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Abstract

Bas-reliefs are a form of flattened artwork, part-way between 3D sculp-
ture and 2D painting. Recent research has considered automatic bas-relief
generation from 3D scenes. However, little work has addressed the genera-
tion of bas-reliefs from 2D images. In this paper, we propose a method to
automatically generate bas-relief surfaces from frontal photographs of human
faces, with potential applications to e.g. coinage and commemorative medals.

Our method has two steps. Starting from a photograph of a human face,
we first generate a plausible image of a bas-relief of the same face. Secondly,
we apply shape-from-shading to this generated bas-relief image to determine
the 3D shape of the final bas-relief. To model the mapping from an input
photograph to the image of a corresponding bas-relief, we use a feedforward
network. The training data comprises images generated from an input 3D
model of a face, and images generated from a corresponding bas-relief; the
latter is produced by an existing 3D model-to-bas-relief algorithm. A saliency
map of the face controls both model building, and bas-relief generation.

Our experimental results demonstrate that the generated bas-relief sur-
faces are smooth and plausible, with correct global geometric nature, the
latter giving them a stable appearance under changes of viewing direction
and illumination.
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1. Introduction1

Bas-reliefs are a form of flattened sculpture applied to a base surface.2

Compared to high-reliefs, bas-reliefs have a limited height above the back-3

ground, and no part is undercut. They can be considered to be part way4

between sculpture and painting. Bas-reliefs have been used for centuries5

in art and architectural decoration, for example as portraits on coins. In6

modern times, they are also popular in industrial design, for example for7

branding packaging. However, the production of bas-reliefs requires consid-8

erable artistic skill and manual effort. In the fields of computer aided design9

and computer graphics, recent research [1, 2, 3, 4, 5, 6] has considered au-10

tomatic bas-relief generation from 3D scenes. However, as such methods11

are based on 3D input data, this restricts their range of application, as the12

necessary 3D input models require specialised and expensive equipment for13

capture, or must be created laboriously by hand. An alternative approach,14

with potentially much wider application, is to generate bas-reliefs from 2D15

images. However, little work has addressed this problem [7, 8].16

Here, we consider a specific problem: the production of a bas-relief from17

a single frontal photograph of a human face. We focus on human faces,18

since the face is of special interest in bas-reliefs, especially for coinage and19

commemorative medals. We mainly address frontal faces here as they are20

somewhat simpler to process, even though applications often also use profile21

or semi-profile views. Frontal faces have fixed head pose, and eliminate the22

necessity of head pose estimation for face images with semi-profile views.23

Moreover, many frontal face databases exist, facilitating experiments, for24

example on image relighting. Nevertheless, as we do not use any specific25

attributes of frontal faces (such as symmetry), our method can in principle be26

extended to other views. Indeed, our experiments, demonstrate an example27

using a non-frontal face too.28

Our approach is based on shape-from-shading (SFS) [9, 10, 11], a standard29

technique to recover 3D shape from a single image of an object, based on a30

model of variation of reflected intensities as a function of surface orientation.31

However, generating a bas-relief surface from a human face image is not32

straightforward. One approach would be to use SFS to directly recover the33

3D shape of the face as a depth map, and then process that with one of34

the existing bas-relief production algorithms given above. We do not take35
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(a) Model Learning

(b) Relief Generation

Figure 1: The proposed framework

this approach because the results would be dependent on any deficiencies in36

the chosen bas-relief production algorithm. Instead, we take an alternative37

path: we first generate a new image from the face photograph; this new image38

corresponds to the expected appearance of the bas-relief. We then apply SFS39

to this image to recover the shape of the bas-relief. This potentially allows40

us to base our approach on high-quality hand-crafted bas-reliefs, rather than41

algorithmically generated ones, as we now discuss.42

Our overall framework has two components, shown in Figure 1. First,43

an offline process is used to learn the relationship between an image of a44

3D human face and an image of a corresponding 3D bas-relief of that face.45

This is done by taking one or more 3D face models, and processing them46

using any existing bas-relief generation algorithm to produce corresponding47

3D bas-reliefs. Each original 3D model and corresponding bas-relief are then48

rendered to give 2D images, using one or more lighting conditions. A learning49

algorithm is used to model the relationship between the pixel values in these50

images. While here we use an existing 3D bas-relief generation algorithm51

for simplicity, an alternative would be to learn the relationship using pho-52

tographs of human faces and handcrafted bas-reliefs of those faces derived53

from those photographs. This would avoid any deficiencies in existing bas-54

relief generation algorithms (but would also necessitate careful registration55

of reliefs and photographs).56

Once we have learnt the model between 2D face images, and 2D face57
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bas-relief images, we can input a new face image, and apply the model to58

