
Optimisation Techniques for

Data Distribution in Volunteer

Computing

Abdelhamid Elwaer

School of Computer Science & Informatics

Cardiff University

A thesis submitted in partial fulfilment of the requirement for the

degree of Doctor of Philosophy

October 2012

mailto:a.elwaer@cs.cf.ac.uk
http://www.something.net
http://www.something.net

ii

Declaration

This work has not previously been accepted in substance for any degree and is

not concurrently submitted in candidature for any degree.

Signed ... (candidate)

Date ...

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the

degree of PhD.

Signed ... (candidate)

Date ...

STATEMENT 2

This thesis is the result of my own work/investigations, except where otherwise

stated. Other sources are acknowledged by explicit references.

Signed ... (candidate)

Date ...

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying

and for inter-library loan, and for the title and summary to be made available

to outside organizations.

Signed ... (candidate)

Date ...

Abstract

Volunteer Computing is a new paradigm of distributed computing

where the ordinary computer owners volunteer their computing power

and storage capability to scientific projects. The increasing number of

internet connected PCs allows Volunteer Computing to provide more

computing power and storage capacity than what can be achieved

with supercomputers, clusters and grids. However, volunteer com-

puting projects rely on a centralized infrastructure for distributing

data. This can affect the scalability of data intensive projects and

when the projects participants increases.

In this thesis, a new approach is proposed to incorporate P2P tech-

niques into volunteer computing projects and apply trust management

to optimize the use of P2P techniques in these projects. This approach

adopted a P2P technique to form a decentralized data centres layer

based on the resources of participants of volunteer computing projects.

VASCODE framework is based on Attic File System to enable build-

ing the decentralized data centres and makes use of trust framework

to provide the necessary data to users to select the optimum data

centres for downloading data.

Empirical evaluation demonstrated that the proposed approaches can

achieve better scalability and performance as compared to the cen-

tral server approach used in BOINC projects. In addition, it shows

that clients with the support of trust framework have reliable and

consistent download times because using trust allows them select the

optimum data centres and avoid the malicious behaviour of data cen-

tres.

i

To the memory of my Mother Rabia

who always wanted me to be a ”doctor”

Acknowledgements

Praise to Allah (God) Almighty for providing me with faith, patience

and the commitment to complete this research.

I would like to thank my supervisor, Dr Ian Taylor, for his expert

guidance and support throughout this research. I would also like to

thank Prof. Omer Rana for his support and constructive comments.

Special thanks go to the staff of the Cardiff School of Computer Sci-

ence and Informatics, especially Robert Evans for his technical assis-

tance and Helen William for her help on administrative issues.

I would like also to thank my colleagues, A. Alsaidi, H. Lenando,

Abdalbaset Algreedi, for their support and encouragement.

Last, but certainly not least, I am indebted to my wife, Hayat, for her

endurance and unconditional love which provided vital encouragement

during my PhD study. Finally, I want to thank my family for their

constant support and care throughout my life.

iii

Publications

• Conferences

– Abdelhamid Elwaer, Ian Taylor , Decentralized Data Centres in Pub-

lic Resource Computing Based on Trusted Workers and High Credit

Scores, UK e-Science All Hands Meeting, UK.8th-11th September, Ed-

inburgh, UK

– AbdelHamid Elwaer, Andrew Harrison, Ian Kelley et al. (2011) Attic:

A Case Study for Distributing Data in BOINC Projects, 1863-1870.

In 2011 IEEE International Symposium on Parallel and Distributed

Processing Workshops and Phd Forum.

– AbdelHamid Elwaer, Ian Taylor, Omer Rana (2011) Preference Driven

Server Selection in Peer-to-Peer Data Sharing Systems . In The Fourth

International Workshop on Data Intensive Distributed Computing (DIDC

2011).

• Journals

– Abdelhamid Elwaer, Ian Taylor, Omer Rana (2011) Optimizing Data

Distribution in Volunteer Computing Systems using Resources of Par-

ticipants. In Scalable Computing: Practice and Experience 12 (2).

iv

Contents

Publications iii

Contents iv

List of Figures x

List of Figures x

List of Tables xii

List of Tables xii

1 Introduction 1

1.1 Introduction . 2

1.2 Research Problem and Motivation 5

1.3 Research Hypothesis . 7

1.4 Research Objectives . 7

1.5 Research Contributions . 9

1.6 Organization of the thesis . 10

2 Background 13

2.1 Introduction . 13

2.2 What is Volunteer Computing . 15

2.3 Scientific and Volunteer Computing 16

2.4 Potential of Volunteer Computing 16

2.5 BOINC Middleware . 17

CONTENTS v

2.5.1 Goals of BOINC . 17

2.5.2 BOINC Architecture . 18

2.5.2.1 BOINC Server Side 19

2.5.2.2 BOINC Client Side 19

2.5.3 Interaction between BOINC Client and BOINC Servers . . 19

2.5.4 Projects that currently use BOINC 20

2.5.4.1 SETI@home . 20

2.5.4.2 Climateprediction.net 21

2.5.4.3 PrimeGrid . 21

2.5.4.4 Einstein@home 21

2.6 Other Idle CPU Cycle Sharing Systems 21

2.6.1 Condor . 22

2.6.2 XtremWeb . 22

2.6.3 Entropia . 24

2.7 Classification of Idle CPU Cycles Systems 25

2.7.1 Resource type . 25

2.7.2 Scalability . 26

2.7.3 Security . 26

2.7.4 Computing Model . 26

2.7.5 Architecture . 27

2.7.6 Data model . 27

2.8 Summary . 29

3 Related Work 30

3.1 Grid Computing . 30

3.1.1 Grid Types . 31

3.1.1.1 Computational grid 32

3.1.1.2 Data Grid . 32

3.1.2 The Globus Toolkit . 32

3.2 P2P Systems . 33

3.2.1 Classification of P2P Systems 34

3.2.1.1 Hybrid P2P Networks 34

3.2.1.2 Partially centralized P2P Networks 35

CONTENTS vi

3.2.1.3 Pure P2P Networks 36

3.2.2 P2P Network Structure . 37

3.2.2.1 Unstructured P2P Networks 37

3.2.2.2 Structured P2P Networks 37

3.3 P2P Storage Systems . 38

3.3.1 Cooperative File System 38

3.3.2 OceanStore . 39

3.3.3 Malugo . 39

3.3.4 BitTorrent . 40

3.3.5 Attic File System . 40

3.4 Comparison of Different Peer-to-Peer File Systems 41

3.5 Managing Trust in P2P Systems 42

3.5.1 Trust Definition . 43

3.5.2 Reputation Definition . 43

3.5.3 Trust and Reputation Technologies in P2P Systems 44

3.5.3.1 Policy-based trust systems 44

3.5.3.2 Reputation Based Trust Systems 46

3.5.3.3 Social network based trust systems 47

3.6 Summary . 48

4 Evaluation of the Current State of the Art: BOINC and Attic 49

4.1 Attic File System . 50

4.1.1 Attic File System Components 51

4.1.2 Message Types . 53

4.1.3 Security . 54

4.1.4 Persistence . 54

4.1.5 Attic Downloading Mechanism 54

4.2 Experiments Results and Discussion 58

4.2.1 Testbed Environment . 58

4.2.2 Experiment Preparation 59

4.2.3 The Impact of Chunk Size 60

4.2.4 The Impact of Different Numbers of Clients and data centres 62

4.2.5 Comparative Evaluation of BOINC with Attic 64

CONTENTS vii

4.3 Summary . 66

5 System Architecture 68

5.1 Design Goals . 69

5.2 System Requirements . 69

5.2.1 Data Caching . 70

5.2.2 Trust . 70

5.2.3 Data Management . 71

5.2.3.1 Data Source . 71

5.2.3.2 Data Downloading 71

5.2.4 Bandwidth Throttling . 74

5.3 System Architecture . 74

5.3.1 VASCODE Layer . 76

5.3.2 The VACSCODE Trust Framework 78

5.3.2.1 Modelling Trust 80

5.3.2.2 Beta Distribution 84

5.3.2.3 Calculating Trust 87

5.3.2.4 Combining Trust Metrics 88

5.3.2.5 Resulting Trust Framework Architecture 91

5.3.2.6 Data Centre Selection Algorithm 93

5.3.2.7 Messaging between components in the framework 94

5.4 Summary . 100

6 Implementation 101

6.1 Implementation Overview . 101

6.2 VASCODE Components . 102

6.2.1 VASCODE−DL . 102

6.2.1.1 httpeer Server 103

6.2.1.2 Reputation Manager 105

6.2.1.3 Reputation Database 105

6.2.2 VASCODE−DC . 106

6.2.2.1 Resource Manager 106

6.2.2.2 httpeer Server . 107

CONTENTS viii

6.2.2.3 Data Cache . 107

6.2.3 VASCODE−DW . 107

6.2.3.1 Trust Process . 108

6.2.3.2 Data Centres Selection 108

6.2.3.3 Download Manager 109

6.2.3.4 Feedback generator 109

6.2.3.5 VASCODE-DW Fault Recovery 110

6.3 VASCODE BOINC Integration 110

6.3.1 Integrating VASCODE-DW into BOINC Client 112

6.3.2 Modifying BOINC Core Client 112

6.3.3 VASCODE Proxy . 115

6.4 Summary . 118

7 Evaluation Of Hypothesis 119

7.1 Objectives . 119

7.2 VASCODE Trust framework Evaluation 120

7.2.1 Evaluation Scenarios . 120

7.2.1.1 Data centres behaviours 121

7.2.1.2 Clients preferences 121

7.2.1.3 Scenarios . 123

7.2.2 Testbed Environment . 124

7.2.3 Experimental Hypotheses 124

7.2.4 Experimental Error . 125

7.2.5 Effect of Data Centres Availability 125

7.2.5.1 Experiment Setup 126

7.2.5.2 Experiment Achievement 130

7.2.6 Effect of Data Centre Honesty 131

7.2.6.1 Experiment Set up 132

7.2.6.2 Experiment Achievement 133

7.2.7 Effect of Data Centres Speed 134

7.2.7.1 Experiment Setup 135

7.2.8 Experiment Achievement 136

7.2.9 Effect of different behaviours of Data Centres 137

CONTENTS ix

7.2.9.1 Experiment Setup 137

7.2.9.2 Experiment Achievement 137

7.3 VASCODE Data Throttling Evaluation 139

7.3.1 Data Throttling and SWF 139

7.3.2 Data Throttling and HWF 141

7.4 Summary . 143

8 Conclusion and Future Work 145

8.1 Research Summary . 145

8.2 Conclusions . 147

8.3 Future Work . 149

A Average Download Time and Standard Error 152

Bibliography 156

Bibliography 156

x

List of Figures

2.1 BOINC Architecture . 18

2.2 Interaction of between BOINC Client and BOINC Server 20

3.1 Trust Management Taxonomy . 44

4.1 Attic File System Components 52

4.2 Snapshot of Data Pointer . 55

4.3 Workflow of File Download Using Attic. 57

4.4 The Impact of The Chunk Size for a 10 MB File Using The ATTIC

File System. 61

4.5 The Iimpact of Different Numbers of Clients and Data Centers on

The ATTIC File System. 63

4.6 Performance of BOINC for Different numbers of clients. 65

4.7 Comparing BOINC with the ATTIC filesystem. 66

5.1 Download Flowchart . 73

5.2 Framework Layer . 75

5.3 VASCODE on top of Attic . 77

5.4 Data centre trust . 83

5.5 Beta Distribution . 86

5.6 Beta function of data centre with feedback of three clients 90

5.7 Trust Framework extending Attic 91

5.8 Querying Message . 95

5.9 Describing Data Message . 96

5.10 Report Message . 97

LIST OF FIGURES xi

5.11 Interaction using the Trust Framework and Attic 98

6.1 Extended Version of Data Lookup in Attic 103

6.2 Extended version of data centre in Attic 107

6.3 Extended Version of Data Worker in Attic 108

6.4 BOINC Middleware using VASCODE 111

6.5 Snapshot of a Data Description of Data Published in Attic 113

6.6 Snapshot of a Work unit using Attic 114

6.7 Modified BOINC Client uses VASCODE to Download Data . . . 115

6.8 Snapshot of a Workunit used file GUID 116

6.9 BOINC Client uses VASCODE Proxy to Download Data 117

7.1 Attic File System used with different Data Centres Availability . . 126

7.2 Data Centres Availability . 129

7.3 Data Download using AWF = 1.0 in the first four hour period . . 130

7.4 Data Download using AWF=1.0 in the second four hour period . 131

7.5 Attic File System using a Number of Malicious Data Centres . . 133

7.6 Data Download using Honesty Weight Factor 134

7.7 Attic File System Using Data Centres with different upload Speed 135

7.8 Data Download using Speed Weight Factor 136

7.9 Data Download using different Weight Factors 138

7.10 Different upload speed . 140

7.11 128 KB Upload Speed . 141

7.12 256 KB Upload Speed . 142

7.13 512 KB Upload Speed . 142

xii

List of Tables

1.1 Top Ten BOINC projects based on their participants 3

4.1 Attic Message Types . 53

4.2 Attic In-Memory Store . 54

5.1 Feedback of Three Clients . 89

6.1 Data centre trust data . 105

6.2 Data Centres Reputation Data . 106

7.1 Weight Factors used in the experiments 122

7.2 The Twenty Machines that are Running in Background 127

7.3 Different Upload Speed . 139

A.1 Standard Error of experiment Data centres availability in the first

four hour period . 153

A.2 Standard Error of experiment Effect of Data centres availability in

the second t four hour period . 153

A.3 Standard Error of experiment Data centres Honesty 153

A.4 Standard Error of experiment Effect of Data centres Speed 153

A.5 Standard Error of experiment different behaviours of data centres 154

A.6 Standard Error of experiment Data Throttling and SWF 154

A.7 Standard Error of experiment Data Throttling and HWF (128 KB

upload speed) . 154

A.8 Standard Error of experiment Data Throttling and HWF (256 KB

upload speed) . 154

LIST OF TABLES xiii

A.9 Standard Error of experiment Data Throttling and HWF (512 KB

upload speed) . 155

1

Chapter 1

Introduction

Overview

Volunteer Computing is one of the distributed computing paradigms that has

gained attention in recent years. It is used by a number of scientific researchers

to perform scientific projects such as climate prediction, search for extraterrestrial

live, and protein structure prediction. Volunteer Computing provides scientists

with the necessary means for performing projects that require huge resources.

However, the increasing number of participants in these projects can exceed the

capabilities of the project servers to serve data requests from participants. More-

over, these large numbers of participants may cause a bottleneck on the servers,

which may in turn lead to a point of failure and reduce the performance of these

projects.

This thesis investigates possible techniques for improving computing’s data

layer through the use of P2P and trust management technologies. This chapter

introduces the research presented in this thesis. The main motivation behind the

intended research contribution is discussed. Finally, the organization of the thesis

is outlined on a chapter by chapter basis.

1.1 Introduction 2

1.1 Introduction

The last decades have witnessed a revolution in a wide range of technologies.

The computing power of PCs underwent a noticeable improvement and the In-

ternet became available to hundreds of millions of users. This development in

technologies has led to the emergence of distributed computing to perform tasks

that require more processing power. Distributed computing provides an efficient

solution for projects that need intensive computing power by distributing project

tasks to a number of machines for execution and returning the results to the main

project server to form the final result.

Due to recent advances in science, an increasing demand has arisen among

scientists for a means to run their scientific projects, and distributed computing

paradigms started to evolve by exploiting the development in new technologies.

New distributed paradigms have emerged, such as grid computing and Volunteer

Computing.

In grid computing, computing becomes pervasive and users gain access to

computing resources (processors, storage, data and applications) without the need

to know where these resources are located [31]. Grid computing aims to provide

scalable, secure, high performance mechanisms for allocating and acquiring access

to remote resources and scientific collaborations can share resources; groups in

different locations are also able to work together [57].

Volunteer Computing is a new paradigm within distributed computing where

computer owners volunteer their computing power and storage capability to sci-

entific supercomputing projects. The increasing number of internet connected

PCs allows Volunteer Computing to provide more computing power and storage

1.1 Introduction 3

capacity than can be achieved with supercomputers, clusters and grids.

A number of different types of middleware [36],[78],[45] are used to create Vol-

unteer Computing projects. BOINC [36] is a popular middleware for building vol-

unteer computing projects. BOINC allows scientists to create scientific projects

that utilize the idle CPU time of the participant’s computers. The projects that

use BOINC are listed in [5] and some of these projects have attracted hundreds

of thousands of participants. Table 1.1 shows the top ten projects based on their

participants.

Projects Participants
SETI@Home 1,310,094

World Community Grid 385,807
Rosetta@Home 344,679
Einstein@Home 324,698

Climate Prediction 261,622
MilkyWay@home 143,508

LHC@Home Classic 102,128
ABC@home 65,981

Malaria Control 63,577
Spinhenge@home 58,706

Table 1.1: Top Ten BOINC projects based on their participants

Some of the current scientific projects that use BOINC are data-intensive and

have attracted a large number of participants as shown in Table 1.1 For such

projects, performance depends on efficient data distribution to its participants

when processing their tasks. BOINC projects are based on a centralized architec-

ture, therefore they use a fixed set of data servers to serve data requests received

from their participants. Once the number of participants increases, a bottleneck

can occur on the main server and therefore it can become a point of failure.

To avoid this bottleneck, the BOINC project has to add extra servers, but this

1.1 Introduction 4

solution is unpractical since it is limited by the servers that are available.

This thesis explores an alternative to the centralized approach of data distri-

bution in BOINC projects and this is the emergence of P2P file sharing, which

can be used to download files from other BOINC clients instead of using a central

server. P2P techniques have received increasing attention in the last decade due

to file sharing software such as Napster [21], BitTorrent [4] and KazaA [18]. By

using P2P techniques for downloading data in BOINC projects, the download

time of data can be improved, thereby the overall time of job processing is re-

duced and consequently the efficiency of these projects increases. In addition to

reducing the total duration of job processing, P2P also avoids bottlenecks since

clients always have alternative places to download data from.

The research here focuses on leveraging such P2P techniques by building from

the Attic file system[3], which creates a decentralized data centres layer in BOINC

projects. Attic is a P2P file system, which has been developed in Cardiff Univer-

sity. It involves using four components for data distributing, data lookup, data

publishing and data downloading. This research is extended by introducing a

trust framework to reduce the drawbacks of using Attic where peers can have dif-

ferent capabilities and behaviours. A trust management system was researched

to avoid malicious behaviour of peers and to allow clients to select the optimum

peers for their requirements in downloading data.

This thesis presents a performance study of using P2P for data distribution

and studies the effect of trust management optimization. The research toolkit

described, VASCODE, was designed during this research and it provides a novel

combination of P2P, BOINC, and trust management extensions. VASCODE aims

to provide a general solution for volunteer computing projects that use P2P for

1.2 Research Problem and Motivation 5

distributing data.

1.2 Research Problem and Motivation

Volunteer Computing is one of the recent paradigms of distributed computing,

where resources belonging to ordinary internet users are utilized for performing

scientific projects that need intensive CPU processing power. The main motiva-

tion for using Volunteer Computing projects, particularly those that use BOINC

middleware, can be summarized as follows:

• CPU intensive applications continue to increase in a wide range of scien-

tific fields such as: protein prediction, climate prediction and search for

extraterrestrial life.

• The recent development of the Internet in terms of bandwidth and speed,

combined with the continued growth of internet users and the number of

computers connected to the Internet, provides a huge range of resources for

processing scientific projects.

• Volunteer Computing can leverage such resources to provide a general pur-

pose solution for scientific projects.

• All users should be able to obtain highly scalable and performance systems

without the need for expensive hardware.

• Volunteer Computing is an example of location transparency where appli-

cations can be run on geographically remote resources.

1.2 Research Problem and Motivation 6

Since participants execute a scientific application and return results to the

project owner and these are typically home Internet users and failure is common;

BOINC repeats the jobs across different volunteers to get consistent results, thus,

massive duplication is inherent in the use (this typically ranges from 2 to 5). This

mechanism to validate results with the increasing number of project participants

produces intensive data requests to the data server, which may cause bottlenecks

in the data server and reduce project performance. This is because data re-

questors must wait some time to receive data or in the worst case the server goes

down as a result of this congestion.

