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ABSTRACT 
We present a methodology to dynamically design supply chain networks taking 
into account both inventory and capacity (bullwhip) related costs.  We assume 
i.i.d. demand and the “order-up-to” policy is used to place replenishment orders 
with a lead-time of one period.   Our methodology is complete, analytical and 
exact.  We illustrate its application via a “toy” numerical example that seems to 
suggest that a “square root law for bullwhip costs” exists.  We provide a sketch 
of a proof that shows this is indeed the case. 
 
KEYWORDS:  Distribution network design, supply chain dynamics, inventory, 
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INTRODUCTION 
Distribution Network Design (DND) is concerned with the placement of an 
arbitrary number of distribution centres (DC’s) that act as stock holding facilities 
to enable the efficient flow of materials through a supply chain. The number of 
distribution centres is a decision variable; as is the size of the warehouse and 
their geographical position.  These DND decisions are important as the location 
and number of DC’s influence transportation costs and delivery / collection lead-
times.   The lead-time influences the amount of stock that must be held to 
provide a certain level of product availability.  This in turn influences the capacity 
of the DC’s that are required.    
 
By assuming at demand is independently and identically distributed (i.i.d.) over 
time we may use recently derived results (Disney et al 2006a) to characterise 
the optimum safety stock required at each DC to minimise inventory holding and 
backlog costs.  Alternatively, we may use a pseudo backlog cost to ensure an 
appropriate amount of availability.   This safety stock requirement will drive the 
DC’s level of capacity, which we can also characterise with results from Disney et 
al (2006a).  This reference also provides a mechanism to minimise lost capacity 
and over-time costs associated with labour and transportation.  Here we use 
these results to uniquely provide a mechanism to determine the optimum 
investment in warehousing and transportation facilities.   
 
As we have asserted, the number of DC’s and their locations will affect the 
delivery and collection lead-times.   These lead-times also influence the amount 
of safety stock, and hence the size of distribution centres required. By assuming 
each DC determines replenishment orders with the order-up-to policy we use z-
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transforms and properties of random numbers to identify how the variance of 
demand is amplified in different DND’s.  These variances are then used inside 
probability density functions to identify optimum investments of inventory and 
capacity.    
 
These decisions depend heavily on the costs specified.  Thus we illustrate our 
methodology to dynamically design distribution networks with a simple numerical 
example.  Although greatly simplified, the scenario is based upon the automotive 
supply chain detailed in Hammant et al (1999).    At present our methodology is 
able to evaluate and compare a range of different logistical scenarios.  This may 
be useful for companies who have limited range of options available for the 
structure of their distribution network.   However, if our methodology is coupled 
with readily available commercial software the optimal placement of facilities for 
given consumption and supply can be found via “centre of gravity” modelling.    
 
In this paper, we illustrate our methodology with i.i.d. demand.  However it is 
relatively easy to extend the methodology to the ARIMA type of models (Box and 
Jenkins 1970).  In fact, the necessary results can be found in Chen and Disney 
(2006), Disney et al (2006b) and Disney and Grubbström (2004).   Further 
limitations of our model exist; most importantly, it is a single product scenario.  
 
We believe our methodology to be unique in that it captures the link between the 
supply chain dynamics and the distribution network structure.   At present these 
aspects do not appear to be incorporated into modern supply chain design 
software.   Correctly accounting for these issues will be of much interest to 
industry companies with large distribution networks.    
 
DYNAMIC SUPPLY CHAIN DESIGN:   A SCENARIO 
It seems prudent to illustrate our approach via example.  Consider the following 
(six) scenarios.   There are 12 customers, each with a particular realisation of a 
stochastic demand process.   Each process is characterised by a normally 
distributed, uncorrelated, random variable, with a mean of five and a unit 
standard deviation.  Thus 
 
Dc=N(5,1)           (1) 
 
where Dc is the demand for customer c, c is the index for the customer, here 
ranging from 1 to 12.  We have picked 12 customers as 12 has “nice” divisors; 1, 
2, 3, 4, 6 and 12. These are useful when specifying which DC’s satisfies which 
customer demand as it saves us having to “split” up a demand process.  For 
example, if there was 1 DC, then this single DC faces a normally distributed 
demand, with a mean of 60 and a standard deviation of 12 , that is N(60, 12 ).   
If there are 2 DC’s, we assume that each DC has 6 customers and each DC then 
faces a demand process of N(30, 6 ).  Table 1 shows the how the DC demand 
process changes based on different numbers of DC’s. 
 

