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Abstract 
A discrete linear control theory model of a generic model of a replenishment rule is 
presented. The replenishment rule, which we term a “Deziel Eilon - Automatic 
Pipeline, Inventory and Order Based Production Control System” (DE-APIOBPCS), 
is guaranteed to be stable. From a z-transform model of the policy, an analytical 
expression for bullwhip is derived that is directly equivalent to the common statistical 
measure often used in simulation, statistical and empirical studies to quantify the 
bullwhip effect. This analytical expression clearly shows that we can reduce bullwhip 
by taking a fraction of the error in between the target and actual inventory and 
pipeline (or Work In Progress or “orders placed but not yet received”) positions. This 
is in contrast to the common situation where ordering policies account for all of the 
error every time an order is placed. Furthermore, increasing the average age of the 
forecast reduces bullwhip, as does reducing the production / distribution lead-time. 
We then derive an analytical expression for inventory variance using the same 
procedure to identify the closed form bullwhip expression.  
We assume that a suitable objective function is linearly related to the bullwhip and 
inventory variance amplification ratios and then optimise the PIC system for different 
weightings of order rate and inventory level variance. We highlight two forms of the 
objective function, one where “the golden ratio” can be used to determine the optimal 
gain in the inventory and WIP feedback loop and another that allows the complete 
range of possible solutions to be visualised. It is interesting that the golden ratio, 
which commonly describes the optimum behaviour in the natural world, also 
describes the optimal feedback gain in a production and inventory control system. 
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Introduction 
This paper is concerned with the design of a linear production and inventory control 
system with the use of a z-transform model of a generic replenishment rule. The 
design of a production and inventory control (PIC) system is a worthy pursuit as this 
system is a major contributing factor to the dynamics of, and costs in, a production 
and/or distribution system. An inappropriately designed PIC system can result in huge 
fluctuations in the order rate propagating up the supply chain. Recently academics 
have termed this phenomenon as the “Bullwhip Effect” (Lee, Padmanabhan and 
Whang 1997a and b) and there are many real world supply chain examples in the 
literature, for example Holmström (1997) evaluates bullwhip in a retail supply chain. 
 
Lee, Padmanabhan and Whang (1997a and b) posit that there are five fundamental 
causes of the bullwhip effect. These are non-zero lead-times, demand signal 
forecasting, order batching, gaming and promotions. Here we are concerned only with 
the first two causes. We explicitly neglect the effect of order batching, gaming and 
special promotions, thus our examinations here may be considered to be of a “lower 
bound” nature. That is, our bullwhip expressions are to be considered to be their best 
possible values, to which the other sources are to be added or preferably eliminated at 
source. This is exactly the same approach as that adopted by Chen, Drezner, Ryan and 
Simchi-Levi (2000) and many other contributions to tackling this problem.  
 
The Lee, Padmanabhan and Whang (1997a and b) bullwhip papers have become very 
popular. They clearly state the nature of the problem in a very insightful manner, but 
somewhat surprisingly they fail to highlight known solutions to the bullwhip problem. 
These have been known for a very long time: specifically we refer to the work of 
Deziel and Eilon (1967), Sterman (1989), Wikner, Naim and Towill (1992), John, 
Naim and Towill (1994) although there are numerous other examples, arguably as far 
back as the work of Nobel prize winner for economics in 1978, Herbert Simon (1952) 
and Magee (1958). In the past the “non-zero lead-times” and “demand signal 
forecasting” have been rightly called the Forrester Effect after Jay Forrester (1961) 
and may be considered to be the fundamental structure of the ordering decision. 
“Order batching”, has been called the Burbidge Effect, (Towill 1997) after its first 
prominent investigator. A pragmatic approach to “Gaming” was very elegantly 
described by Houlihan (1987).  
 
The bullwhip effect has received much attention as it creates a business environment 
that can significantly add unnecessary costs, Metters (1997). Chen, Drezner, Ryan and 
Simchi-Levi (2000) have recently been using the ratio of the long-term variance of 
ORders (OR) over the long-term variance of Demand (D) as a measure of the 
Bullwhip effect. Note that we consider here the long-term variance ratio, obtained 
in the limit when time, n, tends to  . This metric has been given the name here of 
the “Variance Ratio” (VR) and is described by Eq 1.  
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This metric can be applied to a single ordering decision or echelon in a supply chain, 
Disney and Towill (2003), or across many echelons in the supply chain, 
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Dejonckheere, Disney, Lambrecht and Towill (2003a). When VROR>1 then we have 
bullwhip, when VROR < 1 then we have smoothing and when VROR=1 we may (but not 
necessarily so) have a pure order-up-to or “pass-on-orders” policy. We use the 
subscript to denote the application of the VROR to different parts of the system. For Eq 
1 this is the ORder rate variance over the Demand variance. However we will also 
investigate the ratio between the Net Stock variance and Demand, i.e. the inventory 
variance. 
 