This thesis is motivated by the need to improve data management in Volun-

teer Computing projects focusing particularly on BOINC projects. It proposes a

new approach to improve data distribution based on volunteer resources and by

utilizing P2P file swarming with trust management.

With this goal, an alternative approach is investigated using Attic file system,

which uses volunteers resources to share data instead of using a central server. A

key advantage of the use of Attic is that the availability of data improves since

a number of other volunteers owning it increases. In addition, using concurrent

downloading reduces the download time of data and this will lead to reducing the

total job processing time since this depends on the download time of input data.

Furthermore, this research aims to enhance the performance of using Attic by

using trust management combined with Attic where the trustworthiness of each

data resource is calculated to provide users with the most likely efficient resource

for downloading data and avoiding any malicious behaviour.

1.4 Research Objectives 7

1.3 Research Hypothesis

In existing Volunteer Computing system frameworks, such as BOINC, data is dis-

tributed from a centrally managed resource to large numbers of workers. By adopt-

ing data distribution techniques based on authenticated decentralised servers and

file swarming P2P techniques, it is possible to dynamically select optimal servers

using heuristics calculated from several metrics analysed by a self-adaptive trust-

based model. These techniques will improve on this volunteer model considerably

and offer a more reliable, scalable and efficient framework to enable far more data

intensive projects to use volunteer computing within the scientific community.

Thus, the aim of the research is to investigate the use of Attic to extend the

data layer in Volunteer Computing using participants resources. In addition, it

aims to develop a trust management system using heuristics data for optimum

use of this data layer.

1.4 Research Objectives

The aim of this thesis is to address the issues arising from using centrally managed

resources for distributing data in Volunteer Computing systems, such as BOINC.

More specifically, the aim is to investigate the use of decentralized resources and

to develop a method that takes the trustworthiness of resources into account

for selection in the downloading of data, assuming that the trustworthy of these

decentralized resources is calculated using heuristics trust data. The aim of this

research leads to a number of research objectives described as follows:

1.4 Research Objectives 8

• To investigate trust management techniques for establishing trust

in decentralized resources.

The decentralized data layer is formed using the participants of a Volun-

teer Computing project. These participants are ordinary internet users

who have different resources, different behaviours and different performance

These differences introduce a heterogeneous decentralized data layer of data

resources with different upload speeds, different availability and there is the

possibility of malicious behaviour. Under these conditions, a trust manage-

ment system is required to make optimum use of the decentralized data

layer to allow users to select the best data resources in terms of upload

speed and availability and to avoid any malicious behaviour.

• To gain empirical evidence from Attic operation to feed into the

requirements analysis for designing the trust based approach.

This research aims to investigate the performance of P2P file swarming

where different numbers of chunks and different chunk sizes are used to

download data. It will also explore the effects of concurrent download re-

quests using different numbers of clients and data resources. In addition, it

will conduct a comparative evaluation of using file swarming to download

data in Volunteer Computing projects against the use of the central data

server.

• To investigate the way in which Attic file systems can be inte-

grated into BOINC.

The goal of the research task is to provide Attic and BOINC with a new sys-

tem that allows the existing participants of a Volunteer Computing project

1.5 Research Contributions 9

to form a decentralized data layer and to allow the new participants to join

the decentralized data layer. In addition, this integration must provide a

mechanism to use the decentralized data layer to obtain data instead of

using the central data server.

• To design and develop a system for Volunteer Computing projects

that utilizes a trust layer.

To research and design a system to meet the requirements of the trust-based

approach. This system should provide the necessary tools such as:

Data centre, that allows users to volunteer a part of their resources to

become a data distributor.

Data client, that is used to allow the BOINC client to utilize the decen-

tralized data layer for downloading data to process its assigned jobs.

Trust service, that is used to provide the trust data about each data

centre to the data client to make the selection decision before starting to

download data. In addition, it is used by data clients report their feedback

about the data centres that are used to download data.

1.5 Research Contributions

The contributions of this thesis are as follows:

• The design and implementation of the VASCODE framework that uses the

Attic file system to improve data distribution in Volunteer Computing by

utilizing volunteers resources. The design provides a novel combination of

the Attic file system, trust management and BOINC middleware, which

1.6 Organization of the thesis 10

provides a method for creating Volunteer Computing projects.

• A performance study that shows the effect of using the Attic File System

for downloading data compared to the use of a BOINC data server. Fur-

thermore, it shows the performance of the Attic File System using various

scenarios such as the effect of the number of data centres, the effect of

chunk size and the number of concurrent clients on the download time. To

integrate Attic into BOINC a new proxy called the VASCODE proxy was

developed. This proxy differs from the proxy that was developed by the

Attic team as it uses VASCODE-DW for downloading data and sends the

feedback to the trust server. Furthermore, it allows the configuration of

download preferences for selecting data centres.

• A trust model based on clients feedback and preferences. This model is

used to avoid malicious behaviour of data resources and to select the best

ones to download data from.

• A performance study of the system performance that show the impact on

performance when the trust framework is used with different weight factors

and scenarios.

1.6 Organization of the thesis

• Chapter 2 Background

This presents the background of the research related to Volunteer Com-

puting. The concept of Volunteer Computing is discussed and the BOINC

middleware is presented. In addition, other middleware that are related to

1.6 Organization of the thesis 11

the research are surveyed, such as Condor, XtremWeb and Entropia.

• Chapter 3 Related Work

This chapter surveys the relevant literature in terms of the current research

areas which are related to thesis work. In this chapter, P2P systems and

trust systems are also covered.

• Chapter 4 Evaluation of the current state of the art

The aim of this chapter is to evaluate the Attic file system from the require-

ments analysis perspective. It begins with a description of the Attic file

system and its components, its message and how they are used to download

data. Following the introduction of Attic, a performance study to compare

Attic file system with the performance of BOINC is presented.

• Chapter 5 System Architecture

This describes the architecture and design of the research framework to

tackle the problem. Furthermore, it provides the main concept proposed

by the thesis to integrate Attic and employ trust within the system to im-

prove the usage of the proposed system by describing and introducing the

proposed trust model.

• Chapter 6 Implementation

This chapter covers the implementation of the system and shows how VAS-

CODE is used to integrate Attic into BOINC middleware to create the

decentralized data layer. In addition, it presents how the trust framework

can be used to improve the performance of the system.

1.6 Organization of the thesis 12

• Chapter 7 Evaluation of the Hypothesis

This presents a quantitative evaluation of the proposed system. Several

experiments are conducted to show how the system works. Furthermore, it

shows the performance of the system in various scenarios.

• Chapter 8 Conclusion and Future work

This concludes the thesis with a summary of the original research contri-

bution and outlines the scope for future research.

13

Chapter 2

Background

This chapter presents the idea of Volunteer Computing, which allows supercom-

puting projects to perform easily and inexpensively by utilizing idle CPU cycles

of internet users. It also presents BOINC middleware, which is an open source

middleware for Volunteer Computing that enables computer owners to donate

their computing resources (such as processing power and storage) to one or more

projects. Finally, some of the other systems that use idle CPU cycles are also

presented.

2.1 Introduction

Recent decades have witnessed two major advances in computer technology. The

first was the rapid growth in processing capability and according to Moore’s law

[82], this growth doubles every 18 months. The development in microprocessor

technology means that nowadays personal computers have the same processing

power as older mainframe computers. The second was the development of high

speed networks that led to simultaneous connection between millions of computers

around the world. This has led to the emergence of distributed systems which

Tanenbaum defines as follows [98]:

2.1 Introduction 14

A distributed system is a collection of independent computers that appear to

its users as a single coherent system.

This definition presents a distributed system as consisting of autonomous

components, and the complexity of such a system is hidden from its users, who

perceive they are interacting with a single machine. The main motivation behind

the use of distributed systems is the sharing of resources, including hardware

components such as storage capacity, CPU power, printers, and other peripherals,

or software components such as files, data objects, and databases. Distributed

systems provide a scalable and fault tolerant environment in which to share these

resources. In addition, distributed systems often have a better price/performance

ratio and computing power than centralized systems.

The emergence of distributed systems has had a significant impact on science.

It introduced a new way of conducting computations in which a large computa-

tion problem is divided into small parts and distributed to many computers to

solve them individually; the result of these parts is combined to form the solu-

tion to the problem. The primary advantage of using distributed computing is

that it provides super computing power to its users when they cannot afford su-

percomputers. In research institutions and organizations, researchers can benefit

from the distributed computing paradigm by utilizing individual PCs to conduct

scientific projects that require large computation power. In the last decade, dis-

tributed computing has been used [37],[25],[10]to perform computational tasks

on volunteers computers via the Internet. This type of distributed computing

is known as Volunteer Computing and has attracted great attention in the last

decade due to the popular project SETI@home [37].

2.2 What is Volunteer Computing 15

2.2 What is Volunteer Computing

In the mid-1990s, the computing power of PCs underwent a noticeable improve-

ment and the Internet became available to hundreds of millions of ordinary

users.This led to the emergence of Volunteer Computing. Volunteer Comput-

ing is a new paradigm of distributed computing where ordinary computer owners

volunteer their computing power and storage capability to scientific supercomput-

ing projects. The increasing number of internet connected PCs allows Volunteer

Computing to provide more computing power and storage capacity than can be

achieved with supercomputers, clusters and grids [35].

Volunteer Computing has some differences with grid computing and P2P sys-

tems. Grid computing involves the sharing of resources within or between orga-

nizations, such as universities, research labs and companies. These resources are

secure, trusted and centrally managed. On the other hand, Volunteer Computing

involves the use of resources donated by ordinary internet users; the Volunteer

Computing project has no control over its participants and the participants are

not accountable, so the intentional return of incorrect results by a volunteer is

overcome by the use of redundancy mechanisms. Volunteer Computing uses cen-

tral servers and there is no P2P interaction between participants.

In order for Volunteer Computing projects to attract volunteers to join a

project they need to create trust in the project in several ways:

• The application provided by the project will not breach their privacy or

infect their computers with viruses.

• The project uses proper security measures to prevent the project becoming

a vehicle for malicious activities.

2.4 Potential of Volunteer Computing 16

• The project is truthful about how the results will be used.

2.3 Scientific and Volunteer Computing

The 20th century saw a revolution in the development of science with computer

software accurately simulating the reality of different phenomena; an atomic nu-

cleus, protein molecules, the earths biosphere, or the entire universe. Using these

simulations scientists can validate or disprove theories, predict future events and

investigate chemical reactions. Scientific projects requiring large computation

power stimulated the development of super computers. In the mid 1990s sci-

entists started using Volunteer Computing with two projects: GIMPS [16] and

distributed.net [9]. In 1999 the popular SETI@home [26] was launched, and today

more than 70 scientific projects use Volunteer Computing.

2.4 Potential of Volunteer Computing

Volunteer Computing has the potential to use the computing power of millions of

computers connected to the internet. According to [17], the number of computers

connected to the Internet is more than two billion. Even if a fraction of these

computers work together it will produce tremendous computing power, more than

that generated by any fast super computer. SETI@home project has already

gained 575.026 teraflops [6]. One analysis of BOINC [38] has shown it is possible

to reach processing at a sustained rate of 95.95 teraflops with 7.74 petabytes of

storage and 7.74 terabytes/sec access rate.

These enormous resources can be gained at low cost using Volunteer Com-

2.5 BOINC Middleware 17

puting, whereas super computers can only provide such resources to certain aca-

demics or research centres because super computers are very expensive.

A number of systems have been developed to encourage the creation of projects

to harness the wasted computing power of idle CPU cycles on desktop computers

and PCs that are connected through LAN networks or the Internet, and to en-

courage Internet users to participate in these projects. In the following sections

some of the popular systems are presented.

2.5 BOINC Middleware

BOINC [36] is a platform for Volunteer Computing and it is being developed by

the team that developed the popular project SETI@home. BOINC is an open

source software and can be downloaded from http://boinc.berkeley.edu/trac/wiki/SourceCode.

2.5.1 Goals of BOINC

The general goal of BOINC is to advance Volunteer Computing by encouraging

the creation of many projects and to encourage computer owners to participate

in these projects; BOINC also has specific goals which can be summarized as

follows:

• To reduce the barriers of entry to Volunteer Computing projects.

• To share resources among autonomous projects.

• To support diverse applications.

• To reward participants.

2.5 BOINC Middleware 18

2.5.2 BOINC Architecture

BOINC uses a Client/Server architecture. The server sends tasks to the client

who performs the computation and uploads the results. Volunteers can join a

BOINC project by downloading and running a BOINC client on their computers.

Figure 2.1 shows the architecture of BOINC.

Project back-end

BOINC back-end interface

Scheduling

server

Web

Interface

BOINC

DB

Data

servers

Application client

Client API

Core client

Server side

Client side

Figure 2.1: BOINC Architecture

2.5 BOINC Middleware 19

2.5.2.1 BOINC Server Side

The server side of BOINC consists of two parts:

• The project back-end is responsible for providing applications and work

units and it handles the uploaded results.

• A BOINC server consists of a scheduling server to communicate with par-

ticipating hosts, a data server to distribute input files and collect output

files, and a database for storing information about participants, work units

and results. In addition it provides a web interface to interact with those

participating in the project.

2.5.2.2 BOINC Client Side

The main component in a BOINC client is the core client that communicates with

the scheduler to obtain work units and to upload the results. The core client also

uses run-time libraries to interact with the application that is used to execute

the work units. The BOINC client uses a graphical interface to allow users to

control the computation status. In addition, it uses a screensaver that runs when

the participant computer is idle.

2.5.3 Interaction between BOINC Client and BOINC Servers

The BOINC client makes a number of requests to the BOINC servers to obtain

work units and report the results. Figure 2.2 shows these requests. The BOINC

client starts by downloading the project master page that contains the scheduler

URL, which is used to exchange requests and response messages to the scheduler

server. The request messages ask the scheduler for work units to be processed

2.5 BOINC Middleware 20

and the reply message describes the work units and the download URL for the

input files. The client also communicates with the data server to download the

application executable file or the input files. In addition the data server is used

to upload the output files when the work unit is processed.

Figure 2.2: Interaction of between BOINC Client and BOINC Server

2.5.4 Projects that currently use BOINC

BOINC has been used by a number of scientific projects which range from bio-

logical, medical, and earth sciences, including:

2.5.4.1 SETI@home

SETI@home [37] is developed by a space science laboratory at the University of

California and its goal is to analyse radio telescope data from the Arecibo radio

2.6 Other Idle CPU Cycle Sharing Systems 21

observatory. SETI@home currently has 1,296,572 users and has gained 575.026

Teraflops.

2.5.4.2 Climateprediction.net

Climateprediction.net project [7] is used to investigate and reduce uncertainties

in climate modelling. It aims to produce a prediction of the Earths climate up

to the year 2100 and test the accuracy of current climate models. It has 260,315

users and has gained 36.955 Teraflops.

2.5.4.3 PrimeGrid

PrimeGrid [24] is used to search for prime numbers of world-record size. PrimeGrid

aims to bring the excitement of prime finding to ordinary computer users and pro-

vide relevant educational material about primes. It currently has 50,318 users and

has gained 735.242 Teraflops.

2.5.4.4 Einstein@home

Einstein@home [10] searches for gravitational waves from spinning neutron stars

using data from the LIGO [19] gravitational wave detector. it also searches for

radio pulsars in binary systems using data from the Arecibo observatory in Puerto

Rico [2]. Einstein@home has 321,786 users and has gained 245.333 Teraflops.

2.6 Other Idle CPU Cycle Sharing Systems

This section presents some of the Idle cycle sharing systems that have been de-

veloped to utilize idle computing power resources and enable processing projects

2.6 Other Idle CPU Cycle Sharing Systems 22

that require high computing power.

2.6.1 Condor

Condor [78] is one of the first distributed computing middleware systems. It aims

to provide management mechanisms, such as scheduling and resource monitor-

ing, and attempts to maximize the utilization of the resources of workstations not

being used by their owners. These resources are then used to meet the demands

of other Condor clients. Condor uses a central coordinator, which assigns jobs to

remote machines and retains information on the status of each job and worksta-

tion availability. In Condor, users submit their jobs and the coordinator chooses

to assign resources to the jobs based on the scheduling policy. The coordinator

informs the user upon completion.

ClassAds language is used to provide a flexible and expressive framework for

matching jobs with the available resources. Condor supports application check

pointing; this allows the job to resume on a new resource using the checkpoint file.

The periodic checkpoint of jobs provides fault tolerance and allows the migration

of jobs from one resource to another, using a push mechanism to distribute jobs

to the resources. Unlike BOINC, Condor trusts the resources it uses, since they

are in the same institutions or academia.

2.6.2 XtremWeb

The XtremWeb Project [45] attempts to meet the large computing requirements

of physicists of the Pierre Auger observatory. It aims to build a platform for

experimenting with global computing capabilities with scalability, fault tolerance

2.6 Other Idle CPU Cycle Sharing Systems 23

and security which will be able to adopt varying configurations as well as changes

in communication latency and throughput. XtremWeb can be used in two ways.

Firstly, for a user who downloads worker software, it can be used to process tasks

when the user machine is idle. Secondly, a collaborator who downloads the entire

XtremWeb software can use it to set up his own global distributed application and

the XtremWeb server exploits unused resources gathered by the collaborators.

Workers in XtremWeb initiate communications to the server to avoid any

firewalls that may block incoming requests from the server. The protocol used

between the worker and the server in XtremWeb consists of four requests. Firstly,

it uses the hostRequest for authentication and to obtain a list of servers that may

provide tasks to the worker. Next, the worker asks the server for a job using

the workRequest and then during the computation the worker periodically sends

a workAlive to signal its activity to the server. Finally, when the computation

is finished, the worker sends back the results to the server using a workResult

message.

XtremWeb stores some information about each task, such as the host that

has performed the task and the client who submitted the task. This information

is used to provide feedback to the users about their machines or their tasks. To

allow its users, clients, and administrators to interact with the system, XtremWeb

provides a Web interface. This can be used to submit tasks, obtain statistics, or to

monitor the servers and, when used by an administrator, to perform maintenance.

As with BOINC, XtremWeb allows its users to organize themselves and form

teams, and it provides them with statistics such as the rank of the teams based

on the time they have spent in computation.

2.6 Other Idle CPU Cycle Sharing Systems 24

2.6.3 Entropia

The Entropia system [48] is a commercially distributed computing system in-

tended to provide the essential benefits of distributed computing projects such

as efficiency, robustness, scalability, and unobtrusiveness. It is used to aggregate

raw desktop resources into a single resource; this resource provides high per-

formance for applications through parallelism and is managed through a single

administrative console.

In the Entropia system, sandboxing techniques are used to enable applications

to be deployed without the need to modify its source code or the use of a special

system support. This allows the execution of a large number of applications and

supports its executions in a secure manner. Entropia can support applications

that are written in different programming languages such as C, C++, Java, and

FORTRAN.

The architecture of Entropia is composed of three layers; the bottom layer is

the physical layer management that is used to provide resource management, se-

curity, application control, communication and naming. The resource scheduling

layer in the middle provides scheduling, resource matching and fault tolerance.

The top layer is the job management layer and provides the users with access to

the system. This facilitates the management and handling of jobs and is used to

decompose a single job into a number of sub-jobs to manage the progress of the

job, to provide access to the status of the sub-jobs, and to aggregate the results

of the sub-jobs. Entropia allows the addition of extra schedulers to the system to

provide scalability with increasing numbers of clients and ensure fault tolerance

against scheduler failure.

2.7 Classification of Idle CPU Cycles Systems 25

Entropia employs encryption to prevent any unauthorized access to the data

files. In addition, it regularly checks the integrity of the application, its data and

the results files on the user machine to ensure that there has been no tampering

with them.

These techniques used in Entropia and its three layer architecture aim to

provide a solid foundation for projects that utilize the idle CPU cycles on the

pervasive desktop PC systems.