determine what a corresponding bas-relief model should look like. We then59

apply SFS to recover the bas-relief surface from the generated bas-relief im-60

age. In practice, we find that if we re-light the input image from several new61

directions [12], giving multiple versions of the input image, and use each to62

determine a bas-relief, these can be combined into a more satisfactory final63

bas-relief.64

In the following, Section 2 reviews related work on bas-relief generation65

and shape from shading. Sections 3, 4, and 5 give detailed descriptions of66

the model building step, bas-relief image generation, and shape from shading.67

Section 6 describes how multiple renderings may be combined to give a final68

bas-relief surface. Section 7 presents examples, while Section 8 considers69

several alternative strategies in our methods. Section 9 gives conclusions70

and discusses possible improvements.71

2. Related Work72

The earliest attempt to generate bas-reliefs by computer was given in [1].73

The authors summarized various basic attributes of artistic bas-reliefs, in74

particular noting that more distant objects undergo greater depth compres-75

sion than nearer ones. Based on this finding, the authors applied a standard76

perspective transformation to the height fields of a 3D scene. Although the77

results generally adhered to the principles of creating bas-relief, the results78

only weakly preserved detailed features.79

More recent work [2, 4, 3] was inspired by techniques used in high dynamic80

range (HDR) imaging, where a wide range of intensities is compressed to use81

a lower intensity range in a way that retains important visual features. In82

relief processing, depths replace intensities. The method in [4] performs83

depth compression in the gradient domain, using a non-linear scaling [13] of84

gradient magnitudes; the aim is to preserve small gradients while attenuating85

large ones. The approaches in [2] and [3] both make use of unsharp masking86

to emphasize salient features, before using linear scaling for compression.87

The former works in differential coordinates, while the latter works in the88

gradient domain. The results in [3] were improved in [14] by replacing linear89

scaling with non-linear scaling techniques during compression. Further work90

of a similar kind [6] also applies non-linear scaling, but uses bilateral filtering91

to decompose the gradient into coarse and fine components, enabling careful92

manipulation of detail.93
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A different kind of approach is based on the concept of adaptive histogram94

equalization from image processing [5]; depth compression works directly on95

the height field. The authors demonstrate good results for various scenes96

and objects, including human faces, and we use it as a basis for our learning97

process.98

The above methods start with a depth-map of a 3D scene, and selectively99

compress depths to create the bas-relief surface. Two recent papers [7, 8]100

use images as input. A two-level (low frequency component and high fre-101

quency detail) approach is given in [8] to restore brick and stone reliefs from102

images taken as rubbings. The authors have also applied their approach to103

photographs, but, as they note, it is only suitable for objects made of homoge-104

neous materials with relatively little texture and low albedo. An experiment105

on a photograph of Picasso showed that the approach provided poor results106

for portrait photographs.107

More pertinent to our work is [7], which aims to create relief surfaces that108

approximate desired images under known directional lighting. The authors109

first adjust the input images to match their average radiance to that of a relief110

plane. They then apply a modified SFS method with height constraints to111

this adjusted image to create the relief surface. The authors note that the112

integrability constraint enforced by SFS constrains the radiance for each113

element of a recovered surface. To use this observation, they associate each114

pixel with not just one, but several, surface elements. Unfortunately, the115

increased numbers of degrees of freedom also increases the sensitivity of the116

generated bas-relief surfaces to changes in viewing direction and illumination.117

An important observation that we have made is that images of real bas-118

reliefs, such as heads on coins, do not approximate images of the correspond-119

ing 3D objects (photographs of heads). Instead, they enhance the salient120

features. Thus, we do not follow the aims of [7], but instead try to make bas-121

relief surfaces with the same appearance as bas-reliefs created by an artist.122

Trying to approximate an original photograph is an unrealistic goal given123

that the bas-relief surface must be relatively flat. This different emphasis of124

approach has a further advantage that the results are not strongly view de-125

pendent, and the global geometric nature of each generated bas-relief surface126

is consistent with human perception, giving them a stable appearance under127

changes of viewing direction and illumination.128

Our work employs existing SFS techniques, which recover shape from in-129

tensity variation in an image. A survey of early SFS work can be found in [9].130

