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SUMMARY 

Hip fracture is the most common reason for an elderly person to be admitted to an acute 

orthopaedic ward.  The main aim of this research is to provide a statistical evaluation of a hip 

fracture database, and then to use Operational Research (OR) techniques, using the statistical 

output, to model activities associated with the care of hip fracture patients.  OR techniques 

employed in this thesis include simulation and queuing theory. 

This research focuses on hip fracture admissions to the University Hospital of Wales in 

Cardiff, with a primary aim of ascertaining whether the time between admission and surgical 

intervention has any impact upon patient outcome.  Outcome is considered in terms of 

mortality, hospital length of stay and discharge destination.  

Statistical analyses are performed, via regression and CART analysis, to investigate length of 

stay and mortality variables.  The results from these statistical tests are compiled, compared 

and investigated in more depth.  Additionally, a principal component analysis is performed to 

investigate whether it would be feasible to reduce the dimensionality of the dataset, and 

subsequently principal component regression methodology is used to complement the output. 

Simulation is used to model activities in both the hip fracture ward and the trauma theatre.  

These models incorporate output from the statistical analysis and encompass complexities 

within the patient group and theatre process.  The models are then used to test a number of 

„what-if‟ type scenarios, including the future anticipated increase in demand. 

Finally, results from queuing theory are applied to the trauma theatre in order to determine a 

desired daily theatre allocation for these patients.  Specifically, the M | G | 1 queuing system 

and results from queues with vacations are utilised. 

The thesis concludes with some discussion of how this research could be further expanded.  

In particular, two areas are considered; risk scoring systems and the Fenton-Wilkinson 

approximation. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 Trauma fracture neck of femur 

1.1.1 Overview 

The most common reason for an elderly person to be admitted to an acute orthopaedic ward is 

because of fractured neck of femur (NoF), also known as hip fracture.  The average age of 

patients who suffer from a hip fracture is over 80, and 80% of these are women.  The 

incidence of hip fractures in the United Kingdom (UK) is approximately 86,000 per year, and 

95% of these are the result of a fall (Parker and Johansen 2006).   

Approximately 30% of people aged over 65 years and living in the community fall each year, 

increasing to 50% of people aged 80 years and over (RCN 2004).  A fifth of all fall incidents 

require medical attention (Gillespie et al. 2003).  These numbers are around three times 

higher amongst those living in institutions (Parker and Johansen 2006).  Incidence rates 

within institutions are also increased in the first months after admission to a nursing home 

and with increasing age (Rapp et al. 2008). 

Due to the world‟s ageing population, most areas are seeing a 1-3% increase in the number of 

hip fractures each year, but this varies widely by region (Cummings and Melton III 2002).  

The worldwide prevalence of hip fracture was estimated as 1.3m in 1990; this was estimated 

to double by 2025 to 2.6m, with a greater percentage increase seen in men compared with 

women (Gullberg et al. 1997).  By 2050, there are expected to 6.3m hip fractures annually 

across the globe.  Shifts have also been seen over time in average patient age and type and 

locality of fracture (Kannus et al. 1996), but further research is required into the effects of 

other determinants, such as socioeconomic status for example, on changes in and impact 

upon hip fracture prevalence (Marks 2010). 

The incidence of hip fracture in the UK is expected to be approximately 101,000 by 2020 

(BOA 2007).  The increase can be largely explained by the ageing population; a 28% increase 

is estimated in the over 50s population between 2004 and 2031, with the largest percentage 

increases seen in the over 80s population.  By 2031, 45% of fractures will occur in patients 

aged 85 years or greater, an increase from 34% in 2004 (Holt et al. 2009). 
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The substantial and increasing burden that this injury has on healthcare systems worldwide is 

evident.  Due to the great expense and sometimes inefficient rehabilitation of treating these 

patients, the best way to relieve financial and social pressures of hip fracture is suggested to 

be via effective preventative medicine (Melton III 1993). 

The group of patients of interest here are those who incur a trauma hip fracture.  While many 

patients undergo treatment for hip fracture electively and surgery may be booked weeks or 

even months in advance, here the concern is with those patients who are admitted as 

emergency cases.  Trauma cases require more urgent medical treatment than elective patients. 

 

1.1.2 Costs 

Inpatient costs account for 50% of the total cost of a fall related injury.  Additional costs are 

accrued through outpatient appointments, rehabilitation, loss of earnings to carers and general 

practice appointments (WHO 2007). 

It has been estimated that hip fracture patients occupy one in five orthopaedic beds in 

England and Wales (Lindsay 1995) and account for more than two million hospital bed days 

per year in England alone (DoH 2004).  The cost of hip fractures to the National Health 

Service (NHS) and social care services is estimated to be around £1.73 billion per year 

(Torgerson et al. 2001), while the charity Age UK has warned that falls among the elderly, 

the commonest result from which is hip fracture, may be costing the English NHS up to 

£4.6m per day (BBC News 2010). 

Reported costs per case are variable and are substantially higher than those reported for other 

injuries such as vertebral or wrist fractures (Dolan and Torgerson 1998).  Variation in costs 

and cost-effectiveness is dependent upon type and efficacy of treatment, fracture risk, patient 

age and patient compliance (Johnell 1997). 

In 2005, a team in Nottingham reported that the average hospital expenditure per hip fracture 

patient was £12,163 (Lawrence et al. 2005).  84% of this cost was attributable to ward costs, 

where the mean length of stay was 23 days.  Surgical costs accounted for 9% of the total 

costs and the remainder (7%) was due to medical investigations.  Three years later a team in 

Dublin reported lower costs and a notably different expenditure breakdown (Azhar et al. 
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2008).  Average cost per patient was €9,236, which equates to approximately £7,296 using a 

historical exchange rate from mid-2008 (X-Rates© 2012), just 60% of the cost reported by 

the team in Nottingham.  Ward costs accounted for 55% of the total expenditure, surgical 

costs accounted for 40% and 5% was due to medical investigations.  Mean length of stay was 

eleven days.  Ward costs in the earlier paper are therefore higher per patient per day, £444 

compared with approximately £365 according to Azhar et al, but operative costs were much 

lower on average, £1,095 compared with approximately £2,918.   

Thakar et al compared the costs of treating patients by whether they had a medical 

complication (Thakar et al. 2010).  Patients with a complication were shown to incur more 

than double the cost than those without, £18,709 compared with £8,610.  This difference is 

largely attributable to the additional time spent in hospital for medically complicated patients, 

but the average cost per patient per day was still slightly greater, £298 compared with £263 

for medically uncomplicated patients.  Medical complications have been shown to double 

hospital stay for hip fracture patients, but in this case cost rates were not higher; non-

medically complicated patients cost 63% of what medically complicated patients cost 

(Khasraghi et al. 2003). 

One objective of this thesis is investigating whether surgical delay has any impact upon 

patient outcome and hospital stay.  Surgical delay was the main focus of one cost study, 

where it was shown that reallocating budget to ensure that surgery is performed within 48 

hours is more cost-effective than allowing surgery to be delayed for longer than this (Shabat 

et al. 2003). 

Considerable costs are also generated post-discharge.  Care for hip fracture patients is 

approximately three times as much as for matched uninjured controls and around 40% of this 

excess cost is incurred in the first three months after discharge (Haentjens et al. 2005).  It is 

estimated that a hip fracture patient will spend approximately 17% of their life in a nursing 

facility, with expenses relating to these facilities accounting for 44% of the total cost of 

patient treatment (Braithwaite et al. 2003). 
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1.1.3 Osteoporosis 

Osteoporosis literally means „porous bones‟, which results from the rate of bone renewal not 

matching the rate of breakdown, eventually leading to weak and brittle bones, see Figure 

D1.1.3a of Appendix D (BoneMatters® 2011).  This weakening means that should an 

osteoporosis sufferer experience a fall, their bones are more likely to break. 

Many sufferers do not realise they have this condition until they break a bone (Glenville 

2005), despite the possibility of identifying the existence of osteoporosis via a heel 

quantitative ultrasound scan, which has shown to be a reliable indicator of both bone density 

and hip fracture risk (Hans et al. 1996, Khaw et al. 2004), while bone mineral density itself 

has also been shown to be of substantial importance in predicting the risk of hip fracture 

(Johnell et al. 2005).  The cost of treating fractures related to osteoporosis in Britain is 

estimated to rise to £2.1bn by 2020, an increase from £750m in 1995 (Gorman 1996). 

The lifetime risk of any osteoporotic fracture is high; 40-50% for women and 13-22% for 

men (Johnell and Kanis 2005), while it has been stated that in the UK, after the age of 50, one 

in two-three women and one in five-12 men will sustain a fracture, the majority of which will 

be due to osteoporosis (NOS 2007).  These are more conservative figures than previously 

given, where it was estimated that half of all women and one in five men will suffer a fracture 

due to osteoporosis after the age of 50 (van Staa et al. 2001). 

The World Health Organisation suggests that it is crucial to contain the effects of 

osteoporosis via health promotion and preventative measures, and identifying the risk factors 

of this condition are vital in order to do this (WHO 2008).  Reports indicate that risk factors 

for osteoporosis include, but are not limited to; low body weight, female sex, Caucasian 

ethnic origin, sedentary individuals, dementia, high alcohol consumption, diseases of 

malabsorption (Crohn‟s disease, for example), history of falls and older age (Cluett 2010, 

Hannan et al. 2000, Pugh 2011, Siris et al. 2001).   

Paget‟s disease is a medical condition which can also cause weakening of the bone.  Sufferers 

of this condition are at a three times greater risk of requiring a total hip replacement than non-

sufferers (van Staa et al. 2002). 
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1.2 Locality 

Cardiff and Vale University Health Board (UHB) is the operational name of Cardiff and Vale 

University Local Health Board (LHB).  It is one of the largest NHS organisations in the UK 

and provides day-to-day services to the populations in the two regions of Cardiff and The 

Vale of Glamorgan, a total of approximately 445,000 people.  Other responsibilities include 

the delivery of NHS primary care services across this area as well as some services in some 

specialties across the wider population of Mid and South Wales.  Cardiff and Vale UHB 

manages nine hospitals and 17 health centres in total; the focus of this thesis is the largest of 

these hospitals, the University Hospital of Wales, where the Board headquarters are based.  In 

2009/10, the approximate income for the UHB was estimated at £940m (NHS Wales 2010).   

Figure 1.2i shows the proportion of Wales that is covered by the regions of Cardiff and The 

Vale of Glamorgan.  It was estimated by the Welsh Assembly Government (WAG) that the 

population of Wales stood at approximately 3m people in mid 2009, 60% of whom were of 

working age (WAG 2010a), while the total Welsh population accounted for 1 in 20 of the 

total UK population (WAG 2009b).  In 2008 there were an estimated 1.3m households 

countrywide (WAG 2010g).   

 

 

Figure 1.2i: Map of Wales, with detailed local administrative regions in South-East Wales 

 

It can be seen that these two regions have a high population density in comparison with the 

rest of the country.  Indeed, there are a total of 22 unitary authorities in Wales, and while the 

two authorities of Cardiff and The Vale of Glamorgan cover just 2.3% of the land space, they 

accommodate around one sixth of the Welsh population.  It is additionally interesting to note 

Wales 
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that Wales has a higher proportion of people aged 60 years and over than the rest of the UK 

and also a higher proportion of the population with a limiting long-term illness (ONS 2010). 

The University Hospital of Wales (UHW) is a large teaching hospital, indeed it is the largest 

hospital in Wales and the third largest university hospital in the UK.  It is located in Cardiff, 

the capital city of Wales.  According to figures published by the Welsh Assembly 

Government, in 2008/09 there was an average of 1042.2 daily beds available at the UHW 

with an average of 83.6% of these beds occupied (WAG 2010f).   

Any person sustaining a trauma hip fracture while under the care of Cardiff and Vale UHB 

will be admitted to the UHW and cared for by the Hip Fracture Service (HFS).  This consists 

of a Clinical Nurse Specialist (CNS) for elderly trauma rehabilitation, two hip fracture nurse 

specialists and a consultant orthogeriatrician and his medical team, with the aim of striving to 

improve the holistic care provided to patients admitted with a hip fracture.  The HFS was 

developed to improve the care and outcome of these patients, which it has achieved by 

developing effective pathways to improve management pre-, peri- and post-operation.   

All patients arrive from Accident & Emergency (A&E); once a hip fracture is diagnosed there 

then the patient is transferred to a trauma ward, where day admissions are clerked by a 

Trauma House Officer and night admissions by a Senior House Officer.  Some patients have 

to wait in the Emergency Unit until a bed is available.  UHB guidelines state that patients 

should be seen within two hours and bedded within four, but commonly these are not met.  

At the UHW, there is no dedicated theatre for these patients, nor is there any dedicated 

theatre time.  (Elective surgery takes place elsewhere.)  Each evening, the hip fracture team 

will nominate patients who are fit for surgery that they would like to send to theatre the 

following day; usually two patients per day are nominated.  However, depending on the 

demand for surgical treatment from elsewhere in the hospital, patients may or not be 

scheduled for theatre the following day.  Patients with a hip fracture are operated on in the 

same theatre as other emergencies arriving from A&E, such as road traffic accidents, so often 

even scheduled patients will not be seen.  A member of the team will typically contact the 

theatres at around 3:30pm to check on the list to gain an idea of whether any nominated 

patients who are still waiting are likely to go to theatre that day; there is usually no advanced 

warning that a patient is going to theatre until a porter arrives to collect them. 
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1.3 Objectives and outline of this thesis 

Recall that trauma hip fracture is a common injury in the elderly population.  It is an 

unfortunate reality that, due to a number of reasons, patients do not often undergo surgery 

promptly.  This thesis proposes several analyses which address trauma hip fracture patient 

flow and predicts improvements based on varying parameters. 

The main aim of this research is to employ statistical and Operational Research techniques in 

order to fully analyse and explore the data available relating to trauma hip fracture patients at 

the UHW.  By doing this, the systems can be fully scrutinised in order to identify areas and 

methods of improvement.  Specifically, the following objectives can be identified: 

 

• Objective 1: Understand the factors, if any, which affect length of stay and outcome for 

trauma hip fracture patients at the UHW.  In particular, investigate whether a delay between 

admission and surgery has any impact on these variables. 

• Objective 2: Use the insight gained from Objective 1 to build a simulation model to 

represent the hip fracture ward, and investigate the changes that would occur should any 

alterations be made to the system or patient management. 

• Objective 3: Build a separate simulation model of the trauma theatre in order to investigate 

different management policies on key outputs of the theatre, showing in particular how to 

reduce cancellations. 

• Objective 4: Identify and use appropriate queuing systems to model trauma theatre 

activities. 

 

Objective 1 is addressed in Chapters 2 to 5, where a database of patients is analysed in 

considerable detail using a variety of statistical techniques.  In particular, length of stay and 

mortality are investigated in Chapters 3 and 4 respectively, using CART and regression.  

Factors found to be influential are discussed and analysed in greater depth.  In Chapter 5, 

principal components analysis is used in an attempt to collapse the dimensionality of the 

dataset.   
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Chapter 6 presents two discrete event simulation models, built in Visual Basic for 

Applications (VBA), of the hip fracture ward, and thus addresses the second objective.  

Results and conclusions from previous chapters are drawn upon to decide inputs to the 

model.  A number of scenarios are tested to investigate the impact of making adjustments to 

the system. 

Data relating to the trauma theatre is analysed in Chapter 7, where detailed results are 

presented.  Appropriate ways to segregate patients are discussed and results are used to 

inform the building of an appropriate simulation model of the trauma theatre at the UHW, 

presented in Chapter 8 and thus addressing Objective 3.  A variety of policies relating to the 

organisation of this operating theatre are considered in order to investigate more effective 

ways to manage the running of the theatre. 

Objective 4 is addressed in Chapters 9 and 10.  Scrutiny of the data and consideration of the 

arrival and service processes mean that appropriate queuing theory results can be applied to 

the trauma theatre, and then parameters amended to determine the impact of making changes 

to the system.  In particular, a novel and bespoke queuing system is formulated in Chapter 10 

which considers two types of arrival, two types of service and a limit on the number of 

patients who may join the system. 

Finally, Chapter 11 provides a conclusion to the research and presents some ideas for 

expanding on the work presented in this thesis. 

A general outline of this research has thus been presented; note that appendices are also 

included which provide some additional key information and results.  Figures and Tables are 

labelled sequentially (i, ii, …) according to the section in which they feature. 

An overview of all probability distributions used throughout this work is given in Appendix 

A, including formulae for the mean and standard deviation of these distributions.  Appendix 

B gives more information on the variables used, while a medical glossary is given in 

Appendix C.  Terms in the glossary were collected from a variety of sources throughout the 

course of this research and checked in mid-2012 (MedlinePlus 2012, Merriam-Webster 2012, 

NHS 2012a).  The thesis concludes with Appendix D, which provides some supplementary 

material and results.  Items in the appendices are referenced throughout this thesis where 

necessary.  Figures in the appendices are labelled firstly with the letter indicating to which 
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appendix they belong, followed by the section to which they relate and then sequentially 

alphabetically. 

 

1.3.1 Data  

A variety of data sources were made available for this work.  Specifically, separate databases 

were provided by each of the Hip Fracture Service and the theatres team.   

Data from the HFS was provided on two occasions, some time apart; these two databases had 

some disparities due to a change in the data recording system for trauma hip fracture patients 

(see Section 6.3.1).  These databases store information at a patient level, including 

demographic information, pre-fracture status, date and type of surgery and discharge 

destination.   

Theatre data was also provided on two occasions and again considerable time had elapsed 

between these instances.  The first database provided exclusively included hip fracture 

patients, while the second included all patients operated on in the trauma theatre at the UHW.  

The databases were similar in that they allowed for a patient‟s journey through the surgical 

process to be mapped (see Section 7.2). 

Consequentially the data available for certain analyses changed throughout this research and 

unfortunately meant that consistency was not always possible.  This is explained and 

discussed in more detail where relevant. 
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1.4 Literature review 

A broad overview of several relevant topics covered in this thesis is now given.  Other 

specific topics are introduced and referenced where necessary throughout the course of this 

research.  A more detailed literature review is also given on some of the following topics 

where they arise in this thesis, where necessary. 

 

1.4.1 Treatment 

After arrival in hospital, fast-tracking patients through A&E is beneficial not only to patients, 

but also to A&E, ward and orthopaedic staff, and achieving this is a key first phase of the 

treatment of hip fracture patients (Ryan et al. 1996).  

The majority of trauma hip fracture patients are treated surgically.  Deciding between a 

surgical or conservative approach is the initial phase of any treatment plan; however, due to 

prolonged hospital stay and inferior rehabilitation, conservative treatment is now rarely used 

(Parker and Johansen 2006).  Where surgical treatment is unavailable or inappropriate, non-

surgical treatment such as analgesics is prescribed.  While this will evidently remove the risk 

of surgical complications, rehabilitation is likely to be slower and limb deformity is more 

common (Handoll and Parker 2008).  Despite this, no differences in mobility, mortality or 

residence have been shown between patients treated surgically or non-surgically after hip 

fracture by one study (Hossain et al. 2009). 

The choice of operation is dependent upon a number of factors and can be partially dependent 

upon clinician subjectivity.  Hip fractures may be fixed via internal implants or replaced via 

arthroplasties; many of the implants and arthroplasties currently in use have been around for 

over 50 years but improvements in surgical technique have led to fewer complications and 

reoperations (Parker and Gurusamy 2005).  The choice of surgical procedure will be 

influenced by the type and location of fracture.  Fractures may be intracapsular or 

extracapsular, see Figure D1.4.1a for a pictorial classification of fracture type (Parker and 

Johansen 2006).  They can be further classified as displaced or undisplaced; whether or not 

the bone has moved from its usual place.  Fracture type and choice of surgical implant have 

been reported to have no impact upon patient outcome in one recent systematic review paper 

(Butler et al. 2011). 
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Two types of hip operation using replacement are total hip replacement (THR) and 

hemiarthroplasty; the hemiarthroplasty replaces just the ball portion of the hip joint, while 

with a total hip replacement the socket is also replaced.  These types of operation are 

typically used to treat intracapsular fractures; see Figure D1.4.1b for radiographs of a fitted 

prosthesis after hemiarthroplasty surgery (Parker and Johansen 2006), and total hip 

replacement surgery (ONSMD.com 2012).  Given these two options, most orthopaedic 

surgeons advocate hemiarthroplasty even though good, and sometimes better, results are 

achieved for THR (Blomfeldt et al. 2007).  Despite longer surgery duration, THR has been 

shown to have better results with regard to hip function and health-related quality of life.  Hip 

function in this case was measured by the Harris score (Harris 1969), a popular means of 

evaluating hip function post-surgery.  Better short-term clinical results and fewer 

complications have also been reported for THR, when compared with hemiarthroplasty 

(Baker et al. 2006).  Various types of screws, plates and nails are used to fix extracapsular 

fractures, also see Figure D1.4.1b for a radiograph of a fitted intramedullary nail prosthesis, 

an option which is increasingly being used for this fracture type (Parker and Johansen 2006). 

An operative and supervision algorithm, the Hvidovre algorithm, was created by a Danish 

team which specified treatment choice for hip fracture patients (Palm et al. 2012).  The 

choice of surgical procedure had to follow the algorithm post-implementation and was based 

solely on fracture type, patient age and whether the patient was bedridden pre-fracture.  

Clinician subjectivity was therefore removed.  A decline in the number of required 

reoperations was seen after implementation; this held true for junior surgeons operating with 

or without supervision.  It was estimated that extra bed days consumed by reoperations was 

reduced from 24% to 18% of all bed days. 

Clearly anaesthesia will be required for an operation as invasive as hip surgery.  A review of 

15 research articles came to the conclusion that the use of regional anaesthesia was 

marginally advantageous to general anaesthesia, in terms of reducing early mortality and the 

risk of deep venous thrombosis (Urwin et al. 2000).  A later review of 56 articles on 

anaesthesia for geriatric hip fracture patients also concluded that spinal anaesthesia is better, 

stating that it holds a number of advantages over general anaesthesia, including lower early 

mortality rates, less post-operative confusion and fewer cases of pneumonia.  However, it was 

also recommended that more research is required in this area (particularly with respect to 

mortality) and that the method of anaesthesia should be based on several factors, including 
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patient preference and the clinical experience of the anaesthesiologist (Luger et al. 2010).  

Another study concluded that differences in clinical outcomes was unclear between the two 

techniques, but showed that despite taking slightly longer to administer, spinal anaesthesia 

was significantly cheaper per patient than general anaesthesia; £194 compared with £271 

respectively (Chakladar and White 2010). 

A 2005 review paper of best practices for the care of elderly hip fractures found that, in 

addition to spinal anaesthesia as stated previously, the use of peri-operative antibiotics and 

pressure-relieving mattresses were consistently beneficial (Beaupre et al. 2005). 

Lean thinking techniques were applied to a large hospital in Birmingham in an attempt to 

improve outcome following hip fracture (Yousri et al. 2011).  Lean thinking in healthcare is 

“about getting the right things to the right place, at the right time, in the right quantities, while 

minimising waste and being flexible and open to change” (NHS 2012b).  A significant 

reduction in mortality was observed post-implementation, while improvements were also 

made in surgical delay, trauma bed usage and early hospital discharge. 

An integrated care pathway (ICP) is “a document that describes a process within Health and 

Social Care”, while the purpose is to put patients at the centre of care.  It has a similar remit 

to lean thinking in that it aims to have the right people, in the right order, in the right place, 

with these people doing the right thing, in the right time, with the right outcomes.  An ICP is 

a multidisciplinary best practice outline of anticipated care, which is evidence-based and 

reflects a patient-centred approach (NLIAH 2005). 

ICPs are developed locally, but it has been recommended that the development of a national 

validated ICP for hip fractures may be important in order to avoid unnecessary local 

deviations from national guidelines (Smith et al. 2008).  However, there is controversy 

surrounding the effectiveness of ICPs for hip fracture patient management (Parker 2004) and 

the use of ICPs for treating hip fracture patients is an area which requires further research 

(SIGN 2002).   Some reports focus on the effects of a multidisciplinary approach to treating 

these patients, thus while ICPs may not be referenced specifically, the treatment 

methodologies are largely comparable. 

An ICP implemented at a hospital in Yorkshire concluded that this approach has potential 

benefits.  Length of stay was significantly reduced and, while statistical significance was not 
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reached, improvements in surgical delay and one month mortality rates were also seen 

(Gholve et al. 2005). 

Shorter length of stay was also reported by Choong et al after implementation of a clinical 

pathway for hip fracture patients.  This was achieved without increasing complication or 

readmission rates, though these measures were not improved upon either (Choong et al. 

2000). 

Six hospitals, two of which had clinical pathways for hip fracture, were compared across 

various outcomes (March et al. 2000).  Length of stay was significantly reduced for nursing 

home patients; a reduction was also seen for other patients but results did not reach statistical 

significance.  There was also a non-significant decrease in nursing home admission rates and 

no difference in mortality rates at four months. 

Successful results were also reported after an ICP was implemented in Southampton.  

However, in this case length of stay was shown to increase, but this did lead to an 

improvement in clinical outcome; better ambulation on discharge and a reduction in long 

term care admissions were also both seen (Roberts et al. 2004). 

One review concluded that multidisciplinary rehabilitation led to better outcomes, but that 

differences were not significant.  However, since a multidisciplinary approach is not harmful, 

it was suggested that it is still preferable (Handoll et al. 2009).  This approach is also 

advocated by another review article which states that surgeons cannot accept sole 

responsibility for these patients, but that geriatric care should encompass holistic patient 

management (Leung et al. 2010a). 

The British Geriatrics Society (BGS) believes that joint care between geriatricians and 

orthopaedic surgeons delivers the best patient care amongst a list of orthogeriatric care 

models.  Care on a dedicated orthogeriatric ward is also advised (Aylett et al. 2007).  This is 

consistent with the National Service Framework for Older People which also recommends 

that hospitals should have at least one ward developed as a centre of excellence for the care 

of older people with fractures (DoH 2001). 

One study compared three outcomes (mortality, length of stay and discharge destination) 

between two patient groups, one of which was managed jointly between a consultant 

geriatrician and orthopaedic surgeons, while for the other there was no geriatrician.  No 
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differences in any of the three measures were found between the two groups and it was thus 

concluded that combined orthogeriatric care had no impact on patient outcome (Khan et al. 

2002).  A contrasting study compared treatment via consultation by geriatricians with joint 

care provided by geriatricians and orthopaedic surgeons (González-Montalvo et al. 2010).  

The latter group had earlier assessment, earlier surgery and a reduced acute and total hospital 

stay.  This was achieved without compromising clinical or functional outcome. 

Through collaboration with endocrinologists, the orthopaedic service at one hospital found 

that adding vitamin supplements and an endocrinology appointment effectively improved 

treatment of hip fracture patients.  Patient compliance was also increased (Piziak and Rajab 

2011). 

A reduction in post-operative morbidity, specifically for post-operative heart failure, cardiac 

arrhythmias and delirium, was found after the implementation of a care pathway for hip 

fracture patients (Beaupre et al. 2006).  Importantly, this was done without any negative 

impact on resources.  Hospital length of stay increased for patients following the care 

pathway, but rehabilitation length of stay decreased; overall impact was no differences in 

length of stay dependent upon whether a patient followed the pathway.  In-hospital mortality 

also remained unaffected. 

The Sheba model is based upon the concept that a hip fracture represents a geriatric disease 

and not an orthopaedic disease, and is implemented via treatment through a comprehensive 

orthogeriatric unit, which covers all aspects of care for hip fracture patients.  Evidence shows 

that applying this model results in short length of stay, acceptable functional outcome and 

low mortality and morbidity rates (Adunsky et al. 2005). 

A useful review of best practice management for hip fracture patients was published by 

Bruyere et al, but concluded further study is needed.  Proper nutrition was highlighted as a 

key area in which care should be focussed, while overall appropriate management of these 

patients can prevent, or at least minimise the risk of, further fractures and health deterioration 

(Bruyere et al. 2008).  Other areas emphasised as key factors for hip fracture patient care 

include urinary tract management and the prevention of deep venous thrombosis (Huddleston 

and Whitford 2001). 
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Finally, the benefits of using mapping methods to model hip fracture care have been shown.  

Mapping care pathways, via drawing on a variety of information sources, is the first step in 

planning for future health services and system improvements (Vasilakis et al. 2008).   

 

1.4.2 Outcomes 

It is estimated that 20% of people who fracture their hip die within one year (Cummings and 

Melton III 2002).  There were no changes in UK six month or one year mortality rates over a 

time period of 40 years (1959-1998) (Haleem et al. 2008), although an increase over time in 

mortality following hip fracture has been reported elsewhere (Vestergaard et al. 2007).   

Sustaining this injury can be detrimental to the subsequent life of the sufferer for those who 

do survive.  Half of survivors can no longer live independently and a quarter are no longer 

able to prepare their own meals, while almost half of patients who could previously walk 

unaided are no longer able to do so (Osnes et al. 2004). 

Another study estimated that 25-50% of those who survive a hip fracture regain their 

previous level of functionality and ability to perform activities of daily living (ADLs) 

(Isenberg et al. 2004).  The index of independence of activities of daily living measures 

adequacy of performing six functions: bathing, dressing, toileting, transferring, continence, 

and feeding (Katz and Stroud 1989), so any reduction in the ability to perform these tasks 

would be considerably detrimental to quality of life.  It is also likely that elderly women will 

continue to suffer from a loss in quality of life and experience substantial functional 

impairment, even if they show significant signs of recovery in the first year post-fracture and 

after adjusting for age and comorbidities (Boonen et al. 2004).  

The change in quality of life post-fracture has been shown to be dependent on the type of 

fracture, with displaced fractures resulting in lower quality of life than undisplaced fractures.  

Treatment type was also indicative of complications and reoperations, with internal fixation 

having significantly poorer results by these two measures compared with total hip 

replacements (Tidermark 2003). 

Many patients who previously lived at home are discharged to a nursing home.  After 

rehabilitation, some of them may then return to the community; the likelihood of this is 
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shown to depend upon the utilisation (admissions to beds ratio) of the nursing home and 

whether the patient achieves ambulation prior to discharge from hospital (Fitzgerald and 

Dittus 1990). 

Comparison of outcome other than mortality is difficult between studies since there is no 

standardised, validated scale used to measure outcome; a review which initially looked at 

over 4000 papers found that those relating to ADLs proved to be the most popular (Hutchings 

et al. 2011). 

Time to ambulation post-surgery was measured in a group of hip fracture patients to assess 

whether it is related to, or impacts upon, a range of medical and demographical variables.  No 

relation was found between time to ambulation and a variety of other factors, including sex, 

age and, interestingly, the functional status of the patient prior to admission.  A longer 

hospital stay, however, was related to a longer time between surgery and ambulation (Kamel 

et al. 2003).  

Six functional independence measures were used to measure recovery in older hip fracture 

patients to assess the influence of impaired cognition on long-term care requirements.  It was 

found that cognitively impaired patients scored worse across all six measures and required 

more assistance than those not impaired, leading to the suggestion that planning the long-term 

care of these patients is required to impede or prevent admission to a nursing home (Young et 

al. 2011). 

The association between depression, apathy and cognitive impairment with functional 

improvement for hip fracture patients in two discharge destination was examined, namely 

inpatient rehabilitation facilities (IRFs) and skilled nursing facilities (SNFs).  It was 

concluded that patients suffering from one of the previously mentioned conditions had 

significantly better outcomes (as measured by functional improvement) if treated at an IRF 

compared to a SNF (Lenze et al. 2007).  

A review paper investigated the merits of pre-operative education for patients undergoing hip 

or knee replacement surgery, but found that while there may be a beneficial impact on patient 

anxiety pre-operation, albeit modest, there was little evidence to support the use of education 

to improve patient outcome.  Patients educated via written information, watching a video or 

discussion with a healthcare professional did not show an improvement with respect to length 
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of stay, pain or functioning, compared with those receiving no education (McDonald et al. 

2004).  

Post-operative delirium was the main focus of one study of hip fracture patients aged 65 or 

over.  Predictors of the development of delirium post-surgery were male sex, surgery under 

general anaesthesia and a history of mild dementia, while the effects included longer length 

of stay and higher mortality at one year (Edelstein et al. 2004) 

 

1.4.3 Infections 

At the UHW, all patients over the age of 65 are screened for the deadly infection Methicillin-

resistant Staphylococcus aureus (MRSA) on arrival at the ward and are bedded in an isolated 

cubicle if a positive test result is received.  Risk factors of contracting MRSA while in 

hospital are carrying MRSA at admission (one can be a carrier of MRSA without being 

infected), increasing age and, interestingly, hip fracture (Shukla et al. 2009).  A study by a 

team from the UHW found that rates of MRSA colonisation were higher in patients admitted 

from a nursing home (17.4%) than those admitted from their own home (3.6%) (Thyagarajan 

et al. 2009).  The additional cost of treating a patient who contracts MRSA while on an 

orthopaedic trauma ward was shown to be £13,972; this is for additional medicines, therapy 

and a considerably longer length of stay (50 extra days).  The cost of preventing an infection 

is much lower at £3,200 (Nixon et al. 2006).  It has been suggested that due to the high 

prevalence of MRSA colonisation on orthopaedic wards, all patients should be screened for 

MRSA on arrival (Walley et al. 2009).  However, the majority of hip fracture patients 

admitted to the UHW are over the age of 65 (see Section 2.2.1) and thus almost all patients 

are currently screened. 

Other infections are common in this vulnerable group of patients and can have a devastating 

effect on outcome.  For example, mortality is significantly higher in hip fracture patients who 

are infected with Clostridium difficile (Gulihar et al. 2009).  Surgical site infection (SSI) is 

another problem, while the risk of SSI has been shown to be significantly greater for 

reoperations than first operation, and there is great variation in rates between hospitals 

(Wilson et al. 2008).  MRSA was found to be the commonest pathogen which caused SSI, 

particularly for hemiarthroplasty patients (Ridgeway et al. 2005). 
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1.4.4 Surgical delay 

Many trauma hip fracture patients do not undergo surgery promptly.  A delay to operation 

may sometimes be caused by medical reasons, but it is an unfortunate actuality that it is often 

due to system limitations, such as space, staffing, equipment and other resource constraints.  

An important focus of this thesis is the impact of delay upon patient outcome, focussing on 

in-hospital mortality and hospital length of stay in particular, to assess whether or not it has 

any deleterious effects. 

The impact of a delay to operation for hip fracture patients is very well-documented in the 

literature, thus a complete overview is infeasible and so is not given here or elsewhere in this 

thesis.  Individual key published results are reported later (see Sections 3.4.2 and 4.6.7 in 

particular) while some conclusions drawn from some useful review papers are included next. 

 

(a) Impact on length of stay and mortality 

A review of 52 papers, which involved 291,413 patients, in order to assess the timing of hip 

fracture surgery was published in 2009 (Khan et al. 2009).  Papers were rated for 

methodological quality using a validated checklist specifically designed to evaluate 

healthcare studies (Downs and Black 1998), in order to ensure that any consensus made was 

according to conclusions drawn in the higher quality papers.  The main conclusion drawn was 

that early surgery, within 48 hours, is beneficial in terms of a shorter length of stay and 

possible benefits in relation to a reduction in complications and mortality.  The authors 

additionally conclude that a large randomised trial is required to fully resolve the issue of the 

timing of surgery but suggest that the actuality of this is unlikely due to ethical issues. 

Of the papers which reported a conclusion on mortality (all but three), there was an almost 

even split on whether delay did matter; 51% reported no effect, 45% reported a reduction in 

mortality for early surgery and 4% (two papers) reported an increase in mortality for early 

surgery.  18 papers reported on the impact of delay on medical complications, with an equal 

split of nine papers each concluding whether delay did or did not matter.  A total of 19 papers 

investigated whether delay affected length of stay; 68% concluded that length of stay was 

reduced for early surgery, the remainder concluding no effects.  Finally, just four papers 

reported on the likelihood of patients returning home post-injury and again there was an even 
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split on whether or not delay did matter.  The interested reader is referred to Khan et al‟s 

paper for a full breakdown of conclusions reported by the 52 studies, many of which are 

reported elsewhere in this thesis.   

A separate systematic review was performed one year earlier (Shiga et al. 2008), and also 

assessed the quality of previous studies according to the checklist developed by Downs and 

Black.  In total, 16 studies involving 257,367 patients were identified for further scrutiny and 

results were pooled to calculate overall findings.  The review itself was performed according 

to the guidelines of the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) 

Statement (Stroup et al. 2000).  The main definition of operative delay was again a wait of 

greater than 48 hours, but this was relaxed if other cut-off times were found.  Using a cut-off 

of 48 hours, operative delay was shown to increase the odds of 30-day mortality by 41% and 

one-year mortality by 32%. 

In another article, Simunovic et al surveyed a total of 66 papers in order to review evidence 

of the effect of surgical timing on various outcomes, including mortality, post-operative 

complications and length of stay in hospital (Simunovic et al. 2011).  Based on a pooled 

estimate using five papers, it was shown that earlier surgery was associated with a 19% 

reduction in mortality and that the effect of a delay on mortality was seen irrespective of the 

delay definition (24, 48 or 72 hours).  The reasons for a delay to surgery were discussed and 

it was concluded that there is no theoretical benefit (in terms of mortality risk) for healthy 

patients to wait for surgery, while in medically unfit patients the effect of a delay was 

unclear.  The majority of the studies looked at which included investigation into the effect of 

delay on length of stay concluded that as delay increased, so did hospital stay.  A similar 

paper published one year previously also quoted pooled results for the impact of earlier 

surgery on post-operative complications, reducing the risk of pressure sores by 52% and the 

risk of in-hospital pneumonia by 41% (Simunovic et al. 2010). 

42 articles were identified by Leung et al in another review article, where the authors 

concluded that surgeons should treat patients “as soon as their bodies meet the basic 

anaesthetic requirements” (Leung et al. 2010b).  It is highlighted that, while this will 

inevitably vary between patients, setting a goal of surgery within 24 hours would greatly help 

to provide a timely and effective treatment.  Despite this, there is no definitive conclusion 

given on whether operative delay has any effect upon mortality, instead it is stated that the 
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evidence is conflicting.  It is concluded, however, that evidence on the whole suggests that 

delay impacts negatively on morbidity, the incidence of pressure sores and length of hospital 

stay. 

The final paper considered is not included due to its type (it is an observational study and not 

a review article), but due to its coverage (Bottle and Aylin 2006).  Data on a total of 129,522 

hip fracture admissions was collected from 151 NHS Trusts in England, covering a three year 

period.  Two definitions of delay, more than one day and more than two days, were 

considered and huge variation in the proportion of delayed patients between Trusts was 

shown.  It was additionally shown that operative delay was significantly associated with the 

risk of in-hospital death and that this persisted as the delay increased.  A decline in an 

increased mortality risk was only seen after a delay of 12 days. 

Clearly the definition of what constitutes “a delay” is inconsistent across studies.  A thorough 

review of the literature has indicated, however, that the most commonly used cut-off is two 

days, or 48 hours where data would allow this level of precision.  In the review paper by 

Khan et al, 14 of the 52 papers assessed used this as their primary delay definition, while it 

was investigated within wider definitions by some other papers, more than any other 

definition used.  Thus for this reason, alongside advice given by clinicians involved in this 

project, the main definition used for a significant delay to operation is a wait longer than two 

days, or 48 hours where data would allow. 

 

(b) Impact on other outcomes 

The effect of delay on functional outcome and avascular necrosis was investigated for 

patients aged 60 years old or less.  It was shown that delayed surgery, classified as a wait 

greater than 12 hours, was associated with an increased rate of avascular necrosis 

(/osteonecrosis), but that this did not lead to an adverse effect on functional outcome (Jain et 

al. 2002).  The relationship between surgical delay and osteonecrosis has also been shown 

specifically for paediatric hip fracture patients (Varshney et al. 2009). 

While mortality and length of stay were shown to be uninfluenced by delay, a one week delay 

was shown to increase the incidence of postoperative complications at a Spanish hospital.  
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Three-month and one-year functional recovery were also shown to be unaffected (Rodriguez-

Fernandez et al. 2011). 

A direct correlation between operative delay and the incidence of thromboembolism has also 

been shown, leading to the suggestion that all patients delayed longer than 24 hours should 

undergo ultrasound prior to surgery to examine for the presence of deep venous thrombosis 

(Smith et al. 2011). 

A particular problem reported in the literature is that a delay to surgery can increase the risk 

of pressure sores, which has been shown in several studies (Grimes et al. 2002, Parker and 

Pryor 1992, Pathak et al. 1997).  This additional complication may then in turn lead to the 

requirement of additional medical care, and thus a longer stay in hospital.  This relationship 

has, however, shown to be insignificant elsewhere, but it was instead suggested that patients 

undergoing earlier treatment were less susceptible to contracting a urinary tract infection 

(Davis et al. 1988). 

A study of elderly female patients showed that delay had a detrimental effect on progress in 

terms of social circumstance; that is, whether their social circumstances at three months post-

surgery were similar to pre-fracture, or whether their circumstances had deteriorated 

(including death).  This was shown to be true regardless of pre-fracture social status (Villar et 

al. 1986). 

 

1.4.5 Principal components analysis 

Principal components analysis (PCA) is a statistical technique used to convert a set of 

observations, usually measured by many possibly correlated variables, into a set of values of 

uncorrelated variables.  More information on this technique and how it was used in this study 

is presented in Chapter 5, while an overview of where this procedure has been used in 

previous research is now given.  Due to the nature of this thesis, this review concentrates on 

PCA in healthcare and hip research.  It should be noted that due to the plethora of literature 

available on this subject this will not cover every area of interest. 

A recent study investigated the feasibility of using multivariate analysis to derive summary 

factors to predict hip fracture.  While it was found that PCA did result in composite factors 
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appropriate for this, neither of the factors found were better than the individual measurements 

used as inputs to predict hip fracture risk (LaCroix et al. 2010).  However, a separate study 

concluded that PCA was successful in identifying contributions to the risk of hip fracture, 

indeed finding this better than other methods (Gregory et al. 2004).  A review paper also 

presents the reasons why PCA is an appropriate method for comparing femoral form and 

structure, which may be then used to assess the risk of hip fracture with respect to femoral 

geometry (Gregory and Aspden 2008).  Certain structural features of the femoral head are 

related to an increase in fracture risk (Black et al. 2008, Kaptoge et al. 2008), as well as 

influencing the location and type of fracture sustained (Szulc et al. 2006), so accurately 

modelling these features allows for better assessment of osteoporotic hip fracture risk.  These 

benefits have been documented (Bryan et al. 2009), with a particular focus on the 

development of a statistical model, also constructed using PCA, of the whole femur to 

include inter-patient variability.  This model was then used, as previously, to assess the risk 

of femoral neck fracture. 

PCA was used to quantify and summarise gait data on patients suffering from a hip disease in 

order to obtain a simple evaluation criteria for quantitative gait evaluation (Yamamoto et al. 

1983).  This was achieved by reducing ten original items into three principal components.   

Sexual dimorphism patterns in hip bones were investigated using PCA and it was found that a 

large amount of dimorphism is accounted for by size differences (Arsuaga and Carretero 

1994).  A particularly interesting result found was that female hip bones are different in traits 

associated with a larger pelvic inlet; these physical skeletal differences may go some way to 

explaining differences in fracture prevalence and fracture types between genders. 

The genetic factors which contribute to variability in bone mass, and thus fracture risk, were 

investigated by Karasik et al.  PCA proved to be a successful approach and conclusions 

regarding genetic influences were reached (Karasik et al. 2004). 

As a final example of where PCA has been used in studies relating to (hip) fractures, Sipilä et 

al used this technique in order to condense muscle strength results into one score, then later to 

investigate the relationship of this with the risk of all fall-related fractures (Sipilä et al. 2006). 

Other fields within the medical literature where PCA has been used include the development 

a household socioeconomic status index in order to reach useful conclusions regarding care-
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seeking behaviour (Schellenberg et al. 2003), summarising scientific information for 

assessing health claims for foods and supplements, in particular relating to coronary heart 

disease (Castro et al. 2005), neuroanatomy (Dien et al. 2003), psychiatry (Robertson et al. 

2008, Stewart et al. 2007), and identifying unusual lung function in males as well as 

providing a means for defining and quantifying different aspects of lung function (Cowie et 

al. 1985). 

 

1.4.6 Operating theatre management 

Four key management issues have been identified that need to be addressed in order for 

operating theatres to achieve high levels of efficiency; the system‟s rewards, ineffective 

logistical design, reluctance to accept responsibility and lack of effective teamwork (Calmes 

and Shusterich 1992).  The first of these is dependent upon costs, and the last two must be 

tackled by softer methods; changing opinions and better communication.  The main 

organisational changes that can be made, arguably giving the greatest impact, come under the 

second issue.  In Chapter 8, a simulation model of the trauma theatre at the UHW is 

presented.  This model was built to investigate the impact of different management strategies 

on the performance of the theatre, in particular with regard to effective approaches to reduce 

the number of cancellations made due to running out of scheduled theatre time.  There is an 

abundance of literature in this field and an overview is now presented.  Further information 

focussing specifically on the scheduling of operations is given in Chapter 11; this topic is less 

pertinent for this research since due to the unpredictability of emergency arrivals, the creation 

of a theatre schedule in not really feasible. 

Lemos et al compared retrospective results for pre- and post-implementation of a dedicated 

orthopaedic trauma theatre.  No differences in mortality were found, but morbidity rates were 

significantly reduced after the establishment of the dedicated trauma theatre, despite an 

increase in surgical delay (Lemos et al. 2009).  Some similar results were reported in an 

earlier study, which found that a system using a dedicated orthopaedic trauma theatre had 

roughly half of the post-operative morbidity of a regular system with no dedicated time for 

orthopaedics.  However, in this case surgical delay was also shown to decrease, again by 

approximately half (Elder et al. 2005). 



 

 

33 

 

A comparable approach was used by an American hospital which trialled the use of an 

unbooked orthopaedic trauma theatre, in which no elective cases may be scheduled, with a 

primary aim of a reduction in the growing trend of orthopaedic cases being done at night.  

Improvements reported by using the unbooked system include a reduction in hip fracture 

surgeries performed at night, a reduction in theatre overutilisation and a shorter surgery time 

(Bhattacharyya et al. 2006).  Similar results, also reporting fewer cases done at night after the 

implementation of a dedicated emergency theatre, have also been reported elsewhere (Calder 

et al. 1998, Sweetnam et al. 1994).  Benefits of reducing surgeries at night include greater job 

satisfaction for surgeons (Ostrum 2003) and avoiding errors attributable to tiredness; for 

example, one survey found that 33% of all self-reported medical errors were associated with 

fatigue (Gawande et al. 2003).  This topic is covered in more detail in Section 7.3.2. 

However, Wullink et al found that reserving capacity in elective theatres for emergency cases 

was preferable to having a dedicated emergency theatre.  Their policy means that an 

emergency arrival can be operated on as soon as any elective case currently occupying the 

theatre has finished, instead of reserving costly theatre capacity for whenever an emergency 

case may arrive.  Waiting times, theatre utilisation and staff overtime all showed an 

improvement in results (Wullink et al. 2007).  A study in Sweden also found that reserving 

some capacity for emergency cases, coupled with a policy to increase staff on standby during 

this time, significantly improved the performance of the operating theatre department 

(Persson and Persson 2010). 

A compromise between these approaches is to include some „deferrable‟ elective patients in 

an emergency session.  This is a patient who may be offered earlier treatment, if emergency 

demand is low, in return for accepting the possibility of postponement, if the emergency 

demand on the day of their appointment is high enough for elective patients to be cancelled.  

It has been suggested that an elective list equivalent to 90 minutes per trauma session may be 

beneficial in reducing theatre underutilisation during dedicated orthopaedic sessions (Bowers 

and Mould 2002).  The relationship between elective inpatient services and emergency 

admissions has also been studied analytically, where the introduction of a booked admissions 

policy for elective patients was considered.  Emergency admissions were included in 

calculations for total demand and different booking systems were modelled with a key result 

of showing the variance in demand for beds (Utley et al. 2003b).  Variation in bed 

requirements is something discussed in more detail later in this thesis. 
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Tardiness relating to start time, theatre turnover time (the time between consecutive 

operations) and resource underutilisation are important matters to consider with respect to 

theatre efficiency.  These topics are discussed later in Chapters 7 and 8 but a review of 

policies used to tackle these issues is now presented. 

One suggested strategy to avoid early finishes (and hence reduce underutilisation of the 

theatre) involves moving patients to the trauma theatre from other lists which are likely to 

finish early, or to schedule elective orthopaedic patients within the sessions which could 

improve the overall utilisation of the trauma theatre (Bowers and Mould 2004).  Dexter 

developed a strategy to decide whether to move the last scheduled case of the day to another 

empty operating room, in order to reduce overtime costs, with positive results (Dexter 2000). 

Another approach which involved moving cases to a different theatre, specifically when 

theatres are running late, was shown to reduce tardiness in those moved cases by 50-70%.  

However, since few cases were moved, overall tardiness was only decreased by 6-9% 

(Wachtel and Dexter 2009).  The main cause of tardiness relating to start time can be 

attributed to staff, thus the main way to combat this tardiness is by changing human 

behaviour (Lapierre et al. 1999).   

A change in human behaviour has also been shown to contribute towards a reduction in 

turnover times (Overdyk et al. 1998).  A decrease in turnover times between operations has 

also been shown to significantly decrease via the use of a second anaesthetist to commence 

induction of a patient just as the previous case is being completed (Sokolovic et al. 2002, 

Torkki et al. 2005).  A team from Finland used simulation to compare four different parallel 

workflow models to the traditional model where patients are operated on in sequence, one at 

a time, without any overlap.  It was found that each of the parallel models gave better cost-

efficiency than the traditionally sequenced working pattern (Marjamaa et al. 2009). 

An interesting approach to investigating theatre efficiency was employed by Stepaniak et al, 

who investigated whether the personality of the Operating Room Coordinator (ORC), who is 

responsible for filling gaps in the theatre schedule, had any effect.  It was shown that less 

risk-averse ORCs created significantly less unused theatre time, without an increase in the 

probability of running operating theatres after regular working hours or the number of 

cancelled cases (Stepaniak et al. 2009b). 
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1.4.7 Simulation in healthcare 

Computer simulation is a popular methodology in the healthcare field and is used to analyse, 

understand and investigate the workings of a health system.  This technique is employed 

twice in this thesis, see Chapters 6 and 8, where the reasoning for choosing simulation over 

other techniques is also discussed.  

There is an abundance of existing literature in this field and some excellent and thorough 

survey papers are available (Günal and Pidd 2010, Jun et al. 1999, Mielczarek and Uziałko-

Mydlikowska 2012).  Brailsford et al used a systematic heuristic to produce a final dataset of 

342 healthcare papers and present a useful breakdown of a number of variables, including 

methods, level of implementation and functional area.  This study was conducted with a 

particular, but not exclusive, interest in applications of simulation (Brailsford et al. 2009).  

An earlier systematic review, which did focus specifically on the use of discrete event 

simulation in healthcare, had 182 papers which met the authors‟ inclusion criteria (Fone et al. 

2003).  Clearly, simulation in healthcare is a prolific research area.   

Whole hospital simulation models are uncommon.  Reasons for this include the level of 

complexity (and therefore the data) that these models would require and the resources 

required to build such a model (Jun et al. 1999).  Despite these challenges, there are examples 

reported in the literature; these include a study by Van der Meer et al which models every 

treatment phase of a subgroup of elective orthopaedic patients (Van der Meer et al. 2005), 

and a whole-hospital model which covers all bed-related activities (Cochran and Bharti 

2006). 

Modelling A&E departments using simulation is a well-researched area.  These models tend 

to be exclusive to particular departments, but a model of a generic A&E department has been 

developed for use in UK hospitals.  The original intention was to gain a better understanding 

of patient flow, but was later developed so that it could be applied locally by individual 

hospitals (Fletcher et al. 2007).  Hospital-specific models usually require a high level of 

detailed information to be used as inputs, but if this can be achieved then helpful insights can 

be gained into prospective strategies to improve throughput (Duguay and Chetouane 2007, 

Huang et al. 1995).  Baboolal et al used simulation to develop a „perfect world‟ model of an 

A&E department, modelling the unit not how it currently is, but how it could be, with 

particular attention paid to different staffing configurations (Baboolal et al. 2012).  This 
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„perfect world‟ approach is employed in Section 10.5 with regard to modelling the trauma 

theatre, where results are instead generated using a mathematical approach. 

Simulation is also widely used to model outpatient departments.  An extensive review of 

papers which deal with methods of solving scheduling problems in outpatient clinics has been 

reported by Cayirli and Veral, and was later extended to use simulation to evaluate the 

performance of a variety of appointment systems for ambulatory care (Cayirli and Veral 

2003, Cayirli et al. 2006).  It was concluded that patient sequencing (for example, first-come-

first-served) had the greatest effect on care performance than the method used to determine 

appointment times.   

There are also a multitude of research papers reporting using simulation methods to model 

inpatient departments.  Examples include a model designed specifically to simulate geriatric 

patients in a North London Health District, with the intention that results could be used to 

evaluate the effectiveness of the department and to demonstrate the effects of changes to the 

current system (El-Darzi et al. 1998). 

Simulation models have also been developed to predict future demand on healthcare services 

by incorporating demographic changes, in particular with regard to long-term care of the 

elderly (Lagergren 1994) and future requirements of healthcare provision caused by fractures 

relating to osteoporosis (Bleibler et al. 2012).   

Briefly, other examples include using simulation to investigate means of reducing the spread 

of MRSA (Barnes et al. 2010), modelling bed occupancy in a critical care unit with the aim 

of finding a suitable strategy to minimise elective surgery cancellations (Griffiths et al. 2010) 

and modelling the effect of HIV (human immunodeficiency virus) treatment on transmission 

rates (Gray et al. 2003).  

 

1.4.8 Queuing theory in healthcare 

In Chapters 9 and 10, queuing theory is used to analytically model the trauma theatre at the 

UHW, by utilising existing results and developing a bespoke queuing system.  Bailey is 

widely credited as pioneering the use of queuing theory in healthcare several decades ago 

(Bailey 1952), and since then queuing theory has been extensively used in healthcare and 
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some examples of published work are now given.  The interested reader is referred to some 

survey papers on this topic for a fuller summary (Creemers et al. 2007, Fomundam and 

Herrmann 2007, Green 2006). 

Finding ways to minimise waiting times for patients is often a primary focus of queuing 

theory studies, while also fulfilling the discordant objective of maximising the utilisation of 

resources.  It has been shown that increasing capacity will not necessarily reduce waiting 

times, since arrival of the users (the patients) can be reactive to the system state; as users 

realise that waiting times are decreasing, more of them will arrive, thus increasing waiting 

time and queue size once more (Worthington 1991).  In 1970, a different approach was taken 

for the first time whereby queuing theory was used to establish an index of quality of care 

based on service waiting times (Haussmann 1970).   

Phase-type distributions are used to describe the time until absorption for a chain of n finite 

transient states, where each phase can be considered to be a Poisson process.  Fackrell 

presents a thorough and recent overview of the use of phase-type distributions in healthcare 

(Fackrell 2009).  A specific case which lends itself well to the healthcare setting is the Coxian 

phase-type distribution, where all arrivals (patients) start in phase 1 and sequential transition 

is possible between any state i (i = 1, ..., n) to the next state i + 1.  Exit from the system to the 

absorption state (n + 1), usually discharge or death, can occur from any phase.  Recent 

applications include modelling emergency services by using Coxian phase-type distributions 

to represent overall service time, split by case urgency, as well as times for sub-stages of 

service (Knight and Harper 2012).  Coxian phase-type distributions are commonly used to 

model heavily-skewed data and another recent paper found that this methodology was useful 

in not only modelling length of stay, in this case for patients who have suffered from a 

myocardial infarction, but also for other skewed distributions such as censored data and 

inpatient costs (Tang et al. 2012).   

Length of stay for geriatric patients is often shown to be heavily-skewed and has been 

modelled using Coxian phase-type distributions, where it was also shown how this 

methodology can be used to include influencing variables such as patient age (Faddy and 

McClean 1999).  The survival of patients after admission due to a hip fracture has been 

modelled using conditional phase-type distributions (Marshall and Shaw 2008).  In particular, 

this methodology was used to identify system delays and how addressing them could reduce 
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length of stay, and has also been used to include clinical and demographic data to predict 

length of stay and discharge destination for geriatric patients (Marshall et al. 2002).   

The Erlang distribution is a particular case of the Coxian phase-type distribution where all 

phases must be completed sequentially before transfer to the absorption state can occur, and 

is used later in this thesis to model the service time for the trauma theatre. 

Effective management of expensive hospital resources is another area where queuing theory 

has been used and a particular relevant example is optimising the number of beds at a care 

facility.  Gorunescu et al used a phase-type queuing model to minimise the number of beds in 

order to achieve at most a certain pre-determined probability of delay at a geriatric hospital 

department (Gorunescu et al. 2002).  Utley et al used an analytical approach to investigate the 

possibility of introducing an intermediate care facility, so that patients occupying acute care 

beds who do not require acute care would instead be cared for at such a facility.  Results were 

used to suggest the proportion of all beds at the facility that should remain designated for 

acute care (Utley et al. 2003a).  Results have also been applied to intensive care units, where 

beds, equipment and staff are very costly (Costa et al. 2003, Griffiths et al. 2006). 

Indeed, queuing theory has been used to determine staffing levels in healthcare for some 

time.  An early application involved applying a queuing model to a hospital messenger 

service (several servers) to find an appropriate trade-off between cost and efficiency 

measures such as waiting time and queue length (Gupta et al. 1971).  More recent 

applications include using queuing theory to reallocate staff in order to increase throughput in 

an emergency department, despite an increase in demand (Green et al. 2006), while Lucas et 

al used mathematical modelling to calculate the probability of certain types of admission 

requiring urgent surgery for different arrival rates.  Results were then used to find the 

probability that two operating rooms would be simultaneously occupied and decisions could 

then be made regarding staffing levels.  It was concluded that an on-call team provide 

sufficient staffing to achieve immediate operating room availability for centres admitting 

fewer than 500 cases per year (Lucas et al. 2001).  This methodology was later repeated to 

determine staffing requirements for paediatric operating theatres (Tuggle et al. 2010). 

As a final example in healthcare, queuing theory has also been applied to pharmacy 

applications and Nosek and Wilson give a thorough survey of research in this area, with 

particular attention to improving customer satisfaction (Nosek and Wilson 2001). 
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CHAPTER 2: WARD DATA AND INITIAL ANALYSES  

2.1 Introduction 

This chapter is primarily an introduction to one of the databases made available for this study, 

namely the Cardiff Hip Fracture Survey database.  Many different variables are recorded into 

this database for each patient admitted to the University Hospital of Wales with a trauma 

fractured neck of femur. 

 

2.1.1 Cardiff Hip Fracture Survey 

The Cardiff Hip Fracture Survey database includes information relating to patient‟s personal 

information, their medical condition, their treatment and their discharge.  In some cases 

follow-up data was also available but unfortunately was not reliable or complete enough to 

use here. 

This data is collected and recorded by the hip fracture team and initially recorded for each 

patient onto a data capture sheet, then entered into an SPSS database whenever time permits.   

Before more sophisticated statistical analysis is undertaken, an overview of some of the data 

available is now presented.   

The extract of data used here covers all patients admitted between October 2003 and mid-

February 2008, a total of 2182 observations.  Missing values and errors are inevitable for 

manually entered data.  All data was checked and validated prior to the following analysis 

being undertaken.  Any erroneous values (a negative age, for example) were removed and 

regarded as a missing value if they could not be inferred from other available fields.  
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2.2  Data 

2.2.1 Age and gender 

The majority of patients admitted with a trauma hip fracture are elderly.  Another important 

characteristic of this injury is that they usually occur within females.  The reason for this is 

two-fold; firstly, since hip fractures are more likely to occur in the older population due to the 

onset of osteoporosis, the issue of average life expectancy is considered in order to gain an 

insight into the age distribution of the population.  It is a general conception that women live 

longer than men, hence the elderly population would be expected to have a higher proportion 

of women than men.  For that reason it is important to check whether or not this is true for the 

areas of interest here.  The generally accepted definition of an „elderly‟ person being defined 

as one who is the age of 65 or above is used here. 

Life expectancy is calculated in two ways in the United Kingdom; at birth and at age 65.  Life 

expectancy at a given age for an area, in the specified time period, is an estimate of the 

average number of years a person of that age would survive if he or she experienced that 

area‟s age-specific mortality rates for that time period, throughout the rest of their life.  The 

figure therefore reflects mortality among the population living in a certain area, rather than 

those born in the area.  Life expectancy at age 65 is the number of further years a person who 

reaches the age of 65 in the specified time period could expect to live. 

Life expectancy figures for the local authorities of Cardiff and The Vale of Glamorgan are 

given in Table 2.2.1i.  These values are calculated and disseminated by the Office for 

National Statistics (ONS 2009). 

 

Table 2.2.1i: Life expectancy at birth and at age 65 for Cardiff and The Vale of Glamorgan, 

2006-2008 

Local 

authority 

Life expectancy at birth  

[95% confidence interval] 

Life expectancy at age 65  

[95% confidence interval] 

Males Females Males Females 

Cardiff 
76.6 

[76.2, 77.0] 

81.7 

[81.4, 82.1] 

17.0 

[16.7, 17.3] 

20.3 

[20.0, 20.6] 

The Vale of 

Glamorgan 

77.8  

[77.1, 78.4] 

82.3 

[81.8, 82.8] 

17.6 

[17.2, 18.0] 

20.3 

[19.9, 20.6] 
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It can be seen for the most part that the life expectancy is greater for The Vale of Glamorgan 

than for Cardiff, while in all cases women have a higher life expectancy than men.  National 

figures for Wales show that the two authorities studied in detail here are roughly on a par 

with the rest of the country.  The notion that women live longer than men is therefore 

justified and in part explain why there are more women in the dataset than there are men. 

The second issue to consider is that it is known women‟s bones tend to deteriorate sooner 

than men‟s bones and a bone is more likely to break under pressure, from a fall for example, 

if it has weakened over time.  One explanation for this is that the onset of the menopause 

accelerates bone loss in women (Wei 2004); the average age at which women reach the 

menopause in the United Kingdom is 52 (NHS 2010). 

Table 2.2.1ii shows some summary statistics on age and gender at the time of admission 

(S.D. – standard deviation).  It can be seen that for every male admitted, approximately three 

females were admitted to the hospital over the same time period.  Additionally, the average 

age of female patients is around five years greater than the average age of male patients.  The 

variation in ages is higher in males, but this is in part due to the more extreme outliers seen 

amongst the male patients.  Splitting into age groups of ten years allows the spread within age 

groups to be seen in Figure 2.2.1iii.  

 

Table 2.2.1ii: Summary statistics of age (years), classified by gender 

Gender n Mean S.D. Minimum Maximum 

Males 580 76.29 13.25 14 100 

Females 1598 81.33 10.12 31 101 

 

 

Figure 2.2.1iii: Percentage of patients in each age group, classified by sex 
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It can immediately be seen that women are more likely to suffer from a trauma hip fracture 

later in life, while men are shown to have higher percentages in the younger age groups.  Of 

course, the issue that the elderly population is made up of more women than men must be 

considered here. 

Using population estimates provided by the Welsh Assembly Government (WAG 2008a) for 

the calendar year 2007, alongside the Hip Fracture Survey data from the same year, this 

aspect can be investigated.  Since the University Hospital of Wales takes all cases of trauma 

hip fracture from across the local authority regions of Cardiff and The Vale of Glamorgan, 

population figures for these regions were aggregated.  Younger age groups with very small 

numbers are excluded and patients aged 100 years or over are combined with the 90-99 age 

group. 

 

 

Figure 2.2.1iv: Count of admissions and the percentage of Cardiff and The Vale of 

Glamorgan population admitted, classified by age group and gender; 2007 

 

For both males and females it can be seen that the number of admissions as a percentage of 

the relevant population steadily increases across the age groups.  Indeed, 3.13% of females in 

the 90 and over age category incurred a trauma hip fracture in 2007.  As a proportion of the 

population, women are also more likely to be admitted with this injury. 

As a reference point, fracture incidence rates were calculated in a Cardiff study published in 

1997 (Johansen et al. 1997).  This was across all age groups and for all fracture types.  The 
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overall fracture incidence was 2.11%, 2.35% for males and 1.88% for females, thus 

highlighting the increased hip fracture risk for the older population.  

 

2.2.2 Admission source 

There are eight distinct places from which a patient may have been admitted.  Note that this is 

their current residency, not necessarily the place where the injury was incurred.  A count 

within each group is displayed in Figure 2.2.2i.  This value was missing in three cases. 

 

 

Figure 2.2.2i: Frequency of patients arriving from each admission source 

 

A high proportion (70.0%) of all patients were admitted from their own home.  A study in 

Cardiff previously showed that hip fracture rates are considerably higher amongst care home 

residents, compared with sheltered accommodation and community dwelling residents 

(Brennan née Saunders et al. 2003). 

 

2.2.3 Living alone status 

Until March 2007, another element of the residential status of each patient was recorded; 

whether they lived alone or not.  This variable could take three values: the patient lived alone, 

did not live alone, or lived in institutional care.  The latter of these options is covered by the 

previous variable of admission source, so it is only really of interest where the patient is not 

in institutional care; that is, they lived in their own home or sheltered housing, leaving 1195 
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and 61 patients respectively, for data items where both living alone status and admission 

source was available.   

Within patients admitted from home, almost equal proportions were seen; 48.5% lived alone 

and 51.5% did not.  However, marked differences can be seen within the smaller group of 

patients admitted from sheltered housing, where just 6.5% of patients did not live alone. 

 

2.2.4 ASA grade 

The American Society of Anesthesiologists (ASA) grade is used to denote a patient‟s medical 

fitness.  It is a physical status classification system scored on a scale of I (one) to VI (six), 

which is often used to assess patients prior to surgery.  The official definitions of the six 

grades are given in Table 2.2.4i and were obtained from documentation published by the 

ASA  (American Society of Anesthesiologists 2010).  The observed prevalence of each grade 

are also given and correspond to the value of all patients for this value was known; it was 

missing for 115 observations (5.2%) in the dataset.  Note that no patient with an ASA grade 

of VI would be admitted to the hip fracture ward. 

 

Table 2.2.4i:  ASA grade descriptions and percentages 

ASA 

Grade 
Description Percentage 

I A normal healthy patient 4.4% 

II A patient with mild systemic disease 32.5% 

III A patient with severe systemic disease 52.2% 

IV 
A patient with severe systemic disease that is a constant 

threat to life 
10.7% 

V 
A moribund  patient who is not expected to survive without 

the operation 
0.2% 

VI 
A declared brain-dead patient whose organs are being 

removed for donor purposes 
- 

 

Immediately it is noticeable that over half of all patients have an ASA grade of III and around 

one third have an ASA grade of II, while fewer than five percent have the most desired ASA 
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grade of I.  These results are not especially remarkable considering the high age of the 

majority of these patients.   

It will be seen later in this thesis that grades I and II are combined into one group and grades 

V and VI are not used.  It was advised by the clinicians involved in the project that grades I 

and II could be combined since there is no difference in the way these patients are treated.  It 

was also advised to ignore patients with an ASA grade of V; these patients are likely to have 

several comorbidities and it is probable that their hip fracture injury is not the main concern 

of any treatment plan.  While it would be useful to investigate the effect of comorbidities on 

all patients, unfortunately this information was unavailable.  Additionally on inspection it was 

found that there were very few patients recorded with an ASA grade of V and thus excluding 

these patients would have negligible impact on later work. 

 

2.2.5 Mental state 

Each patient‟s mental state on admission is recorded as one of three values.  This variable 

was missing in ten cases.  Table 2.2.5i gives the frequency and percentage of each of the 

mental states, listed in order of severity. 

 

Table 2.2.5i: Count and percentage of observations by mental state 

Mental state Frequency Percentage 

Normal 1460 67.2% 

Known dementia 396 18.2% 

Confusion 316 14.5% 

 

Just over two-thirds of all patients do not have any mental problems as recorded by these 

definitions and are classified as „normal‟.  It would be expected to have reasonable amounts 

in the two other categories, due again the high age profile of these patients (Jorm and Jolley 

1998, Nicholl 2009). 
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2.2.6 Walking aids and ability  

The walking aids and walking ability pre-fracture of each patient are recorded as part of the 

Hip Fracture Survey.  These are both measured on an ordinal scale of one to five:   

 

Table 2.2.6i: Description of walking aids and ability values 

Value Walking aids definition Walking ability definition 

1 None Outside, alone 

2 One (stick, crutch) Outside, with someone 

3 Two Inside, alone 

4 Frame Inside, with someone 

5 Wheelchair / bed-bound Wheelchair / bed-bound 

 

Both of these data items were available in all but seven cases.  A useful way to view this data 

is via a so-called „bubble‟ plot, as seen in Figure 2.2.6ii.  The axes correspond to the values 

which the two variables, walking aids and walking ability pre-fracture, may take.  The size of 

the bubble (its area) corresponds to the frequency in the dataset which take these values.  For 

reference, the bubble at (1, 1) represents 572 patients, while the bubble at (5, 5) represents 48 

patients.   

