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Abstract

As part of the goal of automatic creation of B-rep mod-
els of engineering objects from freehand sketches, we seek
to take a single line drawing (with hidden lines removed),
and from it deduce an initial 3D geometric realisation of
the visible part of the drawn object. Junction and line la-
bels, and provisional depth coordinates, are key parts of this
frontal geometry.

Many methods for producing frontal geometry only
work correctly for drawings of trihedral objects. However,
non-trihedral K-vertices commonly occur in engineer-
ing objects. We analyse the performance of a line-labelling
method applied toK-vertices, and show why methods ig-
noring geometric considerations are inadequate.

We give a new approach which produces both junction
labels and provisional depth coordinates without any prior
knowledge. Our results show that even a naı̈ve implemen-
tation outperforms previous methods.

1 Introduction

Automatic creation of B-rep models of engineering ob-
jects from freehand sketches would be of obvious benefit to
designers. Conversion of freehand sketches to line draw-
ings is relatively straightforward (e.g. see Mitani et al [10]),
so here we consider line drawings.

We wish our process to be as simple as possible for a
designer to use, so we use use a single drawing, rather
than multiple drawings, as input. For the same reason, we
choose to interpretnatural line drawingsrather thanwire-
frame drawings, in which lines occluded by the material of
the solid object are nevertheless shown in the drawing.

To aid later stages of this process, we wish to deduce as
much as we can from the drawing before adjusting or adding
to it. In particular, we seek afrontal geometryof the object,

a 3D geometric realisation of the visible part of the object
in the drawing. This depth information is used to compare
various hypotheses made about the drawing by later stages
of processing. Junction and line labels [1, 3] and provi-
sional depth coordinates are two important components of
this frontal geometry. The depth coordinates (and the user’s
x-y-coordinates) may be adjusted later to match constraints
(e.g. implied by symmetry or axis-alignment); the presence
of such constraints is assessed using the frontal geometry.

Clearly, it is impossible to uniquely calculate the depths
of junctions in a single line drawing—projection discards
information. Nevertheless, humans can interpret line draw-
ings, and usually agree about the depth implications. Most
readers will interpret drawings such as those in Figures 1–
32 in the same way.

Interpretation of single natural line drawings only be-
comes tractable if one makes assumptions. Most important
of these is the commonly-made assumption that the draw-
ing is made from ageneral positionviewpoint [3]: no small
change in the viewpoint will alter the drawing topology. We
also assume that the designer has a real object in mind. This
avoids the question ofrealisability: whether the line draw-
ing is realisable as a 3D object or not.

Previous work has also often made the overly-restrictive
assumption that the object portrayed is trihedral, side-
stepping several problems arising when creating the frontal
geometry of real engineering objects. Here we exam-
ine some of these problems using drawings of objects con-
tainingK-vertices (defined in Section 4), the most common
type of non-trihedral vertex in engineering objects—we es-
timate that about two-thirds of non-trihedral vertices are
K-vertices. We conclude that the most serious prob-
lem is that, in treating line-labelling solely as a local con-
straint satisfaction problem, geometry is ignored.

As existing line-labelling methods fail through ignoring
geometry, we propose a new approach to the line-labelling
problem based initially on geometry rather than constraint



satisfaction. Our tests show that even a naı̈ve implemen-
tation of this is 20%–30% better at labelling drawings of
non-trihedral objects than previous methods.

The purpose of this paper is twofold: to demonstrate
a deficiency in existing methods, and suggest an alterna-
tive. Sections 2 and 3 consider various approaches to the
problems of line-labelling and production of a preliminary
frontal geometry. Sections 4 and 5 explain whatK-vertices
are, and examine why existing methods are inappropriate
for drawings containingK-vertices. Sections 6, 7 and 8 out-
line our new approach to line-labelling and inflation, give a
practical example, and give test results. Section 9 gives our
conclusions and plans for further work.

2 Line Labelling Review

When analysing a line drawing, we assume that the 2D
coordinatesxj , yj of each junctionj are known (from the
original drawing—they may or may not be accurate), as are
the junction pairs joined by each line, and the loops of junc-
tions and lines forming each region.