In this paper we will highlight the fact that it is possible to avoid the bullwhip effect 
as defined by Eq 1 via the proper design of the production and inventory control 
system. Our approach draws on control theory and z-transform techniques. 
Transforms are particularly powerful as they allow the analyst to avoid complicated 
convolution in the time domain and instead to use simple vector manipulation in the 
complex frequency domain. There are also a number of fundamental mathematical 
theorems associated with both the Laplace and the z-transform available for the 
analyst to draw upon to investigate a particular model, some of which we will exploit 
here. We have elected to execute our analysis in discrete time because this exactly 
replicates the conditions of the Beer Game, many operational research models and 
much of industrial practice.  
 
Here we consider the cause of the class of bullwhip known as the Forrester Effect. We 
will show that, by slightly altering the way in which we incorporate feedback on 
inventory levels and Work In Progress (WIP) into the order being placed, we can 
actually eliminate the bullwhip problem, i.e. create a supply chain where the variance 
of the orders placed decreases as the order proceeds up the supply chain. We will also 
investigate the link between bullwhip and inventory variance. Conceptually, it is 
convenient to think of inventory variance and order variance as a trade-off. For 
example, at one extreme, follow demand exactly and hold minimum inventory (that is 
pass-on-orders) or in the other extreme, absorb the demand fluctuations in inventory 
and keep a level order rate (that is level schedule). However, because of lead-times, 
the trade-off is not that simple to evaluate. Furthermore, when placing the order, the 
best policy may be to absorb some of the fluctuations in inventory and follow some of 
the variation in demand. We refer to Towill, Lambrecht, Disney and Dejonckheere 
(2001) for a more conceptual discussion on this trade-off.  
 

The production and inventory control policy 
This paper exploits a generic replenishment rule for controlling orders in a supply 
chain. We term this rule APIOBPCS or an Automatic Pipeline, Inventory and Order 
Based Production Control System after John, Naim and Towill (1994) who first 
placed the model into the IOBPCS family database (Towill, 1982). The importance of 
this latter reference is that it includes examples of best practice taken from a range of 
applications. This rule is not new; many versions of it can be seen in the literature, for 
example see Deziel and Eilon (1967) and Simon (1952). Hence, placing it into the 
IOBPCS database allows us to readily access previously known research results. 
APIOBPCS can be expressed in words as follows; 
“Let the production targets (or replenishment orders) be equal to the sum of; average 
demand (exponentially smoothed over Ta time units), a fraction (1/Ti) of the 
inventory difference in actual Net Stock compared to target net stock and the same 
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fraction (1/Tw) of the difference between target Work In Progress (WIP) and actual 
WIP”.  
This generic replenishment rule is particularly powerful as it encompasses: 
 
 the way people actually play the Beer Game, Sterman (1989), Naim and Towill 

(1995) and Riddalls and Bennett (2002) 
 the capability of representing Lean, Suzaki (1987), Agile and Leagile, Naylor, 

Naim and Berry (1999) supply chains, Towill, Lambrecht, Disney and 
Dejonckheere (2001) 

 a general case of order-up-to policies and many variants of it, Dejonckheere, 
Disney, Lambrecht and Towill (2003b) 

 an approximation to (and an improvement on) the HMMS algorithm, 
Dejonckheere, Disney, Lambrecht and Towill (2003c)  

 industrial usage by several of our industrial partners, for example by the real 
company with a fictitious name (WMC- World Class Manufacturer) reported in 
Lewis, Naim and Towill (1997) 

 
We start our discussion of the design of a PIC system from the block diagram (Nise 
1995) shown in Figure 1. We will not discuss the model building activities used to 
generate this z-transform block diagram of the replenishment rule due to the need for 
brevity; we refer to Disney and Towill (2002) and Disney (2001) for more details on 
this aspect. 
 

