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Abstract

In the context of an autoregressive panel data model with fixed ef-
fect, we examine the relationship between consistent parameter estima-
tion and consistent model selection. Consistency in parameter estimation
is achieved by using the tansformation of the fixed effect proposed by Lan-
caster (2002). We find that such transformation does not necessarily lead
to consistent estimation of the autoregressive coefficient when the wrong
set of exogenous regressors are included. To estimate our model consis-
tently and to measure its goodness of fit, we argue for comparing different
model specifications using the Bayes factor rather than the Bayesian in-
formation criterion based on the biased maximum likelihood estimates.
When the model uncertainty is substantial, we recommend the use of
Bayesian Model Averaging. Finally, we apply our method to study the
relationship between financial development and economic growth. Our
findings reveal that stock market development is positively related to eco-
nomic growth, while the effect of bank development is not as significant
as the classical literature suggests.
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1 Introduction

For a panel data linear regression model with lags of the dependent variable
as regressors and agent specific fixed effects, the maximum likelihood estimate
(MLE) of the common parameter is inconsistent when the number of time pe-
riods is small and fixed regardless of the cross section sample size. Nerlove
(1968) showed in Monte Carlo simulations that the MLE is severely downward
biased. Nickell (1981) derived the analytical form of the bias for the first order
autoregression (AR) model. This problem, known as the “incidental parameter
problem”, due to the fixed effect parameter (incidental parameter), whose di-
mension will increase with the cross section sample size has been reviewed by
Lancaster (2000). The current econometric literature focuses mainly on deriv-
ing consistent estimator for the common parameter. See, for example, Arellano
and Bond (1991), Blundell and Bond (1998), Gourieroux et al. (2006) and Hahn
and Newey (2004). Little attention is given to model specification comparison
in the presence of incidental parameter.

Cox and Reid (1987) found that when the nuisance parameter1 is informa-
tion orthogonal2 to the common parameter, it is more preferable to construct
a statistical test for the common parameter, especially for exponential fam-
ily likelihood models, based on the conditional likelihood given the maximum
likelihood estimaor for the nuisance parameter than on the profile likelihood.
Following the line of information orthogonalization, Lancaster (2002) proposed
a Bayesian procedure to obtain consistent inference on the common parameter.
Compared to the classical methods, it is relatively straightforward to unify pa-
rameter estimation and model comparison under a Bayesian framework. In this
paper, we argue that parameter estimation and model comparison should not be
treated as two different issues, which is the predominant practice in the linear
dynamic panel model literature. Our arguments are as follows. First, from an
application point of view, researchers are often confronted with a large set of
possible regressors in the panel model. In such situations, it is hard for indirect
inference and moment methods to examine what model specification performs
better than the others and whether some regressors can robustly explain the
dependent variable. Second, as shown in this paper, likelihood based correction
approach (including Bayesian) will not always lead to consistent estimation of
the common parameter when the wrong set of exogenous regressors are in-
cluded. We show that consistent estimation is the result of certain regularity
conditions. Since model uncertainty can increase our estimation risk, we should
consider comparing different model specifications. We find that consistency in
estimation and consistency in model selection are interrelated. If we base our
model selection decision on the Bayes factor, which is derived from Lancaster’s
reparameterization of the fixed effect, we tend to pick up the true model when
the cross section sample size increases. However, the model selection perfor-
mance of the Bayesian information criterion (BIC) based on the biased MLE

1Incidental parameter refers to the nuisance parameter which is of less interest to the
researcher and whose dimension will increase with the sample size.

2See the appendix for the details.
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is very poor both for small and big sample sizes. The BIC will asymptotically
choose the wrong model for some situations3. Thirdly, for small sample size,
when model uncertainty is substantial, we argue for the use of Bayesian model
averaging (BMA) to reduce estimation risk4. Apart from the theoretical results,
in the end of the paper we provide an example of finance and economic growth
to show that our method is flexible enough to accommodate real world problems
and handle issues like unbalanced panel.

The plan of the paper is as follows. Section 2 summarizes our model and
the posterior results. Section 3 describes our motivation to compare different
model specifications and shows when our posterior estimators will be consistent.
Section 4 presents the conditions under which the Bayes factor and the BIC
can lead to consistency in model selection followed by a short description of
the BMA method. In section 6, we carry out simulation studies to check our
Propositions. Section 7 then gives an example of application in finance and
growth before Section 8 concludes.

2 The Model and the Posterior Results

Consider the model
yi,t = fi + yi,t−1ρ + x′i,tβ + ui,t,

i = 1 . . . N, t = 1 . . . T.
(1)

Here we are investigating the case of first order autoregression linear panel,
where ρ is a scalar and xi,t is a k × 1 vector. Denote ui as [ui,1, ui,2, . . . , ui,T ]′

and Xi = (xi,1, xi,2, . . . , xi,T )′. We assume ui|fi, Xi ∼ N(0, σ2IT ) where IT

is an identity matrix with dimension T . Our assumption states that the error
term is homoscedastic and our regressors, Xi, are strictly exogenous. It is well
known in dynamic panel model literature, see Nickell (1981) and Lancaster
(2000), that for a fixed T (the number of observations for each economic agent),
the maximum likelihood estimators of ρ, β and σ2 will not be consistent even
if N (the number of economic agents) tends to infinity. This is due to the
incidental parameter f ′is, whose number will increase with the cross section
sample size, N . Let us denote the common parameter θ = (ρ, β, σ2)′, whose
dimension will not change with the sample size. To obtain consistent estimators
for θ, Lancaster (2002) suggested an information orthogonal reparameterization
of the fixed effect fi = f(θ, gi) such that the new fixed effect (gi) is information
orthogonal to the rest of the parameters (θ)5. However, this idea cannot lead
to any valid reparameterization. By drawing analogy from two simpler cases,
Lancaster instead found the following way to reparameterize the fixed effect:

fi = gi exp [−b (ρ)]− 1
T

ι′Xiβ, (2)

3For example, consider two models with the same exogenous regressors: one has the lag
term of the dependent variable as a regressor and one does not. The BIC will asymptotically
choose the model with the lag when the true model should be the one without the lag.

4Here it refers to the risk of using the estimates from a misspecified model.
5See the appendix for the details.

3



where b (ρ) is defined as

b(ρ) =
1
T

T−1∑
t=1

T − t

t
ρt, (3)

Let us transform our model accordingly as

yi = gi exp [−b (ρ)] ι + yi ρ + HXiβ + ui, (4)

where yi = [yi,1, yi,2, . . . , yi,T ]′, yi = [yi,0, yi,1, . . . , yi,T−1]′ and H is the demean
matrix of dimension T × T equal to IT − ιι′

T with ι as a vector of ones. Note
that yi,0 is viewed as known and our posterior results will be conditional on it.

The structure of the prior distribution for θ and g = (g1, g2, ..., gN )′ is

p (g, θ) = p(g, ρ, σ2, β) = p(g1)...p(gN )p(ρ)p(σ2)p(β|σ2)

∝ 1
σ2

I(−1 < ρ < 1)p(β|σ2),
(5)

which means we adopt independent improper priors for parameters other than
β and ρ. The prior of ρ follows a uniform distribution between −1 and 1, which
is the stationary region.

In regard to the conditional prior of β given σ2, we want to have a proper
distribution so that Bayes factors can lead to the selection of the true model as
the cross section sample size increases. We can see this point more clearly later
in Section 4. The prior we use takes the following g-prior form, proposed by
Zellner (1986):

β|σ2 ∼ N

(
0, σ2(η

N∑
i=1

X̃ ′
iX̃i)−1

)
, (6)

where X̃i = HXi. The strength of the prior depends on the value of η. The
smaller the value is, the less informative is our prior. We will give more details
about the choice of η later. With the parameter priors given in (5) and (6), we
can derive the posterior distributions of the parameters shown in Proposition
2.1.

Proposition 2.1. The posterior distributions for the parameters in our model
will take the following form:

gi|Y, yi,0, σ
2, ρ ∼ N

(
eb(ρ) ι

′(yi − yi ρ)
T

,
σ2

T
exp[2b(ρ)]

)
, (7)

β|σ2, ρ, Y, Y0 ∼ N

 1
η + 1

(
N∑

i=1

X̃ ′
iX̃i

)−1 N∑
i=1

X̃ ′
iw̃i, σ

2

(
(η + 1)

N∑
i=1

X̃ ′
iX̃i

)−1
 ,

(8)

σ2|ρ, Y, Y0 ∼ IW (N(T − 1), A), (9)
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ρ|Y, Y0 ∝ I(−1 < ρ < 1) exp[Nb (ρ)] |A|−
N(T−1)

2 , (10)

where w̃i = H(yi − yi ρ), A =
N∑

i=1

w̃i
′w̃i − 1

η+1

N∑
i=1

w̃′iX̃i

(
N∑

i=1

X̃ ′
iX̃i

)−1 N∑
i=1

X̃ ′
iw̃i,

and Y0 is the collection of the initial observations from each economic agent
while Y is the vector of observations excluding the initial observations.

We can see that the posterior distributions of the parameters have a hierar-
chical structure. The conditional posterior distributions of all the parameters
other than ρ are commonly known standard distributions, while at the bottom
of the hierarchy the posterior distribution of ρ is not standard. To make draws
of all the parameters from the posterior distributions, we first need to draw
from this nonstandard posterior distribution of ρ. One way to do it is as fol-
lows. We first split the interval (−1, 1) into small partitions −1, ρ1, ρ2, . . . , 1 and
then use some deterministic numerical method (such as Gaussian quadrature)
to calculate the value of the cumulative distribution function at each partition
point, i.e. F (−1) , F (ρ1) , F (ρ2) , . . . , F (1). Next we draw a random variable
u from uniform distribution U [0, 1] and deliver F−1 (u) as a draw of ρ from the
nonstandard distribution. F−1 (u) is obtained from piecewise cubic Hermite
interpolation, see for example Süli and Mayers (2003).

3 Motivation to Compare Different Model Spec-
ifications

Lancaster (2002) showed that without model misspecification if we adopt the
fixed effect reparameterization and the prior p(g, θ) ∝ 1

σ2 , the mode of the
marginal posterior for θ will be consistent. The difference adopted here is the
g-prior we use for p

(
β|σ2

)
in (6). As long as we specify η as a function of the

cross section sample size N such that lim
N→∞

η (N) = 0, our posterior results will

be identical to Lancaster’s for big cross section sample size. However, we cannot
expect our model will always be correctly specified, i.e. the true regressors used
to generate the data are always included in the regression. Here in proposition
3.1 we show the conditions under which we can obtain consistent posterior
estimates for σ2 and ρ even if we include the wrong set of exogenous regressors.

Proposition 3.1. The posterior estimates from (9) to (10) are consistent if we
have either

−(T − 1)h2(β, ρ)
h3(β)

= h(ρ) (11)

or
h2(β, ρ) = h3(β) = 0, (12)

where

h (ρ) =
T−1∑
t=1

T − t

T
ρt−1 =

d b(ρ)
d ρ

. (13)
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h2(β, ρ) = plim
N→∞

1
N

 N∑
i=1

y′i HXiβ −
1

η + 1

N∑
i=1

y′i HXi

(
N∑

i=1

Xi
′HXi

)−1 N∑
i=1

Xi
′HXiβ

 ,

h3(β) = plim
N→∞

1
N

 N∑
i=1

β′X ′
iHXiβ −

1
η + 1

N∑
i=1

β′X ′
iHXi

(
N∑

i=1

Xi
′HXi

)−1 N∑
i=1

Xi
′HXiβ

 .