Line-labellinglabels all lines in the drawing as convex,
concave or occluding; it is a well-known, often used initial
stage in the interpretation of such drawings. The standard
Huffman [3] and Clowes [1] approach has the advantages
that it requires as input no information other than the above,
and that it produces as output useful information about both
the frontal geometry and the topology of the hidden part of
the object. The non-silhouette lines of Figure 2 have been
labelled in accordance with the Clowes-Huffman conven-
tion as convex (+), concave (-) or occluding (arrow).

Many implementations of Clowes-Huffman line la-
belling (e.g. [5]), usecatalogue labelling. The catalogue
contains all possible junction labels, reducing line la-
belling to a discrete constraint satisfaction problem: all
junctions must satisfy a 1-node constraint—the label ap-
pears in the catalogue, and all lines must satisfy a 2-node
constraint—the line has the same label at both ends.

However, even for trihedral objects described by the
Clowes-Huffman catalogue, line-labelling is not truly a 1-
node and 2-node constraint problem. In order to label ob-
jects correctly, one must also satisfy non-local (and perhaps
vaguer) geometric constraints—the object must be realis-
able, and psychological ones—that the object must be the
one the user intended. However, in the trihedral world, the
advantages of catalogue-labelling (it usually runs inO(n)
time [11]), mean that occasional failures are tolerated.

In the non-trihedral world, the advantages are lost but
the disadvantages remain. For example, the catalogue of
tetrahedral vertices for polyhedra [15] is not sparse, so cata-
logue-based labelling is often too slow [18] to be useful.

Use of the tetrahedral vertex catalogue also results in
many more possible solutions to the constraint satisfaction

problem, and choosing a good solution is difficult [18]: of-
ten labellings which are valid solutions to the constraint sat-
isfaction problem may not be realisable geometrically.

For trihedral drawings, Sugihara [14] suggested that la-
belling should be used to obtain a reasonably small num-
ber of candidate interpretations, each corresponding to a le-
gal labelling, whose geometric realisability could then be
determined by subsequent stages of processing. In a previ-
ous paper [18], we explained why this idea is inappropri-
ate for general non-trihedral drawings. In reconsidering the
idea for drawings where the only permitted non-trihedral
vertices areK-vertices, we note that (i) for more than half
of the test drawings in this paper, the number of legal la-
bellings is no greater than five, but (ii) Figures 18 and 29
have 1177 legal labellings each, Figures 15 and 19 1208
each, and Figure 30 has 10398. Processing so many candi-
date interpretations is impractical. The search and selection
processes must be aided by heuristics based on psychologi-
cal plausibility [18].

As well as geometric considerations which already ex-
ist in the trihedral world (e.g. if a pocket is as deep as
the surrounding material, it should be a through hole, not
a pocket), there are geometric considerations unique toK-
vertices (see Section 4). For objects withK-vertices, re-
ducing the labelling problem to one of simple 1-node and
2-node constraints is inappropriate.

Other approaches exist for labelling, even for trihedral
objects (see [16] for a summary). However, they continue
to treat the problem as one of local constraints, and are also
inappropriate for labelling drawings withK-vertices.

2.1 Relaxation Methods

Previously [18], we gave a “relaxation algorithm” ap-
proach to solving the 1-node and 2-node discrete constraint
satisfaction problem by probabilistic rather than determin-
istic means. This approach is used as a benchmark against
which we test the new idea described in Section 6.

Relaxation has two advantages over e.g. Kanatani’s al-
gorithm [5]. Firstly, it is considerably faster when using
the non-trihedral junction catalogue. Secondly, although
less reliable overall for labelling than other methods, itis
more reliable for drawings with singleK-vertices [16]. This
seems to be because relaxation methods gradually accumu-
late data from other parts of the drawing beyond the im-
mediate 1- and 2-node neighbourhoods, whereas heuristic-
based selection methods have no heuristics to use (oneK-
vertex is as good as another) and are effectively selecting at
random.
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3 Inflation Overview and History

Inflation is the process of adding depth to the visible part
of the object in the drawing. Relevant available informa-
tion is encoded usingcompliance functionsto give a sys-
tem of equations. The best solution to the resulting system
provides as outputs the depth (z-) coordinates for each vis-
ible vertex (e.g. those markedK andT in Figure 1) and
for each point at which a partially-occluded edge disappears
from view (such as the one markedt in Figure 1).