2.7 Classification of Idle CPU Cycles Systems

In this section, the Idle CPU Cycles Systems discussed in the previous section

are investigated and analysed from a system perspective. They are categorized

according to two levels. The first level refers to their infrastructure which includes

resource types, platforms, scalability, and security; the second level includes the

computing model, architecture and data model.

2.7.1 Resource type

Resource types specify how resources are provided to the system. There are

types volunteer and enterprise. Volunteer types relie on Internet users who vol-

unteer their resources for these systems, while enterprise types are based on non-

voluntary participants usually within a corporation, research lab or university

which are connected through a LAN network. Volunteer types are more volatile

and fault-prone while enterprise types are more controllable since the resource

providers are located in the same administrative domain. Typical examples of a

volunteer type are BOINC and XtremWeb, and of an enterprise type are Entropia

2.7 Classification of Idle CPU Cycles Systems 26

and Condor.

2.7.2 Scalability

Scalability divides these systems into two groups: Internet-based and LAN-based.

Internet-based systems are characterized by anonymous resource providers, con-

nectivity issues (Firewall, NAT, unreliable connection) , malicious resources and

security risks. In contrast, LAN-based systems have reliable connectivity and

lower security risks and under certain degree of control.

2.7.3 Security

Security deals with aspects of access to the computational resources through

authentication and authorization techniques, and access to the computational

data and results by providing data integrity and encryption. It is also necessary

to protect data integrity and validate results because the computations are run

in non-trustable environments.

2.7.4 Computing Model

There are two categories of computing model: the first one is the typical master-

worker model, consisting of independent tasks. The other category involves tasks

which depend on each other - there is either an execution flow between tasks such

that one task needs to be executed only after other tasks are finished, or tasks

run in parallel with data communication between each task. Typical paradigms

involved are PVM, MPI.

2.7 Classification of Idle CPU Cycles Systems 27

2.7.5 Architecture

This is categorized into centralized and hierarchical according to the architecture

of each system. A centralized system consists of a central server to distribute

tasks to the available resources based on some scheduling algorithm. Typical

examples are BOINC, XtremWeb and Entropia. In a hierarchical system, groups

of computing resources can share resources. Condor features a mechanism for

sharing resources among condor pools. By using this technique, a condor pool is

able to accept job requests that are forwarded from a remote pool.

2.7.6 Data model

A data model is used to describe the transfer of computational data (input/output

data) between the components of the system. Two models are identified: the data

server model and the network file system model. In the data server model, the

job submitter is responsible for uploading the input to the data server and for

retrieving the results, while the resource provider is responsible for downloading

the input data and uploading results. BOINC , XtremWeb and Entropia use the

data server model. In a network file system, each component has access to a com-

mon file system by using a distributed file sharing mechanism. Condor applies

this model.

2.7 Classification of Idle CPU Cycles Systems 28

System

Infrastructure level Model level

License
Project

Users Resource Platform Scalability Security Computing model Architecture
Data

model

BOINC Volunteers Internet
Authentication,

data integrity
Master/worker Master/worker centralized

Data

server

Open

source

Hundreds

of

Thousands

XtremWeb Volunteers Internet Authentication Master/worker, MPI Master/worker, MPI centralized
Data

server

Open

source

Few

thousands

Condor Enterprise LAN Authentication
Master/worker,PVM,

MPI

Master/worker,PVM,

MPI
hierarchical

File

system

Open

source

Few

Thousands

Entropia Enterprise
LAN,

Internet
Encryption Master/worker Master/worker centralized

Data

server
Closed

Few

Thousands

Table 2.1 Classifications of the Idle CPU Cycles Systems

The comparison in Table 2.1 shows the advantages of using BOINC as the

volunteer computing middleware in this research because it supports true volun-

teer computing projects compared to Condor and Entropia which are more suited

for enterprise use. In addition, some BOINC projects have attracted hundreds

of thousands of participants, who need a better data distribution mechanism

to avoid congestion on the central server and improve the project performance.

Furthermore, BOINC is an open source project which allows modification to the

platform to build our system.

2.8 Summary 29

2.8 Summary

This chapter has described Volunteer Computing, in particular its scientific ap-

plications where ordinary computer owners volunteer their computing power and

storage capability to scientific supercomputing projects. The premise is that if

only a tiny fraction of the PCs in the Internet connect and work together, it has

the capacity to provide greater computing power than any super computer.

The chapter also presented the BOINC platform for Volunteer Computing as

a means of encouraging computer owners to participate in specified projects. The

BOINC architecture, its interaction between BOINC clients, servers and projects

using BOINC were described.

Condor, one of the first distributed computing middleware systems, was briefly

discussed, in particular how it matches jobs with available resources and how

much more trusting Condor is than BOINC.

Two other systems were mentioned: the XtremWeb Project, which attempts

to meet the large computing requirements of physicists of the Pierre Auger obser-

vatory and the Entropia system, which is a commercially distributed computing

system that can support applications written in different programming languages,

such as C, C ++, Java, and FORTRAN. The three layer management technique

used by Entropia to provide a solid foundation for projects that utilize idle time

of CPUs of PC systems was also described.

30

Chapter 3

Related Work

Increasing computing power and the growth of the Internet have led to a number

of new paradigms and terms related to distributed computing. This chapter

presents those paradigms and terminology that are used in this thesis. In addition,

it presents an overview of the trust techniques used in peer-to-peer (P2P) systems.

This chapter is organized as follows: Section 3.1 presents grid computing, it begins

by defining grid, then the types of grid and Globus toolkit used in grids are

listed. Section 3.2 discusses P2P systems and reviews the types and structure of

P2P networks. Section 3.3 presents P2P Storage networks. Section 3.5 discusses

the concepts of trust and reputation and the different techniques used in P2P

networks to establish trust.

3.1 Grid Computing

Grid computing refers to the federation of computing resources from different ad-

ministrative domains and provides scalable access to those resources. The term

grid comes from power grid, since it is similar to the concept of the grid sup-

plying electric power. Grid computing intends to provide an equally consistent,

dependable, and transparent collection of computing resources. In grid com-

3.1 Grid Computing 31

puting, computing becomes pervasive and users gain access to the computing

resources (processors, storage, data, and applications) without the need to know

where these resources are located [31]. Grid computing aims to provide scalable,

secure, high performance mechanisms for allocating and acquiring access to re-

mote resources, and by using grid computing scientific collaborations, users can

share resources and groups in different locations are able to work together [57].

Grid computing has been defined in a number of ways [58, 60, 88]; in 1999

Foster and Kesselman wrote: ”A computational grid is a hardware and software

infrastructure that provides dependable, consistent, pervasive, and inexpensive ac-

cess to high-end computational capabilities” [73]. In 2000, Foster, Kesselman and

Tuecker [60] redefined grid computing to address social and policy issues, stating

that grid computing is concerned with ”coordinated resource sharing and prob-

lem solving in dynamic, multi-institutional virtual organizations”. Foster in [58]

suggested a checklist of three points to define grid computing :

1. Coordinates resources that are not subject to centralized domain,

2. Uses standard, open, general-purpose protocols and interfaces, and

3. Delivers nontrivial qualities of services.

3.1.1 Grid Types

Grids are used to provide an integration of heterogeneous computing resources,

such as processors, storage, data and applications, and the grid implementation

generally focuses on the integration of a specific type of resource [29, 30]. As

a result, there are different types of grids, the two primary types of grid being

described next.

3.1 Grid Computing 32

3.1.1.1 Computational grid

With this type of grid, processing power is the main resource shared amongst

users; it provides access to a huge pool of shared processing power, which is

suitable for high throughput applications, and performing intensive computing

projects. The GridX1 [34] is an example of a computational grid project, it uses

shared resources provided by several Canadian institutions. GridX1 has been

used by physicists in the Large Hadron Collider (LHC) project [28]at CERN, and

in the BaBar experiment at the Stanford Linear Accelerator Center (SLAC) [27].

3.1.1.2 Data Grid

A data grid is a type of grid that uses storage capacity as its main shared re-

source. It provides its users with access to data across multi-institutional and

heterogeneous environments [47]. The DataGrid project [8] is one example of a

data grid and it aims to build the next generation of infrastructure to provide in-

tensive computation and analysis of shared large-scale databases across scientific

communities.

3.1.2 The Globus Toolkit

As grid computing evolves, it is important to have tools available to create and

modify applications to run on grids. The Globus [15, 59] toolkit has been devel-

oped at the Argonne National Library Illinois, USA, to support the development

of applications for grids; it is a collection of software components, which provides

a set of facilities required for grid computing, such as security, execution man-

ager, data management and information services. The core services, interfaces

3.2 P2P Systems 33

and protocols in the Globus toolkit enable users to access remote resources and

preserve local control over who can use these resources and when.

3.2 P2P Systems

P2P systems became more popular in the last decade through the use of file

sharing application such as Napster [21], Gnutella [1], eMule [11], and KaZaA

[18]. The concept of P2P systems is based on resource sharing in a dynamic

environment [83]. P2P systems are used to access various distributed resources

(processing power, storage capability and bandwidth) at the edge of the Internet;

these resources are shared between users by direct exchange [39].

Two common definitions of P2P systems used by the P2P community are

those of Oram:

”P2P is a class of applications that take advantage of resources storage, cycles,

content, human presence available at the edges of the Internet” [86],

and Stephenson and Spinellis:

”Peer-to-peer systems are distributed systems consisting of interconnected nodes

able to self- organize into network topologies with the purpose of sharing resources

such as content, CPU cycles, storage and bandwidth, capable of adapting to fail-

ures and accommodating transient populations of nodes while maintaining ac-

ceptable connectivity and performance, without requiring the intermediation or

support of a global centralized server or authority” [39].

According to these definitions, the main goal of P2P systems is to provide

scalable systems and avoid the weaknesses in central systems for the purpose of

resource sharing. P2P systems are classified in the literature into different types.

3.2 P2P Systems 34

The following sections present these types.

3.2.1 Classification of P2P Systems

The pure forms of P2P systems are supposed to be totally decentralized, but

in practice there are systems with various degrees of centralization [99], so that

P2P systems can be classified by their degree of centralization [39], that is the

extent to which peers use central servers before they establish connection between

themselves. There are two such categories: hybrid and partially centralized.

3.2.1.1 Hybrid P2P Networks

In the hybrid P2P networks [106], peers are connected through a central server,

which acts as a lookup server between the peers to identify those peers that

store files. This central server maintains metadata describing the files that are

currently shared between peers and the metadata contains the address of peers

where the file is stored. The central server facilitates the interaction between

peers by providing the metadata of the requested file. Using this metadata peers

establish a direct connection between themselves to download the requested file.

This type of P2P system is simple and efficient for discovery of information as it

offers a comprehensive search and provides a guarantee in search, but it is prone

to a single point of failure because of the central server.

Napster [21]is one example of hybrid P2P systems. In Napster every peer is

connected to a centralized lookup server, which maintains a list of files that peers

offer. A peer can issue a request for a file to the lookup server; if the request can

be resolved by the lookup server, it returns the address of those peers offering the

3.2 P2P Systems 35

file. The peer who issued the request uses the address to establish a connection

to that peer and downloads the file.

3.2.1.2 Partially centralized P2P Networks

Hybrid P2P networks feature super peers [40, 54], which are dynamically assigned

to the task of serving a small group of nodes in the network. Super peers are

automatically selected based on their resources (bandwidth and processing power)

to provide a file indexing service for their connected peers. When a peer submits

a query, it sends it to its super peer, who will respond to the query or it forwards

the request to other super peers if it cannot satisfy it and forward the response

message it receives back to the peer. In comparison with purely decentralized

P2P systems, partially decentralized P2P systems have less discovery time, and

the advantage that there is no point of failure such as in Hybrid systems, where if

one of the super peers is subject to failure, the peers connected to it open a new

connection with another super peer. KaZaA [77] and Morpheus [20] are examples

of such P2P systems.

KaZaA is a partially centralized system that uses the concept of super nodes.

The nodes with sufficient processing power and bandwidth are selected as super

nodes using proprietary algorithms based on FastTrack [13]. Super nodes are used

to index files shared by nodes connected to them, and to proxy search requests

on behalf of these nodes. In KaZaA the discovery time is reduced in comparison

with Gnutella. In addition there is no single point of failure as in Napster; if

one or more super nodes goes offline, the nodes connected to them open new

connections with other super nodes and the network continues to operate.

3.2 P2P Systems 36

3.2.1.3 Pure P2P Networks

In pure P2P networks such as the original Gnutella architecture [1] and Freenet

[14] there is no central coordination of the activities in the network, the peers

are directly connected to each other; and perform the same tasks by acting as

servers and clients. Pure P2P networks are inherently fault-tolerant, since there

is no central point of failure. On the other hand these systems are not scalable

and have slow information discovery with no guarantee of the quality of service

[89].

Gnutella

Gnutella [1] is a purely decentralized P2P network in which the users form

a self-organized network and connect to each other directly without any central

coordination. At the start up, the Gnutella user connects to a known Gnutella

node to obtain a list of existing Gnutella nodes to connect to. Because Gnutella

is dynamic and nodes can go offline anytime, once the new node has joined the

network it periodically pings its neighbours to stay in contact and prevent it from

being disconnected from the network. Since Gnutella is an unstructured network

and it is not known where data is located, the Gnutella user uses a flooding

scheme [102] to locate a file; the user sends a search query to all its neighbours

and these neighbours forward the message to their neighbours until the file is

located or the TTL is reached. Gnutella is completely decentralized, there is no

single point of failure, such as in Napster. On the other hand the search method

used to locate files causes large loads on the network [79].

3.2 P2P Systems 37

3.2.2 P2P Network Structure

P2P systems form an overlay on the underlying physical network [101]. When

the overlay network is created based on specific rules this type of P2P system is

known as structured and when it is created ad-hoc it is called unstructured.

3.2.2.1 Unstructured P2P Networks

Unstructured P2P networks do not use any structure when the overlay network is

created; the overlay links are established arbitrarily [103] and the peers organize

to form an ad hoc network. When a new peer joins the network, it connects to a

set of nodes that can be used to propagate queries to retrieve data. As the data

location is unrelated to the overlay network, there is no indication which peers

have the requested data. When a peer searches for data, the request message

floods through the network to find those peers that share the requested data.

Gnutella is one example of this type of P2P systems.

3.2.2.2 Structured P2P Networks

Structured P2P networks [81, 91, 111] were developed to address the scalability

issues that face unstructured networks. With structured networks, an overlay net-

work is formed using specific criteria. CAN [91] is a system using n-dimensional

Cartesian coordinate space to implement a distributed location and routing ta-

ble. Each node is responsible for a zone in the coordinate space. CAN uses a

distributed hash table (DHT) [52] to map between data and its location, so that

a data query can be efficiently routed to the peer that requested the data. Chord

[97] is a decentralized P2P network that performs a mapping of keys onto nodes;

3.3 P2P Storage Systems 38

it uses consistent hashing [71] to assign keys to the nodes. In Chord, the data

location is implemented by associating a key with each data item, and storing the

key/data item pair at the node to which the key maps. The nodes in Chord are

arranged in a ring and each node maintains a routing table. Using this routing

table, the number of nodes that must be contacted to find data in an N-node

network is O(logN). For efficient routing, the routing tables are updated when a

node leaves or joins the network.

3.3 P2P Storage Systems

One use of P2P systems is to form a P2P data storage system which uses the

storage capabilities of peers as the storage space to store and share content. This

provides reliable services by guaranteeing availability and durability of shared

data. In the past few years many P2P data storage systems have been proposed

to take the advantage of the rapid growth of the internet and disk size. The

following sections present some of these systems.

3.3.1 Cooperative File System

Cooperative file system (CFS) [51] was developed at MIT - Massachusetts Insti-

tute of Technology to provide an efficient, robust and scalable infrastructure for

P2P storage systems; it also aims to provide load balance of file storage and re-

trieval in a completely decentralized architecture that can scale to large systems.

CFS uses Chord to maintain routing tables for lookup and query management.

In CFS the data is split into several blocks before it is stored on different nodes

to avoid the problem that one node is not capable of storing the complete data

3.3 P2P Storage Systems 39

[65]. To achieve availability and load balance CFS uses replication and caching of

data. The users of CFS can only read data, but the publishers can update their

data.

3.3.2 OceanStore

OceanStore [75] has been proposed by the University of California to provide util-

ity infrastructure for distributed access to persistent data. OceanStore is designed

to be constructed from an untrusted infrastructure and to support nomadic data.

OceanStore protects data through the use of encryption and access lists (ACL)

are used to restrict access to data. In OceanStore, objects are identified using a

globally unique ID (GUID) and replicated on multiple servers to ensure availabil-

ity. OceanStore provides two ways of locating a replica for an object: initially,

a fast, probabilistic algorithm is used to find the object nearest the requesting

node; if this fails, a slower, deterministic algorithm is used.

3.3.3 Malugo

Malugo [46]is a P2P storage system that connects peers and allows them to

upload encrypted chunks of their data to other peers. Malugo uses Chord to

construct an overlay network; this overlay clusters neighbouring nodes to provide

services within a local region. When a new node joins the network, it will be

located in an appropriate group, if this group is not close enough it forms a new

group. Malugo replicates any new file inserted into the system to all groups of the

system. This avoids data retrieval problems when some nodes are offline. Malugo

was designed for large-scale collaborative projects, and to achieve load balancing

3.3 P2P Storage Systems 40

and replicating of data.

3.3.4 BitTorrent

BitTorrent [49] is a file distribution system used for distributing large amounts

of data over the Internet. It is used for efficient and scalable replication of large

amounts of data. In BitTorrent, the throughput increases with the number of

downloads. A file in BitTorent is split up into chunks and its SHA-1 hash value is

calculated before it is downloaded. The tit-for-tat mechanism is used to prevent

parasitic behaviour of users. BitTorrent is one of the popular P2P systems for

transferring files and has 150 million active users according to BitTorrent, Inc.

3.3.5 Attic File System

Attic file system [3, 56]developed at Cardiff University is a decentralized, P2P

data sharing software architecture for accessing distributed storage resources

available over a network in a similar way to BitTorrent. Attic consists of four

main elements: (i) a data serving application that replicates data on the network;

(ii) data centres that cache data, providing the distributed data source overlay;

(iii) a lookup service that keeps track of which data centres have individual data

items, and (iv) client applications that download data from data centres on the

network. The primary differences between Attic and BitTorrent are the concept

of data centres and the use of HTTP. Attic is discussed in more detail in Chapter

4.

3.4 Comparison of Different Peer-to-Peer File Systems 41

3.4 Comparison of Different Peer-to-Peer File

Systems

The attractive properties of P2P systems have generated much research effort in

building distributed P2P file systems. This section makes a comparison (shown

in Table 3.1) among the P2P storage systems discussed in the previous section

using selected criteria. These criteria include: degree of centralization, i.e to

what extent do the systems rely to a central server to facilitate the interaction

between nodes, the mechanism used for resource location, which is an important

P2P design issue, load balancing, security, data persistence, and other criteria

that affect the system performance.

System Attribute
Location

Scheme

Lookup

Time

Load

Balance

Encrypti

on
Data Stored

Data

Persistence
Read/write

Secure

data

centre

Http

Interface

CFS Chord O(log N) Yes No Blocks Yes Read Only No No

OceanStore Tapestry O(log N) Yes Yes Fragments Yes Read/Write No No

Malugo Chord O(log N) Yes NO
Complete

File
Yes Read Only No No

BitTorrent
Global

Components

Determin

istic
Yes NO Chucks Yes Read Only No No

AtticFS
Centralized

Lookup
O(1) Yes NO Chunks Yes Read Only Yes Yes

Table 3.1: Comparison of different P2P storage Systems

Table 3.1 shows the advantages of using Attic over the other systems. Attic is

an effort to build a P2P software layer that can be used by scientific applications,

3.5 Managing Trust in P2P Systems 42

specifically those engaged in volunteer computing, to distribute, manage, and

maintain their data. In addition, Attic introduces the idea of a secure data

centre through the use of X.509 certificate. To authorize a group of peers to

cache and distribute data, it is possible to centrally issue X.509 certificates to

the data caching peers, and the downloading peers verify the certificates against

the central certificate authority. Furthermore, Attic uses HTTP for its data

transfer layer, leveraging the byte-range attribute of HTTP requests to allow for

concurrent downloads from multiple Data Centre hosts. Concurrent downloading

helps to maximize client download bandwidth, as well as distribute network load.

