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Summary 

DNA methylation helps regulate transcriptional activity and is widely studied in cancer biology. 

This investigation aimed to establish the significance of Human Papillomavirus (HPV) DNA 

methylation in HPV-associated disease both in terms of basic biology and as a potential 

biomarker. 

Assays to assess DNA methylation and gene expression were developed and evaluated. 

Pyrosequencing was used to assess DNA methylation of four regions of the HPV16 genome (E2, 

L1/L2, enhancer, promoter). Gene expression was assessed using quantitative PCR with assays 

for E2, E6 and E7. HPV integration was assessed using Detection of Integrated Papillomavirus 

Sequences (DIPS).  

The relationship between HPV methylation, gene expression and integration was explored in 

vitro and in vivo using cell cultures and clinical cohorts. A variety of sample materials were 

used including short term and immortal cell lines, cervical cancer biopsies, cytology samples 

and Vulval Intraepithelial Neoplasia (VIN) biopsies. 

In general, hypermethylation of the HPV genome was associated with low HPV gene 

expression and the presence of integrated HPV genomes. 

To better understand the potential clinical utility of HPV DNA methylation, the relationship 

between HPV DNA methylation and various stages of cervical disease was determined. The 

HPV genome was progressively hypermethylated with increasing severity of cervical disease 

and certain regions of the HPV genome were more affected than others. A longitudinal study 

was also performed in order to determine a relationship between HPV methylation and clinical 

outcome. Differences in HPV methylation among patients who had persistent HPV infection 

and low grade disease, persistent infection and high grade disease and patients that cleared 

HPV infections were observed. Throughout the study the potential application of a HPV 

biomarker was considered and the correct biomarker design procedures were referred to. 

Several of the early biomarker development steps were successfully achieved. 
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Opening Notes 

This project was an investigation into the biological and clinical significance of HPV DNA 

methylation. DNA methylation at several sites of the HPV genome was assessed and the 

relationship between DNA methylation, gene expression and HPV integration investigated.  

A vital component of this investigation was the development of suitable assays with which to 

assess DNA methylation and gene expression. Method development formed a large part of the 

study and is described in a separate chapter. The experiments described in the four other 

results chapters were designed to test hypotheses concerning the relationship between HPV 

DNA methylation and other characteristics. 

Several components of the various studies were common to, or had broader relevance to 

more than one study. As such, discussion of these topics was grouped together into the 

general discussion in order to avoid repetition. 

This investigation is organised in the following manner: 

 Chapter 1. Introduction: HPV and HPV-Associated Cancer 

 Chapter 2. Introduction: DNA Methylation and Epigenetics 

 Chapter 3. Methods and Materials 

 Results and Discussion Chapters 

o Chapter 4. Method Development 

o Chapter 5. DNA Methylation and Disease Grade 

o Chapter 6. DNA Methylation and Clinical Outcome 

o Chapter 7. DNA Methylation, Integration and Gene Expression in vitro 

o Chapter 8. DNA Methylation, Integration and Gene Expression in vivo 

 Chapter 9. General Discussion 

 Chapter 10. General Conclusions 
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Chapter 1. Introduction: HPV and HPV-Associated Cancer 
 

1.1. Human Papillomaviruses 

Papillomaviruses (PV) are a diverse range of viruses that infect squamous and glandular 

epithelial tissues in a range of species. At least 120 types of Human Papillomavirus (HPV) are 

capable of infecting humans (Bernard et al., 2010) with around 40 HPV types infecting the 

anogenital tract (Sanders and Taira, 2003, Stanley, 2006a). HPV infection is very common and 

most individuals contract a genital HPV at some point in their lives, however relatively few 

people experience symptoms or HPV-associated anogenital neoplasia (Woodman et al., 2001, 

Ho et al., 1998). Although the majority of infections are subclinical and transient, HPV infection 

occasionally results in benign or malignant tumours of the cutaneous and mucosal epithelia; 

most notably of the cervix where HPV is associated with >99% of cancers (Duensing and 

Münger, 2004, McIndoe et al., 1984, Stanley, 2007). 

Mucosal HPV are further classified according to their oncogenicity. Low risk HPV (LrHPV) types 

rarely or never lead to cancers; types 6 and 11 for example are implicated in the formation of 

benign genital warts and are rarely associated with cancers. Other HPV types are denoted as 

High risk HPV (HrHPV) due to their common association with the development of cancers 

(Sanders and Taira, 2003, Braaten and Laufer, 2008, Doorbar, 2006). Persistent infection with 

HrHPV is considered a risk factor for the development of anogenital neoplasia (Ho et al., 1995). 

The HrHPV types most commonly associated with anogenital cancer are HPV16 and HPV18 

which are present in around 70% of cervical cancers worldwide (Muñoz et al., 2004) and in 

varying proportions of other anogenital carcinomas. 

1.1.1. Taxonomy of Human Papillomaviruses 

There are 12 genera of Papillomaviruses (PV), defined as having at least 60% sequence identity 

of the L1 gene. Human papillomaviruses are divided into alpha, beta, gamma, mu and nu 

(Bernard et al., 2010). The two main genera of HPV are the Alpha and Beta papillomaviruses, 

approximately 90% of all characterised HPV fit into one of these two groups and have a 

general tendency to infect either cutaneous or mucosal epithelia. Beta papillomaviruses are 

typically associated with unapparent cutaneous infections, and only tend to cause clinically 

relevant disease if the patient is immunocompromised or suffering from epidermodysplasia 

verruciformis (Doorbar, 2006). Alpha papillomaviruses include the HPV types associated with 

genital/mucosal infections and several cutaneous types such as HPV2 which tend to cause 

common warts (Doorbar, 2006, de Villiers et al., 2004). PV genera are divided by species, 
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representing 60-70% L1 sequence identity to other PV of the same species; viral type (71-89% 

L1 identity); viral subtype (90-98% L1 identity) and variant (over 98% L1 identity) (Howley and 

Lowy, 2006). 

1.1.2. HPV and the HPV Lifecycle 

The structure, genetics and lifecycle of HPV will now be considered before the functions of the 

HPV gene products and the association between HPV and cancer are discussed. 

1.1.2.1. HPV 

HPV has a double stranded, circular DNA genome of approximately 8,000 bp in length (e.g. 

HPV16 is 7,904 bp) and clinically important HPV typically encode 8 Open Reading Frames 

(ORFs). The terms ORF and gene are widely used interchangeably in the literature. There are 

six early genes, E1, E2, E4, E5, E6 and E7 that encode regulatory proteins and the two late 

genes L1 and L2 that encode structural capsid proteins (Figure 1.1). The early gene products 

include those involved with regulating viral DNA replication and are primarily transcribed from 

the early promoter (e.g. P97 for HPV16) whilst the late genes are transcribed from the late 

promoter (e.g. P670 in HPV16) (Abdul et al., 2009, Zheng and Baker, 2006). Early promoter 

activity and the regulation of replication is governed by interactions with the approximately 1 

kbp non-coding Long Control Region (LCR) that contains the viral origin of replication and a 

multitude of transcription factor binding sites and DNA regulatory elements (Chiang et al., 

1992, Demeret et al., 1997, Dollard et al., 1993, Dong et al., 1994, Tan et al., 1994, Berg and 

Stenlund, 1997). 

HPV virions are comprised of a DNA genome encapsulated in an icosahedral capsid 

approximately 55 nm in diameter (Scheurer et al., 2005). Capsids are constructed from 72 

capsomers and each capsomer is a pentamer of the HPV L1 protein. The HPV L2 minor capsid 

protein occurs at a frequency of about 12 proteins per capsid (Modis et al., 2002). 

 

 

Figure 1.1: Linear representation of the HPV16 genome.  

Adapted from (NCBI, 1993), (GenBank ID NC001526.1). Orange arrow labelled ori represents the origin 

of replication, green arrows represent early ORFs and blue arrows represent late capsid ORFs, the 

direction of the arrow indicates the direction of transcription. The Long Control Region (LCR) is a non-

coding region that contains binding sites for viral and cellular regulatory proteins and includes the 

viral origin of replication. 
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1.1.2.2. The HPV Life Cycle in a Productive Infection 

1.1.2.2.1. Infection 

Recently, a new model of infection initiation has been proposed. Infection with HPV requires 

micro-abrasion of the epithelium which exposes the basement membrane to HPV virions. HPV 

L1 proteins bind structures on the epithelial basement membrane which induces 

conformational changes that expose L2. L2 is cleaved and previously concealed parts of the L1 

protein are exposed to cell surface receptors on keratinocytes that have migrated across the 

basement membrane as part of the wound healing process (Schiller et al., 2010, Kines et al., 

2009). 

Following attachment to keratinocytes, the HPV virions enter the cell via an endocytic pathway 

and are localised within an endosome where the virus eventually uncoats. An L2 dependent 

mechanism promotes escape from the endosome; L2 bound HPV DNA moves through the 

cytoplasm and enters the nucleus. In the nucleus the L2-DNA complex associates with sub-

nuclear domains and RNA transcription is initiated (Schiller et al., 2010). 

The HPV lifecycle from initial infection onwards is intrinsically associated with the 

differentiation programme of the keratinocyte that it infects. As such, the study of the HPV 

lifecycle in vitro is especially difficult and very few cell culture models exist that are not derived 

from transformed cancer lines. 

1.1.2.2.2. Genome Maintenance/Cell Proliferation 

The HPV16 early promoter (P97) governs the transcription of the early genes. Located at the 3’ 

end of the LCR, transcription from the P97 promoter is controlled by the binding of various 

cellular transcription factors and the E2 viral gene product (Kammer et al. 2000; Thain et al. 

1996). P97 activation by the binding of cellular transcription factors allows initial low level E2 

and E1 expression which direct host cell replication factors to the viral origin of replication, 

driving viral genome replication and the maintenance of infection (Kadaja et al., 2009, Steger 

and Corbach, 1997). Viral genome replication occurs and the HPV genome is maintained as low 

copy number episomes (50-100 copies per cell) using host DNA replication processes (Flores et 

al., 1999). In addition to providing an important contribution to viral replication and 

transcription, E2 plays a major role in ensuring long term episomal maintenance and 

establishment of a productive HPV infection. E2 is involved in the partitioning of episomal 

genomes during mitosis by anchoring viral genomes to mitotic spindles during cell division, 

thus ensuring efficient viral genome segregation into daughter cells (You et al., 2004, Van Tine 

et al., 2004a, Lehman and Botchan, 1998). 
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For DNA replication, HPV require the cellular polymerases and other cellular factors that are 

produced only in mitotically active cells. As infected keratinocytes begin differentiation, E6/E7 

activity is up-regulated (Middleton et al. 2003; Schwartz 1998). E7 targets pRb (retinoblastoma 

protein) family proteins for degradation, disrupting the association between pRb and the E2F 

family of transcription factors which results in the transactivation of certain cellular factors 

required for viral DNA replication (Dyson et al., 1989, Gage et al., 1990, Scheffner et al., 1991). 

E6 effectively targets p53 for proteasomal degradation, inhibiting cellular apoptosis that would 

otherwise result from E7 mediated cell cycle entry in the differentiated epithelial layers 

(Scheffner et al., 1991, Scheffner et al., 1990, Doorbar, 2006). Together, low level E6 and E7 

activity allow terminally differentiating cells to avoid differentiation and continue cycling. This 

both maintains the availability of S-phase cellular factors required for viral genome replication 

and increases the number of cells producing progeny HPV virions (Middleton et al., 2003, 

Ruesch and Laimins, 1997, Stanley et al., 2007, Münger and Howley, 2002).  

P97 is responsible for transcription of E2. Low E2 concentration positively regulates P97 

activity whilst high E2 concentration negatively regulates P97 activity, as such P97 activity is 

essentially self regulating (Steger and Corbach, 1997). Regulated P97 activity results in a 

relatively constant level of the other viral gene products. E1 and E2 contribute to the 

maintenance of a relatively stable level of genome replication during viral maintenance in 

undifferentiated cells.  

1.1.2.2.2.1. Origin Identification and Initiation of DNA Replication 

HPV E1 proteins are highly conserved and recognise AT rich sequences at the HPV origin of 

replication. E1 alone has a weak DNA affinity. E2 binding sequences are located adjacent to E1 

recognition sites and allow E2 to direct the origin specific recruitment of E1 proteins (Sedman 

and Stenlund, 1998). Once an E1-E2-DNA complex is formed, E2 can be displaced in an ATP-

dependent step and additional E1 molecules are added to form an active E1 hexamer. E2 

effectively directs the formation of a DNA specific E1 complex to the viral origin (Sanders and 

Stenlund, 1998).  

E1 proteins exhibit both ATPase and 3'-5' helicase activities, bind DNA polymerase α/primase 

and aid the recruitment of other cellular replication complexes to the viral origin of replication 

(Longworth and Laimins, 2004, Lin et al., 2002, Conger et al., 1999, Hughes and Romanos, 

1993). Helicase activity at the origin of replication allows the unwinding and separation of the 

two complementary strands of a supercoiled DNA double helix, exposing the base sequence to 

the relevant DNA replication machinery (Sedman and Stenlund, 1998). Purified E1 protein has 

been shown to elicit efficient DNA unwinding in vitro and requires topoisomerase I, single-
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stranded-DNA-binding protein, ATP and supercoiled DNA as a substrate (Lin et al., 2002, 

Conger et al., 1999). 

1.1.2.2.3. Genome Amplification 

Premature keratinocytes, including those infected with HPV, progress further into the 

suprabasal layers of the epithelial tissue. Upon detachment from the basement membrane, 

epithelial cells begin to terminally differentiate and exit the cell cycle (Madison, 2003, Stanley 

et al., 2007). In more terminally differentiated cells, activation of the E2 independent late 

promoter (P670 in HPV16) results in increased levels of the proteins involved in DNA 

replication (E1, E2, E4 and E5) (Spink and Laimins, 2005, Grassmann et al., 1996, Klumpp and 

Laimins, 1999). The HPV early and late promoters are not exclusively involved in early/late 

gene expression, each promoter can fulfil some functions of the other (Spink and Laimins, 

2005). As a result of increased early protein levels, vegetative viral DNA replication occurs and 

results in a viral copy number of at least 1,000 copies per cell (Flores and Lambert, 1997).  

1.1.2.2.4. Viral Encapsidation and Release 

Whilst L1/L2 pre-mRNA can be detected in less terminally differentiated cells, L1 and L2 

protein is only detectable in highly differentiated cells (Stoler et al., 1989). A variety of post-

transcriptional regulatory mechanisms are implicated in the apparent lack of translation of the 

late mRNAs.  

L1 and L2 proteins accumulate following genome amplification. Viral assembly is the result of 

the coordinated associations between viral DNA, L1, L2 and E2 proteins and human proteins 

(Doorbar, 2006). HPV cannot lyse infected cells. Instead, HPV utilises desquamation of 

epithelial cells to facilitate the spread of infective virions (Woodman et al., 2007, Flores et al., 

1999). HPV E4 protein may be involved in final release of HPV virions through involvement in 

processes which result in destabilisation of cellular keratin networks and disruption of the 

cornified envelope (Doorbar et al., 1991, Bryan and Brown, 2000).  

 

1.1.3. HPV Genome and Gene Products 

1.1.3.1. The Long Control Region 

The LCR of HPV varies between types, however most HPV LCRs contain binding sites for the 

same subset of factors, the most significant of which appear to be YY1, CDP, Ap1, Sp1 and TBP 

(Spink and Laimins, 2005, O'Connor et al., 2000, Ai et al., 2000). For the promoter region, YY1 

and CDP binding is associated with repression of P97. The expression of YY1 and CDP decreases 

upon differentiation alleviating these repressive effects (O'Connor et al., 1996, O'Connor et al., 
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2000). The viral enhancer contains several Ap1 binding sites. Ap1 expression and abundance 

varies with cellular differentiation and binding of the viral enhancer is altered as a result 

(Thierry et al., 1992, Sen et al., 2004). 

Specific cell factors bind the HPV LCR and are responsible for the tissue specific tropisms 

exhibited by HPV (Apt et al., 1993). Four palindromic E2BSs (E2 binding site; consensus 

sequence, 5’-ACCN6GGT-3’) upstream of the promoter are bound by E2, regulating P97 activity 

(Howley and Lowy, 2006). Three of the four HPV E2BSs; E2BS2, E2BS3 and E2BS4 are involved in 

HPV16 P97 repression (Figure 1.2). E2 functions as a transcriptional repressor of P97 by 

competing with cellular transcription factors for binding sites (Romanczuk et al., 1990). E2 

bound to E2BS4 for example prevents the binding to an adjacent TATA box by the TFIID 

complex (binding mediated by the TBP (TATA box binding protein) subunit) (Dostatni et al., 

1991) and may affect the stability of the preinitiation complex once TBP binding has occurred 

(Hou et al., 2000). P97 activation is functionally dependent on Sp1 binding. The Sp1 binding site 

is separated by only a single nucleotide from E2BS3 (Gloss and Bernard, 1990). E2 binding at 

E2BS3 can displace Sp1 and any associated TBP from the adjacent Sp1 binding site (Tan et al., 

1994, Emili et al., 1994). E2 binding at E2BS1 increases early gene expression (Steger and 

Corbach, 1997, Dong et al., 1994) by stimulating YY1 function at the adjacent YY1 binding site 

(Tan et al., 2003). 

 

 

Figure 1.2: Diagram of the HPV16 LCR including binding positions of several HPV and human cellular 
factors.  

Adapted from (Snellenberg et al., 2012). There are four E2BSs within the HPV16. Binding sites for 
Specificity factor 1 (Sp1), Ying Yang 1 (YY1), Transcription Factor I (TFI), Nuclear Factor (NFI) Activator 
Protein 1 (AP1), Transcription Factor IID (TFIID) are shown. 

 

E2BSs also function in genome replication with E2BS2 playing a major role in terms of E1 origin 

recruitment (Badal et al., 2003, Tan et al., 1994). The affinity of E2 for the repressive E2BS is 
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much lower than the affinity of E2 for the transcriptional activator E2BS1. E2 has high affinity 

for E2BS1, E2BS1 is located several hundred bp upstream of the promoter and E2 binding to 

E2BS1 increases promoter activity (Demeret et al., 1998). Thus, low concentrations of E2 will 

stimulate E6 and E7 transcription whereas high concentrations of E2 repress transcription 

(Steger and Corbach, 1997, Badal et al., 2003). 

Histone Deacetylase (HDAC) activity at the HPV genome results in histone deacetylation and 

specific positioning of two nucleosomes over the viral enhancer and promoter that can inhibit 

promoter function (O'Connor et al., 2000, Stunkel and Bernard, 1999). A series of nuclear 

matrix attachment regions are also present in the HPV16 LCR which are thought to be 

responsible for altering the topology of the DNA and HPV gene expression in association with 

HPV integration (Stunkel et al., 2000). Methylation of cytosine residues has also been shown to 

repress viral and cellular gene expression as methylated DNA can result in the displacement of 

transcription factors and the alteration of chromatin configuration via the focusing of HDAC 

activity (Kalantari et al., 2004). 

In summary, the LCR is responsible for regulating HPV early gene expression and is affected by 

a multitude of factors, both HPV and human in origin. 
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1.1.3.2. Post-Transcriptional Regulation of HPV Gene Expression 

HPV transcripts originating from P97 are polycistronic and typically contain three exons and 

two introns. Variable splicing of transcripts leads to early mRNA transcripts with a range of 

coding potential (Figure 1.3) (Zheng and Baker, 2006). Papillomaviruses further utilise 

inefficient splice signals to differentially express early viral proteins throughout the HPV 

lifecycle (Zheng and Baker, 2006). 

 

 

Figure 1.3: Early splice variants originating from the P97 promoter. 

Adapted from (Zheng and Baker, 2006). A variety of potential splice variants exist; thin lines indicate 

regions spliced out, the coding potential of each spliced transcript is indicated on the right. 

 

As well as splice variants, translational inefficiency also appears to affect HPV gene expression. 

HPV transcripts are polycistronic, translation of downstream ORFs requires ribosomes to 

bypass upstream ORFs in order to translate downstream ORFs (Zheng and Baker, 2006). 

Several potential mechanisms have been proposed including translation reinitiation, leaky 

ribosome scanning and ribosome shunting across the transcripts (Remm et al., 1999, Sen et al., 

2004, Stacey et al., 2000, Zheng et al., 2004). The two most likely mechanisms appear to be 

leaky ribosomal scanning and translation reinitiation (Zheng et al., 2004, Remm et al., 1999, 

Longworth and Laimins, 2004). Leaky ribosome scanning means start codons towards the 5’ 

end of an mRNA are skipped and initiation of translation occurs via ribosomal binding at 

downstream start codons (Longworth and Laimins 2004; Remm et al. 1999). By this complex 
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mechanism, transcriptional regulation depends upon the position of an ORF on the 

polycistronic mRNA, with 5’ cistrons being translated with greater efficiency than 3’ cistrons. 

The HPV early promoter produces a transcript in the order 5’- E6, E7, E1, E2, E4, E5 - 3’ which 

would explain the almost negligible amounts of E4 and E5 protein produced (Remm et al., 

1999). As a consequence of differentiated cell optimised codon usage, late promoter activation 

and alternative splicing of late mRNAs, transcription and translation of the late gene products 

(L1 and L2) occurs (Zhou et al., 1995, Zhou et al., 1999, McPhillips et al., 2004, Stoler et al., 

1989). Various additional post-transcriptional regulatory mechanisms have also been 

proposed. A negative regulatory element in the 3’ regions of the HPV16 late (L1 and L2 

containing) mRNA transcripts negatively influences late gene expression, reduces the stability 

of mRNA species and binds cellular proteins (Howley and Lowy, 2006, Koffa et al., 2000). As an 

infected host cell undergoes cellular differentiation, the range and distribution of cellular 

factors fluctuates which may remove post-transcriptional repression of HPV late mRNAs 

permitting their translation (Koffa et al., 2000, Howley and Lowy, 2006). 

1.1.3.3. Viral Gene Products 

Each of the HPV gene products have additional functions that were not previously discussed 

but are pertinent to the role of HPV in HPV-associated carcinogenesis and require further 

consideration. 

1.1.3.3.1.  E1 and E2 

E1 proteins are comprised of three regions: an N-terminal region, a variable length spacer 

region and a large, highly conserved C-terminal region that has homology to characterised 

ATPases and helicases (Wilson et al., 2002). E1 displaces the H1 histone protein, suggesting 

that E1 can promote the initiation of replication and elongation by altering the viral chromatin 

structure and disrupting nucleosomes at the replication fork (Sedman and Stenlund, 1998). 

E2 protein function can be isolated to specific regions within the protein; for instance the C-

terminus DNA binding domain is a dimeric ß-barrel structure that bends DNA and interacts 

with E1, whilst the N-terminus contains a transactivation domain (Hegde et al., 1992, Chen and 

Stenlund, 2000). The E2 ORF can give rise to multiple E2 gene products e.g. the E2TA full length 

protein and the truncated E2TR polypeptides, Bovine Papillomavirus (BPV) studies also find an 

additional array of E8^E2TR polypeptides (Lambert et al., 1990, Kim et al., 2003). Truncated E2 

forms appear to repress full length E2 activity via competitive exclusion at E2BS or the 

formation of inactive heterodimers (Lambert et al., 1990). E2 is occasionally described as 

having a proapoptotic effect on the infected host cell. E2 expressing cells effectively repress E6 

and E7 expression, thus p53 is stabilised, p21 is activated and the cell cycle arrests at G1 



10 

 

(Blachon and Demeret, 2003). The repression of E6 and E7 by E2 also appears to be largely 

responsible for the cellular senescence exhibited by these arrested cells (Goodwin et al., 2000). 

In addition, several HrHPV E2 proteins when expressed ectopically induce a cell death with the 

characteristic features of apoptosis, independent of E2 DNA binding and functional 

transcriptional regulation of the oncogenes (Blachon and Demeret, 2003). The introduction of 

in vitro truncated E2 proteins efficiently induced apoptosis in HeLa cells (Blachon and Demeret, 

2003). 

1.1.3.3.2. E4 and E5 

In comparison to the other HPV encoded proteins, the roles of E4 and E5 are less well defined. 

HPV E5 is a small hydrophobic transmembrane protein primarily associated with the 

endoplasmic reticulum and the Golgi apparatus (Conrad et al., 1993). E5 overexpression for 

some, but not all, HPV inhibits the degradation of and increases the phosphorylation of 

Epidermal Growth Factor (EGF) receptors (Straight et al., 1993, Fehrmann et al., 2003). E5 

forms a complex with EGF receptors (Hwang et al., 1995) and binds cellular proteins in order to 

delay endosomal acidification (Genther et al., 2003, Conrad et al., 1993, Straight et al., 1995). 

This might indirectly influence the recycling of cell surface growth factor receptors, such that 

there is an increase in EGF-mediated receptor signalling. As a consequence of increased 

sensitivity to EGF, a replication competent environment is maintained in the otherwise 

differentiated layers of the epithelia, permitting genome amplification (Doorbar, 2006). HPV E5 

appears to have a minor role in genome amplification in the productive stages of a HPV 

infection. E5 mutants show fewer supraparabasal cells undergoing DNA synthesis in 

comparison to differentiation competent cell lines with wild type E5 (Genther et al., 2003). In 

terms of carcinogenesis, several roles of E5 could be relevant to early carcinogenesis by 

modulation of integrant selection, viral persistence, evasion of the host immune system and 

insensitivity to homeostatic growth control signals from neighbouring cells (Venuti et al., 2011) 

E4 is produced from a spliced mRNA transcript as an E1^E4 fusion protein, i.e. formed from the 

N-terminus of the E1 ORF product (first 5 amino acids) and most of the E4 ORF product 

(Longworth and Laimins, 2004, Roberts et al., 2008b). Transfection of keratinocytes with 

HPV16 genomes containing mutant E4, produces transformed cells that are incapable of 

completing viral amplification (Nakahara et al., 2005). The exact role of E4 in regulation of viral 

amplification is poorly defined, however due to the organisation of the HPV late polycistronic 

mRNA; late gene expression and thus productive virus replication coincides with a large 

increase in HPV E4 protein (Longworth and Laimins, 2004, Roberts et al., 2008b). 

Overexpressed HrHPV E1^E4 in cell lines can associate with cellular keratin networks, inducing 

their collapse (Doorbar et al., 1991), may interfere with cornified envelope formation (Bryan 
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and Brown, 2000) and may incite cellular apoptosis in differentiated cells via alteration of 

mitochondrial function (Raj et al., 2004); thus suggesting a role of E4 in viral egress (i.e. escape 

from desquamated keratinocytes) (Longworth and Laimins, 2004). It has also been 

hypothesised that the inhibition of cell cycle progression and DNA synthesis by coexpressed 

truncated E4 proteins serves to inhibit competing host DNA synthesis and favour viral genome 

amplification (Roberts et al., 2008b). 

1.1.3.3.3. E6 and E7 

HrHPV E6 and E7 oncoproteins (so named due to their implication in HPV induced 

carcinogenesis) can effectively transform cells upon transfection to form a hyperproliferative, 

immortal cell line. Both E6 and E7 are required to effectively transform cells (Hawley-Nelson et 

al., 1989, Giarre et al., 2001).  

Many of the cellular factors required by HPV for DNA synthesis are transcriptionally regulated 

through an E2F-dependent mechanism. In turn, the E2F family of transcription factors are 

regulated by pocket proteins such as pRb (retinoblastoma protein) whose regulation is 

determined by cyclical phosphorylation and dephosphorylation. E2F responsive genes 

(encoding e.g. DNA polymerase alpha, dihydrofolate reductase, thymidine kinase etc) are 

important for the progression through S-phase (Münger and Howley, 2002, Howley and Lowy, 

2006). 

Some of the key components of the following events are presented in Figure 1.4. 

Hypophosphorylated pRb (as found in G1 of the cell cycle) complexes with E2F in order to 

repress its activity as a transcription factor. Conversely, hyperphosphorylated pRb does not 

interact with E2F and E2F is free to transcriptionally activate the E2F responsive genes (Howley 

and Lowy 2006; Münger and Howley 2002; Pan and Griep 1994). Late in M-phase, 

hyperphosphorylated pRb is dephosphorylated and the E2F-pRb inactive transcription factor 

complex is reformed (Münger and Howley, 2002). An interesting and important role for HrHPV 

E7 is the proteolytic degradation of the retinoblastoma proteins pRb and related pRb family 

proteins p107 and p130 (Duensing and Münger, 2004).  
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Figure 1.4: E2F regulation in normal and HPV infected epithelium.  

E2F if negatively regulated by bound pRb. Phosphorylated pRb does not bind E2F and E2F are free to 
enhance the transcription of S-phase gene products. p16 represents a negative feedback loop and one 
consequence of E2F deregulation is enhanced p53 level. In HPV infected epithelia, deregulation of E2F 
is caused by E7 binding pRb whilst enhanced p53 level is counteracted by E6 mediated degradation of 
p53 protein. 

 

The E7 proteins of HrHPV types but not LrHPV types have a high affinity for pRb and target pRb 

for proteolytic degradation (Boyer et al., 1996, Gage et al., 1990). Proteasomal degradation of 

pRb prevents downregulation of E2F dependent genes, independent of cyclin dependent 

kinase activity. This results in increased expression of cyclin E and cyclin A and aberrant Cyclin 

dependent kinase 2 (Cdk2) activity (Duensing and Münger, 2004). Aberrant Cdk2 activity 

induces cellular transformation and the transcription of the G1/S-phase enzymes required for 

DNA replication in terminally differentiated cells (Münger and Howley, 2002, Doorbar, 2006). 

E7 expression is thus responsible for expression of DNA synthesis genes required for a 

productive HPV infection (Flores et al., 2000). 

The majority of cervical carcinomas exhibit increased levels of p16INK4a mRNA and protein as a 

result of E7 expression and E2F activation (Ivanova et al., 2007). p16INK4a acts as a repressor of 

cell cycle progression by inhibiting the phosphorylation of pRb. Most cervical carcinomas 

exhibit p16INK44a overexpression, to the degree that the detection of overexpressed p16INK4a has 

been widely proposed and tested as a potential biomarker of cervical disease (Ivanova et al., 

2007, Wentzensen et al., 2005, Lesnikova et al., 2009). 
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p21 is normally induced during keratinocyte differentiation. p21 reduces the activity of 

cyclin/Cdk2 complexes, negatively regulates cell cycle progression and can also bind to 

proliferating cell nuclear antigen. p21 may thus effectively block DNA synthesis in 

differentiated keratinocytes (Gartel and Radhakrishnan, 2005). A range of factors influence 

p21 cellular protein levels, most notably the activity of p53 tumour suppressor protein which is 

a major determinant of p21 transcription level. Downregulation of p53 activity results in 

reduced p21 activity (Gartel and Radhakrishnan, 2005). The induction of E2F by E7 mediated 

pRb deregulation may inadvertently stabilise p53 by compromising the action of mdm2 

(Münger and Howley, 2002). Thus the result of E7 activity is increased p53 protein which could 

result in an apoptotic response (Ruesch and Laimins, 1997).  

HrHPV E6 complexes with the cellular HECT domain E3 ubiquitin ligase E6-AP (E6 associated 

protein) to target p53 for ubiquitinylation. Ubiquitinylation of p53 leads to proteasomal 

degradation (Huibregtse et al. 1993; Snijders et al. 2006). The proteasomal degradation of p53, 

and inhibition of p21 by HrHPV E7 results in a decreased intracellular pool of active p53 and 

p21 (Gartel and Radhakrishnan, 2005, Münger and Howley, 2002). This significantly reduces 

the integrity of the G2 cell cycle checkpoint in response to DNA damage (Bunz et al., 1998) and 

the ability of p21 to orchestrate p53 mediated cell cycle arrest at the G1/S checkpoint 

(Waldman et al., 1995). The effect of HrHPV E6 and E7 activity on cell cycle controls effectively 

maintains a replication permissive background as required for genome amplification, late gene 

expression and the avoidance of apoptosis (Münger and Howley, 2002, Ruesch and Laimins, 

1997). 

The catalytic subunit of human Telomerase Reverse Transcriptase (hTERT) is expressed in cells 

such as stem cells that do not undergo replicative senescence. hTERT is a ribonucleoprotein 

polymerase and prevents telomere shortening with multiple cell divisions by the addition of 

the telomere repeat TTAGGG (NCBI, 2009). Somatic cells typically repress hTERT expression 

but hTERT activation is a common observation in cancerous cells (Cheng et al., 2008) and is 

required for cellular immortalization by HPV (Kiyono et al., 1998). HPV E6 indirectly promotes 

the activation of hTERT expression; hTERT is transcriptionally activated by the binding of c-Myc 

and Sp1 transcription factors to the hTERT promoter (Oh et al., 2001). p53 both represses MYC 

(the c-Myc gene) transcription and binds Sp1 thus preventing its access to the hTERT promoter; 

degradation of p53 by E6 activity effectively circumvents hTERT repression (Xu et al. 2000). E6 

also directly activates hTERT expression, the hTERT promoter repressor NFX1-91 is also 

targeted by E6 for proteasomal degradation and the ability of c-Myc to activate the hTERT 

promoter is increased in the presence of E6 (Xu et al., 2008, Liu et al., 2009, Veldman et al., 



14 

 

2003). Further, E6 associates with telomeric DNA and physically interacts with hTERT protein 

enhancing telomerase activity (Liu et al., 2009). Enhanced hTERT activity enables cancer cells 

to resist cellular senescence and undergo successive rounds of replication (Yugawa and Kiyono, 

2009). 

 

1.2. HPV and Cancer 
The causal link between HPV and cervical cancer was first postulated by Harald zur Hausen in 

the 1970s (zur Hausen et al., 1974, zur Hausen, 1976, zur Hausen, 1977). Since then, HPV DNA 

has been consistently identified in over 99% of cervical cancers and up to 94% of women with 

Cervical Intraepithelial Neoplasia (CIN) and the association between HPV and cancer is now 

firmly established (Scheurer et al., 2005).  

HPV are typically found in around 10% of normal cervical cytology samples, although the 

incidence of HPV infection varies with geographical location and some studies have identified 

HPV in up to 46% of the cytologically normal women studied (de Sanjose et al., 2007). Most 

(over 80%) of infections in the cervix with high risk HPV types (HrHPV) are likely to be 

transient, without resulting in CIN (Meijer et al., 2000).  

In 2008, the global incidence of cervical cancer in women was an estimated 529,000 cases, 

leading to 274,000 deaths. More than 85% of cervical cancer deaths occurred in developing 

countries where it is frequently the commonest cancer to affect women, accounting for 13% of 

all female cancers (W.H.O., 2010). Developing countries lack the resources and infrastructure 

to facilitate effective screening and prevention strategies, as well as lacking medical facilities 

for treatment. HPV is also linked to a large percentage of carcinomas and intraepithelial 

neoplasias of the vulva, vagina, anus, penis, and head and neck (Table 1.1) (Stanley, 2007). The 

majority of these cases also occur in developing countries. 
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Developed countries Developing countries 

Site 

Attributable 

to HPV (%) 

Total 

cancers 

Attributable 

to HPV 

Total 

cancers 

Attributable 

to HPV 

Cervix 100 83,400 83,400 409,400 409,400 

Penis 40 5,200 2,100 21,100 8,400 

Vulva, vagina 40 18,300 7,300 21,700 8,700 

Anus 90 14,500 13,100 15,900 14,300 

Mouth 3 91,200 2,700 183,100 5,500 

Oropharynx 12 24,400 2,900 27,700 3,300 

Other 0 4,779,100 0 5,148,600 0 

Total at all Sites   5,016,100 111,500 5,827,500 449,600 

Table 1.1: The incidence of a range of malignancies and the number of which are attributable to an 

infection with HPV.  

Adapted from (Stanley, 2007).The data is divided between occurrence in economically developed and 

developing countries. 

 

1.2.1. Risk Factors 

Several factors such as promiscuity, unprotected sexual encounters, early age of first sexual 

contact and relationships with high risk partners are more likely to result in infection with HPV 

(Braaten and Laufer, 2008, de Sanjose et al., 2007). Most cervical cancers arise at the 

squamocolumnar junction between the columnar epithelium of the endocervix and the 

squamous epithelium of the ectocervix (also known as the transformation zone) (Doorbar, 

2006). The transformation zone is a site of continuous metaplastic change where squamous 

epithelium is replaced with glandular columnar epithelium and vice versa, the greatest risk of 

infection correlates to periods of high metaplastic activity (Burd, 2003). Metaplastic changes of 

the cervix are at their greatest level at puberty and first pregnancy and the level declines after 

menopause. Age is an important determinant of risk of HPV infection and HPV-associated 

disease. HPV infection is most common in young, sexually active women between 18 and 30 

years of age, however cervical cancer is most common in women older than 35 years of age, 

indicating that persistent infection is associated with HPV mediated cervical carcinogenesis 

(Burd, 2003, Ho et al., 1995). A multitude of other factors such as race, low socioeconomic 

status, gender, tobacco use, oral contraceptive use and even a genetic determinant increase 

the risk that a given HPV infection will develop into a neoplasia (Braaten and Laufer, 2008, 

Frazer, 2009, de Sanjose et al., 2007). 

The host immune response is vital for protection against an HPV infection. Immunodeficient 

hosts show increased persistence and neoplastic progression of HPV-induced intraepithelial 

lesions in several instances (O'Brien and Saveria Campo, 2002). HIV mediated 
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immunosuppression for instance is associated with an increased risk of developing HSIL and 

carcinoma. Prior to the HIV epidemic, the incidence of anal cancer was estimated at 36.9 per 

100,000 among high risk groups. This incidence is similar to the incidence of cervical cancer 

prior to the widespread adoption of cervical cancer screening programmes (Arain et al., 2005). 

Since the beginning of the HIV epidemic, the incidence of anal Squamous Cell Carcinoma (SCC) 

and Anal Intraepithelial Neoplasia (AIN) have dramatically increased among homosexual males 

and anal SCC incidence in HIV positive populations is typically twice that of HIV negative 

populations (Arain et al., 2005). 

 

1.2.2. Detection of Cervical Intraepithelial Neoplasia 

The Papanicolaou (Pap) stain is a staining procedure that permits cervical epithelial cells to be 

cytologically examined for dysplastic changes, an indicator of the pre-malignant condition 

intraepithelial neoplasia. CIN can then be treated, thus preventing the development of cervical 

cancer. Cervical screening is widely regarded as the most successful cancer screening program 

in the world and has been attributed to reducing cervical cancer deaths by 50-75% (Nephew, 

2009, Etzioni et al., 2003, Kurman Rj and et al., 1994). Liquid Based Cytology (LBC) reduced the 

rate of inadequate samples and replaced the traditional Pap in England from 2003 (Albrow et 

al., 2012). Cervical SCCs are the most common histological type of cervical cancer. The classical 

model of HPV induced cervical carcinogenesis is that cervical carcinoma develops from CIN of 

increasing severity over the course of many years. However, some CIN2/3 lesions are thought 

to develop rapidly after initial HPV infection i.e. within three years (Sherman and Kelly, 1992). 

CIN is classified histologically based upon the degree of atypia and abnormality of squamous 

maturation of the epithelial cells layers (Snijders et al., 2006). 

Worldwide, cervical cytology results are reported using a variety of classifications. In the UK, 

cytology results are reported according to British Society for Clinical Cytology (BSCC) guidelines 

based on the presence and severity of dysplastic cell changes, ranging from normal, to 

borderline changes, mild dyskaryosis, moderate dyskaryosis and severe dyskaryosis (Figure 

1.5). Mild, moderate and severe dyskaryosis loosely correlate with CIN1, CIN2 and CIN3 on 

histological examination respectively (Snijders et al., 2006). 
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Figure 1.5: UK cervical cytological screening results in ascending order of severity.  

Adapted from (NHS Cervical Screening Programme, 2012). 

 

Whilst cytological examination determines the morphology of individual cells, biopsy of 

epithelial tissue allows the progression of atypical cells from basal epithelial layers to 

suprabasal differentiated epithelial layers to be detected and quantified by histological 

examination. The extent of atypical cells through the epithelium forms the basis for CIN 

grading; CIN1 indicates mild dysplasia (atypia of the lower third of the epithelium), CIN2 

indicates moderate dysplasia (atypia of up to the lower two thirds of the epithelium) and CIN3 

represents severe dysplasia (atypia of over two thirds of the epithelium) which is sometimes 

called carcinoma in situ (Figure 1.6). Other nomenclature includes Low grade Squamous 

Intraepithelial Lesion (LSIL) and High grade Squamous Intraepithelial Lesion (HSIL) which 

correspond to CIN1 and CIN2/3 respectively (Snijders et al., 2006).  

 

Figure 1.6: Schematic presentation of the classification of morphological alterations seen in cervical 

lesions.  

Adapted from (Snijders et al., 2006). 

 

Whilst cytological screening has been successful, a non-subjective molecular approach that 

includes HPV typing has been shown more sensitive for CIN2+, whilst allowing the study of HPV 
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epidemiology. A molecular based approach may also facilitate risk assessment for a given HPV 

infection. HPV based cervical screening would also be useful in assessing the effect of the 

prophylactic HPV vaccination programme (Hibbitts et al., 2008). 

 

1.2.3. Other Anogenital Neoplasias 

1.2.3.1. Genital Warts 

Various LrHPV types are also the causative agent of warts, including genital warts. Genital 

warts are primarily caused by HPV6 and HPV11 and are relatively common. In 2011, there 

were 76,071 cases of genital warts in England alone (Health Protection Agency, 2012, Lacey et 

al., 2006). 

1.2.3.2. Vulval Intraepithelial Neoplasia 

Several components of this investigation relied on the use of material from Vulval 

Intraepithelial Neoplasia (VIN) lesions. In the UK, VIN is typically graded histologically using a 

scale similar to that used for CIN (Figure 1.6). An additional means of VIN classification has 

been proposed to reflect the potential difference in aetiology between two types of VIN (usual 

and differentiated) and the inconsistent definition of VIN1 as a precursor of vulval cancer 

(Sideri et al., 2005) however it is not universally used in the UK.  

HPV-associated VIN is known as usual VIN (van de Nieuwenhof et al., 2008). Many (50-80%) 

vulval SCCs are not HPV-associated (JCNI, 2010, van de Nieuwenhof et al., 2009) and arise via a 

different route and premalignant phase to HPV-associated vulval SCC (van de Nieuwenhof et 

al., 2011, van de Nieuwenhof et al., 2008). Lichen sclerosus (LS) is a chronic inflammatory skin 

condition that affects both male and female patients, it is most common in the anogenital 

region of post-menopausal women (Tasker and Wojnarowska, 2003). LS is not typically 

associated with HPV infection (van de Nieuwenhof et al., 2008) and LS patients are on average, 

older than HPV-associated VIN patients (Bonvicini et al., 2005). A multitude of factors have 

been implicated in the aetiology of LS including several infectious agents, genetic 

predisposition, oestrogen level, vulval irritation and autoimmune disorders (van de 

Nieuwenhof et al., 2008). LS is associated with progression to SCC and progression is observed 

in 2-6% of cases. For most vulval SCC patients, LS can also be found in adjacent areas (Kagie et 

al., 1997, Leibowitch et al., 1990, Carli et al., 1995).  

Differentiated VIN is a rare diagnosis and its existence is disputed (McCluggage, 2009). When 

diagnosed, differentiated VIN usually occurs in a background of LS and whilst its aetiology is 

uncertain, it is not associated with HPV (Bonvicini et al., 2005). 
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1.2.4. HPV, the Immune System and the HPV Vaccine 

Both the innate and adaptive immune effector mechanisms are influenced by triggering of the 

innate immune mechanisms; dsRNA, ssDNA and foreign antigens either free or displayed by 

host cells are capable of initiating an immune response. The life cycle and gene expression of 

HPV however occurs within differentiating epithelial cells, there is no viraemic stage, no 

cellular lysis and virions are released by the desquamation of keratinised epithelial cells 

(Stanley, 2006b, Frazer, 2009). The immune system thus has limited opportunity to detect HPV 

infection and relies on the identification of cells displaying stress signals due to E6 and E7 

mediated cell cycle deregulation (Frazer, 2009). Hence the ability of the host to detect and 

subsequently clear an HPV infection is severely limited and HPV infections can be chronic and 

difficult to clear (Stanley, 2006b). Chronic HPV infection is associated with CIN and cancer (Ho 

et al., 1995, Stanley et al., 2007). 

In August 2008 the UK initiated a nationwide prophylactic vaccination programme for 

adolescent females, utilising the bivalent vaccine “Cervarix” manufactured by GlaxoSmithKline 

UK which provides protection against HPV16 and HPV18 induced anogenital neoplasia. The 

vaccine utilises Virus Like Particles (VLPs). In vitro L1 proteins spontaneously self assemble to 

form VLPs which are structurally very similar to HPV capsids (Hagensee et al., 1994). Several 

types of VLP can be constructed; L1 and L2 chimeric VLPs, L1 external chimera VLPs and L1 

internal chimera VLPs. L1 external chimeras (as used in Cervarix) and L1 and L2 mixed chimeras 

are structurally very similar. Internal chimeras of L1 are an interesting prospect as they could 

allow the incorporation and expression of polypeptides of other viral and cellular proteins into 

the VLPs, the polypeptides could be for instance HPV early gene products or even the gene 

products of another virus (Schiller and Lowy, 2000). L1 external chimeras induce a good 

humoral immune response, produce significant quantities of serum antibody and thus 

effectively confer some degree of resistance against HPV infection (Breitburd et al., 1995, Kahn 

and Burk, 2007). Cervarix contains equal quantities of L1 protein from HPV16 and HPV18, is 

administered in three stages over the course of six months (GlaxoSmithKline, 2008) and 

functions with a high efficacy against the target HPV types. The HPV18 L1 component also 

appears to offer some protection against HPV45 (Kahn and Burk, 2007). A quadrivalent vaccine 

manufactured by Merck (“Gardasil”) contains VLPs for HPV16, 18, 6 and 11 thereby conferring 

protection against HPV16 and 18 anogenital neoplasia and in addition, protection against 

LrHPV types 6 and 11 which are responsible for over 90% of genital warts (CDC, 2011). 
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1.2.5. Carcinogenesis 

In high grade cervical lesions, viral genome amplification and E6 and E7 oncogene expression 

occur closer to the epithelial surface than in low grade cervical lesions and expression of the 

late proteins is retarded (Middleton et al., 2003). The malignant transformation of a host cell is 

an accidental event that is atypical of the normal viral lifecycle, and is associated with 

persistent HPV infection (Ho et al., 1995). Malignant cells are incapable of viral amplification 

and late gene expression such that no new virions can be produced and the productive life 

cycle terminates (Münger and Howley, 2002). Several factors may stimulate oncogene 

deregulation, including viral integration and the mutation/deletion of transcriptional 

repressors (Badal et al., 2003). Deregulated and aberrant E6 and E7 expression in high grade 

disease results in the disruption of the usual cell cycle control mechanisms via the interaction 

of HPV proteins with a range of host factors including p53 and pRb. Essentially, p53 mediated 

DNA damage cell cycle controls cannot be enforced, cells resist apoptosis and the 

accumulation of mutations may go unchecked (Doorbar, 2006).  

Genomic instability is an early event in HPV induced carcinogenesis (zur Hausen, 1991) and 

results in alterations of chromosome number and localised structural anomalies (Duensing and 

Munger 2002; Heselmeyer et al. 1996). In the context of HPV induced cancers, some viral 

lifecycle and molecular events affect genomic stability which may lead to carcinogenesis. For 

example, E6 and E7 mediated degradation of p53 and pRb results in reduced ability to arrest in 

response to DNA damage (Thorland et al., 2003). 

Activity of the HPV E1 and E2 proteins from integrated HPV is associated with deletion of host 

DNA proximal to the integration site, the presence of multiple HPV genomes in the host 

genome may also generate sources of homology for homology dependent recombination 

resulting in genomic instability (Kadaja et al., 2007). The HPV E7 mediated induction of 

centrosome duplication results in supernumerary spindle poles (Duensing et al., 2000). E6 

mediated p53 degradation effectively represses DNA damage controls and cell cycle 

checkpoint integrity, such that aneuploid cells and cells with major genomic changes are not 

detected and/or apoptosed (Duensing et al., 2000). The improper detection and response to 

DNA breakage due to the action of E6 and E7 may lead to structural aberrations of the host cell 

chromosomes such as anaphase bridges. Anaphase bridges may result in the development of 

chromosomal rearrangements; translocations, duplications and deletions (Yugawa and Kiyono, 

2009). HPV E6 both directly and indirectly activates hTERT expression, and physically interacts 

with the hTERT protein enhancing its telomerase activity expression (Veldman et al., 2003, Liu 
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et al., 2009). Enhanced hTERT activity enables cancer cells to resist cellular senescence and 

undergo successive rounds of replication (Yugawa and Kiyono, 2009).  

The accumulation of mutations, genomic rearrangements and deletions in cells with 

deregulated DNA maintenance mechanisms and a lack of cellular senescence signals promotes 

selection of cells that exhibit deregulated cell cycle controls and thus a growth advantage. HPV 

integration typically leads to the retention of the E6 and E7 genes (Thorland et al., 2003) but 

loss of E1, E2 and other downstream sequences leading to the lack of E2 trans-acting 

repression of the P97 promoter (Howley and Lowy, 2006, Cricca et al., 2009). HPV integration 

also appears to influence E6 and E7 protein levels through the stabilising effects on the 

polycistronic E6 and E7 mRNA as a result of fusion of the E6 and E7 ORFs to downstream 

cellular DNA (Howley and Lowy, 2006). Integrated HPV E6/E7 transcripts often include 3' 

cellular untranslated sequences and polyadenylation signals, increasing the stability of the 

transcript (Klaes et al., 1999). Increased E6/E7 mRNA stability results in elevated E6 and E7 

translation, and thus increased levels of E6 and E7 oncoproteins which are considered 

important factors in HPV induced carcinogenesis (Jeon and Lambert, 1995).  

 

1.2.6. Viral Integration 

1.2.6.1. Integration is Associated with Disease 

Cell cultures with integrated HPV16 demonstrate a selective growth advantage over cells 

harbouring episomal HPV16 (Jeon et al., 1995) and the majority of cervical cancers contain 

integrated forms of HPV (Choo et al., 1987). HPV integration is often considered an early event 

in HPV induced carcinogenesis and frequently results in the loss of E2 and/or E1 (Arias-Pulido 

et al., 2006). Loss of E2 trans-acting repression of the LCR may correspond to the deregulated 

expression of E6 and E7 (Jeon and Lambert, 1995, Thierry, 2009, Romanczuk and Howley, 

1992, Rosl et al., 1993). HPV integration initially occurs within a background of episomal HPV, 

and therefore functional E2 protein produced by episomal HPV. Loss of E2 expression via 

episomal clearance might therefore be necessary for integration induced transformation and is 

a feature of certain cell lines (Pett et al., 2006, Pett and Coleman, 2007). HPV integration can 

also affect human gene expression; integrants were found proximal to the MYC locus in several 

HPV containing tumour cell lines, and as a result MYC was overexpressed (Herrick et al., 2005, 

Peter et al., 2006). 

HPV16 and HPV18 are more commonly integrated in more severe cervical disease; in cervical 

cancers, rates of integration of up to 80% and 100% are observed for HPV16 and HPV18 
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respectively (Corden et al., 1999, Cullen et al., 1991, Pirami et al., 1997, Melsheimer et al., 

2004, Arias-Pulido et al., 2006). There also appears to be a correlation between integration 

status and risk of CIN progression (Arias-Pulido et al., 2006). Nonetheless, a proportion of 

HPV16 induced cervical carcinomas are purely episomal, indicating that HPV16 integration is 

only one of several factors associated with an increased risk of progression. 

1.2.6.2. Aetiology of HPV Integration 

There are two main types of HPV integrants described during integration studies; single 

insertions and concatemeric insertions. These terms represent events where HPV genomes 

have integrated as individual copies (possibly at multiple sites) and as repeated concatemers 

integrated into the host cell genome respectively (Jeon and Lambert, 1995, Jeon et al., 1995). 

HPV integration by non-homologous end joining between the viral and host genomes is 

thought to be a random event, however HPV integration occurs most frequently at or close to 

common fragile sites (CFSs) (Dall et al., 2008, Thorland et al., 2003, Matovina et al., 2009). 

Nonetheless, no consensus sequence has been observed, and integration at similar sites in 

different tumours occurs within disparate sequences (Pett and Coleman, 2007). CFSs are 

unstable, recombinogenic chromosomal loci of the genome and are preferential sites for sister 

chromatid exchange, translocations, deletions, intrachromosomal gene amplification and 

integration of plasmid and oncogenic virus DNA (Smith et al. 1998; Thorland et al. 2003).  

Linear HPV genome fragments produced by defective viral replication of episomal HPV or 

dsDNA breaks may serve as templates for HPV integration into the host genome via non-

homologous end joining (Mannik et al., 2002, Kadaja et al., 2007). Once integrated, HPV origins 

are still targeted for amplification by episomal E1 and E2 proteins and can result in replication 

of the integrated HPV sequences and human sequences adjacent to HPV to produce 

homologous linear DNA sequences (Kadaja et al., 2007). Further recombination of these linear 

fragments with the host genome could result in DNA rearrangement, deletion and/or further 

integration (Kadaja et al., 2007, Pett et al., 2004), i.e. characteristics of cancers (Klausner, 

2002, Duensing and Münger, 2004).  

Whilst integration is very common in cancers, many cervical cancers and many more 

precancerous cervical lesions do not contain integrated HPV. Integration could be a result of 

oncogene deregulation and associated genomic instability, rather than a cause of deregulation 

and transformation. As such, an alternative means of initial deregulation may exist 

(Vinokurova and von Knebel Doeberitz, 2011). Epigenetics represents a series of potential 

alternative transforming events for a HPV infection. 
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1.2.7. Integration Study Techniques 

Integration of HPV DNA into the host genome is a very common event in HPV induced 

malignancies and has been proposed as a potential molecular biomarker of an increased risk of 

progression to cancer (Pett and Coleman, 2007).  

 

1.2.7.1. APOT 

Amplification of Papillomavirus Oncogene Transcripts (APOT) is an assay that permits the 

differentiation of HPV mRNAs produced by transcriptionally active integrated and episomal 

HPV genomes (Klaes et al., 1999). The technique amplifies HPV-human fusion transcripts that 

can be sequenced to allow the identification of human sequences at the 3’ end of viral 

oncogene transcripts (Figure 1.7). 

 

Figure 1.7: The APOT procedure. 

1; mRNA transcripts are reverse transcribed with an oligo dT primer with an adapter to form cDNA. If 
the HPV is integrated then there is a chance that a HPV-human fusion transcript will be produced with 
human sequence on the 3’ end of the transcript. 2; a primary PCR is performed on the cDNA using a 
primer specific to HPV E7 and a primer specific to the adapter sequence. 3; A second round of PCR is 
required using another E7 specific HPV primer downstream of the first and a reverse primer that is 
specific to the oligo dT primer sequence. 4; the resulting PCR products are separated by 
electrophoresis, excised and sequenced. Integrated sequences will contain both papillomavirus and 
human sequences and sequencing will allow the identification of the location of the integration 
events (Klaes et al., 1999). 
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1.2.7.2. RS-PCR 

Restriction site PCR (RS-PCR) is DNA based and uses a series of HPV specific primers and 

primers specific to the recognition sequence of several restriction enzymes. The restriction 

enzymes chosen are those without, or with only one restriction site within the HPV genome. 

The basis of this technique is that restriction sites are a common occurrence in the human 

genome and have a known sequence. As such, if one of the targeted restriction sites occurs in 

a human genome within close proximity of the integrated HPV it should be amplified by one of 

the PCR reactions (using a HPV specific and restriction site specific PCR primer) (Ragin et al., 

2004). 

1.2.7.3. E2 PCRs 

HPV16 integration frequently results in the disruption of the E2 gene (Baker et al., 1987). A 

simple method of detecting E2 disruption is to use overlapping PCRs that cover the whole E2 

gene (Collins et al., 2009). If E2 is disrupted then one or more of the PCR reactions will fail. It is 

important to consider that this method does not detect integration events where the E2 gene 

remains intact or integration events that have resulted in concatemeric HPV sequences (such 

as observed in CaSki) (Collins et al., 2009). Knowledge of E2 disruption is biologically relevant 

because of the important regulatory role of E2 (Collins et al., 2009, Baker et al., 1987). 

1.2.7.4. DIPS 

Detection of integrated papillomavirus sequences (DIPS) is DNA based. DIPS relies on cutting 

human DNA located 5’ to HPV DNA using restriction endonucleases, then ligating an adapter of 

known sequence to the sticky end (Figure 1.8). For integrated HPVs, the result would be HPV 

DNA at the 3’ end of the DNA, human DNA of unknown sequence at the 5’ end, but with an 

adapter of known sequence positioned at the very end. The ligated constructs are first 

amplified in a linear manner using a HPV specific primer, and then amplified in an exponential 

manner using a HPV primer and an adapter specific primer. These products are then separated 

by electrophoresis, the bands excised, purified and sequenced in order to identify both HPV and 

human sequence in the amplimers (Luft et al., 2001). 
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Figure 1.8: Schematic representation of the DIPS method.  

Adapted from (Luft et al., 2001, Ragin et al., 2004). 1; Possible structure of an integrated HPV genome. 
Dotted lines represent endonuclease restriction sites and grey triangles represent HPV specific primer 
sites. 2; Restriction of genomic DNA yields four classes of fragments, HPV only (B), human only (D) and 
both human and HPV (A and C). Episomal HPVs produce type B only. 3; Endonuclease specific dsDNA 
adapters (green arrows) are ligated to the restriction fragments which introduces PCR primer binding 
sites. 4; Linear PCR is performed using HPV specific primers to amplify fragment types A, B and C. 
Single stranded PCR products are generated. 5; An exponential nested PCR is performed using HPV 
specific and adapter specific primers to generate double stranded PCR products for sequencing. B type 
products are identified based on size and are not sequenced (Luft et al., 2001). 
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Chapter 2. Introduction: DNA Methylation and Epigenetics 
Epigenetic inheritance is defined as cellular information other than DNA sequence that is 

heritable during cell division. This includes DNA methylation, histone modification and 

nucleosome positioning (Feinberg and Tycko, 2004, Esteller, 2002). 

2.1. DNA Methylation 
DNA methylation is the covalent addition of a methyl group to the 5’ position of cytosine 

(Figure 2.1). In mammals, this normally occurs within cytosine-guanine dinucleotides (5’-CpG-

3’, also known as CpGs) and there is an overwhelming tendency for symmetrical methylation 

(i.e. methylation on both strands of the DNA) (Law and Jacobsen, 2010, Lister et al., 2009). 

DNA methylation outside of the CpG context is considerably less common. Non-CpG 

methylation at CHH and CHG (where H is A, C or T) has been described in stem cells, primarily 

within gene bodies, and correlates with gene expression (and is less common in protein 

binding sites and enhancers) (Lister et al., 2009). The role and mechanisms of non-CpG 

methylation within human cells are poorly understood but appear to be involved in 

pluripotency (Portela and Esteller, 2010). 

 

Figure 2.1: A schematic diagram of cytosine methylation. 

 

Timely and accurate DNA methylation is essential for the development and maturation of cells 

and organisms; more specifically for normal embryonic development, X-chromosome 

inactivation, genomic imprinting and the suppression of parasitic DNA sequences (Robertson 

and Jones, 2000). Many human diseases, including cancers, neurological diseases and 

autoimmune diseases occur as the result of untimely or inaccurate DNA methylation (Chen and 

Li, 2004, Zilberman et al., 2007). In vitro studies using mice with knockout mutations in genes 

involved in DNA methylation produced a range of defects as diverse as early developmental 

arrest, embryonic lethality, death at a young age, neural tube defects, abnormal behavioural 

patterns in adulthood, sterility, complex neurological defects, tendency to be overweight and 

issues surrounding X-inactivation (Li, 2002). 
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2.2. Histone Modification 
Histone modification is another well studied example of epigenetic information that plays an 

important role in development and gene expression (Portela and Esteller, 2010). There are 4 

core histones H2A, H2B, H3 and H4 that form a complex of two H2A-H2B dimers and one H3-

H4 tetramer to form the nucleosome (Luger et al., 1997). A length of 147 bp of DNA is 

wrapped around each nucleosome and there is a short stretch of linker DNA with an average 

length of 50 bp between adjacent nucleosomes (Figure 2.2). Histone H1 binds this linker DNA 

in order to seal off the nucleosomes where the DNA is exposed (Daujat et al., 2005). All of the 

histones can be chemically modified post-transcriptionally, these modifications occur mainly in 

the N-terminal tails and include acetylation, methylation, phosphorylation, ubiquitination and 

others (Portela and Esteller, 2010). Histone modifications are mediated by a similarly diverse 

array of enzymes, for example histone acetyltransferases (HATs), deacetylases (HDACs), 

methyltransferases (HMTs) and demethylases (HDMs), kinases and phosphatases, ubiquitin 

ligases and deubiquitinases, SUMO ligases and proteases (Rodriguez-Paredes and Esteller, 

2011). 