Assuming Lambertian reflectance and a known directional light source, Horn131
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and Brooks [15] gave a variational approach to solve the SFS problem. The132

energy to be minimised comprises a brightness constraint and a quadratic133

regularizing term enforcing surface smoothness. However, this method in-134

volves the choice of a Lagrange multiplier, and the results tend to be over-135

smoothed. To overcome these deficiencies, Worthington and Hancock [10]136

proposed a geometric SFS framework which strictly satisfies the brightness137

constraint at every pixel: surface normals are forced to lie on their irradiance138

cones during each iterative update. The same authors have also given sev-139

eral robust regularizers with better smoothing behaviour than the quadratic140

one [16]. Huang and Smith [11] gave a structure-preserving regularization141

constraint, which allows smoothing to be performed locally, dependent on142

the intensities in a local area. We adopt the last method, as it is particularly143

suited to our requirement to preserve salient facial features.144

3. Mapping face images to face bas-relief images145

As shown in Figure 1, the first step of our framework is to learn the146

relationship between a 2D frontal image (photograph) of a human face and147

a 2D image of a corresponding bas-relief of the same face. The idea is that148

if we know the mapping, we can generate bas-relief images from new input149

face images without requiring corresponding 3D models.150

Initially, we tried an alternative approach (with similar goals to [7]): to151

use the 2D frontal image as a basis for directly producing a relief using shape-152

from-shading, with extra constraints to enforce the result to have very low153

height: the aim was to produce a relief which looks as similar as possible to154

the input face. It soon became obvious that this does not give satisfactory re-155

sults. On analysing images of artistic bas-reliefs, while they are recognisably156

related to images of the original object, they are also quite clearly different157

from them. Figure 2 shows an example of a bas-relief generated using an ex-158

isting 3D bas-relief generation method [5], clearly demonstrating this point.159

160

We thus turned to understanding and modeling the mapping between161

intensities in images of faces and images of corresponding bas-reliefs. It soon162

became clear that a simple function is not adequate for this purpose. Some163

explicit image processing methods, such as image embossing, can produce an164

image with a bas-relief-like effect. However, these methods usually change165

the reflectance properties of the surface, and the lighting conditions in the166

original image, which increases the difficulty of applying shape-from-shading167
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Figure 2: Two images rendered under the same conditions: a 3D model, and a bas-relief
generated from it using the method in [5]. Note that these images are very different.

in the subsequent steps of our process. Instead, then, we take a different168

strategy, and learn the mapping by training a feedforward network.169

For training, computer generated 2D frontal images of a 3D face model170

and a corresponding 3D bas-relief model are produced, using the same ren-171

dering setup—the same reflectance model and lighting conditions. We make172

use of this consistency of rendering during the shape from shading step. We173

take the 3D face models as given; during the learning process, to generate174

corresponding bas-reliefs, we use an existing algorithm chosen for its good175

performance on faces [5]. (As noted, better results are likely to be obtained176

using high-quality bas-relief models produced by a sculptor.) We also use a177

saliency map to guide the selection of the training data, so that the more178

salient areas are more likely to be selected during training (and hence better179

modelled). We now give further details.180

3.1. Generating Bas-reliefs for Training181

To learn the mapping from images of faces to images of bas-reliefs of182

faces, we need corresponding pairs of images. Given one or more 3D face183

models, we need to generate corresponding 3D bas reliefs. We do so using184

Sun’s method [5], which we briefly summarise. Starting from a height map185

of the face (i.e. a range image), it performs histogram equalization of heights186

within a local neighborhood for each point. Two modifications are applied187

to this local histogram equalization. First, the calculation of the histogram188

is weighted by the gradient magnitude after applying a non-linear transfor-189

mation, in order to preserve small shape details. The second modification190

applies an iterative clipping and redistribution procedure to the local his-191

tograms, limiting their content. This prevents too many counts in any one192
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histogram bin, which would result in shape distortion and increased noise.193

A scaling factor l controls this limit for each bin’s content. To generate the194

final bas-relief surface, the method processes the input height maps using sev-195

eral different neighborhood sizes, and averages the results. Figure 2 shows196

a scanned head of Julius Caesar and the final bas-relief produced using the197

method.198

3.2. Saliency Map Calculation199

When producing a bas-relief, it is more important to preserve details in200

some areas of the face than others. We define and use a saliency map for201

this purpose. It is used to guide the learning process so that more salient202

areas are more likely to be selected during training. It is also used again later203

in the shape-from-shading process in order to preserve salient facial features204