(14)

Here X are the regressors in the true model and X denote the regressors we
actually include in our (candidate) model, while ρ denotes the true value of ρ.

Note that 0 < h(ρ) < T−1
2 and it is monotonically increasing for ρ ∈ (−1, 1).

For h2(β, ρ) = h3(β) = 0 to be satisfied, it is enough that the true regressors X

are a subset of X. For
−(T−1)h2(β,ρ)

h3(β) = h(ρ) to hold, one example could be that
no serial correlation and collinearity exist among the true regressors and the
included regressors have zero correlation with the true regressors.6 Proposition
3.1 tells us that if neither (11) nor (12) is satisfied, our posterior estimates of σ2

and ρ will not be consistent even if we have a large cross section sample size when
the number of observations for each economic agent is small in the panel. This is
one of the major reasons why we need to compare different model specifications.
Due to Bartlett’s paradox7, if we want to compare different models, we need to
have a proper prior8 for parameters not common to all the models. That is why
we adopt the prior for β in (6).

In empirical applications, such as that of the growth theory, we will often
have many possible regressors suggested by different theories to be included in
the regression in (1). In a case like this, the number of potential exogenous
regressors will be large. In addition to the concern over inconsistent estimation,
we may want to know which combination of these regressors can best explain
our data. The predominant GMM method in the literature to estimate the fixed
effect model provides little information in this respect. Classical diagnostic tool
such as R-square is not well defined. In a Bayesian framework such as ours,
we can evaluate how good the model fits the data by looking at the posterior
model probability. In our context, different models are defined by different
combinations of the regressors and by whether or not we have a lag term of the
dependent variable in the regression. So the total number of models is 2K+1,
where K stands for the number of all the potential exogenours regressors. The

6The proof is trivial and available upon request from the author, though the author admits
that such case sounds impractical in reality.

7See for example Poirier (1995). To summarize it briefly, the problem here is that under
an improper prior (the integral of which is not finite), the most restricted model will have the
highest posterior model probability no matter whether it is true or not.

8Our prior is informative and proper in the sense that we have introduced the parameter
η and η 6= 0.
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posterior model probability of model i is calculated as

p (Mi|Y, Y0) =
p (Mi) p (Y |Y0, Mi)

p (Y |Y0)

=
p (Mi) p (Y |Y0, Mi)∑2K+1

j=1 p (Mj) p (Y |Y0, Mj)
.

(15)

where p (Mi) is the prior model probability. Here we just assume all the models
are equally possible a priori such that the posterior model probability only
depends on the marginal likelihood, p (Y |Y0, Mi) , j = 1, 2, . . . , 2K+1. We can
see in (15) that to evaluate the posterior probability of a single model we have to
calculate the marginal likelihood of all the models. However, from the derivation
of Proposition 2.1, we can only know the product of the marginal likelihood and
the posterior of ρ:

p(ρ|Y, Y0)p(Y |Y0) =
1
2
I(−1 < ρ < 1)

(
η

η + 1

) k
2

|A|−
N(T−1)

2

Γ
[
N(T − 1)

2

]
T−

N
2 (π)−

N(T−1)
2 exp (Nb(ρ))

(16)

To calculate the marginal likelihood, we can use the same numerical tech-
niques as we calculate the posterior cumulative distribution function of ρ. By
integrating ρ out of the product, we can obtain p(Y |Y0, Mi). If the total number
of models is not large, say less than 220, it is possible to use any mainstream
PC of today to calculate the marginal likelihood of all the models and then
use (15) to find the posterior model probability for each of them. For large set
of models beyond the computation power of today, we can use the method of
Markov Chain Monte Carlo Model Composition (MC3) developed by Madigan
and York (1995).

4 Consistency in Model Selection

In this section, we show that in our setting, how the posterior model probability
can lead us to locate the true model when the cross section sample size tends
to infinity and certain regularity conditions are met. That is, if Y is indeed
generated by some combination of the potential regressors in the linear model,
the posterior model probability of this combination, which is obtained by inte-
grating out ρ in (16), will tend to 1 when N tends to infinity. In the end of this
section, we will also analyze whether the Bayesian information criterion (BIC)
based on the biased MLE can lead to consistency in model selection.

In the simpler case in which the true value of ρ is known to be zero (i.e.
static panel data models), the consistency in model selection easily follows from
the analysis by Fernandez et al. (2001). In our context, all we need to ensure
consistency is to set η as a function of N such that lim

N→∞
η(N) = 0. One possible
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choice could be η = O( 1
N ). As for the BIC, it is consistent in model selection

for the static panel.
Let us now consider the case when our candidate model contains a lag term

of the dependent variable. We can either compare it against a model without
the lag term and with different regressors or a model with the lag term and with
different regressors. The Bayes factor, which is defined as the ratio between the
marginal likelihoods of the two models, looks like the following respectively.

p(Y |Y0, M1)
p(Y |Y0, M0)

=
(

η

η + 1

) k1−k0
2

1
2

1∫
−1

exp [Nb(ρ)]

[
N∑

i=1

w′iHwi − 1
η+1

N∑
i=1

w′iHXi1

(
N∑

i=1

X ′
i1HXi1

)−1 N∑
i=1

X ′
i1Hwi

]−N(T−1)
2

dρ

[
N∑

i=1

y′iHyi − 1
η+1

N∑
i=1

y′iHXi0

(
N∑

i=1

X ′
i0HXi0

)−1 N∑
i=1

X ′
i0Hyi

]−N(T−1)
2

(17)

p(Y |Y0, M1)
p(Y |Y0, M0)

=
(

η

η + 1

) k1−k0
2

1∫
−1

exp [Nb(ρ)]

[
N∑

i=1

w′iHwi − 1
η+1

N∑
i=1

w′iHXi1

(
N∑

i=1

X ′
i1HXi1

)−1 N∑
i=1

X ′
i1Hwi

]−N(T−1)
2

dρ

1∫
−1

exp [Nb(ρ)]

[
N∑

i=1

w′iHwi − 1
η+1

N∑
i=1

w′iHXi0

(
N∑

i=1

X ′
i0HXi0

)−1 N∑
i=1

X ′
i0Hwi

]−N(T−1)
2

dρ

(18)

where wi = yi − yi ρ, k1 and k0 are the dimensions of Xi1 and Xi0, which
denote the regressors included under M1 and M0 respectively. To simplify (17)
and (18), we need to simplify the integrals that appear in the numerator and
the denominator. Let us first define the following quantities:

a =
N∑

i=1

y′i Hyi −
1

η + 1

N∑
i=1

(y′i HXi)

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

(
X ′

iHyi

)
,

b =
N∑

i=1

y′i Hyi −
1

η + 1

N∑
i=1

(y′i HXi)

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

(
X ′

iHyi

)
,

c =
N∑

i=1

y′iHyi −
1

η + 1

N∑
i=1

(y′iHXi)

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

(
X ′

iHyi

)
.

(19)
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Here we assume yi and Xi have finite second moments so that the following
probability limits exist.

plim
N→∞

1
N

a = a

plim
N→∞

1
N

b = a(ρ + NB)

plim
N→∞

1
N

c = ρ2a + 2aρNB + h3(β) + (T − 1)σ2

NB = plim
N→∞


N∑

i=1

y′i HXiβ − 1
η+1

N∑
i=1

y′i HXi

(
N∑

i=1

Xi
′HXi

)−1 N∑
i=1

X ′
iHXiβ+

N∑
i=1

y′i Hui − 1
η+1

N∑
i=1

y′i HXi

(
N∑

i=1

Xi
′HXi

)−1 N∑
i=1

Xi
′Hui


N∑

i=1

y′i Hyi − 1
η+1

N∑
i=1

(y′i HXi)
(

N∑
i=1

X ′
iHXi

)−1 N∑
i=1

(
X ′

iHyi

)
=

h2(β, ρ)− σ2h(ρ)
a

.

(20)

If the true model is either M1 or M0, we can show the conditions in Propo-
sition 4.1 and 4.2 under which the Bayes factors in (17) and (18) can lead to
the selection of the right model asymptotically.

Proposition 4.1. When M1 is the true model, i.e. ρ 6= 0 and X ′
i1s are the

true regressors to generate Y (which means Xi0 is the same as Xi in (14)), as
the cross section sample size increases, p(Y |Y0,M1)

p(Y |Y0,M0)
in (17) will tend to infinity

if the following holds,

z(ρ) = b(ρ)+

T − 1
2

ln

[
a|M0

ρ2 − 2ρσ2h(ρ) + 2ρh2|M0(β, ρ) + h3|M0(β) + (T − 1)σ2

(T − 1)σ2

]
> 0.

(21)

When M0 is the true model, i.e. X ′
i0s are the true regressors to generate Y and

ρ = 0, as the cross section sample size increases, p(Y |Y0,M1)
p(Y |Y0,M0)

in (17) will tend to
0 if either of the following is satisfied:

1. Under M1, plim
N→∞

f(ρ) has a unique maximum ρ∗ in (−1,1), where f(ρ) is

defined as

f(ρ) = b(ρ)− T − 1
2

ln
(

ρ2 − 2
b

a
ρ +

c

a

)
(22)

and

b(ρ∗) +
T − 1

2
ln

(T − 1)σ2

d(ρ∗|M1)
< 0 (23)
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where

d(ρ|Mi) =a|Mi
ρ2 − 2a|Mi

(ρ + NB|Mi
)ρ+

a|Mi
ρ2 + 2aMi

ρNB|Mi
+ (T − 1)σ2 + h3|Mi

(β).
(24)

2. Though M1 is misspecified, it can still lead to the consistent estimation of
ρ, i.e. either (11) or (12) holds.

Proposition 4.2. When M1 is the true model, as the cross section sample size
increases, p(Y |Y0,M1)

p(Y |Y0,M0)
in (18) will tend to infinity if any of the following holds:

1. Under M0, plim
N→∞

f(ρ) has a unique maximum ρ∗ in (−1,1) and

b(ρ)− b(ρ∗) +
T − 1

2
ln

d(ρ∗|M0)
(T − 1)σ2

> 0 (25)

2. Either (11) or (12) holds.

In addition to the Bayes factor calculated based on our parameterization of
the fixed effect, we may be interested in knowing whether or not the Bayesian
information criterion based on the biased MLE will lead to consistency in model
selection. The results are shown in Proposition 4.3.

Proposition 4.3. For the comparison of the two models in (17), when M1 is
the true model, BIC is consistent in model selection if the following condition is
met,

h3|M0(β) + a|M0
ρ2 + 2ρh2|M0(β, ρ)− 2ρσ2h(ρ) +

σ4h2(ρ)
a|M1

> 0 (26)

However, when ρ + NB|M1 = 0 and Xi1 = Xi0, BIC is inconsistent. When M0

is the true model, BIC is consistent if the following is satisfied[
h2|M1(β, 0)− σ2 T−1

T

]2
a|M1

− h3|M1(β) < 0 (27)

However, if we have h3|M1(β) = 09, BIC is inconsistent.
For the comparison of the two models in (18), when M1 is the true model,

BIC is consistent in model selection if the following holds

a|M1
a|M0

h3|M0(β) + a|M0
σ4h2(ρ)− a|M1

[
h2|M0(β, ρ)− σ2h(ρ)

]2
> 0 (28)

Moreover, if Xi0 nests the true set of regressors, i.e. h2|M0(β, ρ) = h3|M0(β) = 0
and a|M1

= a|M0
, BIC will be consistent.

