, l2,m2, α2, ~R) =

(−1)m1
∑

Λ

AΛ(...)

 l1 l2 Λ

0 0 0


 l1 l2 Λ

m1 −m2 m2 −m1

Y m1−m2
Λ (~R) , (3.3)

AΛ(n1, l1,m1, α1, n2, l2,m2, α2, ~R) =
∑
λ,L

FΛλL(...)QλL(...) , (3.4)

FΛλL = (−1)l+λ(2L+ 1)
√

4π(2Λ + 1)(2l1 + 1)(2l2 + 1)
Φl2LγΦLΛ(l1−λ)

ΦΛl2l1

, (3.5)

Φijk =
((i+ j + k)/2)!(i+ j − k)!

((i+ j − k)/2)!((j + k − i)/2)!((k + i− j)/2)!(i+ j + k + 1)!
, (3.6)

QλL() =

L/2∑
k=0

L−2k∑
p=0

DLkp|~R|l1−λ+L−2k−2p−1J(n2 + λ+ 2k − L, n1 − l1, p) , (3.7)

DLkp =
(−1)k(2L− 2k)!

22L−2kk!(L− k)!p!(L− 2k − p)!
, (3.8)

J(M,N, p) = |~R|M+N+2p+2
M+N∑
µ=0

BMNµFµ+p(u)GM+N−µ+p(v) , (3.9)

BMNµ =
1

2M+N+1

∑
b

(−1)N−µ+b

(
M

b

)(
N

µ− b

)
, (3.10)

Fs(u) = s!
e−u

us+1

s∑
i=0

ui

i!
, (3.11)

Gs(v) =
s!

2vs+1

[
ev

s∑
i=0

(−v)i

i!
− e−v

s∑
i=0

vi

i!

]
. (3.12)

All summations without explicit limits are bounded by the range of possible values, e.g. by
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the range of values for which the 3-j coefficients are defined in the case of Λ. These are given by

equations 3.13 to 3.16. In the case of equation 3.12, the summation of many terms of opposite

signs can lead to numerical instability. There are 3 possible outcomes: For reasonably large v,

the solution of equation 3.12 can be computed without difficulty. For smaller v, as shown in [75]

the summation can be recast into the open form given in equation 3.17. Although theoretically

an infinite series, for |v| << 1 convergence will be reached very quickly. (Using a standard EHT

parameter set the limits of 64-bit floating point accuracy are typically reached within 20 terms

for any combination of orbitals.) The final special case is for v = 0, for which both expressions

as written reduce to 0/0. This case is very common, occurring in any system with more than

one atom of the same atomic species. (Hence giving rise to overlaps for which α1 = α2.) For

this special case, equation 3.18 is used. No numerical difficulties arise for the case of small but

non-zero v, for which the sum in equation 3.17 reduces to a single term. One final source of

numerical divergence is the case of ~R approaching zero, which which this system of equations

fail. Two atoms could not approach arbitrarily closely in a real system, but there is still the case

of multiple orbitals centred on the same atom to consider. The solution to this case is trivial and

given in equation 3.19,1 but these cases need to be treated as a special case in any computation.

max(|l1 − l2|, |m1 −m2|) ≤ Λ ≤ l1 + l2 , (3.13)

0 ≤ λ ≤ l1 , (3.14)

max(|l2 − λ|, |Λ + λ− l1|) ≤ L ≤ min(|l2 + λ,Λ + l1 − λ) , (3.15)

max(0, µ−N) ≤ b ≤ min(µ,M) , (3.16)

Gs(v) =
s!

2vs+1

[
e−v

∞∑
i=s+1

vi

i!
− ev

∞∑
i=s+1

(−v)i

i!

]
, (3.17)

Gs(0) = δsmod2,1
1

s+ 1
, (3.18)

1In actuality, unlike standard atomic orbitals, the overlap between multiple Slater orbitals centred on the same
site, of different n but equal l and m is not 0. Usually, EHT calculations are not performed in which a single
atomic species has multiple orbitals of the same l and different n, so this case isn’t important. In a case where
they are used, however, the overlap should still be set artificially to 0.
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I(n1, l1,m1, α1, n2, l2,m2, α2, 0) = δn1n2δl1l2δm1m2 . (3.19)

Although it was stated that EHTransport utilises tesseral harmonics, the equations as writ-

ten are in terms of the spherical harmonics. It is preferable to recast the results into a real

form, in order to obtain real and symmetric overlap and Hamiltonian matrices at the Γ point.

Using spherical harmonics would result in complex Hermitian matrices, and the overlap matrix

is still positive definite, but the computational cost of further stages of the calculation would be

increased by as much as a factor of four. It is also desirable to know the exact real space repre-

sentations of the orbitals in use, to allow for visualisation of any real-space quantities following

a calculation. For this it is necessary to carefully define the spherical polar coordinate transfor-

mations and other manipulations to remove any ambiguity. In our case, θ = arccos(~Rz/|~R) and

φ = arctan(y/x).2 The transformation from spherical to tesseral harmonics, and hence from a

complex to a real basis set is then given by equation 3.20.

2In programming terms, this is implemented as atan2(y, x), to avoid uncertainties over quadrants.
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Ireal(m1,m2, ...) = sign(m2)(−1)l1+l2+m1+m2Ic(m1,m2, ...) where

Ic(m1,m2) =



m1 = 0,m2 = 0→ I(m1,m2)

m1 > 0,m2 = 0→ (I(m1,m2) + (−1)m1I(−m1,m2))/
√

(2)

m1 < 0,m2 = 0→ (I(−m1,m2)− (−1)m1I(m1,m2))/(
√

(2)i)

m1 = 0,m2 > 0→ (I(m1,m2) + (−1)m2I(m1,−m2))/
√

(2)

m1 > 0,m2 > 0→
(I(m1,m2) + (−1)m1I(−m1,m2) + (−1)m2I(m1,−m2)+

(−1)m1+m2I(−m1,−m2))/2

m1 < 0,m2 > 0→
(I(−m1,m2)− (−1)m1I(m1,m2) + (−1)m2I(m1,−m2)−

(−1)m1+m2I(m1,−m2))/2i

m1 = 0,m2 < 0→ (I(m1,−m2) + (−1)m2I(m1,m2))/(
√

(2)i)

m1 > 0,m2 < 0→
(I(m1,−m2) + (−1)m1I(−m1,−m2)− (−1)m2I(m1,m2)−

(−1)m1+m2I(−m1,m2))/2i

m1 < 0,m2 < 0→
−(I(−m1,−m2)− (−1)m1I(m1,−m2)− (−1)m2I(−m1,m2)+

(−1)m1+m2I(m1,m2))/2

(3.20)

One final point is that standard EHT parameter sets commonly use double-zeta orbitals,

especially for l = 2 orbitals in the transition metals. Mathematically, this is equivalent to a linear

combination of two standard orbitals, each with different α but otherwise identical (Equation

3.21). The coefficients are usually, but not always, normalised such that the overlap of the double

zeta orbital with itself is 1 (Equation 3.22, where the one of the two results in which 0 ≤ cb ≤ 1

is taken.). In the case that they’re not, the overlap is required to be less than 1, and is equivalent

to a normalised triple-zeta orbital where αc → ∞. (In fact, in many cases a single zeta orbital

with a value of ca < 1 is used, equivalent to a double-zeta orbital where αb → ∞.) There is

no need to perform the whole calculation twice, as the only α dependence is in equations 3.11

and 3.12, which only appear within the summation in equation 3.9. The result of multiple-zeta
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orbitals is a modification of B into equation 3.23.

I2ζ(..., α1a, α1b, ca, cb) = I(..., α1a)ca + I(..., α1b)cb , (3.21)

cb =
1

2
− b±

√
b2 + 4− 4c2

a where b = ca
22n+2(αaαb)

n+0.5

(αa + αb)2n+1
, (3.22)

J(M,N, p) = |~R|M+N+2p+2
M+N∑
µ=0

BMNµ

∑
i1,i2

Fµ+p(ui1,i2)GM+N−µ+p(vi1,i2)c1ic2i . (3.23)

As a first observation, although this method is valid for arbitrary l, most EHT calculations

will have a small maximum value of n and l, hence also limiting the range of m and many of

the summations. With these limits, the number of 3-j coefficients and results of equations 3.8,

3.10 and 3.11 will be heavily restricted. Since the possible values are known, they can all be

calculated beforehand and stored. This immediately removes one level of the nested summations

and removes some computational complexity, at the expense of a very small amount of extra

storage. For the case of l ≤ 2 and double precision numbers, caching the 3-j coefficients requires

9000 bytes of storage, D requires 600 bytes, F requires 5400 bytes, and B requires 6552 bytes.

Compared to the storage requirements for the Hamiltonian matrix of any non-trivial system, this

required storage is negligible.3

To improve the performance of these overlap calculations further, a few other modifications

can be made. The 3-j coefficients are always used in fixed pairs, so when generating the cache

we can save the product of each pair rather than the true values at no cost in additional storage.

In a real calculation, we always want to use all possible m values for each l, which has several

implications. Firstly it reduces the cost of the transformation to a real basis set: Whereas for the

calculation of a single real overlap it would be necessary to compute up to four complex overlaps,

these same four complex overlaps are used for the calculation of three other real overlaps. Thus

for efficiency, the overlaps are calculated in the complex basis set for all possible m1 and m2

3EHTransport actually over allocates space here to ease performing the lookups. e.g. no use is made of the
fact that in a 3-j coefficient Λ ≥ |l1 − l2|. Allocating a larger than required block ensures that accesses can be
made by a simple chain of multiply-adds, rather than requiring a more complex calculation to locate the cached
value.
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combinations and stored, and then transformed into the real basis together. We can also note

that equation 3.4 does not depend on m, and since in a real calculation all orbitals of the same

atomic species, n and l will have the same Slater coefficient, the results of equation 3.4 can be

computed once for all of 0 ≤ Λ ≤ l1 + l2, and then used for all m combinations.

The procedure is multithreaded by assigning different atoms to different threads. It is difficult

to divide them up fairly at the start of a calculation, as different atoms have differing numbers

of orbitals, and need to be overlapped with differing numbers of other atoms. (Both because of

differing numbers of neighbours, and because the symmetry of the overlap matrix means that if

we calculate an overlap < i|j > we do not want to waste time by also calculating < j|i >.) The

collection of atoms is therefore broken up into a queue of fairly small chunks, with each thread

taking a new chunk from the queue as soon as it finishes the previous. This requires a small

amount of extra bookkeeping overhead, but ensures that processors are not left idle.

The calculation of the overlap matrix is naturally an O(N2) operation where N is the number

of orbitals in the system. This reduces to O(N) with the application of a cutoff beyond which

overlaps are assumed to be zero, and appropriate ordering of data structures. For an isolated

system, this is the final overlap matrix of the system.

Periodic structures

If the system under study is periodic, further work needs to be done. Rather than computing a

single overlap matrix which holds overlaps between all atoms in the system, (where ’the system’

in the periodic case is a single unit cell in an infinite periodic lattice,) additional overlap matrices

of the same dimension are constructed, each one representing the overlap between atoms in the

original cell with each atom in a different cell. Since a cutoff distance is applied beyond which

it is assumed that overlaps between orbitals will be zero, if must also be true that for cells more

than some distance away there will be no atoms within the cell that have a non-zero overlap

with any atom in the original unit cell. This provides a limit on how many of the matrices

are required to be constructed. In the limit of a large unit cell, (i.e. one which is greater in

all dimensions than the cutoff distance,) only the nearest neighbour cells are required, giving

27 overlap matrices in total. This set of real space overlap matrices are not used directly, but

rather are summed, with each multiplied by a phase factor to generate a final matrix (Equation
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3.24). These phase factors are dependent on the point in k-space (the k-point, ~k) at which the

calculation is performed. Aside from at the Γ point, (at which the phase factor for all real space

matrices in the summation is 1,) these phase factors are complex, and hence the overlap and

Hamiltonian matrices are no longer real in general, but are still guaranteed to be Hermitian and,

and S remains positive definite.

Sij =
∑
α

Sαije
i(~k·~Rα)/mathstop (3.24)

For the Γ point, (~k = 0) and with a unit cell large compared to the distribution of atoms it

contains, (i.e. there are no overlaps even between nearest neighbour unit cells, and the number

of chosen unit cells is one,) this again reduces to the original non-periodic result. If only one of

those two conditions are true the resulting matrices are real, but in the general case they are

complex.

The k-points are input to and output from EHTransport as vectors scaled by the reciprocal

unit cell lattice vectors, (~k′i.e. as numbers between 0 and 1. The vector ~k from equation 3.24 is

calculated by permuting the x, y, z variables in

~kx = k′x

(
2π(~cy × ~cx)

~cx· (~cy × ~cx)

)
(3.25)

where ~cxyz are the cell unit vectors.

Computing the Hamiltonian matrix and charge self-consistency

The second step is the calculation of a Hamiltonian matrix. In EHT, elements of the Hamiltonian

matrix are taken to be proportional to the corresponding elements of the overlap matrix. The

diagonal elements of the Hamiltonian are made up of an empirical energy Ii parameter assigned to

each basis function added to a self-consistently calculated perturbation term. The off-diagonals

are multiplied by the average of the energy parameters of basis functions i and j. The Wolfsberg-

Helmholtz constant is not actually taken to be a constant in EHTransport, but instead is a

property of each orbital Ki, and the average of the two are used. Since these factors are all

real numbers, and since the diagonal scaling factors are symmetric, the symmetry of the overlap

matrix is maintained; i.e. the Hamiltonian matrix is real and symmetric in an isolated system or
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at the Γ point of a periodic system, and Hermitian otherwise. The Hamiltonian matrix elements

are therefore

Hii = Ii + ∆Ii

Hij =
Ki +Kj

2
Sij

Hii + Hjj

2

, (3.26)

where ∆I is a modification to the energy parameter due to charging effects. EHTransport

implements three methods of finding these perturbation parameters ∆I, or alternatively can fix

them to zero, in which case the calculation reduces back to standard non-self-consistent EHT.

The first of the three supported methods is based on standard SC-EHT, as described previously.

The other two are more specialised, and are able to include the effects of a bias across the system.

The standard SC-EHT implementation uses a Mulliken population analysis to construct the

population matrix. In a departure from the original, it adds a term quadratic in the atomic

charges, as well as the linear term

Hii = Ii + αi∆Qi + βi∆Q
2
i , (3.27)

where ∆Qi is the excess charge on the atom to which orbital i belongs, calculated by using

the Mulliken population analysis to count up the number of electrons on the atom, and then

subtracting off the number of electrons that would be expected if the atom was isolated and

neutral. The parameters α and β are chosen per orbital, as opposed to per atom. It is the

simplest and most efficient of the available self-consistent methods, but does not allow for the

application of a bias across the system4.

The Mulliken population analysis is carried out by first solving the Hermitian-definite gen-

eralised eigen-problem to obtain the eigenvalues and eigenvectors. The available states are filled

up according to the number of electrons in the system

4An additional potential dependent on the coordinates of each atom could be added, but this would fail to
account for screening effects.
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Qi = Pii

P = SD

Duv =
n∑
i=0

ZuiZ
†
viF (Ei)

S ~E = ZH ~E ,

(3.28)

where Qi is the occupation of orbital i and F (Ei) is the occupation of a level with energy Ei: 1

if Ei < Ef or 0 otherwise.

The statement that ‘available states are filled up according to the number of electrons in the

system’ glosses over a fairly important problem, common in this type of self-consistent scheme.

It is perfectly possible to fill up states from the lowest energy and work your way upwards until

you run out of electrons as described above, but doing so is only practical for systems with a

large HOMO-LUMO gap. If the gap is smaller then the charge redistribution, and resulting

change in the value of ∆I, between two iterations can cause two states near the Fermi level to

cross, and hence on the next iteration one or two electrons will jump from one to the other. The

newly occupied state will likely increase in energy in the next iteration, causing the states to

cross back, and the charge to reverse. This will continue to flip-flop forever, destroying any hopes

of reaching convergence with reasonable mixing parameters. This issue is solved by filling up

states around the Fermi level with non-integer numbers of electrons. In EHTransport, the usual

Fermi function is used, with the Fermi level picked to fix the amount of charge in the system

(usually at zero.). With this modification to F (Ei), the crossing of energy of two nearby levels

has little effect on the occupancy of each level, removing the sudden shifts from the system. The

temperature T is somewhat artificial, and depending on the behaviour of the system under study

around the Fermi level, any temperature from 0K for large gap insulators to 1000K for metals

may be reasonable. The Fermi function is

f(Ei) =
2

e(Ei−EF )/kT + 1
. (3.29)

Whereas the standard SC-EHT computes a population matrix via Mulliken population anal-

ysis, it is also possible to compute it using NEGF, which allows for bias across the system and
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incorporates the effects of the leads, but has a much greater computational workload. From the

population matrix a set of atomic charges is computed, and from there the procedure is the same

as before. The exact NEGF procedure overlaps almost completely with that of calculating the

DOS, and so is described in a later section. Although code exists for this procedure in EHTrans-

port, it is not well tested and is currently disabled: Early testing showed that the speed penalty

was too severe to mesh with EHTransport’s design goals.