No. of DC’s 1 2 3 4 6 12 
Demand process faced 

by each DC  12,60N   6,30N  4,20N  3,15N  2,10N  )1,5(N

Table 1.   The demand faced by DC’s in each of the 6 scenarios 
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Now we need to specify a replenishment decision that the DC’s use as this may 
introduce autocorrelation into the demand signal.   For our purpose here it is 
appropriate to use the simplest replenishment rule we can think of.   Let us 
consider the traditional “order-up-to” (OUT) policy with minimal mean squared 
error (MMSE) forecasting, Disney, Towill and van de Velde, (2004). The optimal, 
MMSE, forecast is simply the long term mean of the demand, as the demand is 
not auto-correlated.  Under such conditions the classical OUT policy simply 
passes on demand as orders to the supplier or production system, Disney et al 
(2005).  These replenishment orders are also uncorrelated.    
 
We shall also presume that the DC’s are replenished via a single factory in all 
scenarios. It turns out that the factory will face the same demand pattern in all 
six scenarios, characterised by N(60, 12 ).   Figure 1 describes the six scenarios 
graphically. 
 

 
Figure 1.   The six scenarios considered 

 

 
Figure 2.   The inventory costs over time 

(Taken from Disney et al (2006a)) 
 
ASSIGNING COSTS TO A SUPPLY CHAIN NETWORK DESIGN: INVENTORY 
COSTS 
We assume inventory related costs at each location in each period are incurred in 
the following manner  
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where NSt is the Net Stock at each location in time period t, H is the cost of 
holding a single unit of inventory for one period and B is cost of a unit backlog in 
a single period.  Graphically this illustrated in figure 2.  Disney et al (2006a) 
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have obtained a solution for the minimum inventory related costs at each 
location that we will exploit here.   It is  
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where the NS  is the standard deviation of the Net Stock levels over time and  
erf -1 is the inverse error function.  The optimum amount of safety stock at each 
location is given by the Target Net Stock, TNS*, 
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ASSIGNING COSTS TO A SUPPLY CHAIN NETWORK DESIGN: CAPACITY 
COSTS 
We assume that if an order is less then a certain capacity (of S+ D ) then in each 
period a cost of N is incurred for each unit of unused capacity at each location.  
Otherwise, a cost of P is incurred for each unit that has to be produced in over-
time capacity (or purchased from another source with the same lead-time).  
Thus, 
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where N is the cost per unit of not producing to capacity and P is the cost per 
unit of working over-time.  D  is the mean demand rate and S is the spare 
capacity above D  that has been invested in by the company to improve 
responsiveness.   

 
Figure 3. The capacity related costs over time 

(Taken from Disney et al (2006a)) 
 
Again exploiting Disney et al (2006a), the capacity or bullwhip related costs are 
given by 
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where O  is the standard deviation of the order rate over time.  Again there is 
an investment decision to be optimised; we need to determine the optimal 
amount of capacity to invest in (above / below average demand) at each 
location.   Disney et al (2006a) have provided to necessary solution.  It is given 
by 
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ENUMERATION OF THE SIX SCENARIOS 
In this section we will enumerate the six scenarios and present the some 
numerical results.  We will assume that the holding costs, H=9, the backlog costs, 
B=1, the lost capacity costs, N=4 and the over-time costs, P=6 at all locations, in 
all scenarios.  We will also assume that the replenishment lead-times at all 
locations are of one period.  Thus, with are assumptions that the OUT policy is 
used with MMSE forecasting the variance of the replenishment orders is the same 
as the variance of the demand and the variance of the Net Stock levels is twice 
the variance of the demand. 
 
Scenario 1.  A single DC 
In the first scenario, we have 12 customers, one DC and one factory.   Each 
customer places a demand of N(5,1) onto the DC.  The aggregate demand faced 
by the DC is thus  12,60N .  The standard deviation of the DC orders is 12O  

and the standard deviation of the DC net stock levels is 24NS .  
 