Additionally, the use of HTTP transactions allows easy integration with existing

software and firewall configurations and client applications that choose not to

serve data require only an out-going HTTP connection.

3.5 Managing Trust in P2P Systems

P2P systems are often established dynamically and formed from heterogeneous

peers that are autonomous and have intermittent presence in the network [74]. In

these systems, peers are unknown to each other, and need to make trust decisions

regarding peers they will interact with and manage the risk involved in these

interactions. Furthermore, P2P systems need to ensure robustness against various

attacks that have been made on these systems [67]. To overcome these challenges,

peers can use their experience or acquire information from other peers to avoid

untrustworthy peers and reduce risk [92]. Existing work [53, 69, 96, 105, 109]using

trust models has shown that P2P systems can successfully mitigate this risk by

finding reliable trustworthy peers.

3.5 Managing Trust in P2P Systems 43

3.5.1 Trust Definition

The notion of trust in computer science has been borrowed from human society,

where we experience and rely on trust in our daily life. Trust is a multifaceted

and context-dependent concept, relating to belief in honesty, competence, and

reliability of the trusted person or service.

In the Oxford Reference dictionary [22] trust is defined as ”firm belief in the

reliability or truth or strength of an entity”.

Grandison [63] defines trust as ”the firm belief in the competence of an entity

to act dependably, securely, and reliably within a specified context”.

These definitions shows that trust is composed of different attributes such as

reliability, dependability, honesty, and competence all of which may have to be

considered depending on the environment in which trust is being specified.

3.5.2 Reputation Definition

In general, reputation is the opinion of the public towards a person, an organi-

zation, or a resource [93]. Reputation is a means of building trust, as one can

trust another based on his/her reputation. Therefore, reputation is a measure of

trustworthiness, in the sense of reliability. In the Oxford Reference Dictionary

reputation has been defined as ”The beliefs or opinions that are generally held

about someone or something”. In the research literature, a number of definitions

for reputation are given. Abdul Rahman et al. [33] define reputation as ”an ex-

pectation about an agents behavior based on information about its past behavior”.

Mui et. al. [84] define it as the perception that an agent creates through past

actions about its intentions and norms.

3.5 Managing Trust in P2P Systems 44

3.5.3 Trust and Reputation Technologies in P2P Systems

Various trust systems have been proposed for P2P systems and can be classified

into three categories as shown in Figure 3.1

Trust ManagementTrust Management

Policy-based

Trust Systems

Policy-based

Trust Systems
Reputation-based

Trust Systems

Reputation-based

Trust Systems
Social Network-based

Trust Systems

Social Network-based

Trust Systems

Figure 3.1: Trust Management Taxonomy

3.5.3.1 Policy-based trust systems

In credential and policy-based trust management systems credential verifica-

tion can be used to establish a trust relationship among peers, see for example

[41, 68, 76, 107, 110]. The main aim of these systems is to enable access control

and trust management is limited to verifying credentials and restricting access to

resources according to application-defined policies. A requesting peer obtains ac-

cess to restricted resources only if its credentials are verified. These policy-based

access control mechanisms do not need the requesting peer to establish trust in

the resource owner and so do not provide a complete generic trust management

solution for all decentralized applications [80].

3.5 Managing Trust in P2P Systems 45

PolicyMaker

PolicyMaker [41] is a trust management system that is used to provide security

features including privacy and authenticity for different kinds of network applica-

tions. The PolicyMaker approach to trust management is based on the following

principles:

• Unified mechanism - the ability to handle trust in a comprehensive, con-

sistent, and transparent manner by expressing policies, credential, and trust

relationships as programs or a part of a program using a common language.

• Flexibility - the ability of the system to support both complex and simple

trust relationships.

• Local Control the ability of peers in the network to make local decisions

about the authenticity of credential presented by the requesting peers.

• Separation of mechanism from policy - this keeps the authentication

mechanism application-independent and allows different applications with

varying policy requirements to share a single certificate verification infras-

tructure.

Using PolicyMaker, a peer grants another peer access to its services when it has

verified that the credentials of the requesting peer satisfy those specified by Poli-

cyMaker. In PolicyMaker, peers do not query and store trust information, which

means bandwidth and storage cost are limited and do not affect its scalability,

but its use of a particular language to describe credentials and policies increases

the complexity of the system.

3.5 Managing Trust in P2P Systems 46

3.5.3.2 Reputation Based Trust Systems

Reputation-based trust management systems provide a mechanism by which a

requesting peer may evaluate the level of trust it should place in the reliability

of a resource and the providing peer. In these systems, peers use information

concerning previous interactions between them to establish a reputation measure

that will support their trust decisions.

The EigenTrust [70] approach is based on the concept of transitive trust; a

peer has a high opinion of those peers who previously had satisfactory interactions

with them. Therefore, this peer is likely to trust their opinion about other peers.

In EigenTrust each peer stores its trust values for all other peers locally. Thus

any one peer can obtain a global trust value for any other peer by asking all peers

in the network for their evaluation. The received trust values are aggregated to

calculate the global trust value. By using these global trust values to choose

peers, the P2P network can efficiently identify malicious peers and isolate them

from the network.

Gupta et. al. in [64] proposed a reputation system for decentralized unstruc-

tured P2P networks that uses objective criteria to track each peers contribution

in the network; the peers capability and behaviour are used to calculate its rep-

utation score in the network. The capability of a peer depends on its processing

capacity, memory storage capacity while the behaviour of a peer is determined by

its contribution in the content search phase and download phase. In this system,

the reputation is computed using either of the two schemes: debit-credit repu-

tation computation (DCRC) and credit-only reputation computation (CORC).

This system uses a public key based mechanism that periodically updates the

3.5 Managing Trust in P2P Systems 47

peers reputation.

The PowerTrust [112] model works in a similar way to EigenTrust, focusing

on creating overlay hashing functions to assign score managers (i.e. peers who

calculate trust values for other peers, thereby preventing peers from maliciously

changing their own trust values) for peers in the system and for combining trust

values to create a global reputation score.

3.5.3.3 Social network based trust systems

Social network-based trust management systems use social relationships among

peers for computing trust and reputation values. These systems evaluate peers

reputations based on the social network that represents their relationships in the

network.

The trust model used by Marsh [80] is based on the social properties of trust,

and attempts to integrate aspects of trust taken from sociology and psychology. In

[108], the authors explore the effect of the social relationships of peers belonging

to online communities on reputation in decentralized scenarios. REGRET [95]

and NodeRanking [90] are other examples of trust management systems that use

the social network concept.

In the REGRET system, Sabater et al. [94] adopt the concept that the

reputation of a peer is an aggregation of different pieces of information. They

proposed a model based on three dimensions of reputation: individual, social, and

ontological. The individual dimension relates to direct trust resulting from the

outcomes of direct interactions between peers. The social dimension incorporates

information on the experiences of other peers with the target peer. Finally, the

ontological dimension considers how various types of reputation can be combined

3.6 Summary 48

to obtain a new type of reputation. For example, the reputation of being a good

flying company could be summarized in the reputation of having safe planes,

comfortable planes, punctuality, never losing luggage and of serving good food.

These dimensions are combined to obtain a single value of reputation.

3.6 Summary

This chapter presented P2P paradigms and terminology used in this thesis to-

gether with an overview of the techniques used to determine trust and reputation.

It defined and classified grid types, P2P systems and their relative advantages. It

described structured and unstructured P2P systems as overlays on an underlying

physical network and discussed P2P systems in terms of reliable provision of data

storage and sharing.

Trust and reputation in P2P systems were introduced as terms borrowed from

human society and then applied to P2P systems: (i) Policy based systems which

are limited to verifying credentials and restricting access to resources according

to application-defined policies; (ii) Reputation based trust management systems

where peers use information from previous interactions to establish a reputation

measure to support their trust decisions; and (iii) Social network-based trust

management systems which evaluate a peers reputation based on feedback from

the social network of which that peer is part.

49

Chapter 4

Evaluation of the Current State

of the Art: BOINC and Attic

The aim of this chapter is to evaluate the Attic file system from a requirements

analysis perspective to understand how Attic works, how the parameters affect

the tuning of the system and to understand the factors affecting the performance

of Attic. In this chapter, the Attic file system is compared with the performance

of BOINC to identify a baseline for quantifying any improvements the VASCODE

framework (discussed in the next chapter) makes over this infrastructure.

The chapter begins with a description of the Attic file system in terms of its

components, its messages and how they are used to download data. Following the

introduction of Attic, a performance study to compare Attic with the performance

of BOINC is presented. The aim of this study is to evaluate the advantages that

Attic has over BOINC, to acquire experience in the use of Attic, which will lead

to an understanding of how best to optimize Attic to provide a requirements

analysis for the VASCODE framework. In addition, it indicates the potential

value in using Attic for volunteer computing projects since the use of decentralized

data centre layers decreases the download time of users and provides significant

gains for BOINC projects as a whole by reducing download time and therefore

4.1 Attic File System 50

increasing the throughput of results.

4.1 Attic File System

Attic is a P2P data sharing software system currently being developed as part

of the European Union’s seventh framework project EU FP7 EDGI [12]. Attic,

previously dubbed ADICS [72], was initially developed with support from EPSRC

grant EP/C006291/1 and had further support in the EU FP7 EDGeS [55]

project. Attic is being developed to take advantage of the network and the

storage resources available on the network in a decentralized manner, similar to

BitTorrent [49].

The primary differences between Attic and BitTorrent are the concept of data

centres, and Attic’s use of HTTP. Data centres are interim storage facilities that

provide a buffer between the data serving application and client applications. This

buffer is particularly important for volunteer computing environments because it

ensures that the data sources can be trusted by clients. Trust plays a crucial

role in Volunteer Computing environments. If it is broken, then the project will

fail to attract volunteers. Therefore, in controlled environments, data centres are

typically issued with certificates signed by a trusted certificate authority (which

may be the project itself) allowing client applications to verify the identity of

the data centre when downloading. Alternatively, clients can be configured with

known data centre hosts. However, the Attic architecture allows any client to also

serve data (i.e. to become a data centre) and thus the use of trusted data centres

is primarily a deployment choice. This flexibility allows projects to conform to

the Attic system with regards to the particulars of their security domain. As

4.1 Attic File System 51

far as the EDGI is concerned, it makes sense to serve data from a set of known

and trusted sources, however, another project could also choose to allow any host

to cache and serve data, thereby including participant client machines in data

distribution, similar to more traditional P2P systems, such as BitTorrent [49],

Freenet [14] and Oceanstore[75].

Attic uses HTTP for its data transfer layer, using the byte-range capabilities

of HTTP requests to allow concurrent downloads from multiple data centre hosts.

Concurrent downloading helps to maximize client download bandwidth, as well

as distribute network load. Additionally, the use of HTTP transactions allows

easy integration with existing software and firewall configurations and client ap-

plications that choose not to serve data that require only an out-going HTTP

connection. The Attic file system consists of four main elements and these are

listed below:

• A data serving application that replicates data on the network.

• data centres that cache data, providing the distributed data source overlay.

• A Look-up service that keeps track of which data centres have individual

data items.

• Client applications that download data from data centres on the network.

4.1.1 Attic File System Components

The Attic file system consists of different components (Figure 4.1) that are used

to play different roles in the system. These components are:

4.1 Attic File System 52

DataWorker ConfigServiceRole DataPublisher DataSeed DataLookup DataCenter

Attic

Figure 4.1: Attic File System Components

.

DataWorker is used to pull data when it is given a remote endpoint. The given

endpoint should point to a data pointer document.

ConfigServiceRole is used to provide online configuration to an Attic instance.

DataPublisher can index local files, and uses bootstrap endpoint to publish

data adverts.

DataSeed extends the DataPublisher to allow remote clients to push data to the

seed to publish it.

DataLook-up acts as a look-up service for other nodes. It is used to accept

requests to publish data and requests to cache data.

DataCentre acts as (1) a client in that it requests data pointer from a look-up

service and uses the endpoints described in data pointers to download data. (2)

data centres cache data to provide it to other nodes.

4.1 Attic File System 53

4.1.2 Message Types

The Attic file system uses a number of different messages to describe, publish,

and query data. These messages and their uses are described in Table 4.1 below:

Message Type Definition
DataDescription Contains name, description, and project associated with

the data. It also combines a globally unique ID.
FileHash Contains the length of the data and an MD5 hash.
FileSegmentHash Describes a portion of data including its start offset, end

offset, and the MD5 hash of the portion.
DataAdvert Contains a DataDescription.
DataQuery Is used to query for data.
PointerCollection Is a list of DataPointers.
DataPointer Contains a DataDescription and a list of Endpoints.
Endpoint URI of Data Cache.

Table 4.1: Attic Message Types

4.1 Attic File System 54

4.1.3 Security

Attic uses TLS and mutual authentication with X509 to implement security. Dur-

ing runtime Attic requires a Java keystore containing local keys and certificates

to be available. To allow for more fine grained authorization of actions based on

the identity in the certificate, Attic uses a mapping between an application level

defined action, and a distinguished name (such as common name, organization

and country) as defined in a certificate.

4.1.4 Persistence

Attic does not support persistence. It uses in-memory storage for caching identi-

ties and various messages exchanged. This is largely suitable for client-side nodes

such as DataWorker, or service nodes that are transient. There are various types

of storage defined. Table 4.2 lists these types:

No Store
1 Adverts Store
2 Queries Store.
3 Data Pointers Store
4 Description Store
5 Identities Store

Table 4.2: Attic In-Memory Store

4.1.5 Attic Downloading Mechanism

Downloading from multiple servers using Attic requires the possession of a Dat-

aPointer. Typically, these can be retrieved from a Look-up server. Data cen-

tres may ask for a collection of available pointers because they are interested in

4.1 Attic File System 55

caching, as opposed to processing the actual data. DataWorkers, on the other

hand, will query for a pointer based on the UUID of the DataDescription refer-

enced by the pointer, because they require a particular data object to process.

A DataPointer represents a description of data and a list of endpoints that

potentially have some or all of the referenced data. The Endpoint element rep-

resents the URL at which the data is available. These endpoints are used to

download data. Figure 4.2 shows an example XML serialization of a portion of a

DataPointer.

Figure 4.2: Snapshot of Data Pointer

4.1 Attic File System 56

The workflow that describes the download process of a file downloading using

the Attic File System is explained in the UML diagram (Figure 4.3) below:

Worker Data Lookup Data Centres

DataQuery Message

DataPointer Message

DataPointer message

is used to create

 download Table

Chunks Download Requests

Chunks

downloded Chunks

are used to construct

the requested File

Figure 4.3: Workflow of File Download Using Attic.

1. The DataWorker sends a DataQuery message to the look-up server.

2. The look-up server replies with a DataPointer message.

4.2 Experiments Results and Discussion 57

3. The DataWorker uses the DataPointer message to configure the downloaded

table.

4. DataWorker start request file chunks concurrently from the Endpoints listed

in the DataPointer.

5. Data centres send the requested chunks to the DataWorker.

6. Finally, when the DataWorker has received all the chunks, they are used to

construct the whole file.

4.2 Experiments Results and Discussion

This section presents a study comparing Attic with the Current State of the Art,

to understand the extent to which Attic might improve data distribution in a

Volunteer Computing Environment. Projects that employ the use of the BOINC

middleware are of particular interest in this thesis. To this end, a number of

experiments have been conducted to show how Attic performs using different

parameters, namely chunk size and the number of data centres.

4.2.1 Testbed Environment

The experiments were run using networked computers in the Computing Science

Laboratory at the School of Computer Science and Informatics, with access to

19 Linux machines. 18 of these machines were used to run various combinations

of clients and data centres. These machines each contain a 2.8 GHz P4 processor

and 2 GBs RAM. The remaining machine is equipped with a 2.0 GHz Pentium

Dual Core processor and 3 GB RAM and was used to run the data look-up

4.2 Experiments Results and Discussion 58

server for the Attic experiments and also the BOINC data server in the BOINC

experiments for comparison. All machines are connected through a LAN network

and the speed of the ports was configured to each of these machines using a Web

interface.

4.2.2 Experiment Preparation

The Web interface are used to set the network connection speed of a subset of the

machines to 10 Mbps and the others to 100 Mbps. This enabled the simulation of

a collection of home users when connected via a broadband internet connection;

that is, their upload speed was proportioned as a fraction (such as a tenth) of

their download speed. This is the norm, at least in the UK and USA, where an

ISP will often restrict a user’s upload bandwidth to around one tenth of their

download speed. The success of BitTorrent-style protocols capitalises on this

download/upload mismatch to maximise download speed by establishing multi-

ple simultaneous download streams from a number of different servers. Since the

servers typically have a fraction of bandwidth due to their ISP constraints, Bit-

Torrent allows users to maximise their downloading bandwidth by downloading

from multiple servers concurrently. By simulating this mismatch, it is possible

to demonstrate the potential speedup by limiting servers in the network so that

gains within the bounds of the TCP theoretical limit can be achieved. Other-

wise, a one to one connection would always be the best strategy as it is possible to

achieve the closest to the theoretical limit of TCP with a one to one connection.

For Internet deployment however, it is never the case that one server can

match the bandwidth capability of the Internet because of its inherently dis-

4.2 Experiments Results and Discussion 59

tributed nature, so this assumption that one server will not match the theoretical

bandwidth of the network as a whole is realistic. There will therefore almost

certainly be a bottleneck as users increase because one server will not be able to

serve the data as the data clients in the network increase. Therefore, it is believed

that deploying multiple distributed servers that have a fraction of the overall net-

work bandwidth is a reasonable approximation to simulating the same effect on

a typical Internet deployment. Attic employs the same style of file swarming as

BitTorrent to achieve similar results.

4.2.3 The Impact of Chunk Size

As described in Section 4.1 (and in BitTorrent), there are two main factors in the

downloading of a distributed file from multiple sources: the availability of servers

and the chunk size (called ’piece’ in BitTorrent). The chunk size is a critical

parameter in achieving optimal utilization of bandwidth across the network and

knowledge of the various states of the content and network parameters is required

for an optimal setting. For example, the typical size of a file that is downloaded is

one key parameter and the number of servers and their bandwidth capability are

the others. On the one hand, one would not want to set the chunk size too low

because the TCP connection overhead would factor too high in the performance.

On the other hand, one would not want to set the chunk size too high because

this would limit the number of servers one could utilize in the network.

4.2 Experiments Results and Discussion 60

0

1

2

3

4

5

6

7

2 4 6 8 10

T
im

e
in

 S
ec

o
n

d

Number of data centres

Download Time of 10 MB File using different chunk size

1 MB chunk 2 MB chunk 5 MB chunk

Figure 4.4: The Impact of The Chunk Size for a 10 MB File Using The ATTIC
File System.

In this experiment, both these effects are shown to assess how the chunk size

impacts on the download time of a 10 MB data file. The 10 MB file is published

to Attic for three different chunk sizes (1 MB, 2 MB and 5 MB) and by varying

the number of data centres from 2 to 10 (in increments of 2), it is possible to

investigate the impact of chunk size on the efficiency of the system. The network

speed for all serving nodes in this experiment was 10 Mbps and the client was set

to 100 Mbps.

Obviously, different chunk sizes mean a different number of chunks are re-

quired to download the 10 MB file. For example, Figure 4.4 shows that for a 5

MB chunk size, it is not possible to do better than to use two servers because

the file is twice the size of the chunk size. This was orchestrated to provide the

4.2 Experiments Results and Discussion 61

baseline for this experiment.

The use of smaller chunk sizes is more interesting and the results were along

the lines expected. For the 2 MB chunk size, 6 servers were the optimal number.

The experiment was quantized into increments of two servers (i.e. 2,4,6,8 and 10)

with 6 the expected optimal number of servers for the 2 MB size chunk. The finest

grained results can be seen for the 1 MB chunk size, where a gradual decrease in

download time can be seen as data centres are added. With 10 data centres, a

download time of a little over two seconds was achieved. Comparing the results

for 2 MB and 1 MB chunks clearly shows that as data centres are added, there is

no linear scaling, but the scaling is still reasonably efficient with only a modest

difference between five data centres serving 2 MB files and ten serving 1 MB files.