 

Figure 2.2: Diagram of DNA wrapped around nucleosomes.  

Adapted from (Luong, 2009).  

 

The presence, absence and interactions of histone modifications modulate chromatin 

conformation to influence the transcriptional activity of a DNA region. Transcriptionally active 

euchromatin and silenced heterochromatin are each characterised by a different subset of 

histone modifications (Rodriguez-Paredes and Esteller, 2011, de Ruijter et al., 2003). Similarly, 

gene expression microarray studies observe specific promoter histone modification profiles 

(especially modifications of H3 histones) that were predictive of transcription level (Karlic et 
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al., 2010). Abnormal histone modification profiles are also a hallmark of certain cancers (e.g. 

skin, prostate, and colon cancers) (Fraga et al., 2005, Esteller, 2007a). 

Many combinations of histone modifications have been defined with a variety of potential 

biological outcomes in a wide range of processes (Ernst and Kellis, 2010). To add to the 

complexity, there is also significant interplay between different epigenetic modifications, for 

example the DNA Methyltransferase (DNMT) DNMT3L specifically interacts with H3 histones, 

recruits other DNMTs and induces DNA methylation, this interaction is inhibited by 

methylation of lysine 4 of the H3 histone (Ooi et al., 2007). There are also several histone 

methyltransferases that recruit DNMTs and direct DNA methylation to specific regions of the 

genome, and several histone methyltransferases and demethylases can modulate the stability 

of DNMT proteins, regulating DNA methylation level (Portela and Esteller, 2010). The converse 

is also true in that DNA methylation can direct histone modifying enzymes (Portela and 

Esteller, 2010). In summary, histone modifications play a role in a diverse range of biological 

processes and abnormal histone modification profiles are a hallmark of cancer (Rodriguez-

Paredes and Esteller, 2011, Arico et al., 2011). 

 

2.3. The Role of DNA Methylation 

2.3.1. DNA Methylation and Early Development 

DNA methylation plays a crucial role in early development. Post-fertilisation, the maternal and 

paternal gamete genomes are epigenetically different and functionally non-equivalent (Surani 

et al., 1984, McGrath and Solter, 1984). This phenomenon is known as genomic imprinting and 

results in maternal/paternal specific allele expression for many genes (Reik and Walter, 2001).  

Genomic imprints are erased upon the formation of germ cells and a new imprinting profile is 

established. In somatic cells, genomic imprints are maintained and later modified during 

development (Reik and Walter, 2001). Abnormal genomic imprinting is implicated in several 

syndromes that result in developmental, sexual and mental deficiencies (i.e. Beckwith-

Wiedemann Syndrome, Prader-Willi syndrome and Angelman syndrome) and also numerous 

human cancers such as neuroblastoma, Acute Myeloblastic Leukemia (AML), Wilms' tumour, 

rhabdomyosarcoma, sporadic osteosarcoma and familial glomus tumours (Falls et al., 1999). 
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2.3.2. DNA Methylation and Cellular Differentiation 

Many genes involved in differentiation following cellular specialisation appear to be affected 

by DNA methylation. For example the Oct4 and Nanog genes, which regulate pluripotency are 

silenced by promoter hypermethylation in differentiated cells but are hypomethylated and 

expressed in germline cells (Hattori et al., 2004, Berdasco and Esteller, 2010, Hattori et al., 

2007). Indeed, several hundred genes have been identified in mouse and human studies that 

are differentially methylated in undifferentiated somatic tissues compared to differentiated 

germline tissues (Mohn et al., 2008, Schilling and Rehli, 2007). Nonetheless, the role of DNA 

methylation in the establishment and maintenance of cell-type-specific expression of 

developmentally regulated genes is not completely understood. Methylation of these genes in 

many instances was not negatively correlated with gene expression as might be expected 

(Eckhardt et al., 2006, Berdasco and Esteller, 2010). 

 

2.3.3. Mechanisms of DNA Methylation 

Methylation of mammalian CpG dinucleotides is mediated by a family of DNA-[cytosine-5] 

methyltransferases that catalyse the transfer of a methyl group from S-adenosyl methionine to 

cytosine residues in DNA. There are five DNMTs currently reported in humans, these are 

DNMT1, DNMT2, DNMT3A, DNMT3B and DNMT3L however only DNMT1, DNMT3A and 

DNMT3B possess methyltransferase activity (Portela and Esteller, 2010). DNMT1 is thought to 

function as the primary maintenance methyltransferase, and has a strong preference for 

hemimethylated CpG sites produced during DNA replication (Pradhan et al., 1999). This allows 

for replication of the existing methylation pattern onto newly synthesised DNA strands 

(Portela and Esteller, 2010, Chen and Li, 2004). The two de novo methyltransferases DNMT3A 

and DNMT3B (Chen and Riggs, 2011) act to establish the methylation patterns of the genome 

during gametogenesis, embryogenesis and somatic tissue development (Rodriguez-Osorio et 

al., 2010). 

Several diseases are caused by genetic defects in the DNA methylation machinery genes. The 

extremely rare condition Immunodeficiency, Centromere instability and Facial abnormality 

(ICF) syndrome and some cases of AML for example have been found to possess DNMT3B and 

DNMT3A mutations respectively (Ley et al., 2010, Jiang et al., 2005). Methylation is also 

important for early embryonic development; mammalian embryos deficient in DNMT3A/B do 

not survive (Okano et al., 1999). DNMT3L does not possess methyltransferase activity, but acts 

as a stimulatory factor for DNMT3A and DNMT3B (Zilberman et al., 2007). DNMT2 has very 
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little DNMT activity and does not appear to methylate DNA, but does methylate tRNAAsp (Goll 

et al., 2006). 

The distinction between the roles of DNMT3A/B and DNMT1 may not be as clear as once 

thought. A new model suggests a role for DNMT3A and DNMT3B in maintenance methylation 

and a role for DNMT1 in de novo methylation (Jones and Liang, 2009). In this model, DNMT1 is 

bound to Proliferating Cell Nuclear Antigen (PCNA) during DNA synthesis and is therefore 

directed towards the replication fork. In this position DNMT1 methylates the vast majority of 

newly synthesized hemimethylated daughter DNA strands. Rather than being located at the 

replication fork, DNMT3A and DNMT3B are bound to nucleosomes in areas of DNA 

methylation, in this position DNMT3A and DNMT3B act to maintain the methylation state in 

these areas and methylate hemimethylated CpGs missed by DNMT1 (Jones and Liang, 2009). 

DNA regions rich in CpGs are susceptible to a range of negative consequences including 

silencing by methylation and increased mutation rates (Bird and Wolffe, 1999, Jones, 1996, 

Jones et al., 2001). As such, most CpGs have been lost during evolution and only occur at 20% 

of their statistically expected frequency (Schorderet and Gartler, 1992, Badal et al., 2003). The 

evolutionary loss of CpGs is not however universal throughout the genome, some regions 

retain CpGs at a higher density. These regions, mostly 0.5 to several kb in length, are termed 

CpG islands (Robertson and Jones, 2000, Bird, 1986). CpG islands are defined as regions longer 

than 200 bp with a G+C content of over 50% and a ratio of observed to statistically expected 

CpG frequencies of at least 0.6 (Portela and Esteller, 2010). 

The increased rate of mutation for methylated DNA sequences is a result of the biochemistry 

of cytosine and methylcytosine nucleotides. Cytosine nucleotides will spontaneously undergo 

hydrolytic deamination to form uracil nucleotides. Because uracil is only normally found in 

RNA, it is easily detected and removed by the highly abundant and efficient Base Excision 

Repair (BER) enzyme uracil DNA glycosylase (UDG) (Robertson and Jones, 2000, Jones, 1996). 

Methylated cytosine (5-methylcytosine) however spontaneously deaminates to form thymine, 

a naturally occurring DNA base that is considerably more difficult to detect and repair via the 

thymine DNA glycosylase pathway (TDG). TDG mismatch repair is less efficient and up to 

several hundred times slower than UDG repair (Jiricny, 1996, Jones, 1996). The elevated rate of 

cytosine to thymine transitions for methylated residues is a source of increased mutability and 

over time has resulted in a decreased frequency of CpG dinucleotides (Jiricny, 1996).  
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2.4. Methylation of the Human Genome 
Most (up to 80%) of the CpGs in the human genome are highly methylated however those 

within CpG islands are typically less methylated (Takai and Jones, 2002). The human genome 

contains up to 45,000 CpG islands, most are found within or proximal to 5’ untranslated 

promoter regions or the first exons of genes (Antequera and Bird, 1993). CpGs are distributed 

such that up to 50% of the gene promoters in the human genome contain CpG islands (Bird, 

1986) and over 70% of gene promoters have been described as having a CpG density that is 

higher than the genome average (Saxonov et al., 2006). The maintenance of CpG islands might 

be either a requirement of high sequence fidelity (a large proportion of CpG islands are 

associated with housekeeping genes (Bird, 1986)) or a requirement for the region to be 

regulated by methylation. A variety of genes are under the control of promoters located within 

CpG islands, which importantly in the context of carcinogenesis, includes numerous genes 

involved in cell cycle control (e.g. ARF, INK4a, INK4b) (Esteller, 2002). CpG islands occur 

infrequently within the coding sequence of a gene and the 3’ region of genes; these CpG 

islands are more likely to become methylated than typical CpG islands and were assumed not 

to have an effect on the progression of the relevant RNA transcript (Bird, 1986, Jones, 1999). 

However more recent studies suggest that in some instances intragenic, or gene body, 

methylation can have a demonstrable effect on gene expression/protein translation (Lorincz et 

al., 2004). 

Provided that the relevant transcription factors are available, the unmethylated state of a 

typical CpG island permits an uncondensed chromatin structure that is favourable to 

transcription (Esteller, 2007b). A notable feature of CpG islands is the presence of acetylated 

H3 and H4 histones (forming the nucleosomes) and a distinct reduction of H1 linker histone 

resulting in the relaxed chromatin state (Tazi and Bird, 1990). The majority of CpG 

dinucleotides within the genome occur within mobile genetic elements and the ancestral 

remnants of a range of parasitic DNA sequences that comprise upwards of 40% of the entire 

human genome (Robertson and Wolffe, 2000). DNA methylation has been proposed as a 

mechanism evolved to silence the expression, mobility and thus the multiplication of such 

genetic elements. Silencing of these regions of DNA would be essential to prevent 

retrotransposon activity, and to maintain genomic structural integrity by preventing 

recombination between homologous sequences (Robertson and Wolffe, 2000). 

 



32 

 

2.4.1. DNA Methylation and Transcriptional Regulation 

DNA methylation plays a significant role in transcriptional regulation. The promoters of 

transcriptionally active genes are often located within or proximal to unmethylated CpG 

islands which when methylated can silence the expression of these genes (Eden and Cedar, 

1994). Typical CpG islands lack methylation at any stage of development and allow the 

expression of associated genes if the appropriate transcription factors are present and the 

chromatin structure is accessible (Esteller, 2002). A range of genes containing CpG islands are 

found to be hypermethylated in tumours, these include a number of cell cycle control genes 

and tumour suppressor genes (Robertson, 2001, Badal et al., 2003). 

Transcriptional repression due to DNA methylation may occur through several mechanisms, 

these include the inability of several transcription factors to bind methylated target sites (Bird 

and Wolffe 1999; Thain et al. 1996) and the alteration of chromatin conformation around 

binding sites or even entire gene promoters (Jones et al., 2001). The most direct method by 

which DNA methylation can affect transcription is the inhibition of binding of DNA binding 

proteins to their target sites (Kuroda et al., 2009). These proteins include the transcriptional 

machinery and transcription factors that require contact with cytosine in the major groove of 

the DNA double helix. Many mammalian transcription factors contain GC-rich binding sites and 

often contain CpGs within their DNA recognition elements (Bird and Wolffe, 1999). CpG 

methylation at transcription factor binding sites may impede the ability of a transcription 

factor to bind DNA however not all transcription factors are affected by methylation (i.e. Sp1) 

and there are some instances of highly methylated genes that are still transcribed (Bird and 

Wolffe, 1999).  

It is thought that transcriptional regulation through the inhibition of binding of transcription 

factors to methylated binding sites is a relatively rare event in the human genome (Weber et 

al., 2005, Li, 2002). For example the glial fibrillary acidic protein is activated during astrocyte 

differentiation by the demethylation of a CpG in a STAT3 (signal transducer and activator of 

transcription 3) binding element in its promoter region (Takizawa et al., 2001). Conversely, 

DNA methylation of a silencer element of the Igf2 (insulin like growth factor 2) gene blocks the 

binding of repressor proteins such that transcription from the promoter increases (Murrell et 

al., 2001).  

In order to transcribe a given region of DNA, the supercoiled tertiary structure must be relaxed 

to allow the necessary cellular enzymes access to the DNA. In the supercoiled state the genes 

within the DNA region are transcriptionally silenced. This supercoiled chromatin state is 

generated by the action of HDAC proteins on the nucleosomal histones of newly synthesised 
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DNAs (Jones et al., 2001). Histone deacetylation involves the removal of acetyl groups from 

lysine residues at the N-terminus of histone proteins; acetylated histones show a markedly 

reduced affinity for DNA (de Ruijter et al., 2003) permitting a more relaxed and accessible 

structure. Histone deacetylation therefore encourages the maintenance of a supercoiled 

structure by promoting the association between histone proteins and DNA, permitting DNA 

supercoiling. Repression by DNA methylation works by effectively targeting this HDAC activity 

towards specific areas of the genome which results in histone deacetylation, supercoiling and 

silencing of methylated regions (Burgers et al., 2002). DNMT1 (the maintenance methyl 

transferase active during DNA synthesis) is found at the replication forks, and the association 

between DNMT1 and HDAC2 (HDAC2 associates with the DNMT1 non-catalytic N-terminus) 

acts to direct HDAC activity towards newly synthesised DNA (Burgers et al., 2002). DNMT3A 

and DNMT3B also recruit HDACs to silence genes independent of their methyltransferase 

activity (Burgers et al., 2002). 

In addition to the association between the methyltransferases and HDACs, the HDAC complex 

can be directed to methylated DNA via proteins such as methyl-CpG binding proteins (de 

Ruijter et al., 2003). Two methyl-CpG binding proteins (MeCP1 and MeCP2) recruit HDAC 

complexes to areas containing methylcytosine in order to mediate transcriptional repression. 

MeCP2 is comprised of a methyl-CpG-binding domain which recognises methylated CpG 

dinucleotides and a transcriptional repression domain which represses transcription through 

an interaction with the cellular transcriptional protein TFIIB (Jones et al., 2001, Robertson and 

Wolffe, 2000). MeCP2 can bind to histone bound DNA and in some instances is responsible for 

H1 displacement. MeCP2 also recruits HDAC containing transcriptional repression complexes 

via its interaction with the Sin3A corepressor (Jones et al., 2001, Robertson and Wolffe, 2000). 

In summary, the recruitment of HDACs to methylated DNA sequences through various 

mechanisms results in histone deacetylation and chromatin condensation, a state of DNA that 

is inaccessible to the cellular transcription machinery. 

2.4.1.1. Intragenic Methylation 

Intragenic or gene body methylation was traditionally assumed to not affect transcription. 

Whilst this is still a poorly understood and considerably understudied area, more recent 

studies have shown otherwise. Intragenic methylation can have a significant effect on 

transcription elongation of mammalian transgenes, possibly as a result of an association with a 

more condensed chromatin state that reduces elongation efficiency (Lorincz et al., 2004). 

Intragenic methylation of Arabidopsis thaliana genes was also shown to inhibit transcriptional 

elongation. Gene body methylation in plant protoplasts was also seen to interfere with 
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elongation, especially if the methylation was close to the 5’ end (Hohn et al., 1996); this 

inhibition might be dependent on both the length and activity of the gene (Zilberman et al., 

2007). It is hypothesised that intragenic DNA methylation might prevent spurious initiation of 

transcription by preventing binding of transcription factors to gene body binding sites which 

might actually improve the transcription rate in some instances (Maunakea et al., 2010, 

Zilberman et al., 2007).  

The role of intragenic methylation in humans is poorly understood. Human intragenic 

methylation might also be associated with repression or enhancement of transcription 

depending on the precise nature of the genes in question. Gene body methylation and 

promoter hypomethylation are positively correlated with gene expression during X-

inactivation in early development. A similar scenario was observed in human B cells where it 

was also suggested that intragenic methylation might regulate the use of alternative human 

promoters (Hellman and Chess, 2007, Rauch et al., 2009). In a range of human tissues, 

promoter hypomethylation and gene body hypermethylation are associated with a higher rate 

of cell division (Aran et al., 2011). However data are contradictory regarding whether 

intragenic methylation is a cause or a consequence of high gene transcription (Shenker and 

Flanagan, 2012). Despite this, it is well established that aberrant DNA methylation of the 

human genome is associated with cancer and various roles (e.g. transcriptional regulation, 

suppression of non-coding RNA expression, cellular defence etc) could be assigned to aberrant 

intergenic, intragenic and promoter hypermethylation (Shenker and Flanagan, 2012). 

 

2.4.2. DNA Demethylation 

Aside from cancer cells, the genomic DNA methylation pattern of mature cells is usually 

considered to be a fixed state, recently however this has been questioned. DNA demethylation 

has been observed in several contexts and appears to be achieved by both an active and 

passive means (Wu and Zhang, 2010). Passive DNA demethylation occurs when the 

maintenance DNMT, DNMT1 is inhibited or absent during DNA replication. The newly 

synthesised DNA strands are not methylated which leads to gradual demethylation with cell 

division (Wu and Zhang, 2010). Passive demethylation is also observed due to exclusion of 

maternal DNMT1 from the nucleus during blastocyte development in a cell division dependent 

manner, however imprinted genes resist demethylation (Monk et al., 1987, Rougier et al., 

1998). The alternative to passive demethylation is the active demethylation of DNA as a result 

of enzymatic activity. The significance of active demethylation has been controversial (Ooi and 

Bestor, 2008).  
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Ramchandani et al proposed that DNA methylation is a dynamic state that is the result of the 

balance between DNA methylation and enzymatic demethylation (Ramchandani et al., 1999, 

Szyf et al., 2004). Active DNA demethylation is observed as a genome wide effect at specific 

times during early development and in more specific loci in somatic cells in response to various 

stimuli (Wu and Zhang, 2010). 

During fertilisation, genome wide demethylation is seen in the paternal pronuclei shortly after 

fertilisation, prior to the first cell division and is not affected by replication inhibitors, implying 

that an active demethylation event is responsible (Wu and Zhang, 2010, Mayer et al., 2000). As 

per passive demethylation, several regions of the genome are resistant to active 

demethylation (Santos et al., 2002, Rougier et al., 1998, Olek and Walter, 1997, Lane et al., 

2003). Experiments involving injecting sperm nuclei from one species into the eggs of others 

revealed that demethylation was variably species specific, but consistently paternal genome 

specific (Beaujean et al., 2004, Rougier et al., 1998, Barton et al., 2001, Santos et al., 2002). As 

well as global active demethylation, there are reports of active demethylation of specific loci, 

each of which were triggered by various stimuli and in the absence of DNA replication, thereby 

excluding passive demethylation (Szyf et al., 1985, Metivier et al., 2008, Kim et al., 2009, 

Gjerset and Martin, 1982, Hu et al., 2000). 

There are several putative demethylases, the most significant of which appears to be Methyl-

CpG Binding Domain protein 2 (MBD2). MBD2 has a methylcytosine binding domain with a 

propensity towards CpGs, MBD2 also has DNA demethylase activity towards 5-methyl cytosine 

(Hamm et al., 2008, Bhattacharya et al., 1999), and thus demethylase activity could be directed 

towards sites of CpG methylation. Other proposed mechanisms of active demethylation 

include BER, nucleotide excision repair, oxidative demethylation and radical S-

adenosylmethionine based demethylation. 

2.4.2.1. DNA Methylation as a Result of Chromatin Structure 

An extension of the theory that DNA methylation is a dynamic state is that DNA methylation 

may not be the cause of gene repression, but rather a consequence of other changes that lead 

to repression. Several observations support this theory. It is normally assumed that areas rich 

in DNA methylation are associated with protein complexes that result in histone modifications, 

repressing the DNA region. However histone modifications and the subsequent silencing of the 

tumour suppressor p16INK4a has been observed prior to and independently of DNA 

hypermethylation; suggesting that repressive chromatin structures could promote DNA 

methylation (Bachman et al., 2003).  
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Additionally, active chromatin formations may actively demethylate DNA; treating certain 

mammalian cell lines or Neurospora with histone deacetylase inhibitors (acetylated histones 

are associated with condensed chromatin structures) results in global genomic demethylation 

(Selker, 1998, Szyf et al., 1985). In summary, a bilateral relationship between DNA methylation 

and chromatin structure might exist, i.e. the presence of DNA methylation could affect 

chromatin structure however the chromatin structure could in turn have an effect on DNA 

methylation (Szyf et al., 2004). 

 

2.5. DNA Methylation and Cancer 
It is widely recognised that aberrant patterns of methylation and histone modification are a 

characteristic of many tumours. Cancer cells typically display a massive global reduction in 

methylation and have approximately 20-60% less methylcytosine than non-cancerous cells 

(Hellman and Chess, 2007, Rodriguez-Paredes and Esteller, 2011). Typically, tumour cells 

exhibit hypomethylation for most of the genome and hypermethylation of specific regions 

such as gene promoters (Robertson, 2001, Weber et al., 2005).  

A range of gene promoters, including promoters of cell cycle control, tumour suppressor and 

DNA repair genes (e.g. INK4a, INK4b, ARF, p73, APC, BRCA1, hMLH1, GSTP1, MGMT, CDH1, 

TIMP3 and DAPK) are found to be frequently hypermethylated in cancers, often in a conserved 

and characteristic manner for that cancer type (Esteller et al., 2001). Approx 100-400 

hypermethylated promoter CpG islands are found in any given tumour (Esteller, 2007a). The 

epigenetic repression of cell cycle control and DNA repair genes by DNA methylation may also 

predispose a cell to the accumulation of genetic mutations. For example, DNA 

hypermethylation associated inactivation of the DNA repair gene O6-MGMT (O6-

methylguanine-DNA methyltransferase) is a hallmark of some cancers (e.g. lymphomas, colon, 

head and neck and non-small-cell lung cancer) that results in the enhanced accumulation of G-

A point mutations (Esteller et al., 1999, Esteller and Herman, 2004).  

As well as promoter hypermethylation, abnormal hypomethylation has been linked to the 

activation of certain protooncogenes (Watt et al., 2000) and is also associated with various 

tumours (Wilson et al., 2007). Additionally, whilst tandemly repetitive DNA sequences in 

normal cells are silenced by hypermethylation (Robertson, 2001, Badal et al., 2003), in 

tumours these regions tend to be hypomethylated which may be associated with genomic 

instability (Deng et al., 2006, Rodriguez-Paredes and Esteller, 2011).  
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Epigenetic features typical of cancers are commonly seen in benign neoplasias and early stage 

tumours. Epigenetic deregulation therefore may precede the typical transforming events 

(tumour suppressor and/or protooncogene mutation and genomic instability) (Rodriguez-

Paredes and Esteller, 2011). Following mutation of one allele of a tumour suppressor gene, 

methylation might then be responsible for silencing the remaining functional allele and 

providing the second hit for cancer initiation (Rodriguez-Paredes and Esteller, 2011). BRCA1 

(Breast Cancer 1) for instance is frequently hypermethylated in ovarian and breast cancer 

(Esteller, 2002). 

2.5.1.1. Therapeutic Demethylation 

The DNA methylation profile of several cancers includes hypermethylation of specific CpG 

islands, many of which are known to be associated with tumour suppressor genes and other 

cell cycle control genes (Esteller, 2007a). The idea behind therapeutic demethylation is to 

relieve the repression of these regions by reducing the amount of DNA methylation, thereby 

elevating the levels of tumour suppressor gene products. Most demethylating agents are 

nucleotide analogues. A benefit of nucleotide analogues is that they are specifically targeted to 

cells undergoing DNA replication, i.e. cycling cells such as cancer cells. The most highly studied 

demethylating agents are analogues of cytidine and deoxycytidine, five of which are especially 

well characterised (Figure 2.3); 5-aza-2′-deoxycytidine, 5-azacytidine, 5′-fluoro-2′-

deoxycytidine and 2-Pyrimidone-1-β-D-riboside (Zebularine), all of which appear to have 

varying potential as anticancer agents (Cai et al., 2011). 5-azacytidine for instance is approved 

in several countries for the treatment of myelodysplastic syndrome (Cai et al., 2011), but has 

also been trialled against various solid tumours (Chik and Szyf, 2011). 

 

Figure 2.3: The chemical structure of deoxycytidine and several methylation inhibiting nucleoside 
analogues. 

 

Most nucleoside analogues appear to demethylate DNA via a similar mechanism (Cai et al., 

2011). 5-aza-2'-deoxycytidine is an analogue of 2′-deoxycytidine in which the 5-carbon of the 

pyrimidine ring has been replaced by nitrogen (Momparler, 2005). 5-aza-2'-deoxycytidine is 

rapidly taken into cultured cells and incorporated into the DNA, at sub-toxic doses this leads to 
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incorporation into newly synthesised DNAs (Momparler, 2005). When these new DNAs are 

bound by DNMT1 the 5-azacytosine ring in the 5-aza-2'-deoxycytidine residues become 

covalently and irreversibly bound to the DNMT1 enzyme, leading to a depleted cellular level of 

DNMT1 and passive DNA demethylation (Jüttermann et al., 1994). This demethylating effect is 

widely utilised to study the relationship between DNA methylation and gene suppression 

(Christman, 2002). 5-aza-2′-deoxycytidine also inhibits DNMT3B and leads to enhanced 

acetylation of histones H3 and H4 at promoter regions (Cai et al., 2011), treatment with 5-aza-

2'-deoxycytidine leads to demethylation and subsequent reactivation of silenced tumour 

suppressor genes and prometastatic genes (Chik and Szyf, 2011). In breast cancer cells, 

tumourigenicity is suppressed by the addition of 5-aza-2'-deoxycytidine and the alleviation of 

methylation of certain tumour suppressor genes (e.g. PDLIM2) (Qu et al., 2010). Breast cancer 

cell line work also suggests that 5-aza-2′-deoxycytidine could have a role in enhancing 

chemosensitivity of breast cancers to other anticancer agents (Mirza et al., 2010) 

In addition, a growing list of non-nucleoside based DNA methylation inhibitors are becoming 

available that inhibit DNA methylation by binding directly to the catalytic region of the DNMT, 

without first incorporating into DNA (Schuebel and Baylin, 2005, Chuang et al., 2005). 

However, very few non-nucleoside inhibitors have yet made it into clinical trials (Cai et al., 

2011). 

 

2.6. HPV and DNA Methylation 
HPV16 E7 has been shown to bind directly to DNMT1 (Burgers et al., 2007). This is significant 

as in addition to the transcriptional modulation associated with DNA methylation, DNMT1 

activity may also be intrinsically associated with carcinogenesis. Elevated DNMT1 activity 

effectively induces the transformation of mouse fibroblasts (Wu et al., 1993). Elevated DNMT1 

activity and mRNA levels have also been reported in various cancers (e.g. intestinal, colon and 

lung cancer) and inhibition of elevated DNMT1 is associated with suppression of 

tumourigenesis (Robertson, 2001, el-Deiry et al., 1991, Laird et al., 1995, Belinsky et al., 1996). 

Given the role of DNMT1 in the methylation of newly replicated DNA, its association with the 

maintenance of chromatin structure and its implication in carcinogenesis, it is interesting to 

note the observed interactions between cellular DNMT1 and HPV E7. HPV16 E7 binds directly 

to DNMT1 which is associated with an increased methyltransferase activity in vitro (Burgers et 

al., 2007). The action of E7 on DNMT1 is a potential mechanism of cellular transformation in 

addition to E7’s role in pRb degradation and may be implicated in the aberrant cellular CpG 
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methylation patterns observed for HPV induced cancers (Burgers et al., 2007, Robertson, 

2001). 

As per the human genome, the HPV genome also presents a low CpG frequency; the HPV18 

genome for instance is 7,857 bp in length and the expected CpG frequency is about 400 per 

genome, however the actual occurrence is only 172 (Badal et al., 2004). Similarly, the HPV16 

genome at 7,904 bp contains only 111 CpG dinucleotides (GenBank ID NC001526.1) suggesting 

that the evolutionary consequences of a genome susceptible to methylation are similar for 

both human and HPV genomes.  

Transcriptional regulation by methylation is an interesting concept for HPV biology as it 

provides another potential mechanism of HPV gene regulation. Both integrated and episomal 

HPV16 genomes are known to be methylated by the cellular methylation machinery and 

genomes that have been methylated in vitro are transcriptionally silenced, suggesting a 

potential role of methylation in viral gene regulation and/or a host defence mechanism acting 

to silence foreign DNAs (Badal et al., 2003, Rosl et al., 1993). In keeping with de novo 

methylation as a defence against foreign DNAs, recombination of HPV DNA into cellular 

chromosomes appears to incite DNA methylation whilst episomal forms of HPV and repetitive 

DNA sequences are also regarded as sites for DNA methylation (Yoder et al., 1997, Badal et al., 

2003). 

The methylation status of the HPV16 genome has been assessed in several studies and is seen 

to vary with several characteristics of the host cell/sample, including cellular differentiation, 

HPV integration and disease grade. The relationship between HPV methylation and a variety of 

disease characteristics has also been briefly considered from the perspective of biomarkers. 

Various techniques have been used to assess DNA methylation, including methylation specific 

PCR, bisulfite sequencing, methylation sensitive restriction enzymes, pyrosequencing and 

several others. 

2.6.1. HPV Methylation and Cellular Differentiation 

Investigations utilising laser capture microdissection showed that the methylation status of 

HPV16 correlated with the differentiation status of the host cell. HPV16 genomes (including 

the LCR) were typically hypomethylated in well differentiated cells and hypermethylated in less 

differentiated cells. The LCR in undifferentiated cells also commonly contained methylated 

E2BSs (Kalantari et al., 2008a, Vinokurova and von Knebel Doeberitz, 2011, Kim et al., 2003). 
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2.6.2. HPV Methylation and Disease Grade 

Several studies have investigated the relationship between HPV methylation and cervical 

disease, and have established that patterns and levels of HPV16 DNA methylation vary with 

disease grade. HPV16 in cervical cancer and precancerous CIN lesions have a different 

methylation state than HPV16 in lower grade disease, this is especially apparent in the L1 ORF 

and the LCR (Sun et al., 2011, Fernandez and Esteller, 2010). The HPV16 genome is typically 

observed to become more methylated with progression from low grade disease, to 

precancerous cervical lesions through to cervical carcinomas (Kalantari et al., 2004, Fernandez 

et al., 2009, Sun et al., 2011, Kalantari et al., 2009) although one study observed progressive 

hypomethylation (Badal et al., 2003). 

The changes in methylation observed are specific to regions of the HPV genome. The HPV LCR 

may remain hypomethylated with disease progression, however this is contentious. Several 

studies have reported that the HPV16 LCR remained, or became hypomethylated during 

progression to high grade disease (Badal et al., 2003, Hublarova et al., 2009, Patel et al., 2012, 

Piyathilake et al., 2011) whilst others reported LCR hypermethylation with high grade disease 

(Kalantari et al., 2004, Bhattacharjee and Sengupta, 2006a, Ding et al., 2009, Brandsma et al., 

2009, Hong et al., 2008). Similarly varied is the reported methylation status of the HPV16 LCR 

in HPV16 positive, but very low grade disease (i.e. LSIL/normal cytology/no CIN samples) 

where both LCR hypermethylation and hypomethylation have been reported (Hong et al., 

2008, Ding et al., 2009, Fernandez et al., 2009, Bhattacharjee and Sengupta, 2006a, Badal et 

al., 2003, Patel et al., 2012, Kalantari et al., 2004). Despite the variety of results, studies agree 

that HPV methylation is associated with disease grade and thus may be clinically useful. 

Each of the studies considers DNA methylation and disease grade from a different perspective, 

targeting different CpGs and using a variety of methylation assessment methods. Bisulfite 

sequencing can be performed non-quantitatively or semi-quantitatively by the cloning of PCR 

products prior to sequencing. The presence/absence of a cloning step might have a profound 

effect on the results (Badal et al., 2003, Fernandez et al., 2009, Kalantari et al., 2004). Recently, 

fewer bisulfite sequencing studies have been published without the cloning steps and the use 

of quantitative methods such as pyrosequencing has become more common. 

2.6.3. Integration and Methylation 

Whilst the methylation and integration status of several HPV-associated cell lines are quite 

widely reported, there have been relatively few studies that have assessed both DNA 

methylation and HPV integration in vivo. Methylation of the HPV genome was typically higher 

for clinical samples containing integrated HPV than for non-integrated samples (Fernandez et 
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al., 2009, Kalantari et al., 2008a, Kalantari et al., 2010). Fernandez et al considered integration 

and methylation in vitro and observed hypermethylation of most of the HPV genome (LCR, E6, 

E7, E5 and L1 excluded) to be associated with HPV integrating into the host genome of primary 

foreskin keratinocytes (Fernandez et al., 2009).  

Newly integrated HPV DNAs could be targeted by host methylation mechanisms, in order to 

maintain a transformed phenotype the continued expression of E6 and E7 is required. As such 

many regions (including the LCR) of single insertion integrants such as those observed in the 

SiHa cell line often lack methylated CpGs (Kalantari et al., 2008a, Kalantari et al., 2004, Badal et 

al., 2003, Fernandez et al., 2009). HPV genomes inserted as concatemers however are 

frequently heavily methylated. The cell line CaSki for example contains several hundred HPV16 

genomes inserted as concatemers at various host genome loci, and yet all but one is repressed 

by hypermethylation of the LCR which may reflect properties of the flanking human DNA 

(Kalantari et al., 2008a, Van Tine et al., 2004b, Kalantari et al., 2004, Fernandez et al., 2009).  

In an early in vitro study using the precancerous cervical disease cell line W12, Kalantari et al 

observed a relationship between HPV methylation and integration. High copy number 

integrants were typically hypermethylated in the regions tested whilst single copy integrants 

were hypomethylated (Kalantari et al., 2008a). This data formed the basis of a later study to 

identify a relationship between L1 methylation, integration and disease grade in a clinical 

cohort. A relationship was observed however there was considerable variation among the 

samples (Kalantari et al., 2010).  

There are not many studies that have considered both HPV integration and methylation, 

however de novo methylation of integrated DNAs other than HPV are well known. Upon 

integration, foreign DNAs including adenoviral, plasmid and bacteriophage DNAs are 

hypermethylated which may be a cellular defence mechanism to repress foreign DNA 

elements (Sutter et al., 1978, Orend et al., 1995, Heller et al., 1995, Doerfler, 2008). If a more 

robust relationship between HPV methylation and integration is established, human cells 

actively targeting foreign DNA elements for silencing by DNA methylation might be a suitable 

explanation (Doerfler et al., 2001, Doerfler, 2011). The cell differentiation status also appears 

to have minimal affect on the methylation status of the L1 and LCR of integrated HPV16, 

indicating a different methylation strategy for integrated HPV genomes (Kalantari et al., 

2008a). 
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2.6.4. Methylation of Other HPV Types and Disease Sites 

As well as HPV16 methylation in cervical samples, a small number of studies have considered 

methylation of other HPVs and HPVs in other anogenital sites. There was good agreement 

between the methylation studies in cervical disease, and those concerning penile carcinoma 

(Kalantari et al., 2008b), AIN and oral SCC (Balderas-Loaeza et al., 2007, Kalantari et al., 2008b, 

Wiley et al., 2005). There was also similarity between the results of HPV16 methylation in 

cervical lesions, and those for HPV18 in cervical lesions (Badal et al., 2004, Kalantari et al., 

2008b, Turan et al., 2007, Turan et al., 2006, Fernandez et al., 2009). 

The relationship between disease severity and hypermethylation is not specific to HPV. The 

dsDNA tumour causing viruses HBV (Hepatitis B Virus) and EBV (Epstein Barr Virus) also 

undergo progressive hypermethylation with increasing disease severity (Fernandez et al., 

2009). Both EBV and HBV have a latency period, and whilst HPV has no known latency stage, 

long term persistence is a feature of HPV that is associated with cervical disease. Progressive 

methylation of dsDNA tumour virus genomes indicates that foreign DNA is efficiently targeted 

for de novo methylation, or that methylation is involved in the latency mechanisms (Tao and 

Robertson, 2003, Fernandez et al., 2009, Vinokurova and von Knebel Doeberitz, 2011).  

2.6.5. Consequences of HPV Methylation 

The methylation state of the long control region is of particular interest due to its role in 

regulation of HPV gene expression and the known effects of DNA methylation on gene 

expression. Methylation of the LCR has been determined in multiple studies and it is usually 

found to be generally hypomethylated but with hypermethylation of the E2 binding sites in 

high grade disease/cancer (Fernandez et al., 2009, Brandsma et al., 2009, Sun et al., 2011, 

Kalantari et al., 2004, Kalantari et al., 2009).  

The LCR contains four E2BS and each E2BS contains two CpGs (Figure 1.2). Methylation of 

these E2BS CpGs prevents E2 binding, inhibition of E2 mediated P97 repression could 

potentially result in E6 and E7 deregulation, as required for cellular transformation and 

carcinogenesis (Fernandez et al., 2009, Thain et al., 1996). Whilst E2BS hypermethylation is 

likely associated with increased P97 activity, general LCR hypermethylation is likely associated 

with decreased P97 activity. The topological structure of the DNA may become altered through 

HDAC recruitment to methylated sequences, resulting in enhanced chromatin condensation 

(Burgers et al., 2002). A compact and inaccessible chromatin structure at the LCR could deny 

access to the multitude of cellular transcription factors that have binding sites in the LCR, 

negatively affecting HPV gene expression (Spink and Laimins, 2005, Stunkel et al., 2000, Ai et 

al., 2000). 
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The methylation status of a series of HPV16 positive primary cervical cancers was analysed. Of 

the samples without E2 deletion, the majority (6 of 8) were shown to contain hypermethylated 

E2BSs (Fernandez et al., 2009). Nonetheless, the data set was small and was determined using 

the imprecise Methylation Specific PCR (MS-PCR) method. Further study may confirm a role for 

E2BS methylation as an alternative route of E6 and E7 deregulation in episomal infections, or 

in integrated HPV infections where disruption of the E2 ORF has not resulted in the loss of E2 

mediated P97 repression (Fernandez et al., 2009). Sp1 binding to the LCR is essential for the 

activation of P97 (Tan et al., 1994), whilst E2 cannot bind to a methylated E2BS, Sp1 binding to 

the P97 enhancer region is not affected by methylation (Thain et al., 1996, Fernandez et al., 

2009, Harrington et al., 1988). As such, selective methylation of specific CpGs of the LCR might 

result in a variety of potential outcomes, i.e. P97 activity by specific CpG methylation or P97 

repression due to conformational changes of the chromatin structure. 

Even within the LCR, CpGs appear to be differentially methylated. For instance, the various 

E2BSs are differentially methylated, as are CpGs within the LCR but outside of the E2BSs 

(Vinokurova and von Knebel Doeberitz, 2011). The various CpGs of the early enhancer and 

promoter are frequently methylated to varying degrees (Vinokurova and von Knebel 

Doeberitz, 2011, Fernandez et al., 2009, Kalantari et al., 2004). The establishment and 

maintenance of the variable methylation patterns observed could plausibly be directed by the 

host cell or could be manipulated by HPV (Burgers et al., 2007, Vinokurova and von Knebel 

Doeberitz, 2011). 

Little research has been conducted to relate HPV gene expression with methylation status of 

the LCR. That which has been performed involved in vitro chemical demethylation of the CaSki 

cell line using nucleoside analogue methylation inhibitors, but the results have been varied. 

One study reported an increase in gene expression for some, but not all cells as a result of 

demethylation (Van Tine et al., 2004b) another a decrease in E6/E7 gene expression as a result 

of demethylation, thought to be the result of E2BS hypomethylation and subsequent E2 trans-

acting repression (Fernandez et al., 2009) whilst others reported no effect (Kalantari et al., 

2008a). In summary, the results of such experiments were inconclusive. 

HPV methylation could speculatively be either a cause of HPV gene silencing through 

interaction with the LCR, or a consequence of HPV oncoprotein activity. HPV oncogenes are 

known to influence the DNMTs and there are also suggestions that HPV methylation might be 

associated with persistent HPV infection in the absence of clinically relevant disease (Burgers 

et al., 2007, Wiley et al., 2005, Vinokurova and von Knebel Doeberitz, 2011). In both clinical 

and cell line material, where multiple integration events were present, transcription was 
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observed primarily from a single integrated HPV genome whilst the rest were repressed via 

DNA methylation (Fernandez et al., 2009, Rajeevan et al., 2006, Van Tine et al., 2004b). 

In summary, HPV methylation is varied across the genome and within the LCR and the 

potential effects of HPV methylation could be similarly varied. A range of sites are identified as 

differentially methylated in association with disease grade and integration state and whilst our 

understanding of HPV methylation is improving, it is far from complete. 

 

2.7. DNA Methylation Study Techniques 

There are a range of methods by which to study the quantity and location of methylated 

cytosines within a region of DNA. These methods include techniques based on bisulfite 

conversion, methylation sensitive restriction enzyme digestion and affinity purification of 

methylated DNA (Zilberman and Henikoff, 2007). Methylation sensitive restriction mapping of 

various sized DNAs has provided a means by which to assess methylation status, however the 

utilisation of sodium bisulfite as a cytosine deaminating agent has allowed the application of 

existing and novel technologies to the study of DNA methylation. 

2.7.1.1. Sodium Bisulfite Conversion 

The most commonly used methods for assessing DNA methylation depend on treatment of the 

DNA with sodium bisulfite (BS) (Figure 2.4). Cytosine nucleotides but not methylcytosine 

nucleotides will deaminate upon treatment with sodium bisulfite to form uracil. During PCR 

amplification uracil is recognised by DNA polymerases as thymine and as such, adenine 

residues will be incorporated onto any newly synthesised antisense DNA strand where uracil is 

found in the template strand. Upon successive rounds of PCR, cytosine nucleotides will be 

replaced by thymine nucleotides (Herman et al., 1996) and the result is that conserved 

cytosine residues indicate methylcytosines whilst those amplified as thymines indicate 

unmethylated cytosines (Frommer et al., 1992). Methylation status can then be assessed by a 

variety of analyses. 
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Figure 2.4: Bisulfite conversion of an unmethylated cytosine to uracil.  

Methylated cytosines are resistant to this conversion. 

 

2.7.1.2. Methylation Specific PCR 

MS-PCR utilises the annealing specificity of two different primer sets to selectively amplify a 

small region of either methylated or unmethylated bisulfite converted DNA (Herman et al., 

1996). If the primer set specific to the methylated sequence can anneal and a PCR product is 

produced, the area is considered methylated. Conversely, if no product is produced by the 

methylated primers but a product is produced by a PCR with the unmethylated primers the 

area is unmethylated. One of the limitations of this technique is that DNAs with a 

heterogeneous methylation pattern will provide positive results for both the methylated and 

unmethylated primer sets. The limitations of MS-PCR on heterogeneous DNA samples can be 

overcome by the use of a cloning step after bisulfite treatment and prior to MS-PCR on 

numerous cloned DNAs. This labour intensive step allows MS-PCR to produce semi-

quantitative methylation data and is known as quantitative MS-PCR or qMS-PCR. 

qMS-PCR is also used to describe the use of methylation specific TaqMan probes on non-

methylation-specific PCR products. TaqMan probes utilise the 5’-3’ exonuclease activity of the 

Taq DNA polymerase to degrade bound probes and release a detectable marker (Holland et al., 

1991). Methylated and unmethylated TaqMan probes labelled with different fluorophores are 

used to probe PCRs of BS treated DNAs, if binding is achieved, the fluorophore is released. 

Comparing the relative intensities of the methylated and unmethylated specific fluorophore 

allows quantitative assessment of the methylation state (Eads et al., 2000). 
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2.7.1.3. Bisulfite Sequencing 

Bisulfite sequencing is a commonly used technique that utilises conventional Sanger 

sequencing to determine the sequence, and therefore the methylation state of BS converted 

DNA. When bisulfite sequencing is used on a heterogeneous DNA mix (i.e. DNAs with a mix of 

methylation states), the sequencing results will contain both T and C peaks for a single position 

and only the highest chromatogram peak is reported. To combat this issue, cloning of the PCR 

products into a bacterial vector can be performed, individual clones grown and the vectors 

containing the cloned PCR products sequenced separately. This allows for semi-quantitative 

data to be produced and removes the weak banding peaks produced by partially methylated 

CpGs that are found in heterogeneous DNAs. The advantages of bisulfite sequencing are that 

the techniques are firmly established, widely used, the equipment required is widely available 

and the sequencing reads can also be several hundred bases long. The disadvantages are that 

the cloning steps are time consuming and laborious, the data is semi-quantitative at best (e.g. 

Six out of ten clones were methylated equals 60% methylation) and in order to get an accurate 

estimate of methylation a large number of clones are required, thus increasing the cost of 

reagents and labour. 

2.7.1.4. Pyrosequencing 

Pyrosequencing is a real-time sequencing technique whereby short sequences can be 

sequenced rapidly and quantitatively (Ronaghi et al., 1998). Figure 2.5 is a schematic 

representation of the pyrosequencing reaction. It is a sequencing by synthesis method that 

requires the iterative addition of each dNTP, if the dNTPs added are incorporated then light is 

produced by an enzymic reaction utilising luciferase (Ronaghi et al., 1998). The amount of light 

produced is proportional to the amount of dNTP incorporated. Automated devices are now 

used to control the addition of the dNTPs, the detection of light signals and the analysis of the 

pyrograms. Whilst pyrosequencing can be used to sequence completely unknown sequences, 

it is more suited for detecting and quantifying small changes in an otherwise known sequence 

as is required during SNP and DNA methylation analysis. Pyrosequencing is also functionally 

limited to smaller sequencing reads and is of limited use in whole genome studies where the 

lower throughput and short read length are undesirable (Ronaghi, 2001). 

Pyrosequencing is well suited for use in methylation studies as it provides quantitative 

methylation data on heterogeneous DNAs without the need for a cloning step. Recently, the 

cost of equipment and reagents has decreased considerably, and smaller sections of DNA can 

be sequenced very efficiently and with greater sensitivity than conventional Sanger 

sequencing. Compared to bisulfite sequencing with cloning, the cost of pyrosequencing is now 

very competitive. 
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Figure 2.5: Schematic diagram of the biochemistry of pyrosequencing.  

If the added dNTP does not correspond to the next base in the extending sequencing polymer then it 

is hydrolysed by apyrase to form a nucleoside monophosphate plus inorganic phosphate (Smith et al., 

2002, Ronaghi et al., 1998). If the dNTP is incorporated by DNA polymerase then the diphosphate (PPi) 

released during incorporation is used by sulfurylase to generate ATP, this ATP is subsequently used by 

luciferase to generate light. The amount of light produced is proportional to the number of dNTPs 

incorporated (Ronaghi et al., 1998). 

 

2.7.1.5. Miscellaneous Methylation Assays 

Less frequently used assays include some based on mass spectrometry (Ehrich et al., 2005) and 

methylation sensitive high resolution melting (Wojdacz and Dobrovic, 2007). Mass 

spectrometry is a novel approach that involves first producing an RNA transcript of the 

bisulfite treated/non-treated DNAs to be examined, followed by base specific RNase A 

cleavage at cytosine and uracil ribonucleotides (Ehrich et al., 2005). Varying cleavage patterns 

translate into a differing mass spectrum that are representative of the CpG methylation 

pattern of the source DNA (Ehrich et al., 2005).  

Methylation Sensitive High Resolution Melting (MS-HRM) utilises bisulfite induced sequence 

variation in order to determine the degree of DNA methylation (Wojdacz and Dobrovic, 2007). 

The temperature at which dsDNA melts to ssDNA is largely dependent on the length and GC 

content of the DNA sequence. The GC content of BS treated DNA is altered by the level of DNA 
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methylation such that methylated and unmethylated sequences can be differentiated by 

comparing melting temperatures (Wojdacz and Dobrovic, 2007).  

2.8. Biomarkers 

A biological marker (biomarker) is DNA, RNA, protein, protein modification or a metabolite 

that reflects a biological state. It is a characteristic that is objectively measured and evaluated 

as an indicator of normal biologic processes, pathogenic processes or pharmacologic responses 

to a therapeutic intervention (Nature Biotechology, 2010). 

Several types of biomarker have been defined (Cancer Research UK, 2012b). Diagnostic 

biomarkers indicate the type or stage of cancer. Predictive biomarkers are used to identify 

subpopulations of patients who are most likely to respond to a given therapy. Prognostic 

biomarkers indicate the likely course of disease and are used to estimate patient outcome. 

Screening/early detection biomarkers aid in identifying disease at an early stage in a screening 

environment. In the context of cervical disease, cytological screening for cervical cancer can be 

considered a screening biomarker. While a prognostic biomarker might for example, be used 

to identify which patients with low grade disease are likely to progress to high grade disease, 

regress to a disease free state or persist as low grade disease (Cancer Research UK, 2012b). 

2.8.1.1. How Biomarkers are Developed 

Guidelines in the form of a “roadmap” pertaining to the development of screening, diagnostic 

and predictive/prognostic biomarkers have been published (Cancer Research UK, 2012d, 

Cancer Research UK, 2012e, Cancer Research UK, 2012c). These roadmaps were produced in 

order to improve the quality of biomarker studies and are presented in Appendix I. The early 

stages of development for each type of biomarker are very similar and several criteria in the 

“rationale” section should be met before proceeding. Next, another series of criteria should be 

met prior to proceeding further with marker development. A prospective biomarker study 

should be mindful of good development practice when designing the study. For this study, two 

classes of biomarker have relevance; these are prognostic biomarkers and screening 

biomarkers (Appendix I).
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2.8.2. DNA Methylation as a Biomarker 

The 2008 UK introduction of an effective prophylactic HPV vaccine is likely to reduce the 

number of cytologically positive cervical samples and reduce the positive predictive value of 

cytological screening. HPV testing is more sensitive for detecting CIN than cytology and will be 

used in the UK, initially for triage of women with low grade cytological abnormalities and for 

test of cure following treatment for CIN (Cuzick et al., 2006). HPV testing has a greater 

negative predictive value, might allow use of self sampling (Katki et al., 2011, Brink et al., 2006) 

and eventually, HPV testing is likely to replace primary cytological screening in the UK. 

Nonetheless, HPV testing is considerably less specific than cytology and HPV testing alone 

would identify many transient infections and HPV infections with a low risk of progression 

(Wentzensen et al., 2009). As such, molecular markers of CIN and cervical cancer for use in 

conjunction with HPV testing would greatly improve the positive predictive value of HPV 

screening, may allow the identification of lesions likely to progress, and thus may improve the 

specificity of HPV testing (Nephew, 2009, Wentzensen et al., 2009). The ideal potential 

screening biomarkers are cellular and molecular characteristics associated with high grade 

cellular dysplasia and carcinoma that are not associated with low grade lesions and non-

infected tissues.  

Aberrant genomic DNA methylation has recently been the focus of much research as a 

potential molecular biomarker; it is a heritable marker that is present in 1-5% of all CpG islands 

in human tumours, is detectable and quantifiable and may be directly implicated in the onset 

of carcinogenesis (Nephew, 2009). DNA methylation shows considerable potential as a 

biomarker for several cancers. Lung cancer has been particularly well studied. A range of gene 

promoters are specifically hypermethylated in lung cancer, several of which have been further 

studied as early detection, predictive and prognostic biomarkers (e.g. RASSF1, CDKN2A, CYGB, 

EDNRB, RARbeta, MGMT, APC, DAPK, FHIT etc) (Liloglou et al., 2012). Many of these genes 

have also been identified for other tumour sites, for example melanoma (RASSF1, RARbeta) 

oesophageal (APC) and breast cancer (RASSF1, APC) biomarker studies (Muller et al., 2003, 

Mori et al., 2005, Kawakami et al., 2000). 

Numerous studies have focussed on both human and HPV DNA methylation as a marker for 

cervical cancer. The most promising human methylation markers appear to be CADM1 (cell 

adhesion molecule 1) and Mal (T-lymphocyte maturation associated protein). CADM1 and Mal 

are associated with later and earlier events in HPV-associated carcinogenesis respectively and 

both show promoter hypermethylation in cervical cancer (Steenbergen et al., 2004, Overmeer 

et al., 2009).  
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2.8.2.1. HPV Methylation as a Biomarker 

Whilst many studies have aimed to identify methylation differences between different grades 

of cervical disease (occasionally with conflicting results), fewer studies have attempted to 

evaluate the potential of HPV methylation as a biomarker of cervical disease. Brandsma et al 

identified patterns of DNA methylation that were associated with various disease grades. HPV 

genomic hypomethylation was associated with lower grade cervical disease (normal cytology 

and negative histology in most instances) and hypermethylation at several regions (E5, L1 and 

L2) was associated with higher grade disease in most instances however the sample size was 

very small (n=13) and there was considerable variation (Brandsma et al., 2009).  

Mirabello et al used a HPV genome wide approach on a large sample set (n=154) and identified 

numerous CpGs where methylation was significantly different between the disease grades 

studied. These CpGs were located primarily in the L1, L2 and E2/E4 regions although CpGs 

throughout other areas of the genome were also significantly associated with disease grade. L1 

and L2 methylation was deemed especially predictive of disease grade (Mirabello et al., 2012).  

Kalantari et al considered the potential of L1 methylation as a biomarker of cervical disease. 

There was an association between L1 methylation and integration, and the authors considered 

that integration could be a marker of disease progression (Kalantari et al., 2010). Nonetheless, 

the study had a small sample size (n=21) and there was a degree of variation. 

As previously discussed, DNA methylation of other HPV and HPV in other anogenital sites was 

largely concordant with HPV16 methylation in cervical specimens. This increases the likelihood 

of a cervical disease biomarker developed for HPV16 and CIN having wider clinical utility. 

 

2.8.2.2. Biomarker Investigation 

The earliest stages of biomarker development (Cancer Research UK, 2012d, Cancer Research 

UK, 2012e) concern assay design and the evaluation of variation within the prospective sample 

cohort (Appendix I). This investigation was mindful of these requirements during study design 

and method development. Several DNA methylation assays were trialled, methylation at 

various regions of the HPV genome was assessed and both the basic biology of HPV and the 

potential clinical utility of knowledge of HPV methylation were considered throughout. 
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2.9. Chapter Introductions  
In order to study the biology and potential clinical utility of HPV DNA methylation, four 

interrelated studies were devised, presented here as separate chapters. Method development 

is also presented as a short chapter. Aspects of each chapter are relevant to other chapters 

and the results of earlier studies influenced both the hypotheses and design of later studies. 

2.9.1.1. Method Development 

The first steps in this investigation were the development of assays to determine HPV 

methylation status and gene expression status of HPV. The major steps involved in method 

development of qPCR and pyrosequencing are detailed and discussed in this chapter. 

2.9.1.2. HPV Methylation and Disease Grade (the NSC Study) 

The relationship between HPV methylation and disease grade was determined. Three sample 

series were used, these were: Liquid Based Cytology (LBC) material displaying normal cytology, 

LBC material showing severe dyskaryosis, and formalin fixed cervical cancers. This study was 

primarily devised to determine the differences in DNA methylation between various stages of 

cervical disease and consider the potential clinical utility that a knowledge of HPV DNA 

methylation status may provide. In addition, this study constituted a means by which to 

facilitate further method development and compare data produced by pyrosequencing to 

published methylation data. 

2.9.1.3. HPV Methylation and Clinical Outcome (the CRISP Study) 

There is a distinct lack of longitudinal HPV methylation data in the literature. The CRISP study 

was proposed in order to relate HPV methylation of low grade cytological abnormalities with a 

variety of clinical outcomes 6 months later. Three groups of samples were extracted from a 

large cohort. The first group represented those patients that had cleared a HPV16 infection 

during the course of 6 months. The other two groups represented patients that had low grade 

histology at 6 months, or high grade histology at 6 months. This study allowed further 

elaboration of the potential clinical utility of HPV DNA methylation, and also allowed changes 

in HPV methylation over time to be considered. 

2.9.1.4. DNA Methylation, Integration and Gene Expression in vitro (the Cell 

Lines Study) 

The cell lines study included methylation assessment of a variety of HPV-associated human cell 

lines and was primarily designed to make use of a well characterised series of VIN/VAIN short 

term culture cell lines. The use of cell lines allowed the assessment of changes in methylation 

over time (i.e. with passages) and an in vitro assessment of the relationship between DNA 

methylation, integration and HPV gene expression. In addition to the short term culture cell 
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lines, a W12 cell line which underwent integration whilst in passage allowed the relationship 

between methylation and integration to be further investigated. This study examined the 

relationship between methylation, integration and gene expression in vivo. 

2.9.1.5. DNA Methylation, Integration and Gene Expression in vivo (the VR 

Study) 

The VR study utilised a series of predominantly VIN2/3 biopsies for which both DNA and RNA 

were available. HPV methylation, integration and gene expression assessment were performed 

and the relationship between these three characteristics was explored. Hypotheses generated 

in previous studies were tested here and differences/similarities between the studies were 

explored further. The VR study also permitted characterisation of the methylation status of the 

VIN2/3 series from the perspective of biomarker development and HPV type distribution. 

2.9.1.6. General Discussion 

Several aspects of the previous 5 chapters had broader relevance or commonalities among the 

studies. In order to avoid repetition, topics common to several chapters are discussed in the 

general discussion. 
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Chapter 3. Methods and Materials 
 

3.1. Methods 

3.1.1. Nucleic Acid Extraction 

Several methods of nucleic acid extraction from VIN biopsy material were used during this 

investigation.  

3.1.1.1. TRIzol DNA and RNA Extraction 

TRIzol Reagent (Invitrogen, Paisley, UK) extraction of DNA and RNA was performed for several 

VIN biopsy samples before an alternative VIN biopsy protocol was used. Biopsies were cut into 

pieces of 1 mm3 or smaller using a disposable sterile scalpel and placed into 1 ml of TRIzol. 

Biopsy material was then disrupted using a TissueRuptor (Qiagen, Hilden, Germany) at full 

speed for 20 s using disposable probe tips. Samples were incubated at room temperature for 

10 mins then 200 µl of chloroform was then added, mixed and the samples incubated for a 

further 5 mins at room temperature. 

Sample mixes were centrifuged for 15 mins (10,000 rpm, 4 °C). The aqueous phase was used 

for RNA extraction whilst the organic phase and interphase were used for DNA extraction. 

3.1.1.1.1. RNA Extraction 

To the aqueous phase, 500 µl of isopropanol (100%) and 1 µl of glycogen (20 mg/ml) were 

added the tube was then vortexed and incubated at -20 °C overnight before being centrifuged 

for 10 mins (8,000 rpm, 4 °C). The supernatant was discarded and 1 ml of 70% ethanol was 

added, vortexed and centrifuged for 10 mins (8,000 rpm, 4 °C). The supernatant was removed 

again before the pellet was air dried and resuspended in 28 µl of water. RNAs were later 

purified further using a NucleoSpin RNA Cleanup XS Kit (Machery-Nagel, Duren, Germany) 

performed according to manufacturer’s instructions and eluted into 30 µl of RNase free water. 

3.1.1.1.2. DNA Extraction 

After all of the aqueous phase was removed, 0.3 ml of 100% ethanol was added to the organic 

phase and interphase; this was mixed by inversion and incubated at room temperature for 5 

mins. Samples were then centrifuged for 10 mins (4,000 rpm, 4 °C). The supernatant was 

discarded and 1 ml of 0.1 M Sodium citrate in a 10% ethanol solution was added and incubated 

at room temperature for 30 mins with periodic mixing. The samples were centrifuged and the 

Sodium citrate wash and centrifugation steps were repeated. The supernatant was removed 

and the DNA pellet was allowed to air dry for 15 mins before being resuspended in 250 µl of 
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NaOH (8 mM) and 21.5 µl of HEPES (0.1 M). The mix was centrifuged at for 10 mins (10,000 

rpm) to collect cellular debris and the supernatant was removed for further purification. 