 
 

Figure 1. Block diagram of APIOBPCS  
 
After manipulating the block diagram, we gain the following transfer functions (for 
the ORder rate and Net Stock levels as a function of the Demand) that completely 
describe the linear dynamic behaviour of our PIC system. Note that we will refer to a 
transfer function by capital letters followed by (z) and its time domain image by lower 
case letters followed by (n).  
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where; 
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where; 
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Inspection of Eq 2 and 3 allows us to reflect on the dimensions of the solution space. 
We have five parameters that describe the systems behaviour. These are; 

 Tp, the production or distribution lead-time, is modelled here as a pure time 
delay. Tp is a positive real integer or zero, 

 pT , our estimate of the average production lead-time, a positive real number 
or zero, 

 Ta, the average age of the exponential forecast. Note, that we update our 
forecast every time period based on recent history, i.e. no knowledge of future 
events is required and we use this new forecast, not an old one. It is the 
average age of the data used in the forecast. Ta is a real number greater than  
-0.5 as this guarantees a stable response, Brown (1963). 

 Ti, the fraction of the discrepancy between target net stock and the actual net 
stock that is incorporated into the order. Ti is a real number usually greater 
than 0.5. 

 Tw, the fraction of the discrepancy between target WIP levels and the actual 
WIP levels that is incorporated into the order. Tw is a real number usually 
greater than 0.5. 

 
However, the problem is not as complicated as it appears at first sight. We can 
legitimately reduce the number of dimensions of the solution space via the following 
steps; 
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 Setting pT equal to Tp. That is, in the physical situation we assume that our 

estimate of the production lead-time is actually correct. This is appropriate as 
John, Naim and Towill (1994) have shown that this is required in order to 
ensure inventory levels “lock-on” to their target values in response to step 
change in demand. They use the continuous time Laplace transforms for this 
analysis, but the same argument still holds in discrete time with z-transforms 
as shown in Disney (2001).  

 Ensuring, via good design, that the system is stable. “Is the system stable?” is 
a fundamental question to ask with regard to the performance of a dynamic 
system. By a stable system is meant a system that will react to a disturbance in 
the input signal in a controlled manner, and after some time (with no input) 
will return to its initial conditions. By contrast an unstable system will 
oscillate, with ever increasing amplitude, in response to any disturbance in the 
input signal over time. Or it will immediately grow exponentially without 
bound. Thus it is essential that a PIC is fundamentally stable.  
 
It is well known that a system is stable if all its (often complex) roots lie 
within the unit circle in the z-domain, Jury (1964). It is possible to determine 
algebraically the nessecary conditions needed to guarantee stability. Disney 
and Towill (2002) have presented a procedure to identify that the stability 
boundary for APIOBPCS with a particular (pure) time delay in discrete time. 
Riddalls and Bennett (2002) have recently done similar work in continuous 
time. It can also be shown that for a given production lead-time (Tp) the 
stability of the system only depends on Ti and Tw. Furthermore, setting Tw to 
the same value as Ti (that is recover WIP errors at the same rate as inventory 
errors) will always produce a stable dynamic response.  

 
Thus, by setting pT = Tp and Tw=Ti, we reduce the solution space from five to three 
dimensions, and have a system that has some extremely desirable properties. When 
we set Tw=Ti, we use the term DE-APIOBPCS to describe the systems structure. We 
use this term to acknowledge the fundamental breakthrough made by Deziel and Eilon 
(1967). They studied a variant of APIOBPCS (with a slightly different order of events 
that unfortunately resulted in inventory drift, which we have avoided here) when 
Tw=Ti. This sufficient condition for stability, Tw=Ti, can be readily seen from the 
characteristic equation 