9For example, Xi1 nests the true set of regressors or β = 0.
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5 Motivations of Bayesian Model Averaging

Our method allows us to compare the goodness of fit of different model specifica-
tions. However, as Raftery and Zheng (2003) and Yuan and Yang (2005) point
out, if there is substantial model uncertainty, model averaging is more prefer-
able than model selection. In regard to our empirical application of finance and
growth, the data set we have is relatively small (such as the one in Section 7,
with cross section sample size equal to 40), which implies model uncertainty for
estimation. When we want to study the relationship between economic growth
and other variables from the panel data, it should be more appropriate to con-
sider different model specifications than just drawing our conclusions based on
a single model so that we can reduce the estimation risk in the presence of
substantial model uncertainty. This point will be made more clear in the sub-
sequent sections. At the moment, we will just briefly talk about the Bayesian
model averaging (BMA) approach.

From different model specifications, we can have different estimates of θ.10

Essentially, BMA consists in mixing the posterior distributions of θ from all dif-
ferent models according to their posterior model probabilities in (15). Inference
about θ is drawn from its posterior distribution unconditional on the model
space, which takes the following form.

p(θ|Y, Y0) =
2K+1∑

i

p(θ|Y, Y0, Mi)p(Mi|Y, Y0) (29)

We then can use the posterior mean as the BMA point estimate for θ. To
measure the importance of certain element in θ (say, θj), we can use the posterior
inclusion probability defined as the following,

2K+1∑
i

I(θj ∈ Mi)p(Mi|Y, Y0). (30)

We can see that it is a sum of the posterior model probabilities of the models
which leave θj unrestricted.

6 Simulation Studies

In this section we will show the evidence for model selection consistency of our
method based on simulated data sets. Here we try to make our simulation close
to our application of the finance and growth example in the next section. We set
t = 4 (the number of observations for each economic agent) and the number of
possible regressors to 8. We draw independently the fixed effect f from U[-1,1].
For each iteration in the simulation, we do the following:

10Different models are defined by resticting different elements of θ, such as ρ or β to 0.
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1. We first generate the potential regressors (X ′
is) from the uniform distribu-

tion U [−4, 4]. We then make these regressors correlated with each other
and we also introduce serial correlation in our regressors.

2. We draw the model by selecting each regressor with the probability of 50%,
(i.e. all possible models have the same probability of being selected). The
element(s) of β are drawn from U [−2, 2]. If our model includes the lag
term of the dependent variable, we set ρ = 0.9.11

3. We calculate the posterior model probabilities of all the models and com-
pare the one with the highest model probability to the true model.

In Proposition 3.1 we show that we cannot have a consistent estimate of ρ
when neither (11) nor (12) holds. We want to check whether we can still select
the right model asymptotically using Lancaster’s transformation of the fixed
effect. That is why in step 1 we want to add collinearity and serial correlation
to our regressors. To achieve this, we first make each two neighboring period
observations correlated with each other as follows,

xt,s = st−1xt−1,s + s̄txt,ns, (31)

where xt,ns has no serial correlation and is generated from the i.i.d. uniform

distribution U[-4,4]. We set st−1 = s′t−1√
s′2t−1+s′2t

and s̄t = s′t√
s′2t−1+s′2t

. For s′t−1 and

s′t, we generate them from i.i.d.U [−2.5, 2.5]. In doing so, the correlation matrix
for the serially correlated [x1,s, x2,s, . . . , xT,s]′ is

S =



1 s1 · · ·
T−1∏
i=1

si

s1 1 · · ·
T−1∏
i=2

si

s2s1 s2 · · ·
T−1∏
i=3

si

· · · · · · · · · · · ·
T−1∏
i=1

si

T−1∏
i=2

si · · · 1


(32)

We can see that {xt} generated in such a way is not covariance stationary.
Moreover, for small T 12, the distribution of x′s will change with t. However, if
T is sufficiently large13, the final few points of x′s at the end of the series will
approximately follow, due to the central limit theorem, a normal distribution
with the same mean (0) and the same variance (around 5.3) as the uniform
distribution. We just use the final 4 observations from the series for our study.

11We have also set the lag coefficient to other value, such as 0.5. The results, which are
available from the author upon request, do not change much.

12Here T denotes the sample size of the generated series.
13We choose T to be 100 for the results to be presented later. We have also used small value

of T to generate the data, all the results are similar and neither (21) nor (25) is violated. These
results are available upon request from the author.

12



Next we introduce correlation among the regressors by using a linear com-
bination of those we just made serially correlated.

Xj,c =
K∑

i=1

qj,iXi,nc j = 1, 2, . . . ,K (33)

where Xi,nc denotes the regressor without collinearity and we set qj,i = q′j,is
KP

i=1
q′2j,i

and q′j,i ∼ i.i.d.U [−2.5, 2.5]. Note that the L2-norm of [qj,1, qj,2, . . . , qj,K ]′ is
equal to 1 so that we can preserve the same variance as that from the uniform
distribution we use to generate x at the very beginning. Note that the correla-
tion coefficient of any two elements of Xi is the same across different individuals
and can be calculated as

corr(Xt,k, Xt′,k′) = S(t, t′)
K∑

i=1

qk,iqk′,i t = 1, 2, . . . , T k = 1, 2, . . . ,K.

(34)
where S(t, t′) denote the (t, t′) element in S and K is the potential number of
regressors. Through such data generating mechanism we can explicitly calculate
the values of h2(β, ρ) and h3(β), a and NB in (14) and (20) respectively. Hence
we can check whether condition (21) and (25) are violated or not when there is
an error in our model selection based on posterior model probability.

We run the experiment for 200 times. At first we set η = 1
N and σ2 = 1. The

results are presented in Table 1. The ER (error rate) column tells us how often
the model with the highest posterior model probability ends up being different
from the true model. When the cross section sample size is 40 (the same as
our application later), the Bayes factor criterion fails to pick up the true model
by 86 out of 200 simulations. However, we can see that the error rate tends
to decrease with cross section sample size, which is a sign of model selection
consistency. One thing to note is that we generate β from U [−2, 2]. When the
values of some elements in β are very close to zero, it is virtually equivalent to
the case when the true model does not include the corresponding regressors. In
Table 1, the column “nest” denotes how often the top model is nested inside the
true model (including the case when the top model is the true model). We can
find that this number generally rises with cross section sample size. The column
“nouni” checks among the errors from the Bayes factor criterion how many of
them is related to the fact that either there is no solution or there are more than
one solutions in (−1,1) for the equation plim

N→∞
f ′(ρ) = 0, where f(ρ) is defined

in (22). We show in the proof of Proposition 4.2 that when plim
N→∞

f(ρ) does not

have a global maximum in the stationary region, we cannot use Laplace method
to approximate the integral(s) in the Bayes factor. Hence the condition in (21),
(23) and (25) do not hold. Under our simulating data generating mechanism,
such situations do not exist. The columns of “no(21)”, “no(23)” and “no(25)”
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denote the error rates with the violation of (21), (23) and (25) respectively.
We can see that the numbers of the columns are all zeros, which means all
our errors are fixable with a large cross section sample size. The columns of
“topprob” and “top10prob” are the average of the posterior model probabilities
of the top model and the sum of the top ten models in the simulation. If these
two numbers are far below 1, it is a sign of model uncertainty. As the cross
section sample size increases, model uncertainty diminishes. If we raise the
variance of the disturbance, model uncertainty will increase. The results are
shown in Table 2 where we set the variance of the disturbance to 4. Comparing
Table 2 to Table 1, we can see that the error rate is higher and the rest of the
three columns are generally smaller for a particular cross section sample size.
As for the model selection performance of BIC based on the biased maximum
likelihood estimates, we list the results in Table 3 and Table 4. We can see that
the BIC performance is much worse than our Bayes factor method. The error
rates stay above 50% for different cross section sample sizes. Even for N = 1000,
there is not much improvement. In addition to the error rate, the top model is
not very often nested inside the true model as compared with the Bayes factor
method. Again, it does not improve much with the cross section sample size.
Moreover, the column headed with “no(27)” shows how many errors violate
condition (27). Such errors are not fixable even if we have infinite cross section
sample size according to Proposition 4.3. Note that around 50% of the true
models do not have the lag term of the dependent variable under our simulation
set-up. Also note that under our data generating scheme, we can be almost sure
that ρ + NB = 0 will not occur. Hence condition (26) will almost surely not be
violated. It could be true to say that the error rate for the BIC would approach
50% in the limit since it is always possible for condition (27) to be violated
while condition (26) and (28) hold. When the true model does not have a lag
term of the dependent variable as the regressor, it is always possible to find a
candidate model with both the lag term and exactly the same set of exogenous
regressors as the true model such that condition (27) will be violated. When we
compare them, we will choose the candidate model over the true model as the
cross section sample size increases. Also we could expect that the percentage
under no(27) in Table 3 and 4 should rise with cross section sample size.

Table 1: Simulation results when σ2 = 1
N ER nest topprob top10prob no(21) no(23) no(25) nouni
40 0.40 0.83 0.38 0.85 0.00 0.00 0.00 0.00
100 0.29 0.86 0.56 0.94 0.00 0.00 0.00 0.00
200 0.31 0.88 0.62 0.96 0.00 0.00 0.00 0.00
500 0.14 0.94 0.74 0.99 0.00 0.00 0.00 0.00
1000 0.10 0.97 0.81 0.99 0.00 0.00 0.00 0.00

Judging from the previous simulation results, we can find that if we simply
select the model with the highest model probability to provide estimates of our
interest, chances are high that the model selected is not the true model. Note
that the top model probability for N = 40 is about 32% while it is about 78%
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Table 2: Simulation results when σ2 = 4
N ER nest topprob top10prob no(21) no(23) no(25) nouni
40 0.61 0.77 0.32 0.80 0.00 0.00 0.00 0.00
100 0.43 0.86 0.50 0.93 0.00 0.00 0.00 0.00
200 0.36 0.88 0.58 0.95 0.00 0.00 0.00 0.00
500 0.28 0.92 0.69 0.98 0.00 0.00 0.00 0.00
1000 0.16 0.96 0.78 0.99 0.00 0.00 0.00 0.00

Table 3: Simulation results for BIC when σ2 = 1
N error rate nest no(26) no(27) no(28)
40 0.78 0.34 0.00 0.46 0.00
100 0.69 0.42 0.00 0.60 0.00
200 0.69 0.41 0.00 0.51 0.00
500 0.54 0.51 0.00 0.65 0.00
1000 0.58 0.47 0.00 0.61 0.00

Table 4: Simulation results for BIC when σ2 = 4
N error rate nest no(26) no(27) no(28)
40 0.88 0.34 0.00 0.28 0.00
100 0.77 0.41 0.00 0.36 0.00
200 0.74 0.38 0.00 0.34 0.00
500 0.65 0.43 0.00 0.40 0.00
1000 0.55 0.425 0.00 0.65 0.00
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for N = 1000 when we set σ2 = 4. To account for such model uncertainty, we
recommend averaging the estimates from every model. We argue that BMA
can reduce our estimation risk when there is substantial model uncertainty. To
illustrate this, next we carry out another simulation, in which we set the β’s to
fixed values along with ρ (we set it to 0.9 as in our previous simulation). Then we
use the posterior means to estimate these values. Table 5 shows the root mean
squared errors (RMSE) from different point estimators based on 200 iterations
with the cross section sample size (N) as 40. The true values of ρ and β’s are
shown under the column “TRUE”, where the first number is the value of ρ. The
column “TOP” shows the RMSE resulting from the posterior mean estimator
of the top model, which has the highest posterior model probability, while the
column “BMA” uses the posterior mean in (29). To evaluate the significance of
a regressor coefficient, we calculate the sum of the posterior model probabilities
of all the models which include the corresponding regressor. If the inclusion
probability for a regressor is too low, we may be better off by viewing the
coefficient for this regressor as zero. In Table 5, we try to give some ideas on
how to interpret such inclusion probabilities which we will use in our application
later. The RMSE in the columns headed with a percentage number are derived
based on certain inclusion probability criterion. For each simulated data set,
if the inclusion probability for a regressor is lower than the percentage number
on top of the column, we will simply use zero as its point estimate. In the last
row of Table 5, we sum up the RMSE in each column. We can see that the
overall performances of BMA and various inclusion probability criteria are all
better than that of the top model criterion in terms of smaller total RMSE.
Such performance seems to fare best when we set our inclusion probability to
50%. We can also see that higher inclusion probability criterion tends to give us
smaller RMSE when the true value of the parameter is exactly zero and higher
RMSE when the true value is not zero while the BMA seems to give us a safer
option for almost all the parameter estimates.