DNAs were further purified using the DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany) 

protocol. To the 271.5 µl sample, 180 µl of ATL buffer was added and the DNA purification 

from animal tissues, spin column protocol followed precisely from step 2 onwards (Handbook 

July/2006, p.29). The protocol involved binding of DNA to a spin column membrane, several 

washing steps and final elution into 2 x 100 µl of AE buffer. 

3.1.1.2. VIN RNA/DNA Extraction Protocol 

This protocol was adopted part way through the investigation as it was shown to produce 

higher quantity/quality DNA than TRIzol extraction during a small scale nucleic acid yield test. 

Two stages of nucleic acid extraction were performed, one stage using the RNeasy Fibrous 

Tissue Kit (Qiagen, Hilden, Germany) for RNA extraction and the other using the QIAamp DNA 

extraction kit (Qiagen, Hilden, Germany) for DNA extraction. Initial processing was performed 

using the RLT buffer from the RNeasy Kit. 

The biopsies were placed into locking microcentrifuge tubes and rinsed with 1 ml of sterile 

water. Tissue pieces larger than 3 mm in diameter were cut into pieces using a sterile scalpel 

to ensure efficient disruption. The water was aspirated and 360 μl buffer RLT (with 10 μl/ml β-

mercaptoethanol) was added to each tube. Biopsy samples were then disrupted using a 

TissueRuptor (Qiagen, Hilden, Germany) at full speed for 20 s using disposable probe tips. 

708 μl of RNase free water and 20 μl of proteinase K were added to the tissue suspension. This 

was followed by incubation at 55 °C for 10 mins before centrifugation for 3 mins (13,000 rpm) 

to form a pellet. A volume of 650 μl of the supernatant was transferred to a labelled tube and 

the remaining supernatant/cell pellet were resuspended and returned for further incubation at 

55 °C. The protocol then split into two stages, one each for the elution of RNA and DNA. 

3.1.1.2.1. RNA Extraction 

The RNA extraction stage used the 650 μl of supernatant processed previously. To the cleared 

lysate, 325 μl of ethanol (100%) was added and the solution was repeat pipetted to mix. The 

remainder of the extraction protocol was performed as per the instructions of the RNeasy 

Fibrous Tissue Mini Kit (Qiagen, Hilden, Germany), from step 10 onwards (Handbook Oct/2010, 

p.17). This consisted of washing the bound RNA with a series of buffer solutions and eluting in 

2 x 50 µl of water. 
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3.1.1.2.2. DNA Extraction 

Using the remaining cell pellet and lysate, DNA was extracted using the QIAamp DNA kit 

(Qiagen, Hilden, Germany). To each sample, 350 μl Buffer AL was added, mixed and incubated 

at 70 °C for 10 mins; 350 μl ethanol (100%) was then added to each sample. Up to 600 μl of 

supernatant was added to each spin column, which as then centrifuged at 13,000 rpm for one 

minute. The flow through was discarded and the remaining sample was added to the spin 

column and centrifuged. A new collection tube was used and the instructions of the QIAamp 

DNA kit, tissue extraction spin protocol were followed from step 8 onwards (Handbook 

April/2010, p.36). This consisted of washing the bound DNA with a series of buffer solutions 

and eluting in 2 x 100 μl of AE buffer. 

3.1.1.3. Qiagen AllPrep DNA/RNA Extraction Kit 

DNA and RNA were extracted from cell line material using the AllPrep DNA/RNA Mini kit 

(Qiagen, Hilden, German) according the manufacturer's instructions (animal cells protocol). 

Briefly, the protocol consisted of lysing the cells within the culture vessel. The lysate was then 

homogenised using a 20 gauge needle and a disposable syringe. DNA was then bound to a spin 

column, washed and eluted into 2 x 50 µl of Buffer EB. RNA was bound to a second column, 

washed and eluted into 2 x 50 µl of RNase free water. 

3.1.1.4. QIAamp MinElute Media Kit 

DNA was extracted from LBC material using the QIAamp MinElute Media kit (Qiagen, Hilden, 

Germany). LBC cell pellets were resuspended in 500 µl of TRIS (10 mM, pH 7.4) and a 100 µl 

aliquot was taken for DNA extraction. The remaining material was stored at -80 °C. To the 

sample, 150 µl of TRIS (10 mM, pH 7.4), 80 µl of ATL buffer and 20 µl of proteinase K were 

added and the mix was then incubated at 56 °C for 30 mins and periodically vortexed. Carrier 

RNA was prepared in AVE/AL buffer according to the instructions, 250 µl of AL (with carrier 

RNA) was added to the sample and after vortexing, incubated at 70 °C for 15 mins. 

To each sample, 300 µl of ethanol (100%) was added. The samples were then vortexed and 

incubated at room temperature for 5 mins. To each QIAamp MinElute column, 500 µl of lysate 

was added and centrifuged (8,000 rpm, 3 mins). The eluate was discarded and the remaining 

lysate was added and centrifuged. Bound DNAs were washed with 650 µl of AW2 and 

centrifuged (8,000 rpm, 3 mins) and then washed with 650 µl of ethanol and centrifuged 

(8,000 rpm, 3 mins). The collection tubes were emptied and the membranes were dried by 

centrifugation (13,000 rpm, 3 mins) followed by placing the column in a clean tube DNA/RNA 

and heating at 56 °C for 3 mins to evaporate residual ethanol. DNA was then eluted into 100 µl 

of AVE elution buffer (13,000 rpm, 3 mins). 
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3.1.2. General Techniques 

3.1.2.1. Nucleic Acid Concentration 

DNA and RNA concentration were quantified using a ND-1000 spectrophotometer (NanoDrop 

products, Wilmington, DE, USA). DNA/RNA (1.5 µl) was tested against a blank of DNA/RNA free 

elution buffer/water. 

3.1.2.2. RNA Handling 

RNA is highly susceptible to enzymatic degradation. Several aspects of this study included RNA 

work (qPCR, nucleic acid extraction, APOT). All RNA work was performed within a HEPA filtered 

PCR cabinet treated with 30 mins UV light and all surfaces and equipment were thoroughly 

treated with RNaseZAP (Sigma-Aldrich Company Ltd, Dorset, UK). Separate sets of 

reagents/consumables were used for RNA work and where applicable, equipment/materials 

were also treated with UV light. RNase/DNase free microcentrifuge tubes and pipette tips and 

DEPC treated or RNase free water were used throughout. 

3.1.2.3. DNA Handling 

DNA is susceptible to enzymatic degradation. PCR and DNA work were conducted in a HEPA 

filtered PCR cabinet sterilised between uses with 15 mins UV light. All water used for DNA/PCR 

was DNA grade water that had been further sterilised with UV light. DNase free tubes and 

pipette tips were used throughout. 

3.1.2.4. PCR 

PCR and gradient PCR were performed using Techne TC-412 and Techne TC-512 thermal 

cyclers (Bibby Scientific Ltd, Staffs, UK). 

 

3.1.3. HPV Typing: Greiner Bio-One PapilloCheck 

The PapilloCheck assay (Greiner Bio-One GmbH, Frickenhausen, Germany) allows the 

simultaneous identification of 24 HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 

59, 66, 68, 70, 73, 82, 6, 11, 40, 42, 43, and 44). The assay uses multiplex PCR with fluorescent 

primers to amplify a 350 bp fragment of the HPV E1 gene. HPV type specific sequences are 

then detected using a microarray consisting of 5 replicate spots of 28 probes. Hybridisation of 

PCR products to probes was then assessed using the CheckScanner array reader. Valid results 

were those which passed each of the numerous PapilloCheck internal controls (including DNA 

adequacy, sample inhibition, and hybridization). The assay includes amplification of the human 

ADAT1 gene in order to identify false negatives. The manufacturer’s instructions were followed 
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throughout. For each multiplex PCR reaction, 20 µl of PCR master mix (Table 3.1) was added to 

a 5 µl of sample DNA and run according to the PCR timing/temperatures in Table 3.2. 

 

 
1 reaction 13 reactions (1 chip) 

 Volume (µl) Volume (µl) 

PapilloCheck Master Mix 19.8 257.4 

HotStarTaq Polymerase (5 U/µl) 0.2 2.6 

Uracil-N-Glycosylase* 1 13 

Total volume  21 273 

Table 3.1: Greiner PapilloCheck PCR master mix recipe. 

Included are the volumes required for one reaction, or a chip of (n=13) reactions. * Uracil-N-
Glycosylase was first diluted 1/200 with sterile water. 

 

Temperature (°C) Time (s) Cycles 

95 900 1 

95 30   

55 25 40 

72 45   

95 30 15 

72 45   
Table 3.2: Greiner PapilloCheck PCR timing and temperature settings. 

 

Following PCR, PCR products were hybridised to DNA arrays and washed. Wash solution was 

prepared using 140 ml of distilled water, 14 ml of PapilloCheck buffer A and 1.75 ml of buffer 

B, mixed and then divided equally among three 50 ml falcon tubes labelled 1-3. Wash buffer 

tube 2 was heated to 50 °C before use. Five µl of PCR product was added to 30 µl of 

PapilloCheck hybridisation buffer. After mixing, 25 µl of the hybridisation mix was transferred 

to a compartment of the chip. The chip was incubated at room temperature in the 

PapilloCheck humidifier box for 15 mins. Three wash steps were then performed which 

involved vigorous agitation for 10 s in wash buffer tube 1, 60 s in tube 2, 10 s in tube 3 before 

drying by centrifugation. 

Chips were then scanned and data analysed using the GBP CheckScanner and the CheckReport 

Software as per the manufacturer’s instructions. 
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3.1.4. Quantitative Real Time Reverse Transcriptase PCR 

3.1.4.1. Reverse Transcription 

Prior to Reverse Transcription (RT), RNAs were DNase treated to remove residual DNA.  

3.1.4.1.1. DNase Treatment 

DNase treatment was performed using amplification grade DNase I (1 U/µl) and reaction 

buffer (Invitrogen, Paisley, UK). One µg RNA was treated using 1 µl of DNase I, 1 µl of 10x 

Reaction Buffer and DEPC treated water in a final volume of 10 µl. The reagents were mixed 

gently (DNase I is susceptible to physical denaturation) and then incubated at room 

temperature for 15 mins. Inactivation of DNase I was then performed by adding 1 µl of EDTA 

(25 mM) and incubating at 65 °C for 10 mins. 

3.1.4.1.2. Reverse Transcription (cDNA synthesis) 

RT was performed using random primers (hexamers) and the SuperScript III Reverse 

Transcriptase (RT) kit (Invitrogen, Paisley, UK). RT was performed using 1 µl of random primers 

(200 ng/µl), 0.5 µg of RNA (DNase treated), 1 µl of dNTP mix (10 mM) and RNase free water to 

13 µl. This mix was incubated at 65 °C for 5 mins, and then kept on ice for 1 min.  

The following components of the SuperScript III RT kit (Invitrogen, Paisley, UK) were then 

added: 4 µl of 5x First Strand Buffer, 1 µl of 0.1 M DTT (Dithiothreitol), 1 µl of RNaseOUT and 1 

µl of SuperScript III RT. This was mixed gently, incubated at 25 °C for 5 mins, 50 °C for 60 mins 

and then inactivated at 70 °C for 15 mins. To correct for undigested genomic DNA in later qPCR 

steps, all reactions were performed in duplicate using H20 instead of RT. 

3.1.4.2. qPCR Reaction Protocol 

Quantitative Real Time Reverse Transcriptase PCR (qRTRTPCR or qPCR) was performed using 

the LightCycler carousel-based qPCR system (Roche Applied Science, Mannheim, Germany). 

LightCycler DNA Master SYBR Green I reagent kits and LightCycler reaction capillary tubes 

(Roche Applied Science, Mannheim, Germany) were used. FS mix was produced by adding 10 

µl of LightCycler reagent 1a to a full vial of defrosted reagent 1b. After mixing, this reagent was 

kept at 4 °C and not refrozen. The qPCR master mix (Table 3.3) was prepared in a cooling block. 
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Primer pair 

 
E2/E6/HPRT E7 TBP2 

Reagent µl per reaction 

Forward primer (5 µM) 2 2 2 

Reverse primer (5 µM) 2 2 2 

FS Mix 2 2 2 

MgCl2 (25 mM) 1.6 2 2.4 

Water 10.4 10 9.6 

Template cDNA 2 2 2 

Table 3.3: qPCR master mix preparation protocol.  

The table represents the required reagents per reaction for each of the 5 primer pairs. 

 

18 µl of the qPCR master mix was dispensed into the top of each glass capillary tube, and then 

2 µl of the appropriate cDNA was added to each tube before a short centrifugation step (3,000 

rpm, 5 s) was performed. cDNAs from the RT reaction were typically diluted 1/10 for clinical 

samples and 1/100 for cell lines. Water was used as a negative control and all runs included 

1/100 CaSki cDNA in triplicate. To correct for undigested genomic DNA, RT negative controls 

were also run. 

The carousel was loaded with reaction capillaries, placed into the LightCycler and the PCR 

reaction performed according to the timing/temperature in Table 3.4. 

 
Temperature (°C) Time (s) Cycles 

Initial denaturation 95 600 1 

Denaturation 95 10 

 Primer annealing 58/60/62* 5 60 

Extension 72 5 
 

 
Temperature (°C) Rate of change (°C/s) Cycles 

Meting Curve 65-95 0.1 1 
Table 3.4: qPCR temperature and timing protocol.  

Details are listed for both the qPCR reaction and the subsequent melting curve. *Annealing 
temperatures were specific to each primer pair. E2 (58 °C), E6/HPRT/TBP (60 °C) and E7 (62 °C). 

 

3.1.4.2.1. Data Analysis 

The LightCycler software’s capacity for data analysis was limited. It does not allow for the 

analysis of data using calibration curves from more than one standard curve or from sample 

data run in duplicate. There were also RT negative controls which could not be accounted for 

in the analysis. Instead, calibration curves were produced (Chapter 4) and imported into the 

LightCycler software. The LightCycler software was then used to generate Ct values and 

express those values as CaSki cDNA concentrations (e.g. if a sample generated the same Ct as 

CaSki 1/10 cDNA, the calculated concentration would be 0.1).  
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The difference in calculated concentration between the RT positive and the RT negative 

samples was equal to the amount of signal attributable to cDNA, corrected for undigested 

genomic DNA. These values were converted back into Ct values and used for relative 

quantification. Relative quantification was performed with two reference genes using the PCR 

efficiency corrected equation described by Vandesompele et al (Vandesompele et al., 2002). 

This is discussed in greater detail in the methods development chapter (Chapter 4) 

3.1.4.3. Primer Sequences 

The qPCR primer sequences are detailed in Table 3.5. 

 HPRT 

Name Hypoxanthine guanine phosphoribosyl transferase (HPRT) 

Sense primer TGACACTGGCAAAACAATGCA 

Antisense primer GGTCCTTTTCACCAGCAAGCT 

Amplified DNA 4982 bp (nt 133627546-133632438 of Chr X) 

Amplified RNA 94 bp (nt 496-589 of M31642.1) 

Reference (Allen, Winters et al., 2008) 

TBP2 

Name TATA binding protein, 2nd pair of primers (TBP2) 

Sense primer TCAAACCCAGAATTGTTCTCCTTAT 

Antisense primer CCTGAATCCCTTTAGAATAGGGTAGA 

Amplified DNA 803 bp (nt 170880539-170881341 of Chr 6) 

Amplified RNA 122 bp (nt 1128-1224 of M55654.1) 

Reference (Minner and Poumay 2008) 

E6 

Sense primer CTGCAATGTTTCAGGACCCA 

Antisense primer TCATGTATAGTTGTTTGCAGCTCTGT 

Amplified DNA/RNA 80 bp (nt 99-178 of NC001526.1) 

Reference (Wang-Johanning, Lu et al., 2002) 

E7 

Sense primer AAGTGTGACTCTACGCTTCGGTT 

Antisense primer GCCCATTAACAGGTCTTCCAAA 

Amplified DNA/RNA 78 bp (nt 739-816 of NC001526.1) 

Reference (Wang-Johanning, Lu et al., 2002) 

E2 

Sense primer AACGAAGTATCCTCTCCTGAAATTATTAG 

Antisense primer CCAAGGCGACGGCTTTG 

Amplified DNA/RNA 82 bp (nt 3362-3426 of NC001526.1) 

Reference (Roberts, Ng et al., 2008) 

Table 3.5: qPCR primer sequences and original source for each primer pair.  

The primer sequences and source of the sequences are listed for each primer pair. For the human 
reference genes two amplicon lengths are given because the primer pairs are junction spanning, the 
mRNA amplicons are shorter than the DNA amplicons. Regions amplified are accompanied by 
GenBank ID. 
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3.1.5. Pyrosequencing 

3.1.5.1. Bisulfite Treatment 

Treatment of DNA with Sodium bisulfite (BS) was conducted using the EZ DNA Methylation Kit 

D5001 (Zymo Research Corporation, CA, USA). The protocol included modifications 

recommended by the manufacturer to improve conversion efficiency. Kit reagents were 

prepared by adding 24 ml of ethanol (100%) to the 6 ml of M-Wash Buffer concentrate, and by 

adding 750 µl of water and 210 µl of M-Dilution Buffer to a tube of CT Conversion Reagent. CT 

Conversion Reagent was then vortex mixed until required. 

Each reaction required 500 ng of DNA made up with H20 to 32.5 µl. For several low 

concentration DNA samples less than 500 ng was used. To each sample 7.5 µl of M-Dilution 

Buffer was added and incubated at 42 °C. After 30 mins of incubation, 97.5 µl of prepared CT 

Conversion Reagent was added to each reaction and the samples were incubated at 50 °C 

overnight (12-16 hrs). For negative controls, water was used in place of CT Conversion 

Reagent. 

After incubation, the samples were cooled on ice for 10 mins, loaded into Zymo-Spin columns 

containing 400 µl of M-Binding Buffer, mixed by inversion and centrifuged. All centrifugation 

steps were performed at 13,000 rpm for 30 s and collection tubes were emptied when 

necessary. Samples were washed by adding 100 µl of M-Wash Buffer and centrifuging the 

tubes. Desulphonation buffer (200 µl) was added and samples were incubated at room 

temperature for 15-20 mins before centrifugation. Final wash steps were performed by adding 

200 µl of M-Wash Buffer to each column and centrifuging this was performed twice. 

Finally, DNAs were eluted into 10 µl of M-Elution Buffer by centrifugation. 

3.1.5.2. Pyrosequencing PCR 

Pyrosequencing PCRs were performed in 50 μl reactions. Two μl of 1/10 diluted BS converted 

sample DNA was used for each PCR reaction using clinical DNAs. CaSki BS treated DNA was 

typically used at 1/100 dilution. ZymoTaq hot start DNA polymerase premix was used (Zymo 

Research Corporation, CA, USA). 

For each primer pair, the PCR reaction mixes are listed in Table 3.6. 
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 Primer pair 

 
E2 LCR1 LCR2 L1/L2 

Reagent Volume per 50 μl reaction (μl) 

ZymoTaq premix 25 25 25 25 

F primer (5 μM) 2 2 2 2 

R primer (5 μM) 2 2 2 2 

Water 17 16 16 16 

MgCl2 (25 mM) 2 3 3 3 

Template DNA 2 2 2 2 

    
 

    

Reaction [Mg2+] (mM) 2.75 3.25 3.25 3.25 
Table 3.6: Pyrosequencing PCR master mix recipes.  

Values in the table represent the volume required per reaction. Template DNA refers to appropriately 
diluted BS treated DNA. Final [Mg

2+
] refers to the final reaction concentration of Mg

2+
 ions in mM for 

each master mix. 

 

Into each well of a PCR plate, 48 μl of master mix and 2 μl of diluted BS treated DNA were 

pipetted. A negative control (water or BS negative controls) and a CaSki positive control were 

included for each primer pair. PCR was performed according to the timing and temperatures 

listed in Table 3.7. 

 
Temperature (°C) Time (s) Cycles 

Initial denaturation 95 600 1 

Denaturation 95 30 

 Primer annealing 48/51/54* 45 40 

Extension 72 30 
 Final extension 72 600 1 

Table 3.7: Pyrosequencing PCR temperature and timing protocol.  

*Annealing temperatures were specific to each primer pair. E2/LCR1 (48 °C), LCR2 (51 °C) and L1/L2 
(54 °C). 

 

3.1.5.3. Pyrosequencing Reaction 

Most equipment and reagents used for the pyrosequencing reaction were supplied by Qiagen 

(Qiagen, Hilden, Germany). This included the PyroMark Q96 ID Instrument, PyroMark CpG 

Software v1.0.11, PSQ96 Reagent Cartridges, PSQ Plate Low (PSQ reaction plates), PyroMark 

Q96 Vacuum Prep Workstation, PyroMark Gold Q96 Reagents, PyroMark buffer solutions. In 

addition, Streptavidin Sepharose beads (30% w/v) (GE Healthcare Life Sciences, 

Buckinghamshire, UK) were also required. 

3.1.5.3.1. Process 

PCR products were diluted by adding 27 μl of PCR product to 13 μl DNA grade water. The 

vacuum workstation was assembled and the trays were filled with the appropriate solutions 
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(Figure 3.1) (1/10 diluted wash buffer, 70% ethanol, water (deionised and autoclaved), 

denaturation buffer). 

 

 

Figure 3.1: The correct tray and plate positions on the PyroMark Q96 Vacuum Prep Workstation. 

 

The vacuum prep tool head was rinsed through with clean water for 20 s. Details of the 

reaction and samples were inputted into the PyroMark CpG Software.  

Pyrosequencing PCR was performed using a biotin labelled primer. PCR products were 

immobilised by adding 1.75 µl of streptavidin sepharose bead suspension and 38.25 µl of 

PyroMark Binding Buffer per reaction. The mixes were then shaken on a shaking hot plate for 

at least 5 mins (1,400 rpm, 22 °C). Sequencing primers were made up by diluting (per reaction) 

1.5 μl of 10 μM sequencing primer with 43.5 μl of PyroMark Annealing Buffer. Into each well of 

a PSQ reaction plate, 45 μl of sequencing primer mix was dispensed and the plate was placed 

into the correct compartment of the vacuum workstation (Figure 3.1). 

The PCR product/sepharose bead mix was removed from the hotplate and placed into the 

correct position on the vacuum workstation. Within 30 s of cessation of shaking, vacuum was 

applied to the workstation and the sepharose beads with immobilised PCR products were 

captured by slowly lowering the vacuum prep tool into the PCR plate. The vacuum prep tool 

was then placed into each the following solution trays (in order) for 5 s each; 70% v/v ethanol 

solution, PyroMark Denaturation Solution, 10% v/v PyroMark Washing Buffer. The prep tool 

was held vertically and any residual fluid was aspirated. The vacuum switch was closed and the 
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prep tool was lowered into the PSQ reaction plate containing sequencing primer and agitated 

to release the captured PCR products. By this point, PCR products had been denatured into 

single stranded products and the complementary strand had been removed. 

The PSQ plate containing beads and sequencing primer was heated at 80 °C for 2 mins then 

cooled to room temperature. The PyroMark Gold Q96 Reagent kit contained lyophilised 

enzyme and substrate pellets as well as dNTP mixes. Enzyme and substrate were reconstituted 

with the volume of water specified on the container 10 mins prior to use. The PSQ96 Reagent 

Cartridge was filled using the volumes specified by the pyrosequencing software and the wells 

specified in Figure 3.2. 

 

Figure 3.2: A diagram of the PSQ96 Reagent Cartridge detailing compartments of the cartridge where 
each reagent was loaded. The cartridge label was positioned at the front, facing the operator. 
Nomenclature: S = substrate mix; E = enzyme mix; G = dGTP solution; T = dTTP solution; A = dATP 
solution; C = dCTP solution. 

 

The cartridge and reaction plate were secured within the PyroMark Q96 ID Instrument and the 

run was started. At the end of the run, the data was analysed automatically and a pyrogram 

was produced for each pyrosequencing reaction (e.g. Figure 3.3).  

  



65 

 

 

 

Figure 3.3: The LCR2 pyrogram for CaSki.  

The string of sequence across the top is the sequence to analyse. The string of sequence across the X-
axis is the dNTP dispensation order (E=enzyme, S=substrate). The Y-axis scale is Relative Light Units 
(RLU). The height of peaks represents the strength of the signal, here 25, 50 and 75 RLU are equal to 
approximately 1, 2 and 3 incorporated nucleotides respectively. Areas shaded grey represent sites of 
CpGs; both C and T are dispensed and the height of the peaks compared to determine DNA 
methylation % of that CpG. Methylation % is indicated in the coloured box above each CpG and the 
colour indicates the data quality (blue = good, yellow = check for acceptability and red = significant 
inadequacies). 

 

Values considered by the pyrosequencing software to have failed the internal controls 

(indicated by a red box (Figure 3.3)) were not included in the data analysis. Due to the nature 

of the pyrosequencing reaction, it was more difficult to accurately determine the amount of 

methylation at some CpGs than it was at others. As such, for some sample cohorts there were 

missing values for some CpGs, some assays or even entire samples. All samples were repeated 

in duplicate in order to improve the likelihood of producing a complete data set and to 

improve the reliability of the data analysis. Failed reactions were repeated (in duplicate) at 

least once, data of the highest quality was selected and where two runs of equal quality (as 

determined by passing/failing the internal controls) existed, to avoid selection bias runs were 

chosen for inclusion in chronological order.  

3.1.5.3.2. Clean Up 

Careful clean up was especially important as blockage of the reagent cartridge and/or vacuum 

prep tool would result in failed reactions. Immediately after the sequencing reaction had 

finished, the PSQ96 Reagent Cartridge was thoroughly cleaned with sterile water. 

Clean up of the vacuum workstation required all solution trays to be emptied and rinsed. The 

vacuum prep tool was rinsed with water, then ethanol before the head was fully aspirated of 

fluid and allowed to dry. All equipment was protected from the ingress of particulates by being 

stored in clean plastic containers in a lint free environment. 
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3.1.5.4. Assay Design 

Pyrosequencing assays were designed within PyroMark Assay Design Software 2.0 (Qiagen, 

Hilden, Germany). The manufacturer’s instructions were followed and primer sets were chosen 

based on primer length, melting temperature, GC content, GC clamp, presence of secondary 

structure (primer and template), and the presence of single and dinucleotide repeats. For 

L1/L2, a very limited range of alternative primers were available due to the amplimer size 

limits and the presence of secondary structures either side of the region of interest. 
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3.1.5.5. Primer Sequences 

For each pyrosequencing assay, the primer sequences, regions amplified and dispensation 

order for sequencing are listed in Table 3.8. 

E2 

Sense primer GTGAAATTATTAGGTAGTATTTGG 

Antisense primer BTN-CAACAACTTAATAATATAACAAAAA 

Sequencing primer GTGAAATTATTAGGTAGTA 

Dispensation order ATTGCTATGATTCTGTCAGTCGATTATATAATGTCAGTCGTTTGGTGATCGAGAA 

  TATAGTATCGATATTATGTCGA 

Amplified DNA 148 bp (nt 3378-3525 of NC001526.1) 

Sequenced CpGs nt 3411, 3414, 3416, 3432, 3435, 3447, 3461, 3472 

Reference Dr T Liloglou, University of Liverpool, personal communication (Dec 7th 2010) 

LCR1 

Sense primer BTN-ATTGTATTATGTGTAATTATTGAA 

Antisense primer CCAAAAATATATACCTAACAAC 

Sequencing primer CCAAAAATATATACCTAACAAC 

Dispensation order CAGATAGTATAAATCGATATCGACAT 

Amplified DNA 104 bp (nt 7611-7714 of NC001526.1) 

Sequenced CpGs nt 7691, 7679, 7673 

Reference Dr T Liloglou, University of Liverpool, personal communication (Dec 7th 2010) 

LCR2 

Sense primer GTAAAATTGTATATGGGTGT 

Antisense primer BTN-TAAAATATCTACTTTTATACTAACC 

Sequencing primer TAATTTATGTATAAAATTAAGG 

Dispensation order AGTCGTCGATCGTAATCGTGTATCGTAATCGTA 

Amplified DNA 156 bp (nt 7832-83 of NC001526.1) 

Sequenced CpGs nt 31, 37, 43, 52, 58 

Reference Dr T Liloglou, University of Liverpool, personal communication (Dec 7th 2010) 

L1/L2 

Sense primer BTN-TTATTGTTGATGTAGGTGATTT 

Antisense primer CCCAATAACCTCACTAAACAACC 

Sequencing primer TAACCTCACTAAACAACCAA 

Dispensation order GCAAAAACAATCTAAAAAAATGATAATAAATCGATTATCGATACGATTTACGATAC 

Amplified DNA 118 bp (nt 5551-5668 of NC001526.1) 

Sequenced CpGs nt 5615, 5609, 5606, 5600 

Table 3.8: The primer sequences, regions amplified and CpGs sequenced for the pyrosequencing 
assays.  

BTN refers to the position of a biotin label. NC001526.1 is the HPV16 reference sequence. 
Dispensation order is the order used by the pyrosequencing instrument to sequence, by synthesis, the 
pyrosequencing PCR products. 
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3.1.6. DIPS 

Detection of Integrated Papillomavirus Sequences (DIPS) (Luft et al., 2001) was used to 

determine the integration status of HPV in the VR series clinical cohort (Figure 1.8). 

3.1.6.1. DNA Digestion and Ligation of Adapter Sequence 

Two aliquots of 1.2 µg DNA were digested using 10 U of Sau3AI or Taq1 (New England Biolabs, 

Beverly, MA.) in a 20 µl reaction according to Table 3.9. Reactions were prepared in PCR plates, 

sealed, incubated at 37 °C for 15 hrs and then incubated at 80 °C for 20 mins on a thermocycler 

to inactivate the restriction enzymes. HPV negative (Mono Mac 6) and HPV positive (CaSki) cell 

line DNAs were included in each run as controls. 

Sau3AI digest Taq1 digest 

Reagent Volume (µl) Reagent Volume (µl) 

DNA (1.2 µg) - DNA (1.2 µg) - 

Sau3AI (10 U) 2.5 Taq1 (10 U) 0.5 

Buffer 1 (10x) 2 Buffer 4 (10x) 2 

BSA (100x) 0.2 BSA (100x) 0.2 

H20 to 20 µl H20 to 20 µl 
Table 3.9: Sau3AI and Taq1 DNA digestion reaction volumes.  

Units listed are the volumes required per reaction. 

 

Ligation was performed using double stranded DNA adapters specific to either the Sau3AI or 

Taq1 digested DNAs. Taq1 and Sau3AI adapters were produced using the 25 µM adapter recipe 

in Table 3.10. The volumes listed produced enough adapter for 200 reactions. Reaction mixes 

were heated to 90 °C for 2 mins then allowed to cool in an overnight protocol to 4 °C in a 

thermocycler. Adapter mixes were then stored at -20 °C. 

 Reagent Volume (µl) 

AL1 primer (100 µM) 25 

TaqI or Sau3AI AS primer (100 µM) 25 

Sterile TrisHCl (66 mM) 50 
Table 3.10: The reagent volumes required to produce a 25 µM adapter stock solution. 

 

The Sau3AI and Taq1 adapters were ligated to the DNA digests using T4 Ligase (New England 

Biolabs, Beverly, MA). The volumes and reagents used for each reaction are listed in Table 

3.11. This mix was incubated at 22 °C for 2 hrs, then inactivated by heating to 65 °C for 10 mins 

before 6 µl of sterile water was added to bring the final volume to 40 µl. 
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Reagent Volume (µl) 

TaqI or Sau3AI digested DNA 20 

Ligase Buffer (10x) 2.4 

T4 Ligase (400 U/µl) 1 

TaqI or Sau3AI Adapter (25 µM) 0.48 

Water 0.12 

Total volume 24 
Table 3.11: The reagent volumes required per DIPS reaction to ligate adapters to digested genomic 
DNA.  

The 20 µl of digested DNA refers to the complete mix listed in Table 3.9. 

 

3.1.6.2. Linear PCR 

Linear PCR was performed using 9 separate reactions; 8 pairs of HPV specific primers and one 

pair of control primers. Separate master mixes were prepared for each primer (n=9) for both 

DNA digests/ligations (Sau3AI and Taq1) according to Table 3.12. For each reaction 23 µl was 

aliquoted into PCR plates and 2 µl of digested/ligated DNA was pipetted into each reaction. 

Each sample had 18 PCR reactions, i.e. 9 for each DNA digest/ligation. Plates were sealed and 

the PCR reaction performed according to the time/temperatures listed in Table 3.13. 

Reagent Volume (µl) 

10x buffer with 15 mM MgCl2 2.5 
dNTP (10 mM) 0.5 
HPV PCR 1 primer (1-9) (10 µM) 0.5 
Hot star Taq (1 U) 0.125 
H20 19.375 

Total volume 23 
Table 3.12: Linear PCR master mix recipe.  

Volumes are given for each reaction. 

 

 

Temperature (°C) Time (s) Cycles 

Initial denaturation 95 900 1 

Denaturation 94 30   

Primer annealing 66 30 40 

Extension 72 180   

Final extension 72 420 1 
Table 3.13: PCR timing and temperature for the DIPS linear PCRs. 

 

3.1.6.3. Nested PCR 

For the Nested PCRs, the linear PCR products were amplified exponentially using an adapter 

specific primer and a HPV specific primer. As such, 18 reactions are required for each sample; 
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one reaction mix for each HPV primer for both DNA digests. For each sample, the reaction mix 

in Table 3.14 was prepared and 20 µl aliquoted into a PCR plate. The plates were loosely sealed 

and taken to the post-PCR laboratory where 5 µl of linear PCR product was dispensed into the 

appropriate well of the second PCR plate. The plates were sealed and PCR reactions run 

according to the temperature/timing in Table 3.15. Remaining linear PCR products and 

completed nested PCR products were stored at -20 °C until required. 

Reagent Volume (µl) 

10x buffer with 15 mM MgCl2 2.5 

dNTP (10 mM) 0.5 

Hot Star Taq (1 U) 0.125 

HPV PCR 2 Primer (1-9) (10 µM) 1 

AP1 Primer (10 µM) 1 

H20 14.875 

Total volume 20 

Table 3.14: Nested PCR master mix recipe.  

Volumes are given for each reaction. 

 

 

Temperature (°C) Time (s) Cycles 

Initial denaturation 95 900 1 

Denaturation 94 30   

Primer annealing 66 30 30 

Extension 72 180   

Final extension 72 420 1 
Table 3.15: PCR timing and temperature for the DIPS nested PCRs. 

 

3.1.6.4. Gel Electrophoresis 

25 µl of nested PCR products were run on a 1% w/v agarose TBE gel with 2 µl/100 ml of 

ethidium bromide (10 mg/ml) and alongside 100 bp DNA ladder in order to estimate product 

size. Gels were run at 120 V for 1-2 hrs or until adequate separation of the PCR products was 

achieved. 

Once run, the gels were photographed and bands of interest were cut out using a clean 

disposable scalpel and a UV transilluminator. Suitable PPE was worn to protect the operator 

from UV light. As much excess gel was removed as possible and excised band gel fragments 

were placed in clean microcentrifuge tubes. This was performed for all bands of interest for all 

samples, for all primer sets. 

Following excision, gel fragments containing PCR products were purified using the Illustra GFX 

PCR DNA and Gel Band Purification Kit (GE Healthcare Life Sciences, Buckinghamshire, UK). 
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Extraction was performed according to the manufacturer’s instructions. Briefly, this involved 

dissolving the agarose gel pieces using heated buffers, binding the PCR product to a 

membrane, washing the PCR product with a series of wash buffers and final elution into 15 µl 

of sterile nuclease free water.  

Upon purification, 5 µl of eluate was run on a 2% w/v agarose gel containing 20 mg/100 ml 

ethidium bromide. This was performed to check for successful PCR product purification, check 

for the presence of a single band and to roughly estimate DNA concentration by comparing 

against known concentration/intensity 100 bp ladder. 

3.1.6.5. Sequencing 

Sanger sequencing of PCR products was performed by Source BioScience UK Ltd (Nottingham, 

UK). HPV primer 2 (i.e. the HPV specific nested primer) was used as the sequencing primer. The 

requirements for sequencing are presented in Table 3.16. 

 
Sequencing requirements 

 
Volume (µl) Concentration 

PCR products 5 1 ng/µl/100 bp* 

Primers 5 3.2 µM 
Table 3.16: The sequencing requirements for purified PCR products.  

Values listed are per reaction. * For PCR products, for every 100 bp in length 1 ng/µl of DNA was 
required. 

 

3.1.6.5.1. Data Analysis 

Sequence data was returned as a chromatogram with base calling. Sequences were checked 

manually to improve the base calling and to check for the parallel sequencing of multiple 

fragments (indicated by overlapping sequence). Sequence of poor quality or with background 

noise was removed from the sequence reads and not considered for data analysis. 

Several stages of sequence analysis were performed. First, alignment of sequences against 

human genomic DNA sequences, and against the HPV16 reference sequence (GenBank ID 

NC001526.1) was performed using the NCBI BLAST (Basic Local Alignment Search Tool). Two 

BLAST algorithms were used, first megablast, then blastn. Megablast worked well for larger 

closely related sequences, blastn worked better for shorter and/or less closely related 

sequences. For the VR series, megablast identified the majority of potential integration events 

and blastn identified two events where a shorter section of human DNA was present.  

To identify the region of the human genome where integration events were detected, 

identified human sequences were aligned using the UCSC BLAT (Blast Like Alignment Tool). 
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3.1.6.6. Primer Sequences 

Table 3.17 contains the primer sequences used for DIPS. Essentially, the DIPS protocol 

described by Luft et al was used in conjunction with the restriction site PCR HPV specific 

primers described by Thorland et al as these were found to produce better results. Other 

primer/adapter sequences are as described by Luft et al (Thorland et al., 2000, Luft et al., 

2001) 

Adapter and adapter specific primers 

AL1 primer GGGCCATCAGTCAGCAGTCGTAGCCCGGATCCAGACTTACACGTTG 

AP1 primer GGCCATCAGTCAGCAGTCGTAG 

TaqI AS primer PO4-CGCAACGTGTAAGTCTG-NH2 

Sau3AI AS primer PO4-GATCCAACGTGTAAGTCTG-NH2 

 Primary PCR primers 

HPV PCR 1 primer 1 ACAAAGCACACACGTAGACATTCG 

HPV PCR 1 primer 2 AGTAATAAATCAACGTGTTGCGATTG 

HPV PCR 1 primer 3 TTTGGTTACAACCATTAGCAGATGC 

HPV PCR 1 primer 4 GTGCCAACACTGGCTGTATCAAAG 

HPV PCR 1 primer 5 TACCAATTCTACTGTACCTAATGCCAG 

HPV PCR 1 primer 6 ACTTATTGGGGTCAGGTAAATGTATTC 

HPV PCR 1 primer 7 AGTAGATATGGCAGCACATAATGAC 

HPV PCR 1 primer 8 GTTGGCAAGCAGTGCAGGTCAG 

Control PCR 1 primer 9 TTCTCTATGTGCGTTCTCTCCCTG 

Nested PCR primers (PCR2) 

HPV PCR 2 primer 1 CGTACTTTGGAAGACCTGTTAATGG 

HPV PCR 2 primer 2 GGACTTACACCCAGTATAGCTGACAG 

HPV PCR 2 primer 3 AATAGGTATGTTAGATGATGCTACAG 

HPV PCR 2 primer 4 ACAAGCAATTGAACTGCAACTAACG 

HPV PCR 2 primer 5 GAGGTTAATGCTGGCCTATGTAAAG 

HPV PCR 2 primer 6 CCCTGTATTGTAATCCTGATACTTTAGG 

HPV PCR 2 primer 7 TGCGTGTAGTATCAACAACAGTAAC 

HPV PCR 2 primer 8 TTAAACCATAGTTGCTGACATAGAAC 

Control PCR 2 primer 9 CAAACTCCAGGTCTCCAACCAG 

Table 3.17: Primer and adapter sequences used for DIPS. 

 

3.1.7. APOT 

Amplification of Papillomavirus Oncogene Transcripts (APOT) was used briefly during this 

project and was trialled on cell line material and some VR series samples (Figure 1.7). APOT 

was performed as detailed by Vinokurova et al (Vinokurova et al., 2008). The VR samples failed 

the APOT assay repeatedly. VR RNAs were tested for quality/integrity using a 2100 Bioanalyser 

(Agilent Technologies Inc, Santa Clara, CA) and the mean fragment size appeared inadequate 

for APOT. APOT was abandoned for DIPS. 
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3.2. Materials 

3.2.1. Cell Lines 

3.2.1.1. CaSki 

The Ca Ski (CaSki) cell line was sourced from the European Collection of Cell Cultures (ECACC) 

(catalogue number 87020501). The CaSki cell line was originally derived from an epidermoid 

carcinoma of the cervix, metastatic to the small bowel mesentery of a 40 year old Caucasian. 

CaSki DNA and RNA were extracted using the Qiagen AllPrep (Qiagen, Hilden, Germany) 

protocol. The identity of the CaSki cell line was confirmed using STR typing. CaSki contains 

multiple HPV16 genomes inserted as a concatemer. There are 30 reported point mutations 

and a single 1 nt deletion in the vast majority of HPV16 genomes (Meissner, 1999). 

3.2.1.2. SiHa 

The SiHa cell line was sourced from the American Type Culture Collection (ATCC) (ATCC 

number HTB-35). The SiHa cell line was originally derived from a cervical squamous cell 

carcinoma of a 55 year old Asian. SiHa is reported to contain integrated HPV16, with between 

1 and 2 copies per cell. Integration is associated with disruption of the HPV16 genome and a 

deletion at nt 3133-3385, there are also deletions at nt 3460-3512 and nt 7757-7794 

(Meissner, 1999). 

3.2.1.3. W12 

The W12 cervical keratinocyte model is a nonclonal cell culture derived from a cervical lesion 

with CIN1/LSIL histology (Stanley et al., 1989). Early passage W12 in organotypic raft culture 

exhibits an LSIL like phenotype and contains approximately 100 HPV16 genomes/cell in 

episomal form (Pett et al., 2004), however E2 silenced integrated forms can also be detected 

(Pett et al., 2006). Long term cultures of W12 undergo clearance of episomal HPVs and cells 

containing integrated HPV16 genomes dominate (Gray et al., 2010). Genomic instability occurs 

as a result and the organotypic raft cultures adopt a HSIL/SCC phenotype. In long term culture 

of discrete clones of W12, different integration events are selected for, resulting in a series of 

diverse cell lines (Pett et al., 2004). The DNAs used in this study were from W12 Series 7 

(W12Ser7), sourced from Professor Nicholas Coleman (University of Cambridge, personal 

communication) (Gray et al., 2010). 

3.2.1.4. PC08 and PC09 

Primary Culture 08 and 09 (PC08 and PC09) were established as primary culture of anogenital 

biopsies. The primary culture lines were grown for several passages, after the first passage the 
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lines are no longer considered primary culture and the term “short term culture” is more 

accurate. PC08 was derived from a vulval biopsy of a 46 yr old woman with histologically 

confirmed VIN3. PC09 was derived from a vaginal biopsy of a 31 year old woman with 

histologically confirmed VAIN3.  

The PC08 and PC09 cell lines were initially established as heterogeneous lines, single cell 

cloning was then performed to establish homogeneous lines. Six clones were provided for this 

study, the PC08 clones M, P and Y and the PC09 clones A, D and H. Each homogeneous clone 

was cultured further and at each passage, DNA and RNA were extracted. For the PC08 clones, 

single cell cloning was performed at two different passages. Cloning of early passage 

heterogeneous lines produced the M and P clones whilst cloning of later passage 

heterogeneous lines produced the Y clone. For this reason, clone Y8 starts at passage 9 whilst 

the others start at passage 5. All characterisation and cell culture was performed by Tiffany 

Onions, (School of medicine, Cardiff University). For this project, Tiffany Onions supplied DNAs 

for DNA methylation analysis and provided APOT results and Ct values from qPCR. DNAs were 

extracted using the Qiagen AllPrep protocol. 

 

3.2.2. Clinical Material 

3.2.2.1. The CRISP Study 

The Cervical Randomised Intervention Study Protocol (CRISP) clinical trial was conducted to 

determine the effect of diindolylmethane (DIM) on low grade cervical abnormalities (Castanon 

et al., 2012). It was a double blind, randomised controlled trial to study the effect of 6 months 

of DIM supplementation women with newly diagnosed, low grade cervical abnormalities. Of 

the 600 women eligible for inclusion in the study, 439 women had paired LBC samples at 0 and 

6 months for HPV typing. DIM supplementation was found to have no effect as a treatment for 

cervical abnormalities and was not considered for this study of DNA methylation. HPV typing 

was performed for the CRISP clinical trial using the PCR ELISA HPV typing system described by 

Jacobs et al (Jacobs et al., 1997, Castanon et al., 2012). 

For this investigation, DNAs were extracted using the QIAamp MinElute Media kit protocol on 

frozen cell pellets. All samples used were HPV16 positive at 0 months, samples were divided 

into three groups. First, those infections that were HPV16 positive at 0 months, but HPV16 

negative at 6 months were classified as the Cleared (C) group. Twenty-four samples met this 
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criteria, one of these was excluded on the basis that the histology at 6 months revealed a CIN2 

lesion. 

The second group of samples were HPV16 positive and were associated with high grade 

histology (CIN2 and CIN3) at 6 months. This group comprised of 11 patients with both 0 and 6 

month DNA samples and were termed the Persistent High grade (PH) group.  

Finally, those samples that were HPV16 positive and were associated with low grade histology 

(i.e. CIN1) at 6 months were selected. A total of 48 patients met this criteria however only 12 

patients’ DNAs were required for the study. The first 9 patients were selected because they 

had histologically confirmed CIN1 at 6 months, the final 3 were chosen at random. This group 

was termed the Persistent Low grade (PL) group and represents samples that had maintained a 

HPV16 infection for more than 6 months in the absence of significant disease. 

3.2.2.2. The Prevalence Study 

The prevalence study described the prevalence of HPV in South Wales in relation to age, 

cytology and social depravation. A total of 1,911 patients were included in the study. DNA was 

extracted by Hibbitts et al and involved disruption of LBC material using proteinase K and 

purification by centrifugation as described (Hibbitts et al., 2006). These DNAs were then HPV 

typed using the PCR ELISA HPV typing system described by Jacobs et al (Jacobs et al., 1997, 

Hibbitts et al., 2006). For this study, 20 samples were identified with normal cytology and 20 

with severe dyskaryosis and DNAs were provided for the purpose of performing DNA 

methylation analysis (Chapter 5). 

3.2.2.3. Archival Cancers 

A series of DNAs previously extracted from Formalin Fixed Paraffin Embedded (FFPE) cervical 

cancers were used in this study (Chapter 5). The samples were initially collected for prevalence 

studies of HPV in cervical cancers (Powell et al., 2011, Powell et al., 2009). The FFPE cervical 

cancers were collected from various hospitals before sectioning and DNA extraction using the 

Qiagen DNeasy Blood and Tissue kit without xylene washes (Powell et al., 2011). 

The samples for inclusion in the study were selected using the following criteria: HPV16 

positivity was required, samples collected from University Hospital of Wales (n=57) were 

excluded as they were fixed using low pH unbuffered (rather than neutral buffered) formalin 

which typically provides DNAs of poor quality. DNA concentrations of the remaining samples 

were determined and arranged in descending order (n=79), the top 20 sample DNAs were 

selected. Seven additional samples were later sought for inclusion to account for samples that 
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had failed to amplify by PCR, or had persistently failed to produce a usable result in the 

pyrosequencing assay. Failure was likely the result of DNA degradation of DNA in storage 

and/or prior to extraction. A total of 24 samples provided DNA methylation data of sufficient 

quality to be included in the analysis. Of these there were SCC (n=19), adenocarcinoma (n=3), 

adenosquamous carcinoma (n=1) and carcinosarcoma (n=1) DNAs. 

 

3.2.2.4. VIN Biopsy Series 

A large series of anogenital biopsies (n=171) was available for this project and were used for an 

investigation into HPV distribution. Of these, 118 were DNAs and 53 were biopsies fixed in 

ThinPrep LBC media. The 53 biopsies were coined the VR series as they were of vulval origin 

and both DNA and RNA was extracted. The VR series is a series of VIN and VAIN biopsies 

(primarily VIN3). Various nucleic acid extraction methods were used for the series in order to 

try and improve the quality and quantity of DNA and RNA produced. The first 37 samples (VR1-

37) were extracted using the TRIzol extraction protocol, the remaining 16 samples (VR38-53) 

were extracted using the VIN RNA/DNA extraction protocol. 

VIN DNAs were HPV typed using the PapilloCheck assay described previously. The HPV typing 

data was used as the basis of a HPV type distribution in VIN study. The sample selection 

criteria involved exclusion of non-VIN biopsies, cancers and samples with incomplete clinical 

data. Finally, where duplicates existed (i.e. more than one sample from the same patient) the 

earliest samples were excluded. Sixty-two samples remained for analysis. 

 

3.3. Statistical Analysis 
Statistical analysis was performed in Minitab 16.1.0 using procedures described by Bowker 

(Bowker, 2007). This section contains a brief explanation of the tests used whilst Table 3.18 

contains a glossary of terms. 
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Term Meaning 

H0 – Null 
hypothesis 

The default position i.e. No relationship/difference between 
factors/means 

H1 – Alternative 
hypothesis 

The alternative position i.e. A significant relationship/difference between 
factors/means 

P-value Probability value, typically reject the H0 and accept H1 at P<0.05 

DF Degrees of freedom 

Type 1 error When H0 is true but rejected, i.e. a false positive 

Type 2 error When H0 is false but accepted, i.e. a false negative 
Table 3.18: A glossary of statistical terms used and their meanings. 

 

3.3.1.1. Correlation 

Correlation analysis objectively tests for a linear relationship between two variables derived 

from independent, random samples. The H0 is that there is no significant correlation between 

the two variables (Bowker, 2007). 

Spearman’s rank non-parametric correlation coefficient tests for an association between two 

quantitative or categorical variables that can be ranked from low to high. Normal distribution 

of the variables is not required (Bowker, 2007). Correlation coefficients range from -1 to +1. 

The further from zero, the stronger the correlation. A positive or negative number represents 

an upwards or downwards sloping scatter plot respectively (Bowker, 2007). 

3.3.1.2. Linear Regression 

Linear regression analysis is used to predict and draw a straight line of best fit between two 

quantitative variables according to the equation:  

           

Here: X=the cause/independent variable, Y=the effect/dependent variable, m=gradient of the 

slope, c=intercept of the line through Y and ε = error in Y around the line of best fit. The 

residuals should be normally distributed (Bowker, 2007). 

3.3.1.3. Anderson Darling 

The Anderson Darling normality test tests the H0 that the data is not normally distributed. 

Many statistical analyses rely on normal distribution of either the data or the residuals. Where 

normal distribution is not achieved (P>0.05), data transformation may improve the distribution 

(Bowker, 2007). 
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3.3.1.4. Homogeneity of Variances 

Many statistical analyses require that groups of data have equal variances. There are several 

tests depending on the application and the number of groups being compared, each test tests 

the H0 that the groups have equal variances. Bartlett’s test for equal variances was used prior 

to ANOVA and the F-test variance ratio statistic was used prior to T-tests (Bowker, 2007). 

3.3.1.5. Data Transformation 

Where data has not met the assumptions of a statistical test, the data is transformed and 

tested for suitability again. Data transformation for this study included the following: 

untransformed (X) data, Log10(X), Log10(X+1), X2, (X-mean)/standard deviation). Unless 

otherwise noted in the text, Log10(X+1) transformation provided the best DNA methylation 

data and Log10(X) provided the best qPCR data and were used prior to data analysis. 

3.3.1.6. T-test and Associated Tests 

The Student’s T-tests are parametric tests to compare two groups of independent data, paired 

data before and after a known treatment/event and one group of data to a standard value. T-

tests assume that the data is normally distributed, and the two groups have equal variances. 

For this study, the two-sample T-test was used and tests the H0 that no difference between the 

means of the groups exist (Bowker, 2007).  

Where the assumptions of the two-sample T-test were not met, the non-parametric equivalent 

Mann-Whitney U-test was used to test the H0 that the two groups had the same median. 

Where comparison of multiple groups of data is required alternative tests should be used (i.e. 

ANOVA) instead of multiple two-sample tests as multiple tests increase the chance of a Type 1 

error. 

3.3.1.7. Bonferroni Correction 

The Bonferroni correction is used to reduce the likelihood of a Type 1 error occurring when 

multiple statistical analyses are used (i.e. P-value of 0.05 = likely to have one type 1 error every 

20 analyses). The Bonferroni correction reduces the P-value to compensate for multiple 

analyses by dividing the original P-value by the total number of comparisons. The Bonferroni 

correction is often criticised for being too conservative, in this study interpretation of results 

significant at both P=0.05 and a Bonferroni corrected P-value was considered. 

3.3.1.8. One-way ANOVA and Kruskall-Wallis 

One-way Analysis Of Variance (ANOVA) is applied to quantitative variables separated into two 

or more groups. ANOVA is a parametric test that requires normally distributed residuals and 

homogenous variances and assumes independent random samples. ANOVA tests the H0 that 

there is no difference between the means of the groups (Bowker, 2007). 
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The ANOVA does not perform a comparison of means between pairs of groups. Pairwise 

comparison is performed using Tukey-Kramer a posteriori tests for unplanned differences or 

Fisher’s a priori tests for planned differences (Bowker, 2007). 

The Kruskall-Wallis test is a non-parametric equivalent of the ANOVA and tests the H0 that 

there is no difference between the medians of the groups. Kruskall-Wallis is far less powerful 

than the ANOVA and has no function to perform pairwise comparison of means (Bowker, 

2007).  

It is common practice in exploratory, hypothesis generating studies to lower the requirements 

of the ANOVA and proceed even with violations of the assumptions on the basis that the 

results are interpreted with caution (Bowker, 2007). For this study, several tests violated one 

or more assumptions of the ANOVA. Because these statistics were exploratory and hypothesis 

generating in nature, it was felt that the advantages of the one-way ANOVA and Tukey-Kramer 

over the Kruskall-Wallis test (and multiple Mann-Whitney U tests for pair wise comparisons) 

far outweighed the risks involved with using the one-way ANOVA with violations. Where the 

analysis was continued, the results were interpreted with caution, frequently reported 

alongside an additional Kruskall-Wallis test for additional confirmation and the violations were 

listed in the text. 

3.3.1.9. Multifactor ANOVA 

Multifactor ANOVA allows the analysis of data grouped with respect to multiple factors. A two-

way ANOVA tests the H0 that neither factor has a significant effect and that the means of each 

group are the same. Several models of two-way ANOVA were used in this study. The two-way 

ANOVA General Linear Model (GLM) allows for the analysis of data with an unbalanced design 

(the majority of analyses). Several instances occurred where a balanced design without 

replication existed, for these analyses a standard two-way ANOVA was used. 

Two-way ANOVA assumes equal variances in each factor combination and normally distributed 

standardised residuals. No suitable non-parametric equivalent of the GLM exists; where the 

assumptions were violated, a decision was made in each instance whether to continue with 

the analysis or use multiple one-way ANOVA/Kruskall-Wallis tests with a Bonferroni correction. 

Multiple one-way ANOVA are not advised both because of the increased rate of type 1 error, 

and because they remove a level of detail from the analysis. Where multifactor ANOVA was 

continued, the results were interpreted with caution, often presented alongside additional 

analyses and the violations were listed in the text. 
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When analysing DNA methylation data both on a per-assay and a per-CpG basis using 

multifactor ANOVA, the individual CpGs (i.e. E2-1...E2-8) were nested within the assay (i.e. E2, 

LCR1, etc) to allow for a more thorough analysis acceptable to the GLM. 
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Chapter 4. Method Development 

4.1. HPV Gene Expression 
This investigation required assessment of the expression of three HPV genes, the E6 and E7 

oncogenes and the E2 repressor. A literature search identified a study in which E6 and E7 

mRNA level were quantified in cell line and clinical material (Wang-Johanning et al., 2002). E6 

and E7 primers were complementary to regions included in various splice variants for each 

gene (Zheng and Baker, 2006). E2 primers were identified from a separate study in the same 

literature search (Roberts et al., 2008a). The primers were trialled briefly and satisfactory 

results were produced which warranted further optimisation. 

Selection of suitable reference genes required more thorough consideration. Quantifying the 

stability of a panel of reference genes in diseased and disease free epithelial tissues was 

outside of the scope of this project. In order to improve the reliability of the results two 

reference gene assays that covered a range of expression levels were sought (i.e. one highly 

expressed and one lowly expressed). Potential reference genes were identified from published 

studies that had quantified the stability and ranked the suitability of prospective reference 

genes. Two genes (and primer pairs) were chosen on the basis of high stability in a range of 

keratinocyte lines, these were TBP (TATA box binding protein) and HPRT (Hypoxanthine 

guanine phosphoribosyl transferase) (Allen et al., 2008). Further literature searches confirmed 

the apparent suitability of these reference genes for epithelial RNA studies. The TBP assay was 

repeatedly problematic and inconsistent during optimisation and was eventually replaced with 

a second primer pair amplifying a different region of TBP (Minner and Poumay 2008). HPRT 

and both TBP assays were intron spanning such that the DNA amplimer was considerably 

larger and more difficult to amplify than the RNA. This was not possible for HPV genes where a 

complex array of potential splice variants exist. 

4.1.1. qPCR Optimisation and Method Development 

Several significant issues were encountered during the course of qPCR optimisation. The main 

issues and solutions are summarised below. 

4.1.1.1. Initial Failure 

During initial trial of the qPCR assays, failure of the PCR reaction was very common. Failure 

could have been caused by several factors. First, the RT reaction was tested to determine 

whether the RT was functioning properly and in each instance, a demonstrable difference 

between positive and negative RT controls was noted. Similarly, cDNAs that were amplified in 

some reactions were not amplified in subsequent reactions, i.e. there was considerable 
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inconsistency. A large variety of conditions were trialled using gradient PCR and a series of 

qPCRs in order to optimise the PCR conditions. However, the success or failure of reactions 

appeared random and further optimisation could not continue until the issues had been 

solved. 

To rule out operator error, a senior member of staff demonstrated, then supervised and finally 

performed the same experiments independently. Subtle differences in technique were initially 

associated with a considerable difference in success rate, however this was later deemed 

coincidental after the inconsistent pass/fail rate resumed. The ambient temperature might 

have affected the heating and cooling rate of the LightCycler instrument so a thermometer 

was placed into the qPCR laboratory and the ambient temperature was recorded. No 

relationship between ambient temperature and success rate was observed. All reagents 

required for qPCR (cDNAs, primers, MgCl2, water, SYBR green master mix, plastics) were 

replaced but inconsistent qPCR reactions continued to be observed. The LightCycler 

instrument was beginning to be suspected so was replaced as a precaution. The results 

improved considerably, but were still inconsistent. Several small checks and measures 

suggested by Roche technical support were implemented with little effect. 

Eventually, it transpired that the LightCycler capillary tubes were out of date. The capillary 

tubes contain a coating to prevent interaction of the glass with the reagent mix, this coating 

was found to degrade with time and the tubes in use were out of date by several years. 

Replacement tubes were trialled and the inconsistent failure/success rate was solved. 

Throughout the qPCR method development, DNase treatment of sample RNAs was only 

partially successful. Several RNA purification kits were tested, DNases from several 

manufacturers were tested and a variety of treatment protocols were trialled with varying 

degrees of success. In order to correct for an incomplete DNA digestion during DNase 

treatment (residual genomic DNA was shown to contribute as much as 10% to the signal 

strength), RT negative (RT-ve) controls were included in duplicate for each sample alongside 

the RT positive (RT+ve) reactions. The linear regression equations produced from calibration 

curves were used to calculate the relative DNA concentration of the RT+ve and the RT-ve 

samples (concentration expressed relative to 1x CaSki cDNA). The mean calculated cDNA 

concentration of the RT-ve repeats was subtracted from that of the RT+ve repeats to leave the 

amount of PCR product in the RT+ve samples that was attributable to just the cDNA. This DNA 

concentration was then used in the linear regression equation to produce a new Ct value that 

reflected the amount of cDNA in the RT+ve reaction, corrected to remove the amplified 
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genomic DNA in the sample. Reactions where a non-specific PCR product had been amplified 

were excluded from the analysis. 