In the final method, a charge on each atom is computed via Mulliken population analysis

as in standard SC-EHT. Rather than assuming a polynomial relationship between these charges

and ∆I, a real-space charge distribution is created by placing a function with a Gaussian radial

component and a constant angular component on top of each atom in the system. The Poisson

equation is solved in three dimensions, using boundary conditions that fix the potential at all

points along the boundary of the unit cell. In the direction of conduction, the potential is fixed

at ±V/2, and in the other directions −v/2 + z(v/zmax). If the system is periodic, the boundary

conditions in directions orthogonal to conduction are updated at each step, setting the potential

at each point on the boundary to the average of the point directly next to that boundary and the

point next to the boundary on the opposite side of the cell. The solution of Poisson’s equation

gives us a potential at each grid point, and the ∆I values are taken to be the potential at the

atomic sites, linearly interpolated from the eight neighbouring grid points. The efficient Poisson

solver in the Intel MKL library was employed for carrying out this calculation, but carries the

restriction that the unit cell must be orthogonal. Since a single Gaussian basis function is used

for each atom this setup does not allow for polarisation of the charge around an atom, but it

does allow for charge rearrangement between atoms, and for screening effects. This method was

developed in [63].

Whatever the method of calculating ∆I, using the output of one cycle directly as input to the

next will rarely reach a state of convergence. Instead, it is necessary to ‘mix’ the results of each

cycle. EHTransport employs a linear mixing scheme on the atomic charges, initially assuming

all atoms are uncharged, thus the change in the excess charge from one step to the next is given

by

~∆Qn+1 = λ ~∆Qnew + (1− λ) ~∆Qn . (3.30)

This has the advantage over mixing the Hamiltonian that there is only one vector of charges
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regardless of the system or number of k-points, and it is a single vector rather than a matrix.

More advanced schemes exist than linear mixing, and can in general reach a given level of

convergence with fewer steps. A parameter free version of Pulay mixing guaranteed to reach

convergence if a set of assumptions hold [76] was implemented, but disabled after testing showed

worse convergence behaviour than straightforward linear mixing. A more standard Pulay mixing

scheme has yet to be implemented.

Like the overlap matrix, the calculation of a single Hamiltonian matrix is naturally an O(N2)

operation, reducing to O(N) if a cutoff has been applied to the overlap matrix and the matrices

are stored in a sparse format. For a non-self consistent EHT calculation the constant prefactor of

this operation is significantly smaller than that of the overlap matrix. A self-consistent calculation

makes it difficult to gauge complexity, as it is not possible to predict beforehand the number of

iterations that will be required to reach any desired convergence criteria. We can at least look at

the complexity of calculating the energy perturbations for each orbital: for standard SC-EHT,

the limiting step is the calculation of the occupied eigenvalues and eigenvectors of the system,

which is an O(N3) operation. There is also a matrix multiplication involved, which although

mathematically O(N3) when computed by the naive algorithm5 can be reduced to O(N2) by

noting that only the diagonal elements of P are required. (Since Z is not Hermitian, or even

sparse, it cannot be reduced to O(N).) Using NEGF requires further matrix maths, again with

a complexity of O(N3), but which also needs to be repeated at several energy points to obtain

a usable sample, greatly increasing the computational cost compared to standard EHT. For the

Poisson based scheme, assuming that there is a linear relationship between the number of atoms

in a system and the volume of the unit cell, construction of the real space density scales as O(N2)

where N is the number of atoms in the system rather than orbitals. In general, calculation of

the overlap matrix is the dominating step for a non self-consistent calculation, and calculation

of the Hamiltonian matrix elements dominates in the self-consistent case.

Other features

For the lead systems, an estimate of the Fermi level is required. For this the generalised eigenvalue

problem is solved for the eigenvalues. A specialised method is available to perform this calculation

5In fact, for large matrices MKL employs a more complex algorithm with a complexity between O(N2) and
O(N3).
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efficiently, taking advantage of the properties of the matrices. (i.e. that they are both either real

and symmetric or Hermitian, depending on periodicity, and that the overlap matrix is positive

definite.) The eigenstates are filled in ascending order up to the number of electrons in the

(neutral) system, and the Fermi energy is taken to be the average of the highest occupied level

and the lowest unoccupied one.

This procedure is exactly equivalent to the electron counting method of the Mulliken pop-

ulation analysis at zero temperature. For this reason, the same code is used for both, and the

previously described finite temperature method can be applied here to give a Fermi level estimate

that is not exactly at the midpoint between the HOMO and LUMO. As previously noted though,

this temperature procedure is somewhat artificial, and the predictions of where the Fermi level

lies would not be accurate.

Other optional outputs of the EHT module include the DOS of the system, and the PDOS

projected onto a user-defined subset of the orbitals used in the calculation. The initial procedure

for this is identical to the Fermi level computation; the generalised eigenvalue problem is solved,

but this time both eigenvalues and eigenvectors are required. The total DOS is taken to be a

summation of a set of Gaussian functions centred on each eigenvalue

DOS(E) =
1

b
√

2π

∑
i

e(E−Ei)2/(2b2) , (3.31)

where b is a user defined broadening factor and the summation is over each eigenvalue in the

basis set used in the EHT calculation. To compute the density of states projected onto a given

orbital j, an additional weighting term cij is added.

PDOSj(E) =
1

b
√

2π

∑
i

cike
(E−Ei)2/(2b2) . (3.32)

The coefficients cij are computed in manner similar to the Mulliken population analysis in equa-

tion 3.28, with the exception that the summation over eigenvalues is not performed, leading to

a set of occupations per basis set function and per eigenstate. The PDOS is then summed over

the orbitals of interest, which may be an atom, all atoms of a given species, all atoms making

up a specific part of the system under study, or so on.

EHTransport is also capable of outputting band structures. Plotting the band structure of
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a bulk material is a useful method of checking the EHT parameters, especially given that many

sets of EHT parameters are calculated by band structure fitting in the first place. Obviously,

a band structure plot can only be made for a periodic system. The procedure involves nothing

new that has not already been done. Each band is a straight line in k-space, usually between

two high symmetry points. A set of points is chosen equispaced along the line, and overlap and

Hamiltonian matrices are calculated at each of these points. The generalised eigenvalue equation

is solved for each Hamiltonian, but only for the eigenvalues and not the eigenvectors, which

improves computational efficiency. The eigenvalues are plotted out for each point. It must be

noted that this procedure does not account for the crossing of bands: EHTransport only outputs

the eigenvalues in ascending order, so a straightforward plot will not show any crosses. Because

there may be a high number of k-points involved in making a good quality plot of the band

structure, and because the selection of k-points required for making such a plot may not be a

good representation of the overall system, the full self consistent procedure is not followed using

the k-points in a band structure calculation. Rather, a self consistent calculation is carried out

using a separate selection of k-points, and the resulting charges from this initial calculation are

fixed for the band structure calculation.

Another available output is the partial charges on each atom. If the original EHT calculation

was self consistent, the charges from the final iteration of the self consistent loop will already be

available, and can be supplied for no additional computational cost. If the original calculation

was not self consistent, EHTransport will perform a Mulliken population analysis to obtain the

charges.

EHT parameters

Since EHT is a semi-empirical theory, it depends on a set of parameters that must be chosen

prior to performing a calculation. Commonly used values for the Slater coefficients and uncharged

energy parameters exist and include the Hoffman6, Müller7 and Cerda [82] parameter sets.

Parameters describing the energy changes due to charge transfer do not have pre-existing

well-known and tabulated values, and are calculated from a run of all-electron DFT calculations

6Although not tabulated in a single publication, these have been used in e.g. [77, 78]
7Also not available from a single publication, but tabulated as part of the distribution of YAeHMOP 2.0, and

based on work in [79–81]
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Species Orbital I (eV) αa ca αb cb K

H s -13.600 1.300 1 NA 0 1.75
C s -21.400 1.625 1 NA 0 1.75
C p -11.400 1.625 1 NA 0 1.75
N s -26.000 1.950 1 NA 0 1.75
N p -13.400 1.950 1 NA 0 1.75
O s -32.300 2.275 1 NA 0 1.75
O p -14.900 2.275 1 NA 0 1.75
F s -40.000 2.425 1 NA 0 1.75
F p -18.100 2.425 1 NA 0 1.75
P s -18.600 2.122 1 NA 0 1.75
P p -14.000 1.827 1 NA 0 1.75
S s -20.000 2.122 1 NA 0 1.75
S p -11.000 1.827 1 NA 0 1.75
Fe s -9.100 1.900 1 NA 0 1.75
Fe p -5.320 1.000 1 NA 0 1.75
Fe d -12.600 5.350 0.5505 2.000 0.6260 1.75
Zn s -12.410 2.010 1 NA 0 1.75
Zn p -6.530 1.700 1 NA 0 1.75

Au (Chain) s -10.929 2.602 1 NA 0 1.75
Au (Chain) p -5.550 2.293 1 NA 0 1.75
Au (Chain) d -12.605 2.292 0.596 NA 0 1.75
Au (Bulk) s -12.134 2.316 0.603 NA 0 2.3
Au (Bulk) p -6.740 1.745 0.627 NA 0 2.3
Au (Bulk) d -14.026 2.327 0.376 5.445 0.794 2.3

Table 3.1: The parameter set used for all EHT calculations in this thesis, excluding the self consistent
energy corrections.

using the SIESTA subcomponent ATOM. The procedure is to take a single isolated atom and

tabulate how the Kohn-Sham energies of each orbital vary with the atomic charge. The range

of charge is somewhat limited; a complete electron can be removed from the system, but only a

fraction can be added, as the procedure used by ATOM fails if the eigenvalue of any occupied

state becomes positive, but there is more than sufficient range to compute a best fit. From the

data either a best fit second order polynomial can be calculated, or else a linear fit can be made

at zero charge for systems where the charge on each atom remains close to zero. The second

order polynomial provides a very close fit to the results, so further orders are not needed. There

are separate values for each l quantum number; i.e. one for each of the s, p and d orbitals.

One consideration as already mentioned previously is that the original non-self consistent

values have some level of charging effects ’built in’; it is recognised that some atoms are typically
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Figure 3.1: A plots of orbital energy against excess charge for the valence orbitals of a single isolated
atom. From left to right and top to bottom, the atomic species are gold, carbon, hydrogen and iron.
Over the range shown, the curves are very close to quadratic.

charged in molecules, and to some extent the standard uncharged ionization energy parameter for

non-iterative EHT reflects this. Thus the ’best’ uncharged energy parameters may differ between

the self-consistent and non-self-consistent cases. New values could be computed to match the

NEGF density of states to the Transiesta results.

3.2.3 The NEGF module

Input to the NEGF calculation is a set of 3 overlap and Hamiltonian matrices, to represent the

scattering region, and the left and right leads, along with the lead Fermi levels. If no right lead

data is given, it is assumed to be identical to the left lead. The lead matrices must represent

two principal layers, and must have a number of elements no greater than that of the scattering

region. (The result of this constraint is that no orbital in the scattering region is coupled to both

leads, which allows some simplification of the required equations.) The right hand lead overlap
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Species Orbital αi(eV perelectron) βi(eV perelectron
2)

H s -11.249 -2.454
C s -10.321 -1.896
C p -9.874 -2.024
N s -12.096 -2.026
N p -11.665 -2.140
O s -13.853 -2.072
O p -13.424 -2.186
F s -15.582 -2.115
F p -15.147 -2.229
P s -8.433 -0.979
P p -7.853 -0.963
S s -9.487 -0.994
S p -8.915 -0.963
Fe s -7.590 -1.221
Fe p -5.199 -3.229
Fe d -12.113 -2.197
Zn s -7.100 -1.142
Zn p -5.489 -1.412
Au s -6.945 -0.506
Au p -4.943 -0.990
Au d -7.807 -0.633

Table 3.2: The computed parameters αi and βi from equation 3.27 for all considered atomic species,
using a quadratic best fit.

and Hamiltonian matrices may be omitted. If so, it is assumed that both leads are identical, and

the left hand matrices are replicated. This allows for some further optimisation.

In an NEGF calculation at an energy E, the first step that is required is the calculation

of the self energy matrices (and hence broadening matrices) of each lead. There are several

available methods of extracting these self energy matrices. EHTransport uses an iterative block

diagonalisation procedure [34], at an energy taken to be E±V/2 + δi where V is the bias across

the scattering region to allow for the inclusion of finite bias, and δi is the same small complex

part as in the scattering region calculations. First a set of four matrices, vab, are calculated.

v00 = v11 = (ESnn −Hnn)†

v10 = ESnmij −Hnm
ij

v01 = (ESnmij −Hnm
ij )†/mathstop

(3.33)
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These are then used to compute a new set of matrices v
′ab, defined as

v
′00 = v00 − v01(v11)−1v10

v
′11 = v11 − (v01(v11)−1v10 + v10(v11)−1v01)

v
′10 = (−v10)v11)−1v10

v
′01 = (−v01)v11)−1v01 .

(3.34)

Equations 3.34 are then iterated, using the new set of v
′ab matrices as the vab input matrices

for the next cycle. With each iteration, the matrices v
′10 and v

′01 will reduce in magnitude.

EHTransport continues the iteration until the largest element of v
′01 is less than 10−6. The

matrices v can then be used to compute the final self energy Σ and broadening matrices Γ of

the lead

Σ = v01(v
′00)−1v10

Γ = i(Σ− Σ†) .

(3.35)

Note that in equation 3.35 it is the original v01 and v10 that are used, and not the final set. At

this point, the matrices v′10 and v′01 are, to within some small tolerance, zero.

The rest of the procedure used to compute the required Green’s function matrix is as described

in chapter two. First the Green’s function of the scattering region is calculated, and the self

energies Σ of the leads subtracted off. Finally the scattering region Green’s function is multiplied

by the lead broadening matrices Γ. The current is calculated by computing a transmission

spectrum across a range of energies from a few kBT below the lower of the two adjusted lead Fermi

energies up to a few kBT above the greater of them, and then integrating over the transmission

multiplied by the difference in the Fermi functions of each lead. The DOS can also be calculated

by a method similar to that of the transmission.

When NEGF is being used for charge-consistency in the EHT calculation, the same input of

3 sets of matrices are required. The charge-consistency applies only to the scattering region; the

leads are fixed. As the lead self energies and broadening matrices are used in the same way as in
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Figure 3.2: The contour of integration followed when computing the density matrix of the scattering
region via the Green’s function method.

the transmission calculation, and the lead Hamiltonians are fixed, they are calculated only once

in the first SCF loop and then saved. In this case there is no obvious lower limit to the integration

so a point somewhere below the lowest eigenvalue of the scattering Hamiltonian is taken. Since

unbroadened states that don’t contribute to transport are important, the integration path follows

a semicircle into the imaginary axis, and only returns to the real axis at the lower of the two

lead Fermi energies, above which the Cauchy integral theorem is not valid. This procedure will

pick up on unbroadened states that exist below the Fermi levels of both leads, but will miss

out states that are unbroadened and that exist between the two Fermi energies of the leads. A

more complicated procedure is available to account for them [64], that performs the integration

between the two lead Fermi levels on a line offset from the real axis, above some number of the

poles that lie on the imaginary axis, but this has yet to be implemented.

D =
1

π

∫ min(EfL,EfR)

−∞

(
GΓLG† + GΓRG†

)
dE+

1

π

∫ max(EfL,EfR)

min(EfL,EfR)

(
GΓLG†F (E − EfL) + GΓRG†F (E − EfR)

)
dE

pi =Dii .

(3.36)

The NEGF module has no intrinsic support for periodicity; it doesn’t accept a list of k-points

as input, but only individual overlap and Hamiltonian matrices . Rather, it is the responsibility

of the input module to call the NEGF procedure multiple times, once for each k-point, and

to make an appropriate summation of the results accounting for the k-point weightings. It is

important that the x and y components of the k points match up between the leads and the
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scattering region. (Since the system is not periodic in the z direction, (the direction in which

conduction occurs in EHTransport,) the z component of each k-point must always be zero) Two

forms of the NEGF module were written; one that assumes real and symmetric input matrices,

and hence that ES − H is complex and symmetric, and one that assumes complex Hermitian

input matrices. In this latter case, ES−H has no special properties.

For efficiency, the self energy matrices of the leads may be cached to the hard drive. This is

useful if the same leads are to be used with several different systems, since the computation of

the self energy matrices can take of the order of half of the total NEGF calculation time in cases

where the lead contains many orbitals. (e.g. the case of a molecule trapped between bulk gold

contacts.) This can take a very large amount of disc space if a lot of energy points are desired;

usually many gigabytes.

Bond currents

The NEGF formalism also provides a means of computing ’bond currents’ [41, 42]. These are

somewhat abstract quantities rather than a precise measure of an actual current flowing through

individual molecular bonds, but still provide a method of identification of the sections of a

molecule which are most important to current flow. They also give some idea of the type of

conduction which is taking place. (i.e. whether through s or p orbitals.)

The bond currents for the left hand lead Bl are given by

Bl ij = 2Im(HijAl ji) , (3.37)

where Al is given by

Al =
√

S
−1

G′Λ′lG
′†√S

−1

Λl =
√

S
−1

Γl
√

S
−1

G′ =
√

SG
√

S .

(3.38)

The bond current matrix is real and antisymmetric. (i.e. Bl = −BT
l ) An equivalent bond

current matrix can be defined for the right contact by replacing the left hand lead broadening
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matrix Γl with the equivalent right hand lead matrix Γr. For a symmetrical system Bl = BT
r ,

although this is not true in general.
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Chapter 4

Choice of Parameters and Testing of

EHTransport
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4.1 Introduction

With any new code, it’s vitally important to thoroughly test all aspects of it to ensure correctness.