 

 

Figure 2.2.6ii: Bubble plot displaying the frequencies between walking aids used and walking 

ability pre-fracture 
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Clearly there are some discrepancies, since if a patient has a value of five recorded for one of 

these variables, then it is sensible that they will also have the same value recorded for the 

other variable, which is not always the case.  However, this occurs in a rather minimal 

amount of cases so do not lead to much cause for concern. 

These results are unsurprising considering the age profile of this patient group; an increasing 

age is expected to be associated with a decline in mobility (Troosters et al. 1999).  However, 

they do highlight the difficulties faced by a large amount of these patients even before 

incurring their hip fracture injury. 

While modern methods of hip replacement surgery can provide highly functional outcome for 

elderly patients with a fractured hip (Schmidt et al. 2009), one study showed that only half of 

hip fracture patients managed to regain their pre-fracture functional status, as measured by 

walking ability and the need for walking aids (Sernbo and Johnell 1993) so some impact 

would clearly be expected.  It has additionally been shown that men experience better 

functional recovery than women after a trauma hip fracture (Arinzon et al. 2010).  

Unfortunately the follow-up information relating to walking aids and ability was scarcely 

populated. 

 

2.2.7 Mobility 

A similar variable is the mobility score of a patient.  This is measured on an ordinal scale of 

one to three, as defined in Table 2.2.7i alongside observed frequencies and percentages.  

There were eight observations for which this variable was missing.  Almost 40% of all 

patients in this dataset are housebound, while an almost exact amount has the „best‟ mobility 

score of 1.   

 

Table 2.2.7i: Count and percentage of observations by mobility score 

Mobility score Description Frequency Percentage 

1 Able to shop 858 39.5% 

2 Able to get outside but unable to shop 463 21.3% 

3 Housebound 853 39.2% 
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Note that while a higher level of mobility may indicate that an individual is generally 

medically fitter and more able, in actuality this may mean that they are more at risk from 

fracture due to a more active lifestyle (Porter et al. 1990). 

 

2.2.8 WAASP score 

The WAASP score is a nutritional screening tool used within the Cardiff and Vale University 

Health Board.  It is an acronym for Weight, Appetite, Ability to eat, Stress factors, Pressure 

sores / wounds, so encompasses various factors into one score.  A lower score is more 

desirable. 

The actual score is not recorded for hip fracture patients but is converted to a category of 1 

for WAASP scores with a value of one or two, 2 for WAASP scores between three and six 

and 3 for a WAASP score of seven or greater.  Inevitably this means that a certain amount of 

information is lost.  24.5%, 42.3% and 33.2% of patients had WAASP categories of 1, 2 and 

3 respectively.  This value was not recorded for 18 patients. 

The highest proportion of patients thus falls within the middle category, leaving a third of 

patients in the top („worst‟) category and a quarter of patients in the bottom („best‟) category.  

Evidence shows that this group of patients are likely to be malnourished on admission and 

show a rapid deterioration in nutritional status during admission (Nematy et al. 2006).  This 

deterioration may be due to a variety of factors including oral problems, mental difficulties, 

anorexia and catering limitations (Patel and Martin 2008). 

 

2.2.9 Pathological fracture 

A pathological fracture occurs when a bone breaks in an area that is weakened by another 

disease process. Causes of weakened bone include tumours, infection and certain inherited 

bone disorders.  There are six codes used to specify whether each patient has a pathological 

fracture and, if so, what the nature of the pathological fracture is; descriptions and results are 

given in Table 2.2.9i.  More detailed medical definitions of these descriptions can be found in 

Appendix C.  This data item was missing for 47 observations.   
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Table 2.2.9i: Pathological fracture codes, their associated descriptions and percentages 

Code Description Percentage 

1 None 95.55% 

2 Malignant secondary bony tumour 2.72% 

3 Malignant primary bony tumour 0.23% 

4 Bone cyst 0.14% 

5 Paget‟s disease 0.70% 

6 Other 0.66% 

 

The vast majority of patients do not have a pathological fracture; they have incurred a 

fracture which was not caused by bone weakness due to another disease.  Within the 

remainder, the most common type of pathological fracture is a malignant secondary bony 

tumour, but this still accounts for less than 3% of all patients. 

 

2.2.10 Fracture type 

There are six different classifications used for how the fracture is described clinically, which 

are detailed with counts in Table 2.2.10i.  This value was missing for 29 observations and 

again there is more detailed information relating to these categories available in Appendix C.  

The most common type of fracture seen was displaced intrascapular, with 43.6% of all 

values.  It would have been useful to see whether the type had any relation to whether or not 

it is a pathological fracture, but analysis is difficult since few fractures were pathological. 

 

Table 2.2.10i: Type of fracture codes and their associated descriptions 

Code Description Count 

1 Undisplaced intracapsular 227 

2 Displaced intracapsular 939 

3 Basocervical 108 

4 Trochanteric, two fragment 370 

5 Trochanteric, multi fragment 380 

6 Subtrochanteric   127 
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2.2.11 Type of operation 

The classification system for the recording of operation type was amended in March 2007.  

With the assistance of a clinician at the hospital, new categories were defined in order to 

reclassify the existing data which would suit both of the previous systems, but unfortunately 

some information was lost in forming the new definitions.  Operation type classifications and 

percentages are given in Table 2.2.11i and more information is available in Appendix C.  

This information was available or could be inferred in all but eight cases.   

Dynamic hip screw and hemiarthroplasty are the most common operation types and the data 

shows almost equal numbers of patients in these two groups.  Just 3.4% of patients do not 

undergo surgery, either because they are given non-surgical (conservative) treatment or 

because they die prior to the operation being performed.   

 

Table 2.2.11i: Operation codes, their associated descriptions and prevalence 

Code Description Percentage 

A No operation; died pre-operation or given conservative treatment 3.4% 

B Dynamic hip screw 35.3% 

C Screws 11.5% 

D Intramedullary nail 9.7% 

E Hemiarthroplasty 35.4% 

F Total hip arthroplasty 3.7% 

G Other 0.9% 

 

2.2.12 Side of fracture 

The side of the body, left or right, on which the fracture was incurred is another recorded data 

item.  This value was missing in just eight cases and as expected there is no noteworthy 

difference in proportions between these two groups.  1163 (53.5%) patients incurred a left-

sided fracture and 1011 (46.5%) incurred a right-sided fracture. 
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2.2.13 Acute discharge destination 

Ten different values are recorded for acute discharge destination.  It is also important to 

consider the admission source of a patient, as well as their discharge destination, as it can 

then be seen if there has been any change in the residential status of a patient which could be 

attributed to the hip fracture.  However, in this brief overview just the destinations are given.  

More detailed analysis is seen later in Chapter 6.  This value was missing for 27 observations 

in the dataset and counts are presented in Figure 2.2.13i. 

 

 

Figure 2.2.13i: Count of observations by acute discharge destination 

 

The two most prevalent acute discharge destinations are home and rehabilitation unit, with 

34.0% and 31.6% of all observations respectively.  Many patients therefore do not actually 

finish their treatment once they leave the hip fracture ward, but remain under the care of the 

University Health Board (UHB) for further treatment.  12.9% of patients do not survive their 

stay in hospital, and 17.2% of these die pre-operation. 

Some information is available on the final discharge destination of each patient; their ultimate 

discharge destination when they leave the UHB.  For many patients the acute and final 

discharge destinations are the same.  This is not discussed in more detail here but is analysed 

further with respect to mortality in Chapter 4. 
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2.2.14 Length of stay 

Patient length of stay is discussed in more detail in Chapter 3, but a brief introduction is given 

here for completeness.  There are two length of stay values recorded; ward length of stay and 

UHB length of stay.  Many patients are not discharged completely when they leave the ward 

at the UHW, but are transferred elsewhere within the UHB (see Section 2.2.13).  Summary 

statistics are given in Table 2.2.14i.  Data was available in 2157 and 1914 cases for ward and 

UHB length of stay respectively. 

 

Table 2.2.14i: Summary statistics for length of stay (days) 

Length of stay category Mean S.D. Minimum Maximum 

Ward  28.72 29.26 0 354 

University Health Board 39.93 41.21 0 534 

 

Length of stay is shown to be almost one month, on average, for trauma hip fracture patients, 

with approximately eleven more days if they are not discharged from the UHB when they 

leave the ward.  One patient actually spent almost a year and a half within the UHB after 

being admitted with this injury.   

 

2.2.15 Other collected data items 

A number of other data items are collected in the Cardiff Hip Fracture Survey which are not 

discussed in more detail.  Many of these are follow-up items relating to patient condition or 

status after they are discharged and is therefore difficult to collect, resulting in sparse data.   

Other routinely collected information includes the ward which the patient was on.  A small 

amount of ad-hoc work was completed with regards to ward, where the focus can be 

summarised as analysing whether patients receive the same treatment on each ward 

(measured crudely as outcome for similar patient groups).  It was shown that there were no 

significant differences; for this reason and with the agreement of a clinician involved with 

this work it was decided to ignore this variable.  



 

 

53 

 

2.3 Bed occupancy 

Section 2.2 presents simple analyses of the raw data collected by the Cardiff Hip Fracture 

Survey.  This data represents the characteristics of this patient cohort, as well as some 

information on the injury sustained and the treatment given.  The progress of patients as they 

are admitted and subsequently discharged from the ward is also given.  However, no data 

regarding all patients as a whole is routinely collected and recorded.  This makes analysis of 

the utilisation of the resources within the ward difficult to undertake, which would have 

knock-on effects in terms of capacity, resource and patient management. 

One example of interest is the number of beds occupied at any time within the hospital by 

this patient group.  By using the arrival and discharge dates of each individual patient, a daily 

bed occupancy profile can be developed.  However, this will always provide an overestimate 

of the number of the number of beds occupied.  Consider a patient discharged in the morning 

on any given day. The bed that this patient has just vacated thus becomes empty and available 

for another patient admitted later in the day.  The method used here records this bed twice, 

once for each patient.  However, while the admission time is available for patients admitted 

under the new recording system, there is no information available for the time a patient is 

discharged.  This is therefore an unavoidable obstacle in calculating bed occupancy.  One 

justification of „ignoring‟ this issue is that there will always be some unknown turnaround 

time for the bed to become available, so any assumption that a bed becomes immediately 

available after a patient is discharged is inaccurate. 

A program was written in Visual Basic that reads in the admission date and the discharge date 

at an individual patient level and then calculates the number of ward beds occupied on each 

day over a given time period.  The results were output to an Excel spreadsheet and sensible 

cut-offs were made with respect to the start and end points of the time period which could be 

used later.  This resulted in the number of beds occupied on each day for just over three years 

(May 2004 to July 2007) being available for further analysis.  Summary statistics of the 

number of beds occupied over this time period are given in Table 2.3i.  Clearly the number of 

beds occupied fluctuates considerably, dropping to a minimum of 22 beds and rising to a 

maximum of 71 beds.  This variation is displayed on a day-by-day basis in Figure 2.3ii.  

Finally, a frequency histogram of beds occupied is presented in Figure 2.3iii.  While it 
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appears that the number of occupied beds may follow a Normal distribution, a formal test 

showed that this was not the case. 

 

Table 2.3i: Summary statistics for bed occupancy, trauma hip fracture patients  

Mean 
Standard 

deviation 
Minimum Maximum Mode Median 

42.10 8.07 22 71 37 41 

 

 

Figure 2.3ii: Daily beds occupied by trauma hip fracture patients, May 2004 – July 2007 

 

 

Figure 2.3iii: Histogram of beds occupied by trauma hip fracture patients, May 2004 – July 

2007 

0 

20 

40 

60 

80 

B
ed

s 
o
cc

u
p
ie

d
 

Date 

Value Mean (42.1) 

0 

20 

40 

60 

80 

22 26 30 34 38 42 46 50 54 58 62 66 70 

F
re

q
u
en

cy
 

Beds occupied 



 

 

55 

 

While the variation seen here would be evident to the hip fracture team from daily 

observations within the ward, it is unlikely that the extent of this variation or indeed the 

values of bed occupancy are known within the ward.  A greater knowledge and 

comprehension of areas such as bed occupancy will aid resource and patient management. 

 

Using the values of final length of stay would also mean that the number of beds occupied 

within the University Health Board (UHB) could be evaluated.  However, this value was 

missing in many cases and if a patient did not leave the UHB when they were discharged 

from the ward then it could not be inferred from other data items.  Any calculations would 

therefore be an underestimate of the true value and since there is no way of knowing the 

extent of this underestimate precisely then these calculations are not included here. 
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2.4 Time dependency 

It may be supposed that admissions are time-dependent and day of the week, monthly and 

yearly investigations into time dependency are now presented.   

The first time measurement that is considered here is the day of admission.  If one day had a 

particularly higher or lower number of admissions in comparison to the other days then this 

may be something that needs to be taken into account later on.  The distribution of the 

number admissions according to day of the week is given in Figure 2.4i.  Friday is shown to 

have the most admissions, while Sunday has the least, but it can be seen that each of the 

seven segments is relatively evenly-sized. 

 

 
Figure 2.4i: Percentage of admissions by day of the week, 2004-2007 

 

It may also be supposed that the number of beds occupied would increase over the winter 

months; the majority of trauma hip fractures come as the result of a fall and icy conditions 

may lead to a rise in this.  While the highest peak on the graph shown in Figure 2.3.1ii is seen 

to occur during January, there is another peak during the summer months of 2005, for 

example.  These peaks and troughs are therefore attributed to randomness alone. 

Monthly analysis was completed where a complete calendar year of data was available, 

namely for the years 2004 to 2007.  Counts of admissions over these months are given in 

Figure 2.4ii.  While the highest total count is seen for the month of December, the assumption 

of no seasonal trends is affirmed here.  The second highest count is seen in May, while 

January and August had exactly the same number of admissions over this four year period.   
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Figure 2.4ii: Count of admissions by month, 2004-2007 

 

While it appears that there are no monthly or daily patterns to be taken into account, any 

increasing or decreasing patterns over time must be considered.  The number of admissions 

per year is given in Table 2.4iii.   

 

Table 2.4iii: Count of observations by year, 2004-2007 

Year 2004 2005 2006 2007 

Count of admissions 503 490 533 487 

 

There appears to be no upward or downward trend in the number of admissions over time and 

therefore it can be assumed that the number of admissions per year is reasonably stable at 

around 500 patients, with fluctuation in the number of admissions over this period attributed 

to randomness.  It may be expected that over a longer period of time the number of 

admissions would increase due to the ageing population, as discussed later in this thesis. 

 

Day of the week, monthly and yearly analysis have all been completed in the attempt to find 

some pattern or trend in the number of admissions to the hospital with a trauma hip fracture 

with respect to time.  Results have indicated that there is no time-dependency involved with 

these admissions.   
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here to more formally prove the lack of association between each of the three time values 

considered and the number of admissions.  A p-value of less than 0.05 would suggest that the 

null hypothesis should be rejected in favour of their being an underlying relationship between 

the two variables.  Results of the Chi-square test of independence on the three time variables 

against the number of admissions resulted in p-values of 0.230, 0.150 and 0.452 for day, 

month and year respectively.  It can be concluded no evidence has been found that time-

dependency, in terms of the three time variables considered here, has an impact on the 

admission rates of hip fracture patients to the UHW.   

There have been a number of studies which have investigated seasonal changes on hip 

fracture risk with contradictory results.  Statistical investigations using ARIMA (auto-

regressive integrated moving average) modelling have shown an opposing conclusion of this, 

where the effects of winter were shown to significantly increase the propensity of hip 

fractures (Lin and Xiraxagar 2006, Modarres et al. 2012). 

Conversely, seasonal variability for proximal femoral fractures by sex was shown to be not 

significant (Papadimitropoulos et al. 1997), while no consistent seasonal pattern in the 

incidence of hip fracture has also been reported (Pedrazzoni et al. 1993).  One explanation of 

an increase in hip fracture injuries during winter months is the increased risk of slipping due 

to icy conditions, but it has been reported by one study that, despite this, only 4% of hip 

fractures were attributed to the effect of season (Bulajic-Kopjar 2000).  Another study found 

that hip fracture risk was related to slippery winter conditions amongst women aged 45-74 

years old, but not for women aged 75 years and above (Jacobsen et al. 1995). 

It thus follows that, while published reports are plentiful (those quoted here are just some of 

the examples in the literature), conclusions are inconsistent.  The conclusion of no seasonal 

variation for admissions to the UHW is upheld. 

Of course, if admissions are looked at by the hour of the day, then some time-dependency is 

evident; patients are more likely to be admitted during daylight hours.  However, this piece of 

information is not available for a significant proportion of the observations here and therefore 

is not considered further.  Additionally, with the completion of the bed occupancy 

calculations (Section 2.3), it was decided that the day of admission was enough information 

for this study. 
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2.5 Comparison within specialty  

Trauma hip fractures are classified as a part of the Trauma and Orthopaedics (T&O) 

specialty.  The number of beds available and the number of beds occupied within this 

specialty at the University of Wales are calculated by the Welsh Assembly Government 

(WAG 2008b).  These are included here for the years 2006-2007 as comparative figures.  The 

average daily number of beds available is defined as the average daily number of staffed beds 

in which inpatients are being or could be treated without any change in facilities or staff 

being made, while the average daily number of occupied beds is defined as the average daily 

number of beds occupied by inpatients under the care of a consultant in a particular specialty.  

The total number of admissions under this specialty and the average length of stay are also 

given. 

 

Table 2.5i: Selected figures for the specialty of T&O at the UHW, 2006-2007 

Measure Value 

Average daily available beds 122.9 

Average daily occupied beds 122.5 

Percentage occupancy 99.67 

Inpatient cases 3973 

Average duration of stay (days) 11.3 

 

It can immediately be seen that this specialty is operating at almost full capacity; the average 

number of beds occupied each day is almost equal to the average number of beds available.  

In Section 2.2 the average daily bed occupancy of hip fracture patients was calculated as 

42.1, which as a percentage of all occupied T&O beds is 34.4%.  The number of inpatient 

cases admitted in the two years of 2006 and 2007 was 3973, compared with 1020 hip fracture 

patients in the same time period.  While it appears, therefore, that hip fracture patients 

account for approximately one quarter of all T&O admissions, they occupy approximately 

one third of the available beds.  Intuitively it can be expected that this is due to differing 

length of stay patterns, which is supported by the reported figures.  All patients within this 

group were reported to have a mean length of stay of 11.3 days, while the calculated mean 

length of stay in the hip fracture sub-group was much higher at 28.7 days.  
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2.6 Delayed transfers of care 

The National Assembly for Wales advise that “planning for hospital discharge must begin at 

[…] admission to hospital.  It should be considered as a process and not an event.” (NAFW 

2005).  Unfortunately in some cases discharge is not planned effectively and the patient 

experiences a delayed transfer of care.  A delayed transfer of care occurs when a hospital 

inpatient is ready to move on to the next stage of care but is prevented from doing so.  This 

may happen for several reasons.  In the case of hip fracture patients, it may be because the 

patient needs to be discharged to a care home or rehabilitation unit and there is no current 

place available, for example.  Thus the patient is unnecessarily occupying a bed on the ward; 

if these delayed transfers could be eradicated, or at least reduced, there will be benefits to the 

system in terms of bed availability and staff workload.  It has been advised that for every day 

delayed while a proximal femur fracture patient is waiting for a place in a rehabilitation unit, 

their total hospital length of stay is increased by 0.64 days (Weatherall 2001). 

The Hospital at Home scheme provides one method of easing pressures on the healthcare 

system; hospital-level care by a multi-disciplinary team to patients aged 65 or over in the 

comfort of their own home (Health Workforce Solutions LLC 2008), and has been suggested 

that approximately 40% of hip fracture patients are suitable for early discharge to a scheme 

such as this, leading to substantial savings in direct costs of care (Hollingworth et al. 1993). 

 

2.6.1 Occurrence 

Unfortunately there is no information available from the ward on whether or not this occurs.  

However, the Welsh Assembly Government disseminates statistics on this topic which can be 

used to make inferences about trauma hip fracture patients.  These statistics are categorised 

by facility in terms of whether or not treatment for mental health is included, where facilities 

excluding mental health are classified as acute and community hospitals, rehabilitation 

centres and other facilities, so this group is looked at here.  Unfortunately no other 

information on the type of treatment is provided.  However, results by health board and local 

authority are available.  The month of October 2009 is considered in greater detail here; these 

results are actually reported on a month-by-month basis but it is difficult to collate results.  

This is census data, not a retrospective analysis, meaning that results reported for October 
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2009 is likely to include many of the same people as months before and after October.  It was 

found that results for this month were not too dissimilar from other months. 

84 delayed transfers of care were reported this time period, a breakdown of reasons and the 

percentage of time this occurred is given in Table 2.6.1i (WAG 2010b).  Another statistic of 

interest is the rate of delay by age.  For October 2009 for patients aged 75 and over, the rates 

for Cardiff and The Vale of Glamorgan were 22.7 and 35.4 respectively, per 10,000 

population in this age group (WAG 2010c).  82.1% of the 84 patients were waiting to leave 

the NHS while 10.7% were waiting for assessment or a move within the NHS, while this was 

unknown for the remainder of patients (WAG 2010d). 

 

Table 2.6.1i: Reasons for a delayed transfer of care, Cardiff and Vale UHB, October 2009  

Reason relating to Percentage 

Healthcare - Assessment or arrangements 50.0% 

Community care - Assessment or arrangements  10.7% 

Care home - Waiting for availability or selection 21.4% 

Other 17.9% 

 

The length of delay is also reported (WAG 2010e).  Detailed information is unavailable but 

instead the numbers in certain ranges are reported and results are displayed in Table 2.6.1ii  

Note that the figures reported are from a census and therefore do not necessarily represent the 

final delay experienced.  It can be seen that some patients had been waiting more than six 

months at the time of the census.   

 

Table 2.6.1ii: Length of delay caused by a delayed transfer of care, Cardiff and Vale UHB, 

October 2009 

Time interval (weeks) 0-3 3-6 6-12 12-26 26+ 

Percentage 32.1% 20.2% 26.2% 20.2% 1.2% 

 

Taking the middle value of each range (and the lower bound of 26 for the „26 + weeks‟ 

group), some estimate of the total time attributable to delayed transfers can be made.  For the 
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month studied, the patients waiting at that time had been waiting approximately 650 weeks in 

total.  This is rather an alarming figure considering that with better planning and resource 

allocation much of this could be avoided. 

 

2.6.2 Consideration for this study 

It has been shown that around one third of delayed transfers of care occur due to reasons 

related to community care or care homes.  Many patients presenting to the hospital with a 

fractured hip have an admission source of a care home or another residential care facility, but 

any patient admitted from these sources is assumed to not have this problem since they would 

be able to return to their original residency.  This would therefore only be an issue for those 

patients who, for example, are admitted from home but are discharged to a care home.  These 

figures are presented and discussed further in Chapter 6, where it can be seen that this group 

of patients is relatively small in size.  While the occurrence of delayed transfers of care is 

rather high, it may be concluded that the proportion of these patients who are likely to be hip 

fracture patients could indeed be comparatively small.  Many patients are discharged to a 

rehabilitation unit and thus could fall into the healthcare category shown in Table 2.6.1i.  This 

is a much larger group and therefore may have an impact on patient length of stay, if a 

delayed transfer of care occurs.  Additionally rates for the local authorities of Cardiff and The 

Vale of Glamorgan show the impact upon those aged 75 or above; hip fracture patients are 

predominantly elderly and therefore this may be an indicator of the influence of this problem 

on the patient group of interest. 

The most important issue to consider is the extra length of stay caused by this delay in 

transfer.  Some insight can be gained by the values presented in Figure 2.6.1ii, but the total 

delay incurred is unknown, as previously explained.  Additionally, there is no way of 

knowing how many trauma hip fracture patients are in fact affected by this problem, even 

gaining a reasonably accurate estimate would be difficult. 

Due to these difficulties, it was decided that this issue would not be investigated further for 

these patients.  While it may be useful to consider in the future if information and data 

became available, currently it is simply too difficult to include this with any degree of 

accuracy.  
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2.7 Chapter summary 

One of the data sources available for this project has been introduced, namely the Cardiff Hip 

Fracture Survey.  Since this captures any patient who is admitted to the hospital of interest, 

and indeed the University Health Board, with a trauma hip fracture, then it can be stated that 

a comprehensive database of these patients has been compiled and studied.  Of course, if 

patients have been omitted for any reason, whether purposefully or not, then the database will 

clearly not have all patients admitted over the relevant time period.  However, the data must 

be taken at face-value and be assumed to be as accurate as possible.  Routine validation 

checks were performed on the data before and during any further investigations were 

undertaken.  Analyses were also presented to relevant members of the medical team, who 

confirmed that the results were as expected. 

The typical patient profile of a trauma hip fracture patient has been presented.  These patients 

are usually elderly and approximately three in every four patients is female.  These figures 

are approximately in line with national data (see Chapter 1).  Due to the high age profile of 

these patients, many of the other results displayed are relatively predictable.  These include, 

but are not limited to: poor walking ability, diminished mental health and high ASA grades. 

Additionally some information on the injury, treatment and patient stay has been given.  A 

wide variety of fracture and operation types has been seen, showing the diversity of injury 

and treatment within this patient group.  The variation in patient length of stay has been 

mentioned and the large fluctuations in bed occupancy have also been demonstrated.   

The effect that this has on the specialty to which hip fracture belongs, Trauma and 

Orthopaedics, is evident.  This specialty is clearly under great demand at the hospital under 

consideration, which is no doubt exacerbated by the lengthy time that hip fracture patients 

spend in the care of the hospital.  Any measures to reduce length of stay, thus weakening the 

intense demands on this over-burdened system, would undoubtedly be welcomed. 

The issue of delayed transfers of care was raised and discussed, but the final conclusion was 

to not consider this matter further.  The proportion of affected patients and the extent of an 

increase upon length of stay are not accurately estimable by the current available data. 
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CHAPTER 3: LENGTH OF STAY ANALYSIS 

3.1 Introduction 

The primary aim of this chapter is to investigate which factors, if any, influence the acute 

length of stay for trauma hip fracture patients.  Successful identification of these factors is not 

only interesting from a clinical and statistical viewpoint, but also may aid the hip fracture 

team with planning and care of these patients.  There are several benefits of being able to 

better estimate the length of stay of a patient, arguably the most important of these being the 

planning of their discharge.  This information would of course also be useful to the patient, 

their family and/or caregivers.  Methods used to investigate factors influencing length of stay 

include linear regression and classification and regression trees (CART).  These techniques 

and the results obtained from them are explained forthwith. 

The observations given by the data capture used for these analyses are equivalent to those 

introduced in Chapter 2. 

Results are compared with the literature, where appropriate, and an overview of other 

reported findings subsequently given. 
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3.2 Linear regression  

3.2.1 Introduction 

Linear regression is a statistical technique used to model the relationship between a 

dependent variable, ,y  and one or more independent variables, 1 2, ,..., .pX X X   The unknown 

parameters of the independent variables are estimated from existing data. 

The resultant model takes the form ,y X    where   is the p-dimensional parameter 

vector, X
 
is the design matrix of regressors and   is the vector of error terms.  A constant 

term is usually included as one of the regressors, giving the intercept of the predictor 

equation. 

There are two main motives for using linear regression.  Firstly, this method can be used to fit 

a predictive model to an existing dataset.  If the additional values of , 1, ...,iX i p  for a 

new observation are known, then the fitted model can be used to obtain a prediction for y  for 

this observation.  Secondly, linear regression can be used to analyse and quantify the strength 

of a relationship between the iX  and .y   Another useful result of this assessment is often 

which of the independent variables have no relationship with .y   

Linear regression is used in an attempt to find predictors of patient length of stay (LoS) and 

to assess which of these factors are most important, or which are not important at all.  The 

initial factors entered into the model are the patient factors that are known on arrival of the 

patient or soon after the patient arrives.  If patient length of stay could be predicted soon after 

the patient arrives, then it could help with treatment planning of the patient as well as 

capacity planning of the ward.   

Many of the variables used here were introduced in Chapter 2 when an overview of some 

patient characteristics was given.  They are now listed in Table 3.2.1i, refer also to Table 

B3.2.1a in the Appendix for more detailed information, particularly with regard to nominal 

variables such as admfrom, which needed to be recategorised as several binary variables.  

Other information was also recorded but data was inaccurate or mostly incomplete and was 

therefore excluded.  ASAnew_n refers to the new classification of ASA grade described in 

Section 2.2.4, where patients with an ASA grade of I or II are combined into a new single 
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group (“ASA grade I&II”) and grade V patients are excluded.  Grades III and IV are still 

treated separately.  

Those variables which relate to patient condition and treatment are the 15 variables that 

comprise the first two sections in this table, plus operative delay, while wardlos is the 

dependent variable here.  Unfortunately variables in the final section were largely incomplete 

and thus no further investigations or analyses are completed.  If more data were to become 

available in the future, it would certainly be an area which could expand on the work 

completed here.  Discharge destinations are discussed in more detail in Chapters 4 and 6. 

However, three variables were dropped from later analysis; livealon and admdelay were 

dropped from the variables collected by the hip fracture team during the study period.  While 

some regression methods can handle missing values, the regression procedure used here 

requires complete information for all observations and thus the inclusion of these variables 

would have considerably reduced the size of the dataset available.  It was decided to exclude 

pathfrac on the basis that over 95% of patients had the same value recorded for this variable 

(no pathological fracture), which left very few patients in the other groups, rendering analysis 

difficult.  Patients who do not undergo an operation are also excluded, since they have no 

entry for operative delay.  Operative delay here is a binary variable, patients are categorised 

according to whether they undergo surgery within two calendar days or not.  The reason for 

this is discussed in more detail in various sections of this thesis. 

The computer package SAS 9.1.3 (SAS 2002-2003) was utilised for this analysis.  This is a 

powerful code-based statistical program which can handle vast amounts of data very quickly 

and accurately and incorporates a very substantial catalogue of statistical procedures. 
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Table 3.2.1i: Variables available from the Cardiff Hip Fracture Survey dataset 

Category Variables [variable name] 

Patient / 

Admission 

 Patient lives alone or in institutional care [livealon] 

 Place admitted from [admfrom] 

 Walking ability pre-fracture [walking0] 

 Walking aids used pre-fracture [walkaid0] 

 Mobility score pre-fracture [mobility] 

 Mental state on admission [mentalst] 

 WAASP (Weight, Appetite, Ability to eat, Stress factors, Pressure 

sores/wounds) score on admission [WAASP] 

 Age [age] 

 Sex [sexM] 

 Delay between fracture and admission (days) [admdelay] 

Medical 

diagnosis 

 Side of fracture [side] 

 Type of fracture [fractype] 

 Pathological fracture diagnosis [pathfrac] 

 Operation type performed [optypenew_n] 

 ASA (American Society of Anesthesiologists) grade [ASAnew_n] 

Hospital Stay 

/ Discharge 

 Operative delay [opdelay] 

 Acute ward length of stay (days) [wardlos] 

 Death on acute ward [survival_ac] 

 Acute discharge destination [acdisto] 

 Rehabilitation placement [rehab] 

 University Health Board length of stay (days) [finlos] 

 Death in University Health Board [survival_fin] 

 Final discharge destination [findisto] 

Follow-up 

 Residency at 120 days [resid120] 

 Walking ability at 120 days [walking120] 

 Walking aids used at 120 days [walkaid120] 

 Hip pain at 4 months [hippain4] 
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3.2.2 Assumptions 

A number of assumptions must be satisfied before the results of a linear regression analysis 

can be interpreted.   

The regressors iX  are all assumed to be error-free in terms of measurement.  Here it must 

therefore be assumed that the recorded values in the dataset used for this analysis are 

accurate.  Where an obvious error had been entered (a negative age, for example), the value 

was removed. 

Multicollinearity exists when there is a strong correlation between two or more predictor 

variables in a regression model.  Perfect collinearity exists when at least one predictor 

variable is a perfect linear combination of the others, the simplest example of which being 

that two predictor variables have perfect correlation.  The computer package used tests the 

assumption that each predictor variable is linearly independent from every other predictor 

variable and alerts the user to any linear combinations between the variables entered into the 

model.  No such combinations were found and it can thus be concluded that there is no 

perfect collinearity in the model.  Less than perfect collinearity however is virtually 

unavoidable, but low levels pose little threat to the models generated here since the 

methodology used to formulate them is generally robust enough to tackle this issue.  It is 

important to investigate collinearity in any regression model, since while results may 

seemingly appear to be of good quality, as collinearity increases there are several problems 

which may arise, including untrustworthy parameter estimates, a limitation on the size of 2R  

and difficultly in assessing the relative importance of predictors (Field 2009).  Results 

relating to multicollinearity are discussed further in Section 3.2.3. 

The final assumption relates to the error terms, those which describe the natural disturbance 

in the model.  These residuals, simply the difference between the observed and the predicted 

values, must be Normally distributed with a mean of zero and constant variance.  This 

assumption can be tested by inspection of a plot of the predicted values against the residual 

values.  Evidence that this assumption is satisfied is also given in the next section. 
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3.2.3  Fitting the model 

All scale and ordinal variables were standardised before performing the regression procedure 

for ease of interpretation.  A total of 193 observations, from the complete dataset of 2182 

observations, were excluded due to incomplete data.   

Stepwise regression was employed within SAS here, a method in which the choice of 

explanatory variables is carried out by an automated procedure.  Stepwise regression 

combines both forwards selection and backwards elimination; at each stage of the procedure 

testing takes place to assess the inclusion and exclusion of variables.  In both cases the 

significance threshold was set to 5%.  This is an appropriate tool since stepwise regression 

may be used in the exploratory phase of investigation but is not recommended for theory 

testing (Menard 2001), which involves the testing of a-priori hypotheses or theories relating 

to relationships between the variables.  It is not the case here that there are any a-priori 

assumptions regarding the relationships between the variables but that it is the goal to 

discover the existence and strength of any such relationships. 

Initially the requirement of random errors was not fulfilled and therefore length of stay was 

transformed by taking the natural logarithm of each value. 

Expanding on the equation given previously, the linear regression equation then becomes 

  0 1 1ln ... p pLoS X X         

Note that an intercept, 0 ,  is included here. 

It is important to bear in mind that the variable of interest here is length of stay, not the 

natural logarithm of this value.  For each parameter , 1, ..., ,iX i p  the multiplicative factor 

is not the corresponding i  value, but the exponent of this. 

Therefore 

0 1 1 ... p pX X
LoS e

      
  

or 

0 1 1 ...
   p pXX

LoS e e e e  
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The assumption of random errors can be seen to be satisfied in Figure 3.2.3i.  A clear random 

scatter of points can be seen, which is also symmetrical about the line Residual = 0, as 

required. 

 

 

Figure 3.2.3i:  Plot of Predicted Value against Residual for the linear regression model 

 

Figure 3.2.3ii shows the observed value of log length of stay against the predicted value.  

There does appear to be some positive trend here which suggests that a linear regression 

model could be viable.  A perfect straight line here would indicate a perfect fit by the model.  

While this is not achieved and there is arguably some considerable deviation from this, the 

results of a regression can still be useful. 

The first important values to note in a linear regression analysis are the ANOVA results.  It 

was indicated here by the F-test that the regression model fitted was significant, p < 0.0001; 

that is, the vector of parameter coefficients is significantly different from zero.  This result 

indicates that the observed value for 2R  is reliable and not a spurious result of oddities in the 

data (Sweet and Grace-Martin 2008).  The parameter estimates given by the linear regression 

procedure are displayed in Table 3.2.3iii. 
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Figure 3.2.3ii: Predicted Value against Observed for the linear regression model 

 

Table 3.2.3iii: Parameter estimates given by the multivariate linear regression model 

Variable Parameter estimate Standard error F-value Pr  > F 

Intercept 3.0466 0.0414 5418.03 < 0.0001 

Admfrom_d1 -0.1368 0.0435 9.91 0.0017 

Admfrom_d4 -0.5466 0.0832 43.18 < 0.0001 

Admfrom_d5 -1.0448 0.1862 31.48 < 0.0001 

Mobility 0.0907 0.0211 18.57 < 0.0001 

Mentalst 0.0915 0.0187 23.99 < 0.0001 

WAASP 0.0555 0.0184 9.11 0.0026 

Opdelay 0.2885 0.0337 73.42 < 0.0001 

Age 0.1097 0.0185 35.14 < 0.0001 

SexM 0.0847 0.0381 4.95 0.0262 

Optypenew_d3 -0.2011 0.0702 8.21 0.0042 

Optypenew_d6 -0.2408 0.0901 7.14 0.0076 

Fractype_d1 -0.1618 0.0719 5.07 0.0245 

Fractype_d5 0.1586 0.0444 12.74 0.0004 

Fractype_d6 0.1692 0.0700 5.85 0.0157 
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It can be seen that all parameter estimates are highly significant at the 5% level.  These 

results yield the following equation: 

 ln 3.05 0.14( _ 1) 0.55( _ 4) 1.04( _ 5)

0.09( ) 0.09( ) 0.06( ) 0.29( )

0.11( ) 0.08( ) 0.20( _ 3)

0.24( _ 6) 0.16( _ 1) 0.16(

LoS Admfrom d Admfrom d Admfrom d

Mobility Mentalst WAASP Opdelay

Age SexM Optypenew d

Optypenew d Fractype d

   

   

  

   _ 5)

0.17( _ 6)

Fractype d

Fractype d

 

Writing this in terms of length of stay, rather than the natural logarithm of length of stay, 

generates the following: 

3.05 0.09( ) 0.09( ) 0.06( ) 0.29( )
0.11( ) 0.08( ) 0.16( _ 5) 0.17( _ 6)

0.14( _ 1) 0.55( _ 4) 1.04( _ 5)
0.20( _ 3) 0.24(

Mobility Mentalst WAASP Opdelay
Age SexM Fractype d Fractype d

Admfrom d Admfrom d Admfrom d
Optypenew d Op

e
LoS

e

   
   

 
 


_ 6) 0.16( _ 1)typenew d Fractype d

 

 

The issue of multicollinearity was introduced in the previous section.  One way to identify 

multicollinearity is to scan a correlation matrix of all the predictor variables for any high 

correlations, but this may miss some of the more subtle forms of multicollinearity (Field 

2009) and thus this method is not used here.   

Instead, some collinearity diagnostics which can be inputted into the SAS code are used, 

namely the variance inflation factor (VIF) and the tolerance statistic, which is the reciprocal 

of VIF.  The tolerance is the proportion of variance attributable to a given predictor variable 

which is not explained by all of the other predictors, while the VIF represents the factor by 

which the variances of the estimated coefficient parameter is multiplied due to any 

multicollinearity contained within the model.  It is recommended that if the largest VIF is 

greater than 10 then there is cause for concern and further investigation is required (Kutner et 

al. 2004, Myers 1990), while if the average VIF value is substantially greater than 1 then the 

regression may be biased (Bowerman and O'Connell 1990).  It has also been suggested that 

tolerances below 0.2 indicate a potential problem with collinearity (Menard 2001); or 

equivalently, that VIF values above 5 may prove problematic. 

The average VIF value was 1.30 indicating that collinearity is not a problem here by this 

criterion, while all VIF values were below 2.  The minimum tolerance statistic was found to 
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be 0.51 (maximum VIF 1.97), again indicating there is not enough collinearity in the model 

for results to be unreliable.  A full breakdown is given in Table D3.2.3a.  

The 2R  value for this model is 0.1965, meaning that 19.65% of variation in the original data 

can be accounted for by the model.  While a higher 2R  value would be desirable, the 

conclusions that can be drawn here are helpful nonetheless and indeed highlight the difficulty 

of this area. 

Variables which are not found to be significant predictors of length of stay include the side of 

the body on which the fracture was incurred, walking aids and walking ability on admission.  

Operation type was found to be a significant predictor in two cases, namely for screws and 

total hip arthroplasty, where patients in these groups could expect a shorter length of stay.  

An undisplaced intracapsular fracture type was also seen to be negatively associated with 

length of stay (that is, be associated with a shorter length of stay), while the fracture types 

trochanteric (multi fragment) and subtrochanteric are shown to be associated with longer 

length of stay.  The place a patient was admitted from was also seen to be a significant 

predictor in three out of eight cases; patients admitted from home, a nursing home or from 

continuous care as a permanent acute hospital inpatient were found to have a shorter length of 

stay. 

 

3.2.4 Mortality criteria 

An interesting omission from the results produced by the multivariate linear regression is that 

ASA grade was not found to be a significant predictor of length of stay.  It is certainly 

expected that a patient‟s length of stay would be influenced by their medical fitness, as sicker 

patients are more likely to require more extensive and prolonged treatment.  However, on 

further reflection this result could be explained by a number of influencing factors including 

the obvious observation that sicker patients are more likely to die while in hospital, thus their 

length of stay concludes at death and not at the end of any prescribed medical treatment.  

Those patients who die pre-operation or are given conservative treatment are already 

excluded since they do not have an entry for delay to operation, but there are many who die 

post-operation.  Note that the modelling presented here thus prioritises length of stay as a 

surrogate measure for post-operative morbidity rather than for capacity/resource planning. 
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To account for this, the regression procedure was repeated using the subset of patients who 

survived their acute stay in hospital.  Error assumptions were checked as previously and the 

natural logarithm of length of stay was used as the dependent variable.  The same stepwise 

regression options were also used.  In this case, 1770 observations were available and results 

are given in Table 3.2.4i.   

 

Table 3.2.4i: Parameter estimates given by the multivariate linear regression model, 

surviving patients only 

Variable Parameter estimate Standard error F-value Pr  > F 

Intercept 3.0399 0.0302 10104.1 < 0.0001 

Admfrom_d4 -0.4428 0.0777 32.51 < 0.0001 

Admfrom_d5 -1.0672 0.1759 36.80 < 0.0001 

Admfrom_d7 0.2363 0.0837 7.98 0.0048 

Mobility 0.1023 0.0198 26.64 < 0.0001 

Mentalst 0.1219 0.0185 43.31 < 0.0001 

WAASP 0.0630 0.0182 11.93 0.0006 

Opdelay 0.2496 0.0332 56.59 < 0.0001 

Age 0.1193 0.0177 45.72 < 0.0001 

SexM 0.1158 0.0378 9.38 0.0022 

ASAnew_n 0.0710 0.0181 15.40 < 0.0001 

Optypenew_d2 -0.0917 0.0372 6.09 0.0137 

Optypenew_d3 -0.2504 0.0674 13.82 0.0002 

Optypenew_d6 -0.2865 0.0849 11.38 0.0008 

Fractype_d1 -0.2061 0.0681 9.17 0.0025 

Fractype_d5 0.1607 0.0448 12.89 0.0003 

 

The average VIF value across these variables was 1.29, with all but one VIF values below 2.  

The minimum tolerance was 0.49, so again collinearity has not proved to be a problem for the 

regression model.  Tolerance and VIF values are given in Table D3.2.4a of the Appendix.  

The 2R  value was found to be 0.2609. 

Many of the original variables are kept in this second model, but some new inclusions and 

exclusions can be seen.  An increasing ASA grade is now shown to be associated with a 
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longer acute hospital stay, as is having an acute hospital as their admission source.  Dynamic 

hip screw (optypenew_d2) is a new inclusion here, while subtrochanteric fractures are now 

excluded (fractype_d6). 

 

3.2.5 Analysis by ASA grade 

The final investigation undertaken in this section performs the same technique but on three 

distinct subsets of the data created by splitting on ASA grade.  Performing this split will go 

some way to resolving the issues discussed in the previous section.  Furthermore, due to other 

reasoning considered previously, only those patients who survive their acute hospital stay are 

included.  711, 928 and 131 observations were available for ASA grades I&II, III and IV 

respectively.  In all cases assumptions were checked and satisfied as previously described.  It 

was also again found that there was low multicollinearity between the predictor variables and 

certainly not enough to cause any problems with interpretation of the results.   

 

Table 3.2.5i: Parameter estimates given by the multivariate linear regression model, 

surviving patients only, ASA grade I&II 

Variable Parameter estimate Standard error F-value Pr  > F 

Intercept 2.9344 0.0416 4974.68 < 0.0001 

Admfrom_d7 0.4614 0.1489 9.60 0.0020 

Mentalst 0.1634 0.0301 29.48 < 0.0001 

WAASP 0.0862 0.0269 10.23 0.0014 

Opdelay 0.2532 0.0505 25.19 < 0.0001 

Age 0.1528 0.0226 45.52 < 0.0001 

Optypenew_d5 0.3212 0.0726 19.55 < 0.0001 

Fractype_d1 -0.5189 0.0761 46.50 < 0.0001 

Fractype_d2 -0.2657 0.0688 14.94 0.0001 

 

For ASA grades I&II, the only operation type found to be significantly associated with length 

of stay was hemiarthroplasty, which is a very interesting result since this is a large proportion 

of all patients.  Other interesting results include the use of delay to operation in this model, 

which was found to be associated with an increase length of stay.  The 2R  value was 0.3091. 



 

 

76 

 

Results for ASA grade III appear to be much more influenced by admission source, with four 

different admission sources included, namely residential care, nursing home, permanent 

hospital inpatient and acute hospital; see Table 3.2.5ii.  Delay to operation was again found to 

be related to an increased length of stay, as were increased scores for mobility, walking 

ability on admission score (relating to poorer walking ability) and mental state.  Additionally 

this is the only ASA grade where sex was found to be a significant predictor, with male 

patients expected to incur a longer stay in hospital.  The 2R  value here was 0.1692. 

 

Table 3.2.5ii: Parameter estimates given by the multivariate linear regression model, 

surviving patients only, ASA grade III 

Variable Parameter estimate Standard error F-value Pr  > F 

Intercept 3.0069 0.0409 5395.47 < 0.0001 

Admfrom_d3 0.2125 0.0719 8.74 0.0032 

Admfrom_d4 -0.4379 0.1003 19.08 < 0.0001 

Admfrom_d5 -0.9179 0.2244 16.73 < 0.0001 

Admfrom_d7 0.2453 0.1173 4.38 0.0367 

Walking0 0.0953 0.0268 12.62 0.0004 

Mentalst 0.1152 0.0241 22.78 < 0.0001 

Opdelay 0.2325 0.0465 25.03 < 0.0001 

Age 0.0821 0.0276 8.84 0.0030 

SexM 0.1404 0.0536 6.86 0.0090 

Optypenew_d3 -0.3045 0.0773 15.52 < 0.0001 

Optypenew_d6 -0.3422 0.1458 5.51 0.0191 

Fractype_d5 0.1308 0.0588 4.95 0.0263 

 

A reduced model, in terms of the number of included parameters, was found for ASA grade 

IV, see Table 3.2.5iii.  The only admission source which was found to be negatively 

associated with length of stay was permanent hospital inpatient, which may seem rather 

unintuitive, particularly as it is known that these patients survive their acute stay in hospital.  

One explanation could be that as these patients have more severe medical problems, they are 

moved elsewhere in order to primarily deal with these comorbidities.  An undisplaced 

intracapsular fracture was also found to relate to a shorter length of stay, while a higher 
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mobility score and a delay to operation of more than two days was found to be associated 

with an increased length of stay in this subgroup.  A moderate 2R  value of 0.1802 was given. 

 

Table 3.2.5iii: Parameter estimates given by the multivariate linear regression model, 

surviving patients only, ASA grade IV 

Variable Parameter estimate Standard error F-value Pr  > F 

Intercept 3.1429 0.1017 955.23 < 0.0001 

Admfrom_d5 -1.0404 0.4068 6.54 0.0117 

Mentalst 0.1349 0.0582 5.35 0.0224 

Opdelay 0.4213 0.1242 11.50 0.0009 

Fractype_d1 -0.4505 0.1940 5.39 0.0218 

 

3.2.6 Conclusion 

One of the most useful results gained from this analysis is that a delay to operation of more 

than two days is shown to be associated with a longer length of stay.  Of course it must be 

considered that this increase in length of stay is in fact the delay itself, at least to some extent; 

the dependent variable (LoS) is comprised partly of delay, but this does not lead to too much 

cause for concern.  Delay is included as a binary variable, defined as whether a patient is 

operated on within two days or not.  Delayed patients spend, on average, 7.8 days more in 

hospital, compared with non-delayed patients.  The difference in delay is considerably less, 

4.9 days between the groups (6.2 days and 1.3 days on average, for delayed and non-delayed 

patients respectively).  An increased mental state score, indicating diminished mental 

capacity, was also shown to be an important predictor in each case.  Operation type also 

featured heavily in these analyses, with varying degrees of level and magnitude, as did 

admission source. 

The models presented were all found to be significant by the F-test, p < 0.0001.  Despite this, 

particularly outstanding 2R  values were not found, despite several regression methods being 

attempted before the final results presented here were determined.  However, this will always 

be expected in the highly variable domain of healthcare, in particular with the rather long 

hospital stays experienced by this patient group. 
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3.3 CART analysis 

3.3.1 Introduction 

Classification and regression trees (CART) analysis is a widely-used data mining technique 

that can be utilised to help understand large volumes of data.  The process begins with the 

entire set of data and is split into two or more subsets until an appropriate level of 

homogeneity is reached.  A target variable is specified, on which the split decisions are made, 

according to the values given by numerous independent variables, until homogenous groups 

are established with respect to the values of the target variable.  The outcome of CART can 

be conceptualised by a tree structure.  All observations begin at the „root‟, which is the initial 

node, and then pass through the tree based on the values they hold at each splitting decision, 

ultimately finishing at a terminal node, or „leaf‟. 

The program TreeWorks was used to undertake CART analysis here.  More information on 

this software can be found in the accompanying paper (Harper and Leite Jr 2008), where 

information on its quality and suitability for healthcare data is also discussed.  Initially the 

data is randomly split into two subsets, a learning sample and a testing sample.  The learning 

sample is used to create the original splitting rules and then the testing sample is passed 

through the model and used to validate the nodes created.  70% of the dataset is typically 

used as the learning sample and the remaining 30% as the testing sample.  It should also be 

noted that TreeWorks requires a complete dataset; any observations with missing values are 

removed.    

While TreeWorks provides the option of splitting nodes manually, the entire process was 

undertaken free from intervention to avoid any bias.  Other options include the proportion of 

observations used as the learning sample (the default value of 70% was used here) and the 

maximum number of levels given by the final tree.  The minimum number of observations in 

each of the final nodes is another option provided.   

 

3.3.2 Results 

Only patients who underwent an operation were included in the final dataset, since it was 

important to include operative delay as a variable for this analysis.  This criteria and the 
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requirement of a complete dataset meant that there were 1980 observations remaining to use 

for CART; 1386 and 594 in the learning sample and the testing sample respectively. 

Outputs of the program include the percentage reduction in variance (RiV) achieved and a 

test of the validity of each node.  By altering the aforementioned input parameters, the impact 

on these outcomes can be assessed.  While increasing the number of permitted levels and/or 

decreasing the minimum number of observations per node may result in a better RiV value, it 

can lead to a very large number of nodes and results may become uninterpretable.  Many 

combinations were tried and the final inputs set to be a minimum of 40 observations per 

node, which resulted in seven levels.  This gave 24 final nodes and an RiV value of 16%; the 

overall variation in the data has been reduced by 16% by splitting the data into groups with 

increased homogeneity.  Three of the nodes failed validation at the 5% significance level, but 

this was only marginal.  Results are displayed in Figure 3.3.2i and the splitting criteria used 

to determine the nodes of the tree are given in Table D3.3.2a.  Final nodes are denoted by an 

„F‟ after the node number.   

Figures within each node relate to the node number in bold on the top line, the mean and 

standard deviation of length of stay in days of the observations within that node (mean | 

standard deviation) on the second line and the number of observations in that node, n, on the 

bottom line. 
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Figure 3.3.2i: CART results for length of stay
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The most surprising inclusion in the results is the variable side, which denotes whether the 

injury was incurred on the left- or the right-hand side of the body.  This clearly should have 

negligible to no effect on how long a patient should stay in hospital and therefore results are 

attributed to chance.  Inspection of nodes 15F and 16F show that patients with a left-sided 

fracture have a shorter length of stay, which is also much more predictable; the standard 

deviation of length of stay is 9.5 days compared with 23.5 days for patients with a right-sided 

fracture, with coefficients of variation of 0.53 and 0.96 respectively.  The coefficient of 

variation is a normalised measure of dispersion which is useful when comparing data with 

differing means since the result is dimensionless, and is calculated by dividing the standard 

deviation by the mean.  There is no known medical explanation for this outcome and 

therefore results are attributed to chance; these nodes could have been removed manually 

from the tree, particularly as they are both terminating nodes, but are left in to draw attention 

to these potential problems.     

An interesting result here is that mental state was used as the first splitting variable.  This 

variable can take three levels; those patients classified as „normal‟ (score of 1) are grouped 

separately from those who were recorded to have known dementia or confusion (scores of 2 

and 3 respectively).  Levels 2 and 3 are not split later in the tree, suggesting that any level of 

mental illness is likely to result in a longer length of stay to the same degree. 

The variables which are not used as splitting decisions are patient mobility score and sex.  

Despite mobility score not being used as a splitting variable, walking ability and walking aids 

used on admission are both present in the output, so ambulatory ability has been captured by 

these two variables.  Looking at length of stay by a split on gender gives a difference in mean 

length of stay of less than one day, which may explain why sex is not included as a splitting 

variable.  It could be argued that the inclusion of the majority of entered variables in the 

results does not highlight which variables are of most importance, but in essence it really 

highlights the complexity of this issue.   

To determine which variables are of most importance, various strategies may be considered.  

Predictive factors higher up in the CART output is one way to assess the influence of that 

factor on length of stay, as well as considering the frequencies with which factors appear in 

the tree.  Age features heavily in the CART output, where it was found that older patients 

consistently had a longer length of stay.  This was used four times as a splitting variable, 
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three of which were consecutive decisions.  Operation type is another variable which was 

used numerous times to split on, also used four times, as was the type of fracture, which was 

used three times.  Of course, operation type and fracture type have more levels than many of 

the other variables (six each); it is thus even more telling if the CART procedure isolates just 

one or two of these levels.  See node 31F for an example of this, where the operation type of 

hemiarthroplasty is isolated. 

These results are interesting not only from a data mining and statistical viewpoint, but may 

also be useful for later study.  Each patient will fit into one of the final nodes based upon their 

characteristics, so these nodes may then be used to model the variable under interest, ward 

length of stay.  Distributional fits were found for each final node, reaffirming that this would 

be a suitable splitting mechanism for modelling purposes.  The distributional fitting software 

Stat::Fit was used to find analytical fits to the data (Stat::Fit 1995-2001©). 

Length of stay was found to fit a Lognormal distribution for the majority of nodes, while the 

remainder were found to follow a Gamma distribution.  Minimum thresholds were set to zero.  

Results are given in Tables 3.3.2ii and 3.3.2iii, along with comparative measures for the first 

and second moments.  These values may differ from those given in Figure 3.3.2i, since they 

were calculated using observations within those nodes.  Recall that this tree was based a 

sample of the dataset, while for the following fits all observations were available.   

These results all show good fits for the first and second moments, and all passed statistical 

goodness-of-fit tests at the 95% level of significance.  Indeed, the majority of these fits would 

still to be found to be significant at the more stringent significance level of 99%. 
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Table 3.3.2ii: Lognormal fits for length of stay (days) for the final nodes resulting from the 

CART procedure 

Node µ σ 
Theoretical Empirical 

Mean S.D. Mean S.D. 

7F 2.143 0.614 10.3 7.0 10.1 6.0 

13F 2.281 0.704 12.6 10.1 12.6 12.4 

14F 2.647 0.561 16.5 10.0 16.5 10.4 

15F 2.775 0.534 18.5 10.6 18.3 9.4 

16F 2.926 0.659 23.2 17.1 23.5 20.7 

17F 2.826 0.686 21.3 16.5 21.0 15.6 

19F 3.012 0.511 23.2 12.6 23.0 11.9 

20F 3.189 0.717 31.4 25.7 33.1 39.6 

21F 2.681 0.753 19.4 17.0 19.9 21.1 

25F 2.921 0.757 24.7 21.7 24.1 17.9 

27F 3.037 0.801 28.7 27.2 29.2 29.0 

28F 3.234 0.714 32.8 26.7 32.3 23.5 

30F 3.419 0.763 40.9 36.3 40.2 31.1 

31F 3.153 0.616 28.3 19.2 27.9 16.9 

32F 3.313 0.666 34.3 25.6 33.8 23.0 

33F 2.855 0.771 23.4 21.1 24.1 25.6 

41F 3.261 0.798 35.9 33.9 35.4 32.2 

44F 3.683 0.834 56.3 56.4 58.6 66.7 

45F 3.309 0.857 39.5 41.1 37.8 30.2 

 

 

Table 3.3.2iii: Gamma fits for length of stay (days) for the final nodes resulting from the 

CART procedure 

Node α β 
Theoretical Empirical 

Mean S.D. Mean S.D. 

12F 3.594 5.570 20.0 10.6 20.0 10.6 

35F 1.457 26.461 38.6 31.9 38.6 34.4 

42F 1.564 29.545 46.2 37.0 46.2 37.8 

43F 1.465 29.466 43.2 35.7 43.2 47.8 

46F 1.879 23.401 44.0 32.1 44.0 31.7 
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3.3.3 Conclusion 

The CART analysis undertaken here can be deemed to be a success in terms of creating 

groups of observations which are homogenous in terms of the target variable, acute hospital 

length of stay.  Despite the majority of variables being used in the splitting criteria, useful 

information can be gained in terms of the intricacies of the split specifications and the 

frequency at which various variables appear.  A particular focus of this thesis is investigating 

the effect of delay to operation on length of stay and it is noteworthy to comment that this 

variable does appear more than once in the CART output. 

This analysis can also be deemed a success in terms of its suitability to be used for later 

investigations.  Length of stay for each of the final nodes was found to statistically fit either a 

Lognormal or Gamma distribution which could be useful for modelling purposes. 
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3.4 Comparison of methods and results 

Two methods have been investigated and discussed in detail regarding predictive factors of 

acute length of stay on the trauma hip fracture ward.  Five different regression models were 

presented which had varying conclusions, but some included and/or excluded variables were 

consistent throughout these analyses; these are now also compared with the CART analysis 

for a number of the independent variables. 

 

3.4.1 Mental state 

The variable denoting mental state (mentalst) was used in each of the five regression analyses 

and as the first splitting variable in the results produced by the CART procedure, each time 

signifying that poorer mental state is an indicator of increased length of stay.  Mental 

confusion has been shown to be more likely to be present in elderly people after major 

surgery (Moller et al. 1998), where very old age, mobility problems prior to surgery and a 

history of mental health issues all increase the chances of confusion after surgery (RCOA 

2010).  This variable records mental state on arrival, and so the latter characteristic here is of 

the most importance, but the others are still important in the context of this patient cohort.  

These confused patients may require an extra period of recovery and this would therefore 

explain these results.  Summary statistics of length of stay for patients who underwent 

surgery by mental state are presented here in order to quantify these differences. 

 

Table 3.4.1i: Summary statistics for length of stay (days) by mental state, patients 

undergoing surgery only 

Mental state (score) Mean S.D. Minimum Maximum 

Normal (1) 24.5 23.2 1 348 

Known dementia (2) 38.0 40.7 0 354 

Confusion (3) 38.1 33.3 1 201 

 

The differences between patients with a mental state score of 1 compared with those with a 

score of 2 or 3 are evident.  Indeed, the mean length of stay for the second group is almost 

exactly equal to the third group.  In the CART output, mental state was only used once as a 
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splitting rule, to separate score 1 from scores 2 and 3, so this is verified by these summary 

statistics.  

The presence of chronic cognitive impairment / dementia has been shown to result in a longer 

hospital stay after hip fracture, as was increased age (see Section 3.4.4) and a number of other 

factors (Clague et al. 2002).  Postoperative delirium has also been found to be amongst six 

predictors of longer length of stay for this patient cohort (Marinella and Markert 2009).  

Cognitively intact and functionally independent (see Section 3.4.7) patients have been 

reported to not only have statistically significant shorter lengths of stay, but also achieve 

better changes in mobility as measured by two functional status scores, compared with 

cognitively impaired and dependent patients (Hershkovitz et al. 2007).  Regression analysis 

was used to demonstrate that the presence of neurologic impairment was positively associated 

with length of stay in an Italian study, where it was shown that patients with an impairment 

experience an additional 3.8 days length of stay (Di Monaco et al. 2003).  Finally, it has been 

shown that length of stay was increased in patients suffering from dementia, delirium and 

depression (Holmes and House 2000). 

 

3.4.2 Delay to operation 

Delay to operation (opdelay), regarded as a binary variable indicating whether or not a patient 

was operated on within two days of admission or not, was the only other variable to be 

included in all five regression models and the CART analysis, where it appeared twice.  Each 

time a delay to operation, under this definition, signified a longer acute length of stay.   Some 

summary statistics and a graphical representation for this are now presented; this is not 

examined in more detail here but is discussed in depth in Chapter 6.  The relative 

probabilities (i.e. by delay category) displayed in Figure 3.4.2ii show the relationship 

between delay and length of stay clearly.  Note that this graph is curtailed for display 

purposes.  In particular consider the first group where length of stay is between zero and ten 

days.  Almost a quarter of non-delayed patients have a length of stay which falls into this 

group, but just around 10% of delayed patients spend ten days or less in hospital. 
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Table 3.4.2i: Summary statistics for length of stay (days) by delay category 

Category Mean S.D. Median Minimum Maximum 

Delayed 33.76 32.91 24 2 354 

Not delayed 25.97 25.78 18 1 289 

 

An interesting result which can be deduced from this table is that the relative spreads within 

each group, given by the coefficient of variation, are approximately equal.  Additionally, both 

of these coefficients are approximately equal to one.  Often this implies that a Negative 

Exponential distribution will adequately fit the data, but it can be seen from Figure 3.4.2ii 

that this is not the case here.  Consider also the values of the mean and standard deviation for 

each group, since the median is smaller in each case then a right-sided, or positive, skew is 

expected, as displayed here.  The differences evident between these two groups are also 

supported statistically by means of a Wilcoxon test, p < 0.0001. 

 

 

Figure 3.4.2ii: Distribution of length of stay by delay category 

 

Results in the literature vary by delay definition and conclusion.  The most commonly used 

definitions of a significant operative delay are 24 and 48 hours, or one or two days, though it 

is important to note that these are not the same.  A detailed review is completed here due to 

the inclusion of delay as a key variable later in this thesis. 

Classifying a delay as surgery after one day from admission, Verbeek et al showed that 

patients experienced a shorter length of stay if they were not delayed, as well having fewer 

postoperative complications (Verbeek et al. 2008).  A significantly shorter length of stay was 
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also shown by another study using the same classification of delay, with means of 10.5 days 

compared with 12.7 days for the non-delayed and delayed groups respectively (Hommel et al. 

2008b).  The same conclusion was also reached by an American group, who showed a length 

of stay of almost two days longer for patients operated on after 24 hours.  However, if post-

operative length of stay only was considered, then no significant differences were found 

(Orosz et al. 2004).  Patients delayed for longer than 24 hours due to medical reasons were 

compared with a matched group who were not delayed and no significant differences in 

length of stay post-operation were also found in an older study (Harries and Eastwood 1991). 

Using a cut-off of 48 hours, it was shown that operative delay was associated with a longer 

post-operation stay in hospital, and that this was independent of age and comorbidities 

(Bergeron et al. 2006).  Hoenig et al used the same cut-off and also reported a shorter length 

of stay for non-delayed patients (Hoenig et al. 1997), as have other studies using the same 

delay definition (Majumdar et al. 2006, Novack et al. 2007). 

A study of 3628 patients in Peterborough also concluded that operative delay did matter, and 

reported a difference of mean length of stay of 21.6 days for patients operated on within 48 

hours compared with 32.5 days for surgery after 48 hours, while no differences were found 

for lesser delays.  The authors concluded that the length of hospital stay in days can be 

calculated as 0.1274 multiplied by the operative delay in hours.  This translates to an extra 

day in hospital for each 7.85 hours of delay (Siegmeth et al. 2005).   

Another study attempted to quantify this relationship in a similar fashion, but used post-

operative length of stay instead of total length of stay.  It was concluded that approximately a 

twofold increase in pre-operative delay increased post-operative stay by 19% (Thomas et al. 

2001). 

Delay to surgery was amongst four factors shown to be significant in a model which 

identified variables which increased time to discharge, the others being age, comorbidities 

and fracture type (Lefaivre et al. 2009). 

A Dutch study used a cut-off of 12 hours as a significant delay, and found that there were 

statistical differences between the early and late groups with respect to length of stay.  In this 

case it was shown that patients receiving surgery after 12 hours had, on average, an extra two 
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days in hospital compared with patients operated on within 12 hours (Rademakers et al. 

2007). 

However, Dolk analysed the effect of timing of surgery across several delay categories and 

found that there was no impact of delay upon length of stay.  It was concluded that 

differences in hospital stay between the groups could be attributed fully to age and type of 

fracture (Dolk 1990).  An American group also showed that the effect of delay on post-

surgical length of stay is “small in magnitude”, concluding that the differences in hospital 

stay between countries (USA and Canada) cannot be attributed to differences in operative 

delay (Ho et al. 2000).  Parker et al also investigated differences in length of stay between 

hospitals, specifically between eight hospitals in East Anglia.  Considerable differences in 

stay were found between the sites but subsequent analysis showed that operative delay was 

not indicative of length of stay (Parker et al. 1998).   

Other studies have also reported a lack of association between time to surgery and length of 

stay.  A study in Austria classified a wait longer than six hours as a delay.  The mean 

difference in length of stay was just over one day between the groups (17.1 days for surgery 

within six hours, 18.4 days for surgery after six hours), but this difference was not significant 

(Dorotka et al. 2003b).  Mean lengths of stay of 23.7 days and 21.5 days have been reported 

for delayed and non-delayed patients respectively.  Here a delay was a wait longer than 24 

hours and the differences were not found to be statistically dissimilar (Pathak et al. 1997). 

 

3.4.3 Operation type 

Operation type was shown to be significantly associated with length of stay in almost all 

cases.  Consistent results include shorter lengths of stay for total hip replacements and those 

operations which include screws.  CART separated these operations in nodes with shorter 

length of stay twice (17F and 21F), while all but the ASA grade IV regression results showed 

that these patients could expect a shorter length of stay.  A total hip replacement is a more 

invasive procedure compared with the others and thus a patient must have an increased level 

of medical stability before they can be considered for this operation, which may go some way 

to explaining these results. 
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The distribution of length of stay for each of the operation types is displayed in Figure 3.4.3i.  

The differences in length of stay amongst the different surgical procedure groups are clearly 

visible, and are substantiated by a Kruskal-Wallis test, p < 0.0001.  The whiskers displayed 

relate to the 1
st
 and 99

th
 percentiles of length of stay for each operation type. 

 

 

Figure 3.4.3i: Distribution of length of stay (days) by type of operation 

 

In addition to the differences, some similarities can also be seen here.  In particular, the 

distributions for dynamic hip screw, intramedullary nail and hemiarthroplasty appear to be 

alike.  The shorter length of stay for the operation types of screws and total hip replacement is 

also evident, as found by the regression and CART analyses.  The distributions appear to be 

positively-skewed in each case.  Finally, some summary statistics are given to further 

compound these findings and provide additional information. 

 

Table 3.4.3ii: Summary statistics for length of stay (days) by type of operation 

Operation type Mean S.D. C.V. Median 
Skew-

ness 
Kurtosis 

Dynamic hip screw 30.41 30.47 1.00 22 4.12 28.51 

Screws 20.65 25.75 1.25 13 3.75 17.54 

Intramedullary nail 32.91 29.12 0.86 23 2.18 5.44 

Hemiarthroplasty 31.34 29.66 0.95 23 3.97 29.26 

Total hip replacement 17.61 15.19 0.86 14 3.07 12.69 

Other 27.84 30.69 1.10 18 2.26 4.72 
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The results for coefficient of variation (C.V.) are particularly interesting here and highlight 

some differences where previously it appeared that certain operation types had very similar 

length of stay distributions.  Half of the operation types have a greater standard deviation of 

length of stay in comparison to the mean (and therefore a coefficient of variation greater than 

one), while the opposite is true for the other three.  This is quite a noteworthy result and 

operation type, with regard to length of stay, is discussed in more detail in Chapter 6. 

Comparison with the literature is not straightforward as operation type classification is not 

uniform across all studies, though there is supporting evidence that length of stay is 

influenced by the type of surgical procedure performed (Clague et al. 2002) and the type of 

fracture, which in turn influences the operation type (Sund et al. 2009). 