Using (4) the optimal safety stock carried by the DC is TNS*=6.2782 and the 
optimal slack capacity (above the average demand of 60) of the DC is S*=0.87762 
from (7).  Exploiting (3) and (6) the minimum inventory related costs at the DC 
is I£=8.5976 and the minimum capacity related costs at the DC is C£=13.38.   Thus 
the DC costs are equal to £21.9809.     
 
In this scenario the factory faces the same demand process as the DC, thus the 
same settings for TNS* and S* exist and the same costs (I£=8.5976 and C£=13.38) 
are incurred. Thus the factory incurs a total expected cost per period of £21.9809. 
In fact, the factory always faces the same demand process and incurs the same 
costs in all scenarios. 
 
Scenario 2.  Two DC’s 
In this scenario we have 12 customers, 2 DC’s and a single factory.   Each DC 
replenishes 6 customers and faces a demand characterised by  6,30N . The 
optimal safety stock, TNS*, at both DC’s is 4.4394 and the optimal slack capacity in 
both DC’s (above the average demand of 30) is S*=0.62057.  The inventory costs 
I£=6.074 at each of the two DC’s and C£=9.4634 at each of the two DC’s.  Thus the 
total cost of the DC echelon is 2*(6.074+9.4634)=2*15.5428=£31.0857.   
 
Scenario 3.  Three DC’s 
In this scenario we have 12 customers, 3 DC’s and a single factory.   Each DC 
replenishes 4 customers and faces a demand characterised by  4,20N . The 
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optimal safety stock, TNS*, at all DC’s is 3.62477 and the optimal slack capacity in 
all DC’s (above the average demand of 20) is S*=0.50669.  The inventory costs 
I£=4.9638 at each of the three DC’s and C£=7.7268 at each of the three DC’s.  Thus 
the total cost of the DC echelon is 3*(4.9638+7.7268) =3*12.69069= £38.072.   
 
Scenario 4.  Four DC’s 
In this scenario we have 12 customers, 4 DC’s and a single factory.   Each DC 
replenishes 3 customers and faces a demand characterised by  3,15N . The 
optimal safety stock, TNS*, at all DC’s is 3.14915 and the optimal slack capacity in 
all DC’s (above the average demand of 15) is S*=0.43881.  The inventory costs 
I£=4.298811 at each of the four DC’s and C£=6.69164 at each of the four DC’s.  Thus 
the total cost of the DC echelon is 4*(4.298811+6.69164)= 4*10.99046=£43.96184.   
 
Scenario 5.  Six DC’s 
In this scenario we have 12 customers, 6 DC’s and a single factory.   Each DC 
replenishes 2 customers and faces a demand characterised by  2,10N . The 
optimal safety stock, TNS*, at all DC’s is 2.5631 and the optimal slack capacity in 
all DC’s (above the average demand of 10) is S*=0.35828.  The inventory costs 
I£=3.50996 at each of the six DC’s and C£=5.4637 at each of the six DC’s.  Thus the 
total cost of the DC echelon is 6*(3.50996+5.4637)= 6*8.9736=£53.8420.   
 
Scenario 6.  Twelve DC’s 
In this scenario we have 12 customers, 12 DC’s and a single factory.   Each DC’s 
replenishes a single customer and faces a demand characterised by  1,5N . The 
optimal safety stock, TNS*, at all DC’s is 1.812388 and the optimal slack capacity in 
all DC’s (above the average demand of 15) is S*=0.25334.  The inventory costs 
I£=2.48192 at each of the twelve DC’s and C£=3.8634 at each of the twelve DC’s.  
Thus the total cost of the DC echelon is 12*(2.48192+3.8634)= 12*6.345345=£76.1441.   
 
Summary of the six scenarios 
Table 2 below summaries the different scenarios considered above.  We find it 
interesting to note that adding in the bullwhip costs into the distribution network 
design actually has the same consequences as the inventory related costs.   
 