We have, as a minimum available input, the same infor-
mation as that for line-labelling. If inflation is not the first
stage of an overall system, we may have additional informa-
tion (e.g. the output of line-labelling); certain compliance
functions rely on such information being available.

There are two basic approaches to inflation. We may
choose to only use information which can be translated into
a linear system of equations, and find the optimum solu-
tion by linear algebra. Instead, we may also include non-
linear equations, and find the solution using iterative opti-
misation. In practice, the simpler, quicker linear method is
generally used when an approximate geometry suffices at an
early stage. Slower and better non-linear optimisation meth-

ods are more suitable when a fully-correct, “beautified” ge-
ometric realisation of an object is required at a later stageof
processing [17], so are not considered further here.

Previously [17], and here, we use the simplest linear
method, a system of equations linear in just the set of
variableszv, wherezv is the depth coordinate of vertex
v. Grimstead [2] used a more complex linear approach
based on equations constraining vertices to lie in faces:
Pfxv + Qfyv + zv + Cf = 0; the output variables arePf ,
Qf andCf for each face andzv for each vertex. The ex-
tra complexity does not seem worthwhile.

Table 1, based on the list in Lipson and Shpitalni [7] with
additions, lists various compliance functions. The table in-
dicates for each compliance function: what input informa-
tion it needs, whether or not it can be used in either linear
system approach, and whether it is, by itself, inflationary
(some compliance functions are not: e.g. line parallelism
has the trivial solutionzv = 0 for all vertices). For ex-
ample, “Prismatic face” [7] requires the knowledge that the
drawing is of an extrusion, and comprises a number of com-
pliance functions, some but not all of which are inherently
inflationary. Although “Face planarity” [7] cannot be trans-
lated directly into an equation linear inz-coordinates, it can
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Name Ref. Requires Linear (PQzC) Linear (Z) Inflate

face planarity [7] Label Y * N
4-vertex planarity [17] Label Y Y N
line parallelism [7] Parallel Y Y N
line verticality [7] (none) Y Y N

isometry [7] (none) Y Y N
corner orthogonality [12] (none) Y Y Y
junction label pairs [17] Label Y Y Y

skewed facial orthogonality [4] (none) Y N Y
skewed facial symmetry [4] Symmetry Y N Y

line orthogonality [7] (none) N N Y
minimum standard deviation of angles [9] (none) N N Y

face perpendicularity [7] (none) N N Y
“prismatic face” [7] Extruded Y Y *
line collinearity [7] (none) Y Y N

planarity of skewed chains [7] Symmetry N N Y
mirror symmetry [19] Symmetry N N Y

Table 1. Compliance Functions for Inflation

T
K

T
K

Figure 11. Figure 12. Figure 13. Figure 14.

Figure 15. Figure 16. Figure 17.

U

V

U

Figure 18. Figure 19. Figure 20.

be used in the simpler linear approach if expressed as sev-
eral “4-Vertex planarity” compliance functions.

Deducing whether pairs of lines should be parallel in
3D, as required for the line parallelism compliance func-
tion, is only straightforward under a strong interpretation
of the “general viewpoint” rule such as that used by Sugi-

hara [14]. However, such a strong interpretation does not
allow for freehand drawing errors—lines which are almost
parallel in 2D need not be almost parallel in 3D—so we
prefer a weaker interpretation that no small change in view-
point results in a topological change to the line drawing.
Given this, there is no entirely reliable method of determin-
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ing whether the userintendedtwo lines to be parallel.
Determination of whether or not a drawing represents

an extrusion, or a mirror-symmetric object, as required by
some compliance functions, is even less straightforward,
and we do not consider such approaches here.