 

3.4.4 Age 

An increased age was shown to be significantly associated with an increased acute length of 

stay in four of the five regression outputs (for all but ASA grade IV results) and was included 

four times as a splitting rule in the CART results.  The mean and standard deviation of acute 

length of stay is displayed for various age groups in Figure 3.4.4i.  Average length of stay is 

seen to increase almost consistently as age increases, where the results level for nonagenarian 

and centenarian patients.  Standard deviation of length of stay is also shown to deviate across 

these age groups, with the highest value seen for age group 80-89 years.  This group also has 

a coefficient of variation for length of stay greater than one, as does the group aged 50-59, 

indicating higher comparable fluctuations in these groups. 

 

 

Figure 3.4.4i: Length of stay results by age group, patients undergoing surgery only 
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Increased age has shown to be a significant predictor of increased length of stay in other 

research studies, alongside a number of other factors (Lefaivre et al. 2009, Parker et al. 1998).  

It has been shown that patients aged 90 years or over have a hospital stay significantly greater 

than those aged 80-89 years, with the difference in length of stay between these groups 

reported to be ten days.  Indeed, the notion of early surgery and early mobilisation of elderly 

hip fracture patients has been suggested to be extended to include all elderly patients, 

irrespective of fracture type (Clement et al. 2011).  Another study also reported that age of 90 

years or over significantly increases hospital stay after hip fracture (Shah et al. 2001). 

 

3.4.5 ASA grade 

ASA grade was not found to be a significant predictor of length of stay in the original 

regression model, which was not really an expected result.  However, in the model for 

surviving patients only it was found to be a predictor variable, with a longer length of stay 

being associated with poorer medical fitness.  The three final regression models related to 

each ASA grade and thus while ASA grade was therefore not an input to these models, the 

differences in results of these models indicate that ASA grade does matter when it comes to 

length of stay.  ASA grade is also investigated further later in this thesis, see Chapter 6.  

Additionally ASA grade has been shown to be a reliable predictor for post-operative length of 

stay for hip fracture patients, which in turn led to the suggestion that it is an appropriate 

predictor of cost (Garcia et al. 2011). 

 

3.4.6 Sex 

The final variable to be considered individually is gender.  This was included in some of the 

regression models, but was one of the only variables to be excluded by the CART output.  As 

discussed previously, the difference in mean length of stay between males and females is just 

under one day (30.05 days average for males vs. 29.06 for females).  Where it was included 

by the regression analyses, males were found to have longer length of stay, so results are 

consistent with this.  There is also a slightly greater difference in means if only surviving 

patients are considered, 29.92 days on average for males compared with 28.40 days on 
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average for females.  This is consistent with the regression coefficient parameter estimates for 

gender found by the regression calculations, which were 0.0847   for the full model and 

0.1158   for the reduced model which only included surviving patients. 

There is support in the literature that male hip fracture patients experience a longer length of 

stay in hospital than their female counterparts (Hollingworth et al. 1995), while other studies 

have reported no difference in length of stay between male and female patients (Arinzon et al. 

2010, Dudkiewicz et al. 2011).   

 

3.4.7 Ambulatory measures 

There are various ambulatory measures which are now considered.  Mobility score was found 

to be significantly associated with acute length of stay in both the full regression model and 

the reduced model, with an increased score (indicating poorer mobility) associated with 

increased length of stay.  These results are endorsed by calculating the mean length of stay 

for each score, which are 22.42, 30.42 and 35.76 days for mobility scores 1, 2 and 3 

respectively.  Despite this, mobility score (mobility) was not used as a splitting variable in the 

CART results.  Walking aids used (walkaid0) and walking ability (walking0) on admission, 

however, both feature in the CART analysis.  These variables were not found to be 

significant predictors by the regression analyses, with the exception of walking0 which 

appeared in the model for ASA grade III. 

Each of the variables mentioned here are of course inextricably linked to one another, which 

goes some way to justifying the inconsistencies in results from the two methods investigated.  

Spearman rank correlation coefficients were 0.5106 between walkaid0 and walking0, 0.4476 

between walkaid0 and mobility, and 0.8051 between walking0 and mobility. A moderate to 

strong positive correlation is thus seen in each case; also in every instance the p-value was < 

0.0001 against the null hypothesis of no correlation.   

By including one of the variables as an indicative factor of length of stay, ambulatory level is 

taken into account and so another variable may not be included for this reason; it has 

essentially already been captured.   
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This conclusion is supported by a separate study which found that independent ambulation 

pre-fracture was a predictor of a shorter LOSE (Semel et al. 2010).  LOSE is length of stay 

efficiency, calculated as the gain in Functional Independence Measure (FIM) divided by 

length of stay.  It therefore measures the rate of change of FIM; a functional score which 

comprises of 18 parameters, each rated on a scale of one to seven according to the degree of 

assistance required to perform a specific activity in three domains: basic activities of daily 

living, mobility level and cognitive function.  A cumulated ambulation score, calculated over 

the first three postoperative days, was also found to be a highly significant predictor of 

hospital length of stay (Foss et al. 2006). 
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3.5 Other influencing factors 

There is a wealth of literature which reports on factors influencing length of stay for this 

group of patients and thus not all results will be detailed here.  It was not possible to compare 

many of the published results with the results presented earlier in this chapter due to 

particular patient or clinical information being unavailable (patient ethnicity, for example). 

Postoperative complications, reported to occur in a third of cases by one study, were shown 

to result in significantly longer length of stay in hospital for this patient group, while 

predictors for a complication are female gender and poor mobility status pre-fracture 

(Merchant et al. 2005).  Deep wound infection is one complication that has been shown to 

lead to a significantly longer stay in hospital (Edwards et al. 2008), as does MRSA infection 

(Pollard et al. 2006). 

Patients with a history of cerebrovascular accident (stroke) have been shown to have a 

significantly longer length of stay after hip fracture than those without, but there were no 

differences in in-hospital or one year mortality between these groups of patients.  They also 

experienced the same levels of functional recovery (Youm et al. 2000).  

Length of stay has also been shown to be influenced by race/ethnicity, with differences in 

hospital stay between non-Hispanic white and minority groups (Asian, non-Hispanic black) 

shown to be statistically significant.  Similar conclusions were drawn relating to the 

probability of being discharged home (Graham et al. 2008).  Patients of non-Hispanic black, 

Hispanic and Asian ethnicity have also been shown to experience a longer length of stay if 

they are discharged to a rehabilitation unit (Sterling 2011). 

Albumin level, a measure of nutritional status, was found to be the only factor that 

significantly predicted length of stay in elderly hip fracture patients, where a negative 

relationship was found, with a β-coefficient of -0.23 in the linear regression model (Van 

Hoang et al. 1998).  This is validated by another study which showed low albumin levels 

were a predictor of longer length of stay after hip fracture (Koval et al. 1999).  Conversely, 

total hospital stay has been shown to be a predictor, amongst other variables, of a change in 

albumin levels for geriatric patients (Botella-Carretero et al. 2008).  Patients with anaemia, as 

measured by haemoglobin level on admission, are also more likely to have a longer stay in 

hospital (Gruson et al. 2002). 
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Hospital settings were studied to identify differences in care received by hip fracture patients.  

It was shown that patients in an associated teaching hospital in an urban setting had 

approximately 14 days shorter length of stay than those in an inner-city teaching hospital, and 

this difference was attributed to the urban hospital having a greater supply of non-acute beds 

(Beech et al. 1995).  Patients treated in rural community hospitals have also been shown to 

have longer length of stay (mean 22.5 days) than their counterparts treated in an urban 

teaching or urban community hospital (mean lengths of stay 17.6 days and 17.1 days 

respectively) (Weller et al. 2005).  Focussing on location within one hospital, a Swedish 

group investigated the impact on length of stay for „outliers‟; patients with a hip fracture who 

are inappropriately admitted to another ward due to limited beds in the orthopaedic 

department.  It was shown that patients treated elsewhere experienced an additional 3.7 days 

acute stay, and 13.6 extra days when rehabilitation is also considered (Hommel et al. 2008a).   

Volumes relating to hospitals and surgeons have also been shown to influence hospital stay 

for hip fracture patients, with significantly longer lengths of stays shown for low-volume 

hospitals (less than 57 cases per year) and low-volume surgeons (less than seven procedures 

per year) (Browne et al. 2009). 

A change in the on-call rota system for consultants working on an acute trauma ward was 

shown to statistically shorten length of stay for hip fracture patients.  Significant 

improvements in time to theatre and promptness of discharge were also shown (Divecha et al. 

2011). 

Length of stay following a hip fracture has also been found to be significantly associated with 

marital status (living alone) and with the regular intervention of a caregiver (Pautex et al. 

2005).  Naglie et al also showed that additional care provision, in terms of whether patients 

received interdisciplinary or usual care, led to a longer length of stay (Naglie et al. 2002). 

An example of a variable reported to have no impact upon length of stay is whether the hip 

fracture was the first fracture incurred, or whether it was a sequential fracture.  It was also 

noted that functional recovery, as measured by the Barthel Index, was also not affected by 

whether it was a first or recurrent fracture (Di Monaco et al. 2002).  The Barthel Index is used 

to measure functional ability based on ten activities of daily living, each rated on a scale of 

zero to ten; the scores are then summed to give a total score between zero (totally dependent) 

and 100 (totally independent) (Mahoney and Barthel 1965).  
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3.6 Chapter summary 

In Chapter 2, an overview of the data available relating to trauma hip fracture patients was 

presented.  A whole host of variables, alongside summary measures, were introduced and 

analysed with respect to this patient group.  This chapter has expanded on those analyses and 

results with a particular focus on acute length of stay.   

Length of stay was chosen as the target variable here for numerous reasons.  Firstly, the 

benefits of a more predictable system are manifold; by being able to predict how long a 

patient will spend in hospital, decisions regarding capacity planning, manpower and 

resources can be made with increased confidence and intelligence.  This is also more 

beneficial to the patient.  The majority of this patient cohort spends several weeks in hospital, 

so a better idea of when they may be discharged would be uplifting and helpful to the patient 

and their family.  

The results gained from the statistical methods completed have provided useful 

understanding into factors which influence length of stay.  In order for any predictions or 

insight to be made in a timely fashion, only variables which are known either on arrival or 

soon after the arrival of a patient are considered.  The techniques used here are also well-

established and trusted in the healthcare field; there is little advantage to be gained by 

producing incomprehensible results, or results which the stakeholders will have difficulty to 

have confidence in. 

One of the primary outcomes of this chapter has shown just how complex an issue this is.  

The evidence presented has shown that there are many influencing factors on length of stay 

and while it would be convenient if just one or two predictors were found, this was never 

really expected.  (Indeed if this was the case, these analyses would never have been embarked 

upon!)  Other useful results include just which of the variables are the most important and 

influential for this topic, as well as those which are of least importance. 

Almost all of the variables considered here are determined by individual patient 

characteristics, which can be separated into two groups; medical and non-medical 

characteristics.  The first group includes factors such as mental state, ASA grade and 

operation type, while the second is made up of factors including age, gender and admission 

source.  Despite these differences, there is one important aspect that these two groups have in 
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common; the medical team have no influence or control over them.  The results for these 

variables are thus mostly of value from a statistical point of view.  Arguably more interesting, 

however, are those factors which the medical team do have an element of control over.  It has 

been mentioned previously that delay to operation is a particular focus of this thesis, and 

indeed within the healthcare research community.  Results found here have consistently 

shown that a delay, classed as more than two days, does have an impact on length of stay.  

This is a valuable result as it proves that this organisational issue, if resolved, would provide 

benefits to the system. 

While the statistical results presented are informative in their own right and provide some 

useful information for the hip fracture team, here they also may be used as a decision tool.  

One objective of this thesis is to build a simulation model to represent the patients and bed 

usage on the trauma fracture ward.  By compiling the results seen until now, important 

influencing factors can be identified with respect to what influences ward length of stay and 

thus the system as a whole.  Despite this, the variable representing mental state, which was 

the only variable to appear in each statistical output, is not included in the simulation model.  

It was not found to be as influential when considering mortality (see Chapter 4) and since the 

simulation also models patient outcome, mental state was not included.  Furthermore, it was 

decided that some measure of medical fitness should be incorporated into the model and ASA 

grade is a more general measure of this. 
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CHAPTER 4: MORTALITY ANALYSIS 

4.1 Introduction 

Factors influencing length of stay for trauma hip fracture patients were investigated in the 

previous chapter.  The aim here is also to investigate which demographic and clinical 

variables may influence the patient‟s stay in hospital, but this time with respect to mortality.  

Due to data restrictions only acute mortality is considered.  Some patients die while still 

under the care of the University Health Board, after their acute discharge, but this information 

was missing in many cases and therefore further investigation is not viable. 

The same data as per Chapters 2 and 3 was used here. 

Results are compared with the literature, where appropriate, and an overview of other 

reported findings are subsequently given.  A particular focus of this chapter is the 

investigation of whether operative delay influences risk of mortality.  This relationship is 

examined in detail using both multivariate and univariate analyses. 

Engagement with clinicians was undertaken prior to the commencement of any statistical 

analyses being performed.  This was to ensure that models would be fit for purpose and 

useful in a clinical setting.  The methodologies used were also discussed to ensure that they 

were appropriate to the stakeholders. 
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4.2 Logistic regression 

4.2.1 Introduction 

Logistic regression is a statistical method used to predict the probability of the occurrence of 

a binary event, based on a number of independent predictor variables. 

The logistic function takes the form 

 
1

.
1 z

f z
e




 

It is a useful function since the values for z  can take any number in the range  , , 

while the outcome  f z  will always be between 0 and 1.  The variable z  represents the 

predictor variables, while  f z  represents the probability of a particular outcome, given this 

set of input variables.  A plot of the relationship between z  and  f z  is given in Figure 

4.2.1i. 

 

 

Figure 4.2.1i: A plot of z  against  f z   
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will cause a decrease in  ,f z  while 0,z    representing no effects, results in   0.5.f z    
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regression does not have this quality.  Another advantage of this technique over linear 

regression is that it does not assume homoscedasticity of the independent variable across the 

explanatory variables, since this cannot occur for binary variables. 

This model has an equivalent formulation which aids with interpretation.  Let   ,f z   so 

that now   is the probability of the event occurring.   

Rearranging gives 

ln
1

z




 
 

 
 

This value is also known as  logit .   While   denotes the probability of the event 

occurring,  logit 
 
represents the log odds of the dependent variable.   

It was previously mentioned that z  represents the predictor variables and an explicit form of 

this is given by 

0 1 1 ... ,p pz X X       

where 0  represents the intercept and j  represents the estimated coefficient for variable 

, 1,...,jX j p .   

It follows that 0 1 1 ...
.

1

p pX X
e
  



  



 

 

4.2.2 Aim of this analysis 

The aim here is to estimate the investigate mortality on the acute ward.  In doing so, the 

important factors which influence mortality are highlighted, as well as their degree of 

importance.  Clearly mortality is a binary variable, thus logistic regression is an appropriate 

tool to use here, so that now   represents the probability of dying while on the acute ward.     

The statistical computer package SAS 9.1.3 was used for this analysis.  As seen previously, a 

stepwise selection model was used with significance of entry and removal set at 5%.  The 

variable under consideration is survival_ac, referring to Table 3.2.1i and Table B3.2.1a, while 

the aim is to find what variables predict that this takes a value of one. 



 

 

102 

 

4.2.3 Model validity 

The validity of a logistic regression model can be assessed in many different ways.  A large 

selection of these methods is discussed here before the model is presented. 

 

• Likelihood ratio 

The likelihood ratio tests the null hypothesis that β = 0, where β is the vector of coefficients 

for the model parameters.  Here this ratio has a Chi-square score of 219.95 where p < 0.0001, 

indicating that the vector of model parameters is significantly different from zero. 

 

• Hosmer-Lemeshow goodness-of-fit test 

Many tests for the goodness-of-fit of a model are performed by analysing residuals, but this is 

not possible for a binary response.  This particular statistic however is only available for 

models where the response in binary; predicted probabilities are divided into deciles and a 

Pearson Chi-square statistic is computed which compares the predicted and observed 

frequencies across the 2 x 10 table (Hosmer and Lemeshow 1989).  The result quoted by SAS 

is actually a lack of fit test, so a small p-value indicates that the fitted model is not an 

adequate model.  Here p = 0.4238, so a significant fit has been found.  

 

 • Concordant pairs 

Another output given is the percentage of concordant pairs; a pair of observations with 

different observed responses is said to be concordant if the observation with the lower 

ordered response value has a lower predicted mean score than the observation with the higher 

ordered response value.  Here this value is 78.4%. 

 

• Somers’ D statistic 

Similarly, Somers‟ D statistic measures the association between pairs of observations, but this 

time asymmetrically; that is, it also measures the direction as well as the strength of 

association.  It is the surplus of concordant pairs as a percentage of concordant, discordant 

and tied pairs of observations; given the condition that a randomly selected pair of 

observations are not tied on the independent variable, Somers‟ D is the conditional 
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probability that the pair is concordant minus the conditional probability that the pair is 

discordant (Liebetrau 1983).  It reaches a maximum of 1 for perfect association (all pairs 

agree) and a minimum of -1 for no association (all pairs disagree).  In this case this statistic is 

0.572 indicating a reasonably good level of association. 

 

• c-Statistic  

Another fit statistic given by SAS is c, a variant on the Somers‟ D statistic.  It is the rank 

correlation when measuring on an ordinal level, where -1 indicates 100% negative 

association, 1 indicates 100% positive association and a value of 0 indicates the absence of an 

association between the two variables.  Here c = 0.786 indicating a good level of association.    

Note that c also gives an estimate of the area under the receiver operating characteristic 

(ROC) curve when the response is binary (Hanley and McNeil 1982).  The ROC curve 

obtained in this instance can be seen in Figure 4.2.3i and displays a moderate fit for the 

logistic regression model.  A ROC curve is a plot of the true positive rate against the false 

positive rate and demonstrates several things.  The closer the curve follows the left-hand 

border and then the top border of the ROC space (a “Г” shape), the more accurate the test.  

Similarly, the closer the curve comes to the 45-degree diagonal of the ROC space, the less 

accurate the test.   

 

 

Figure 4.2.3i: ROC curve for the fitted logistic regression model 
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• Akaike’s Information Criterion (AIC) 

AIC measures the goodness of fit for a statistical model.  SAS computes two estimates of 

AIC, firstly just for the intercept and then also for the intercept and the covariates.  A lower 

value indicates a better model.  Here the values were found to be 1390.360 and 1188.408 

respectively, so a better model can be found when covariates are introduced. 

 

 • Maximum re-scaled R
2
 

A more appropriate measure to use with logistic regression is the maximum re-scaled 2R  

value, denoted by 2R , rather than the usual 2R  value usually used in regression methods to 

measure the variation that is explained by the model.  This is due to the fact that 2R  cannot 

achieve a maximum of 1 for discrete models.  The maximum 2R  that can be achieved is equal 

to  
2

2

max 1 0 ,nR L 
 
where  0L  is likelihood of the intercept-only model and n  is the 

sample size.  To obtain the value of 2R , the following formula is used: 

2
2

2

max

R
R

R
    (Nagelkerke 1991). 

Unlike 2 ,R  this adjusted coefficient can achieve a maximum value of 1.  In this case, the 2R

value was 0.1045, which is rather small.  However, the value of 
2

maxR  was found to be 0.5017.  

Using the previous formula, it is found that the maximum re-scaled 2R  value is given by 

2 0.1045
0.2083,

0.5017
R    which is a considerably better result. 

 

The results discussed previously all indicate that the logistic regression model is an 

appropriate tool to use here.  It is, however, accepted that these results are not optimal and it 

is always hoped that more desirable findings are found.  Despite this, the conclusion can still 

be drawn that the method is suitable here and some insight can be gained from the analysis. 
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4.2.4 Results 

The resultant model gave a total of nine variables as significant predictors of mortality, as 

displayed in Table 4.2.4i.  A total of 1992 observations were available for this analysis; 221 

of these patients (11.1%) did not survive their acute stay hospital.  Note that multicollinearity 

was tested for in each of the logistic regression models presented in this chapter and levels 

were again low enough that they could be discounted.  It has been suggested that VIF values 

above 2.5 may be a cause for concern in logistic regression models (Allison 1999), but VIF 

values produced here did not violate this recommendation in any of the models formulated. 

 

Table 4.2.4i:  Parameter estimates for the logistic regression model 

Variable 
Parameter 

estimate 

Standard 

error 

Wald 

Chi-Square 
Pr > ChiSq 

Intercept -3.2567 0.2656 150.39 < 0.0001 

Mobility 0.5169 0.0990 27.28 < 0.0001 

Mentalst 0.1784 0.0730 5.98 0.0145 

WAASP 0.2956 0.0930 10.10 0.0015 

Age 0.3917 0.1077 13.23 0.0003 

Opdelay 0.2060 0.0777 7.03 0.0080 

ASAnew_n 0.4685 0.0839 31.18 < 0.0001 

SexM 0.2362 0.0853 7.66 0.0057 

Fractype_d1 -0.3344 0.1606 4.33 0.0374 

Admfrom_d4 -0.6064 0.2051 8.74 0.0031 

 

The regression equation is thus 

 logit 3.26 0.52( ) 0.18( ) 0.30( ) 0.39( )

0.21( ) 0.47( _ ) 0.24( )

0.33( _ 1) 0.61( _ 4),

Mobility Mentalst WAASP Age

Opdelay ASAnew n SexM

Fractype d Admfrom d

      

  

 

 

while the corresponding logistic function is: 

  { 3.26 0.52( ) ... 0.33( _ 1) 0.61( _ 4)}

1
.

1 Mobility Fractype d Admfrom d
f z

e


     
 


 

Recall that   represents the probability of dying while on the acute ward.   
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A useful way to interpret the results of logistic regression is in terms of odds ratios.  The odds 

ratio (OR) for each variable is found by taking the exponent of the parameter estimate.  (Note 

that a more detailed definition and description of odds ratios is in given in Section 4.6.)  This 

is with the exception of binary variables, due to the design of the regression the parameter 

estimate is first doubled before the exponent is calculated (Der and Everitt 2002).  Note that 

OR results in Section 4.6 may differ from those quoted here; since logistic regression requires 

an entry across all variables for each observation, a slightly different subset of data will have 

been used there. 

 

Table 4.2.4ii:  Odds ratios for the parameter estimates of the logistic regression model 

Variable Adjusted OR 95% Confidence Interval for OR 

Mobility 1.677 [1.381, 2.036] 

Mentalst 1.195 [1.036, 1.379] 

WAASP 1.344 [1.120, 1.613] 

Age 1.479 [1.198, 1.827] 

Opdelay 1.510 [1.113, 2.047] 

ASAnew_n 1.598 [1.355, 1.883] 

SexM 1.604 [1.148, 2.241] 

Fractype_d1 0.512 [0.273, 0.962] 

Admfrom_d4 0.297 [0.133, 0.665] 

 

The most important factors seen here in terms of increasing the odds of dying while on the 

acute ward are mobility score, sex and ASA grade.  For every unit increase in mobility score, 

there is 1.677 times the odds of dying, while for every unit increase in ASA grade, there is 

1.598 times the odds of dying.  A male patient has 1.604 times the odds of dying compared 

with a female patient, given that other factors remain the same.  Another important result is 

seen for delay to operation; a delayed patient has increased odds of dying of 1.510 compared 

with a patient who is not delayed. 

It is also interesting to look at the odds ratios that are less than one.  Note that the odds for a 

patient dying who has incurred a fracture type coded as 1 are 0.512 compared with those with 

a different fracture type; that is, given that the other factors remain the same, a patient 

suffering from a undisplaced intracapsular fracture is less likely to die while on the acute 
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ward.  Patients admitted from a nursing home also have lower odds of dying; 0.297 compared 

with those admitted from elsewhere, given that other factors remain the same. 

 

4.2.5 Analysis by ASA grade 

Logistic regression analysis was then repeated within each ASA grade in order to gain more 

homogenous groups in terms of medical fitness.  ASA grade was found to be a significant 

predictor of mortality, so this has already been captured to a certain extent, but it would be 

interesting to see if results differ across ASA grades. 

A total of 748, 1054 and 190 observations were available for ASA grades I&II, III and IV 

respectively.  A summary of parameter estimate and odds ratio results is given in Tables 

4.2.5ii-iv, but first a summary of some of the goodness-of-fit measures are displayed. 

 

Table 4.2.5i: Goodness-of-fit measures for logistic regression performed by ASA grade 

Model for 

ASA grade 

Likelihood 

ratio 

(p-value) 

Hosmer-

Lemeshow 

test (p-value) 

Concordant 

pairs (%) 
c 2

R  

I&II < 0.0001 0.8864 75.4 0.801 0.3255 

III < 0.0001 0.5499 73.1 0.735 0.5173 

IV 0.0029 0.7458 42.2 0.691 0.7107 

 

Significant logistic regression models have been found in each case.  In particular, consider 

the improvement in the value of 2R  from that seen previously, suggesting that this subsequent 

analysis is a viable avenue to explore.  The Hosmer-Lemeshow test is not recommended 

when n  is small, or more specifically less than 400 (Hosmer and Lemeshow 2000), so this 

result for ASA grade IV should be accepted with caution. 

Just three variables were found to be significant predictors of mortality for ASAI&II patients, 

see Table 4.2.5ii; a higher probability of death for an increased mobility score and 

undergoing a hemiarthroplasty operation and a lower probability of death for those admitted 

from home.  For those who underwent a hemiarthroplasty operation, the odds of dying on the 

acute ward were found to increase by 3.177. 



 

 

108 

 

Table 4.2.5ii: Results given by the logistic regression model, ASA grade I&II 

Variable 
Parameter 

estimate 

Standard 

error 
Pr > ChiSq 

Adjusted OR 

[95% confidence interval] 

Intercept -2.7680 0.1917 < 0.0001 - 

Mobility 0.6013 0.2181 0.0058 
1.824 

[1.190, 2.797] 

Optypenew_d5 0.5779 0.1772 0.0011 
3.177 

[1.586, 6.363] 

Admfrom_d1 -0.4751 0.2103 0.0239 
0.387 

[0.170, 0.882] 

 

 

For ASAIII patients, a more complex model in terms of the number of parameters to retain 

was found, but results are still understandable and innate to what would be expected.  Patients 

admitted from an acute hospital were found have odds of dying on the acute ward of over 

four compared with those admitted from elsewhere, other factors remaining the same.  A 

delay to operation of more than two days was also shown to be a significant indicator of 

mortality. 

 

Table 4.2.5iii: Results given by the logistic regression model, ASA grade III 

Variable 
Parameter 

estimate 

Standard 

error 
Pr > ChiSq 

Adjusted OR 

[95% confidence interval] 

Intercept -1.7862 0.1940 < 0.0001 - 

Mobility 0.7121 0.1352 < 0.0001 
2.038 

[1.564, 2.657] 

Age 0.5504 0.1487 0.0002 
1.734 

[1.295, 2.321] 

Opdelay 0.2669 0.1004 0.0078 
1.705 

[1.151, 2.528] 

SexM 0.2690 0.1103 0.0147 
1.712 

[1.111, 2.638] 

Admfrom_d1 0.3475 0.1217 0.0043 
2.004 

[1.244, 3.228] 

Admfrom_d7 0.7572 0.1913 < 0.0001 
4.547 

[2.148, 9.623] 

 

A higher mobility score was found to increase the probability of dying for ASA grade IV 

patients, with every unit increase in this variable increasing the odds of dying on the acute 

ward by 1.712.  This model is also interesting in its simplicity, suggesting that the only 
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variable (under consideration) which impacts upon mortality amongst ASA grade IV patients 

is their mobility score. 

 

Table 4.2.5iv: Results given by the logistic regression model, ASA grade IV 

Variable 
Parameter 

estimate 

Standard 

error 
Pr > ChiSq 

Adjusted OR 

[95% confidence 

interval] 

Intercept -1.0209 0.1873 < 0.0001 - 

Mobility 0.5375 0.1892 0.0045 
1.712 

[1.181, 2.480] 

 

 

4.2.6 Conclusion 

An increased mobility score, indicating poorer mobility function, was found to be a 

significant indicator of mortality in all cases.  Admission source again featured heavily, with 

results for this as expected for the most part.  When splitting by ASA grade, the model 

produced for ASA grade III resulted in the most predictor variables, while ASA grade IV had 

the fewest.  This is influenced to some extent by the number of observations in each group.  

One interesting piece of information to take from this analysis relating to delay to operation is 

that it was included as a significant predictor for both the full model and also for ASA grade 

III patients after the splitting procedure.  However, it must be noted that, for some patients, 

delay is clinically warranted (see Section 6.3.4) and the potential implications of this when 

interpreting statistical results should be considered.  Unfortunately, delay reason was 

unknown for this part of the statistical analysis.  An extension to this work could be to 

formulate sub-models, based on delay reason, but this is deemed to be beyond the scope of 

this thesis. 
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4.3 CART analysis 

4.3.1 Introduction 

CART analysis was utilised once more to create homogenous nodes of data, but this time 

with respect to ward mortality.  The dependent variable under consideration this time is thus 

categorical and the method used by TreeWorks is different.  In this case the aim is to 

maximise the gain in purity and thus at each stage the tree is grown by choosing which node 

and variable to split on in order to minimise the impurity in the dataset.  Consider a 

dependent variable which may take up to m  values, specifically the integer values 

1, 2, ..., 1, .m m   Now let  ,f i j  represent a membership proportion for each of the m  

values: it is equal to the proportion of observations assigned to node i  for which the value of 

the dependent variable is equal to , 1, ..., .j j m   This notation and the following equations 

are described in more detail in the literature from where this information was obtained 

(Harper and Leite Jr 2008).  Consider the measure of impurity for node ,i  given by  .I i     

The gain in purity achieved by splitting node i  into nodes 0i  and 1i  is calculated by: 

           0 1 0 0 1 1; ,Gain i i i I i I i p i I i p i      

where  0p i  and  1p i  are the proportions of records assigned to node 0i  and 1i  

respectively, calculated as  
 

 
, 0,1,

a

a

s i
p i a

s i
   where  s i  is the number of observations 

in node .i  

The overall measure of impurity and the splitting specifications used depend upon the 

procedure used; there are two choices using the chosen software, the Gini Index of diversity 

or Information Entropy.   

The Gini Index value for each node is based upon squared probabilities of membership for 

each of the m  target categories within the node and is calculated as    
2

1

1 ,
m

G

j

I i f i j


   for 

node .i   The Information Entropy value is based upon the concept of entropy which is 

commonly used in information theory (that is, as a measure of uncertainty), and is calculated 
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as      
1

, log ,
m

E

j

I i f i j f i j


  .  Note that here 2m   since the dependent variable under 

consideration is mortality on the acute ward. 

 

4.3.2 Results 

The options were amended slightly here; as before, many permutations of the changeable 

parameters were tried and the most desirable used.  In this case, the minimum number of 

observations per node was set to 30.  The learning sample again comprises of 70% of all 

available observations, 1386 records in total, while the remaining 30% are used as the test 

sample for validation purposes.   

The Gini Index procedure was initially used for this analysis and results are given in the form 

of the tree in Figure 4.3.2ii and the spitting rules in Appendix D, Table D4.3.2a.  As 

previously, final nodes are denoted with an „F‟ and the node number is given in the top line 

of each node.  Other results given within each node are percentages relating to the number of 

surviving and non-surviving patients within each node, as described below. 

 

Table 4.3.2i: Key for CART mortality results 

Node number 

Surviving patients: % of node | % of all patients 

Non-surviving patients: % of node | % of all patients 

 

Note that due to space restrictions all figures are quoted to the nearest integer and so a value 

of zero may not necessarily mean that there are no patients in that node with a particular 

characteristic (see node 38F for an example of this). 
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Figure 4.3.2ii: CART results for mortality using the Gini Index procedure method 
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This case resulted in 28 final nodes.  The variables which were not used as splitting criteria were 

side of fracture and age.  The overall reduction in impurity achieved was 16%, so an increase in 

homogeneity has been achieved.  Success or failure of these results may also be considered in terms 

of the predictions made using the test sample.  The percentage of correct predictions, using the 

splitting rules, classified as dead or alive are displayed in Figure 4.3.2iii.  These are given for final 

nodes only since these would be used should these classifications be used later; every patient would 

reside in one final node only. 

 

 

Figure 4.3.2iii: Validation of final nodes produced by the Gini Index procedure 

 

Nine of the final nodes achieve the maximum of 100% of correct predictions, which is almost a 

third of all final nodes, and all but three nodes have a success rate of over 80%.  Nodes 35F and 36F 

have a considerably lower percentage of correct values in comparison to the other final nodes, 

suggesting that this split on fracture type may not be appropriate.  Fracture type was used on three 

other occasions as a splitting variable so its inclusion overall is still appropriate.  The average 

percentage of correct values across these final nodes is 89.8% and so it is concluded that this CART 

analysis has provided accurate results.  The standard deviation of these values was found to be 14.1 

(percentage points). 

ASA grade, walking ability, walking aids used and operation type are amongst those variables 

which appear more frequently in the output.  The first split is made on walking ability on admission, 

suggesting that this is the most telling variable which influences mortality.  However, results are 

unintuitive; the best and worst levels (in terms of ability) are grouped together, while the three 

middle levels comprise the other group.  ASA grade is used on the second level of the tree, and then 
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two more times in lower levels, indicating this is an important predictor of mortality.  Since ASA 

grade is a measure of medical fitness, this result is as expected.  Admission source is another 

variable found to be used for one of the first splitting decisions and is also used twice later on. 

 

Using the Information Entropy procedure, better results were achieved in terms of a higher 

reduction in impurity; this time 22% was observed, compared with 16% found previously.  The tree 

had 60 nodes in total, 31 of which were final nodes.  Results are as per quoted in Table 4.3.2i and 

are given in Table D4.3.2b and Figure 4.3.2iv. 

Validation results are displayed in Figure 4.3.2v.  In this case the percentage of correctly predicted 

observations is 100% in just over one third of all final nodes, a total of eleven altogether.  The mean 

percentage of correct values is 89.7%, a very similar value to when the Gini Index procedure was 

used.  There is less spread in this case, however, with a standard deviation of percentage correct 

values of 11.7 percentage points.  The lowest values were found for nodes 10F and 54F, which both 

relate to a split on ASA grade.  This may therefore suggest that such a split was not appropriate at 

those levels; however, it may still be concluded that using ASA grade as a splitting variable is 

suitable for mortality since it was used four other times in this procedure. 

 

 

Figure 4.3.2v: Validation of final nodes produced by the Information Entropy procedure 
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Figure 4.3.2iv: CART results for mortality using the Information Entropy procedure method 
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The only variable not used here is the side of the body on which the fracture was incurred.  

Using the Gini Index procedure, age was not used as a splitting variable, while this second 

method uses age as the first variable on which to split, so a conflict is observed.  Walking0 is 

used in the second level of the tree, indicating this is an important factor to consider with 

respect to ward mortality, but the same rather peculiar split across the five levels that this 

variable can take is seen.  Type of fracture is used numerous times within the output, as is 

WAASP score.  

 

4.3.3 Conclusion 

One of the most useful insights to be gained from the CART analysis is that the majority of 

variables needed to be used in order to gain homogeneity with respect to mortality.  This 

highlights the potential difficulties with predicting mortality as well as the complexity of this 

issue; the influencing factors are both numerous and varied.  The only variable to be excluded 

by both methods was side of fracture.  Other difficulties relating to this analysis is the 

relatively low incident (death) rate for this group.  As a result, some caution should be 

exercised when interpreting the output; while a high percentage of nodes correctly predicted 

outcome, a high percentage of patients (approximately 88%) had the same outcome (of 

survival). 

Variables which seemed to be of most importance include ASA grade and walking ability on 

admission, as well as fracture type, operation type and WAASP score.  With regard to delay 

to operation, results were all indicative that delay does matter when considering ward 

mortality.  This variable featured four times in total in the output (two per method), and after 

each split the node belonging to delayed patients had a higher percentage of non-surviving 

patients than the node for patients who were not delayed. 
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4.4 Comparison of methods and results 

Four regression models and two CART procedures have been compiled in order to determine 

influencing factors for death on the acute trauma hip fracture ward.  A number of variables 

are now investigated in more detail to ascertain the relationship between these variables and 

mortality. 

 

4.4.1 Mobility score 

Mobility score was the only variable to be included in all four regression equations, as well as 

both of the CART outputs.  Indeed, it was found to be the only variable significantly 

associated with mortality for ASA grade IV.  Recall that mobility is measured on an integer 

grade between one and three, with a higher score indicating a poorer level of mobility.  In 

each case a higher score also indicated an increased probability of death on the acute ward. 

Firstly, results are considered overall.  3.6% of patients undergoing surgery with a mobility 

score of 1 did not survive their stay in hospital.  This increases to 10.3% for patients with a 

mobility score of 2 and increases again to 19.2% for patients with a mobility score of 3.  

These results are therefore consistent with the statistical results found. 

Now consider these percentages within each ASA grade, as displayed in Figure 4.4.1i.  The 

  parameter estimates for mobility score were 0.6013, 0.7121 and 0.5375 for ASA grades 

I&II, III and IV respectively, indicating a greater impact for ASA grade III in comparison 

with the others. 

 

 

Figure 4.4.1i: Mortality results by mobility score and ASA grade 
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These results are also consistent with the regression results, where in each case an increased 

mobility score is shown to be related to an increased probability of death on the acute ward.  

Therefore, even when the medical fitness of patients is taken into account, there is still 

evidence of a relationship between mobility and survival.  Each of these results is for patients 

undergoing surgery only. 

Similar results have been found in other studies, where a significantly shorter survival time 

has been shown for patients with poor mobility before injury (Kopp et al. 2009).  Amongst 

other factors, this study also showed increasing age and male gender to be related to a shorter 

survival time (see Sections 4.4.3 and 4.4.4 respectively).  Pre-fracture functional ability has 

also been shown to be a predictor of six-month mortality, along with comorbidities, 

increasing age and surgery more than 48 hours after admission (Maggi et al. 2010). 

Recovery after hip fracture has also been shown to depend largely on the pre-fracture health 

and functional ability of the patient, with better functional recovery recorded by men than for 

women (Arinzon et al. 2010).  A mobility score calculated three days after surgery has also 

been shown to predict 30 day mortality in this group of patients (Foss et al. 2006). 

 

4.4.2 ASA grade 

While ASA grade has been considered to a certain extent in the previous section, it is now 

considered solely instead of in conjunction with another variable.  The full regression model 

indicated that an increasing ASA grade was associated with an increased probability of death 

on the acute ward, with a parameter estimate of 0.4685   and an odds ratio of 1.598.  

Additionally, ASA grade was used as a splitting variable a total of nine times between the 

two CART outputs.  As an example, consider the results from the Information Entropy 

procedure, in particular nodes 9 and 10F.  This is a split made at a relatively high level in the 

tree.  Patients with an ASA grade of I&II or III are directed to node 9, which has a survival 

percentage of 87%.  Meanwhile, 66% of patients in node 10F, for ASA grade IV patients, 

survive their hospital stay.  These results are therefore consistent with the regression model. 

To verify these results, the percentages of surviving patients within each ASA grade are now 

presented.  For consistency reasons, these computations were for patients who were operated 

on only. 
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 Table 4.4.2i: Percentage of patients who survive their acute hospital stay, by ASA grade 

ASA grade Percentage of surviving patients 

I&II 95.1% 

III 88.2% 

IV 69.1% 

 

As expected, an increase in ASA grade category results in a decreased probability of 

surviving on the hip fracture ward.  These values therefore reinforce the results found 

statistically. 

An increasing ASA classification has been shown to predict an increase in 30-day mortality 

rates across all age groups.  This study was not exclusive to hip fracture patients but focussed 

on patients undergoing surgery aged 80 years and older.  A progressive increase in mortality 

was also shown with increasing age (Turrentine et al. 2006).  Mortality at 90 days has also 

been shown to be dependent upon ASA grade, among other factors, exclusively for hip 

fracture patients (Clague et al. 2002).  ASA grades III and IV have been shown to be one of 

the significant predictors for one year mortality (Aharonoff et al. 1997), with one study 

showing a nine-fold increased risk of one year mortality for these patients (Michel et al. 

2002).  Three-year mortality has also been shown to be significantly greater for patients with 

ASA grade III, IV or V (Hamlet et al. 1997), while ASA grade was one of only two 

predictive factors which predicted mortality at 30 days post-surgery, the other being 

treatment by arthroplasty (Rae et al. 2007). 

 

4.4.3 Age 

Results for age, and thus the conclusions which could be drawn from these results, were 

found to be contradictory between the outputs.  An increased probability of dying on the 

acute ward for older patients was found for both the full model and the reduced model for 

ASA grade III patients only.  These results are consistent with the CART results using the 

Information Entropy procedure, where age was used as a splitting rule twice, to create pairs 

of nodes (1, 2) and (3, 4).  Despite the apparent importance of this variable here – it was used 

in the higher levels of the tree indicating it is a key factor influencing the formation of 
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homogenous nodes with respect to mortality – age was not used at all by the Gini Index 

procedure, suggesting that age does not matter when it comes to outcome.  In both cases, the 

node with patients of a higher age had a smaller percentage of surviving patients. 

In order to investigate this further, first consider the differences in mortality rates between 

age groups, see Figure 4.4.3i.  There were no patients who died in hospital younger than the 

ages displayed.  The percentage of surviving patients decreases consistently with an increase 

in age, thus verifying the existence of a relationship reported previously.  Summary statistics 

of age are presented in Table 4.4.3ii, grouped by outcome. 

 

 

Figure 4.4.3i: Mortality results by age group 

 

Table 4.4.3ii: Summary statistics for age (years) by outcome  

Outcome Mean S.D. C.V. Minimum Maximum 

Dead 84.22 7.84 0.09 57 101 

Alive 79.70 11.36 0.14 14 101 

 

Again, death has been shown to be consistent with a higher age.  The spread of ages, 

however, is larger in the group of surviving patients, both when the standard deviation and 

also the coefficient of variation are inspected.  

Six month mortality has been shown to increase with older age following hip fracture, 

particularly when associated with dementia (Wood et al. 1992).  It is interesting to note that 

one study demonstrated a direct relationship between increasing age and mortality for 

patients with intertrochanteric fractures, but no relationship for femoral neck fractures 
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(Kenzora et al. 1984).  A similar study however found that age was the most significant 

predictor of mortality for these two patient groups; indeed operative delay was quoted as the 

only other influencing factor.  Femoral neck fracture patients had a significantly shorter 

estimated survival, despite these patients being significantly younger than those with 

intertrochanteric fractures (Kesmezacar et al. 2010). 

In-hospital and one year mortality rates have been shown to be greater for patients aged 90 

years and over (Shah et al. 2001), while mortality at 30 and 120 days has also been shown to 

be higher amongst patients classified as extremely elderly, which in this case was aged 95 

years or older.  This was in comparison to group of patients aged 75 to 89 years old (Holt et 

al. 2008), while a study which concentrated specifically on centenarians showed a 

significantly higher mortality rate for this group during both hospital admission and at one 

year, concluding that there is a 20% increase in expected mortality for this age group (Forster 

and Calthorpe 2000).   

 

4.4.4 Sex 

Sex appeared in the full regression model, as well the reduced model for ASA grade III.  It 

also appeared in both of the CART outputs.  The conclusions that can be drawn in each case 

are that being of a male gender is associated with greater chance of death on the acute ward, 

with the exception of a splitting decision made by the Information Entropy procedure. 

Calculating the percentage of deaths within each of the gender groups gives 14.4% of all 

patients undergoing surgery for males, compared with 9.9% for females, which explains and 

verifies the results found previously. 

Male gender has been shown to be a significant risk factor for increased mortality after hip 

fracture in elderly patients, as well as being a significant predictor of sustaining a trochanteric 

fracture (Lin et al. 2011).  Long-term survival analysis following hip fracture has also shown 

that men have a higher one year mortality rate after hip fracture and were also more likely to 

sustain a medical complication post-operation (Endo et al. 2005).  Additionally, excess 

mortality was shown to be strongly significant for men compared with women (Kannegaard 

et al. 2010), a conclusion which is supported by evidence from a large hip fracture audit in 

Scotland (Johnston et al. 2010) and a large review article (Haentjens et al. 2010). 
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4.4.5 WAASP category 

An increase in WAASP score implies a lower level of medical fitness, so it would be 

expected that this would also mean a higher death rate in these groups.  This is confirmed by 

the logistic regression equation which considered patients as a whole, where WAASP 

category was included with a parameter estimate of 0.2956.    This is not as large as the 

comparable   value for ASA grade (these figures are indeed directly comparable as they are 

both measured on a three-point scale), implying that WAASP category is related with ward 

mortality to a lesser extent than ASA grade.  The percentage of patients within each outcome 

group is displayed by category in Table 4.4.5i.  As expected, the proportion of non-surviving 

patients is smaller for lower WAASP categories. 

 

Table 4.4.5i: Outcome by WAASP category 

WAASP category 1 2 3 

Dead 4.2% 9.2% 19.1% 

Alive 95.8% 90.8% 80.9% 

 

WAASP category was not found to be an influencing factor in any of the three regression 

models for each of the ASA grade categories, but this is most likely due to the similarity of 

these two variables.  It was, however, used in both of the CART analyses, three times and 

four times for the Gini Index and Information Entropy procedure methods respectively.  For 

the most part, the same conclusions would be made, but there were also some inconsistencies 

found.  On three of the splits, categories 1 and 3 were grouped together, with a category of 2 

comprising the other side of the split.  The other splits, however, were all consistent with the 

regression output and the results displayed in Table 4.4.5i, with a higher WAASP category 

relating to a lower chance of survival.  For each of these, categories 1 and 2 were grouped 

together and a category of 3 was separate.  This is explained by looking at the percentage of 

patients who do not survive within each of the three categories. 

These differences in conclusions highlight the importance of thorough investigation through 

data mining and statistical procedures.  Uniform results are not necessarily going to be 

produced by the different methods but by exploring more than one technique and scrutinising 

the output in detail, some overall inferences can be made. 
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WAASP score was developed for use by and within Cardiff and Vale University Health 

Board and thus is not used in investigations conducted by research groups outside of the 

Board.  However, recall that WAASP is measure of nutritional status (see Section 2.2.8 for 

more details) and so some general comparisons can be made. 

A study conducted on the trauma hip fracture ward at the UHW compared whether 

employing dietetic assistants (DAs) affected clinical outcome; patients either received the 

conventional pattern of nurse- and dietician-led care or received additional personal attention 

from a dietetic assistant as well.  Patients supported by a DA had significantly lower risk of 

mortality in-hospital and at four months (Duncan et al. 2006). 

Albumin levels and total lymphocyte counts are often tested to measure nutritional status. 

One study found that albumin levels below three grams per decilitre was the only predictor of 

in-hospital mortality given by a multivariate logistic regression model (Pioli et al. 2006).  

Normal levels of albumin are 3.5-5.0 grams per decilitre (The National Kidney Federation 

2011).  Patients with low albumin levels, this time classified as less than 3.5 grams per 

decilitre, have been shown to experience higher levels of in-hospital mortality, while a total 

lymphocyte count of less than 1500 cells per millilitre was predictive of one-year mortality 

(Koval et al. 1999).  Using the same cut-off to classify low levels of albumin, this result has 

been verified; it was calculated that patients in the low category have an odds ratio for 

mortality of 4.0 compared with those who are not, while increasing age was also found to 

predict mortality (O'Daly et al. 2010).  The normal range of total lymphocyte counts for 

adults is reported to be 800-2600 cells per millilitre (Family Practice Notebook LLC 2012).  

Finally, haemoglobin level measured on admission showed that patients with anaemia have 

an increased risk of mortality at six and 12 months, but not at three months or in-hospital 

(Gruson et al. 2002). 

Additionally, Fischer and Johnson reported that low body mass index (BMI) (and low weight 

/ rapid weight loss), which is frequently reported the elderly and is caused by numerous 

physiological, psychological and social factors, stands alone as a high risk factor for mortality 

and morbidity in the older population (Fischer and Johnson 1990).  

 

  



 

 

124 

 

4.5 Other influencing factors 

As with length of stay, there are a plethora of publications which have investigated factors 

influencing mortality and thus only a sample of these are considered here.  As in Chapter 3, it 

is also not possible to compare some published conclusions with results found in the analysis 

presented in this chapter due to data restrictions. 

Medical complications have been reported several times to be a significant predictor of 

mortality for hip fracture patients.  For example, it has been shown that patients with chronic 

obstructive pulmonary disease (COPD) have an estimated 60-70% higher risk of death than 

those without COPD, after suffering from hip fracture (de Luise et al. 2008).  Male veterans 

requiring transfusions were also shown to have a higher probability of death at 30 days than 

those who did not, while type of treatment was also shown to be an influencing factor 

(Radcliff et al. 2008).  It has been reported that hip fracture patients who develop a medical 

complication after their operation have more than three times the probability of dying within 

one year post-fracture compared with those with no complications (Sexson and Lehner 1987), 

while Svensson et al showed that mortality at one year post-fracture could only be predicted 

by the number of current medical conditions (Svensson et al. 1996).  Patients who have 

suffered a recent myocardial infarction (heart attack) are also at a much greater risk of dying 

(Komarasamy et al. 2007).  The use of diuretics has also been shown to be the strongest 

independent predictor of mortality post-fracture, while the use of statins was associated with 

higher survival rates (Juliebø et al. 2010).  Another study reported that patients with multiple 

comorbidities and clinically diagnosed postoperative complications, such as chest infections 

and congestive heart failure (CHF), were at a significantly higher risk of mortality (Roche et 

al. 2005). 

One study analysed life expectancy at follow-up for hip fracture patients and showed that 

long term survival is dependent upon social dependence pre-fracture and age only.  

Interestingly, social dependence at six months was not found to be a significant predictor 

(Jensen 1984).  Here social dependence was assessed by patient dependence on the social 

welfare system and ranked on a four-scale classification system (Thomas and Stevens 1974). 

Type of anaesthetic procedure were investigated with respect to hip fracture surgery and 

subsequent patient outcome, where it was shown that risk of death was lower for regional 
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anaesthesia than for general anaesthesia.  Statistical investigation showed that mortality 

decreased significantly for one of the regional anaesthesia types, namely the combined 

peripheral nerve block technique, but not the other, neuraxial block technique (Karaca et al. 

2012).  On the other hand, it was shown in an earlier study that the choice of anaesthesia 

(regional or general) made no impact upon postoperative 30 day mortality (O'Hara et al. 

2000). 

Hospital-wide nurse staffing levels and in-hospital hip fracture patient mortality were shown 

to be associated in a large retrospective American study, where it was shown that the odds of 

dying in hospital decreased by 0.16 for each additional full-time equivalent registered nurse 

per patient day (Schilling et al. 2011).  Another study, which included but was not exclusive 

to hip fractures, also concluded that nurse staffing levels influenced in-hospital mortality 

rates, as did high hospital occupancy on admission, seasonal influenza and being admitted at 

the weekend (Schilling et al. 2010).   

Overall patient volumes handled by hospitals have also been shown to influence mortality, 

specifically for intertrochanteric hip fracture patients.  It was shown that the risk of mortality 

was higher for hospitals which have fewer patients; specifically that hospitals with surgeons 

who treated just two or three cases per year had significantly higher mortality than hospitals 

that employed the surgeons treating the highest volume of cases (Forte et al. 2010).  A similar 

study showed that there was a significantly greater risk of death in-hospital for patients 

treated by surgeons treating less than seven cases per year, but overall hospital volume did 

not influence mortality.  It was shown, however, to negatively impact upon postoperative 

infection rates, with lower volume hospitals experiencing greater rates of infection (Browne 

et al. 2009).   

A large study of over a quarter of a million patients investigated the effect of hospital type on 

outcome prior to discharge.  While the setting (urban/rural) and teaching status 

(teaching/non-teaching) were found to have very little impact on in-hospital outcome, it was 

concluded that age, male sex and, notably, an increased surgical delay, were risk factors for 

in-hospital mortality (Koval et al. 2011).  However, an earlier study gave an opposing 

conclusion; type of hospital was shown to have a significant effect of in-hospital mortality, 

with teaching hospitals having a lower risk of death compared with urban community 
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hospitals.  There was also a higher rate of mortality reported for rural hospitals (Weller et al. 

2005).   

The presence of cerebral dysfunction prior to operation for hip fracture was shown to increase 

the probability of death, while other influencing factors included older age and male gender 

(see Sections 4.4.3 and 4.4.4 respectively) (Miller 1978).  This result is supported by the 

inclusion of mental state as a predictor for mortality, shown earlier in this chapter.  Similarly, 

the relative risk of mortality for hip fracture patients who scored poorly on a mental status 

test was shown to be 2.3 times higher than for those who did not (Meyer et al. 2000), while 

the relative risk of death was reported as 6.96 higher for patients with poor mental status by 

another study (Alegre-López et al. 2005).  Both of these latter studies also reported poor 

mobility pre-fracture as a predictor for mortality for hip fracture patients (see Section 4.4.1).   

One study stated many of the same variables as given here as the most prominent variables 

influencing mortality, namely ASA grade, poor mental health, male gender and increasing 

age.  Mental health was measured using the Short Portable Mental Status Questionnaire 

(SPMSQ), an easily administered ten item questionnaire designed specifically for assessment 

of the cognitive impairment of elderly patients (Pfeiffer 1975).  The advantage of this was 

that the SPMSQ score could be used to provide additional information about the predicted 

survival time of patients (Söderqvist et al. 2009).    

The level of rehabilitative care categorised by three groups, orthopaedic hospital, geriatric 

hospital or none (discharged home) was shown to have no impact on mortality or morbidity 

for proximal femoral fracture patients of normal mental status, while an improvement in 

Activities of Daily Living (ADL) score was seen across all three groups within six months 

post-fracture (Röder et al. 2003). 

A large American study (324,988 patients) investigated the notion of the so-called “July 

effect”; that is, whether mortality rates differ by month for hip fracture patients.  The relative 

risk of mortality was found to be 12% greater at teaching hospitals during July and August, 

compared with non-teaching hospitals (Anderson et al. 2009). 

Finally, it has been shown that type of surgery (arthroplasty, dynamic hip screw or nails) does 

not influence the risk of mortality at one year, but that the probability of hip dislocation post-

surgery was affected (Geiger et al. 2007).  Another study measured whether type of surgery 
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(hip replacement or not) influenced six separate patient outcomes, including mortality, at six 

weeks, six months and one year post-discharge.  No differences were found for any of the 

outcomes for any of the three follow-up periods (Burns et al. 1999).  However, Bhandari et al 

reached the opposite conclusion after performing a review of the literature.  A trend towards 

an increased relative risk of death within four months was shown for arthroplasty compared 

with internal fixation, while increases in infection rates were also reported (Bhandari et al. 

2003). 

 

A particularly interesting result has been reported by a Japanese study, which investigated the 

relationship between length of stay and mortality.  It was shown that a shorter length of stay 

was associated with in increased risk of mortality, and it is suggested that this is due to 

patients being discharged to a rehabilitation unit before they are really ready (Kondo et al. 

2010b).  A similar study comparing this relationship between Japan and the United States of 

America concluded that for every additional ten days spent in hospital after surgery, the risk 

of dying was reduced by 26% (Kondo et al. 2010a). 
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4.6 Odds ratio, relative risk and Chi-square analysis 

A particular area of interest is looking at to what extent, if any, operative delay is related to 

the mortality of a patient.  This was not considered in the previous section as it is inspected to 

a much greater detail here.  There are two definitions to be used here for operative delay; 

more than one day and more than two days.  Results between the two can then be compared.  

Using traditional convention for these types of analyses, the „exposed‟ group is defined as 

those patients who do not have an operation within the specified time.  An introduction to 

these techniques is given forthwith.  Observed numbers quoted throughout this section may 

not be consistent due to missing data; the maximum number of observations available here 

was 2109. 

Previous analysis has classified a delay to operation as a wait of more than two calendar days.  

This was done to keep in line with the majority of other studies on this topic, published 

guidelines and the advice of clinicians.  As a comparison, this section also extends to looking 

at a delay of more than one calendar day. 

An odds ratio (OR) describes the association between two binary data values; that is, whether 

the probability of a certain event occurring is the same for two groups.  This type of 

calculation thus lends itself well to the investigations into delay here, where the two binary 

variables under consideration are delay and mortality.  Indeed, odds ratios are used widely in 

medical reports (Bland and Altman 2000), in part due to this suitability to analyse mortality 

as well as the straightforwardness of calculation and interpretation.  The odds ratio is the ratio 

of the odds of an event (a death) occurring in one group to the odds of it occurring in another 

group.  An odds ratio of one therefore implies that the event is equally likely in both groups.  

It is limited by the lower bound of zero since it cannot return a negative value, but there is no 

upper limitation, resulting in a skewed distribution. 

Consider the joint probability distribution of the binary random variables X  and ,Y  as 

displayed in Table 4.6i.  The probability ijp  represents the joint probability that X  returns a 

value of i  and Y  returns a value of ; , 0, 1.j i j    The odds ratio is defined as 00 11

01 10

p p

p p
.  

Counts may be used instead of probabilities, as seen in the subsequent calculations, and the 

same result is returned. 
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Table 4.6i: The joint probability distribution of two binary random variables, X and Y 

 Y = 0 Y = 1 

X = 0 00p  
01p  

X = 1 10p  
11p  

 

Note that any odds ratios returned here will not necessarily be equivalent to those given in a 

logistic regression.  The logistic regression procedure requires complete data across all 

observations and included many more parameters, while an odds ratio requires just the two 

variables of delay and mortality. 

The relative risk (RR) involves a similar calculation to that of the odds ratio, but will always 

return a smaller value.  It is the risk of the event occurring, relative to the exposure; that is, 

the ratio of the probability of the event occurring in the exposed group versus the non-

exposed group.  The relative risk asymptotically approaches the odds ratio for small 

probabilities.  Consequently if the event is not rare, then the odds ratio can overestimate the 

relative risk (Zhang and Yu 1998), resulting in what may be a misleading approximation to 

the relative risk (Davies et al. 1998).  For this reason, both the OR and RR values are 

calculated.  Using the notation introduced in Table 4.6i, the relative risk for the random 

variable X  to occur (take a value of 1) is given by 
 

 
00 00 10

01 01 11

/
.

/

p p p

p p p




 

Chi-square contingency tables are used to record the relationship between two or more 

variables in order to assess whether or not there is an association between variables.  Here a 2 

x 2 contingency test is used (i.e. two rows by two columns), since there are two variables, 

each of which can take two levels.  Expected theoretical frequencies of each event are 

calculated using  

2 2

, ,

1 1
, ; , 0,1

i k k j

k k
i j

O O

E i j
N

  
 

 

where ,i jE  represents the expected frequency in row ,i  column ,j  ,i jO  represents the 

observed frequencies in the same location and N  is the total number of observations. 
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The test statistic is then calculated as 

 
2

4
2

1

i i

i i

O E
X

E


 , 

where iO  is an observed frequency and iE  is the expected theoretical frequency for each cell 

, 1,..., 4.i i 
 
 Here 2X  asymptotically approaches a Chi-square  2  distribution with one 

degree of freedom. 

 

4.6.1 Three definitions of delay  

It appears that there is some discrepancy in the literature on how a delay is classified and 

clearly this will have knock-on effects when statistical results are calculated.  By creating 

three groups of delay definition, further investigation into the impact of this can be 

undertaken; these are (1) operation after two days of admission, (2) operation between one 

and two days and (3) operation within one day of admission.  To clarify, consider a patient 

admitted on a Monday.  If their surgery was performed on Monday or Tuesday, they would 

be in group (3), if it was performed on Wednesday, they would be in group (2) and if it was 

performed on Thursday or later then they would be in group (1).  Results are presented in 

Table 4.6.1i. 

 

Table 4.6.1i: Timing of operation against death on the acute ward 

Frequency 
Acute ward outcome 

Total 
Dead Alive 

(1) Operation after two days 121 740 861 

(2) Operation between one day and two days 36 394 430 

(3) Operation within one day 65 677 742 

Total 222 1811 2033 

 

The percentage of acute deaths seen within the group experiencing one day delay and the 

group experiencing one to two days delay are remarkably similar, 8.76% and 8.37% 

respectively, whereas deaths within the group experiencing a delay of more than two days are 
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14.05%.  Overall there is a significant relationship here between delay and acute ward 

outcome, Chi-square p = 0.0005.  However, if pairwise comparisons are made then some 

interesting results are found, see Table 4.6.1ii. 

 

Table 4.6.1ii: Results when comparing the three definitions of delay for acute ward outcome 

Comparison Chi-square p-value 

(1) versus (2) 0.0032 

(1) versus (3) 0.0010 

(2) versus (3)  0.8195 

 

These results show that a cut-off of two days produces the most statistically different results 

when investigating an association between delay and acute ward outcome.  There appears to 

be no difference if patients undergo surgery within one day or between one and two days, but 

after this very significant results are seen.  A summary, using this cut-off, is given in Table 

4.6.1iii. 

The Chi-square contingency test here suggests that the two variables are not independent, p = 

0.0001.  The odds ratio is 1.734, with a 95% confidence interval of [1.310, 2.295] and the 

relative risk is 1.631, with a 95% confidence interval of [1.271, 2.092]. 

Each of these three results are in accordance with those previously presented and indicate that 

there is a significant association between mortality and whether patients are operated on 

within or after two days of admission.  

 

Table 4.6.1iii: Frequency of operation within or after two days against death on the acute 

ward 

Frequency 
Acute ward outcome 

Total 
Dead Alive 

Operation after two days 121 740 861 

Operation within two days 101 1071 1172 

Total 222 1811 2033 
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4.6.2 Operation type and ASA grade analysis 

This analysis is now repeated for each operation type and ASA grade grouping, see Tables 

4.6.2i and 4.6.2ii.   

Of the six operation types, three could be analysed singularly to adhere to the convention of 

requiring at least five entries in each cell for a Chi-square analysis.  In one of these three 

cases, namely for type B (dynamic hip screw), the same conclusions of a statistically 

significant result were reached, whereas results for types D (intramedullary nail) and E 

(hemiarthroplasty) were insignificant, although this was borderline for operation type E at the 

95% level of significance. 

An operation after two days of arrival is shown to significantly increase the risk of mortality 

for ASA grade III patients, while for ASA grades I&II and IV, the two variables of acute 

ward mortality and operation within two days of arrival were shown to have no significant 

association.  These results correspond with those found previously via logistic regression.   

 

Table 4.6.2i: Frequency of operation within or after two days against death on the acute 

ward, by operation type 

Operation type n 
Chi-square 

p-value 

Odds ratio 

[95% C.I.] 

Relative risk 

[95% C.I.] 

B 743 0.0055 
1.896 

[1.201, 2.992] 

1.758 

[1.176, 2.627] 

D 205 0.1788 
1.789 

[0.760, 4.213] 

1.668 

[0.786, 3.544] 

E 743 0.0543 
1.511 

[0.990, 2.304] 

1.428 

[0.991, 2.057] 

 

Table 4.6.2iii: Frequency of operation within or after two days against death on the acute 

ward, by ASA grade 

ASA grade n 
Chi-square 

p-value 

Odds ratio 

[95% C.I.] 

Relative risk 

[95% C.I.] 

I&II 751 0.2429 
1.486 

[0.761, 2.900] 

1.456 

[0.773, 2.741] 

III 1061 0.0068 
1.673 

[1.149, 2.436] 

1.573 

[1.230, 2.191] 

IV 190 0.5268 
0.816 

[0.434, 1.533] 

0.870 

[0.567, 1.335] 
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4.6.3 Data restrictions 

There is some information available regarding mortality at four months post-discharge.  

However, this was not collected for the full time period for which data is available.  For the 

range of dates when this was collected, it is only complete in around half of all cases, so any 

accurate analysis is not possible here.  Future improvement in data collection would mean 

that this would be an interesting avenue to explore.  UHB outcome is another recorded data 

item which again was not complete in many cases.  Since the incident rate is relatively low, 

small frequencies of death can have a considerable impact on results. 

 

4.6.4 Results from the literature 

Conclusions in the literature are varied and wide-ranging, a selection of which is now 

discussed.  Not all researchers use the same definition of delay and thus results are not 

necessarily comparable with those quoted earlier in this chapter.  The period of follow-up is 

also inconsistent across studies. 

Adjusting for background morbidity using the Charlson Index (Charlson et al. 1987), logistic 

regression was used to show that operative delay does influence one-year mortality, and 

separate odds ratios (all greater than one) were given for varying delay categories.  In-

hospital and one-month mortality were also shown to be influenced by delay (Novack et al. 

2007). 

A delay greater than four days has been shown to increase risk of death post-operation, while 

specifically for delayed patients, it was shown that the risk of death within 30 days was 2.5 

times greater for patients delayed for medical reasons compared with those delayed for other 

reasons (Moran et al. 2005). 

Looking at all patients as a whole, no association between delay (one day between admission 

and surgery) and one year mortality was found.  However, splitting the patients by ASA 

grade showed that for patients with an ASA classification of I or II, operation after one day 

was associated with a significantly higher risk of death within one year, as well as an 

increased risk of post-operative complications (Verbeek et al. 2008), while the same 
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conclusion of lower mortality for surgery within 24 hours was shown by another study to 

hold true regardless of ASA classification (Hamlet et al. 1997).   

However, Orosz et al showed no relationship between both two- and six-month mortality and 

whether or not surgery took place within 24 hours (Orosz et al. 2004), while there is also 

evidence of the opposite conclusion for the same measures (Dorotka et al. 2003b).  Indeed, 

Dorotka et al showed that delay influenced mortality regardless of whether a cut off point of 

six, 12, 18 or 24 hours was used.  There was no difference for patients operated on before or 

after 36 hours. 

Risk of in-hospital death was shown to increase by 1.13 for a one day delay or higher and by 

1.60 for a delay of two days or higher.  The association between delay and mortality was also 

shown to be strongest for patients aged younger than 70 years old and with no comorbidities, 

but was independent of hospital type (Weller et al. 2005).  Classifying a delay as a wait of 

more than 48 hours between admission and surgery, it was shown that in-hospital mortality 

was not associated with delay.  However, predictors of mortality did include some variables 

discussed elsewhere in this chapter, including male sex and older age (Bergeron et al. 2006).  

However, an earlier study showed that an operative delay of more than two days 

approximately doubled the risk of death within the first postoperative year.  After controlling 

for age, sex and the severity of pre-existing medical conditions, an increase in mortality for 

delayed patients was again found but it was not significant (Zuckerman et al. 1995). 

Among other factors, a longer time to surgery was shown to increase the risk of death within 

12 months.  Delay was split into five categories, ranging from less than one day to more than 

ten days.  It was shown that in order to yield one additional survivor, 25 patients waiting 

between one and five days would have to have their wait reduced to less than 24 hours 

(Elliott et al. 2003). 

However, Hommel et al showed that overall mortality was not associated with timing of 

surgery (within/after 24 hours).  In spite of this, it was shown that specifically for medically 

fit patients, one year mortality was significantly higher for patients who experienced an 

administrative delay compared with those not delayed, with mortality rates of 33% and 21% 

respectively (Hommel et al. 2008b).  A separate study in Peterborough showed that a patient 

waiting more than 24 hours for surgery had no increased risk of death at 30 days than a 

patient operated on within 24 hours (Pathak et al. 1997).   
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Instead of operative delay, which was found to have no statistically significant effect on 

mortality, it was shown by Swedish researchers that the delay between the trauma occurring 

and admission to hospital did impact upon risk of death.  Those arriving within six hours of 

injury had a 40% reduction in risk of death within one year post-operation compared with 

those arriving after six hours (Vertelis et al. 2009). 

A study in Spain concluded that any association between timing of surgery and 

morbidity/mortality can be principally explained by medical conditions which cause the 

delay, but after adjusting for this it was still found that a delay over five days impacted upon 

mortality.  This was measured for death in hospital (Vidán et al. 2011). 

Operative delay was also not found to be a significant predictor of in-hospital mortality by 

Lefaivre at el, but a relationship was found between delay and the development of medical 

complications and the risk of pressure sores (Lefaivre et al. 2009).   

Other studies have also concluded that the timing of surgery is not associated with mortality 

for hip fracture patients (Dolk 1990, Holt et al. 2010, Majumdar et al. 2006, Smektala et al. 

2008).  
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4.7 Chapter summary 

This chapter has focussed on determining which factors significantly influence mortality on 

the hip fracture ward and in particular operative delay has been investigated in great detail.  

This has proven to be a complex issue with a large number of variables affecting mortality 

with varying degrees of magnitude, which is an interesting result in itself. 

These results are useful to the hip fracture team for similar reasons as those explained for 

length of stay; namely for planning purposes.  In addition, the families of patients with an 

inflated probability of dying could, if protocol allowed, be given more advanced warning of 

this unfortunate event. 

Again the matter of control must be discussed.  Operative delay is something which can be 

changed with better management and/or an increase in resources or operating theatre 

capacity.  Patients who are delayed have been shown to consistently be associated with an 

increased probability of dying which is a clearly a valuable result.  This was also true when 

patients were divided into more homogenous groups with respect to a certain characteristic of 

interest.  The choice of classifying a delay as a wait of more than two days was also 

investigated and it was shown that this was where significant results did lie. 