4.1.1.2. Optimisation 

Once the cause of inconsistency in the qPCR reaction had been removed, optimisation of the 

qPCR reactions was resumed. The cycle number, input cDNA amount, annealing temperature 

and Mg2+ ion concentration were optimised and for most assays, reliable results were 

produced. For TBP, the results were still inconsistent. Eventually, a number of suitable 

reference gene primer sets were trialled and a second TBP set were adopted. 

4.1.1.3. Data Collection 

The 6 VIN biopsy samples with the largest RNA yield were trialled, further optimisation was 

performed and the trial was extended to the remaining VR samples. RNAs from the VR series 

were analysed by E2, E6, E7, HPRT and TBP qPCR assays. Several methods of relative 

quantification exist, two common methods being the comparative Ct method and the 

efficiency corrected comparative Ct method proposed by Pfaffl (Pfaffl, 2001). The choice of 

relative quantification method can have a huge effect on the outcome and reliability of the 

qPCR data. 

 

4.1.2. Relative Quantification 

4.1.2.1. Comparative Ct Method 

The comparative Cycle threshold (Ct) method of relative quantification (commonly called the 

delta delta Ct or ddCt method) is widely used, and is the method of analysis used by the 

Applied Biosystems DataAssist v3.0 software; a software package designed to analyse the 

output data from multiple Applied Biosystems quantitative PCR systems. Livak and Schmittgen 

discussed the derivation of the (RQ) = 2-ΔΔCt formula in detail (Livak and Schmittgen, 2001). The 

main disadvantage of the comparative Ct method is that the PCR efficiencies are assumed to 

be close to 2 (i.e. a perfectly exponential PCR reaction) and that target and reference gene PCR 

efficiencies are equal to within 0.05 (Schmittgen and Livak, 2008, Livak and Schmittgen, 2001). 

Inevitably, different PCR primer pairs tend to amplify at different efficiencies. The effect of 

varying PCR efficiency is illustrated in Table 4.1 where five theoretical PCRs reactions of varying 

efficiency amplify a single template cDNA. These reactions would all reach the qPCR threshold 

point at very different cycle numbers, leading to diverse estimates of the number of template 

copies in the input cDNA. 
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The comparative Ct equation does not allow for the inclusion of delta Ct values of multiple 

reference genes. Despite using the comparative Ct equation for analysis, the Applied 

Biosystems DataAssist v3.0 software allows for the selection of multiple reference genes using 

the arithmetic mean of the reference gene Ct values as the basis of the ΔCt calculation. 

 

 PCR efficiency 

Cycle 
number 100% 95% 90% 80% 70% 

0 1 1 1 1 1 

1 2 1.95 1.9 1.8 1.7 

2 4 3.8025 3.61 3.24 2.89 

3 8 7.414875 6.859 5.832 4.913 

25 33554432 17818260 9307650 2408866 577062.7 

30 1.07E+09 5.02E+08 2.3E+08 45517160 8193466 

35 3.44E+10 1.42E+10 5.71E+09 8.6E+08 1.16E+08 

40 1.1E+12 3.99E+11 1.41E+11 1.63E+10 1.65E+09 
Table 4.1: The number of template copies at each cycle in 5 theoretical PCR reactions with a starting 
amount of 1 PCR template copy.  

Each PCR reaction has a different PCR efficiency, this table illustrates the potential for error caused by 
differences in PCR efficiency. Each number is the number of template cDNA copies. 

 

4.1.2.2. The Pfaffl Equation – PCR Efficiency Correction 

In order to overcome the previously discussed limitations, Pfaffl (Pfaffl, 2001) proposed a 

modification to the comparative Ct method that accounted for the PCR efficiency of the target 

and reference gene PCRs. The so called “Pfaffl equation” is detailed below (Equation 4.1). 

   
          

                          

             
                             

 

Equation 4.1: The Pfaffl equation.  

E refers to the PCR efficiency, target refers to target genes (i.e. E2, E6 and E7), control refers to CaSki, 
sample refers to the sample of interest and Ct refers to the crossing point. ΔCt refers to change in the 
Ct. 

 

The Pfaffl equation allows the different PCR efficiencies of target and reference genes to be 

considered in the generation of relative quantification ratios (Pfaffl, 2001), if both target and 

reference genes had a PCR efficiency of 100% (i.e. 2) the results of using the Pfaffl equation 

and the comparative Ct/Livak equation would be identical. The Pfaffl equation is very 

commonly used for relative quantification studies and forms the basis of the Qiagen, REST 

2009 relative quantification software and its predecessors (Pfaffl et al., 2002, Qiagen, 2009). A 
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limitation of the Pfaffl equation, is that it allows for only one reference gene (addressed in 

some situations in the REST 2009 software), a slightly modified alternative equation is in use 

that allows for the quantification of target genes against multiple reference genes. The Pfaffl 

equation is only slightly updated for the Vandesompele equation, except that in the Pfaffl 

equation, the denominator is calculated for a single gene (Vandesompele et al., 2002). In the 

updated Vandesompele equation, the Pfaffl equation denominator is calculated for each 

reference gene, and the geometric mean of these results is used in place of the denominator 

used in the Pfaffl equation (Vandesompele et al., 2002). This approach has been used for 

multiple published studies (Hoebeeck et al., 2005, Hellemans et al., 2004, Vandesompele et al., 

2002, Loeys et al., 2005, Poppe et al., 2004) and is the basis of the qBasePlus qPCR analysis 

software algorithm (Hellemans et al., 2007, qBasePlus, 2007). Equation 4.2 is the updated 

Pfaffl equation (Vandesompele equation) for multiple reference genes (Hellemans et al., 

2007). 

   
          

                          

              
  

             
                  

 

 
 

Equation 4.2: The Vandesompele equation.  

E refers to the PCR efficiency, target refers to target genes (i.e. E2, E6 and E7), control refers to CaSki, 
sample refers to the sample of interest and Ct refers to the crossing point, n is the number of 
reference genes. 

 

Errors in the calculation of PCR efficiency could have a profound effect on the calculated 

expression ratios; hence it is important that efficiency is determined in an appropriate manner. 

4.1.2.3. PCR Efficiency 

There are several ways of calculating the PCR efficiency. These broadly fall into two categories, 

those based on the Ct values of a calibration curve and those based on the actual PCR 

dynamics of single or multiple PCR reactions.  

4.1.2.3.1. Estimating PCR Efficiency Using the Calibration Curve Method 

This common method is the method best supported by the Roche LightCycler used in this 

study. It is widely used in the literature, including the earlier work of Pfaffl (Pfaffl, 2001). This 

simple method relies on observing the relationship between input cDNA concentration and Ct 

value across a dilution series and using linear regression to produce an equation for the 

relationship. Figure 4.1 is an example of a calibration curve produced for a CaSki DNA dilution 

series using the HPV16 E6 qPCR primer pair. Here, a total of three calibration curves were run 
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and plotted alongside each other. Linear regression was performed and an equation 

representative of the three calibration curves produced according to Equation 4.3. 

                                 

Equation 4.3: The Linear regression equation.  

For a linear relationship, m represents the gradient and c represents the intercept. 

 

Which for the E6 primer pair, linear regression analysis produces the formula: 

                                           

The calibration curve enables both the estimation of DNA concentration (in relation to the 

cDNA used in the calibration curve (i.e. CaSki cDNA)) and the estimation of PCR efficiency. 

Using the slope (m) from the linear regression line, the efficiency (E) of the PCR can be 

calculated according to Equation 4.4 (Pfaffl, 2001, Rassmussen, 2001). 

           

Equation 4.4: The PCR efficiency calculation formula.  

Here, E represents efficiency, and m represents the gradient calculated in Equation 4.3. 

 

For the E6 primer pair, this becomes: 

                

         

Or 

                

A perfect doubling (i.e. every template is amplified into two more templates) is achieved at a 

PCR efficiency of E = 2 or 100%. 

A limitation of the calibration curve method of PCR efficiency calculation is that it is presumed 

that PCR efficiency is the same for all dilutions of template cDNA. However, when a template is 

diluted, any inhibitors to PCR in the template will also be diluted; this can lead to more 

efficient amplification in more dilute samples (Ramakers et al., 2003). As such, other methods 

that rely on the PCR dynamics of single/multiple PCR runs can be used to negate this effect. 
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Figure 4.1: An example of a threefold dilution series of CaSki cDNA.  

The dilution series was repeated in triplicate experimental repeats (represented by the three different 
colours/point shapes) and is used to calculate PCR efficiency and to calculate the Log10 CaSki cDNA 
DNA concentration equivalent to a sample Ct. 

 

4.1.2.3.2. Estimating PCR Efficiency from PCR Dynamics 

These approaches use the fluorescence measurement recorded at each cycle of the PCR to 

analyse PCR kinetics and determine the reaction efficiency of single PCR reactions. Single PCR 

reaction PCR efficiencies can be calculated using several different mathematical models (Liu 

and Saint, 2002, Ruijter et al., 2009) and the choice of model has a large influence on the PCR 

efficiency calculated (Regier and Frey, 2010). Others suggest that the PCR efficiency of serial 

dilutions of samples must be used, as single sample reaction efficiency calculations are 

responsible for increasing the random error of qRTRTPCR quantifications and must be avoided 

(Nordgard et al., 2006). The most reliable approach has since been shown to be to calculate 

the amplification efficiency from individual amplification plots and then use the mean 

efficiency for all samples as the amplification efficiency for that primer pair (Regier and Frey, 

2010). These typically automated methods for correcting for PCR efficiency offer the best 

chance of accurately correcting for PCR efficiency for each primer pair.  
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4.1.2.3.3. PCR Efficiency Calculation for This Study 

For this study, the calibration curve method was used. Calibration curves were produced with 

7 points of a 3 fold dilution of CaSki cDNA, from 1/3 diluted down to 1/2187. The calibration 

curves were produced in triplicate and linear regression was performed on the calibration 

curve Ct values to produce an equation for the curves in the format of Equation 4.3. 

Linear regression was performed on the results of the three calibration curves separately, and 

the mean of the resulting m and c values was used in calculations of PCR efficiency and the Ct 

value correction applied to account for reverse transcriptase negative samples. Performing 

one linear regression analysis for the triplicate repeats produces an identical line equation. 

Scatter plots with linear regression lines are included for each gene in Appendix II.  

Using the slope (m) from the linear regression line, the efficiency (E) is calculated using 

Equation 4.4. A summary of the linear regression line equations data and the PCR efficiencies 

calculated from the slope value of the line equations are shown in Table 4.2. 

  

Primer pair Slope (m) Intercept (c) PCR efficiency PCR efficiency % 

E2 -3.297 15.960 2.0105 101.05 

E6 -3.629 15.914 1.8861 88.61 

E7 -3.533 15.843 1.9189 91.89 

HPRT -3.538 18.110 1.9171 91.71 

TBP2 -3.742 23.568 1.8503 85.03 
Table 4.2: The mean slope and intercept values produced by linear regression of the dilution series 
calibration curves for each qPCR primer pair.  

Also included are the PCR efficiencies calculated according to the formula E = 10
-1/slope

, expressed both 
as a decimal and as a percentage. 

 

4.1.3. Issues with qPCR: the Biopsy Dosage Effect 

One of the potential issues with using qPCR on VIN biopsies is that several characteristics of 

the biopsy, both biological and experimental can affect the outcome. A large determinant of 

RNA yield is the size of the biopsy, i.e. larger biopsies tend to produce more RNA. A problem 

when looking at HPV16 gene expression is that not every cell in the biopsy will contain HPV16, 

the total number of cells containing HPV will be determined by the biology of the infection and 

the biopsy sampling surgery. In human gene expression studies, every cell contains the 

potential to express both the target gene and the reference gene. In HPV containing biopsy 

qPCR studies, some of the cells in each biopsy will not contain HPV16. This can lead to several 

scenarios that can affect the RQ ratio of HPV genes.  
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In Figure 4.2, scenario A, two biopsies with an equal number of HPV infected cells, each cell 

expressing the same amount of HPV gene are sampled, but the two biopsies vary in size. This 

would mean that for the larger biopsy, more human mRNA is produced than the smaller 

biopsy. Despite expressing the same expression of HPV genes in the HPV infected cells, the RQ 

ratio of HPV-human gene expression will be lower for the larger biopsy because of larger 

number of human mRNAs in the sample. 

In Figure 4.2, scenario B, two identically sized biopsies have a different number of HPV infected 

cells; each cell in both biopsies is expressing the same amount of HPV gene. The biopsy with 

more HPV infected cells will have a higher RQ, purely as a result of a larger number of HPV 

infected cells, not because of higher HPV gene expression. 

In Figure 4.2, scenario C, two biopsies of equal size are sampled. One has a small number of 

HPV infected cells with a high level of HPV gene expression per cell, the other sample contains 

a large number of HPV gene expressing cells that are expressing low amounts of HPV genes per 

cell. The RQ results of both biopsies could be very similar, the larger number of cells in the 

second biopsy making up similar numbers of mRNA as the fewer higher HPV gene expressing 

cells. The number of HPV containing cells masks the true differences in HPV gene expression 

between the two biopsies. 

 In Figure 4.2, scenario D, both samples are identical in size, gene expression and the number 

of HPV infected cells. One sample has a large amount of adipose tissue, yielding less mRNA 

than epithelial tissue. This alters the amount of human gene mRNA in comparison to the HPV 

gene mRNA, potentially affecting the RQ ratios. 

Several other factors are also masked by biopsy sampling. It is widely accepted that within a 

HPV lesion, different regions exhibit different HPV biology. Laser Capture Microdissection 

(LCM) studies for instance have revealed that within one lesion, there can be distinct areas 

containing different HPV types (Quint et al., 2012), and variation in HPV DNA methylation and 

viral copy number in different parts of the same tumour (Kalantari et al., 2009, Vinokurova and 

von Knebel Doeberitz, 2011). It is also well established that there is variation in gene 

expression in different epithelial layers (Doorbar, 2006). How much of the biopsy contained 

different cell types, or even identical types of cells with distinct patterns of HPV mRNA 

expression is difficult to establish. qPCR on mRNA from biopsies does not show differences in 

gene expression between different parts of the biopsy, rather, an average expression for the 

whole biopsy is returned.  
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LCM would have solved several of these issues however the technique is expensive, time 

consuming and is highly unlikely to be applicable to routine cytology/histology. It was also 

outside of the scope of this project both financially and in terms of time commitments. 

Figure 4.2: The biopsy dosage effect illustrated by punch biopsies for 8 hypothetical patients. 

The shape of the biopsy images represents a typical punch biopsy sample, the elastic epidermal top 
layer of tissue retains its shape, whilst the softer and less elastic underlying tissue tends to constrict 
into a cone shape. Pink is human biopsy tissue without HPV infected cells, blue is HPV infected tissue 
expressing HPV genes and red is HPV infected tissue highly expressing HPV genes. In scenario A, two 
biopsies with an equal number of HPV infected cells are sampled, but the two biopsies vary in size. In 
scenario B, two identically sized biopsies have different numbers of HPV expressing cells. In scenario 
C, two biopsies of equal size are sampled, one has a small number of high HPV gene expressing cells, 
the other sample contains a large number of low HPV gene expressing cells. In scenario D, two 
identically sized biopsies have an identical number of HPV gene expressing cells but one sample has a 
large amount of adipose tissue (yellow). 

 

4.1.4. Method Validation 

4.1.4.1. Comparing RQ with Deep Sequencing  

One of the VR series samples (VR49) was used for deep sequencing of the human and HPV 

transcriptome. The data and the analysis did not constitute part of this investigation and the 

data/results are not reported here. However, for the vulval sample, the RQ ratio and RPKM 

(Reads Per Kilobase of exon model per Million mapped reads) of E2, E6 and E7 can be 

compared. RPKM is the current de facto standard for quantifying expression levels for RNA 

deep sequencing data sets (Mortazavi et al., 2008). A simple visual comparison of the 

difference in RQ between E2, E6 and E7 against the difference in RPKM suggests that RQ ratio 

difference between E6 and E7 are fairly accurate whilst E2 RQ was slightly overestimated. RQ 

ratios are expressed relative to CaSki. That E2 expression is slightly overestimated suggests 
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that CaSki E2 mRNA transcription is slightly lower level than E6 and E7. Nonetheless, the 

overestimation is not huge and the relative ratios of E6 and E7 appear to be very similar 

considering the methodological differences. 

 
Deep sequencing qPCR 

HPV gene Exon (nt) RPKM Region (nt) RQ 

E6 83-559 1397 99-178 1.08 

E7 562-858 2347 739-816 2.61 

E2 2755-3852 5124 3362-3426 10.30 
Table 4.3: RPKM and RQ for E6, E7 and E2 of VR49. 

 

4.1.4.2. Reproducibility and Sensitivity 

The reproducibility of the qPCR assays is demonstrated by the CaSki calibration curves 

produced to determine PCR efficiency (Appendix II). There was little variation between runs. 

To further support this observation, the Ct values of 0.01x diluted CaSki cDNA from several 

independent RT treatments and independent qPCR runs are displayed in Figure 4.3. This figure 

shows that little variation was present between independent runs. The sensitivity of the assays 

was also determined, the lowest dilution of CaSki cDNA at which consistently repeatable 

results were produced for all assays was 1/78125 diluted (i.e. 0.000128x). 
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Figure 4.3: The stability of Ct value for multiple 0.01x CaSki repeats. 

Included are 3 full independent repeats, repeated in triplicate (i.e. n=9). 95% confidence interval bars 
(blue bars) and individual values (red circles) are also included. 
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4.2. DNA Methylation 

4.2.1. Method Development 

Initial attempts at determining HPV methylation status utilised Methylation Specific PCR (MS-

PCR). The EZ DNA methylation kit (Zymo Research Corporation, CA, USA) was the most 

commonly used BS conversion kit identified during a literature search. The conversion 

efficiency of the EZ DNA methylation kit was doubted at various stages during the study and 

the manufacturer’s suggestions to improve conversion efficiency were adopted. BS conversion 

was tested using a fully methylated human control DNA (Zymo Research Corporation, CA, USA) 

and BS positive and negative controls and in each instance was found to be efficiently 

converted. 

4.2.1.1. Methylation Specific-PCR 

MS-PCR primers specific to part of the L1, L2 and LCR regions of HPV as described by 

Fernandez et al (Fernandez et al., 2009) were tested. PCRs specific to methylated or 

unmethylated DNA regions were performed (M and U primer pairs respectively). CaSki and 

SiHa had various methylated and unmethylated primer sets amplify, in some instances both 

primer sets would amplify whilst in others, neither would amplify. Rather than a range of 

methylation statuses, the results were more likely down to incomplete BS conversion, 

heterogeneous DNA methylation, a lack of primer specificity and/or incorrect PCR 

optimisation. Further optimisation was performed with little improvement. A fully methylated 

and a fully unmethylated HPV16 positive control DNA were required. 

To produce the unmethylated control DNAs, two approaches were taken. First, CaSki and SiHa 

were treated with the demethylating agent 5-aza-2′-deoxycytidine using two treatment 

protocols (Fernandez et al., 2009, Kalantari et al., 2008a) with limited degrees of success. In 

addition, an Escherichia coli pSP64 plasmid vector containing a cloned HPV16 genome was 

acquired. To produce the methylated control, treatment of pSP64 with M.SssI 

methyltransferase was performed according to the protocol detailed by Brandsma et al 

(Brandsma et al., 2009). Whilst this appeared to offer a suitable series of control DNAs, the 

limitations of MS-PCR had become apparent. MS-PCR was insensitive, required cloning to offer 

data of a quantitative nature and analysed only a few CpGs per assay. 

4.2.1.2. Bisulfite Sequencing 

Bisulfite sequencing was adopted and performed as described by Brandsma et al (Brandsma et 

al., 2009). A series of bisulfite sequencing primers were trialled. CaSki and SiHa DNAs were 

bisulfite sequenced without cloning and aligned against published data. PCRs were optimised 



93 

 

successfully and included various annealing temperatures, MgCl2 concentrations, PCR cycles 

and various attempts at nested PCR. It was apparent that quantitative methylation data was 

essential for the successful assessment of methylation status. Cloning of BS treated DNAs prior 

to bisulfite sequencing would provide semi-quantitative methylation data (Fernandez et al., 

2009) however access to a pyrosequencer was secured and the bisulfite sequencing assays 

were eventually abandoned. 

4.2.1.3. Pyrosequencing 

Pyrosequencing had the advantage of producing quantitative data, being rapid and high 

throughput, accurate, assessed multiple CpGs within a short region of DNA and did not require 

a cloning step. E2, LCR1 and LCR2 assay details and primer sequences were provided by Dr T 

Liloglou (University of Liverpool, personal communication, Dec 2010) and a basic PCR protocol 

was adapted from the ZymoTaq (Zymo Research Corporation, CA, USA) instruction booklet 

with some modifications. 

The E2, LCR1 and LCR2 assays were chosen for several reasons. LCR2 represented the HPV 

promoter including E2BS3 and E2BS4 which have a suspected role in P97 regulation and were 

observed to be hypermethylated in most cervical cancers (Fernandez et al., 2009). LCR1 

represented the viral enhancer, another interesting region of the LCR, but importantly a region 

without E2BSs such that LCR methylation could be assessed independent of the potentially 

strong influence of E2BS methylation. E2 was chosen as there was reason to suspect E2 

intragenic methylation might affect E2 transcription/translation and it was a region outside of 

the LCR with which to assess HPV genomic methylation. 

Initial attempts at pyrosequencing PCRs produced multiple secondary products. Further 

optimisation using gradient PCR and the addition of Qiagen HotStarTaq Q-mix (Qiagen, Hilden, 

Germany) appeared to minimise secondary product formation in some instances. 

Pyrosequencing was successfully applied to a range of DNAs. We had attempted to test the 

quantitative nature of the pyrosequencing reaction by mixing increasing amounts of 

hypomethylated control DNAs with hypermethylated control DNAs but the attempts were 

unsuccessful. Pyrosequencing had revealed that the 5-aza-2′-deoxycytidine treatment regime 

was not particularly effective at demethylating CaSki DNAs and whilst in vitro 

methyltransferase treatment worked well, pyrosequencing of the cloned pSP64 HPV16 

genome consistently failed. Sequencing of the pSP64 HPV16 E2 region revealed considerable 

sequence diversity that was likely responsible for this failure. Several DNA extracts and clones 

were trialled until this avenue of investigation was abandoned. Pyrosequencing works in a 
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“sequencing by synthesis” manner, each dNTP is added sequentially, incorporated and a light 

signal is produced. If inefficient extension of the sequencing product occurs (e.g. as a result of 

sequence diversity), part of the sequencing product will remain unextended until the next 

addition of the relevant dNTP. This causes amplification of sequencing products in several 

phases/frames, creating background noise and causing the runs to fail. 

Subtle modifications to the dispensation protocol were performed in order to improve 

sequencing efficiency and diluting the PCR product 2/3 with water prior to sequencing 

improved data quality considerably. DNA input amount was optimised alongside PCR 

conditions and the volume of sepharose beads required for PCR product immobilisation. 

Two additional assays were developed to target the L1/L2 overlap and E2BS1. The L1/L2 

overlap was chosen for several reasons. Whilst most studies considered methylation of only a 

few CpGs of the HPV genome, genome wide studies have assessed the entire methylome of 

HPV16 in a range of cervical disease states. Several regions of the HPV genome (especially L1 

and L2) were progressively methylated with increasing disease severity whilst the LCR 

remained largely unmethylated in all samples (Fernandez et al., 2009). L1/L2 was away from 

areas of transcriptional regulation (i.e. LCR) and potential transcriptional regulation (i.e. E2 

intragenic methylation). L1 and L2 were also regularly cited as areas with potential clinical 

utility in terms of a methylation biomarker. E2BS1 was sought because it was the activator 

E2BS, we hypothesised that this E2BS might be differentially methylated from the repressor 

E2BSs in a manner which might be associated with high transcriptional activity. The E2BS1 and 

L1/L2 assays were difficult to design as both regions were flanked by long TA repeats and had 

considerable secondary structure. Whilst L1/L2 was eventually optimised and applied to 

various cohorts, the E2BS1 assay was deemed unsuitable due to repeated failure of the 

pyrosequencing internal controls. 

 

4.2.2. Method Validation 

The early stages of biomarker design require the development of an accurate and reproducible 

assay that is suitable for the range of material that it will be applied to. As such, the sensitivity 

and reproducibility of pyrosequencing were tested. 

First, the limits of sensitivity were tested. Two independent dilution series of CaSki BS treated 

DNA were performed in duplicate. CaSki was diluted from 1x (BS treated DNA) down to 

0.0001x. The success of these PCRs is depicted in Figure 4.4. CaSki 0.001x was the lowest 

concentration that produced a band that might be expected to be successfully pyrosequenced; 
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this represented an input of BS treated DNA of approximately 0.01 ng/PCR. For data collection, 

CaSki DNA was typically used at 0.01x concentration in PCR, whilst clinical samples were 

typically used at 0.1x concentration. 

 

Figure 4.4: PCR success for a 1/10 dilution series of CaSki BS treated DNAs.  

Five levels of a CaSki BS DNA 1/10 dilution were tested in the pyrosequencing PCRs. A and B represent 
two fully independent repeats (i.e. independent BS treatment and PCR). Negatives were full process 
negatives, i.e. water instead of DNA for BS treatment. The bands produced for negative reactions 
were small and most likely represented primer dimers. 

 

These PCR products were then pyrosequenced. No difference in methylation level was 

observed between the diluted DNAs. The lowest concentration to produce a successful 

pyrosequencing result was 0.001x for all assays, and 0.0001x for L1/L2 and LCR1. In summary, 

pyrosequencing can function with a very small amount of input DNA. 

To test variability between pyrosequencing reactions, 6x CaSki repeats were performed. The 

results are summarised in Appendix III. There was little variation between runs. 

 

4.3. Conclusions 

qPCR and various assays for measuring DNA methylation were evaluated. Protocols were 

produced and optimised. Relative quantification was performed using a modified variant of the 

Pfaffl equation. For methylation analysis, pyrosequencing was chosen because it measures 

multiple CpGs and is quantitative, high throughput, sensitive and reproducible. 

Studies in the various cohorts demonstrate that pyrosequencing can be applied to DNA 

extracted from several types of material including LBC samples. 
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Chapter 5. The NSC Study - DNA Methylation and Disease Grade 
 

5.1. Results 

This study was performed in order to investigate the relationship between DNA methylation 

and cervical disease. A series of HPV16 positive LBC samples with normal cytology (normal 

group, n=20) and severe dyskaryosis (severe group, n=20) and a series of FFPE cervical cancer 

DNAs (cancer group, n=27) were analysed using the pyrosequencing assays targeting the E2, 

LCR1, LCR2 and L1/L2 regions. Several of these samples failed various pyrosequencing assays 

(most likely as a result of DNA quality). Poor quality data was excluded from the analysis which 

meant that the results of 17 normal samples, 20 severe samples and 24 cancer samples were 

used in the final statistical analysis. 

The DNA methylation data was analysed by addressing a hierarchical series of hypotheses 

about HPV16 DNA methylation and the relationship between methylation and cervical disease 

grade. A description of the statistical analyses used, including a description of the 

requirements is presented in the materials and methods section. 

 

5.1.1. Hypothesis 1: DNA Methylation Varied among Regions of the Genome 

There appeared to be considerable variation in the level of DNA methylation among the four 

HPV16 regions (Figure 5.1). To test for a significant difference among the regions, a two-way 

ANOVA GLM was ideal as it considered DNA methylation for all three regions simultaneously. 

The two-way ANOVA found significant differences among the mean DNA methylation of each 

region (P=0.000). In addition, the two-way ANOVA GLM partly tested the next hypothesis and 

found significant differences among the three disease groups (P=0.000). One violation of the 

two-way ANOVA existed, the data did not have equal variances (P=0.000) however no suitable 

non-parametric alternative exists. 
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Figure 5.1: The relationship between disease grade and DNA methylation for four regions of the 
HPV16 genome. 

Coloured bars represent mean methylation and individual values are plotted as red circles. 95% +/- 
confidence intervals for mean are included. 

 

5.1.2. Hypothesis 2: There is a Difference in DNA Methylation among the 

Different Disease Grades 

In general, there appeared to be a pronounced increase in DNA methylation within each region 

with increasing grades of cervical disease, with the highest seen in the cancers and the lowest 

in normal cytology samples (Figure 5.1). There was also considerable variation in the amount 

of DNA methylation at each HPV16 region within the disease groups. For example, the HPV16 

E2 region of individual cancer samples ranged from 8.5-85% methylated. This massive variation 

suggests that the cause or consequences of HPV DNA methylation were not common to each 

of the cancers or that a higher level of complexity existed. 

The simplest way of comparing DNA methylation was to compare the means of the three 

disease groups statistically. The previously performed two-way ANOVA GLM test revealed a 

significant difference among the disease groups (P=0.000) but the GLM does not permit 

pairwise comparisons. As such, DNA methylation at each region for each of the three disease 

groups was compared using one-way ANOVA tests (one test for each region) and then Tukey-

Kramer tests were used to identify pairwise differences between the disease groups. The 

methylation data for several regions violated one or more of the assumptions of the one-way 
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ANOVA test; however because these statistics were exploratory and hypothesis generating in 

nature, the advantages of the one-way ANOVA and Tukey-Kramer over the non-parametric 

Kruskall-Wallis test and multiple Mann-Whitney U tests outweighed the consequences of the 

violations. Significant results must be interpreted with caution and the one-way ANOVAs 

performed ideally require a Bonferroni correction of P=0.013 to be considered. To increase the 

reliability of the interpretation of the results, Kruskall-Wallis tests were also performed. The 

results of the one-way ANOVA, Tukey-Kramer and Kruskall-Wallis tests are presented in Table 

5.1. The details of any violations of the assumptions of the ANOVA are included in the table 

legend. 

There were highly significant differences among the means of the three disease groups for all 

tested regions. There were also significant differences between the cancer group and the 

normal/severe groups for every region and a significant difference between the severe and 

normal groups for the L1/L2 region.  

 

 
HPV16 Region 

 
E2 LCR1 LCR2 L1/L2 

One-way ANOVA (P-value) 0.000 0.000
*1

 0.000
*2

 0.000
*3

 

Significant Tukey-Kramer C vs. S, C vs. N C vs. S, C vs. N C vs. S, C vs. N C vs. S, C vs. N, 

results 
   

S vs. N 

Kruskall-Wallis (P-value) 0.000 0.000 0.000 0.000 

Table 5.1: The results of one-way ANOVA tests, Tukey-Kramer pairwise comparison tests and Kruskall-
Wallis tests to compare the differences among the three disease groups. 

One-way ANOVA tests were performed to compare the means of the three disease groups in each 
HPV region. P is significant at P<0.05 or P<0.013 (Bonferroni corrected). The Tukey-Kramer pairwise 
comparisons significant at P=0.05 are presented, here N is the normal cytology group, S is the severe 
dyskaryosis group and C is the cancer group, e.g. “C vs. S” represents a significant difference between 
the mean methylation of C and S for that region. Kruskall-Wallis P-values are included and represent a 
difference among the medians of the three groups. Violations of the one-way ANOVA assumptions *1; 
unequal variances (P=0.042) and non-normally distributed residuals (P=<0.005), *2; unequal variances 
(P=0.004), *3; unequal variances (P=0.026). 

 

5.1.3. Hypothesis 3: DNA Methylation Varies within Regions 

The pyrosequencing assays each cover several CpGs so as well as differences among regions, 

differences among individual CpGs within each region can be determined. There appeared to 

be variation in the amount of methylation of different CpGs within each site, and a rather well 

conserved pattern of methylation at each CpG, i.e. the same CpGs seem to be the most 

methylated in each disease group despite large differences between the disease groups 

overall. The E2-4 (the 4th CpG of the E2 region) for instance was highly methylated in all 
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disease groups relative to the other CpGs, conversely, E2-3 was low in each instance despite 

the CpGs being separated by only 14 bp. CpGs E2-1, E2-2 and E2-3 are very close together (E2-

2/E2-3 are directly adjacent and E2-1/E2-2 are separated by 1 bp) and yet DNA methylation 

among these CpGs varied considerably, possibly suggesting that a very specific mechanism 

regulates HPV DNA methylation. The CpG specific methylation patterns also appeared to be 

well conserved for most of the regions, the “N” shaped pattern (i.e. CpGs L1L2-1 and L1L2-3 

lowly methylated and L1L2-2 and L1L2-4 more methylated) seen in the L1/L2 region was 

particularly evident in each disease group (Figure 5.5). 

5.1.3.1. E2 

Kruskall-Wallis one-way analysis of variance was used to determine whether a significant 

difference existed among the median methylation values at each CpG of the E2 region (Figure 

5.2). Bonferroni correction for multiple analyses means that a P=0.006 should be considered. 

There was a significant difference among the median values of methylation of the 8 CpGs of 

the E2 region in the normal cytology sample group (P=0.000) and the severe dyskaryosis group 

(P=0.001) but not the cervical cancer group (P=0.101). 

5.1.3.2. LCR1 

Kruskall-Wallis one-way analysis of variance was used to determine whether a significant 

difference existed among the median methylation values at each CpG of the LCR1 region 

(Figure 5.3). Bonferroni correction for multiple analyses means that P=0.017 should be 

considered. There was no significant difference in the median methylation at each CpG for the 

normal group (P=0.517), however there was a significant difference among the median 

methylation values of each CpG for the severe (P=0.000) and cancer (P=0.005) groups. 

5.1.3.3. LCR2  

Kruskall-Wallis one-way analysis of variance was used to determine whether a significant 

difference existed among the median methylation values at the CpGs of the LCR2 region 

(Figure 5.4). Bonferroni correction for multiple analyses means that a P=0.010 should be 

considered. There was a significant difference among the median methylation for the normal 

(P=0.000) and an almost significant difference for the severe group (P=0.028), but not for the 

cancer group (P=0.821).  

5.1.3.4. L1/L2 

Kruskall-Wallis one-way analysis of variance was used to determine whether a significant 

difference existed among the median methylation values at the CpGs of the L1/L2 region 

(Figure 5.5). Bonferroni correction for multiple analyses means that a P=0.013 should be 
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considered. There was a significant difference among the median methylation for the normal 

(P=0.011), severe group (P=0.000) and cancer group (P=0.001).  
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Figure 5.2: Variation in CPG methylation with disease grade for the E2 region of HPV16.  

The mean amount of methylation at each of the 8 CpGs of the E2 region are compared for each of the 
three sample groups (normal=N, severe=S and cancer=C). Error bars indicate 95% confidence intervals 
for mean. Red crosses indicate individual sample values. 
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Figure 5.3: Variation in CPG methylation with disease grade for the LCR1 region of HPV16.  

The mean amount of methylation at each of the 3 CpGs of the E2 region are compared for each of the 
three sample groups (normal=N, severe=S and cancer=C). Error bars indicate 95% confidence intervals 
for mean. Red crosses indicate individual sample values. 
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Figure 5.4: Variation in CPG methylation with disease grade for the LCR2 region of HPV16.  

The mean amount of methylation at each of the 5 CpGs of the E2 region are compared for each of the 
three sample groups (normal=N, severe=S and cancer=C). Error bars indicate 95% confidence intervals 
for mean. Red crosses indicate individual sample values. 
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Figure 5.5: Variation in CPG methylation with disease grade for the L1/L2 region of HPV16.  

The mean amount of methylation at each of the 4 CpGs of the E2 region are compared for each of the 
three sample groups (normal=N, severe=S and cancer=C). Error bars indicate 95% confidence intervals 
for mean. Red crosses indicate individual sample values. 

 

5.1.4. Hypothesis 4: E2BS Methylation is Associated with Disease 

Previous studies have observed a relationship between E2BS methylation and disease severity. 

LCR2 covers two E2BSs (E2BS3 and E2BS4) however LCR2 methylation was low in almost all 

precancerous neoplasias. Of the cervical cancers, only 5 samples had LCR2 methylation above 

40% whilst the rest were considerably less methylated, there was not a strong association 

between LCR2 methylation and cancer. 

5.1.5. Hypothesis 5: HPV DNA Methylation is Clinically Relevant 

One of the primary reasons for performing pyrosequencing on the three disease groups was to 

determine whether HPV methylation represents a suitable biomarker of cervical disease. An 

aspect of this was to determine what features of the methylation data were the most 

informative clinically. In order to assess which of the four regions and which of the twenty 

CpGs analysed were the most different among the three disease grades, multiple statistical 

analyses were applied.  

The regions or single CpGs with the greatest significant differences in methylation among the 

three disease grades are more likely to be of use in future biomarker studies. One-way ANOVA 
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and Tukey-Kramer pairwise comparison tests were applied to the methylation data for each of 

the regions and CpGs, and the significance of the results compared. The statistics performed in 

other parts of this investigation were exploratory and hypothesis generating in nature and so a 

degree of deviation from the assumptions of ANOVA, or P-values below the Bonferroni 

corrected P-value were acceptable providing that the results were interpreted with caution. 

Here, a direct comparison of the P-values of the tests was being performed in order to 

determine which comparisons were the most significant; as such the violation of assumptions 

may have had a considerable effect on the conclusions drawn. In order to aid interpretation of 

the results, Kruskall-Wallis non-parametric ANOVAs were also applied to compare differences 

among the median of each group. In addition to these analyses, the overall spread of the 

methylation data for each CpG and the size of the confidence intervals for the graphically 

plotted methylation data were considered when deciding which region or CpG appears to be 

the most different among the three disease groups. 

 

5.1.5.1. Which of the Four HPV Regions is the Most Informative? 

One-way ANOVA, Tukey-Kramer and Kruskall-Wallis tests were performed on the mean 

methylation data for each pyrosequencing assay, the results are summarised in Table 5.2. A 

Bonferroni corrected P-value of 0.013 was used. In order to determine which of the four 

regions was the most informative; the H-value, F-value and Tukey-Kramer results were 

considered. E2, LCR1 and L1/L2 had the highest F values however LCR1 violated the 

assumptions of the ANOVA so the results must be interpreted with caution. Only L1/L2 was 

differently methylated between the normal and severe groups and the E2 region had the 

lowest H-value. Of all the regions, mean L1/L2 methylation appeared to be the most 

informative. 

Next, similar statistics were applied to the individual CpG methylation data of each region in 

order to identify the most informative CpGs. 
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 HPV16 Region 

 E2 LCR1 LCR2 L1/L2 

Kruskall-Wallis P-value 0.000 0.000 0.000 0.000 

H value (DF) 25.26 (2) 37.40 (2) 26.41 (2) 36.75 (2) 

       

ANOVA P-value 0.000 0.000 0.000 0.000 

F value (DF) 48.04 (2) 41.32 (2) 26.70 (2) 54.45 (2) 

Equal variances Yes Close No Close 

Normal residuals Yes No Yes Yes 

       

 Significant Tukey-Kramer Pairwise Comparison? 

 E2 LCR1 LCR2 L1/L2 

Cancer vs. Normal Yes Yes Yes Yes 

Cancer vs. Severe Yes Yes Yes Yes 

Severe vs. Normal No No No Yes 

Table 5.2: The results of multiple statistical analyses on methylation data all regions.  

The non-parametric Kruskall-Wallis P-values and H-values represent the significant differences among 
the medians of each disease group, higher significance is represented by a lower P-value and a larger 
H-value. ANOVA P-values and F-values are accompanied by degrees of freedom (DF) and two 
statements for violations of the ANOVA assumptions (equal variances and normally distributed 
residuals), here three degrees of success are present, No; a violation (P=<0.01), Close; P=0.01-0.05 and 
Yes; P>0.05. Finally, the significance of Tukey-Kramer tests are listed for each comparison of disease 
group, where Yes = significance at P=0.05 and No = no significance. 

 

 

5.1.5.2. E2 CpG Methylation: Which E2 CpG is the Most Informative? 

One-way ANOVA, Tukey-Kramer and Kruskall-Wallis tests were performed for each E2 CpG, the 

results are summarised in Table 5.3. Each CpG was significantly differently methylated among 

the disease groups and met the Bonferroni corrected P-value of 0.006 in every instance. In 

order to decide which of the 8 E2 CpGs was the most differently methylated among disease 

grades, the H-value, F-value and Tukey-Kramer results were considered. E2-1, E2-2 and E2-4 

had the highest (i.e. most significant) Kruskall-Wallis H-values and ANOVA F-values. E2-2 data 

violated the assumptions of the ANOVA and so pairwise comparison was less reliable, there 

was also no difference in mean E2-2 methylation between the severe and the normal groups.  

There were however significant differences in E2-1 and E2-4 methylation among each of the 

three disease groups. When considering the individual value plot for E2 (Figure 5.2), it was 

difficult to decide which of E2-1 and E2-4 was more informative as both had overlaps among 

the three groups, and for the cancer group especially there was a wide range of individual 

methylation values. Values overlap for the severe and normal groups, but in both instances 



105 

 

narrower confidence intervals exist than for the E2 region as a whole suggesting that individual 

CpG methylation might prove more useful. 

 E2-1 E2-2 E2-3 E2-4 E2-5 E2-6 E2-7 E2-8 

Kruskall-Wallis P-
value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

H-value  
(DF) 

30.94 
(2) 

26.91 
(2) 

25.97 
(2) 

30.22 
(2) 

17.47 
(2) 

26.19 
(2) 

21.93 
(2) 

22.87 
(2) 

           

ANOVA P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F-value  

(DF) 
42.49 

(2) 
36.61 

(2) 
33.48 

(2) 
49.61 

(2) 
18.41 

(2) 
37.30 

(2) 
27.05 

(2) 
26.20 

(2) 

Equal variances Yes Yes No Yes Yes Close Yes Close 

Normal residuals Close No No Yes Close No No No 

           

  Significant Tukey-Kramer Pairwise Comparison? 

  E2-1 E2-2 E2-3 E2-4 E2-5 E2-6 E2-7 E2-8 

Cancer vs. Normal Yes Yes Yes Yes Yes Yes Yes Yes 

Cancer vs. Severe Yes Yes Yes Yes Yes Yes Yes Yes 

Severe vs. Normal Yes No No Yes No No No No 

Table 5.3: The results of multiple statistical analyses on methylation data for the E2 CpGs.  

The non-parametric Kruskall-Wallis P-values and H-values represent the significant differences among 
the medians of each disease group, higher significance is represented by a lower P-value and a larger 
H-value. ANOVA P-values and F-values are accompanied by degrees of freedom (DF) and two 
statements for violations of the ANOVA assumptions (equal variances and normally distributed 
residuals), here three degrees of success are present, No; a violation (P=<0.01), Close; P=0.01-0.05 and 
Yes; P>0.05. Finally, the significance of Tukey-Kramer tests are listed for each comparison of disease 
group, where Yes = significance at P=0.05 and No = no significance. 

 

5.1.5.3. LCR1 CpG Methylation: Which LCR1 CpG is the Most Informative? 

One-way ANOVA, Tukey-Kramer and Kruskall-Wallis tests were performed for each LCR1 CpG 

and the results are summarised in Table 5.4. Each CpG was significantly differently methylated 

among the disease groups and met the Bonferroni corrected P-value 0.017 in every instance. 

LCR1-2 and LCR1-3 had the most significant (i.e. highest) H-values and F-values however there 

was no significant difference in LCR1-2 methylation between the severe and normal groups, 

and LCR1-3 data failed one of the ANOVA assumptions making interpretation unreliable. In 

addition, there was considerable variation among individual data points in each disease group 

and there was substantial overlap between the severe and normal groups (Figure 5.3). For 

differentiating between cancer and normal or severe samples, methylation level of the LCR1-2 

and LCR1-3 CpGs may prove clinically useful. 
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 LCR1-1 LCR1-2 LCR1-3 

Kruskall-Wallis P-value 0.000 0.000 0.000 

H value (DF) 26.26 (2) 36.49 (2) 37.71 (2) 

      

ANOVA P-value 0.000 0.000 0.000 

F value (DF) 18.79 (2) 35.20 (2) 48.29 (2) 

Equal variances Yes Yes Yes 

Normal residuals No Yes No 

      

 Significant Tukey-Kramer Pairwise Comparison? 

 LCR1-1 LCR1-2 LCR1-3 

Cancer vs. Normal Yes Yes Yes 

Cancer vs. Severe Yes Yes Yes 

Severe vs. Normal No No Yes 

Table 5.4: The results of multiple statistical analyses on methylation data for the LCR1 CpGs.  

The non-parametric Kruskall-Wallis P-values and H-values represent the significant differences among 
the medians of each disease group, higher significance is represented by a lower P-value and a larger 
H-value. ANOVA P-values and F-values are accompanied by degrees of freedom (DF) and two 
statements for violations of the ANOVA assumptions (equal variances and normally distributed 
residuals), here three degrees of success are present, No; a violation (P=<0.01), Close; P=0.01-0.05 and 
Yes; P>0.05. Finally, the significance of Tukey-Kramer tests are listed for each comparison of disease 
group, where Yes = significance at P=0.05 and No = no significance. 

 

5.1.5.4. LCR2 CpG Methylation: Which LCR2 CpG is the Most Informative? 

One-way ANOVA, Tukey-Kramer and Kruskall-Wallis tests were performed on the methylation 

data for each LCR2 CpG and the results are summarised in Table 5.5. All comparisons were 

significant even when the Bonferroni corrected P-value 0.010 was considered. None of the H-

values or F-values were exceptionally high but CpGs LCR2-3 and LCR2-4 were the most 

significantly different among the groups. However the data for all of the comparisons did not 

satisfy the assumptions of the ANOVA and none of the subsequently unreliable Tukey-Kramer 

comparisons were able to differentiate between methylation of the severe and normal 

samples. Methylation data for the LCR2 region may be useful for differentiating cancer 

samples from normal or severe disease however the data analyses had violations and were not 

particularly suitable for the analyses performed. Also, the range of DNA methylation in each 

disease group overlapped for every CpG (Figure 5.4). 
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 LCR2-1 LCR2-2 LCR2-3 LCR2-4 LCR2-5 

Kruskall-Wallis P-value 0.000 0.000 0.000 0.000 0.000 

H value (DF) 26.97 (2) 20.27 (2) 29.63 (2) 30.72 (2) 20.86 (2) 

        

ANOVA P-value 0.000 0.000 0.000 0.000 0.000 

F value (DF) 27.08 (2) 18.00 (2) 28.88 (2) 33.71 (2) 17.26 (2) 

Equal variances No Yes Close No Close 

Normal residuals No Close No No No 

        

 Significant Tukey-Kramer Pairwise Comparison? 

 LCR2-1 LCR2-2 LCR2-3 LCR2-4 LCR2-5 

Cancer vs. Normal Yes Yes Yes Yes Yes 

Cancer vs. Severe Yes Yes Yes Yes Yes 

Severe vs. Normal No No No No No 

Table 5.5: The results of multiple statistical analyses on methylation data for the LCR2 CpGs.  

The non-parametric Kruskall-Wallis P-values and H-values represent the significant differences among 
the medians of each disease group, higher significance is represented by a lower P-value and a larger 
H-value. ANOVA P-values and F-values are accompanied by degrees of freedom (DF) and two 
statements for violations of the ANOVA assumptions (equal variances and normally distributed 
residuals), here three degrees of success are present, No; a violation (P=<0.01), Close; P=0.01-0.05 and 
Yes; P>0.05. Finally, the significance of Tukey-Kramer tests are listed for each comparison of disease 
group, where Yes = significance at P=0.05 and No = no significance. 

 

5.1.5.5. L1/L2 CpG Methylation: Which L1/L2 CpG is the Most Informative? 

One-way ANOVA, Tukey-Kramer and Kruskall-Wallis tests were performed on the methylation 

data for each L1/L2 CpG and the results are summarised in Table 5.6. P-values were below the 

Bonferroni corrected threshold of 0.013 in every instance. Both L1L2-2 and L1L2-3 had high 

(i.e. highly significant) F-values and H-values. L1L2-3 data was very close to satisfying the 

assumptions of the ANOVA and showed a significant difference among all three groups. L1L2-2 

data did not satisfy the assumptions of the ANOVA so the interpretation was less reliable, but 

there was still a significant difference in methylation among the three disease groups.  

L1L2-1 methylation was different between normal or severe and cancer, but not between 

normal and severe. In terms of clinical utility, the most significant differences among the three 

disease groups were observed for L1L2-2 methylation. Whilst methylation of L1L2-2, L1L2-3 

and L1L2-4 was significantly different among the three disease groups, the smallest confidence 

intervals and the smallest degrees of overlap among the groups were observed for L1L2-2 and 

L1L2-4 (Figure 5.5). In summary, the biggest differences were observed for L1L2-2 methylation 

however methylation of all L1/L2 CpGs seemed likely to be useful, and could potentially be 

more useful than mean L1/L2 methylation alone.  
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 L1L2-1 L1L2-2 L1L2-3 L1L2-4 

Kruskall-Wallis P-value 0.000 0.000 0.000 0.000 

H value (DF) 30.56 (2) 37.38 (2) 34.7 (2) 33.39 (2) 

       

ANOVA P-value 0.000 0.000 0.000 0.000 

F value (DF) 32.14 (2) 48.10 (2) 43.58 (2) 33.66 (2) 

Equal variances Yes No Yes No 

Normal residuals No Close Close No 

      

 Significant Tukey-Kramer Pairwise Comparison? 

 L1L2-1 L1L2-2 L1L2-3 L1L2-4 

Cancer vs. Normal Yes Yes Yes Yes 

Cancer vs. Severe Yes Yes Yes Yes 

Severe vs. Normal No Yes Yes Yes 

Table 5.6: The results of multiple statistical analyses on methylation data for the L1/L2 CpGs.  

The non-parametric Kruskall-Wallis P-values and H-values represent the significant differences among 
the medians of each disease group, higher significance is represented by a lower P-value and a larger 
H-value. ANOVA P-values and F-values are accompanied by degrees of freedom (DF) and two 
statements for violations of the ANOVA assumptions (equal variances and normally distributed 
residuals), here three degrees of success are present, No; a violation (P=<0.01), Close; P=0.01-0.05 and 
Yes; P>0.05. Finally, the significance of Tukey-Kramer tests are listed for each comparison of disease 
group, where Yes = significance at P=0.05 and No = no significance. 

 

5.1.5.5.1. Summary 

Comparison of individual CpGs determined that a number of CpGs were differentially 

methylated with respect to disease grade. Methylation of these CpGs might represent a 

potential biomarker to differentiate between either cancer and severe or normal samples, or 

even differentiate all three groups. A larger data set would improve the power of the analyses 

and increase the chances of identifying suitable CpGs. It would also permit the application of 

statistics more typically associated with biomarker studies. Currently, the CpGs E2-1, E2-4, 

LCR1-2 and LCR1-3 show potential to differentiate between cancer samples and those with a 

normal cytology or severe dyskaryosis whilst the L1L2-2 and L1L2-4 CpGs shows good potential 

as a way of differentiating among all three groups; normal cytology, severe dyskaryosis and 

cancers. 

Differences among the disease grades were more significant when the E2 region was 

considered as a whole rather than for individual CpGs. However, significant differences 

specifically between the normal cytology and severe dyskaryosis groups were present for 

individual CpGs, but not for mean E2 regional methylation. Methylation differences among all 

three groups were observed for individual CpGs within the LCR and were different between 

the normal and severe disease groups whilst mean LCR1 methylation was not. Mean LCR2 
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methylation was also not different between the normal and severe groups regardless of 

whether single CpGs or the whole regions were considered and no LCR2 comparisons had 

exceptionally high F/H values.  

Finally, mean L1/L2 methylation had differences of greater significance among the three 

disease groups than individual CpGs did. The overall spread and degree of overlap for the 

mean L1/L2 methylation data was also greater than was seen for individual CpGs of the L1/L2 

region. The L1/L2 region appeared to have potential as a biomarker for cervical disease. 

Further work on a larger data set is required to better determine whether methylation at 

individual CpGs or the mean of all four CpGs is more informative. Ideally, HPV integration data 

would also be available as the high and variable methylation seen in the cancer set could be a 

result of HPV DNA integration. 

 

 

5.2. Discussion 

5.2.1.1. Aims 

This study was performed as a preliminary study prior to testing for DNA methylation in other 

clinical cohorts. It addressed the need to determine the relationship between disease grade 

and DNA methylation such that data collected for other clinical cohorts could be considered in 

context. We were also mindful of the process of biomarker development recommended by 

Cancer Research UK (CRUK) (Appendix I) and this study had the capability of fulfilling several 

aspects of the early development requirements, i.e. that there was variation within our target 

population and that there was a difference among subjects with low grade disease, high grade 

disease and cancer. It was also used to determine whether the data from this study correlated 

with published studies performed using a variety of methods and targeting a variety of HPV 

regions. There was considerable variation in the results of previous studies especially when 

concerning the methylation status of the LCR, this was an issue that we had aimed to clarify. 

5.2.1.2. Strengths 

This study had aimed to identify potential biomarkers to discriminate between HPV positive 

women with and without signs of cervical neoplasia. The potential application would be on 

HPV positive LBC material, this was reflected by the study which was primarily conducted on 

LBC samples. A series of DNAs from histologically confirmed cervical cancers were also 

included in this analysis to determine whether the trends observed in the cytology samples 

were also present in cancers and to extend the severity of disease grades studied. The sample 
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size (n=67) was above average when compared to similar studies and various significant results 

were achieved when the data were tested statistically.  

Until recently, pyrosequencing had not been widely applied for HPV methylation studies, likely 

due to the expense and limited availability of equipment. However, pyrosequencing has the 

advantage of producing fully quantitative results from a heterogeneous mix of DNAs. 

Consistent with other studies, we found bisulfite sequencing without cloning to be a poor 

method for determining DNA methylation (Kalantari et al., 2004). Bisulfite sequencing with 

cloning is semi-quantitative and the results are highly affected by low clone number 

(commonly observed in published studies) such that methylation frequencies are not 

representative. Pyrosequencing does not have these issues. In summary, the study design and 

the assay used were a good way of testing the hypotheses. 

5.2.1.3. Weaknesses 

One of the weaknesses of the study was that while the normal cytology and severe dyskaryosis 

DNAs were extracted from LBC material collected during routine screening, the cancer group 

DNAs were extracted from FFPE cancer biopsies. As the LBC samples were collected as part of 

an anonymous prevalence study, we did not have corresponding histology for the severe 

dyskaryosis samples and therefore did not know the proportion that actually had CIN. 

However, of 3,019 women referred for moderate dyskaryosis or worse, 2,556 (84%) showed 

CIN2 or worse (Cervical Screening Wales, 2011). It is therefore highly likely that the majority of 

samples with severe dyskaryosis would be associated with clinically significant disease (i.e. 

CIN2+). 

The degraded state of DNA from the FFPE cancer samples also affected the success of the 

pyrosequencing assays. Multiple repeats of the PCRs and sequencing reactions were required 

to achieve an acceptable quality of data for some of the cancer samples, which was still 

typically of a lower quality than data collected from LBC material. Samples with particularly 

poor quality data (as determined objectively by the pyrosequencing analysis software) were 

excluded from the analysis. 

To fully assess the potential of DNA methylation as a biomarker would require a much larger 

study designed specifically to test and identify disease biomarkers in a suitable population of 

LBC samples, with associated histology data. This was not achieved by this study.  

Finally, there were several violations of the assumptions of the ANOVA. The tests were used in 

spite of these violations on the basis that the multifactorial ANOVA produced data confirmed 

by other tests. It is common practice to use the tests with violations in an exploratory nature 
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to generate hypotheses under the premise that the results are interpreted with an appropriate 

degree of caution. The sample set size would ideally be larger as this would both improve the 

reliability of the data and increase the likelihood of the data being suitable for testing without 

violations being incurred. 

 

5.2.1.4. Comparison to Other Studies 

HPV methylation has quite recently become a popular avenue of investigation, several 

published studies have related HPV methylation and HPV-associated disease grade and in 

several instances, there was considerable variation in the results. 

The association between LCR methylation and cervical disease varies among studies. Most 

studies reported increased LCR methylation to be associated with higher grade disease 

(Kalantari et al., 2004, Bhattacharjee and Sengupta, 2006a, Ding et al., 2009, Brandsma et al., 

2009, Hong et al., 2008) whilst some report the opposite (Badal et al., 2003, Hublarova et al., 

2009, Patel et al., 2012, Piyathilake et al., 2011). One of the major points of contention 

appears to be LCR methylation of very low grade disease samples; several studies, including 

ours did not see LCR methylation in LSIL/normal cytology/no CIN samples (Ding et al., 2009, 

Fernandez et al., 2009, Bhattacharjee and Sengupta, 2006a) whilst others saw higher 

methylation in these samples than in higher grade precancerous disease (Hong et al., 2008, 

Patel et al., 2012, Kalantari et al., 2004, Badal et al., 2003). Nonetheless, whilst there was 

variation in the published methylation data, there was no valid reason to doubt the data 

produced by this study as the results were consistent across a diverse range of material. For 

the cell lines study for instance (Chapter 7: 7.1.2 & 7.1.3.3), cell lines derived from 

precancerous lesions (i.e. W12Ser7, PC08 and PC09) were rarely methylated in the LCR at early 

passage and LCR methylation was not commonly observed in VIN2/3 (Chapter 8: 8.2.3). 

The published studies encompass a range of material, a range of methodologies and 

determine the significance of DNA methylation from a variety of perspectives (study 

methodologies summarised in Appendix VI). Differences between LBC and biopsy material is 

liable to contribute to some of the differences as LCR methylation is known to be both 

intrinsically associated with cellular differentiation and to be heterogeneous between different 

parts of the same lesion (Vinokurova and von Knebel Doeberitz, 2011). LBC samples contain 

only desquamated cervical cells whilst biopsy material contains cells from various layers of the 

epithelium. Methodological differences, especially where DNA methylation was determined 

using non-quantitative assays (i.e. direct bisulfite sequencing/MS-PCR, or methylation sensitive 
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restriction enzymes) are also likely to have a large influence on the results and is observed in 

the literature (Badal et al., 2003, Fernandez et al., 2009). Further, the method of reporting 

results, even where the same assays have been used varied considerably; e.g. Hong et al used 

pyrosequencing to evaluate LCR methylation, including 5 CpGs covered by our LCR2 assay 

(Hong et al., 2008). Methylated samples were those with “some degree of methylation”, if 

some means >0% then every sample in all disease groups for our study had “some degree of 

methylation” at LCR1 and/or LCR2.  

Other studies have observed an association between increased L1 and/or L2 methylation and 

higher disease grades (Fernandez et al., 2009, Kalantari et al., 2009, Sun et al., 2011, Mirabello 

et al., 2012). Genome wide studies have also revealed that E2/E4 methylation appears to be 

related to disease grade (Fernandez et al., 2009, Mirabello et al., 2012). Fernandez et al used 

bisulfite sequencing, with cloning to assess the entire methylome of HPV16 in cytologically 

normal, CIN and SCC samples. Several regions of the HPV genome (especially L1 and L2) were 

progressively methylated with increasing disease severity whilst the LCR remained largely 

unmethylated in all samples (Fernandez et al., 2009). Sections of missing data were observed 

between the E2 and L2 regions (i.e. parts of E2, E4, E5, L1 and L2) for most of the SCC and CIN 

samples, these were explained as deletions (Fernandez et al., 2009) which seems somewhat 

unlikely. Nonetheless, there was a good agreement between the results of this study and our 

study. E2BS methylation has been observed for cancer samples in several studies; whilst 5 

cancer samples had what might be described as LCR2 hypermethylation, the rates of 

hypermethylation of the LCR2 E2BSs were lower than expected and lower than reported 

elsewhere (up to 90% E2BS methylation in an SCC cohort) (Fernandez et al., 2009, Snellenberg 

et al., 2012). 