(see Section 5).205

The saliency map is computed from the input image; during training206

we also determine saliency maps for the training images. Photographs of207

faces often contain noise, partly due to data acquisition errors, but also both208

because of skin blemishes—small local changes in skin colour not due to a209

change in surface shape. Images of faces generated from 3D mesh models210

may also contain systematic noise due to low mesh resolution. Thus, before211

calculating the saliency map, we use bilateral filtering [17] to smooth the212

image while still preserving the shapes of features.213

From this bilaterally-filtered image I, we calculate the image gradient214

magnitude:215

g(x, y) =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

. (1)

Next, we apply histogram equalization to g to enhance contrast. The same216

clipping and redistributing procedure described in [5] is also applied to this217

histogram, again using the scaling factor l to control the level of detail218

retained—retaining too much detail also retains noise. A final, smoothed,219

saliency map is found by applying an averaging filter with a circular neigh-220

bourhood to the result.221

Examples of saliency maps calculated from images rendered using mesh222

models, and from photographs, are shown in Figure 3; they have resolutions223

of 596× 852 and 701× 841 respectively. We use 256 equal-sized bins during224

histogram equalization, and a radius of 3 for the circular averaging filter.225

Results are shown in Figure 3 for varying scaling factors l; the saliency maps226
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(a) saliency maps of a image generated from Julius Caesar model

(b) saliency maps of a real-world image

Figure 3: Examples of saliency maps. Left to right: original images, and saliency maps
with l = 1, 4, 8, 16, 32 respectively.

bring out more detail with increasing l. A reasonable balance between feature227

details and noise occurs when l = 8.228

3.3. Feedforward Network Training229

Given a 3D face model and a corresponding (algorithmically generated)230

bas-relief surface, we now compute an image of each in the same position,231

using the same lighting conditions and reflectance models. We assume that232

the intensity of each pixel in the bas-relief image is determined by the inten-233

sities in a local neighborhood around the same pixel in the corresponding 3D234

model image. To learn the relationship between these local neighborhoods235

and the bas-relief pixel values, we use a feedforward neural network [18] for236

its simplicity. Other neural networks or learning algorithms could also be237

used.238

In our experiments, we used a 3D model of Julius Caesar and a corre-239

sponding generated bas-relief (as shown in section 3.1) to generate the train-240

ing model images and bas-relief images. We generated two pairs of corre-241

sponding training images using Lambertian reflectance and parallel lighting,242

from lighting directions, (1, 1, 1) and (−1, 1, 1), respectively (with z towards243

the model), as shown in Figure 4. For each pair of training images, our244

feedforward network has one hidden layer with 30 neurons. Each network is245
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Figure 4: Model images and corresponding bas-relief images used for training. Left pair:
light direction (1, 1, 1), right pair: light direction (−1, 1, 1).

trained for up to 1000 epochs and to a mean-square error goal of 0.001. Once246

the error goal is reached, a cross-validation technique is used to determine247

the performance and decide whether to stop training.248

4. Generating Bas-relief Images249

Having learnt a mapping from a face image to a bas-relief image, we can250

apply it to new images of faces to generate corresponding bas-relief images.251

However, the images used for training are illuminated under specific lighting252

conditions. Given a new image, for the learnt mapping to be applicable, it253

should be illuminated from the same lighting direction as the training images.254

Various methods exist in the literature which take an image under one set255

of illumination conditions, and re-light it to produce a corresponding image256

under different illumination conditions. We make use of the quotient image257

technique [12] for this purpose.258

4.1. Image Relighting259

Three images of the same object under linearly independent light sources260

are sufficient to generate the image space resulting from varying lighting261

directions [19, 20]. The basic idea of the quotient image technique is to262

apply the image space generated from one object to other objects of the263

same kind. The key is to find the quotient image, which is defined as the264

quotient between the objects’ albedos. The quotient image is independent of265

illumination, and once it has been determined, the whole image space of the266

new object can be generated from three images of the base object. In [12],267

the authors show how to obtain the quotient image Qy given an image ys of268
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(a) Azimuth angle: −10◦, elevation angle: −20◦

(b) Azimuth angle: −35◦, elevation angle: +15◦

(c) Azimuth angle: +35◦, elevation angle: +15◦

Figure 5: Bootstrap set for image relighting.