The simulation model of the hip fracture ward needs to include some measure of patient 

outcome.  This is explained in more detail in Chapter 6, where in fact discharge destination is 

considered in greater detail than just whether or not the patient survives.  By completing the 

analyses presented here, decisions can be made about which factors should be used within the 

simulation model to segregate patients into distinct groups.  ASA grade has been shown to be 

a very important variable here, as well as for length of stay, and thus is included later for 

modelling purposes. 
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CHAPTER 5: PRINCIPAL COMPONENTS ANALYSIS 

5.1 Introduction 

Principal components analysis (PCA) aims to reduce an original set of variables into a 

smaller set of components, without sacrificing important information contained within the 

data.  The goal is for these new components to be uncorrelated but to represent most of the 

information contained in the original variables.  If the original dataset has a large number of 

variables it may be difficult for any useful interpretation or conclusions regarding 

relationships between variables.  However, by reducing the dimensionality of the data 

through this structural simplification, a few components are left to interpret rather than a 

large number of variables.   

The analysis undertaken is concerned with the variance-covariance structure of a set of 

variables via the method of constructing these new artificial variables, known as components 

or factors.  With a large mass of data, it is often difficult to visualise or comprehend the 

associations that exist between variables within a dataset.  This may then be complicated 

further by the redundancy that can exist between the dimensions of the dataset, which leads to 

high levels of multicollinearity and correlation. 

PCA seeks a linear combination of all of the original variables such that the maximum 

variance is extracted by the data.  This variance will then be removed and a second linear 

combination is sought for which accounts for the maximum variance explained by the 

remaining variables.  The process is completed until all variance is accounted for, thus the 

maximal number of principal components which could be found is equal to the number of 

variables. 

In general, one may perform a principal components analysis to reduce a set of p  original 

variables to m  components, that account for most of the variance of the p  variables.  These 

m  underlying components are inferred from the correlations among the p  variables and are 

estimated as a weighted sum of the p  variables.  The thi  component is thus 

1 1 2 2 ...i i i ip pC W X W X W X     
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where jX   represents variable j  and ijW  represents the weight, or component loading, of the 

thj  variable on the thi  component, 1,..., , 1,..., .j p i m   

Each of the p  variables may also be expressed as a linear combination of the m  

components: 

1 1 2 2 ...j j j mj m jX A C A C A C U      

where ijA  represents the weight of component i  for variable .jX   jU  is the variance unique 

to variable ,j  variance that cannot be explained by any of the components. 

The same data as per Chapters 2 to 4 was used here. 

 

5.1.1  Data 

It would be helpful if the information contained within the Cardiff Hip Fracture Survey 

dataset could be reduced in a similar way here.  There are 27 variables available in total (refer 

to Table 3.1.1i and Table B3.2.1a of the Appendix for those variables under consideration) so 

it is difficult to get a picture of what happens to hip fracture patients as a whole.  If these 

variables could be collapsed then it may make the situation easier to analyse.  It is intuitive 

that there will be some relationship between some of these variables.  For example, one might 

expect that a patient‟s walking ability and mobility score to be highly related; a person is very 

unlikely to have a low walking ability but be highly mobile.  In Chapters 3 and 4, detailed 

investigation was undertaken with regard to length of stay and mortality.  Interestingly, tests 

for multicollinearity between significant predictor variables showed only minor levels of any 

relationships based on recommendations relating to VIF and tolerance values.  However, 

intuition dictates that there will be some association between variables and thus this is 

investigated in this chapter.  Note the distinct difference here however that initially the 

variables are not assessed with regard to any dependent variable. 
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5.2 Principal components analysis on the Cardiff Hip Fracture Survey data 

It was decided to perform an initial principal components analysis on the variables that 

describe a patient‟s condition and situation on, or soon after, their arrival.   

The reason for this is as follows; when a new patient is admitted to the ward, the medical 

team will only have a certain amount of information available.  This includes admission and 

patient details, as well as some medical diagnosis information.  The latter may not be readily 

available but should present itself in the early part of a patient‟s stay.  All of these factors will 

influence decisions made by the hip fracture team, as well as help them to plan for the future.  

While it may be interesting to look at later, obviously discharge, hospital stay and follow-up 

information is unavailable at this time, as these things are yet to happen.  These aspects were 

also looked at in detail in Chapters 3 and 4 and therefore further scrutiny is not deemed 

necessary.  The same variables that were used as predictors in those chapters are again used 

here. 

The active dataset to be used for the principal components analysis has thus been reduced to 

containing 13 variables of the original 27, and contains almost 2000 observations.  Since 

many of the variables are categorical here, a technique called CATPCA (CATegorical 

Principal Components Analysis) is employed.   

 

5.2.1 Method 

The statistical package SPSS (SPSS© 2007) was used for this analysis.  Since both nominal 

and ordinal variables are being used, a normalisation procedure must be utilised to convert 

the numerical codes and scores into values that can be used for this type of analysis.  There 

are several rotation options available, the most desirable here being variable principal, which 

is also the most commonly used rotation method.  This coordinate rotation is used to align the 

transformed axes with the directions of maximum variance, without changing the relative 

location of points on the axes to each other.  

The outcome of a principal components analysis includes the factor loadings matrix, which 

represents correlations that exist between the original variables and the new components.  
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Cross loading, where variables are highly correlated with more than one component, is 

undesirable and the rotation helps to avoid this. 

The rotation option chosen optimises the association between variables, and since this is the 

overall aim of this analysis then it is the preferred option here.  Its goal is to minimise the 

complexity of the components by making the large loadings larger and the small loadings 

smaller within each component; components are simplified by maximising the variance of the 

loadings across variables and within components. Principal components can either be devised 

from the correlation matrix, denoted by ,  or by the covariance matrix, .   The method 

explained here uses the correlation matrix, which has the added benefit that results are easier 

to interpret; the component loadings are standardised across all observations to have a mean 

of zero and standard deviation of one.  The covariance matrix is unstandardised and can be 

sensitive to scale differences across the variables, so is less appropriate here. 

For the following analysis, other methods were also tried but proved to differ very little from 

using the variable principal normalisation approach.   

The scaling level of each variable is another option that can be explored.  For each ordinal 

categorical variable, it was decided that they would be classed as spline ordinal, as opposed 

to merely ordinal.  The result of this is that the resulting transformation is a smooth 

polynomial, instead of a jagged fit which merely „joins the dots‟.  Each variable carried an 

equal weight of one. 

There are several methods used to determine the number of principal components to retain, 

two of which are considered here: 

 

• Kaiser’s rule 

Each principal component produced by a PCA has an eigenvalue associated with it, 

calculated in the usual manner.  Consider the eigenvalue-eigenvector pair  , ,i ie  calculated 

from the correlation matrix   of the original p  variables, 1, ..., pX X , and the m  principal 

components, 1, ..., .mC C   Kaiser recommended that only components with an eigenvalue 

greater than or equal to one should be considered for inclusion (Kaiser 1959).  This is akin to 

requiring each principal component accounting for at least as much variation as one of the 
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original variables, thus ensuring that no component is retained which is of less value than an 

original variable. 

 

• Proportion of variance 

A pre-specified amount of variation to be accounted for by the components may be decided, 

so that once the proportion of variance accounted for has been cumulatively reached by the 

components, no further components are considered.  Alternatively a proportion of variation to 

be contributed by each component may be specified.  The proportion of variation accounted 

for by the thi  component, of a final m  components, is calculated by i

m


. 

Note that there is still scope for subjectivity here and these rules should not necessarily be 

strictly adhered to, particularly if results become uninterpretable.  One may sacrifice retaining 

a higher proportion of variance in return for fewer components, for example, if it makes later 

analysis easier. 

 

5.2.2  Results 

Using the default value of two dimensions, both principal components were found to be 

significant using Kaiser‟s rule.  The eigenvalues found were 3.606 and 1.897 for Component 

1 and Component 2 respectively.  Varying the number of dimensions to be returned resulted 

in more components with eigenvalues greater than one; however on closer inspection the 

additional components were not interpretable in terms of the factor loadings.  Keeping more 

components would mean that a higher proportion of variation is retained but it was decided to 

not do this here in order to yield interpretable results.  This meant that in total 42.3% of the 

original variance is accounted for by the new principal components; 27.7% by Component 1 

and 14.6% by Component 2.   

The factor loadings for the two retained components are given in Table 5.2.2i. 
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Table 5.2.2i:  Component loadings  

Variable 
Component 

1 2 

Admfrom 0.674 -0.050 

Walking0 0.885 -0.015 

Walkaid0 0.605 -0.025 

Mobility 0.876 -0.016 

Mentalst 0.669 -0.083 

WAASP 0.582 -0.075 

Fractype 0.107 0.967 

Optypenew_n -0.098 -0.963 

ASAnew_n 0.436 0.003 

SexM 0.113 -0.045 

Side -0.003 -0.005 

Age 0.466 -0.018 

Opdelay -0.081 0.129 

 

Component 1 thus becomes: 

 

Component 1 0.674( ) 0.885( 0) 0.605( 0)

0.876( ) 0.669( ) 0.582( )

0.107( ) 0.098( _ ) 0.436( _ )

0.113( ) 0.003( ) 0.466( ) 0.081(

Admfrom Walking Walkaid

Mobility Mentalst WAASP

Fractype Optypenew n ASAnew n

SexM Side Age Opdel

  

  

  

    )ay

 

 

Component 2 is formulated in the same way. 

 

It is easier to view these results graphically; a plot of the factor loadings of Component 1 

against those of Component 2 can be seen in Figure 5.2.2ii.  It can be seen that there are no 

variables which have a high negative loading on Component 1, while there are only two, or 

arguably three, variables which have a loading value of note on Component 2.  Most 

variables are positively loaded on Component 1, with varying degrees of magnitude.   

Since these values represent correlations, a general rule of thumb is to regard an absolute 

value greater than 0.6 as a strong correlation, absolute values between 0.4 and 0.6 as 
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moderate correlation, and anything less than an absolute value of 0.4 as weak correlation.  

Using this as a guide, five of the loadings on Component 1 would be classed as strong, three 

as moderate and five as weak.  Component 2 shows just two strongly loaded variables, the 

remainder having small absolute values. 

 

 

 Figure 5.2.2ii: The factor loadings by variable of Component 1 against Component 2 

 

Those variables which are highly loaded on the first component include walking ability pre-

fracture, mobility score and walking aids used pre-fracture.  This is intuitive; the variables 

that can be seen to be highly loaded on Component 1 would be expected to have some kind of 

positive correlation.   

The nominal variables of fracture type and operation type seem to be working against each 

other; a high value for one would mean a low value for another.  Despite the fact that these 

are coded as nominal variables in SPSS (thus rendering the number used to assign fracture 

and operation types meaningless), there is evidently still some relationship.  Component 2 is 

therefore driven almost completely by the type of fracture incurred by the patient and the 

operation type performed on them.  Looking at the frequencies in a cross-tabulation of these 

two groups confirmed this to some extent.  A Chi-square test also indicated a significant 

relationship at the 5% level.  However, the relationship is not very clear cut.  Plotting each 

patient‟s component scores according to operation type shows tiers that correspond to these 

types, as in Figure 5.2.2iii. 
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Figure 5.2.2iii: A plot of Component 1 against Component 2 

 

It is also interesting to look at those variables which are weakly loaded on both components.  

It can be seen that side of fracture and sex are both very close to the origin in Figure 5.2.2ii 

and therefore are not guided by these components at all.   

 

5.2.3 Conclusion 

In conclusion, the data has been reduced to just two principal components, thus there has 

been a rather considerable decrease in dimensionality.  However, in doing this, only 42.3% of 

the original variation in the data has been accounted for, so a trade-off between collapsing the 

dataset and retaining as much information as possible can be seen.   

The first component retained seems to represent the medical condition of the patient, in 

particular with regards to aspects relating to how mobile the patient is, while the second 

component relates to the injury sustained and treatment given. 
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5.3 Principal components regression 

Using the principal components found earlier, a regression analysis was performed to assess 

whether this reduced dataset could be used to predict length of stay and mortality.  The 

dependent variables thus become length of stay and acute ward mortality, while the 

independent predictors are now the two components; each patient will have a score for both 

components, based on their values for the original 13 variables. 

Note that multicollinearity is not an issue here since the predictor variables (the components) 

must be independent and uncorrelated by definition of principal components analysis 

methodology.   

 

5.3.1 Length of stay 

• All data 

Initially all data was grouped together for this analysis.  The natural logarithm of length of 

stay was taken in order to fulfil the assumptions of linear regression.  A residual plot displays 

that the assumption of random error is satisfied, see Figure 5.3.1i. 

 

 

Figure 5.3.1i: Plot of Predicted Value against Residual for the principal components 

regression model 
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A plot of the predicted against the observed values produces the scatter plot seen in Figure 

5.3.1ii.  It can be seen that there is some positive trend, so a regression is therefore viable.  

However, a lot of variation can still be seen and the trend is only marginal, so the regression 

may not produce a particularly good fit.  However, running the regression analysis produced 

a significant model according to the ANOVA statistic (p < 0.0001) and the parameter 

estimate results obtained are given in Table 5.3.1iii. 

 

 

Figure 5.3.1ii:  Predicted Value against Observed for the principal components regression 

model 

 

Table 5.3.1iii: Parameter estimates given by the principal components regression model 

Variable Parameter estimate Standard error F-value Pr  > F 

Intercept 3.0500 0.0174 30876.4 < 0.0001 

Component 1 0.2472 0.0176 197.33 < 0.0001 

Component 2 0.0413 0.0170 5.94 0.0149 

 

It can be seen that all parameters are highly significant and thus the model becomes: 
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However, the 2R  value of 0.0933 shows that this is not a particularly good fit by this 

measure, as expected on inspection of Figure 5.3.1ii. 

 

• Analysis by type of operation 

Despite the fact that Component 2 was found to be significant, it was decided to rerun the 

analysis excluding this component since it essentially was comprised of the type of fracture 

and operation performed.  The new analyses would therefore be done within each type of 

operation. 

There are six different types of operation here so results are not discussed for each case.  

Instead operation type C, Screws, is focussed upon.  This left 242 observations available for 

analysis.  The following two plots show a random scatter of errors and a positive regression 

trend respectively, suggesting that linear regression is a valid tool to be used here. 

 

 

Figure 5.3.1iv: Plot of Predicted Value against Residual for the principal components   

regression model, operation type C only 
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Figure 5.3.1v: Predicted Value against Observed for the principal components regression 

model, operation type C only 

 

The F-test again showed that the regression model was significant (p < 0.0001); results of the 

regression model are given in Table 5.3.1vi. 

 

Table 5.3.1vi: Parameter estimates given by the principal components regression model, 

operation type C only 

Variable Parameter estimate Standard error F-value Pr  > F 

Intercept 2.1898 0.0526 2877.66 < 0.0001 

Component 1 0.4435 0.0466 90.68 < 0.0001 

 

The regression model is therefore  

   
 2.19 0.44 Component 1

ln 2.19 0.44 Component 1

or, .

LoS
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A considerably better 2R  value of 0.2742 is now observed.  It appears that removing 

Component 2 from the analysis and running a regression analysis within each type of 

operation yields better results.  This was therefore repeated for each other type of operation 

and the results are seen in Table 5.3.1vii.  Note that these are the results to predict the natural 
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logarithm of length of stay.  No model could be found for operation type G, Other, but all 

other models were found to be significant.   

 

Table 5.3.1vii: Summary of results for principal components regression analysis, by type of 

operation  

Operation Type n Intercept estimate 
Estimate of constant 

for Component 1  
2

R
 

Dynamic hip screw (B) 728 3.0747 0.2030 0.0638 

Screws (C) 242 2.1898 0.4435 0.2742 

Intramedullary nail (D) 202 3.2047 0.2295 0.0791 

Hemiarthroplasty (E) 720 3.1189 0.1323 0.0248 

Total hip arthroplasty (F) 74 3.0912 0.4458 0.1037 

Other (G) 15 - - - 

 

It can be seen that the success of each model, using 2R  as a measure, varies between 

operation types.  In particular, operation type E has a very low 2R  value and, unlike with 

operation type C, nothing can really be gained from this analysis. 

 

5.3.2 Mortality  

Logistic regression was employed here, as per the methodology described in Chapter 4, to 

assess whether the principal components can be used as predictors for acute ward mortality. 

The various validation procedures described and undertaken previously were used here and, 

where a model is quoted later, each time indicated that the model provided a significant fit. 

 

• All data 

Component 2 was not found to be a significant variable when performing logistic regression 

on all of the data, so was excluded.  The parameter estimates and their associated significance 

levels are seen in Table 5.3.2i, with odds ratio information in Table 5.3.2ii. 
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Table 5.3.2i:  Parameter estimates for the principal components logistic regression model 

Variable 
Parameter 

estimate 

Standard 

error 

Wald 

Chi-Square 
Pr > ChiSq 

Intercept -2.3135 0.0872 703.43 < 0.0001 

Component 1 0.8341 0.0829 101.14 < 0.0001 

 

The model thus becomes  

   

  2.31 0.83 Component 1

logit 2.31 0.83 Component 1

1
or, 

1 e




 

  




 

where   represents the probability of dying on the acute ward, as previously.  The maximum 

re-scaled value of 2R  was found to be 0.1141.   

 

Table 5.3.2ii:  Odds ratios for the parameter estimates of the principal components logistic 

regression model 

Variable 
Adjusted 

OR 

95% Confidence 

Interval for OR 

Component 1 2.303 [1.957, 2.709] 

  

For every unit increase in the score for Component 1, the odds of dying on the acute ward 

more than double.  Component 1 captured various aspects of patient medical condition and 

treatment, with a higher score indicating poorer medical fitness.   

 

• Analysis by type of operation 

This analysis was repeated by type of operation and results are included here again initially 

for operation type C, see Table 5.3.2iii.  The maximum re-scaled 2R  achieved in this case 

was 0.3528 and odds ratio results are given in Table 5.3.2iv.   

The model thus becomes  

   

  3.87 2.01 Component 1

logit 3.87 2.01 Component 1

1
or, .

1 e
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Table 5.3.2iii: Parameter estimates for the principal components logistic regression model, 

operation type C only 

Variable 
Parameter 

estimate 

Standard 

error 

Wald 

Chi-Square 
Pr > ChiSq 

Intercept -3.8719 0.6428 36.28 < 0.0001 

Component 1 2.0055 0.5382 13.88 0.0002 

 

Table 5.3.2iv: Odds ratios for the parameter estimates of the principal components logistic 

regression model, operation type C only 

Variable 
Adjusted 

OR 

95% Confidence 

Interval for OR 

Component 1 7.430 [2.587, 21.336] 

 

For every unit increase in the score for Component 1, the odds of dying on the acute ward 

increase by 7.4.  

This analysis was repeated for each other type of operation and results are summarised in 

Table 5.3.2v.  No model could be estimated for operation type G since all patients had the 

same outcome of survival.  Component 1 was not found to be a significant estimator for 

operation type F and therefore no 2R  value is given.  As it was seen with length of stay, 

particularly good fits are not gained for each other type of operation.   

 

Table 5.3.2v: Parameter estimates for the principal components logistic regression model, by 

type of operation ( 2R  – maximum re-scaled value of 2R ) 

Operation Type n Intercept estimate 
Estimate of constant 

for Component 1 
2

R  

Dynamic hip screw (B) 728 -2.4812 0.9461 0.1335 

Screws (C) 242 -3.8719 2.0055 0.3528 

Intramedullary nail (D) 202 -2.0943 0.5483 0.0501 

Hemiarthroplasty (E) 721 -2.0000 0.6530 0.0718 

Total hip arthroplasty (F) 74 -3.5835 - - 

Other (G) 15 - - - 

 



 

 

152 

 

5.4 Chapter summary 

While CATPCA was useful in terms of collapsing the dataset, it has not proved to be 

especially useful in the further analysis seen here.  However, it may be argued that sometimes 

finding out what cannot be achieved is as insightful as finding out what can be achieved.  

While a patient‟s overall physical and medical condition may be captured by Component 1, 

collapsing these into one variable does possibly oversimplify the problem.  It has therefore 

become apparent that length of stay and mortality cannot be predicted particularly accurately 

by this simplification, but this highlights a problem inherent in healthcare.   

When all variables were included (Chapters 3 and 4) and thus the dataset was not simplified 

at all, a particularly good fit could still not be found.  While less useful practically, it is still 

interesting to note that this is an area of considerable difficulty in a retrospective statistical 

manner, as well as for the healthcare practitioners working in real time.  Even when all the 

information is known, there are still problems in this area.  Two patients who may be equal 

„on paper‟ can still perform differently in terms of length of stay and mortality.  The 

regression equations given may therefore not be completely accurate in terms of being able to 

substitute values in to gain an entirely correct prediction of a length of stay or mortality, but 

they do at least give some insight into which factors are important in these areas, while also 

providing the insight that these patient outcomes are difficult to predict! 
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CHAPTER 6: MODELLING THE TRAUMA HIP FRACTURE WARD 

6.1 Introduction 

Previous chapters have focussed largely on statistical data analyses.  In this chapter, insight 

gained from these analyses, alongside additional investigations, is used to model the trauma 

hip fracture ward at the University Hospital of Wales.  (In fact, specifically it is the patients 

who are modelled; a hip fracture ward, as such, does not exist physically.)   

Using the information and conclusions drawn, two discrete event simulation (DES) models 

were built, referred to here as Model I and Model II.  The process undertaken for this is 

discussed in detail, alongside verification and validation procedures.  Though similar in some 

aspects, the two models also have some distinct differences, brought about due to extra data 

being made available throughout the course of this study.  Once the models were deemed fit 

for purpose, they were used to analyse a number of what-if situations.  This chapter focuses 

on these models and how changes within the system may affect its performance.  Key 

outcomes include bed occupancy and patient discharge.   
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6.2 The suitability of simulation for this project 

Before the DES model building process is explained in detail, first it must be considered why 

simulation is an appropriate tool to use here. 

Simulation models are built to represent the main features of a system.  While a simulation 

cannot fully imitate a complex system, once it is validated and believed to accurately 

represent the system, then it can be used to explore different strategic or tactical management 

options or to gain a better understanding of how it works.   

The reasons and benefits of using simulation are manifold.  Mathematical models are often 

too intractable or too simple and the system may be too complex to analyse using this 

method.  Parameters are easy to amend in a simulation to assess their impact on results of 

interest, while real-life changes may not be as safe or as viable, particularly in a limited 

timescale.   

While randomness is undesirable in any system, it is inherent in healthcare and capturing this 

variability is paramount to designing a useable and realistic model (Davies 1985, Harper and 

Shahani 2002, Lee et al. 2003, Utley et al. 2005).  In this case, one example is that arrivals to 

the hip fracture ward cannot be predicted deterministically.  While estimates of an arrival can 

be made based upon historical data, the number of arrivals on any given day, or indeed the 

inter-arrival time between patients, is not known until these events actually occur.  The 

frequency and duration of events may only be known probabilistically, and thus a stochastic 

model is required.  Discrete event simulation can handle this stochastic behaviour.  The 

variation in the system is taken into account by taking samples from appropriate probability 

distributions.  Since a single run of the simulation is therefore a sampling experiment, 

replications are required. 

The objective here was to use DES to model trauma hip fracture patients at the UHW.  

Simulation is a technique that is apt to this objective due to the benefits described previously.  

The purpose of this exercise is to identify and investigate factors which are important to what 

happens on the ward.   

 



 

 

155 

 

6.2.1 Visual Basic for Applications 

Both of the simulation models used here were built using Visual Basic for Applications 

(VBA) for Excel.  There are a number of advantages of using this computer program and 

consequently it was chosen as an appropriate tool here.   

One of the main benefits of using VBA is that the simulation model can be run by anyone 

familiar with Microsoft Excel, a very popular and globally-available computer package.  

Indeed, another user could modify the input parameters, or even the code, on which the 

model is based.  Another advantage is the abundant flexibility provided by VBA and 

Microsoft Excel, both in terms of model design and results collection.  Finally, no specialist 

software is required; users of the model are likely to be from the healthcare profession and 

are unlikely to have access to other, more specialist, simulation software packages. 
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6.3 Model I formulation 

This study originally came about as clinicians within the hospital were concerned about the 

treatment that this patient group were receiving.  Some patients were experiencing a 

considerable delay between admission and operation, which is not only distressing for the 

patient but is shown to have detrimental knock-on effects (see Chapters 3 and 4).  Operative 

delay would therefore be incorporated into the model where appropriate.  The model was 

developed for two primary reasons.  Firstly, model development inherently means a critique 

of the current system and its data.  Secondly, parameters within the model can be adjusted in 

order to safely investigate the impact of system changes in a timely manner.  

 

6.3.1 The National Hip Fracture Database 

In March 2007, the data collection procedure at the UHW for hip fracture patients was 

adjusted.  Many of the same variables were collected, but the database was brought in line 

with the National Hip Fracture Database (NHFD).  NHFD is a joint initiative between the 

British Orthopaedic Association (BOA) and the British Geriatrics Society (BGS) which, 

amongst other objectives, aims to collect continuous comparative data to create a drive for 

sustained improvements in clinical standards and cost effectiveness.  Data collected includes 

information regarding case-mix, process and outcome.   

This new process of data collection meant that the number of hours a patient was delayed 

getting to theatre could now be identified where previously only the number of days could be 

calculated.  This extra data became available throughout the duration of this study and 

therefore was not considered in previous chapters.  A total of 1223 patients were available in 

this dataset.  Note that the value of n may not be consistent throughout this analysis as each 

data item may not be available for every observation. 

The British Orthopaedic Association state that “All patients with hip fracture who are 

medically fit should have surgery within 48 hours of admission, and during normal working 

hours” (BOA 2007).  For this reason, along with guidance given by medical experts involved 

in the project, a cut-off value of 48 hours is used.  Recall that a significant operative delay has 

been regarded as one greater than two days throughout much of this thesis, so choosing 48 

hours is also sensible for consistency reasons. 
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6.3.2 Patient classification 

Looking at all patients as a whole makes any analysis too general.  An agreed method of 

classifying patients was to split by ASA grade and operative delay.  ASA grade is the best 

way to categorise patients according to medical fitness, while operative delay is a key focus 

of this study.  The decision to make these splits is endorsed by results from Chapters 3 and 4; 

in particular see Sections 3.4.2, 3.4.5, 4.4.2 and 4.6.  Chapter 5 informed model development 

to a lesser extent, but results do confirm that medical fitness (Model I) and operation type 

(Model II) are appropriate splitting variables. 

A particular feature of interest is patient length of stay, which is now further investigated and 

shown graphically using survival curves.  Consider the survival distribution function,   ,S t  

usually used to describe the lifetimes of a population of interest.  Let T  be the lifetime of a 

randomly selected experimental unit within the population, then the survival distribution 

function evaluated at t  represents the probability that the experimental unit will have a 

lifetime which exceeds ;t   that is,    ProbabilityS t T t  .   

The probability that their lifetime does not exceed t  is given by the cumulative distribution 

function, denoted   ,F t  where    1 .F t S t    The probability distribution function,   ,f t  

takes its usual form;  
 d

d

F t
f t

t
 .   h t  is commonly used to represent the hazard 

function, given by  
 

 
.

f t
h t

S t
  

As suggested by the name, this topic is usually used in conjunction with estimating mortality 

amongst a population but here it is utilised in a different and novel way.  Instead of the 

„event‟ under consideration being death, consider this instead to be the departure from the 

ward, thus the survival distribution function estimates the probability that a patient will have 

a length of stay exceeding t , using the same notation. 

The results of the regression analysis undertaken in Chapter 3 indicated that delay to 

operation was a significant predictor of length of stay.  ASA grade was initially not found to 

be a predictor in this instance but it was decided in agreement with medical experts that this 

should still be included; see Figure 6.3.2i for the survival curve.   
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Figure 6.3.2i: Survival curve (LoS) for all patients by ASA grade 

 

 

Figure 6.3.2ii: Survival curve (LoS) for surviving patients by ASA grade 

 

These results may be influenced by mortality rates due to the differences in medical fitness 

between these patient groups so analysis was repeated using a subset of the original data 
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which only included patients who survived their acute stay in hospital.  Results are displayed 

in Figure 6.3.2ii.   

For both of these analyses, the survival analysis returned significant differences between the 

groups with respect to length of stay, p < 0.0001.  A clearer distinction between groups is 

seen when just surviving patients are considered, in comparison with all patients.  The 

difference in length of stay between ASA grades is therefore evident and will be included in 

the model where appropriate.    

 

6.3.3 Operative delay in hours 

Summary statistics on the number of hours delayed before surgery, categorised by ASA 

grade, are given in Table 6.3.3i (≤ 48h – operation within 48 hours; > 48h – operation after 

48 hours).  The percentage of patients entering theatre within 48 hours was 58.1% for 

ASAI&II patients, 48.1% for ASAIII patients and 28.7% for ASAIV patients.  It is clear that 

fitter patients enter theatre quicker. 

 

Table 6.3.3i: Summary statistics on operative delay (hours) for all patients 

ASA 

Grade 
Delay n Mean S.D. 

Mini-

mum 

Maxi-

mum 

Skew-

ness 
Kurtosis 

I&II 

All 353 56.64 65.71 3 791 5.61 50.29 

≤ 48h 205 25.43 12.41 3 48 0.25 -0.99 

> 48h 148 99.88 82.98 49 791 5.11 35.58 

III 

All 559 63.53 49.43 1 368 2.09 6.67 

≤ 48h 269 29.01 11.84 1 48 -0.01 -1.10 

> 48h 290 95.56 49.49 49 368 2.23 6.78 

IV 

All 87 102.70 111.05 5 835 4.11 22.59 

≤ 48h 25 31.96 11.16 5 47 -0.20 -0.35 

> 48h 62 131.23 120.24 50 835 3.95 19.53 

 

6.3.4 Investigating the causes of delay 

Another aspect of the NHFD is that the reason for operative delay, both at 24 and 48 hours, is 

recorded.  There are nine categories for each of these fields, reduced to three here for 



 

 

160 

 

simplicity; in general the reasons for operative delay can be segregated into one of two 

classifications; system-related or medical-related (Shiga et al. 2008).  One category of „Other‟ 

is ignored; this had a very small number of entries and does not aid the analysis.  The three 

reduced categories are: 

(i) No delay; the patient has their operation within the relevant time limit; 

(ii) Clinical delay; the patient is not currently medically fit enough to undergo an 

operation within the relevant time limit; 

(iii) Administrative delay; no theatre space, for example. 

The percentage of patients not experiencing a delay at 48 hours was given in Section 6.3.3.  

Of the remaining patients, 31% of delays were due to clinical reasons and 69% to 

administrative reasons. 

Results relating to delay reason in the literature are inconsistent.  For example, in one study 

56% of delays were directly attributable to medical problems and 20% were due to patients 

awaiting medical investigations, compared with administrative reasons such as lack of theatre 

space causing 24% of delays (Charalambous et al. 2003), while another reported that a much 

larger proportion of delays (69%) were due to lack of theatre space (Petermann et al. 2003).  

Figures comparable to those reported for the UHW were found by a group in Spain, with 

61% of delays over 48 hours due to non-availability of an operating room and 33% due to 

medical problems (Vidán et al. 2011).  Other results include 59% of patients being delayed 

due to waiting for medical review, compared with 29% waiting for organisational reasons 

(Youde et al. 2009), while respective percentages of 52% and 29% have also been reported 

(Orosz et al. 2002). 

Reducing administrative delay is not easy.  Dy et al reported on two treatment strategies, 

compared in order to investigate factors influencing timing of surgery.  It was found that a 

systems-based solution can be cost-effective in minimising delay, via the use of a dedicated 

on-call support team (Dy et al. 2011).  Taking an x-ray during triage is another way of 

reducing delay (Chia et al. 2008). 

Logistic regression was utilised to determine and quantify the predictors of a surgical delay, 

with the target variable of surgery after two days.  Age, ASA grade and admission day were 

among the significant predictors found, but there were no predictors over which the hospital 
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has any control (Fantini et al. 2011).  The presence of comorbidities has also been shown to 

explain delays over 48 hours (Bergeron et al. 2006).  Patients using the anticoagulant drug 

warfarin have also been shown to experience a longer delay, which is reported to most likely 

to be due to comorbidities.  Patients taking this drug experienced almost double the surgical 

delay of non-users (23 compared with 12 hours), and it was also a predictor of longer hospital 

stay (Ranhoff et al. 2011).  Time to surgery has also been shown to be dependent upon the 

method used for the cessation of warfarin prior to surgery, which is required to reverse 

anticoagulation in order that the operation can be performed.  Simply stopping taking the 

drug led to a two day increase in delay compared with cessation and additional 

pharmacological treatment (4.4 days compared with 2.4 days respectively) (Ashouri et al. 

2011). 

An investigation into whether the place of fall (outside home, at home, residential/nursing 

home, hospital inpatient) had any relationship to the time to the commencement of specialist 

hip fracture treatment found that, rather unexpectedly, patients already under maximal 

healthcare treatment had to wait the longest time for referral (Khan et al. 2011). 

 

Inspection of the data showed that there were some patients in the group ASAI&II who did 

not undergo surgery within 48 hours due to clinical reasons.  However, this is a rather small 

group and therefore for the purposes of the model they are ignored.  All delayed patients in 

ASA group I&II are assumed to experience administrative delays only.  This decision was 

also undertaken on the advice of a senior clinician involved in the project.  Figure 6.3.4i 

shows that almost two-thirds of all delayed ASA grade III patients are still waiting at 48 

hours due to administrative reasons, reducing to just under a third in ASA grade IV patients.   

Clinical delays are justifiable and are not easily reducible by tightening routines and for 

modelling purposes it is assumed that these delays are confined to patients with an ASA 

grade of III or IV only.  These unavoidable delays can be used to gain improvement in the 

clinical condition of the patient (Buck et al. 1987), but on the other hand, chasing unrealistic 

medical goals should not lead to delay (SHFA 2008). 

Administrative delays are not justifiable and are reducible and, on the advice of clinicians, is 

something that crucially could be modelled as being identical for the ASA I&II group and the 
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ASA III and ASA IV groups.  Thus clinical delay becomes the total delay for the relevant 

ASA group (III or IV), minus the total delay for ASA group I&II.  This is important since 

once a patient is delayed for longer than 48 hours, the reason for their delay is not recorded 

but, by making this assumption, it can at least be surmised. 

Using empirical data, it is decided whether a patient still waiting at 48 hours is delayed for a 

clinical or non-clinical reason.  This is because those still delayed for clinical reasons were 

shown to have a significantly longer delay than those delayed for non-clinical reasons (p < 

0.0001).   

There are therefore two categories for ASAI&II patients, operation within 48 hours and 

operation after 48 hours, while there three categories for each of ASAIII and ASAIV patients, 

delayed patients are further split by delay reason; see Figure 6.3.4i for a breakdown of how 

patient numbers within these categories are distributed. 

            

   ASA Grade         Time to theatre      Type of delay 

 

Figure 6.3.4i: Probability pathway for ASA grade and operative delay, for patients 

undergoing surgery 

 

Patients 
undergoing 

surgery 

I&II 

Within 48 
hours 

After 48 
hours 

III 

Within 48 
hours 

After 48 
hours 

Clinical 
delay 

Administrative 
delay 

IV 

Within 48 
hours 

After 48 
hours 

Clinical 
delay 

Administrative 
delay 

0.34 

0.56 

0.10 

0.42 

0.58 

0.52 

0.48 

0.71 

0.29 

0.38 

0.62 

0.68 

0.32 
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Each patient in ASA groups III or IV, who is clinically delayed at 48 hours, has their total 

delay estimated and then an administrative delay removed; the remainder being the clinical 

delay and must exceed 48 hours.  To avoid the potential problem of the sampled 

administrative delay being greater than the total delay, the random number used to determine 

the time spent administratively delayed is scaled to be in the range  0, ,r  where 

   .xr F t P X t    The earlier sampled value of the total delay is represented by t  and 
xF   

represents the cumulative distribution function (CDF) of the time spent administratively 

delayed. 

The distribution of the number of hours delayed for ASAI&II patients was found to follow a 

Lognormal distribution; the fit can be seen graphically in Figure 6.3.4ii while maximum 

likelihood estimates and some comparative empirical figures are given in Table 6.3.4iii.  

Recall that the value removed from the total delay for ASA grade III and IV patients comes 

from a curtailed version of this distribution.  

 

 

Figure 6.3.4ii: Distribution of operative delay in hours for all ASAI&II patients against the 

Lognormal distribution with parameters min = 3, µ = 3.523 and σ = 0.954 

 

Table 6.3.4iii: Lognormal fit for operative delay (hours) for all ASAI&II patients 

Category μ σ Min 
Theoretical Empirical 

Mean S.D. Mean S.D. 

ASAI&II 3.523 0.954 3 56.1 64.2 56.6 65.7 
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For delayed patients, statistical fits could be found for each combination of ASA grade and 

delay reason, for the total time spent delayed.  These are given in Table 6.3.4iv and all are for 

the Negative Exponential distribution.  Each time there is a shift of 49, as this is the minimum 

value that can be achieved for these patients.  (In one case the shift was forced to be this 

value since the minimum value from the data was not 49, and extreme outliers were removed 

where necessary.)  Goodness-of-fit tests were passed in all cases. 

 

Table 6.3.4iv: Negative Exponential fits for operative delay (hours) for patients operated on 

after 48 hours (Admin. – administrative) 

ASA 

Grade 

Type of 

delay 
μ 

Theoretical Empirical 

Mean S.D. Mean S.D. 

III 
Admin. 38.01 87.01 38.01 87.01 38.33 

Clinical 66.60 115.60 66.60 115.60 62.74 

IV 
Admin. 40.06 89.06 40.06 89.06 25.73 

Clinical 93.81 142.81 93.81 142.81 145.20 

 

The fits for ASAIII patients delayed at 48 hours for administrative and clinical reasons are 

given in Appendix D, Figure D6.3.4a.  Note that graphs may have been curtailed for display 

reasons.   

The operative delay for each patient is generated in this case via the inversion method, 

described as follows.  (Note that the values for   quoted in Table 6.3.4iv must be inverted so 

that they are in the same form as seen here.)  The Negative Exponential distribution has a 

probability density function of   ,tf t e  
 
where 1  is the mean of the distribution.  

Integrating with respect to t  (time) over the interval  0, ,  the CDF can be found; 

  1 .tF t e     Setting 1 tu e   , where u  is a random number between 0 and 1, yields 

 

1

1

ln 1 .

t

t

u e
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Rearranging for t  gives 
 ln 1

.
u

t



    Since u  is a random number between 0 and 1,  1 u  

is also a random number between 0 and 1, and so simplifying gives 
 ln

.
u

t


    

The appropriate value of   is then substituted into this expression and a value of 49 is added 

in order to gain the operative delay in the simulation. 

Looking at the non-delayed patients, their distributions are required to be upper- and lower-

bounded, which is where problems arise.  However, by combining all patients by ASA grade 

led to more positive results.  For both ASAIII and ASAIV, operative delay was found to fit 

the Gamma distribution, see Table 6.3.4v (results for ASAI&II were given in Table 6.3.4iii); 

maximum likelihood estimates were found using Stat::Fit and the fits are displayed 

graphically in Figures D6.3.4b and D6.3.4c.  Clearly, the Gamma distribution provides a very 

good fit to the operative delay data, for both ASAIII and ASAIV patients.  The slight 

discrepancies can be attributed to the „jaggedness‟ of the actual data, which is to be expected 

especially with the ASAIV patients since this group only contained 87 data points. 

 

Table 6.3.4v: Gamma fits for operative delay (hours) for all patients, ASAIII and ASAIV 

Category α β Min 
Theoretical Empirical 

Mean S.D. Mean S.D. 

ASAIII 1.971 31.745 1 63.6 44.6 63.5 49.4 

ASAIV 1.629 59.978 5 102.7 76.6 102.7 111.1 

 

It is however not desirable to just use these distributions to estimate operative delay due to 

loss of generality.  As described previously, the type of delay is also important.  Therefore, if 

the sampling procedure produces a value less than or equal to 48 (hours), then the operative 

delay for that patient is taken to be that sampled value.  However, if the value produced is 

greater than 48, then the patient is classed as „delayed‟ but their operative delay value is 

discarded.  Instead, they enter either the clinical or administrative delay group; the 

appropriate Negative Exponential distribution for that ASA grade and delay type is then 

sampled from.  This excludes the group of ASAI&II patients, whose delay type is not 
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classified further.  The original sampled value can therefore be used.  To summarise for ASA 

grade III and IV patients, delay is calculated as per the steps given in Figure D6.3.4d. 

In order for this method to be suitable, the distributions used must estimate the number of 

non-delayed patients accurately.  By using the appropriate cumulative density function, the 

percentage of non-delayed patients predicted by the distribution can be calculated.  58% of 

ASAI&II patients were operated on within 48 hours, while the result from the appropriate 

Lognormal distribution is 62%.  For the Gamma distributions of ASAIII and ASAIV, the 

results are 45% and 26% respectively.  These compare correspondingly with 48% and 29% 

from the data.  It can be seen that reasonable approximations are gained using this approach 

and therefore the method is deemed fit for purpose. 

 

6.3.5  Inter-arrival times 

After implementation of the NHFD, the distribution of inter-arrival times could be calculated 

in terms of hours, as displayed by hour in Figure 6.3.5i.  As commonly seen with inter-arrival 

times, particularly relating to unplanned hospital admissions, the shape is approximately 

Negatively Exponential in shape (Moore 2003), but no statistical fit could be found to 

represent this data.  A two-period moving average trendline is overlaid to further indicate the 

awkwardness in the general shape of this distribution. 

For the purpose of this model, however, modelling arrivals to this level of detail is not 

essential and daily admissions would suffice.  Pre-NHFD data was merged with NHFD data 

in order to collate as much information as possible, meaning that almost six years‟ worth of 

data was available.  One outlying value of eight days was removed.  The values used for 

modelling purposes are given in Table 6.3.5ii.  The mean inter-arrival time was 0.727 days 

with a standard deviation of 0.834 days.   
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Figure 6.3.5i: Histogram of inter-arrival times in hours 

 

Table 6.3.5ii: Distribution of inter-arrival times to the hip fracture ward 

Inter-arrival time (days) 0 1 2 3 4 5 6 

Percentage 46.2% 39.5% 10.9% 2.6% 0.6% 0.1% <0.1% 

 

6.3.6 Length of stay 

Post-operative length of stay only is considered here, since length of stay pre-operation is 

already accounted for.  This then also eliminates the operative delay itself when looking into 

whether or not delay affects length of stay.  This analysis is done by ASA grade in order to 

gain more homogenous groups of patients and summary statistics are given in Table 6.3.6i.   

Examination of these statistics would give rise to the possible conclusion that delay does 

matter.  Statistically, however, there are no differences between delayed and non-delayed 

patients for ASA grades III and IV, while for grade I&II the difference is statistically 

significant at the 5% level.   

Subsequent analysis showed no difference between grades III and IV, when looking at 

delayed and non-delayed patients in turn.  This meant that these patients could be grouped 

and results in the following summary statistics.  Additionally no differences were found 

between delayed and non-delayed patients, thus all ASA grade III and IV patients were 

grouped together, as per the last line in Table 6.3.6ii. 
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Table 6.3.6i:  Summary statistics for post-operation length of stay (days), split by ASA grade 

and operative delay 

ASA 

Grade 
Delay n Mean S.D. 

Mini-

mum 

Maxi-

mum 

Skew-

ness 
Kurtosis 

I&II 
≤ 48h 204 18.78 19.29 1 117 2.71 8.93 

> 48h 145 23.14 19.90 0 115 2.11 5.67 

III 
≤ 48h 270 27.34 25.22 0 182 2.75 10.83 

> 48h 290 31.18 29.80 1 266 3.30 16.85 

IV 
≤ 48h 25 23.68 16.40 0 74 1.12 2.48 

> 48h 61 32.56 30.33 0 126 1.28 0.95 

 

Table 6.3.6ii:  Summary statistics for post-operation length of stay (days) for ASA grades III 

and IV, split by delay category 

ASA 

Grade 
Delay n Mean S.D. 

Mini-

mum 

Maxi-

mum 

Skew-

ness 
Kurtosis 

III & IV 
≤ 48h 295 27.03 24.59 0 182 2.76 11.21 

> 48h 351 31.42 29.85 0 266 2.93 13.86 

III & IV All 646 29.41 27.64 0 266 2.92 13.69 

 

There are thus three groups of patients to consider with regard to post-operation length of 

stay.  Each of these groups were found to follow a Lognormal distribution; the Lognormal 

distribution is commonly fitted to length of stay (Marazzi et al. 1998, McClean and Millard 

1993), in part due to its long tails.  Maximum likelihood estimates of the first two moments 

are given in Table 6.3.6iii, while the fits are displayed graphically in Figure 6.3.6iv.  It is 

clear that reasonable fits were found in all cases, as was supported formally.  

 

Table 6.3.6iii: Lognormal fits for post-operation length of stay (days) 

ASA 

Grade 
Delay μ σ Min 

Theoretical Empirical 

Mean S.D. Mean S.D. 

I&II 
≤ 48h 2.454 0.980 1 19.8 23.9 18.8 19.3 

> 48h 2.842 0.798 0 23.6 22.2 23.1 19.9 

III & IV All 3.052 0.857 0 30.5 31.8 29.4 27.6 
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ASAI&II, delay ≤ 48h ASAI&II, delay > 48h ASAIII&IV, all 

   
   

   

Figure 6.3.6iv: Distribution of post-operation length of stay against the Lognormal 

distribution 

 

6.3.7 Admission source and discharge destination 

Pre-NHFD and NHFD data was again combined here in order to collate enough data for any 

meaningful analysis. This meant that operative delay had to be classified in days and not 

hours.  While this loss of accuracy is unfortunate, it is also unavoidable.  (So, as earlier in this 

thesis, a delayed patient is one who waits longer than two days.)  There are eight separate 

sources from which a patient may arrive (see Section 2.2.2).  Patients admitted either from 

home or from sheltered housing are grouped together into a new group called „home‟, 

patients admitted from a residential or nursing home are grouped together into a new group 

called „care home‟ and the remaining four groups are merged into a group called „healthcare 

institution‟.  A significant relationship was found between admission source and ASA grade 

(p < 0.0001) and inspection of the data showed that fitter patients are more likely to be 

admitted from home. 

Two discharge destinations are recorded for each patient: acute destination and final 

destination.  Discharge destination is another area of interest and thus the effect of delay on 

this were investigated in order for it to be incorporated into the model.  There are ten acute 

discharge destinations (see Section 2.2.13).  These are grouped as per for admission source, 

with the addition of another group representing those who die in hospital.  Final discharge 

destination is not considered further due to a lack of data.  When considering discharge 

destination, admission source must also be considered for consistency.   

The relationship between ASA grade, operative delay and acute discharge destination is 

shown for each admission source in Appendix D, Figures D6.3.7a-c.  For admissions from 
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home, delay category was shown to be significantly associated with discharge destination for 

ASAI&II and ASAIII patients.  No significant differences were found for ASAIV patients, or 

for any ASA category for care home and healthcare institution admissions.  However, a 

problem was data constraints; after splitting by ASA grade, delay and discharge destination 

some groups were left fairly small and it would be inadvisable to make any resolute 

conclusions on this basis.  The percentages are thus taken as indicated by the data and a value 

is sampled from the continuous Uniform distribution (range [0, 100]) and then compared with 

empirical values.  However, an element of randomness is brought in with respect to mortality 

in order to emulate real-life unpredictability and a summary of mortality figures is given in 

Table 6.3.7i (≤ 2 days – operation within two days; > 2 days – operation after two days).   

 

Table 6.3.7i: Percentage of patients who do not survive their stay in hospital, grouped with 

respect to admission source, ASA grade and delay  

Admission 

source 
ASA grade Delay 

Mortality 

percentage 

Home 

I&II 
≤ 2 days 2.49% 

> 2 days 3.81% 

III 
≤ 2 days 8.23% 

> 2 days 13.91% 

IV 
≤ 2 days 37.50% 

> 2 days 25.56% 

Care home 

I&II 
≤ 2 days 12.12% 

> 2 days 16.67% 

III 
≤ 2 days 10.14% 

> 2 days 16.88% 

IV 
≤ 2 days 30.00% 

> 2 days 35.71% 

Healthcare 

institution 

I&II 
≤ 2 days 12.50% 

> 2 days 17.65% 

III 
≤ 2 days 16.36% 

> 2 days 20.00% 

IV 
≤ 2 days 27.27% 

> 2 days 40.00% 
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Introducing randomness here is achieved via use of the Poisson distribution.  Consider, as an 

example, the sub-group of patients who are admitted from home with an ASA grade of I or II 

and who do not undergo surgery within two days.  3.81% of these patients do not survive 

their stay in hospital.  The model uses the Poisson distribution about the value of 3.81 to 

create a new mortality percentage and the remainder of the discharge destination percentages 

are then adjusted proportionally.   

The probability mass function (PMF) of the Poisson distribution with a mean value of 3.81 is 

shown in Figure 6.3.7ii.  The probabilities at each value of x  are calculated using 

  ,
!

xe
P X x

x



  where   represents the mean of the distribution.  It can be seen that the 

most likely value to be sampled is 3, with the probability of sampling 4 just slightly smaller.  

While using this method results in extra running time for the model due to the additional 

calculations required, the advantage of bringing in the extra variability outweighs this issue.   

 

 

Figure 6.3.7ii: The PMF of the Poisson distribution about the mean value of λ = 3.81 

 

6.3.8 Patients not undergoing surgery 

Much of the model formulation so far has concentrated on patients undergoing surgery, but 

the small group of those treated conservatively or who die pre-operation must also be 

considered.  12.5%, 20.8% and 66.7% of patients were ASA grade I&II, III and IV 

respectively.  Length of stay was found to fit the Lognormal distribution, see Table 6.3.8i. 

52% of patients were admitted from home, 25% from a care home and 23% from a healthcare 

institution, but data restrictions meant that analysis of discharge destination by admission 
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source (/ASA grade) was not possible.  On discharge, 67% of patients had died, 10% went 

home, 8% went to a care home and 15% went to another healthcare institution.  The acute 

discharge destination was decided at random based on these discharge percentages, with the 

only exception being that a patient admitted from a care home could not be discharged home. 

 

Table 6.3.8i: Lognormal fit for length of stay (days) for patients not undergoing surgery 

μ σ Min 
Theoretical Empirical 

Mean S.D. Mean S.D. 

2.189 1.247 0 19.4 37.5 18.7 30.4 

 

6.3.9 Initialisation bias 

Initialisation bias must be considered before results can be recorded.  The model starts as an 

empty system, which is clearly unrealistic.  For a non-terminating simulation such as this, the 

removal of this bias must be addressed to avoid misleading results.  

There is an abundance of accessible research which details studies into the initial transient 

period, including methods on how to distinguish this from the steady-state period and also 

how to remove or deal with it.  There are two general methods of dealing with this problem: 

the inclusion of a warm-up period or intelligent initialisation (Nelson 1992).   

The first approach lets the model run for a specified warm-up period then, once it has reached 

steady-state conditions, data collection may begin.  Alternatively, data is collected from the 

beginning of the simulation and then deleted from the results once the model has reached 

steady-state.  It is vital to not underestimate the length of this transient period in order to 

avoid biased results.  It is preferable to gain as accurate a figure as possible in order to also 

not overestimate the transient period, thus wasting useful results.  For the second approach, 

the modeller must choose initial conditions which the simulation model begins from and data 

is collected from the commencement of the model.  The main challenge here is deciding what 

these conditions should be. 

The former approach was used for this study.  There are over forty methods in the literature 

which deal with the issue of how long to set a warm-up period.  Three of the most commonly 
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used methods are employed here and explained forthwith; time-series inspection, Welch‟s 

method and the MSER-5 method.   

The interested reader may wish to refer to other statistical (Kelton and Law 1983, Robinson 

2007, Yücesan 1993) or heuristic-based (Conway 1963, Fishman 1971, Gafarian et al. 1978, 

Pawlikowski 1990) methods available.  There are also methods which do not determine the 

length of a warm-up period, but detect whether initialisation bias is present in a series of data 

(Goldsman et al. 1994, Schruben et al. 1983, Vassilacopoulos 1989).  Note that this is just a 

small sample of the plethora of literature available on this topic. 

 

(a) Time-series inspection method 

Inspecting a time-series of the simulation output is the most straightforward method to 

identify how long a warm-up period should be.  This time-series should display the key 

response of the simulation and in this case bed occupancy used.  The simulation starts in an 

empty condition; that is, the bed occupancy is zero.  The bed occupancy needs to reach 

steady-state before results are recorded.  However, inspecting a time-series of a single run can 

be misleading or difficult to analyse as data can be very noisy; it is better to take several 

replications and then take the averages across the replications for each point on the time-

series.  The graph is then inspected to see where it becomes smooth. 

The model was run 20 times and the bed occupancy at each day of each replication was 

recorded.  The results of the mean bed occupancy can be seen in Figure 6.3.9i.  The graph 

continued similarly past the 700 time periods shown on the graph but this is not included for 

presentation reasons.  More replications were also tried but results were not found to differ 

significantly.   

It appears that the graph is beginning to smooth at around 400 periods.  There is still some 

variation beyond here but this is expected and does not lead to any cause for concern; a 

stochastic model will always result in fluctuations in outcome.  This is clearly a subjective 

method and therefore other methods are also considered. 
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Figure 6.4.1i: Results of the time-series inspection method 

 

(b) Welch’s method 

Welch suggests a method to determine the warm-up period of a simulation based upon 

moving averages (Welch 1983), a technique popularised in later years by Law and Kelton 

(Law and Kelton 2000).  These moving averages, calculated using a window of size w  for a 

maximum of m  results in the series, are plotted on a time-series graph.  If the data is smooth, 

then the result is acceptable; if not, then w  is increased and the process is repeated.  The 

warm-up period is then identified as the time that this time-series becomes flat.  It is aimed to 

minimise w  while still obtaining a reasonably smooth line; short-term fluctuations are thus 

removed but the intervals are not so long that they may distort the long-term trend.   

Let  tX w  be the moving average of window size .w   The moving averages are calculated 

as follows: 
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The results from this process are seen in Figure 6.3.9ii, where 5.w   Other window sizes 

were tried and results were not found to be notably different.  Again the decision on what to 

use as a warm-up period is subjective but the graph provides an aid to this decision.  As seen 

with the time-series inspection method, the graph appears to smooth at around 400 days.   
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Figure 6.3.9ii: Results of Welch‟s method 

 

(c) MSER-5 method 

The Marginal Standard Error Rules (MSER) method of determining the length of a warm-up 

period was first introduced by White Jnr (White Jnr 1997) and later extended to the MSER-5 

method (Spratt 1998).  Full details of this method can be gained in the first instance from 

these sources but a brief overview is given here.  These rules are based on heuristics and 

determine the truncation point as the value of *t  which returns the best trade-off between 

improved accuracy, measured in terms of bias elimination, and decreased precision, measured 

in terms of sample size reduction.  Evidence of the efficiency and effectiveness of this 

method, in particular with regard to its superiority over other techniques, can also be found in 

the literature (Franklin and White Jnr 2008, Hoad et al. 2008b, White Jnr et al. 2000). 

Consider the finite output series  : 1, 2, ..., ,iX i n  representing the result of interest for the 

first n  time periods of the simulation.  For the MSER heuristic, the optimal truncation point 

for this sequence of results is given by 
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where .    
represents the standard floor function and the batched averages are calculated 

using ( 1)

1

1 m

j m j k

k

B X
m

 



  .  The graphical results of this method can be seen in Figure 

6.3.9iii.  The value of MSER-5 is minimised at period 24, with a value of 0.0039.  Since the 

batch size  is five, the warm-up period given by this method is 120 days. 

 

 

Figure 6.3.9iii: Results of the MSER-5 method 

 

The first two methods considered appear to give similar answers for estimating the warm-up 

period and while they are subjective, unlike the more formal MSER-5 method, they should 

still be considered.  MSER-5 suggests that 120 days would be adequate; however, on 

inspecting Figures 6.3.9i and 6.3.9ii it would appear that this would not be long enough.  It is 

very important to avoid initialisation bias and therefore the higher estimate is taken.  This 

figure was then inflated to 500 days, in order to be absolutely sure that ample time has been 

taken to initialise the system.  This makes negligible difference to the run time of the model. 

 

6.3.10 Run length 

The model was initially run for an additional 2000 days, after the warm-up period had been 

completed.  This was then increased up to a maximum of 20,000 days and various results 

were inspected.  It was found that running the model for just 2000 days did not produce 

particularly stable results, despite the inclusion of a warm-up period, and the model needs 

longer to „settle down‟.  It was then decided that 10,000 days would be a sufficient length of 
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time; the model has reached steady-state by this point, while not leading to any considerable 

extra running time.  Despite the fact that the model is now representing a longer time period 

than the data on which it was based is of no real cause for concern; running a model for a 

longer time can be thought of in the crudest sense of simply several replications after each 

other – naturally, the decisions to be made concerning run length and the number of 

replications for a simulation model are inter-linked, so the number of replications is 

considered next.  Additionally, mean figures will be used for later analysis, as well as yearly 

rates, and so any bias caused by run length is limited. 

 

6.3.11 Number of replications 

The approach used here to determine the number of replications required is based on 

confidence intervals.  It is akin to the sequential procedure described by Chow and Robbins 

(Chow and Robbins 1965).  A brief overview of this method is introduced here but a wealth 

of literature exists should the interested reader require a more detailed description (Hoad et 

al. 2008a, Law 2007, Robinson 2004).   

For this method, the user chooses a pre-determined significance level and an output variable 

of interest; in this case the significance level is set at 95% and the output variable is again bed 

occupancy.  Confidence intervals around the mean of this variable are then calculated at the 

significance level specified, using sequential cumulative means.   

Results can be seen in Figure 6.3.11i, the blue line represents the cumulative mean while the 

red dashed lines represent the upper and lower limits of the 95% confidence interval.  Steady-

state values are achieved rather rapidly, which is no doubt in part due to the long run length.  

This graph was also constructed for up to 1000 replications but results are not included for 

display purposes; the lines continued in an almost perfect horizontal fashion. 
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Figure 6.3.11i: Results of average bed occupancy with respect to the number of replications 

to perform 

 

Precision criteria may also be set, or inspected later, by the user.  This precision is defined as 

half of the width of the confidence interval, expressed as a percentage of the cumulative 

mean.  Let r  be the number of replications currently carried out while the finite output series 

 : 1, 2, ...,iR i r  represents the results of the r  replications for the output of interest.  Also 

let rR  be the cumulative mean and rs  be the estimated standard deviation, where both of 

these values are computed using results  : 1, 2, ..., .iR i r   The precision at r  replications, 

,rp  is consequently defined as 
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where 1, 2rt   is the value from the Student‟s t-distribution with  1r   degrees of freedom and 

a significance level of  1 .   Note it is not recommended to stop once a desired level of 

precision has been reached as this result may be reached by chance; premature convergence 

may occur.  Inspection of plots and of the precision values obtained by the subsequent 

replications is therefore useful in this case. 

The precision of mean bed occupancy was calculated to be 0.22% at 50 replications, while 

inspection of Figure 6.3.11i and the values following this both indicate that this was not an 

anomalous value.  This was repeated for other measures of bed occupancy, namely the 

standard deviation, minimum and maximum, since variation and extremities in the system are 
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also important.  In order to ensure anomalous values were not reached at these values, plots 

of 
rp
 
and the cumulative mean values were inspected in each case are presented in Appendix 

D.  The cumulative mean plots for standard deviation, minimum and maximum of bed 

occupancy can be found in Figures D6.3.11a-c, while 
rp  is plotted for each measure in 

Figure D6.3.11d, beginning at 3r   
 
for display purposes. 

 

Table 6.3.11ii: Precision values obtained for various bed occupancy measures at different 

values of r  

Measure 
Precision value, pr (%) 

r = 50 r = 100 r = 250 r = 500 

Mean  0.22 0.08 0.07 0.07 

Standard deviation  0.32 0.23 0.15 0.14 

Minimum  1.69 1.27 1.00 0.61 

Maximum  0.32 0.22 0.19 0.10 

 

Relatively high precision is gained by using just 50 replications.  However, if this is increased 

to 500 replications then all values are within a precision of 1%.  For this reason, r  is set to 

500.  Run time of the model is not of particular concern here and therefore shorter runtime is 

sacrificed for higher precision. 

 

6.3.12 Model I summary 

To summarise, patients arrive according to an inter-arrival distribution based on empirical 

data.  Each patient is probabilistically assigned surgical or conservative treatment, an ASA 

grade, delay category and delay reason (if appropriate).  Delay is modelled in hours according 

to a theoretical distribution based on ASA grade, delay category and delay reason.  Post-

operation length of stay (or total length of stay for patients treated non-surgically) is modelled 

in days, again according to theoretical distributions.  Discharge destination is determined 

probabilistically using empirical data, with the Poisson distribution attached to mortality.  

Key outputs recorded by the model include arrivals, daily bed occupancy and discharge 

destinations, split by relevant variables.  
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6.4 Validation and verification 

Validation is the process of ensuring that the model is sufficiently accurate for the purpose at 

hand (Carson 1986) and is a binary decision; a model is either adequately accurate for its 

purpose or it is not, there is no grey area in-between.  It is, however, not possible to prove 

that a model is valid – instead it is better to think in terms of the confidence that can be 

placed in the model  (Robinson 2004).  Of course it must be ensured that the conceptual 

model accurately represents the real world problem.  Through thorough investigation of the 

variables and detailed discussion with the clinicians, it was decided that the most appropriate 

variables had been selected and that the conceptual model was fit for purpose.  Data 

validation is a very important issue too; if the data on which the simulation was based is 

inaccurate then it is likely that the model becomes invalid.  In this case, it is assured by the 

relevant staff that the data is recorded to as high a degree of accuracy as possible.  The 

dataset was carefully inspected and any erroneous values were excluded before analysis.   

Comparing the model to the real world system is a useful form of validation.  If the inputs to 

the model are the same as the inputs to the real world system, then the outputs should be 

approximately equal for this type of validation, known as „black-box validation‟ (Robinson 

2004). 

Table 6.4i gives some comparative bed occupancy outputs.  The percentage of time that total 

bed occupancy exceeds 38 is of particular interest since currently hip fracture patients are not 

currently all on one ward, but spread over many different wards.  The hip fracture team 

would like to centralise their patients and the possible wards available for this have 38 beds.  

Utilisation of this centralised ward is therefore vital.  It can be seen that these results have a 

high level of accuracy.   

Another measure of validation used relates to the acute discharge destination, see Table 6.4ii.  

As described in Section 6.3.7, discharge destination was split by admission source and delay.  

It was also split by whether the patient had an operation or not, which in turn influenced 

admission source.  A check is therefore made with the purpose of ensuring that making these 

splits has not distorted the overall numbers discharged to each destination, which may have 

been a possibility due to the groupings made and the stochasticity built into the model.  It is 

concluded that the model accurately represents acute discharge destination routes.  
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The slight discrepancies in both sets of results do not result in any cause for concern.  Indeed, 

no model is ever 100% accurate, but is a simplified means for understanding and exploring 

reality (Pidd 2003), according to this definition the model is unquestionably valid. 

 

Table 6.4i:  Comparison of output and real world system, bed occupancy  

Measure Model  Data 

Mean  42.4 42.1 

Standard deviation  7.1 8.1 

Minimum  20.7 22 

Maximum  69.8 71 

Percentage of time > 38 70% 66% 

 

Table 6.4ii:  Comparison of output and real world system, acute discharge destination  

Acute discharge 

destination  

Percentage to each destination 

Model  Data 

Home 34.6 34.5 

Care home 14.0 13.8 

Healthcare institution 39.2 38.8 

Died 12.2 12.9 

 

The task of verification is rather narrower; it is the process of ensuring that the model design 

has been transformed into a computer model with sufficient accuracy (Davis 1992); that is, 

assessing whether or not the computer model accurately represents the conceptual model.  

Verification, if completed properly, therefore ensures that the computer programming and 

implementation of the conceptual model are correct (Sargent 2000).  Static testing is one 

basic approach to test simulation software, where the computer program is scrutinised to 

assess its correctness (Fairley 1976).  Techniques utilised here include a structured walk-

through of the model; the model was continually checked during its development and any 

mistakes were rectified and the appropriate section of code was retested.   

It can be concluded that the simulation model has been tested thoroughly and has been 

successfully validated and verified, and thus may be used to investigate a number of changes. 
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6.5 What-if A: Varying the percentage of delayed patients 

The percentage of delayed patients used as an input for the model was decided by historical 

data and split by ASA grade.  By changing this, the effect of any increase or decrease of the 

percentage of delayed patients can be seen and the scale of the improvement or the 

deterioration on the system can then be judged in relation to the adjustment of the number of 

delayed patients.  Each category of ASA grade used here is considered in turn. 

 

6.5.1 ASA grade I&II 

This patient group is deemed to be the simplest to treat due to the lesser severity of their 

medical circumstance and so with better resources and/or better management of these 

patients, improved conditions may well be achievable.  All patients with an ASA grade of I or 

II are assumed to be administratively delayed only, therefore with optimal management and 

infinite resources, no patient in this group would ever have to wait for an operation.  The 

observed percentage of patients who were not delayed was 58.1%; this value is now varied at 

every integer between 0 (worst case scenario) and 100 (best case scenario) percent. 

Since ASA grade III and IV patients are not considered here (they can still be 

administratively delayed), there will still be some inefficiency in the system.  However, a 

large change in the number of days spent delayed can still be seen, just by improving the 

treatment of these patients over whom there is more control.   

If all ASA grade I&II patients were to be delayed, results show that approximately 1350 days 

in total would be spent administratively delayed by all patients each year.  However, if no 

ASA grade I&II patient is delayed, then this reduces to approximately 780 days per year, a 

saving of 570 days each year.  Currently the total number of days spent administratively 

delayed stands at approximately 1000 days per year, so a saving of 220 bed days is gained 

annually by improving the treatment of around 70 patients over the same time period. 

It was shown previously that delayed patients experience a longer post-operation length of 

stay, in comparison with those operated on within 48 hours of admission, so by altering the 

delayed/non-delayed ratio the effect on length of stay is realised. 
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Table 6.5.1i: Results on post-operation bed usage when the percentage of non-delayed 

patients is altered for ASA grades I and II 

Percentage of 

patients not delayed 

Extra bed days Percentage change from 

current situation per year per day 

0 373.1 1.02 2.81 

10 341.0 0.93 2.57 

20 276.2 0.76 2.08 

30 203.6 0.56 1.53 

40 154.8 0.42 1.17 

50 71.0 0.19 0.53 

60 -20.2 -0.06 -0.15 

70 -47.0 -0.13 -0.35 

80 -94.0 -0.26 -0.71 

90 -170.1 -0.47 -1.28 

100 -199.8 -0.55 -1.51 

 

If all ASA grade I&II patients were delayed (0% not delayed), then on average the hip 

fracture ward would have just over one more bed occupied each day.  However, by ensuring 

that no patient in this patient group has to wait more than 48 hours for an operation, around 

200 post-operation bed days per year can be saved.  Again this is a fairly substantial saving 

considering it would mean a change in treatment for just 70 patients.  Once this is combined 

with the gains made pre-operation, around 440 bed days are saved annually. 

Changing the percentage of delayed patients also impacts upon discharge destination are 

results are given in Figure D6.5.1a of Appendix D.  By improving efficiency and delaying 

less ASA grade I&II patients, almost six percent more patients are found to return home after 

hip fracture, while the percentages of patients discharged to a care home, another healthcare 

institution or who die are all found to decrease.  For example, if one hundred percent of all 

ASA grade I&II patients are operated on within 48 hours, results from the simulation show 

that the average number of yearly deaths will fall from 57.1 to 55.9, a decrease of 2.1%.  This 

would mean that an improvement for approximately 70 patients will save, on average, around 

1.2 lives per year. 
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6.5.2 ASA grades III and IV 

The case of patients with an ASA grade of III or IV is not quite as simple; some of these 

patients are clinically delayed and thus even under perfect circumstances, not everybody 

could be operated on immediately.  The percentage of patients who are delayed at 48 hours 

for medical reasons is therefore kept fixed as it is assumed that this cannot be altered.  These 

values are 19.7% and 48.5% for ASA grades III and IV respectively.  The remainder of 

patients are either administratively delayed or not delayed. 

A total of 81 scenarios are investigated for ASA grade III patients, where the percentage of 

non-delayed patients is tested at every integer in the range [0%, 80%].  52 scenarios are 

investigated for ASAIV patients, across the range [0%, 51%].  These scenarios were run 

separately and results are presented in Figure 6.5.2i.  It is immediately obvious that a greater 

effect is seen when the numbers of ASAIII patients are varied, in comparison with ASAIV 

patients.  However, large variation in bed occupancy is not seen and so in terms of this 

measure it could be concluded that there are no huge advantages to be gained from making 

the extra effort or changes required for these scenarios to become reality. 