Several published studies have approached DNA methylation from a biomarker perspective 

considering multiple CpGs. Brandsma et al identified patterns of DNA methylation that were 

associated with disease grades. HPV genomic hypomethylation was associated with lower 

grade cervical disease (normal cytology and negative histology in most instances) and 

hypermethylation at several regions (E5, L1 and L2) was associated with higher grade disease 

(Brandsma et al., 2009). There was however considerable variation among the samples (likely a 

result of small sample number) and no E2 hypermethylation was observed for any of the cases; 

one LSIL sample had methylation in the LCR1 and LCR2 regions however the rest were 

hypomethylated throughout the LCR (Brandsma et al., 2009). Mirabello et al used a HPV 

genome wide approach and identified numerous CpGs where methylation was significantly 

different among the disease grades studied. These CpGs were located primarily in the L1, L2 
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and E2/E4 regions although CpGs throughout other areas of the genome were also significantly 

associated with disease grade. L1 and L2 methylation could predict disease grade (Mirabello et 

al., 2012).  

 

5.2.2. Meaning 

5.2.2.1. Variation in Methylation 

The variation in methylation level among different HPV regions and among CpGs within 

regions was also seen for cell lines and other clinical cohorts. In most instances there was E2 

and L1/L2 methylation and LCR hypomethylation, this is consistent with several of the studies 

described above. Similarly, the pattern of CpG methylation in each region (i.e. when 

methylation at each CpG is plotted graphically) was also common to the other clinical/cell line 

cohorts. The pattern of L1/L2 CpG methylation for instance was common for all three disease 

groups but was also seen elsewhere in our study. The CpG specific and region specific 

methylation pattern, and possible causes/consequences are discussed in further detail in the 

general discussion (Chapter 9: 9.1.4 & 9.1.5).  

Because there was considerable variation among individual CpGs and because it would be 

much simpler to assess large numbers of samples using single CpG assessing methods like MS-

PCR, any methylation biomarker study would be well advised to consider individual CpG 

methylation as well as regional methylation. 

5.2.2.2. There was a Progressive Increase in DNA Methylation with Increasing 

Severity of Disease 

There was a progressive increase in methylation of the E2 and L1/L2 regions with increasing 

disease severity, the LCR was hypomethylated in most samples except for the cancer group 

where mean LCR methylation was higher and several samples had very high levels of LCR 

methylation. Other studies have identified a more prominent association between E2BS 

hypermethylation (4/5 CpGs of the LCR2 region are in E2BSs) and cancer which may be down 

to methodological differences (Fernandez et al., 2009, Snellenberg et al., 2012). Whether HPV 

DNA methylation changes are a cause of or a consequence of disease progression is yet to be 

established, but the variation within groups does suggest that any relationship is likely to be 

complex.  

Integration of HPV is common in higher grade disease and there is an association between 

DNA hypermethylation and integration (Fernandez et al., 2009, Kalantari et al., 2008b, 

Doerfler, 2006, Van Tine et al., 2004b, Melsheimer et al., 2004). The higher frequency of 
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integration events typically observed in the more severe disease groups might account for 

some of the DNA methylation increase observed. In our other studies (Chapter 7: 7.1.3.5 & 

Chapter 8: 8.2.3.3), most integrated HPV were very heavily methylated in the E2 and/or L1/L2 

regions. The differences between normal cytology and severe dyskaryosis could therefore be 

due to the increased integration frequency. However, whilst there were a few examples of E2 

or L1/L2 hypermethylation of the severe dyskaryosis group, most were not heavily methylated. 

Instead, small increases in methylation of the severe dyskaryosis group compared to the 

normal group were seen for most samples. These small increases in methylation are not 

consistent with an increased integration rate in the higher disease grades being the only 

explanation. As such, integration is not the only factor involved in increased methylation in 

higher disease grades.  

There is an association between HPV DNA methylation and other aspects of HPV molecular 

biology related to cervical disease; i.e. gene expression (Chapter 8: 8.2.3.4) and cellular 

differentiation (Vinokurova and von Knebel Doeberitz, 2011, Ding et al., 2009). LCM studies 

have determined that cellular differentiation in a productive infection is associated with 

changes in LCR methylation. In undifferentiated basal cells, the 5’ LCR and the P97 promoter 

(i.e. LCR2) region were hypomethylated whilst the enhancer region (i.e. LCR1) was 

hypermethylated (Vinokurova and von Knebel Doeberitz, 2011). In more differentiated cell 

layers, the 5’ LCR remained hypomethylated but there was a switch to a hypomethylated 

enhancer and a hypermethylated promoter (Vinokurova and von Knebel Doeberitz, 2011). 

Vinokurova et al also suggested that a “latent” form of infection might be associated with a 

completely hypermethylated LCR whilst cells with high grade disease appeared to be 

associated with a hypermethylated 5’LCR and enhancer, but a hypomethylated promoter 

(Vinokurova and von Knebel Doeberitz, 2011). 

The DNMTs are responsible for methylating DNA. Several oncogenic DNA viruses influence 

DNA methylation and HPV are also known to affect DNMTs both directly and indirectly (Au 

Yeung et al., 2010, Leonard et al., 2012, Burgers et al., 2007, McCabe et al., 2005, Hsu et al., 

2012). It has also been proposed that HPV can actively promote self methylation in order to 

regulate gene expression (De-Castro Arce et al., 2011) so it is not unreasonable to suspect that 

HPV DNA methylation may be at least partly self determined.  

Human cells actively target foreign DNA elements for silencing by DNA methylation and the 

association between cancer and aberrant human DNA methylation has been known for many 

years (Doerfler, 2006, Doerfler, 2008, Doerfler et al., 2001). It is difficult to determine whether 

the profile of HPV DNA methylation observed with increasing disease severity is a consequence 
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of the action of HPV, or the result of general DNA methylation changes as there are numerous 

reports of changes in human DNA methylation also being associated with HPV related cervical 

disease (Henken et al., 2007, Sun et al., 2012, Eijsink et al., 2012, Wentzensen et al., 2009, 

Leonard et al., 2012, Apostolidou et al., 2009). In summary, the observed methylation pattern 

represents a heterogeneous mix of DNAs, likely under the influence of a variety of factors of 

both viral and human origin. 

 

5.2.2.3. HPV Methylation as a Biomarker of Disease 

Several chapters of this investigation considered the potential clinical utility of HPV DNA 

methylation, in order to avoid repetition and provide a concise discussion; a more thorough 

consideration is presented in the general discussion (Chapter 9: 9.3). 

There is a pressing need for suitable biomarkers to be used in conjunction with HPV testing 

(Wentzensen and von Knebel Doeberitz, 2007). For this study, there were significant 

differences in DNA methylation among the three disease groups. The most significant 

differences were observed for the L1/L2 region, for which pairwise differences in methylation 

existed between all three groups. There were however significant overlaps in the ranges of 

each group. Several cancer samples for instance had methylation levels more commonly 

observed in the normal cytology group which is consistent with the variation observed in 

similar studies (Brandsma et al., 2009, Fernandez et al., 2009, Mirabello et al., 2012).  

Nonetheless, our results are consistent with the results of several studies, in that the E2/E4, L1 

and L2 regions were associated with disease grade (Fernandez et al., 2009, Kalantari et al., 

2009, Sun et al., 2011, Mirabello et al., 2012, Kalantari et al., 2010, Brandsma et al., 2009). 

Similarly, our observation of differences in LCR methylation among the disease grades was 

consistent with most studies (Kalantari et al., 2004, Bhattacharjee and Sengupta, 2006a, Ding 

et al., 2009, Brandsma et al., 2009) but not with others (Badal et al., 2003, Hublarova et al., 

2009). The inconsistent association between LCR methylation and disease grade is considered 

the result of methodological differences, heterogeneous and small sample sizes, and/or 

disease misclassification (Mirabello et al., 2012).  

L1 and LCR methylation have been previously tested as a diagnostic biomarker of disease 

grade (Turan et al., 2007, Kalantari et al., 2010). The results appeared to indicate that L1 

methylation was a surrogate marker of integration, and that integration was associated with 

disease grade. We however observed incremental increases in DNA methylation with disease 
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grade which was not consistent with L1/L2 methylation only being a surrogate marker of 

integration. 

A screening biomarker could have relevance as a triage test within HPV based cervical 

screening. Pyrosequencing is not currently a very high throughput means of evaluating 

methylation status and is also somewhat expensive. Therefore, the magnitude of differences 

between the disease grades for individual CpGs was determined. Of all of the CpGs tested, the 

L1L2-2 CpG appeared to be the most informative. Using just one CpG or a small number of 

CpGs as a biomarker would allow less expensive, simpler and higher throughput assays such as 

qMS-PCR to be used to quantity DNA methylation. 

 

5.3. Conclusions 
The aims of this study were to determine the methylation profile of HPV in a range of disease 

states, compare data produced using our assays to published data and apply the 

pyrosequencing assays to the early development sections of the CRUK biomarker development 

roadmaps (Cancer Research UK, 2012e, Cancer Research UK, 2012d). In these respects it 

achieved what was planned and clearly demonstrated that distinct methylation differences 

between disease of different cytological grades and between precancerous and cancerous 

disease exist. There was also an attempt to take the data analysis a stage further and 

determine which regions/CpGs are likely to represent the most informative biomarkers of 

disease. 

There were some promising results produced by this study, DNA methylation did vary among 

disease grades for several regions/CpGs however the differences were not simple and there 

was wide variation within each group which represented an undesirable characteristic for a 

biomarker. If HPV methylation is used as a biomarker, it will likely be in the form of an 

algorithm considering methylation at various HPV regions and CpGs (Brandsma et al., 2009, 

Mirabello et al., 2012). 

5.3.1. Further Work 

The results of this study suggest several avenues for future work. First, it is unknown whether 

transformation and disease progression are a result of or cause of DNA methylation changes. 

Similarly, it is unknown whether integration is the cause of initial aberrant gene expression or 

a consequence of genomic instability (Vinokurova and von Knebel Doeberitz, 2011). A 

longitudinal study, following HPV positive patients over several years might better put the 

relevance of integration and methylation changes to disease progression into context. 
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LCM studies have revealed considerable methylation differences among different parts of a 

lesion, and changes with cellular differentiation (Vinokurova and von Knebel Doeberitz, 2011). 

With this in mind, a more uniform set of samples (i.e. a set consisting entirely of LBC or biopsy 

material in conjunction with microdissection techniques) would allow better elucidation of the 

association between DNA methylation and HPV-associated disease. Whilst microdissection 

allows investigation of the relationship between DNA methylation and different aspects of 

disease and cellular biology, further investigation using LBC material is the most clinically 

relevant with respect to primary screening triage tests. 

HPV DNA methylation has great potential as a diagnostic and prognostic biomarker. There 

have been some promising studies but there are also several contradictions in the literature. 

Further investigation of HPV DNA methylation, possibly used in conjunction with another 

biomarker (i.e. p16, integration, human methylation) might prove useful and would present 

HPV methylation in context with other biological characteristics. 
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Chapter 6. The CRISP Study – DNA Methylation and Clinical 

Outcome 

6.1. Results 
Material for this study was acquired from the CRISP clinical trial (Castanon et al., 2012). Two 

LBC samples taken 6 months apart existed for each patient (the 0 and 6 month samples 

respectively). Every 0 month LBC sample had low grade cervical abnormalities as it was a 

requirement for inclusion into the clinical trial. At 6 months, cytology was repeated and the 

majority of patients then underwent colposcopy, with histology performed on any biopsied 

material. All cytology and histology results were available for this study. DNA was extracted 

from LBC cell pellets, BS treated and pyrosequencing was performed on the treated DNAs. 

 Samples were identified from the CRISP sample set that corresponded to each of three 

different outcome groups. The first group comprised of samples that were HPV16 positive at 0 

months only and represent those samples that had lost the HPV16 infection, these were the 

Cleared group (C group). The second group was the Persistent Low grade group (PL group), 

these were samples that had a persistent HPV16 infection (i.e. HPV16 positive at 0 and 6 

months) and low grade histology (CIN1 or lower) at 6 months. Finally, samples that were 

HPV16 positive at both 0 and 6 months and had high grade histology (CIN2/3) at 6 months 

were termed the Persistent High grade group (PH group). The PH group represented samples 

with high grade disease, potentially as a result of persistent HPV16 infection. In total, 23 C, 

11x2 PL (i.e. 0 and 6 months) and 12x2 PH samples were assessed by pyrosequencing. Several 

samples in each instance failed the pyrosequencing assays and the data from 14 cleared, 9 PL 

and 10 PH patients were used in final analysis. 

This chapter aimed to generate hypotheses and answer hypothesis driven questions relevant 

to the sample cohort. The study was designed to determine differences in DNA methylation 

over time, determine differences in DNA methylation between samples with different clinical 

outcomes and to assess the potential of HPV DNA methylation as a biomarker. 

 

6.1.1. Hypothesis 1: DNA Methylation Varies among Regions of the HPV 

Genome and among the CpGs within Each Region 

There was considerable variation in the amount of DNA methylation among regions, and 

among CpGs within each region (Figure 6.1). A two-way ANOVA GLM was used to determine 

whether the regions and the CpGs within the regions had a significant effect on DNA 

methylation for the C, PL and PH groups, the results are presented in Table 6.1. Any violations 
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of the assumptions of the ANOVA are detailed in the figure legend. Highly significant 

differences in mean DNA methylation were observed both among the HPV16 regions and the 

CpGs. Further statistics performed later in this chapter support these results. The Bonferroni 

corrected P-value for significance is P=0.017.  

 
Outcome group 

 
C PL PH 

CpG (P-value) 0.000*
1
 0.003*

2
 0.000*

3
 

Assay (P-value) 0.000*
1
 0.000*

2
 0.000*

3
 

Table 6.1: The results of three two-way ANOVA GLM tests with CpG and pyrosequencing assay as 
factors.  

Each value in the table is a P-value, in the CpG row this represents the difference in DNA methylation 
among different CpGs within each assay; in the Assay row this represents the difference in DNA 
methylation among the four HPV regions. Violations of the assumptions of the ANOVA: *1, unequal 
variances (P=0.003), non-normally distributed residuals (P=0.022); *2, non-normally distributed 
residuals (P=<0.005); *3, unequal variances (P=0.000). 
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Figure 6.1: Mean DNA methylation of each HPV region, for each outcome group for both the 0 and 6 
months time points.  

Coloured bars represent mean DNA methylation for each region. Error bars represent +/- 95% 
confidence intervals for mean. 

 

6.1.2. Hypothesis 2: DNA Methylation of the HPV16 Genome Varied over 

Time 

For the PL and PH groups, DNA methylation data was produced for the 0 and 6 month samples. 

It was of interest to determine whether changes in DNA methylation occurred over the 6 
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month time period and whether or not any changes observed were different for the PL and PH 

groups. The 0 and 6 month data of the PL group (Figure 6.2) and the PH (Figure 6.3) are 

presented below. There appeared to be changes between the 0 and 6 month samples in 

several instances, especially for the E2 and L1/L2 regions (Figure 6.1). The PL group had an 

increase in methylation between the 0 and 6 month samples for the E2 and L1/L2 regions 

whilst the PH group had a slight decrease in the L1/L2 region. 
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Figure 6.2: The mean amount of methylation at each assay for the persistent low grade group.  

The bars represent the overall mean methylation at each assay for each sample time. The error bars 
represent 95% confidence intervals for mean and the red circles represent mean methylation at each 
assay for each of the individual samples. 
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Figure 6.3: The mean amount of methylation at each assay for the persistent high grade group.  

The bars represent the overall mean methylation at each assay for each sample time. The error bars 
represent 95% confidence intervals for mean and the red circles represent mean methylation at each 
assay for each of the individual samples. 

 

A two-way ANOVA GLM was applied to the DNA methylation data of the PL and PH groups to 

determine whether a significant difference in DNA methylation existed between the 0 and 6 

month samples. The two-way ANOVA was ideal as additional analytical power was afforded by 

the consideration of individual CpGs, and the differences in DNA methylation among the 

individual CpGs of each assay can also be determined. Because no suitable non-parametric 

alternative exists and as the investigation was exploratory and hypothesis generating in 

nature, where the data had not satisfied the assumptions of the two-way ANOVA GLM, the 

analysis was continued and the contraventions are listed in the table legend. The results of 

these analyses are in Table 6.2 and graphical representation of the data used for the 

interpretations are presented below for the PH group (Figure 6.4, Figure 6.5, Figure 6.6 and 

Figure 6.7) and the PL group (Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11). As a total of 8 

analyses were performed, a Bonferroni corrected P-value (P=0.006) was used however 

comparisons significant at P=0.05 were still considered. For every HPV region of the PH group, 

there were no significant differences between the amount of methylation at 0 months and 6 

months. There was however a significant difference among the methylation level of individual 

CpGs within each region. For the PL group, there was a significant difference between the 0 

and 6 month samples within the E2 region only. There was also a significant difference in DNA 
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methylation between the CpGs of the E2, LCR2 and L1/L2 region. The observed differences 

among CpGs within each HPV region support the results of hypothesis 1.  

 

  
HPV16 region 

  
E2 LCR1 LCR2 L1/L2 

PL group (P-value) CpG 0.000*1 0.873 0.006*2 0.003*3 

  Month 0.000*1 0.288 0.771*2 0.824*3 

PH group (P-value) CpG 0.000*4 0.002*5 0.000*6 0.001*7 

  Month 0.490*4 0.603*5 0.505*6 0.266*7 
Table 6.2: The results of two-way multifactorial ANOVA GLM analyses.  

The persistent low grade (PL group) and persistent high grade (PH group) group methylation data was 
tested to determine the effect of month (0 vs. 6) and each CpG of each assay on mean DNA 
methylation. Significance is assumed at P<0.05 or P<0.006 (Bonferroni corrected). A significant P-value 
for CpG indicates a significant difference in mean methylation among CpGs within a region. A 
significant P-value for month indicates that a significant difference existed between the 0 and 6 
month samples. Violations of the ANOVA assumptions: *1, non-normally distributed residuals 
(P=0.037); *2, non-normally distributed residuals (P=<0.005), unequal variances (P=0.029); *3, non-
normally distributed residuals (P=<0.005); *4, non-normally distributed residuals (P=0.006); *5, 
unequal variances (P=0.04); *6, non-normally distributed residuals (P=0.036); *7, non-normally 
distributed residuals (P<0.005). 

 

The results of these analyses must be interpreted with caution because of the contraventions 

of the assumptions of the analyses. In order to improve the strength of any conclusions drawn, 

multiple two-sample T-tests were used to compare the differences between mean DNA 

methylation of each assay for the 0 and 6 month samples. The Bonferroni corrected P-value is 

P=0.006 however comparisons significant at P=0.05 would also be considered. None of these 

comparisons were significant, the P values for the 0 vs. Six month comparisons are 

summarised in Table 6.3. There appear to be no differences between the 0 month and 6 

month samples however it is important to consider that multiple T-tests exclude a level of 

detail (i.e. the methylation data for each CpG). 

 

 0 vs. 6 months E2 mean LCR1 mean LCR2 mean L1/L2 mean 

Persistent low grade (P-value) 0.058 0.986 0.903*1 0.354 

Persistent high grade (P-value) 0.800 0.612 0.664 0.617 
Table 6.3: The P-values of multiple two-sample T-tests comparing the mean methylation values of 
each assay for the 0 and 6 month samples.  

The values given are P-values. Violation of the assumptions of a T-test: *1, this comparison included a 
data set that was not quite normally distributed (P=0.020). 
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Overall, there was no difference between the 0 and 6 month samples in every instance except 

for the persistent low grade samples, where a difference was observed in the DNA methylation 

of the E2 region. For this comparison, the two-way ANOVA GLM had only a minor violation of 

the assumptions and a highly significant P-value (Table 6.2) and the T-test had a low P-value 

that was close to significant (without a Bonferroni corrected P-value) (Table 6.3). This 

discrepancy in significance between the two types of tests (one considering every CpG, the 

other type considering only mean methylation for that region) suggest that CpG specific 

changes occurred between the 0 and 6 month samples for the PL group. Indeed, for the PL 

group, every E2 CpG was more methylated in the 6 month samples than the 0 month samples 

however the difference varied among CpGs (Figure 6.8). 
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Figure 6.4: E2 CpG DNA methylation for the PH group.  

The DNA methylation data of both the 0 and the 6 month samples are presented. Each bar represents 
the mean DNA methylation of the month/CpG of interest, blue error bars represent 95% confidence 
intervals for mean and the red circles represent individual sample data. 
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Figure 6.5: LCR1 CpG DNA methylation for the PH group.  

The DNA methylation data of both the 0 and the 6 month samples are presented. Each bar represents 
the mean DNA methylation of the month/CpG of interest, blue error bars represent 95% confidence 
intervals for mean and the red circles represent individual sample data. 
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Figure 6.6: LCR2 CpG DNA methylation for the PH group.  

The DNA methylation data of both the 0 and the 6 month samples are presented. Each bar represents 
the mean DNA methylation of the month/CpG of interest, blue error bars represent 95% confidence 
intervals for mean and the red circles represent individual sample data. 
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Figure 6.7: L1/L2 CpG DNA methylation for the PH group.  

The DNA methylation data of both the 0 and the 6 month samples are presented. Each bar represents 
the mean DNA methylation of the month/CpG of interest, blue error bars represent 95% confidence 
intervals for mean and the red circles represent individual sample data. 
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Figure 6.8: E2 CpG DNA methylation for the PL group.  

The DNA methylation data of both the 0 and the 6 month samples are presented. Each bar represents 
the mean DNA methylation of the month/CpG of interest, blue error bars represent 95% confidence 
intervals for mean and the red circles represent individual sample data. 
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Figure 6.9: LCR1 CpG DNA methylation for the PL group.  

The DNA methylation data of both the 0 and the 6 month samples are presented. Each bar represents 
the mean DNA methylation of the month/CpG of interest, blue error bars represent 95% confidence 
intervals for mean and the red circles represent individual sample data. 
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Figure 6.10: LCR2 CpG DNA methylation for the PL group.  

The DNA methylation data of both the 0 and the 6 month samples are presented. Each bar represents 
the mean DNA methylation of the month/CpG of interest, blue error bars represent 95% confidence 
intervals for mean and the red circles represent individual sample data. 
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Figure 6.11: L1/L2 CpG DNA methylation for the PL group.  

The DNA methylation data of both the 0 and the 6 month samples are presented. Each bar represents 
the mean DNA methylation of the month/CpG of interest, blue error bars represent 95% confidence 
intervals for mean and the red circles represent individual sample data. 

 

6.1.3. Hypothesis 3: There are DNA Methylation Differences among the 

Outcome Groups 

Another subject of interest was to determine whether DNA methylation differences existed 

between HPV infections that were cleared, and those that were maintained and had low grade 

or high grade disease. In order to address this question, methylation of the 0 month samples 

for each outcome group was compared (Figure 6.12). The effect of disease grade on DNA 

methylation has already been established (Chapter 5: 5.1.2). As such, PH group DNA 

methylation may already be expected to be higher than that of the C or PL group because of 

the confirmed high grade (CIN2/3) disease at 6 months that may have also been present in the 

0 month samples. The comparison of the PL and C groups was of particular interest as it could 

have provided insight into differences between maintained and cleared infections without the 

influence of high grade disease on DNA methylation. 
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Figure 6.12: The mean amount of methylation at 0 months for each assay for each of the three 
outcome groups. 

C=cleared, PL=persistent low grade, PH=persistent high grade disease. The bars represent the mean 
for the factor combination presented whilst the error bars represent 95% confidence intervals for 
mean. 

 

The 0 month samples were not highly methylated regardless of final outcome. As may be 

expected, there did appear to be methylation differences between the PL and PH groups at the 

E2, LCR2 and L1/L2 regions. Methylation was typically higher for the PH group. What was 

particularly intriguing was that the C group seemed to have more DNA methylation for the E2 

and L1/L2 assays than the PL group. One of the aims of this study was to determine if a 

knowledge of HPV DNA methylation could be used predict the outcome of an infection, i.e. 

were there DNA methylation differences between individuals that would go on to lose the 

infection or develop disease. From this perspective, the most informative region might be the 

L1/L2 region for which stark changes between the C, PL and PH groups existed. The best 

indicator of high grade histology at 6 months appeared to be methylation of the LCR2 region. 

Both the C and PL groups were methylated at a very low level and the PH group had slightly 

more methylation, albeit with a considerable variation among individual samples. These 

observations were tested statistically using a two-way ANOVA GLM and associated pairwise 

tests.  

Two-way ANOVA GLM tests were used to compare the mean amount of methylation in each 

group with respect to both the final outcome (C, PL and PH) and individual CpG methylation 
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values. In total, four comparisons were performed (one test for each region), so a Bonferroni 

corrected P-value of P=0.0125 should be considered. A summary of the results are presented 

in Table 6.4, where the comparisons violated one or more of the ANOVA assumptions, the 

details are listed in the table legend. 

 
E2 LCR1 LCR2 L1/L2 

CpG 0.000*1 0.000*2 0.000*3 0.000*4 

Outcome 0.001*1 0.951*2 0.000*3 0.008*4 
Table 6.4: The results of two multifactorial ANOVA GLM tests.  

The 0 month sample data was compared with respect to individual CpGs in each assay (CpG) and final 
outcome (Outcome). A P-value of P<0.05 for CpG indicates a significant difference among the mean 
methylation at each CpG within the assay exists, similarly, a P-value of P<0.05 for Outcome indicates 
that a significant difference exists among the mean methylation for each outcome group (C, PL and 
PH). Violations of the assumptions of the ANOVA: *1, non-normally distributed residuals (P<0.005); 
*2, non-normally distributed residuals (P=0.023), unequal variances (P=0.002); *3, non-normally 
distributed residuals (P<0.005); *4, non-normally distributed residuals (P=0.449). 

 

Each comparison violated one or more assumptions of the ANOVA. As such the results of 

comparisons should be observed with caution. Nonetheless, a significant difference was 

observed among the CpGs in each assay in every comparison and among the outcomes for all 

but the LCR1 assay. Both as a confirmation of the previously observed results and as a way of 

performing pairwise comparisons (i.e. C vs. PL); multiple one-way ANOVAs and Kruskall-Wallis 

tests were performed on mean regional DNA methylation (rather than individual CpG 

methylation). The results of these tests are presented in Table 6.5. A Bonferroni corrected P-

value of P=0.013 was used however comparisons significant at P=0.05 would still be 

considered; one violation of the ANOVA assumptions was encountered and is detailed in the 

table legend. 

 
HPV16 Region 

 
E2 LCR1 LCR2 L1/L2 

One-way ANOVA  
(P-value, F-value, DF) 0.025, 4.30, 2 0.972

*1
, 0.03, 2 0.007, 5.98, 2 0.022, 4.35, 2 

Significant Tukey-Kramer 
results (at P=0.05) PL vs. PH None 

C vs. PH, PL vs. 
PH PL vs. PH 

Kruskall-Wallis  
(P-value, H-value, DF) 0.116, 4.31, 2 0.997, 0.01, 2 0.018, 8.07, 2 0.060, 5.64, 2 

Table 6.5: The results of tests to determine whether a difference in mean/median DNA methylation 
existed among 0 month samples of the three outcome groups. 

The tests used were one-way ANOVA with Tukey-Kramer tests and multiple Kruskall-Wallis tests. 
Significant Tukey-Kramer results indicate which pairwise comparisons were significant at P=0.05 
where C=cleared group, PL=persistent low grade group and PH=persistent high grade group. 
Violations of the assumptions of the ANOVA: *1, non-normally distributed residuals (P=0.007). 
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The one-way ANOVAs confirmed the observations seen for the two-way ANOVAs, however 

without the assumption violations and at a lower significance (significant at P=0.05, but in 

some instances not at Bonferroni corrected P=0.013). The lower significance suggests that CpG 

specific methylation differences were more pronounced than mean methylation differences. 

For the E2 and L1/L2 region, differences were observed between the PL and PH groups only. 

The observation that the C group was more methylated in L1/L2 than the PL group was not 

significant, possibly as a result of relatively small sample size and therefore large confidence 

intervals. In terms of differentiating between the patients that cleared the infection (C) and 

those that maintained the infection (PL and PH), none of the HPV regions were particularly 

informative and no significant differences were observed between either C vs. PL or C vs. PH. 

That said the LCR2 region produced the most significant difference between the C and PL 

groups (low grade disease) vs. the PH group (high grade disease). 

 

6.1.3.1. For Which CpG Were the Most Significant Differences among the Three 

Outcome Groups Observed? 

The previous one-way ANOVA tests revealed that greater significance may be produced when 

the DNA methylation of the three outcome groups is compared on a per CpG basis. Multiple 

one-way ANOVA tests with associated Tukey-Kramer pairwise comparison tests, and multiple 

Kruskall-Wallis tests may be able to further expand upon this observation and determine 

which of the CpGs might become the most useful for differentiating eventual outcome group 

of 0 month samples. In order to provide a concise summary of the results, the results tables 

are presented in Appendix VI. For the E2 region, there did not appear to be a discernible 

pattern of CpG methylation for the three outcome groups and there was a wide variation in 

DNA methylation among individual samples (Figure 6.13). The only CpGs where a significant 

difference in mean DNA methylation of the three outcome groups were observed were E2-4 

(one-way ANOVA P=0.034; Kruskall-Wallis P=0.012) and E2-7 (one-way ANOVA P=0.049; 

Kruskall-Wallis P=0.123 (not significant)). None of the P-values exceeded the Bonferroni 

corrected P-value. For E2-4 there was a significant difference for C vs. PH and for E2-7 there 

was a significant difference for PL vs. PH (Tukey-Kramer, P=0.05). There were several violations 

of the ANOVA assumptions. The E2 region does not appear to be a good region for predicting 

outcome group at 6 months in this sample series. 
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Figure 6.13: The mean amount of DNA methylation at each E2 CpG for the 0 month samples of each of 
the three outcome groups. 

C=cleared group, PL=persistent low grade and PH=persistent high grade. Each bar represents mean 
DNA methylation for the indicated CpG/outcome group combination, blue error bars represent 95% 
confidence intervals for mean and red circles represent individual sample data. 

 

For the LCR1 region (Figure 6.14), there did not appear to be any discernible pattern of CpG 

methylation. The mean values were low, there was considerable variation among individual 

samples and there were large confidence intervals, especially for the PL group. The only CpG 

where significant differences were observed among the groups was LCR1-1 (one-way ANOVA, 

P=0.014; Kruskall-Wallis, P=0.017), a significant pairwise difference was observed between C 

vs. PL, and PL vs. PH (Tukey-Kramer P=0.05) and both P-values exceeded the Bonferroni 

corrected P-value. There were several violations of the ANOVA assumptions. The LCR1-1 CpG 

methylation data may have potential for predicting outcome at 6 months in this sample series. 

In this instance however there were no significant differences between the C and PH groups. 
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Figure 6.14: The mean amount of DNA methylation at each LCR1 CpG for the 0 month samples of each 
of the three outcome groups. 

C=cleared group, PL=persistent low grade and PH=persistent high grade. Each bar represents mean 
DNA methylation for the indicated CpG/outcome group combination, blue error bars represent 95% 
confidence intervals for mean and red circles represent individual sample data. 

 

For the LCR2 region (Figure 6.15), LCR2-5 was the lowest methylated in every sample group. 

LCR2-3 was methylated at a very low level in groups C and PL, but higher in group PH. The 

mean values were rather small and there was considerable variation among individual 

samples. Highly significant differences among the outcome groups were observed for LCR2-3 

only (one-way ANOVA, P=0.000; Kruskall-Wallis, P=0.000). Significant pairwise differences 

were also observed between C vs. PH, and PL vs. PH (Tukey-Kramer P=0.05) and both P-values 

exceeded the Bonferroni corrected P-value. There was one violation of the ANOVA 

assumptions. Methylation of LCR2-3 was different between the C/PL and PH outcomes and 

may be a marker of high grade histology at 6 months in low grade cytology samples. 
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Figure 6.15: The mean amount of DNA methylation at each LCR2 CpG for the 0 month samples of each 
of the three outcome groups. 

C=cleared group, PL=persistent low grade and PH=persistent high grade. Each bar represents mean 
DNA methylation for the indicated CpG/outcome group combination, blue error bars represent 95% 
confidence intervals for mean and red circles represent individual sample data. 

 

For the L1/L2 region (Figure 6.16) the characteristic “N” shaped pattern (L1L2-1 low, L1L2-2 

high, L1L2-3 low and L1L2-4 high) of CpG methylation was present that was also seen 

elsewhere in this study. No significant differences were observed among the three outcome 

groups for any of the L1/L2 CpGs. The L1/L2 region did not appear to be very informative in 

this instance. 
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Figure 6.16: The mean amount of DNA methylation at each L1/L2 CpG for the 0 month samples of 
each of the three outcome groups. 

C=cleared group, PL=persistent low grade and PH=persistent high grade. Each bar represents mean 
DNA methylation for the indicated CpG/outcome group combination, blue error bars represent 95% 
confidence intervals for mean and red circles represent individual sample data. 

 

6.1.4. Hypothesis 4: The Level of DNA Methylation of the CRISP Samples 

Should be Comparable to the Disease Grade Study  

This question was posed because despite all three outcome groups originally being 

cytologically classified as low grade cervical abnormalities, the histology of the infections at 6 

months differed considerably. Some patients lost the infection completely whilst others 

maintained the infection and had either low or high grade histology. The normal cytology vs. 

severe dyskaryosis DNA methylation comparison found significant differences in DNA 

methylation among the cytology grades (Chapter 5: 5.1.2). It was of interest to consider 

whether or not the 0 month samples of the three CRISP outcome groups were more similar to 

the normal cytology group or the severe dyskaryosis group both in terms of mean DNA 

methylation level and of CpG specific methylation profile. If the DNA methylation level/profile 

of one outcome group was more similar to the DNA methylation level/profile of a more severe 

cytology result then DNA methylation data might indicate higher grade disease at 0 months 

than the 0 month cytology had suggested. 

For the E2 region, the CpG DNA methylation profile of the three CRISP outcome groups did not 

appear to relate to the methylation profile of either the normal cytology or severe dysplasia 
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groups. Similarly, there did not appear to be a discernible similarity for the LCR1 or LCR2 

regions either. For the L1/L2 region however, the distinctive “N” shaped profile was observed 

in all outcome groups. 

Overall DNA methylation of the C and PL groups was most similar to the normal cytology 

group. This was to be expected because at 0 months, all of these samples had low grade 

cytological abnormalities and indeed for the PL group, 6 months later had low grade histology 

(Table 6.6). The PH group however were methylated at a level between the normal cytology 

and the severe dyskaryosis samples. Six months later, these samples were found to have high 

grade (CIN2/3) histology.  

 
Mean DNA methylation (%) 

 
E2 LCR1 LCR2 L1/L2 

C group (0 month) 3.7 3.1 0.7 5.2 

PL group (0 month) 2.2 3.5 0.6 2.3 

PH group (0 month) 4.1 2.6 1.9 10.9 

    
  

  

Normal cytology 2.5 3.1 1.5 5.7 

Severe dyskaryosis 6.6 2.3 2.6 16.3 

Cancer 42.7 12.8 23.7 50.1 
Table 6.6: Mean DNA methylation of each HPV region for the CRISP groups and the previously tested 
disease groups. 

Each number represents a percentage methylation which is calculated as an average of all CpGs in 
each region. 

 

6.1.5. Hypothesis 5a: There is an Association between DNA Methylation and 

Outcome Cytology 

For the CRISP samples, cytology was performed at both 0 and 6 months. All of the cytology 

results at 0 months were either second borderline or mild abnormalities. At 6 months, various 

cytology results were produced which included negative, borderline, mild, moderate and 

severe dyskaryosis. It was of interest to determine if DNA methylation data for the 0 month 

samples was different among the various grades of 6 month outcome cytology. For this 

comparison, the CRISP samples were not separated by outcome group but were instead 

grouped together (Figure 6.17). Outcome cytology results were grouped into negative 

cytology, borderline/mild abnormalities (i.e. no change from 0 months), moderate dyskaryosis 

and severe dyskaryosis. Very few patients had moderate dyskaryosis or severe dyskaryosis at 6 

months, which resulted in large confidence intervals. Nonetheless, multiple one-way ANOVAs 

were performed and determined that a significant difference in mean DNA methylation existed 

among the various 6 month cytology types for the LCR2 region (P=0.010) and almost for the 

L1/L2 region (P=0.030) (Table 6.7). ANOVA assumption violations are detailed in the table 
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legend, a Bonferroni corrected P-value of P=0.017 should be considered. The only significant 

Tukey-Kramer pairwise comparisons were for the LCR2 region, where DNA methylation of the 

moderate cytology samples was significantly lower than the samples where no change was 

observed, or those where a negative cytology result occurred (Table 6.7). 

The samples where a moderate or severe cytology result was detected at 6 months could be 

more methylated in the L1/L2 region however it is impossible to determine from this data set 

because of the small sample number, large confidence intervals and for the moderate cytology 

samples, a large range of DNA methylation values. A larger sample series would be required in 

order to further investigate this possibility. 
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Figure 6.17: The relationship between mean assay 0 month DNA methylation and 6 month cytology 
result.  

Four abbreviations are used to represent the cytology at 6 months; Neg = negative cytology, B/M = 
borderline/mild abnormalities (i.e. no change from 0 months), Mod = moderate dyskaryosis and Sev = 
severe dyskaryosis. Coloured bars represent mean DNA methylation and blue error bars represent 
95% confidence intervals for mean. Individual values are plotted as three symbols, representing the 
samples of the cleared (C) group (white triangles), the persistent low grade (PL) group (black circles) 
and the persistent high grade (PH) group (red circles). Because only two samples had severe cytology 
at 6 months the error bars were very large and if plotted, would disrupt the scale of the graph 
hindering interpretation. The upper 95% confidence interval of the L1/L2 severe dyskaryosis group 
was 67.1% methylation. 
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HPV16 region 

 
E2 LCR1 LCR2 L1/L2 

One-way ANOVA (P-value) 0.373*
1
 0.513*

2
 0.010 0.030 

Significant Tukey-Kramer results 
  

B/M vs. Mod 
 

   
Mod vs. Neg 

 Table 6.7: The results of four one-way ANOVAs to test for a difference in mean 0 month DNA 
methylation among the four different 6 month cytology results. 

B/M = borderline/moderate, i.e. no change between 0 and 6 month cytology, Mod = moderate 
dyskaryosis, Neg = negative cytology. Violations of the assumptions of the ANOVA: *1, non-normally 
distributed residuals (P<0.005), unequal variances (P=0.025); *2, non-normally distributed residuals 
(P<0.005). 

 

6.1.6. Hypothesis 5b: There is a Relationship between Outcome Cytology and 

Outcome Histology 

At 6 months, both cytology and histology were performed. Samples were assigned to the three 

groups (C, PL and PH) based on the histology and/or HPV16 positivity result. The individual 

value points in Figure 6.17 show the relationship between histology, HPV16 positivity and 

cytology in the 6 month samples. It is quite telling that all of the samples with moderate or 

severe dyskaryosis at 6 months also had high grade histology. Similarly, all of the samples with 

a negative cytology at 6 months also belonged to the cleared group, representing the loss of 

HPV16 positivity. The samples with 6 month borderline/mild abnormalities were quite variable 

and some samples belonged to each outcome group (i.e. C, PL and PH). All PL group samples 

had no change in cytology at 6 months. 

 

6.2. Discussion 

6.2.1.1. Aims 

This study was planned in order to determine whether there were characteristic differences in 

DNA methylation associated with different outcomes in a series of patients with low grade 

cytological abnormalities. It was a longitudinal investigation that aimed to correlate 

methylation patterns with disease in LBC material from women with histologically confirmed 

disease, and allow initial assessment of the prognostic potential of a knowledge of HPV DNA 

methylation. We were mindful of the biomarker development road maps published by CRUK, 

and this study partly fulfilled a component of the early prognostic biomarker development 

protocol (Appendix I) (Cancer Research UK, 2012d). 
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6.2.1.2. Strengths 

Longitudinal studies looking at HPV DNA methylation are uncommon. The only other 

longitudinal study is very recent and the design and results were remarkably similar to this 

study, albeit with small differences (Mirabello et al., 2012). The CRISP study results are where 

relevant, consistent with the NSC study (Chapter 5).  

The implications of this study are that HPV methylation assessment has potential as a method 

for differentiating low grade cytology samples which are at higher risk (i.e. those that will have 

high grade cytology/histology in 6 months time) and there are several aspects of the data that 

might suggest an association between HPV DNA methylation and episomal clearance and/or 

HPV persistence.  

Pyrosequencing is a fully quantitative method for assessing DNA methylation and we have 

targeted four regions of the genome, each identified by previous studies as regions where DNA 

methylation is potentially associated with cervical disease. 

6.2.1.3. Weaknesses 

The biggest weaknesses of the study are the relatively short duration of follow up and the lack 

of histology at 0 months. These limitations are present because the initial samples were 

collected during routine screening and as part of a clinical trial, not as a longitudinal biomarker 

study for DNA methylation. Histology is not routinely performed for the first low grade/second 

borderline result and as such was not available. 

The CRISP samples were from patients entered into a clinical trial to study the effects of 

diindolylmethane (DIM), a dimer of Indole-3-carbinol. Both compounds occur in cruciferous 

vegetables and are commonly marketed as dietary supplements. It was hypothesised that DIM 

might inhibit cervical dysplasia (Castanon et al., 2012). It could be questioned whether samples 

from a treatment trial can reliably provide information on prognosis, however the trial results 

were negative; DIM supplementation did not significantly affect disease 

progression/regression, or cause clearance of HPV infection (Castanon et al., 2012). 

Nonetheless, there was a possibility that DIM might affect HPV DNA methylation however it 

was not possible to control for this, as the methylation study was performed blind to the DIM 

treatment regime. 

Several samples failed to produce high quality pyrosequencing data. This was especially 

common for the cleared group where 9 samples failed all assays. The primary reasons for high 

failure rate of the cleared samples were likely to be a false HPV16 positivity result during the 

initial HPV typing (by PCR ELISA) and/or sensitivity limitations of the pyrosequencing assays. 
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6.2.1.4. Comparison to Other Studies 

Longitudinal studies of HPV DNA methylation are uncommon. Only one such study was 

identified by a literature search. Mirabello et al used a sample cohort grouped into three 

outcomes, similar to the outcome groups used by this study. These outcomes were; a control 

group where HPV16 clearance over the course of 2 years was observed (i.e. similar to the 

cleared group), a persistence group where persistent HPV16 infection was associated with low 

grade disease (i.e. similar to PL group) and a CIN3 group, where persistence was associated 

with CIN3 (i.e. similar to PH group) (Mirabello et al., 2012).  

The study also used pyrosequencing to assess multiple sites of the HPV genome however 

differed considerably in the statistical analysis and aims/approach of the study. The main 

findings were that methylation of several CpGs of the L1, L2 and E2/E4 regions corresponded 

with an increased risk of persistence and CIN3. This is largely consistent with the results of our 

study, albeit our C group was more (but not significantly) methylated in the E2 and L1/L2 

regions than our PL group, which was not observed by Mirabello et al. It is difficult to explain 

the differences between the studies; both used pyrosequencing, both used desquamated 

cervical cells (i.e. LBC) and for both studies only HPV16 positives were considered. However 

they differ in the observed methylation status of infections destined to be cleared of HPV16. It 

is worth noting that the analysis was conducted differently and the duration of follow up was 

also different (6 months vs. 2 years). A longitudinal study of viral clearance of HPV16 positive 

women observed a 32% clearance rate after 6 months, and 50% clearance after 12 months 

(Hildesheim et al., 2007). This suggests that most HPV16 infections take longer than 6 months 

to resolve and that our shorter duration of follow up may have for instance, identified DNA 

methylation profiles associated with an imminent loss of infection. 

The three groups derived from the CRISP study were based on outcome histology at 6 months. 

The PL (low grade histology) group was less methylated at 0 and 6 months than the PH group 

(high grade histology) for the LCR2 and L1/L2 regions, and at 0 months for the E2 region. This is 

consistent with our NSC study (where E2 and L1/L2 methylation were higher in more severe 

disease) and also with many published studies (Mirabello et al., 2012, Kalantari et al., 2004, 

Bhattacharjee and Sengupta, 2006a, Ding et al., 2009, Brandsma et al., 2009, Hong et al., 2008, 

Fernandez et al., 2009, Sun et al., 2011). It is not consistent with several studies, which have 

reported LCR hypermethylation in low grade disease (Badal et al., 2003, Hublarova et al., 2009, 

Patel et al., 2012, Piyathilake et al., 2011). It is notable that there are a range of 

methodologies, sample materials, target regions, sample numbers, as well as a range of study 

aims in these conflicting reports (Appendix VI). 
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One of the points of conflict for our NSC study was the presence/absence of LCR methylation 

in HPV positive cytologically normal samples. Substantial LCR methylation was not observed in 

either our CRISP or NSC samples which is consistent with several studies (Ding et al., 2009, 

Fernandez et al., 2009, Bhattacharjee and Sengupta, 2006a) but inconsistent with others (Hong 

et al., 2008, Patel et al., 2012, Kalantari et al., 2004, Badal et al., 2003). Again, a range of 

analytical methods and sample materials were used in these studies. Our in vitro studies 

(Chapter 7: 7.1.2 & 7.1.3.3) observed changes in HPV methylation with increasing passage 

number (i.e. number of cell culture cycles/time). This study observed rather stable DNA 

methylation over the course of 6 months in vivo suggesting that in some instances at least, the 

cell lines may not be representative of in vivo methylation processes or dynamics. 

 

6.2.2. Meaning 

6.2.2.1. DNA Methylation was Stable over 6 Months However Persistence may 

be Associated with Increased E2 DNA Methylation. 

DNA methylation did not change for the PH group and methylation did not change for the PL 

group at any region other than E2. PL group E2 methylation was seen to differ significantly 

when analysed using a multifactorial ANOVA; there was only a very minor violation of the 

analysis assumptions and the analysis appeared robust. When multiple single factor analyses 

were performed, the difference in PL group E2 methylation was not significant. The variation 

between analyses was likely the result of variable methylation differences among individual 

CpGs and the additional analytical power afforded by the multifactorial analysis. For the PL 

group, methylation at every E2 CpG increased over the course of 6 months. This was not 

observed for any other region where DNA methylation at both time points was very similar. 

The PL group had low grade histology and cytology at 6 months, suggesting that disease for 

most samples was low grade and had not progressed over the course of the study. That these 

persistent infections exhibited an increase in E2 DNA methylation in later samples might hint 

at a mechanism of persistence in the absence of disease progression, i.e. that increasing E2 

DNA methylation is associated with or even involved with persistence. Other studies have 

suggested a mechanism of HPV latency by DNA hypermethylation, albeit of the LCR and in the 

absence of visible disease (Vinokurova and von Knebel Doeberitz, 2011). We however 

observed low and consistent LCR methylation in the PL group. The differences between the 

studies might be related to differences between a persistent infection with and without signs 

of disease. DNA methylation is also implicated in the latency lifecycle of EBV (Paulson and 

Speck, 1999), although such a well defined latency period is not present for HPV. Alternatively, 
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as the 6 month study period is relatively short (i.e. the development of cervical cancer is often 

said to take 10-20 years (Cancer Research UK, 2012a, McIndoe et al., 1984), E2 methylation 

might represent an early event in the progression to a higher disease state. 

 

6.2.2.2. DNA Methylation was Associated with Clinical Outcome 

6.2.2.2.1. There is a Need for Biomarkers 

Low grade cytology (borderline/mild) is a common result (6% of the UK primary screening 

results) and has a complex management strategy (Castanon et al., 2012). These lesions cause 

considerable distress to women in whom they occur, and in several thousand low grade 

cytology cases referred to colposcopy there was a mix of HPV positivity and histology (albeit 

predominantly low grade histology) (Table 6.8). In England, HPV testing is being adopted as a 

triage test for these patients. HPV testing is likely to replace cytology as a primary screening 

method, potentially with cytology being used to triage the high number of HPV positive 

patients (Naucler et al., 2009, Rijkaart et al., 2012). In these instances, further triage with a 

prognostic biomarker with which to determine a suitable management strategy will be of 

substantial value. DNA methylation of the 0 month samples varied significantly among the 

outcome groups and may represent a means by which to risk stratify mild/second borderline 

cytology cases.  

 
Referral Cytology 

 
Inadequate/ borderline/ mild Moderate or worse 

Histology Number % Number % 

Total 4535 100 3271 100 

Cancer 3 0.1 80 2.5 

CGIN 2 0.1 31 1 

CIN3 227 5.9 1256 40 

CIN2 377 9.8 681 21.7 

CIN1 905 23.5 366 11.6 

HPV only 413 10.7 118 3.8 

No HPV/CIN 1065 27.6 323 10.3 

Normal colposcopy, no biopsy 820 21.3 266 8.5 

Inadequate biopsy 46 1.2 22 0.7 

Unknown 677 14.9 128 3.9 

Table 6.8: The relationship between cytology and histology for women referred to colposcopy.  

Figures represent data provided by (Cervical Screening Wales, 2004). 
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6.2.2.2.2. Differences Were Observed among the Outcome Groups 

Significant differences in methylation among outcome groups were observed for the L1/L2 

region. Methylation of the L1 and L2 regions is frequently associated with more severe disease 

(Fernandez et al., 2009, Kalantari et al., 2009, Sun et al., 2011, Mirabello et al., 2012), and 

CpGs of the L1, L2 and E2/E4 region were also identified as informative by a similar 

longitudinal study (Mirabello et al., 2012). Because cleared infections represent low level 

disease, we had expected to see low level methylation in the C group. However, C group mean 

L1/L2 methylation was at a level between the PL and PH groups, this is considered in further 

detail later in this discussion chapter. When individual L1/L2 CpGs were assessed, none were 

significantly differently methylated in the three outcome groups; the difference between mean 

methylation and individual CpGs is likely the result of considerable and significant CpG specific 

methylation differences in the L1/L2 region. 

Differences in 0 month LCR2 methylation were also observed; mean LCR2 methylation was 

higher in samples that had high grade histology at 6 months (PH) than those that had low 

grade histology (PL) or cleared the infection (C). When individual CpGs were considered rather 

than mean regional methylation, only two CpGs of the 20 studied were differentially 

methylated in the three outcome groups (LCR1-1 and LCR2-3). Methylation of LCR1-1 was 

different among the groups, but surprisingly not between C and PH. Highly significant 

differences between the PH group and the C/PL groups were observed for methylation of the 

LCR2-3 CpG, which might have clinical significance. 

In a similar study, differences among cleared and persistent infections and CIN3 were 

identified in CpGs of L1 and L2, and E2/E4 (Mirabello et al., 2012). That they did not identify 

LCR methylation, and we did not identify E2 methylation or L1/L2 CpG specific methylation as 

informative may stem from differences in samples size, disease misclassification, group 

classification, method of statistical analysis and duration of follow up. Nonetheless, 

consideration of methylation at multiple CpGs would likely represent an effective means by 

which to differentiate the samples in the three outcome groups. Further analysis and 

generation of a suitable algorithm is a prospect for future work. 

6.2.2.2.3. Cause/Consequence of the Differences 

There are several possible explanations for the associations between DNA methylation in the 0 

month samples and outcome at 6 months. All CRISP samples had low grade cytology at 0 

months, however cytology is occasionally a poor indicator of histology (Cervical Screening 

Wales, 2004). If the PH group underwent progression from low grade disease to high grade 

disease, we might expect DNA methylation changes over the course of the 6 months, which 
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were not observed. Rather than the differences in DNA methylation between the PL and PH 

groups representing a progression of the PH group from an initially low grade disease to an 

eventual high grade disease, it seems more plausible that there were existing differences in 

disease severity (i.e. histology) that were not represented by the first cytology result, but were 

associated with differences in DNA methylation. That is to say, the low/high grade histology 

seen at 6 months were likely also present in the 0 month samples but were not accurately 

represented by the 0 month cytology. This explanation is supported by the known differences 

in DNA methylation for different disease grades (NSC study) (Fernandez et al., 2009, Mirabello 

et al., 2012) and by the diagnosis of CIN2+ disease in women referred for low grade cytological 

abnormalities (15.9% of Inadequate/ borderline/ mild cytology cases) (Table 6.8). If this is correct, 

then assessment of DNA methylation in conjunction with cytology might be capable of 

identifying low grade cytology cases where further investigation is warranted. 

 

6.2.2.3. Outcome Cytology was Associated with Initial DNA Methylation 

Whilst at 0 months, all CRISP samples had either mild cytological abnormalities or were a 

second borderline result, the 6 months cytology reports were more diverse. We compared 0 

month methylation and 6 month cytology, to determine whether DNA methylation was 

associated with 6 month follow up cytology. The most significant differences were observed 

for the LCR2 region. Differences in L1/L2 methylation were not quite significant when the 

Bonferroni correction was applied and the two-way analyses (considering individual CpG data) 

suffered several violations of the assumptions so should be considered with caution. Whilst 

not quite significant, L1/L2 methylation did have the largest absolute differences among the 

groups, albeit with large confidence intervals and the data was difficult to analyse as a result of 

the relatively small sample size. A combination of LCR2 and L1/L2 methylation data might 

prove useful as a means of differentiating low grade cytology cases that will be low 

grade/negative cytology or moderate/severe dyskaryosis in 6 months time. 

6.2.2.4. Differences between 6 Month Cytology and Histology Were Observed 

At 6 months, all of the negative cytology cases were HPV16 negative, there was a mix of 

histology/HPV positivity for the mild/borderline cytology cases and all of the moderate/severe 

dyskaryosis samples had high grade histology. Moderate/severe dyskaryosis is typically 

associated with high grade CIN in most (62-78%), but not all instances (Cervical Screening 

Wales, 2004, Cervical Screening Wales, 2011); our 100% association is likely the consequence 

of assessing a small number of cases with moderate/severe cytology. 
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6.2.2.5.  The Cleared Group had More L1/L2 and E2 Methylation than the PL 

Group 

More severe cervical disease was associated with higher methylation of the E2 and L1/L2 

regions (Chapter 5: 5.1.2) (Fernandez et al., 2009, Kalantari et al., 2009, Sun et al., 2011, 

Mirabello et al., 2012). Nonetheless at 0 months, the cleared group had a higher degree of E2 

and L1/L2 methylation than the PL group. Whilst these differences were not significant, the 

differences were quite large and were contrary to the expected trend. They also differed from 

recently published data, where E2/E4, L1 and L2 methylation were greater in persistent (low 

grade) HPV16 infections than in infections that would be cleared and greater again in CIN3 

lesions (although these differences were small and frequently non-significant) (Mirabello et al., 

2012).  

Most of the C group samples had negative cytology at 6 months so the loss of HPV16 positivity 

seems genuine. A pertinent consideration however is that DNA methylation of the C and PH 

groups could be the result of host cell attempts to target DNA methylation to viral episomes in 

order to silence viral gene expression and/or promote HPV clearance. In different backgrounds 

of disease, episomal clearance could have diverse outcomes; for the C group, HPV16 clearance 

was achieved and the patients had predominantly negative cytology. For the PH group, 

representing patients with CIN2/3, a stage of disease where HPV DNA integration is quite 

common, clearance of the episomal forms could represent a growth advantage to the host cell 

or even result in disease progression. Several prospective treatments for HPV infection rely on 

the ability to induce an antiviral response that results in the clearing of episomal HPV 

genomes, for example, exogenous type I interferon and imidazoquinolone compounds (Cirelli 

and Tyring, 1994, Stanley, 2002). Viral clearance could result in the loss of inhibitory episomal 

HPV genomes, in vitro this can result in the emergence of cells containing integrated HPV 

genomes (Pett et al., 2006, Herdman et al., 2006). There are also accounts of elevated disease 

progression in small scale clinical trials and increased HPV oncogene expression in cells lines as 

a result of antiviral response inducing compounds (Kim et al., 2000, Koromilas et al., 2001). A 

relationship between episomal methylation and clearance has not been proven, however is 

worthy of further consideration.  

The differences between DNA methylation of the cleared group for our study and for Mirabello 

et al might lie in the duration of follow up. The shorter 6 month follow up may have identified 

samples that were soon to be cleared of HPV16 infection. The higher methylation level 

observed in our study might represent changes in HPV methylation that immediately precede 

rapid episomal clearance. There is currently no data concerning HPV methylation and episomal 
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clearance in the absence of integration. When integration is present, clearance of episomes is 

often rapid and associated with changes in DNA methylation (Chapter 7: 7.1.2) (Gray et al., 

2010). 

 

6.3. Conclusions 

This study attempted to assess the prognostic potential of methylation in a longitudinal study. 

The methylation profile of the three outcome groups was compared and differences were 

observed, particularly at the L1/L2 region and parts of the LCR. However, these differences 

could be caused by several mechanisms so the results must be interpreted with caution. The 

observation of higher methylation of the cleared group than the more severe disease PL group 

was unexpected, however could represent a mechanism of episomal clearance so is worth 

further investigation. We have at least partly fulfilled a component of the prognostic 

biomarker development protocol. The potential of HPV methylation as a biomarker is 

discussed in further detail in the general discussion (Chapter 9: 9.3).  

6.3.1. Future Work 

An interesting avenue for further work would be to establish whether a relationship between 

HPV methylation and episomal clearance exists. This could potentially be investigated in vitro 

using models like the W12 cell line or PC08/09 short term cell lines. A larger clinical study 

might involve short follow up in a series of HPV positive normal cytology samples in order to 

correlate methylation with spontaneous regression in the absence of visible disease. 

This study was performed blind to DIM treatment. Although the putative mechanism of action 

of DIM (modulation of oestrogen metabolism) does not suggest an obvious link with DNA 

methylation, it would be pertinent to determine whether an association existed between DIM 

treatment and 6 month DNA methylation. The relevant data was not available for this study 

however if access could be granted it would be an interesting avenue to explore. 

Finally, this study used a relatively small sample number and a single follow up point with a 

short time span. Expanding the number of samples, the time between points or the number of 

consecutive time points would likely improve the results as changes in disease grade might be 

observed and correlated with changes in DNA methylation. 
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Chapter 7. The Cell Lines Study - DNA Methylation, Integration 

and Gene Expression in vitro 
 

7.1. Results 
To supplement the studies conducted using clinical material, a small series of additional in vitro 

studies were performed using cell lines. These studies facilitated assay design and protocol 

development and allowed parallels to be drawn between in vivo and in vitro studies. Three sets 

of cell line material were used; the immortal cell line CaSki, the short term cell lines PC08/PC09 

and the CIN progression model W12. 

7.1.1. CaSki 

CaSki has been used in several HPV DNA methylation studies, it was important to consider how 

the DNA methylation data produced by pyrosequencing in this study corresponded to 

published DNA methylation data. Table 7.1 contains the DNA methylation data for CaSki 

produced during this study. This data is presented graphically in Figure 7.1. In summary, CaSki 

HPV16 genomes are hypermethylated in all regions, especially the E2 and LCR2 regions. 

 

E2 CpG E2-1 E2-2 E2-3 E2-4 E2-5 E2-6 E2-7 E2-8 

Nucleotide 3411 3414 3416 3432 3435 3447 3461 3472 

Methylation % 95.5 98.5 80 100 96.5 93 81.5 77 

Table 7.1.a 

        LCR1 CpG LCR1-1 LCR1-2 LCR1-3 

     Nucleotide 7691 7679 7673 

     Methylation % 63 67.5 76 

     Table 7.1.b 

        LCR2 CpG LCR2-1 LCR2-2 LCR2-3 LCR2-4 LCR2-5 

   Nucleotide 31 37 43 52 58 

   Methylation % 89.5 91.5 96.5 95.5 97 

   Table 7.1.c 

        L1/L2 CpG L1L2-1 L1L2-2 L1L2-3 L1L2-4 

    Nucleotide 5615 5609 5606 5600 

    Methylation % 74.5 87.5 76 87.5 

    Table 7.1.d 

Table 7.1.a-d: DNA methylation of CaSki HPV16.  

Four tables are present, one for each tested region of the HPV genome. Included are the 
corresponding nucleotide positions (GenBank ID NC001526.1). 
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Figure 7.1: CpG methylation of HPV16 in CaSki.  

Each of the 20 CpGs tested are listed, bars are colour coded to aid interpretation. 

 

7.1.2. The W12 Series 7 Cell Line 

Pyrosequencing was applied to DNAs from several passages of the W12 series 7 cell line 

(W12Ser7). The term passage refers to the successive subculturing of cells into new flasks, i.e. 

a flask is inoculated with cells, the cells are grown to near confluence and then a small number 

are re-inoculated into a new flask. One round of subculture represents one passage. DNAs 

from passage 11 (p11) to p50 were available. In series 7, integrated HPV16 was first detected 

at p13. Between p13-17 episomal HPV16 constituted 10-90% of viral load however after p17, 

episomal HPV16 constituted less than 10% of the viral load (Gray et al., 2010). No further 

detail about the site(s) of HPV integration was available for W12Ser7. Nonetheless, there 

appeared to be changes in DNA methylation starting during this period (p13-17). E2 

methylation was quite closely matched to LCR1 and LCR2 DNA methylation and was much 

lower than seen in the L1/L2 region (Figure 7.2).  