Where a code contains configurable parameters, these also need to be carefully chosen in order

to give meaningful results. In this chapter choices are made for the configurable settings within

SIESTA, allowing it to be used for comparisons with EHTransport. The EHT and NEGF modules

of EHTransport are then tested separately in turn. Finally some simple systems are run in

EHTransport to test the functioning of the code as a whole.

4.2 Choice of SIESTA Parameters

As the package name ‘Spanish Initiative for Electronic Simulations with Thousands of Atoms’

hints, SIESTA is designed to handle very large systems1, via a linear scaling DFT algorithm [83].

Unfortunately this algorithm does not result in the construction of a suitable Hamiltonian for use

with the Green’s function equations, and so is not used for any calculations in this thesis. To give

correct results, it also relies on being able to pick out a energy at the start of a calculation which

sits within the bandgap at the start of a calculation and remains there throughout the whole self

consistent procedure. This makes it completely unsuitable for materials with no bandgap, such

as metallic leads, and very difficult to use for materials without a substantial gap.

SIESTA uses a local basis set, constructed numerically by placing the psudopotential inside a

spherical infinite well and computing the resulting wavefunctions. The size of the well is chosen

such that the difference between the energy of the ground state of the system and the first excited

state is equal to a certain pre-chosen value. The whole calculation takes place with this basis set,

with molecular orbitals becoming linear combinations of them, so although DFT is not formally

a LCAO theory in and of itself, the SIESTA implementation is restricted to LCAO solutions.

The effect of this is offset by the optional use of multiple-zeta and polarisation orbitals, to allow

for additional degrees of freedom in the basis set.

Despite being an ab-initio method, there are still several choices that need to be made when

performing a DFT calculation. These range from the choice of exchange-correlation functional

1’Large’ here is used comparatively with other DFT packages. Whereas SIESTA may be able to cope with a
few thousand atoms in a realistic time frame, compared to a few hundred for an N3 scaling program, a classical
empirical program may be able to process several orders of magnitude more.

58



and basis set, to a number of adjustable parameters which are a a result of the individual

implementation of DFT rather than the underlying theory. Before use in real systems, it’s

important to find appropriate values that give acceptable accuracy for the systems under study

without sacrificing computational efficiency. For packages using a localised basis set, previous

results [84] suggest that a double-zeta polarised (DZP) basis set provides accurate results for the

valence orbitals which will be important to conductance. For the choice of exchange-correlation

functional, although SIESTA implements a range of functionals, only psudopotentials built for

use with either the LDA or PBE functionals are supplied with the package. Most of the work

here uses the PBE functional, which offers moderate improvements in computed ground state

energies compared to the LDA [85] for little extra computational cost.

For SIESTA, the remaining choices that effect the quality of results consist of the number of

grid points on a real space mesh upon which some calculations are performed, and the number

of k-points used in a periodic calculation. The real space mesh is chosen based on an energy

cutoff, where higher energies correspond to a finer mesh2. The k-points are chosen by specifying

a Monkhorst-Pack 3 × 3 matrix and a 3 element displacement vector [66]. When choosing

simulation parameters, the convergence of the total system energy is often used as a test. Some

tests on small systems, consisting of bulk gold and sodium, were made to examine the effects of

these choices (Figures 4.1 and 4.2).

Figure 4.1: Convergence of system energy while varying the real space mesh energy cutoff (left) and
k-point mesh density (right) of a bulk sodium system in SIESTA. For k-point calculations, the Monkhorst-
Pack matrix had diagonal elements n and off-diagonal elements 0. The x axis values correspond to n.

2The basis set chosen in plane-wave based DFT is also often chosen based on an energy cutoff, and this is often
the first thought when an energy cutoff is discussed in the context of DFT. The SIESTA cutoff has a different
meaning however, and the cutoff energy is typically higher.

59



Figure 4.2: Convergence of energy while varying the real space mesh energy cutoff (left) and k-point
mesh density (right) of a bulk gold system in SIESTA. For k-point calculations, the Monkhorst-Pack
matrix had diagonal elements n and off-diagonal elements 0. The x axis values correspond to n.

Bulk metal primitive unit cells will require the most k-points of any system to accurately

model, and any selection which can solve these problems reliably should be sufficient for any

of the other systems under study, which will primarily involve gold contacts and carbon based

molecules, and significantly larger unit cells. An 8× 8× 8 Monkhorst-Pack mesh was sufficient

for obtaining a converged system energy in the sodium and gold bulk systems. More may be

required to obtain e.g. an accurate DOS, but it is not necessary to perform the entire self-

consistent calculation with the additional k-points. The real space mesh has a much smaller

effect on results, and the smaller than default value of 100 Rydburg appears sufficient for the

system energy to converge. It does have effects beyond the energy output however; e.g. smaller

cutoffs make it markedly more difficult to get a converged density matrix. For most calculations

the mesh cutoff is left at Transiesta’s default of 450 Rydburg.

Additional common configurable parameters include mixing settings such as the number of

Pulay matrices to use in mixing and the mixing weight. These do not aim to change the final

result3, but do affect the efficiency with which the result is reached. If the mixing parameter

is too large for a system, a converged density matrix may never be obtained regardless of the

number of iterations. In this thesis these settings have been left at their default values where

possible, and the mixing weight has been decreased where required to ensure convergence.

A final option is the toleration for error in the density matrix. This is specified as a maximum

3Although they do not change the global minima of the system, it is possible to get the self consistent loop
trapped in a local minima, resulting in differing final results.
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alteration of any element of the density matrix between one self consistency loop and the next.

If after a loop no element of the density matrix has changed by more than this amount, SIESTA

assumes that convergence has been reached, and the self consistency loop ends. This option has

no effect on the value of the converged density matrix of a system, but does affect how close

SIESTA will try to get to that answer before giving up. In this thesis the slightly smaller than

default value of 5× 10−5 of SIESTA’s internal units has been used throughout.

With the SIESTA parameter set chosen, it can now be used to aid in the testing of EHTrans-

port.

4.3 Testing of EHTransport’s EHT module

4.3.1 Overlaps of Slater orbitals

The first section of an EHT calculation is to calculate the overlap matrix S, which is done using

the analytic method already outlined. It is important not only that these overlaps should be

correct, but that the real space representations of the orbitals are known, or the results of the

calculation could not be used to make real space plots of such quantities as the wavefunctions or

electron density. The test for orbitals is therefore that for any given set of quantum numbers and

positions, the result must be identical to a straightforward volume integral, in both magnitude

and sign. As a further check, the result of {i|j} should be equal to {j|i}4. The equations of the

analytic form are not obviously symmetric at first glance.

Volume integrals and analytic overlaps were calculated for all valence l, m and n for a pair

of gold atoms with separations of ~R = (0, 0, 1), (1, 1, 0) and (1, 2, 3) Bohr. The orbitals were

double-zeta, with the coefficients and exponents taken from the Cerda parameter set [82]. The

volume integral was carried out by explicitly computing the value of the orbitals at all points on

a discreet grid, and multiplying ad summing the results. The grid was cubic, centred on the point

midway between the two atoms, of side length 16 Bohr and a constant grid point separation of

0.08 Bohr, which is large enough to capture the bulk of the Slater orbitals and fine enough to

provide an accurate result.

The analytic results are correctly symmetric. In terms of magnitude, there was agreement

4Actually {j|i}∗, but as we’re working with the real form of the spherical harmonics, the complex conjugation
has no effect.
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between the analytic and integral expressions to within 4 significant figures. (Table 4.3.1) The

difference is due to the naive implementation of the volume integral; finer and larger grids

converge towards the analytic result. Most results which are known to be 0 from symmetry are

exact in the analytic form. There was a mismatch of sign between some overlaps between the

analytic and integral results. It was found that the analytic result needed to be multiplied by an

additional term of −1li+lj+mi+mj to provide a correct match to the signs of the volume integral

results. Finally, for the case of non-zero l1 and l2 some overlaps that should have been exactly

zero gave small but nonzero (≈ 10−17) results. These anomalous results were also antisymmetric

({i|j} = −{j|i}. This was traced to an error in cancellation of the sums of numbers of opposite

signs, and to ensure the overlap matrix remains symmetric and positive definite all results below

10−15 are clamped to zero.

ni li mi ni li mi {i|j} {j|i} Integral
5 0 0 5 0 0 3.137308× 10−1 3.137308× 10−1 3.137308× 10−1

5 0 0 5 1 0 1.050678× 10−1 1.050678× 10−1 −1.050674× 10−1

5 0 0 5 1 1 −6.433546× 10−18 6.433546× 10−18 −2.621861× 10−18

5 1 0 5 1 0 3.264015× 10−1 3.264015× 10−1 3.263668× 10−1

5 1 0 4 2 0 2.181145× 10−2 2.181145× 10−2 −2.181152× 10−2

5 1 1 5 1 0 1.967868× 10−18 −1.967868× 10−18 −7.869261× 10−19

4 2 2 4 2 1 2.912583× 10−17 −2.912583× 10−17 −8.677949× 10−18

Table 4.1: A selection of overlaps of double-zeta Slater orbitals separated by 1 Bohr in the Y
and Z directions. The sign correction has not been included.

4.3.2 EHT tests of small molecules

The simplest test of the EHT code is a single hydrogen atom. Since the hydrogen atom is

represented by a single s-orbital, the overlap and Hamiltonian matrices have dimensionality

1 × 1, and the solution is trivial. S = 1 and H = IHydrogen, so there is a single solution of the

eigen-problem of E = IHydrogen, or -13.6 eV, and Z = 1. This system was run through the EHT

code with periodicity and self-consistency disabled, to ensure that the solution was indeed -13.6

eV. SIESTA in this case predicts a total energy of -13.4 eV; since hydrogen has no core electrons

the approximation of the core with a psudopotential doesn’t have such a great effect, but it does

still prevent a perfect result.

As the next simplest possible test, an additional hydrogen atom can be added at varying
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distances from the first, for a total of two orbitals in the system. The disassociation energy is

unfortunately not accessible under EHT, and the only information contained in the two eigenval-

ues of this system is the HOMO-LUMO gap, which will be a great overestimate due to the lack of

higher energy unoccupied orbitals in the calculation. The only check possible here is simply that

the two eigenvalues both tend towards -13.6 eV at large separations, and that they split apart

as the molecule is formed. This does indeed happen, with EHT predicting a HOMO-LUMO gap

at the equilibrium separation of 21.8 eV compared to 12.7 eV in SIESTA. The disassociation

energy is an accessible quantity in SIESTA, as the zero point of energy is fixed if the cell size and

the number and types of atoms in the system are also fixed. Using a bond length of 1.40 Bohr,

it predicts a disassociation energy of 4.53 eV, which compares very well with the experimental

value of 4.52 eV.

Figure 4.3: The HOMO and LUMO energies of a hydrogen molecule as the interatomic spacing is varied.

For the third test, a benzene molecule was geometry optimized in SIESTA, and then the

eigenvalues of the optimized molecule computed with SIESTA and EHTransport. There is fairly

good match up between the two for the lower energy levels, also extending to the first three

unoccupied orbitals before the effects from the limited basis functions start dominating. That

results don’t instantly decay to the point they are no longer useful as soon as the Fermi level

is reached is important for conductance calculations, as the transmission is needed both above

and below the Fermi level. (That there are vaguely accurate states above the Fermi level is a

trait of the carbon atoms; With only 4 electrons in their outer band, they have one completely

unoccupied p orbital. Using molecules with greater p-orbital occupancy will shift the Fermi level
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up towards the inaccurate levels.) That the results do rapidly lose accuracy does limit the voltage

that can be usefully simulated though. SIESTA predicts a HOMO-LUMO gap of 5.16 eV, while

EHT predicts a somewhat smaller gap of 4.42 eV. Both of these are within similar range of the

experimental value, which is approximately 4.72 eV [86].

Figure 4.4: The energy levels of a benzene molecule computed with EHTransport and SIESTA. The two
diverge significantly above the Fermi level.

4.3.3 Mulliken analysis tests - Tetrafluoromethane

Another important part of the EHT calculations is the Mulliken population analysis, and hence

the self consistency loop. To check this, the Tetrafluoromethane (CF4) molecule was examined.

Fluorine has an extremely high electronegativity, and the bonds it forms with carbon have a

sizeable amount of ionic character. A single molecule of CF4 (using a bond length of 1.344

Angstrom) was tested with both SIESTA and EHTransport. In this case, the high valence

occupation of the fluorine pushes the Fermi level up, and there are no good states above the Fermi

level given by EHT; it predicts a huge band gap of over 20eV. Experimentally, CF4 has a partial

charge on the carbon atom of +0.76 electrons [87]. The self consistent EHT calculation predicts

+0.69, which is in good agreement with the experimental value. To highlight the importance

of self consistency, (at the least, when examining the Mulliken charges in a system,) performing

a Mulliken analysis without enabling self-consistency gives a partial charge on the carbon atom

of +2.55. Interestingly, the Mulliken population analysis routine built into SIESTA suggests a

partial charge on the carbon of -0.476; that is, that the carbon atom has acquired charge from
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the fluorine. SIESTA’s Mulliken population analysis routine appears to not be functional, at

least in the version used, and for this calculation type, and is not used further in this thesis.

4.3.4 Tests of EHTransport’s Monkhorst-Pack implementation

To test the Monkhorst-Pack code for generation of k-points, a set of k-points generated for

a given grid by EHTransport can be compared to those of SIESTA. Since matching up of k-

points is important for comparisons between EHTransport and SIESTA, for the same unit cell

dimensions and Monkhorst-Pack matrix and displacement vector, the same set of k-vectors should

be generated by both applications. The comparisons should cover the cases of non-Cartesian

unit cells, but non-diagonal Monkhorst-Pack matrices are not needed, and the only displacement

vectors considered are (0, 0, 0) or (0.5, 0.5, 0.5). In all tested cases EHTransport matched results

with SIESTA exactly (Tables 4.2 and 4.3. SIESTA was, however, able to identify additional

exploitable symmetry that EHTransport could not discover, and so in some cases could locate

and merge additional equivalent k-points to end up with fewer in total than EHTransport. All

EHT and NEGF calculations in EHTransport scale linearly with k-point count, so this additional

merging stage could result in a speed advantage of the order of 20% for the some systems.

EHTransport SIESTA
x y z weighting x y z weighting

0.000000 0.000000 0.000000 0.125000 0.000000 0.000000 0.000000 0.125000
3.141593 0.000000 0.000000 0.125000 3.141593 0.000000 0.000000 0.125000
0.000000 3.141593 0.000000 0.125000 0.000000 3.141593 0.000000 0.125000
3.141593 3.141593 0.000000 0.125000 3.141593 3.141593 0.000000 0.125000
0.000000 0.000000 3.141593 0.125000 0.000000 0.000000 3.141593 0.125000
3.141593 0.000000 3.141593 0.125000 3.141593 0.000000 3.141593 0.125000
0.000000 3.141593 3.141593 0.125000 0.000000 3.141593 3.141593 0.125000
3.141593 3.141593 3.141593 0.125000 3.141593 3.141593 3.141593 0.125000

Table 4.2: A sample set of k-points generated for a simple cubic unit cell of side length one Bohr,
a Monkhorst-Pack matrix with diagonal elements (2, 2, 2), zero off-diagonal elements and a zero
displacement vector.

4.3.5 Poisson solver

The Poisson solver code is intended for use in the case of a bias across the system, to account

for effects such as screening. The interesting output here is the potential throughout the cell.
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EHTransport SIESTA
x y z weighting x y z weighting

0.000000 0.000000 -2.094395 0.037037 0.000000 0.000000 -2.094395 0.074074
-1.047198 1.047198 -1.047198 0.037037 -1.047198 1.047198 -1.047198 0.074074
-2.094395 2.094395 0.000000 0.037037 -2.094395 2.094395 0.000000 0.074074
1.047198 -1.047198 -1.047198 0.037037 1.047198 -1.047198 -1.047198 0.074074
0.000000 0.000000 0.000000 0.037037 0.000000 0.000000 0.000000 0.037037
-1.047198 1.047198 1.047198 0.037037
2.094395 -2.094395 0.000000 0.037037
1.047198 -1.047198 1.047198 0.037037
0.000000 0.000000 2.094395 0.037037
1.047198 1.047198 -3.141593 0.074074 1.047198 1.047198 -3.141593 0.074074
0.000000 2.094395 -2.094395 0.074074 0.000000 2.094395 -2.094395 0.074074
-1.047198 3.141593 -1.047198 0.074074 -1.047198 3.141593 -1.047198 0.074074
2.094395 0.000000 -2.094395 0.074074 2.094395 0.000000 -2.094395 0.074074
1.047198 1.047198 -1.047198 0.074074 1.047198 1.047198 -1.047198 0.074074
0.000000 2.094395 0.000000 0.074074 0.000000 2.094395 0.000000 0.074074
3.141593 -1.047198 -1.047198 0.074074 3.141593 -1.047198 -1.047198 0.074074
2.094395 0.000000 0.000000 0.074074 2.094395 0.000000 0.000000 0.074074
1.047198 1.047198 1.047198 0.074074 1.047198 1.047198 1.047198 0.074074

Table 4.3: A sample set of k-points generated for a FCC unit cell of side length one Bohr, a
Monkhorst-Pack matrix with diagonal elements (3, 3, 3), zero off-diagonal elements and a dis-
placement vector of (0.5, 0.5, 0.5). SIESTA is able to uncover additional symmetries to identify
equivalent k-points, and hence merge four pairs of k-points together.