 
     0543  aazzaz Tp         (4) 

 
in which a3 is always less then unity, a5 becomes zero when Tw=Ti and a4 is less than 
unity if Ti=Tw>0.5, putting all the roots of the characteristic equation inside the unit 
circle. Thus the DE-APIOBPCS solutions (APIOBPCS with Tw=Ti) are guaranteed to 
be stable. Furthermore, it is known that time domain responses of DE-APIOBPCS 
will only contain exponential terms, which means we will avoid costly oscillations in 
the order rate (when 1Ti ). This is a very desirable property to have in a PIC 
system. Thus in the rest of the paper we will focus exclusively on the Deziel-Eilon 
solutions to the APIOBPCS model. 
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Calculating the variance ratios 
We wish to understand how our ordering policy will react to a demand pattern that is 
an independently and identically distributed stationary stochastic variable. Disney and 
Towill (2003) have explored the relationship between the “long-run” variance ratio 
measure, noise bandwidth and the sum of the squares of the system’s impulse 
response using the fundamental relationships identified by Tsypkin (1964) and 
previously exploited in a simulation based approach for production and inventory 
control by Deziel and Eilon (1967). A summary of Tsypkin’s relationships between; 

 the variance ratio, 
 its statistical definition, 
 the system transfer function via the area under the systems squared frequency 

response F(j ); where j is the imaginary number 1  and   is frequency 
of the input, 

 the noise bandwidth WN,  
 and the sum of the systems squared impulse response, )(2 nf , in the time 

domain, 
under the assumption that the demand (input) is an independent and identically 
distributed random variable (or pure white noise in control engineering terms), is as 
follows, Tsypkin (1964); 
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Thus the sum of the square of the discreta of the system order rate impulse response 
in the time domain is equal to the common bullwhip measure. For simplicity, we also 
assume, without loss of generality, that the variance of the demand signal is unity.  
 
The variance ratio expression can also be arrived at by other methods. For example, as 
Grubbström and Andersson (2002) have highlighted, the variance ratios may also be 
obtained by using Cauchy’s contour integral. Alternatively summing all of the 
residues inside the unit circle also yields the variance ratio expressions. They show 
that it does not matter which distribution the random variable is drawn from. 
Grubbström and Andersson (2002) also highlight how the variance builds up over 
time using the z-transform multiplication theorem.  
 
A much more pragmatic approach is to simply create a spreadsheet model of the 
ordering policy and define the input as an impulse and sum the square of the order 
rate to arrive at an accurate measure bullwhip in very little computational time. In a 
“bullwhip explorer” (Lambrecht and Dejonckheere, 1999a and b) this is a far easier 
model to explore than a model with stochastic demands.  

The bullwhip ratio 
Our procedure for determining the bullwhip expression is as follows. Departing from 
the Order Rate transfer function (Eq 2), we set TppT   and Tw=Ti in order to reduce 
the complexity of the mathematics and ensure our system has some nice properties 
(such as stability) as discussed earlier. Under these conditions the constants in Eq 2 
become; 
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which immediately simplifies Eq 2 to; 
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We then take the inverse z-transform to obtain the following time domain impulse 
response, 
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And finally we exploit Tsypkin’s relation (Eq 5) to yield the bullwhip expression, 
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Inspection of Equation 8 shows  

 that to reduce the Bullwhip Effect the production lead-time should be made as 
small as possible, as it only occurs in the numerator with positive coefficients. 
This result verifies the value of the Time Compression Paradigm, Towill 
(1996).  

 bullwhip is monotonically increasing in Tp. This can be seen from the 
expanded bullwhip expression, where for Ti>0.5 the coefficients of the two 
monotonically increasing expression in Tp are positive. 

 bullwhip is symmetrical about Ta=Ti-1 and Ti=Ta+1 as exchanging Ta+1/2 
for Ti-1/2 and vice versa changes nothing.  

 bullwhip is monotonically decreasing in Ta and Ti as all five terms are 
monotonically decreasing in Ta and/or Ti.  

 furthermore, there is only one minimum (of zero) which is at Ta=Ti= , the 
level scheduling case. 
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Figure 3 enumerates Eq 8 
 

 
 

Figure 2. Bullwhip produced when Tp=3 
 
Figure 2, confirms that bullwhip does reduce when Ta and Ti increase. Recognising 
that variance amplification exists if the VROR>1 it is easy to show, by solving VROR=1 
for Ti and selecting the relevant root, that the following boundary exists for the 
bullwhip effect; 
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This boundary may be shown graphically as in Figure 3 where the region of 
smoothing means VROR<1, and the region of Bullwhip means VROR>1.  