4 K-Vertices

If one breaks down engineering objects into a union of
adjacent “building blocks”, the two most common blocks
are cuboids and axis-aligned wedges [13]. Although all ver-
tices ofisolatedcuboids or wedges are trihedral, when they
are combined, non-trihedral vertices can appear as a result
of coinciding edges. All of the test objects shown here can
be assembled from cuboids and axially-aligned wedges.

We use the terminology: aK-vertexis a tetrahedral ver-
tex produced by coinciding edges of cuboids and an axially-
aligned wedge; aK-junction is a 2D junction in which all
four edges touching aK-vertex can be seen (and which re-
sembles in shape the letterK ). All K-vertices have 4 edges
with at least 1 convex and 1 concave edge; aK-vertex with
3 convex edges is said to beconvex, with 3 concave edges
is said to beconcave, and otherwise is said to bemixed.

Our test set includes ten drawings of objects featuring
each of the three main types ofK-junction, plus two draw-
ings of objects including the “occluded” mixedK-junction.
None of these drawings is in the set of over 500 draw-
ings [16] used to tune the relaxation algorithm.

Figure 1 shows four convexK-vertices seen from two
different viewpoints, appearing asK- or T -junctions as an-
notated. Figure 2 shows a similar but simpler object, and
Figure 3 has two of theK-vertices on the underside of the
object. Figures 4–7 are similar.

Figure 8 shows that a line which separates two regions
corresponding to parallel facesmust occlude one or the
other—it cannot be convex or concave. There are two such
lines in this figure, annotedO. Figures 9 and 10 illustrate
another point: the central line, annotatedX , corresponds to
an edge with an axis of symmetry through its mid-point, so
for reasons of symmetry as well as geometry that edge can-
not be occluding.

Figure 11 shows a drawing in which four mixedK-
vertices can be seen from two different viewpoints, appear-
ing asK-or T -junctions. Figures 12–14 show simpler ob-
jects, and Figures 15–18 show similar objects, still with
mixedK-vertices, and with one or two through holes. The
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internal features of Figure 19 are the same as those of Fig-
ure 15, but the bottom three junctions have moved. Never-
theless, it is the internal features which should be labelled
differently, as pockets rather than through holes, while the
labels of the bottom three junctions remain the same.

While similar to Figures 15 and 19, Figure 20 should be
easier to label, since it is not necessary to determine whether
the internal features are holes or pockets. It also shows that
so-called “drawing errors” may not necessarily result from
carelessness by the user, but may be needed to avoid acci-
dental coincidences—this figure cannot be drawn in isomet-
ric projection without breaking the general position rule.

Figure 21 shows an object with four concaveK-vertices
seen from two different viewpoints, appearing asK- or T -
junctions as annotated. Figures 22–24 show simpler ob-
jects. Figure 25 shows another view of the object in Fig-
ure 21. Again, Figures 26–28 are similar, simpler objects.

Figures 29 and 30 show similar objects, still with con-
caveK-vertices, which include a through hole. As another
illustration of the non-local nature of the labelling problem,
although it is possible to label the object in Figure 29 as hav-
ing a through hole or a pocket, the labelling must be consis-
tent: either “all hole” or “all pocket”. Figure 30 is partic-
ularly tricky in that two of the regions of the drawing cor-
respond to the same face of the object. Figure 31 shows an
object in which two occludedK-vertices can be seen from
different viewpoints. Figure 32 shows a similar object from
another viewpoint. Note that from no viewpoint is it possi-
ble to see all four edges meeting this sort ofK-vertex.

5 Labelling Discussion

5.1 Benchmark Method

In testing the ability of relaxation methods to label Fig-
ures 1–32 correctly, we have used (with minor modifica-
tions) the algorithm described in [18]. That paper used an
analogy with crystallisation to describe its behaviour, and
noted that the crystallisation process was often too quick.
This had advantages for drawings which included one par-
ticularly unusual junction amidst many common junctions,
but was detrimental on the whole.

A reviewer of [18] suggested that, to avoid this over-
rapid crystallisation, when propagating vertex label prob-
abilities to edges, the update factor should be the maximum
vertex label probability contributing to a particular edgela-
bel, not the sum of all vertex label probabilities which re-
quire that edge label. This resulted in about a 10% reduc-
tion in mislabellings, but also made the results more sen-
sitive to the initial values of vertex label probabilities.We
therefore pursued this idea no further.