object y under a certain light source s, based on a bootstrap set of training269

objects A1, . . . , AN . Each Ai is a matrix whose columns are the three images270

of a base object ai. The use of a bootstrap set instead of a single object271

allows for variation of albedos. The albedos of the N training objects are272

expected to span the albedo of the novel object. Increasing N in principle273

gives more freedom to represent novel objects, although experiments in [12]274

show little difference as N varies from 2 to 10.275

In our experiments, we used a bootstrap set of images of 8 faces from Yale276

Face Database B [21]. The three images of each face are all frontal, being277

illuminated from three lighting directions with azimuth and elevation angles278

of (−10◦,−20◦), (−35◦,+15◦), and (+35◦,+15◦) respectively. The images279

are coarsely aligned using the tip of the nose and the centers of the eyes.280

The aligned bootstrap set is shown in Figure 5.281

Figure 6 shows examples of applying image relighting using this training282

data. Two images of the same person are shown under different lighting.283

Apart from shadows, the quotient images are quite similar, and approxi-284

mately invariant to changes in light source as hoped. The quotient image285

technique unfortunately cannot take shadows into account. Relighting im-286

ages without shadows produces results with a realistic appearance (top row,287
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Figure 6: Image relighting results, for 2 images of the same person taken under different
lighting. Left to right: original image, quotient image, and images relit from directions
(1, 1, 1) and (−1, 1, 1).

Figure 6). Due to the simple coarse alignment used, some minor artifacts can288

be seen in the relit images around the eyes and hair. This could be improved289

by applying a more sophisticated pointwise alignment method. We return to290

the problem of shadows later.291

4.2. Generating the Bas-relief Images292

We are now ready to generate the bas-relief image from the input face293

image. We first relight it from each of the same lighting directions as the294

training images, using the quotient image technique. Next, the original image295

and relit images are scaled, according to the distance between the eyes, to be296

a similar size to the training images. A saliency map is then calculated from297

the resized original image, for use later. Next, we apply the learnt feedforward298

networks to the relit images, to get the pixel values in the bas-relief images299

from pixel neighborhoods in the relit images.300

Examples of generated bas-relief images are shown in Figure 7(The inten-301

sity of the relief images are linearly stretched for showing purpose.). Salient302

facial features are preserved in the generated images, giving these images303

recognizable bas-relief appearance. The lighting directions used in the re-304

lit model images are also evident in the bas-relief images, and are utilized305

directly in the following shape-from-shading step.306
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Figure 7: A generated bas-relief image. Left to right: original image, two relit images,
and corresponding bas-relief images.

5. Finding the Relief using Shape-from-shading307

We now apply shape-from-shading (SFS) to each constructed relief im-308

age, to determine the geometry of the relief surface. SFS recovers shape309

from variation of intensities in the image. Most popular SFS methods solve310

the problem by minimizing an energy function, which usually includes an311

intensity constraint (that the surface orientation should lead to the observed312

intensity) and a regularizing term (enforcing surface smoothness). A basic313

energy function for Lambertian surfaces is given in [15]:314

I =

∫ ∫
(E(x, y)− n(x, y) · s)2︸ ︷︷ ︸

Brightness Error

+λ

(∣∣∣∣∂n(x, y)

∂x

∣∣∣∣2 +

∣∣∣∣∂n(x, y)

∂y

∣∣∣∣2
)

︸ ︷︷ ︸
Regularizing Term

dxdy,

(2)
where E(x, y) and n(x, y) are respectively the image intensity and the surface315

normal at pixel location (x, y), s is the direction of the light source, and λ316

balances intensity fidelity against surface smoothness. In practice, surfaces317

recovered using this formulation are often over-smoothed.318

Our SFS method improves upon this formulation in two ways. First, we319

satisfy intensity closeness as a hard constraint using the method of Wor-320

thington and Hancock [10]. The aim is to preserve the appearance of the321

image, which is important in our application. Secondly, we use a modified322

version of Huang and Smith’s [11] structure-preserving regularization con-323

straint, which helps to preserve salient facial features. Our SFS method is324

iterative. In each iteration, the surface normals are updated to first satisfy325

the regularizing term, and secondly to satisfy the brightness constraint. Fi-326

nally, we use the algorithm of Frankot and Chellappa [22] to integrate the327

field of recovered surface normals to generate the bas-relief surface. We now328
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give further details.329

5.1. Brightness Constraint330

For Lambertian surfaces, satisfying the intensity closeness as a hard con-331

straint is equivalent [10] to enforcing332 ∫ ∫
(E(x, y)− n(x, y) · s)2dxdy = 0. (3)