 

 

Figure 6.5.2i: The result on the average bed occupancy for different scenarios 
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6.6 What-if B: Altering the distribution of delayed hours 

The number of hours patients spend delayed is currently modelled by statistical distributions 

based upon historical data.  Consider now the effect of changing these values; the data has 

shown that length of stay and acute discharge destination may be affected by the time spent 

waiting for surgery, which will in turn result in subsidiary consequences for bed occupancy 

and patient outcome figures.  These values are now changed in a variety of ways in order to 

quantify how altering the distribution of the number of delayed hours will affect the system. 

 

6.6.1 Setting to a pre-determined value 

Initially, the operative delay distributions are discarded and instead the number of delayed 

hours is set to a fixed value, so this aspect of the model is now deterministic.  This is varied 

between 0 hours and 96 hours (four days) across all ASA grades.   

Bed occupancy results are given in Table 6.6.1i.  One of the main marker variables in this 

simulation model is whether or not a patient has their operation before or after 48 hours of 

arrival at the hospital and thus the biggest differences between the results are seen when the 

48 hour mark is exceeded.  Despite this, the bed occupancy figures still vary within the 0-48 

hours and 49-96 hours intervals, due to the change in pre-operation length of stay.  If all 

patients were operated on within the first hour of arrival, the mean bed occupancy would fall 

to 38 beds, which is the limit of the proposed dedicated hip fracture ward.  Increasing this to 

96 hours would result in an increase from this of around 8.1 beds on average.  Inspection of 

the bed occupancy results shows that while a more volatile system is expected in terms of an 

increasing standard deviation, the coefficient of variation actually decreases as the set number 

of delayed hours increases, so the relative variation is lower. 

Acute discharge destination is affected only by whether the patient undergoes surgery within 

48 hours or not, so results at 0, 24 and 48 hours will be similar, but different to those at 72 

and 96 hours.  There are therefore just two groups to consider in terms of results here, see 

Figure 6.6.1ii.  The percentage of patients discharged home decreases from approximately 

32% to 25% if all patients are operated on after 48 hours instead of within 48 hours, while the 

percentage of deaths increases from 10% to 14%.  The numbers discharged to a care home 
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remain relatively unchanged; while a relative percentage increase of around 4% more patients 

are discharged to another healthcare institution in the „after 48 hours‟ group. 

 

Table 6.6.1i:  Results of setting the number of operative delay hours to a pre-determined 

value on bed occupancy 

Fixed number of 

hours delayed 

Bed occupancy Percentage 

of time over 

38 beds Mean  C.V. Min Max 

0 38.0 0.175 17.8 64.3 45.2% 

24 39.3 0.172 18.8 66.2 53.1% 

48 40.6 0.170 19.6 67.8 60.7% 

72 44.7 0.163 22.7 73.2 80.2% 

96 46.1 0.160 23.6 75.3 84.8% 

 

 

Figure 6.6.1ii: Results of setting the number of operative delay hours to a pre-determined 

value on acute discharge destination 

 

6.6.2 Altering the distribution of delayed hours for ASA grades I&II 

Operative delay for ASA grade I&II patients was modelled using a Lognormal distribution, 

which was also used to model the number of hours ASAIII and ASAIV patients spend 

administratively delayed.  The Lognormal distribution has three parameters: the mean   and 

standard deviation   of the included Normal distribution, plus a minimum should one be 

required.  The Lognormal distribution is a continuous distribution which is bounded on the 

lower side.   It always returns a value of zero at minimum x  and then rises to a peak that 

After 48 hours 

Within 48 hours 

0% 20% 40% 60% 80% 100% 

Time to operation 

relative to 

admission 

Percentage to each acute discharge destination 

Home Care home Healthcare institution Died 



 

 

187 

 

depends on ,    and the minimum value.  It will then decrease monotonically as x  

increases.  Both the mean and standard deviation of the distribution also depend on both   

and ,  where the mean is also shifted by the minimum if one exists.   

The fitted Lognormal distribution in this case had values of 3.523, 0.954    and a 

minimum of 3, giving a mean of 56.4 hours and standard deviation of 65.1 hours.  Altering 

the input parameters and rerunning the model will give an insight into the sensitivity of the 

simulated results on this distribution.  The mean and standard deviation of the distribution are 

fixed in turn, while the other will vary; thus the results will reflect firstly a change in location 

and secondly a change in spread.   

The value of   is changed systematically across the interval [0.1, 2.6] and the value of   

then altered in order to keep the value of the standard deviation constant, but a change in the 

mean value will result from this.  Note that it is not a requirement that 0.    The resultant 

changes in the mean and   are presented in Figure D6.6.2a. 

Similarly, one can fix the mean but change the standard deviation of the distribution.   The 

value of  was again changed systematically but the value of   then altered in order to keep 

the mean value constant, see Figure D6.6.2b.  The average time spent delayed is thus not 

changed, but the effect of more or less variation in the system can be investigated. 

These changes were made in turn as described and results are given in Figure 6.6.2i.  On 

fixing the standard deviation but altering the mean, a rather modest effect on bed occupancy 

is observed, both in terms of the mean and the coefficient of variation, but much more 

unpredictable results are seen if the mean is fixed and the standard deviation is fluctuated. 

The effect on discharge destination is also investigated.  The percentage of patients 

discharged to each of the four acute discharge destinations is given in Figure 6.6.2ii.  Similar 

but not identical results are seen.  The lines appear to fluctuate less when the standard 

deviation is fixed, while fixing the mean results in starker changes across these values.  

Therefore despite keeping the overall average of the delay distribution the same, introducing 

more or less variation again shows a bigger change in results compared with varying the 

average of the same distribution. 
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Figure 6.6.2i: Results of changing the distribution of delay of ASA grade I&II patients on 

bed occupancy measures 

 

 

Figure 6.6.2ii: Results of changing the distribution of delay of ASA grade I&II patients on 

acute discharge destination 

 

6.6.3 Altering the distribution of delayed hours for ASA grades III and IV 

Operative delay for ASA grades III and IV was modelled using a grade-dependent Gamma 

distribution.  The Gamma distribution is governed by three parameters: a shape parameter ,

a scale parameter   and a minimum value if necessary.  Note that if this distribution 

returned a value greater than 48, indicating that the patient is delayed, then their actual time 

spent delayed was decided by a different Negative Exponential distribution.  The Gamma 

distribution is a continuous distribution bounded at the lower side with three distinct regions.  
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If 1  , then the Gamma distribution reduces to the Negative Exponential distribution.  For 

1  , the Gamma distribution tends to infinity at minimum x  and decreases monotonically 

for increasing .x  For 1  , the Gamma distribution returns a value of zero at minimum x , 

then rises to a peak which depends on both   and ,  decreasing monotonically thereafter.    

In this case, the value of 
 
is varied and then the value of   is calculated based on   and 

either the resultant mean or standard deviation, whichever is required to be fixed.  
 
is set to 

each 0.05 increment in the range [0.1, 4], producing 79 scenarios in each case in total. 

The Gamma distribution used for the number of hours spent delayed for ASA grade III 

patients has a mean of 63.6 and a standard deviation of 44.6, with respective values for ASA 

grade IV of 102.7 and 76.6.    

Firstly, values of   and   are changed in turn to keep the standard deviation fixed while 

increasing and decreasing the mean.  The resulting change in the average (inclusive of the 

minimum value) in this case varies between 15.1 and 90.1 for ASA grade III and 29.2 and 

158.2 for ASA grade IV.  The relationships are displayed graphically in Figure D6.6.3a.  It 

can be seen that as   is increased,   is forced to decrease in order to keep the standard 

deviation constant.  These variations in   and   are shown to increase the mean of this 

distribution. 

Firstly, the impact upon acute discharge destination is examined.  The percentage change 

from the current situation is used as measure for each destination.  Results are displayed in 

Figure 6.6.3i.  The percentage of deaths is seen to vary rather dramatically when these 

distributions are amended; as expected, as mean delay increases, the number of deaths 

increases, while at the same time the percentage of patients discharged home falls. 

The impact on various bed usage measures is also considered and results are seen in Figure 

6.6.3ii, where the dashed lines indicate the current situation.  By changing these distributions 

to the minimum mean levels as described, over 750 bed days can be saved each year.  

Additionally, the percentage of time the ward would operate at over 38 beds would reduce to 

less than 60%. 
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Figure 6.6.3i: Results of changing the mean of the distribution of delay of ASA grade III and 

IV patients on acute discharge destination 

 

 

Figure 6.6.3ii: Results of changing the mean of the distribution of delay of ASA grade III 

and IV patients on bed usage 

 

The mean values are now fixed in turn, while the variation in the system is altered.  This 

results in a minimum standard deviation of 31.3 and a maximum of 197.8 for ASA grade III, 

with the values for ASA grade IV being 48.9 and 309.0.  The standard deviation therefore 

increases at most by more than a factor of twelve in each case, in comparison to the original 

value, resulting in a rather more unpredictable system. Again,   is forced to decrease, this 

time to keep the mean constant, while the standard deviation decreases also.  See Figure 

D6.6.3b for a graphical display of this relationship.  Here the number of hours spent delayed 

per year is considered.  Since delay was split by administrative and clinical delay, the same is 

done here with particular regard to the more controllable administrative delay.  Comparative 

figures with the current situation are also given, see Figure 6.6.3iii. 
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Figure 6.6.3iii: The effect of a change in variation of the distribution of delay of ASA grade 

III and IV patients on the total number of delayed hours per year 

 

Finally, as a comparison between the consequences of alternately changing the mean or the 

standard deviation, the result on the total number of bed days per year is considered.  This is 

calculated as the percentage change from the current situation and results are given in Table 

6.6.3iv.  A more extreme change is seen when the standard deviation is fixed and the mean is 

varied, rather than vice-versa.  Thus not only does more stable system leads to more 

predictable results, as expected, better results may also be gained by controlling this 

variation. 

 

Table 6.6.3iv: The effect of a change in mean or variation of the distribution of delay of ASA 

grade III and IV patients on the percentage of total bed days 

α Fix mean Fix standard deviation 

0.5 -1.63 -2.96 

1 -0.79 -1.55 

1.5 -0.07 -0.59 

2 0.40 0.43 

2.5 0.67 1.02 

3 0.82 1.39 

3.5 0.96 1.70 

4 1.07 1.79 
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6.7 What-if C: Altering the number of arrivals 

 

6.7.1 An ageing population 

The issue of an ageing population in the United Kingdom is something that has been highly 

publicised over recent years.  Population projections for those aged 50 and over have been 

computed by the Welsh Assembly Government for each local authority in Wales up until the 

year 2031 (WAG 2009a).  These calculations are based on assumptions about births, deaths 

and migration.  Changes in lifestyle, living conditions and health and social care provision are 

all reported to have led to an improvement in life expectancy (Ezzati et al. 2003, Khaw et al. 

2008, WHO 2002). 

The recorded numbers in this age group are reported to have increased by 15.6% in the years 

1991-2007, standing at approximately 1.11 million in 2007.  This is projected to increase to 

1.42 million by 2031, a further 20.8%.  This equates to 37% of the Welsh population being 

aged 50 and over in 2007, rising to an estimated 43% in 2031.  This rise is attributed mainly 

due to an increase in life expectancy; over the thirty years from 1976 to 2006, life expectancy 

increased by 8.4 years and 6.3 years for males and females respectively.  Indeed, the 

population aged 85 and over in Wales is projected to more than double in size between 2007 

and 2031 (WAG 2009a).  

Since the majority of hip fracture patients are elderly, it is important to plan for future 

provision requirements on the basis of an ageing population.  Population pyramids are a 

useful way to view the distribution of ages within a population by gender; actual results for 

2006 and projected results for 2031 are presented in Figure 6.7.1i for the local authorities of 

Cardiff and The Vale of Glamorgan (VoG).  Note that the 2006 are overlaid onto the 2031 

figures (the 2031 values were larger in every case). 

The shape of the pyramid appears to be more symmetrical for 2031 compared with 2006, 

suggesting that the trend of a higher increase in life expectancy for males could continue.  A 

striking increase can be seen in the ninety and over age group, which is estimated to show a 

huge increase in numbers over the coming years, more than quadrupling for males and more 

than doubling for females.   
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The population projections provided were used in combination with admission data to gain an 

expected arrival rate for the year 2031.  Each age was weighted according to the proportion 

of admissions within that group in order to gain a more accurate estimation of a projected 

increase in arrivals; these were taken singularly between 60 and 89, with two other groups 

which captured patients aged under 60 and patients aged 90 and over.  The rate of arrivals for 

under 60s was kept constant.  See Figure 6.7.1ii for the results of this exercise. 

In total, the average number of admissions per year is expected to be in the region of 860 

patients by 2031, translating to an increase of 72.4% from the current observed numbers.  At 

the same rate of increase per group, the number of annual admissions is estimated to double 

by the year 2041. 

 

 

Figure 6.7.1i: Population / Projected population pyramid for Cardiff and The VoG 

 

 

Figure 6.7.1ii: Current and projected annual admissions of trauma hip fracture patients 
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6.7.2 Issues to consider 

This issue of an increase in the ageing population is raised here as it will undoubtedly have an 

impact on the demand for the provisions provided by the trauma hip fracture service.  

However, there are various issues and assumptions to consider when interpreting these 

results, with regard to an increase in admissions.  The estimated increase in demand is valid 

on the assumption that everything else influencing patients and patient care remains the same 

and relate solely to an increase in the number of patients being admitted under the care of the 

University Hospital of Wales with a fractured hip.   

There is no way of knowing any organisational changes which may be introduced in the 

meantime; such as deferring some patients elsewhere or extra resources becoming available.  

These may include, but are not limited to; staff, theatre space and theatre time.  An increase 

in any of these could mean that patients are treated more promptly.   

There could also be clinical advances in this field which may influence the treatment of this 

patient cohort, or an increased awareness of this injury and its causes may also lead to fewer 

incidences.  Alternatively an increase in the use of hip protectors may be seen, which may 

reduce the proportion of people suffering this injury, although the efficacy of these protectors 

is still under debate (Birks et al. 2004, Gillespie et al. 2010, Kiel et al. 2007) and it is reported 

that patient compliance also remains an issue (Sawka et al. 2005).   

This is by no means an exhaustive list of issues which may have an effect on not only the 

number of future admissions, but also the way in which these patients are cared for and 

managed.   

 

6.7.3 Changing the inter-arrival pattern 

The mechanism used in the simulation model to generate arrivals is based on the inter-arrival 

times (in days) from historical data.  By altering the proportion of arrivals which occur of the 

same day (i.e. an inter-arrival time of zero days), the overall number of entries to the system 

can be altered.  The proportion of inter-arrivals which then fall at one, two, three, four, five or 

six days is then calculated based on the original proportions. 



 

 

195 

 

The data showed that the inter-arrival time between patients was zero days in 46.2% of cases.  

A decrease in this value is also considered for academic purposes.  While it is unlikely that 

this will happen, due to the reasons explained and evidence presented previously, it is still 

interesting to see the effect on the system. 

Firstly consider how the mean number of arrivals will vary by changing the inter-arrival 

pattern.  Each integer value between 35% and 80% is considered for the percentage of cases 

that the inter-arrival time between patients is zero days, with the remaining values then 

adjusted accordingly.  The effect on the mean number of arrivals per year can be seen in 

Figure 6.7.3i.  The mean number of patients admitted is seen to approximately double when 

the inter-arrival time is zero days is in the region of 73-74%. 

 

 

Figure 6.7.3i: Impact of a change to the inter-arrival pattern on annual admissions 

 

Now consider how this increase in the number of arrivals will affect bed occupancy, see 

Figure 6.7.3ii.  Intuitively an increase in the mean number of beds occupied is expected but 

quantifying this is worthwhile.  Results may help healthcare workers with planning for the 

future in terms of resources and manpower.  Note that the horizontal axis does not increase 

proportionally but relates to the increase in the number of arrivals seen in Figure 6.7.3i. 

If the projected situation of around 860 admissions per year by 2031 is realised, then the hip 

fracture team can expect an average of approximately 72 beds occupied at any one time, with 

approximate minimum and maximum values of 36 and 122 respectively.  Under these 

circumstances, the percentage of time that hip fracture patients would exceed the proposed 

dedicated ward capacity of 38 beds would stand at 99.92%.   
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The result seen for the current situation of average occupancy now becomes the roughly the 

best case scenario of the minimum number of beds occupied (42 beds occupied) if admission 

rates are doubled.  The mean and maximum values are now 85 and 142 respectively, with the 

threshold of 38 beds exceeded 99.99% of the time. 

 

 

Figure 6.7.3ii: Bed occupancy results for a varying number of arrivals 

 

It is also interesting to look at the variation in bed occupancy.  As seen in Figure 6.7.3iii, 

more arrivals bring about more variation in the system.  Of course, as bed occupancy 

increases, the standard deviation is expected to increase, since larger numbers will return a 

larger standard deviation, even if the relative changes are similar.  For this reason, the 

coefficient of variation is also included.  The relative variation is therefore also seen to 

increase, thus the hip fracture team will not only have to deal with more patients at any given 

time, but also with a more volatile system.  This result may seem unintuitive and it is 

conjectured to be due to the process of changing the arrival pattern, as previously explained. 

While these results may be expected by extrapolating the results seen for the current 

situation, any scale or precision of the change is unknown (or can be no more than supposed).  

By running these scenarios the precise figures can be gained, thus enabling more accurate 

strategic planning for the hip fracture ward.  Indeed, since an accurate forecast of the future 
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situation has been garnered, then results and conclusions from some of the other what-if 

scenarios may prove useful in planning for the inevitable increase in admissions.   

 

 

Figure 6.7.3iii: Results of the change in the standard deviation and coefficient of variation of 

the number of beds occupied as the mean number of arrivals per year is varied 

 

6.7.4 Preparing for an increase in arrivals 

The effect that an increase in the number of arrivals is likely to have on this system has been 

shown and, according to the evidence, it seems that this eventuality is inevitable.  While it 

may be useful to be aware of this for planning reasons, the model can also be used to assess 

the impact that any changes which could be made may have on the system.  Various 

strategies have been proposed and investigated thus far, and amending the percentage of 

delayed patients with an ASA grade of I or II is considered in further detail here.  The reason 

for this is that, as explained in detail previously, this patient group is one which is deemed to 

be the easiest to impose changes upon.  The percentage of patients delayed is varied at 

intervals of 25 between 0 and 100 percent inclusive.  

Bed occupancy figures at each of these levels are displayed graphically in Figure 6.7.4i.  Note 

that the sets of values used to create this graph are statistically different, both for overall 

group and individual pairwise comparisons, p < 0.0001.  This is true for each of the three 

summary measures plotted.  As an example, the biggest difference in mean bed occupancy is 

almost ten days; this is a rather remarkable figure when the overall number of bed days saved 

per year is considered. 
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Similarly, the effect on the yearly total number of bed days is investigated.  The percentage 

changes from the current values are given in Table 6.7.4ii.  Note that the current average 

number of arrivals per year is approximately 500.  Results were interpolated so that these 

results could be quoted at tidy numbers of arrivals per year.  

 

 

Figure 6.7.4i: The effect on bed occupancy due to changes in the percentage of delayed 

patients (ASA grade I&II) and an increase in arrivals 

 

Table 6.7.4ii: Percentage increases in total number of bed days by altering the number of 

arrivals and the percentage of delayed patients, ASA grade I&II 

Average number 

of annual arrivals 

Percentage of delayed patients (ASA grade I and II) 

0 25 50 75 100 

600 15.7 17.9 20.4 22.7 25.0 

800 54.1 56.9 60.2 63.4 66.3 

1000 92.9 96.6 100.7 104.7 108.1 

1200 131.2 135.5 140.3 145.2 149.5 

 

Finally, the effect on mortality of this change in the percentage of delayed ASA grade I&II 

patients is investigated; results are given in Figure 6.7.4iii.  On inspection of the left-hand y-

axis, results may not initially appear relatively astonishing, but consider the number of 
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patients that these values are referring to.  With an approximate average of 500 arrivals per 

year, a change affecting 0.2% of the patient group translates as one person.   

Consider now the anticipated increase in the long-term future to 1000 admissions annually, 

the same percentage change now affects one more additional person.  The numbers of 

average deaths for this admission level are therefore also given.  It is also important to bear in 

mind that just the patient group of ASA grade I and II patients are under consideration here. 

 

 

Figure 6.7.4iii: Percentage changes in mortality by altering the percentage of delayed 

patients, ASA grade I&II 
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6.8 Model II 

Model II was actually formulated prior to Model I but was use of it was discontinued once 

NHFD data became available.  While it is the same patient group that is modelled both times 

(but not entirely the same data used for the model formulation), they focus on different 

perspectives, with the main difference between the models being that operation type was the 

main focus of Model II instead of ASA grade.  The operation type parameter was dropped in 

favour of concentrating on operative delay and ASA grade for Model I.  This decision was 

taken on the advice and support given by a senior clinician involved in this work. 

Rigorous set-up, validation and verification procedures were undertaken as previously 

described before the model was concluded to be fit for purpose and used for later analysis. 

 

6.8.1 Model formulation 

Recall that surgical procedure type is divided into seven categories; one for no operation (A, 

3.4% of all patients) and six operation types (B-G).  Type A patients were modelled as per 

Model I. 

Significant differences in length of stay between types B-G were suggested by both a 

Kruskal-Wallis test and survival analysis, which indicated significant differences between the 

strata (as explained in Section 6.3.2), p < 0.0001.  Using operation type as an indicator of 

length of stay is additionally verified by results from Chapter 3.  Post-hoc analyses were then 

undertaken to assess differences in length of stay between delayed and non-delayed patients 

for each operation type and these were incorporated into the model where appropriate, using 

a cut-off of two days.  (Only information on the number of days between admission and 

operation was available at this time.)  A split by ASA grade was also used where appropriate. 

Length of stay for the majority of groups could be modelled using a Lognormal distribution, 

see Table 6.8.1i.  Note that in some cases groups are combined; this is either because there 

was no statistical difference in length of stay (for example, operation type D with respect to 

delay), or because there was not enough data to perform a split (for example, operation type 

C, ASA grade IV, with respect to delay).  For operation types F and G no statistical fits could 

be found and therefore empirical values were sampled from, see Table 6.8.1ii for a summary.  
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Table 6.8.1i: Lognormal fits for length of stay, by operation type, delay and ASA grade  

Operation type | 

Delay | ASA 

grade 

μ σ Min 
Theoretical Empirical 

Mean S.D. Mean S.D. 

B | ≤ 2 days | I&II 2.624 0.895 3 23.6 22.8 22.9 18.6 

B | ≤ 2 days | III 2.914 0.998 3 33.3 39.6 31.8 32.5 

B | ≤ 2 days | IV 2.712 1.089 1 28.2 41.1 25.1 26.7 

B | > 2 days | I&II 2.543 0.974 6 26.4 25.7 24.1 15.8 

B | > 2 days | III 3.075 0.901 5 37.5 36.4 37.7 40.2 

B | > 2 days | IV 3.261 1.020 7 50.9 59.4 43.9 32.1 

C | ≤ 2 days | I&II 2.057 0.967 1 13.5 15.5 14.3 20.6 

C | ≤ 2 days | III 2.241 1.001 4 19.5 20.4 20.2 27.1 

C | > 2 days | I&II 2.611 0.808 5 23.9 18.1 22.7 19.0 

C | > 2 days | III 2.579 1.119 7 31.7 39.0 31.8 33.8 

C | All | IV 2.631 1.174 5 32.7 47.7 28.3 26.9 

D | All | I&II 2.644 0.948 6 28.1 26.6 27.6 25.6 

D | All | III&IV 3.122 0.917 3 37.6 39.7 35.9 30.5 

E | ≤ 2 days | all 2.932 0.823 1 27.3 25.9 26.8 22.9 

E | > 2 days | all 3.145 0.867 3 36.8 35.8 36.1 34.8 

 

Table 6.8.1ii: Summary statistics for length of stay (days) for operation types F and G 

Operation type Mean S.D. 
Mini-

mum 

Maxi-

mum 
Skewness Kurtosis 

F 17.8 15.2 2 102 3.1 12.8 

G 27.8 30.7 3 119 2.3 4.7 

 

The extra length of stay seen in the delayed groups will in part be attributable to the extra 

delay and not due to any knock-on effects that the delay has on hospital stay after the 

operation has taken place.  Despite this, investigation here is still worthwhile; even if the 

longer length of stay is caused wholly by the extra delay, amending the proportion of delayed 

patients (for example) will still have an effect on the system.  

Inter-arrival times were modelled by sampling from empirical values, as per Section 6.3.5, 

and patients assigned an operation type, operative delay grouping and ASA grade on arrival 
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based on historical data, as displayed in Figure 6.8.1iii.  Variation is introduced by attaching 

a Poisson distribution to the delay percentages using previously explained methodology.   

 

 

Figure 6.8.1iii: Patient distribution by ASA grade and delay category within operation type 

 

Discharge destination was modelled similarly to Model I but could not be considered by 

operation type as well as admission source due to data limitations.  However, the admission 

source was dependent upon operation type and thus indirectly influenced the discharge 

destination. 

The same rigorous set-up exercises were undertaken for Model II as were performed for 

Model I with regard to the determination of the warm-up period, run length and number of 

replications.  This was complemented by thorough validation and verification procedures. 

 

6.8.2 What-if scenario: investigating the effect of delay  

The main outcome of interest is to look at how varying the number of patients who are 

delayed impacts upon the system.  The percentage of delayed patients within each operation 

group was varied while the remaining five groups were left unchanged.  Finally, all groups 
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percentage was then set to its new value, and the remaining percentage values were then 

adjusted proportionally.  Clearly the percentage change for one group will therefore be 

affecting a different number of patients compared with the same percentage change in 

another group. 

 

(a) Ward impact 

Firstly, the effect that these changes have upon the ward is investigated, primarily with 

respect to mean bed occupancy.  Results are displayed in Figure 6.8.2i.  

 

 

Figure 6.8.2i: The impact on bed occupancy by varying the percentage of delayed patients 

 

The interest here is really in the particulars of this graph.  Recall that patient numbers in the 

hemiarthroplasty and dynamic hip screw groups were very similar so the percentage changes 

here are affecting almost exactly the same number of people.  With this in mind, the 

difference in results between these two groups is quite stark.  Concentrating efforts on 

reducing the delay for hemiarthroplasty patients will have a considerably larger effect on the 

ward than for dynamic hip screw patients.  Indeed, reducing the percentage of delayed 

patients in this group from the current value of 45.9% to 15.9% (a crude decrease of 35%, the 

largest decrease considered here), would mean that average bed occupancy will fall by over 

1.5 beds, a saving of over 500 bed days per year.  On average, to obtain this progression in 
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reality it would mean improving service for approximately 50 patients each year, where an 

improvement in service is defined as changing a delayed patient to a non-delayed patient. 

Consider also the results seen for the operation type of screws.  Patients in this group account 

for considerably fewer patients than in the dynamic hip screw group, but see better results.  

An improvement in the percentage delayed here is therefore referring to much fewer patients.  

The simulation model has therefore shown that by concentrating on an improvement in this 

patient group will lead to better results in terms of bed occupancy. 

These results are obtained due to the differing length of stay profiles within each operation 

type group.  Since ASA grade was taken into account, those groups with a higher proportion 

of sicker patients will in turn see this effect on length of stay and, ultimately, bed occupancy.  

A similar rationalisation can be applied to delay. 

 

(b) Impact on discharge 

The impact of delay on patient outcome, measured in terms of acute discharge destination, is 

also considered.  A similar graph is now displayed, but with results relating to the average 

number of deaths.  Unfortunately due to limited data, discharge destination could not be 

explicitly split by operation type as well as admission source and delay and therefore similar 

results will be gained from similar-sized groups.  However, discharge was still influenced by 

operation type in terms of the discharge destination being affected by admission source and 

delay probabilities, which in turn were determined by operation type. 

The greatest improvements are gained within the two largest groups, namely dynamic hip 

screw and hemiarthroplasty patients.  If an improvement (in terms of fewer delayed patients) 

could be achieved across all operation types, the percentage of patients dying on the ward is 

shown to drop from around 12% to 10%, equating to approximately ten lives saved per year. 

It is also important to consider the other acute discharge destinations as well as death.  The 

percentage change from the number of patients currently discharged to each of the four 

destinations is given in Table 6.8.2iii.  This is for changing the number of delayed patients 

across all operation types. 
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The results show that based on 500 admissions per year, if the crude percentage change in the 

number of delayed patients is decreased by 20 (for example), then 25 extra patients per year 

will be discharged home.  A change in the opposite direction however, with a crude increase 

of 20 percent, will result in around five more patients per year being discharged to a care 

home, with same rise seen for healthcare institutions.  This is not only less preferable to the 

patient, but provides more pressure on the National Health Service and Social Services.  

 

 

Figure 6.8.2ii: The impact on mortality by varying the percentage of delayed patients 

 

Table 6.8.2iii: The impact on acute discharge destination by varying the percentage of 

delayed patients 

Percentage change 

in the number of 

delayed patients 

% change from current situation (acute discharge destination) 

Home Care home 
Healthcare 

institution 
Died 

-30% 7.65 -1.80 -1.82 -13.72 

-20% 5.04 -1.50 -0.96 -9.47 

-10% 2.57 -0.69 -0.52 -4.81 

+10% -2.22 0.48 0.56 3.95 

+20% -4.58 1.04 1.06 8.37 

+30% -7.15 1.06 1.70 13.55 
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6.9 Recommendations 

Using results obtained from running Model I and Model II of the hip fracture ward, a number 

of recommendations can be made into the most effective ways to improve throughput and 

occupancy levels. 

Statistical investigation showed that for ASAI&II patients, post-operation length of stay is 

also reduced if surgical delay, defined as more than 48 hours between admission and 

operation, can be avoided.  It is thus suggested that if any changes could be made to the 

system whereby any patients could undergo surgery more promptly, the greatest impact will 

be realised by focussing on ASAI&II patients.  Results showed that by ensuring all ASAI&II 

patients receive surgery within 48 hours, 440 bed days and 1.2 lives could be saved per year.  

Other investigations showed concentrating efforts on reducing delay for ASAIII patients 

would give greater improvement than for ASAIV patients.   

Of course, it is recommended that unnecessary delay is reduced as much as possible across all 

patients, regardless of their ASA grade.  A decrease in pre-operation length of stay will 

therefore be directly reduced, while indirectly reducing length of stay post-operation.  (Post-

operation length of stay was shorter for non-delayed patients for each ASA grade, but did not 

reach statistical significance for ASAIII or ASAIV and thus was not incorporated into the 

model.)  Results from the simulation show that completely reducing surgical delay would 

result in approximately four fewer beds occupied on average and a reduction in mortality 

rates from 12% to 10%. 

It is additionally recommended that by targeting hemiarthroplasty patients (type E) for an 

improvement in treatment (reduction in delay), a better outcome will be realised than for 

other patients.  500 bed days would be saved each year if the 50 hemiarthroplasty patients 

who are currently delayed, instead reached surgery within two days.  The smaller cohort who 

receive an operation using screws (type C) also yields good results. 

Finally, it is advised that any variation in the system should be controlled as much as 

possible.  Controlling for this variation can lead to improved outcomes, even if it superficially 

may appear than no improvements have been made to treatment of patients (no change in 

mean delay, for example).  
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6.10 Chapter summary 

This chapter has focussed on building a simulation model of all trauma fractured neck of 

femur patients admitted under the care of Cardiff and Vale University Health Board.  While 

comprehensive statistical analyses were completed prior to building the simulation model 

(Chapters 3 to 5), the task of formulating and building the model provided further useful 

insight into important factors relating to this patient cohort.   

Due to the thorough investigations completed into important factors which affect the trauma 

hip fracture ward and its patients, there is confidence not only in the quality of this simulation 

model, but also that the correct classification variables were used.  Rigorous analyses were 

performed in terms of the determination of the warm-up period, run length and the number of 

replications to run before any later investigations were undertaken.  Additionally, both 

models were validated and verified and found to be fit for purpose. 

A variety of what-if scenarios were performed once it was deemed to be fit the purpose for 

which it was designed.  Recall that the first model has more flexibility in terms of the central 

variable of delay to operation, and as a consequence was considered in finer detail.  The issue 

of an ageing population has also been discussed and the likely impact of this on the hip 

fracture ward has been documented.  This idea was then amalgamated with one considered 

earlier, that of varying the number of patients who are delayed, in order to assess the impact 

on various performance indicators of an increase in admissions as well as better patient 

management.  The second model provided additional useful information relating to operation 

type. 
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CHAPTER 7: THE TRAUMA THEATRE  

7.1 Introduction 

This chapter focuses primarily on the data available for operating theatres at the University 

Hospital of Wales (UHW) and, in particular, the emergency trauma theatre.  The reason for 

this is that this is the theatre in which almost all trauma hip fracture operations take place.  

These surgeries are only performed in another theatre on very few occasions and thus the 

impact of this on the system is assumed to be negligible and is therefore ignored. 

An understanding of the workings of the trauma theatre, and indeed the general operating 

theatre department at the UHW, was made possible via two main methods.  Firstly, detailed 

discussion with staff members, primarily with the Theatre Manager (who is also a consultant 

anaesthetist) and two data managers, allowed for insight into how and why data is recorded. 

Secondly, a morning was spent shadowing the Theatre Manager in surgery, observing 

operations at all stages (pre-, peri- and post-) across a variety of different theatres.  This 

allowed for further useful discussion with surgeons, operating department practitioners 

(ODPs) and other medical staff. 

 

7.1.1 TheatreMan software 

Theatre activity data is collected in the operating theatres at the UHW using the software 

package TheatreMan, which is “designed to report on all activity that is captured during the 

patient episode for clinical and management purposes and includes real-time patient data 

capture” (Trisoft 2009a).  There are a range of modules available within this program, 

including those related to advanced scheduling, forecasting and list management and 

treatment, as well as various reporting and documentation options.  Key benefits of 

implementing this software include the promotion of better patient care, increased ease of 

identifying bottlenecks and delays in the system and providing staff audit information (Trisoft 

2009b).  This software has been implemented across many NHS Trusts and accounts of 

successful functioning have been reported (Fairley 1991, Trisoft 2006). 
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The data fields available for the purpose of this study include patient information, operation 

information and detailed timings regarding the patient‟s journey from the ward, during the 

operation, and through to the recovery ward.  Patient information includes age and hospital 

number, which is each patient‟s unique identifier.   

Operation information includes OPCS-4 code, operation description, surgeon and location.    

OPCS-4 codes are a classification of interventions and procedures given by the Office of 

Population Censuses and Surveys.  They consist of a letter followed by three numerical 

figures, which are separated by a period (.) between the second and third digits.  The letters 

denote 24 chapters of classification and each chapter represents a different part or system of 

the body.  The relevant chapter code here is W, which represents Other Bones and Joints.  A 

localised code, in the form of a single letter, may also be appended if required (NHS 2005). 

A screenshot of the treatment module of the TheatreMan software is given in Figure D7.1.1a 

of the Appendix.  Patient-specific and surgeon information is censored for privacy reasons.  

Various pieces of information can be seen, including the operation performed (both the 

OPCS-4 code and a textual description), the theatre in which the operation took place and a 

number of timings which map the patient‟s journey through the theatre. 

 

7.1.2 Data extraction  

A selection of different databases was provided by the theatres data team at the UHW, 

relating to theatre pathway timings, cancellations and utilisation.  Note that these databases 

did not necessarily cover the same time period and that also the times at which they became 

available was staggered throughout the course of this study. 

In liaison with medical and administrative staff at the UHW, a complete list of fractured hip 

OPCS-4 codes was compiled, so that the relevant operations could be extracted from the 

dataset of all trauma theatre patients.  Initially, theatre information relating to hip fractures 

only was available and thus the primary work undertaken, and hence the primary analyses 

described in this chapter, concentrate on this patient group.  In total, 21 different types of hip 

fracture operation would be considered, see Appendix B, Table B7.1.2a, for a complete list of 

these operations.  This original database included OPCS-4 codes, surgeon information and 
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pathway timings.  The remaining databases became available later and are described as they 

are introduced throughout this chapter. 

 

7.1.3 Data validation 

Many of the fields seen in the TheatreMan screenshot are entered by medical staff in real 

time.  High workload in a stressful environment such as an operating theatre may lead to 

difficulties in entering accurate and complete data and evidence of this was seen throughout 

the data validation process.  One validation measure undertaken was checking whether the 

successive intervals were recorded in chronological order; this was a simple test to do but 

resolving errors was a little trickier as it was not necessarily obvious which of the times was 

recorded incorrectly.  For simplicity, any times not recorded chronologically meant the 

removal of that time and the preceding time. 

Other validity issues included duplicate entries; on several occasions patients were found to 

be entered twice into the database but with slightly conflicting times or with different 

operation codes.  In the latter case, it was suggested that this may be due to the patient 

undergoing more than one type of operation, but in the majority of cases this could be 

regarded as a mistake.  In the former case, one observation usually included many more 

entries than the other and was therefore kept. 

Once all of the data was cleaned and erroneous values were removed, or corrected if possible, 

it was deemed that it was then fit for purpose and could be explored and investigated further.  

Because of the issues explained previously, the value of n will vary throughout the following 

report due to missing data and obvious data entry errors being excluded.   
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7.2 Theatre pathway 

The time fields recorded for each patient, mapping their journey from ward to recovery, via 

theatre, are as follows: 

Asked for:   Porter requested to fetch the patient from the orthopaedic ward. 

Sent for:   Porter fetches the patient. 

Arrived:  Patient arrives at the loading bay, part of the operating theatre 

suite. 

Into anaesthetic room:  Patient enters the anaesthetic room. 

Anaesthetic start:   Anaesthesia procedure is started. 

[Into theatre:   Patient arrives enters the operating theatre.] 

Operation start:   Surgical procedure is started („knife to skin‟ time). 

Operation finish:   Surgical procedure finishes. 

Out of theatre:   Patient leaves the operating theatre. 

Into recovery:    Patient arrives at the recovery ward. 

Out of recovery:  Patient leaves the recovery ward and returns to an orthopaedic 

ward. 

 

One time field is parenthesised since although it is available within TheatreMan, it was not 

recorded in each of the databases provided and is therefore not always used; leaving a total of 

either eleven or ten time recordings available.  From these times, which are all recorded in the 

format hh:mm on a 24-hour clock, ten or nine time intervals can be created to represent the 

length of time, in minutes, that each process takes.   

Some of these time intervals can be viewed as delays.  As an example, the time between 

asked for and sent for is, in theory, an avoidable delay; if a porter was available to fetch the 

patient as soon as they were requested, then this would always return a time of zero for this 

time interval.  However, discussion with staff involved in this process on a daily basis led to 

the advice that these delays are known by the surgeon; that is, the surgeon will ask for their 

patient with the knowledge that this will not happen immediately, so they will ask for the 

patient before they are actually ready for them knowing that there will be a certain length of 

time before the patient arrives at the theatre area.  From this perspective, it is more desirable 
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that a patient waits in the loading bay rather than a surgeon waits in the operating theatre, 

wasting valuable theatre time and resources. 

Initially, into theatre was not available, leaving nine time intervals available for further 

scrutiny.  Of these, it was decided that the possibility of considering three as dependent upon 

type of operation should be contemplated.  The remaining six could therefore be analysed 

using all hip fracture trauma data and did not need to be broken down further by operation 

type.  The three intervals dependent upon type of operation are as follows: anaesthetic start – 

operation start, operation start – operation finish, into recovery – out of recovery; or, the 

time taken for the anaesthesia procedure, the time taken to perform the operation and the time 

the patient spends on the recovery ward.  These are looked in Section 7.2.2. 

 

7.2.1 Independent time intervals 

A total of 1136 patients were extracted from the trauma theatre database for the original data 

analysis (hip operations only).  First consider the time taken to complete the six intervals not 

dependent upon operation type or any other influencing factors. 

It was recommended by the Theatre Manager at the UHW that times of zero are unrealistic 

for some intervals; it is simply physically impossible for some of the transfers from one state 

to another to be instantaneous.  It was decided that two intervals would need to be amended, 

namely sent for – arrived and out of theatre – into recovery.   

For the former, times less than or equal to five minutes were deemed infeasible.  The wards 

used for hip fracture patients are at least three floors away and it would not be possible for a 

porter to collect the patient and then arrive at the loading bay in less than five minutes.  

Similarly, the recovery ward is along a corridor from the operating theatre and it was decided 

that this journey cannot be done in less than two minutes, particularly with a large trolley to 

be taken into consideration.  Though fairly rudimentary, it was decided to simply ignore any 

times in these intervals which do not suit the criteria above, as they must be invalid entries.  

This reduces the number of entries available for analysis by around half for the out of theatre 

– into recovery category and although this is unfortunate, it is better than including known 

incorrect values in the analysis.  Summary statistics for each of these six independent time 
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intervals, ignoring the invalid entries as described previously, are now given.  (The digit 2 is 

appended to the two intervals which have had entries removed.) 

 

Table 7.2.1i: Summary statistics for time intervals not dependent on operation type 

(minutes; anaes. – anaesthetic) 

Time interval N Mean S.D. 
Mini-

mum 

Maxi-

mum 

Skew-

ness 

Kurt-

osis 

Asked for  –  

sent for 
1045 6.31 6.17 0 51 2.07 5.96 

Sent for –  

arrived 2 
944 16.17 8.43 6 153 7.27 99.57 

Arrived –  

into anaes. room 
1136 12.13 9.92 0 97 2.21 9.37 

Into anaes. room – 

anaes. start 
1135 3.92 4.92 0 65 3.71 28.53 

Operation finish – 

out of theatre 
1128 7.45 8.62 0 185 9.89 171.02 

Out of theatre – 

into recovery 2 
565 6.74 9.47 3 125 7.53 71.75 

 

In order to model the trauma theatre, it may be required to find distributions for each of these 

intervals.  Stat::Fit was used to attempt to find statistical distributions for each of these six 

time intervals but all null hypotheses were rejected.  This was true for each of the Anderson-

Darling, Kolmogorov-Smirnov and Chi-square goodness-of-fit tests in every case at the 5% 

significance level, for each continuous distribution which Stat::Fit checks against.  For 

verification, this exercise was repeated in SAS and the same conclusions were reached.   

Another approach considered here was the Hyperexponential distribution.  This distribution is 

the sum of n  non-identical Negative Exponentially distributed random variables, where 

2n , and is a special case of the more general phase-type distributions, which are well-

suited to the field of healthcare (Fackrell 2009).   

More specifically, the probability density function of the random variable ,X  as represented 

by n  Negative Exponentially distributed random variables, is given by    
1

.
i

n

X i Y

i

f x p f y




.   
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Here iY  is random variable with a Negative Exponential distribution with rate parameter ;i  

that is   i

i

y

Y if y e
 

  for 1,..., .i n   The probability that X  will take the form of the 

Negative Exponential distribution given by 
iY  is given by

ip , so that 
1

1



n

i

i

p .   

A defining feature of this distribution is that its coefficient of variation is greater than one or, 

analogously, the standard deviation is greater than the mean.  It is therefore immediately 

obvious that it will not be suitable for some of the time intervals presented so far.  For the 

remainder, fits were attempted to be found for the Hyperexponential distribution with two, 

three, four and five phases.  This was done using Solver, an add-in available for Microsoft 

Excel, where the parameters to estimate are the rates i  and the probabilities ; 1, ..., .ip i n    

Solver is an optimisation software, where the aim is to find certain values of cells within a 

spreadsheet, in which the decision variables are located, that optimise a certain objective.  

Both maximisation and minimisation problems can be dealt with using this method.  Hard 

constraints can also be specified if required.  The method employed here involved minimising 

the sum of squares between the empirical and fitted probabilities by amending the 

aforementioned parameters.  However, still no fits could be found.  

On further inspection, various other issues with the data were found.  Since the data is 

recorded by theatre staff in real time, optimal accuracy is difficult.  As an example, the 

distribution of times recorded for hip fracture patients from the time they arrived at the 

operating theatre suite to the time they entered the anaesthetic room is given, see Figure 

7.2.1ii. 

 

 

Figure 7.2.1ii: Distribution of time spent in the interval arrived – into anaesthetic room for 

patients undergoing trauma hip surgery on a minute-by-minute basis 
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It can be seen that there are peaks at multiples of five minutes, in comparison to the 

surrounding bars – these are highlighted in red.  Although the actual times that are recorded 

are when these two events occur, and not the time taken for interval, it appears that values 

may have been rounded or estimated in order to facilitate ease of entry into the TheatreMan 

system.  This awkwardness of shape goes some way to explain why the distribution-fitting 

exercise has proved to be problematic. 

Another issue is that some intervals have a high frequency of zero values.  As an example, 

the time taken between entering the anaesthetic room and the anaesthetic procedure starting is 

considered.  It can be seen in Figure 7.2.1iii that this is the case here and under these 

circumstances the bimodal shape is a major cause of difficulties encountered in attempting to 

fit a statistical distribution.  The probabilities have been calculated twice, firstly including the 

zeroes, then excluding them.  To combat this issue, this amended distribution could be used; 

firstly, it would be decided probabilistically whether or not a value of zero is taken and if not, 

then the second distribution is sampled from.  This method of removing zeroes was tried for 

each of the intervals under consideration in this section but again no fits could be found. 

 

 

Figure 7.2.1iii: Distribution of time spent in the interval into anaesthetic room – anaesthetic 

start for patients undergoing trauma hip surgery 

 

One other way to tackle both of the issues discussed here is to combine several values into 

one interval; for example, 0 – 4 minutes, 5 – 9 minutes, etc.  This is likely to solve the issue 

of peaks as displayed in Figure 7.2.1ii and possibly also the second problem discussed, but it 

is not particularly desirable due to loss of information.  It would also pose problems to any 
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distributional fitting exercise.  The graphical distribution of the four time intervals not 

presented thus far can be seen in Figure D7.2.1a. 

 

7.2.2 Non-independent time intervals 

To confirm that it was correct to perform separate analyses on three of the time intervals for 

each type of operation, it was first checked to see whether times did differ between operation 

types.  Only operation types with ten or more entries were included in the analysis. 

For each of the three time intervals, the p-value given by the Kruskal-Wallis test was found to 

be less than 0.0001, leading to a rejection of the null hypothesis there that is no difference in 

the time taken for each respective interval among the operation types.  These intervals are 

likely to be dependent on a number of other factors too, some of which are discussed 

forthwith.   

The American Society of Anaesthesiologists (ASA) grade of a patient is likely to have an 

effect on their performance in each of these three time intervals (see Section 2.2.4 for a 

description of ASA grade).  The time taken to perform anaesthesia is expected to be shorter 

for a much healthier patient compared with one who is sicker, as there are more factors 

affecting the procedure and a higher risk of complications and/or death for patients with a 

higher ASA grade (Aitkenhead 2005).  However, the ASA grade scoring system assumes that 

a patient‟s age has no relation to their physical fitness, which is not necessarily true.  As an 

example, an octogenarian patient with an ASA grade of I is not as fit and healthy as a 

teenager with an ASA grade of I.  However, in view of the fact that the majority of patients 

here are elderly, this may not pose too much of a problem.  Merging the TheatreMan data 

with the Cardiff Hip Fracture Survey data would mean that ASA grade could be obtained for 

the hip fracture patients in the TheatreMan dataset using each patient‟s unique identifier as 

the merging variable.  However, at the time of this study not enough data was available from 

the Cardiff Hip Fracture Survey dataset which recorded this information and thus this idea 

could not be taken further, but is a possible avenue to explore in the future.   

Another factor which may influence the time taken to complete these intervals is the 

experience level of the clinical team.  See Section 7.3.1 for an in-depth investigation into 
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whether or not the level of experience of the surgeon impacts upon surgery procedure time.  

No such information was available regarding the anaesthetist for each operation, but there is 

some evidence to suggest that their experience level does influence the anaesthetic procedure 

time and outcome (Byrne and Jones 1997, DeAnda and Gaba 1991). 

The merging exercise proposed previously would also provide the opportunity to investigate 

if any other patient characteristics, aside from ASA grade, affect their time in theatre.  For 

example, one study found that male gender and younger age were associated with longer 

operating times for primary hip replacement surgery (Småbrekke et al. 2004).  

These intervals are not looked at in more detail here but are considered both later in this 

chapter and in Chapter 8. 
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7.3 Preliminary analyses 

Two separate preliminary analyses regarding the time taken to complete the surgical 

procedure for hip fracture patients were undertaken on the request of the Theatre Manager at 

the University Hospital of Wales.  While these were standalone ad-hoc analyses, the results 

were also useful from a modelling perspective in terms of identifying important and 

unimportant issues or parameters relating to the trauma theatre.   

 

7.3.1 Effect of surgeon experience 

Several studies have investigated the performance of physicians and have suggested that 

increasing age (of the physician) is related to inferior patient outcomes, especially when 

combined with a decrease in patient volume (Eva 2002, Niteesh et al. 2005), but that older 

physicians may have better diagnostic skills despite being less aware of newer medicines and 

techniques (Eva 2002).  Specifically for surgeons, patient mortality has been shown to 

increase with surgeon age across some, but not all, procedures (Hartz et al. 1999, Waljee et 

al. 2006).  While these studies provide useful insight, death during surgery for hip fracture 

patients is very low (Parvizi et al. 1999, Wachtl et al. 2003).  It has also been shown that the 

qualifications of the surgeon have no impact upon patient mortality for hip fracture (Siegmeth 

et al. 2005), thus the primary question to answer here does not relate to mortality, but whether 

experience of the surgeon has any impact upon the time taken for the surgical procedure. 

The condition of bone tissue in the femur has been suggested as the most important factor 

influencing length of operation in hip revision surgery (Frey 2010), while longer operations 

have been shown to increase the chances of infection (Leong et al. 2006, Malik et al. 2004).  

Here the issue to consider is whether the experience of a surgeon has an impact upon the time 

taken to perform the operation; clearly evidence shows that a shorter operation is desirable.  

Surgeons are classified as experienced if they are at consultant level and are classified as less 

experienced, or trainees, otherwise.   

In order to remove bias regarding the type of operation, univariate statistical analyses were 

performed for each type of hip surgery (as classified by OPCS-4 code and where sufficient 

data would allow) in order to determine whether there were significant differences between 

the length of operation and surgeon experience.  In each case, the Wilcoxon test was used and 
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all values were calculated using SAS.  Procedures were only considered if there were ten or 

more observations for both levels of surgical experience, leaving seven procedure types 

available for further scrutiny. 

 

Table 7.3.1i: Results of length of operation (minutes) by operation type and surgeon 

experience level  

OPCS-4 code Experience level n Mean S.D. p-value 

W19.1C 
Consultant 26 38.1 32.9 

0.0102 
Trainee 92 43.2 22.7 

W19.1D 
Consultant 10 47.5 16.0 

0.8464 
Trainee 68 49.7 23.8 

W19.1E 
Consultant 60 45.2 21.8 

0.0279 
Trainee 263 50.5 21.9 

W46.1C 
Consultant 28 63.0 21.8 

0.0005 
Trainee 70 74.4 18.8 

W46.1E 
Consultant 47 75.5 35.2 

0.0551 
Trainee 53 64.6 18.2 

W46.1F 
Consultant 10 50.9 15.7 

0.0273 
Trainee 48 65.9 15.9 

W47.1B 
Consultant 35 36.2 14.5 

< 0.0001 
Trainee 116 48.4 18.0 

 

Using a significance level of 5%, the level of experience of the surgeon suggests an impact 

on operation time in five of the seven procedures, with operations performed by consultant 

surgeons being shorter.  One interesting case is that of the procedure W46.1E 

(hemiarthroplasty): the results for this operation suggest that trainee surgeons are in fact 

quicker than consultant surgeons, although these differences were not found to be statistically 

significant. 

Matters and problems relating to the training of surgeons is well-documented; with issues 

relating to capacity (Crofts et al. 1997), obligatory responsibility, workload and unrest 

between trainees and trainers (Chikwe et al. 2004, Murday et al. 2000) all discussed in the 



 

 

220 

 

literature.  It is also worthy of note that problems exist in particular with the training of 

orthopaedic surgeons (BOA 2002).  Clearly the training of new surgeons is a complex issue.   

While these results are interesting from a statistical and clinical viewpoint, it was decided that 

this matter would not be taken further for this project.  The emergency theatre is modelled in 

Chapter 8 and while it may be interesting to investigate the effect on the theatre of altering 

the level of experience of the surgeons (to assess the impact of all operations being 

undertaken by consultants, for example), the discussion here has shown that this is not really 

a realistic avenue to explore.  It is simply infeasible to make managerial changes of this type 

in a timely fashion. 

 

7.3.2 Effect of timing of surgery 

Another piece of exploratory data analysis performed involved the investigation of the timing 

of surgery on the length of operation.  It was thought that there may be differences between 

those performed before 17:00 and those performed after 17:00; these are henceforth 

categorised as day and night cases respectively. 

There have been few studies in the literature that have evaluated surgical measures or 

outcomes associated with operative start time, while those found tend to concentrate 

primarily on clinical outcome.  For example, one study found that there were no differences 

in overall mortality and morbidity rates for operations performed at night (22:00 – 06:00) 

compared with those performed during the day (06:00 – 22:00) for laparoscopic 

cholecystectomies and appendectomies, as well as no difference in the median length of 

operation for both types of surgery (Yaghoubian et al. 2010).  However, another study found 

that time of day of surgical start time had a moderately strong association with mortality for 

non-emergency cases starting in the time period 21:30 – 07:30, while the effect on morbidity 

was also the strongest in this overnight cohort (Kelz et al. 2009).  Similarly, worse outcomes 

have been found for overnight resuscitation (23:00 – 06:59) after cardiac arrest compared 

with daytime resuscitation (Peberdy et al. 2008), as well as an increased risk of morbidity for 

non-emergent general and vascular surgical procedures for operations starting after 16:00 

compared with those starting between 07:00 and 16:00 (Kelz et al. 2008).   
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Specifically for orthopaedic surgery, it has been shown that after-hours (16:00 – 06:00) 

operative times were shorter compared with a daytime (06:00 – 16:00) group, for tibial and 

femoral nail fixation groups.  Despite this, minor complication rates and the number of 

unplanned reoperations were higher in the after-hours group, leading to the overall 

conclusion that an increase in allocated orthopaedic surgery time during the day would be 

desirable (Ricci et al. 2009).  

For hip surgery, it has been shown that some types of operation (dynamic hip screw, 

intramedullary nails) took significantly longer at night (18:00 – 06:59), while there was no 

difference for hemiarthroplasties.  There were also no differences found between the day and 

night groups with respect to mortality at one month, one year and two years, as well as in 

other noted complications (Chacko et al. 2011).  Similarly it was concluded that patients 

perform equally well if they are operated on at night (after 21:00) compared with during the 

day; with no differences reported between the two groups with respect to complication rates 

and non-statistically significantly differences reported with respect to mortality (Dorotka et 

al. 2003a).  It has also been reported that duration of surgery and the incidence of peri-

operative complications for total hip arthroplasty may be greater for later surgery start times, 

but the statistical differences are small and thus it is concluded that they are unlikely to be 

significant in a clinical setting (Peskun et al. 2012).  This is supported by a Dutch study 

which found that there was no increased risk of complications or mortality for pertrochanteric 

fractures operated on outside of working hours (17:00 – 08:00) (Bosma et al. 2010). 

In order to eliminate any bias imposed by surgeon experience, as discussed in Section 7.3.1, 

cases were split by surgeon type as well as operation type.  The time category was 

determined by the start time of the operation and weekends were excluded from calculations.  

As previously, the statistical analysis was only completed if there were ten or more 

observations in each group.  

In each case, when classified by start time of operation (day or night), after an initial split by 

surgeon experience and operation type, no differences in length of operation were found at a 

significance level of 5%.  As an example, consider the largest group available: operation type 

W19.1E (open reduction with internal fixation intertrochanteric fracture / dynamic hip screw) 

with trainee surgeons.  Removing weekend cases left 106 and 45 observations for the day and 

night groups respectively.  The corresponding mean lengths of operation were 51.2 and 49.7 
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minutes, with standard deviations of 23.6 and 22.1 minutes.  The data is displayed in a 

standard box-and-whisker plot in Figure 7.3.2i where the whiskers represent the 5
th

 and 95
th

 

percentiles. 

 

 

Figure 7.3.2i: Comparison of length of operation by surgical start time: operation type 

W19.1E, trainee surgeons, weekends excluded 

 

The p-value in this case was 0.8486, supporting the notion suggested by the summary 

statistics and Figure 7.3.2i of no difference in length of operation when classified by surgical 

start time. 

Mortality and morbidity analysis is not possible here using the TheatreMan data since the 

data collection does not extend beyond the patient‟s pathway through the theatre.  However, 

for some of the later data collected on the ward there is information on the time of the 

operation.  An operation during the day is thus classified as starting between 07:00 and 17:00.  

A split is made here by ASA grade in order to create more homogenous groups in terms of 

medical fitness, leaving 357, 576 and 93 observations available for ASA grades I&II, III and 

IV respectively; this was for patients for whom the operation time and acute outcome (in 

terms of survival) was known.  Results of the percentage of deaths on the acute ward within 

each group are given in Table 7.3.2ii.  The quoted p-value relates to a Chi-square test of 

independence between surgical start time and death on the acute ward.  
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Table 7.3.2ii: Percentage of acute ward deaths by surgical start time, split by ASA grade 

ASA grade 
Surgical start time 

p-value 
Day Night 

I&II 4.7 7.4 0.3417 

III 14.2 13.6 0.8726 

IV 28.6 26.1 0.8178 

 

It can be seen that the percentage of deaths in each surgical start time group is relatively 

similar across each of the three ASA grade categories, suggesting that there is no time-of-day 

effect on mortality.  This is further supported by the Chi-square test of independence 

performed in each case. 

These investigations indicate that the timing of the operation for hip fracture patients has no 

significant effect on both the length of the operation and acute ward outcome.  This could 

have been something to include in the modelling of the trauma theatre – for example, in terms 

of a what-if scenario regarding the operative timing of this cohort of patients – but evidence 

here suggests that doing so would not be of any particular value.  For this reason, while 

results found here are informative, this specific area is not pursued further.  
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7.4 All trauma patients 

Throughout the course of this project, a more comprehensive dataset became available which 

included all operations performed within the emergency trauma theatre at the UHW.  A 

particular area of interest was to look in more detail at spinal operations.  These operations 

are typically very complex and thus can occupy the theatre for some considerable time.  If 

these operations could be performed elsewhere, then more theatre time would be available for 

trauma hip operations, as well as any other emergencies which present themselves.  The type 

of operation performed will therefore be in one of three general categories: Hip, Spinal or 

Other.  There will of course be a huge variation in the type of operation performed in the 

Other category, but further breakdown is not required. 

In some cases patients will undergo more than one operation at a time and while these 

operations are often of the same type, this is not always the case.  The database used records 

which operation was the main procedure for each patient.  Where this information was 

unavailable, if one of the procedures was either a hip fracture or spinal operation, then this 

was recorded as the primary procedure. 

A total of 8975 procedures were performed over the time period for which data was available.  

This data spanned a total of 1365 days (195 weeks, approximately 3.7 years).  This was a 

total of 7935 theatre episodes; the average number of procedures per episode per patient 

being 1.06, 1.20 and 1.15 for the main procedure types of hip, spinal and other respectively.  

This equates to 1.13 procedures per patient episode overall.  A breakdown by type of primary 

procedure is given in Table 7.4i, along with row and column percentages in parentheses.  Six 

episodes are excluded since the operation code was not recorded. 

It can be seen that a relatively small percentage of patients have three or more procedures 

during a single theatre episode and so further classification beyond this is not necessary.  This 

category is made up entirely of patients having three, four of five procedures, with the 

exception of one patient who underwent eleven procedures at one time. 

Summary statistics on the length of operation are given in Table 7.4ii.  It may be surprising to 

see minimum values of zero in some cases, but these can be justified by a patient 

deteriorating during the anaesthetic procedure and therefore the operation itself being 

cancelled, for example. 
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Table 7.4i:  Summary of the number of procedures performed per patient episode by type 

of primary procedure 

Primary 

operation type 

Number of procedures 
Total (%) 

1 2 3 or more 

Hip 1971 122 11 2104 (26.5) 

Spinal 324 55 11 390 (4.9) 

Other 4739 601 95 5435 (68.6) 

Total (%) 7034 (88.7) 778 (9.8) 117 (1.5) 7929 

 

Table 7.4ii:   Summary statistics for operation time (minutes; procs – procedures) 

Type 
No. of 

procs 
n Mean S.D. 

Mini-

mum 

Maxi-

mum 

Skew-

ness 

Kurt-

osis 

Hip 

1 1961 62.44 31.65 0 284 1.37 3.39 

2 121 103.38 55.13 1 291 1.02 1.27 

3+ 11 164.27 107.92 39 364 0.59 -0.83 

Spinal 

1 321 87.46 51.11 5 327 1.25 2.23 

2 55 123.55 64.62 5 304 0.52 0.15 

3+ 11 212.18 58.49 135 322 0.61 -0.18 

Other 

1 4728 46.16 36.62 0 352 1.84 6.16 

2 601 60.02 51.45 0 394 1.86 4.87 

3+ 95 136.02 99.92 11 424 0.86 -0.11 

 

It appears that there are differences in operation length between the three types.  Indeed 

statistically the differences are significant not only between types but also within each type, 

when split by the number of procedures; p < 0.0001 in each case.  Box-and-whisker plots are 

a useful display aid to show these differences.  Figure D7.4a of Appendix D shows the 

distribution of operation times for each of the three operation types, broken down by the 

number of procedures performed per theatre episode.  The whiskers display the 1
st
 and 99

th
 

percentiles.  Any values outside of this range are displayed with a dot. 

For hips, it is immediately obvious that as the number of procedures performed increases, the 

time taken to complete the operation also increases, as does the variation in the operation 

time.  This last observation however may be due to the smaller numbers seen in the groups 

with two and three or more procedures.  Despite the same pattern being seen in terms of more 
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procedures take longer to perform, as is intuitive, the difference in the variation of operation 

length between the three spinal groups is less obvious.  More procedures are again shown to 

have a longer length of operation for other operations too.  There is also more variation in 

operation time for these operations, although this diminishes if the coefficient of variation is 

considered instead of the standard deviation. 

Next the time taken to perform the anaesthetic procedure is considered; summary statistics 

are given in Table 7.4iii.  This anaesthetic time is classified here as the combination of two 

original intervals: the time taken from the patient entering the anaesthetic room to the 

anaesthetic procedure starting, plus the time taken from the anaesthetic procedure starting to 

when the patient enters the operating theatre.  Box-and-whisker plots are given in Figure 

D7.4b; note that one value (386 minutes, Other category) is excluded for display purposes. 

 

Table 7.4iii:   Summary statistics for anaesthetic time (minutes) 

Type 
No. of 

procs 
n Mean S.D. 

Mini-

mum 

Maxi-

mum 

Skew-

ness 

Kurt-

osis 

Hip 

1 1960 24.93 13.28 0 148 1.84 7.72 

2 121 23.28 16.65 1 133 3.10 15.80 

3+ 11 17.82 10.65 1 37 0.16 -0.36 

Spinal 

1 323 21.03 13.94 0 99 1.78 5.55 

2 55 21.84 18.61 0 110 2.63 9.28 

3+ 11 34.27 17.68 10 76 1.16 2.46 

Other 

1 4725 15.88 11.61 0 386 8.58 227.87 

2 601 16.45 12.74 0 195 5.92 70.12 

3+ 95 19.08 17.24 0 114 2.45 9.89 

 

While differences can be seen between the groups, these are less pronounced than with the 

length of operation.  Testing for these differences, it is shown that while each of the three 

types of operation are not only different from each other but that there are also differences 

within each type of operation for hip and spinal operations, with respect to the number of 

procedures performed.  However, further pairwise investigations showed that these 

differences were caused by the 3+ group in both cases.  Since these groups are small, it was 
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decided to combine all groups within the three operation types.  All tests were carried out at 

the 5% level of significance.   

It still makes sense to keep the division of groups by the type of operation; not only is this 

evident from the data but it also confirmed medically.  Some of the operations in the Other 

category will have a simple local anaesthetic, while a spinal operation is most likely to 

require a more complicated anaesthetic procedure; for major spinal surgery, anaesthesia 

presents a number of challenges (Raw et al. 2003).  These differences are shown graphically 

in Figure 7.4iv (again with one observation omitted), while summary statistics for anaesthetic 

time are given in Table 7.4v. 

 

 

Figure 7.4iv: Distribution of anaesthetic time by type of operation 

 

Table 7.4v: Summary statistics for anaesthetic time (minutes), by type of operation 

Type n Mean S.D. Min Max Skewness Kurtosis 

Hip 2092 24.80 13.50 0 148 1.96 8.75 

Spinal 389 21.52 14.91 0 110 1.99 6.63 

Other 5421 16.00 11.86 0 386 7.96 192.98 
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7.4.1 Correlation between intervals 

In addition to the two investigations presented in Sections 7.3.1 and 7.3.2, another final issue 

to investigate is the relationship between values recorded for different intervals.  This is 

completed solely for hip operations and the entire group is looked at without any further 

categorisation. 

Correlation is a bivariate analysis that measures the strength of association between two 

variables.  Output includes the correlation coefficient,  , which will lie in the range [-1, 1]; a 

value of 1   signifies perfect positive correlation, while 1    signifies perfect negative 

correlation.  Although an absolute value of one therefore means that there is a perfect degree 

of association between the two variables, it does not imply cause and effect.  Note also that 

this method measures the degree of linear association between two variables. 

Spearman‟s rank-order correlation test is a non-parametric test used to measure the degree of 

association between two variables, which does not impose any assumptions about the 

variables under consideration.  (The widely-used Pearson correlation test assumes that both 

of the variables being used come from a Normal distribution which is not the case here.)  

Spearman‟s test is based on the ranks of the data values, rather than the actual data values 

themselves. 

Comparing all original time intervals against each other would result in the evaluation of 

10

2C 45
 
different correlation coefficients (ten intervals were available in this case due to the 

inclusion of into theatre in the dataset used).  Additionally, combining adjacent time intervals 

means that there would be even more to consider.   

Instead four new time blocks are created based on combinations of the existing intervals, as 

follows: 

Stage A – Pre-theatre (asked for – into anaesthetic room) 

Stage B – Anaesthetic procedure (into anaesthetic room – operation start) 

Stage C – Operation time (operation start – operation finish) 

Stage D – Recovery (operation finish – out of recovery) 
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Results are given in Table 7.4.1i, note that recovery time was not available for much of the 

dataset.  Results are given vertically in the order:  , p-value against the null hypothesis that 

0,   n. 

 

Table 7.4.1i: Correlation results between theatre times for trauma hip surgery 

 
B. Anaesthetic 

procedure 

C. Operation 

time 

D. Post-

operation 

A. Pre-theatre 

0.1014 

< 0.0001 

2072 

0.0299 

0.1738 

2071 

0.0311 

0.1023 

1118 

B. Anaesthetic 

procedure 
 

0.1392 

< 0.0001 

2093 

0.0562 

0.0602 

1118 

C. Operation 

time 
  

0.2073 

< 0.0001 

1119 

 

Half of the comparisons made indicate a significant correlation (A vs. B, B vs. C, C vs. D), 

while the other half indicate no significant correlation.  All significant values of   were 

positive, as would be expected, but the maximum value found was 0.2073 (C against D), 

indicating a weak correlation.  Figure 7.4.2ii is a scatterplot of times for block C against 

block D, which clearly displays this weak relationship.  The axes have been curtailed for 

display purposes meaning that six observations are missing from the presented plot. 

 

 

Figure 7.4.1ii: Relationship between operation time and post-operation time (minutes) for 

trauma hip surgery 
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7.4.2 Theatre utilisation 

The task of allocating theatre time for orthopaedic trauma surgery while attempting to 

maintain an optimum (or high) level of theatre utilisation is difficult due to the 

unpredictability of trauma, both in terms of demand and case duration.  It is not, however, 

only the instability of the system which causes problems in this area; one American study has 

identified eight key areas in which improvements can be made in the management of 

operating theatres which “could be directly linked to increased revenue, patient safety 

benchmarks, and potentially, staff satisfaction” (Girotto et al. 2010). 

A large proportion of a hospital budget is represented by the operating theatre suite.  One 

estimate is that 30.1% of all healthcare outlays are related to surgical expenditures (Muñoz et 

al. 1994) – and thus maximum utilisation is necessary to ensure optimum cost–benefit (Jan et 

al. 2003).   

The daily planned busy time for the trauma theatre at the UHW is 11.5 hours, which is 

calculated as the time from when the first patient enters the anaesthetic room to when the last 

patient leaves the theatre.  This 11.5 hour slot covers the time from 8:30am to 8:00pm.  There 

are a multitude of reasons to explain why sessions may start or finish early and/or late, as 

well as why the total theatre busy time may surpass or fall short of the allocated time 

available, not least because of the theatre under scrutiny accommodates emergency patients 

and there is the inherent unpredictability that this brings.  