This experiment demonstrates the necessity of choosing informed values for

the chunk size. If one knows something about the size of the data being down-

loaded (which one does in BOINC since this is already defined by the experiment),

the average upload speed of the servers, the download rate of the clients and the

number of available servers, then much improvement can be gained by choosing

an appropriate value for the chunk size. Clearly, the goal here is to choose chunk

size to make the ratio between the servers and their upload speed create optimal

use of the client’s bandwidth which is confirmed by the results of this experiment.

4.2.4 The Impact of Different Numbers of Clients and

data centres

In this experiment, information was gathered about how the number of clients

impacts on the average file download time for a user. Here, a 10 MB file was

4.2 Experiments Results and Discussion 62

published to the Attic using a 1 MB chunk size. The network speed in this

experiment was 10 Mbps for the servers and 100 Mbps for the clients. The

experiment was run three times setting the number of clients (1, 3 and 9). Figure

4.5 shows that as the number of data centres increases, the average download time

for a client decreases.

0

10

20

30

40

50

60

1 DC 3 DC 9 DC

T
im

e
in

 S
ec

on
d

Number of Data Centres

Average Download Time of 10 MB File Using Different no of Clients and Data Centers

1 Client 3 Client 9 Client

Figure 4.5: The Iimpact of Different Numbers of Clients and Data Centers on
The ATTIC File System.

In Figure 4.5, it is clear that the download speed improves with the increas-

ing number of data centres. However, for a 10MB file and a network speed of

1.25 MBytes per second (10 Mbps) it should take a minimum of eight seconds to

download the file entirely using one data centre. For three users the traffic in-

creases by a factor of three so the minimum download time should be 24 seconds

and finally for nine users there would be a minimum of 54 seconds for all clients

to download the file. One client makes good use of the available bandwidth and

the download time with nine servers is a little less than 3 seconds, giving a gain

4.2 Experiments Results and Discussion 63

of a factor of more than three over the minimum time for a single server. For

three users, the download time is reduced from 24 seconds to 5 seconds when the

number of data centres increased from one to nine (a gain factor of nearly five).

Finally, for nine clients, Attic reduces the time from a theoretical 54 seconds for

one data centre to 15 seconds for nine data centres, giving a gain factor of 3.6.

The arithmetic average of these three gain factors for nine data centres is 3.9.

For three data centres, the gain factors are 2 for one client (8 seconds reduced to

4 seconds), 2.4 for three clients (24 seconds reduced to 10 seconds) and 2.25 for

nine clients (54 seconds reduced to 24 seconds). The arithmetic average of these

is a gain factor of 2.22.

Clearly, these results indicate the importance of the combined choice of chunk

size and number of data centres. For the given size of the file and network

parameters three servers are clearly optimal in terms of the efficiency of the Attic

files system. However, further gains of up to two are possible if one is prepared

to make a sacrifice on the number of data centres utilized. In the Volunteer

Computing paradigm where people volunteer such resources, it might well be

argued that a high increase in the use of data centres justifies a modest gain

in the download times. Again, these are parameters to be tuned for specific

deployments.

4.2.5 Comparative Evaluation of BOINC with Attic

In this experiment, a comparative evaluation of BOINC with Attic was made. A

BOINC data server was used, running on a 2.0 GHz Pentium Dual Core processor

Linux machine with 3 GB RAM. The number of data clients (1, 3 and 9) used to

4.2 Experiments Results and Discussion 64

download a 10 MB file were varied as independent variables. The network speed

was set to 10 Mbps for the server and 100 Mbps for the clients.

First, the performance of the BOINC server as a baseline was analysed. The

results in Figure 4.6 show, as expected, that the average time needed by all clients

to download the 10 MB file increased as the number of clients increased.

0

10

20

30

40

50

60

1 Client 3 Client 9 Client

T
im

e
in

 S
ec

No of Clients

Average Download of 10 MB File Using BOINC Server

Figure 4.6: Performance of BOINC for Different numbers of clients.

As discussed in the previous experiment, a single BOINC client needed at

least 8 seconds to download the 10 MB file, and with more than one client the

data simply queues the requests until it has time to serve them.

In Figure 4.7 when the results are compared with the results of the previ-

ous experiment (section 4.2.4), it was noted that Attic will provide almost the

same results as the BOINC data server when one data centre is used. In fact,

BOINC is marginally more efficient which is not surprising because it does not

have the message overhead that Attic has, in terms of querying and prioritising

4.3 Summary 65

0

10

20

30

40

50

60

1 Client 3 Client 9 Client

T
im

e
in

 S
ec

on
d

No of Clients

Averag Download Time of 10 MB File Using AtticFS and BOINC data server

1 DC 3 DC 9 DC Boinc Server

Figure 4.7: Comparing BOINC with the ATTIC filesystem.

endpoints before downloading commences. However, as Attic adds data centres

the download time decreases.

4.3 Summary

This chapter described the Attic file system as a P2P data sharing software archi-

tecture whose primary differences with, for example, BitTorrent are the concept

of data centres and use of HTTP to allow concurrent downloads from multiple

data centre hosts. The components and message types of the Attic file system

were listed and described. The Attic downloading procedure was explained with

the parts played by File System Components and Message types. The procedure

for integrating Attic into BOINC projects was also introduced.

An experimental study was carried out to investigate the potential value in

using the Attic file system for Volunteer Computing projects. Attic is capable of

4.3 Summary 66

dynamically adding data centres to the list as and when people volunteer their

resources. The results clearly demonstrate that the decentralized data centres ap-

proach can significantly decrease download time for users and provides significant

gains for the specific BOINC project as a whole by reducing download time and

therefore increasing the throughput of results. Even though the scale of the ex-

periments shown here might not reflect a real world trial of the Attic software, as

there are tens of thousands of BOINC clients that connect every day to download

new input data in production systems, the results are relevant in that they test

the Attic architecture and load distribution that takes place within the applied

scale.

67

Chapter 5

System Architecture

In this chapter, the VASCODE framework is presented, which is proposed to

provide the necessary infrastructure to improve data distribution in Volunteer

Computing projects that employ the use of BOINC middleware. In this chapter,

a set of requirements is identified to extend the data layer in BOINC, then define

an architecture from these requirements and introduce a trust model that provides

a completely dynamic mechanism for allowing participants to act as data centres

in BOINC in order to efficiently share data across the distributed resources.

The VASCODE framework (Volunteered Automated Servers for Data Collec-

tion and Optimization in Distributed Environments) presented in this thesis aims

to provide a means to extend the data layer in Volunteer Computing using P2P

systems, providing the basis to form a trusted decentralised data centres layer in

Volunteer Computing, where, potentially, hundreds of thousands of participants

download data to process as part of their jobs. The developed framework in-

tegrates Attic into BOINC middleware and applies a plugin trust technique to

model, collect and utilise trust information in peers in Attic.

5.2 System Requirements 68

5.1 Design Goals

To demonstrate the benefits of integrating P2P systems in Volunteer Computing

projects and, at the same time, address the trust issue when using this. There

were three main goals in designing the system:

• To provide the scientific community with an easy to use and flexible tool

for building data extensive projects.

• To encourage participants in Volunteer Computing to work as data distrib-

utors by allowing them to control the bandwidth they offer.

• To establish trust in participants who act as data distributors by using a

trust model.

VASCODE is a Java and C ++ framework that are plugin extensions to Attic

and BOINC to provide the necessary infrastructure to achieve these goals.

5.2 System Requirements

A set of requirements for VASCODE was identified that makes use of resources

provided by the participants within a Volunteer Computing project. The core aim

is to provide a tool based on this framework that is usable by BOINC project

participants, allowing them to contribute as a data centre (data distributor) in

the decentralized data centre layer, a data worker, or both. Various subsections

below identify the components of the framework.

5.2 System Requirements 69

5.2.1 Data Caching

In BOINC projects, clients contact the scheduling server to get jobs to execute

on their local resources. They then request input data files from a data server to

process the downloaded job and finally upload the results. The input data files

on a BOINC client can be obtained by using dynamic caching of the data file on

the distributed data centres across the network. This increases data availability

and improves fault tolerance because data can now be downloaded from different

places rather than just the data server. Furthermore, it improves data download

time since clients can parallelize the download of a file by using these different

sources. Clients can open multiple connections per file and download a different

portion of the file on each connection simultaneously.

Adding caching functionality to the BOINC client enables a BOINC client,

previously only capable of processing jobs, to also be able to cache data and

provide it to other clients.

5.2.2 Trust

The participants of BOINC projects are ordinary internet users, who have dif-

ferent behaviours and connection capability. Therefore, to utilize their resources

effectively for data distribution, optimization or trust mechanisms are needed in

order to dynamically re-adjust their behaviour according to the current operating

environment. In this research, a trust mechanism is used that makes use of par-

ticular properties of a data centre, such as its bandwidth, connection speed and

availability, provided that the data associated with these preferences is recorded.

The trust mechanism is subsequently used to select one or more data centres from

5.2 System Requirements 70

which to download data, based on preferences identified by a client.

5.2.3 Data Management

The formation and use of a decentralized data centre layer requires the consider-

ation of two key issues outlined next.

5.2.3.1 Data Source

For a BOINC client to become a data centre, it has to cache data that is initially

provided by the main BOINC data server. When the BOINC client downloads

data to process its job, it will cache this data to be available for other clients

who process the same job, thereby propagating the dataset on demand. Here,

the BOINC data server is made the primary source of data when data is not

available on the data centre layer. When data becomes available from other

clients this will extend the source of data and the BOINC client can use them to

download data and cache it.

5.2.3.2 Data Downloading

As the data centres are ordinary internet users (who may be connected to the

network using a variety of connection types, such as dial-up, DSL and wireless),

they can frequently become unavailable to provide data to other BOINC clients.

This transient connectivity therefore needs to be addressed in the download algo-

rithm and available data centres need to be dynamically updated as the network

evolves. It must also deal with the case that no data centres are available, in

which case, the BOINC client should switch to the main source, such as the

BOINC data server, to get data.

5.2 System Requirements 71

From the requirements, a general scheme is outlined for downloading data

in figure 5.1, which shows that the trust framework provides the intelligence for

each client to determine the best data centre at that point in time. Each client

updates its empirically gathered parameters to feed back into the trust model for

the next iteration. In this way, the system can learn to dynamically deal with

the changing network conditions.

5.2 System Requirements 72

Data available

 in data centre

 layer

Start

No
Use BOINC data

server

Y
es

Identify Trusted

data centres

Download data

Generate feedback

Cache data locally

Register data

locationwith server

End

Figure 5.1: Download Flowchart

5.3 System Architecture 73

5.2.4 Bandwidth Throttling

Many internet users have limited bandwidth and may not be interested in par-

ticipating in this scheme for distributing BOINC data for fear that this would

slow their own use of the internet. Throttling is a technique that inhibits an

applications use of a connection so that it only utilises a certain amount of the

overall bandwidth. This framework therefore must offer a throttle capability to a

client based on its bandwidth use in order to preserve the clients normal pattern

of usage. For example, if it has 1 MB/s connection it can offer 256KB/s to other

clients for downloading data, thereby enabling a user to better plan how their

capacity will be shared with other users. This enables volunteered resources to

continue to participate in the framework, whilst also enabling a resource owner

to continue their own work. It is believed that such mechanisms for bandwidth

sharing are likely to increase contributions of resources to a project.

5.3 System Architecture

The distributed roles and data distribution requirements outlined above lead

into a general four layer architecture, which can be seen in Figure 5.2. The

bottom layer represents the participants of scientific projects who provide their

resources to Volunteer Computing projects. The next layer provides the P2P

network capability; here, Attic is used. This layer provides the core capability

for volunteers to share data with other participants.

5.3 System Architecture 74

SCIENTIFIC PROJECTS VOLUNTEERS

VASCODE

ATTIC FILE SYSTEM

BOINC

Figure 5.2: Framework Layer

The third layer provides the Volunteered Automated Servers for Data Collec-

tion and Optimization in Distributed Environments (VASCODE) framework for

choosing the locations of data download at each time step. In layer three there-

fore, a data collection layer is necessary to provides peers with the necessary tools

to select the data server from which to download data, which peers to trust, and

the throttling capabilities to manage their bandwidth. This layer therefore has a

further inner architecture and is broken down and described in further detail in

section 5.3.1.

Finally the last layer represents BOINC, which is the programming and Web

interface that a project interacts with in order to the use the system. Since both

Attic and VASCODE deal with HTTP endpoints, a simple Attic URL scheme

plug-in can be used to switch out the general BOINC URL endpoint with a dy-

namic Attic one to provide multiple possible endpoints for each dataset. There-

fore, a project does not need to be aware of the use of VASCODE and Attic in

5.3 System Architecture 75

order for this approach to be enabled as the general data distribution mechanism.

This HTTP protocol therefore provides a convenient abstraction to allow Attic

and VASCODE to be implemented almost completely on the server side, thereby

not needing existing clients to install complicated toolkits in order to make use of

this new feature. The integration of Attic and VASCODE into existing projects

is possible through a plug in that proxies the HTTP connections and provides a

mechanism to resolve multiple endpoints from a single Attic URL, which provides

access to the concurrent downloading capabilities in Attic.

5.3.1 VASCODE Layer

VASCODE is a layer built upon the capability provided by Attic to add the

necessary functionality to its peers (such as worker or data centre) when they

download data or distribute it. Figure 5.3 provides an overview of this function-

ality. Essentially, VASCODE provides the trust-based mechanisms within Attic,

enabling better integration of the various components that make up the Attic

system into BOINC. VASCODE enables user defined preferences to be taken into

account when selecting data centres from which to download, based on previously

recorded usage data about these data centres.

The three user defined preferences used in this research to demonstrate the

concept consist of the following:

1. Availability whether the peer is available at that point in time or not

2. Data integrity the establishment of trust in that the data has not changed

3. Connection speed of each data centre the Internet bandwidth allowable for

this particular data centre after throttling has been applied.

5.3 System Architecture 76

Each peer in the system provides feedback on each interaction they have had

with a data centre. This data is collected (through the data lookup nodes) and

used in the trust algorithm to feedback into the selection criteria a client uses,

to determine the most appropriate sets of data centres to use. By using this

mechanism, the system continuously (on the completion of each interaction with

a data centre) updates the aggregate statistics for each data centre

Data Lookup

Database
Feedback

Distributor

Feedback

Collector
Bandwidth Throttling

Feedback

Generator

Data Centre

Selection

Trust

Calculation

Data CentreData Worker

Figure 5.3: VASCODE on top of Attic

Figure 5.3 shows the three possible roles that a peer can perform in the

BOINC-VASCODE integration: a conventional BOINC data worker, a data cen-

tre and a data lookup server. Furthermore, each of these roles has various prop-

erties. For example, when the BOINC client is a data worker, it must also be

capable of accessing the data centre layer and needs to make use of VASCODE to

calculate the trustworthiness of these data centres and select which data centres

to get data from. It needs to then provide feedback to help other participants

determine which is the best data centre at this point in time.

A BOINC client can use the VASCODE framework to interact with these

functions. If a BOINC client wants to perform data centre capabilities, then

for the general configuration of the data centre it needs to provide how much

bandwidth it wants to offer for data distribution. Finally, when the BOINC

5.3 System Architecture 77

client plays the role of a data lookup server, it is important to have the ability

to collect feedback from those clients and distribute these to other clients and for

use by the network as a whole. These capabilities are also offered through the

VASCODE layer.

5.3.2 The VACSCODE Trust Framework

In this section, the design of the trust model is provided as well as its distributed

requirements, which are integral to the architecture of the resulting VASCODE

framework. In comparison with the general BOINC system (which uses a pre-

defined data server), a client in this system is required to identify a data centre

prior to commencing data download, by resolving an Attic URL. When Attic

is used in BOINC, Attic URLs are provided as data points, which are abstract

identifiers for a data set. When a client receives the URL, it passes the URL to

Attic (using the local http proxy) to resolve into an actual http endpoint (or set

of http endpoints), which store the locations of the data. Furthermore, the data

can be chunked into pieces and distributed across multiple data centres, so it is

possible to download the multiple pieces from multiple data centres concurrently.

In VASCODE, the final selection in which data centres are used for download is

based on their reputation in the system, with reference to one or more metrics.

The concept of trust is key to enable peers in P2P systems to make successful

decision-making processes. In this section, it is aimed to develop a computational

model of trust that a data centre client can use to make a successful decision when

selecting data centres for downloading data. This model aims to determine the

trust level in data centres as a data source, considering the behaviour of the data

5.3 System Architecture 78

centres in previous download requests.

This model of trust and reputation can be used to support informed deci-

sion making to assure improved download time of data in Volunteer Computing

projects that use a decentralized data layer.

This use of trust in decision-making can assure reliability on a decentralized

data layer by enabling users to reason whether or not to select a data centre. For

example, if a data centre layer is formed from a group of data centres, then it is

important for a client to select the most appropriate data centres to download

data from; this selection is not only based on data centres capabilities, but also

on their trustworthiness.

Trust and reputation systems can be used to encourage and promote good

behaviour in P2P file sharing systems. Several trust systems have been deployed

for practical applications. In this thesis, a new trust model was developed for

use in the VASCODE framework to allow clients to select data centres based

on their trust value. The aim behind this trust model is to optimize the Attic

protocol by incorporating a trust mechanism to allow the clients to make trust-

based decisions for selecting a data centre, which improves data distribution in

BOINC-like Projects using file sharing protocols.

The trust framework makes use of Attic to support concurrent data downloads

from multiple data centres. It utilizes the communication between the clients and

the data lookup server to send feedback and receive data on the associated trust

metrics.

5.3 System Architecture 79

5.3.2.1 Modelling Trust

The focus of this research on trust in the decentralized data layer is to discover

and exclude misbehaving data centres and to minimize the effect of unreliable

data centres by selecting the proper data centres during data downloading. This

requires the development of a trust model to address these issues.

The general notion of trust is excessively complex and appears to have many

different meanings depending on how it is used in electronic service provisioning.

There is also no consensus in the computer and information sciences literature on

a common definition of trust, although its importance has been widely recognized

and the literature available on trust is substantial. Generally, trust may be used

as a metric to guide an agent in deciding how, when and who to interact with.

An agent in this context refers to either a service user or a provider. Such a

metric takes into account the subjective probability with which an agent views

its interaction partners, taking into account local state and external recommen-

dations made by other agents. To establish a trust model, agents must gather

data about their counterparts. This has been achieved in three ways in the lit-

erature: (i) using prior interaction experience: in this context, trust is computed

as a rating of the level of performance of the trustee using historical data. The

trustee’s performance is assessed over multiple interactions to check how good

and consistent it is at doing what it says it does. Interactions that have taken

place recently are treated preferentially to those that have taken place in the dis-

tant past. Witkowski et al. [104] propose a model whereby the trust in an agent

is calculated based on its performance in past interactions. Similar to Witkowski

et al., Sabater et al. [93](using the REGRET system) propose a similar model

5.3 System Architecture 80

but do not just limit the overall performance to the agent’s direct perception, but

they also evaluate its behavior with other agents in the system; (ii) information

gathered from other agents: trust in this approach is drawn indirectly from rec-

ommendations provided by others. As the recommendations could be unreliable,

the agent must be able to reason about the recommendations gathered from other

agents. The latter is achieved in different ways: (1) deploying rules to enable an

agent to decide which other agents’ recommendation they give greater preference,

as introduced by Abdul-Rahman et al. [32]; (2) weighting the recommendation

by the trust the agent has in the recommender, EigenTrust [70] and PageRank

[87] are examples of this approach. In both of these approaches, the connectivity

graph between recommenders is used to infer trust. Generally, an agent that has

successfully delivered its advertised capability and recommends another agent

will cause some of its trust to be transferred to its recommended agent. Both

PageRank and EigenTrust are therefore based on the assumption that a general

user, searching over a set of possible service providing peers, will eventually end

up finding a more trustworthy peer if they follow the recommendation chain from

any point in the network. The PowerTrust [112] model works in a similar way to

EigenTrust, focusing on creating overlay hashing functions to assign score man-

agers for peers in the system and for combining trust values to create a global

reputation score. Both of these approaches have limited benefit when considering

multiple criteria when calculating trust i.e., both EigenTrust and PowerTrust

are focused on searching for objects using a single keyword, such as a file name;

(iii) socio-cognitive trust: in this context, trust is drawn by characterizing the

known motivations of the other agents. This involves forming coherent beliefs

about different characteristics of these agents and reasoning about these beliefs

5.3 System Architecture 81

in order to decide how much trust should be put in them. An example of this is

work by Castelfranchi [44]. Our focus in this work is primarily on characteristics

(i) and (ii) defined above.