This causes the surface normal at pixel (x, y) to lie on a cone whose axis is333

in the light source direction s and whose opening angle is α = cos−1E(x, y).334

During each iteration of SFS, after updating the surface normals according to335

the regularizing term, the updated surface normals usually do not lie on the336

cone. Then, we need to rotate them back to their closest on-cone positions337

to enforce the brightness constraint.338

5.2. Regularization Constraint339

Enforcing the regularizing constraint in Equation (2) during each iteration340

of SFS can be done by updating the surface normals using341

n(t+1)(x, y) =
1

4

∑
(i,j)∈Ω(x,y)

n(t)(i, j), (4)

where Ω(x, y) = {(x+ 1, y), (x− 1, y), (x, y+ 1), (x, y− 1)} is the local neigh-342

borhood. The structure preserving regularization constraints in [11] modify343

Equation (4) by introducing a weighting scheme. The idea is that adjacent344

pixels with closer intensities are more likely to have similar surface normal345

directions. Instead, surface normals are updated using346

n(t+1)(x, y) =

∑
(i,j)∈Ω(x,y) W (i, j)n(t)(i, j)

‖
∑

(i,j)∈Ω(x,y) W (i, j)n(t)(i, j)‖
, (5)

where W (i, j) is a normalized measure of the intensity similarity between347

pixel (i, j) and the current pixel (x, y). It provides surface smoothness when348

adjacent pixels have similar intensities, but smoothing is reduced when there349

are large differences in intensities. During each SFS iteration, this weighted350

updating of surface normals is iterated until convergence (the angular dif-351

ference between n(t) and n(t+1) is less than a predefined ξ) or a predefined352

maximum number of iterations (set to 200 in our experiments).353
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Figure 8: Surface normal adjustment. Left: result before adjustment; right: after adjust-
ment.

Our variant of this approach replaces the weight W (i, j) in Equation (5)354

with the saliency value at location (i, j). Thus, updated surface normals355

are more determined by positions with high saliency values than with low356

saliency values, which helps to preserve salient facial features.357

5.3. Surface Normal Adjustment358

After the surface normals have been recovered from the image by it-359

eratively satisfying the above regularization constraint and brightness con-360

straint, we apply a further step of postprocessing. Suppose at position (x, y),361

the angle between the recovered surface normal and the light source direction362

is θ(x, y) = cos−1(n(x, y) · s), and the saliency value normalized to [0, 1] is363

w(x, y). Then, we adjust the angle to be364

θ̂(x, y) = w(x, y)θ(x, y). (6)

Together with the light source direction s, this defines a new cone at position365

(x, y). We rotate n(x, y) to its closest on-cone position. Adjusted in this way,366

we reduce differences of surface normals in areas with low saliency values,367

while increasing differences between areas with low saliency values and areas368

with high saliency values. As a result, we achieve a smoother surface with369

more prominent features. An example of relief surfaces generated with and370

without this adjustment step are shown in Figure 8.371

6. Combination of Relief Surfaces372

Our whole process (training, generating bas-relief images, and shape-373

from-shading) is based on predefined lighting directions. We use lighting374

from above (as this is natural), and to one side, to emphasize facial features.375
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Figure 9: Combination of left- and right-illuminated relief surfaces.

The drawback is that features are revealed in an uneven way. Features inside376

shadows, and those facing the light, are hard to see, while those in other377

areas are revealed much better. We overcome this difficulty by repeating the378

whole model building process twice using two symmetric lighting directions379

from upper right (1, 1, 1) and upper left (−1, 1, 1). Two bas-relief surfaces are380

generated, and we use the average surface as the final output (alternatives to381

this approach are discussed further later). Figure 9 shows an example of the382

two bas-relief surfaces generated from the same original photograph, and their383

average. These two surfaces were recovered from the two generated bas-relief384

images in Figure 7. The average surface combines features independently385

revealed by the two surfaces, and further smooths out noise.386

7. Experimental Results and Discussion387

We now present various results obtained using our method. Various issues388

should be considered when deciding if the results are satisfactory. The first389

is whether the salient features are distinct and well-preserved, making the390

face recognisable, and can be best assessed by visual inspection of the results.391

The second is whether the geometry of the generated bas-relief is appropri-392

ate, so that the relief’s appearance is stable under changes of viewing and393

illuminating directions. We show height maps of the generated bas-reliefs to394

reveal their overall geometries. (As shape-from-shading is an ill-posed prob-395

lem, it is possible to recover a shape which looks correct from the original396

viewing direction, but is clearly the wrong shape when viewed from another397

direction—for example, it is well-known that convexity and concavity can be398

reversed [23]). A third issue is that the results should not contain unwanted399

noise.400
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Figure 10: Bas-relief surfaces generated using different saliency scaling factors l. Left to
right: surfaces using l = 1, 4, 8, 16, and 32.