Table 5: The RMSE of the point estimates when N=40 and σ2 = 1
TRUE TOP BMA 10% 20% 30% 40% 50% 60%

0.9 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034
0.1 0.112 0.090 0.090 0.092 0.096 0.102 0.105 0.108
0.3 0.139 0.132 0.132 0.134 0.137 0.142 0.148 0.164
0 0.065 0.054 0.054 0.053 0.050 0.042 0.038 0.031
0 0.069 0.057 0.057 0.054 0.050 0.044 0.039 0.037
1 0.127 0.133 0.133 0.133 0.133 0.133 0.133 0.145
0 0.054 0.068 0.068 0.067 0.065 0.036 0.032 0.029
0 0.076 0.075 0.075 0.074 0.047 0.044 0.030 0.026
2 0.134 0.122 0.122 0.122 0.122 0.122 0.122 0.122

SUM 0.810 0.765 0.765 0.765 0.734 0.700 0.683 0.697

To add more insight into how to use inclusion probability to determine the
significance of a regressor coefficient, we presents the error rates of including the
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wrong regressor due to different inclusion probability criteria14 in Table 6. We
can see that the overall error rates based on the 10% criterion is the highest. All
the errors are from those parameters whose values are actually zeros. Again, the
50% criterion shows reasonably good performance, although the 60% criterion
is slightly better. One thing to note is that the top model criterion has smaller
overall error rate than nearly all inclusion probability criteria. Hence it seems
to be a useful tool in terms of making the decision on whether to include a
particular regressor or not.

Table 6: The error rates of whether to include a regressor when N=40 and
σ2 = 1

TRUE TOP 10% 20% 30% 40% 50% 60%
0.9 0 0 0 0 0 0 0
0.1 0.835 0 0.36 0.62 0.78 0.86 0.915
0.3 0.22 0 0.03 0.075 0.14 0.215 0.295
0 0.05 1 0.425 0.195 0.09 0.065 0.02
0 0.095 1 0.475 0.245 0.155 0.095 0.035
1 0 0 0 0 0 0 0
0 0.065 1 0.495 0.205 0.09 0.06 0.015
0 0.045 1 0.51 0.195 0.085 0.035 0.015
2 0 0 0 0 0 0 0

SUM 1.31 4 2.295 1.535 1.34 1.33 1.295

Next we increase model uncertainty by increasing the variance of the distur-
bance to 4. Point estimate performances based on different criteria are shown in
Table 7. When the model uncertainty is larger, the advantage of the averaging
estimators becomes more obvious. Though their performances are quite alike,
the 50% inclusion probability criterion still gives us the smallest overall RMSE.
The error rates of whether to include a regressor are presented in Table 8. Now
none of the inclusion probability criteria can have smaller overall error rates
than that of the top model criterion. It seems that the criteria using inclusion
probability above 40% (along with the top model criterion) have problems with
the parameter whose value is 0.1 (close to zero).

When we set the variance of the disturbance to 1 and the cross section sample
size to 1000 such that the model uncertainty is not substantial, the performance
of different criteria will be similar, which is shown in Table 9 and Table 10.
However, the averaging estimators still fare slightly better in point estimates
and the top model criterion is reasonably good in deciding whether or not to
include a variable.

In terms of the point estimation, BMA seems to be more preferable than
simply using the estimates from the top model since it takes account of model
uncertainty explicitly. Moreover, in Bayesian Econometrics we have many sen-

14If a regressor has no less than the given inclusion probability, we include it, which may not
be one of the true regressors. The top model criterion means we only include the regressors
in the top model.
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Table 7: The RMSE when N=40 and σ2 = 4
TRUE TOP BMA 10% 20% 30% 40% 50% 60%

0.9 0.066 0.065 0.065 0.065 0.065 0.065 0.065 0.065
0.1 0.156 0.115 0.115 0.115 0.116 0.116 0.113 0.105
0.3 0.299 0.211 0.211 0.215 0.225 0.237 0.249 0.257
0 0.147 0.098 0.098 0.097 0.092 0.085 0.079 0.064
0 0.184 0.123 0.123 0.123 0.119 0.115 0.109 0.106
1 0.312 0.240 0.240 0.241 0.241 0.251 0.263 0.295
0 0.193 0.118 0.118 0.117 0.114 0.110 0.101 0.097
0 0.236 0.146 0.146 0.145 0.142 0.137 0.129 0.124
2 0.273 0.222 0.222 0.222 0.222 0.222 0.222 0.246

SUM 1.866 1.338 1.338 1.339 1.336 1.339 1.331 1.359

Table 8: The error rates of whether to include a regressor when N=40 and
σ2 = 4

TRUE TOP 10% 20% 30% 40% 50% 60%
0.9 0 0 0 0 0 0 0
0.1 0.915 0 0.445 0.76 0.855 0.95 0.975
0.3 0.5 0 0.155 0.31 0.455 0.55 0.615
0 0.045 1 0.465 0.16 0.085 0.03 0.015
0 0.06 1 0.455 0.185 0.095 0.05 0.035
1 0.035 0 0 0.005 0.025 0.035 0.04
0 0.05 1 0.52 0.185 0.095 0.045 0.025
0 0.045 1 0.42 0.175 0.075 0.04 0.03
2 0 0 0 0 0 0 0

SUM 1.65 4 2.46 1.78 1.685 1.7 1.735

Table 9: The RMSE of the point estimates when N=1000 and σ2 = 1
TRUE TOP BMA 10% 20% 30% 40% 50% 60%

0.9 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
0.1 0.036 0.031 0.032 0.032 0.033 0.035 0.035 0.038
0.3 0.024 0.023 0.023 0.023 0.023 0.023 0.023 0.023
0 0.018 0.015 0.014 0.014 0.013 0.013 0.012 0.012
0 0.011 0.008 0.008 0.008 0.007 0.007 0.007 0.006
1 0.029 0.026 0.026 0.026 0.026 0.026 0.026 0.026
0 0.014 0.012 0.012 0.011 0.011 0.011 0.010 0.010
0 0.015 0.010 0.010 0.010 0.009 0.009 0.008 0.006
2 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026

SUM 0.181 0.158 0.158 0.156 0.155 0.156 0.154 0.153
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Table 10: The error rates of whether to include a regressor when N=1000 and
σ2 = 1

TRUE TOP 10% 20% 30% 40% 50% 60%
0.9 0 0 0 0 0 0 0
0.1 0.075 0.025 0.05 0.055 0.06 0.075 0.095
0.3 0 0 0 0 0 0 0
0 0.015 0.17 0.08 0.045 0.015 0 0
0 0.02 0.125 0.055 0.025 0.02 0.01 0
1 0 0 0 0 0 0 0
0 0.005 0.14 0.055 0.03 0.01 0 0
0 0 0.145 0.065 0.035 0.02 0 0
2 0 0 0 0 0 0 0

SUM 0.115 0.605 0.305 0.19 0.125 0.085 0.095

sible tools to help us understand our data. As will be shown in the application
later, our inference is based on the posterior distribution of the parameter un-
conditional on the model space, which gives us information on what we are more
sure of and of what we are less sure.

In our previous simulation studies, we adopt the g-prior and set its coefficient
η = 1

N , which should lead to consistency in model selection. Our previous
simulation results seem to have confirmed this. In addition to setting η = O( 1

N ),
Fernandez et al. (2001) also suggest setting η = 1

K2 for linear model of non-panel
data, where K is the number of potential regressors. Their recommendation is

η =

{
1
N if N > K2

1
K2 if N ≤ K2

In our context, K is the number of potential regressors plus 1 (the lag term).
We can see that Fernandez et al. (2001) basically recommend a more non-
informative prior. They argue that although the second prior is inconsistent15,
it may perform better than the first one for small samples. In contrast to Table
1 and Table 2, Table 11 and Table 12 present the results under the second prior.
It suggests that when N = 40 (the cross section sample size in our application),
the second prior seems to do much better for smaller disturbance variance in
terms of whether the true model is nested inside the top model and it also has
higher posterior top model probability. However, it fares more or less the same
as the first prior for bigger disturbance variance. As the sample size increases,
the improvement of the second prior does not seem to be as big as that under

15The inconsistency in model selection under the second prior here means the posterior
model probability of the true model will not tend to 1 with increasing sample size. However,
when the true model does not have a lag term as regressor, the Bayes factor under the second
prior will still favour the true model, i.e. the true model still has higher model probability
than the other models. For more details, see Fernandez et al. (2001). When the model has a
lag term, as long as relevant conditions in Proposition 4.1 and 4.2 hold, consistency in model
selection will follow. That is why we can still see improved performance under the second
prior over larger sample size.
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the first prior. For large sample size (such as N = 1000), the first prior is more
preferable than the second.

Table 11: Simulation results when the variance of the disturbance is 1 and under
the prior η = 1

K2

N ER nest topprob top10prob no(21) no(23) no(25) nouni

40 0.43 0.9 0.45 0.90 0 0 0 0
100 0.3 0.88 0.46 0.91 0 0 0 0
200 0.27 0.9 0.48 0.92 0 0 0 0
500 0.15 0.92 0.53 0.94 0 0 0 0
1000 0.17 0.9 0.49 0.92 0 0 0 0

Table 12: Simulation results when the variance of the disturbance is 4 and under
the prior η = 1

K2

N ER nest topprob top10prob no(21) no(23) no(25) nouni

40 0.59 0.78 0.40 0.85 0 0 0 0
100 0.48 0.8 0.42 0.88 0 0 0 0
200 0.34 0.88 0.44 0.89 0 0 0 0
500 0.39 0.77 0.47 0.92 0 0 0 0
1000 0.2 0.89 0.47 0.91 0 0 0 0

Results on the point estimation performance under the second prior are
presented in Table 13, Table 14 and Table 15. In comparison with Table 5 to
Table 9, the performance under the second prior does not seem to differ much,
though when the sample size is small and model uncertainty is large, for the
column of the top model criterion, the second prior seems to do better than the
first prior. But all the averaging estimators still tend to dominate the top model
criterion for small samples. For large sample size, such dominance of averaging
estimators seems to diminish and their performances are quite close to that from
the top model. In Table 15, under the second prior, the BMA estimates even
have higher RMSE than the top model criterion. Again, the first prior is more
preferable than the second for large samples in terms of smaller RMSE from the
averaging estimators.