Modelling trust in general is the process of representing the trust of a client in

a service provider. Gambetta [61] defines trust as being a measure that represents

the probability of an agent carrying out a particular action. Trust is therefore an

indication of the reliability of an agent, which, in the context of this research, is

the data centre.

For this reason, it is important to represent and model the behaviour of a

data centre before developing a mechanism that allows users to determine the

level of trust in a data centre. Since data centres are ordinary internet users, it

is likely that they have different behaviours. In this research, trust modelling is

the mathematical representation of client opinion in data centres in the context

of data distribution. Three metrics that represent the data centre behaviour and

affect the data distribution are defined:

1. The upload speed that a client obtained through a connection with a data

centre.

2. The availability of a particular data centre.

3. The integrity of data supplied by the data centre.

These metrics are named in the model as DCspeed, DCAvailability and

DCHonesty , respectively; see Figure 5.4 where each metric is independently

calculated using feedback from multiple clients using specialist tools.

Speed primarily relates to performance issues such as access time, latency

and effective bandwidth. Availability relates to uptime and resilience, covering

5.3 System Architecture 82

Data Centre TrustData Centre Trust

DCSpeedDCSpeed DCAvailabilityDCAvailability DCHonestyDCHonesty

Figure 5.4: Data centre trust

aspects such as downtime, and failure rate. Honesty covers aspects such as data

integrity and quality, storage reliability and any malicious modification to the

data.

Historical data are used to establish a trust model for a given data centre,

and use three metrics (honesty, availability and speed) to evaluate the level of

trust that one can place in a data centre. In this model, reputation is considered

to be an aggregated community view about a data provider, i.e., the greater the

number of participants who trust a data centre, the greater the reputation the

data centre holds.

The trust model also considers the behaviour of a data centre as a probability

of a satisfied interaction or a probability of unsatisfied interaction.

This abstraction of data centre behaviour means that the outcome of inter-

action between client and data centre is a binary value (satisfied or unsatisfied).

Binary feedback is used to show whether the client of a data centre was satisfied

or unsatisfied based on three metrics used to represent the data centre behaviour;

for example, if a client selects a data centre which is expected to be available dur-

5.3 System Architecture 83

ing the download request. The download progress is deemed satisfied if the data

centre responded to the download request as expected by the client. If the data

centre did not respond to the download request then the download progress is

unsatisfied; this will have a negative impact on the trustworthiness of the data

centre.

To model the environment in which VASCODE is applied, the set of data cen-

tres is denoted as D=d1,d2,..,dn and the clients of these data centres as C=c1,c2,..,cn.

Clients may interact with one or a number of data centres. The outcome of an

interaction between dj and ci is represented by a binary variable Xcidj , where :

Xcidj =

1 if Satisfied

0 Otherwise

The posterior probability of binary events can be represented by the Beta

distribution [62]. The Beta distribution uses two parameters (alpha and beta)

to represent binary events; in this case, the binary event is whether the client is

satisfied or unsatisfied.

5.3.2.2 Beta Distribution

The Beta model is used in several systems, including Jsang and Ismails Beta

reputation system [50], the systems of Mui et al. [85] and of Buchegger [42],

the Dirichlet reputation systems [66], TRAVOS [100], and the SECURE trust

model [43]. The use of the Beta distribution is a reasonable one, since the history

of interactions between clients and service providers can be summarized by the

5.3 System Architecture 84

Beta function with parameters alpha and beta to represent the successful and

unsuccessful interactions. Since the beta distribution is conjugated prior to the

family of Bernoulli trials it can be made mathematically precise in the language

of Bayesian theory.

An important consequence of this representation is that it allows the estima-

tion of the so-called predictive probability, namely the probability of success in

the next interaction using the history of previous interactions.

This simple and popular model shows that predictive probability depends on

the number of past successful interactions and the number of past unsuccessful

interactions.

The Beta distribution (Figure 5.5) is used in a number of different projects

to calculate the trust value through iterative calculations based on the outcome

of previous trust values. Below, it is specified how trust can be calculated using

the Beta distribution for each trust value, using client feedback provided by the

client concerning their experience of each trust metric. Each trust measure is

calculated from two values specifying whether the client was either satisfied (r)

or not satisfied (s). The probability function of predicted outcomes in the future

can be expressed as a function of previous observations.

5.3 System Architecture 85

Figure 5.5: Beta Distribution

The Beta distribution can be used in the probability modelling of binary

events. Let X be a random variable representing a binary event, X = 0; 1, and

p the probability that the event occurs. Then the Beta-family of probability

distributions, a continuous family of functions indexed by two parameters α and

β, can be used to represent the probability density distribution of p, denoted by

Beta(α, β), as shown in equation 5.1

∫
(p|α, β) =

τ(α + β)

Γ(α)Γ()β)
pα−1(1−p)3−1 (5.1)

where

0 6 p 6 1, α > 0, β > 0 (5.2)

If the number of outcomes where there are r satisfied and s unsatisfied with the

5.3 System Architecture 86

event is observed, then using a Bayesian probabilistic argument, the probability

density function of p can be expressed as a Beta distribution, where α = r + 1

and β = s + 1. This probabilistic mechanism is applied to model the reputation

of a data centre using feedback on completion of download.

The reputation system counts the number r of successful interactions and

the number s of unsatisfied interactions, and applies the Beta probability model.

This provides for an easily updatable system, since it is easy to update both r

and s in the model. Each new interaction results either in r or s being augmented

by 1 and the probability expectation value of the Beta distribution is given by:

E(p) =
α

α + β
(5.3)

α = r + 1 and β = s+ 1 where r, s > 0 (5.4)

E(p) =
r + 1

r + s+ 2
(5.5)

5.3.2.3 Calculating Trust

When assessing a data centre, the experience of the other clients provides reliable

evidence for predicting its behaviour. Reputation is therefore a useful means of

gathering evidence. It involves asking for the opinion of other clients who have

interacted with the data centre in the past.

The client c1 must calculate a single trust value Tc1d1 for a data centre d1 by

combining all the feedbacks provided by other clients. An elegant and efficient

solution to this problem is to enumerate all the successful and unsuccessful in-

5.3 System Architecture 87

teractions from the reports that it receives. The resulting values, denoted Rc1d1

and Sc1d1 as follows:

Rc1d1 =
n∑
j=0

rcjd1 Sc1d1 =
n∑
j=0

scjd1 wheren = number offeedbacks (5.6)

Rc1d1 and Sc1d1 are used to calculate shape parameters (see Equation5.7) for

a Beta distribution:

α = Rc1d1 + 1 and β = Sc1d1 + 1 (5.7)

The trust value Tc1d1 is calculated by using these parameter values in Equation

5.3.

Tc1d1 =

∑n
j=0 rcjd1 + 1∑n

j=0 rcjd1 +
∑n

j=0 scjd1 + 2
(5.8)

5.3.2.4 Combining Trust Metrics

The aim of this trust model is to discover and exclude misbehaving data centres

and to minimize the effect of unreliable data centres by selecting the proper data

centres during data downloading. Depending on the three metrics defined in

section 5.3.2.1, a trusted data centre is identified by aggregating the trust value

of the data centre based on each metric as follows:

ws.ts + wa.ta + wh.th ≥ Tthreshold (5.9)

where ws + wa + wh = 1

5.3 System Architecture 88

ws, wa, wh are the weighted factors of each metric and Tthreshold the threshold

for selecting a data centre.

The value of Tthreshold in the range of ∈ [0, 1]. By using equation 5.8 and

equation 5.9 a trusted data centre can be identified using clients feed backs as

follow:

ws.

∑n
j=0 rscjdi + 1∑n

j=0 rscjdi +
∑n

j=0 sscjdi + 2
+ wa.

∑n
j=0 racjdi + 1∑n

j=0 racjdi +
∑n

j=0 sacjdi + 2

+wh.

∑n
j=0 rhcjdi + 1∑n

j=0 rhcjdi +
∑n

j=0 shcjdi + 2
≥ Tthreshold

(5.10)

Where rs and ss is whether speed are satisfied or unsatisfied , ra and sa

whether availability is satisfied or unsatisfied, rh and sh whether honesty is sat-

isfied or unsatisfied.

Example: Consider a data centre used by three clients to download data,

Table 5.1 shows the clients feedback about its availability. Using equation 5.10

the expected trust value that it will provide a satisfied speed is 0.625. Figure 5.6

shows the Beta plots for three feedbacks provided by three separate clients, and

the Beta plot from the use of these feedbacks.

Client Satisfied unSatisfied
1 7 3
2 8 2
3 4 6

Table 5.1: Feedback of Three Clients

5.3 System Architecture 89

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.
1

2

0.
1

5

0.
1

8

0.
2

1

0.
2

4

0.
2

7

0.
3

0.
3

3

0.
3

6

0.
3

9

0.
4

2

0.
4

5

0.
4

8

0.
5

1

0.
5

4

0.
5

7

0.
6

0.
6

3

0.
6

6

0.
6

9

0.
7

2

0.
7

5

0.
7

8

0.
8

1

0.
8

4

0.
8

7

0.
9

0.
9

3

0.
9

6

0.
9

9

P
ro

b
ab

ili
ty

 D
en

si
ty

Possible value of Beta Function

Client 1 Client 2 Client 3 Trust Value

Figure 5.6: Beta function of data centre with feedback of three clients

5.3 System Architecture 90

5.3.2.5 Resulting Trust Framework Architecture

The trust framework (Figure 5.7) includes components that operate on both the

client and the server; the client generates feedback, processes trust values and

selects data centres based on its preferences; the server collects client feedback,

updates the reputation database and provides reputation data to the clients.

Client Side

Trust Process

Download

Process

Data Centres

Selection

Server Side

Reputation

Manager

DB

Trust Server

Feedback Process

Figure 5.7: Trust Framework extending Attic

On the client side, the following components are identified:

1. Trust Process

This is used by the client to extract the XML message sent by the server

to retrieve reputation data for data centres and calculate the trust value of

each data centre.

2. Data Centre Selection

Data Centre Selection is responsible for selecting the data centres based on

the clients preferences and the trust algorithm.

3. Download Process

When data centres are selected the client uses the download process to

5.3 System Architecture 91

generate a download request and send it to the data centres to download

data.

4. Feedback Process After finishing downloading data the feedback process

is used to generate an XML message containing the clients feedback about

every data centre used to download that data. This XML message is sent

to the server to report client feedback.

The server side has the following components:

1. Trust Server

This server receives the clients request and responds to this request by

supplying the reputation data for the data centres.

2. Reputation Manager

This is responsible for updating and retrieving client feedback. It also

prepares the XML message that has the data centres reputation data when

the trust server is required to respond to a client request.

3. Database

The database is used on the server side to store the reputation data of data

centres. This database is updated by the reputation manager as a new

client feedback is received.

The general operating procedure and interaction between these components

is as follows: trust is calculated using a Beta distribution from the feedback ob-

tained from the multiple clients that interact with a data centre, as outlined in

(Equation 5.5 and 5.9 in section 5.3.2.2). Each client specifies whether satisfied

(r) or not (s) with the download from the data centre. The Beta distribution was

5.3 System Architecture 92

used to take into account this combined assessment by considering both satisfied

and dissatisfied clients, rather than considering only positive outcomes (namely

the number of times that a client has been satisfied with the download). The

clients apply the trust values of data centres in the data selection algorithm to

select which data centres will be used for downloading data. After a client com-

pletes downloading data, a subjective assessment of each of the three metrics

(availability, honesty and speed) for each data centre used by this client is pro-

vided. This public feedback can then subsequently be used by other clients to

support their decision about which data centres to trust, using Equations 5.3 and

5.9.

5.3.2.6 Data Centre Selection Algorithm

When a client calculates the total trust value of each data centre it uses algorithm

1 which refers to the trustThreshold which is used to limit the number of data

centres that have been returned from the data lookup server. The client can

either modify this parameter themselves or set the minimum number of data

centres (referred to as minDC in algorithm 1) they would prefer to download

from (namely the total number of data centres that match their particular trust

criteria). In algorithm 1, the threshold value is set by a client to be 1.0. If

an automated approach is used where a client does not specify the threshold

but instead identifies the minimum number of data centres they would prefer to

download from (for example they could set minDC as 3), the threshold value

would automatically adjust.

5.3 System Architecture 93

Algorithm 1 Data Centre Selection

1: selectedDataCentres = 0;
2: trustThreshold = 1.0;
3: decrement = 0.1;
4: minDC=3;
5: loop
6: for each DataCentre[i] do
7: if TotalTrustValue[i] ≥ trustThreshold then
8: selectedDataCentres = selectedDataCentres + 1;
9: return [i] ;

10: end if
11: end for
12: if selectedDataCentres ≤ minDC then
13: trustThreshold = trustThreshold - decrement;
14: goto loop
15: else exit();
16: end if

5.3.2.7 Messaging between components in the framework

In this section, the design of the messages that are transferred between compo-

nents of the framework using XML is described. XML encoded messages are used

for querying, describing data and reporting feedback, which are described in more

detail in the following sections.

• Querying Messages

This message (Figure 5.8) is used by the client for querying the data lookup

server concerning where data is located and the trust data of data centres.

5.3 System Architecture 94

<File>

 <Data identifier>

 Data identifier

 </Data identifier >

 </File >

Figure 5.8: Querying Message

• Describing Data Message

This message (Figure 5.9) is initiated by the data lookup server in response

to a client request. The data lookup server creates a list of data centres,

which have data, retrieves the trust data from these data centres databases

and generates an XML message containing the information and sends it to

the client.

5.3 System Architecture 95

<DataPointerCollection>

 <DataPointer>

 <File>

 <DataIdentifier>

 Data identifier

 </DataIdentifier>

 <DataName>

 Data name

 </DataName>

 <AssociatedProject>

 Associated project

 </AssociatedProject>

 <DataDescription>

 Data description

 </DataDescription>

 </File>

 <Endpoint>

 <url> endpoint-url </url>

 <SatisfiedSpeed> x </SatisfiedSpeed>

 <unSatisfiedSpeed> y </unSatisfiedSpeed>

 <SatisfiedAvialability> x </SatisfiedAvialability>

 <unSatisfiedAvialability> y </unSatisfiedAvialability>

 <SatisfiedHonesty> x </SatisfiedHonesty>

 <unSatisfiedHonesty> y </unSatisfiedHonesty>

 </Endpoint>

</DataPointer>

</DataPointerCollection >

Figure 5.9: Describing Data Message

• Report message

This message (Figure 5.10) is generated by the data centre client to report

the download process. In this message the client reports whether it was

satisfied or dissatisfied regarding the download speed, and the availability

and honesty of each data centre used in the download of data.

5.3 System Architecture 96

<Endpoint>

 <url> endpoint-url </url>

 <SatisfiedSpeed> x </SatisfiedSpeed>

 <unSatisfiedSpeed> y </unSatisfiedSpeed>

 <SatisfiedAvialability> x </SatisfiedAvialability>

 <unSatisfiedAvialability> y </unSatisfiedAvialability>

 <SatisfiedHonesty> x </SatisfiedHonesty>

 <unSatisfiedHonesty> y </unSatisfiedHonesty>

 </Endpoint>

Figure 5.10: Report Message

The next UML sequence diagram (Figure 5.11) shows the exchange of these

message during the download process.

5.3 System Architecture 97

Data Client Data Center Layer Data Lookup Server

Request of DCs list

Create data centers list

data centers list

Calcultae trust values

to choose the best data centers

Download Request

Data

generat Feedback

Feedback

Update Database

Figure 5.11: Interaction using the Trust Framework and Attic

5.3 System Architecture 98

1. The client of the data centre creates a data centre list request and sends it

to the data lookup server.

2. The data lookup server uses its reputation manager to create a list of data

centres, retrieves their trust value from the database and then creates a

response message and sends it to the client.

3. The client uses data obtained from the XML message to calculate the trust

value of each data centre, selects data centres based on its preferences and

generates a download request message to the chosen data centres.

4. Data centres reply with the data needed.

5. The client checks the received data and subsequently generates a feedback

message and sends it to the data lookup server.

6. The data lookup server uses its reputation manager to extract data from the

feedback message and update the data centres trust value in the database.

5.4 Summary 99

5.4 Summary

This chapter described the VASCODE framework in terms of its design goals,

system requirements (data caching, management, downloading and trust), the

system architecture and its four layers, paying particular attention to trust which

is modelled using the Beta distribution and an example is provided for illustrative

purposes. The chapter ended by listing and describing the different steps in the

processes in the interactions between components in the framework.

100

Chapter 6

Implementation

A novel feature of the VASCODE framework is the use of trust as a service to

optimise the use of Attic file system by avoiding data downloads from data cen-

tres that behave maliciously or perform poorly in the decentralised data centres

layer. Another feature of VASCODE is to allow the volunteers, who are inter-

ested in operating as data centres, to control the bandwidth they want to offer

for uploading data to the clients. Such features will leverage the performance of

volunteered projects that use BOINC middleware. In this chapter implementa-

tion details of the VASCODE framework are presented, describing how Attic is

extended to meet the requirements discussed in Chapter 5, how the VASCODE

trust framework is implemented, and finally how the VASCODE framework is

integrated into BOINC middleware.

6.1 Implementation Overview

The implementation uses Java for most components. Java allows for object ori-

ented design, modularity in system design, and easy integration with other Java,

C, and C ++ components. The implementation also uses httpeer which was de-

veloped at Cardiff University as a very lightweight library that allows easy server-

6.2 VASCODE Components 101

and client-side HTTP data transfers. C ++ and POCO C ++ Libraries [23] are

used to integrate VASCODE into BOINC middleware.

6.2 VASCODE Components

Because VASCODE is based on Attic, its three main components are implemented

by extending reusable modules provided by Attic. In addition, new modules are

developed for the new features provided by VASCODE. In the following sections

we present these components.

6.2.1 VASCODE−DL

Figure 6.1 represents the extended data lookup server used to work as the repu-

tation data service (for example, to provide reputation data and store feedback).

This component plays a critical role in the framework because it offers the frame-

work the capability to store and retrieve the reputation data of data centres. The

VASCODE-DL receives a clients feedback as an XML message, it extracts this

XML message to obtain the feedback about each data centre and uses this to

update their reputation data in the database. In addition when the client sends

a request to VASCODE to query from where data is available, VASCODE−DL

retrieves the reputation data from the database, composes an XML message that

contains a list of data centres and their reputation data, and sends it to the client

to input it to the decision making process.

6.2 VASCODE Components 102

VASCODE-DL

httpeer Server

Reputation ManagerReputation

Data

Figure 6.1: Extended Version of Data Lookup in Attic

6.2.1.1 httpeer Server

When a client sends a data download request, the httpeer server is responsible

for accepting the clients request and forwarding it to the reputation manager;

the reputation manager prepares the reputation data of those data centres which

can be downloaded from. When the httpeer server replies to a client, it includes

this reputation data in the XML message to the client. Below is a snapshot of

a data pointer collection message, which contains a DataDescription tag that

defines metadata about the data (file ID, name, and project name). In addition,

it contains a list of endpoints. These are the data centres from which data can

be retrieved.