As an alternative for avoiding too-rapid crystallisation,
we tried under-relaxation, reducing the influence of neigh-

?
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?
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W
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Figure 33. What Label?

bours at each iteration step. Our tests suggest that under-
relaxation is useful when determining junction labels from
edge labels but not vice versa.

A further addition was made to the algorithm in [18].
Consider the configuration of lines shown on the left of Fig-
ure 33. The vertex atW lies in the plane of both faces, as
does the vertex atY . The edge joining them must there-
fore also lie in the plane of both faces, and thus cannot oc-
clude either. The line must thus be labelled convex, as a
Y -shaped junction with two convex lines and one concave
is not possible. Generalising, if neither of two junction la-
bels allows the corresponding vertex to occlude a face, an
edge joining them cannot occlude the face either, so the cor-
responding line cannot be labelled as occluding that region.
This can be translated into a 2-node constraint on neigh-
bouring junction labels.

However, incorporating this constraint poses a further
problem. Consider the unknown line shown on the right
of Figure 33. It cannot be convex—no possible vertex pro-
duces an all-convexW -junction on projection. Similarly,
it cannot be concave—no possible vertex produces aY -
junction with two convex lines and one concave. Yet it can-
not occlude either face—the vertices at either end of the
edge (and hence also the edge) are clearly in the plane of
both faces. In the absence of a backtracking mechanism, all
that can be done is report that the given configuration of line
labels is invalid, and (unhelpfully) give up.

Note that adding the under-relaxation factors described
above does not remove the problem of an edge having no
possible labels, but does significantly reduce the chance of
the problem occurring. Although it helps, adding under-
relaxation is not a full solution.

5.2 Geometric Constraints

Our drawings illustrate a number of geometric con-
straints which go beyond the local constraints used by ex-
isting labelling algorithms.

Firstly, in Figure 18, consider the two edges marked
U where the U-shaped rim face meets the sloping face.
Clearly, since these two edges are collinear, they must have
the same label. Generalising, if two or more edges lie be-
tween the same two faces, (i) if such edges are collinear, the

6



labels must be the same, (ii) if such edges are non-collinear,
the labels must be different, and at least one must be la-
belled as occluding. This is still a 2-node constraint (but a
non-local one) between two edges, derived from informa-
tion which can be obtained directly from the drawing (we
may allow for user error by using a probability function to
determine how likely two lines are to be collinear).

Secondly, in Figure 18, the edge markedV , where the
smaller central protrusion meets the sloping face, must have
the same label as the two edges previously discussed. This
may seem to be a straightforward generalisation: any rule
applying to a single face also applies to two coplanar faces.
However, deciding whether two faces are coplanar can not
be done simply using only information in the drawing—
lines collinear in 3D must also be collinear in 2D, but there
is no direct way of identifying in 2D which faces are copla-
nar in 3D. This kind of constraint on line labels must be sat-
isfied by any correct labelling, but it cannot be imposed by
any constraint satisfaction algorithm which takes only the
lines and junctions of a drawing as its input.

In a similar way, extra geometric reasoning is also
needed before line labelling in other cases. A line which
separates two regions corresponding to parallel facesmust
occlude one or the other. Deciding that the three protru-
sions in Figure 11) are parallel is simple, but in cases like
Figure 8, reasoning purely from the lines in the draw-
ing that the two faces are parallel is beyond the capabilities
of any known method. Their parallelism must be deter-
mined geometrically.

Consider now the central line in Figures 9 and 10. Rea-
soning as before shows that it cannot be occluding, but
with a small change in the angles of the lines in the draw-
ing, it would be reasonable to label this line as occluding.
Such reasoning is also beyond the capabilities of any known
method. However, even if it were geometrically plausible to
label this line as occluding, to do so would be wrong. An
axis of rotational symmetry passes through the centre of the
line, and labelling the line as occluding would break this
symmetry. Our process must be tolerant of drawing errors,
and so it is surely more important here to preserve sym-
metry than to allowanythingwhich the geometry permits.
Again, detecting potential symmetries requires more input
than simply the lines and junctions of the original drawing.