In addition to the low overall E2 methylation, there was a wide variation in methylation within 

the E2 region (Figure 7.3). DNA methylation at p50 for instance varied from 72.5% for CpG E2-5 

down to 8% for E2-2. Particularly intriguing was that E2-4 is separated from E2-5 by only 3 bp, 

yet DNA methylation differed by over 50%.This suggests that a very specific mechanism could 

be responsible for methylating the region. For E2-5 and E2-6, DNA methylation increased 
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substantially between p15-17 which corresponded to the integration events between p13-17. 

DNA methylation of other E2 CpGs remained constant and low.  

Similar to the E2 region, CpGs LCR1-2 and LCR1-3 appeared to become increasingly methylated 

after the integration event at p13-17 (Figure 7.4). LCR1 CpGs are present in the viral enhancer 

and are not within E2BSs. DNA methylation of the LCR2 CpGs increased following the 

integration event at passage 13 but in later passages (p42+) appeared to decline (Figure 7.5). 

Four of the LCR2 CpGs (LCR2-2... LCR2-5) are within two of the inhibitory E2BSs of the LCR. 

For the L1/L2 region, p11 data was missing so it was difficult to see when the increase in DNA 

methylation at each CpG began; the increase in methylation between p15-17 was greater than 

between p13-15, suggesting that the majority of the changes occurred somewhere between 

p15-17 (Figure 7.6). For L1/L2, there was at times more than a two-fold difference between 

the levels of DNA methylation at different L1/L2 CpGs (i.e. L1L2-4 vs. L1L2-1 for p17-31). 

Nonetheless, there was considerably less disparity among the level of DNA methylation at each 

of the L1/L2 CpGs than there was for the E2 CpGs.  
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Figure 7.2: Mean DNA methylation at each site of the HPV16 genome for the W12Ser7 cell line with 
passage number. 

Each coloured point represents a different HPV region, connecting lines are present to aid the 
interpretation of the data. 
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Figure 7.3: The mean amount of DNA methylation at each E2 CpG for the W12Ser7 cell line with 
passage number.  

Each coloured point represents a different CpG, connecting lines are present to aid the interpretation 
of the data. 
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Figure 7.4: The mean amount of DNA methylation at each LCR1 CpG for the W12Ser7 cell line with 
passage number.  

Each coloured point represents a different CpG, connecting lines are present to aid the interpretation 
of the data. 
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Figure 7.5: The mean amount of DNA methylation at each LCR2 CpG for the W12Ser7 cell line with 
passage number.  

Each coloured point represents a different CpG, connecting lines are present to aid the interpretation 
of the data. 
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Figure 7.6: The mean amount of DNA methylation at each L1/L2 CpG for the W12Ser7 cell line with 
passage number.  

Each coloured point represents a different CpG, connecting lines are present to aid the interpretation 
of the data. 
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7.1.3. The PC08 and PC09 Short Term Cell Lines 

DNAs for this study were provided by another student (Tiffany Onions (TO)) from a series of 

short term culture cell lines. The PC08 and PC09 cell lines were established as primary cultures 

of biopsies from two different patients. PC08 was derived from a VIN3 biopsy whilst PC09 was 

derived from a VAIN3 biopsy. Initially, these two cultures were established as heterogeneous 

lines, then single cell cloning was performed to establish homogenous lines. In total, 3 clones 

for each biopsy were provided for use in this study, these are the PC08 clones M, P and Y and 

the PC09 clones A, D and H. These clones were then cultured and at each passage, DNA and 

RNA was extracted and gene expression, growth rate, integration status, telomere length were 

assessed (by TO). DNAs for DNA methylation analysis using the pyrosequencing assays were 

provided by TO. 

For the rest of this study, the sample names will be generated according to passage number, 

clone name and biopsy of origin, i.e. 13Y9 is the PC09 clone Y, at passage 13. This data set was 

of particular interest because it represented a unique in vitro model that allowed comparisons 

to be made between several major components of HPV biology. The PC08 and PC09 data was 

analysed by testing a series of hypotheses. 

 

7.1.3.1. HPV DNA Integration 

Integration analysis by APOT was conducted by TO (Vinokurova et al., 2008). A limitation of 

APOT is that only actively transcribed HPV sequences are detected and APOT is unable to 

confirm the absence of integration, i.e. not detecting an integration event would not 

necessarily mean that an integration event was not present. Similarly, detected episomally 

derived transcripts could in theory be derived from transcriptionally active genomes integrated 

as concatemers. Another limitation of the APOT assay stems from the use of transcript 

sequences, HPV16 mRNAs are frequently spliced at the E7/E1 880 bp site (Figure 1.3) (Zheng 

and Baker, 2006) which would essentially mask the site of HPV genome disruption due to 

splicing. 

Two passages (early and late) were chosen for each clone and assessed using the APOT assay. 

The samples included in these runs and a summary of the results are shown in Table 7.2. The 

sites of integration both of the HPV and human genome varied among clones whilst other 

clones had no detectable integration events; this suggests that the integration events were 
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acquired after initial primary culture or that a variety of integration events existed in various 

cells of the original biopsies. 

  
Details of detected fusion transcripts 

Clone Passage Junction region HPV16 site (nt) Human region 

A9 5 - - - 

A9 11 - - - 

D9 5 E2 3716 Chr.18 (p11.31) 

D9 9 E2 3716 Chr.18 (p11.31) 

D9 11 E2 3716 Chr.18 (p11.31) 

H9 5 E7/E1 882 Chr.5 (p11.2) 

H9 11 E7/E1, E2/E4 882, 3494 Chr.5 (p11.2), Chr.1 (p36.13) 

M8 5 E7/E1 880 Chr.3 (q28) 

M8 9 - - - 

P8 5 - - - 

P8 9 - - - 

Y8 9 E7/E1 882 Chr.3 (q21.31) 

Y8 13 E7/E1 x 2 882 x 2 Chr.3 (q21.31) x 2 

Table 7.2: A summary of the detected HPV-human fusion transcripts detected using the APOT assay.  

The results are listed as the junction region and HPV16 site, i.e. the HPV gene and the HPV16 nt 
(GenBank ID NC001526.1) position respectively at which the junction between HPV and human 
sequence was detected. Other transcripts were detected that did not include human transcripts, these 
are not listed. 13Y8 had two detected fusion transcripts comprising of two proximal sites of the 
human genome. 

 

7.1.3.2. PC08/PC09 Gene Expression 

For this series of short term culture DNAs, both the methylation data collected in this study 

and the gene expression data collected by TO were available. The DNA used for DNA 

methylation analysis and the RNA used for qPCR analysis were extracted from the same 

sample of cells. Expression data was provided by TO as Ct values. Ct values for E2, E6 and E7 

and the two reference genes HPRT and TBP were provided.  

Gene expression is presented as Relative Quantification ratios (RQ) and represents a fold 

difference in gene expression compared to the calibrator sample (CaSki), normalised against 

the reference genes HPRT and TBP. RQ ratios were calculated using the Pfaffl/Vandesompele 

equation (Vandesompele et al., 2002). The fold difference (i.e. RQ) of E2, E6 and E7 expression 

for the PC08 and PC09 clones are presented in Figure 7.7. RQ is interpreted such that an RQ of 

10, represents a 10 fold higher level of gene expression than CaSki and an RQ of 0.1 represents 

a 10 fold lower level of gene expression between the sample in question and CaSki.  

The data is simpler to interpret when presented on a Log10 scale (Figure 7.8) as RQ ratios lower 

than CaSki (RQ of 1; i.e. 1 x CaSki gene expression) appear as negative. Log10 RQ ratio is 
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interpreted such that a Log10RQ of +1, represents a 10 fold higher level of gene expression and 

an RQ of -1 represents a 10 fold lower level of gene expression between the sample in 

question and CaSki. When interpreting the data it is important to consider what the results 

actually represent. Considering sample 7D9 for example, all three bars are approximately the 

same height. This does not necessarily mean that each transcript is being expressed at the 

same level, only that they are being expressed more than in CaSki (and other samples) and 

that the ratio of expression between the genes is roughly equal to that of CaSki. The data is 

interpreted by comparing changes and differences between samples and clones i.e. clone D9 

expresses more of every gene than clone P8. 
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Figure 7.7: The fold difference (RQ ratio) in E2, E6 and E7 gene expression for the PC08 and PC09 
series.  

Each bar represents an RQ ratio for the PC08/PC09 sample listed on the X-axis. Each gene expression 
assay is colour coded according to the figure legend. 
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Figure 7.8: The Log10 fold difference (Log10 RQ ratio) in E2, E6 and E7 gene expression for the PC08 and 
PC09 series.  

Each bar represents a Log10 RQ ratio for the PC08/PC09 sample listed on the X-axis. Each gene 
expression assay is colour coded according to the figure legend. 

 

7.1.3.2.1. Hypothesis 1: RQ Ratios Varied among Clones and among HPV Genes 

Clone D9 appeared to transcribe E2/E6/E7 mRNA at a higher level than any other clone. 

Among the clones there was substantial variation both in overall level compared to other 

clones, and in the relative level of expression of E2, E6 and E7. A two-way ANOVA was applied 

to the passage 9 RQ values; clone M8 data was excluded from the analysis on the basis of 

missing data and as sample 9A9 had incomplete RQ data, it was substituted by sample 8A9. 

The data satisfied the assumptions of the two-way ANOVA. A significant difference was 

observed among the mean Log10 RQ values for each clone (P=0.003). The other factor tested 

was gene expression assay (i.e. E2, E6 and E7), somewhat surprisingly, no significant difference 

in mean Log10 RQ as a result of the assay was observed (P=0.475). 

7.1.3.2.2. Hypothesis 2: HPV Gene Expression is Associated with HPV DNA 

Integration 

A two-way ANOVA GLM was applied to the same passage 8/9 RQ data for the five clones used 

previously. No significant difference in mean RQ was found with respect to either integration 

status (P=0.857) or gene expression assay (P=0.832), one violation of the ANOVA assumptions 
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occurred (unequal variances, P=0.003) however multiple two-sample T-tests confirmed the 

lack of significant effect of DNA integration on mean RQ. If there was a relationship between 

DNA integration and gene expression, it was more complex than could be determined by a 

simple comparison of RQ means. 

7.1.3.2.3. Hypothesis 3: There is a Linear Relationship between E2, E6 and E7 RQ 

The classical model of P97 regulation is that E2 is a repressor of P97 activity and that the loss 

of E2 function is responsible for E6 and E7 up-regulation. A simple way of testing for this 

scenario in this data set was to correlate E2, E6 and E7 RQ. Spearman’s rank correlation 

analysis was applied to the RQ data of every passage of each clone. There was a significant 

positive correlation between all three pairs of RQ values such that overall, E2, E6 and E7 

expression were correlated with each other (Table 7.3). 

 

 
E2 RQ vs. E6 RQ E2 RQ vs. E7 RQ E6 RQ vs. E7 RQ 

Spearman's rank correlation coefficient 0.568 0.706 0.736 

P-value 0.001 0.000 0.000 

Table 7.3: The P-values and correlation coefficients of Spearman’s rank correlation coefficient tests 
between the RQ values of E2, E6 and E7 for the PC08 and PC09 clones. 

 

7.1.3.3. PC08 and PC09 DNA Methylation 

Pyrosequencing was used to determine the DNA methylation status of the PC08 and PC09 

clone DNAs. Mean DNA methylation (i.e. mean of the multiple CpGs) of each region of the HPV 

genome for the PC08 and PC09 clones are presented in Figure 7.9 and Figure 7.10. 



156 

 

Sample
13

Y8
12

Y8
11

Y8
10

Y89Y
8

9P
8

8P
8

7P
8

6P
8

5P
8

9M
8

8M
8

7M
8

6M
8

5M
8

70

60

50

40

30

20

10

0

D
N

A
 m

e
th

y
la

ti
o

n
 %

E2

LCR1

LCR2

L1/L2

Variable

Mean DNA methylation of the PC08 clones

 

Figure 7.9: Mean DNA methylation of the PC08 clones. 

Here each bar represents the mean DNA methylation for the region of the HPV genome indicated by 
the bar colour.  

 

 

Figure 7.10: Mean DNA methylation of the PC09 clones.  

Here each bar represents the mean DNA methylation for the region of the HPV genome indicated by 
the bar colour. 
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7.1.3.3.1. Hypothesis 4a: DNA Methylation Differs among HPV Regions 

For other sample cohorts, large differences in DNA methylation level were observed among 

the different regions of the HPV genome, and also among the different CpGs within regions.  

The one passage number common to every clone was p9, the DNA methylation data of these 

samples are presented graphically in Figure 7.11. A two-way ANOVA GLM was applied to the 

p9 DNA methylation data. This confirmed that statistically significant differences in DNA 

methylation existed among each HPV region (P=0.000) and within each clone. It also confirmed 

significant differences in mean DNA methylation of each clone (P=0.037). The significant 

differences among the clones are discussed later. 
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Figure 7.11: DNA methylation of the passage 9 PC08 and PC09 clones.  

Bars represent the mean DNA methylation for the clone/assay combination depicted, error bars 
indicate 95% confidence intervals for mean methylation and red circles represent the individual DNA 
methylation values for each CpG of each region.  

 

7.1.3.3.2. Hypothesis 4b: DNA Methylation Differs among CpGs within Each HPV 

Region 

For the passage 9 samples, there were noticeable differences in DNA methylation among the 

CpGs within each region (Figure 7.11). To test whether statistically significant differences 

existed, two-way ANOVA GLMs were applied to the p9 data, one test for each of the four 
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regions. The tests were used to determine whether mean methylation differed among CpGs 

and among clones, the results are presented in Table 7.4. The statistical differences among the 

various clones are discussed later. A Bonferroni corrected P-value of P=0.013 was applied. 

There was a significant difference among the amount of DNA methylation of each CpG of the 

E2, LCR2 and L1/L2 regions. 

 

Factor E2 LCR1 LCR2 L1/L2 

Clone (P-value) 0.000 0.031*
1
 0.000 0.000 

CpG (P-value) 0.000 0.157*
1
 0.156 0.000 

Table 7.4: The results of two-way ANOVA GLM tests on the PC08/PC09 passage 9 methylation data.  

The two-way ANOVA tested for differences in the mean values with respect to both clone and CpG. 
Violations of the assumptions of the ANOVA: *1, unequal variances (P=0.005).  

 

It was also worth considering whether or not differences among CpGs were consistent for all 

of the clones. CpG DNA methylation data for the p9 samples is displayed in Figure 7.12, Figure 

7.13, Figure 7.14 and Figure 7.15. Large differences in E2 methylation existed among each CpG 

and there was a remarkable conservation of the overall methylation profile as shown by the 

shape of the line for the interconnected individual values. CpG E2-1 was typically highly 

methylated, E2-2 and E2-3 considerably less so, E2-4 again highly methylated and there was a 

general decrease in the amount of methylation from there onwards (Figure 7.12). For LCR1, 

LCR1-1 was the most methylated and LCR1-3 the least for all but the highly methylated Y8 

clone for which the converse was true (Figure 7.13). The LCR2 data was similar, showing a 

consistent pattern for the five hypomethylated clones, while the profile of the Y8 clone was 

almost the exact opposite (Figure 7.14). The DNA methylation profile of the L1/L2 region had a 

similar shape for every clone. Methylation of L1L2-1 and L1L2-3 were the lowest, and L1L2-2 

and L1L2-4 were the highest, this gave rise to a distinctive “N” shaped profile (Figure 7.15). 
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Figure 7.12: DNA methylation of the E2 CpGs for the PC08 and PC09 clones at passage 9.  

The connecting lines between CpG DNA methylation values are included to aid interpretation only, no 
relationship between the points is inferred. 
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Figure 7.13: DNA methylation of the LCR1 CpGs for the PC08 and PC09 clones at passage 9.  

The connecting lines between CpG DNA methylation values are included to aid interpretation only, no 
relationship between the points is inferred. 
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Figure 7.14: DNA methylation of the LCR2 CpGs for the PC08 and PC09 clones at passage 9.  

The connecting lines between CpG DNA methylation values are included to aid interpretation only, no 
relationship between the points is inferred. 
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Figure 7.15: DNA methylation of the L1/L2 CpGs for the PC08 and PC09 clones at passage 9.  

The connecting lines between CpG DNA methylation values are included to aid interpretation only, no 
relationship between the points is inferred. 
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7.1.3.3.3. Hypothesis 5a: Differences in DNA Methylation are Detectable when 

Comparing Clones from PC08 with Those from PC09 

The PC08 and PC09 cell lines were derived from two patients with disease at different 

anogenital sites. It is reasonable to suspect that DNA methylation might be different between 

the two original biopsies, and therefore between the two sets of short term culture lines. The 

passage 9 cell line data for the 6 clones was tested using a two-way ANOVA GLM to determine 

if a statistically significant difference in mean DNA methylation between the two original 

biopsies existed. The other factor included in the analysis was HPV region, such that all four 

HPV regions were tested simultaneously. There was a statistically significant difference in 

mean DNA methylation both as a result of HPV region (P=0.000) but also as a result of original 

biopsy (P=0.029). There was a difference between cell lines from the two biopsies. 

 

7.1.3.3.4. Hypothesis 5b: There are DNA Methylation Differences among the Six 

Clones 

LCM studies have demonstrated that HPV DNA methylation level varies throughout a biopsy 

depending on the characteristics of the HPV infection in different areas (Vinokurova and von 

Knebel Doeberitz, 2011). Given that these clones originated from two heterogeneous mixes of 

cells, each potentially representing a diverse part of the same biopsy, it was interesting to 

consider if the methylation profile was different among the different clones. Previously 

performed two-way ANOVA GLM tests (passage 9 data only, one test per region, clone and 

CpG as factors) found that a significant difference among the clones was observed for the E2, 

LCR and L1/L2 regions (Table 7.4). The Bonferroni corrected P-value was P=0.013, if the 

Bonferroni correction was not applied then differences among the clones are also seen for the 

LCR1 region. 

As well as differences in mean DNA methylation among the clones, further differences were 

observed when every passage number was considered. The changes in DNA methylation with 

passage number are discussed in further detail later in this chapter, however it was of 

particular interest to note that the relationship between DNA methylation and passage 

number varied considerably for different clones. 
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7.1.3.3.5. Hypothesis 6: HPV DNA Methylation Changes with Passage 

For the E2 region (Figure 7.16), clones M8 and Y8 were the most highly methylated, the other 

PC08 clone (P8) however was hypomethylated in every passage. All three PC09 clones were 

lowly methylated in early passages. The D9 and A9 clones remained hypomethylated however 

for the H9 clone, after p8 there was a gradual increase in E2 DNA methylation. 
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Figure 7.16: Mean E2 DNA methylation of the PC08 and PC09 clones with increasing passage number.  

Each clone is represented by a different colour. Different passages of the same clone are connected 
with a coloured line in order to aid interpretation. 

 

For the LCR1 region (Figure 7.17), every clone was methylated at a low level, changes between 

passages were difficult to determine accurately because the differences were so small that 

they could be due to random variation between pyrosequencing runs and experimental noise. 

The Y8 clone, as per some other regions was more methylated than the other clones. LCR1 

methylation did not change drastically with passage number in any discernible manner for any 

of the clones. 

For the LCR2 region (Figure 7.18), all clones except for the Y8 and H9 clones were less than 5% 

methylated throughout. LCR2 methylation for the Y8 clone began to decrease at p11. The H9 

clone had a gradual decrease in DNA methylation from p5 until approximately p10. 
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Figure 7.17: Mean LCR1 DNA methylation of the PC08 and PC09 clones with increasing passage 
number.  

Each clone is represented by a different colour. Different passages of the same clone are connected 
with a coloured line in order to aid interpretation. 
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Figure 7.18: Mean LCR2 DNA methylation of the PC08 and PC09 clones with increasing passage 
number.  

Each clone is represented by a different colour. Different passages of the same clone are connected 
with a coloured line in order to aid interpretation. 
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For the L1/L2 region (Figure 7.19), DNA methylation was much more variable than for other 

HPV regions, every clone appeared to experience changes in DNA methylation with increasing 

passage number. As for other regions, the Y8 clone was the most methylated and as per the 

LCR2 region, there was a decrease in DNA methylation for the later passage. The M8 clone was 

also heavily methylated and became more methylated with increasing passage number (E2 

methylation also increased with passage number). The P8 clone became in general, more 

methylated with passage number however there was some variation at passage 8, where DNA 

methylation was lower than might be expected giving rise to an odd shaped curve. The A9 

clone was the least methylated of the clones and after an initial decrease, DNA methylation 

remained low. The D9 clone was particularly intriguing in that a positive, linear relationship 

between DNA methylation and passage number was observed; it is worth considering that 

whilst L1/L2 methylation level was high, the E2 region of D9 was hypomethylated throughout. 

The H9 clone showed a similar overall increase in DNA methylation as D9, however the 

changes were non-linear, initially experiencing a decrease before a more rapid increase. The 

increased L1/L2 DNA methylation for the H9 clone, coincided with the increase in E2 DNA 

methylation discussed previously. 
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Figure 7.19; MeanL1/L2 DNA methylation of the PC08 and PC09 clones with increasing passage 
number.  

Each clone is represented by a different colour. Different passages of the same clone are connected 
with a coloured line in order to aid interpretation. 
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7.1.3.4. The Interaction of DNA Methylation, Gene Expression and HPV 

Integration 

Comparison of DNA methylation, gene expression and HPV integration for the PC08 and PC09 

cell lines was conducted in two main stages, the first stage considered all six clones 

simultaneously and the second stage considered each clone individually. 

  

7.1.3.4.1. Hypothesis 7: There is a Relationship between DNA Methylation and Gene 

Expression 

The simplest way of determining whether a direct relationship existed between DNA 

methylation and gene expression was to perform correlation analysis. Spearman’s rank 

correlation analysis was performed on the mean DNA methylation and RQ results for every 

passage of every clone to determine whether a general relationship existed (Table 7.5). A 

significant relationship existed between E2 DNA methylation and E2, E6 and E7 RQ, LCR1 

methylation and E6 RQ, LCR2 methylation and E2 RQ and a very close to significant correlation 

existed between L1/L2 methylation and E6 RQ. The data was highly unsuitable for 

multifactorial ANOVA analysis. Further investigation into the relationship between DNA 

methylation and gene expression was performed on an individual clone basis. 

 

  
E2 RQ vs. E6 RQ vs. E7 RQ vs. 

E2 methylation Spearman's rank -0.593 -0.679 -0.702 

  P-value 0.001 0.000 0.000 

LCR1 methylation Spearman's rank -0.234 -0.357 0.028 

  P-value 0.212 0.035 0.873 

LCR2 methylation Spearman's rank -0.036 -0.421 -0.150 

  P-value 0.851 0.012 0.388 

L1/L2 methylation Spearman's rank -0.216 -0.332 -0.238 

  P-value 0.251 0.051 0.169 

Table 7.5: The results of Spearman’s rank correlation analysis to investigate the relationship between 
DNA methylation and gene expression.  

Each column represents a gene expression assay whilst each row represents a DNA methylation assay. 
Data from every clone at every passage was included. Mean DNA methylation of the multiple CpGs in 
each region was used in the analysis. Spearman’s rank refers to the Spearman’s rank correlation 
coefficient. P-values are significant where P<0.05. Significant correlations are highlighted yellow and 
correlations close to significant are coloured blue. 
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7.1.3.4.2. Hypothesis 8: There is a Relationship between DNA Methylation and HPV 

Integration 

Passage 9 DNA methylation data was tested to determine whether a significant difference in 

mean DNA methylation existed among HPV regions (previously confirmed), and HPV 

integration status using a two-way ANOVA GLM. For integration, two classes were defined; 

integration detected and integration not detected. No significant relationship between mean 

DNA methylation and integration status was identified (P=0.168), suggesting that if DNA 

integration had an effect on DNA methylation, it was more complex than a simple 

increase/decrease in mean DNA methylation. 

 

7.1.3.5. Individual Clone Comparisons 

The relationship between DNA methylation, gene expression and integration appeared to be 

more complex than a simple comparison of means or correlation could determine. Visual 

comparisons of the DNA methylation mean data (Figure 7.16, Figure 7.17, Figure 7.18 and 

Figure 7.19), the Log10 RQ plot (Figure 7.8) and DNA integration results (Table 7.2) were 

performed and used to generate hypotheses that could be tested statistically. 

 

7.1.3.5.1. Clone A9 

Clone A9 E2/E6/E7 transcription was fairly consistent across all passages (p9 data missing). 

There were only small changes observed with increasing passage number, however there were 

slightly greater differences between p10-11 than there were for the other passages. DNA 

methylation level of clone A9 was low and consistent with increasing passage, it had the 

lowest overall methylation of L1/L2 and one of the lowest levels of methylation for the other 

regions. No integration events were detected for clone A9 in either p5 or p11. 

7.1.3.5.2. Clone D9 

Of the six clones tested, clone D9 displayed the highest mRNA levels for each gene; there was 

also a progressive increase in the amount of E2 and E6 mRNA right up until the final sample at 

p11 where there was a sharp and pronounced decrease in the expression of all genes. This was 

a little surprising because we typically consider that increased E2 expression should have a 

negative impact on the expression of the E6 and E7 genes, as such we may expect increases in 

E2 to be followed by decreases in E6 and E7 and vice versa. 

The DNA methylation of clone D9 was also interesting in that for E2, LCR1 and LCR2 there was 

very little DNA methylation whereas for L1/L2 there was a steady and linear increase with 
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increasing passage number. E2 hypomethylation coinciding with E2 integration was of 

particular interest because a potential association between site of integration and methylation 

was identified in vitro (Chapter 8: 8.2.3.3). 

Passage 11 excluded, the increase in E2/6/7 mRNA in D9 with passage appeared to coincide 

with an increase in L1/L2 DNA methylation (Figure 7.20). Spearman’s rank correlation analysis 

was applied to determine whether gene expression and L1/L2 methylation correlate 

significantly, the results are summarised in Table 7.6. Significant correlation was observed for 

E2 RQ vs. L1/L2 mean methylation and E6 RQ vs. L1/L2 mean methylation. None of the 

correlations were significant when 11D9 (p11) was included; the p11 data may have been 

erroneous. Several explanations for the increase in DNA methylation with passage number 

could exist. It could be that the HPV16 DNA is becoming gradually more methylated in each 

cell, or alternatively, that the integrated genomes are heavily methylated and are becoming 

more common as they are selected for due to E2 disruption, E6/E7 overexpression and an 

enhanced growth rate. 

 
E2 RQ vs. L1/L2 

Methylation 
E6 RQ vs. L1/L2 

Methylation 
E7 RQ vs. L1/L2 

Methylation 

Spearman's rank correlation coefficient +0.943 +1.000 +0.543 

P-value P = 0.005 P < 0.000 P = 0.266 

Table 7.6: The P-values and correlation coefficients of Spearman’s rank correlation coefficient tests 
between the RQ values of E2, E6 and E7 and the mean methylation values at the L1/L2 region for the 
D9 clone. 
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Figure 7.20: The log10 RQ ratios for E2, E6 and E7 expression plotted against L1/L2 mean DNA 
methylation.  

Passage 11 data was excluded from the diagram and from subsequent correlation analysis. Included 
are regression lines of best fit for each of the three gene expression assays. 

 

7.1.3.5.3. Clone H9 

For clone H9 there was a slight increase in expression of E6 and E7 and a considerable 

decrease in E2 expression with increasing passage. This was more in line with what might be 

expected, i.e. a decrease in E2 expression alleviates some of the repression on the P97 

promoter allowing E6 and E7 expression to rise. Nonetheless, despite an apparent negative 

correlation between E2 RQ and E6/E7 RQ for the H9 clone, the correlation was not significant 

(Table 7.7).  

 E2 RQ vs. E6 RQ E2 RQ vs. E7 RQ E6 RQ vs. E7 RQ 

Spearman's rank correlation coefficient -0.429 -0.357 +0.857 

P-value P = 0.337 P = 0.432 P = 0.014 

Table 7.7: The P-values and correlation coefficients of Spearman’s rank correlation analysis to 
determine a relationship between the RQ values of E2, E6 and E7 for the H9 clone. 

 

The methylation profile of clone H9 was of particular interest because of the pronounced 

changes at and around p8-9 (large increases in E2 and especially L1/L2 methylation). Between 

p5-8 the expression of E2 was considerably higher than between p9-11, this coincided with 

changes in methylation in the E2 and L1/L2 regions. In addition, LCR2 methylation decreased 
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relatively rapidly between p5-7 and decreased continually for the rest of the passages 

available. Between the early and late passages there appeared to be a large difference in gene 

expression and DNA methylation that may be a consequence of the integration event detected 

in p11, but not in p5. The integration event was detected in the E2/E4 region. 

Two-sample T-tests were used to determine whether gene expression and DNA methylation 

were significantly different between the early passage (p5-8) and the late passage (p9-11), the 

results are summarised in Table 7.8. There was a significant difference between the early and 

late passage for E2 RQ and for mean L1/L2 DNA methylation, however the difference for L1/L2 

methylation was not significant if the Bonferroni correction (P=0.007) was applied. 

 

 

Difference between passages 5-8 and 9-11 with respect to: 

 
Gene expression (RQ) Mean DNA methylation 

Two-sample T-test E2 E6 E7 E2 LCR1 LCR2 L1/L2 

P-value 0.007 0.593 0.365 0.112 0.290 0.097 0.039 

Table 7.8: The results of two-sample T-tests to assess differences in mean gene expression and mean 
DNA methylation between the early and late passages of H9.  

The table is separated into DNA methylation and gene expression assays, the P-value represents the 
significance of the difference between the early passage (passage 5-8) and the late passage (passage 
9-11) samples for the assay of interest. No violations of the assumptions of the T-test were 
encountered. 

 

7.1.3.5.4. Clone M8 

Clone M8 was lacking E2 expression data so parallels between E2 and E6/E7 expression could 

not be drawn (Figure 7.8). Nonetheless there did appear to be a slight increase in E7 

expression with somewhat more variable E6 expression. As previously discussed, clone M8 had 

high E2 and L1/L2 methylation that increased slightly with passage number; it was difficult to 

draw further conclusions without the E2 RQ data. Integration was detected in the E7/E1 region 

at p5 but not at p9. This could be a selective loss of cells containing the integration event, 

silencing of the HPV sequence expressing the integration event or a failing of the APOT assay. 

7.1.3.5.5. Clone P8 

Clone P8 had a low level of DNA methylation in all regions, fairly constant E6 and E7 RQ and a 

slight increase in E2 RQ with increasing passage number. Interestingly, p9 had the highest E2 

RQ and the highest L1/L2 methylation. No integration was detected. 
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7.1.3.5.6. Clone Y8 

Finally, clone Y8 showed increasing mRNA levels for all genes of interest up until p12 where 

there was a 1 Log10 decrease in expression. By p13, mRNA levels had returned to previous 

levels except for a considerable increase in E6 RQ. Clone Y8 had the highest level of DNA 

methylation for most of the assays out of any of the clones analysed and also the lowest E6 RQ 

out of all of the clones analysed. HPV integration was detected at E7/E1 and an additional 

E7/E1 integration event was detected in p13. The increase in gene expression for p13 

(especially for E7) may be related to a decrease in DNA methylation at p13 that was observed 

at every site (E2, LCR1, LCR2 and L1/L2). 

 

 

7.2. Discussion 
 

7.2.1. CaSki 

7.2.1.1. Aims 

CaSki DNA was used as a HPV16 positive control DNA for method development and to 

compare the results produced by pyrosequencing to published data. 

7.2.1.2. Comparison to Other Studies 

Fernandez et al used bisulfite sequencing with cloning in order to assess methylation in a semi-

quantitative manner (Fernandez et al., 2009) and produced results similar to those produced 

by this study (Table 7.9, Table 7.10). Where differences are present, Fernandez et al typically 

had a low number of clones sequenced (e.g. LCR1). Even with a larger number of bisulfite 

sequenced clones there are wide confidence intervals. E2-5 for example had 8/12 clones 

sequenced, indicating methylation of 67% however the 95% confidence intervals range from 

40.4-93.6% making direct comparison with a quantitative method unreliable. 
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 E2 LCR1 

 1 2 3 4 5 6 7 8 1 2 3 

Nucleotide 3411 3414 3416 3432 3435 3447 3461 3472 7691 7679 7673 

CaSki repeat 1 96 97 80 100 98 92 82 76 63 68 75 

CaSki repeat 2 95 100 80 100 95 94 81 78 63 67 77 

Mean 95.5 98.5 80 100 96.5 93 81.5 77 63 67.5 76 

Fernandez et al                       
Methylated 
clones 11/12 12/12 11/12 11/12 8/12 12/12 10/12 9/12 2/2 0/2 2/2 

Methylation % 92 100 92 92 67 100 83 75 100 0 100 

Difference % 3.5 -1.5 -12 8 29.5 -7 -1.5 2 -37 67.5 -24 

Table 7.9: A comparison of CaSki methylation data collected in this study with published CaSki 
methylation data for the E2 and LCR1 region (Fernandez et al., 2009). 

The published methylation data was bisulfite sequencing data and was calculated by sequencing 
multiple bisulfite converted cloned DNAs. 

 

 LCR2 L1/L2 

 1 2 3 4 5 1 2 3 4 

Nucleotide 31 37 43 52 58 5615 5609 5606 5600 

CaSki repeat 1 90 94 98 95 95 73 86 75 85 

CaSki repeat 2 89 89 95 96 99 76 89 77 90 

Mean 89.5 91.5 96.5 95.5 97 74.5 87.5 76 87.5 

Fernandez et al                   

Methylated clones 8/8 8/8 8/8 6/8 7/8 7/10 10/10 7/10 10/10 

Methylation % 100 100 100 75 88 70 100 70 100 

Difference % -10.5 -8.5 -3.5 20.5 9 4.5 -12.5 6 -12.5 

Table 7.10: A comparison of CaSki methylation data collected in this study with published CaSki 
methylation data for the LCR2 and L1/L2 (Fernandez et al., 2009).  

The published methylation data was bisulfite sequencing data and was calculated by sequencing 
multiple bisulfite converted cloned DNAs. 

 

Another study considered DNA methylation of the CaSki HPV16 LCR and L1 region using 

bisulfite sequencing with cloning and found almost complete hypermethylation of LCR2 region 

(93% methylation of LCR2-1 and LCR2-5, 100% methylation of the other LCR2 CpGs) and LCR1 

region (87% methylation of LCR1-1, 100% methylation of the other LCR1 CpGs) (Kalantari et al., 

2004). They also observed heavy methylation of the L1 region, albeit in an area not covered by 

our assays (Kalantari et al., 2004). Direct bisulfite sequencing without a cloning step suggested 

there was methylation of all LCR1 and LCR2 CpGs in CaSki (i.e. the result is methylated or 

unmethylated) (Badal et al., 2003). Both of these studies are consistent with our results.  
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7.2.1.3.  Meaning 

CaSki HPV16 was heavily methylated in all CpGs but the level of methylation varied both 

among region of the genome and among CpGs within each region. The E2 and LCR2 (promoter) 

region were the most densely methylated, whilst the LCR1 (enhancer) and L1/L2 regions were 

hypermethylated to a lesser degree. CpG specific patterns of DNA methylation were observed 

in L1/L2 and E2 which appeared to match those observed in other sample cohorts. The “N” 

shaped L1/L2 CpG methylation pattern observed in CaSki was also present in published CaSki 

work (Fernandez et al., 2009), as was the LCR1 pattern (Ding et al., 2009). 

For our study, CaSki was a crucial part of the method development, as a source of methylated 

control DNA, a means by which to compare independent experimental repeats, and a means 

by which to compare data produced using our assays to published data. One of the first 

observations was that two experimental repeats (i.e. DNAs were separately BS treated, 

amplified by PCR and then pyrosequenced) exhibited levels of methylation that were very 

closely matched, the greatest individual difference of any CpG being 5% (Table 7.9, Table 7.10). 

The close similarities between this data and data produced by the widely used bisulfite 

sequencing technique were also reassuring. 

HPV16 genomes are integrated into the CaSki human genome at around 500 copies per cell as 

head-to-tail hypermethylated concatemers and located in several sites of the human genome 

with only a small number of transcriptionally active copies (Fernandez et al., 2009, Van Tine et 

al., 2004b, Van Tine et al., 2001, Mincheva et al., 1987). This is consistent with our observation 

of heavily methylated LCR, E2 and L1/L2 regions.  

 

7.2.2. W12 series 7 

7.2.2.1. Aims 

W12 series 7 (W12Ser7) DNA was used as a means to consider DNA methylation over a large 

number of cell passages and to consider the effect of HPV integration on DNA methylation.  

7.2.2.2. Comparison to Other Studies 

Kalantari et al studied DNA methylation of W12 cells in both episomal and integrated forms, 

and after induction of cellular differentiation (Kalantari et al., 2008a). They observed a low 

level of enhancer and promoter methylation and some methylation of the 5’LCR and L1 region 

in episomal HPV16. Upon differentiation, DNA methylation was reduced considerably in all 

regions for episomal, but not for integrated HPV16 genomes (Kalantari et al., 2008a). The 

reduction in W12 LCR methylation upon differentiation was also observed in another study 
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(Kim et al., 2003). Low level methylation of the enhancer, promoter and L1 region in these 

studies is consistent with our observation of low level LCR1, LCR2 and L1/L2 methylation in 

early passage W12, and prior to the integration events. 

Two types of integration event were detected (single insertions and concatemeric repeats) 

that corresponded to the methylation profiles of SiHa (single insertion) and CaSki (concatemer) 

respectively (Kalantari et al., 2008a, Fernandez et al., 2009). Our W12 methylation profile 

corresponds best to that of the concatemeric insertion (Kalantari et al., 2008a). Further 

comparison revealed that where we saw LCR1-1 to be less methylated than LCR1-2/3 at every 

passage, this was also reflected in published data where LCR1-1 was typically unmethylated in 

most instances (Kalantari et al., 2008a). LCR1-1 hypomethylation and LCR1-2/LCR1-3 

methylation was not frequently observed in our other sample cohorts/cell lines. In summary, 

where parallels can be drawn, our data align well to previously published W12 data from other 

W12 series. 

 

7.2.2.3. Meaning 

The information and material available for the W12Ser7 line was limited. We had no access to 

RNA with which to perform gene expression analysis, only very basic integration data has been 

published (Gray et al., 2010) and detail pertaining to the site of integration within the human 

and HPV genome was not available. There was also insufficient DNA with which to perform 

DIPS. 

W12Ser7 integration was detected from passage 13 onwards and by p17 the vast majority of 

genomes were integrated (Gray et al., 2010); this corresponded to large and distinct changes 

in DNA methylation beginning around p13. The changes observed were both region specific 

(i.e. assay) and CpG specific (i.e. within assays). All regions of the HPV genome were 

hypomethylated (i.e. approx 10%) in the first passage available (p11/p13). Changes were most 

pronounced for the L1/L2 region. LCR and E2 methylation did change with passage but not to 

the same extent. 

For the E2 region there was a large increase in DNA methylation from p13 onwards almost 

exclusively for the E2-5 and E2-6 CpGs. Adjacent CpGs, separated by only a few bp were seen 

to differ considerably, hinting at a CpG specific mechanism of DNA methylation. This was also 

observed at LCR1 and to a degree for LCR2. An interesting difference between W12Ser7 and 

other cohorts was that W12Ser7 LCR1-1 CpG was hypomethylated whilst methylation of LCR1-

2 and LCR1-3 varied with passage number. This was reflected in studies using W12 of an 
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unknown series (Kalantari et al., 2008a). LCR1-1 does not correspond to an E2BS, so it was 

unusual that it was persistently hypomethylated in W12Ser7. LCR1-1 hypomethylation possibly 

corresponded to a growth advantage to the cell hence its continued hypomethylation (as 

observed in a range of W12 lines). LCR1-1 is close to the binding sites of many cis-acting 

elements, the binding of which could be influenced by DNA methylation. Previous studies have 

noticed an association between nucleosome linker position and sites of continual 

hypomethylation (i.e. CpG 7862) (Kalantari et al., 2004) however LCR1-1 corresponds to a site 

positioned within a nucleosome (Stunkel and Bernard, 1999) and was not routinely 

hypomethylated (compared to other LCR1 CpGs) in our other work. In summary, the conserved 

methylation differences between proximal CpGs suggest that specific mechanisms of 

methylation and/or strong selection pressure could be responsible. Some of the more 

pronounced CpG specific differences for W12 were not however routinely observed in other 

cohorts, which could be due to several reasons including integration state, integration site and 

characteristics of the W12 cell lines that are not shared with any of our other cohorts. 

 

7.2.2.3.1. Integration and Methylation 

W12Ser7 HPV methylation was seen to undergo pronounced increases at the onset of 

integration which continued for over 35 passages. Methylation increased in both a region 

specific and CpG specific manner. Methylation of the L1/L2 region increased the most after the 

integration event, methylation of the other three regions occurred but not as substantially.  

Published W12, SiHa and CaSki HPV16 integration, copy number and methylation data may 

give a degree of insight into the association between methylation and integration for 

W12Ser7. HPV16 is present in SiHa at around 1-2 copies per genome and in CaSki at 

approximately 500 copies per genome (Van Tine et al., 2001, Fernandez et al., 2009). SiHa and 

CaSki HPV16 differ significantly; whilst both cell lines contain HPV16 which is heavily 

methylated in the E2-L1 regions, the LCR of SiHa HPV16 is hypomethylated (Kalantari et al., 

2004, Fernandez et al., 2009). In CaSki, HPV16 genomes exist as integrated concatemers, the 

majority of which are repressed by heavy DNA methylation. The few HPV16 integrants in SiHa 

are transcriptionally active with an unmethylated LCR (Kalantari et al., 2008a, Van Tine et al., 

2001). Similarly, W12 single HPV16 insertions were methylated in L1, but hypomethylated in 

the LCR whilst concatemeric insertions were typically hypermethylated in the enhancer, 

promoter and L1 region as per SiHa (single insertion) and CaSki (concatemer) respectively 

(Kalantari et al., 2008a, Fernandez et al., 2009). Our observation of methylation at all regions 
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(with hypermethylation of L1/L2) better corresponds to that seen for the concatemeric 

insertion type integration event (Kalantari et al., 2008a).  

Pyrosequencing is unable to differentiate between a mix of heterogeneously methylated 

genomes, and a mix of hypomethylated and hypermethylated genomes. An intriguing 

explanation for the W12Ser7 methylation profile was that the progressive increase in DNA 

methylation was due to a selection for, and eventual predominance of cells containing 

methylated, integrated HPV, with the apparent gradual increase in methylation being 

attributable to the gradual loss of hypomethylated episomes. The highest rate of change in 

DNA methylation was observed between p13 and p17 however methylation continued to 

increase in much later passages too. W12 contained almost entirely integrated forms from p17 

onwards (Gray et al., 2010) which suggests that episomal loss did contribute to the change in 

DNA methylation, but also that integrants are methylated in a gradual manner, rather than 

immediately hypermethylated upon integration. 

The selection for, and eventual dominance of W12Ser7 cells containing integrated genomes 

(Gray et al., 2010) implies that integration confers a growth advantage for the host cell (Jeon et 

al., 1995). Integration of HPV must occur in a background of episomal HPV which would 

initially be repressed by episomal E2. In this instance, loss of the episomes would confer a 

strong selective benefit which might explain why episomes were quickly lost in vitro once the 

integration event had occurred (Pett and Coleman, 2007, Pett et al., 2006). 

7.2.2.3.2. Unusual Observations 

Prior to integrant selection, there was an initial decrease in DNA methylation from p11-p15 at 

all regions. This is difficult to explain; DNA methylation is seen to be reduced during 

differentiation (Kalantari et al., 2008a) but this is not occurring, there is reason to suspect that 

HPV oncogene expression can alter DNA methylation through their action on DNMTs (Burgers 

et al., 2007, Leonard et al., 2012) so this initial change in DNA methylation might reflect known 

changes in oncogene expression prior to integration and selection for integrants (Gray et al., 

2010).  

CpG methylation of the E2 region was also different than seen elsewhere; only two E2 CpGs 

were hypermethylated in association with integration and passage number whilst CpGs 

adjacent to these two remained hypomethylated throughout. This was observed in multiple 

passages, so there is no reason to suspect it is erroneous however it is difficult to explain. DNA 

methylation of integrated genomes may operate in a manner that requires an initial seeding of 

specific sequences (Doerfler, 2008, Turker, 2002), however this seems unlikely in this instance 
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as other E2 CpGs might be expected to be methylated in passages after this initial seeding and 

this unusual pattern was not observed elsewhere. A more plausible suggestion might be that 

HPV16 integration resulted in topological changes of the E2 DNA structure and affected its 

ability to be methylated and might possibly because of the chromatin structure of adjacent 

human DNA (Doerfler, 2011). 

 

7.2.3. PC08 and PC09 

7.2.3.1. Aims 

The PC08 and PC09 cell lines are short term culture lines derived from VIN3 and VAIN3 lesions 

respectively. The aim of the study was to determine the relationship between DNA 

methylation, integration and gene expression in a tractable and well characterised in vitro 

model. 

7.2.3.2. Strengths 

The biopsy dosage effect described in the qPCR method development section (Chapter 4: 

4.1.3) would not apply to cell line material. The biopsy dosage effect is where variation in the 

size of the biopsy, the number of HPV containing cells and tissue type alters the RQ ratios 

produced. This is not a concern for a homogeneous cell line as every cell is of the same tissue 

type and every cell contains HPV16. 

CaSki, SiHa and HeLa are often used to study HPV biology. These lines were derived from 

malignant tumours, in some instances from metastases and contain an array of chromosomal 

rearrangements, deletions and duplications following decades of cell culture. Other studies 

have utilised transformation of keratinocytes with HPV genomes or plasmid constructs 

containing certain HPV ORFs. Whilst useful, these cell lines represent HPV in a manner that 

might have little relevance to a real infection or precancerous disease. W12, and now PC08 

and PC09 were derived from primary cultures of precancerous disease, such that we might 

observe events vital to carcinogenesis in vitro. 

Many assays (especially the integration assays) require a large amount of high quality 

DNA/RNA that is not readily available for clinical material, but is not an issue for cell line 

studies. Most clinical material studies are simply cross sectional. Longitudinal sample sets are 

less common and are very rarely used for HPV methylation studies. The PC08/09 cell lines 

allow for changes with time to be studied. 
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7.2.3.3. Weaknesses 

APOT only detects transcribed integrants, not those transcriptionally silenced. DNA 

methylation is a mechanism of transcriptional regulation and heavily methylated 

transcriptionally silent integrants might not be detected. This might hinder the investigation of 

an association between integration and methylation in instances where multiple integrants 

exist. Also, as APOT also utilises spliced mRNA HPV-human fusion transcripts, in many 

instances the true site of integration is spliced out from the transcript and the region of 

disruption of the HPV16 genome cannot be determined.  

 

7.2.3.4. Meaning 

7.2.3.4.1. There was Variation 

The three PC08 and three PC09 cell lines are homogenous clones derived from VIN3 and VAIN3 

biopsies respectively. Whilst differences between the two biopsies were expected (and 

observed), an intriguing feature of the PC08/PC09 series was the massive variation among 

clones derived from the same biopsy. Within the 6 clones, there was wide variation in gene 

expression, DNA methylation, and presence/absence/site of integration. That integration 

occurs in different sites for each clone, and that integration is not present in all clones suggests 

that many of the integration events occurred during cell culture. LCM studies have found large 

gene expression and DNA methylation differences between various tissue types within a 

biopsy, depending on the characteristics of the HPV infection in each area (Kalantari et al., 

2009, Vinokurova and von Knebel Doeberitz, 2011), which may explain why such a diverse 

range of clones were produced. In addition, the integration data suggests that changes have 

occurred both in heterogeneous cell culture and after cloning. Coupled with a different 

environment (i.e. cell culture) the clones are likely very different than the ancestor cells from 

the original biopsies. 

DNA methylation, integration and gene expression were seen to vary with passage number, 

i.e. there were changes with time and number of cell divisions. As per the W12Ser7 data, this 

suggests that the relationship between these three factors was dynamic and varied over time. 

For the CRISP study (Chapter 6: 6.1.2) however, minimal variation in DNA methylation was 

observed over 6 months suggesting that in vivo HPV infections are more stable. This view is 

supported by the long duration of persistent infections and the time taken for disease 

progression (Cancer Research UK, 2012a). The differences likely stem from positive selection 

for fast growing deregulated cells in culture in an environment very different from that of low 

grade disease. 
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7.2.3.4.2. General Gene Expression 

We initially compared gene expression for all clones combined; a significant, positive 

correlation was observed between E2, E6 and E7 RQ which was unexpected. It is possible that 

the classic model of P97 regulation, (i.e. E2 downregulation results in E6/E7 upregulation) 

could be an early, transient event in carcinogenesis. Initial oncogene deregulation might be 

transient in both integrated and non-integrated HPV containing cells, and might actually cause 

integration as a result of chromosomal instability (Vinokurova and von Knebel Doeberitz, 

2011). CaSki, SiHa and HeLa cell lines require continued oncogene expression in order to avoid 

senescence and maintain a transformed phenotype (DeFilippis et al., 2003, Schwarz et al., 

1985, Wells et al., 2000, Yee et al., 1985). Conversely, excessive expression of oncogenes might 

adversely affect growth and cell viability rate (i.e. through continued chromosomal instability) 

such that oncogene downregulation confers a growth advantage after initial deregulation (De-

Castro Arce et al., 2011, Gray et al., 2010, Van Tine et al., 2004b).  

A similar mechanism appears to be present in episomal infections. Early, transient oncogene 

deregulation occurred for episomal W12Ser4 where early passage W12E had low E2 

expression and translation whilst E6/E7 were highly expressed and translated (Gray et al., 

2010). At later passage, E2 expression increased to a level similar to E6 and E7, and expression 

of all three genes decreased considerably with increasing passage number (Gray et al., 2010). 

This pattern was suggested to be the result of a balance between deleterious effects of 

overexpression and expressing sufficient level of oncoprotein to maintain the infection. In 

W12, this compromise appeared to be post-transcriptionally regulated in later passages, 

where considerable divergence between mRNA and protein level was observed (Gray et al., 

2010) which could partly explain why there was a positive correlation between E2, E6 and E7 

mRNA in many of the PC08/09 lines. Most clones had low (relative to CaSki) and closely 

matched E2/E6/E7 RQ levels which could represent a state after the initial deregulation event, 

or a state in which post-transcriptional regulation is important. Other clones had considerably 

less E2 mRNA than E6/E7 mRNA, possibly representing earlier deregulatory events. 

Clone D9 had an E2 disrupted integrant, the highest transcription levels and transcription of 

E2/E6/E7 increased gradually until passage 11. There are several reasons why E2, E6 and E7 

expression could be positively correlated. First, the E2 qPCR assay amplified a region upstream 

of the E2 integration event and would not have been affected by the integration event. Whilst 

E2 mRNA levels appeared to increase dramatically with passage and were positively correlated 

to E6/E7, disruption of the E2 ORF might result in a non-functional E2 protein or perhaps even 

competitively exclude functional E2 if the E2BS binding motifs were present (Kim et al., 2003). 
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The progressive increase in gene transcription could also be explained by a gradual positive 

selection for cells producing non-functional E2 repressor protein due to an enhanced growth 

rate, and the loss of cells containing functional E2 repressor protein. In this instance, E2, E6 

and E7 transcripts could all increase in abundance without the repressor effects becoming 

apparent. 

Further evidence also suggests that E2 mRNA level does not necessarily correlate to the 

amount of full length, functional E2 protein. The E2 transcripts of many papillomaviruses 

encode additional translational products; products arising from translation at internal ATGs 

and/or fusion products with other upstream ORFs (Lambert et al., 1990), which may 

competitively exclude E2 at the E2BSs (Stubenrauch et al., 2001). HPV transcripts are 

frequently polycistronic so detection of E2 mRNA might not correlate to E2 translation (Zheng 

and Baker, 2006). 

7.2.3.4.3. DNA Methylation and Gene Expression Comparisons 

There was a significant, negative correlation between E2 methylation and E2/E6/E7 mRNA 

level, i.e. high E2 methylation was associated with low gene expression. Similarly, E6 

transcription was significantly, negatively correlated to E2, LCR1 and LCR2, and almost L1/L2 

methylation. These results are somewhat unusual; integration has previously been associated 

with deregulated oncogene expression, E2 hypermethylation with integration (Fernandez et 

al., 2009) and higher grade disease with HPV methylation (Chapter 5: 5.1.2). Here however we 

did not observe a relationship between E2 methylation and integration, and we observed a 

negative correlation between methylation and gene expression in these cell lines. These 

discrepancies might be the result of the small number of clones, that oncogene deregulation is 

an early event, or that the relationship between gene expression and DNA methylation is more 

complex than can be determined by simple correlation analysis. Intragenic methylation and 

gene expression is considered further in the general discussion (Chapter 9: 9.1.3 & 9.1.4). 

7.2.3.4.4. DNA Methylation and Integration 

The relationship between DNA methylation and integration of the PC08/09 clones appears 

complex. Whilst methylation of the E2 and L1/L2 regions varied considerably, all clones other 

than Y8 were hypomethylated in the LCR. Nonetheless, methylation of E2 and L1/L2 varied 

considerably among clones with integrated HPV16. The site of integration within the human 

genome could have an effect on the DNA methylation of the integrated HPV sequences as 

methylation may spread from areas of dense to sparse methylation (Turker, 2002, Doerfler, 

2008). Furthermore newly integrated foreign DNAs are considered a target for de novo 
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methylation (Doerfler, 2008) in a manner that might reflect the number and position of 

integrants. 

7.2.3.4.5. DNA Methylation, Gene Expression and Integration 

The 6 clones used in this study represent those single cells that exhibited a considerable 

growth advantage over most cells in the heterogeneous mix, likely as a result of oncogene 

expression. No differences in oncogene expression were observed between integrated and 

episomal HPV in various grades of cervical disease (Hafner et al., 2008). Whilst for several 

clones oncogene deregulation might be aided by the presence of integration events, P8 and A9 

had no detectable integration so another mechanism of growth deregulation must have 

existed for these clones.  

7.2.3.4.5.1. Methylation as a Mechanism of Oncogene Deregulation? 

We hypothesised that hypermethylation of the promoter E2BSs might be present in the 

absence of integration. This was because of reports of increased E2BS/LCR methylation with 

disease progression, and the apparent inability of E2 to bind methylated E2BSs and repress 

P97 which could be an alternative mechanism of transformation to integration (Snellenberg et 

al., 2012, Kim et al., 2003, Thain et al., 1996, Bhattacharjee and Sengupta, 2006a, Fernandez et 

al., 2009). For the P8 and A9 clones however, this did not appear to be the case, methylation 

was low in all regions and at a level roughly corresponding to low grade cervical disease 

(Chapter 5: 5.1.2, Chapter 6: 6.1.3).  

For clone Y8, it was intriguing that LCR1 (the enhancer) was specifically hypomethylated at all 

passages whilst LCR2 (the promoter) was methylated at 20-30% throughout. Four of the five 

LCR2 CpGs are located within the two E2BSs of the promoter, the LCR1 CpGs are located near 

to but not within the enhancer E2BS. Hypermethylation of the promoter E2BSs blocks E2 

binding (Thain et al., 1996, Kim et al., 2003). LCR2 hypermethylation might confer a growth 

advantage by blocking the repressive effects of E2 protein. For clone H9, there was also a 

decrease in promoter (LCR2) methylation which appeared to correspond to increased E6 and 

E7 RQ prior to passage 9. Whilst there is some evidence of an effect of E2BS methylation in 

these cell lines, it is far from conclusive. 

7.2.3.4.5.2. DNA Methylation, Gene Expression and Integration 

The D9 and H9 clones had integration events resulting in E2 disruption. Y8 and M8, but also H9 

had HPV-human mRNA fusion transcripts that mapped to E7/E1, and the DNAs were 

frequently heavily methylated. All E7/E1 integration events mapped to 880/882 bp, regardless 

of clone/initial biopsy. HPV16 E7 transcripts are spliced at 880 bp (Zheng and Baker, 2006) and 

APOT detects the junction between viral transcript sequence and human transcript sequence 
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suggesting that the fusion transcript has had the true site of integration spliced out at 880 bp. 

An unknown quantity of both HPV and human sequence has been spliced out such that the 

disrupted human/HPV site is downstream. Clone Y8 for instance had two integration events for 

E7/E1, both were within 1 kb (of the human genome) and at 882 bp (HPV genome) and appear 

to represent two splice variants. Downstream of HPV16 E7/E1 is E2 (Figure 1.1), a common site 

for HPV integration (Collins et al., 2009). Detected E2 integration junctions did not occur at 

recognised splice sites which makes it more likely that the sites represented the actual sites of 

integration. 

There are several potential results due to this unknown site of integration for several clones. 

First, integration is somewhere in E1, in which case E2 is intact but during integration when the 

genome is linearised, becomes positioned upstream of the P97 promoter. Expression of E2 

would likely require an adjacent, in frame and active human promoter, an actively transcribed 

concatemeric integrant or an episomal HPV genome. Alternatively, disruption could occur in 

E2, in which case production of functional E2 protein is unlikely but detection of mRNA by 

qPCR is possible, depending on where the disrupted site is. Finally, the integration event could 

occur downstream of E2 in which case functional E2 protein might be produced. It is worth 

noting that two of the three clones with E7/E1 integration junctions did express some E2, 

albeit at low level which could reconcile with several of the above scenarios. For the other 

clone, the E2 qPCR assay failed which might correspond to an E2 integration event, or an 

integration event upstream of E2 which leads to its silencing. All integrants appear capable of 

translating full length, functional E6/E7 oncoprotein (Zheng and Baker, 2006).  

For clone H9, large changes in E2 expression at around p8 coincided with changes in 

methylation at both the E2 and L1/L2 regions. A significant difference in E2 expression and 

L1/L2 methylation was observed between the early and late H9 passages, suggesting an event 

occurred around p8/p9 that triggered the changes. Whilst both early and late passages had a 

detected E7/E1 integration junction, an additional E2/E4 integration was detected for the later 

passage and might be associated with changes in DNA methylation and E2 transcription that 

are difficult to explain. Genomic instability caused by aberrant oncogene expression for 

instance might have promoted HPV integration or recombination of existing integrants within 

the genome. This is supported by E6/E7 levels being the highest at p8/p9, the same passage at 

which a large decrease in E2 expression and large changes in DNA methylation occurred. 

Alternatively, both integration events could have existed in early passage, but the second 

integrant might have been repressed and not detected. In this instance, episomal clearance is 
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a suitably rapid event (W12Ser7) and could be responsible for both the increase in L1/L2 

methylation and the decrease in E2 expression after p8/9. 

7.2.3.4.6. Unusual Observations 

For clone P8, some methylation of the L1/L2 region was observed. L1 and L2 methylation was 

more typically associated with integrated HPV genomes (VR series, other clones, W12) 

(Kalantari et al., 2010) so in this instance APOT may have failed to detect an integration event. 

APOT does not detect transcriptionally silent integrants. 

Passage 11 of the D9 clone was an unusual observation, all mRNA levels dropped considerably 

whilst DNA methylation continued to rise. The drastic changes (i.e. 10 fold) over a short period 

of time make experimental error (i.e. mislabelling) a possibility or the changes might represent 

a repressive or selective event.  

The reduction in transcription for passage 12 of the Y8 clone and the subsequent increase in 

transcription for passage 13 are difficult to explain. They could coincide with the slight 

decrease in methylation, including LCR2 (promoter) methylation observed at passage 13. 

E2 expression data was not present for clone M8 because the qPCR reactions consistently 

produced a melting peak that was atypical of the E2 qPCR amplimer. It seemed likely that this 

was due to sequence diversity or deletion such that the melting temperature of amplimers was 

reduced. Integration in the E7/E1 region was seen at passage 5 but not at passage 9, this could 

be a selective loss of cells containing the integration event, silencing of the HPV sequence 

expressing the integration event or a failing of the APOT assay. 