Tardiness relating to the start time of theatre lists is not uncommon.  For example, one study 

has shown a delayed start time of over thirty minutes in more than half of cases for the 

trauma theatre list (Rethnam et al. 2009), while another found that each orthopaedic trauma 

session started 18.8 minutes late on average, with just 8.2% starting early (Delaney et al. 

2010).  Average start delays of 18 minutes (Durani et al. 2005) and 26.5 minutes (Ricketts et 

al. 1994) have also been reported by two large orthopaedic centres in London.  Late starts 

may be attributable to the anaesthetic staff, theatre staff or surgeons (Ricketts et al. 1994) 

and/or due to the delay in transferring the first patient from the ward to the theatre suite 

(Delaney et al. 2010). 

Data for the trauma theatre at the UHW (over the period September 2005 – May 2009) shows 

that 79% of theatre sessions started late, with the average start time 26 minutes later than 
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scheduled.  The discrepancy in the end time is more balanced; 55% of sessions were shown 

to finish early, while on average the sessions finished 18 minutes earlier than scheduled.   

These results varied considerably by day and some summary values by day of the week are 

given in Table 7.4.2i.  The differences on which these values are based are calculated as the 

number of minutes elapsed between the allocated time and the actual recorded time; positive 

values thus indicate lateness while negative values indicate earliness.   

 

Table 7.4.2i: Differences between allocated and actual times for trauma theatre start and 

end times (minutes) 

Day 
Start time difference End time difference 

Mean S.D. Mean S.D. 

Sunday 46.7 26.4 -27.7 80.0 

Monday 19.8 30.1 -12.0 79.6 

Tuesday 22.4 31.1 -27.7 81.2 

Wednesday 15.6 26.7 -7.8 67.6 

Thursday 11.1 21.7 -7.9 76.6 

Friday 20.1 24.5 -22.1 69.6 

Saturday 47.1 26.5 -23.4 68.6 

 

Weekend theatre sessions started on average 47 minutes late compared with an average of 18 

minutes late during the week.  Weekend sessions were also more likely to finish early; on 

average finishing 26 minutes early compared with weekday sessions which finished an 

average of 15 minutes early.  However, there is some considerable deviation to be seen in 

these results; with standard deviations of 30.0 minutes and 75.2 minutes for start and end 

time differences respectively across all days. 

The reason for late starts becomes apparent after scrutiny of the TheatreMan dataset.  Overall 

the average time that the first patient of the day was asked for was 8:28am and on only 63% 

of days was the first patient asked for before the planned start time of 8:30am.  On average 

the first patient arrived at the theatre suite twenty minutes later, at 8:48am, and the first 

patient had only arrived by 8:30am in 32% of cases.  



 

 

232 

 

Theatre utilisation is now investigated and discussed.  One study used simulation to conclude 

that, without patient delays and staff overtime, an operating theatre utilisation of 85–90% is 

the optimum that can be achieved and thus provides the best cost–benefit (Tyler et al. 2003). 

This is consistent with The Bevan Report, a large scale audit in hospitals in the United 

Kingdom which concluded that an acceptable standard value for operating theatre utilisation 

was 90% (NHS Management Executive 1989).  Thus theatre utilisation is not necessarily 

expected to be 100% and indeed it has been recommended that it should not be at this value.   

Observed values quoted in the literature vary across studies.  One study found that the trauma 

theatre was opened for 8.71 hours out of the available 12 hours (73%), but despite this 

underuse of the theatre, an average of 86 minutes of trauma surgery happened outside of the 

trauma theatre each day (Collantes et al. 2008).  Another survey found that operating theatre 

utilisation was 81% over a six month period, while end utilisation was 78.8% (Delaney et al. 

2010).  End utilisation is discussed further in Section 7.7. 

The average time that the theatre was busy for per day for the trauma theatre at the UHW was 

10.8 hours, standard deviation 1.35 hours (81 minutes), which equates to a mean value of 

93.7% utilisation.  The observed minimum busy time was 4.7 hours (41% utilisation) and the 

maximum was 14.8 hours (129% utilisation), with the 50
th

 percentile at 10.9 hours.  The 

distribution of theatre busy time is given in Figure 7.4.2ii. 

 

 

Figure 7.4.2ii: Distribution of theatre busy time for the trauma theatre 
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7.5 Cancellations 

The NHS has identified three key causes as to why operations may be cancelled; hospital 

non-clinical, hospital clinical and patient reasons (NHS 2008), the occurrence of which are 

stated to be “distressing and inconvenient for patients” (Commission for Health Improvement 

2003).   

Cancellation data was available for the trauma theatre at the UHW from September 2005 to 

May 2009.  There were 53 distinct reasons recorded why operations were cancelled, ranging 

from the patient being unfit for surgery to there being no blood available.  These were then 

reclassified into the three causes defined by the NHS.  54.0% of all cancellations were due to 

hospital non-clinical reasons, 33.6% due to hospital clinical reasons and 1.9% attributable to 

reasons relating to the patient.  The reason was unclear or not recorded in the remainder 

(10.5%) of all cases. 

Non-clinical hospital reasons are thus the most prominent cause for a cancellation.  Of these, 

cancellations due to lack of time account for the majority of cases; this is the cause recorded 

for 39.6% of all cases (and 44.3% of all cases for which the cancellation reason was known).  

The high frequency of these and the actuality that this is the cause that is the most tackleable 

mean that it is the one concentrated on here.  Many (if not all) of the others cannot easily be 

influenced by a change in how the theatre is run.  Reasons for running out of time include 

unreliability of the theatre schedule (Klimek et al. 2008), bureaucracy (Bone and Hooker 

2007) and the difficulty in estimating the length of time an operation will take to complete, 

despite some recent advances made in this area (Eijkemans et al. 2010). 

Summary measures of the number of cancellations per day are given in Table 7.5i.  As a 

reference, recall that 7935 procedures were completed over the same time period.  The 

distribution of the number of cancellations per day is given in Figure 7.5ii; values recorded 

by the y-axis are relative to each group.   
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Table 7.5i: Summary measures for the number of cancellations per day 

Reason for 

cancellation 
Total 

Cancellations per day 

Mean S.D. Median Minimum Maximum 

All 3520 2.57 1.63 2 0 9 

Lack of time 1394 1.02 1.32 1 0 8 

 

 

Figure 7.5ii: Distribution of the number of cancellations per day 

 

Lack of time cancellations occur on around half of all days, while the modal number of daily 

cancellations across all groups is two.  However it can be seen from Table 7.5i that on 

average just over one operation is cancelled due to lack of time each day.  It is rather 

alarming that on two occasions eight operation were cancelled in a single day because of lack 

of time, but this may be explained by, for example, a large road traffic accident resulting in 

many people requiring urgent and unexpected surgery.  Unfortunately there is no easy way to 

plan for this and so in cases such as these cancelled operations are unfortunate but necessary 

occurrences. 

It would be useful to know what proportion of cancelled operations belong to each of the 

operation type groups.  The type of procedure cancelled is recorded but there are no operation 

codes or standardised descriptions, which has resulted in 2691 different types of operation 

reported to be cancelled!  Clearly this figure is unrealistic and the reason for it is 

inconsistency in the recording of operation types.  It is well-documented that a better 

computerised system, which recognises words while maintaining ease of data input, would be 

advantageous in circumstances such as this (Jones et al. 2003).   
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As an example, consider right-sided dynamic hip screw (DHS) operations; just some of the 

many relevant recorded values here are RIGHT DHS, DHS RIGHT, DHS (R) HIP and RIGHT 

DYNAMIC HIP SCREW.  By searching through the database for relevant keywords, it was 

possible to flag those which are hip operations but it is difficult to know whether all of the hip 

operations have been captured (due to spelling mistakes, for example).  Despite these 

difficulties, this exercise was completed in order to obtain an estimate of the proportion of 

cancelled operations which were for a fracture of the hip.   

The data suggests that around 19% of all cancellations were hip fracture patients, while 

around 25% of lack of time cancellations belonged to this patient group.  This translates to 

14% of all hip operations being cancelled.  These are most likely to be underestimates due to 

the issues explained previously, as well as the knowledge that these patients are often moved 

to the end of the schedule in favour of other patients, meaning that they are more likely to be 

cancelled due to a shortage of theatre time.  It cannot, however, be an overestimate.  
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7.6 Turnover times 

The trauma theatre can never be fully operational; there will always be some turnover time 

between operations.  The theatre must be cleaned after the previous operation and prepared 

for the forthcoming operation.  The movement of equipment, medical apparatus, staff and 

indeed the patients undergoing surgery will occur in this time.  This time will therefore be 

dependent on the operation that has just finished, as well as the next operation which will 

take place.  Understanding the occurrence and magnitude of turnover times is important, not 

least because it has been suggested that the extra expense incurred to improve throughput (as 

measured by a decrease in turnover times) is more than offset by the financial gains of 

improved efficiency (Krupka and Sandberg 2006). 

There is a separate room, which adjoins the theatre, in which the anaesthesic procedure is 

carried out.  Turnover time can thus be defined in two ways: (i) the time between one patient 

leaving the theatre and the next patient entering the anaesthetic room; or (ii) the time between 

one patient leaving the theatre and the next patient entering the theatre.  Using the three 

operation types seen earlier, there are 3
2
 different permutations of sequence available.  Table 

7.6i gives the number of occurrences (and row percentages) of each of the sequences.   

 

Table 7.6i: Frequency of ordering of operations in the trauma theatre 

Preceding operation 
Following operation 

Hip Spinal Other 

Hip 
678 

(38.4%) 

38 

(2.2%) 

1051 

(59.5%) 

Spinal 
50 

(14.3%) 

112 

(32.0%) 

188 

(53.7%) 

Other 
1072 

(24.3%) 

124 

(2.8%) 

3213 

(72.9%) 

   

7.6.1 Anaesthetic room / operating theatre turnover 

Summary statistics on the turnover times between these operations are now presented for the 

first definition of turnover time.  The first column refers to the order of operation; for 

example, SH refers to a hip operation following a spinal operation.  Values of n may differ 
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from those in Table 7.6i due to missing data.  Negative values are considered to be valid here 

since simultaneous anaesthesia and surgical treatment can be given for two different patients, 

but values less than -30 minutes were ignored. The distribution of these times is displayed by 

means of a box-and-whisker plot in Figure 7.6.1ii, where the whiskers represent the 1
st
 and 

99
th

 percentiles.  The mean overall anaesthetic room / theatre turnover time was 23.4 minutes. 

 

Table 7.6.1i: Summary statistics for anaesthetic room / theatre turnover times (minutes) 

Sequence n Mean S.D. 
Mini-

mum 

Maxi-

mum 

Skew-

ness 
Kurtosis 

H H 669 22.21 27.24 -20 345 4.76 38.32 

H S 38 36.87 37.54 0 143 1.29 0.66 

H O 1048 23.71 29.67 -28 315 4.35 29.28 

S H 50 28.58 30.55 -5 154 2.13 5.48 

S S 109 16.00 23.88 -20 155 3.89 18.06 

S O 185 30.61 35.91 -25 193 2.28 6.19 

O H 1064 24.66 37.59 -25 792 9.79 170.22 

O S 123 35.19 34.93 -25 183 1.73 4.17 

O O 3189 22.19 34.45 -30 488 5.60 45.09 

 

 

Figure 7.6.1ii: Distribution of anaesthetic room / theatre turnover time (minutes) 

 

Considerable differences between the turnover times by sequence of operations can be seen.  

It interesting to note that the turnover time between two spinal operations is smaller than for 

any other sequence, as well as having the lowest standard deviation, but when a spinal 

operation follows one of the two other types, the largest turnover times are seen.   
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7.6.2 Operating theatre turnover 

Consider now the turnover time for the operating theatre.  Negative values are not possible in 

this case since the treatment of patients cannot overlap in terms of theatre use.  Instances 

where this situation was reported by the data were regarded as invalid. 

It is clear that shorter and less variable turnover times tend to be seen when like operations 

occur in sequence, while the longest turnover times relate to when a spinal operation follows 

either hip or other surgery.  The distribution of these times is displayed by means of a box-

and-whisker plot in Figure 7.6.2ii.  The mean overall theatre turnover time was 41.7 minutes. 

 

Table 7.6.2i: Summary statistics for theatre turnover times (minutes) 

Sequence n Mean S.D. 
Mini-

mum 

Maxi-

mum 

Skew-

ness 
Kurtosis 

H H 671 45.11 29.33 5 367 3.95 28.28 

H S 38 60.00 42.38 12 177 1.02 0.04 

H O 1046 40.28 30.95 4 330 3.85 24.41 

S H 50 48.20 28.89 14 154 1.68 3.10 

S S 109 33.78 25.48 3 167 3.01 11.27 

S O 185 46.43 36.70 1 226 2.12 5.70 

O H 1064 48.63 39.51 1 803 8.18 130.87 

O S 122 55.91 38.27 7 204 1.53 2.69 

O O 3183 38.28 35.51 2 501 5.19 38.95 

 

 

Figure 7.6.2ii: Distribution of theatre turnover time (minutes) 
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7.7 Theatre efficiency 

In Section 7.4.2 results regarding the utilisation of the trauma theatre were presented.  

However, utilisation alone does not necessarily accurately represent the efficiency of an 

operating theatre; one may achieve 100% utilisation but cancel several operations in order to 

prevent over-running of the schedule and thus cancellations should also be taken into account 

when considering theatre efficiency. 

Let _schedt utilFr  be the fraction of theatre scheduled time utilised, _schedt overFr  be the fraction of 

scheduled time over-running and _schedo compFr  be the fraction of scheduled operations 

completed.  The following formula was devised to give a measure of theatre efficiency: 

 _ _ _-schedo comp schedt util schedt overFr Fr Fr  

which yields a value in the range [0, 1] (Pandit et al. 2007).   

The only way a value exceeding 1 may be achieved is that if more patients are operated on 

than are originally scheduled.  Strengths of this formula include that it incorporates more 

information about the running of the theatre than other approaches such as simply looking at 

utilisation or cancellation rates, where impressive results can be achieved by making large 

sacrifices in other areas.   

This formula was applied to the trauma theatre data at the UHW and efficiency scores 

calculated as a percentage.  It should be noted that a score exceeding 100% will not be 

possible here since the number scheduled per day is calculated by adding the number of 

cancellations to the number of theatre episodes completed.  A total of 1333 days were 

available where all information required was valid and complete. 

The mean efficiency score was calculated as 77.7% with a median of 80.3%.  The maximum 

value was realised on two occasions, while a score exceeding 99% was achieved on 31 

occasions (2.3% of total).  The standard deviation was 15.6 percentage points and the 

minimum score was 16.8%.  187 (14.0% of total) of all lists scored an efficiency greater than 

95% while 79 theatre lists scored an efficiency lower than 50% (5.9% of total). 
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By this measure, it appears that the theatre is performing relatively well although there is still 

some scope for improvement.  However, the limitations of this formula must also be 

considered.  One weakness is that it does not include any measure of efficiency within the 

theatre list (discussed previously in Section 7.6) and thus the period that the list is being used 

efficiently is overstated by an estimated 10-15% (Cook 2008).  It also does not include any 

measure of tardiness relating to the start of the theatre list or additional booking of patients 

due to reduced theatre down time, so there is no reward for improving utilisation within the 

theatre in terms of booking and performing more operations in a timeslot of the same length 

(Sanders et al. 2008).  Due to these drawbacks, while results are informative to a certain 

degree, this measure will not be used further.   

End utilisation is calculated as the combination of anaesthesia and surgical time as a 

proportion of operating time (allocated theatre time less turnover time between operations) 

and has a nationwide target of 77% established by an Audit Commission survey (Audit 

Commission 2002).  A year later a review of national results relating to operating theatres 

was published and huge variations in end utilisation between NHS Trusts were found, 

ranging from 41% to 103%, with an average of 73%.  It was suggested that those Trusts with 

low end utilisation should increase their throughput and reduce capacity, while those 

exceeding 100% should consider increasing the capacity of their theatres.  Orthopaedic 

surgery was shown to have the third best median end utilisation score, while the national 

interquartile range for end utilisation for trauma surgery was 58.9-86.4% (Audit Commission 

2003). 

The Wales Audit Office produced a report focussing in particular on NHS day surgery in 

Wales.  Results for Cardiff and Vales NHS Trust showed an end utilisation rate of 64%, 

which compares favourably against the Welsh average of 57% (Wales Audit Office 2006).  

This compares with an average of 55% for day surgery in England (Healthcare Commission 

2005). 

Results for the trauma theatre at the UHW show an average end utilisation of 87.4%, 

suggesting that increased capacity may be required.  Some considerable variation in results 

was also evident, with a standard deviation of 20.6 percentage points.  79.9% of sessions 

reached the Audit Commission target of 77% end utilisation.  
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7.8 Chapter summary 

Various detailed analyses have been presented throughout this chapter and a number of 

concepts relating to the trauma theatre have been established.  The TheatreMan database 

management system has been introduced and detailed results of the data obtained has been 

presented.  Some of the issues with the data have also been discussed, including inaccurate 

readings and issues relating to fitting distributions of the created time intervals.   

Two detailed data exploration exercises were undertaken regarding hip surgery; namely 

whether surgeon experience and timing of the operation have any impact upon length of 

operation and, in the latter case, acute outcome.  It was found that surgeon experience did 

influence operation length in the majority of cases; consultants were found to be quicker than 

trainee surgeons.  However, it was also decided that this would not be built into any 

simulation model since decisions of this kind at a strategic level are rather infeasible here; 

and there can be no consultant surgeons in the future without them being trainee surgeons 

first!  Timing of the operation was found to have no effect on the length of operation or acute 

outcome, thus also would not be incorporated into a simulation model. 

Results relating to theatre efficiency, utilisation and cancellations were also presented.  It was 

found that the trauma theatre was performing relatively well in terms of utilisation, but that 

there was, on average, just over one operation cancelled per day due to running out of time.  

The theatre often started late and, despite these results being consistent with those reported in 

the literature, it has been identified as a problematic area. 

Turnover times for the trauma theatre were presented.  These were calculated for nine 

separate groups and for two different definitions: anaesthetic room / theatre turnover and 

theatre turnover.  In some cases the theatre turnover times were found to be particularly large, 

identifying this as an area in which potential improvements could be made. 

Finally, there was some discussion of the concept of theatre efficiency and targets and results 

for end utilisation were presented.  With regard to this measure, the trauma theatre under 

study appeared to be performing relatively well but there was still room for considerable 

improvement. 
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CHAPTER 8: MODELLING THE TRAUMA THEATRE  

8.1 Introduction 

A thorough overview of the trauma theatre at the UHW was given in Chapter 7.  This 

included summaries of various measures and outputs and some statistical analyses were also 

completed. 

Using findings and conclusions drawn from this work, a discrete event simulation (DES) 

model of the trauma theatre was built.  The formulation of the model, together with evidence 

of satisfying validation and verification procedures and thus producing a model which 

accurately represents the real life system, are hence explained.  Key outcomes here include 

cancellations and theatre utilisation.   

Cancellations can cause considerable distress for patients, particularly if, for example, they 

are unnecessarily starved in preparation for an operation which ultimately does not happen 

that day.  There may also be inconvenience to hospital staff and/or a waste in resources. 

An appropriate balance in theatre utilisation is also desirable.  High utilisation leads to a 

pressured system and over-worked staff, and potentially paying costly overtime rates to staff.  

Low levels of utilisation indicate a waste in valuable resources and an inefficient system. 
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8.2 Model formulation  

A pictorial representation of the trauma theatre model is given in Figure 8.2i, and explained 

forthwith.  This model was built using VBA for Excel. 

Late starts have been shown to be a particular affliction associated with the trauma theatre at 

the UHW, see Section 7.4.2, thus tardiness needs to be incorporated into the model.  The 

theatre is scheduled to start at time A, but actually starts at time B.  Note that an early start 

can occur (i.e. B < A), but this is not common.   

At time B, the first patient enters the anaesthetic room to be anaesthetised.  Referring to 

Section 7.2, this is equivalent to the into anaesthetic room time field.  When this procedure is 

completed, they immediately enter theatre at time C (into theatre) and undergo surgery, 

starting at time D (operation start), so that between times C and D the patient does occupy 

the theatre, but their operation has not yet started.  The operation takes places between times 

D and E.  Theatre exit time occurs between E (operation finish) and F (out of theatre).   

Between F and G is theatre turnover time, so that when the second patient enters theatre at G, 

they have already been anaesthetised.  Their anaesthesia time can in fact extend to before F 

(but after C), as long as the anaesthetic room has been prepared. 

 

 

  Tardiness  Anaesthetic time  Theatre entry  Operation time  Theatre exit  Theatre turnover 
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Figure 8.2i: Pictorial representation of trauma theatre model 
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Due to these complications, the theatre is modelled as above, where anaesthetic room/theatre 

turnover and anaesthetic time beyond the first patient is not considered.  This is instead 

incorporated into theatre turnover (F to G).  This is indeed what happens in reality; there 

would never be two patients simultaneously occupying the trauma theatre and theatre 

turnover incorporates anaesthetic time of the next patient.  Including anaesthetic time of 

patients after the first patient would unnecessarily add calculations into the model without 

improving its outputs or appropriateness of representing the real world situation.  

Using the inputs derived and defined in Sections 8.2.1–5, a theatre schedule was created 

which accurately models what currently happens in the trauma theatre.  This covers all 

scheduled operations, not just those that actually take place, since cancelled operations are an 

important factor to consider.  Once it was determined that an accurate schedule and means of 

cancelling operations had been derived, an appropriate run length and the number of runs was 

determined.  Using the pre-determined schedule, a number of what-if scenarios were then 

applied to determine any changes which would be observed should the schedule be changed.  

By using the same schedule each time, direct and fair comparisons can be made. 

 

8.2.1 Scheduled operations 

The number of scheduled operations per day, calculated as the number performed plus the 

number cancelled due to lack of time, was found to follow day-dependent Binomial 

distributions, see Table 8.2.1i.  The day-dependency was due to a higher number of longer, 

spinal operations being performed on Mondays and Thursdays, for example.  On average 

Wednesdays tended to have a higher number of scheduled operations and so was also 

segregated. 

First operation type was also found to be day-dependent, and as a result, so was the ordering 

of subsequent operations.  Again this was due, for example, to a higher proportion of spinal 

operations being performed on Mondays and Thursdays, and alike operations being more 

likely to be scheduled in succession.  The type of first and each following operation were 

determined using the data.  For more information on ordering of operations, see Section 7.6. 
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Table 8.2.1i: Binomial fits for number of scheduled operations per day  

Day n p 
Theoretical Empirical 

Mean S.D. Mean S.D. 

Mon, Thurs 12 0.636 6.4 1.7 6.4 1.6 

Tues, Fri 13 0.536 7.0 1.8 7.0 1.7 

Wed 15 0.605 7.6 1.9 7.5 1.7 

Weekend 13 0.596 6.5 1.8 6.5 1.9 

 

8.2.2 Anaesthetic time 

Anaesthetic time is only considered for the first patient.  It was previously found (Section 

7.4) that this time was dependent upon operation type but not the number of procedures 

performed.  Further investigation showed that anaesthetic time could be modelled by the 

Gamma distribution for each of the three operation types; summary measures are given in 

Table 8.2.2i and are displayed graphically in Figure D8.2.2a of the Appendix. 

 

Table 8.2.2i: Gamma fits for anaesthetic time (minutes) 

Type  α β Min 
Theoretical Empirical 

Mean S.D. Mean S.D. 

Hip 3.924 6.320 0 24.8 12.5 24.8 13.5 

Spinal 3.038 7.083 0 21.5 12.3 21.5 14.9 

Other 3.227 4.937 0 15.9 8.9 16.0 11.9 

 

8.2.3 Operation time 

Operation time was shown to be dependent upon main operation type and the number of 

procedures performed (Section 7.4).  Further investigation showed that this time could be 

modelled by the Lognormal distribution in two cases and by the Gamma distribution in five 

cases, as displayed in Tables 8.2.3i and 8.2.3ii and Figures D8.2.3a and D8.2.3b.  No fits are 

given for two operation types, hip with three or more procedures and spinal with three or 

more procedures, each only had eleven data points and therefore data was sampled from.   

 

 



 

 

246 

 

Table 8.2.3i: Lognormal distributions for operation time (minutes) 

Type 
No. of 

procs 
µ σ Min 

Theoretical Empirical 

Mean S.D. Mean S.D. 

Hip 2 4.509 0.541 1 106.2 61.3 103.4 55.1 

Other 2 3.767 0.832 0 61.1 61.1 60.0 51.5 

 

Table 8.2.3ii: Gamma distributions for operation time (minutes) 

Type  
No. of 

procs 
α β Min 

Theoretical Empirical 

Mean S.D. Mean S.D. 

Hip 1 4.086 15.279 0 62.4 30.9 62.4 31.7 

Spinal 1 2.376 34.711 5 87.5 53.5 87.5 51.1 

Spinal 2 2.988 39.668 5 123.5 68.6 123.6 64.6 

Other 1 1.736 26.590 0 46.2 35.0 46.2 36.6 

Other 3+ 1.414 88.399 11 136.0 105.1 136.0 99.9 

 

8.2.4 Tardiness and theatre turnover 

Tardiness relating to start time was previously discussed in Section 7.4.2.  In addition to 

weekends starting noticeably later than other days, it was also found that theatre tended to 

start more promptly on Thursdays.  Tardiness was found to follow a Gamma distribution for 

each of the three day groupings of weekend, Thursday and other days.  Estimators are given 

below where an excellent fit can be seen in each case. 

Preceding and following operation types must be considered for theatre turnover time.  The 

Lognormal distribution was found to accurately model turnover time for each of the nine 

sequence possibilities.  Results are given in Table 8.2.4ii and Figure D8.2.4a. 

 

Table 8.2.4i: Gamma fits for theatre start time tardiness (minutes) 

Day α β Min 
Theoretical Empirical 

Mean S.D. Mean S.D. 

Mon-Wed, Fri 4.523 11.305 -32 19.1 24.0 19.5 28.2 

Thurs 2.843 11.080 -20 11.5 18.7 11.1 21.7 

Weekend 6.943 9.784 -21 46.9 25.8 46.9 26.5 
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Table 8.2.4ii:  Lognormal distributions of theatre turnover time (minutes) 

Sequence µ σ Min 
Theoretical Empirical 

Mean S.D. Mean S.D. 

H H 3.521 0.564 5 44.7 24.3 45.1 29.3 

H S 3.518 0.897 12 62.4 56.0 60.0 42.4 

H O 3.361 0.656 4 39.7 26.2 40.3 31.0 

S H 3.242 0.827 14 50.0 35.7 48.2 28.9 

S S 3.221 0.638 3 33.7 21.8 33.8 25.5 

S O 3.563 0.722 1 46.8 37.9 46.4 36.7 

O H 3.688 0.547 1 47.4 27.4 48.6 39.5 

O S 3.604 0.814 7 58.2 49.6 55.9 38.3 

O O 3.359 0.628 2 37.0 24.4 38.3 35.5 

 

8.2.5 Theatre entry and exit 

Theatre entry time is defined as the time between the patient entering the theatre and the 

operation starting.  Theatre exit time is defined as the time between the operation finishing 

and the patient leaving theatre.  Theatre entry and exit was a little trickier to model as no 

distribution function could be found to accurately fit the data, so instead data was sampled 

from.  A summary is given by operation type in Table 8.2.5i. 

 

Table 8.2.5i: Summary of theatre entry and exit times (minutes) 

Operation type 
Theatre entry Theatre exit 

Mean S.D. Mean S.D. 

Hip 13.7 7.0 7.5 7.1 

Spinal 8.7 6.0 7.3 7.6 

Other 13.1 8.0 11.8 7.8 

 

8.2.6 Cancellations 

Lack of time cancellations were modelled by comparing how often an overrun of the theatre 

was allowed with how often an overrun was required.  Other types of cancellation are not 
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considered.  Theatre use beyond the daily allocation of 11.5 hours is classified as an overrun.  

Days where theatre usage was less than 11.5 hours and there were no lack of time 

cancellations were classified as no overrun required, all other days were classified as 

requiring an overrun. 

The data showed that an overrun was required 68% of the time, and occurred 45% of the 

time, so that in 67% of cases where an overrun was required, it was permitted.  This was 

included in the simulation by taking a random value v from the interval [0, 1] once total 

theatre time exceeded 11.5 hours and there were still scheduled operations remaining.  If v ≤ 

rl, the overrun limit initially set to 0.67, then the overrun was allowed and the next operation 

would go ahead.  If v > rl, an overrun would not be permitted and all outstanding operations 

would be cancelled.  This was repeated for each operation if there was more than one 

outstanding operation in the schedule at 11.5 hours, but the limit of 0.67 was scaled by a 

factor of four for each subsequent operation after the first one allowed after 11.5 hours; that 

is, it was changed to 0.67
4
 (= 0.20) for the second operation, 0.67

8
 (= 0.04) for the third 

operation, and so on.  It was found that this gave values approximately in line with the data 

using the logic explained previously. 

 

8.2.7 Initialisation bias, run length and number of replications 

The model set-up and validation process need not be quite as rigorous as was completed in 

Chapter 6.  In this case there is a terminating system and so no warm-up period is required. 

Run length needs to be long enough to be confident that sufficient time has been covered for 

the model to accurately represent the trauma theatre.  A run length of 2000 days was used.  It 

was found that this gave an accurate representation of the system while not compromising on 

runtime.   

Methodology to determine the number of replications to perform was described in Section 

6.3.11.  Cumulative mean results with 95% confidence intervals for two key outputs of this 

simulation model, the number of daily lack of time cancellations and total theatre busy time, 

are now presented.  These graphs were constructed up to 1000 replications but results are 

excluded for display purposes.  Additionally graphs were inspected for other measures and 

the same pattern seen.  Precision results, where pr gives the precision at replication r, are 
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given for four key measures in Table 8.2.7iii and displayed in Figure D8.2.7a.  Precision is 

obtained within 1% for each of these measures by using 100 replications.  Increasing the 

number of replications beyond this does not yield a notably higher level of precision, so r was 

set to 100 for all subsequent runs of the model. 

 

 

Figure 8.2.7i: Results of average number of cancelled operations with respect to the number 

of replications to perform 

 

 

Figure 8.2.7ii: Results of average theatre busy time (hours) with respect to the number of 

replications to perform 

 

Table 8.2.7iii: Precision values obtained for various measures at different values of r 

Measure (mean of) 
Precision value, pr (%) 

r = 10 r = 50 r = 100 r = 150 r = 200 

Cancellations  2.21 0.80 0.56 0.48 0.43 

Busy time  0.29 0.12 0.09 0.07 0.06 

Percentage hip operations 1.38 0.46 0.32 0.26 0.22 

Percentage hip cancellations 2.99 1.15 0.75 0.60 0.51 
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8.3 Validation and verification 

Validation was completed via the comparison of various model outputs and the data.  It is 

important to look at these measures in detail in this way since the data was broken down in 

several different ways in order to formulate the model, which could have led to inaccuracies 

in overall numbers/proportions.   

A multitude of outputs were looked at and all were found to be accurate when compared with 

the data.  Some examples of these are now presented; a comparison of the number of 

scheduled and performed operations per day in Figure 8.3i and tardiness in Figure 8.3ii.  An 

overall summary is given in Table 8.3iii.  Two values are italicised to indicate that they were 

estimated using the data; see Section 7.5, where it was also noted that these values are likely 

to be underestimates of the true value. 

 

 

Figure 8.3i: Comparison of number of scheduled and performed operations per day. 

 

 

Figure 8.3ii: Comparison of tardiness 
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Table 8.3iii: Summary of measures, model versus data (estimated) 

Measure (mean of) Model Data 

Number of scheduled operations per day 6.83 6.84 

Number of performed operations per day 5.76 5.81 

Number of cancelled operations per day 1.07 1.02 

Theatre busy time (hours) 10.7 10.8 

Theatre utilisation 92.8% 92.8% 

Percentage of performed operation types: 

Hips 

Spinal 

Other 

 

24.2% 

5.1% 

70.6% 

 

26.5% 

4.9% 

68.6% 

Percentage of cancellations that are hips 29.3% 25.3% 

Percentage of scheduled hips that are cancelled 18.5% 14.2% 

 

Theatre usage is being represented to a very high level of accuracy, with theatre busy time 

being within 0.1 of an hour.  The number of cancelled operations per day is slightly 

overstated, but only by approximately 0.05 per day, which does not give much cause for 

concern.  The model estimates that 15.7% of all operations are cancelled due to lack of time, 

compared with 14.9% from the data. 

Overall these results show that the model accurately represents the trauma theatre.  Note that 

comparisons made later when the system is amended via what-if scenarios relate to these 

baseline modelled values and not empirical values. 

The process of verification was completed as per Section 6.4. 

Once the model was sufficiently validated and verified, the simulation was amended to model 

a number of what-if scenarios to investigate possible changes to the running of the trauma 

theatre. 
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8.4 What-if A: Change to start time tardiness 

The data showed that the average tardiness relating to start time was 26 minutes.  If this 

tardiness could be reduced, or even eradicated, then a more efficient system would be seen.  

This change was implemented into the model by taking proportions of the original modelled 

value for tardiness; both positive and negative changes in efficiency are considered.  Taking a 

proportion of 0% thus means that the theatre starts on time each day. 

The change to the total number of cancellations and theatre hours per year is given in Table 

8.4i.  By starting punctually each day, approximately 50 cancellations and 86 theatre hours 

can be saved per year.  Even just by reducing tardiness by 25% (75% of original), 

approximately 14 cancellations and 22 theatre hours can be saved per year.  This is a fairly 

considerable saving bearing in mind that this translates to just eliminating just 6.5 minutes off 

lateness on average.  Specific results for the impact upon hip cancellations are shown in 

Figure 8.4ii.  Hip cancellation rate refers to the percentage of scheduled hip operations that 

are cancelled (and not the proportion of cancellations that are hip patients). 

 

Table 8.4i: Effect of a change in tardiness on yearly cancellations and theatre time (hours)  

Change to 
Proportion of original tardiness 

0% 25% 50% 75% 125% 150% 175% 200% 

Cancellations -49.8 -37.1 -25.6 -14.0 13.8 26.2 41.3 56.6 

Theatre time  -86.1 -64.6 -43.8 -22.5 18.5 35.4 50.7 66.8 

 

 

Figure 8.4ii: Effect of a change in tardiness on hip cancellations  
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8.5 What-if B: Change to turnover time 

While theatre turnover time can never be completely reduced in reality, the impact of an 

improvement in efficiency relating to this time is investigated here.  This was investigated by 

both changing the turnover time by a certain percentage, and setting turnover time to a fixed 

value.  Turnover times are also considered indirectly in Section 8.6.2, where operations of the 

same type are scheduled consecutively. 

 

8.5.1 Percentage change in turnover time 

For this first case, the original modelled value was increased or decreased by a certain 

percentage and this value then taken as the new turnover time.  Results are displayed in 

Figure 8.5.1i.  

  

 

Figure 8.5.1i: Impact of a percentage change in turnover time 
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hips that are cancelled reduce to 2%, while the worst case scenario sees 39% of all hip 

operations being cancelled. 

The average theatre turnover time was 42 minutes, so a 25% reduction equates to trimming 

approximately ten minutes on average from the turnover time.  This would save 117 

cancellations and 142 hours of theatre time per year.  The percentage of all scheduled 

operations that are cancelled would decrease to 11.0% from 15.7%, and to 12.8% from 18.5% 

for scheduled hip operations.  In this case theatre utilisation would reduce to 89% from 93% 

and would therefore be within the guidelines of The Bevan Report (see Section 7.4.2). 

A 25% increase would lead to 118 additional annual cancellations and an extra 103 hours of 

theatre time in total per year.  The percentage of all scheduled operations that are cancelled 

increases to 20.4% and to 24.0% for hip operations, an extra 34 hip cancellations per year. 

 

8.5.2 Fixed turnover time 

Two cases are considered here: A, the same fixed value for all turnover times, and B, fixed 

turnover time values but with some consideration of operation type.  In general, turnover 

times between operations of the same type are shorter, so for case B, if the turnover time was 

set to, say, x minutes, then turnover time between operations of the same type was set to 0.5x 

minutes.  Zero turnover is again included for completeness. 

The impact on the trauma theatre if either of these scenarios could be achieved is evident.  In 

particular consider the greater impact if case B was achieved, see Figure 8.5.2i and Table 

8.5.2ii (* time halved for turnover between operations of the same type, scenario B).  Table 

8.5.2ii gives the value change in both the number of operations performed per day and the 

number of theatre busy hours per day; for example, a fixed turnover time of zero minutes 

means that the average extra operations that can be performed per day is 0.95, with a 

reduction in the theatre usage of 2.36 hours per day.  

For scenario B, the fixed turnover time needs to be increased to 60 minutes (30 minutes 

between same type operations) before the current overall cancellation rates and theatre usage 

are seen.   
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Figure 8.5.2i: Impact of changing turnover to a fixed value for two scenarios  

 

Table 8.5.2ii: Impact of a fixed turnover time (minutes) on number of operations performed 

per day and theatre usage for two scenarios 

Fixed 

turnover * 

Number of operations Theatre busy time (hours) 
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40 0.05 0.42 0.05 -0.52 

50 -0.27 0.21 0.36 -0.21 

60 -0.59 0.00 0.60 0.05 

70 -0.90 -0.22 0.78 0.26 

80 -1.18 -0.44 0.93 0.43 

90 -1.43 -0.65 1.06 0.58 
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8.6 What-if C: Re-ordering/re-allocation of operations 

In this section, some changes are made to the theatre schedule.  The same overall schedule is 

still used so that fair comparisons can be made, but the ordering and allocation of operations 

is amended to assess three different approaches. 

 

8.6.1 Priority to hip patients 

Anecdotal evidence suggests that hip patients are often moved to the end of the theatre list.  

This what-if scenario tests the effect of moving all hip patients to the start of the schedule in 

order to minimise the likelihood that they are cancelled. 

Firstly, consider the scenario where priority is given to the first hip patient on the schedule 

and this patient moves to the start of the list.  Days without any scheduled hip operations thus 

remain unaffected and any hip patients further down the list are also not moved.  This is 

defined as policy A. 

Secondly, for policy B, all hip patients are given priority.  Any scheduled hip patients move 

to the start of the theatre list in the order that they were originally scheduled, followed by any 

remaining scheduled patients, also in their original order.   

Results collated from making these changes to the simulation model showed little difference 

to overall cancellation rates.  There was a minor decrease for both policies, which was greater 

for policy B, but these differed little from the current situation; however, a change was seen 

in the proportion of hip patients which made up the cancellations, see Figure 8.6.1i.  There 

was also very little impact to theatre busy time.  

29.3% of all cancellations are hip patients in the current situation, which decreases to 24.8% 

for policy A and 5.2% for policy B.  Of all scheduled hip operations, currently 18.5% are 

cancelled, which would reduce to 15.5% and 3.2% for policies A and B respectively. 

Hip cancellations have thus not been completely eradicated by either of these policies, since 

in some cases hips would dominate the schedule or particularly lengthy operations may 

occur.  However, results show that policy B in particular would go some way to improving 

the amount of hip operations that are cancelled.   
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Figure 8.6.1i: Cancellation results for two policies of prioritising hip patients 

 

8.6.2 Alike operations in succession 

Although the data suggests that there may be some effort made to schedule alike operations 

consecutively, this does not always happen.  Longer turnover times tend to occur when 

unalike operations follow each other, thus the result of simply scheduling alike operations 

together should result in a shorter theatre busy time.  Since there are three operation types, 

there are 3! = 6 combinations of ordering which may occur. 

Some cancellation results are given in Figure 8.6.2i, where HSO refers to the ordering of hip 

operations, followed by spinal operations, followed by other operations, for example.  The 

lowest cancellation rate of 14.2% was given by the ordering OHS, with the highest of 16.0% 

given by HSO.  The data shows that the longest average turnover between two operations is 

seen when a spinal operation follows a hip operation, which in some part explains this result.  

In addition to HSO, SHO also gave a marginally worse cancellation rate than what is 

currently seen, with 15.8% compared with 15.7% currently; all other orderings gave an 

improvement.   

As expected, fewer hip cancellations are seen when they are prioritised, and this result is also 

observed when they come second to spinal operations.  For the two cases where hips come 

first, just 0.7% of all scheduled hip operations are cancelled.  This increases slightly to 1.5% 

for the ordering SHO.  For SOH, OHS and OSH respectively, the percentages of hip 
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10% of all scheduled operations in each case. 
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Figure 8.6.2i: Cancellation results for scheduling alike operations together 

 

Total theatre time varies very little across these orderings.  Therefore in the cases where 

fewer cancellations are achieved, a more efficient theatre system is evident; the theatre is still 

used for the same amount of time but more operations are performed.   
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by 87 per year.  The worst outcome for hip patients would be OSH, where the number of hip 

cancellations per year would more than double, although non-hip cancellations would reduce 

by 62% as a result. 
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staffing, resources and preferences of hospital staff; a stakeholder of hip fracture care may 

have differing opinions to a spinal surgeon, for example. 
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8.6.3 Removal of spinal operations 

There has been some discussion amongst staff at the UHW of moving spinal operations to 

another theatre.  These operations can be particularly time-consuming and re-allocating them 

to another theatre will mean a reduction in the demand on the trauma theatre. 

By removing all spinal operations, the average theatre usage per day would reduce slightly 

from 10.7 hours to 10.3 hours, just 20 minutes on average per day, with theatre utilisation 

dropping to 89.9%.  The number of lack of time cancellations would reduce by approximately 

37 per year for all operation types, with hip lack of time cancellations reducing by 14 per 

year. 

It can be seen that removing spinal operations from the trauma theatre has led to a fairly 

modest change in outcomes, but it must be remembered that these operations account for only 

approximately 5% of all operations.  One useful result is that it can be seen that should this 

approach be implemented, average theatre utilisation would just about fall to below the 

recommended threshold of 90%.  
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8.7 What-if D: Change to theatre allocation 

The theatre is currently allocated to be used for 11.5 hours (690 minutes) per day.  At this 

point in the model, if there were still outstanding operations, a decision was made to 

determine whether or not an overrun would be required using the cancellation strategy 

described in Section 8.2.6.  Changes to both the theatre allocation and the cancellation 

strategy are now investigated. 

 

8.7.1 Change to allocated hours 

Firstly, a change in the number of scheduled theatre hours per day is made and results 

relating to cancellations and theatre busy time are presented in Table 8.7.1i.  Both increases 

and decreases to daily scheduled theatre hours are considered and the overrun limit rl is kept 

at 0.67. 

 

Table 8.7.1i: Effect of changing trauma theatre allocated hours  

Allocated 

hours 

Percentage of cancelled operations Change in theatre 

hours per day All Hips 

10 23.6% 27.6% -0.87 

10.5 20.8% 24.4% -0.56 

11 18.1% 21.4% -0.27 

11.5 (current) 15.7% 18.5% 0.00 

12 13.6% 16.0% 0.23 

12.5 11.5% 13.7% 0.45 

13 9.7% 11.6% 0.65 

13.5 8.2% 9.6% 0.82 

14 6.8% 8.0% 0.97 

14.5 5.6% 6.7% 1.11 

 

The model shows that even if the allocated time is increased by 180 minutes to 14.5 hours per 

day, the change in the number of used hours per day will only increase by approximately 67 

minutes.  A change of this magnitude will therefore lead to a waste in expensive resources.  

However, just one additional hour per day, resulting in an extra 27 minutes of used theatre 
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time, would lead to 54 fewer cancellations per year, 15 of which are hip patients.  A decrease 

in theatre allocation is not recommended; a reduction of just 30 minutes would see an extra 

59 cancellations annually, 18 of which are hips, just for a reduction in theatre busy time of 16 

minutes.  Additionally, theatre utilisation would increase to 94.5%. 

 

8.7.2 Change to cancellation strategy 

Consider first the scenario where overruns are not allowed, so that rl = 0.  In this case, if the 

next operation (and the turnover time preceding it) will mean that the theatre overruns, that 

operation and any other outstanding operations are cancelled.  The impact of doing this on 

cancellations and theatre usage is shown in Figure 8.7.2i and Table 8.7.2ii respectively, for a 

variety of theatre allocations.   

Current cancellation rates are seen at approximately an allocation of 12.5 hours, an increase 

of one hour on the current allocation.  Therefore if overruns are prohibited, the theatre 

allocation would need to be increased by an extra hour per day just to achieve current 

cancellation rates.   

 

 

Figure 8.7.2i: Impact of not allowing overruns on cancellations 
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Table 8.7.2ii: Impact of not allowing overruns on theatre usage  

Allocated 

hours 

Change in theatre 

hours per day 
Theatre utilisation 

10.0 -1.72 89% 

10.5 -1.35 89% 

11.0 -1.00 88% 

11.5  -0.68 87% 

12.0 -0.37 86% 

12.5 -0.08 85% 

13.0 0.16 83% 

13.5 0.40 82% 

14.0 0.60 80% 

14.5 0.79 79% 

 

An increase to 14.5 hours sees the current cancellation rates approximately halve, but this 

would mean that the theatre is utilised just 79% of the time, which would be a significant 

waste of resources.  Using any of the allocations considered here but with a policy of not 

allowing overruns would lead to a reduction in utilisation.  

Setting rl = 1 gives, in effect, an opposite policy of dealing with cancellations.  Instead, all 

overruns are permitted whenever they are required and no cancellations are allowed.  This is 

also the same as allowing a theatre usage of 24 hours.  If this strategy was implemented, 

average theatre usage would increase by 17% to 12.4 hours, a utilisation of 52% of 24 hours, 

or 108% of 11.5 hours. 

The value of rl is now varied, but theatre allocation kept at 11.5 hours.  rl < 0.67 represents a 

more stringent overrun policy on what is currently used; overruns are allowed less often and 

therefore cancellations become more frequent.  rl > 0.67 thus represents a more lenient 

system whereby overruns are allowed more often, resulting in fewer cancellations but a more 

busy theatre.  Results are displayed in Figure 8.7.2iii. 
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Figure 8.7.2iii: Impact of a change in rl on cancellations and theatre usage 

 

There is clearly a trade-off to be gained here; while increasing rl results in fewer 

cancellations, the theatre becomes more likely to overrun and utilisation increases.  For 

example, at rl = 0.9, while just 12% of scheduled operations are cancelled, the theatre is 

operating at 97% utilisation and 57% of the time will exceed the limit of 11.5 hours.  Average 

theatre utilisation is within 90% when rl  < 0.4. 

The relationship between rl and theatre allocation is now investigated.  Nine scenarios are 

considered in total; each combination of a theatre allocation of 10.5, 11.5 and 12.5 hours and 

cancellation limits of 0.25, 0.5 and 0.75.  Current allocation and an increase and decrease of 

one hour are thus both considered.   

Firstly, the percentage change in the number of cancellations is presented in Figure 8.7.2iv, 

where green blocks show a decrease and red blocks show an increase from the current 

amount.   

If theatre allocation was kept at 11.5 hours but overruns allowed only half of the time they 

were required, then there would be an 8% increase in the number of cancellations, a total of 

32 extra affected patients per year.  Setting rl = 0.5 alongside a reduction in theatre time to 

10.5 hours would see a much greater increase in cancellations of 42%, affecting an extra 163 

patients per year.  The most „generous‟ scenario considered here, an allocation of 12.5 hours 
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and rl = 0.75, where overruns are permitted 75% of the time that they are required, gives a 

31% reduction in cancellations, the equivalent of 123 fewer cancelled patients per year. 

 

 

Figure 8.7.2iv: Impact on cancellations of a change to theatre allocation and rl 

 

A change in theatre usage will be another consequence of making these changes and some 

results are given in Table 8.7.2v.  Cells contain average theatre usage in hours and average 

theatre utilisation for each combination of scheduled hours and rl.   
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It is suggested that an allocation of 10.5 hours would not be advisable, since not only would 

there be a considerable increase in cancellations, utilisation would be above 90% even if only 

25% of required overruns were allowed. 

Utilisation is at most 90% when theatre allocation is 12.5 hours for each of the three 

cancellation limits simulated. Increasing rl brings more uncertainty to the system, since 

overruns would be allowed more often and thus last-minute changes to staffing arrangements 

may need to be made, for example.  Therefore it would be up to hospital managers if they 

wanted a more stable system where overruns are allowed less often, or one which has greater 

instability but fewer cancellations. 
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8.8 What-if E: Increase in arrivals 

A change in the demand on the theatre is now investigated via changing the arrival rate.  

Changes to the p parameter of the Binomial distributions used to decide the number of 

operations scheduled per day were made in order to increase and decrease the overall demand 

by various percentages.  Cancellation and utilisation results are presented in Figure 8.8i.   

 

 

Figure 8.8i: Impact of a change in demand on cancellations and theatre utilisation 

 

If the number of arrivals increases by 20%, average theatre utilisation will reach 100%.  The 

percentage of all scheduled operations which are cancelled increases from 15.7% to 24.5%, 
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example, the theatre would be empty 26% of the time should the demand fall by 30%, 

resulting in an expensive waste of resources.  A 10% decrease in demand would see the 

utilisation fall to below the 90% guideline. 

The most logical way to accommodate a change in demand is to change the open hours of the 

theatre.  Consider the case where a change in trauma theatre demand is met with an 

equivalent change in theatre allocation, so that for example, if the demand increases by 10%, 

the scheduled open hours of the theatre is also increased by 10%.  Changes to cancellations 

and theatre utilisation as a result of this are displayed in Table 8.8ii. 

Recall that currently 15.7% of all operations and 18.5% of hip operations are cancelled.  It is 

interesting to see that a reduction in demand and theatre time would lead to an increase in the 

proportion of scheduled operations that are cancelled.  This is complemented by a reduction 

in theatre utilisation.  The actual number of cancelled operations, however, would still 

decrease. 

If the demand was to increase and the open hours changed accordingly, a reduction in the 

proportion of cancelled operations would be seen, but there would be an increase in theatre 

utilisation.  Despite the reduction in the cancellation percentage, the number of cancelled 

operations would in fact increase in all cases except for a 10% increase in demand/allocation.  

This would see a very marginal decrease of 2% in the actual number of cancellations per 

year. 

 

Table 8.8ii: Impact of a corresponding change in theatre demand and allocation 

Percentage change 

in demand/allocation 

Cancellations percentage Theatre 

utilisation All Hips 

-30% 20.2% 24.9% 91.6% 

-20% 18.4% 22.3% 91.6% 

-10% 17.0% 20.3% 92.0% 

+10% 14.6% 16.9% 93.4% 

+20% 13.6% 15.7% 94.0% 

+30% 12.7% 14.5% 94.6% 

+40% 11.9% 13.5% 95.2% 

+50% 11.1% 12.4% 95.8% 
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8.9 A system designed around hip patients 

Finally, an idealised trauma theatre system is simulated.  Since hip patients are the primary 

focus of this research, this system is designed primarily to accommodate these patients.  

Some results gained from the previous sections are used in order to decide various parameters 

within the system, so that hip patients receive the best possible treatment while still working 

within the boundaries of a feasible and realistic scenario. 

The first decision to be made is the ordering of patients.  Clearly a system focussed on hip 

patients will always give priority to these patients, so all hip patients scheduled on any day 

will move to the start of the list.  Ordering alike operations together was shown to usually 

decrease overall cancellation rates, with the order hip-other-spinal giving better results than 

hip-spinal-other.  The former option means a maximum of one turnover is required between a 

spinal operation and another type of operation, which is preferable.  Thus the ordering hip-

other-spinal will be used here. 

No tardiness relating to start time is allowed.  Turnover times between operations are set to 

75% of the original modelled value.  Of course it would be more desirable to reduce these 

even further in pursuit of an ideal system, but the simulation still needs to represent a realistic 

and implementable system.  Reducing turnover by more than this value could impose more 

difficult and less reasonable targets to theatre staff, but since a reduction of 25% is only a 

saving of approximately ten minutes per turnover, it is deemed realistic.  It was also shown 

that by reducing turnover by this amount, improvements were still seen. 

Theatre allocation is kept at 11.5 hours per day.  While fewer cancellations are seen for 

longer hours, the theatre currently operates to these times and therefore it is unchanged to 

cause minimal prospective upheaval.  If the number of scheduled hours was altered, changes 

to staffing would be needed not only in the trauma theatre, but also to portering services, 

recovery ward staff and potentially across the wider hospital.  The value of rl is set to 0.5, 

meaning that half of all required overruns will be allowed.  This brings more control to the 

theatre by reducing the amount of unplanned hours. 

Spinal operations are not removed from the theatre lists.  It was shown that doing this 

resulted in relatively little impact and so it is not deemed necessary.  Additionally, changes 
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made to tardiness, turnover times and ordering of operations will result in a more efficient 

system, freeing up additional hours and thus making it unnecessary to remove patients. 

Some results are presented in Figure 8.9i, comparing this model with the current system, 

where better results are seen in each case.   

Average theatre busy time in the new model is 9.4 hours per day, giving a mean daily 

reduction in busy time of 75 minutes.  Theatre utilisation would fall to 82%.  This is within 

recommended guidelines but also not so low to result in an inefficient system.  Having an 

average utilisation under the recommended value of 90% also provides a buffer so that, if 

zero tardiness or the 25% reduction in turnover was not possible, for example, the guideline 

may still not be breached. 

The percentage of cancelled operations falls from 15.7% to 9.6%, overall representing an 

improvement of 152 fewer cancellations per year.  The hip cancellation percentage in Figure 

8.9i gives the proportion of all cancellations which are hip patients; this falls from 29.3% to 

almost none.  The hip cancellation rate gives the percentage of scheduled hip patients that are 

cancelled, falling from 18.5% to, again, almost none.  Cancellations in the new model are 

almost exclusively non-hip patients.  

 

 

Figure 8.9i: Effect of designing a trauma theatre system around hip patients 
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8.10 Chapter summary 

A simulation model of the trauma theatre at the UHW has been presented in this chapter.  

Validation and verification procedures showed that the model represented the real system 

with sufficient accuracy.  The model was then used to explore a number of what-if scenarios, 

in order to investigate the effect of changing the running of the theatre.  A summary of some 

of the scenarios tested, alongside results of the key outputs of lack of time cancellations, as a 

percentage of all scheduled patients, and theatre busy time and utilisation, is presented in 

Table 8.10i. 

Recommendations to be made on the basis of these results will ultimately depend upon 

whether priority can be given to hip patients.  Clearly the best results, from the point of view 

of a hip fracture patient/stakeholder, are seen when a system is designed around hip patients, 

see Section 8.9, where hip patients were given priority, turnover was reduced and all theatre 

sessions started on time.  However, it was shown previously that not all changes need to be 

made to see beneficial results; for example, simply by scheduling all hip patients first, a 

considerable reduction in cancellation rates is seen for these patients, but this is generally 

compensated for by an increase in cancellation rates for other operations.  However, mostly 

beneficial results are seen when alike operations are scheduled sequentially, so it is stressed 

that this should be achieved whenever possible. 

An increase of one hour to the theatre allocation, from 11.5 to 12.5 hours per day, will mean 

that utilisation falls within the 90% guideline.  It is not recommended that allocation is 

decreased since utilisation is already above 90% and any decrease will see utilisation increase 

further.  A change to the cancellation strategy has also been documented.  It is recommended 

that an increase in theatre allocation could be coupled with a stricter, more controlled, 

strategy where, say, only half of all required overruns are permitted. 

Finally, attention is drawn to the scenario where an increase or decrease in demand is seen.  

Results show that simply matching the change in demand with a change to theatre open hours 

will not give the same results as what is currently seen.  An increase in demand, for example, 

is actually shown to increase theatre utilisation, even if the increase is matched with an 

equivalent increase to theatre allocation, but cancellation rates are reduced.  
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Table 8.10i: Summary of results, trauma theatre model (* half between alike operations) 

Scenario 

Lack of time 

cancellations (%) Theatre busy 

time (hours) 

Theatre 

utilisation 

(%) Hips All 

Current 18.5 15.7 10.7 92.8 

Change to start time tardiness     

0% of current 

200% of current 

16.0 

21.2 

12.2 

18.3 

10.5 

10.9 

91.0 

94.6 

Change to turnover time     

0% of current 

200% of current 

Fixed to 30 minutes 

Fixed to 30 minutes * 

Fixed to 60 minutes 

Fixed to 60 minutes * 

2.1 

38.7 

11.9 

8.1 

27.4 

18.6 

1.9 

32.7 

10.5 

7.0 

24.4 

15.7 

9.1 

10.7 

10.3 

9.8 

11.3 

10.7 

79.2 

92.7 

89.6 

85.0 

97.9 

93.2 

Priority to hip patients     

First patient only 

All hip patients 

15.5 

3.2 

15.6 

15.3 

10.7 

10.7 

92.7 

93.0 

Alike operations in succession     

HSO 

HOS 

SHO 

SOH 

OHS 

OSH 

0.7 

0.7 

1.5 

39.9 

35.0 

40.3 

16.0 

14.8 

15.8 

14.7 

14.0 

14.3 

10.6 

10.6 

10.6 

10.6 

10.7 

10.7 

92.8 

92.4 

92.3 

92.5 

92.7 

92.7 

Change to theatre allocation     

10.5 hours 

12.5 hours 

13.5 hours 

14.5 hours 

24.4 

13.7 

9.6 

6.7 

20.8 

11.5 

8.2 

5.6 

10.1 

11.2 

11.5 

11.8 

96.6 

89.2 

85.3 

81.4 

Change to cancellation strategy     

rl = 0, no overruns allowed 

rl = 0.5 

rl = 1, all overruns allowed 

24.9 

19.9 

<0.1 

20.9 

17.0 

<0.1 

10.0 

10.5 

12.4 

87.1 

91.3 

108.1 

Change in demand     

Decrease of 20% 

Increase of 20% 

Increase of 50% 

8.4 

24.5 

37.4 

10.2 

27.8 

41.2 

9.3 

11.5 

12.1 

81.1 

100.3 

105.5 

Change in demand and allocation     

Decrease of 20% 

Increase of 20% 

Increase of 50% 

22.3 

15.7 

12.4 

18.4 

13.6 

11.1 

8.4 

13.0 

16.5 

91.6 

94.0 

95.8 

System designed around hip 

fracture patients 
0.3 9.6 9.4 81.9 
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CHAPTER 9: A THEORETICAL APPROACH TO MODELLING THE TRAUMA 

THEATRE 

9.1 Introduction 

The trauma theatre at the UHW was previously modelled in Chapter 8 using simulation.  In 

the next two chapters, the same theatre is modelled but using an analytical mathematical 

approach.   

Results from queuing theory are utilised in order to model patients (customers) as they arrive, 

are operated on (served) and ultimately exit the system.  Using queuing theory to model the 

theatre complements and extends previous investigations using simulation.  It provides a 

robust means of investigating the impact that making changes to the system would have, so 

that high confidence can be placed on results using proven mathematically methodology.  

Over the next two chapters, some existing results from queuing theory are used and 

developed, while new, specific formulations are also presented where a tailored model was 

designed to represent the trauma theatre at the UHW. 

 

9.1.1 The Erlang distribution 

The Erlang distribution is a continuous probability distribution which is widely used in 

queuing theory.  It was originally developed by A. K. Erlang for the field of telephone traffic 

engineering, specifically to examine the number of telephone calls which could be made 

simultaneously to operators in a switching station (Erlang 1920). 

Consider k
 

independent identically distributed random variables, each of which follows the 

Negative Exponential distribution with the same parameter

 

,  so that   ,ix

if x e
 



1, ..., .i k
  

Consider the general case of these k  events occurring in series; the time spent in 

the thi

 

phase is represented by ,ix  while the probability that ix
 
is the time taken to complete 

this interval is given by  .if x   The Erlang distribution, sometimes referred to as the 

Erlang-k distribution, is the sum of these independent variables.   
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Note that it is not necessarily a requirement that these are physical phases, but that this 

formulation may be used a mathematical device to represent the time taken to complete a 

certain process.  Also note that each phase must be completed before exit from the system 

can occur.   

Let 
1

k

i

i

t x


 be the total time taken to complete all phases. 
 
The probability density function 

(PDF) of the total time to complete the k  phases is given by  g t , where 

 
 

 

1

, 0.
1 !

k tt e
g t t

k

 
 

 
  

For continuity with other functions, let 1 

 

be the mean of this distribution.  Rearranging for 

  and substituting, the PDF for the Erlang distribution with k  phases, which may be 

denoted by kE , can be expressed as 

 
 

 

1

, 0.
1 !

k k tk k t e
g t t

k

 
 

 


 

The variance is given by 
2

1

k
.  Additionally note that .k   

As k  increases, the Erlang distribution becomes less skewed and begins to resemble the 

Normal distribution; consequently the distribution becomes more concentrated about the 

mean.  This can be seen in Figure 9.1.1i where   is kept constant at 0.5. 

 

 

Figure 9.1.1i: The changing shape of the Erlang distribution as k is varied 
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9.1.2 Relationship to other distributions 

Recall that the Erlang-k distribution represents k  independent random variables, each of 

which follows an identical Negative Exponential distribution.  Therefore if 1k  , then kE  

simply collapses to the Negative Exponential distribution with parameter ( ).   Since k
 

represents the number of phases, it must be a positive integer.  If this criterion is generalised 

to let k
 

be real, then this is equivalent to the Gamma distribution, using the Gamma function 

1

0

( ( ) d )k tk t e t



     
instead of the factorial function in the denominator.  One final 

relationship is that if 0.5,k   then kE  simplifies to the Chi-square distribution with 2k
 

degrees of freedom.  
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9.2 Extension of the Erlang-k distribution 

The previous formulation assumed an identical distribution for each phase.  This assumption 

is now relaxed; each phase still follows a Negative Exponential distribution but the rate 

parameter of this distribution can vary between phases.   

 

9.2.1 Case k = 2 

Consider the simplest case of two phases, where the time spent in the first phase is given by 

1x and the time spent in the second phase is given by 2x .  The probability that the times taken 

to complete these phases are 1x
 
and 2x

 
are given by  1f x

 

and  2f x  respectively, so that

  ; 0, 1, 2.i ix

i i if x e x i
 

  
 

Consider the Laplace transform of a function  f t , defined for all real numbers 0t  , and 

denoted by the function  F s , where the parameter s  is a complex number.  Then

      
0

d .st

sF s L f t f t e t



     Now consider the Laplace transform of   ,if x  as 

previously defined, so that 

  

 

( )

0 0

0

d d

[ ] , 1, 2.

i it s tst

s i i i

i i

i i

L f x e e t e t

e e i
s s

  

 

 

 

  



 

   
  

 
 

Now let t be the time taken to complete the two phases, so that 
2

1

,i

i

t x


  and let ( )h t  

represent the PDF of the total time to complete the two phases.  Using the Convolution 

Theorem, which states that      s s sL f g L f L g   for two functions f  and ,g  yields 

        

   

1 2

1 2
1 2

1 2 2 1 1 2

.

1 1 1
.

s s sL h t L f x L f x

s s s s
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To find   ,h t  this is inverted and the linearity property of Laplace transforms is utilised; 

 

1 2

1 1 11 2 1 2

1 2 2 1 1 2

1 2

2 1

1 1

( )( )

.

s s s

t t

h t L L L
s s s s

e e 

   

     

 

 

  

 

        
         

            

 
      

 

 

9.2.2 Case k = 3 

Now consider the case of three phases, where the times spent in each phase are 1x , 2x  and 

3 ,x  so that   , 0, 1,2,3.i ix

i i if x e x i
 

      

Again letting  h t  represent the PDF of the total time to complete all three phases and 

following the method seen previously, the following result is obtained: 

           

   

1 2 3

1 2 3

1 2 3

. .

.

s s s sL h t L f x L f x L f x

s s s

  

  




  

 

Rearranging gives 

 
     

1

1 2 3

1 2 3

s

A B C
h t L

s s s
  

  


   

    
     

 

where 
        2 1 3 1 1 2 3 2 1 3 2 3

1 1 1
, , .A B C

           
  

     
   

 

Using the linearity property for Laplace transforms yields the following result: 

 

        
31 2

1 1 1

1 2 3

1 2 3

1 2 3

2 1 3 1 1 2 3 2 1 3 2 3

1 1 1
. . .

1 1 1
.
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tt t

h t A L B L C L
s s s

e e e
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9.2.3 General k 

In general, consider k  random variables each of which can be represented by the Negative 

Exponential distribution with a PDF of 

  ;i ix

i if x e
 

 0, 1, , , .i i i ix i k k   
 

 

Let 
1

,
k

i

i

t x


 then the probability density function of the sum of the k  random variables is 

given by
 

 
 

,

11

1,

1
0; 0, , 1, , .j

k k
t

i i jk
ji

i j

i i j

h t e t i j k


 

 





 

  
  
      

      




 

 

This may be adjusted to bring in a minimum value for each of the stages, where the minimum 

value for 
thj  phase is given by min ,j  so that 

 
 

 min

,

11

1,

1
min ; 0, , 1, , .j j

k k
t

i j i jk
ji

i j

i i j

h t e t i j k
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9.3 Application to theatre process 

This mathematical formulation lends itself well to the process by which a patient goes 

through the operating theatre at the UHW.  There are several stages to be completed, each of 

which must be completed before entry to the next stage can occur.  All stages must be 

completed in series before exit from the system is possible and each stage may be assumed to 

be independent from each other stage.  Identification of an accurate PDF to represent theatre 

time could prove useful and this is the aim here.  Additionally note that the Erlang 

distribution can be considered as a potentially appropriate distribution for each stage due to 

the mean exceeding the standard deviation in every case (see Table 9.3.2i). 

However, it is not the simplest case of one Erlang distribution.  Instead consider each stage in 

turn; if each stage can be represented its own distinct Erlang distribution, then these can be 

combined in series and the situation discussed in Section 9.2 is achieved.  There will be many 

phases in series, each of which is assigned a Negative Exponential distribution, some of 

which will have equivalent parameters (and together form an Erlang distribution for that 

particular stage). 

In order to pursue this method, Erlang distributions for the stages of the theatre process must 

be found.  It should be noted that this investigation concentrates solely on hip fracture 

patients. 

 

9.3.1 Software limitations 

Previously the software package Stat::Fit had been used to fit theoretical distributions to 

empirical data.  However, for this analysis, some limitations with this software were found.  

Firstly, one can only specify the number of intervals that the data is split into.  The size of 

each interval is then calculated by taking the range of the data and dividing by the number of 

intervals.  Because of this, the intervals are likely to fall at untidy intervals, which is 

undesirable.  Additionally, aside from specifying the number of intervals and altering the 

minimum value, the user has no control over any parameter estimation, which is sometimes 

useful in order to exercise control over investigating the effect of varying these parameters on 

other parameter estimates, moment estimates and the overall fit.  For example, with the case 
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of the Erlang distribution, the fitted value of k  is simply given by Stat::Fit, but the user 

cannot experiment with various different values in order to find a different fit.   

Recall that the mean of the Erlang distribution with k  phases is given by 
1


 and the variance 

is given by 
2

1

k
, thus 

2

. .

mean
k

s d

 
  
 

, where . .s d  denotes the standard deviation of the 

distribution.  This result may be useful when fitting the Erlang distribution and hence the 

option to try out different values of k  could prove to be advantageous to the fitting process. 

 

9.3.2 Methodology 

The Solver add-in for Microsoft Excel (see Section 7.2.1) was utilised here to find 

appropriate Erlang distributions for each of the theatre stages for all hip operations.  In order 

to achieve higher levels of accuracy and minimise the total number of phases, several 

combinations of intervals were tried and ultimately a total of four intervals were determined 

(which are a slight variation on those presented in Section 7.4.1): 

Stage A – Pre-theatre (asked for – into anaesthetic room);  

Stage B – Anaesthetic procedure (into anaesthetic room – into theatre);  

Stage C – Theatre time (into theatre – operation finish);  

Stage D – Recovery (operation finish – out of recovery). 

By entering the cumulative density function of the Erlang distribution alongside associated 

empirical probabilities calculated from the data, then calculating the square of the difference 

between each of the fitted and empirical values, the parameters of k  and   within the Erlang 

function can be altered in order to minimise the sum of squared differences. 

For comparison purposes, the parameter estimates given by both Stat::Fit and Solver are 

given in Table 9.3.2i, alongside the first and second moment estimates.  Values of k  

attempted with Solver were initially   tk  and   tk , where tk  is the value of k  given 

theoretically and calculated using the data (and entered as k  in the Data row); that is, the 

square of the mean divided by the standard deviation.  If no reasonable fit was found by 

either of these values, then other neighbouring integers were tried systematically.  In two of 
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the four cases the same value of k  was given by both Stat::Fit and Solver and these were 

equal to   tk  each time.   