The latter, however, is an exceptional case. The main
problem with current labelling mechanisms is thatgeomet-
ric information is not taken into account. An approach is
needed which makes use of geometric information which
can immediately be deduced from the line drawing.

6 Inflation and Labelling: A New Approach

In order to inflate a labelled drawing, Lamb et al [6] as-
sume that lines aligned with one of the three main axes in
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Figure 34. Main Object Axes
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Figure 35. Non-Axially-Aligned Lines in 3D

the drawing correspond to edges aligned with the three main
axis in object (i, j, k) space (and implicitly assume, less jus-
tifiably, that determining these axes is straightforward).

We apply this idea, with further extensions, to unlabelled
drawings, to provide a preliminary frontal geometry which
can then be used to predict line labels. Methods for deter-
mining the three main axes from a 2D drawing will be given
in a later paper; here we simply assume that they corre-
spond to the six specific equispaced directions in Figure 34
with thek axis being drawn vertically.

The axes shown in Figure 34 correspond to a view of
the object from above, rather than below. Experimental ev-
idence [8] suggests that humans prefer views from above
when interpreting line drawings, justifying this heuristic.

Every other line, alignedbetweenany two of the six di-
rections (e.g.+j, −k), is assumed to correspond to an edge
which lies on a plane perpendicular to the remaining axis in
space (e.g.i); the direction of the edge in that plane is given
by its angle relative to the two directions. For drawings of
normalons(objects in which all edges and face normals are
aligned with one of the three major axes), deviations are due
to drawing errors. For drawings of semi-normalons such
as those considered in this paper, our assumption should in
principle be correct half of the time, as can be seen by ref-
erence to Figure 35: the non-axially-aligned line is likely
to be in either theij plane (as we assume, left-hand draw-
ing) or theik plane (right-hand drawing), but in either case
thei-component of the edge vector is larger.

The example in Section 7 illustrates how this idea is used
in practice.
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The suggestion of Lipson et al [7] that a line which is
vertical in the drawing corresponds to a vertical edge in
3D space is a special case of the same idea. Both Lamb
et al, and Lipson et al, observe that lines which are the same
length in a drawing should correspond to edges of the same
length in 3D space. This is correct for the special case of
isometric projection which we assume here. Other cases
will be discussed in a future paper.

The outline of our new inflation approach is as follows:

• Attempt to identify the three main axes. In this paper,
we use the equispaced lines shown in Figure 34 (this is ad-
equate for all but two of the test drawings in this paper).
Finding axes by grouping together lines intended to be par-
allel will be considered in a later paper.
• Create three sets of linear equations (for vertexi-, j- and
k-coordinates), by using the assumption of isometricity and
by interpolating 3D line directions as above to give the rela-
tive (i, j, k) coordinates of the start and end vertices of each
line. Solve the three equation systems to obtain vertex po-
sitions in (i, j, k) space.
• Determine the best transformation from (i, j, k) space to
(x, y, z) space, using the vertex coordinates in (i, j, k) space
and equivalent junction coordinates in (x, y) space. Use this
to determine thez-coordinate for each vertex, assuming for
now that all junctions correspond to vertices.
• If z-coordinates have the wrong sense, they must be
inverted. The edges running inwards from the drawing
boundary should mainly be coming towards the viewer. If
more point away from the viewer, invert allz-coordinates.
(Some objects, e.g. pyramids with concave bases, can be
drawn violating this assumption, but such drawings would
also defeat traditional approaches.)
• Find a best-fit plane corresponding to each region, again
assuming that all junctions correspond to vertices and that
there is no occlusion. At and near occludingT -junctions
this assumption is incorrect, as associated vertices are not in
the plane of the face; this will be addressed in future work.
• If a line does not lie in the plane of a region, it occludes
that region. Also, if, at a line mid-point, one region is fur-
ther from the viewer than the other, the line occludes the fur-
ther region (in practice such decisions cannot be made with
certainty, so use probabilities, basing the figure on the dif-
ference in angle orz-coordinates). In other cases, find the
convexity of the line using the two regions’ normal vectors.