In the first experiment, we examine how varying the scaling factor l401

in the saliency map calculation affects the amount of detail in the gener-402

ated bas-relief surfaces. Figure 10 shows bas-relief surfaces generated using403

l = 1, 4, 8, 16, 32; as l increases, the surfaces show more detail, but also404

more noise. When l = 1, salient features are not clearly revealed. For405

l = 4, 8, 16, 32, the differences between the surfaces are more subtle. A suit-406

able compromise seems to be l = 8, which we used in other experiments.407

We note that real reliefs on coins often prefer smoothness of the relief at the408

expense of fine detail.409

In the second experiment, we assess the overall geometry of the generated410

bas-relief surfaces, and their appearance under different lighting directions.411

Figure 11 shows generated bas-relief surfaces using l = 8, together with412

their height fields which help to reveal their overall geometry. We also give413

views of the surfaces when illuminated under four different lighting directions:414

(1, 1, 1), (−1, 1, 1), (−1,−1, 1), and (1,−1, 1). We can see that the generated415

bas-relief surfaces are smooth and maintain the salient facial features in each416

case. The overall geometry of each bas-relief is globally of the desired shape,417

which ensures that its appearance is as expected under changes of viewing418

and lighting directions. One drawback is that the lips are surprisingly and419

somewhat undesirably lower than the surrounding area. This is because420

these areas are typically dark in the face, but in the SFS process, we have421

assumed constant albedo without taking such coloration into account. The422

SFS method can only produce the coloration by a geometric adjustment, and423

in doing so, the dark area poses the concave / convex ambiguity problem. On424

the other hand, the same effect is beneficial elsewhere in the image: eyebrows425

in particular are clearly visible in the result, even though geometrically they426

are close to the underlying face. A possible improvement could be obtained427
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Figure 11: Output bas-relief surfaces. Rows 1, 3: original photograph, relief surface viewed
from 2 angles, and the corresponding height fields. Rows 2, 4: views of the relief surface
using four different lighting directions: (1, 1, 1), (−1, 1, 1), (−1,−1, 1), and (1,−1, 1).

by taking facial albedo into account during SFS, at least for the lips.428

Further results are shown in Figure 12, using photographs captured un-429

der ambient (rather than directional) light. Figure 13 shows results from430

public domain photographs of various famous people. Faces were cropped431

from backgrounds manually. In each case, reasonable bas-relief surfaces were432

produced. One limitation is that teeth (last row in Figure 12 and Figure 13)433
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Figure 12: Further reliefs produced from photographs under ambient light.

and extensive hair (first row in Figure 13) are not handled well, because they434

are not well represented in the relief training data and bootstrap images for435

relighting. A further possible improvement would be to enlarge the training436

and bootstrap sets to include various facial albedos and expressions.437

Finally, we applied our method to a photograph of a non-frontal face—438

see Figure 14. The generated bas-relief surface reveals the general shape of439

the face and maintains the prominent features. However, there are artifacts440

around the eyes and mouth. Figure 14 makes it clear that the artifacts are441

introduced during image relighting. The bootstrap set used for image relight-442

ing was entirely composed of frontal faces. Our simple alignment procedure443

did not do a good job of aligning this image to the bootstrap set, causing the444

artifacts observed. Better fine alignment, or a point-to-point correspondence445

method is likely to improve the results.446

Our prototype implementation using MATLAB 7.9.0. Approximate com-447

putational times taken by each step of our method are shown in Table 7, for448
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Figure 13: Reliefs of famous people. The first two columns show the input photograph,
and the aligned grayscale image derived from it.

Figure 14: Results on photographs of a non-frontal face. Top: photograph and relief,
bottom: relit images.

images of size 701× 841. Neural network training step took the longest time449

(3 hours) but needs doing only once. Given a new photograph, there are five450

steps to get the final bas-relief surface, taking about 5 minutes in total; this451

could probably be reduced by a high-level language implementation. Note452

that the time for image relighting includes the time for manually marking453
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landmarks to perform coarse alignment.454

Table 1: Approximate timings.

Step Time
Neural Network Training 3 hours
Saliency Map Calculation 16 seconds
Image Relighting 16 seconds
Generating Relief Images 8 seconds
Shape from Shading 4 minutes
Surface Combination 0.05 seconds