With just a single atom present, (Figure 4.5a) there are no additional orbitals available in

which the charge can redistribute, resulting in no charge sources in the unit cell and so the

potential remains a linear drop across the system cell. Adding a second atom at a distance

sufficient to prevent interaction between the two (Figure 4.5b) causes charge to migrate in order

to counteract the electric field, distorting the otherwise linear potential drop in the vicinity of

the atoms. Adding periodic boundary conditions in directions perpendicular to the applied field

(Figure 4.6a) turns this into a capacitive system; the change in potential is concentrated into

the gap between the two atoms. With a periodic chain of atoms, (Figure 4.6b) in the real world

would result in a flat permittivity of a system, there is a linear drop in potential across the box

aside from the edges of the cell where the boundary conditions interfere. This is all in line with

what would intuitively be expected for the real behaviour of these systems, showing that the

Poisson code can successfully replicate these expected effects.
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Figure 4.5: The potential gradient of an isolated cell containing a single hydrogen atom (left), and a
pair of hydrogen atoms arranged along the z axis (right) across which a 0.1V bias is applied, taken as a
cross-section through the y axis. More rapidly varying colours designate more rapidly changing potential.
Bands of the same colour which are not connected do not correspond to the same potential.

Figure 4.6: The potential gradient of a periodic cell containing a pair of hydrogen atoms (top) and a
chain of hydrogen atoms (bottom), across which a 0.1V bias is applied, taken as a cross-section through
the atoms. More rapidly varying colours designate more rapidly changing potential. Bands of the same
colour which are not connected do not correspond to the same potential.

4.3.6 Band structure and orbital PDOS

As a test of the EHT parameters, and of EHTransport’s ability to compute band structures

and projected densities of states, a bulk gold system was considered. The unit cell chosen was

primitive FCC with a side length of 5.452 Bohr to match the experimental structure of gold, and

contained a single atom. An initial run with a 16× 16× 16 k-point mesh was used to locate the

Fermi level and calculate the density of states projected onto the s, p and d-orbitals. No self

consistency was used, as within the framework used by EHTransport no charge redistribution is

possible with only a single atom in the system.

As expected, the band structure matches up extremely well to SIESTA results. This is only

to be expected as the Cerda parameter set used for this calculation was created by fitting to a

bulk gold band structure computed from a DFT calculation.
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Figure 4.7: The bulk gold band structure (left) plotted along lines connecting the high symmetry points
of the FCC Brillouin zone and the density of states projected onto orbitals of each l value (right) computed
using EHTransport and the Cerda parameter set.

4.4 Tests of the Green’s functions code

4.4.1 Model Hamiltonian input

A standalone test of the NEGF module requires input of a model Hamiltonian and overlap

matrix, derived from some system for which an exact analytic result is known. The system of a

one-dimensional potential barrier was chosen, as it has a simple analytic result, and is amenable

to conversion into an overlap/Hamiltonian matrix form. The leads are chosen to be at a flat

potential of 0 eV, and to have a principal layer length of 2 Bohr. The scattering region is 10

Bohr in length, and contains a centred barrier of width 2 Bohr and height 10 eV (Figure 4.8).

Since the basis set must be localised, a set of Gaussian functions are used, equi-spaced along the

lead and scattering region at a distance of 0.1 Bohr, and with σ = 0.1.

The Sij = {i|j} and Hij = {i|ρ(x)|j} matrices were obtained by multiplication and summa-

tion on a discreet grid of size 2 Bohr and spacing 0.001 Bohr, centred at the point between the

two Gaussian functions. These are then used to solve for the transmission and DOS using the

NEGF formalism in the normal way. The analytic result for the transmission may be obtained

from equation 4.1

T (E) =

∣∣∣∣∣ e−ik1w

cosh(k2w) + (k2
2 − k2

1) i sinh(k2w)
2k1k2

∣∣∣∣∣
2

, (4.1)
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Figure 4.8: The structure of the one dimensional potential barrier.

where w is the width of the barrier in atomic units and

k1 =
√

2E

k2 =

√
2(E − v)

i
,

(4.2)

where v is the height of the barrier, again in atomic units.

Two versions of the NEGF code are implemented in EHTransport; one that requires real

symmetric input, and the other that accepts complex Hermitian matrices. This system was run

through them both code paths in order to compare their output to the true analytic result, at

2000 points between 5 and 20 eV.

Figure 4.9: The transmission (left) and DOS (right) of one dimensional potential barrier computed using
EHTransport. The transmission is also compared to the analytic result.

The transmission spectra computed using both the real and complex versions of EHTrans-
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port’s NEGF code agree with the analytic result almost exactly. However, the transmission

plots, and particularly the DOS plots, show isolated anomalous points away from the otherwise

smooth curve. The problem is worse for the real input code path than for the complex code

path. This is attributed to symmetry breaking during processing of the matrices; when a small

positive imaginary part is applied to a real and symmetric matrix the result is complex, but

still symmetric. When it is added to a Hermitian matrix the result no longer has any special

properties. The code path that requires real matrices is thus optimized to expect that matrices

at certain points in the calculation are symmetric. However, a combination of numerical errors

and the non-perfect block diagonalisation of the leads can result in matrices that are no longer

perfectly symmetric, resulting in errors when algorithms are applied to the matrices that assume

that they are.

Because of the reduced reliability of the real code path, all future calculations employed the

complex code path. This can come at a penalty to speed; making the assumption of symmetry

makes several LAPACK functions more efficient. The real path can only be applied to Γ point

calculations, so the greatest penalty occurs for large systems which need few k-points.

4.4.2 SIESTA Hamiltonian input

As a second test of the Green’s function code, which also covers non-real input matrices, (i.e. a

calculation away from the Γ point,) a Transiesta calculation was performed on a bulk hydrogen

system (which is itself one of Transiesta unit tests.). The Hamiltonian generated from Tran-

siesta was fed into both the usual TBTrans post-processing utility and EHTransport, and the

DOS and transmission spectra calculated with both and compared. The match up is nearly

perfect throughout, both in details and scale. It was also noted that after accounting for the

additional k-point folding, the TBTrans utility performed the task in approximately half the time

as EHTransport, showing there is still room for improvement in the efficiency of EHTransport’s

NEGF module.

A calculation of bond currents shows similar agreement (Table 4.4).

70



Figure 4.10: The transmission (left) and density of states (right) of a bulk hydrogen system at the Γ
point.

Figure 4.11: The transmission (left) and density of states (right) of a bulk hydrogen system using a
Monkhorst-Pack matrix with diagonal elements 12× 12× 1.

4.5 Test calculations

4.5.1 Gold capacitor

The gold capacitor system consists of two parallel (111) surfaces. In the [111] direction the gold

atoms form planes with a repeating ABC structure. The lead principal layer consists of 3 planes,

i.e. one single ABC group, the smallest possible repeating unit. The scattering region consists

of 6 gold layers, followed by a vacuum gap, followed by 6 further layers. The layers on each side

of the gap are matched, giving the complete structure ABCABC-ABCABC. This allows both

sides to link correctly to the leads. A non-Cartesian 1 × 1 unit cell was used in the directions

perpendicular to conduction, giving a total of 12 atoms in the calculation. An 8×8 k-point mesh
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EHTransport SIESTA
−2.50× 10−23 0.999999 0 −1.99× 10−22 1.00003 0

−0.999999 3.19× 10−21 0.999997 −1.00003 5.87× 10−21 0.999996

0 −0.999997 −7.16× 10−22 0 −0.999996 2.44× 10−20

Table 4.4: The ’bond current’ matrix elements corresponding to the first 3 atoms in the bulk
hydrogen system, sampled at the gamma point.

was used. Taking the usual interatomic separation as the zero point, a vacuum gap of between

0 and 10 angstroms was tested.

Figure 4.12: A gold (111) capacitor shows exponential scaling of transmission at the Fermi level with
plate separation.

For the case where the plate separation is significantly greater than the usual interatomic

separation, the results match the known analytical results that tunnelling drops off exponentially

with plate separation. For the case where plate separation is less than the normal atomic sepa-

ration, EHT will not provide a good description of the system, and the results would be invalid5.

The difference between the 20 Bohr cutoff and 50 Bohr is not significant until the plate separa-

tion becomes greater than the cutoff distance, showing that the smaller cutoff is sufficient. All

future runs use the 20 Bohr cutoff unless otherwise noted. Self consistency here causes problems;

within the region between 6 and 8 angstroms separation, there is an anomalous drop in Fermi

level conductance.

5The psudopotential-using SIESTA would also not be capable of describing this system; the problem comes
about since the approximation that core electrons remain unaffected would be invalid. Fortunately this system is
non-physical, and will not need to be handled.
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4.5.2 Monatomic gold wire

The monatomic gold wire is a similar setup to the capacitor, except that a gold wire is placed

in the gap instead of leaving it empty. A non-Cartesian 3 × 3 unit cell was used in directions

perpendicular to conduction for the gold leads (Figure 4.13. The 3 × 3 size was sufficient to

minimize interaction between periodic separations of the gold wire. The FCC structure of the

gold is continued through the wire, such that the atoms in the wire are in the same positions as

if a 1× 1 cell had been repeated through throughout the gap region.

Figure 4.13: The structure of the monatomic gold wire system, represented orthographically. The leads
are 3 atoms deep.

Figure 4.14: Electronic transmission across a monatomic gold wire between two gold (111) electrodes,
for different numbers of repetitions of the ABC wire unit.

With a chain length of zero cells (i.e. the two bulk contacts are in direct contact, creating

a bulk gold system,) transmission is greater than G0 per eV across a wide energy range (Figure
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4.14). As soon as monatomic chain units are added, the transmission is capped at G0 per

eV, consistent with the theoretical maximum conductance through a single channel. Below the

Fermi level, the transmission is largely independent of the chain length. Above the Fermi level,

the transmission has a straightforward dependence on chain length, dropping off as the chain

length increases. Around the Fermi level the structure is more interesting; although the average

transmission varies little, increasing the chain length adds more peaks in this region, aligned

such that low bias conductance is predicted to be greater for a wire containing 10 ABC layers

than for a wire containing a single layer.
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Chapter 5

Conduction in Porphyrin Molecules
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5.1 Introduction

In previous chapters I have introduced EHTransport and the underlying mathematics, and tested

the code on simple systems. In this chapter, I report on the results of calculations on porphyrin

dimer based systems trapped between gold contacts using both EHTransport and the DFT based

SIESTA computer codes. The results from EHTransport are compared to those from SIESTA

as a demonstration of the effectiveness of EHTransport in probing the density of states and

conductance of these systems.

A porphyrin ring is a planar structure containing 20 carbon atoms and 4 nitrogen atoms.

The center of the ring may contain a metal atom, or alternatively the dangling bonds can be

capped by hydrogen. (Figure 5.1) Although not common as isolated rings, complexes based on

porphyrin are ubiquitous in biology. The heme molecule, a vital functional component of the

hemoglobin protein that allows our blood to carry oxygen, is a porphyrin ring with an iron atom

at the center and several additional side chains [88]. An important class of proteins known as

cytochromes also contain a heme group, and have electron transport roles in biology. Although

there are currently few applications using these systems outside of biology, there has already

been some interest in probing the possible uses of porphyrins in molecular electronics as wires

and switches [20,89].

Figure 5.1: The structure of a free-base porphyrin ring, without a metal ion at the center.

The porphyrin system studied consists of a pair of Zinc-Porphyrin rings connected together

via a carbon backbone, and linked to the gold contacts via thiol groups (Figure 5.2).
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Figure 5.2: The structure of the system under study.

5.2 Modelling the contacts

In experiment, gold is a common choice for the contact material. In an STM experiment, a

molecule may be attached to a (111) bulk gold surface, and a gold STM tip brought in to make

contact with the other side. In a NEGF theoretical calculation semi-infinite leads are required,

and it is simple to create a bulk gold structure such that the (111) direction points along the

direction of conduction. The interface between molecule and the contact is not simple, however.

In experiment, there will very likely be surface reconstructions on the surface of any material.

Furthermore, as an STM tip is withdrawn the strong gold-sulphur bond may draw out a short

monatomic chain of gold atoms [90,91].

In this chapter, two alternative contacts are investigated. Firstly isolated linear gold chains

were studied, followed by an unreconstructed bulk gold (111) surface. The chains have the

advantage of containing fewer atoms than a bulk gold surface, allowing faster computation with

SIESTA for comparisons. Gold chain structures in physical systems are only stable on very small

length scales however [91], so extending them into semi infinite leads may limit their abilities to

provide insights into experiment. For this chain structure, the gold atoms were assumed to lie

in a straight chain. The atomic spacing was first calculated with SIESTA in a similar way to

the bulk system; four gold atoms were placed into a Cartesian unit cell. The four atoms had

equal x and y coordinates, and were equispaced along the z axis. The size of the cell in the x

and y directions was kept large enough to prevent interactions between periodic images of the

chain in these directions, and several variable cell geometry optimizations were carried out with

progressively tighter tolerances on the density matrix error and the final stresses on the unit cell.

The result was an equilibrium atomic spacing of 2.51Å.

Because this chain structure is so different from bulk gold, neither the Hoffmann nor Cerda
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parameter sets were found to be appropriate to accurately describe the contact, and so a new

set of EHT parameters was needed. SIESTA was used to calculate the DOS of the gold chain,

and then a simplex optimization procedure [92] was employed to match this to the DOS of an

EHT calculation. The calculation was seeded with the Hoffmann parameter set. After some

experimentation as to which parameters affected the important features in the DOS, the double-

zeta d orbital energy, exponents and mixing coefficient were allowed to vary, as was the single

zeta p orbital exponent. The s orbital and p orbital energy were held constant. The resulting

DOS is not perfect (Figure 5.3), but does reproduce important features of this system such as

the Fermi level being at the edge of the d-band, rather than somewhat above it inside of the

s-band as it is in the bulk material. (And with the chain, using the Hoffmann parameter set.)

Figure 5.3: The DOS of a monatomic gold chain computed with the different available parameter sets
in EHTransport, and compared to SIESTA.

Modelling the contacts as a bulk surface is more realistic deep within the electrodes, although

even in this case there may be effects missing from surface reconstruction, especially around the

molecule binding site, where the strong thiol-gold bond is capable of pulling atoms from the

gold surface completely [90]. The (111) surface is often the one used in experiment, although

the (100) surface is sometimes favoured in theoretical calculation due to the smaller repeating

unit and typically smoother transmission spectra from the Green’s function method. In the

(111) direction the gold atoms form planes with a repeating ABC structure. The lead principal
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layer consists of 3 planes, i.e. one single ABC group, the smallest possible repeating unit. The

scattering region contains 5 gold layers, in an ABCAB - molecule - BCABC pattern. The repeat

of the B layer allows for simple positioning of the molecule with symmetric contacts. A bulk gold

calculation was carried out in SIESTA to compute the optimal unit cell size. This calculation

utilised a single Cartesian FCC unit cell, containing two gold atoms. This cell was found to have

length 4.134Å.

Figure 5.4: Two ABC layers of bulk gold electrode. The direction of conduction is along the z axis,
along the [111] direction, from the left to the right of the image.

5.3 The porphryin-gold interface

There are several ways of linking porphyrin molecules together to form chains. In this section I

consider two similar connectors: a conjugated carbon backbone consisting of either two or four

atoms, each connected to the middle of one edge of a porphyrin ring (Figure 5.5). The porphyrin

complex is linked to the gold contacts by means of a thiol linker (Figure 5.2). There are several

places this thiol linker can be added to the porphyrin chain, and previous work has investigated

the effects [24]. In this case, one hydrogen atom from the edge of the ring is replaced with a

sulphur atom, at the opposite side from the backbone. In this structure the backbone and both

thiol groups are arranged along a single line, and the porphyrin rings can be rotated relative to

each other by twisting the backbone.

The geometry of an isolated single zinc-porphyrin ring was initially optimised with the com-

puter code Avogadro, which implements a classical forcefield based geometry optimization tool.

UFF classical forcefields [93] were employed. (The more specialised forcefields method imple-

mented by Avogadro for optimization of organic molecules, MMFF94, [94] was not used due to it

79



Figure 5.5: The structure of the two porphyrin dimers.

not having the capability of handling the zinc atom.) This empirically optimised structure was

then used as input to a SIESTA geometry optimisation run, using the PBE exchange/correlation

functional and a 300 Rydburg cutoff for the real-space mesh. The sulphur atoms were capped by

hydrogen atoms and placed perpendicular to the plane of the molecule. This caused the sulphur

to displace slightly out of the plane of the rest of the molecule, but the displacement was far

smaller than if the hydrogen atoms were kept in plane. In this second case the hydrogen atoms

were positioned close to other hydrogen atoms, which repelled them and pushed the sulphur

towards the carbon atom on the opposite side. With the single ring configuration optimized,

one sulphur atom was removed and replaced with a second ring, connected by either the 2C or

4C backbone, and this resulting dimer optimised again in SIESTA. For constructing porphyrin

chains of more than two units, it was assumed that the spacing between the carbon atoms along

each backbone remained the same.