This simple method allows many possible extensions,
which we will consider in future work.

In the last stage of our approach, we produce probabili-
ties of, rather than decisions about, each line being occlud-
ing. Also, our approach makes no use of junction cata-
logues, useful constraints which we do not wish to aban-
don. For these reasons, rather than use the line labels pre-
dicted by this method directly, we use them to seed the line
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V5
V6

V7

V8

V9
V10

V11
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V13
V14V15

V16

V17

V18

Figure 36.

label probabilities for the relaxation labelling method de-
scribed above.

7 Example

We illustrate the method described in the previous sec-
tion using Figure 1 as an example. We refer to junctions in
this drawing as shown in Figure 36.

For each line of this drawing, we determine the relative
i-, j- andk-coordinates of its two junctions from the 2D line
angle, as shown in Table 2 (the units are arbitrary). Fixing

Line Distance
¿From To Length i-axis j-axis k-axis

V0 V1 300 0.00 0.00 -300.00
V1 V2 1900 0.00 1899.61 0.00
V2 V3 500 -499.99 0.00 0.00
V7 V8 500 0.00 499.99 0.00
V4 V1 500 499.99 0.00 0.00
V4 V5 500 -399.53 0.00 300.24
V5 V0 900 899.63 0.00 0.00
V6 V5 300 0.00 -300.17 0.00
V18 V6 286 -228.63 0.00 171.68
V8 V9 500 -399.53 0.00 300.24
V10 V9 300 0.00 -300.17 0.00
V17 V10 286 -228.63 0.00 171.68
V12 V13 500 -399.53 0.00 300.24
V14 V13 300 0.00 -300.17 0.00
V3 V14 500 -400.68 0.00 299.66
V13 V15 400 399.64 0.00 0.00
V15 V12 300 0.00 0.00 -300.00
V9 V16 400 399.64 0.00 0.00
V16 V8 300 0.00 0.00 -300.00
V15 V17 329 0.00 -328.82 0.00
V16 V18 329 0.00 -328.82 0.00
V4 V7 300 0.00 300.17 0.00
V11 V12 500 0.00 499.99 0.00
V8 V11 300 0.00 300.17 0.00
V3 V12 300 0.00 -299.30 0.00
V11 V17 214 -170.90 0.00 128.55
V7 V18 214 -170.90 0.00 128.55

Table 2. Distances along Lines
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Initial IJK

Vertex x y i j k z

0 0 1250 0.00 0.00 0.00 1000.00
1 0 950 -10.37 -10.35 -310.45 765.80
2 1645 0 -33.13 1866.46 -333.33 2060.60
3 2078 250 -555.87 1843.67 -356.21 1658.72
4 433 1200 -497.97 2.08 -298.02 438.65
5 779 1700 -889.26 10.35 10.45 386.01
6 1039 1550 -870.66 329.15 29.14 637.79
7 693 1050 -493.82 306.42 -293.84 659.74
8 1126 800 -530.96 769.22 -331.09 934.38
9 1472 1300 -935.83 763.90 -36.24 852.88
10 1732 1150 -913.84 1086.08 -14.15 1111.86
11 1386 650 -530.19 1070.17 -330.30 1148.27
12 1819 400 -567.29 1533.01 -367.52 1422.99
13 2165 900 -979.24 1520.65 -79.68 1326.55
14 2425 750 -967.90 1832.24 -68.11 1563.08
15 1819 700 -603.37 1496.85 -103.65 1558.52
16 1126 1100 -563.52 736.57 -63.73 1077.34
17 1534 864 -663.22 1108.09 -163.74 1198.82
18 841 1264 -623.42 347.77 -123.85 717.56

Table 3. Junction Coordinates

one reference vertex and solving the above as three linear
systems gives the set of vertex coordinates shown in thei-,
j- andk-columns of Table 3. Rotating the resulting struc-
ture to fit, as closely as possible, the original junctionx- and
y-coordinates produces the set ofz-coordinates show in the
final column of Table 3. Fitting face planes to each region is
straightforward. Finally, the initial line and junction proba-
bilities of a relaxation labeller are derived from the geome-
try at each line mid-point (omitted due to lack of space).