8. Variants455

We finish by considering various alternative strategies we have investi-456

gated, but rejected.457

First, in the network training process, we train a single neural network458

from the training data. However, to generate a plausible bas-relief surface,459

areas with low saliency and high saliency should be compressed in different460

ways. Identical local neighborhoods in the input image may lead to pixels461

with different values in the relief image, in places of different saliency. To462

allow for this, we considered an alternative strategy during neural network463

training. We divided the input image into several bands according to the464

saliency value of each pixel, and trained a separate network for each band.465

We perform experiments using 2, 3, 5, and 10 bands, and compare the results466

with using a single band (as described earlier). The generated bas-relief467

images and corresponding bas-relief surfaces are shown in Figure 15. It is468

clear that greater intensity variation occurs in the generated bas-relief images469

when using more bands, and the salient features are more pronounced than470

when using one band. These more strongly emphasized areas protrude more471

in the final bas-relief surfaces. However, whether such protruding features472

are desired in bas-relief creation remains an open question. We can see no473

obvious reason for preferring the results using multiple bands, and indeed,474

in places they can look worse—e.g. the hair line looks less natural in these475

examples.476
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Figure 15: Bas-relief images (with 2 lighting directions) and surfaces generated using 1, 2,
3, 5 and 10 saliency bands.

Secondly, in the surface combination step, we average the two surfaces477

S1 and S2, which are recovered under two lighting directions, to get the final478

bas-relief surface. However, as we have noted earlier, each image contains479

some areas in shadow, or with highlights, which lead to poor shape recovery,480

and it is plausible that rather than simply averaging the two relief surfaces481

produced, we should use some sort of selection procedure to locally choose482

the good parts from each. Shadows and highlights have intensities far from483

the mean intensity, so we should preferentially use shape information from484

the image whose intensity is closest to the mean intensity. Suppose I1 and485

I2 are the two relit images under lighting directions (1, 1, 1) and (−1, 1, 1)486

and Ī = (I1 + I2)/2 is the mean intensity value. We compute the absolute487

difference between the two images and the mean value, i.e.488

∆1(x, y) = |I1(x, y)− Ī|, ∆2(x, y) = |I2(x, y)− Ī|. (7)
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Then, we define a combination map489

M(x, y) =

{
1 ∆1 ≤ ∆2

0 otherwise
(8)

The top left image in Figure 16 illustrates this combination map. An alter-490

native, to avoid abrupt transitions is to use a weighted version M ′ of M (see491

the bottom left image in Figure 16):492

M ′(x, y) =
∆2(x, y)

∆1(x, y) + ∆2(x, y)
. (9)

The final bas-relief surface S is now produced from S1 and S2 using the493

combination map:494

S(x, y) = M∗(x, y)S1(x, y) + (1−M∗(x, y))S2(x, y), (10)

where M∗ is either M or M ′. The middle column of Figure 16 shows the495

combined bas-relief surfaces using combination maps M (top row) and M ′
496

(bottom row). It is clear that when using combination map M , there are497

discontinuities where the two surfaces meet. Using the weighted combination498

map M ′ mitigates this problem, but the output surface is still noisy. An499

alternative to further avoid this issue is to use the weighted combination500

map to take surface normals values from S1 and S2, and integrate them501

using the algorithm of Frankot and Chellappa [22]. The bottom right image502

in Figure 16 shows the resulting bas-relief surface. Compared to the bas-relief503

surface combined using simple averaging (the top right image in Figure 16),504

the final bas-relief emphasises features more strongly, but is perhaps less505

aesthetically pleasing as defects are also more obvious. This last approach is506

also somewhat more computationally expensive.507

9. Conclusions and future work508

Bas-reliefs of human faces are of prticular interest in art and design. We509

have given a method, based on neural networks, image relighting, and shape-510

from-shading techniques to automatically generate bas-reliefs from frontal511

photographs of faces. Experimental results show that our method is capable512

of generating reasonable bas-relief surfaces from such photographs, and are513

a first step towards automating this process to assist artists.514
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Figure 16: Alternative surface combination methods. Top: 0–1 combination map, relief
from 0–1 map, relief using default averaging approach. Bottom: Weighted combination
map, relief from weighted map, relief using weighted map to produce normals and inte-
grating.

While we have already experimented with some variants of our approach,515

there is clearly room for improvement, and we suggest a few avenues that516

could improve our method further. In image relighting, the simple coarse517

alignment method used results in various artifacts which are visible in the518

final output, especially when applying the method to semi-profile faces. Bet-519

ter fine alignment, or a more sophisticated point-to-point correspondence520

method could reduce this problem. Improvements could be made by tak-521

ing into account facial albedo information during the SFS step, and other522

reflectance models than the simple Lambertian model used here may also523

further improve the results. Clearly, in the function learning process, more524

than one training image, and training images from real face models, could525

also improve our results. An enlarged bootstrap set in the image relighting526

process could better span the space of facial albedos, and as a result, could527

also improve the results. Finally, practical applications demand extension of528

our method to faces seen in profile, and to a wider class of objects.529
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