7 An Application Example of Financial Devel-
opment and Economic Growth

The model in our application is slightly different from (1) and it takes the
following form.

yi,t − yi,t−1 = fi + yi,t−1ρ + x′i,tβ + uit,

i = 1 . . . N, t = 1 . . . T.
(35)
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Table 13: The RMSE of the point estimates when N=40 and σ2 = 1 under the
prior η = 1

K2

TRUE TOP BMA 10% 20% 30% 40% 50% 60%
0.9 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.1 0.118 0.092 0.092 0.094 0.098 0.101 0.102 0.103
0.3 0.170 0.143 0.143 0.144 0.149 0.155 0.167 0.173
0 0.097 0.061 0.061 0.060 0.058 0.051 0.048 0.038
0 0.097 0.060 0.060 0.059 0.050 0.047 0.031 0.019
1 0.116 0.113 0.113 0.113 0.113 0.113 0.113 0.113
0 0.058 0.068 0.068 0.068 0.061 0.038 0.031 0.020
0 0.058 0.051 0.051 0.048 0.043 0.041 0.038 0.038
2 0.144 0.132 0.132 0.132 0.132 0.132 0.132 0.132

SUM 0.890 0.754 0.754 0.752 0.739 0.711 0.695 0.671

Table 14: The RMSE of the point estimates when N=40 and σ2 = 4 under the
prior η = 1

K2

TRUE TOP BMA 10% 20% 30% 40% 50% 60%
0.9 0.074 0.075 0.075 0.075 0.075 0.075 0.075 0.075
0.1 0.146 0.118 0.118 0.119 0.120 0.115 0.107 0.104
0.3 0.280 0.228 0.228 0.233 0.242 0.251 0.261 0.272
0 0.102 0.109 0.109 0.108 0.101 0.095 0.078 0.073
0 0.238 0.118 0.118 0.117 0.112 0.108 0.090 0.066
1 0.316 0.258 0.258 0.263 0.267 0.274 0.301 0.313
0 0.233 0.148 0.148 0.146 0.143 0.140 0.124 0.120
0 0.117 0.111 0.111 0.109 0.104 0.075 0.069 0.064
2 0.271 0.241 0.241 0.241 0.241 0.241 0.241 0.271

SUM 1.776 1.407 1.407 1.411 1.405 1.374 1.347 1.358

Table 15: The RMSE of the point estimates when N=1000 and σ2 = 1 under
the prior η = 1

K2

TRUE TOP BMA 10% 20% 30% 40% 50% 60%
0.9 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
0.1 0.029 0.028 0.028 0.028 0.028 0.029 0.031 0.034
0.3 0.026 0.025 0.025 0.025 0.025 0.025 0.025 0.025
0 0.012 0.013 0.013 0.012 0.012 0.011 0.010 0.010
0 0.008 0.020 0.020 0.019 0.009 0.007 0.005 0.005
1 0.026 0.028 0.028 0.028 0.028 0.028 0.028 0.028
0 0.011 0.018 0.018 0.018 0.013 0.007 0.006 0.004
0 0.022 0.023 0.023 0.022 0.018 0.017 0.016 0.016
2 0.036 0.039 0.039 0.039 0.039 0.039 0.039 0.039

SUM 0.178 0.201 0.201 0.200 0.181 0.172 0.169 0.171
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Here yi,t is the log of GDP per capita, fi is the country-specific fixed effect
and xi,t is a vector of the explanatory variables as before. So on the left hand
side of the equation is the economic growth per capita, which we are using the
lag of the logged GDP per capita along with other variables to explain on the
right hand side of the equation. The framework we developed in the previous
sections is still applicable here given necessary adjustments. It can be shown
that the Jacobian from Y conditional on Y0 to Y − Y is one, where Y is the
collection of all the lag terms of the dependent variables for different individuals.
To apply our method from the previous sections to the real data, we need to
make the following small modifications.

The data we use are taken from Beck and Levine (2004) and are available
from Levine’s website. There are altogether 40 (N) countries and the panel
covers the period from 1976 to 1998. Eight potential explanatory variables (xi,t)
have been proposed in the literature. Details of the variables can be found in
Table 16. Here we just follow the practice of Beck and Levine (2004) on how
the variables enter equation (35). Our focus is on the variables measuring the
development of stock market and banking sector. We also include three dummy
variables for each period as our potential explanatory variables.16 Hence the
total number of possible regressors is 11. Since we are studying the long run
relationship between economic growth and other economic variables, we average
the data over every five years. Due to missing data and the dynamic nature
of our model, we can only use 143 observations in the panel. Since it is an
unbalanced panel, i.e. not every country in the panel has the same number of
observations (T ), we have to replace some quantities that appear in the previous
sections as the following,

T−
N
2 :

N∏
i=1

T
− 1

2
i ,

NT :
N∑

i=1

Ti,

Nb (ρ) :
N∑

i=1

b (ρ, Ti) .

There are 4,096 possible model specifications in total. Here in Table 17, we
just present the top ten models with the highest posterior model probabilities.
We can see that the top model is nested in most of the top ten models and
it just accounts for around 6.4% posterior model probability while the model
probability of the top 10 models in total is about 30%. The result is quite
different from the simulation studies in the previous section when we have a true
model to generate our data. We find that in simulation the top model alone
(in many cases, the true one) usually accounts for above 30%. This confirms
the fact that there is substantial model uncertainty in our data. To study the

16At most there are 5 observations for each country. Due to the dynamic nature of our
model, we have to take away one observation. Therefore we have three dummy variables.
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Table 16: Details of the explanatory variables

1. START: the per capita GDP at the starting year of the five years. It
enters the equation of (35) in natural log.

2. PRIV: the measure of bank development, calculated from bank claims on
the private sector by deposit money banks divided by GDP. It enters the
equation in log.

3. PI: the inflation rate. It enters the equation as log(1+PI).

4. GOV: the ratio of government expenditure to GDP. It enters the equation
in log.

5. TRADE: the shares of exports and imports to GDP. It enters the equation
in log.

6. TOR: the measure of stock market development, which equals the value
of traded shares on domestic exchanges divided by the total value of listed
shares. It enters the equation in log.

7. BMP: the black market premium. It enters the equation as log(1+BMP).

8. SCHOOL: average years of schooling. It enters the equation as
log(1+SCHOOL).
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relationship of economic growth and different economic variables, BMA should
be a more preferable approach.

Table 17: Posterior Model Probabilities of the Top Ten Models

Ranking Model Posterior Model Probability
1 0,1,6a 0.064
2 0,1,6,9 0.057
3 0,1,5,6,9 0.037
4 0,1,4,6 0.029
5 0,1,4,6,9 0.025
6 0,1,3,6,9 0.021
7 0,1,5,6 0.0183
8 0,1,4,5,6,9 0.0176
9 0,1,3,6 0.016
10 0,1,3,4,6,9 0.014

a See the description of the set of explanatory variables. 0
stands for the GDP of one period lag. Number 9 to 11
denote the dummy variables.

The BMA point estimates of the slope parameters from the posterior dis-
tribution in equation (8) are shown in Table (18), where we omit the results
for the dummy variables. The estimates are based on 10,000 draws from the
posterior model and parameter space. The column headed by “slope” presents
the posterior mean of β in (35). The “NSE” column is the numerical stan-
dard error, which is a measure of accuracy of our simulated calculations. The
true posterior means with around 95% confidence should lie in the range of
[estimate−1.96NSE,estimate+1.96NSE] due to the central limit theorem. The
inclusion probability is calculated as the sum of the model probabilities from the
models that include the regressor. Finally, prob < 0 is the cumulative posterior
probability of the parameter less than 0. It is based on the mixture of the mod-
els that include the regressor and can be viewed as how far away the posterior
distribution is from 0. If our point estimate is negative (positive) and its pos-
terior distribution is far away from 0, we would expect prob < 0 to be close to
1 (0). Not surprisingly, the regressors with the highest inclusion probability are
the initial GDP and the lagged GDP, which are closely related to our dependent
variable, the per capita GDP growth. The turnover of stock market also has
high inclusion probability, about 78% and it is positively related with economic
growth and its posterior mean is around 1.28. This confirms the finding by
Beck and Levine (2004), whose GMM point estimates of stock market turnover
are significant and they range from 0.95 to 1.7 under the inclusion of different
sets of exogenous variables. However, it is a surprise to see that bank credit to
private sector, which is a measure of bank development, has the lowest inclu-
sion probability among all the regressors and its point estimate is quite close
to 0. Moreover, the column of prob < 0 tells us that the posterior distribution
of stock market turnover is far away from 0 while the posterior distribution of
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bank credit has its center near 0. It seems that bank development is not that
important for economic growth. This finding seems to contradict the results
based on the GMM approach in Beck and Levine (2004).

Table 18: Estimates of the Slope Parameters
regressor slope NSE inclusion probability prob < 0
START 0.74 0.08 1 0
PRIV 0.055 0.04 0.14 0.38

PI -1.19 0.07 0.27 0.89
GOV -2.24 0.06 0.37 0.95

TRADE 1.66 0.05 0.35 0.05
TOR 1.28 0.007 0.78 0.0057
BMP -0.002 0.014 0.16 0.49

SCHOOL -0.1 0.14 0.16 0.55
LAG -0.82 0.0009 0.99 1

To verify our results, in Table 19 and Table 20 we present the highest
(marginal) posterior probability intervals (HPDI) of bank private credit and
stock market turnover respectively. Such intervals are calculated by a kernel
smoothing package (ksdensity.m) in MatLab R©. The package uses a normal ker-
nel function to fit to certain number of draws from the parameter’s posterior
distribution. For bank private credit, the number of draws is 1,414 and the one
for stock market turnover is 7,794. Note that the results are based on the models
which include the regressor. The HPDI results confirm what we found previ-
ously, i.e. the posterior distribution for stock market turnover is far different
from zero while bank private credit is not. We may conclude that stock mar-
ket development is more important to economic growth than bank development
based on our dataset.

Table 19: The highest posterior density intervals for the private credit
PRIV lower bound upper bound
99% -3.45 4.21
95% -2.70 3.34
90% -2.08 2.82
80% -1.48 2.31

Table 20: The highest posterior density intervals for the stock market turnover
TOR lower bound upper bound
99% 0.118 3.104
95% 0.432 2.83
90% 0.64 2.66
80% 0.84 8.56
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Next from Table 21 to Table 24, we present the results under the g-prior
η = 1

K2 , where K is the number of potential explanatory variables plus one (the
lag term of the dependent variable). As is shown in our simulation, this prior
may have better performance when the cross section sample size is as small as in
our application. We can see that the second prior mainly reconfirms our previous
results. First there is substantial model uncertainty as shown by the top model
probability.17 Second the stock market development is more significant and the
bank private credit is more insignificant under the second prior than the first
prior. One difference under the second prior is that trade seems more important.
The top model now consists of stock market development and trade.

Table 21: Posterior Model Probabilities of the Top Ten Models
under the prior η = 1

K2

Ranking Model Posterior Model Probability
1 0,1,6,9 0.109
2 0,1,5,6,9 0.0965
3 0,1,6 0.0671
4 0,1,4,5,6,9 0.0572
5 0,1,4,6,9 0.056
6 0,1,4,6 0.034
7 0,1,3,4,5,6,9 0.025
8 0,1,3,6,9 0.023
9 01,3,4,6,9 0.0216
10 0,1,3,5,6,9 0.0214

a See the description of the set of explanatory variables.
Number 0 stands for the GDP of one period lag. Num-
ber 9 to 11 denote the dummy variables.