<PointerCollection xmlns="http://atticfs.org">

<DataPointer>

<DataDescription>

<id>bccb46ba-8d03-4227-b0b5-a115aac72ab3</id>

<name>10MB.dat</name>

<project>Test Project</project>

6.2 VASCODE Components 103

<description>A test data description</description>

</DataDescription>

<Endpoint>

<url>

http://labx01.cs.cf.ac.uk:7777/dc/data/bccb46ba-8d03-4227-b0b5-a115aac72ab3

</url>

<meta>http://labx01.cs.cf.ac.uk:7777/dc/meta</meta>

<SatisfiedSpeed> 9 </SatisfiedSpeed>

<unSatisfiedSpeed> 1 </unSatisfiedSpeed>

<SatisfiedAvialability>10 </SatisfiedAvialability>

<unSatisfiedAvialability>2</unSatisfiedAvialability>

<SatisfiedHonesty> 8 </SatisfiedHonesty>

<unSatisfiedHonesty> 2</unSatisfiedHonesty>

<Endpoint>

<url>

http://labx02.cs.cf.ac.uk:7777/dc/data/bccb46ba-8d03-4227-b0b5-a115aac72ab3

</url>

<meta>http://labx02.cs.cf.ac.uk:7777/dc/meta</meta>

<SatisfiedSpeed>3 </SatisfiedSpeed>

<unSatisfiedSpeed> 7 </unSatisfiedSpeed>

<SatisfiedAvialability> 10</SatisfiedAvialability>

<unSatisfiedAvialability> 0 </unSatisfiedAvialability>

<SatisfiedHonesty>10</SatisfiedHonesty>

<unSatisfiedHonesty> 0</unSatisfiedHonesty>

</Endpoint>

........

........

........

</DataPointer>

</PointerCollection>

The endpoint tag includes the URL of a data centre and reputation data of

this data centre. For example the first data centre in the list is running on

httpp://labx01.cs.cf.ac.uk:7777/

and its reputation data is described in table 6.1 :

6.2 VASCODE Components 104

Metrict Satisfied unSatisfied
Speed 9 1
Honesty 8 2
Availability 10 2

Table 6.1: Data centre trust data

6.2.1.2 Reputation Manager

VASCODE DL uses the reputation manager process to manage reputation data.

The reputation manager performs the following operations:

1. Retrieve Update reputation data of data centres.

2. Prepares an XML message that contains the reputation data of data centres.

3. Provides an XML message to the httpeer server as a response to the clients

request.

6.2.1.3 Reputation Database

The system uses MySQL as its relational database. The connection to the

database is made through JDBC, and SQL is used to query and update rep-

utation data of the data centres. The VASCODE database is used to store the

data centres reputation data, and Table 6.2 provides brief details on information

saved in this database

6.2 VASCODE Components 105

Column Name Description
dataCentreID A unique ID for each data centre in the framework
satisfiedSpeed Number of satisfied speed connections
unsatisfiedSpeed Number of unsatisfied speed connections
satisfiedHonesty Number of correct data provided by the data centre
unsatisfiedHonesty Number of corrupted data provided by the data centre
satisfiedAvailability How many times the data centre was available when

data requested
unsatisfiedAvailability How many times the data centre was unavailable when

data requested

Table 6.2: Data Centres Reputation Data

6.2.2 VASCODE−DC

VASCODE-DC represents the data cache service in the framework and it was

developed to offer the possibility of interested participants of Volunteer Comput-

ing projects to work as data centres and provide some of their bandwidth. It

allows the user to control how much bandwidth can be offered. To achieve this

goal, the data centre component in Attic is extended to acquire this function.

VASCODE−DC 6.2 has three main components: data cache process to cache

data, the httpeer server to accept and reply to clients requests, and the resource

manager to manage the resources offered to the framework.

6.2.2.1 Resource Manager

During data sharing, the VASCODE-DC uses the resource manager which is

responsible for controlling the bandwidth. For example, using the resource man-

ager, a data centre that has a 10 Mb/s bandwidth can use the throttling option

to set the bandwidth to 1 Mb/s for data uploading.

6.2 VASCODE Components 106

VASCODE-DC

h
ttp

eer S
erv

er

R
eso

u
rce

M
a

n
a

g
er

Data

Cache

Figure 6.2: Extended version of data centre in Attic

6.2.2.2 httpeer Server

The httpeer server is used to accept the clients request and respond to this request.

6.2.2.3 Data Cache

The data cache is used to cache data using VASCODE-DC and to provide this

data to the clients when it is needed.

6.2.3 VASCODE−DW

The VASCODE-DW (Figure 6.3) is used in the framework to download data

from the decentralized data centres layer. It is the Attic client with extra new

features; these features include data centre selection and sending feedback about

each download to the server. The VASCODE−DW has four main components:

6.2 VASCODE Components 107

VASCODE-DW

Data Centre

Selection

Trust Process

Download

Process

Feedback

Process

httpeer Server

Figure 6.3: Extended Version of Data Worker in Attic

6.2.3.1 Trust Process

The VASCODE implements Trust as a service within the framework. Trust allows

the VASCODE framework to optimise the performance of P2P networks and

subsequently the Volunteer Computing projects that use these networks. The

trust process is used by VASCODE-DW to calculate the trust value of each data

centre before it starts downloading data.

6.2.3.2 Data Centres Selection

The data centre selection manager will receive the trust value of each data centre

from the trust process, then it applies the data centres selection algorithm using

these trust value to select the best data centres from which to download data.

6.2 VASCODE Components 108

6.2.3.3 Download Manager

The download manager receives a list of data centres that have been selected for

data downloading from the data selection manager, then it starts requesting data

from the selected data centres.

6.2.3.4 Feedback generator

When the data download is complete, the download manager notifies the feedback

generator about the download process. It reports three pieces of information to

the feedback generator; which data centres were available; their speed and if any

sent corrupted data. The feedback manager then uses this data to generate a

feedback message and sends it to the server.

Below a snapshot of the feedback message that contains the URL of the data

centre and how many times the client was satisfied or unsatisfied about this data

centre using the three metrics. Here, it can be seen that the client made 2 requests

using http://labx01.cs.cf.ac.uk:7777/dc/. It was satisfied in upload speed for all

requests and the data centres was available and honest.

<Endpoint>

<url>

http://labx01.cs.cf.ac.uk:7777/dc/data/a849534e-1b8b-4e42-9e43-e4677ac973f0

</url>

<satisfiedSpeed> 2 </satisfiedSpeed>

<unsatisfiedSpeed> 0 </unsatisfiedSpeed>

<satisfiedAvialability> 2</satisfiedAvialability>

<unsatisfiedAvialability> 0 </unsatisfiedAvialability>

<satisfiedHonesty> 2 </satisfiedHonesty>

<unSatisfiedHonesty> 0 </unSatisfiedHonesty>

</Endpoint>

6.3 VASCODE BOINC Integration 109

6.2.3.5 VASCODE-DW Fault Recovery

The VASCODE-DW uses the download scheme discussed in section 5.2.3.2 to

obtain data from the BOINC server when the data centres are unavailable or

do not respond to the data request. VASCODE-DW uses the time out option to

specify the time needed before the connection to a data centre can be established.

When the time out expires before the client can connect to the available data

centres it uses the fall-back URL, which is the URL of the BOINC data server.

This mechanism allows the BOINC client to get the input data to process its

work unit even when the data centres that are selected to download data are not

available.

6.3 VASCODE BOINC Integration

Figure (6.4) provides an overview of the implementation architecture of VAS-

CODE with BOINC middleware, showing how the VASODE components are

integrated into the BOINC middleware.

6.3 VASCODE BOINC Integration 110

VASCODE Layer

BOINC ClientVASCODE-DW

BOINC

Scheduling

Server

Web Interfacs

DB

Client Side

Server Side Network

Data Server

VASCODE-DC1

VASCODE-DL

VASCODE-DC2VASCODE-DCn

Figure 6.4: BOINC Middleware using VASCODE

On the client side, the system has two components the BOINC client and

VASCODE−DW, while the server side is composed of three components: the

BOINC servers, VASCODE−DL, and VASCODE−DC.

6.3 VASCODE BOINC Integration 111

6.3.1 Integrating VASCODE-DW into BOINC Client

When the BOINC client needs an input file to process a job and this input file

is available in the decentralized data centres layer, there are two approaches to

allow the client to download that data using the VASCODE framework. The first

one is by modifying the BOINC client, and the second one is by setting a proxy

between BOINC and VASCODE. These two approaches are discussed in the next

sections.

6.3.2 Modifying BOINC Core Client

BOINC middleware is an open source software, that provides the capability to

modify the BOINC client. The client code responsible for downloading data

is modified to allow the BOINC client to use VASCODE for data downloading

instead of using the BOINC data server. The following section explains how this

approach can be used. Attic uses a unique ID to identify data instead of using the

file name. Figure 6.5 shows a snapshot of a Data Description of data published

in Attic, stating its ID and name.

6.3 VASCODE BOINC Integration 112

Figure 6.5: Snapshot of a Data Description of Data Published in Attic

When the data is published, a new data identifier is generated and used to

generate work units. Figure 6.6 shows a snapshot of a work unit that uses Attic

for downloading data. It includes the file name, URL, check sum, and size of

data. In addition, there are the file reference and open name, which are used by

BOINC client during processing of the work unit. The download URL in a work

unit is changed to attic instead of http and this tells the BOINC client when it

parses the work unit XML description to use VASCODE to download data.

6.3 VASCODE BOINC Integration 113

Figure 6.6: Snapshot of a Work unit using Attic

In Figure 6.7 three stages are indicated: (1) the BOINC client contacts the

BOINC Task Server to get a work unit, then it parses the work unit, (2) the

BOINC client takes the data identifier and contacts VASCODE-DL to get a

list of data centres possessing the data, and (3) the BOINC client contacts the

decentralized data centres layer to start downloading the data.

6.3 VASCODE BOINC Integration 114

 Data Centres Data Centres

BOINC ClientBOINC Client

2

3

VASCODE-DLVASCODE-DL

BOINC Task Server

1

2

Figure 6.7: Modified BOINC Client uses VASCODE to Download Data

6.3.3 VASCODE Proxy

A potential issue with the previous approach is that a new BOINC client would

need to be released for users to take advantage of the VASCODE framework.

Therefore, instead a second approach is to have the BOINC client interact with

the VASCODE via a proxy. To use this approach, the VASCODE proxy was

developed. When the BOINC client requests an input file from the BOINC data

server it is redirected to the VASCODE proxy to download data.

The VASCODE proxy is designed to allow BOINC to use the VASCODE

framework without the need to modify the BOINC client. It consists of an ap-

plication that runs in the background for processing data requests locally. This

application runs a local server on port 9980. When a data file is published in the

Attic file system, Attic assigns a GUID for the file when it is uploaded, which is

6.3 VASCODE BOINC Integration 115

used to name the data file before adding it to the work unit. Figure 6.8 shows an

XML description of a work unit that uses the GUID in the download URL of data.

When a BOINC client uses this download URL to obtain data its download re-

quest is redirected to the local server which extracts the GUID from the received

request and uses VASCODE-DW to download the file from the de-centralized

data centres layer. When the data is downloaded the proxy application starts

uploading it to the BOINC client.

Figure 6.8: Snapshot of a Workunit used file GUID

In BOINC, to allow the BOINC client to retrieve files from the VASCODE

proxy, a redirect rule must be defined for the project download folder. This rule

will redirect requests to the following URL.

http://localhost:9980/data/GUID

Figure 6.9 shows the workflow involved in getting the file from the decentral-

ized data centres layer using the VASCODE proxy.

6.3 VASCODE BOINC Integration 116

 Data Centers Data Centers

BOINC ClientBOINC Client

BOINC Project

2

1

3

VASCODE Proxy

6

4 5

VASCODE-DLVASCODE-DL

Figure 6.9: BOINC Client uses VASCODE Proxy to Download Data

1. BOINC client requests a file from the BOINC project.

2. TheThe project redirects the request to the VASCODE proxy and returns

the resolved Attic URL.

3. The VASCODE proxy extracts the file ID from the URL and uses it to

request the file from the decentralized data centres layer.

4. The data centres send the file to the VASCODE proxy.

5. The VASCODE proxy sends the file back to the BOINC client.

6.4 Summary 117

6.4 Summary

This chapter presented an overview of the implementation of the VASCODE

framework. It introduced the three major VASCODE components: VASCODE−DL,

VASCODE−DC and VASCODE−DW. The components and functions of each of

these were described: for VASCODE−DL the httpeer server, the reputation man-

ager and reputation database, for VASCODE−DC the resource manager, the

httpeer server and the data cache, and for VASCODE−DW the trust process,

data centres selection, download manager and feedback generator.

The way the VASCODE trust framework is implemented using VASCODE−DL

and VASCODE−DW was described. The two approaches to VASCODE−BOINC

integration that can be used when the BOINC client needs an input file which is

available in the decentralized data centres layer were also described. The first is to

modify the BOINC client and the second is to setup a proxy between BOINC and

VASCODE. The chapter ended by introducing the VASCODE proxy whereby a

BOINC client can interact with decentralized data centres layer via a proxy.

118

Chapter 7

Evaluation Of Hypothesis

In this chapter, a performance study of the VASCODE framework is described

and presented in order to understand its impact in data distribution when it is

used in different environments. Performance experiments have been conducted

to show the effect of the trust framework on system performance. In addition,

a study is conducted through experiments to show the effect of weighted factors

when they are used to address various environments. The described empirical

experiments also show the effect of using throttling functionality to form the

decentralized data layer and how clients use the trust framework to select the

best data centres when throttling is used.

7.1 Objectives

To demonstrate the benefits of the VASCODE framework developed in this thesis,

it was necessary to show its effectiveness in improving data distribution in BOINC

projects by using the Attic file system for data distribution. The main goal of

VASCODE is to provide a means for Volunteer Computing projects that use

BOINC middleware, to be extended to allow participants to form and join a

decentralized data centres layer by volunteering a proportion of their bandwidth

7.2 VASCODE Trust framework Evaluation 119

for data distribution. In addition, VASCODE is used to optimize the download

time of data to avoid malicious data centres and this goal depends on trust

data received from VASCODE to assess data centres and select the best ones

that meet the client preferences. A set of experiments have been conducted to

evaluate VASCODE using a quantitative approach as follows::

• To compare the benefit of using trust for data centres selection by conduct-

ing a number of experiments.

• To show how the throttling feature is used by running different examples

using different upload speeds.

7.2 VASCODE Trust framework Evaluation

This section presents an evaluation of the trust framework used in VASCODE;

it shows how trust values obtained from VASCODE can help clients of Attic to

select the best data centres for downloading data. These experiments explore the

different characteristics of a data centre such as its upload speed, availability, and

trustworthiness. Also, these experiments show the flexibility of VASCODE when

it is used in dynamic environments.

7.2.1 Evaluation Scenarios

To support the argument that the proposed framework leads to an improvement

in data distribution by decreasing the download time of data, it is necessary to

evaluate its performance using a range of scenarios. These scenarios enable a

quantitative evaluation of the proposed framework, and therefore a number of

7.2 VASCODE Trust framework Evaluation 120

scenarios have been selected to test and demonstrate the research case. These

scenarios are derived from the client requirements and data centres behaviours

which are discussed below.

7.2.1.1 Data centres behaviours

Since the data centres are ordinary Internet users, who volunteer their resources

for a scientific project, three main attributes can be used in the evaluation sce-

narios.

1. It is expected that some of them may have malicious behaviour.

2. They have either a slow internet speed or are not interested in providing all

of their internet bandwidth to serve data for clients requests.

3. Their availability changes over time as they are not dedicated machines for

data distribution and they can only voluntarily distribute data when they

are online

In this evaluation, in order to mimic the behaviour of data centres, different

upload speeds were used and a Poisson distribution was used to mimic data

centres availability. In addition, corrupted data was injected to some data centres

to make them play the role of malicious data centres.

7.2.1.2 Clients preferences

The preferences of clients can be specified in terms of their expectation of data

centres. To make an objective assessment of data centres, a set of client require-

ments must be identified. These preferences provide important information to

7.2 VASCODE Trust framework Evaluation 121

Attribute Honesty Speed Availability All
Value 1 1 1 1/3 1/3 1/3

Table 7.1: Weight Factors used in the experiments

VASCODE to determine the best data centres that the client can use to down-

load data from. The clients preferences can be considered to have expectations on

a single or multiple attributes of the data centre (namely its availability, speed

and honesty). It is also possible to differentiate between the preferences of the

clients, as some clients prefer to get data from highly available data centres, while

others prefer to interact just with the honest data centres to avoid corrupted data

and others might prefer to get data from data centres that have high speed in-

ternet connections. However, clients can use a combination of these attributes to

meet their requirements. Table 7.1 summarizes the weight factors that are used

to represent the client requirements in the experiments.

7.2 VASCODE Trust framework Evaluation 122

7.2.1.3 Scenarios

The combination of client requirements and data centre behaviors form a set of

scenarios. These scenarios are used to demonstrate the effects of using VASCODE

in data download. In the experiments, the following four scenarios are used.

• Scenario 1. The data centres have different availability, have the same

upload speed, and are all honest. The clients are interested in data centres

that have high availability.

• Scenario 2. Some of the data centres have malicious behaviour, but all

are available and have the same upload speed. The clients are interested in

data centres that are honest.

• Scenario 3. The data centres have different upload speeds, but all are

honest and available. The clients are interested in data centres that have

the best upload speed.

• Scenario 4 The data centres have different upload speeds, some of them

are malicious, and are not available all the time. The clients are interested

in the non malicious data centre that has the highest upload speed and the

highest availability.

These scenarios are used to present quantitative measurements that show that

VASCODE framework can improve the download time of data and consequently

the performance of projects.

7.2 VASCODE Trust framework Evaluation 123

7.2.2 Testbed Environment

The Test-bed environment for the experiments includes 33 Linux-based machines.

32 machines have similar specifications with a 2.8 GHz Intel Pentium Processor

and 2 GB of Memory, Fedora 7 as an operating system, and Java version 1.6.0.14.

These machines where used to run various combinations of clients and data cen-

tres. The remaining machine was equipped with a 2.0 GHz Intel Pentium Dual

Core Processor and 3 GB of memory, and was used to run the VASCODE-DL

server. These machines are connected through a LAN network and a web inter-

face was used to configure the network connections speed of these machines to 10

Mbps or 100 Mbps.

7.2.3 Experimental Hypotheses

The experiments hypotheses are presented and explained in this section to show

how they meet the thesis hypothesis.

1. The experiments involve the use of a P2P network (i.e. Attic file system)

to form a decentralized data centres layer, and show how VASCODE can

be used to form a decentralized data centres layer for data distribution.

In addition, the experiments also involve two different clients of data: the

basic Attic client; and the VASCODE-DW to show that VASCODE allows

the use of different types of clients.

2. The experiments use the VASCODE trust framework to manage the selec-

tion of data centres based on their trust values in different environments.

Four scenarios were used to represent various environments. The experi-

7.2 VASCODE Trust framework Evaluation 124

ments show the ability of VASCODE to improve download time of data in

these environments through the use of VASCODE trust framework.

7.2.4 Experimental Error

Error bars were used to compare visually the average download speed of data

using Attic-DW and VASCODE-DW. This shows whether VASCODE introduces

a statistically significant performance improvement to the distribution of data

in BOINC projects through the application of a trust mechanism to select the

optimum data centres for downloading data. The error bars are included in all

graphs to represent the standard error of the experiments which is calculated

using the standard deviation and the average download time of data. Appendix

A shows the average download time and standard errors for all experiments.

7.2.5 Effect of Data Centres Availability

In a Volunteer Computing environment peers can enter and exit the network at

any time. In Attic, as peers can also play the role of a data centre, the availability

of these data centres can change over time. With the distributed data centres

appearing and disappearing, a mechanism is required to limit this variability in

the network so that a clients download efficiency is maximised. This experiment is

conducted to show how the download time is improved when the trust framework

is utilised.

7.2 VASCODE Trust framework Evaluation 125

7.2.5.1 Experiment Setup

In this experiment, the experiment setup is shown in Figure 7.1. Attic consists

of a lookup server and 10 data centres. The 10 data centres have a 10Mb/s

connection and are all deemed honest peers (i.e. no malicious behaviour) for this

experiment.