 Number of DC’s 
1 2 3 4 6 12 

Safety stock at each DC 6.28 4.44 3.62 3.14 2.56 1.81 
Capacity at each DC 60.88 30.62 20.51 14.44 10.36 5.25 

Inventory cost at DC echelon £8.59 £12.15 £14.89 £17.20 £21.06 £29.78 
Capacity cost at DC echelon £13.38 £18.93 £23.18 £26.77 £32.78 £46.36 

Safety stock at factory 6.28 
Capacity at factory 60.87 

Inventory cost at factory £8.59 
Capacity cost at factory £13.38 

Total costs £43.96 £53.07 £60.05 £65.94 £75.84 £98.13 
Table 2.  Summary expected costs per period 

 
THE SQUARE ROOT LAW FOR INVENTORIES 
Maister (1976) introduced the “Square Root Law” for inventory costs when 
consolidation occurs in a distribution network.   Quoting directly from Maister, “If 
the inventories of a single product (or stock keeping unit) are originally 
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maintained at a number (n) of field locations (refereed to as the decentralised 
system) but are then consolidated into one central inventory then the ratio  

n
inventory  system dcentralise

inventory system seddecentrali
 exists”, Maister, (1976). 

 
If we look at the DC’s inventory costs in Table 3, we can see, numerically at 
least, that the square root law also holds in our case, even though we have not 
used the same replenishment rule as Maister (1976).  
 

 
Number of DC’s, n 

1 2 3 4 6 12 
Inventory cost £8.59 £12.15 £14.89 £17.20 £21.06 £29.78 

n

costInventory  £8.59 £8.59 £8.60 £8.60 £8.60 £8.60 

Table 3.  The square root law for inventories 
 
THE SQUARE ROOT LAW FOR BULLWHIP COSTS 
Amazingly, the square root law also exists for bullwhip or capacity costs.   
Consider again capacity related costs at the DC echelon.  In figure 4 we have 
again scaled the cost by the inverse of the square root of the number of DC’s and 
we can see that the bullwhip costs also follow the square root law.  This should 
not surprise us as the bullwhip cost structure is exactly the same as inventory 
cost structure.  Furthermore, as the square root law is just a ratio, it will also 
work for the sum of the inventory and capacity costs. 
 

 
Number of DC’s, n 

1 2 3 4 6 12 
Capacity cost £13.38 £18.93 £23.18 £26.77 £32.78 £46.36 

n

costCapacity  £13.38 £13.39 £13.38 £13.39 £13.38 £13.38 

Table 4.  The square root law for bullwhip (capacity costs) 
 
PROOF OF THE SQUARE ROOT LAW FOR BULLWHIP 
Equation (7) shows us that if bullwhip or capacity costs are given by 
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Y is a constant determined by the lost capacity and overtime costs.  It is easy too 
prove the square root law for bullwhip exists by considering that in the 
decentralised supply chain the standard deviation of the orders is 2

cO n   , 
and in the centralised supply chain the standard deviation of the orders is 

2
cO n  .   Thus, 
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which is the “Square Root Law for Bullwhip”. 
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CONCLUSIONS 
We have presented a methodology to dynamically design a distribution network 
based on inventory and capacity costs.  At each point in the network the 
optimum safety stock has been set to minimise the sum of the inventory holding 
and backlog costs in the face of the stochastic demand pattern that each location 
faces.   We have also defined the optimum capacity at each point in the network 
in order to minimise the sum of the lost capacity and over-time working at each 
location.   The maths that we have exploited to achieve this is based on a linear 
system, thus inventory has been backlogged rather then lost when a negative 
inventory position has occurred, and production over the capacity limit has been 
made up in over-time (or provided via a sub-contractor with the same lead-
time).  All lead-times in the distribution network have been assumed to be of one 
period. 
 
We have shown via a numerical example that the addition of the bullwhip costs 
into a dynamic distribution network design methodology actually behaves in 
exactly the same way as the inventory related costs.   This surprised us, as 
intuitively, we expected it to have the opposite impact. Our result suggests that 
reason to consolidate distribution networks are actually a lot stronger than 
previously thought of based solely on inventory costs.   The likely impact of this 
is to force companies to consolidate even further than they have in the past, 
increasing the amount of traffic on the road.  Thus, internalising the external 
costs transportation causes is now even more important. 
 
For further work, we acknowledge that there is a long to go with this short 
conference paper.   We have not proved a rigorous proof of the “square root law 
for bullwhip”, only provided a numerical example and a simple proof based on 
rather restrictive assumptions.  These could be easily extended to consider more 
complex replenishment rules, lead-times and demand patterns.  These matters 
will be considered in the future.   
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