Table 22: Estimates of the Slope Parameters under the prior η = 1
K2

regressor slope NSE inclusion probability prob < 0
START 0.84 0.079 1 0
PRIV 0.047 0.043 0.093 0.34

PI -0.79 0.069 0.20 0.91
GOV -2.48 0.052 0.39 0.97

TRADE 2.05 0.041 0.40 0.018
TOR 1.73 0.006 0.93 0.00086
BMP 0.01 0.015 0.09 0.40

SCHOOL 0.001 0.15 0.1 0.37
LAG -0.93 0.00084 0.99 1

17 The sum of the posterior top ten model probabilities is 51%.
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Table 23: The highest posterior density intervals for the private credit under
the prior η = 1

K2

PRIV lower bound upper bound
99% -2.82 3.59
95% -2.06 3.08
90% -1.68 2.70
80% -1.07 2.26

Table 24: The highest posterior density intervals for the stock market turnover
under the prior η = 1

K2

TOR lower bound upper bound
99% 0.49 3.21
95% 0.82 2.92
90% 1.02 2.77
80% 1.18 2.57

8 Conclusion

In this paper, we investigate the information orthogonal method proposed by
Lancaster (2002) to obtain consistent estimation of common parameters under
a model comparison context. We found that under the linear dynamic panel
model, when the wrong set of exogenous regressors are included, it is not nec-
essarily true that Lancaster’s fixed effect transformation will lead to consistent
estimation of the autoregressive coefficient. To take into account the effect of
model misspecification on parameter estimation and to provide a measure of
goodness of fit, we advocate to compare different model specifications. In the
paper, we use Lancaster’s transformation to estimate the model and to calculate
the marginal likelihood. We have shown the conditions under which the Bayes
factor can lead to consistency in model selection. When the conditions are not
obviously met, we rely on Monte Carlo experiments and find that the Bayes
factor obtained from the transformation can still lead to the selection of the
true model asymptotically. We also compare the BIC model selection perfor-
mance based on the biased estimates with our Bayes factor method. It is found
that the BIC performs very poorly and that some errors will not disappear with
the increase of cross section sample size. This shows the relationship between
parameter estimation and model selection. It will be more likely for us to obtain
consistency in model selection if we can have consistency in parameter estima-
tion. When model uncertainty is substantial, we argue for the use of Bayesian
model averaging. Through Monte Carlo experiments, we have found that BMA
will tend to produce smaller RMSE than if we simply select the model with
the highest posterior model probability. Using the method developed, we study
the connection of stock market and bank development with economic growth.
Consistent with the results from the classical approach, our finding suggests
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that stock market development is positively correlated with economic growth.
However, the effect of bank development on economic growth is not significant,
which contradicts the classical results. In our framework, we have restricted
our attention to stationary data and strictly exogenous explanatory variables.
Future research to relax such restrictions could be promising.
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A Appendix

A.1 The Informatation Orthogonal Method

Here we briefly mentioned the information orthogonal method developed by
Lancaster (2002). In general, we can separate the parameters in the model into
two categories, the incidental parameter, fi, for i = 1, 2, . . . , N , where N is the
sample size, and the common parameter, θ, whose dimension will stay the same
regardless of the sample size. When we say fi is information orthogonal to θ,
we mean the following,

E

(
∂2 ln p(yi|θ, fi)

∂fi∂θ

)∣∣∣∣
fi=fi,true,θ=θtrue

=
∫

∂2 ln p(yi|θ, fi)
∂fi∂θ

p (yi|θ, fi) dY

∣∣∣∣
i=fi,true,θ=θtrue

= 0
(36)

Lancaster (2002) showed that if (36) evaluated at the true values of fi and θ is
satisfied, the mode of the marginal posterior of θ (p(θ|y) ∝

∫ ∏N
i=1 p(yi|θ, fi)p(fi|θ)d f),

which is obtained by integrating out fi with repect to the flat prior, p(fiθ) ∝ 118,
is a consistent estimator. When the the original incidental parameter is not in-
formation orthogonal to the common parameter, Lancaster (2002) suggested we
reparameterize fi = (gi, θ) such that the new incidental parameter gi is informa-
tion orthogonal to θ. To find the new parameterization is equivalent to finding
the solution for the following differential equation,

∂fi

∂θ
= −

(
EY (

∂2 ln p(yi|θ, fi)
∂f2

i

)
)−1

EY

(
∂2 ln p(yi|θ, fi)

∂fi∂θ

)
(37)

However, when θ is a vector, say θ = (θ1, θ2), there is no guarantee that (37)
has a solution since the compatability condition ∂2fi

∂θ1∂θ2
= ∂2fi

∂θ2∂θ1
may not be

satisfied. For the linear AR(1) panel model, Lancaster (2002) showed that an
information orthogonal parameterization can not be found.

A.2 Proof of Proposition 2.1

Denote yi as [yi,1, yi,2, . . . , yi,T ]′ and yi as [yi,0, yi,1, . . . , yi,T−1]′. We can rewrite
model (1) as

yi = fiι + yi ρ + Xiβ + ui (38)

yi = fic1 + yi,0c2 + CXiβ + Cui (39)

18Here we assume the flat prior is permissible in the sense that
R

p(yi|θ, fi)d fi < ∞.
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where

c1 =


0
1

1 + ρ
· · ·

1 + ρ + ρ2 + · · ·+ ρT−2

 , c2 =


1
ρ
ρ2

· · ·
ρT−1

 , C =


0 0 · · · 0
1 0 · · · 0
ρ 1 · · · 0
· · · · · · · · · · · ·

ρT−2 ρT−3 · · · 1 0


and ι is a T × 1 vector of ones. Note that h (ρ) defined in 13 is equal to
1
T ι′c1 = −trace(C ′H).

Lancaster (2002) finds the appropriate reparameterization of the fixed effect
parameter by drawing analogy from two simpler cases, i.e. when the model only
contains either the lag term of the dependent variable or the exogenous regres-
sors. Here we provide a slightly different derivation of the reparameterization.
In brief, we attempt to find a correction function attached to the marginal pos-
terior density of ρ such that the mode of the marginal posterior is a consistent
estimator for ρ. The solution turns out to be the same as Lancaster’s. The
derivation strategy adopted here is also needed for the proof of Proposition 3.1.
To obtain such a correction function, let us first reparameterize the fixed effect
as

fi = gir(ρ)− 1
T

ι′Xiβ (40)

where r(ρ) is a function of ρ, which we will find out later.
Now we can transform our model as

yi = gir(ρ)ι + yi ρ + HXiβ + ui, (41)

The following is the derivation of the posterior distribution and the marginal
likelihood.

Let us define wi = yi−yi ρ. The product of the likelihood of the transformed
model and the prior for θ is

p(θ)p (Y |θ, Y0) = p(β|σ2)
1
2
I(−1 ≤ ρ ≤ 1)(2π)−

T N
2 σ2(−NT+2

2 )

N∏
i=1

exp
{
− 1

2σ2
[wi − gir(ρ)ι−HXiβ]′ [wi − gir(ρ)ι−HXiβ]

}
,

(42)

where Y = (y1, y2, ..., yN ) excludes the first observations of all economic agents,
i.e. Y0 = (y1,0, y2,0, ...yN,0).

Next we derive the posterior distribution of gi. Note that ι′H = 0 so we can
rewrite equation (42) as

p(θ)p (Y |θ, Y0) = p(β|σ2)
1
2
I(−1 ≤ ρ ≤ 1)(2π)−

T N
2 σ2(−NT+2

2 )

N∏
i=1

exp
{
− 1

2σ2
[(wi −HXiβ)′(wi −HXiβ)

+Tg2
i r2(ρ)− 2ι′wigir

2(ρ)]
}

.
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Then we complete the square for gir(ρ) by adding − (ι′wi)
2

T + (ι′wi)
2

T inside the
exponential. So it becomes

p(θ)p (Y |θ, Y0) = p(β|σ2)
1
2
I(−1 ≤ ρ ≤ 1)(2π)−

T N
2 σ2(−NT+2

2 )

N∏
i=1

exp
{
− 1

2σ2
[(wi −

ιι′wi

T
−HXiβ)′(wi −

ιι′wi

T
−HXiβ)

+T (gir(ρ)− ι′wi

T
)2]
}

,

or equivalently

p(θ)p (Y |θ, Y0) = p(β|σ2)
1
2
I(−1 ≤ ρ ≤ 1)(2π)−

T N
2 σ2(−NT+2

2 )

N∏
i=1

exp
{
− 1

2σ2
[(wi −Xiβ)′H(wi −Xiβ)

+T (gir(ρ)− ι′wi

T
)2]
}

Note that Hwi = H(yi − yi ρ) and ι′wi

T = ι′(yi−yi ρ)
T . So we can have

p(θ)p (Y |θ, Y0) = p(β|σ2)
1
2
I(−1 ≤ ρ ≤ 1)(2π)−

T N
2 σ2(−NT+2

2 )

N∏
i=1

exp

{
−r2(ρ)

2σ2

T

[gi −
ι′(yi − yi ρ)

Tr(ρ)
]2
}

exp

[
− 1

2σ2

N∑
i=1

(yi − yi ρ−Xiβ)′H(yi − yi ρ−Xiβ)

] (43)

Remember p(β|σ2) does not involve parameters other than σ2. Moreover,
since we ignore the distribution of Y0 and assume the prior of θ is independent
of it, from (43) it is clear that the posterior distribution of gi conditional on
yi,0, σ2 and ρ is i.i.d. normal as in (7).

Next we go on to derive the posterior distributions for β and σ2. First we
can integrate out g in equation (43) to obtain

p(ρ, β, σ2, Y |Y0) = p(ρ, β, σ2|Y, Y0)p(Y |Y0)

= p(β|σ2)
1
2
I(−1 < ρ ≤ 1)T−

N
2 (2π)−

N(T−1)
2 σ2[−N(T−1)+2

2 ]

r−N (ρ) exp

[
− 1

2σ2

N∑
i=1

(yi − yi ρ−Xiβ)′H(yi − yi ρ−Xiβ)

]
.

(44)
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Let us define a new function r(ρ) = r−N (ρ), w̃i = H(yi − yi ρ) and X̃i =
HXi. Incorporating the prior of β in (6) we can rewrite equation (44) as

p(ρ, β, σ2|Y, Y0)p(Y |Y0) =
1
2
I(−1 ≤ ρ ≤ 1)T−

N
2 (2π)−

N(T−1)+k
2 ·

σ2[−N(T−1)+2+k
2 ]r(ρ)

∣∣∣∣∣η
N∑

i=1

X̃ ′
iX̃i

∣∣∣∣∣
1
2

·

exp

{
− 1

2σ2

[
N∑

i=1

w̃i
′w̃i + β′

N∑
i=1

(η + 1)X̃ ′
iX̃iβ − 2

N∑
i=1

w̃′iX̃iβ

]}
Then completing the square of β yields

p(ρ,β, σ2|Y, Y0)p(Y |Y0) =
1
2
I(−1 ≤ ρ ≤ 1)T−

N
2 (2π)−

N(T−1)+k
2 ·

σ2[−N(T−1)+2+k
2 ]r(ρ)

∣∣∣∣∣η
N∑

i=1

X̃ ′
iX̃i

∣∣∣∣∣
1
2

·

exp

− 1
2σ2

 N∑
i=1

w̃i
′w̃i −

1
η + 1

N∑
i=1

w̃′iX̃i

(
N∑

i=1

X̃ ′
iX̃i

)−1 N∑
i=1

X̃ ′
iw̃i

 ·

exp

{
− 1

2σ2

β − 1
η + 1

(
N∑

i=1

X̃ ′
iX̃i

)−1 N∑
i=1

X̃ ′
iw̃i

′ ·
(

N∑
i=1

(η + 1)X̃ ′
iX̃i

)β − 1
η + 1

(
N∑

i=1

X̃ ′
iX̃i

)−1 N∑
i=1

X̃ ′
iw̃i

}
We can see that the posterior kernel for β is normal as in (8) and hence we can
integrate it out. The posterior distribution for ρ and σ2 is

p(ρ, σ2|Y, Y0)p(Y |Y0) =
1
2
I(−1 ≤ ρ ≤ 1)

(
η

η + 1

) k
2

T−
N
2 (2π)−

N(T−1)
2

σ2[−N(T−1)+2
2 ]r(ρ) exp

{
− 1

2σ2
[

N∑
i=1

w̃i
′w̃i

− 1
η + 1

N∑
i=1

w̃′iX̃i

(
N∑

i=1

X̃ ′
iX̃i

)−1 N∑
i=1

X̃ ′
iw̃i]

}
(45)

It is also clear from equation (45) that conditional on ρ, σ2 follows an inverted
gamma distribution with mean A

N(T−1)−2 and degrees of freedom N(T − 1) as
in (9).