The inventory variance ratio 
The variance of the net stock or inventory levels may be determined as follows. 
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Figure 3. The Bullwhip boundary for DE-APIOBPCS  
 
Here we can see the structure of the time domain response, fNS(n). There are two 
terms. The first is the inverse transform of an accumulation of the Order Rate (Eq 6), 
delayed by Tp+1 time units. The second term is a negative unit step function 
beginning at time n=0. The inverse transform of the accumulated Order Rate, the first 

term, 
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after accounting for the delay function (z-(Tp+1)), (11) becomes 
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This accounts for the first term of Eq 10 and adding in the negative unit step yields; 
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Thus we may build up the long run variance amplification ratio between the Net Stock 
and Demand as follows;  
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(14) converges to the following closed form; 
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Inspection of Eq 15 shows that; 

 the inventory variance is always greater than 1 since Ti>0.5, i.e. inventory 
levels will always vary more than the demand signal 

 as the coefficients of Tp are positive, the inventory variance increases as the 
production lead-time increases 

 inventory variance is symmetrical about Ta=Ti-1 and Ti=Ta+1 
 numerical investigations reveal that minimum inventory variance occurs when 

Ta  and Ti=1 or when Ta=0 and Ti  
 

Eq 15 may be shown graphically as in Figure 4.  
 

 
 

Figure 4. Inventory variance for different Ta and Ti when Tp=3 
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The Golden Ti 
The variance ratios we have identified in the previous sections are particularly useful. 
For example the inventory variance is often used inside probability density functions 
in inventory literature to investigate aspects such as the expected inventory holding 
and backlog costs per period, Zipkin (2000). Alternatively the probability density 
function may be used to gain understanding of customer service metrics such as the 
“fill-rate” or “expected shortages”, Disney, Farasyn, Lambrecht, Towill and van de 
Velde (2003).  
 
The same probability density function approach can be used with the order rate 
variance expression to investigate measures such as the proportion of products 
manufactured in a 40-hour working week against those that have been subcontracted 
or produced in over-time working at a premium. This type of approach has recently 
been exploited by Disney and Grubbström (2003) and Chen and Disney (2003). 
However, most probability density functions are very complex and essentially non-
algebraic. So although results obtained through them are completely analytical and 
exact they are often very hard to manipulate in further analysis. Hence, we elect here 
to concern ourselves with a cost function that solely consists of the variance ratios. In 
other words we assume here for simplicity that the costs in a particular situation are a 
linear function of the bullwhip and inventory variance expressions.  
 

Forecasting with minimum mean squared error 
We have shown that the bullwhip is a monotonically decreasing function of Ta and Ti. 
We also know from enumeration of Eq 15 that the minimum inventory variance 
occurs when Ta  and Ti=1 or when Ta=0 and Ti . It is easy to realise that if 
we were to add these two variances together then the optimum values of Ta and Ti 
would be either Ta  and Ti would be something greater than 1 or Ta something 
greater than 0 and Ti . This is verified in Figure 5 for the case when Tp=3. As it is 
also well known that Ta  will also give the minimum mean squared error forecast 
of future demand (as this setting will give its conditional expectation), thus it makes 
sense to exploit this fact and simplify our bullwhip and inventory variance 
expressions as follows; 
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These expressions have been previously presented by Dejonckheere, Disney, Farasyn, 
Janssen, Lambrecht, Towill and Van de Velde (2002) where these bullwhip and 
inventory variance expressions were coupled to the fill-rate customer service metric. 
They showed that 90% of bullwhip could be eliminated with only a quarter of a 
period’s worth of inventory holding to maintain the fill-rate. 
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Figure 5. Bullwhip plus inventory variance 
 
Now let us consider the following objective function; 
 

     
12

22

@@ 


  Ti

wxTiTpTpTi
xVRwVROF TaNSTaOR              (18) 

 
Differentiating with respect to Ti gives us the gradient (23). Notice that the lead-time, 
Tp, has now dropped out of the equation.  
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Solving for zero gradient and selecting the relevant root yields the optimum Ti to 
minimise the weighted sum of bullwhip and inventory variance. It is, 
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Now when x=1, so unit Net Stock variance is added to a weighted bullwhip variance, 
the optimal Ti to minimise the objective function is given by, 
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that we will recognise as having the same form as the irrational fraction, “The Golden 
Ratio”. So, the optimal Ti has many previously known mathematical properties, such 

as; wOptTiOptTi  1
2

1  and if w is an integer then 2
1OptTi has the same decimal 

points as 1OptTi . We find it interesting that the number that describes the optimal 
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behaviour in the natural world also turns up in the design of a production planning 
and inventory control policy. Indeed the Golden Ratio, or the Golden Section as it is 
also called, is found in a large number of places, Knott (2003). Knott (2003), has 
developed and maintains a very extensive website on the subject and notes that the 
Golden ratio describes; 
 the optimal placement of seeds, petals and leaves in growing plants 
 the optimal ratio of male and female bees, 
 the logarithmic spiral of a snail’s shell, 
 many aspects of trigonometry, 
 many forms of architecture and art,  

and is claimed to be the most irrational number as it has the simplest continued 
fraction, 1+(1/(1+(1/(1+(1/(1+(1/(…. 
 