 

7.3. Conclusions 
The CaSki results were useful in that our data could be compared against published data. Our 

observation of the distinctive pattern of CpG methylation in each region was also seen both in 

our data and published data. W12Ser7 work also allowed the CpG specific pattern of 

methylation in LCR1 to be compared to published data. For W12Ser7, we observed dramatic 

methylation changes at the onset of integration that appeared to be both due to clonal 

selection for integrant containing cells but also progressive hypermethylation of integrated 

HPV genomes after clonal selection. 

There were differences among the PC08/09 clones, and changes over time (passage). This was 

a contrast to our longitudinal CRISP study (Chapter 6: 6.1.2) where few changes with time were 

observed. There is some evidence to suggest that deregulation of the oncogenes might be an 
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early event which is then subsequently tightly regulated. This is in line with observations for 

W12 and our observation of positive correlation of E2/E6/E7 mRNA transcripts in short term 

culture cell lines. These observations might also be explained by disparity between mRNA 

transcript and protein level. 

There was reason to suspect that rather than causing oncogene deregulation, integration 

might be a consequence of chromosomal instability caused by another deregulating event. For 

these clones, methylation could be the cause of initial deregulation however we did not 

observe an immediately evident mechanism. Our initial hypothesis of E2BS hypermethylation 

occurring in instances where E2 disruption had not occurred was not present for any of the 

non-integrated clones, but may have been observed for clone Y8.  

Another hypothesis was that intragenic methylation might have an effect on gene expression. 

Whilst intragenic methylation of the E2 region was observed in conjunction with reduced E2 

expression, it was also observed in conjunction with reduced E6/E7 expression. Whether 

intragenic HPV methylation is associated with reduced gene expression is still unclear. In 

summary, the relationship between methylation, gene expression and HPV integration is 

complex.  
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Chapter 8. The VR Study - DNA Methylation, Integration and Gene 

Expression in vivo 

 

A large series of anogenital biopsies of varying histological grade and sample site were 

collected for this investigation (n=171). The primary aim was to acquire a series of HPV16 

positive VIN biopsies for which DNA methylation could be determined and compared to other 

aspects of HPV biology. HPV typing was performed initially for the purpose of selecting HPV16 

positive samples for further analysis however the large cohort of HPV typing data represented 

a large and novel VIN HPV typing study. 

As such, two main components of this study are presented. The first considers the HPV type 

distribution in VIN whilst the second considers the basic biology of HPV methylation and how it 

may relate to HPV gene expression and integration in vivo. 

 

8.1. Results - HPV Type Distribution in VIN 
This HPV distribution in VIN study was published (Bryant et al., 2011) (Appendix VII) however 

since publication, more samples were collected. HPV infection was identified using the Greiner 

Bio-One PapilloCheck assay which detects and types 24 different HPV types in a single reaction 

(HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, 82, 6, 11, 40, 42, 43, and 

44). The assay includes a series of internal controls to identify false negative results. Only 

histologically confirmed VIN samples were used in this study. A  total of 62 VIN biopsies were 

eligible for inclusion in the type distribution study, 57 of which passed the internal controls 

and produced valid typing results. Of these, 46 were VIN3, 6 were VIN2 and 5 were VIN1. Four 

of the five samples that failed the assay were VIN3 whilst one was VIN1. 

8.1.1. HPV Type Distribution 

HPV infection was present in 43/57 cases (75.4%: 95% CI 62.9-84.7%), HPV16 and/or HPV18 

were present in 35/57 cases (61.4%: 95% CI 48.4-72.9%) and HPV16 and/or HPV18 were the 

only types present in 27/57 cases (47.4%: 95% CI 35.0-60.1%). HrHPV types were present in 38 

cases and LrHPV types in eight cases, three of these cases contained both HrHPV and LrHPV 

types. The typing distribution is presented in Table 8.1. 

Nine cases had multiple HPV types present, one was a VIN1 sample with HPV18, 42 and 44/55 

present whilst the others were all VIN3 samples. The VIN3 samples had the following 

combinations of types; two cases had HPV16 and HPV82, and there was one case each of the 

following combinations: (16, 18), (16, 33), (16, 6), (16, 31, 33), (16, 51), (16, 82, 6). 
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Of the five cases with LrHPV only, three cases contained HPV6 (one VIN2, one VIN3 and one 

VIN3 with well differentiated carcinoma and viral warts) and the other two cases were VIN1 

lesions with HPV40 or HPV42. 

 

 
HPV type 

Histology HPV-ve HPV+ve 16 18 31 33 51 82 6 40 42 44/45
*1

 

VIN1 1 4 0 1 0 1 0 0 0 1 2 1 

VIN2 3 3 2 0 0 0 0 0 1 0 0 0 

VIN3 10 36 32 1 1 4 1 3 4 0 0 0 

Total 14 43 34 2 1 5 1 3 5 1 2 1 

% 24.6 75.4 59.6 3.5 1.8 8.8 1.8 5.3 8.8 1.8 3.5 1.8 

Table 8.1: HPV type distribution of VIN.  

There were 9 cases showing multiple infection, hence the number of types identified is greater than 
the number of cases. HPV+ve = HPV positive, HPV-ve = HPV negative. Percentages indicate the 
proportion of cases that tested positive for a given type. *1: The HPV44 probe cross-hybridises to 
HPV45, hence these types are reported together. 

 

8.1.1.1. Hypothesis 1: There is a Relationship between HPV Status and Age 

HPV positive cases were aged 22-81 (mean=45.0) and HPV negative cases were aged 33-82 

(mean=55.2). A two-sample T-test showed a significant difference between the mean ages of 

the HPV positive and negative groups (P=0.022). 

8.1.1.2. Hypothesis 2: There is a Relationship between HPV Status and 

Histology 

39/43 (90.7%) HPV positive cases had VIN2/3 whilst 13/14 (92.8%) HPV negative cases had 

VIN2 or higher. The proportion of cases with VIN2 or higher was not significantly associated 

with HPV positivity (Fisher’s exact test, P=1.000). Interestingly, all HPV16 positive cases were 

associated with VIN2 or worse. 
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8.2. Results - HPV DNA Methylation, Integration and Gene Expression 
Of the samples used for the assessment of HPV type distribution in VIN, 53 were biopsy 

samples from which both DNA and RNA were extracted, these samples were termed the VIN 

RNA (VR) series. From this series of biopsies, HPV16 containing samples (n=31) were selected 

for further study. Methylation and/or gene expression data were produced for 28 samples 

which comprised of mostly VIN3 (n=21), a small proportion of VIN2 (n=3), one VAIN3, one AIN2 

and two samples without histologically confirmed disease. Patient age ranged from 22-81 

years (mean = 46 years) The analysis of the HPV16 positive VR series samples was conducted 

by considering in a sequential manner, HPV integration status, HPV gene expression status and 

finally HPV methylation status in order to generate and test a series of hierarchical hypotheses. 

The study aimed to both determine the status of these three characteristics in the VIN series, 

but also to determine the relationships between the characteristics and with other variables 

within the data set. 

8.2.1. HPV DNA Integration 

DIPS was performed on all HPV16 positive VR series DNAs (n=31). In order to improve the 

negative predictive value of DIPS, the protocol was later changed such that a series of control 

PCRs were performed to check for DNA quality and samples that failed these controls were not 

analysed further. However, data for this study was collected prior to the protocol changes and 

several samples failed the DIPS controls but had detectable integration events. Four sample 

groups were generated based on the result of the control PCRs and the presence/absence of 

detected integration events (Table 8.2). For the purpose of investigating a relationship 

between HPV DNA integration and other characteristics of HPV biology, the X1 and 1 groups 

were frequently combined and groups were referred to as groups X, 0 and 1 only. 

 

 Detected integration events No detected integration events 

Control PCR(s) passed Group 1 (n=6) Group 0 (n=9) 

Control PCRs failed Group X1 (n=2) Group X (n=14) 
Table 8.2: The assignment of integration group based on the passing/failing of control PCRs and the 
detection/non-detection of integration events.  

Samples were entered into the control PCR(s) passed groups if a control PCR reaction was successful 
for the TaqI or Sau3AI digested DNAs. Samples that failed both PCRs were entered into the control 
PCRs failed groups. The number of samples that fell into each group (n) has been included.  

 

Out of 31 samples analysed by DIPS, the failure rate of the control PCRs was high (n=16, 

51.6%). Excluding those in the X1 group (Table 8.2), 6 of the remaining 15 samples that passed 

the control PCRs had detected integration events (40%). Details of the integration events, 
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including a list of the disrupted HPV genes and the region of the human genome where 

integration occurs have been summarised in Table 8.3. It was impossible to ascertain exactly 

where in the human genome the HPV16 in sample VR42 was integrated without using 

alternative assays. The VR42 human integration sequence identified corresponded to a 

satellite DNA repeat HSATII that is found in multiple locations throughout the human genome. 

Sample Gene disrupted Disruption (bp) Human genome region 

VR24 E1 1,540 Chr8 (q24.21)  

VR32 E2 3,348 Chr2 (q35) 

VR37 E2 & L2 3,161 & 4,917 Chr1 (q32.1) 

VR39 E1 1,786 Chr1 (p36.22)  

VR42 L2 4,910 Satellite DNA* 

VR44 E2 3,166 Chr17 (q24.3)  

VR46 E1 2,508 Chr9 (q21.31)  

VR53 L2 4,989 Chr3 (q26.31)  
Table 8.3: Summary of the detected integration events for the VR series.  

Gene disrupted refers to the HPV16 gene where the integration event occurs. Disruption (bp) gives 
the integration site into the HPV genome. Human genome region refers to the chromosome number 
and band number of the area of the human genome that has been detected in the integration events. 
*Homology was found to HSATII satellite DNA in Chr7, Chr22, Chr2, Chr16, Chr10 and ChrY. 

 

VR37 had two detected integration sites. Whilst two HPV regions were disrupted (E2 and L2), 

both events were within the same region of the human genome and close together. The 

events were facing in opposite directions so rather than representing two separate integration 

events, it likely represented the detection of one integration event (with a deletion between 

E2 and L2) by two DIPS primer sets. 

 

8.2.1.1. Hypothesis 3: There is a Relationship between HPV Integration and 

Patient Age 

A previous study observed a relationship between patient age and integration status 

(Vinokurova et al., 2008). Whilst the sample number in this study was relatively low, the 

hypothesis can still be tested for the data set. The patient age data was divided into the three 

integration groups (0, 1 and X) and compared to determine whether the mean age of each 

group differed significantly. The untransformed age data satisfied the assumptions of the one-

way ANOVA and the means of the three integration groups were compared. There was not a 

statistically significant difference between the mean patient age of each integration group 

(one-way ANOVA P=0.917). In summary, a relationship between integration status and patient 

age was not identified. 
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Figure 8.1: Patient age distribution of the VR series, separated by DNA integration status.  

Red circles represent individual patient ages, the bars represent the mean age of each group and the 
blue error bars are 95% confidence intervals for mean. 

 

8.2.2. HPV Gene Expression 

RNAs from the VR series were analysed by E2, E6, E7, HPRT and TBP qPCR assays, relative 

quantification was performed using the equation described by Vandesompele et al 

(Vandesompele et al., 2002). 

8.2.2.1. Hypothesis 4: There is Variation in RQ among Samples 

For the VR series as a whole, the three assays had a similar mean Log10 RQ (E2 = -0.657, E6 = -

0.498 and E7 = -0.608), however variation in RQ among the samples was considerable (Figure 

8.2). The VR series had a large 8.5 Log10 range (i.e. 108.5 = 316 million fold difference in RQ) 

between the highest and lowest E2 expressing samples (Log10 E2 RQ ranges from -6.70 to 

+1.78). Similarly, there was a 4.7 Log10 range (i.e. 104.7 = 50 thousand fold difference in RQ) for 

E6 RQ (Log10 E6 RQ ranges from -3.16 to +1.54) and a 5.1 Log10 range (i.e. 105.1 = 126 thousand 

fold difference in RQ) for E7 RQ (Log10 E7 RQ ranges from -3.92 to +1.18). The skewed 

distribution of the RQ data was highly unsuitable for multifactorial ANOVA GLM analysis and 

such analyses were not performed. 
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Figure 8.2: Log10 Relative quantification expression ratios (Log10 RQ) for the E2, E6 and E7 genes of the 
VR series.  

The ratios are expressed relative to CaSki as a calibrator sample (CaSki has a log10 RQ of zero for each 
assay). 

 

8.2.2.2. Hypothesis 4: There is Variation in RQ among Assays 

The qPCR data was unsuitable for multifactorial ANOVA so a non-parametric alternative was 

used. Friedman’s test compares median values of data with respect to two factors (i.e. qPCR 

assay and sample). The Freidman’s test requires a single result for each combination of factors 

and no missing sample data. Freidman’s test was performed on the Log10 RQ values presented 

in Figure 8.2 with the exception of samples where one or more RQ value was missing (i.e. 

VR04, VR38, VR44, VR45, VR50 and VR53). 

There were significant differences in median RQ among the VR series samples (P=0.000) and 

among the three assays (P=0.001) meaning that RQ among the samples varied significantly, 

but also that the median RQ values of the three gene expression assays were different. 

 

8.2.2.3. Hypothesis 5: There is a Relationship between gene Expression and 

HPV Integration 

To determine whether or not a relationship existed between gene expression (RQ) and HPV 

DNA integration status the data was divided into testable groups. The RQ ratios of samples 
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falling into the three integration groups, X (sample inadequate), 0 (sample adequate, no 

detected integration) and 1 (detected integration) were then compared statistically. 

The RQ data when separated with respect to qPCR assay and integration group were highly 

unsuitable for any of the multifactorial ANOVAs or non-parametric alternatives. Instead, 

multiple single factor Kruskall-Wallis tests were used with a Bonferroni corrected P-value 

(P=0.017). There were no significant differences among the median RQ values for integration 

group. 
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Figure 8.3: The Log10 RQ values of the VR series for each qPCR assay, separated by integration status 
group.  

Group 0 had no detected integration, group 1 had detected integration and group X were samples 
inadequate for integration analysis. Bars represent group means, red circles represent individual data 
points and blue bars are 95% confidence intervals. 

 

Another approach was taken to compare just the adequate group 0 (no integration detected) 

and group 1 (integration detected) samples using multiple Mann-Whitney U tests. These tests 

compared the median RQ values for each qPCR assay. Again, no significant difference was 

observed between the median Log10 RQ data for samples with and without detected 

integration events for any of the three qPCR assays (Mann-Whitney U test; E2 (P=0.444), E6 

(P=0.637) and E7 (P=0.666)). 
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As various HPV integration sites existed, a potential relationship between HPV genome 

integration site and gene expression in individual samples was investigated. There appeared to 

be wide variation in the RQ ratio of samples with integration events in similar areas of the 

HPV16 genome. Compared to the VR series mean, RQ of the integrated samples varied 

considerably (Figure 8.4) and there did not appear to be a clear relationship between HPV 

integration site and HPV gene expression (Table 8.4). 
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Figure 8.4: Gene expression Log10 RQ values for the VR series integration group 1 samples.  

A different graph pane is present for each gene expression assay, each bar represents Log10 RQ for 
that sample. The horizontal black line represents the mean RQ for all samples (not just integrated) 
and is shown to aid the interpretation of Table 8.4. 
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Integration Difference in Log10 from VR series mean 

Sample 
Gene 

disrupted ΔLog10 E2RQ ΔLog10 E6RQ ΔLog10 E7RQ 

VR24 E1 -1.38 (V low) -0.01 (Average) 0.24 (Above average) 

VR32 E2 2.43 (VV high) 2.04 (VV high) 1.78 (V high) 

VR37 E2 & L2 -3.18 (VV low) 0.33 (Above average) 0.48 (High) 

VR39 E1 0.34 (Above average) 0.04 (Average) 0.19 (Above average) 

VR42 L2 0.6 (High) -0.25 (Below average) 0.1 (Average) 

VR44 E2 * 0.12 (Average) 0.33 (Above average) 

VR46 E1 -2.11 (VV low) -0.25 (Below average) -0.16 (Below average) 

VR53 L2 * -0.09 (Average) -0.11 (Average) 

Table 8.4: The difference in E2, E6 and E7 RQ of the integrated VR series samples compared to the 
mean gene expression of the VR series.  

ΔLog10 RQ represents sample mRNA level minus VR series mean mRNA level and is used to quantify 
expression level statements. Colour coding is used to aid interpretation and is based on the difference 
from the mean (ΔLog10 RQ ): VV high (>2), V high (>1<2), High (>0.4<1), Above average (>0.15<0.4), 
Average (0 +/- 0.15), Below average (<-0.15>-0.4), Low (<-0.4>-1), V low (<-1>-2), VV low (<-2). * 
missing data. 

 

8.2.2.4. Hypothesis 6: The Relationship between E2, E6 and E7 Expression 

Might Coincide with an Accepted Model of Gene Regulation 

Relative quantification of Ct values accounts for variation in input cDNA and ratios are 

calibrated against CaSki gene expression Ct values. Equal RQ ratios between assays therefore 

represents an mRNA level ratio between the assays (i.e. E2:E6, E6:E7 etc) similar to that in 

CaSki rather than equal E2, E6 and E7 mRNA level. Nonetheless, comparison of RQ ratios for 

one VR sample with mRNA counts from deep sequencing suggested that RQ ratios were fairly 

indicative of true mRNA level (Chapter 4: 4.1.4.1). The relationship between E2, E6 and E7 RQ 

and the results of Spearman’s rank correlation analysis are presented in Figure 8.5 and Table 

8.5 respectively. E2, E6 and E7 RQ were strongly positively correlated, as per the PC08 and 

PC09 clones. 



193 

 

252015105 3020100

24

18

12

6

0

3020100

24

18

12

6

0

E2*E6

Gene expression (RQ) rank

G
e

n
e

 e
x
p

re
s
s
io

n
 (

R
Q

) 
ra

n
k

E2*E7

E6*E7

Ranked E2, E6 and E7 RQ scatterplots

 

Figure 8.5: The relationship between E2, E6 and E7 gene expression is explored using scatter plots of 
ranked data.  

The data presented are ranked RQ, the relationship being presented is indicated by the plot header, 
i.e. E2*E6 represents E2 RQ ranks on the Y-axis and E6 RQ ranks on the X-axis. Both individual values 
(red circles) and linear regression lines (blue lines) are included. 

 

 E2 RQ vs. E6 RQ E2 RQ vs. E7 RQ E6 RQ vs. E7 RQ 

Spearman's rank correlation coefficient +0.641, P= 0.013 +0.824, P= 0.000 +0.909, P=0.000 

Table 8.5: The results of Spearman’s rank correlation analyses on the ranked gene expression data for 
E2, E6 and E7. 

Included are both the Spearman’s rank correlation coefficients and the P-value. Correlation is 
considered significant at P=<0.05. 

 

 

8.2.3. DNA Methylation 

8.2.3.1. Hypothesis 7: There is Variation in the Amount of DNA Methylation 

among Samples and among Regions 

DNA methylation at the E2, LCR1, LCR2 and L1/L2 regions was assessed. The mean amount of 

DNA methylation of each region, for each VR sample is shown in Figure 8.6. There was 

considerable variation in the amount of methylation among the VR samples and the level of 

methylation varied with region of the HPV16 genome (Figure 8.7). Methylation of the E2 

region was especially variable, whilst the mean E2 methylation was 16.5%, E2 methylation 

ranged from 1.2-89.7% between the least and most methylated samples. The L1/L2 region was 

similarly variable, mean L1/L2 methylation was 24.5% however a large range of 1.6-88.0% was 

observed. The LCR1 and LCR2 LCR regions were considerably less variable. The mean amount 
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of methylation at the LCR1 region was 2.6% with a narrow range of 1.0-4.7%. Similarly the 

mean for the LCR2 region was 1.3% with a small range of 0.0-4.3%. In summary, the E2 and 

L1/L2 regions were the most variable whilst the LCR1 and LCR2 regions of the HPV16 LCR were 

universally hypomethylated (Figure 8.7). 
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Figure 8.6: DNA methylation of HPV16 in the VR series.  

Coloured bars represent mean DNA methylation for each region of the HPV16 genome for the VR 
series. 
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Figure 8.7: VR series mean methylation at each HPV16 region. 

Bars represent the mean amount of methylation at each site for the entire VR series. The graph 
includes 95% confidence intervals for the mean (blue bars) and the level of methylation of each 
individual VR sample (red circles).  

 

A two-way ANOVA GLM was used to test for a significant difference in mean DNA methylation 

among samples and each HPV region. One violation of the assumptions of the two-way ANOVA 

was present, the variances were unequal (Bartlett’s P=0.000) however no suitable non-

parametric alternative exists. There was a significant difference in mean DNA methylation 

among the regions (P=0.000) but not among the samples (P=0.189).  

 

8.2.3.2. Hypothesis 8: There is CpG Specific Variation within Each Site 

Previous chapters reported a variation in the methylation of each CpG within each HPV region. 

CpG specific differences were also conserved between sample cohorts such that patterns of 

methylation were discernible, especially for the L1/L2 region where an “N” shaped profile was 

observed. It was of interest to consider whether or not a similar scenario existed for the VR 

series. 

There appeared to be a somewhat conserved pattern of CpG methylation for the VR series E2 

region (Figure 8.8). CpG E2-3 tended to be the lowest methylated in most samples and had the 

lowest mean methylation of all of the E2 CpGs (12.7%). E2-4 was the highest methylated in 

most samples and also had the highest mean methylation (20.3%), in two instances E2-4 was 
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almost 100% methylated. E2-1 and E2-2 were quite closely matched and in general, there was 

a decrease in methylation between CpGs E2-4 and E2-8. This was not paralleled perfectly by 

the E2 CpG methylation pattern of the PC08 and PC09 cell line clones but there were some 

similarities (e.g. a decrease between E2-4 and E2-8). 

For the LCR1 region, whilst the overall values were fairly low, there appeared to be a general 

decline in DNA methylation between LCR1-1 and LCR1-3 (Figure 8.9). This was the same as was 

observed for some previous studies.  

For the LCR2 region, there was an “M” shaped profile to many of the methylation curves, i.e. 

DNA methylation of LCR2-1, LCR2-3 and LCR2-5 was low whilst DNA methylation of LCR2-2 and 

LCR2-4 was higher (Figure 8.10). A similar pattern was observed for some of the PC08 and 

PC09 passage 9 cell line samples.  

The distinctive “N” shaped CpG methylation profile of L1/L2 was highly reminiscent of the 

L1/L2 methylation profile of other cohorts. Particularly fascinating about this methylation data 

was that the L1/L2 CpGs are all within 17 bp of each other yet varied considerably. VR51 for 

instance (Figure 8.11) had large differences among CpGs; not only was there a difference of 

45% between CpGs L1L2-1 and L1L2-4, but there was a 27.5% difference in DNA methylation 

between L1L2-2 and L1L2-3, two CpGs that are separated by only 1 bp. 

In order to attempt to confirm statistically the observation of considerable variation in the 

methylation of different CpGs and of different HPV regions, a two-way ANOVA GLM was 

applied. Several violations of the two-way ANOVA GLM occurred, the standardised residuals 

were not normally distributed (Anderson Darling P<0.005) and the variances were not equal 

(Bartlett’s P=0.000). As no suitable non-parametric alternative exists, the two-way ANOVA 

GLM was performed anyway. A significant difference among the means was observed for both 

HPV DNA region (P=0.000) and CpG (P=0.000), confirming the observations of variation in the 

methylation data. 
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Figure 8.8: E2 DNA methylation profile for the VR series.  

Each symbol represents a different VR sample. No relationship is inferred by the connecting lines 
between points; they are included only to improve interpretation of the figure data. 

 

 

Figure 8.9: LCR1 DNA methylation profiles for the VR series.  

Each symbol represents a different VR sample. No relationship is inferred by the connecting lines 
between points; they are included only to improve interpretation of the figure data. 
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Figure 8.10: LCR2 DNA methylation profiles for the VR series.  

Each symbol represents a different VR sample. No relationship is inferred by the connecting lines 
between points; they are included only to improve interpretation of the figure data. 
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Figure 8.11: L1/L2 DNA methylation profiles for the VR series.  

Each symbol represents a different VR sample. No relationship is inferred by the connecting lines 
between points; they are included only to improve interpretation of the figure data. 
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8.2.3.3. Hypothesis 9: There is a Relationship between DNA Methylation and 

HPV DNA Integration 

One of the most important questions that needed to be asked of the methylation data was 

whether or not the amount of DNA methylation could be associated with HPV16 integration 

into the host genome. Previous studies have found an association between DNA methylation 

and DNA integration whereby integrated genomes were typically hypermethylated, especially 

within the L1 region (Kalantari et al., 2008b).  

The VR samples were separated into the three integration groups previously described; group 

1 (detected integration events), group 0 (no detected integration events) and group X (sample 

inadequate for analysis). A notable characteristic of the VR samples with high DNA methylation 

(i.e. over 30%) at E2, L1/L2 or both E2 and L1/L2 was that they all had detected integration 

events. The relationship between DNA methylation and HPV integration of the VR series can 

be seen in Figure 8.12.  

The association between DNA methylation and HPV DNA integration appeared to be complex 

and there were considerable differences in the methylation profiles of integrated samples. 

Some samples had hypomethylation of both E2 and L1/L2, some had hypermethylation of E2, 

some samples had hypermethylation of L1/L2 whilst others had hypermethylation of both E2 

and L1/L2. It is worth noting that sample VR24 was the only sample not run through the L1/L2 

assay and that sample VR37 failed the E2 assay repeatedly. 
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Figure 8.12: DNA methylation of the VR series with integration state.  

Samples with detected integration events are highlighted in yellow. 

 

In order to explain the different DNA methylation profiles within the integrated samples, the 

site of disruption of the HPV genome was compared to the site of HPV hypermethylation. 

Table 8.6 lists both the hypermethylated genes (hypermethylation defined in this instance by 

>30% methylation) and the genes disrupted by HPV integration for the group 1 samples. A 

possible relationship existed between disruption site and hypermethylation site. Samples with 

E1 disruption (VR39 and VR46) had hypermethylation at both the E2 and L1/L2 regions; VR24 

also had E1 disruption and E2 hypermethylation however the L1/L2 result was missing. E2 

disruption for the VR44 sample was accompanied by L1/L2 hypermethylation and E2 

hypomethylation whilst conversely, L2 disruption for VR53 was accompanied by the exact 

opposite, E2 hypermethylation and L1/L2 hypomethylation. VR37 was a particularly interesting 

case because multiple integration events were detected (possibly due to deletion) and whilst it 

had failed the E2 assay repeatedly, the L1/L2 region was hypermethylated. Samples VR42 and 

VR32 may have had HPV present in both integrated and episomal forms; episomal HPV16s are 

typically maintained in very high copy number (Doorbar, 2006) and here, were lowly 

methylated. If VR42 and VR32 contain both integrated and episomal HPV this would allow for 

both the detection of integration for the DIPS assay and the observation of very low levels of 

DNA methylation with the quantitative pyrosequencing assay. 
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  Hypermethylation 

Sample Gene disrupted E2 L1/L2 

VR24 E1 Yes * 

VR32 E2 No No 

VR37 E2 & L2 * Yes 

VR39 E1 Yes Yes 

VR42 L2 No No 

VR44 E2 No Yes 

VR46 E1 Yes Yes 

VR53 L2 Yes No 

Table 8.6: Details of the disrupted HPV16 gene for the integrated VR samples along with the regions of 
hypermethylation. 

Hypermethylated regions are highlighted yellow. Samples showing both E2 and L1/L2 
hypomethylation are highlighted grey. * Data missing. 

 

8.2.3.3.1. Statistical Comparison of the Integration Groups 

To determine whether or not a relationship existed between DNA methylation and HPV DNA 

integration status, DNA methylation of the three integration groups was compared. Mean 

methylation of the E2 and L1/L2 regions appeared higher for the integrated group than other 

groups however there was variation in all groups (Figure 8.13). 

The mean methylation data was not quite suitable for analysis using a two-way ANOVA GLM 

for integration group and pyrosequencing assay as factors (Anderson Darling P=0.028, 

Bartlett’s test for equal variances P=0.000). However, because no non-parametric equivalent 

of the two-way ANOVA GLM exists that is capable of analysing data of an unbalanced design, 

with missing values and with repeated data, the two-way ANOVA GLM was used under the 

premise that the results were interpreted with caution. The two-way ANOVA GLM found that a 

significant difference in mean methylation existed as a consequence of both the region being 

tested (i.e. E2, LCR1, LCR2 and L1/L2; P=0.000) and the integration status (i.e. 0, 1 and X; 

P=0.006). As the GLM does not permit pairwise comparison, multiple one-way ANOVAs were 

used. Multiple analyses should be accompanied by a Bonferroni correction, however in this 

instance the investigation was hypothesis generating and so the usual level of significance 

(P=0.05) was also considered for interpretation. 
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Figure 8.13: Mean DNA methylation of each region for the VR series separated by integration group.  

Bars represent mean methylation, symbols represent individual samples and error bars represent 95% 
confidence intervals. 

 

First, the difference in mean methylation of the various integration states was compared for 

each of the pyrosequencing assays. For mean E2 methylation, there was a significant 

difference in mean methylation between each integration group as whole (one-way ANOVA 

P=0.024). Pairwise comparisons however revealed that there was not quite a significant 

(Tukey-Kramer at P=0.05) difference in mean methylation between the integration detected 

(1) and no integration detected (0) groups, but there was a significant difference between 

groups 1 and X. 

For the L1/L2 region, a significant difference existed among the mean L1/L2 methylation of the 

three integration groups (one-way ANOVA P=0.040) however pairwise comparison yielded 

similar results to the E2 comparison; there was not quite a significant (Tukey-Kramer at 

P=0.05) difference between groups 1 and 0, there was a significant difference between groups 

1 and X. This is difficult to explain, but seems likely the result of small sample number and the 

presence of region specific hyper/hypomethylation of the integrated samples. This further 

promotes the concept of a complex relationship between HPV DNA methylation and 

integration. Finally, there was no significant difference between the mean methylation of the 

three integration groups for the LCR1 region (P=0.260) or the LCR2 region (P=0.201). Pairwise 
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comparison by Tukey-Kramer revealed that none of the groups were significantly different 

from each other. The Bonferroni corrected P-value for these comparisons was P=0.0125. 

Integration appeared to be highly associated with DNA methylation for the VR series; 

therefore, for future analyses it was worth considering the relationship of DNA methylation 

with other biological factors both with and without the integrated samples included in the 

analysis. 

 

8.2.3.4. Hypothesis 10: There is a Relationship between DNA Methylation and 

Gene Expression 

A simple but limited way to determine whether a relationship exists between two quantitative 

factors is to perform correlation analysis. In this study, the correlation between the amount of 

HPV DNA methylation at each genomic site and the expression of the E2, E6 and E7 genes was 

tested. Previously, integration status was seen to be associated with hypermethylation of E2 

and L1/L2 but not with gene expression. As such, the analysis was performed several times, 

once with integrated samples included, once with the integrated samples excluded and once 

with the integrated samples alone. This was performed to isolate the effects of integration 

from the relationship between DNA methylation and gene expression. 

Spearman’s rank correlation analysis was performed on the ranked E2, LCR1, LCR2 and L1/L2 

mean methylation data and on the E2 RQ, E6 RQ and E7 RQ gene expression data (Table 8.7). 

Several significant correlations were observed.  

A significant negative correlation between L1/L2 methylation and E2 expression existed when 

all samples were considered and was conserved when the integrated samples were excluded 

from the analysis. There was a significant negative correlation between E2 methylation and E7 

expression for all samples however this was lost when the integrated samples were excluded. 

When considering the integrated samples alone, a significant negative correlation was 

observed between E2 methylation and E2 RQ. However, for the integrated samples alone 

results must be interpreted with caution as the sample number was very small and an 

association between gene expression and integration might confound any observed 

correlation. 
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Including integrated (group 1) samples 

 

E2 
methylation 

LCR1 
methylation 

LCR2 
methylation 

L1/L2 
methylation 

E2 RQ P= 0.201 P= 0.720 P= 0.667 P= 0.003 

  -0.327 -0.081 -0.095 -0.649 

E6 RQ P= 0.485 P= 0.814 P= 0.671 P= 0.619 

  -0.171 -0.051 0.089 -0.115 

E7 RQ P= 0.018 P= 0.900 P= 0.905 P= 0.121 

  -0.55 0.028 0.026 -0.359 

Table 8.7.a 

 
Excluding integrated (group 1) samples 

 

E2 
methylation 

LCR1 
methylation 

LCR2 
methylation 

L1/L2 
methylation 

E2 RQ P= 0.220 P= 0.659 P= 0.444 P= 0.044 

  0.382 -0.12 -0.199 -0.545 

E6 RQ P= 0.484 P= 0.996 P= 0.929 P= 0.336 

  0.224 0.001 0.024 -0.278 

E7 RQ P= 0.671 P= 0.765 P= 0.791 P= 0.151 

  -0.145 0.084 -0.072 -0.422 

Table 8.7.b 

 
Integrated samples (group 1) alone 

 

E2 
methylation 

LCR1 
methylation 

LCR2 
methylation 

L1/L2 
methylation 

E2 RQ P= 0.029 P= 0.892 P= 0.852 P= 0.275 

  -0.916 -0.072 0.099 -0.61 

E6 RQ P= 0.439 P= 0.408 P= 0.468 P= 0.613 

  -0.352 -0.342 0.301 0.234 

E7 RQ P= 0.276 P= 0.601 P= 0.468 P= 0.803 

  -0.145 0.084 -0.072 -0.422 

Table 8.7.c 

Table 8.7.a-c: The results of Spearman’s rank correlation analysis of the DNA methylation data for all 
VR samples with and without the group 1 integrated samples included.  

P-values are significant at P<0.05. Included are the Spearman’s rank correlation coefficients for each 
comparison. Significant results are highlighted in yellow. 

 

When these significant relationships were presented graphically, there were some interesting 

observations (Figure 8.14). The three comparisons where a significant relationship was 

observed are included (E2 methylation vs. E7 RQ, E2 methylation vs. E2 RQ and L1/L2 

methylation vs. E2 RQ) and the figure includes the data points of all of the integration group 

samples for reference purposes.  
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8.2.3.4.1. E2 Methylation vs. E7 Gene Expression 

This relationship was only deemed significant when all of the VR series were included for 

analysis. The integrated samples were the most variable in both gene expression and DNA 

methylation (Figure 8.14). E2 DNA methylation and E7 gene expression of the remaining 

samples was considerably less variable and the correlation was lost if the group 1 samples 

were excluded or analysed alone. 

8.2.3.4.2. E2 DNA Methylation and E2 Gene Expression 

A significant correlation between E2 DNA methylation and E2 gene expression was only 

observed for the integrated samples. There appeared to be a linear relationship present for 

these samples whereas for the group 0 and group X samples there was no discernible 

relationship present (Figure 8.14). E2 DNA methylation might be associated with E2 gene 

expression when HPV has integrated into the host genome. 

8.2.3.4.3. L1/L2 DNA Methylation vs. E2 Gene Expression 

For the comparisons with and without integrated samples, a significant correlation was 

observed between L1/L2 methylation and E2 RQ. A particularly interesting observation for this 

comparison was that the integrated samples occupied the extremes of both high DNA 

methylation and low/very high gene expression (Figure 8.14). The integrated samples 

appeared to be varied whilst the relationship for the group 0 and group X samples was more 

linear (as determined by Spearman’s rank) and over a narrower range. 
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Figure 8.14: Scatter plots of the significant correlations (as determined by Spearman’s rank) between 
HPV DNA methylation and HPV gene expression. 

Three comparisons are presented, E2 mean DNA methylation vs. Log10 E7 RQ, E2 mean DNA 
methylation vs. Log10 E2 RQ and L1/L2 mean DNA methylation vs. Log10 E2 RQ. The data presented 
includes all three integration groups (0, 1 and X) in order to see the differences among the groups 
where a significant relationship was observed for some groups and not others. The X-axis scale of the 
three scatter plots differs as a result of some samples having various missing DNA methylation or 
gene expression RQ values. 

 

8.2.3.5.   Further Analysis of the HPV DNA Methylation and Gene 

Expression 

The correlation analyses hinted at a relationship between DNA methylation and gene 

expression, however a more informative and robust approach to the analysis might be gained 

using ANOVA tests. The RQ data had a very large range and the distribution was highly skewed, 

non-parametric and very unsuitable for ANOVA. As such, a more suitable way of analysing a 

potential relationship between gene expression and DNA methylation was to divide the gene 

expression data (i.e. RQ) into groups and determine whether a relationship between RQ group 

and DNA methylation existed.  

Various ways of dividing the data were considered, initial attempts used the mean of the VR 

series and a range of values above and below the mean to generate the groups. This however 

meant that very large negative values affected the grouping, the grouping was subjective and 
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the groups were not representative of the sample distribution. Instead, the RQ data for each 

assay was divided by quartile group (i.e. RQ data were divided into four equal groups to make 

the 1st, 2nd, 3rd and 4th quartiles (Q1, Q2, Q3 and Q4 respectively)). As per previous analyses, 

statistical analysis was performed multiple times, once with integrated samples included and 

again with integrated samples excluded. This was in order to factor into the interpretation a 

potential association between HPV methylation and integration. 

 

8.2.3.5.1. Integrated Samples Included Analysis 

With the VR samples separated into gene expression RQ quartiles, statistical analysis was 

undertaken to determine a relationship between gene expression and DNA methylation. The 

DNA methylation data could not be transformed to an acceptable degree for use in a 

multifactorial ANOVA GLM. Instead, the data was separated by region (i.e. E2, LCR1, LCR2 and 

L1/L2) and assessed by one-way ANOVAs with Tukey-Kramer pair wise comparisons (i.e. one 

ANOVA for E2 RQ and E2 methylation, another for E2 RQ and LCR1 methylation etc). The 

nature of this investigation was exploratory and hypothesis generating so the Bonferroni 

correction was used during interpretation of the statistics however significance at P=0.05 was 

also considered. The samples were separated by RQ quartile for each gene expression assay 

and DNA methylation of each quartile was compared graphically and statistically. This data is 

presented in Figure 8.15, Figure 8.16, Figure 8.17 and Figure 8.18. 
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Figure 8.15: DNA methylation of the VR series E2 region, separated by gene expression assay and by 
RQ quartile. 

* Represents those samples where the gene expression assays have failed to produce an RQ result. 
Bars represent the mean methylation and 95% confidence intervals are included. 

 

Assay

RQ quartile

E7 RQE6 RQE2 RQ

4321*4321*4321*

10

8

6

4

2

0

M
e

a
n

 L
C

R
1

 D
N

A
 m

e
th

y
la

ti
o

n
 %

The relationship between LCR1 DNA methylation and gene expression

 

Figure 8.16: DNA methylation of the VR series LCR1 region, separated by gene expression assay and by 
RQ quartile. 

* Represents those samples where the gene expression assays have failed to produce an RQ result. 
Bars represent the mean methylation and 95% confidence intervals are included. 
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Figure 8.17: DNA methylation of the VR series LCR2 region, separated by gene expression assay and by 
RQ quartile. 

* Represents those samples where the gene expression assays have failed to produce an RQ result. 
Bars represent the mean methylation and 95% confidence intervals are included. 
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Figure 8.18: DNA methylation of the VR series L1/L2 region, separated by gene expression assay and 
by RQ quartile.  

* Represents those samples where the gene expression assays have failed to produce an RQ result. 
Bars represent the mean methylation and 95% confidence intervals are included. 
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8.2.3.5.1.1. E2 Methylation 

For the E2 region, there appeared to be a relationship between E2 methylation and RQ 

quartile for both E2 RQ and E7 RQ (Figure 8.15). There was a pronounced decrease in mean 

methylation between Q1 and Q2/Q3/Q4 for E2 RQ and a progressive decrease from Q1 to Q4 

for E7 RQ. There were however large confidence intervals for many of the quartile groups so 

these relationships needed to be confirmed statistically. 

For several comparisons by one-way ANOVA, some assumptions of the test were violated. It 

was felt that using the one-way ANOVA instead of Kruskall-Wallis tests followed by multiple 

Mann-Whitney U tests would be more informative. Nonetheless, the results were interpreted 

with caution. Table 8.8 contains the results of one-way ANOVA tests to determine differences 

in E2 DNA methylation between the E2, E6 and E7 RQ quartiles. Violations of the ANOVA are 

listed in the figure legend. There was a significant difference (significant at Bonferroni 

corrected P=0.006) in E2 DNA methylation among the samples in the various E2 RQ and E7 RQ 

quartiles, but not the E6 RQ quartiles. Pairwise comparisons reinforce the observation, for E2 

RQ, a significant difference was observed between Q1 and Q2/Q3/Q4. Similarly, for E7 RQ, 

significant differences in E2 DNA methylation were observed between Q1 and Q3, Q1 and Q4 

and Q2 and Q4; again reinforcing the general decline in E2 DNA methylation observed with 

increasing E7 transcription. 

In summary, samples expressing the least E2 mRNA had a significantly higher level of E2 DNA 

methylation which might signify an effect of intragenic methylation. Nonetheless, as E2 DNA 

methylation increased, E7 expression also decreased. The Spearman’s rank correlation analysis 

performed previously found a significant relationship between E2 DNA methylation and E7 

expression, but not between E2 DNA methylation and E2 expression. The relationship between 

DNA methylation and gene expression appears more complex than a simple linear correlation. 

 

 With integrated samples included 
Significant Tukey-

Kramer 

 E2 DNA methylation comparisons (P<0.05) 

vs. E2 RQ P=0.002*1 1 vs. 2, 1 vs. 3, 1 vs. 4 

vs. E6 RQ P=0.062 None 

vs. E7 RQ P=0.005*2 1 vs. 3, 1 vs. 4, 2 vs. 4 
Table 8.8: The results of multiple one-way ANOVA tests with Tukey-Kramer pairwise comparisons.  

Violations of the one-way ANOVA assumptions: *1, non-normally distributed residuals (Anderson 
Darling P=0.008) and unequal variances (Bartlett’s P=0.000); *2, unequal variances (Bartlett’s 
P=0.015). Significant results are highlighted yellow. 
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8.2.3.5.1.2. LCR1 Methylation 

There did not appear to be a relationship between RQ quartile and LCR1 DNA methylation. The 

methylation of samples in different RQ quartiles was consistent and evenly distributed (Figure 

8.16). Multiple one-way ANOVAs did not identify any significant results. 

8.2.3.5.1.3. LCR2 Methylation 

There did not appear to be a relationship between RQ quartile and LCR2 DNA methylation. As 

per the LCR1 region, DNA methylation of the LCR2 region was consistently low and evenly 

throughout the various RQ quartile groups (Figure 8.17). Multiple one-way ANOVAs did not 

identify any significant results. 

8.2.3.5.1.4. L1/L2 Methylation 

There appeared to be a relationship between L1/L2 DNA methylation and RQ quartile group 

for both the E2 and E7 RQ (Figure 8.18). With increasing E2 RQ quartile group, there appeared 

to be a progressive decline in L1/L2 methylation. For the E7 RQ groups, there was a less 

progressive decrease, with Q2 and Q3 being very similar and with large confidence intervals. 

Mean L1/L2 methylation of the samples in E7 Q4 was the lowest such that samples with the 

highest E7 RQ had low level L1/L2 methylation. 

Statistical comparison was performed using multiple one-way ANOVA tests (Table 8.9), one 

violation of the ANOVA assumptions existed and is detailed in the table legend. There was a 

significant difference in L1/L2 methylation (at Bonferroni corrected P=0.017) only among the 

E2 RQ quartiles. Pairwise comparisons found a significant difference between Q1 and Q3, and 

Q1 and Q4. The observed relationship between E7 RQ and L1/L2 methylation was not 

confirmed statistically. 

In summary, high L1/L2 methylation was associated with low E2 and E7 RQ. Similarly, low 

L1/L2 methylation was associated with high E2 and E7 RQ 

 

 With integrated samples included 
Significant Tukey-

Kramer 

 L1/L2 DNA methylation comparisons (P<0.05) 

vs. E2 RQ P=0.002 1 vs. 3, 1 vs. 4 

vs. E6 RQ P=0.853 None 

vs. E7 RQ P=0.198*1 None 
Table 8.9: The results of multiple One-way ANOVA tests with Tukey-Kramer pairwise comparisons.  

Violations of the one-way ANOVA assumptions: *1, unequal variances (Bartlett’s P=0.013). Significant 
results are highlighted yellow. 
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8.2.3.5.2. Integrated Samples Excluded Analysis 

Next, a similar set was performed for the data with the integrated samples excluded. As most 

comparisons were non-significant, the data are presented graphically in Appendix V and 

significant observations are summarised here.  

8.2.3.5.2.1. E2 Methylation 

For the E2 region, DNA methylation did not appear to be associated with RQ quartile. Multiple 

one-way ANOVAs did not identify any significant results. 

8.2.3.5.2.2. LCR1 Methylation 

There did not appear to be a relationship between RQ quartile and LCR1 DNA methylation. 

Multiple one-way ANOVAs did not identify any significant results. 

8.2.3.5.2.3. LCR2 Methylation 

There was a consistently low and even distribution of DNA methylation level between the RQ 

quartiles. One significant result was obtained (although not when considering the Bonferroni 

correction), LCR2 methylation varied with E2 RQ (P=0.039) and Tukey-Kramer identified Q1 vs. 

Q3 as significantly different. However there was a very low sample number in E2 RQ Q1 and 

the level of DNA methylation in each group was very low increasing the likelihood of error as a 

result of background experimental noise. This observation must be treated with scepticism 

unless further evidence is produced. No other significant differences were observed. 

8.2.3.5.2.4. L1/L2 Methylation 

There was a varied level of L1/L2 DNA methylation for each E6 RQ quartile. There was 

considerably less variation in the L1/L2 DNA methylation for the highest E2 and E7 expressing 

samples (i.e. Q4 for both assays). As per the data set with integrated samples included, there 

was a significant difference (although not when considering the Bonferroni correction) in L1/L2 

DNA methylation among E2 RQ quartiles (P=0.025), more specifically a pairwise difference 

between Q3 and Q4 (Tukey-Kramer). The relationship was less convincing than when analysing 

all samples due to the sample number and lower significance. Nonetheless, the highest E2 

expressing samples had a lower mean L1/L2 methylation than those with lower E2 RQ. The 

L1/L2 DNA methylation of the other E2 RQ quartiles was quite variable. No other significant 

differences were observed. 

 

8.2.3.5.3. Integrated Samples, Individual Consideration 

For the integrated samples, a complex relationship appeared to exist between methylation and 

gene expression that necessitated interpretation independent of the non-integrated samples. 

The low number of integrated samples and the diverse methylation/mRNA levels made 
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statistical analysis difficult and comparisons of means/medians problematic. Instead, each 

sample was considered and compared to the other samples separately in an attempt to 

investigate the affects of different integration events. The following sample descriptions are 

compiled from the data presented in Figure 8.4, Table 8.4 and Figure 8.19. 
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Figure 8.19: Mean DNA methylation of the VR series integration group 1 samples.  

A different graph pane is present for each HPV genome region and each bar represents mean DNA 
methylation for that sample.  

 

8.2.3.5.4. VR24 

The VIN3 VR24 sample contained HPV16 integrated in the E1 gene; there was 

hypermethylation of the E2 region however the L1/L2 data was not available to compare. 

There was hypomethylation of both the LCR1 and LCR2 regions. VR24 exhibited an average E6 

RQ, an above average E7 RQ and a very low E2 RQ.  

8.2.3.5.5. VR32 

The VIN3 VR32 sample, much like the VR42 sample was unusual in that there was no 

hypermethylation of E2 or L1/L2 observed despite a detected integration event. The VR32 

sample had a detected HVP16 integration event that resulted in disruption of the E2 gene. 

VR32 had very very high E2 and E6 RQ and a very high E7 RQ, several Log10 higher than average 

in every instance. Both LCR1 and LCR2 were hypomethylated. A possible explanation for the 

integration without hypermethylation at E2 and/or L1/L2 was that the HPV16 genomes in this 



214 

 

sample could exist as both an integrated form, and a highly numerous episomal form. If this 

were the case, the small numbers of integrated sequences were detectable by DIPS but 

episomal forms were still present. Episomal HPV are often maintained in very high numbers 

and are relatively hypomethylated (Kalantari et al., 2008a, Doorbar, 2006), the quantitative 

pyrosequencing assay would detect methylation as an average of each HPV16 genome in the 

sample, and an overabundance of unmethylated episomal HPV16 genomes would essentially 

mask any hypermethylated integrated HVP16 sequences. 

8.2.3.5.6. VR37 

The VIN3 VR37 sample contained HPV16 genomes with integration sites in two regions, the E2 

and L1/L2 regions which likely represented a deletion. There was no data for the E2 

methylation assay as it failed repeatedly however methylation of the L1/L2 region was high. 

The E2 RQ was very low, several Log10 lower than the average whereas the E6 and E7 RQ were 

considered above average and high respectively. The LCR1 and LCR2 regions were largely 

unmethylated. In other samples an association was observed between site of integration and 

site of hypomethylation. 

8.2.3.5.7. VR39 

The VIN3 VR39 sample had a detected integration event in the E1 region of the HPV16 

genome. It had a relatively high level of methylation in the E2 region and a high level of 

methylation in the L1/L2 region. Both LCR1 and LCR2 were hypomethylated. The E6 RQ was 

close to the average amount of expression, whereas the E2 and E7 RQ were above average.  

8.2.3.5.8. VR42 

The VIN3 VR42 sample had a detected integration event in the L2 region. The HPV16 genome 

was hypomethylated in every tested region, including the E2 and L1/L2 regions. There was 

below average E6 RQ, slightly above average E7 RQ and high E2 RQ. Again, a possible 

explanation for the integration status and the observed hypomethylation of E2 and L1/L2 was 

that both episomal and integrated HPV were present and the numerous, unmethylated 

episomal forms masked the methylation status of the integrated genomes.  

8.2.3.5.9. VR44 

The VIN3 VR44 sample was an interesting case. The E2 qPCR assay failed repeatedly however 

the E2 pyrosequencing assay worked well. The E6 and E7 RQ for VR46 were average and above 

average respectively. The HPV16 integration event into the human genome resulted in E2 

disruption. E2 was also hypomethylated whereas interestingly, the HPV16 L1/L2 region was 

highly methylated. 
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8.2.3.5.10. VR46 

The VAIN3 sample VR46 had both E2 and L1/L2 hypermethylation. HPV16 was integrated at 

the E1 region. mRNA level of the E6 and E7 genes were below average, however mRNA level of 

the E2 gene was very very low. The down regulation of E2 expression did not appear to be a 

result of E2BS (i.e. LCR2) methylation (very lowly methylated) but may be associated with E2 

and L1/L2 hypermethylation. The HPV16 integration event occurs within the MLT1D LTR 

sequence (Chr 9, q21.31) which may have an effect on the methylation profile of the 

integrated HPV16 DNA. 

8.2.3.5.11. VR53 

For VIN3 sample VR53, there was a low level of E6/E7 transcription (E2 RQ data missing). The 

L1/L2 region was hypomethylated whilst the E2 region was more methylated than all non-

integrated samples which might be related to the integration event in the L2 region of the 

HPV16 genome. As per all other samples, the LCR was hypomethylated. 
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8.3. Discussion - HPV Distribution in VIN 
This study used the Greiner Bio-One PapilloCheck DNA chip assay to identify HPV types present 

in histologically confirmed VIN. There were two aims; firstly to identify HPV16 positive samples 

that could be used for further molecular analysis, and secondly to determine the proportion of 

VIN potentially preventable by HPV prophylactic vaccination. 

8.3.1.1. Strengths and Weaknesses 

The main limitation of the study was the use of a self selected sample, i.e. women attending a 

specialist VIN clinic, which could bias the sample towards women with persistent or recurrent 

disease; this might result in some over-representation of more persistent types (e.g. HPV16). A 

further limitation was the use of separate biopsies for pathology and HPV analysis, in practice 

the biopsies were immediately adjacent and cases were only included if both biopsies were 

part of the same macroscopically visible lesion. It is however theoretically possible that the 

research biopsy may not be representative of the diagnostic biopsy. 

The strengths of the study were the large sample size, the use of histologically confirmed VIN, 

the availability of patient age data and the use of the accurate and increasingly common 

PapilloCheck DNA microarray assay. 

8.3.2. Meaning and Comparison to Other Studies  

This is the largest UK series of VIN in which HPV type has been determined. Several studies 

have investigated HPV prevalence in VIN in the UK and estimated HPV positivity at 37.5–100%, 

with the proportion of HPV positive cases containing HPV16 varying from 37.5% to 93.3% 

(Abdel-Hady et al., 2001, Gasco et al., 2002, Todd et al., 2002, Baldwin et al., 2003, Tristram 

and Fiander, 2005, Fiander et al., 2006, Woo et al., 2007, Daayana et al., 2010). The sample 

size in previous studies ranged from 8-29 cases. At n=57, the sample size for this study was 

much larger. HPV typing data from 57 samples were used and the findings are more consistent 

with the overall results of a recent international meta-analysis, in which 84.0% of VIN cases 

tested HPV positive (67.5% were HPV16, 7.7% were HPV33, and 4.6% were HPV18) (de Vuyst 

et al., 2009). For this study, the corresponding proportions were overall HPV positivity of 

75.4% (59.6% were positive for HPV16, 8.8% for HPV33, and 3.5% for HPV18). These 

proportions are also similar to another meta-analysis which indicated an overall HPV positivity 

of 80.4% for VIN2/3 (HPV16 present in 71.2%, HPV33 in 7.7%, and HPV18 in 5.5% (Smith et al., 

2009)). 

HPV positive patients were significantly younger than those testing negative (mean difference 

of over 10 years). This is consistent with HPV-associated VIN being more common in younger 
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women and VIN associated with LS being more common in older women (Bonvicini et al., 

2005).  

Three cases with VIN grade 2 or higher were associated with an LrHPV type alone (HPV6) 

which appears inconsistent with the suggestion that LrHPV types cause only warts and low 

grade lesions. However an association between LrHPV types and high-grade disease was 

observed in the De Vuyst meta analysis (de Vuyst et al., 2009) which reported approximately 

5% of VIN2/3 as linked to HPV6. 

HPV-associated VIN is most common in women in their 30’s and 40’s (Hart, 2001). The 

incidence of VIN is approximately 5 per 100,000 women per year and is increasing (Joura, 

2002). HPV infection is endemic in the UK, in Wales almost 30% of women in the 20–25 year 

age range are now infected with a HR anogenital HPV type (Hibbitts et al., 2008). Hence, in the 

short term, the number of women affected by VIN is likely to continue increasing. HPV 

vaccination has been shown to be 100% effective in prevention of VIN2/3 associated with 

HPV16/18 in a per protocol population (Joura et al., 2007). In the UK, vaccination of 12–13 

year old girls against HPV16/18 infection began in 2008. Hence it is likely to be 20–30 years 

before the effects of this intervention become apparent in reduced incidence of VIN. 

Ultimately however, as HPV16/18 were present in 61.4% of VIN, our data suggest that greater 

than half of VIN cases could be potentially prevented by vaccination and that vaccination with 

a quadrivalent vaccine (protection conferred against types 16, 18, 6 and 11) might also prevent 

HPV6 associated VIN. 
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8.4. Discussion – HPV DNA Methylation, Integration and Gene 

Expression 

8.4.1.1. Aims 

This study was devised to characterise a series of VIN2/3 biopsies and to test a series of 

hypotheses. The primary aim was to establish the relationship between HPV methylation, 

integration and gene expression. We hypothesised that where integration was not present, 

DNA methylation might constitute an alternative transforming event, either by 

hypermethylation of one or more regions of the HPV genome or by specific hypermethylation 

directed at the E2BSs. An alternative hypothesis was that DNA methylation might be a 

consequence of integration. 

8.4.1.2. Weaknesses 

A limitation of DIPS is that when integration is not detected, it does not necessarily mean that 

an integration event is not present (i.e. a true negative result). A negative result could arise if 

there genuinely was not an integration event present, because the method was not sensitive 

enough or because it had failed to work properly. In addition, DIPS cannot differentiate 

between HPV infections where a mix of integrated and episomal HPV forms are present and 

infections where concatemeric HPV integrants are present. 

For the qPCR assays, the biopsy dosage effect (Chapter 4: 4.1.3) could influence the RQ ratios 

produced. The biopsy dosage effect can essentially cause apparent differences in RQ ratio that 

are not the result of differences in mRNA level.  

The assumptions of several statistical analyses were violated in several instances. Where 

violations occurred, these are detailed in the text. Sometimes these data were used on the 

basis that the test produced data confirmed by other tests. It is common practice to use the 

tests with violations provided the results are interpreted with appropriate caution. 

Furthermore the results of these tests were used primarily in an exploratory nature to 

generate hypotheses. Where the data was wholly unsuitable for an analysis (i.e. the 

distribution of the RQ data was unsuitable for parametric multifactorial ANOVA) less powerful 

and less informative non-parametric alternatives were used. 

 

8.4.1.3. Strengths 

This study is unique in being the only study to compare DNA methylation, gene expression and 

integration status in VIN. Histology was reviewed by a consultant pathologist specialising in 

gynaecological oncology. The VR series comprise a clinically relevant cohort for which both 
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DNA and RNA were available. The study was designed to investigate the basic biology of HPV 

gene expression and to assess the potential of DNA methylation as a biomarker. From this 

perspective, the VR series was a well designed study which allowed the assessment of several 

biological characteristics.  

Use of pyrosequencing was a significant strength as it provides an accurate assessment of 

methylation status for numerous CpGs in a heterogeneous mix of DNAs, in a fully quantitative 

manner. The pyrosequencing assays used in this study are to be used as an adjunct to an 

ongoing clinical trial of topical therapy for VIN (RT3 VIN; CRUK trial number CRUK/06/024). 

 

8.4.2. Meaning and Comparison to Other Studies 

8.4.2.1. DNA Methylation of the VR Series 

DNA methylation varied considerably among samples, among HPV regions and among CpGs 

within each region. L1/L2 was the most heavily methylated region although E2 

hypermethylation was observed in several samples. The LCR1 (enhancer) and LCR2 (promoter) 

were hypomethylated in all samples. The patterns of CpG specific methylation were very 

similar to those observed in other sample cohorts and cell line studies (Chapter 5: 5.1.3, 

Chapter 6: 6.1.1, and Chapter 7: 7.1.3.3.2) and very large differences were observed between 

CpGs separated by only a few bp. The region and CpG specific methylation patterns observed 

are discussed in further detail in the general discussion (Chapter 9: 9.1.4 & 9.1.5). 

DNA methylation of the VR series (predominantly VIN2/3) was similar to the level of 

methylation observed for the severe dyskaryosis group (Chapter 5: 5.1.1) and for CIN2/3 

(Fernandez et al., 2009). HPV DNA methylation of other non-cervical, anogenital sites has been 

assessed (Kalantari et al., 2008b, Wiley et al., 2005) however this is the first instance of HPV 

DNA methylation being determined for VIN. The results for HPV methylation studies of other 

anogenital sites are generally consistent with cervical lesion studies, thus expanding the 

potential clinical utility that a knowledge of HPV methylation might have. 

8.4.2.2. Integration Status of the VR Series 

Integration was detected in 8 samples with a variety of human and HPV loci disrupted. 

Considering only samples where the sample controls were passed, 6/15 (40%) of VIN2/3 

samples had integration events; this is consistent with a previously estimated rate of 38.1% 

integration of HP16/HPV18 in VIN3 (Hillemanns and Wang, 2006). HPV integration in CIN has 

been reported in 11-60% of cases (Hafner et al., 2008, Klaes et al., 1999, Hopman et al., 2004, 

Li et al., 2012). Variation in the estimates may be a result of methodological differences and 
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differences in sample size and CIN grade. VR37 DIPS data appeared to show a deletion 

between the E2 and L2 regions. Interestingly, E2 pyrosequencing PCRs failed whilst E2 mRNA 

was detected by qPCR. Both pyrosequencing and qPCR targeted regions inside the potentially 

deleted zone which could hint at a low level presence of intact genomes and transcripts, and a 

difference in sensitivity of the pyrosequencing and qPCR assays such that qPCR but not 

pyrosequencing were capable of amplifying the E2 region of these genomes. 

8.4.2.3. Gene Expressions Status of the VR Series 

E2, E6 and E7 mRNA level varied considerably among samples and among the qPCR assays, the 

most variable mRNA was E2. E2 is a repressor of oncogene expression, and several factors (e.g. 