As noted in Section 8 below, for this example, both the
initial probabilities produced above and even the unmodi-
fied relaxation labeller probabilities of [18] are sufficient to
label the drawing correctly.

8 Test Results

Table 4 uses the Figures to compare the behaviour of
(i) the baseline relaxation labelling algorithm from Sec-
tion 5, and (ii) the same algorithm seeded using the methods
from Section 6. It lists the number of incorrectly-labelled
lines (Errors) and the number ofT -junctions misidentified
as occluding when not, or vice versa. (The latter make it dif-
ficult to reconstruct the topology of the object, so are more
serious than mislabelling the convexity of a line).

Although relaxation labelling copes effectively with
drawings with a singleK-junction [16], it is no more effec-
tive than other existing methods for drawings with several
adjacentK-junctions. Our new approach is better, reduc-
ing the number of mislabellings by over 20%.

However, clearly much more is needed to find a sat-
isfactory method of labelling drawings with multipleK-

Drawing Previous method New method
Errors T -errors Errors T -errors

Fig. 1 0 0 0 0
Fig. 2 0 0 0 0
Fig. 3 1 1 1 0
Fig. 4 0 0 2 1
Fig. 5 1 0 1 0
Fig. 6 0 0 0 0
Fig. 7 0 0 3 2
Fig. 8 5 1 3 0
Fig. 9 1 0 3 0
Fig. 10 1 0 1 0
Fig. 11 1 0 1 0
Fig. 12 0 0 0 0
Fig. 13 2 0 2 0
Fig. 14 1 0 1 0
Fig. 15 8 0 5 0
Fig. 16 5 0 3 0
Fig. 17 4 0 3 0
Fig. 18 6 0 5 0
Fig. 19 8 0 1 0
Fig. 20 1 0 1 0
Fig. 21 3 0 2 0
Fig. 22 1 0 1 0
Fig. 23 3 0 2 0
Fig. 24 1 0 1 0
Fig. 25 4 1 2 1
Fig. 26 3 1 1 1
Fig. 27 1 0 1 0
Fig. 28 3 1 1 1
Fig. 29 8 0 5 0
Fig. 30 2 0 2 0
Fig. 31 2 1 2 1
Fig. 32 1 2 3 1

Totals 77 8 59 8

Table 4. Test Results

junctions. Three recurring problems can be seen. Firstly,
planes of partial faces in drawings such as Figures 13 and 23
are misplaced because of the incorrect assumption that the
T -junction lies on the face; as a result, lines connecting such
faces to their neighbours are labelled occluding rather than
convex or concave.

Secondly, determination of those lines which do not lie
in the planes of the regions they separate does not result in
a strong enough signal that the lines should be labelled oc-
cluding, with the result that “obviously” occluding lines in
drawings such as Figure 25 are labelled concave; the mis-
placing of face planes also contributes to this problem.

Thirdly, our approach at present is no more able than
any previous approach to distinguish pockets and through
holes, and as a result lines in drawings such as Figures 15–
17 which appear to be at the bottom of holes are labelled
concave, not occluding.

Speed is satisfactory: both approaches can label any of
the drawings in a fraction of a second (on a Dell Optiplex
SX270 with 3GHz Pentium 4 CPU).

9



9 Conclusions and Future Work

We have shown that local-constraint methods of line la-
belling are inadequate for a sizeable class of engineering
objects. We have outlined an alternative method, based on
creating provisional depth information.

Our initial investigations show this method to be promis-
ing. Going beyond the test results already given here, while
using a 558-drawing test set [16] to tune numerical param-
eters, our approach produced 30% fewer mislabellings than
did relaxation labelling.

Perhaps the most important advantage of our new ap-
proach is that when it goes wrong, the reasons for its fail-
ure, being geometric, are apparent and comprehensible. It
will thus be easier to adapt and improve than algorithms
based entirely on probability propagation.

As noted, there are several possible improvements to the
basic implementation given here of our concept as an algo-
rithm, and these will be investigated in our future work.
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