For illustration we have simulated the “golden” response (i.e. Ti set to the Golden 
Ratio) to an i.i.d. random demand pattern when Tp=1. The frequency histograms refer 
to the simulation of 10,000 time periods. We can see that after 10,000 the statistical 
process is reasonably close to the theoretical values of Bullwhip (0.447) and inventory 
variance (2.171). Simulating for a longer time period will obviously reduce this error. 
 
 

 
 

Figure 6. Sample simulation of the “golden” solution 
 

An alternative objective function 
Another way to look at the objective function (Eq 18) is to consider the trade-off as a 
convex combination of a single weight, w. This may be achieved by replacing x with 
(1-w) in Eq (20), producing; 
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This form is especially convenient because we can see the OptTi2 across all weighting 
functions (and all lead-times and all values of Ti) as shown in Figure 7.  
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Figure 7. Optimal Ti for different weights on objective function form 2  
 
From Figure 7 we can see that the optimal Ti remains low until w>0.9. After which 
the optimal Ti rises very quickly. Furthermore, plotting optimal Ti as a reciprocal 
illustrates the complete range of recommended Ti (from 1 to  ). Figure 7 is also very 
nearly linear in the range w=0.2 to 0.8, where the following equation may be used (it 
resulted from a regression analysis, R2=0.999); 
 

w
OptTi

719.0974.0
1

2
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We can see that as the capacity related costs become more important, the more Ti is 
needed to minimise the linear variance related cost structure we have defined. 
However if to minimise inventory costs is more important than to minimise bullwhip 
costs, a lower Ti is required. This translates into the following management insight; 
“if your business suffers from bullwhip related costs to a greater extent than inventory 
related costs then use a proportional controller (Ti) in your replenishment rule. Use 
the Golden Ratio to tune this controller”.  
 

Conclusions 
We have studied a generic PIC system. We selected a subset of a generic 
replenishment rule with some “nice” mathematical properties that meant that the PIC 
was guaranteed to be stable. We derived analytical expressions for the bullwhip and 
inventory variance produced by the PIC system.  
 
Analysis of these variance ratios showed us that Bullwhip could be avoided with our 
policy. We have highlighted the bullwhip boundary as a function of the feedback 
gain, Ti. However a zero inventory scenario cannot be achieved with our policy. We 
then assumed that costs in a given setting were a linear function of the variance ratios 
and proceeded to analyse two forms of the cost function. In the first form a simple 
weight was given to the bullwhip expression. We then found that the closed form 
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expression for the optimum Ti (“the golden Ti”) that minimises the sum of the 
weighted variance ratio was of the same form as the Golden Ratio. With the second 
form of cost function we could visualise the complete design space at once, but the 
closed form was not so elegant. 
 
There are clearly many other criteria that could be used to design PIC systems. 
Immediately obvious ideas are; 
 
 minimising expected costs in the next period by using the variance ratios in 

probability density functions and assigning costs to inventory holding and 
backlogs, 

 maximising the Net Present Value of the economic consequences of the cash 
flows through time created by an ordering system. There is a long history of work 
emanating from Linköping Institute of Technology (Grubbström 1967 and 1991) 
that has observed and exploited the fact that replacing the complex frequency (s or 
z) with the discount rate (or one plus the discount rate in discrete time) in the 
transfer function of the cash flow yields the Net Present Value of the cash flow.  

 incorporating customer service measures such as availability (or the probability of 
inventory being available from the shelf at the end of each period) and fill rates 
(percentage of demand shipped on time) into the bullwhip and inventory variance 
trade-off. 

 
Of course, the natural progression of this paper would be to compare the “Golden Ti” 
to situations with more complicated and arguably more realistic (but still not 
necessarily complete) cost functions to test its performance. These ideas will be the 
subject of future research. 
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