The Solver solutions were tested by using the Chi-square goodness-of-fit test, which is used 

to test if a sample of data come from a population with a specific distribution (Snedecor and 

Cochran 1991).  In each case it was found that the distribution could be accepted statistically.  

This was supported by the graphical fit for each of the four stages; an example is given in 

Figure 9.3.2ii for Stage B.  The three other stages displayed similar results. 

The evidence is clear that better fits can be gained by using Solver and so in each case the 

parameter estimates given by this method were used going forward.   

 

Table 9.3.2i: Comparison of Erlang fits for theatre stages A-D (minutes) 

Stage Method k µ Minimum Mean 
Standard 

deviation 

A 

Solver 10 0.0318 6 37.5 10.0 

Stat::Fit 7 0.0328 6 36.5 11.5 

Data 9.50 - 6 37.6 12.2 

B 

Solver 4 0.0422 0 23.7 11.8 

Stat::Fit 4 0.0395 0 25.3 12.6 

Data 3.37 - 0 24.8 13.5 

C 

Solver 5 0.0133 0 75.3 33.7 

Stat::Fit 5 0.0119 0 84.2 37.6 

Data 4.13 - 0 79.1 38.9 

D 

Solver 5 0.0119 4 88.3 37.7 

Stat::Fit 4 0.0112 4 93.1 44.6 

Data 2.57 - 4 90.3 56.3 
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Figure 9.3.2ii: Graphical fits for the Erlang distribution, Stage B 

 

9.3.3 Results 

In summary, a total of four Erlang distributions have been fitted to the data and a summary of 

parameter estimates relating to these distributions is given in Table 9.3.3i. 

 

Table 9.3.3i: Summary of fitted Erlang distributions for the theatre pathway (minutes) 

Stage k μ α Minimum 

A – Pre-theatre 10 0.0318 0.3178 6 

B – Anaesthetic procedure 4 0.0422 0.1688 0 

C – Theatre time 5 0.0133 0.0664 0 

D – Recovery  5 0.0119 0.0593 4 

 

Recall from Section 9.2.3 the formulation of the PDF for the sum of k  random variables each 

following a Negative Exponential distribution.  Here 24k   in total but there are only four 

distinct Negative Exponential distributions.  Since the  1,..,i i k   values are not unique, 

the expression given in Section 9.2.3 will result in a zero in the denominator, and so a 

different approach is required to find a probability distribution to represent total theatre time.  

The mean and standard deviation, however, can be calculated and compared at this stage. 

It follows from earlier that 
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where 
i  represents the rate parameter for stage , 1,.., 4i i   (so that Stage 1 is Stage A 

using previous definitions).  This formulation may be used to gain some inference about the 

quality of using this approach to represent the total theatre process time.  For simplicity, 

  sL h t  will hereafter be denoted by  * .h s  

Firstly, some results of the application of the Laplace transform in the field of mathematical 

statistics are presented.   

Let  f x  be a PDF for a positive random variable ,X  so that f  is positive and 

 
0

d 1.f x x



   

Then  *f s  is defined as 

     
0 0

* d d .st st sXf s e f t t e F t E e

 

          

 

It follows that the thn  derivative of this is  

   ( ) d
* .

d

n
nn sX sX

n
f s E e E X e

s

        
 

 

Evaluating this expression at 0s   yields 

   

 

   

2

( )

*' 0

*'' 0

1 * 0 .
nn n

E X f

E X f

E X f

 

   

    

 

 

The mean, ,  of f  is therefore given by  *' 0 ,f  while the variance 2  is given by  

         
2 22 2*'' 0 *' 0 *'' 0 .E X E X f f f           

 

These results may now be applied to  *h s  as presented previously.  Differentiating with 

respect to s
 
yields  
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and so the mean   is obtained as  

 
1 2 3 4
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*' 0 .h

   

 
       

   

Evaluating this expression at the relevant values of , 1,...4,i i  and adding on minimum 

values gives a mean value of 224.8 minutes, compared with an empirical value of 231.8 

minutes.  This empirical value is obtained by summing the empirical means of each of the 

four stages, while the overall mean was 227.5 minutes when taking an average of overall 

times; the slight discrepancy is due to data issues. 

Differentiating again yields  
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Evaluation of this expression and use of the appropriate formulae gives a theoretical standard 

deviation of 52.9 minutes, compared with an empirical standard deviation of 70.8 minutes 

(summing variances by stage) or 81.2 minutes when calculated overall. 

Inverting  *h s  would facilitate finding an expression for  ;h t  this methodology was 

pursued using the commercial computer algebra package MAPLE (MAPLE 1981-2010©).  

This resulted in an extremely long expression for  h t  and substituting values of 

( 1,...4)i i  proved problematic due to the high powers and small values involved; 

however, graphical comparisons can be formed using rounded expressions given by MAPLE. 

The probability distribution functions (PDFs) and cumulative distribution functions (CDFs) 

are now displayed.  It can be seen that a reasonably good fit is found but that it becomes less 

accurate for longer total theatre times. 

 

 
Figure 9.3.3ii: Comparison of theoretical and empirical values for total theatre time 

 

9.3.4 Clinical time 

The amalgamation of intervals B and C can be regarded as clinical time spent in the theatre 

suite and the time that clinical resources, such as the anaesthetic room, are being consumed.  
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Inverting this gives a more workable expression than the one obtained for total theatre time; 
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The theoretical mean and standard deviation are 99.0 and 35.7 minutes respectively compared 

with corresponding empirical values of 103.9 and 41.2 minutes.  By these measures it appears 

that an accurate representation of clinical time has been found, which is further supported 

graphically, see Figure 9.3.4i. 

 

 

Figure 9.3.4i: Comparison of theoretical and empirical values for clinical time 
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9.4 The M | G | 1 queuing system 

The three-category notation system to represent the characteristics of a queuing system was 

first proposed by D. G. Kendall (Kendall 1953) and has since been extended to include up to 

six factors, although five factors are more commonly used.  The first factor represents the 

arrival process, the second represents the service time distribution and the third represents the 

number of servers in the system.  The fourth and fifth, used later, represent the limit of the 

number in the system (or queue) and the queuing discipline.  Here, random arrivals are 

assumed (denoted by M) and there is a general service distribution (denoted by G).  These 

arrivals are served by one server, the anaesthetic room / operating theatre suite.   

Random arrivals may be represented by the Negative Exponential distribution (particularly it 

is the inter-arrival time between successive arrivals that follows this distribution) with a given 

rate parameter ,  so that the mean inter-arrival time is given by 
1

.


  The Poisson distribution 

is intrinsically related to this; that is, the number of arrivals over a specified time period  0, t  

will follow the Poisson distribution with a mean parameter of .t    

It was previously stated that all arrivals did not follow a theoretical distribution and they were 

instead modelled using empirical values (see Chapter 6).  Closer inspection of the Anderson-

Darling and Kolmogorov-Smirnov goodness-of-fit test statistics indicated that acceptance of 

the Negative Exponential distribution was one percentage point away (at a 5% significance 

level).  This exercise was repeated excluding any patients who did not undergo surgery and 

acceptance was found, while it was also found that the number of arrivals per day did indeed 

follow a Poisson distribution with 1.270;   this fit is displayed in Figure 9.4i.   

 

 

Figure 9.4i: Number of arrivals of trauma hip fracture patients requiring surgery per day 

against the Poisson distribution with parameter  =1.270 
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Let   represent the arrival rate and   represent the service rate (per unit time, so that mean 

service time is equal to 
1


 units), while ,  known as the utilisation factor or traffic intensity, 

is equal to .


   Also let the variance of the service time be represented by 
2

s  so that the 

coefficient of variation of the distribution of service time is given by 
sc  where

 
 

2
22

2
.

1

s
s sc


 



    

Note that 
2 1sc   when service times follow the Negative Exponential distribution and 

2 0sc   

for constant service times, corresponding to changes to the queue discipline to M | M | 1 and 

M | D | 1, using standard notation. 

To find summary results of an M | G | 1 system, only the arrival rate, service rate and 

coefficient of variation of service time are required.  It is assumed that the system has infinite 

capacity and that customers are served on a first come first served, or first in first out (FIFO), 

basis.  Additionally it is assumed that 1,   otherwise the queuing delay becomes infinite. 

The expression for the mean number of customers in the system, ,L  is a key result of 

queuing theory and is known as the Pollaczek-Khintchine formula (Khintchine 1932, 

Pollaczek 1930): 
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.

2 1
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Using Little‟s results (Little 1961), expressions for the mean time in the system ,w  the mean 

number of customers in the queue ,qL  and the mean wait in the queue ,qw  can be found as 

follows:  
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An important feature of these equations is that qw  and qL  both increase non-linearly as 

increases, becoming very large as (as 1),     demonstrating the hazard of a 

stochastic system operating at a high level of utilisation.  

Note that these results apply to a non-terminating system which has reached steady-state.  If 

the observed arrival and service rates of hip fracture patients using the trauma theatre were 

inputted then excellent results (in terms of throughput efficiency) would be seen.  However, it 

must be remembered that the theatre is used for other operations as well as hip fracture 

surgery and that additionally it is not scheduled to function on a 24-hour basis.  In order to 

account for these issues, the value of   is altered in the equations presented previously.   

 

9.4.1 Altering the arrival rate 

Let hiph  be the number of hours designated to hip surgery per day, then the proportion of time 

allocated to hips per day is .
24

hip

hip

h
p    If 

true  is the true arrival rate (for hip surgery only) 

then the steady-state arrival rate required for the queuing equations is given by 

1
. .ss true

hipp
     Since 

true  is known, 
ss  and hipp  can be amended in order to assess any 

impact upon the system.  Making this amendment means that existing results from queuing 

theory can be applied as a non-terminating steady-state system can be assumed.  This model 

essentially assumes that hip patients take priority over all other surgeries and that surgery can 

be performed at any time. 

A similar approach, adjusting the arrival rate such that a non-terminating system can be 

assumed, has been reported for the M | M | 1 queuing system applied to the operating room 

(Tucker et al. 1999).  This was done to ascertain the likelihood of needing to utilise a back-up 

staffing team during a night shift in order to make decisions regarding staffing requirements.  

The arrival rate was altered so that it represented a 24-hour system and then subsequently 

investigations were made into the probability of two or more patients simultaneously needing 

the operating room for a range of arrival volumes.   
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In order for the assumption of 1   to be satisfied (so that the queue does not become 

infinitely large and the system saturated), it must be true that 1.ss


   The mean service time 

is 99 minutes, so 
1

.
99

 
 
From this, it follows that in order to have a utilisation factor less 

than 1, it must be true that 
99.0x1.270

0.0873.
60x24

hipp    
  

This proportion equates to a theatre 

availability of 2.096 hours per day.  The true numbers of hours used on average for hip 

patients is 2.3 hours per day, according to the data. 

It is an additional requirement that 
2 1;sc   here this value was 0.3606

2
 = 0.1300. 

Results for the measures quoted in the previous section are now displayed for various theatre 

availability times, calculated by varying the arriving rate; 2.1 hours is excluded due to the 

instability of results when 1.   Zero turnaround time is assumed.  It can be seen that results 

are particularly sensitive between the values of 2.2 and 2.7 (approximately). 

Results relating to number of patients are in solid lines and are recorded using the left-sided 

y-axis; results relating to the time in the system are in dotted lines and recorded using the 

right-sided y-axis.  Values obtained were checked to be accurate via a Simul8 model (Simul8 

1993-2010©). 

 

 

Figure 9.4.1i: Results for key queuing theory measures as the arrival rate is varied 
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It may be supposed that it is desirable in this scenario to have at least one patient in the queue 

since an empty operating theatre is a valuable waste of resources and so there should always 

be somebody waiting to enter service; that is 
 
 

2 21
1 ,

2 1

sc







 where .ss




   

Rearranging for 
ss  yields  2 2 2 21 2 2 0.s ss ssc          

Solving this quadratic gives  

 2

2

1 3 2
,

1

s

ss

s

c

c




  


  

and then by substituting values of  
2, , ands true ssc  

 
it can be shown that hipp  should be at 

most 0.122 in order to ensure that 1.qL    This is equivalent to stating that no more than 2.94 

hours per day should be allocated to hip patients.  Of course this does not guarantee that there 

is always a queue, but that there will be at least one person waiting on average. 

 

9.4.2 Sensitivity analysis 

Results from the previous section implied that the theatre needs to be available for at least 2.1 

hours per day in order that 1. 
 
 Performing a sensitivity analysis on the arrival rate allows 

information to be gained on theatre availability and system results should the number of 

arrivals change.  Minimum hiph  is therefore the number of hours per day which must be 

allocated to hip patients in order to ensure 1.    Results are then given for setting the daily 

allocation to 2.5 hours for hip fracture patients.  This value is chosen as it ensures that 1 
 

while keeping 1.qL   Inspection of Figure 9.4.1i also shows considerable gains are not made 

by increasing theatre availability beyond this value.   

It can be seen that a 10% increase in the arrival rate would in fact lead to more than doubling 

both the queue length and queue time.  The wait times here are evidently less than those 

observed in practice and will be in part due to assumptions made when formulating this 

queuing model; however, despite the necessity of making these assumptions, the results 

nonetheless provide some valuable insight.  
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Table 9.4.2i: Sensitivity analysis results for altering 
true  

Percentage 

change for 

true  

Minimum 

hiph  

Results for . 2 5hiph  

L qL  w

 

(hours)  qw

 

(hours) 

+10% 2.31 7.1 6.2 12.7 11.0 

+5% 2.20 4.5 3.7 8.5 6.8 

+2% 2.14 3.7 2.8 7.1 5.5 

+1% 2.12 3.5 2.6 6.8 5.1 

None 2.10 3.3 2.5 6.5 4.8 

-1% 2.07 3.1 2.3 6.2 4.5 

-2% 2.05 3.0 2.1 5.9 4.3 

-5% 1.99 2.6 1.8 5.3 3.6 

-10% 1.89 2.1 1.3 4.5 2.9 

 

9.4.3 Distribution of Pn 

Let 
nP  represent the probability that there are n  patients in the system at any given time.  As 

there is no explicit formula for 
nP
 
for the M | G | 1 queuing system, a method using 

probability generating functions is instead used to find these probabilities.  Also let jk  

represent the probability of j  arrivals during a service time, so that for a service time 

distribution of  ,f t  
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t e
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Let  G z  and  K z  be the probability generating functions for 
nP  and jk  respectively, such 

that   2
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...n
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Recall that   
   

4 5

2 3

4 5

2 3

,s cL h t
s s

 

 


 
where  ch t  represents the PDF of clinical time.  

Then in this case,  

    
     

4 5

2 3
(1 ) 4 5

2 31 1
z cK z L h t

z z


 

   
 

     

and     
     

1
4 5

2 3

4 5

2 3

1 1
1 1 1 .

z z
G z z z

   


 



    
    
 
   

By expanding this expression of  G z  as an ascending power series in , nz P   is then given 

as the coefficient of ,nz  achieved here using the fact that the power series expansion of the 

quotient 
1

1 x
 is equal to 2 31 ...x x x     when | | 1.x 

   

Letting 
     

4 5

2 3

4 5

2 3

1 1
,

z z
x z

   

 

   
  expanding the above formulation of  G z  

and collecting terms in ,z  yields the result on the following page. 

Substituting numerical values into this expression and selecting the relevant coefficient 

returns the probability of n  patients in the system, 0,1, 2, ... .n 
 
Note that if 1n   then there 

is one patient in the operating theatre (the service channel) and the remainder are waiting.  

Varying the arrival rate gives different values for 
nP  as the proportion of time allocated to hip 

fracture patients per day is altered.  The arrival rate and service utilisation used here were 

calculated according to different restrictions on theatre allocation and cumulative results for 

hiph  = 2.3, 2.5, 2.7 and 2.9 are presented in Figure 9.4.3i, where  
0

.
n

i

i

P X n P
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Figure 9.4.3i: P(X ≤ n) for different values of hiph  
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It appears that 2.5 hours per day is the most appropriate theatre time allocation for this patient 

group.  A shorter allocation than this (2.3 hours) will mean that there are five or more patients 

in the system approximately half of the time and ten or more approximately one-fifth of the 

time, which is unacceptable.   

For 2.5 hours allocation, the probability that an arriving patient can be operated on 

immediately is given by the constant term (zero power in z ), which is equal to 

0 1 1 0.8382 0.1618.P        It was previously hypothesised that having no patients in 

the system is not desirable due to wasted resources, and therefore it would be up to the 

hospital managers to decide whether a system that is empty 16% of the time, on average, is 

acceptable.  Extending the allocation gives more preferable results from a patient perspective; 

an allocation of 2.7 hours gives a probability of no patients in the system of 22%, increasing 

to 28% for an allocation of 2.9 hours.   

More detailed results for the chosen value of 2.5hiph   are now investigated.  This results in 

a service utilisation of 0.8382 and results for 
nP  are presented in Figure 9.4.3ii.  It can be seen 

that 
1P  returns the highest probability and this is equal to 0.197.  

nP
 
then monotonically 

decreases as n  increases (for 1n  ).  It is interesting to note that a modal value of one and 

the shape displayed below were seen for each of the four theatre allocations detailed 

previously, with the exception of 2.9hiph   where 0 1, 1i iP P P i    (but 
0 1P P ). 

 

 

Figure 9.4.3ii: nP
 
for 2.5hiph   
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The expected value of n  is found via expansion of  
0

.n

n

E n n P




   The summation was 

terminated once probabilities diminished below 0.001 (at n =17, as shown; note also that

17

0

0.9946).n

n

P


  

0 1 2 3 4 5

0

0 1 2 3 4 5 ...

0 (0.1618) 1(0.1968) 2(0.1649) 3(0.1250) 4(0.0925) 5(0.0682) 6(0.0503)

7 (0.0370) 8(0.0273) 9(0.0201) 10(0.0148) 11(0.0109) 12(0.0080)

13(0.0059) 14(0.0044) 15(0.003

n

n

n P P P P P P P




      

      

     

  



2) 16(0.0028) 17 (0.0007) [ ...]

3.168.

  



  

 

Recall also that L , the expected number in the system at any given time, was previously 

shown to equal 3.3 when 2.5;hiph   the discrepancy being due to the termination of the 

sequence above.  Inspection of the results gives the percentiles displayed in Table 9.4.3iii, 

where the right skew displayed previously is again evident.   

 

Table 9.4.3iii: 
nP
 
percentiles for 2.5hiph   

Percentile 1
st
 5

th
 10

th
 25

th
 50

th
 75

th
 90

th
 95

th
 99

th
 

n 0 0 0 1 2 5 8 10 15 

 

Despite the system being empty 16% of the time, the 75
th

 percentile shows that there are five 

or more patients in the system during the busiest quartile.  The busiest 10% of time will see 

eight or more patients in the system (seven or more waiting), while 1% of the time will see 15 

or more patients in the system.  The median value is two.  It is concluded that setting 

2.5hiph   gives a suitable trade-off between resource utilisation and patient management. 
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9.4.4 Waiting time 

Let ,Q
 
C

 
and T  be the random variables of queuing time, clinical time and total time in the 

system, given by PDFs    ,q ch t h t  and  th t  respectively.  The Laplace transforms are 

given by          ,Q s q C s cL s L h t L s L h t   and     .T s tL s L h t   Then it can be 

shown that 

 
   

 

1
.

C

T

C

s L s
L s

s L s



 




 
 

Since ,Q C T   where the total time T  represents theatre delay (the time between arrival 

and surgery) plus theatre time (but not any post-operation length of stay), and Q  and C  can 

be assumed to be independent, then 
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Moments of Q  may be found by differentiating and evaluating at 0s   as previously shown:   
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5 4
Q s

L s
     

   

  


 
 

and 
  

 

4 3 2 2 3 4
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( )

5 4
Q s

L s
          

     

    


 
 

where 
4 3 2 2 3 4

2 2 3 2 3 2 3 310 32 42 20 4 .              

 

Substituting appropriate parameter values gives the mean and standard deviation of the 

waiting time for various theatre allocations, see Table 9.4.4i.  Using 2.5hiph   as a 

benchmark, allocating 0.2 less hours per day would lead to a 98% increase in the mean 

waiting time, while an additional 0.2 hours would lead to 33% reduction in mean waiting 

time.  If this is increased to 3.0,hiph   then the mean waiting time is reduced by 55%.  The 

percentage changes in standard deviation are slightly less, leading to an almost linear 
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relationship between hiph  and the coefficient of variation of waiting time; for each extra 0.1 

hours allocated to hip surgery, the coefficient of variation increases by approximately 0.03. 

 

Table 9.4.4i: Waiting time results (minutes) for different theatre allocations 

hhip Mean S.D. C.V. 

2.3 572.9 613.3 1.07 

2.4 384.8 424.5 1.10 

2.5 289.7 328.8 1.13 

2.6 232.3 270.8 1.17 

2.7 193.9 231.8 1.20 

2.8 166.4 203.8 1.23 

2.9 145.7 182.7 1.25 

3.0 129.6 166.1 1.28 

 

The relationship between waiting time, hiph  and   is now considered further.  Using 

'

0
( )Q qs

L s w


   and rearranging and solving for ,  the value of hiph  and   that would 

achieve this mean waiting time can be calculated.  Note that it is still a requirement that 

1.    As qw  increases, 1   and 2.096hiph   (the value of hiph  when 1  ).  

 

 

Figure 9.4.4ii: Relationship between waiting time, hiph  and   
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Moments of T  may be found directly from its Laplace transform or by using .T Q C   

Employing the latter approach and using 

     E E ET Q C    

and      Var Var VarT Q C   

(there is no covariance term since Q and C are assumed to be independent) gives the 

following results for total time in the system. 

 

 

Figure 9.4.4iii: Results for total time in system 

 

It is interesting to note that, while the mean and standard deviation are again relatively similar 

(as was found for queuing time), the mean in this case exceeds the standard deviation each 

time.  Each coefficient of variation is now less than one and is declining as hiph  increases. 

Inversion of  QL s  allows a theoretical waiting time distribution to be found, which may 

then be compared with simulated results.  Due to the structure of  ,QL s  inversion results in 

the Dirac-Delta function being included in  .qh t    

Consider the function 
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The result of this is an infinitely thin and infinitely tall „spike‟ in the graph of  f t  at ,a
 

with a value of 0 elsewhere.  Inverting  QL s

 

gave a probability distribution for waiting 

time,  ,qh t  as represented in Figure 9.4.4iv for different values of .hiph   (The formula is 

excluded here due to its substantial length.)  

The Dirac-Delta part of  qh t  was found to be    1 0 ;t    that is, there is a probability 

of  1   of no wait.  This is equivalent to the result shown earlier of a patient arriving to 

find an empty system, or 
0 1 0.1618.P      This term is excluded from the graph for 

display purposes.   

 

 
Figure 9.4.4iv: Waiting time distribution for different theatre allocations 

 

A Simul8 model was used to find a number of other results and to verify this waiting time 

distribution.  Results when 2.5hiph   are now presented.  The shape initially appears to differ 

from Figure 9.4.4iv but this is because the (omitted) spike at t = 0 and the initial increase in

 qh t
 
is encompassed into the first interval in Figure 9.4.4v.  To compare the distributions 

more formally, consider the probability that the queuing time is less than 139 minutes 

(approximately).  It can be seen that the Simul8 model returns a probability of 43%, while the 

theoretical formula gives a probability of 42.3%.  A value of 139 minutes was used since it 

was automatically outputted by Simul8. 
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Figure 9.4.4v:  Simulated waiting time distribution for 2.5hiph   

 

An average queuing time of 4.8 hours was confirmed by the simulation model, 95% 

confidence interval (CI) [4.5, 5.1], as was the standard deviation of queuing time of 5.5 

hours, 95% CI [5.0, 6.0].  The percentage of patients who have to wait (84%) was also 

verified.  If only non-zero queuing times are considered, the average waiting time increases to 

5.8 hours, 95% CI [5.4, 6.1].  The maximum queue length was 25.9 patients on average, 95% 

CI [21.6, 30.2].   

Finally, probabilities of various wait times are now presented.  These results are consistent 

between the theoretical and simulated models and again are displayed for various hiph  

allocations.   

 

 

Figure 9.4.4vi: Waiting time results for different values of hiph  
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Now consider a different way to interpret these results, where instead the wait times 

experienced by various patient proportions are presented.  For example, half of all patients 

have wait time less than or equal to 3.1 hours (186 minutes) when 2.5,hiph   while 90% of 

patients have a wait not exceeding 12 hours.  No value is given for 25%, 2.9hiph   since 

1 0.277   and thus since more than 25% of patients have no wait it would be misleading 

to enter a zero value here. 

 

Table 9.4.4vii: Waiting time (hours) for various theatre allocations 

Proportion 
Maximum wait time (hours) 

hhip = 2.3 hhip = 2.5 hhip = 2.7 hhip = 2.9 

25% 2.3 0.9 0.2 - 

50% 6.4 3.1 2.0 1.4 

75% 13.5 6.9 4.7 3.6 

90% 22.9 12.0 8.3 6.4 

 

With reference to earlier investigations in this thesis relating to operative delay, it is 

interesting to note that this system returns an average of 98.8% of patients receiving surgery 

within one day, rising to 99.9% within two days.  The detrimental effects of operative delay 

have been well-documented throughout this thesis, relating to both mortality and additional 

time in hospital.  This queuing model has demonstrated the vast improvements that could be 

achieved should an efficient operating theatre suite have 2.5 hours per day allocated to hip 

fracture patients.   
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9.5 Chapter summary 

A mathematical approach has been used in this chapter in order to model the trauma 

operating theatre at the UHW.  This has focussed on the Erlang distribution and in particular 

an extension to the traditional Erlang distribution in order to model clinical (service) time.  

The extension involved formulating a distribution with different rates between the phases.  It 

was not possible to substitute numerical values into this formula directly, thus inversion of 

the Laplace transform of the distribution was required.  The probability distribution function 

for clinical time formulated by this method was shown to represent the data with a high 

degree of accuracy. 

This service time distribution was then used to apply to results of the M | G | 1 queuing 

system.  In order to do this, a novel approach was taken to modelling arrivals.  Since the 

trauma theatre is not, in reality, a non-terminating system, the arrival rate was amended so 

that this could in fact be assumed.  This meant that recommendations could be made on the 

number of hours per day that should be assigned to hip fracture surgery.   

Results were then formulated for a variety of measures, including the distribution of both the 

number in the system and waiting time.  The maximum wait times for different proportions of 

patients at different values of assigned hip surgery hours per day were also calculated, which 

are useful in that they show which assignments will lead to decreases in operative delay.  

Overall it was recommended that agreeable results can be achieved with an allocation of 2.5 

hours for hip surgery per day. 
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CHAPTER 10: FURTHER THEORETICAL APPROACHES TO MODELLING 

THE TRAUMA THEATRE 

10.1 Introduction 

In this chapter, the trauma theatre is modelled via a more traditional queuing theory approach.  

Several different models are introduced and their relevance to the system is explained.   

The trauma theatre suite is the system under consideration.  In these models, a patient 

(customer) joins the queue once they are „asked for‟ from the ward, since this is when they 

become under the care of theatre staff.  Service starts once their clinical time starts, which is 

at the commencement of the anaesthetic procedure.  Service continues through the operation 

time and finishes when the patient exits the theatre, at which point they exit the system. 

There are two types of random arrival, hip patients and non-hip patients.  Hip arrivals to the 

UHW requiring surgery have previously been shown follow the Poisson distribution (see 

Section 9.4) and therefore the demand on the theatre by these patients is also be assumed to 

be random.  Note that results presented previously show the satisfaction of random arrivals to 

the hospital, and not necessarily the trauma theatre suite.  They are used here as a proxy to 

estimate the demand on the trauma theatre by trauma hip fracture patients.  While this is an 

approximation, this approximation allows for the mathematical formulation to be carried 

forward; highly compatible results between the model and the data were subsequently 

achieved.  This assumption is further corroborated by a comparison of the daily number of 

trauma hip surgeries per day against the Poisson distribution with mean 1.47 (see Section 

10.2.2), see Figure D10.1a.  The same logic can be applied to non-hip patients (Moore 2003).  

Service time is dependent upon patient type.  There is one server, the trauma theatre suite, 

and patients are served on a first come first served basis.  Reneging is not permitted and zero 

turnover between operations is assumed; one patient enters the anaesthetic room as another 

leaves the operating room. 

In order to evaluate the accuracy of the models, output from the real world system is required 

and a summary is given in Table 10.1i.  The results quoted as percentages give the proportion 

of the total time for which the given measure was observed.  A total of 1365 days was 

available for this analysis and counts of the number, location (queue or service) and type (hip 
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or non-hip) of patients were made at each minute of every day, giving almost two million 

data points in total.  0.12% of data points were deleted due to erroneous data; more than one 

patient in theatre, for example. 

 

Table 10.1i: Trauma theatre data summary 

Measure Value Result 

In service 

Hip 9.5% 

Non-hip 35.6% 

Nobody 54.9% 

Number in system 

0 52.1% 

1 38.6% 

2 9.3% 

3 < 0.1% 

≥ 4 0.0% 

Mean 0.572 

S.D. 0.657 

Number in queue 

0 87.1% 

1 12.9% 

2 < 0.1% 

3 < 0.1% 

≥ 4 0.0% 

Mean 0.130 

S.D. 0.338 

Number of hip patients in system 
Mean 0.131 

S.D. 0.122 

Number of non-hip patients in system 
Mean 0.440 

S.D. 0.590 

Number of hip patients in queue 
Mean 0.035 

S.D. 0.034 

Number of non-hip patients in queue 
Mean 0.094 

S.D. 0.294 
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It will be seen later that 
0P  is defined as the probability of an empty system.  For the data, 

this can be calculated in two ways; firstly, the proportion of time that there is nobody in the 

trauma theatre, and secondly, the proportion of time that there is nobody in the system, which 

were 0.549 and 0.521 respectively.   

These differ because in reality there could be a patient in the loading bay, waiting to go into 

theatre, but no patient currently in theatre (indeed this will always be true for the first 

scheduled patient of the day).  However, in a queuing model, an arrival which finds an empty 

system will start service immediately. 
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10.2 Negative Exponential model 

There are two sources of Poisson arrivals, hip patients (type 1) and non-hip patients (type 2), 

which arrive according to rates 
1  and 

2  respectively.  To begin with, it is assumed that 

service times follow two Negative Exponential distributions according to rates 
1  and 

2.   

The number of patients allowed in the system at any time is limited to a maximum of ,sysl  so 

that if there are already sysl
 
patients in the system, no arrivals are permitted.   

Using standard notation, an M  1 2,  | M  1 2,  | 1 | sysl  | FIFO system has been described.  

For a system with a limit of sysl  patients, there are a total of 

 
2

1

1
1 2 1 2 1

2

sysl
sys sys

sys sys

m

l l
m l l



 
      
 
 

  

different system states.   

 

10.2.1 Formulation 

Let  ,h nP t  be the probability of h  hip patients and n  non-hip patients in the system at time 

,t  with steady-state probability , .h nP
  

An asterisk is used to denote which type of patient is in 

service, where relevant – for example, 1*,1P
 
gives the steady-state probability of one hip 

patient and one non-hip patient in the system, where the hip patient is in service.  The data 

showed that the total number of patients in the system never exceeded three, and thus 3,sysl   

giving 23 3 1 13    system states in total, with differential-difference equations as follows.   

Consider the formulation of the equation for  1*,1 ,P t t
 
and in particular the third term on 

the right-hand side of this equation.  At time ,t  there are two hip patients and one non-hip 

patient in the system, with one of the hip patients in service.  By time ,t t  this hip patient 

has been served (term 1 t  ).  The next patient to enter service must be a hip patient to 

achieve a system state of 1*,1 at time ,t t  so that 1

1 2

,


 
 the proportion of hip arrivals in 
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comparison with all arrivals, is also included in the product.  The same logic is applied to the 

fourth term in this equation and the following equation for  1,1* .P t t
 

 

      

    

    

0,0 0,0 1 2
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1 1

1 1
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1
2*,1 1
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1
1,2* 2

1 2

1 1 1

1 1

P t t P t t t t
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1*,2 1*,2 1

1*,1 1 2 1

1

1 1

P t t P t t

P t t t t

  

    

  

  
 

 

    

    

2,1* 2,1* 2

1,1* 1 2 2

1

1 1

P t t P t t

P t t t t

  

    

  

  
 

 

The steady state equations, including the requirement that all probabilities must sum to one, 

are as follows: 

  1 2 0,0 1 1,0 2 0,1P P P       (1) 

  1 2 1 1,0 1 0,0 1 2,0 2 1,1*P P P P           (2) 

  1 2 2 0,1 2 0,0 2 0,2 1 1*,1P P P P         
 

(3) 

  1 2 1 2,0 1 1,0 1 3,0 2 2,1*P P P P         
 

(4) 

  1 2 2 0,2 2 0,1 2 0,3 1 1*,2P P P P         
 

(5) 

 
  1 1

1 2 1 1*,1 2 1,0 1 2*,1 2 1,2*

1 2 1 2

P P P P
 

     
   

   
       

    
 (6) 

 
  2 2

1 2 2 1,1* 1 0,1 2 1,2* 1 2*,1

1 2 1 2

P P P P
 

     
   

   
       

    
 

(7) 

 

1 3,0 1 2,0P P 
 

(8) 

 

2 0,3 2 0,2P P 
 

(9) 

 

1 2*,1 2 2,0 1 1*,1P P P   
 

(10) 

 

2 1,2* 1 0,2 2 1,1*P P P   
 

(11) 

 

1 1*,2 2 1*,1P P 
 

(12) 

 

2 2,1* 1 1,1*P P 
 

(13) 

 

0,0 1,0 0,1 2,0 0,2 1*,1 1,1* 3,0 0,3 2*,1 1,2* 1*,2 2,1* 1P P P P P P P P P P P P P            
 

(14) 
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10.2.2 Results 

These equations were solved using MAPLE but are omitted due to their considerable length.  

The sums 1,0 2,0 1*,1 3,0 2*,1 1*,2hP P P P P P P       and 0,1 0,2 1,1* 0,3 2*,1 1*,2nhP P P P P P P       

give the total proportion of time that hip and non-hip patients occupy the theatre respectively, 

while  0,0 0P P  gives the proportion of time that the theatre is empty.  Clearly, 

0 1.h nhP P P      

It can be seen from the data (Table 10.1i) that empirical values are 0.095,
EhP   0.356

EnhP   

and 0 0.549.
E

P 
  The value for 

0P  includes the time the theatre is closed as well as when it is 

open but not being used.  This empirical value is taken for  rather than the proportion of 

time that the system was empty since overall theatre usage is of primary interest.   

The proportion of time that the theatre is occupied by hip, non-hip or no patients is a key 

output of this queuing model and Solver was used to find values for 
2  and 

2  such that the 

above proportions are achieved to as high a degree of accuracy as possible.  It is not 

appropriate to acquire the values for 
2  and 

2   from the data.  The arrival rate that would be 

calculated would not represent the true arrival rate but an artificial rate of the amount of 

arrivals that can be accommodated by the system.  Unlike with hip fracture patients, whose 

arrival rate to the theatre cannot be amended, there is some scope to move these patients to 

other theatres.  The empirical mean clinical time for non-hip patients is 85.5 minutes, giving a 

service rate of 0.702 per hour, but since the „real‟ arrival rate is not used, it is also not 

appropriate to fix 2  to this value.  

1  and 
1  were fixed according the data.   was amended slightly to 1.47 (per day); the 

previous value of 1.27 for hip arrival rate was calculated from the ward data, while 1.47 was 

calculated from theatre data and is more appropriate to use here since other theatre data is 

used to consolidate values obtained from this analysis.  
 
was determined using the mean 

service time given by ( )ch t  in Section 9.3.4; the mean service time was 99.0 minutes giving a 

service rate of  = 0.606 per hour.  The aim was to find arrival and service rates for non-hip 

patients such that the squared discrepancy between the empirical and analytical proportions 

0P

1

1

1
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were minimised.  Values outputted were 
2 5.85   (per day) and 

2  = 0.629 (per hour), 

giving analytical proportions of 0.095,hP   0.363nhP   and 
0 0.542.P     

System probabilities, excluding when the system is empty, are shown in order of likelihood 

Figure 10.2.2i. The most likely system state (after 
0P ) is one non-hip patient in theatre with 

no patients in the queue, while the least likely is three hip patients in the system, one in 

theatre and two in the queue. 

 

 

Figure 10.2.2i: System state probabilities for M | M | 1 | 3sys | FIFO model 

 

The analytical probabilities of one, two or three patients in the system are given by 
 

 

 
1 1,0 0,1 0.265,P P P    

 
2 2,0 0,2 1*,1 1,1* 0.129P P P P P      

and 3 3,0 0,3 2*,1 1,2* 1*,2 2,1* 0.063.P P P P P P P        

The theoretical mean number in the system is given by 
3

0

0.713.n

n

L n P


   

The probabilities of zero, one or two patients in the queue are thus given by 

0 0 1 0.807,Q P P  
 1 2 0.129Q P   and 2 3 0.063Q P 

 
respectively.  The theoretical 

mean number in the queue is equal to 
2

0

0.256.q n

n

L nQ


    If there is one patient in the 

queue, it is a hip patient 24.1% of the time 
2,0 1,1*

2

P P

P

 
 
 

.  If there are two patients in the 

queue, 4.8% of the time they are both hip patients, 60.6% of the time they are both non-hip 
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patients and 34.5% of the time there is one of each patient type; calculated via 
3,0 2,1*

3

,
P P

P


 

0,3 1*,2

3

P P

P



 

and 
2*,1 1,2*

3

P P

P


 respectively. 

Keeping 
2  and 

2  fixed, the effect of changing 
1  and 

1  on L  is shown in Figure 

10.2.2ii.  
1

 

was varied between the values of one and three per day, translating to 0.000694 

to 0.002083 per minute as displayed on the graph.  Service time was varied between 50 and 

400 minutes, translating to changes in 
1  from 0.02 to 0.0025, as displayed.  If the hip arrival 

rate is also fixed, then 1L  once hip service time exceeds 261 minutes, while fixing hip 

service time instead means that 1L  once hip arrival rate exceeds 3.93 per day. 

 

 

Figure 10.2.2ii: Impact on L  as 
1  and 

1  are varied 

 

10.2.3 Conclusions 
 

While this model has proved fairly straightforward to solve and investigate, some of the 

results are not particularly accurate when comparing to the data.  The analytical values for 

mean number in the system and the queue are both overstated.  It has been previously shown 

that clinical time did not follow the monotonically-decreasing shape of the Negative 

Exponential distribution and the violation of this assumption will inevitably lead to some 

discrepancies between the model and the true system.  Despite this, theoretical results were 

promising in that they were not wildly different to the data and thus this model gives a sound 

basis from which to develop.  
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10.3 Erlang model 

It was shown in the previous section that assuming a Negative Exponential service time led to 

some results which did not accord very well with the data.  Previous work (see Sections 8.2.2 

and 8.2.3) has additionally shown that a Gamma or Lognormal distribution accommodates 

operation time more appropriately, while a Gamma distribution can be used to model 

anaesthetic time.  In Section 9.3.4, a general distribution was used to represent clinical time 

(anaesthetic plus operation time) for hip patients.  This was the convolution of Erlang-4 and 

Erlang-5 distributions. 

The aim now is to find two distributions to model total clinical time, one for hip patients and 

one for non-hip patients. 

Using Solver, it was found that clinical time for hip patients could in fact be modelled by an 

Erlang distribution with parameters 
1 9k   and 

1 0.604   per hour so that the mean service 

rate per phase is 
19  and the mean service time is 99.4 minutes, standard deviation 33.1 

minutes.  These results compare favourably with empirical values of 103.9 and 41.2 minutes 

respectively.  The fit is displayed in Figure 10.3i. 

 

 

Figure 10.3i: Erlang fit for clinical time for all hip surgeries 

 

Clinical time for all non-hip operations was also found to fit an Erlang distribution, as 

displayed in Figure 10.3ii, with parameters 2 3k   and 2 0.702   (per hour).  This results in 

mean service time of
 

85.5 minutes, standard deviation 49.4, comparing closely with 

respective empirical values of 85.5 and 54.7 minutes.
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Figure 10.3ii: Erlang fit for clinical time for all non-hip surgeries 

 

Arrival rates are still assumed to be 
1  for hip patients and 

2  for non-hip patients.  Using 

standard notation, a general M  1 2,  | Ek  1 1 2 2, ; ,k k  | 1 | sysl  | FIFO system has been 

described for a system limit of sysl  patients.  This system is represented in Figure 10.3iii 

below for 
1 9k   and 

2 3.k    
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Exit 

 

 Non-hips        2  3 2 1   

 

  

Trauma theatre suite (one server) 

  

      

Figure 10.3iii: Pictorial representation of Erlang model 

     

The total number of system states when there are two Erlang distributions with parameters of 

1k  and  
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10.3.1 Formulation 

For this system, if 2sysl   then there are   21
1 9 3 2 2 37

2
     total system states.  Setting 

3sysl   results in 36 extra system states, 73 in total, but the data showed that the probability 

of three or more patients in the system was less than 0.1%, so a more stringent limit of 

2sysl   used in this case should have negligible effect.  This is investigated further in Section 

10.3.3. 

Let  , ,h n kP t  be the probability of h  hip patients and n  non-hip patients in the system at time 

 where the patient in service (where relevant) is in phase .k   The steady-state probability of 

 is , , .h n kP
  

An asterisk is again used to denote which patient is in service, where 

relevant. 

The differential-difference equations when 2sysl   are as follows: 
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The steady-state equations are: 

  1 2 0,0 1 1,0,1 2 0,1,19 3P P P       (1) 

  1 2 1 1,0, 1 1,0, 19 9 1,..,8.i iP P i         (2)-(9) 

  1 2 1 1,0,9 1 0,0 1 2,0,1 2 1,1*,19 9 3P P P P           
(10) 

  1 2 2 0,1, 2 0,1, 13 3 1, 2.j jP P j         
(11)-(12) 

  1 2 2 0,1,3 2 0,0 1 1*,1,1 2 0,2,13 9 3P P P P           
(13) 

 
1 2,0, 1 2,0, 1 1 1,0,9 9 1,..,8.i i iP P P i    

 
(14)-(21) 

 
1 2,0,9 1 1,0,99 P P 

 
(22) 

 
2 0,2, 2 0,2, 1 2 0,1,3 3 1, 2.j j jP P P j    

 
(23)-(24) 

 
2 0,2,3 2 0,1,33 P P 

 
(25) 

 
1 1*,1, 1 1*,1, 1 2 1,0,9 9 1,..,8.i i iP P P i    

 
(26)-(33) 
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1 1*,1,9 2 1,0,99 P P   

(34) 

 
2 1,1*, 2 1,1*, 1 1 0,1,3 3 1, 2.j j jP P P j    

 
(35)-(36) 

 
2 1,1*,3 1 0,1,33 P P 

 
(37) 

    
9 3

0,0 1,0, 2,0, 1*,1, 0,1, 0,2, 1,1*,

1 1

1i i i j j j

i j

P P P P P P P
 

         
(38) 

 

10.3.2 Results 

There are therefore 37 unknowns and 38 equations, including the normalising equation.  

These equations were solved in MAPLE but the solutions again are omitted due to their 

considerable length. 

The sums  
9

1,0, 2,0, 1*,1,

1

h i i i

i

P P P P


    and  
3

0,1, 0,2, 1,1*,

1

nh j j j

j

P P P P


    give the total 

proportion of time that hip and non-hip patients occupy the theatre respectively and were 

used to solve the equations for 
2  and 

2 ,  as previously explained.  
1  and 

1  were set 

equal to 1.47 (per day) and 0.604 (per hour).  Values outputted were 2 6.16   (per day) and 

2 0.629   (per hour), with 0.089,hP   0.361nhP   and 0 0.550.P    Results by system 

state, excluding when the server is idle, are displayed in Figure 10.3.2i.    

 

 

Figure 10.3.2i: Steady-state probabilities for M  1 2,  | Ek  1 29, ;3,  | 1 | 2sys | FIFO model 
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The most likely system state, again excluding when the server is idle, is 0,1,3 – one non-hip 

patient in phase three of service.  The least likely system state is 2,0,9 – one hip patient in 

phase nine of service and another hip patient in the queue. 

The probability of one patient in the system (either type) is given by 

9 3

1 1,0, 0,1,

1 1

0.334,i j

i j

P P P
 

     

while the probability of two patients in the system is given by 

   
9 3

2 2,0, 1*,1, 0,2, 1,1*,

1 1

0.116.i i j j

i j

P P P P P
 

       

The data showed that there was one patient in the system 38.6% of the time, and two patients 

9.3% of the time, so these results compare reasonably favourably.  The mean number in the 

system was 0.572 (S.D. 0.657), compared with 
3

0

0.566n

n

L n P


   (S.D. 0.691), indicating a 

high overall level of compatibility. 

The probability of no patients in the queue is thus given by 
0 0 1 0.884,Q P P    while the 

probability of one patient in the queue is equal to 
1 2 0.116.Q P    (Two or more patients in 

the queue is not possible.)  These are very close to the empirical probabilities of 0.871 and 

0.129.  The analytical mean number in the queue is given by 
2

0

0.116q n

n

L nQ


   (S.D. 

0.109), compared with an empirical mean of 0.130 (S.D. 0.338). 

The probability of a hip patient in the queue is given by  

9 3

2,0, 1,1*,

1 1

0.022,hq i j

i j

P P P
 

     

while the probability of a non-hip patient in the queue is given by 

9 3

1*,1, 0,2,

1 1

0.093.nhq i j

i j

P P P
 

   
 

Incidentally, since there is a limit of two patients in the system (and so one in the queue), the 

values of hqP  and nhqP  also give the mean number of hip and non-hip patients in the queue 
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and compare well to data values of 0.035 and 0.094.  Given that there is a patient in the 

queue, the probability of them being a hip patient or a non-hip patient are thus 
2

0.022
0.193

P
  

and 
2

0.093
0.807

P


 

respectively.  

It is concluded that this queuing model represents the trauma theatre with sufficient level of 

compatibility and relevance.  The model is now used to investigate a number of scenarios in 

order to assess the impact on a variety of system measures.  

 

(a) What-if scenario: Change in arrival rates 

1  and 
2  were altered both independently and simultaneously in order to assess the impact 

of changing them on a number of factors.  The rates were increased as a percentage as 

opposed to a crude increase in the number. 

The effect of doing this on ,hP  nhP  and 
0P  are presented in Figure 10.3.2ii.  Note that some 

results are almost identical in this graph.  A change of up to ±20% in the hip arrival rate has 

little impact on the system (solid lines), while a much greater effect is seen when non-hip or 

both arrival rates are changed.  A simultaneous increase of 14% or more each to both  and 

 means that 
0 h nhP P P   and the theatre is more likely to be busy than empty. 

The impact upon the number in the system is displayed in Figure 10.3.2iii and Table 10.3.2iv.  

The largest increase of 20% to both arrival rates sees 
1P  increase from 0.334 to 0.365 and 

2P  

increase from 0.116 to 0.153, resulting in an increase in the mean number in the system from 

0.57 to 0.67. 

 

 

1

2
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Figure 10.3.2ii: Effect of changes to the arrival rate on who is in service 

 

 

Figure 10.3.2iii: Effect of changes to the arrival rate on number in system 

 

Table 10.3.2iv: Effect of changes to the arrival rate on mean number in system 

i 
Percentage change in λi 

-20% -10% -5% -1% +1% +5% +10% +20% 

1 0.54 0.56 0.56 0.56 0.57 0.57 0.58 0.59 

2 0.48 0.52 0.54 0.56 0.57 0.59 0.61 0.65 

1&2 0.46 0.51 0.54 0.56 0.57 0.59 0.62 0.67 
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Next the composition of the queue is considered.  The maximum number allowed in the 

queue is one; Table 10.3.2v displays the percentage of time that the patient in the queue is a 

hip patient, assuming that a queue exists.  If simultaneous and equivalent changes are made to 

the arrival rates, then no change is seen.  Increasing the hip arrival rate by 20% means that, 

when there is patient waiting, 22.3% of the time it is a hip patient, compared with 19.3% of 

the time when no changes are made. 

 

Table 10.3.2v: Percentage of time that the patient in the queue is a hip patient 

i 
Percentage change in λi 

-20% -10% -5% -1% +1% +5% +10% +20% 

1 16.0 17.7 18.5 19.1 19.4 20.0 20.8 22.3 

2 23.0 21.0 20.1 19.4 19.1 18.5 17.8 16.6 

1&2 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 

 

Finally, an increase in 
1  is considered, with a simultaneous decrease in 

2 ,  so an increase in 

the arrival rate of hip patients is compensated for by a decrease in the arrival rate of other 

patients, by moving them to other trauma theatres, for example.  
1  

is increased by 5%, 10% 

and 20%, 
2  is decreased by 5%, 10% and 20%.  Figure 10.3.2vi shows the impact upon the 

mean number in the system, the mean number in the queue, the probability of a hip patient in 

the queue and the probability of a non-hip patient in the queue, for each of these 

combinations. 

A 20% increase to 
1  and 5% decrease to 

2  has the least effect on the mean number in the 

system/queue.  This suggests that to keep the overall theatre utilisation at the current level, an 

increase of 20% more hip patients would mean that 5% of non-hip surgeries would need to be 

moved to another theatre.  There would be a shift seen towards a greater proportion of time 

that the patient in the queue is a hip patient.  The greatest effect is seen by a 5% increase to 

hip arrival rate coupled with a 20% decrease in non-hip arrival rate, where L  and qL  would 

reduce by 14.7% and 24% respectively.  This is the only scenario considered where there is a 

decrease in the probability of a hip patient in the queue.  

 



 

 

323 

 

 

Figure 10.3.2vi: Impact on various measures due to an increase in 
1  and decrease in 

2  

 

(b) What-if scenario: Change in hip clinical time 

Changes to 
1  were made to investigate the impact of a change in clinical time for hip 

patients.  Recall that the baseline model had a mean service time for hip patients of 99.4 

minutes.  The number of hours per day that the theatre is used for each patient type, or when 

it is empty, is shown in Figure 10.3.2vii.   

 

 

Figure 10.3.2vii: Effect of changes to hip clinical time on theatre usage 
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Hip patients would spend longer than non-hip patients in theatre per day should their clinical 

time exceed 399 minutes, while total busy time exceeds empty time once hip clinical time 

exceeds 174 minutes.  The mean number of hip patients in the system does not exceed one 

until hip clinical time reaches 580 minutes. 

 

(c) What-if scenario: Change in turnover time 

Finally, turnover time was incorporated into the model, where it had been previously 

assumed to be zero.  This was done by adding to the service time so that, for example, for a 

turnover time of t  following a hip operation, 
1  becomes 

1

99.4 t
 per minute, since average 

service time is 99.4 minutes. 
1  and 

2  were altered both independently and simultaneously 

and the impact on theatre usage is displayed in Figure 10.3.2viii.  Again a lesser effect is seen 

when a change is applied only to hip patients due to the fewer number of them entering 

theatre.  The mean anaesthetic room/theatre turnover, as required here, was 23 minutes.  If 

this is incorporated into both service times, then 
0P  decreases from 0.550 to 0.470, 

hP  

increases to 0.105 and 
nhP  increases to 0.425.  The mean number in the system increases by 

22% to 0.690, and exceeds one when 93t   for a simultaneous and equal change in service 

time to both patient types.  Queue composition is unaffected but the mean number in the 

queue increases by 38% to 0.160. 

 

 

Figure 10.3.2viii: Effect of changes to turnover on theatre usage 
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10.3.3 Extension to lsys = 3 

Letting the system threshold 3sysl   means that the system can then be described by the 

notation M  1 2,  | Ek  1 1 2 2, ; ,k k  | 1 | 3sys | FIFO.  Setting 
1 9,k   

2 3k   and 3sysl   

results in a total of 73 system states.   

Using the same notation as defined in Section 10.3.1, the 73 steady-state probabilities are: 

 
0,0P  1,0,1

1,0,2

1,0,9

P

P

P

 

0,1,1

0,1,2

0,1,3

P

P

P

 

2,0,1

2,0,2

2,0,9

P

P

P

 

0,2,1

0,2,2

0,2,3

P

P

P

 

1*,1,1

1*,1,2

1*,1,9

P

P

P

 

1,1*,1

1,1*,2

1,1*,3

P

P

P

 

        

 
3,0,1

3,0,2

3,0,9

P

P

P

 

0,3,1

0,3,2

0,3,3

P

P

P

 

2*,1,1

2*,1,2

2*,1,9

P

P

P

 

2,1*,1

2,1*,2

2,1*,3

P

P

P

 

1*,2,1

1*,2,2

1*,2,9

P

P

P

 

1,2*,1

1,2*,2

1,2*,3

P

P

P

 

 

 

With the additional requirement that all probabilities must sum to one, formulation of the 

steady-state equations results in 74 equations and 73 unknowns.  These equations are omitted 

here but were entered into MAPLE and subsequently solved.  This resulted in very long 

algebraic expressions for the probabilities with any manipulation proving to be difficult.   

However, since each expression involved 0,0 ,P
 
by entering the values of 

1,  2 ,
 1  

and 2  

that had been previously found, a simple expression of the form 0,0iw P  could be found for 

each of the other 72 steady-state probabilities, where 
iw  is a weighting such that 0 1,iw    

1,...,72.i 
 
 0,0P

 
was then found by rearranging 

72

0,0 0,0

1

1i

i

P w P


   to obtain 
0,0 72

1

1
,

1 i

i

P

w





 

resulting in 0,0 0.515.P     

The equations have therefore not been solved for hP  and nhP  as previously, but some insight 

into the performance of this model is still possible despite this. 
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A summary of values and results obtained through this method are given in Table 10.3.3i.  

The probability of more than two patients in the system has been overestimated, as has the 

mean number in the system and the queue.  The queue breakdown provides interesting 

results, showing that one non-hip patient in the queue is in fact more likely than all other 

queuing compositions combined (58% of the time a queue had formed).  There would be two 

hip patients waiting only 0.8% of the time that a queue had formed. 

 

Table 10.3.3i:  Summary values for M  1 2,  | Ek  1 29, ;3,  | 1 | 3sys | FIFO system 

Measure Value Result 

In service 
Hip 10.0% 

Non-hip 38.5% 

Number in system 

0 51.5% 

1 31.3% 

2 12.1% 

3 5.1% 

Mean 0.707 

S.D. 0.868 

Number in queue 

0 82.8% 

1 12.1% 

2 5.1% 

Mean 0.223 

S.D. 0.524 

Queue composition 

1 hip 2.1% 

1 non-hip 10.0% 

2 hips 0.1% 

2 non-hips 4.0% 

1 hip, 1 non-hip 1.0% 

 

Due to the lack of workability of the steady-state equations, coupled with the fact that the 

data showed that three (or more) patients are present in the system less than 0.1% of the time, 

this model is not pursued further.  It has however provided an interesting academic exercise. 
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10.3.4 Conclusions 

The first model presented in this section proved to represent the trauma theatre suite with a 

good level of accuracy.  A limit of two patients in the system was imposed but on inspection 

of the data it was deemed that this would have little to no effect on model outcomes.  It was 

found that a queuing model with two arrival sources, each with their own service time as 

represented by different Erlang distributions, provides a suitable mathematical representation 

of the theatre.  The limit was then increased to three and a second model formulated, 

inputting results from the first model to obtain some summary results.  
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10.4  Vacation queuing models 

10.4.1 Overview 

The field of queuing systems with vacations is a well-researched area and thorough surveys 

of queues with vacations have been reported by several authors (Doshi 1986, Ke et al. 2010, 

Takagi 1991, Tian and Zhang 2006).  

Consider the trauma theatre as a queuing system with vacations.  If the theatre suite is 

occupied by a hip fracture patient, then the server (the theatre) is working and is not on 

vacation, but when the theatre is used for other surgery types or is closed, the server can be 

considered to be on vacation. 

Several vacation policies have been developed and a brief overview is now presented.  It 

would be infeasible to include a full literature review on this topic, so only the key themes 

have been discussed here. 

In a single vacation model, the server takes a vacation when it becomes idle at the end of a 

busy period.  On returning from the vacation, service is either immediately resumed (if there 

is a customer waiting) or the server waits until a customer arrives (if there are no customers 

waiting).  In a multiple vacation model, if a server returns from a vacation to find an empty 

system then they will keep on taking vacations until, on returning, they find a customer 

waiting for service.  Working vacation models have also been developed where a server 

works at a different rate, instead of being completely idle, during the vacation period.  A key 

feature of these models is that the server only takes a vacation when the system becomes 

empty; this is known as exhaustive service.  Extensions of the above models to incorporate 

some control of the vacation period have been comprehensively researched.   

The concept of N-policy was first introduced several decades ago (Yadin and Naor 1963).  

On returning from vacation, N-policy dictates that the server only resumes service if there are 

at least N (≥ 1) customers in the queue.  N-policy was first studied for the M | G | 1 queuing 

system five years later (Heyman 1968) and has been since developed in several other studies 

(Artalejo 1998, Wang and Ke 2000).  In particular this model has been extended to include 

two vacation types, long and short (Zhang et al. 1997).  Specifying lower and upper 

thresholds, say L and U, then upon returning from a vacation the server takes a long vacation 
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if there are less than L customers waiting, a short vacation if there are between L and U-1 

customers waiting, or no vacation if there are U or more customers waiting. 

The concept of T-policy was also first introduced for the M | G | 1 system by Heyman 

(Heyman 1977).  Again the server takes a vacation at the end of a busy period, where the 

length of the vacation is a fixed time of T units.  Service is resumed if there is at least one 

customer waiting, otherwise the server takes another vacation of fixed time T.  Tadj extended 

earlier results to obtain, amongst other results, the PGF of the number of customers in the 

system and the optimum value of T (Tadj 2003). 

Other vacation policies not considered in greater detail include D-policy, also first introduced 

in the 1970s (Balachandran 1973), whereby the server is turned off at the end of a busy 

period and turned on when the cumulative amount of work which has arrived during the 

vacation reaches some pre-defined value of D.  Thus in this model, the service times of the 

waiting customers are taken into account. 

Results for a min(N, T) policy, or simply NT-policy, were first established several years after 

the individual policies were developed (Gakis et al. 1995), whereby server vacation is 

terminated if either N customers have arrived or T time units have elapsed since the end of 

the last busy period (or the end of the last T time units and at least one customer has arrived).  

Results have since been extended by several authors (Alfa and Li 2000, Hur et al. 2003). 

Start-up times have also been considered, firstly by Minh (Minh 1988), where the server 

needs a warm-up period after a vacation before service can be resumed.  This has also been 

extended to a closing time, firstly by Takagi (Takagi 1991), where the server needs some 

time for shutting down prior to starting a vacation and is therefore busy but is unable to serve 

customers.   

The concept of unreliable servers was also introduced several decades ago and a good early 

overview of different approaches was given in 1963 (Avi-Itzhak and Naor 1963), where 

servers may break down at a random time, service is interrupted, and the server is repaired 

with repair time following a random variable.  Research into vacation queuing models has 

primarily focussed on reliable servers, but results have been extended over recent years to 

include unreliable servers (Jain and Jain 2010, Li et al. 1997).  Specifically, results including 
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start-up and closing times have been obtained for the N-policy (Ke 2003), the T-policy (Ke 

2005) and the NT-policy (Ke 2006) queuing models. 

Lastly, the concept of Bernoulli vacations is introduced.  After completion of service, the 

server either goes on vacation with probability p (0 ≤ p ≤ 1), or continues to serve the next 

customer, if there is one waiting, with probability q = 1 – p.  Recent advances in this field 

include an unreliable server who is subject to Bernoulli vacations under N-policy, where 

arrivals complete two heterogeneous phases of service (Tadj et al. 2012).   

Results from a selection of the aforementioned literature, plus others (Madan 1999, Mehdi 

2002, Scholl and Kleinrock 1983), were used to find summary outputs for three different 

vacation queuing models. 

 

10.4.2 Multiple vacation model 

Firstly, a multiple vacation model is considered; if there are no customers (hip patients) in the 

queue then the server (theatre) has a vacation of period ,v  which is taken from an arbitrary 

distribution with first and second moments of  E v
 
and 

2E v    respectively, and which has a 

known Laplace transform.  The server keeps taking vacations until it returns from a vacation 

to find a customer waiting.  This scenario is considered in detail, as opposed to a single 

vacation model, as it is more appropriate for the trauma theatre. 

The vacation time is taken as the general service time for all other operations, so that if there 

are no hip fracture patients waiting, the theatre is used for other operations.  Since busy time 

for hip patients is of interest, a 24-hour theatre is assumed; vacations thus may in reality be 

used for closedown as well as other surgeries.  It was shown in Section 10.3 that service time 

for non-hip operations could be modelled by an Erlang distribution with parameters 3vk   

and 0.0117v   (per minute) so that 0.0351,v v vk      85.5E v 
 
and 

2 9740.E v     

Let  vh t  denote the PDF of vacation time, so that  

  
3

.v
s v

v

L h t
s
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This can be extended to more than one additional non-hip surgery during the vacation, so that 

 j

vh t  represents the PDF of vacation (clinical) time for j  surgeries.  Recall that  *ch s  is 

the Laplace transform of the PDF of clinical time for hip surgeries, as defined in Section 

9.3.4, and let  *j

vh s
 
be the Laplace transform of the PDF of vacation time for j  non-hip 

surgeries, so that  
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3 1
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3 1 !

v
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j j v
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v
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j







 
 

 
   

 

 


 

As is usual,   is given by 



 and is the proportion of time that the server is busy serving 

customers.  Note that „customer‟ here refers exclusively to hip fracture patients; non-hip 

patients are no longer considered as customers of the system but instead their service time is 

incorporated as vacation time.   

 E v
 
thus becomes    E jv jE v  for j  surgeries during a vacation and 

2E v    is also 

amended accordingly; the first and second moments of vacation time for j  surgeries are 

subsequently denoted respectively by jE v    and 
2 .jE v     

If 
nP  represents the probability of n  customers in the system just after a departure instant, 

then the PGF of the number of customers in the system just after a departure is given by 

( ),Q z
 
where 
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The probability of no customers waiting just after a departure point is hence given by 

    
 

3

1 1
1 1 *

(0) .

j

v

j
vv

j j

h
Q

E v E v




  

 

  
    
      

        

 

This is equivalent to the probability that the system is idle and is less than the probability that 

the server is idle; the server may be on vacation when a customer arrives, thus the server is 

idle but the system is busy.  Substituting values into this equation yields the results given in 

Table 10.4.2i.  The probability of an idle server in this case is 

 
 

1.27
24x60

1 1 1 0.913.
1

99





       

 

Table 10.4.2i: Probability of an idle system for different j
 
 

 j 1 2 3 4 5 10 15 

(0)Q  0.868 0.837 0.808 0.779 0.752 0.635 0.542 

 

The remaining probabilities are calculated via 
 ( ) 0

!

n

n

Q
P

n
  (Casella and Berger 1990) and 

are plotted for different j  in Figure 10.4.2ii. 

 

 

Figure 10.4.2ii: nP
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Additionally letting  E c  and 
2E c    be the first and second moments of the PDF of clinical 

time for hip surgery (so that  
1

E c


 ), then the expected number
 
in the system, ,n

 
is 

obtained by differentiating  Q z  and evaluating the result at 1;z   

 
 

2 2 2

.
2 1 2

j

j

E c E v
n E c

E v

 




        
   

 

Note that the first two terms of the sum represent the expected number in the system of a 

regular M | G | 1 queue, and so the proportion of n  attributable to the inclusion of vacations 

in the model can be calculated.  This is defined here as pn .  Results displayed in Figure 

10.4.2iii show an increase in n  and pn
 

as j
 

increases, but that the increase in pn
 

diminishes as j  increases.   

Note that the expected time in the system, ,t  is given by  

 
 

2 2

,
2 1 2

j

j

E c E vn
t E c

E v



 

         
   

 

and therefore follows a similar trend to .n  

 

 

Figure 10.4.2iii: Expected number in system for different j  
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Finally, let  ,

j

t VMh t  be the PDF of the total time in the system for the multiple vacation 

model with j
 

non-hip surgeries per vacation, with Laplace transform 

    , ,* .j j

t VM s t VMh s L h t    

Then  
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Note that the first term of the product represents the result for a regular M | G | 1 queue.   

While a single vacation model is less appropriate to this situation, results are also presented if 

this model were employed.  The PDF and associated Laplace transform are given by  ,

j

t VSh t  

and     , ,* ,j j

t VS s t VSh s L h s  and 
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A plot of PDFs of the total time in the system for an M | G | 1 queue with one, two and three 

vacations is displayed in Figure 10.4.2iv, for both single (VS, solid lines) and multiple (VM, 

dotted lines) vacation models, along with the PDF if there were no vacations.  A longer and 

more varied system time is seen for the multiple vacation model in each case.  Employing a 

single vacation model has far less effect on overall time in the system. 
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Figure 10.4.2iv: System time for different vacation policies 

 

10.4.3 Vacation model with N-policy 

Some results are now presented for N-policy.  Under N-policy, the server is turned on 

whenever there are N ( 1)
 
or more customers present.  The server is only turned off (that is, 

it goes on vacation) when there are no customers present.  After a vacation, the server does 

not resume serving customers until there are N customers waiting.  Clearly, it would be 

unlikely that a healthcare provider would not tend to patients unless a certain number of those 

patients had presented themselves, and so less focus is given to this policy as it is less likely 

to be employed in the hospital.   

The expected number of customers in the system is given by  
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and thus increases by 0.5 for each additional N  (Wang and Ke 2000).  
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The PGF of the number of customers in the system is given in this case by 
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Manipulation of these formulae yields the results displayed in Table 10.4.3i and Figure 

10.4.3ii.  Note that the probability of no customers in the system is given by 
0

1
.P

N




 
It 

can be seen that 
1

kP
N

  for 0 ,k N   and 0kP   for  .k N  

 

Table 10.4.3i: Expected number in system for N-policy  

N 1 2 3 4 5 6 7 8 9 10 

n  0.09 0.59 1.09 1.59 2.09 2.59 3.09 3.59 4.09 4.59 

 

 

Figure 10.4.3ii: nP
 
results for N-policy 
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10.4.4 Fixed length Bernoulli vacations 

An alternative to the previous model is now considered.  Instead, after every service, the 

server may take a vacation with probability , 0 1.p p 
  

The length of a vacation is a fixed 

time interval of d  units.  Thus, for every hip operation performed, the theatre becomes 

available afterwards for a fixed time of d  units, %p  of the time.  In reality, hospital staff 

can determine not only p  and ,d  but also on which of the %p  of occasions the server takes 

a vacation.  
 

In this scenario, the utilisation factor is not equal to .



  Defined in this case as 

Bd , it is 

calculated via 
 

 

1

1
Bd

p

pd p

 


  




 
 (which reduces to 




 when there are no vacations and  

0p  ).  The relationship between ,p d
 

and 
Bd  is displayed in Figure 10.4.4i.  If 

1034.8d   (minutes) then 1Bd 
 

and the model becomes invalid (when p  is at its 

maximum value of 1). 

 

 

Figure 10.4.4i: Relationship between ,p d
 
and Bd   
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Let  qP z
 
and  P z  be the probability generating functions of the number in the queue and 

the number in the system respectively, which are defined irrespective of whether the server is 

on vacation, then 
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General corresponding results for when there are no vacations are thus  
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which are well known results for a regular M | G | 1 queuing system.  A system with 

compulsory vacations, also known as a limited service system, is achieved when 1.p    
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Three values of d  are considered for further investigation; 300, 600 and 900 minutes (5, 10 

and 15 hours), while p  is varied at increments of 0.1 across the interval [0, 1].  Results for 

the probability of zero, one and two or more customers in the system are displayed in Figure 

10.4.4ii.  Results when the vacation is fixed to either 300 or 600 minutes are not particularly 

dissimilar, but a disparity is seen when d  is increased to 900 minutes. 

 

 

Figure 10.4.4ii: Results for number in system for different p  and d  

 

Further investigation shows additional insight into these differences and results are given in 

Table 10.4.4iii.   

,qL  the expected number of customers in the queue, may be found by differentiating  qP z  

at  1z  ; then after some simplification the following result is achieved: 
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This result may then be used to gain the expected waiting time in the queue, ,qW

 

as well as 

the expected number in the system, ,L  and the expected time in the system :W  

, , .
q q Bd

q q Bd

L L
W L L W




 


   

 

The expected number in both the queue and system only exceeds one if vacations are 

compulsory and have a fixed length of 900 minutes; that is, these values exceed one if the 

theatre is used for other surgery types or closedown after every hip operation, and that the 

time allocated to these other tasks is fixed at 900 minutes (15 hours).   

It can be seen that at this vacation length, the four performance measures all increase rapidly 

after 0.7.p    This suggests that, should a vacation time of 900 minutes be employed, it 

should not happen after more than 70% of hip operations so that the system is not too heavily 

impacted.  