Now we can integrate out σ2 to obtain the posterior distribution of ρ as in
(10). Another way to write the posterior of ρ is as follows

p(ρ|Y, Y0) ∝ I(−1 < ρ < 1)r(ρ)t(
b

a
,

c

av
− b2

a2v
, v) (46)
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where

a =
N∑

i=1

y′i Hyi −
1

η + 1

N∑
i=1

(y′i HXi)

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

(X ′
iHyi )

b =
N∑

i=1

y′i Hyi −
1

η + 1

N∑
i=1

(y′i HXi)

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

(X ′
iHyi)

c =
N∑

i=1

y′iHyi −
1

η + 1

N∑
i=1

(y′iHXi)

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

(X ′
iHyi) .

(47)

Equation (46) tells us that when ρ is in the stationary region, its kernel of the
posterior distribution can be viewed as the product of r(ρ) and the t distribution
with the mean parameter b

a and the variance parameter c
av −

b2

a2v , where v =
N(T−1)−1 is the degrees of freedom. Note that b

a is the within-group estimator,
which we could obtain if we operate on the first difference data and adopt a
non-informative prior for ρ by assuming our model is stationary (|ρ| < 1) and
the regressors are exogenous. This estimator is inconsistent and the bias is a
function of the true value of ρ. If our posterior estimate of ρ is consistent, r(ρ)
should act as the correction term to the bias. Let us denote NB as the bias and
ρ as the true value of the parameter. We will have the following19

plim
N→∞

b

a
= ρ + NB

plim
N→∞

1
N

a = a

NB = plim
N→∞

N∑
i=1

y′i Hui −
N∑

i=1

y′i HXi

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

X ′
iHui

N∑
i=1

y′i Hyi −
N∑

i=1

y′i HXi

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

X ′
iHyi

= −
σ2h(ρ)

a
,

plim
N→∞

1
N

 N∑
i=1

y′i Hui −
N∑

i=1

y′i HXi

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

X ′
iHui

 = −σ2h(ρ),

plim
N→∞

1
N

 N∑
i=1

u′iHui −
N∑

i=1

u′iHXi

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

X ′
iHui

 = (T − 1)σ2,

(48)

where the function h (·) is given in (13). So we can obtain

plim
N→∞

c

a
= cta = ρ2 + 2ρNB +

(T − 1)σ2

a
(49)

19Recall that we have specified η as a function of N in a way such that η(N) is o( 1
N

).
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.
Hence when the cross section sample size tends to infinity, the posterior kernel
of ρ can be written as

p(ρ|Y, Y0) ∝ I(−1 < ρ < 1)r(ρ)t(ρ + NB,
1
v

(
cta− (ρ + NB)2

)
, v) (50)

Recall that v = N(T−1)−1. If our estimate from the above kernel is consistent,
the posterior distribution of ρ should become a spike at the true value of ρ (the
mode of the kernel). The mode of the kernel in (50) can be obtained from the
following first order condition,

1
N

d ln p(ρ|Y, Y0)
d ρ

= 0.

So we will have

1
N

d r(ρ)
d ρ

= (T − 1)
ρ− ρ−NB

cta− (ρ + NB)2 + (ρ− ρ−NB)2
. (51)

If our specification of r(ρ) leads to consistent estimator, the true value ρ should
be a solution for the above differential equation. By using (48), we can obtain

Nh(ρ)d ρ =
1

r(ρ)
d r. (52)

Finally by using (13), we will have

r(ρ) = exp (Nb(ρ))
r(ρ) = exp (−b(ρ)) ,

(53)

where b(ρ) is given in (3). By inserting (53) into (40), we will get the transfor-
mation in (2). By replacing r(ρ) and r(ρ) in our derivation, we will have exactly
the same results as those from (7) to (10).

A.3 Proof of Proposition 3.1

When the regressors under the candidate model are neither perfectly corre-
lated nor perfectly uncorrelated with those under the true model, we can define
h2(β, ρ) and h3(β) as in (14) whereXi and Xi denote the regressors under the
true and the candidate model respectively. We can also rewrite (47) as (19)
and in the limit we will have (20). We can still have (50), but the differential
equation in (51) has now become

−N(T − 1)
[
h2(β, ρ)− σ2h(ρ)

]
h3(β) + (T − 1)σ2

d ρ =
1

r(ρ)
d r (54)

If the solution in (53) is still valid, we can insert (52) into (54) to obtain

−(T − 1)h2(β, ρ) + (T − 1)σ2h(ρ)
h3(β) + (T − 1)σ2

= h(ρ).
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It is obvious that unless we have either
−(T−1)h2(β,ρ)

h3(β) = h(ρ) or h2(β, ρ) =
h3(β) = 0, (53) is not a solution for (54). In other words, the reparameterization
of the fixed effect in (2) cannot lead us to consistent estimation of ρ.20 Generally
speaking, if the candidate model does not nest the true model, it is likely that
the reparameterization that will enable us to estimate ρ consistently will involve
the true values of the common parameters (β, σ2 and ρ).

In summary, it is not always true that Lancaster’s parameterization of the
fixed effect will lead to consistent estimation of the model when the model is
misspecified. It therefore justifies our motivation to compare different model
specifications.

A.4 Proof of Proposition 4.1

To prove Proposition 4.1 and 4.2, essentially we need to simplify the integral(s)
which appears in the Bayes factor. One way to do it is Laplace’s method, the
details of which can be found in Tierney and Kadane (1986) and Kass et al.
(1990). To apply the method, we can first multiply both the numerator and the

denominator by
(

1
N

)−N(T−1)
2 . The integral appearing in the Bayes factor can

be simplified as

(
1
N

)−N(T−1)
2

1∫
−1

exp [Nb(ρ)]

[ N∑
i=1

w′iHwi −
1

η + 1

N∑
i=1

w′iHXi

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

X ′
iHwi

]−N(T−1)
2

dρ

=
(

1
N

)−N(T−1)
2

1∫
−1

exp [Nb(ρ)]
(
aρ2 − 2bρ + c

)−N(T−1)
2 dρ

=
( a

N

)−N(T−1)
2

1∫
−1

exp
(

N

[
b(ρ)− T − 1

2
ln(ρ2 − 2

b

a
ρ +

c

a
)
])

dρ

=
( a

N

)−N(T−1)
2

1∫
−1

exp [Nf(ρ)] dρ

(55)

where f(ρ) and its derivatives are defined as follows,

20The inconsistency of the estimator for σ2 follows since σ2 is not independent from ρ
(asymptotically) as can be seen from (9).
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f(ρ) = b(ρ)− T − 1
2

ln(ρ2 − 2
b

a
ρ +

c

a
),

f ′(ρ) = h(ρ)−
(T − 1)(ρ− b

a )
ρ2 − 2 b

aρ + c
a

,

f ′′(ρ) = h′(ρ)−
(T − 1)(ρ2 − 2 b

aρ + c
a )− 2(T − 1)(ρ− b

a )2

(ρ2 − 2 b
aρ + c

a )2
,

(56)

where h′(ρ) =
T−2∑
i=1

i(T−i−1)
T ρi−1 = 1

(1−ρ)2 −
(T+2)ρT+1−2ρT−TρT−1−2ρ+2

T (1−ρ)4 . Based

on (20), if we take the probability limit of (56), we can arrive at (57) as follows,

plim
N→∞

f(ρ) = b(ρ)− T − 1
2

ln
[
ρ2 − 2(ρ + NB)ρ + ρ2 + 2ρNB +

(T − 1)σ2 + h3(β)
a

]
,

plim
N→∞

f ′(ρ) = h(ρ)−
(T − 1)(ρ− ρ−NB)

ρ2 − 2ρ(ρ + NB) + ρ2 + 2ρNB + (T−1)σ2+h3(β)
a

,

plim
N→∞

f ′′(ρ) = h′(ρ)−

(T − 1)
[
ρ2 − 2ρ(ρ + NB) + ρ2 + 2ρNB + (T−1)σ2+h3(β)

a − 2(ρ− ρ−NB)2
]

[
ρ2 − 2ρ(ρ + NB) + ρ2 + 2ρNB + (T−1)σ2+h3(β)

a

]2 .

(57)

Now we can use Laplace’s method to approximate the integral. Suppose for
the equation plim

N→∞
f ′(ρ) = 0, there exists only one solution ρ∗ in (−1,1) and

plim
N→∞

f ′′(ρ∗) < 0. For large N , the integral in (55) can be approximated by

(
1
N

)−N(T−1)
2

1∫
−1

exp [Nb(ρ)]

[ N∑
i=1

w′iHwi −
1

η + 1

N∑
i=1

w′iHXi

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

X ′
iHwi

]−N(T−1)
2

dρ

≈ a−
N(T−1)

2

√
2π

N |f ′′(ρ∗)|
exp
[
Nf(ρ∗)

]

=

√
2π

N |f ′′(ρ∗)|
exp
[
Nb(ρ∗)− N(T − 1)

2
ln d(ρ∗)

]
,

(58)

where d(ρ) is defined in (24).
Moreover, if our choice of the set of regressors included can lead us to con-

sistent estimation of ρ, i.e. either (11) or (12) is satisfied, by substituting the
true value of ρ (i.e. ρ) into (57) we can obtain
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plim
N→∞

f(ρ) = b(ρ)− T − 1
2

ln
(T − 1)σ2 + h3(β)

a
,

plim
N→∞

f ′(ρ) = 0,

plim
N→∞

f ′′(ρ) = h′(ρ)− a(T − 1)
(T − 1)σ2 + h3(β)

+
2h2(ρ)
T − 1

.

(59)

For large value of N , the integral in (55) can now be approximated by

(
1
N

)−N(T−1)
2

1∫
−1

exp [Nb(ρ)]

[ N∑
i=1

w′iHwi −
1

η + 1

N∑
i=1

w′iHXi

(
N∑

i=1

X ′
iHXi

)−1 N∑
i=1

X ′
iHwi

]−N(T−1)
2

dρ

≈
√√√√ 2π

N
∣∣∣h′(ρ)− a(T−1)

(T−1)σ2+h3(β) +
2h2(ρ)

T−1

∣∣∣ ·
exp
[
Nb(ρ)− N(T − 1)

2
ln
(
(T − 1)σ2 + h3(β)

)]
(60)

Considering (17), if X ′
i1s are the true regressors to generate Y (so h2(β, ρ) =

h3(β) = 0), in the probability limit (17) can be approximated by

plim
N→∞

p(Y |Y0, M1)
p(Y |Y0, M0)

≈1
2

(
η

η + 1

) k1−k0
2 [

a|M0
ρ2 − 2ρσ2h(ρ) + 2ρh2|M0(β, ρ) + h3|M0(β) + (T − 1)σ2

]N(T−1)
2

√√√√ 2π

N
∣∣∣h′(ρ)− a

σ2 +
2h2(ρ)

T−1

∣∣∣ exp
[
Nb(ρ)− N(T − 1)

2
ln(T − 1)σ2

]

=
1
2

(
η

η + 1

) k1−k0
2
√√√√ 2π

N
∣∣∣h′(ρ)− a

σ2 +
2h2(ρ)

T−1

∣∣∣ exp

{
Nb(ρ)+

N(T − 1)
2

ln

[
a|M0

ρ2 − 2ρσ2h(ρ) + 2ρh2|M0(β, ρ) + h3|M0(β) + (T − 1)σ2

(T − 1)σ2

]}
.