E2 disruption, E2BS methylation, non-functional E2 proteins, splice variation etc) may affect its 

expression and account for the greater variability (Zheng and Baker, 2006). E2/E6/E7 mRNA 

levels were positively correlated which was consistent with the PC08/PC09 data. The strong 

correlation between VR series E2, E6 and E7 RQ suggests that high/low transcription of one 

mRNA is accompanied by similar changes in the other mRNAs. However there were several 

exceptions to this observation where E2 RQ was much lower than E6/E7 RQ. The disparity 

might be explained by observations made on the W12 model, where E2 downregulation and 

E6/E7 upregulation were considered to be early events in cellular transformation and E2/E6/E7 

mRNA were present at similar levels after these early events (Gray et al., 2010). 

Biopsy samples are subject to the biopsy dosage effect (Chapter 4: 4.1.3). The biopsy dosage 

effect is caused by variation in the ratio of HPV containing versus non-HPV containing cells in 

each biopsy. Both cell types contain reference gene transcripts however only HPV positive cells 

contain HPV transcripts which leads to disparity during relative quantification. This variation 

could conceal differences in E2/E6/E7 mRNA level among biopsies and promote an apparent 

E2/E6/E7 correlation. However correlation between E2/E6/E7 was also observed in PC08/PC09 

which were not subject to this effect. 

8.4.2.3.1. Patient Age 

An association between age and integration status was observed previously (Vinokurova et al., 

2008) but was not apparent in our study, possibly due to the relatively small number of 

samples. 

8.4.2.4. Gene Expression and Integration 

It is interesting to note that as well as a low E6/E7:E2 RQ ratio, samples VR37, VR24 and VR46 

had integration events detected. Nonetheless, no significant difference in RQ was observed 

between the integrated and non-integrated samples when tested directly. This was consistent 

with one study (Hafner et al., 2008), but not with another (Ho et al., 2011). The lack of 
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correlation might correspond to the inability of DIPS to differentiate between different types 

of integration event which may exert distinct effects on gene expression. For instance 

differences in gene expression may exist between tissues containing only integrated genomes 

as opposed to both integrated and episomal HPV forms, and differences between 

concatemeric repeats and single insertions might also affect transcription.  

An association between site of integration and E2/E6/E7 level was considered but no 

relationship was apparent. VR32 was particularly interesting as it showed E2 disruption but 

also the highest levels of E2/E6/E7 mRNA. E2 was disrupted just downstream of the site 

amplified by qPCR, hence full length E2 protein could not be produced by the integrated 

genome (Kim et al., 2003), and E2 transcripts would not correspond to functional E2 protein. 

E6 and E7 could be highly expressed without being repressed by E2.  

8.4.2.5. DNA Methylation and Integration 

Integration of HPV into the host genome with associated disruption of the E2 ORF is commonly 

considered to be a mechanism of cellular transformation and carcinogenesis (Thierry, 2009). 

However, a substantial proportion of HPV-associated neoplasias do not contain integrated HPV 

or also contain episomal HPV such that functional E2 repressor may be produced (Arias-Pulido 

et al., 2006, Klaes et al., 1999, Pett and Coleman, 2007, Vinokurova et al., 2008, Bhattacharjee 

and Sengupta, 2006b). As such, it has been suggested that integration of HPV into the host 

genome could be a consequence of chromosomal instability caused by aberrant HPV oncogene 

expression, rather than the cause of aberrant oncogene expression (Pett and Coleman, 2007, 

Melsheimer et al., 2004). There is reason to suspect that HPV DNA methylation might be 

involved in initial oncogene deregulation in some instances (Vinokurova and von Knebel 

Doeberitz, 2011). 

Our initial hypothesis was that DNA hypermethylation could be an alternative transforming 

event to integration. If this were true, one might expect a characteristic level or pattern of 

hypermethylation in non-integrated samples that was not present in integrated samples, i.e. 

the transforming methylation pattern and the presence of integration would be mutually 

exclusive. 

For the VR series, this relationship was not present and hypermethylation of E2 and L1/L2 was 

strongly and significantly associated with HPV integration. We also suspected that E2BS 

methylation in the LCR might constitute an alternative transforming event by blocking binding 

of the E2 repressor proteins and enhancing P97 activity, however LCR hypermethylation was 

not observed in any instance (Thain et al., 1996, Kim et al., 2003). In fact, the highest level of 
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LCR methylation (still <10%) was observed for an integrated sample (VR42). LCR methylation of 

this sample might instead reflect the type of integration event (single insertion vs. 

concatemeric) as multiple insertions appear more likely to be silenced by dense LCR 

methylation (Kalantari et al., 2009). 

Rather than being mutually exclusive with integration, hypermethylation of the HPV genome 

could be specifically associated with integration. Integrated samples were significantly more 

methylated in the E2 and/or L1/L2 regions than the non-integrated samples. There were two 

exceptions to this, VR32 and VR42 (E2 and L1/L2 hypomethylation) may have had HPV in both 

integrated and episomal forms. Episomal HPV16s are typically maintained at high copy number 

and are hypomethylated (Kalantari et al., 2008a, Doorbar, 2006). The pyrosequencing assays 

would detect methylation as an average of each HPV16 genome in the sample, and an 

overabundance of unmethylated episomal HPV16 genomes could potentially mask any 

hypermethylated integrated HVP16 sequences. VR42 also had the highest level of LCR1 

methylation. LCR1 methylation of the VR42 integrated genomes could be considerably higher 

than indicated by the pyrosequencing assay but masked by the presence of episomal HPV, 

such that these integrated genomes were repressed (Rosl et al., 1993). Alternatively, episomal 

HPV genomes could be effectively targeted for LCR methylation which may or may not affect 

P97 activity (Bechtold et al., 2003, Kim et al., 2003). 

The association between DNA methylation and integration appeared to be complex. Some 

samples showed both E2 and L1/L2 hypermethylation, some had E2 or L1/L2 hypermethylation 

and others had E2 and L1/L2 hypomethylation. It appeared that an integration event in a 

particular HPV region could be associated with hypomethylation in adjacent regions and 

hypermethylation in distal regions. E1 disruption for instance was typically associated with 

hypermethylation of both E2 and L1/L2, E2 disruption was associated with L1/L2 

hypermethylation and L2 disruption with E2 hypermethylation. As this was also observed in 

the cell lines study, it is discussed in further detail in the general discussion (Chapter 9: 

9.1.1.1). 

8.4.2.6. DNA Methylation and Gene Expression 

Because DNA methylation in the integrated samples was different from the non-integrated 

samples, the relationship of DNA methylation with mRNA level was considered both with and 

without integrated samples included.  
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8.4.2.6.1. E2 Intragenic Methylation and E2 Expression 

Initially, the E2 pyrosequencing assay was adopted on the basis that intragenic methylation 

can affect gene transcription (Lorincz et al., 2004, Murrell et al., 2001), and so intragenic 

methylation might reduce E2 transcription. The samples with the least E2 mRNA showed 

significantly higher E2 DNA methylation. A negative correlation was also observed between E2 

methylation and E2 RQ for the integrated samples. Because E2/E6/E7 RQ were positively 

correlated, the relationship between E2 methylation and E6/E7 RQ was very similar to E2 RQ 

(albeit E6 was not quite significant). This data is consistent with E2 methylation contributing to 

regulation of E2 expression. This is also discussed in further detail in the general discussion 

(Chapter 9: 9.1.3 & 9.1.4). 

For the non-integrated samples, variation in E2 methylation was limited and no relationship 

between E2 methylation and transcription was observed. Intragenic methylation affects 

transcription by hindering elongation efficiency of RNA polymerase II in regions of dense 

methylation and condensed chromatin structure (Lorincz et al., 2004). Intragenic methylation 

might also affect transcription from alternative start sites (Maunakea et al., 2010), which has 

particular relevance for HPV where alternative transcription start sites are recognised 

(Lambert et al., 1990) and various E2 start sites are responsible for additional E2 ORF proteins 

(Introduction). Whether this form of repression would be apparent for an mRNA transcript 

based assay (i.e. qPCR) where an early part of the E2 ORF is amplified, and for HPV where post-

transcriptional regulation is important is difficult to determine.  

8.4.2.6.2. LCR Methylation and Gene Expression 

We did not see a clear relationship between LCR methylation and gene expression. We had 

initially hypothesised a relationship between LCR hypermethylation and transcription in the 

absence of integration, however this was not observed and the LCR of all samples was 

hypomethylated. LCR hypomethylation in VIN is consistent with the PC08/09 data (Chapter 7: 

7.1.3.3) and also cervical disease grade studies (Badal et al., 2003, Hublarova et al., 2009, Patel 

et al., 2012, Piyathilake et al., 2011). 

8.4.2.6.3. L1/L2 Methylation and Gene Expression 

A significant association between L1/L2 methylation and E2 RQ was observed. No relationship 

was observed for E6 RQ, and the E7 RQ relationship was deemed non-significant. Similar to E2 

methylation, the samples with the lowest levels of E2 mRNA had the highest levels of L1/L2 

methylation.  

That L1/L2 methylation is also associated with E2 transcription makes specific E2 repression by 

intragenic methylation less likely. These data would be more consistent with a model in which 



224 

 

low levels of E2 transcription are related to integration events and these integration events are 

characterised by high E2 and/or L1/L2 methylation. With this in mind, it is perhaps surprising 

that we did not observe a significant difference in E2/E6/E7 mRNA level between the 

integrated and non-integrated HPV containing samples in the previous analysis. This might 

stem from the lack of methylation data for several of the lowest mRNA expressing samples 

such that they were not included in this analysis of methylation and gene expression, but were 

included in the previous analysis just concerning gene expression and integration. Adequate 

DNA was retrieved from these biopsies, however if HPV genomes were only present at very 

low copy number within the biopsies, the less sensitive DNA based pyrosequencing assays 

might fail whilst the highly sensitive qPCR assays might not. Relative quantification normalises 

against input RNA amount, but the biopsy dosage effect (Chapter 4: 4.1.3) could artificially 

lower the RQ returned if a low number of HPV genomes were present in the biopsy.  

8.4.2.6.4. Summary 

In summary, L1/L2 and E2 hypermethylation and/or HPV integration appeared to be associated 

with low levels of E2/E6/E7 transcription. 

Whilst there was no clear difference in mRNA level between integrated and non-integrated 

samples, this observation was complicated by the apparent hypermethylation of integrated 

HPV genomes and the observation of these hypermethylated genomes typically having lower 

mRNA levels. Lower level of mRNA for E2, E6 and E7 in the integrated samples was unexpected 

but might be explained by the requirement of E6/E7 expression for the replication of episomal 

HPV genomes, but not the maintenance of integrated HPV that are replicated alongside the 

host genome (Pett et al., 2006). Alternatively, low level gene expression for hypermethylated 

integrated genomes might simply be a by-product of gene dosage; episomal HPV are typically 

maintained in high numbers, whilst integrated genomes are frequently integrated as single 

insertions. Indeed, the methylation profiles of our samples are more consistent with single 

insertions (Kalantari et al., 2009). Finally, only a small number of integrated samples were 

considered, there was variation in integration site (both HPV and human), potential biopsy 

dosage effects, and small violations of the analysis; together these factors could produce 

erroneous correlations.  

8.5. Conclusions 
In conclusion, there was considerable variation in integration state, gene transcription and 

DNA methylation among the VR series. There was also a pattern of CpG specific methylation 

reminiscent of other sample cohorts. 
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The hypothesis that DNA methylation is an alternative transforming event to integration was 

not supported by the data. Neither was E2BS methylation specifically observed in non-

integrated samples, instead the LCR was hypomethylated in all instances. The biggest 

determinant of HPV methylation appeared to be HPV integration whereby most integrated 

HPV were hypermethylated in E2 and/or L1/L2. There was also a potential relationship 

between HPV site of disruption by integration and site of hypomethylation. Whether HPV 

methylation is a cause or a consequence of HPV integration remains unclear. 

There was not a clear difference in HPV gene transcription between samples containing 

integrated and non-integrated HPV genomes, however there was a suggestion of lower 

transcription in integrated samples which was difficult to explain. There was an association 

between hypermethylation and low gene transcription however the role of intragenic 

methylation in HPV transcription also remains unclear. 

8.5.1. Further Work 

In samples where integration was identified, determination of the methylation status of 

adjacent human DNA might provide further insight into the mechanism of methylation of the 

integrated HPV genome. Analysis of the type of integration event (single or concatemeric 

insertion) and the detection of episomal HPV in combination with integrated HPV might also 

help to clarify the apparent association between integration and DNA methylation. 

A tissue biopsy is frequently a heterogeneous sample of cells, comprising of cells with 

differences in viral copy number, HPV integration, gene expression, DNA methylation, 

differentiation status and a plethora of other characteristics (Vinokurova and von Knebel 

Doeberitz, 2011, Kalantari et al., 2009, Kalantari et al., 2008a). When considering the limited 

amount of data published with regards to a potential link between HPV integration status and 

DNA methylation, it would be inherently interesting to study individual or small groups of cells 

within a tissue type. LCM allows individual and small numbers of cells to be isolated from a 

heterogeneous tissue by transferring cells to a transparent polymer film using a laser (Emmert-

Buck et al., 1996). DNA, RNA and proteins from LCM cells can then be extracted and analysed 

(Edwards, 2007). Whilst LCM has been used for HPV methylation studies with varying degrees 

of success, the limited amount of material available for analysis following LCM would likely 

prove problematic for DNA methylation assays, but especially for integration assays that 

require a large amount of nucleic acid (Vinokurova and von Knebel Doeberitz, 2011, Kalantari 

et al., 2009). 
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Chapter 9. General Discussion 

Several components of this investigation were common to and/or had broader relevance to 

multiple chapters. In order to avoid repetition and provide a more succinct discussion, these 

common components are discussed in this general discussion chapter.  

Briefly, this discussion will consider the association between HPV methylation and integration, 

the potential self methylation of HPV and the observation that HPV methylation might not be 

associated with gene expression in some instances. There is also discussion of the potential 

mechanisms of methylation that result in regional and CpG specific differences and further 

discussion of the potential effects of HPV methylation. 

Finally, several chapters determined methylation differences to be associated with clinical 

characteristics. This discussion therefore covers the broader relevance of these observations 

from the perspective of disease biomarkers. 

 

9.1. DNA Methylation 

Pyrosequencing was successfully applied to a range of sample DNAs including cell lines, LBC 

samples, biopsy samples and FFPE cervical cancers. It proved to be a versatile technique and 

benefitted significantly from an objective series of internal controls. 

9.1.1. HPV Methylation was Associated with HPV Integration 

For this study, integrated HPV genomes were typically hypermethylated at E2 and/or L1/L2 

both in vitro and in vivo. HPV does not encode DNA methyltransferases (DNMTs) so 

methylation must be performed by human DNMTs. It is difficult to determine whether the 

observed levels of HPV DNA methylation are specifically a consequence of the action of HPV 

proteins or the result of more general DNA methylation changes in human DNA methylation 

that are associated with neoplasia (Henken et al., 2007, Sun et al., 2012, Eijsink et al., 2012, 

Wentzensen et al., 2009, Leonard et al., 2012, Apostolidou et al., 2009). 

Human cells actively target foreign DNA elements for silencing by DNA methylation (Doerfler, 

2006, Doerfler, 2008, Doerfler et al., 2001). Upon integration, foreign DNAs including 

adenoviral, plasmid and bacteriophage DNAs are often de novo methylated by what might be a 

cellular defence mechanism to repress foreign DNA elements (Sutter et al., 1978, Orend et al., 

1995, Heller et al., 1995, Doerfler, 2008). Methylation of foreign DNAs seems to depend on the 

location of integration in the human genome in terms of local methylation density, 

methylation pattern and the strength of any foreign promoters (Doerfler, 2008). In some 
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instances DNA methylation of foreign elements could be a reflection of the DNA methylation 

status of regions adjacent to the integrant, where methylation could begin as an initial seed 

before spreading to adjacent regions (Heller et al., 1995, Turker, 2002, Doerfler et al., 2001). 

Unfortunately, we were unable to pursue assessment of the DNA methylation status of 

flanking human DNAs. 

Methylation of HPV integrants may also depend on the type of integration event, i.e. single or 

concatemeric integrants. A densely methylated, single insertion integrant would be effectively 

repressed to the extent that no selective growth advantage of the cell would be gained, and 

cells containing unmethylated HPV integrants would clonally expand (Van Tine et al., 2004b). 

For concatemeric insertions, dense methylation of most genomes could occur both as a result 

of targeting of foreign DNAs by host DNA methylation machinery and/or viral mechanisms that 

limit a copy number related gene dosage effect that is deleterious to the growth rate of the 

host cell (De-Castro Arce et al., 2011, Doerfler, 2008). Tandem repeats may also be better 

recognised as genomic parasites and more efficiently targeted by DNA methylation. There are 

however instances of unmethylated concatemeric W12 HPV16 genomes (Kalantari et al., 

2008a, Yoder et al., 1997).  

9.1.1.1. Site specific Hypomethylation and Site of Integration 

Whilst hypermethylation of integrated DNAs was a commonly observed event, there may also 

have been an association between site of disruption of the HPV genome, and the site of 

hypomethylation of the HPV genome. For many of the integrated VR series, but also for several 

of the PC08/PC09 clones, regions of the HPV genome adjacent to sites of the HPV genome 

disrupted by integration were frequently hypomethylated. Areas distal to the disruption site 

were typically hypermethylated. Furthermore in W12Ser7 we observed L1/L2 but not E2 

hypermethylation. 

This regional hypomethylation adjacent to the disruption site is the first report of such an 

observation for HPV. Nonetheless, hypomethylation of the ends of adenoviral integrants has 

been described previously (Hochstein et al., 2007) and can be seen in Figure 9.1. Doerfler 

speculated that a highly specific and localised, perhaps sequence dependent genome structure 

might be involved in topologically denying the methylation machinery access to the ends of 

the integrant (Doerfler, 2011). HPV L1 methylation has been described as a potential 

biomarker for integrated HPV (Kalantari et al., 2010). Our data, if confirmed in a larger sample 

set would suggest that L1 methylation alone would be a poor assessment of integration status 
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for HPV disrupted at or near to L1, and that assessment methylation of multiple regions would 

be more informative. 

 

 

Figure 9.1: The methylation profile of integrated Ad12 adenovirus genome.  

Adapted from (Hochstein et al., 2007). Black squares represent methylated CpGs whilst white squares 
represent unmethylated CpGs. Each column of squares represents a CpG whilst each row represents 
an individual bisulfite sequenced cloned DNA. The large core region represents most of the Ad12 
genome and apart from some exceptions is densely methylated throughout. The two flanker regions 
represent DNAs adjacent to host cell DNA after the integration event and are typically 
hypomethylated. 

 

Hypomethylation of host DNA in the area flanking the insertion site of foreign DNAs is also 

commonly observed (Hejnar et al., 2003, Lichtenberg et al., 1988, Doerfler, 2011). In this 

instance, hypomethylation of the ends of integrated DNAs might represent a mechanism of a 

spread of methylation (Turker, 2002). Alternatively, as host DNA methylation pattern might 

influence integrant de novo methylation, hypomethylation of the flanking host sequence might 

represent the adoption of the adjacent (i.e. human) DNA methylation profile (Doerfler, 2011). 

9.1.1.2. E2BS Methylation and Integration 

We hypothesised that hypermethylation of the promoter E2BSs would be present in the 

absence of integration and would act to block E2 trans-acting repression as a mechanism of 

oncogene deregulation. There was no evidence for such a mechanism in VIN2/3 or the 

PC08/09 short term cultures. LCR2 hypermethylation was very rarely observed in precancerous 

neoplasia, and was not even commonly observed in cancer. Other studies have reported E2BS 

methylation in association with cervical cancers, although more rarely in high grade 

precancerous lesions (Bhattacharjee and Sengupta, 2006a, Fernandez et al., 2009, Snellenberg 

et al., 2012). Another study that used LCM to dissect a biopsy specifically did not see promoter 

E2BS methylation in regions where CIN3 histology was present, but the integration state of 

HPV in the biopsy was not determined (Vinokurova and von Knebel Doeberitz, 2011). There is 

however reason to suggest that the LCR E2BSs need not be heavily methylated in order to 

enhance P97 activity such that one or two methylated E2BS CpGs per genome might suffice. As 
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pyrosequencing considers the mean methylation of a mix of DNAs, if each DNA were variably 

methylated in one or two E2BS CpGs the overall level of methylation might be low, but most 

genomes might still be repressed by E2BS methylation (Stunkel and Bernard, 1999, Kalantari et 

al., 2008a). 

9.1.2. HPV Methylation may be Self Determined 

HPV does not encode a DNMT, so DNA methylation is achieved using the cellular DNMTs 

(DNMT1, DNMT3A and DNMT3B) (Portela and Esteller, 2010). It is well established that 

oncogenic viruses can modulate DNA methylation either directly or indirectly; HBV, Hepatitis C, 

Kaposi’s sarcoma associated herpes virus and EBV are all known to interact with and modulate 

the expression of DNMTs with associated changes in DNA methylation (Leonard et al., 2012). 

HPV appears to affect the DNA methylation machinery indirectly via degradation of the p53 

tumour suppressor and directly by upregulation of DNMT1 expression (Au Yeung et al., 2010). 

Transfection of keratinocytes with episomal HPV16 led to DNMT1 and DNMT3B upregulation 

(Leonard et al., 2012). E6 can also bind to proteins involved in chromatin remodelling and E7 

binds DNMT1, enhancing its methyltransferase activity (Burgers et al., 2007, Thomas and 

Chiang, 2005). E7 also disrupts the pRb/E2F pathway, responsible for regulating the DNMT1 

promoter (McCabe et al., 2005). Hence HPV transfection is associated with numerous changes 

in human DNA methylation (Leonard et al., 2012).  

E2 and E6 ORF products have long been known to modulate P97 activity (Shirasawa et al., 

1994, Dostatni et al., 1991) and it appears that in some instances high E2, E6 and E7 activity 

promotes enhancer and promoter hypermethylation (De-Castro Arce et al., 2011). 

Overexpression of HPV genes could effectively target DNA methylation towards the LCR. HPV 

self-methylation has been proposed as a means by which to regulate HPV gene expression in 

multi copy integrants where promoter and gene copy number would otherwise contribute to 

excessive and deleterious levels of gene expression (De-Castro Arce et al., 2011). 

 

9.1.3. HPV DNA Methylation Might not be Associated with Gene Expression 

In HPV, leaky ribosome scanning and translation reinitiation are implicated in the regulation of 

gene expression (Zheng et al., 2004, Remm et al., 1999, Longworth and Laimins, 2004). 

Further, it is hypothesised that intragenic DNA methylation might prevent spurious initiation of 

transcription by preventing the binding of transcription factors to gene body binding sites 

(Zilberman et al., 2007). We had therefore hypothesised that intragenic HPV methylation 

might affect the level of transcription of more 3’ ORFs (i.e. E2 hypermethylation and E2 
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transcription). Whilst we did observe a negative correlation between E2 methylation and E2 

transcription in several instances, a similar relationship was also present for other regions of 

the HPV genome and for other mRNAs also. Typically, E2 and/or L1/L2 methylation were 

negatively associated with E2, E6 and/or E7 mRNA transcription. Whilst significant 

observations did exist, they appeared to be influenced heavily by the apparent relationship 

between DNA methylation and integration, with integration potentially having a negative 

effect on gene expression.  

9.1.4. Variation in Methylation 

9.1.4.1. Regional Variation 

There was variation in methylation among the four HPV genome regions for every clinical and 

cell line cohort tested in this investigation. Typically, the E2 and L1/L2 regions were more 

methylated than the LCR, which was almost universally hypomethylated.  

9.1.4.2. Permissive Infections 

Whilst E2 and L1/L2 were methylated in several instances of precancerous neoplasia, the LCR 

rarely was. The most plausible explanation for universal LCR hypomethylation is that 

methylation of the LCR constituted a selective disadvantage. In a productive infection for 

instance, the primary role of E2 is in the replication of the viral genome, where E2 in 

association with E1 directs cell factors to the origin of replication (Kadaja et al., 2009, Kim et 

al., 2009). Methylation of the origin adjacent E2BS (E2BS2) might interfere with episomal 

genome replication, whilst methylation of other parts of the LCR might induce conformation 

changes, impeding viral gene expression/replication (Rosl et al., 1993).  

Methylation of the promoter E2BSs might also cause deregulated expression of the viral 

oncogenes, a state undesirable to a productive infection and not part of the normal HPV 

lifecycle. Methylation of the promoter and origin adjacent E2BSs was not observed in LCM 

sections considered as permissive to viral replication which is consistent with this hypothesis; 

however enhancer (LCR1) methylation was frequently observed in these sections (Vinokurova 

and von Knebel Doeberitz, 2011). 

9.1.4.3. Transformed Infections 

Oncogene expression induces transformation, is required for the continued propagation of 

episomal genomes and also for the maintenance of the transformed cell state (Gray et al., 

2010, Van Tine et al., 2004b, Hawley-Nelson et al., 1989). Hypermethylation of E2BS1 and the 

promoter E2BSs would likely block E2 binding and enhance P97 activity, whilst general LCR 

hypermethylation is associated with P97 repression (Thain et al., 1996, De-Castro Arce et al., 
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2011, Vinokurova and von Knebel Doeberitz, 2011, Kim et al., 2003). LCR1 and LCR2 cover 

three CpGs of the viral enhancer and two repressive E2BSs within the promoter region 

respectively. It is interesting that the enhancer region was less methylated than the promoter 

E2BSs in our cancer samples. There were also more cancer samples with promoter 

hypermethylation than there were with enhancer hypermethylation. It seems that for the 

transformed phenotype, finding an equilibrium of methylation level at various sites of the LCR 

is required in order to permit oncogene expression without the potentially deleterious effects 

of oncogene overexpression (De-Castro Arce et al., 2011, Gray et al., 2010). 

9.1.4.4. E2 and L1/L2 

E2 and L1/L2 hypermethylation appear to confer less of a disadvantage and in some instances 

were very common (i.e. integrated genomes and cancer cell HPV genomes). We could not 

confirm a role for intragenic methylation in modulating E2 transcription, however possible 

consequences include both the enhancement and repression of P97 activity. If intragenic 

methylation did alter the ability of HPV to express functional E2 proteins, E2 methylation could 

potentially increase oncogene expression. Alternatively, intragenic methylation might interfere 

with the expression of truncated E2 proteins that could act as an inhibitor of E2 function, 

thereby repressing P97 activity (Zilberman et al., 2007, Kim et al., 2003). As L1/L2 expression is 

not required in non-productive infections, L1/L2 hypermethylation might also be irrelevant to 

the maintenance of a transformed phenotype.  

9.1.4.5. LCR 

LCR hypomethylation due to selection appears likely in several instances but there was a 

general tendency for increased LCR methylation in more severe disease. It is possible that LCR 

hypermethylation/hypomethylation might be a consequence of gene expression level, rather 

than a cause of gene expression level; DNA methylation is hypothesised to spread from 

densely methylated to sparsely methylated regions and methylate regions where open 

chromatin formations are not present (i.e. non-transcriptionally active regions) (Turker, 2002). 

As such, low gene transcription in itself might facilitate promoter methylation and further 

downregulation (Szyf et al., 2004). The relevance to HPV is that deregulated gene expression 

might be an undesirable state after cellular transformation where high levels of oncoprotein 

are sometimes detrimental to cell growth (Gray et al., 2010, De-Castro Arce et al., 2011). In 

summary, LCR methylation might both influence, and be influenced by gene expression level. 
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9.1.5. CpG Specific Pattern of Methylation 

The pattern of CpG specific methylation, especially for the L1/L2 and E2 regions was 

remarkably well conserved across a wide range of material. The “N” shaped L1/L2 methylation 

pattern for instance was seen in the VR series, most PC08 and PC09 clones, W12, CaSki, all 

three disease groups of the disease grade study and all outcome groups of the CRISP study. 

Upon closer inspection of published methylation data, the CaSki L1/L2 “N” shaped methylation 

pattern is also visible (Fernandez et al., 2009). There were also instances of massive 

methylation differences between CpGs separated by only a few bp. 

Initially, this pattern was thought to be a result of either a specific mechanism of DNA 

methylation targeting each CpG differently, or a selective advantage conferred by each pattern 

of DNA methylation. The latter, seems somewhat unlikely as methylation patterns in a 

non/lowly transcribed region of the HPV genome (i.e. L1/L2 in all but differentiated cells of a 

productive infection (Doorbar, 2006)) would need to confer a considerable selective advantage 

in order to be maintained and universally present. The selective benefit would need to be 

present for episomal and integrated HPV, HPV in precancerous lesions, cancers, normal 

cytology samples, samples with various levels of gene expression and methylation and even in 

transcriptionally inactive occluded chromatin (i.e. CaSki). Whilst hypomethylation of the LCR 

has a plausible basis for selection, a selective benefit of a CpG methylation pattern in L1/L2 

seems unlikely. Instead, the pattern is more likely produced as a result of enzymatic or 

structural differences within each region that might affect the ability of DNMTs and meCpG 

binding proteins to bind the DNA; these might include nucleosome position, nuclear matrix 

attachment regions and DNA secondary structure.  

HPV DNA is organised as nucleosomes (Stunkel and Bernard, 1999). DNA methylation varies in 

a periodic manner with an interval of 10 bp in many forms of human DNA; genes, promoters, 

pericentromeric regions and euchromatic arm regions which might be due to nucleosomal 

DNA structure (Chodavarapu et al., 2010). DNMTs access the major groove of nucleosomal 

DNA which would allow better access to DNA on the outside of nucleosomes (Chodavarapu et 

al., 2010). DNA has a helical pitch of 10-10.5 bp (Wang, 1979) which is consistent with the 10 

bp methylation periodicity. Figure 9.2 shows that the 10 bp methylation periodicity coincides 

perfectly with the period of the “N” shaped profile of the L1/L2 region that was particularly 

evident in the PC08/PC09 cell lines (Chapter 7: 7.1.3.3.2). 
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Figure 9.2: The position of CpGs within the L1/L2 region.  

Nucleotide positions are listed according to GenBank ID NC001526.1. Listed are the four CpGs of the 
L1/L2 region (red boxes) and the distance (bp) between CpGs with high and low methylation. 

 

DNA methylation is also associated with nucleosome position. Nucleosomal DNA was more 

methylated than flanking internucleosomal DNA and DNA methylation varied according to the 

distance from nucleosomes in a progressive manner (Chodavarapu et al., 2010). This 

progressive change in methylation might explain the upwards trend of the L1/L2 methylation 

profile (Chapter 7: 7.1.3.3.2). Nucleosome position analysis has not been performed for HPV16 

outside of the LCR so confirmation is difficult. Further, nucleosome analysis of the LCR is 

typically performed on integrated HPV containing cell lines so the relevance to episomal HPV is 

similarly difficult to establish (Stunkel and Bernard, 1999). 

For the E2 region, a similar 10 bp periodicity is observed for the first 4/5 CpGs, after which the 

relationship breaks down, possibly due to additional affects on methylation such as 

nucleosome positioning. The HPV16 LCR has several nucleosomes, one nucleosome 

encompasses the whole origin and promoter region whilst the large enhancer region contains 

two nucleosomes, with substantial linker regions (Stunkel and Bernard, 1999). Both the LCR1 

and LCR2 regions are fully encompassed within these nucleosome regions. Although some 

instances of the 10 bp periodicity were observed for the LCR, and present in published data 

(Ding et al., 2009), the relationship was less well defined which might stem from the potential 

selectable effect of LCR methylation on oncogene expression. 

 

9.2. Methylation and Carcinogenesis 

When considering the potential contribution of HPV methylation to carcinogenesis, two main 

topics should be considered. The first is the effect of methylation in transformed cells, the 

second is the initial deregulation of the oncogenes and the induction of cellular 

transformation. 
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9.2.1. The Potential Effects of HPV DNA Methylation 

The P97 promoter contains binding sites for various cellular transcription factors. Our LCR1 

region represents 3 CpGs of the viral enhancer and LCR2 represents five viral promoter CpGs, 

four of which are contained within the two promoter E2BSs (LCR2-1 is within a Sp1 binding 

site, LCR2-2+3 are in E2BS3 and LCR2-4+5 are in E2BS4) (Tan et al., 1994). E2 cannot bind 

methylated E2BSs (Fernandez et al., 2009). One of the LCR2 CpGs (LCR2-1) is not part of an 

E2BS but instead is present in a binding site for the Sp1 transcription factor (Tan et al., 1994). 

In this instance, one might expect LCR2-1 to be less methylated than the E2BS CpGs however 

this was not the case and LCR2-1 was methylated at a level comparable to LCR2-2 and LCR2-3. 

P97 activation is functionally dependent on Sp1 binding which can be displaced by E2 binding 

to E2BS3. However, Sp1 is capable of binding methylated DNA so methylation of LCR2-1 in 

addition to the adjacent E2BS3 CpGs might not confer a selectable disadvantage, hence its 

methylation at a level comparable to E2BS CpGs (Tan et al., 1994, Emili et al., 1994, Harrington 

et al., 1988). 

Methylation of E2BS1, the so called activator E2BS is also associated with increased P97 activity 

which may be due to an uncharacterised complex of transcription factors binding specifically 

to methylated E2BS1 (Vinokurova and von Knebel Doeberitz, 2011). E2BS1 methylation was also 

associated with cervical cancer (Bhattacharjee and Sengupta, 2006a). Our efforts to produce a 

pyrosequencing assay targeting E2BS1 were initially unsuccessful however in light of these 

more recent studies it seems appropriate to pursue the assessment of E2BS1 methylation. 

Whilst several cancers had high level LCR2 methylation, we did not frequently observe high 

levels of methylation of the LCR in precancerous neoplasia however it is possible that high 

level methylation is not required for P97 repression. Nucleosomes form over the LCR and thus 

mediation of HDAC activity by DNA methylation affects transcription at the promoter region as 

a result of topological changes (de Ruijter et al. 2003; Harrington et al. 1988; Stunkel et al. 

2000). Multiple CpGs are present in the promoter and enhancer regions, a single methylated 

CpG in these regions could bind methylated DNA binding proteins and could potentially induce 

sufficient topological changes to repress P97 activity (Stunkel and Bernard, 1999, Kalantari et 

al., 2008a). 

 

9.2.2. Initial Deregulation of Oncogenes 

Increased methylation of the E2 and L1/L2 regions was observed during and after the 

emergence of integrated HPV  in W12Ser7 (Chapter 7: 7.1.2). Integration and the frequent 
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disruption of the E2 ORF are commonly considered to be a mechanism of cellular 

transformation and carcinogenesis (Thierry, 2009). However, many HPV-associated cancers do 

not contain integrated HPV, many more do not contain E2 disrupted integrants and many high 

grade lesions contain both integrated and episomal forms which should be competent at 

producing functional E2 repressor protein (Arias-Pulido et al., 2006, Klaes et al., 1999, Pett and 

Coleman, 2007, Vinokurova et al., 2008, Bhattacharjee and Sengupta, 2006b). Instead, 

integration of HPV into the host genome could be a consequence of chromosomal instability 

caused by aberrant HPV oncogene expression, rather than the cause of initial aberrant 

oncogene expression (Pett and Coleman, 2007, Melsheimer et al., 2004). The initial causes of 

aberrant oncogene expression could be varied and are considerably understudied however 

there is reason to suspect that HPV DNA methylation might be involved (Vinokurova and von 

Knebel Doeberitz, 2011). We had initially hypothesised that heavy E2BS methylation would be 

present in the absence of integration however this was not observed either in vivo or in vitro. 

 

9.3. Methylation as a Biomarker 
During this study, we were mindful of the processes for biomarker development 

recommended by CRUK (Cancer Research UK, 2012d, Cancer Research UK, 2012e). Whilst this 

study was not exclusively designed for biomarker development, many aspects fit well within 

the advised framework for the predictive/prognostic and screening biomarker roadmaps 

(Appendix I). The early stages of biomarker development are common to multiple CRUK 

roadmaps. The rationale section for instance, is identical for each type of biomarker; there 

must be a clinical utility for a biomarker, a reliable assay, and a sample set with which to test 

the biomarker. All of these requirements were at least partially met by this investigation. 

9.3.1. Potential Clinical Utility for a HPV Methylation Biomarker 

Liquid based cytology (LBC) replaced traditional Pap smear testing in England between 2003-

2008 (Albrow et al., 2012). The UK HPV vaccination programme is expected to reduce the 

number of HPV positive LBC samples and therefore the efficiency of cytological screening 

(Wentzensen et al., 2009). Whilst HPV vaccination will substantially reduce the prevalence of 

HPV-associated disease, the current vaccines only target two of the HrHPV types. Due to the 

long time required for carcinogenesis, it is also likely to be many years before there is a 

reduction in cervical cancer rates due to vaccination (McIndoe et al., 1984). 

 HPV testing as a primary screening test would identify a large number of positive samples, 

many of which would be harmless transient infections with a low risk of progression. HPV 
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testing alone is unlikely to achieve a sufficient level of specificity (Unger et al., 2004). In order 

to prevent the treatment of the numerous clinically irrelevant HPV infections, many studies 

have attempted to develop specific CIN biomarkers to be used in conjunction with HPV testing 

(Wentzensen and von Knebel Doeberitz, 2007, Cuschieri and Wentzensen, 2008, Mirabello et 

al., 2012). Using cytology as a triage test for HPV primary testing has also been proposed 

(Naucler et al., 2009, Rijkaart et al., 2012). In this instance, many patients would be identified 

as HPV positive with low grade cytology, hence a prognostic biomarker to predict long/short 

term outcome and to determine a suitable management strategy would be of substantial 

benefit. 

9.3.2. CRUK Biomarker Roadmaps – Biomarker Discovery and Development 

Several components of this investigation were relevant to CRUK “biomarker discovery and 

development” roadmap components (Roadmaps presented in Appendix I). We tested and 

developed assays for potential biomarkers (Chapter 4) and performed studies to address the 

early stages of biomarker development.  

The components of this investigation with relevance to the biomarker roadmaps are shown in 

Table 9.1. We addressed several stage 1 and stage 2 biomarker development requirements. A 

reproducible assay was developed and applied to determine the DNA methylation status of 

various clinical cohorts. In these cohorts methylation was seen to vary among disease stages, 

between cancer and non-cancer, and even among samples of a more homogeneous VIN2/3 

cohort (Chapter 5: 5.1.2 & Chapter 8: 8.2.3.1). Differences in DNA methylation were also 

observed among samples with low grade cytological abnormalities but different longitudinal 

outcomes (Chapter 6: 6.1.3). 

9.3.3. Progress 

Several aspects of the results were consistent with similar published studies. In the CRISP study 

(Chapter 6: 6.1.3), the most informative regions appeared to be LCR2 and L1/L2, and the most 

informative CpGs appeared to be located in the LCR (LCR1-1 and LCR2-3). We also observed 

differences in DNA methylation between samples with normal cytology/severe dyskaryosis and 

cancer (Chapter 5: 5.1.2); in this study, the most informative region appeared to be L1/L2 and 

the most informative CpG was likely to be L1L2-2. The difference in CpGs identified as 

informative in the NSC and CRISP studies is likely the result of study design and sample 

selection. In the CRISP series, grouping was determined by eventual outcome and all samples 

were initially low grade cytology. For the NSC series, grouping was performed with respect to 

cytology grade/cancer.  
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Other biomarker type studies have considered multiple CpGs within the genome and identified 

several informative CpGs or methylation patterns indicative of disease state (Brandsma et al., 

2009, Mirabello et al., 2012). In light of our observation of large differences among clinical 

groups at single CpGs, and published reports using multiple CpGs; any clinically relevant HPV 

methylation biomarker is likely to be comprised of several HPV CpGs considered using an 

algorithm (Brandsma et al., 2009, Mirabello et al., 2012). That different regions/CpGs of the 

HPV genome appear to be more discerning for different purposes (Chapter 5: 5.1.2 & Chapter 

6: 6.1.3) further support the idea that considering multiple CpGs at different regions is a useful 

strategy. 

  

 Biomarker discovery and development (Cancer Research UK 2012) 

 
Prognostic/predictive BM Screening BM 

 
Do you have an assay? Do you have an assay?  

 
Yes Yes 

Requirement Development of an accurate and reproducible assay to measure BM 

Result 
Pyrosequencing assays were shown to be reproducible and accurate (Method 

development) 

Requirement Define BM distribution on specimens representative of the target patient population 

Result The NSC study and VR series achieved this 

Requirement 

Does the distribution of BM values 
indicate a BM with potential clinical 
utility? 

Can the biomarker distinguish between 
subjects with and without cancer? 

Result 

There is variation among disease 
grades (NSC study) and within a group 
of similar samples (VR series) 

There was a significant difference between 
cancer and non-cancer samples (NSC 

study) 

Requirement 
Study the relationship between the BM 

and clinical outcome retrospectively 
Can the BM detect cancer earlier than the 

time of clinical diagnosis?  

Result The CRISP study achieved this  -  

Requirement 
Is there a correlation between the BM 

and clinical outcome? -  

Result 
There was a significant difference 

between outcome groups -  

Table 9.1: How relevant aspects of this investigation relate to the CRUK biomarker roadmaps.  

Components of the CRUK biomarker roadmaps are detailed under the row title “requirement”. Where 
an aspect of this investigation has relevance to this requirement, the details of the study which 
achieved it or the result of the study are detailed under “result”. Pink and blue highlights represent 
the prognostic/predictive and screening biomarker requirements respectively whilst yellow highlights 
indicate commonalities between the biomarker roadmaps. 

 

9.3.4. Potential Application 

Only the very early stages of biomarker development have been performed but methylation of 

HPV DNA shows potential as a biomarker in several contexts. While cytology remains the 
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primary screen to prevent cervical cancer, a prognostic biomarker capable of differentiating 

clinical outcomes would be of particular use for mild/second borderline cytology cases where 

it is difficult to determine a suitable management strategy (Castanon et al., 2012). HPV testing 

has been suggested as a triage for low grade cytological abnormalities (and is being adopted in 

England (Albrow et al., 2012)) but is likely to substantially increase the number of patients 

referred to colposcopy (Moss et al., 2006). HPV triage testing is also being used as a test of 

cure for women treated for CIN. Nonetheless, there is probably a limited scope for a CIN 

biomarker in these instances. 

The greatest potential use of an HPV disease associated biomarker will probably arise once 

HPV testing is implemented as the primary screen for cervical neoplasia. Primary HPV testing 

has been suggested as a more cost effective alternative to primary cytology screening for 

European countries (Kok et al., 2012) and offers greater sensitivity and negative predictive 

value, but at the cost of reduced specificity relative to cytology (Unger et al., 2004, Katki et al., 

2011). As such, primary HPV testing will identify numerous patients with little risk of CIN or 

cancer, especially young patients where HPV infection is highly prevalent (Hibbitts et al., 2006). 

A screening biomarker in this setting would have potential to identify those patients with 

clinically significant infections. HPV testing triaged with cytology has also been suggested as a 

suitable primary screening system, this would identify a large number of HPV positive patients 

with low grade cytology (Naucler et al., 2009, Rijkaart et al., 2012). It has previously proven 

difficult to determine a suitable management strategy for patients with low grade cytology and 

further triage of these patients using a prognostic biomarker may prove clinically useful 

(Castanon et al., 2012). 

Further, a DNA based screening system (i.e. HPV testing triaged with a DNA based biomarker) 

might allow self collected samples to be used (Brink et al., 2006). Self collection has been 

shown to increase the coverage of the screening programme (Gok et al., 2010). An objective 

DNA based primary screening technology might also find application in countries where a well 

established cytological screening programme is not present. 

As the relationship between HPV DNA methylation and HPV-associated disease of the cervix 

appears to be similar for other anogenital sites (i.e. vulva, penis, anus) and other HPV types, 

HPV DNA methylation biomarkers could have a broad clinical utility (Kalantari et al., 2008b, 

Turan et al., 2007, Wiley et al., 2005, Mirabello et al., 2012). Human genes are also 

differentially methylated in association with HPV disease and represent potential biomarkers 

(Eijsink et al., 2012, Wentzensen et al., 2009). Our finding of E2 and/or L1/L2 hypermethylation 

also partially supports the hypothesis that L1 methylation might be a surrogate marker for HPV 
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integration and a potential cervical disease biomarker (Kalantari et al., 2010). Our observations 

would however suggest that methylation analysis of more than one HPV region would be more 

suitable as integrated HPV genomes appear to be hypomethylated at the HPV-human DNA 

boundaries.  

9.4. Further Work 

Further investigation into the biology of HPV is required to fully understand the apparently 

complex relationship between integration, methylation and gene expression. There is a 

potential role for DNA methylation as an initiator of deregulation that should be more 

thoroughly explored and also a potential relationship between HPV methylation and clearance 

of an infection. In a productive infection, methylation of E2BS2 (the origin adjacent E2BS) could 

interfere with genome replication. As such, it is worth considering whether E2BS2 methylation 

is implicated in the transition from a productive to a transformed phenotype, as a precursor to 

integration or is involved with viral clearance; three events where the inhibition of episomal 

replication might be involved. 

The results of this investigation are promising in terms of a biomarker of HPV-associated 

disease, further development is required on a larger sample set to further explore the clinical 

relevance of HPV methylation. 
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Chapter 10. General Conclusion 

This investigation began by assessing several methods for determining HPV DNA methylation. 

MS-PCR and bisulfite sequencing were trialled but the limitations of these assays were quickly 

realised. Eventually, the relatively new technology of pyrosequencing was trialled and adopted 

because it is quantitative, assesses multiple CpGs and in comparison to bisulfite sequencing 

with cloning, is high throughput. Pyrosequencing was shown to be both sensitive and 

reproducible and could be applied to a diverse range of sample DNAs including clinically 

relevant LBC samples. 

Pyrosequencing was applied to various DNAs with two main objectives, to better understand 

the basic biology of HPV DNA methylation and to evaluate the clinical utility of HPV DNA 

methylation. The cell lines and VR series studies allowed several conclusions to be drawn. First, 

we did not see evidence that methylation was an alternative transforming event to HPV 

integration. LCR and E2BS methylation was very rarely observed and the largest determinant 

of HPV methylation state was the presence of integrated HPV. Integrants were typically 

hypermethylated in E2 or L1/L2, but not in regions of the genome adjacent to human DNA, 

similar to the methylation profile of other foreign DNAs inserted into the human genome. In 

general, E2 and/or L1/L2 methylation were negatively associated with E2, E6 and/or E7 mRNA 

transcription and a relationship between integration and gene expression was not successfully 

established. 

To better understand the potential clinical utility of HPV DNA methylation, the relationship 

between HPV DNA methylation and disease state/clinical outcome was evaluated in LBC 

material from the CRISP clinical series and from routine screening, and in biopsy material from 

invasive cervical cancers. These studies demonstrated that there were significant differences in 

DNA methylation among samples with normal cytology, severe dyskaryosis and invasive 

cervical cancer. There were also considerable differences in methylation of the cohort of low 

grade cytology samples with a variety of 6 month outcomes. Methylation differences were 

apparent for samples that were cleared, and those that were persistent and associated with 

either low or high grade disease. Several regions and CpGs of the HPV genome were further 

identified that were the most significantly different among the various disease and outcome 

groups. 

Throughout the investigation, consistent patterns of CpG specific methylation were observed 

which might be explained by subtle positioning differences in reference to the nucleosomal 
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structure, and the subsequent level of access that this structure provides for the cellular 

methylation machinery. 

In summary, the relationship between methylation, integration and gene expression is 

complex and assessment of HPV DNA methylation status does appear to hold potential as a 

triage test for HPV positive women. 
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Appendices 

Appendix I – Cancer Research UK Biomarker Roadmaps 

 

Figure I.a: The CRUK prognostic/predictive biomarker roadmap. 
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Figure I.b: The CRUK screening biomarker roadmap. 
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Figure I.c: The CRUK diagnostic biomarker roadmap. 
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Appendix II – Chapter 4 qPCR Method Validation 
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Figure II.a: The relationship between Ct value and DNA concentration for the E6 qPCR primer pair. 

Included are regression lines for each of the three repeats. Each colour and point shape represents an 
experimental repeat. 
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Figure II.b: The relationship between Ct value and DNA concentration for the E7 qPCR primer pair. 

Included are regression lines for each of the three repeats. Each colour and point shape represents an 
experimental repeat. 
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Figure II.c: The relationship between Ct value and DNA concentration for the E2 qPCR primer pair. 

Included are regression lines for each of the three repeats. Each colour and point shape represents an 
experimental repeat. 
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Figure II.d: The relationship between Ct value and DNA concentration for the HPRT qPCR primer pair. 

Included are regression lines for each of the three repeats. Each colour and point shape represents an 
experimental repeat. One data point was missing from one of experimental repeats. 
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Figure II.e: The relationship between Ct value and DNA concentration for the TBP2 qPCR primer pair.  

Included are regression lines for each of the three repeats. Each colour and point shape represents an 
experimental repeat. One data point was missing from one of experimental repeats. 
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Appendix III – Chapter 4 Pyrosequencing Method Validation 
Appendix III contains the results of 6x CaSki Pyrosequencing analyses used to determine 

variability among runs. 
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Figure III.a: Variation in CaSki E2 methylation for each CpG. 

Bars represent mean values, red circles represent individual values and error bars represent 95% 
confidence intervals. 
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Figure III.b: Variation in CaSki LCR1 methylation for each CpG. 

Bars represent mean values, red circles represent individual values and error bars represent 95% 
confidence intervals 
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Figure III.c: Variation in CaSki LCR2 methylation for each CpG. 

Bars represent mean values, red circles represent individual values and error bars represent 95% 
confidence intervals 
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Figure III.d: Variation in CaSki L1/L2 methylation for each CpG. 

Bars represent mean values, red circles represent individual values and error bars represent 95% 
confidence intervals 
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Appendix IV – Chapter 6 Supplementary Statistics 
Appendix IV contains the statistical analyses that were performed for Chapter 6, section 

6.1.3.1. The so that the chapter was more concise, the mostly non-significant results were 

briefly summarised in the main body of the text. These tables represent supplementary 

information. 

Each region was considered separately with the aim of identifying which CpG was the most 

significantly differently methylated among the three outcome groups. The Bonferroni 

corrected P-value of significance was used (E2 CpG, P=0.006; LCR1 CpG, P=0.017; LCR2 CpG, 

P=0.010; L1/L2 CpG, P=0.013) however comparisons significant at P=0.05 were considered. 

 

 
E2-1 E2-2 E2-3 E2-4 E2-5 E2-6 E2-7 E2-8 

Kruskall-Wallis P-
value 0.463 0.122 0.321 0.012 0.700 0.179 0.123 0.518 

H-value (DF) 
1.54 
(2) 

4.21 
(2) 

2.28 
(2) 

8.85 
(2) 

0.71 
(2) 

3.44 
(2) 

4.19 
(2) 

1.34 
(2) 

  

       
  

ANOVA P-value 0.696 0.112 0.341 0.034 0.674 0.099 0.049 0.336 

F-value (DF) 
0.37 
(2) 

2.40 
(2) 

1.13 
(2) 

3.90 
(2) 

0.40 
(2) 

2.55 
(2) 

3.45 
(2) 

1.14 
(2) 

Equal variances Yes Yes Yes Close Yes Yes Yes Yes 

Normal residuals No No No No No Yes Yes Yes 

  

       
  

  Significant Tukey-Kramer Pairwise Comparison? 

  E2-1 E2-2 E2-3 E2-4 E2-5 E2-6 E2-7 E2-8 

C vs. PL No No No No No No No No 

C vs. PH No No No Yes No No No No 

PL vs. PH No No No No No No Yes No 

Table IV.a: The results of multiple statistical analyses on E2 CpG methylation data.  

The non-parametric Kruskall-Wallis P-values and H-values represent the significant differences among 
the medians of each disease group, higher significance is represented by a lower P-value and a larger 
H-value. ANOVA P-values and F-values are accompanied by degrees of freedom (DF) and two 
statements for violations of the ANOVA assumptions (equal variances and normally distributed 
residuals), here three degrees of success are present, No; a violation (P=<0.01), Close; P=0.01-0.05 and 
Yes; P>0.05. Finally, the results of C vs. Pl, C vs. PH and PL vs. PH Tukey-Kramer pairwise comparisons 
are listed where No = no significant difference in means at P=0.05 and Yes = a significant difference in 
means at P=0.05. 
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LCR1-1 LCR1-2 LCR1-3 

Kruskall-Wallis P-value 0.017 0.639 0.579 

H-value (DF) 8.13 (2) 0.89 (2) 1.09 (2) 

    

 
  

ANOVA P-value 0.014 0.581 0.650 

F-value (DF) 5.02 (2) 0.55 (2) 0.44 (2) 

Equal variances Close Yes Yes 

Normal residuals No Yes No 

    
 

  

  Significant Tukey-Kramer Pairwise Comparison? 

  LCR1-1 LCR1-2 LCR1-3 

C vs. PL Yes No No 

C vs. PH No No No 

PL vs. PH Yes No No 

Table IV.b: The results of multiple statistical analyses on LCR1 CpG methylation data.  

The non-parametric Kruskall-Wallis P-values and H-values represent the significant differences among 
the medians of each disease group, higher significance is represented by a lower P-value and a larger 
H-value. ANOVA P-values and F-values are accompanied by degrees of freedom (DF) and two 
statements for violations of the ANOVA assumptions (equal variances and normally distributed 
residuals), here three degrees of success are present, No; a violation (P=<0.01), Close; P=0.01-0.05 and 
Yes; P>0.05. Finally, the results of C vs. Pl, C vs. PH and PL vs. PH Tukey-Kramer pairwise comparisons 
are listed where No = no significant difference in means at P=0.05 and Yes = a significant difference in 
means at P=0.05. 

 

 
LCR2-1 LCR2-2 LCR2-3 LCR2-4 LCR2-5 

Kruskall-Wallis P-value 0.364 0.069 0.000 0.486 0.269 

H-value (DF) 2.02 (2) 5.36 (2) 18.53 (2) 1.44 (2) 2.63 (2) 

      ANOVA P-value 0.338 0.058 0.000 0.381 0.278 

F-value (DF) 1.13 (2) 3.18 (2) 23.14 (2) 1.00 (2) 1.34 (2) 

Equal variances Yes Yes Yes Close N/A
*1

 

Normal residuals No Close No No No 

      

 
Significant Tukey-Kramer Pairwise Comparison? 

 
LCR2-1 LCR2-2 LCR2-3 LCR2-4 LCR2-5 

C vs. PL No No No No No 

C vs. PH No Yes Yes No No 

PL vs. PH No No Yes No No 

Table IV.c: The results of multiple statistical analyses on LCR2 CpG methylation data.  

The non-parametric Kruskall-Wallis P-values and H-values represent the significant differences among 
the medians of each disease group, higher significance is represented by a lower P-value and a larger 
H-value. ANOVA P-values and F-values are accompanied by degrees of freedom (DF) and two 
statements for violations of the ANOVA assumptions (equal variances and normally distributed 
residuals), here three degrees of success are present, No; a violation (P=<0.01), Close; P=0.01-0.05 and 
Yes; P>0.05. Finally, the results of C vs. Pl, C vs. PH and PL vs. PH Tukey-Kramer pairwise comparisons 
are listed where No = no significant difference in means at P=0.05 and Yes = a significant difference in 
means at P=0.05. 
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L1L2-1 L1L2-2 L1L2-3 L1L2-4 

Kruskall-Wallis P-value 0.122 0.202 0.318 0.493 

H-value (DF) 4.21 (2) 3.20 (2) 2.29 (2) 1.42 (2) 

    
  

  

ANOVA P-value 0.107 0.291 0.277 0.300 

F-value (DF) 2.42 (2) 1.29 (2) 1.34 (2) 1.27 (2) 

Equal variances Yes No No Yes 

Normal residuals Yes No No No 

    
  

  

  Significant Tukey-Kramer Pairwise Comparison? 

  L1L2-1 L1L2-2 L1L2-3 L1L2-4 

C vs. PL No No No No 

C vs. PH No No No No 

PL vs. PH No No No No 

Table IV.d: The results of multiple statistical analyses on L1/L2 CpG methylation data.  

The non-parametric Kruskall-Wallis P-values and H-values represent the significant differences among 
the medians of each disease group, higher significance is represented by a lower P-value and a larger 
H-value. ANOVA P-values and F-values are accompanied by degrees of freedom (DF) and two 
statements for violations of the ANOVA assumptions (equal variances and normally distributed 
residuals), here three degrees of success are present, No; a violation (P=<0.01), Close; P=0.01-0.05 and 
Yes; P>0.05. Finally, the results of C vs. Pl, C vs. PH and PL vs. PH Tukey-Kramer pairwise comparisons 
are listed where No = no significant difference in means at P=0.05 and Yes = a significant difference in 
means at P=0.05. 
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Appendix V – Chapter 8 Supplementary Tables  
Appendix V contains tables with data summarised in the main body of text. The tables are 

supplementary to the analysis performed in Chapter 8. 
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Figure V.a: DNA methylation of the VR series integration groups 0 and X E2 region, separated by gene 
expression assay (RQ assay) and by RQ quartile within each assay.  

* Represents those samples whereby the gene expression assays have failed to produce an RQ result. 
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Figure V.b: DNA methylation of the VR series integration groups 0 and X LCR1 region, separated by 
gene expression assay (RQ assay) and by RQ quartile within each assay.  

* Represents those samples whereby the gene expression assays have failed to produce an RQ result. 
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Figure V.c1: DNA methylation of the VR series integration groups 0 and X LCR2 region, separated by 
gene expression assay (RQ assay) and by RQ quartile within each assay. 

* Represents those samples whereby the gene expression assays have failed to produce an RQ result. 
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Figure V.d: DNA methylation of the VR series integration groups 0 and X L1/L2 region, separated by 
gene expression assay (RQ assay) and by RQ quartile within each assay.  

* Represents those samples whereby the gene expression assays have failed to produce an RQ result. 
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Appendix VI – HPV Methylation Studies, Methodology Summary 
Appendix VI contains a summary of the methodologies used by a number of HPV16 DNA 

methylation studies. 

 

Summary of HPV16 methylation studies 

Authors Methylation assay used Size (n) Quantitative regions Material 

Badal et al 2003 
Restriction enzyme/Bisulfite 
sequencing 81 No LCR, E6 

Biopsy and 
exfoliated 

Kalantari et al 2004 Bisulfite sequencing 115 Yes LCR, L1 Biopsy 
Bhattacharjee et al 
2006 

Restriction enzyme/Bisulfite 
sequencing 72 No LCR 

Biopsy and 
exfoliated 

Hong et al 2008 Pyrosequencing 70 Yes LCR Exfoliated 

Kalantari et al 2008 Bisulfite sequencing 19 Yes LCR, L1 Biopsy*1 
Brandsma et al 
2009 Bisulfite sequencing 13 Yes Genome Exfoliated 

Ding et al 2009 Bisulfite sequencing 53 Yes LCR 
Biopsy and 
exfoliated 

Fernandez et al 
2009 Bisulfite sequencing, MS-PCR 18 Yes, No Genome  *2 
Hublarova et al 
2009 Restriction enzyme 121 No LCR Exfoliated 

Kalantari et al 2010 Bisulfite sequencing 21 Yes L1 Exfoliated 
Piyathilake et al 
2011 Pyrosequencing 75 Yes LCR Exfoliated 
Vinokurova et al 
2011 Bisulfite sequencing 3 Yes LCR LCM biopsy*3 
Mirabello et al 
2012 Pyrosequencing 108 yes Genome Exfoliated 

Patel et al 2012 Pyrosequencing 89 Yes LCR Exfoliated 
Snellenberg et al 
2012 Luminex xMAP 84 Yes LCR 

FFPE and 
exfoliated*4 

Sun et al 2012 EpiTyper/Pyrosequencing 85 Yes LCR, L1 Exfoliated 

TableVI.a: A summary of the methods of a number of HPV16 DNA methylation studies.  

Here, each study is listed along with the main methylation assays used, the sample size of the study 
(n), whether the techniques produced quantitative data, the regions of the HPV genome studied and 
finally the type of clinical material used. Under material, biopsy and exfoliated represent cervical 
biopsies and exfoliated cervical cells as obtained for cytological testing respectively. Notes: *1, 
material was penile biopsy; *2 insufficient detail included in the paper to determine origin of samples; 
*3 cervical biopsies were microdissected into several components; *4 FFPE represents formalin fixed 
paraffin embedded tissue samples. 
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Appendix VII – Published HPV Typing Study 
Appendix VII contains the published VIN HPV typing study (Bryant et al., 2011). 
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