With the molecular geometry optimized, the next requirement was to find the most energet-

ically favourable form of binding to a gold contact, under the assumption that the positions of

all atoms in the contact were fixed. The hydrogen cap was removed from one sulphur atom, and

this atom placed over a non Cartesian 3 × 3 × 5 gold (111) surface1, periodic in the x and y

directions, in one of 4 different positions; atop, bridge, or the FCC or HCP hollow sites. (Figure

5.6) The height was allowed to vary in order to locate the minimum of energy in each of the 4

possible positions, while the size of the unit cell was held constant. This had to be performed

via multiple runs with static geometry and differing initial positions, as a standard geometry

optimisation failed due to SIESTA having difficulty moving the whole porphyrin molecule rigidly
1Where 3× 3× 5 refers to the number of atoms in the directions of the 3 vectors of the unit cell, giving a total

of 45 atoms. There are 5 atoms (the ABCAB layers) along the third vector, which is orthogonal to the other two,
points in the z direction, and is the direction along which conduction occurs.
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at once: Everything tended to stay fairly close to the initial positions. The FCC site (Figure

5.7) was found to be the most energetically favourable, in line with previous results [95].

Figure 5.6: The four possible positions on the gold (111) surface at which possible binding was considered.
One set of ABC layers are shown, with the C layer (green) being on the surface, followed by the B layer
(red) and A layer (yellow).

Figure 5.7: Binding energy of the thiol group to various positions on the gold surface. The FCC hollow
site was found to be the preferred binding point.

As the final part of geometry optimisation, the hydrogen cap was stripped from the second

sulphur, and additional multiple static geometry runs were made with SIESTA with contacts

on both sides to determine the optimal gold-molecule distance for the hollow site with a second

contact added. This was performed using a 4× 4× 5 gold (111) surface, slightly larger in the x

and y directions. Both the 2C and 4C configurations were checked, and were found to produce

the same minimum of 2.10Å (Figure 5.8), which is considerably larger than the separation from

a single contact. That the change should be so great from the addition of an extra contact was
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unexpected. To rule out error due to the changing unit cell size, (already made unlikely by the

fact that 2C and 4C configurations gave the same minimum,) a single contact run was made

with an increased z dimension. The energy change was of the order of one part in a million, or

0.001 eV, which suggests the difference is legitimately due to the extra contact and gold atoms.

This procedure was also repeated for the gold chain, for which the sulphur was assumed to be

on the same line as the gold atoms, yielding an equilibrium separation of 2.27Å.

Figure 5.8: Variation of the energy with the distance between the sulphur atom of the porphyrin dimer
and the gold surface. The lowest points of the curves were been chosen to be at zero energy, and are at
2.27Å for the gold chain and 2.10Å for the 111 hollow site.

5.4 Effects of rotation on system energy

In investigating the effect of rotations on system energy, one porphyrin ring of a dimer was rotated

around the axis joining the two sulphur atoms. The carbon atoms connecting the porphyrin rings

lie on this axis, and do not move. The dihedral angle is measured between the planes of the two

porphyrin rings. The systems were run in SIESTA using the PBE exchange-correlation functional

and a 450 Rydberg cutoff for the real space mesh2. Because of the symmetry of the system, the

full range of results is found by probing between 0◦ and 90◦. The gold contacts were held rigid

throughout the calculation, and do not rotate along with the molecule.

2total system energy is not an accessible quantity with EHTransport.
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5.4.1 Chain contacts

For calculations using a gold chain as the electrode, the gold chain lies on the same axis as the

sulphur atoms and carbon backbone. One principal layer of the chain lead contained three gold

atoms. A total of 12 gold atoms were present in the scattering region.

A dimer linked by a 2C backbone requires 0.20 eV of energy to rotate from the energetically

most favourable position to the least (Figure 5.9). A dimer linked by a 4C backbone requires

0.17 eV, which is not significantly lower given the far greater separation between the rings.

The most energetically favourable angle does change from 25◦to 0◦though, presumably due to

reduced interactions between the hydrogen atoms adjacent to the carbon atoms connecting the

two rings. This interaction is probably masking a part of the required rotational energy for the

2C backbones, which would otherwise have been >0.2 eV. The 4C result is much higher than the

0.035 eV reported in [21]. Systematic energy fluctuations from the eggbox effect3 and from finite

real-space size of the cell are from interactions between periodic images of the molecule (found

by rotating the whole molecule at once, rather than the dihedral angle,) are of the order of 0.01

eV, and random energy fluctuations are insignificant.

Figure 5.9: The energy difference against dihedral angle relative to the energy minimum for a zinc-
porphyrin dimer with a 2C backbone (left) and a 4C backbone (right) attached to gold chain leads.

3The affect on the calculation caused by the relative location of an atom to the points on the real space mesh
on which parts of the computation are performed.
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5.4.2 Bulk contacts

The calculations using bulk contacts used a 4× 4× 5 gold (111) surface for each contact in the

scattering region, which is not quite large enough to avoid interactions between periodic images

of the porphyrin dimer, but a 5×5×5 surface was computationally prohibitive, and the periodic

interactions are small enough to be corrected for in the results. Despite the periodicity, due to the

size of the large size of the system calculations were performed at the Γ point. One principal layer

of the lead consisted of three layers of gold atoms, or a single period of the periodic structure

along the (111) lattice direction. There were a total of 160 gold atoms within the scattering

region.

Initially, results for a bulk contact are mostly masked by other effects, such as the hydrogen

atoms on the porphyrin edges sweeping past gold atoms in the contact. There are also greater

random fluctuations, due to the far higher magnitude of the absolute system energy. (The

fluctuations of the order of 0.05 eV is still only a change of 1 part in 3×10−7 in the total energy.)

Subtracting off half of the energy obtained from rotating the whole molecule, (and hence the

effects of two contacts, and periodic interactions of the molecule with itself,) gives a result that

suggests that the lowest energy occurs at 35◦ for a 2C backbone and 0◦ for 4C, with energies of

rotation of 0.08 eV and 0.07 eV respectively. These are far lower than the chain results, although

the ratio between the two is still similar. Also of note is that the 4C result is in now in better

agreement with results in [21]. The bulge at 45◦ is due to the interactions between the periodic

images of the molecule, as this is the point at which they are closest together, with the hydrogen

atoms at the edges of the rotating rings sweeping past each other. The peaks at 0◦ and 60◦ are

due to hydrogen atoms passing close to gold atoms in the contact.

Performing a geometry optimisation at each rotation step with the porphyrin dimer attached

between (111) gold surfaces lowers energies by a further 0.5 eV, which is a significant amount

compared to the energy of rotation. Despite this, the effects on transmission or relative energies

during dihedral angle rotation were small (Figure 5.11). Analysis of forces on atoms during

the geometry optimization confirm that it is the exposed surfaces of the bulk gold contacts that

undergo the greatest movement, and that the porphyrin dimer is little affected. Since this surface

movement has only a small effect on results, and that geometry optimization is computationally

expensive, the structure was held rigid and further geometry optimization was not performed
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Figure 5.10: The energy difference against dihedral angle relative to the energy minimum for a zinc-
porphyrin dimer with a 2C backbone (left) and a 4C backbone (right) attached to bulk gold (111)
surfaces.

while varying other parameters.

Figure 5.11: The energy difference against dihedral angle relative to the energy minimum for a zinc-
porphyrin dimer with a 4C backbone attached to gold 111 surfaces, performing a geometry optimization
at each step.

5.5 Effects of rotation on molecular conductance

5.5.1 Chain contacts

All transmission plots were made with the 4C backbone structure. Using chain contacts, SIESTA

predicts a Fermi level around 0.2 eV higher than EHT, assuming a neutral system. The general

shape of both plots are in good agreement. Transmission at the Fermi level peaks at 55◦ in
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SIESTA, due to the edge of the high transmission region shifting to a higher energy. Away

from this region, transmission peaks at 0◦. The minimum of transmission always occurs at 90◦.

(Figure 5.13) The transmission approaches G0 in places, but does not exceed it. The position of

the Fermi level right at the edge of the d-band causes a strong dependence on the exact position

of the Fermi level for the transmission.

There is a high part of transmission below the Fermi level, and a low part above. Since

conduction through this sort of planar organic molecule normally takes place through Π-bonding

orbitals (i.e. the portion of the p-orbitals pointing perpendicular to the plane of the molecule,)

this can be explained by symmetry arguments. The Fermi level is positioned around the edge of

the gold d band, so above the Fermi level conduction must take place through the gold s-orbitals.

(The gold p-band is too high in energy to play a role near the Fermi level.) From symmetry, the

overlap between the s-orbital on any gold atom and the p-orbital pointing out of the plane of the

molecule must be zero, preventing coupling between the molecule to the lead at those energies.

The d-orbitals however have no such restriction, and so the molecule is more strongly coupled

to the gold d-band.

A comparison of figure 5.12b to figure 5.14a shows how vital the self consistent procedure is

to obtaining a good match up in results to Transiesta. Without self consistency, the transmission

spectrum at the edge of the d-band is altered by approximately two orders of magnitude.

Figure 5.12: The DOS and transmission spectra of a porphyrin dimer between gold chains comparing
EHTransport with self consistency enabled and disabled.

A comparison of bond currents between EHTransport and Transiesta (Figure 5.15) shows

good agreement. Both codes predict very little current flow through the central zinc atom, and
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Figure 5.13: Transmission through a Zn-porphyrin dimer between gold chains as a function of dihedral
angle, computed using Transiesta (Left) and EHTransport. (Right)

Figure 5.14: Transmission through a Zn-porphyrin dimer between gold chains at several angles, com-
puted using Transiesta (Left) and EHTransport. (Right)

that the bulk of current flow takes place symmetrically around the outside of the ring.

5.5.2 Bulk contacts

With bulk gold contacts, the Fermi level is above the edge of the gold d-band rather than below

it. This makes the transmission curve far more stable with respect to the exact position of the

Fermi level; the maximum is now always at 0◦ (Figure 5.17). The actual value of the maximum

still varies, but is of the order of 0.1 compared to 1 in the chain contact case. As with the chain

case, the use of self consistency in the computation greatly improves the match up of results with

Transiesta.

The difference in Fermi level between Transiesta and EHTransport is increased to 0.4 eV in
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Figure 5.15: Bond currents through the porphyrin molecule, computed using Transiesta and Inelas-
tica (Top) and EHTransport (Bottom). Inelastica does not provide currents through contact atoms or
directionality information, and labels atoms by index as opposed to the atomic number labels used by
EHTransport.

the case of bulk gold contacts. This is large enough that EHTransport is now predicting LUMO

conduction, compared to the HOMO based conduction of Transiesta. The transmission spectra

produce by EHTransport are also compressed in comparison to Transiesta, particularly above

the Fermi level (Figure 5.18).

Since the gold atoms are no longer positioned in a chain pointing through the thiol linkers,

the symmetry arguments that prevent the gold s-band from coupling to the porphyrin pi orbitals

no longer apply. The result of this is the much higher conduction visible throughout the gold

s-band.

Figure 5.16: The DOS (left) and transmission spectra (right) of a Zn-porphyrin dimer between gold
(111) surfaces comparing EHTransport with self consistancy enabled and disabled.
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Figure 5.17: Transmission through a Zn-porphyrin dimer between gold (111) surfaces as a function of
dihedral angle, computed using Transiesta (Left) and EHTransport (Right). The Fermi energy has been
offset in the EHTransport case in order to line up with the position predicted by Transiesta.

5.6 Computation time

For chain contacts, computation time for SIESTA was 1 hour for the DFT stage and 2 hours

20 minutes for the NEGF stage using 2000 data points. The SIESTA calculation took place

on a supercomputer node using 8 CPU cores. The DFT stage memory consumption peaked at

6.4GB. Computation time for EHT was approximately 5 minutes for the SC-EHT stage and 20

minutes for the NEGF stage using 10001 data points. The EHTransport calculation took place

on a desktop machine using 2 CPU cores.

For bulk contacts, computation time for SIESTA was approximately 9 hours on 8 CPU cores

for the DFT part, and a further 24 hours on 1 CPU core to compute the transmission at 161

energy points. A maximum memory consumption of 16.8GB was recorded during the DFT stage.

For EHT the self-consistent EHT stage took 1 hour on 2 CPU cores, and the NEGF stage 10

hours on 2 CPU cores at 2001 data points, and completed successfully on a machine with 4GB

of memory.

The bulk electrode calculation employed a total of 236 atoms in the scattering region, com-

pared to 88 for chain electrodes. Furthermore the additional atoms were gold, which has a large

number of valence electrons and has occupied d-orbitals, so the effect on the system orbital count

is greater than that of the atom count. SIESTA, using a DZP basis set, increased more than

3-fold from 1012 to 3232 orbitals when moving from chain to bulk gold contacts.
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Figure 5.18: DOS and Transmission through a Zn-porphyrin dimer between gold (111) surfaces at several
angles, computed using Transiesta (Top) and EHTransport (Bottom).

5.7 Conclusion

EHTransport has been able to provide results which provide a good match to Transiesta. Self

consistency during the EHT calculations has proved absolutely vital to obtaining this good

match. The degree of match up is sufficient to provide confidence in utilising EHTransport on

larger systems for which Transiesta results cannot be obtained.

The very large and reliable change in conductance raises the possibility that the rotation

could be exploited to build a switching device. The studied porphyrin dimer has some flaws which

prevent this: The energy barrier is too low, and so it could not be operated at room temperature,

let alone at the higher temperatures typically experienced by electronic components undergoing

resistive heating. There is also no mechanism of reliably flipping between states. It it possible

that such a mechanism could be created via the addition of side chains to one of the porphyrin

rings. If it were possible to hold it in the 90◦ position via application of a bias to an additional
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third electrode, it could be used as a transistor with an on/off ratio of the order of 105, which is a

reasonable ratio compared to current organic transistors [96] but poor compared to conventional

doped-silicon based devices. If it were possible to engineer a local energy minimum at the 90◦

position, the molecule could be used as memory, although the removal of the peak of the energy

barrier would increase any issues with stable operation at room temperature. As an alternative,

one side of a porphyrin ring could be engineered to remove the symmetry when one porphyrin

ring is completely flipped, such that switching from a 0 to a 1 bit would require a 180◦ rotation

of the bond rather than 90◦.
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Chapter 6

EHT calculations of large Porphyrin

Systems
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6.1 Introduction

In the previous chapter the results of EHTransport calculations on porphyrin dimers were com-

pared to Transiesta results. The Transiesta calculations took many days to complete, leaving

exploration of properties of larger porphyrin systems out of its reach. For example, questions such

as behaviour as the length of the porphyrin chain increases, or the effects of solvation cannot be

answered using Transiesta with the currently available computing resources. Encouraged by the

previous results that EHTransport is able to make useful predictions about the effects of struc-

tural changes to a system, I have explored some further properties of of porphyrin wires using

EHTransport in an attempt to make behavioural predictions of several more complex systems.

If a porphyrin chain is to be used as a molecular wire, systems longer than a dimer will be

required. Chains containing up to 5 porphyrin units were analysed. Electrically active porphyrins

incorporate magnesium (chlorophyll) or iron (heme) rather than zinc, so an iron based porphyrin

was considered and the effect of replacing the zinc analysed. Another important factor that must

be taken into account when comparing theoretical calculations to experiment is the effect of any

surrounding molecules. Experimental measurements may take place in vacuum, but could also

be taken in air or another gas, or a liquid solvent. The effects of the presence of water were

analysed by adding a set of water molecules in close proximity to the porphyrin molecule. The

final section of this chapter explores the properties of a heme-based cytochrome containing 1750

atoms.

6.2 Effects of wire length on molecular conductance

To investigate the suitability of porphyrin chains for use as molecular wires, the zinc-porphyrin

dimer investigated in chapter 5 was replaced by porphyrin chains of varying lengths, from a

monomer up to five units. Each unit was connected by a backbone consisting of 4 carbon atoms,

and the wire was linked to the (111) surface of bulk gold contacts via the usual thiol linkers.

The system was processed with EHTransport to calculate the electronic transmission spectra.

Within the HOMO-LUMO gap conductance is predicted to drop off exponentially with length

(Figure 6.1). However, splitting of the LUMO at longer chain lengths creates new states pro-

gressively closer to the Fermi level, which is fixed in position by the contacts. The lowest energy
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Figure 6.1: The DOS (left) and transmission spectra (right) of a zinc-porphyrin wire of various lengths
between gold (111) surfaces.

state attributable to the LUMO shifts from +0.4 eV for the monomer to on top of the Fermi

level in a five unit chain. This counteracts the effect of the reduced transmission within the gap,

giving the somewhat surprising prediction that the Fermi level conductance of the porphyrin

wire increases with wire length for the lengths under study. If the prediction of the Fermi level

is incorrect by only a tenth of an eV, however, this prediction would reverse. Slightly below the

Fermi level, conductance shows a sub-exponential decay (Figure 6.2). The effects of the LUMO

shifting closer to the Fermi level are still felt as the broadened edge of the peak in transmission

due to the LUMO makes itself felt.

At 0.15 eV below the Fermi level, the highest energy investigated at which an exponential

decay is evident, the decay constant is predicted to be 0.11Å−1. This is somewhat greater

than the 0.04Å−1 seen in experimental work on similar 4C linked Zn-porphyrin chains in [97],

and is more on a par with the decay constant they saw when the porphyrin rings are twisted.

The experimental structure includes side chains off the porphyrin rings to aid solvation and an

additional benzene ring between the porphyrin and gold surface, which makes a direct comparison

difficult however. Given this, the match up is reasonable.