Having a set vacation time of ten hours shows very little difference to a vacation of five 

hours, and so a ten hour vacation is recommended.  This gives a longer time to perform other 

operation types sequentially, or a longer and more realistic closedown time.  Altering p  also 

has little impact on results at this vacation length.  Therefore, if allocating ten hours to other 

surgeries or closedown after every hip operation is implemented, little impact is seen on 

results when changed are made to how often this ten hour period is actually used. 
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Table 10.4.4iii: Performance measures for different p and d 

p d q
L  qW   (minutes) L  W

 

(minutes) 

0 

300 0.005 5.4 0.092 104.4 

600 0.005 5.4 0.092 104.4 

900 0.005 5.4 0.092 104.4 

0.1 

300 0.005 6.2 0.095 108.0 

600 0.007 8.0 0.099 112.6 

900 0.010 10.8 0.104 118.5 

0.2 

300 0.006 7.1 0.099 111.8 

600 0.010 11.2 0.108 122.1 

900 0.016 18.5 0.120 136.4 

0.3 

300 0.007 8.1 0.102 116.0 

600 0.013 15.3 0.118 133.3 

900 0.026 29.5 0.141 159.8 

0.4 

300 0.008 9.3 0.106 120.4 

600 0.018 20.4 0.129 146.4 

900 0.040 45.9 0.169 191.4 

0.5 

300 0.009 10.6 0.110 125.2 

600 0.024 27.0 0.143 162.2 

900 0.063 71.0 0.208 235.8 

0.6 

300 0.011 12.0 0.115 130.3 

600 0.031 35.7 0.160 181.5 

900 0.099 111.7 0.266 301.7 

0.7 

300 0.012 13.6 0.120 135.9 

600 0.042 47.1 0.181 205.3 

900 0.161 182.7 0.359 406.7 

0.8 

300 0.014 15.4 0.125 141.9 

600 0.055 62.7 0.208 235.6 

900 0.282 320.1 0.523 593.0 

0.9 

300 0.015 17.5 0.131 148.5 

600 0.075 84.5 0.243 275.0 

900 0.559 633.6 0.867 982.4 

1.0 

300 0.017 19.8 0.137 155.7 

600 0.102 115.9 0.289 327.9 

900 1.414 1602.8 1.840 2085.7 
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10.5 Perfect world model 

Finally, a „perfect world‟ model is considered.  Consider a system where all admitted hip 

patients are nominated for theatre the day after arrival.  There are no cancellations or 

interruptions and all nominated patients will receive surgery as intended.  This allows some 

planning to occur, whereby it is not assumed that all patients can enter theatre immediately, 

adding some feasibility to the model.  By employing this model, there would be no unknowns 

for patient or staff; the number in surgery tomorrow is determined by the number of arrivals 

today. 

The timing of arrivals at the operating theatre suite is fixed at a given time (say 8:30am), and 

all patients arrive from the ward together.  Patients wait in the loading bay until the operating 

theatre suite becomes available (the first patient will enter the suite immediately).  Service 

time (clinical time) for each patient is represented by the random variable ,C  which follows 

the probability distribution  ,ch t  as previously defined.  Once all hip patients have 

undergone surgery, the operating theatre becomes available for other surgery types or for 

closedown (vacation); see Figure 10.5i. 

 

 24 hours 24 hours  

      

8:00am  8:00am  8:00am  

… Hip surgery Other surgery / closedown Hip surgery Other surgery / closedown … 

      

Arrivals, B               Arrivals, B Arrivals, B 
   

   

 b arrivals served until none remain.  Each served according to hc(t) distribution 

 Remainder of day available for other surgery types / closedown 

 

Figure 10.5i: The „perfect world‟ model 

 

The number of arrivals (requiring surgery) per day has been shown to fit the Poisson 

distribution.  There are therefore batch arrivals of varying size which are assumed to arrive at 

a fixed time.  Let the batch size be represented by the random variable B  with mean ,b  so 
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that the number of arrivals, ,b  on any day is given by the Poisson distribution, 

  ,
!

b be b
P B b

b



   and the expected number of arrivals annually is given by x 365.b  Thus 

when 0,B   the blue section of Figure 10.5i disappears, but the model becomes invalid if the 

length of this blue section exceeds 24 hours.   

 

10.5.1 Results 

Let H  be the total theatre time used for hip fracture patients, so that H  is the sum of B

instances of .C   The number of arrivals, ,b  is taken from the random variable .B   The result 

is therefore a sum of a random number, ,B  of independent identically distributed random 

variables.  Using standard results, the mean and variance of H  are given by 

     

 

E H E B E C

b E C





 

          

    

2

2

and Var Var Var

Var .

H E B C E C B

b C b E C

 

 

 

Using the data,  E C  and  Var C  are equal to 99.0 and 35.7
2
 (minutes) respectively (see 

Section 9.3.4), while    Var 1.27.E B B b     Since the number of hip surgeries is 

determined by the number of arrivals the previous day, each day the time taken to perform all 

hip surgeries can be estimated more accurately than using the overall averages calculated 

previously.  Let x  be the known number of hip surgeries on a given day.  Results for the 

mean and standard deviation of total theatre time for different x  are summarised in Table 

10.5.1i, calculated respectively via  x E C  and  Var .x C  

 

Table 10.5.1ii: Mean and standard deviation of H  (minutes) for different x  

x 0 1 2 3 4 5 6 7 

Mean 0 99 198 297 396 495 594 693 

S.D. - 35.7 50.5 61.8 71.4 79.8 87.4 94.5 
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By altering ,b  the number of expected yearly arrivals can be estimated and the mean and 

standard deviation of H  are consequently impacted; this relationship is shown in Figure 

10.5.1ii ( C  is unaltered).  The mean and standard deviation of H  both increase as b  

increases, as would be expected, but it is interesting to see that they are becoming less alike 

as the number of arrivals increases, with the mean increasing at a faster rate.  Current arrival 

rates would consume 18% of the daily theatre allocation on average, or 9% of 24 hours.  For 

each additional 100 hip fracture arrivals per year, an extra 27 minutes extra per day of theatre 

time is required; this translates to 3.9% of the daily theatre allocation, or 1.8% of 24 hours. 

 

 

Figure 10.5.1ii: Total hip theatre time results for the „perfect world‟ model 

 

Finally the shape of the distribution is considered.  Since the Laplace transform for the 

clinical time taken to complete one operation is known, the Convolution Theorem can be 

used to find the probability distribution for the clinical time taken for x  operations.  

Denoting this probability distribution function by  ,x

ch t  then  
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The expressions obtained by inverting this formula are omitted due to their lengths but results 

are now plotted for 1, .., 4.x    The shift of 99 minutes for each additional ,x  as well as the 

increase in variation, can be clearly seen in Figure 10.5.1iii. 

0% 

10% 

20% 

30% 

40% 

0 

50 

100 

150 

200 

250 

450 Current 500 600 700 800 

P
ercen

tag
e o

f d
aily

 th
eatre 

allo
catio

n
 

T
o
ta

l 
h
ip

 t
h
ea

re
 t

im
e 

(H
) 

(m
in

u
te

s)
 

Average yearly arrivals 

% theatre time Mean Standard deviation 



 

 

345 

 

 

Figure 10.5.1iii: Distribution of total clinical time for different x   

 

Having a PDF for total clinical time for all x  patients is useful as it allows the probability of 

the total time to complete all x  operations being within a given limit, ,lt  to be calculated, 

simply by integrating  x

ch t  with respect to t  on the interval   0, .lt  Some results are given 

in Table 10.5.1iv.  The median of  1

ch t  is equal to approximately 94 minutes, which was 

found by solving  1

0

0.5

m

ch t   for m.  This increases by approximately 99 minutes for each 

additional ,x  indicating a slight positive skew in the shape of each distribution.   

 

Table 10.5.1iv: Probabilities of total time within 
lt  minutes for different x   

x 
Probability within tl minutes 

tl = 50 tl = 100 tl = 150 tl = 200 tl = 250 tl = 300 tl = 350 tl = 400 

1 0.054 0.563 0.912 0.989 0.999 >0.999 >0.999 >0.999 

2 <0.001 0.009 0.169 0.553 0.850 0.966 0.994 0.999 

3 <0.001 0.001 0.003 0.043 0.233 0.551 0.812 0.943 

4 <0.001 <0.001 <0.001 0.002 0.011 0.080 0.275 0.552 
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10.6 Chapter summary 

The trauma theatre has been modelled using several mathematical approaches in this chapter.  

Patients were segregated into two groups, hip patients and non-hip patients.  Arrivals were 

assumed to be random and arrival rates were dependent on source (patient type).  Service 

time was also dependent upon patient type.  A limit was placed on the number of patients 

allowed in the system at any time so that, if the system was already at capacity, then no 

additional arrivals would be permitted.  Empirical data showed that a system limit of two was 

sensible and any impact realised from an increase beyond this should be negligible. 

Initially, equations were formulated and solved under the assumption of a Negative 

Exponential service time distribution.  It was found that while results were promising, the 

queuing model did not represent the theatre with a high level of compatibility.  This was 

overcome by using the Erlang distribution to represent service time, still dependent upon 

patient type.  System-state probabilities were formulated and solved and this time the model 

was shown to represent the real system with sufficient compatibility.  A number of „what-if‟ 

scenarios were then tested to explore the system further.  Arrival and service rates were then 

inputted into equations formulated for a system limit of three. 

Vacation queuing models were also investigated and a number of appropriate policies were 

considered.  A vacation was classified as any time when there was not a hip patient 

occupying the theatre.  Performance measures and summary results were given for a variety 

of models. 

Finally, a novel „perfect world‟ model was formulated.  In this somewhat idealised situation, 

all hip patients go to theatre the day after arrival, thus reducing operative delay and removing 

uncertainty for these patients and their caregivers.  Once all hip patients are seen, the theatre 

becomes free for other surgeries or closedown.  Results relating to the total clinical time 

required for all hip patients, when the number of hip patients on a given day is known, were 

presented. 
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CHAPTER 11: CONCLUSIONS AND FURTHER WORK 

11.1 Introduction 

This thesis is brought to an end in this chapter where overall conclusions are given and some 

ideas for further work are presented.  Four objectives were specified in Chapter 1 and some 

discussion of the achievement of these objectives is given forthwith. 

As with many projects, the conclusion of this one does not necessarily mean that there are no 

further topics to explore or investigations to be made.  Areas for further research can be split 

into two sections.   

Firstly, there are ways in which the work presented here could be directly expanded upon, see 

Section 11.3.   

Secondly, other relevant topics and methodologies can be explored, which have not been 

investigated in great detail here.  Two concepts are introduced as potential possibilities for 

how this project could be developed further; risk scoring systems and the Fenton-Wilkinson 

approximation for estimating surgery duration, see Sections 11.4 and 11.5 respectively.  Note 

that the expansion of this field is of course not limited to these two preliminary investigations 

but that they are included as examples.  In each case a review of the literature is given, some 

initial work completed where deemed feasible and the possibility of additional developments 

in the area discussed. 
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11.2 Conclusions  

The conclusions of this work on based on the satisfaction of the objectives stated in Section 

1.4.  More detailed information relating to conclusions has been given in the form of a 

summary at the end of every chapter. 

Briefly, the objectives were: Objective 1 – investigate influencing factors relating to length of 

stay and mortality, particularly with regard to surgical delay; Objective 2 – build a simulation 

model of the hip fracture ward; Objective 3 – build a simulation model of the trauma theatre; 

Objective 4 – model the trauma theatre using queuing theory. 

Objective 1 was achieved mainly in Chapters 3 to 5.  CART and linear regression were used 

in Chapter 3 to determine important factors relating to length of stay, and CART and logistic 

regression were used in Chapter 4 to determine important factors relating to mortality.  

Variables which consistently indicated a relationship were then scrutinised in greater detail to 

further quantify any relationship.  Surgical (/operative) delay was a key focus of all statistical 

investigations, not least because it was of primary interest to the clinicians involved in this 

project.  Note that trauma hip fracture data from the UHW had never previously been 

investigated in such detail. 

Mental state was found to be strongly associated with length of stay but this was not used as a 

marker variable in the simulation models.  ASA grade, a measure of medical fitness, was 

used instead as, in liaison with the clinical team, it was decided that it is a more desirable 

variable to include due to the reduced ambiguity of assigning a grade to a patient, compared 

with a mental state score.  Detailed linear and logistic regression analysis was performed for 

each ASA grade grouping and varying results were found.  Delay was also shown to be 

associated with length of stay; the relationship was reduced but persisted once delay was split 

by pre-/post-operation.  Other variables shown to be related to length of stay and mortality, 

but not included in the simulation model, include age and sex.  It was decided that other 

selected variables provide more flexibility and appropriateness; determining care based on 

age or gender is clearly less appropriate than basing care options on medical fitness. 

In Chapter 5, a principal components analysis (PCA) was used to collapse the dimensionality 

of the dataset and results inputted into a PCA regression model.  While statistically 
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significant results were found, it was also concluded that perhaps the data is too complex to 

be reduced in this way. 

Objectives 2 and 3 were achieved primarily in Chapters 6 and 8 respectively, drawing on 

results in each case from preceding chapters and thus highlighting the importance of a 

thorough statistical investigation prior to building a simulation model.  In each case, a host of 

„what-if‟ scenarios were considered in order to display how changes to the system will 

influence results.  A particular consideration was the ageing population and the anticipated 

increase in demand on hip fracture services.   

Many previous studies have focussed on determining whether there exist statistically 

significant relationships between length of stay / mortality and other variables, commonly 

with a focus on operative delay.  However, no evidence could be found of studies which 

detail explicitly the implications of changing parameters, such as the proportion of delayed 

patients, on resources or any other measures.  This research expands upon the statistical 

evaluation, using its output, with the building of two simulation models of the hip fracture 

ward in Chapter 6.  This meant that instead of simply showing a statistical association 

between delay and length of stay (for example), various parameters, relating to both the 

distributions representing delay and the proportions representing the prevalence of delay, 

could be amended.  An oversight by many other studies is also to not distinguish between 

pre- and post-operation length of stay.  In Chapter 6, previous analyses were extended to 

include this distinction.  ASA grade was included as a splitting variable in Model I.  Results 

from previous chapters inferred the existence of relationships between ASA grade and length 

of stay and ASA grade and mortality.  By incorporating the variable into the model, the 

consequences of focussing on a particular grouping could be seen.  A similar approach was 

taken with respect to operation type for Model II. 

A detailed examination of trauma theatre data was completed in Chapter 7.  This led to a 

greater knowledge of the workings of the system and, importantly, where advances could be 

made.  For example, tardiness and theatre turnover were shown to be two areas where 

considerable time savings could be made.  Consequently, along with other findings, these 

were incorporated into the simulation model presented in Chapter 8.  A key output of the 

model was lack of time cancellations and through the thorough scrutiny completed in Chapter 

7, an appropriate method of modelling these cancellations could be found.  A number of 
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scenarios were then tested to demonstrate how making changes, often relatively simple, could 

reduce these cancellations while not compromising theatre usage. 

Objective 4 was achieved in Chapters 9 and 10.  A variety of theoretical approaches were 

taken and their relevance and compatibility to modelling the trauma theatre was given.  In 

Chapter 9, results from the M | G | 1 queuing system were used.  The Laplace transform of 

the service time (clinical time) was found as a convolution of two Erlang distributions and 

arrivals were shown to be random.  In order to account for the theatre being a terminating 

system in reality, results were extrapolated so that a non-terminating system, that had reached 

steady-state, could be assumed.   

A novel and bespoke queuing system based on two types of arrival, hip patients and non-hip 

patients, each following an Erlang service time with different parameters, was formulated in 

Chapter 10.  This investigation began with the formulation of a model based on random 

(Negative Exponential) service times and while results were promising, this model was not 

deemed to appropriately represent the real system.  The Erlang model was then presented, 

with a system limit of two, shown to be valid according to the data, imposed in order to 

restrict the number of equations to be solved.  It was concluded that the model excellently 

represented the system, with a high level of compatibility.  Parameters were then varied in 

order to investigate system sensitivity to the inputs, and predict system changes based on 

alterations to these parameters.  Results were later used to extend to a system limit of three.  

Vacation queuing models were also looked at in detail and a number of existing models were 

adapted to represent the trauma theatre at the UHW.  Server busy time was classified as the 

time when the theatre was occupied by a trauma hip patient, while vacation time was 

classified as the time when the theatre was occupied by a non-hip patient or was closed.  In 

particular, the fixed length Bernoulli vacation model provides many useful results.  One can 

choose how often the server goes on vacation and some variability is removed from the 

system by fixing the length of the vacation to a pre-determined value.  It was shown that a ten 

hour vacation gives desirable results which are only negligibly impacted by changing 

vacation frequency.  Finally, an original and innovative „perfect world‟ model was presented, 

displaying the distributions of performing hip operations sequentially.  
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11.3 Extensions to this research 

It would be unrealistic to cover all investigations relating to hip fracture patients in this piece 

of research.  A number of objectives were shown to be satisfied by this work in the previous 

section, but there is still scope to extend these results further. 

Detailed statistical output was presented primarily in Chapters 3 to 5.  While the dataset 

available for those analyses was fairly large, several of the variables were sparsely-populated.  

For example, mortality analysis was completed primarily for death on the ward, but also 

some results were calculated for death within the University Health Board.  There was 

minimal information in the dataset regarding mortality at four months but it was certainly not 

complete enough to perform further investigations with any level of accuracy.  Follow-up 

information such as this would provide an interesting complement to work already 

completed, so if data collection improved then there would definitely be scope for further 

study in this area. 

Simulation models have been used in this thesis to represent the trauma hip fracture ward and 

the trauma operating theatre at the UHW.  These models, once validated, were then used to 

explore a variety of „what-if‟ scenarios in order to discover the effect of making changes to 

the system.  While several scenarios were tried in each case, not all possibilities are covered.  

However, it is considered that the most relevant and practicable scenarios have been 

investigated.  One extension which could be made is to combine the models into one.  This 

would be pursued in particular should additional data become available, so that all emergency 

trauma admissions could be modelled for the entirety of their hospital stay.  It would be 

particularly interesting, for example, to determine the impact of surgical delay on other 

patient types, which would be one other way in which the statistical aspects of this thesis may 

be extended. 

There is additional scope to extend the theoretical work presented in Chapters 9 and 10.  

Patients were split into two types, hip and non-hip, and arrival and service rates were 

dependent upon patient type.  In Chapters 7 and 8, patients were split into three types, hip, 

spinal and other.  Making the same split was not deemed necessary for the mathematical 

modelling work since the focus was on hip patients.  However, if there was a shift in this 

focus so that spinal patients were also of interest, for example, then the model could be 
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extended.  If the service time for the thi  patient type ( 1,2,3)i   could be represented by an 

Erlang distribution with 
ik  phases, then there would be a total of 

     1 2 3 1 2 3

1 1 1

1
1 1 1

2

sys sysl ln

n m n

k k k m k k k n n
  

          system states for a system limit of 

.sysl    

Consider the case where hip patients are represented by an Erlang-9 distribution, as 

previously seen, and spinal and other patients are represented by two different Erlang-3 

distributions.  Setting 2sysl   would result in 61 system states, increasing to 151 if 3,sysl   

each of which would need to be formulated in order to analytically solve the queuing model, 

a considerable increase in the numbers seen previously.  

Consider also the vacation queuing models approach from Section 10.4.  Due to the wealth of 

literature on this topic, only the most relevant models were considered.  A potential extension 

could thus be to apply some of the other vacation queuing models to the trauma theatre, even 

if it were only as an academic exercise.  There could also be some worth of formulating a 

novel model, specifically designed around the trauma theatre at the UHW.  This was beyond 

the scope of this thesis, since existing models could be used, but should requirements change 

then it could be a possible avenue to explore in the future.  
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11.4 Risk scoring systems 

There has been some discussion of surgical outcome earlier in this thesis and the feasibility of 

predicting surgical outcome is now investigated further.  ASA grade, also previously 

discussed, is a measure of operative risk and clearly provides some useful information to 

predict surgical outcome.  Other scoring systems have also been developed and are discussed 

forthwith, with the inclusion of surgical risk.  It is suggested that the proper function of 

surgical risk scoring systems is the comparison of outcomes between surgeons and hospitals 

in a large number of patients (Treasure et al. 2002). 

 

11.4.1 Review of the literature  

The method of POSSUM scoring, Physiological and Operative Severity Score for the 

enUmeration of Mortality and morbidity, was designed to assess outcome after surgery and 

was developed by multivariate discriminant analysis of 48 physiological and 18 operative 

factors.  The final score consists of 12 physiological and six operative variables, each of 

which is scored on a scale of one to eight (Copeland et al. 1991).  POSSUM was found to be 

the most appropriate method of risk scoring for general surgical practice at the time of a 

review of methods (Jones and de Cossart 1999).   

A review was performed 12 years after the original methodology was devised and POSSUM 

was evaluated extensively in both general and specialist surgery and it was concluded that, 

when used correctly, POSSUM can be usefully applied in order to make comparisons 

between surgeons and between hospitals (Neary et al. 2003).  This was endorsed by a 

separate paper which stated that the sorting of patients into risk categories by the POSSUM 

system is useful for comparing hip fracture mortality between hospitals, but also advised the 

unfortunate actuality that this scoring system cannot be used for individual patients pre-

operatively as a predictor of post-operation outcomes (Theis 2006). 

However, another study found less positive results and in particular that POSSUM over-

predicts the risk of death by more than twofold and the risk of death for low-risk patients by 

more than sevenfold.  A modified p-POSSUM (Portsmouth POSSUM) predictor equation 

was thus formulated and found to give better results (Prytherch et al. 1998).   
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Using a modified operation classification, the original POSSUM equation has been validated 

for use in orthopaedic surgery (Mohamed et al. 2002).  However, when POSSUM was first 

formally evaluated for fractured neck of femur surgery, it was found to be a poor predictor of 

outcome after operation (Ramanathan et al. 2005).  It was found that POSSUM appeared to 

overestimate mortality in hip fracture patients, particularly in those patients with a higher 

predicted risk of dying.  It was concluded that POSSUM should not be used to audit outcome 

after fractured neck of femur surgery and found that its role as a preoperative assessment tool 

is also limited. However, another investigation found that the orthopaedic POSSUM 

equations did agree well with observed mortality and morbidity data and it is suggested that if 

used as an audit tool it would allow an unbiased interpretation of results (Wright et al. 2008).  

The value of orthopaedic POSSUM in assessing mortality and morbidity following hip 

fractures over a period of six months was looked at in another study with positive results; the 

observed data showed a higher number of complications in patients allocated into a higher 

risk groups (Young et al. 2006).  

The Surgical Risk Scale (SRS) scoring system incorporates clinical data using three 

classifications familiar to clinicians: the Confidential Enquiry into Perioperative Deaths 

(CEPOD) grade of operative urgency (NCEPOD 2004), ASA grade and the British United 

Provident Association (BUPA) schedule of operative procedures (BUPA 1990).  Analysis 

showed that the SRS score was significantly predictive of death and did not over-predict 

mortality for low-risk procedures (Sutton et al. 2002). 

One study compared the POSSUM, p-POSSUM and Surgical Risk Scale methodologies for a 

cohort of higher-risk patients, finding equal accuracy of prediction across all three methods 

(Brooks et al. 2005).  Specifically for hip fractures, it was found that POSSUM and SRS 

over-predict operative mortality but that they are useful tools in prioritising time of surgery 

(Ahluwalia et al. 2009). 

Another model was developed which predicts mortality based on variables which were found 

to be significantly correlated with death: ASA status, age, type of surgery (elective, urgent or 

emergency) and degree of surgery (minor, moderate or major) (Donati et al. 2004).  Hip 

replacement was specified to be of grade two (moderate) surgery.  The authors state that the 

advantage of their model is that “it can be applied preoperatively and does not require the use 

of intraoperative data”; so that the preoperative risk can be calculated.  This differs from 
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POSSUM in that it can be used before an operation to assess risk of mortality instead of 

simply as an audit tool and while it was concluded that this model can be used to predict 

operative risk for both elective and emergency surgery in the operating room, some flaws 

have been highlighted (Ramanathan et al. 2005).  Since the Donati score is based only on the 

four factors given previously, there will be very little variation obtained for hip fractures.  

Nearly all patients will fit into the older age group (above 70 years) and the operation will be 

classed as emergency and of a moderate degree for all patients.  There will also be little 

variation between patients in terms of ASA grade and so here the use of this score is limited. 

One of the earliest systems of risk stratification examined risk factors contributing to cardiac 

risk in non-cardiac surgery (Goldman et al. 1978), and was later updated to a more developed 

version which classifies risk as a score out of six, and is known as the RGCRI (Revised 

Goldman Cardiac Risk Index) (Lee et al. 1999).  Another study formulated the BHOM 

(Biochemistry and Haematology Outcome Models) system was developed to address the 

problem of the large number of variables used by POSSUM to model outcome with the aim 

of excluding the least important variables and also factors deemed to be subjective (Prytherch 

et al. 2003).  A review of different methods found that the p-POSSUM, SRS and BHOM 

systems were the most capable methods of predicting outcome after surgery but that the 

RGCBI did not discriminate accurately within the mortality groups; additionally it was 

suggested that the SRS has the advantage of ease of calculation (Neary et al. 2007). 

Other studies have focussed particularly on a specific patient or operative procedure group, 

some of which are relevant to the patient cohort under study in this thesis.  For example, one 

group assessed a risk-adjusted scoring tool used to predict outcome in patients aged 80 or 

over and found that their risk-adjusted mortality prediction compared favourably with 

observed outcomes (Nichols et al. 2008).  Another study focussed on the same age group and 

found a 30-minute increment in duration of operation increased the odds of mortality by 17% 

and that post-operative mortality and morbidity increased progressively with increasing age 

(Turrentine et al. 2006).  It was also found that risk scores may aid the assessment of sick 

elderly patients (undergoing abdominal surgery) but that, crucially, the opinion of an 

experienced clinician is still essential (Rix and Bates 2007).   
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11.4.2 Hip fracture specific scoring systems 

Equations to predict postoperative risk were established specifically for patients with a hip 

fracture using the so-called Estimation of Physiologic Ability and Surgical Stress (E-PASS) 

scoring system, again with the aim of predicting morbidity and mortality, which it was 

claimed to achieve successfully (Hirose et al. 2009).  While this may therefore seem a 

promising development in this field, the validity of the scoring system is under debate.  For 

example, it has been suggested that the population sample used to create the E-PASS system 

was not representative of the patient cohort that the system represents (Moppett 2010), while 

the lack of proper statistical assessment also gives cause for concern (Zhou and Fan 2010). 

The Nottingham Hip Fracture Score (NHFS) was developed to predict 30 day mortality for 

hip fracture patients by first determining key prognostic factors of mortality at 30 days and 

then incorporating these into a risk scoring system which can be used on an individual patient 

level to predict, at admission, the probability of 30 day mortality.  Predictor variables were 

selected via univariate logistic regression and then entered into a multivariate logistic 

regression model to construct and validate the scoring system.  Surgical and anaesthetic data 

was deliberately excluded.  The area under the ROC curve was 0.719, indicating a reasonable 

fit, while similar fits were found by applying both the Donati score and a simple model based 

on ASA grade only to the same dataset (Maxwell et al. 2008).  

Six different outcome risk scores were assessed for their predictive value with respect to three 

variables for elderly patients undergoing hip fracture surgery; incidence of serious 

complications, ambulation status after three months and survival at 90 days (Burgos et al. 

2008).  None of the scales investigated were able to predict risk of mortality at 90 days, while 

the Barthel Index (Mahoney and Barthel 1965) and the Visual Analogue Scale for Risk 

(RISK-VAS) (Arvidsson et al. 1996) were the most useful for predicting ability to walk three 

months after fracture.  Half of the scoring systems investigated, namely the RISK-VAS score, 

the Charlson Index (Charlson et al. 1987) and the POSSUM score were found to reach 

sufficient predictive value of serious complications post-surgery. 
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11.4.3 Feasibility of further work in this area 

It is stated that for a risk scoring system to be of clinical use, it needs to (a) use readily 

available and verifiable clinical information, (b) have been developed and validated on the 

population in whom it will be used, and (c) be free from any confounding factors (Maxwell et 

al. 2008).  The main problem here is the satisfaction of (a); while a fair amount of data is 

collected on trauma hip fracture patients at the UHW, there was no information available on 

comorbidities.  The presence of comorbidities is common in elderly patients and is likely to 

impact upon risk for these patients, whether this is for functional outcome, development of 

complications, mortality or another measure.  It is regretful that comorbidities could not be 

included in the mortality analysis completed in Chapter 4 but this is an unfortunate 

eventuality of data restrictions. 

It is therefore concluded that it would be impractical to develop an official scoring system at 

the current time.  If further data could be collected in future, then this would be a potential 

prospect of further research in this area.  The advantages of having an accurate scoring 

system are well-documented and it is recommended that the team at the UHW would benefit 

should such a system be created for their group of patients. 
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11.5 The Fenton-Wilkinson approximation 

11.5.1 Theatre scheduling 

There have been numerous proposed approaches, using a diverse range of methods, which 

tackle the issue of scheduling surgeries in operating theatres (Blake and Carter 1997, Cardoen 

et al. 2010), including making these decisions on the day of surgery (Dexter et al. 2004).  

This is particularly relevant here due to the nature of a trauma theatre.  Methods reported to 

be used and studied previously include the surgeons‟ estimation of the duration of each case, 

although this technique has been shown to produce a high number of cancellations due to 

underestimations of the time required for a surgical procedure (Schofield et al. 2005).  

Another commonly-used method allocates procedures to surgical block times using average 

surgery durations calculated from historical data (Dexter 1996).  One difficulty faced here is 

the time variability of the several processes involved; surgical times can be random by nature.  

Inaccurate predictions have been shown to decrease utilisation of operating rooms (Goldman 

et al. 1970), while above-average surgery times can increase net staffing costs (Abouleish et 

al. 2004).  Where surgical time can be accurately estimated, it is advised to schedule the 

shortest operation first in order to reduce patient waiting time and staff overtime while 

offering greater predictability to the start time of the rest of the schedule (Lebowitz 2003). 

Surgical times have often been shown to follow a Lognormal distribution (Spangler et al. 

2004, Stepaniak et al. 2009a); this distribution is suitable due to the left-sided truncation (no 

negative times) and a long right-sided tail.  It has also been suggested that the Lognormal 

distribution may approximate post-anaesthesia duration in the recovery room (Dexter and 

Tinker 1995).   

Although the consideration of the variability given by these distributions can improve 

scheduling single cases, it does not tackle the issue of scheduling a block of surgery time, for 

which the sum of these times would be required.  Before the topic of summing multiple 

Lognormal random variables is considered further, it must first be assessed whether this is an 

appropriate avenue to explore. 

The purpose of this investigation is to assess the feasibility of predicting the total time that 

the emergency trauma theatre would be in use, given a set of planned operations.  This 

information may then aid planning the theatre schedule for that day, thus reducing 
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cancellations.  Note that due to the nature of emergency admissions, this not a typical 

operating room scheduling problem, where surgeries can be planned weeks or even months in 

advance.  

 

11.5.2 Theatre times as Lognormal random variables 

The aim here is to estimate the overall time for which the operating theatre is busy, given a 

planned set of operations.  The turnover time must therefore also be considered in addition to 

surgical completion times.  These have both previously been discussed in this thesis (see 

Chapters 7 and 8), but are considered again here with regard to the Lognormal distribution.   

 

• Surgery duration 

The classification of surgery types performed in the emergency trauma theatre is used again 

here, where there are three types of surgeries performed; hip operations, spinal operations and 

other operations.  Previously the number of procedures performed per theatre episode was 

also considered but this extra classification is not used here due to loss of generality and data 

restrictions.  The minimum threshold parameter for the Lognormal distribution was taken to 

be the minimum observed time in each group, while estimates for   and   were calculated 

using Solver and checked via Stat::Fit.  Parameter estimates are given in Table 11.5.2i.  The 

median was found to be accurate within one minute when comparing empirical and 

theoretical values for hip and other surgeries, and was within six minutes for spinal 

operations.  While the first two moments may suggest a poor fit in some cases, a significant 

statistical fit was given by both the Anderson-Darling and Kolmogorov-Smirnov statistics in 

all cases, while close graphical fits were also found. 
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Table 11.5.2i: Parameter estimates and some goodness-of-fit comparisons for the Lognormal 

distribution fitted to surgery time (minutes) 

Operation 

type 
µ σ Min 

Theoretical Empirical 

Mean S.D. Mean S.D. 

Hip 4.05 0.49 0 64.9 33.9 65.4 36.3 

Spinal 4.46 0.57 5 106.9 63.6 96.1 58.2 

Other 3.63 0.95 0 59.6 71.8 49.3 42.3 

 

• Turnover times 

Turnover times were modelled in Chapter 8 using the Lognormal distribution and the same 

parameters could therefore be used here.  However, on closer inspection of these results it 

was found that turnover times preceding a hip operation followed a very similar distribution 

for each of the three operation types that the turnover time followed.  These distributions are 

displayed in Figure 11.5.2ii. 

 

 

Figure 11.5.2ii: The Lognormal distribution fitted to turnover times for each sequence of 

operations (surgery types: H – hip, S – spinal, O – other) 
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All HH, SH and OH turnover times were thus combined and a new set of Lognormal 

parameters found; these were 3.742, 0.512    and a minimum of one.  Theoretical 

values are thus 42.9, 20.5 and 38.7 for the mean, standard deviation and median respectively, 

compared with empirical values of 47.3, 35.8 and 39 minutes. 

 

11.5.3 Methodology 

There are various different methods which approximate the sum of Lognormal random 

variables, as is required here.  The chosen method used here is based on the Fenton-

Wilkinson approximation of the sum of multiple Lognormal times (Fenton 1960) and is 

explained in more detail in due course.  This approximation has been widely used across 

many fields including telecommunications (Stüber 2000), bioscience (López-Fidalgo and 

Sanchez 2005) and the financial sector (Finnerty 2003).   

Some of the other methodologies available are rather more complex (Beaulieu and Xie 2004, 

Schwartz and Yeh 1982, Szyszkowicz and Yanikomeroglu 2009) and thus, should this 

investigation prove worthwhile, would be difficult to implement in practice.  Note that the list 

of references given here is not exhaustive.  Another advantage of the Fenton-Wilkinson 

approximation is that the differences between predicted and real times are smaller in the tail 

of the distribution (Wu et al. 2005) and it is important to accurately capture the longer cases 

as well as the „normal‟ schedules. 

 

Consider p  independent random variables,  1, ..., ,iX i p  each having a different 

Lognormal distribution according to parameters  i  and ; 1, ..., i i p .  There is no closed-

form expression for the random variable ,P  where 
1


p

i

i

P X , but it can be approximated by 

another Lognormal random variable, ˆ.P  

The Fenton-Wilkinson approximation is obtained by matching the mean and variance 

parameters of the original p  random variables.  While the resultant expected value (mean) of 
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P̂  is equal to summing the expected values of the ,iX   the variance for this sum is not equal 

to the sum of the variances of the original Lognormal random variables.   

The shape  P̂
  and scale  P̂

  parameters of P̂  are calculated by: 

 

 

The minimum threshold parameter, ˆmin
P

, was taken for this exercise to be the sum of the 

minimum values for each of the , 1, ..., .iX i p
 

 

11.5.4 Results 

Using historical data, the parameters ˆ
P

, ˆ
P  

and ˆmin
P  

were estimated for each surgery 

schedule using the described methodology, allowing the comparison between the actual time 

for which the theatre was in use and the time predicted by the new Lognormal random 

variable.  However, this of course poses the problem of how to sample a predicted value from 

the new random variable, P̂ , or rather which sampled value to take.  There were 959 days 

suitable for this analysis. 

The expected value (mean) is given by 
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The th  percentile point is calculated using 

1
ˆ ˆ ( )

ˆ
ˆ min

  



 
 P P

P
P e  , 

where 1( )   is the inverse cumulative standard Normal distribution. 

Using these formulae, a number of estimators of the schedule duration are available.  One 

study used the second tertile cut-off point as the predictor for total theatre time (Alvarez et al. 

2010) on the basis of an economic assessment which determined that if more than one third 

of operating rooms overrun on their schedule, then theatre allocations are not being planned 

appropriately (McIntosh et al. 2006).  

Clearly there is a trade-off to be determined here; choosing a low percentile as the prediction 

time, underestimations and thus overutilisation is more likely, while sampling from a larger 

percentile within the distribution will be more prone to overestimations, resulting in 

underutilisation of the theatre.   

First consider simply whether or not the predictor under- or overestimated the actual time the 

theatre was in use.  The mean and a number of percentiles are given, see results in Table 

11.5.4i (pc – percentile), where it is interesting to see that the second tertile has more of an 

even split between under- and overestimations than any other measure, including the median.  

The magnitude of these discrepancies is also of interest.  Only the mean and the 50
th

, th66.6  

and 75
th

 percentiles are considered further, as these gave the better results.    No predictor will 

ever be exact since empirical data is recorded in minutes while these calculations come from 

a continuous distribution. 
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Table 11.5.4i: Results of estimation accuracy of theatre usage for a number of predictors 

Predictor 
Percentage 

Underestimated Overestimated 

Mean 64.8 35.2 

.33 3 pc 84.5 15.5 

50 pc 70.9 29.1 

.66 6  pc 51.2 48.8 

75 pc 39.9 60.1 

95 pc 6.9 93.1 

99 pc 0.7 99.3 

 

On average, the mean of the distribution given by the Fenton-Wilkinson approximation 

underestimated the actual theatre busy time by 38 minutes, while the median underestimated 

the true time by an average of one hour.  The second tertile was more accurate, 

overestimating the schedule by nine minutes on average, while the third quartile 

overestimated by an average of 53 minutes.   

Another way to measure the quality of these predictions is to look at the correlation 

coefficient between actual and estimated values, although results must be taken with caution 

since they measure the extent to which one variable increases (or decreases) as another 

variable does the same, and not how similar they are to each other.  The Spearman‟s rank 

coefficient is used here since data is non-Normal.  The correlation coefficient between the 

actual theatre usage and the value predicted by the mean was 0.2890   (p < 0.0001 under 

the null hypothesis that 0  ), while it was found to be 0.2902   (p < 0.0001) between 

the actual value and the second tertile, showing a weak to moderate positive correlation in 

each case. 

Results are given by means of a plot of the overall differences in Figure 11.5.4ii and the 

proportion of predictions within certain ranges in Figure 11.5.4iii, where each of the original 

measures are once again considered.  Note that results in Figure 11.5.4iii are cumulative; for 

example, the mean predicts the value to be correct within 30 minutes for 18% of all cases, 

while 32% are within 60 minutes. 



 

 

365 

 

The shape of each of the distributions given by Figure 11.5.4ii suggest that the differences 

could follow a Normal distribution.  This was tested for the differences when the mean is 

used as the predictor and indeed these differences were found to follow a Normal distribution 

with maximum likelihood parameter estimates found to be 37.88   and 136.9.    The 

graphical fits for this distribution can be found in Figure D11.5.4a of Appendix D where an 

excellent fit can be seen.  This could be a useful result should this investigation be taken 

further at a later stage.  

 

 

Figure 11.5.4ii: Distribution of differences between predicted and empirical theatre usage 

time 

 

 

Figure 11.5.4iii: Percentage of predicted cases within various limits 
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There is a lot of variation in accuracy here and results have shown that the approximation 

used has not given particularly accurate estimations of theatre time in many cases.  When 

using any of the predictor measures, the theatre time was not found to be correct within 3 

hours in at least 20% of cases, which demonstrates once more the unpredictable behaviour of 

this system.  It was already known that the theatre under study is subject to high variability in 

both demand and use and so these results are not particularly surprising. 

It is clear that the success of this method depends on how variable the system is, as well as 

the choice taken for the measure used to make the prediction.  It would be useful therefore to 

decide on the most suitable predictor measure.  Let jt  be the actual length of time for which 

the theatre was busy on day j ;  and , j j  and min j  are the parameter estimates for the 

Lognormal distribution for day j , based on the schedule for that day.   

The percentile  j  which would correctly predict the real duration of jt  is calculated by 

 
 

1
ln min

.
j j j

j

j

t 





 

   

Using this formula,  j  was calculated for each day and results are now presented. 

 

 

Figure 11.5.4iv: Frequency of percentile values at which the Fenton-Wilkinson 

approximation would correctly predict theatre busy time 
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There does not appear to be any clear pattern shown by Figure 11.5.4iv, except that the 

distribution is negatively-skewed.  The mean percentile was 62, but with a relatively high 

standard deviation of 25.5 percentile points.  A distributional fitting exercise showed that the 

percentile points (in decimal format) statistically fit the Beta distribution with maximum 

likelihood parameters calculated to be min = 0, max = 1, p = 1.618 and q = 1.029.  This is 

shown graphically in Figure D11.5.4b of Appendix D. 

Since this approximation has not shown to be particularly accurate in some cases, another 

approach is considered here.  The busy time planned for the theatre is 11.5 hours (690 

minutes), but this is measured as the time from when the first patient starts anaesthetic to 

when the last patient leaves the theatre; here only operation times are considered, so the time 

from when surgery starts for the first patient and finishes for the last patient is what is being 

measured (the turnover time accounts for the time taken to leave the theatre for every other 

patient).  Summing the averages of these two additional times (the time taken between 

starting anaesthesia and starting surgery for the first patient and the time taken between 

finishing surgery and leaving the theatre for the last patient) gives 33 minutes.  This is 

rounded so that the total time that the theatre is planned to be busy for is set to 11 hours (660 

minutes).  Using these thresholds, the percentage of cases for which the Fenton-Wilkinson 

approximation would correctly predict an over-run or an under-run of the scheduled theatre 

time can be calculated.  Therefore while it may not be possible to accurately predict the 

running time of the theatre, this method would at least permit for planning whether or not the 

theatre will go over or under schedule.  In the former case, cancellations could be made at the 

beginning of the day thus having a lesser impact on patients, while in the latter case an under-

run of the schedule could allow for extra cases to be scheduled and thus maximising the 

potential utilisation the theatre.  Results for the percentage of over-runs (in red) and under-

runs (in green) correctly identified for the two discussed thresholds are given in Figure 

11.5.4v, for a variety of predictors. 
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Figure 11.5.4v: Percentage of over- and under-runs of the schedule for two threshold values 

for theatre availability 

 

There is clearly a trade-off to be found here, where the closest balances between correctly 

predictions either way are given by the second tertile and third quartile; the second tertile 

correctly identifies 47% of all over-runs and 70% of all under-runs, while the third quartile 

correctly identifies 62% and 55% of the same measures (when the threshold is set to 660 

minutes).  The overall number of correct predictions is in fact greatest overall for the first 

tertile in both cases, but this is influenced somewhat by there being considerably more under-

runs than over-runs in the data set. 
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those days selected constitute a „typical‟ schedule while providing a large enough sample on 

which to perform further analysis; in total 43 daily schedules suited these constraints.  The 

mean duration of theatre time used was just over 10 hours (601 minutes), with a standard 

deviation of 1.21 hours (73 minutes).  The minimum usage time was 7.15 hours (429 

minutes) and the maximum was 12.1 hours (726 minutes).  Underutilisation was seen in 37 of 

the 43 cases (86%).  Some considerable deviation has thus been shown in this relatively 

small, but homogenous, set of results.  The Lognormal distribution given by the Fenton-

Wilkinson approximation for this schedule has a mean of 561 minutes, while the median is 

536 minutes, the second tertile is 610 minutes and the value at the third quartile is 657 

minutes.  This led to an average underestimate of 40 minutes and 65 minutes by the mean and 

median values respectively, with respective overestimates of 9 minutes and 56 minutes by the 

second tertile and third quartile.  On average the second tertile is thus estimating the overall 

theatre use accurately, but still the variation in actual completed schedules is problematic. 

Another obstacle faced here is that there was only a limited amount of data available, 

meaning that operations were only compartmentalised into three types.  Clearly the operation 

type of Other will have an enormous range of surgeries in it, while the complexities of these 

different operations will undoubtedly influence the time taken to complete the procedure.  

Furthermore, some patients undergo more than one operation during a single theatre episode.  

As an example of the diversity in this theatre, consider two patients who underwent surgery 

under the care of the same lead surgeon and were classified into the Other operation type 

category.  They both had one procedure.  The first patient‟s operation lasted 289 minutes 

(4.82 hours) and was for an open reduction internal fixation of the olecranon, while the 

second patient spent just 19 minutes (0.32 hours) in surgery for debridement of a wound.  

While the Lognormal distribution will capture this variation to some extent, the extremity of 

these differences will make any prediction exercise difficult.  It would be desirable to split 

this group further (by complexity of operation, for example) and this could be an aspect to 

explore in the future. 

Finally, trauma surgery is stochastic by nature; again while this can be captured by the 

distributions used to some extent, it may not be possible to completely overcome this issue.  

Another study found closer approximations than were found here (Alvarez et al. 2010), but 
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this was for cardiac elective surgery which is a more homogenous group of patients than in 

this case. 

In conclusion, the Fenton-Wilkinson approximation has been found to be a reasonable 

method to use to predict busy time in the trauma theatre.  While it has not been found to be 

specifically accurate in predicting the actual total time the theatre would be busy for, it was 

found to give reasonable results when predicting overall over- or under-running of the theatre 

schedule. 

There are various prospective avenues to explore should this work be continued later, 

including further segregation of operation types should more data become available, as well 

as the investigation into other approximation methods.  These were initially not considered 

here as it was required to find a simple solution which the theatre staff could potentially use 

on a daily basis.  Alternatively it could be explored whether other distributions could be used 

and summed in a similar fashion using existing results; for example, the Gamma distribution  

(Moschopoulos 1985). 
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11.6 Chapter summary 

As an end to this thesis, this chapter has included some discussion of how the thesis 

objectives have been satisfied, followed by some suggestions for future research, considered 

from two perspectives.   

Firstly, a number of extensions to how the work presented in this thesis could be expanded 

upon were given.  This included additional statistical analyses, extensions of the simulation 

models and expansion to the mathematical modelling. 

Secondly, two potential fields of research were discussed which are relevant to this area but 

were not visited in detail throughout the main part of the thesis.  These two areas, risk scoring 

systems and the Fenton-Wilkinson approximation for predicting total theatre time, were 

looked at in considerable detail.   

It was ultimately concluded that pursuing risk scoring systems would not be appropriate 

unless additional data was made available.  The Fenton-Wilkinson approximation provided 

some promising results but it is not considered that it would be appropriate to implement this 

approach to predicting total theatre time in a real life situation due to some inaccuracies 

which still remain.  If these could be dealt with, then this could provide a more successful 

avenue for future exploration.   
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APPENDICES 

APPENDIX A: PROBABILITY DISTRIBUTION FUNCTIONS 
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APPENDIX B: VARIABLE LISTS 

Table B3.2.1a: Supplementary information for variables taken from the Cardiff Hip Fracture Survey 

Variable name Description and values 

Admdelay Delay to admission, days between fracture and admission 

Admfrom_d(+number)* Place admitted from; 1 = Own home 

2 = Sheltered housing 

3 = Residential care 

4 = Nursing home 

5 = Permanent hospital inpatient 

6 = Rehabilitation unit 

7 = Acute hospital 

8 = Other 

 

  

  

Age Age at admission in years 

ASAnew_n American Society of Anaesthesiologists (ASA) grade; 

 1 = ASA grade I or II           2 = ASA grade III 3 = ASA grade IV 

Finlos University Health Board length of stay (days) 

Fractype_d(+number)* Type of fracture; 1 = Undisplaced intracapsular 

2 = Displaced intracapsular 

3 = Basocervical 

4 = Trochanteric, two fragment 

5 = Trochanteric, multi fragment 

6 = Subtrochanteric 

Livealon Patient living alone; 1 = Yes     2 = No    3 = Institutional care 

Mentalst Mental state on admission; 1 = Normal      2 = Known dementia    3 = Confusion 

Mobility Mobility score pre-fracture; 

 1 = Able to shop                                    2 = Able to get out but unable to shop 3 = Housebound 

Opdelay Operative delay; 0 = Operation within two days of admission 1 = Operation after 2 days of admission 

Optypenew_d(+number)* Type of operation; 1 = No operation / 

conservative treatment 

2 = Dynamic hip screw 

3 = Screws 

4 = Intramedullary nail 

5 = Hemiarthroplasty 

6 = Total hip arthroplasty 

7 = Other 
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Pathfrac_d(+number)* Pathological fracture; 

 
1 = No 

2 = Malignant secondary bony tumour 

3 = Malignant primary bony tumour 

4 = Bone cyst 

5 = Paget‟s disease 

6 = Other 

SexM Sex; 0 = Female 1 = Male   

Side Side of fracture; 0 = Right 1 = Left   

Survival_ac Indicator of survival at end of acute ward stay; 0 = Patient survives     1 = Patient does not survive 

Survival_fin Indicator of survival at end of UHB stay; 0 = Patient survives      1 = Patient does not survive 

WAASP WAASP (Weight, Appetite, Ability to eat, Stress factors, Pressure sores/wounds) category on admission 

 1 = WAASP score 1-2           2 = WAASP score 3-6 3 = WAASP score 7+ 

Walkaid0 Walking aids used pre-fracture 

 1 = None 2 = One aid (stick, crutch)  3 = Two aids 4 = Frame 5 = Wheelchair / bed-bound 

Walking0 Walking ability pre-fracture 

 
1 = Outside, alone 

2 = Outside, with someone 

3 = Inside, alone 

4 = Inside, with someone 
5 = Wheelchair / bed-bound 

Wardlos Acute ward length of stay (days) 

* These variables comprise of several „dummy‟ variables in order to account for their nominal status.  For example, admfrom_d1 takes a value of 

1 if the patient was admitted from their own home or a value of 0 if they were not. 
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Table B7.1.2a: Fracture neck of femur operations and their associated OPCS-4 codes 

OPCS-4 code Description 

W19.1C Internal fixation subcapsular fracture A/O cannulated screws  

W19.1D 
Open reduction with internal fixation subtrochanteric fracture femur 

/ dynamic hip screw 

W19.1E 
Open reduction with internal fixation intertrochanteric fracture / 

dynamic hip screw 

W20.1B Dynamic condylar screw and plate 

W20.1H Revision of dynamic condylar screw and plate 

W24.21 Proximal femoral nail 

W24.2A Closed intramedullary nail (fully locked) 

W24.2B Closed intramedullary nail (locked proximally) 

W24.2C Closed intramedullary nail (locked distally) 

W24.2D Closed intramedullary nail (unlocked) 

W24.2E Closed intramedullary fixation with nancy nails 

W37.1 Total prosthetic replacement of hip joint using cement 

W39.4 Attention total hip replacement 

W46.1 Primary replacement of head of femur using cement 

W46.1B Primary cemented hip – Thompson stem 

W46.1C Primary cemented bipolar hemiarthroplasty 

W46.1E Hemiarthroplasty 

W46.1F Logic cemented hemiarthroplasty 

W47.1A Uncemented hip – Austin Moore stem 

W47.1B Uncemented hemiarthroplasty hip – Austin Moore 

W57.4A Girdlestone‟s procedure 
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APPENDIX C: GLOSSARY OF MEDICAL TERMS 

Acetabulum  A concave surface of the pelvis. The head of the femur meets the pelvis at the acetabulum, forming the hip joint. 

Albumin The main protein of plasma. Albumin levels are often tested to evaluate nutritional status. 

Anaemia A condition in which there is an abnormally low number of red blood cells in the bloodstream. 

Anorexia A serious psychological eating disorder characterised by noticeably reduced appetite or total aversion to food. 

Anthropometric Of or relating to anthropometry; the study of human body measurement for use in classification and comparison. 

Appendectomy Surgical removal of the appendix. 

Avascular necrosis The loss of bone tissue due to a restriction of blood supply, leading to persistent hip pain; also known as 

osteonecrosis. 

Arthritis A relatively common group of conditions that causes damage to joints and bones, characterised by symptoms 

including restricted movements of the joints, pain and stiffness. 

Arthroplasty (for 

fractured NoF) 

A surgical procedure in which the hip joint is replaced by a prosthetic implant.  It is the construction of a new 

moveable hip joint; both the acetabulum and the femoral head are replaced in this procedure. 

Basocervical Intra- or extracapsular. 

Bone cyst A fluid-filled cavity in the bone. It is benign (non-cancerous), but weakens the bone and makes it more likely to 

fracture.  There is no known cause. 

Cerebral dysfunction Functional disorder of the brain. 

Cerebrovascular accident 

(stroke) 

The sudden death of some brain cells due to lack of oxygen when the blood flow to the brain is impaired by 

blockage or rupture of an artery to the brain. 

Cholecystectomy Surgical removal of the gall bladder. 

Chronic obstructive 

pulmonary disease 

A lung disease which leads to damaged airways in the lungs, causing them to become narrower, with symptoms 

including chronic cough, wheezing and tightness of the chest. 

Clostridium difficile  A bacterium which lives in the gut.  Symptoms of Clostridium difficile infection range from mild diarrhoea to a 

life-threatening bowel inflammation. 

Combined peripheral 

nerve block technique  

Injection of local anaesthetic near the nerve(s) that control sensation and movement of a specific area.  Typically 

used for surgeries of upper or lower extremities. 

Condylar Rounded prominence at the end of a bone. 
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Confusion Change in mental status in which a person is not able to think with his or her usual level of clarity, characterised 

by disorientation regarding time, place, person, or situation. 

Crohn’s disease A chronic gastrointestinal disorder that causes inflammation of the lining of the digestive tract. 

Debridement The act of debriding: removing dead, contaminated or adherent tissue or foreign material. 

Dementia Significant loss of intellectual abilities such as memory capacity, severe enough to interfere with social or 

occupational functioning. 

Displaced Removed from the usual or proper place. 

Diuretics Drugs which increase the amount of water passed out from the kidneys, and consequently an increase in urine 

excretion. 

Extracapsular Situated or occurring outside a capsule (of a joint). 

Femoral head The rounded extremity of the femur (thigh bone); part of the hip joint.  It is supported by the neck of femur. 

Haemoglobin The oxygen-carrying pigment and predominant protein in red blood cells. 

Hemiarthroplasty  

(for fractured NoF) 

A surgical procedure which replaces one half of the joint with an artificial surface and leaves the other part in its 

natural (pre-operative) state. The head of the femur is removed and replaced with a metal or composite prosthesis. 

Human immuno-

deficiency virus (HIV) 

One of a group of viruses known as retroviruses, which kills or damages cells of the body‟s immune system; 

affects approximately 40 million people worldwide. 

Intertrochanteric Between the two trochanters of the femur. 

Intracapsular Situated or occurring within a capsule (of a joint). 

Laparoscopic (surgery) Minimally invasive (“keyhole”) surgery which allows the surgeon to access the inside of the abdomen and pelvis. 

Lymphocyte Type of white blood cell in the immune system; a total lymphocyte count is often used to assess nutritional status. 

Malignant Tending to metastasise; cancerous.  

Metastasis The spread of a disease-producing agent (e.g. cancerous cells) from the initial primary site of the disease to 

another part of the body; the process by which such spreading occurs. 

Methicillin-resistant 

Staphylococcus aureus 

(MRSA) 

Any of several bacterial strains of the genus Staphylococcus aureus that are resistant to a broad range of 

conventional antibiotics, such as penicillin and methicillin; the most prevalent type of hospital-acquired infection 

in the United Kingdom.   

Myocardial infarction The death of heart muscle from the sudden blockage of a coronary artery by a blood clot.  More commonly 

known as a heart attack. 
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Neck of femur (NoF) The column of bone connecting the femoral head and the shaft of the femur. 

Neuraxial block technique  Injection of local anaesthetic into the epidural or subarachnoid spaces. 

Olecranon The bone in the forearm that forms the pointed portion of the elbow; the bony projection of the ulna (a bone in the 

forearm) behind the elbow joint. 

Paget’s disease A chronic disorder that typically results in enlarged and deformed bones.  The excessive breakdown and 

formation of bone tissue that occurs with this disease can cause bone to weaken, resulting in bone pain, arthritis, 

deformities and fractures. 

Pertrochanteric fracture A fracture through the intertrochanteric region of the femur; a form of extracapsular hip fracture. 

Pneumonia Inflammation of the lung tissue, usually caused by an infection. 

Pressure sores Type of injury that affects areas of the skin and underlying tissue, caused when the affected area of skin is placed 

under too much pressure.  Also known as pressure ulcers or bedsores. 

Primary tumour A tumour that is in the original site where it first arose. 

Prosthesis An artificial extension that replaces a missing body part. 

Proximal Relating to where an appendage joins the body. 

Pulmonary Relating to the lungs. 

Secondary tumour A tumour that develops as a result of metastasis. 

Sexual dimorphism The existence of physical differences between the sexes other than differences in the sex organs; the difference in 

form between male and female members of the same species. 

Statins Class of drugs used to lower cholesterol levels; a type of treatment for heart conditions. 

Subtrochanteric Situated or occurring below the trochanter. 

Thrombosis; 

thromboembolism 

Formation of a blood clot within a blood vessel; obstruction of a blood vessel caused by thrombosis. 

Trochanter; trochanteric A rough prominence at the upper part of the femur serving for the attachment of muscles; relating to the 

trochanter. 

Undisplaced Not removed from the usual or proper place. 

Warfarin Anticoagulant drug; used to prevent and treat the formation of harmful blood clots within the body by thinning 

the blood and/or dissolving clots. 
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APPENDIX D: SUPPLEMENTARY MATERIAL 

 

 Normal bone Osteoporotic bone  

 

  

 

    

Figure D1.1.3a: Comparison of bone density between normal and osteoporotic bones  

 

 

Figure D1.4.1a: Classification of hip fractures  
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A B C 

   
   

   

Figure D1.4.1b: Radiographs of (A) a prosthesis following hemiarthroplasty surgery, (B) a 

prosthesis following total hip replacement surgery and (C) a prosthesis following 

intramedullary nail surgery  

 

Table D3.2.3a: Collinearity diagnostics for the multivariate linear regression model (VIF – 

variance inflation factor) 

Variable Tolerance VIF 

Intercept - - 

Admfrom_d1 0.6809 1.4686 

Admfrom_d4 0.8664 1.1543 

Admfrom_d5 0.9659 1.0354 

Mobility 0.6053 1.6521 

Mentalst 0.7691 1.3003 

WAASP 0.8003 1.2495 

Opdelay 0.9651 1.0362 

Age 0.7878 1.2693 

SexM 0.9460 1.0571 

Optypenew_d3 0.5078 1.9694 

Optypenew_d6 0.9182 1.0891 

Fractype_d1 0.5408 1.8492 

Fractype_d5 0.9309 1.0743 

Fractype_d6 0.9556 1.0464 
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Table D3.2.4a: Collinearity diagnostics for the multivariate linear regression model, 

surviving patients only 

Variable Tolerance VIF 

Intercept - - 

Admfrom_d4 0.9071 1.1024 

Admfrom_d5 0.9721 1.0288 

Admfrom_d7 0.9509 1.0516 

Mobility 0.6535 1.5302 

Mentalst 0.7829 1.2773 

WAASP 0.7775 1.2862 

Opdelay 0.9511 1.0515 

Age 0.7902 1.2655 

SexM 0.8570 1.1668 

ASAnew_n 0.9294 1.0760 

Optypenew_d2 0.7887 1.2679 

Optypenew_d3 0.4913 2.0355 

Optypenew_d6 0.8980 1.1136 

Fractype_d1 0.5419 1.8454 

Fractype_d5 0.8665 1.1540 
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Table D3.3.2a: Splitting criteria for CART analysis on length of stay 

Node 

number 

Splitting 

variable 

Splitting 

condition  

 Node 

number 

Splitting 

variable 

Splitting 

condition  

0 - -  32F Optypenew_n 2, 4, 7 

1 Mentalst 1  33F Admfrom 4, 5, 8 

2 Mentalst 2, 3  34 Admfrom 1, 2, 3, 6, 7 

3 Walking0 1  35F Age ≤ 76.5 

4 Walking0 2, 3, 4, 5  36 Age > 76.5 

5 Opdelay 0  37 Age ≤ 87.5 

6 Opdelay 1  38 Age > 87.5 

7F Fractype 1, 3  39 Admfrom 1, 2, 6 

8 Fractype 2, 4, 5, 6  40 Admfrom 3, 7 

9 WAASP 1  41F Fractype 1, 3, 4, 5 

10 WAASP 2, 3  42F Fractype 2, 6 

11 ASAnew_n 1  43F Optypenew_n 5, 7 

12F ASAnew_n 2, 3  44F Optypenew_n 2, 3, 4, 6 

13F Age ≤ 75  45F Age ≤ 91.5 

14F Age > 75  46F Age > 91.5 

15F Side 1     

16F Side 0     

17F Optypenew_n 3, 4, 6, 7     

18 Optypenew_n 2, 5     

19F WAASP 2     

20F WAASP 1, 3     

21F Optypenew_n 3, 6     

22 Optypenew_n 2, 4, 5, 7     

23 Opdelay 0     

24 Opdelay 1     

25F Fractype 1, 2     

26 Fractype 3, 4, 5, 6     

27F Walkaid0 2, 3, 5     

28F Walkaid0 1, 4     

29 Walkaid0 1, 2, 3, 5     

30F Walkaid0 4     

31F Optypenew_n  5     

 



 

 

418 

 

Table D4.3.2a: Splitting criteria for CART analysis on mortality using the Gini Index 

procedure method 

Node 

number 

Splitting 

variable 

Splitting 

condition  

 Node 

number 

Splitting 

variable 

Splitting 

condition  

0 - -  30 Walkaid0 1, 3, 4 

1 Walking0 2, 3, 4  31 Admfrom 3 

2 Walking0 1, 5  32F Admfrom 4, 5, 8 

3 ASAnew_n 1, 2  33F Optypenew_n 2, 3 

4 ASAnew_n 3  34F Optypenew_n 4, 5, 6, 7 

5 Mentalst 1  35F Fractype 1, 2 

6 Mentalst 2, 3  36F Fractype 3, 4, 5, 6 

7 ASAnew_n 1  37 Admfrom 1, 2, 4, 5, 6 

8 ASAnew_n 2  38F Admfrom 3, 7, 8 

9 Walking0 3  39 Optypenew_n 4, 5, 6 

10F Walking0 2, 4  40 Optypenew_n 2, 3, 7 

11F Optypenew_n 2, 3  41 Fractype 1, 2, 4, 5 

12F Optypenew_n 4, 5, 6, 7  42F Fractype 3, 6 

13F Fractype 3, 4  43 SexM 0 

14 Fractype 1, 2, 5, 6  44 SexM 1 

15 Walking0 3  45F Walkaid0 2, 4 

16 Walking0 2, 4  46 Walkaid0 1, 3, 5 

17F Mobility 1, 2  47F ASAnew_n 1 

18F Mobility 3  48F ASAnew_n 2, 3 

19F WAASP 2  49F Opdelay 0 

20F WAASP 1, 3  50F Opdelay 1 

21 Admfrom 1, 2, 6, 7  51 WAASP 1, 2 

22 Admfrom 3, 4, 5, 8  52F WAASP 3 

23 WAASP 1, 2  53F Fractype 5 

24 WAASP 3  54F Fractype 1, 2, 3, 4, 6 

25F Opdelay 0     

26F Opdelay 1     

27F Walkaid0 1, 2, 3     

28F Walkaid0 4     

29F Walkaid0 2     
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Table D4.3.2b: Splitting criteria for CART analysis on mortality using the Information 

Entropy procedure method 

Node 

number 

Splitting 

variable 

Splitting 

condition  

 Node 

number 

Splitting 

variable 

Splitting 

condition  

0 - -  31 Walkaid0 1 

1 Age ≤ 83.5  32F Walkaid0 2, 3, 4, 5 

2 Age > 83.5  33F Fractype 1, 3, 4 

3 Age ≤ 65.5  34F Fractype 2, 5 

4 Age > 65.5  35 Walking0 2, 3, 4 

5F WAASP 1, 2  36 Walking0 1, 5 

6F WAASP 3  37 WAASP 1, 2 

7 Walking0 2, 3, 4  38 WAASP 3 

8 Walking0 1, 5  39 SexM 0 

9 ASAnew_n 1, 2  40F SexM 1 

10F ASAnew_n 3  41 Opdelay 0 

11 Mobility 1, 2  42 Opdelay 1 

12 Mobility 3  43 Mentalst 1 

13 Fractype 2, 4  44F Mentalst 2, 3 

14F Fractype 1, 3, 5, 6  45F ASAnew_n 2 

15F WAASP 2  46F ASAnew_n 1, 3 

16F WAASP 1, 3  47F Fractype 1, 3, 4 

17F ASAnew_n 1  48F Fractype 2, 5, 6 

18 ASAnew_n 2  49F Admfrom 2, 4, 5, 6 

19F Admfrom 2, 3, 4, 5  50 Admfrom 1, 3, 7, 8 

20F Admfrom 1, 6, 7, 8  51F Fractype 4, 5 

21 Optypenew_n 4, 5, 6  52 Fractype 1, 2, 3, 6 

22 Optypenew_n 2, 3, 7  53F ASAnew_n 2 

23 Opdelay 0  54F ASAnew_n 1, 3 

24 Opdelay 1  55 Optypenew_n 4, 5 

25F ASAnew_n 1  56 Optypenew_n 2, 3, 6, 7 

26F ASAnew_n 2, 3  57F Walkaid0 2 

27F ASAnew_n 1  58F Walkaid0 1, 3, 4, 5 

28F ASAnew_n 2, 3  59F Fractype 1, 4 

29F WAASP 2  60F Fractype 2, 3, 5, 6 

30 WAASP 1, 3     
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Administrative reasons 

 

Clinical reasons 

 

Figure D6.3.4a: Distribution of operative delay in hours for ASAIII patients who are delayed 

for more than 48 hours against the Negative Exponential distribution 

 

  

Figure D6.3.4b: Distribution of operative delay in hours for all ASA3 patients against the 

Gamma distribution with parameters min = 1, α = 1.971 and β = 31.745 

 

  

Figure D6.3.4c:  Distribution of operative delay in hours for all ASAIV patients against the 

Gamma distribution with parameters min = 1, α = 1.629 and β = 59.978 



 

 

421 

 

 

 

       Figure D6.3.4d: Method of calculating delay for ASAIII and ASAIV patients 

 

 

Figure D6.3.7a: Acute discharge destinations for patients admitted from home 
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Figure D6.3.7b: Acute discharge destinations for patients admitted from a care home  

 

 

Figure D6.3.7c: Acute discharge destinations for patients admitted from a healthcare 

institution 

 

 

Figure D6.3.11a: Results of standard deviation of bed occupancy  

 

 

Figure D6.3.11b: Results of minimum bed occupancy  
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Figure D6.3.11c: Results of maximum bed occupancy  

 

 

Figure D6.3.11d: Precision values obtained for various bed occupancy measures  

 

 

Figure D6.5.1a: Results of changing the percentage of ASA grade I&II patients who are not 

delayed on acute discharge destination 
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Figure D6.6.2a: The relationship of μ, σ and the mean for the Lognormal distribution with a   

fixed standard deviation of 65.1 and minimum of 3 

 

 

Figure D6.6.2b: The relationship of μ, σ and the standard deviation for the Lognormal 

distribution with a fixed mean of 56.4 and minimum of 3 

 

 

Figure D6.6.3a: The relationship of α, β and the mean for the Gamma distribution with a 

fixed standard deviation 
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Figure D6.6.3b: The relationship of α, β and the standard deviation for the Gamma 

distribution with a fixed mean 

 

 

Figure D7.1.1a: TheatreMan screenshot 
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asked for – sent for sent for – arrived 2 

  

  
operation finish – out of theatre out of theatre – into recovery 2 

  

  

Figure D7.2.1a: Distribution of time spent in various theatre intervals for trauma hip surgery 
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Figure D7.4a: Distribution of operation time by operation type 
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Hip Spinal Other 

   
   

   

Figure D7.4b: Distribution of anaesthetic time by operation type 
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Figure D8.2.2a: Gamma fits for time for anaesthetic procedure, by operation type 
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Figure D8.2.3a: Lognormal fits for operation time, by operation type and number of 

procedures 
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Figure D8.2.3b: Gamma fits for operation time, by operation type and number of procedures 
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Figure 8.2.4a: Lognormal fits for distribution of turnover time, by sequence of operations 
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Figure D8.2.7a: Precision values obtained for various trauma theatre model measures 

 

 

Figure D10.1a: Number of trauma hip surgeries per day against the Poisson distribution with 

parameter λ = 1.47 

 

  

  

Figure D11.5.4a: PDF and CDF of the differences between actual theatre usage and theatre 

time predicted by the mean of the Lognormal distribution given by the Fenton-Wilkinson 

approximation, against the Normal distribution with parameters μ = 37.88 and σ = 136.9 
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Figure D11.5.4b: PDF and CDF of percentiles which correctly predict theatre time by the 

Fenton-Wilkinson approximation, against the Beta distribution with parameters min = 0,  

max = 1, p = 1.618 and q = 1.029 