(61)

So we can guarantee plim
N→∞

p(Y |Y0,M1)
p(Y |Y0,M0)

= ∞ (ρ 6= 0) as long as (21) holds. It does

not matter whether we choose η to be O( 1
N ) or 1

K2 as used in the simulation
studies.
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Now let us consider the case when the true model is M0 in (17), i.e. the
true value of ρ is 0 and Xi0 are the right regressors. Given the assumptions
in Proposition 4.1, the probability limit of the Bayes factor in (17) takes the
following form,

plim
N→∞

p(Y |Y0, M1)
p(Y |Y0, M0)

≈1
2

(
η

η + 1

) k1−k0
2 [

(T − 1)σ2
]N(T−1)

2√
2π

N |f ′′(ρ∗|M1)|
exp
[
Nb(ρ∗)− N(T − 1)

2
ln d(ρ∗)

]

=
1
2

(
η

η + 1

) k1−k0
2

√
2π

N |f ′′(ρ∗|M1)|
exp
[
Nb(ρ∗) +

N(T − 1)
2

ln
[
(T − 1)σ2

d(ρ∗|M1)

]]
.

(62)

If (23) holds, then the Bayes factor in (17) will tend to 0 for large sample size.
If M1 is misspecified but it can still give consistent estimates of ρ, i.e. ρ∗ = 0
(either (11) or (12) holds), we can simplify (62) as

plim
N→∞

p(Y |Y0, M1)
p(Y |Y0, M0)

=
1
2

(
η

η + 1

) k1−k0
2

√
2π

N |f ′′(0|M1)|
exp
[
N(T − 1)

2
ln
[

(T − 1)σ2

(T − 1)σ2 + h3|M1(β)

]]
.

(63)

If h3|M1(β) > 0, the Bayes factor in (63) will be 0 when N tends to infinity. If
h3|M1(β) = 0, we should have k1 − k0 > 0. Once again, the choice of η between
O( 1

N ) and 1
K2 are not important here.

A.5 Proof of Proposition 4.2

For (18), suppose the true model is M1 and M0 despite being misspecified can
still lead to consistent estimation of ρ, (18) can be approximated as

plim
N→∞

p(Y |Y0, M1)
p(Y |Y0, M0)

≈
(

η

η + 1

) k1−k0
2

√√√√√
∣∣∣∣∣∣1 +

a
σ2 − a(T−1)

(T−1)σ2+h3(β)

h′(ρ)− a
σ2 +

2h2(ρ)

T−1

∣∣∣∣∣∣
{

(T − 1)σ2 + h3(β)
(T − 1)σ2

}N(T−1)
2

.

(64)

Since h3(β) is a semi-positive definite quadratic form of β, it should be
greater than or equal to 0. It is 0 when M0 nests M1 (k1 < k0). It is not hard
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to see that plim
N→∞

p(Y |Y0,M1)
p(Y |Y0,M0)

= ∞ when M1 is the true model and we set η to be

O( 1
N ). Under the choice of η = 1

K2 , the Bayes factor in the limit will not tend
to infinity, but rathe a constant, which is still possible to be greater than 1 and
favours the true model.

If we are comparing the true model to a model under which we cannot obtain
consistent estimate of ρ using the transformation of the fixed effect, we cannot
use (60) to approximate the marginal likelihood of the misspecified model. In
fact we may not be able to use Laplace’s method to approximate the integral
since plim

N→∞
f(ρ) may not have a unique maximum point in (-1,1). However,

if plim
N→∞

f(ρ) has a nice bell shape in the stationary region, we can prove that

when using the reparameterization of the fixed effect, Bayes factor can lead to
the selection of the true model asymptotically under certain circumstances. To
see this, we continue to suppose M1 is the true model in (18) and denote ρ∗ as
our estimate of ρ under M0. The Bayes factor (18) can be approximated by

plim
N→∞

p(Y |Y0, M1)
p(Y |Y0, M0)

≈
(

η

η + 1

) k−k0
2

√∣∣∣∣f ′′(ρ∗)f ′′(ρ)

∣∣∣∣ exp
{

N

[
b(ρ)− b(ρ∗) +

(T − 1)
2

ln
(

d(ρ∗)
d(ρ)

)]}
(65)

Note that d(ρ) = (T − 1)σ2. So if (25) is satisfied, the Bayes factor is consistent
in selecting the true model, as claimed by Proposition 4.2. It is difficult to
interpret under what circumstances our data can satisfy (25). Note that the
equation plim

N→∞
f ′(ρ) = 0 generally do not have analytical solution when our

model is misspecified and it does not nest the true model. Therefore it is hard
to check (25) and we have to rely on simulation studies to shed some light on
this issue.

A.6 Proof of Proposition 4.3

The likelihood function takes the following form,

p (Y |θ, Y0) = (2π)−
T N
2 σ2(−NT

2 )

N∏
i=1

exp{− 1
2σ2

[yi − yi ρ− ιfi −Xiβ]′ [yi − yi ρ− ιfi −Xiβ]}.
(66)
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By taking log of the likelihood function and solving the first order condition, we
can obtain the maximum likelihood estimators as the following,

σ2 =
1

NT

N∑
i=1

[yi − yi ρ− ιfi −Xiβ]′ [yi − yi ρ− ιfi −Xiβ] ,

fi =
ι′(yi − yi ρ−Xiβ)

T
,

β =
N∑

i=1

(X ′
iHXi)−1

N∑
i=1

X ′
iH(yi − yi ρ),

ρ =
b

a
,

(67)

where a and b are defined in (19) with η = 0. Based on the MLE, we can find
the Bayesian information criterion (BIC) as the following,

BIC = NT

(
ln

c− b2

a

NT
+ ln 2π + 1

)
+ (1 + k + N) ln(NT ). (68)

A BIC value close to zero calculated under a model indicates evidence in favor
of the model. Using (20), we can find the probability limit of BIC as

plim
N→∞

BIC =NT

ln
plim
N→∞

1
N c− (plim

N→∞

1
N b)2(plim

N→∞

1
N a)−1

T
+ ln(2π) + 1


+ (1 + k + N) ln(NT )

=NT

(
ln

(T − 1)σ2 + h3(β)− aNB2

T
+ ln(2π) + 1

)
+ (1 + k + N) ln(NT )

=NT

ln
(T − 1)σ2 + h3(β)− [h2(β,ρ)−σ2h(ρ)]2

a

T
+ ln(2π) + 1


+ (1 + k + N) ln(NT ).

(69)

For the true model, its BIC value at the probability limit is

plim
N→∞

BIC = NT

ln
(T − 1)σ2 − σ4h2(ρ)

a

T
+ ln(2π) + 1

+ (1 + k + N) ln(NT ).

(70)
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For the model without the lag term of the dependent variable, the BIC at the
probability limit is calculated as

plim
N→∞

BIC = NT

ln
plim
N→∞

1
N c

T
+ ln(2π) + 1

+ (k + N) ln(NT )

= NT

(
ln

(T − 1)σ2 + h3(β) + aρ2 + 2ρh2(β, ρ)− 2ρσ2h(ρ)
T

+ ln(2π) + 1

)
+ (k + N) ln(NT ).

(71)

Let us now look at the case of (17). When Xi1 are the true regressors to generate
Yi, the difference between the BIC under M0 and M1 is

BIC|M0−BIC|M1 =

NT ln
(T − 1)σ2 + h3|M0(β) + a|M0

ρ2 + 2ρh2|M0(β, ρ)− 2ρσ2h(ρ)

(T − 1)σ2 − σ4h2(ρ)

a|M1

+ (k0 − k1 − 1) ln(NT )
(72)

Clearly if we have BIC|M0 − BIC|M1 > 0 for large N , which means M1 is the
preferred model, inside the natural log on the right hand side of the equation,
the numerator should be larger than the denominator. In other words, we
should have (26) stated in Proposition 4.3. If ρ = 0, it is clear that (26) can
be satisfied and model selection is consistent. However, if Xi1 = Xi0, we can
have a|M0

= a|M1
= a, k1 = k0 and h2|M0(β, ρ) = h3|M0(β) = 0. Hence we can

simplify (72) as

BIC|M0 −BIC|M1 =NT ln
(T − 1)σ2 − σ4h2(ρ)

a + aρ2 − 2ρσ2h(ρ) +
σ4h2(ρ)

a

(T − 1)σ2 − σ4h2(ρ)

a

+ (k0 − k1 − 1) ln(NT )

=NT ln

[
1 +

(
aρ− ρσ2h(ρ)

)2
(T − 1)aσ2 − σ4h2(ρ)

]
− ln(NT )

(73)

If aρ−ρσ2h(ρ) = 0, i.e. ρ+NB = 0, we will always have BIC|M0−BIC|M1 < 0,
which means we will always prefer M0 over M1 even if ρ 6= 0. In a situation like
this, model selection is not consistent.

The problem with BIC also arises when M0 is the true model. Now the
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difference between the two BICs is

BIC|M0 −BIC|M1 =NT ln
(T − 1)σ2

(T − 1)σ2 + h3|M1(β)− [h2|M1 (β,0)−σ2 T−1
T ]2

a|M1

+ (k0 − k1 − 1) ln(NT ).

(74)

If we want to have M0 preferred by BIC, we should have BIC|M0 −BIC|M1 <
0, which means we should have (27) claimed in Proposition 4.3. However, if
we have h3|M1(β) = 0, which implies k1 ≥ k0, (27) cannot be satisfied since
[h2|M1 (β,0)−σ2 (T−1)

T ]2

a|M1
≥ 0. Again, this implies inconsistency in model selection.

For the case of (18), suppose M1 is the true model, the difference between
the BICs calculated under M0 and M1 is

BIC|M0 −BIC|M1 =NT ln
(T − 1)σ2 + h3|M0(β)− [h2|M0 (β,ρ)−σ2h(ρ)]2

a|M0

(T − 1)σ2 − σ4h2(ρ)

a|M1

+ (k0 − k1) ln(NT )

=NT ln

1 +
h3|M0(β) +

σ4h2(ρ)

a|M1
− [h2|M0 (β,ρ)−σ2h(ρ)]2

a|M0

(T − 1)σ2 − σ4h2(ρ)

a|M1


+ (k0 − k1) ln(NT ).

(75)

If M1 is the true model, (28) stated in Proposition 4.3 should hold. If Xi0 nests
the true set of regressors, i.e. h2|M0(β, ρ) = h3|M0(β) = 0 and a|M1

= a|M0
, (75)

is reduced to
BIC|M0 −BIC|M1 = (k0 − k1) ln(NT ) (76)

Since k0 > k1, the difference between the two BICs will be greater than 0.
Therefore, the BIC is consistent in model selection in this case.
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