The shift in the LUMO was also found by performing calculations on porphyrin wires without

the gold contacts or thiol linkers present. The HOMO-LUMO gap1 was found to shrink from

1.38 eV for the monomer to 0.68 eV for a 5 unit chain (Figure 6.3). This matches up with the

1In this calculation without contacts the Fermi level is found by filling up available states, and is by definition
at the mid point between the HOMO and LUMO, so difference in splitting behaviour between the HOMO and
LUMO is not visible.
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Figure 6.2: The conductance as a function of wire length of a zinc-porphyrin wire between gold contacts,
at several energies. The pink lines are exponential fits to the first 3 data points at each energy.

peaks to unity transmission in figure 6.1. Fitting this to an exponential curve gives the formula

Egap = 1.90e−0.0350L + 0.665 eV, where the units of L are Bohr. The fit to the exponential here

is very good, with fitting errors of order of one part in a thousand.

Figure 6.3: The energy gap between the homo and lumo of a zinc-porphyrin wire as a function of chain
length, with no gold contacts or thiol groups present.

From the fitting of the HOMO-LUMO gap, an infinitely long zinc-porphyrin wire would be

expected to have a bandgap of 0.665 eV, not significantly smaller than the 5 unit chain. With

the effects of the shrinking HOMO-LUMO gap removed, Fermi level conductance may drop off

more rapidly at longer chain lengths.

The backbone of four carbon atoms used to link the porphyrin rings here is just one of many
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potential linking methods. In addition to the two carbon atom chain used in the previous chapter,

porphyrin rings can be fused directly along one edge [98]. The stronger interactions between

rings in these cases would be expected to close the HOMO-LUMO gap further, providing further

opportunities for use as molecular wires. Indeed, [97] predicts that tape porphyrins would have

a decay constant of only 0.02 Å−1.

6.3 Conductance in the Iron porphyrin system

So far, all porphyrin computations have been carried out using Zinc based porphyrin molecules.

Many of the interesting porphyrin based systems found in nature contain different metal centres,

such as the iron atom in heme molecules and cytochromes. To investigate the effects of replacing

the central metal atom, the two zinc atoms in a porphyrin dimer were replaced with iron atoms.

The atomic positions of the remainder of the molecule were left untouched. This new system

was then attached to both gold chain and bulk gold contacts, and EHTransport used to compute

the transmission spectra of the system.

Figure 6.4: The DOS (left) and transmission spectra (right) of an iron-porphyrin dimer between gold
chains.

The primary effect on the system is the shifting of the Fermi level. Interestingly, the effect

is in opposite directions for the chain (Figure 6.4) and the bulk (Figure 6.4) contacts. No major

changes in the structure of the transmission peaks is visible. In the case of both contacts, Fermi

level conductance is predicted to be lower for the Iron porphyrin molecule.

An examination of the conduction pathways show that little transport takes place through
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Figure 6.5: The DOS (left) and transmission spectra (right) of an iron-porphyrin dimer between (111)
surfaces.

the central metal ion, preferring to move around the outside of the ring. An inspection of the

orbital-character of the transport suggests that conduction takes place through p-orbitals. This

is expected for this sort of conjugated organic molecule; conduction typically takes place through

the /pi molecular orbitals which are made up of a combination of the p orbitals of each atom

pointing out of the molecular plane. More interesting is the conduction through the gold contacts.

Despite the earlier symmetry arguments, the gold shows strong s character. Replacing the zinc

atom with an iron atom has little effect on the important conduction pathways, but changes the

orbital character of the gold orbitals completely. Projecting the DOS onto the gold atoms shows

a small shift in the gold d-band relative to the Fermi level, pushing it into range. (Shown also

in the figure 6.4, where zinc-porphyrin is LUMO-based but iron is HOMO-based.)

Figure 6.6: Colour coded representation of the orbitals involved in conduction through a zinc-porphyrin
dimer. Red shows s character, green p and blue d.

At the end of the self-consistent loop, the iron atom has an excess charge of +1.1 e when

connected to the bulk gold contacts. This is a much greater charge than that found on any

other atom in the system, which all have magnitudes of less than 0.3 electrons. By contrast
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Figure 6.7: Colour coded representation of the orbitals involved in conduction through an iron-porphyrin
dimer. Red shows s character, green p and blue d.

the zinc atom in zinc-porphyrin has a self-consistent charge of -0.2 e. Although much greater in

magnitude than the charge on any other atom in the system, the charge on the iron atom is still

less than the most common +2 or +3 oxidation states that iron generally forms in experiment.

6.4 Effects of water molecules of molecular conductance

Figure 6.8: The structure of the water porphyrin dimer surrounded by water.

The environment of a molecule can have considerably effects on its properties [99]. Water

molecules have ionic nature, with the oxygen atoms gaining negative charge and the hydrogen

positive. This may in turn induce additional local charges in a molecule in aqueous solution,

and earlier results of this chapter have already suggested that profound changes in behaviour

can be achieved with small changes in Fermi level. Previous theoretical work has also suggested

that the presence of a solvation shell around a porphyrin wire modifies the length dependence of

conductance from exponentially decreasing with wire length to invariant [100].

To investigate the effects of water on the zinc porphyrin dimer, a molecule was placed between

bulk gold contacts, and the vacuum space in the unit cell populated with water molecules. To

simulate the maximum polarisation that would occur when a voltage was applied, in one test case
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the water molecules were aligned to point along the z axis. The water molecules were positioned

randomly by picking points between the contacts, checking that no other atoms were within 4

Bohr of an oxygen atom or 3 Bohr of a hydrogen, and placing a water molecule in that position

should it fit. This resulted in a water density approximately 60% that of water under standard

conditions, with a total of 59 water molecules surrounding the porphyrin dimer.

Figure 6.9: The DOS (left) and Transmission spectra (right) of a system consisting of a zinc porphyrin
dimer between bulk gold contacts with and without water present, as well as pure water with no porphyrin
present.

No effect was visible around the Fermi level after adding water molecules in similar positions

in EHT. However, the Fermi level was shifted, by an amount that was small, but which still

would have had an effect on the wire properties based on the previous chain length results.

Below the Fermi level there are profound effects on conductance. In this region pure water

showed a significant level of transmission, so additional effects there are to be expected.

Compared to isolated water molecules, water molecules close to the gold surface became

negatively charged (Figure 6.10). Although the gold surfaces as a whole became positively

charged, the top layer also held additional negative charge in comparison to the porphyrin system

without water present. These changes to the surface of the gold contacts will change the way it

links up to the porphyrin. Previous results have shown that the presence of a solvent can modify

the work function of a metal surface, altering conductivity behaviour [101], consistent with the

modification of the gold surface here.

In addition, since the entire gold electrode has become charged, the principal layer which

connected up to the leads has also been affected. The assumption that the link between the final
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lead principal layer and the scattering region is identical to that between two principal layers of

the leads is not accurate in the situation of a charged electrode.

Figure 6.10: A charge difference plot showing the difference in real space compared to that of the
porphyrin system without water present for the contacts and dimer, and an isolated water molecule for
all water molecules in the system. Red denotes excess electrons, and blue a deficit.

Figure 6.11: Bond-currents plot at the Fermi level of a zinc-porphyrin dimer between bulk gold contacts,
and surrounded by polarised water.

Bond current calculations at the Fermi level, where the transmission spectrum was relatively

unaffected by the presence of water, show no change from the dehydrated case. 2 eV below the

Fermi level where the transmission spectra is greatly affected by the presence of water the bond

current plot also shows more significant effect. Most of the current now enters the porphyrin

ring via a water molecule rather than the thiol linker.

6.5 Conductance in the cytochrome b562 protein

Cytochrome b562 (IPR009155) is a protein expressed in the bacterium Escherichia coli. It is

made up of four helical columns, and contains a heme group embedded in its structure. As with

cytochromes in general, it is believed to have an electron carrying role within the bacteria, taking

part in redox reactions, and so may show interesting electrical conductivity behaviour. Several
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Figure 6.12: Bond-currents plot 2 eV below the Fermi level of a zinc-porphyrin dimer between bulk gold
contacts, and surrounded by polarised water.

variant structures have been investigated; the one chosen for analysis was a solution structure

in an oxidised state [102], a form in which a single protein can be isolated and for which atomic

positions were readily available. This structure contains a total of 1750 atoms, made up of

carbon, oxygen, sulphur, nitrogen hydrogen and iron (Figure 6.5), and measures 49.6Å from end

to end. To make contact with the gold leads, two hydrogen atoms on opposite sides of the protein

exterior were replaced with sulphur atoms to form thiol linkers. The part of the gold contact

within the scattering region totalled 8 atoms in each lead, with a lead principal layer of 4 atoms.

This final scattering region structure comprised 1766 atoms and 4500 orbitals.

Figure 6.13: Cytochrome b562, showing the position of the heme group relative to the protein backbone.

The first stage of the computation, computing the overlap matrix of the system, took approx-

imately 10 hours 45 minutes of CPU time. Computing the self consistent Hamiltonian matrix

took a further 3 days of CPU time. The final stage of the computation, calculating the DOS and

transmission spectrum at 1001 energy points, took another three and a half days of CPU time.

102



The full computation consumed a total of 7 days of CPU time running on a single CPU core,

and consumed approximately 4GB of memory at its peak.

Figure 6.14: The DOS (left) and transmission spectra (right) of Cytochrome b562 between gold chains.

The results show no peaks approaching G0, but within the -2 eV to +2 eV window around

the Fermi level three broad regions of comparatively high conductance are visible, at positions

matching visible molecular states in the DOS (Figure 6.14). Of these, the closest to the Fermi

level is centred at around -0.35 eV, and averages of the order of 10−6G0. An attempted cal-

culation of bond currents in the middle of this peak failed, with current appearing to vanish

inside the gold lead. This non-physical result suggests that the algorithm for computing bond

currents suffers from issues with numerical noise on either systems of large size or of low con-

ductance. A modified algorithm with increased numerical stability would be required to identify

the conduction pathway of this system.

Previous experimental results suggest a peak Fermi level conductance of the order of 10−5G0

across a single protein molecule [103]. EHTransport does not predict transmission of that mag-

nitude at the Fermi level. The Fermi level is fixed by the gold chain contacts however, and would

be shifted in a bulk gold calculation. The size of the gold contracts which would be required

to create a periodic gold surface while minimising interactions between periodic images for the

protein would be too large for such a system to be processed even with EHTransport using

computational resources currently available.
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6.6 Conclusion

EHTransport was able to provide good quality transmission spectra for larger systems, including

a complex system containing thousands of orbitals. However, one auxiliary part of EHTransport

broke down when presented with a system of this large size; bond currents could not be calculated.

Porphyrin chains were predicted to have a Fermi level conductance that does not decrease

with chain length, making them potentially suitable for use as molecular wires. Iron-porphyrins

were not predicted to behave in ways much different from zinc-porphyrin, but the effects of iron

ions of different oxidation states were not captured, which may be important as experiments on

iron porphyrin show hysteresis in measurements of conductance against voltage that do not show

up with zinc-porphyrin [104], providing strong evidence that the iron was switching oxidation

states. The presence of water did not greatly affect transmission around or above the Fermi

level, but showed most effects below where the porphyrin transmission was additive to that of

the water. Since solvation was expected to have a more significant affect, self consistent EHT

may not be sufficient for capturing the interactions involved.
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Chapter 7

EHT calculations of DNA based

systems
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7.1 Introduction

Deoxyribonucleic acid (DNA) is possibly the best known of all complex organic molecules, and

is at the heart of all known complex multi-cellular life. A DNA molecule is made up of carbon,

oxygen, nitrogen, phosphorus and hydrogen atoms and is formed from two individual strands,

each of which has a sugary backbone with branches (bases) of four different types jutting off at

regular intervals. Each base of one strand pairs up with a complementary base on the other via

hydrogen bonds, causing the base pairs to give a ladder like structure. These backbones twist

together into a helix structure (Figure 7.1).

Figure 7.1: A DNA strand ten base pairs in length, of sequence ATATATATAT.

There are 4 different naturally occurring bases; adenine (A), cytosine (C), guanine (G) and

thymine (T). A fifth base, uracil (U) also occurs in nature, but is typically found incorporated

into RNA strands rather than DNA, where it substitutes for thymine. Cytosine always matches

up with guanine, and adenine with thymine. When stating a DNA base pair sequence, it is the

list of bases attached to a single backbone that is given. (e.g. the sequence AGCT would imply 4

base pairs; A-T, G-C, C-G, T-A) In addition to the base pair sequence, the helix itself take several

forms, identified by the labels A, B and Z. Each with differing twist characteristics. (Z-DNA in

fact twists in the opposite direction to A-DNA or B-DNA.) The most common form in nature

is B-DNA [105], with Z-DNA occurring briefly in response to certain biological actions [106].

A-DNA is most commonly seen when DNA is less hydrated than occurs inside healthy cells.

There have been many experimental reports on the conductivity of DNA [107–111], with

results ranging the full spectrum from ohmic conductance through to semi conductance and in-

sulator behaviour. There is no suggestion that the majority of these results are incorrect, and

that DNA always exhibits constant behaviour; rather, DNA seems able to take any behaviour,
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dependent on base pair sequence, contacts, structure, environment and other properties. Ex-

periments have shown results that suggest a repeating CG unit has higher conductivity than an

AT unit, that DNA conducts better in solution, or that a single mismatched base pair can drop

the conductivity of a molecule by an order of magnitude or more. Work on modification of base

pairs to incorporate metal ions has also resulted in improved conductance [110].

Previous theoretical work on the conductance of DNA has mostly taken place using either

tight binding models or, on small systems consisting of a very limited number of base pairs,

ab-initio techniques [25]. In this chapter, my self consistent EHT based code is applied as a

middle ground, able to cope with larger system sizes than ab-initio techniques, and hopefully

able to produce more descriptive results than the simpler tight binding models. I will compare

my results to those found by other theoretical techniques, as well as to experiments.

7.2 Structure

DNA structures were generated via the web interface of the application 3DNA [112] (W3DNA).

This application can generate DNA structures in several ways. For our calculations, an initial

base pair sequence was entered, and a pdb file containing atomic coordinates was created. This

pdb file was fed back into W3DNA to generate a base pair parameter file, containing the sequence

and positioning of the bases. This was modified as required to introduce mismatched base pairs

or other alterations, and then fed back into W3DNA to generate a second pdb file, containing

both atomic positions and bond information1. This file was loaded into Avogadro for further

alterations, such as the addition of thiol groups for forming the contacts. Since the output

files of W3DNA do not contain the positions of hydrogen atoms, these were also added in via

Avogadro’s automated algorithm, assuming a neutral pH. The thiol groups were attached to the

4′ carbon atom in the backbone, which is bonded to only a single hydrogen, removing ambiguity

about positioning of the sulphur atom and ensuring consistency.

Using the semi-empirical geometry optimization algorithms in Avogadro results in noticeable

changes in the DNA structure. In particular, base pairs were found to buckle due to the way

unusually long bonds in the DNA backbone were handled. For this reason, the structures from

1Since the structure generated from the parameter file by W3DNA does not exactly match the structure used
to create the PDB file the parameter file was created from, it is important to follow this procedure even for simple
base-pair sequences which do not require modifications to the parameter file, in order to ensure consistency.
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3DNA are used unoptimized, except for the positions of the additional thiol groups. Tests on

a CGCGCG system show that this buckling leads to greatly reduced simulated conductivity

(Figure 7.2).

Figure 7.2: The DOS (Left) and electrical transmission spectra (Right) of a DNA molecule trapped
between gold leads using the original W3DNA generated structure and a version optimized using UFF
forcefields.

Another point of note is that the backbone contains complexes made up of one phosphorus

atom and four oxygen atoms. Two of the oxygen atoms are bonded to further carbon atoms, and

are a part of the backbone. A single double bond is delocalised around the other two oxygen

atoms, leading to an ambiguity in the placement of a hydrogen atom, which may be found

attached to either oxygen atom. It is these complexes which give DNA its acidic nature; the

hydrogen atom in this complex can become detached when the DNA is in solution. To measure

the size of this effect, additional calculations were performed with the hydrogen atoms swapped

between the oxygen atoms, and again with the hydrogen atoms completely removed. (Figure 7.3)

Moving hydrogen atoms from one possible position to another has very little effect. Removing

them has a greater effect, and since DNA is, as the names suggests, naturally acidic, some portion

of them will detach if the DNA is in solution. For the rest of this chapter, the hydrogen atoms

were left in their original, default position.

Conduction through a DNA molecule of repeating base pair sequence CGCG is believed to

take place through the stacked Π bonds of the base pairs [113]. Since a DNA molecule consists of

two interwoven strands, there is a choice available as to which of the two backbones the leads are

connected to. Given two chain leads, either both can be connected to the same backbone, or each
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Figure 7.3: The DOS (Left) and electrical transmission spectra (Right) of a DNA molecule trapped
between gold leads using various posible positioning of hydrogen atoms.

could be connected to a different backbone. Calculating the transmission spectra for the case

where two gold contacts are made to the ends of the same backbone to the case where the contacts

are attached to opposite backbones shows very little difference. (Figure 7.4) Nor indeed does

much change in the regions of high transmission when the contacts are made to both backbones

simultaneously, although transmission is improved through regions of low transmission. This

provides strong evidence that conduction is indeed taking place through the base pairs, as if

the base pairs were non-conductive then far lower transmission would be expected in the case of

single gold leads attached to different backbones. Further runs in this chapter make use of two

gold leads, attached to the same backbone.

Figure 7.4: The DOS (Left) and electrical transmission spectra (Right) of a DNA molecule trapped
between gold leads using several lead positioning variations.

Many of the peaks in these plots have a single point an order of magnitude greater or more
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than their neighbours. The smooth curves at the base of the peaks provides evidence that the

peaks are real, and not numerical artefacts of the type noted in chapter 4, but the lack of

points around the peaks of the curves makes it difficult to accurately determine the heights.

An additional run was made with 5001 data points, magnifying the region from -0.3 to +0.3

eV (Figure 7.5), but although this allowed identifying individual peaks the tops of these peaks

were still only occupied by single data points. A couple of these peaks were analysed further

via a script to locate their centres, showing that the peaks do have smooth caps at the top not

necessarily at 1G0. These peaks correspond exactly to peaks in the density of states, suggesting

that conduction is occurring through these particular states despite the states being weakly

coupled to the contacts and hence being subjected to very little broadening.

Figure 7.5: The DOS (Left) and electrical transmission spectra (Right) of a DNA molecule trapped
between gold leads, exploring a narrow energy range around the Fermi level.

7.3 Effects of DNA sequence on molecular conductance

Experimentally, a sequence of repeating CG base pairs has been shown to have similar conduc-

tivity to a chain of repeating AT base pairs [114,115]. However, the addition of an AT sequence

into the center of a repeating CG chain has been shown to decrease conductivity by an order

of magnitude. Under at least some conditions, the two also have differing length dependence,

with CG chains showing conductance scaling as the inverse of length but AT chains showing an

exponential decay with length [116], suggesting a different mechanism for transport.

EHTransport predicts that replacing the central CG unit within a CGCGCG sequence with
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an AT unit drops conductance around the Fermi level significantly (Figure 7.6), in some regions

by considerably more than one order of magnitude. Despite this, the peak at the Fermi level

remains relatively unaffected.

Figure 7.6: The DOS (Left) and electrical transmission spectra (Right) of a DNA molecule trapped
between gold leads showing the effect of adding replacing the central CG sequence with an AT in a
CGCGCG strand.

It should be noted that B-DNA is not normally stable in a vacuum, and experimental results

are taken in aqueous solution. As shown in the previous chapter, the charge transfer resulting

from the presence of water can effect results. Furthermore, in solution it is expected that a certain

percentage of the hydrogen atoms will detach, which also has an effect on the transmission

spectra. A further effect however is that dehydrated DNA tends to take the A-DNA form.

Experimental studies on DNA in a vacuum have shown a lower conductance than those made

in solution [111], and theoretical calculations suggest that this transition between A-DNA and

B-DNA is at least partially responsible [117], due to poorer overlap between the Π orbitals in

neighbouring base pairs.

There are significant differences in both DOS and transmission between A-DNA and B-DNA

(Figure 7.7), with the B-DNA having considerably greater conductance near the Fermi level.

For this reason alone, it would be expected that DNA in solution would conduct significantly

better than DNA in a vacuum, so the EHT measurements are again consistent with experimental

results.
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Figure 7.7: The DOS (Left) and electrical transmission spectra (Right) of a DNA molecule trapped
between gold leads showing the difference between A-DNA and B-DNA structures.

7.4 Effects of DNA structural failings on molecular conductance

Damage may occur in a DNA strand, resulting in base pairs that are mismatched or even missing

completely. Given the large sizes of typical DNA molecules, a single base pair error may not

be immediately destructive to the molecule as a whole. Since the bases are different sizes,

not all combinations are physically possible. Experimental results have suggested that a single

mismatched base pair can cause an order of magnitude drop in conductance [118].

Figure 7.8: The DOS (Left) and electrical transmission spectra (Right) of a DNA molecule trapped
between gold leads of a CGCGCGCGCG sequence, in which the 5th base pair in the chain has either
been replaced with a C-C combination, or removed completely.

Some drop is seen when using a C-C mismatched pair instead of the original C-G (Figure

7.8), but the difference is not great. One possible explanation is that in reality the presence of a

mismatched (or missing) base pair may cause considerable alterations to the backbone structure
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around the site of the error.

There is a far greater effect from the removal of a base pair; the overlap between the pi orbitals

of one base pair and those of its next nearest neighbour is obviously substantially smaller than

that of its nearest neighbour, and this has a substantial effect in the transmission. In both cases

the DOS remains relatively unchanged.

7.5 Conclusion

The transmission spectra of DNA molecules contains many more features in comparison with

the porphyrins, as might be expected given the larger problem size. Even with the porphyrins

the exact position of the Fermi level could have a very significant impact on the conductance

of a molecule, but for a given Fermi level the conductance behaviour could be well defined.

In DNA based systems, the lack of smooth regions, with transmission fluctuating by orders of

magnitude over small energy ranges, makes categorisation of conductance behaviour difficult, but

nevertheless the broad behaviour in the region around the Fermi level an be seen and compared

between multiple systems.

In all cases of comparison here EHT results are in qualitative agreement with previous ex-

perimental results. Some quantitative predictions, e.g. systems containing mismatched base

pairs, are smaller than experimentally observed effects. DNA strands of up to 14 base pairs in

length have been analysed with little numerical difficulty. Although this cannot match the size

of systems amenable to processing by the tight binding models, which typically use Hamiltonian

matrices with size of one or two elements per base pair, it compares very favourably to the

computational resources which would have been required by traditional DFT techniques, where

some research still focuses on structures of only 4 base pairs [119].
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Chapter 8

Conclusion
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8.1 Summary

In this thesis a completely new computer code named EHTransport has been developed, tested,

and then utilised to provide results on porphyrin and DNA based systems trapped between

gold electrodes. Performing comparisons against the existing code Transiesta has shown that

EHTransport can generate useful results for the porphyrin systems studied, and have shown the

importance self consistency in the EHT calculations. The results provided on DNA have further

validated the EHT approach by showing agreement with experiments related to the effect of

DNA structure on its electronic transmission. Results on a heme-based cytochrome have further

shown that the code can cope with basis sets of thousands of orbitals.

Additional support for utilising the self consistent extended Hückel method alongside Green’s

functions for the calculation of transport properties lies in the commercial product the Atomistix

ToolKit, developed by QuantumWise. Alongside DFT techniques, this toolkit has also recently

added support for a self consistent extended Hückel approach [63]. This has resulted in few

published works in comparison to the older and more familiar DFT component of the code, but

a comparison of the two on one system has concluded that there is good agreement [120].

Extended Hückel is not a first principles method, and is reliant on an empirically chosen

parameter set. Although the addition of self consistency improves the transferability of this

parameter set, care still needs to be taken that the parameters chosen are suitable for the system

under study. This can include comparisons with first principles methods for reduced systems

of similar type. The method used here for computing the self consistent parameters has shown

to result in correct charge transfer behaviour, but as other parameters constructed for use in

non-self consistent calculations were used directly, further improvement is possible in this area.

A zinc-porphyrin dimer was found to have some suitability for use as an organic transistor

with a 1 to 10,000 on/off ratio, should a method of attaching a gate contact in such a way as to

provide control over the dihedral angle. It was also found to have some potential as a molecular

wire, with conductance above the Fermi level being largely independent of wire length. The

zinc-porphyrin dimer has potential for encoding a single bit of information within its dihedral

angle, given appropriate structural modifications to ensure stability.

Transmission through DNA molecules was found to be complex, and structure and base pair

sequence changes had very significant results. However even if it was feasible to switch out base
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pairs at a rate high enough for a useful transistor, the on/off ratio would be poor. Although

DNA computers have been investigated, these are biological in nature. Similarly, any attempts

to use DNA as a memory storage medium would be likely to focus on its base pair sequence,

rather than its electrical properties.

8.2 Further work

EHTransport is functional in its current form, but opportunities for improvement exist. Some

parameters, including those that control mixing during self-consistency, are currently hard coded

and cannot be modified via the input file. Replacing the linear mixing with a Pulay mixing scheme

would speed convergence of the self consistent EHT stage. A more efficient implementation of the

NEGF stage is possible, following the procedure used by Transiesta. As the target application

of EHTransport includes large systems, for which k-points are unlikely to be required, additional

use could be made of the fact that Hamiltonian matrices will be real and symmetric, providing

further efficiency improvements. This work used the standard Hoffman parameter set for all

atomic species other than gold. Making corrections to this set to account for the self consistency

in use may provide more accurate results.

A mechanism for fixing the charge on specific atoms during self consistency would have

allowed investigation of the effects of the oxidisation state of an iron-porphyrin dimer. With

such a feature in place , comparisons of different oxidised states of iron could be made for the

iron-porphyrins, and analysed for the potential to account for the hysteresis seen in experiment.

By fixing the final principal layer of the lead to zero excess charge, any issues with linking the

scattering regions to the leads could also be avoided.

Although some work has been done to parallelize EHTransport through the use of OpenMP,

further work is required to allow for its optimal use on shared memory systems with many

processors. Run on the same hardware as was used for Transiesta in this work should allow for the

processing of systems containing of the order of ten thousand orbitals in time scales of the order

of a week. This will require parallelization of further parts of EHTransport which are currently

run serially. Similarly, some of the most time consuming operations are manipulations of large

matrices, and are amenable to stream processing algorithms [121]. This could be exploited

to provide a further speed up on desktop class equipment equipped with suitable specialised
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compute hardware or graphics cards.

Although EHTransport uses the more computationally efficient EHT in the place of DFT in

the construction of a Hamiltonian, the full NEGF formalism is used in computing the transmis-

sion spectra. This is made somewhat more efficient by the reduction in the size of the basis set,

but the same could be achieved with DFT by using a non-polarised basis set. Approximations

in the NEGF formalism could be sought to reduce the computational complexity of this part of

the problem.

Additional interesting investigation of porphyrins would include different wire length depen-

dence with differing linkers between the porphyrin rings. Experiments often include additional

side chains to aid solvation, and groups between the porphyrin ring and thiol linker for ease of

synthesis, which may have effects on conductance, and could be simulated.
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EHTransport manual
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A.1 Introduction

EHTransport is a C++ code designed to perform transmission spectra calculations of molecules

or other finite length structures connected between two semi-infinite leads. It is designed to be

invoked from the commandline, and takes a single commandline argument giving the path to the

input file. The input file uses the same FDF format as SIESTA, and it is a design goal for the

same input files to be transferable between the two programs; although the two parsers do not

have identical behaviour, and the options required for a given calculations may vary between the

two, the features of the FDF file format still allow for the files to be transferable.

The FDF file format consist of a list of keywords and values, one per line. A # on a line

signifies the beginning of a comment, and any text between it and the beginning of the next line

is ignored. Keywords are not case sensitive. The basic types of a value include strings, which can

be any arbitrary text sequence, (when a string appears in a block it may not contain whitespace,

and no string may contain the # character) integers or floats. Where an input value has units,

it is specified by a float followed by the name of the unit. For energies, permissible units are

’ryd’ or ’ev’. For lengths, ’bohr’ or ’ang’. For temperatures ’k’. Some keywords take a further

keyword as their argument; these are again case insensitive. As a special case of this are options

which can only be enabled or disabled, in which case ’true’, ’.true.’, ’1’, ’yes’, ’t’ or ’y’ are used

to enable the option, and ’false’, ’.false.’, ’0’, ’no’, ’n’, and ’f’ will disable it.

Where a keyword requires multiple arguments, it is specified as a block. ’%block <keyword>’

must appear on a line of its own. In the following lines the set of parameters are given, separated

by whitespace. Finally, ’%endblock <keyword>’ must appear on a line of its own.

The following is an example of a correctly formatted input file, as an example of the syntax.

The names and effects of the available keywords will be described in the following sections.

#Perform an EHT calculation on a monotomic gold chain

JobType Huckel

SystemLabel Lead

SelfConsistency None

CellCutoff 8 Bohr
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NumberOfSpecies 1

%block Chemical_Species_label

1 79 Au

%endblock Chemical_Species_label

AtomicCoordinatesFormat NotScaledCartesianBohr

NumberOfAtoms 6

%block AtomicCoordinatesAndAtomicSpecies

0.00000000000000 0.00000000000000 2.25510159197654 1

2.76192410899580 1.59459763004823 6.76530477592962 1

2.76192410899580 -1.59459763004823 11.27550795988271 1

0.00000000000000 0.00000000000000 15.78571114383579 1

2.76192410899580 1.59459763004823 20.29591432778887 1

2.76192410899580 -1.59459763004823 24.80611751174195 1

%endblock AtomicCoordinatesAndAtomicSpecies

LatticeConstant 1.0 Bohr

%block LatticeVectors

5.52384821799160 0.00000000000000 0.00000000000000

2.76192410899580 4.78379288340561 0.00000000000000

0.00000000000000 0.00000000000000 27.06121910371850

%endblock LatticeVectors

The following are the global keywords, applicable to all job types:

JobType (Huckel | Transport | UnitTest | SiestaTransport | PrecalcLeads)

Default: None

Set the type of calculation which EHTransport will perform. Huckel is used to perform an EHT

calculation. Transport is used to perform NEGF calculations on the output of an earlier EHT

calculation. UnitTest is used to perform some tests for successful compilation and functionality

of the EHTransport code. SiestaTransport is used to perform NEGF calculations on the output
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of a transiesta run. PrecalcLeads is used to calculate and store to disk the self-energy matrices

of an earlier EHT calculation.

SystemLabel <string>

Default: label

Sets the name of the job. This is used in the names of any output files, to allow multiple runs in

a single directory without overwriting each others results. For example, if this option is specified

as ’test’, running an EHT calculation will result in the creation of a file called ’test.EHT’ in the

working directory containing the calculation results.

Any output files are written to EHTransport’s working directory, which will not be changed

from the initial invocation of the program. The exact set of output files produced will vary based

on the job type and the selected options. Calculation progress is written to standard output, to

provide feedback on the progress of a calculation.

A.2 Performing an Extended Hückel calculation

A.2.1 Setup, input and output

An EHT calculation requires no input beyond the FDF file. This file must at the least specify

the positions and types of every atom in the system. As output, the file ’<systemlabel>.EHT’

is created. This file is in a binary format, and stores the Overlap and Hamiltonian matrices for

each k-point, along with atomic charges if calculated and the parameters the system was set up

with. Other output files may also be generated depending on the selected options.

During a long calculation, you may occasionally want to interrupt EHTransport without

killing it. Once per self consistent loop, EHTransport will check for the file ’override.txt’ in its

working directory, and if found will read from it the first line. This can contain a command with

which to alter EHTransports behaviour. Currently the only supported command is ’shutdown’,

which will immediately terminate the self-consistency loop as if the limit on the maximum number

of iterations had been hit.
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A.2.2 Valid keywords

The following are the list of keywords applicable to EHT calculations:

UseSaveData <bool>

Default: False

If this option is enabled, EHTransport will not perform an EHT calculation, but rather will

attempt to read in an existing .EHT file. The file that will be read will have the same name as

the file that would have otherwise been created. If this file could not be found, or could not be

read successfully, EHTransport will not attempt to perform the EHT calculation from scratch,

but rather the job will fail.

NumberOfSpecies <integer>

Default: None

Specify the number of different atomic species taking part in the calculation. Note that if multi-

ple parameter sets are in use for a single atom, each variant counts as a separate atomic species.

This option is required if UseSaveData is not enabled, or ignored if it is.

ChemicalSpeciesLabel <block>

Default: None

Specify the atomic species used in the calculation. This must be provided as a block, with a

number of values equal to three times the number of species in the calculation. For each species,

two integers and a string must be given; the id of the atom in the calculation (numbered from

1 up to NumberOfSpecies), then the number of electrons in the atom, followed by the atomic

symbol. Note that the number of electrons field is actually ignored in EHTransport, and is only

required to maintain SIESTA compatibility. This option is required if UseSaveData is not en-

abled, or ignored if it is.

NumberOfAtoms <integer>

Default: None

Specify the number of atoms in the system. This option is required if UseSaveData is not en-
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abled, or ignored if it is.

AtomicCoordinatesFormat (NotScaledCartesianBohr | NotScaledCartesianAng)

Default: NotScaledCartesianBohr

Provides the coordinate system in which the atomic coordinates will be given. Only Cartesian

options are supported, with the results that numbers given for atomic coordinates are multiplied

either by 1 Bohr or by 1 Angstrom to give the final coordinates. Note that the scaled coordi-

nate options available in SIESTA are not supported in EHTransport. This option is required if

UseSaveData is not enabled, or ignored if it is.

AtomicCoordinatesAndAtomicSpecies <block>

Default: None

Provides the coordinates and species of each atom in the system. This must be provided as a

block, with a number of values equal to four times the number of atoms in the calculation. For

each atom, three floats and an integer must be given, specifying the position of the atom in the

system, and the id of the atomic species of the atom. This option is required if UseSaveData is

not enabled, or ignored if it is.

LatticeConstant <Length>

Default: 1 Bohr

This is a scaling factor for the unit cell size. All values in the unit cell matrix are multiplied by

this length to give the final values. This option is ignored if UseSaveData is specified.

LatticeVectors <block>

Default: See description

This provides the size of the unit cell for the calculation. It can be specified either as three float

values, which will be interpreted as the lengths of the x, y and z vectors of an orthogonal unit

cell, or as nine float values which are interpreted as an orthogonal unit cell. If the block is not

present, EHTransport will use an orthogonal unit cell of a size large enough to fit in all atoms

of the system with no atoms within 10 Bohr of each face of the cell. This option is ignored if
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UseSaveData is specified.

NumKPoints <integer>

Default: 0

If greater than zero, this specifies the number of explicit k-points that will be provided. (See

’KPoints’ keyword) This option is ignored if UseSaveData is specified.

KPoints <block>

Default: None

Specifies the set of k-points at which the EHT calculation will be performed. This must be

provided as a block, with a number of values equal to four times the number of k-points in

the calculation. For each k-point, 4 floats must be given, the first 3 providing the location

of the k-point in reciprocal space (values between 0.0 and 1.0) and the fourth value giving the

weighting of the k-point. This option is required if NumKpoints is specified, or ignored if it is not.

KGridMonkhorstPack <block>

Default: Gamma point calculation only

The Monkhorst-Pack mesh to use for generating the set of k-points for a system. This must be

provided as a block containing nine integers. The set of k-points created will be identical to those

of SIESTA for a given Monkhorst-Pack mesh and unit cell, aside from SIESTA picking up on

more available symmetry and merging some k-points. This option is ignored if UseSaveData or

NumKPoints are specified. If neither this option nor NumKPoints are specified, the calculation

will be performed at the gamma point.

AtomicModes <block>

Default: See description

Specifies the parameter set to use for each atomic species. This must be provided as a block

containing two integers for each atomic species whose value you wish to change. The first integer

is the atomic number of the species you wish to change, and the second is the id of the parameter

set you wish to use. The default is the Hoffmann parameter set for all atoms other than gold,
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whose default is the Cerda parameter set. This option is currently supported only for gold,

for which the valid values are 1 (Hoffman) 2 (Cerda) or 10 (Custom parameter set, fitted to a

monatomic gold chain DOS). This option is ignored if UseSaveData is specifies.

SelfConsistency (None | Simple | Poisson)

Default: None

Specifies the type of self consistency which will be employed in the EHT calculation. Note that

Poisson mode is not supported for a non-orthogonal unit cell. This option is ignored if UseSave-

Data is specified.

TS.Voltage <float>

Default: 0

Specifies the bias across the unit cell in the z direction in volts. This option is ignored if Self-

Consistency is not Poisson, or if UseSaveData is specified.

CellCutoff <length>

Default: 8 Bohr

Specifies how many neighbouring unit cells are considered when constructing the overlap matrix

of the system. Any cell from which a line of less the specified length can be drawn with one end

in the central unit cell and the other in the neighbouring cell will be included in the calculation.

If set to 0 periodicity will be disabled. (Note that in this case, it makes no sense to perform the

calculation anywhere other than the gamma point.) This option is ignored if UseSaveData is

specified.

InternalSupercell <block>

Default: None

Specifies the exact size of the internal supercell to use when constructing the overlap matrix of

the system. This must be provided as a block containing three integers, representing the num-

ber of additional cells to include in the x, y and z directions. This extends in both directions;

for example, 0 would represent no periodicity in that direction, and 1 would result in a total of
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3 unit cells in the given direction. This option is ignored if CellCutoff or UseSaveData is specified.

OverlapCutoff <length>

Default: 20 Bohr

Specifies the range at which all overlaps between orbitals is assumed to be 0. Reducing this

option will decrease computation time, but will result in poorer calculation results. Too low a

value may result in the calculation failing with an error that the overlap matrix was not positive

definite. This option is ignored if UseSaveData is specified.

DumpSupercell <bool>

Default: False

If this option is enabled, a file called ’supercell.xyz’ will be created, containing the complete in-

ternal supercell used by EHTransport. (i.e. the unit cell for which the calculation was performed,

along with all neighbouring cells used in calculation of the overlap matrix.) The file will be in

xyz format, with lengths in Bohr.

SaveEnergies <bool>

Default: False

If this option is enabled, an output file called ’energies’ will be created containing the values of

all eigenvalues of the system Hamiltonian. The values for all k-points will be mixed together and

sorted into ascending order. Values are in eV, and relative to the Fermi level.

SaveAtomicCharges <bool>

Default: False

If this option is enabled, an output file called ’charges’ will be created containing the relative

charge on each atom in the system. Charges are given in fractions of an electron, one per line, in

the same order as which the atoms were specified in the AtomicCoordinatesAndAtomicSpecies

section.

BandLines <block>
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Default: Don’t save any bandlines

If specified, make a band plot for the system. Two output files will be created; ’<systemla-

bel>.bands’, which contains a list of energies at each point in k-space along each band, and

’<systemlabel>.plotbands’, which contains a gnuplot script which can be executed to generate a

plot of the band structure. This must be provided as a block containing 5 values for each path in

k-space for which the bands are to be plotted. For each path, the first value must be an integer

specifying how many points to pick along the line. The next 3 should be floats, containing the

end point of the line in reciprocal space. (Valid values are between 0.0 and 1.0) The final value

is a string, which will be used for the labelling of the point in the gnuplot script. The start of

each line is taken to be the end of the previous line. To avoid point duplication, the first point

on the line is skipped, thus the first entry should normally be ’1 0 0 0 \Gamma’ in order to get

the gamma point.

BandPlotCount <integer>

Default: Use all eigenstates

This option specifies the number of bands to include in the bandplot. This allows for removing

the upper bands, which will be very poorly computed, and due to high energies will mask the

interesting part of the plots. This option is ignored unless BandLines is specified.

BandPlotFermi <energy>

Default: The calculated system Fermi level

This option allows overriding the Fermi level of the system for the purposes of band plotting.

This option is ignored unless BandLines is specified.

ProjectedDensityOfStates <block>

Default: Don’t save projected density of states

If specified, an output file called ’<systemlabel>.pdos’ will be created, containing the DOS of

the system and potentially a number of PDOS projected over different atoms or orbitals. This

must be provided as a block containing three floats followed by an integer. The first float is the

minimum energy at which the DOS will be sampled. The second is the maximum energy, and
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the third is the amount of broadening to apply to each eigenvalue when computing the DOS.

All energies must be provided in eV. The final integer is the number of data points at which the

DOS is to be sampled.

PDOSMergeOrbitals <bool>

Default: True

If specified, the PDOS will be collapsed from a per-orbital array to something that is stored

per-atom. This has an effect on atom ids in the PDOSAtoms block; if a system contains 2 gold

atoms and this option is specified ’range 1 2’ will calculate the complete DOS of the system. If

this option is not specified, it will computed the PDOS projected onto the s orbital and first p

orbital of the first gold atom. Ignored if ProjectedDensityOfStates is not specified.

PDOSAtoms <block>

Default: See description

Specifies the list of projections on which to calculate the PDOS. This must be provided as a

block. The first item in the block is the number of projections to be made. For each projection

the block first contains a float which is the factor by which to scale the projection, followed by a

keyword which may be one of ’all’, ’range’, ’ranges’, ’atom’. or ’natom’. ’all’ requires no further

values, and computes the complete DOS. ’range’ requires two further integers representing the

first and last atom (or orbital, if PDOSMergeOrbitals is false,) on which to project the DOS.

ranges requires on integer that specifies the number of ranges to include, followed by that many

pairs of integers to specify the ranges. ’atom’ and ’natom’ project over an explicit list of atoms,

and require one integer to specify the number of atoms (or orbitals) to project over, followed

by that many further integers to specify the atoms. ’atom’ will sum the PDOS of each of these

atoms, whereas ’natom’ will average it. Note that the first entry in the output file is always

the full DOS, so there is a use case for creating this block with a number of projections of zero.

Ignored if ProjectedDensityOfStates is not specified.

PDOSStart <integer>

Default: 1
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If PDOSAtoms is not specified, a single PDOS can be computed using the PDOSStart, PDOSEnd

and PDOSMulti keywords. This is equivalent to a PDOSAtoms block of ’1 <PDOSMulti>range

<PDOSStart><PDOSEnd>’. Ignored if PDOSAtoms is specified, or ProjectedDensityOfStates

is not specified.

PDOSEnd <integer>

Default: Last atom of the system

See PDOSStart description. Ignored if PDOSAtoms is specified, or ProjectedDensityOfStates is

not specified.

PDOSMulti <float>

Default: 1.0

See PDOSStart description. Ignored if PDOSAtoms is specified, or ProjectedDensityOfStates is

not specified.

DOSMulti <float>

Default: 1.0

Since the first entry in the pdos file is the full DOS of the system, even if it does not appear in the

PDOSAtoms block, this option exists to allow its scaling. Ignored if ProjectedDensityOfStates

is not specified.

SaveGrid <block>

Default: 50 50 50

Specifies the number of points on the real space grid on which to save real space properties, such

as potential and charge. Ignored if no other options are specified which would result in the calcu-

lation of a real space property. Note that real space properties are saved in .cube file format, and

few programs can correctly open such a file if it contains a non-orthogonal unit cell. Furthermore,

saving the potential requires invoking the Poisson solver, even is Poisson self-consistency mode

was not selected, which will not function correctly for a non-orthogonal unit cell.
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SaveRho <bool>

Default: False

Save the charge density of the system, computed on a real space grid, to the output file ’<sys-

temlabel>.RHO.cube’. This is computed using the Gaussian charge projections of the Poisson

solver, rather than Slater orbitals.

SavePotential <bool>

Default: False

Save the potential of the system, computed on a real space grid, to the output file ’<system-

label>.POT.cube’. An additional output file ’<systemlabel>.POT.txt’ will also be created,

containing the averaged potential across each plane in an increasing z direction. This option is

not supported for non-orthogonal unit cells.

SaveDRho <block>

Default: Do not save

Save the difference in charge between this system and another system, which may be different,

and may contain different numbers of atoms. This must be provided as a block. The first value

is the path to a text file from which the charges on the system to compare with will be read.

Following this may be any number of groups of four integer values, specifying the initial atom

from the system to compare, the initial atom from the current system, the number of atoms,

and the number of times to repeat. For example, if the old system consisted of a single water

molecule in isolation, and the new system consisted of a 12 atom gold cluster surrounded by 4

water molecules with the water molecules following the gold atoms in the input file, and you

wish to extract how the charge has changed on the water molecules, the input would be ’0 12 3

4’.
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A.3 Performing a NEGF calculation

A.3.1 Setup, input and output

When performing a transport job, EHTransport uses the .EHT output files created from a

minimum of two EHT runs in order to calculate a transmission spectra. This is saved to the

output file ’<systemlabel>.avtrans’. Note that there is a difference in format of the .avtrans

output file between EHTransport ans SIESTA. In SIESTA the file contains four columns in the

order energy, transmission, DOS, PDOS of molecule without leads. In EHTransport it contains

three columns and is ordered energy, DOS, transmission; i.e. the DOS and transmission columns

are transposed. The input file expected for the scattering region is always ’<systemlabel>.EHT’.

A.3.2 Valid keywords

The following are the list of keywords applicable to NEGF calculations.

TS.HSFileLeft <string>

Default: None

Specifies the file path to the .EHT file to use for the left hand lead. This is a required option.

TS.HSFileRight <string>

Default: Duplicate left lead.

Specifies the file path to the .EHT file to use for the right hand lead. If not set, the same file

will be used for both the left and right hand leads.

TS.TBT.Emin <energy>

Default: -1.0 eV

Specifies the minimum energy at which to calculate the transmission and DOS.

TS.TBT.Emax <energy>

Default: +1.0 eV

Specifies the maximum energy at which to calculate the transmission and DOS.
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TS.TBT.NPoints <integer>

Default: 100

Specifies the number of data points at which to evaluate the transmission and DOS.

TS.Voltage <float>

Default: 0

Specifies the bias applied across the system, in volts.

CutContactCoupling <integer>

Default: See description

Specifies which element of the scattering regions overlap matrix and Hamiltonian to explicitly

set to zero before beginning the NEGF calculation. By default, any orbitals which overlap with

the leads are zeroed, but since more than one periodic layer of the leads are normally included

in the scattering region, this value can often be safely increased. Note that this option works by

the number of orbitals, rather than the number of atoms.

StoredLeadPath <string>

Default: Do not use stored lead self energy matrices

Specifies the path to a folder containing saved self-energy matrices. For each energy at which

the transmission is to be evaluated, at the point at which EHTransport would normally calculate

the lead self energy, it will check in this folder for a file which contains the self energy matrix

and if found will load from this instead rather than recalculating. If this path does not end in a

directory separator character, the final part of the path is taken as a prefix with which to label

the saved files.

CalcBondCurrents <bool>

Default: False

Save the bond currents through the system. Two output files are generated, ’bondcurrents.txt’

which contains an n× n matrix where n is the number of atoms in the system, listing the bond
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currents between every pair of atoms, and ’obondcurrents.txt’ which is the same, except in terms

of orbitals rather than atoms.

BondCurrentEnergy <energy>

Default: 0 eV

Specifies the energy offset from the fermi level at which to calculate the bond currents. Ignored

if CalcBondCurrents is not specified.

A.4 Other available job types

A.4.1 UnitTest

If this job type is selected, EHTransport will run some internal calculations and check the results

against what is expected. Tests include comparing a range of analytic Slater orbital overlaps with

volume integrals, comparing hydrogen atom EHT calculations with analytic results and testing

NEGF output on a model Hamiltonian with analytic results. Some files will also be generated in

the working directory, containing more information about the results of some of the tests. There

are no further keywords associated with this job type.

A.4.2 SiestaTransport

This job is used to perform NEGF calculations on Transiesta output files. Behaviour is similar

to the Transport job type, except that the input file for the scattering region is expected to be

’<systemlabel>.TSHS’, and the lead input files are also expected to be in the same Transiesta

TSHS format. All keywords from Transport job type are valid and have the same meanings here,

with the exception of ’StoredLedPath’, which is not available. In addition, the ’NumKPoints’,

’KPoints’ and ’KGridMonkhorstPack’ keywords from the Huckel job type are valid and have

their same meanings. Note that the z coordinate of all k-points should be 0.

A.4.3 PrecalcLeads

This job type is used to compute the self energy matrices of leads at a range of energies. Where the

number of orbitals in a principal layer of the lead is significant compared to the number of orbitals
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in the entire scattering region, this can make a significant difference to the speed of the calcula-

tion. Of course, this is only a win when the same lead is being used for multiple different scat-

tering regions to calculate transmission on the same energy grid, since otherwise the time taken

to compute and store the lead self energy matrices would more than erase this gain. The files

generated are named ’<label: %s>.<kpointid: %d>.<energy: %.6f>.<voltage: %.2f>.LEAD.

The following keywords are recognised, and have the same function as in the Transport job

type: ’TS.HSFileLeft’, ’TS.HSFileRight’, ’TS.TBT.EMin’, ’TS.TBT.EMax’, ’TS.TBT.NPoints’

and ’TS.Voltage’. The ’StoredLeadPath’ keyword is also valid, but now specifies the location to

save to rather than read from.

A.5 Code layout

A.5.1 File structure

AnalyticEHT.h, AnalyticEHT.cpp

Contains code for analytically computing overlaps between Slater orbitals

DebugUtils.cpp

Contains code for printing matrices to files in text form, and analysing matrices for properties

such as symmetry

EHTData.h, EHTData.cpp

Contains the parameter sets required for performing EHT calculations.

EHTransport.cpp

Contains the startup and program initialisation code

FDF.h, FDF.cpp

Contains code for parsing fdf input files

GausPot.h, GausPot.cpp
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Contains code for constructing model Hamiltonian’s for a 1d potential barrier using a Gaussian

function basis set. Also computes analytic results.

initkgrid.cpp

Contains code for generating a set of kpoints from a given Monkhurst-Pack mesh.

Input.h, Input.cpp

Contains code for constructing a system from the fdf input file and launching the appropriate

other modules.

NEGF.h, HEGF.cpp

Contains code for running NEGF calculations based on a real and symmetric input Hamiltonian

OverlapCache.h, OverlapCache.cpp

Implements a caching mechanism to avoid having to recalculate overlaps between Slator orbits

unnecessarily.

PeriodicEHT.h, PeriodicEHT.cpp

Contains code for performing an EHT calculation, including band structure and PDOS analysis.

periodicNEGF.h, periodicNEGF.cpp

Contains code for running NEGF calculations based on a complex hermitian input Hamiltonian

Poisson.h, Poisson.cpp

Contains code for computing the potential at each atom site give a set of charges on each atom,

and for making real space plots of charge distribution and potential.

stdafx.h

Contains shared definitions required by all other files
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structs.h, structs.cpp

Contains utility structures, including those that represent unit cells, atoms and orbitals, and

performs simple operations on those structures.

TSHS.h, TSHS.cpp

Contains code for reading a Transiesta output file in TSHS format and converting it into

EHTransports internal representation.

A.5.2 Adding additional atomic species

In an EHT calculation, the input fdf file provides a mechanism for selecting between alternate

parameter sets for a given atomic species, but does not offer a way of including completely new

parameters. To add support for a new atomic species, two files in EHTransport need to be

modified; structs.h and EHTData.cpp. The positions at which new code needs to be inserted

should be obvious on inspection, and many of the required parameters such as atomic number

and valence electron count are readily available. What is perhaps more complex is the orbital

parameters required. Standard non-self consistent EHT parameters are tabulated in several

locations, but the additional parameters required for self consistent EHT are not. The values

inbuilt into EHTransport are computed from all electron DFT calculations using the program

ATOM with a PBE exchange correlation functional.
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