Data Centres Clients

VASCODE-DWAttic-DW

Data Centres Layer

VASCODE-DL

Network

Figure 7.1: Attic File System used with different Data Centres Availability

7.2 VASCODE Trust framework Evaluation 126

22 Linux machines were used to run data centres to mimic data requests in all

experiments and these were set up to request a 10 MB file at periodic intervals.

20 machines were setup to request the file at periodic intervals, as shown in Table

7.2. They report their download experience to the VASCODE-DL server when

they finish downloading data. This feedback to the server contains the status of

each data centre and information about whether they were available, whether the

download speed was satisfactory and whether they were honest.

Periodic Interval Machines
Every 2 Minutes M1,M2,M3,M4
Every 4 Minutes M5,M6,M7,M8
Every 6 Minutes M9,M10,M11,M12
Every 8 Minutes M13,M14,M14,M15
Every 10 Minutes M16,M17,M18,M19

Table 7.2: The Twenty Machines that are Running in Background

7.2 VASCODE Trust framework Evaluation 127

The other two machines were setup to request the file every five minutes,

one of the machines uses the trust data to select the best data centres before

downloading the file, the other machine to mimic the Attic client it was setup to

do not use the trust data for selecting data centres.

The data centres can go offline at any time and a Poisson distribution was

used to model the behaviour when the data centres are online; it was used to

simulate the availability of data centres as this represents a realistic scenario for

many existing P2P systems.

The Poisson distribution is a discrete probability distribution and is used

to model the number of events occurring within a given time interval. In the

experiments in this research, it was used to show when the data centres are on

and off during a four hour period. Figure 7.2 shows the distribution of the data

centres and when they are online and offline over a four-hour period. The total

duration of the experiment was eight hours; only the first four hours have been

shown here to demonstrate the overall availability trend.

7.2 VASCODE Trust framework Evaluation 128

Figure 7.2: Data Centres Availability

The behaviour of the Attic client with VASCODE-DW are compared. One

instance of each type of client is used, each requesting data periodically every

five minutes during the experiment. VASCODE-DW was configured with the

following parameters: Availability weight factor (AWF)=1, Honesty weight factor

(HWF) = 0 and Speed weight factor (SWF)=0. As the focus is on the availability

of the 10 data centres, the other weight factors are set to zero.

7.2 VASCODE Trust framework Evaluation 129

7.2.5.2 Experiment Achievement

This experiment had a duration of eight hours and the data centre availability in

the first four hours is the same as in the second four hours as shown in Figure 7.2.

It was was found that during the first four hours of the experiment, the down-

load time of both clients is similar Figure 7.3. However, in the next four hours,

the trusted data centre has an improved download time as the trust algorithm

converges and learns the state of the network, namely VASCOE-DW learns to

avoid the unavailable data centres as the experiment progresses. In Figure 7.4,

it can be observed that the behaviour of nodes employing the use of the trust

algorithm becomes smoother and more predictable during the last four hours of

the experiment. This convergence shows promise as the algorithm can adapt to

network conditions and variability in node availability, which is a requirement of

the Volunteer Computing environment as a whole.

0

5

10

15

20

25

30

1 2 3 4

T
im

e
(S

ec
)

Experiments

Average Download Time Using Avilability Weight Factor

Attic-DW VASCODE-DW ,AWF =1 HWF=0 SWF = 0

Figure 7.3: Data Download using AWF = 1.0 in the first four hour period

7.2 VASCODE Trust framework Evaluation 130

0

2

4

6

8

10

12

14

16

18

1 2 3 4

T
im

e
(S

ec
)

Experiments

Average Download Time Using Avilability Weight Factor

Attic-DW VASCODE-DW ,AWF =1 HWF=0 SWF = 0

Figure 7.4: Data Download using AWF=1.0 in the second four hour period

7.2.6 Effect of Data Centre Honesty

Since the decentralized data layer consists of ordinary Internet users, it is expected

that some of them will exhibit malicious behaviour. A data centre in Attic caches

data locally and it has access to this data; a malicious data centre can potentially

replace the cached data with corrupted data to disrupt the performance of the

system. In VASCODE, to achieve malicious data centre identification, it is the

obligation for all data clients to verify the integrity of data. In the event of data

integrity failure, the data centre will be identified as a malicious data centre and

the data clients will use a different data centre to obtain data.

In this experiment, malicious data centres are injected into the network in

order to disrupt the system. These nodes intentionally provide corrupted data to

their clients in order to attack the system. An experiment was designed to show

7.2 VASCODE Trust framework Evaluation 131

how the VASCODE trust framework can become fault tolerant to this malicious

behaviour and avoid the use of malicious data centres to recover and repair the

corrupted network. This experiment focuses on the honesty of data centres and

how this affects the download time. It aims to show how the client, who uses the

VASCODE trust framework, offers better stability and hence increased download

efficiency than the ordinary Attic client. Note that since an MD5 hash is taken

of the data, malicious peers can only slow down the network because if the hash

of the downloaded file does not match the original hash of the data, it will be

discarded and downloaded again. The VASCODE trust framework detects these

malicious peers and effectively removes them from a clients download list, thereby

making significant gains overall.

7.2.6.1 Experiment Set up

Six data centres are used in this experiment (Figure 7.5). Three of them are

honest data centres and the other three are malicious and send corrupted data to

their clients. Because we are interested in the honesty of these data centres, all

have the same speed connection,(10Mb/s), and they are available throughout the

duration of the experiment. VASCODE−DW was configured with the following

parameters (AWS = 0, HWF = 1, SWF = 0). As the identified in previous

experiment for availability, only the honesty weight factor is set to 1 in this

experiment.

7.2 VASCODE Trust framework Evaluation 132

Data Centres Clients

VASCODE-DWAttic-DW

Data Centres Layer

VASCODE-DL

Network

Figure 7.5: Attic File System using a Number of Malicious Data Centres

7.2.6.2 Experiment Achievement

Figure 7.6 shows the result of this experiment. It can be observed that the trusted

client has significantly better download time because it avoids the malicious data

centres, while the ordinary Attic client uses all the data centres and therefore

downloads a number of unnecessary corrupted chunks which need to be reloaded,

thereby incurring a download overhead. After a short period of convergence, this

system performs on average three times better than the standard Attic approach.

This shows huge potential as it addresses one of the fundamental issues in vol-

unteers distributing data, namely the ability to trust third party peers. This

experiment indicates that the system can learn to avoid malicious peers and dy-

namically select more trusted peers in the network, which opens up the possibility

for such a dynamic data distribution approach.

7.2 VASCODE Trust framework Evaluation 133

0

5

10

15

20

25

30

35

40

45

1 2 3 4

T
im

e
 (

S
e
c
)

Experiments

Data Download using Honesty Weight Factor

Attic-DW VASCODE-DW ,AWF =0 HWF=1 SWF = 0

Figure 7.6: Data Download using Honesty Weight Factor

7.2.7 Effect of Data Centres Speed

The data centres used in Attic can have significantly different upload speeds (due

to variability in the home users connections, for instance) and this obviously

affects the download time of each peer. Bandwidth throttling is also used by many

Internet Service Providers, leading to variable download speeds for different users.

Since clients are interested in getting data in the fastest possible way, they should

obviously choose those data centres with high-speed connections. However, if all

peers download from the same fastest peers then there will be a bottleneck, so

any algorithm must dynamically optimise the distribution of clients connected

to a data centre at each time-step during the operation of the system. The

VASCODE trust framework provides such a mechanism by choosing data centres

with high bandwidth at that point in time in order to optimise the throughput

7.2 VASCODE Trust framework Evaluation 134

of the distributed system as a whole.

7.2.7.1 Experiment Setup

This experiment (Figure 7.7) shows how the trust framework is used to choose

the data centres which have the highest bandwidth connections at any point in

time. For this experiment, 10 data centres are used. Six data centers have 10

Mb/s connections and four data centres have 100 Mb/s connections. The data

centres have continuous availability and they all act honestly. VASCODE-DW

was configured with the parameters (AWS = 0, HWF = 0, SWF = 1) to configure

the system to only focus on the speed of the data centers.

Data Centres Clients

VASCODE-DWAttic-DW

Data Centres Layer

VASCODE-DL

Network

Figure 7.7: Attic File System Using Data Centres with different upload Speed

7.2 VASCODE Trust framework Evaluation 135

7.2.8 Experiment Achievement

The results in Figure 7.8 show significant improvements by clients making use of

the VASCODE trust framework, compared to the conventional Attic approach,

achieving download speeds several times faster overall. These results demonstrate

the benefit of the approach.

0

2

4

6

8

10

12

1 2 3 4

T
im

e
(S

ec
)

Experiments

Average Download Time Using Speed Weight Factor

Attic-DW VASCODE-DW ,AWF =1 HWF=0 SWF = 0

Figure 7.8: Data Download using Speed Weight Factor

7.2 VASCODE Trust framework Evaluation 136

7.2.9 Effect of different behaviours of Data Centres

This experiment is designed to show how the trust framework can be used in

different environments to improve download time when all three factors (speed,

honest, availability) are considered. Therefore, the data centers were configured

so that they have different speeds, with some data centres acting maliciously and

others with a variable availability over time.

7.2.9.1 Experiment Setup

For this experiment, 10 data centres are used with six data centres having a slow

speed connection (10 Mbps) and four data centres having a high speed connec-

tion (100 Mbps). Three of the data centres act maliciously and the availability of

all data centres changes over time according to the Poisson distribution used in

the first experiment. The combination of these three factors creates an extremely

hostile network for this size and provides an extreme test for the system in having

to deal with a number of complex factors to optimise the clients download capa-

bility overall. The VASCODE-DW was configured with the parameters (AWS =

1/3, HWF = 1/3, SWF = 1/3) to provide equal weight to all three factors.

7.2.9.2 Experiment Achievement

Figure 7.9 again shows significant improvement over the standard Attic approach

overall, with VASCODE-DW achieving one order of magnitude and more in-

creased performance over a significant duration of the experiment. However,

there are spikes in the experiment as the network changes and the trust algo-

rithm has to re-converge. Two explanations are provided for this effect. Firstly,

7.2 VASCODE Trust framework Evaluation 137

this could simply be a result of the small distribution of the nodes in this exper-

iment and, at certain times, due to the three factors acting together and there

simply is not much possibility for achieving improvement. Secondly, a heuristic

approach should be taken in optimising the distribution of setting the weights of

the parameters of the trust equation. This is a multi-dimensional space in itself

and requires further investigation.

0

5

10

15

20

25

30

35

1 2 3 4

T
im

e
 (

se
c
)

Experiments

Data Download using Different Weight Factors

Attic-DW VASCODE-DW ,AWF = 1/3 HWF=1/3 SWF = 1/3

Figure 7.9: Data Download using different Weight Factors

7.3 VASCODE Data Throttling Evaluation 138

7.3 VASCODE Data Throttling Evaluation

In this section, the data centres will volunteer a part of their bandwidth for data

distribution through the use of a throttling option. The upload speed of data

centres have an effect on the download time of data and this effect increases

when some of these data centres provide corrupted data. VASCODE-DW can

deal with this situation by using the trust framework to select the best data

centre. Two experiments have been conducted to show how VASCODE-DW can

avoid the malicious data centres and select the ones that have high upload speed

when these data centres use the throttling functionality.

7.3.1 Data Throttling and SWF

To attract ordinary internet users to participate in data distribution, throttling in

VASCODE can be used. This allows the participants of a BOINC project to spec-

ify the speed for the distribution of data to prevent any disturbance during their

use of the internet. The data centres used in Attic can choose different upload

speeds using the throttle functionality and this obviously affects the download

time of data. Since clients are interested in getting data in the fastest possible

way, they should clearly choose those data centres with high-speed connections.

No of Data centres Bandwidth
1 1 MB
2 512 KB
3 256 KB
4 128 KB

Table 7.3: Different Upload Speed

This experiment therefore focuses on how the VASCODE trust framework is

7.3 VASCODE Data Throttling Evaluation 139

used to choose the data centres which have the highest bandwidth connections

at any point in time. For this experiment, 10 data centres were used. The

upload speed of these data centres were configured using throttling functionality

to configure the upload speed of each data centre, as mentioned in Table 7.3. The

data centres have continuous availability and they all act honestly. VASCODE-

DW was configured with the following parameters (AWS = 0, HWF = 0, SWF

= 1) to configure the system to only focus on the speed of the data centres

0

10

20

30

40

50

60

1 2 3

T
im

e
(S

ec
)

Experiments

Average Download Time Using Speed Weight Factor

Attic-DW VASCODE-DW ,AWF =0 HWF=0 SWF = 1

Figure 7.10: Different upload speed

7.3 VASCODE Data Throttling Evaluation 140

The results in Figure 7.10 show significant improvements by clients making use

of the trust framework, compared to the conventional Attic approach, achieving

download speeds that are several times faster overall.

7.3.2 Data Throttling and HWF

Seven data centres were used in this experiment. Four of them were honest

data centres and the other three were malicious and send corrupted data to their

clients. They were available throughout the duration of the experiment and

this experiment was repeated three times every time the data centres used the

throttle functionality to configure their speed connection to (128 KB, 256 KB and

512 KB). Since the clients were interested in the honesty of these data centres,

VASCODE-DW was configured with the parameters (AWS = 0, HWF = 1, SWF

= 0) so only the honesty weight factor is set to 1 in this experiment.

0

50

100

150

200

250

1 2 3

T
im

e
(s

ec
)

Experiments

Average Download Time Using Honesty Weight Factor

Attic-DW VASCODE-DW ,AWF =0 HWF=1 SWF = 0

Figure 7.11: 128 KB Upload Speed

7.3 VASCODE Data Throttling Evaluation 141

0

20

40

60

80

100

120

1 2 3

T
im

e
(S

ec
)

Experiments

Average Download Time Using Honesty Weight Factor

Attic-DW VASCODE-DW ,AWF =0 HWF=1 SWF = 0

Figure 7.12: 256 KB Upload Speed

0

10

20

30

40

50

60

1 2 3

T
im

e
(S

ec
)

Experiments

Average Download Time Using Honesty Weight Factor

Attic-DW VASCODE-DW ,AWF =0 HWF=1 SWF = 0

Figure 7.13: 512 KB Upload Speed

7.4 Summary 142

Figures 7.11, 7.12and 7.13 show the result of this experiment. It can be

observed that VASCODE-DW has significantly better download time because it

avoids the malicious data centres, while the ordinary Attic client uses all the

data centres and therefore downloads a number of unnecessary corrupted chunks

which need to be reloaded, thereby incurring a download overhead. After a short

period of convergence, this system performs on average three times better than

the standard Attic approach. This experiment shows how the data centres can use

the throttle functionality to configure different speeds. In addition, it indicates

that this system can learn to avoid malicious peers and dynamically select more

trusted peers in the network, which opens up the possibility for such a dynamic

data distribution approach.

7.4 Summary

The experiments described in this chapter show how to extend and improve data

distribution in Volunteer Computing projects using the VASCODE framework.

Furthermore, this chapter shows the performance of VASCODE and its signifi-

cant improvements with respect to a clients download time when the trust model

is used compared to the conventional Attic scheme. Results show that the client

with support of the trust framework has a reliable and consistent download time.

The experiments also show how weight factors can be used to address various

environments and apply client preferences and these weight factors are used to

gain the optimum performance of the trust model. Finally, the experiments con-

ducted in this chapter show that using VASCODE can achieve better scalability

and performance when the decentralized data centres layer approach with support

7.4 Summary 143

of trust management system is used.

144

Chapter 8

Conclusion and Future Work

8.1 Research Summary

Volunteer Computing is a new paradigm of distributed computing where the or-

dinary computer owners volunteer their computing power and storage capability

to scientific projects. The increasing number of Internet connected PCs allows

Volunteer Computing to provide more computing power and storage capacity

than what can be achieved with supercomputers, clusters and grids. However,

the large numbers of participants in Volunteer Computing projects may cause a

bottleneck on project servers, which may lead to a point of failure and reduce the

projects performance. This thesis presented and investigated a system which pro-

vides the necessary mechanisms to improve volunteer computing by extending the

data layer in these projects through using P2P techniques and trust management.

P2P systems have become more popular in the last decade through the use of

file sharing applications such as Napster, Gnutella and KaZaA. The concept of

P2P systems is based on resource sharing in a dynamic environment.

P2P systems are used to access various distributed resources (processing

power, storage capability and bandwidth) at the edge of the Internet and these

resources are shared between users by direct exchange.

8.1 Research Summary 145

In a P2P system, it may be assumed that a large number of peers may not have

interacted before. In these systems there may also be peers that are malicious.

For these reasons it is important to select a reliable peer before starting the

interaction. A trust indicator, suggesting which peers are more trustworthy than

others, would be a useful factor in peer selection. The notion of trust in Computer

Science has been borrowed from human society, where we experience and rely on

trust in our daily life. Trust is a multifaceted and context-dependent concept and

relates to a belief in honesty, competence, and reliability of the trusted person or

service.

In Chapter 1, it was hypothesized that file swarming and trust management

systems could provide a reliable mechanism to improve data distribution in Vol-

unteer Computing. In this thesis, the author presented a novel approach to

incorporate P2P techniques into Volunteer Computing projects in applying trust

management to optimize the use of P2P techniques in these projects. This ap-

proach adopted a P2P technique to form a decentralized data centres layer which

overcomes the limitation of centralized data servers. Since this decentralized data

centres layer is formed using the resources of the participants of the Volunteer

Computing project, this makes it extend dynamically as the number of partici-

pants increases.

The use of a decentralized data centres layer raises the issue of data centre

selection. Data centre selection concerns which data centres should be selected

and used for downloading data. Trust management can be used to address this

concern. Different mechanisms were applied to provide trust in P2P systems

and this thesis used a mechanism that is based on the reputation of peers in

the network to predict its future behaviour. A trust model was developed that

8.2 Conclusions 146

provides its users the necessary information for selecting data centres. In addition,

it allows the user to apply their preferences to select the optimum data centres.

Another issue addressed in this thesis was the integration of a P2P technique

into Volunteer Computing. In this research, two approaches were investigated.

Firstly, the BOINC client code was modified to allow participants to use the de-

centralized data centres layer instead of using the central server to become a data

centre. A potential issue with the previous approach is that a new BOINC client

would need to be released for users to take advantage of the VASCODE frame-

work. Therefore, instead, a second approach is to have BOINC client interact

with the VASCODE via a proxy. To use this approach, the VASCODE proxy

was developed to avoid the modification of the BOINC client.

8.2 Conclusions

In this research, it was aimed to extend the data layer in Volunteer Computing to

provide another alternative to clients to obtain data instead of using the central

data server. The concept of decentralized data centres layer was introduced in

Chapter 4, where it is incorporated into a BOINC project to provide an alternative

to BOINC clients to obtain data instead of using the central BOINC server.

Since the primary aim was to show how P2P networks could be utilized to

optimize data distribution in Volunteer Computing, a comparison study between

the use of decentralized data layer and BOINC central server was conducted in

Chapter 4. These experiments revealed a noticeable improvement in download

time of data and this will lead to an improvement in the project performance.

These experiments also introduced a set of requirements to build an optimum

8.2 Conclusions 147

approach in the use of P2P techniques. Based on the evaluation experiments in

Chapter 4, it was noticed that some characteristics of the data centre affected

the distribution of data, such as its availability, behaviour and its upload speed.

Three metrics were used to represent data centre characteristics (availability,

honesty, speed). The concept of trust was adopted to improve the use of P2P

networks in Volunteer Computing projects.

In section 5.3.2.1 a computational trust model was proposed based on these

three metrics. This model uses the reputation of these data centres, obtained by

their clients feedback, to calculate their trust value and the use of trust manage-

ment was considered to differentiate between data centres.

In chapters 5 and 6, the VASCODE framework was designed and implemented

that uses the Attic File System and BOINC middleware for using P2P data

sharing within Volunteer Computing projects. This framework makes use of trust

management to allow clients to select the data centre. It allows decentralized data

centres in Volunteer Computing to be efficient and extends dynamically at run

time, giving them the ability to serve a large number of data requestors.

Moreover, the VASCODE framework has been developed to provide a tool to

the research community that uses BOINC middleware to build volunteer comput-

ing projects and apply the decentralized data centres layer within these projects

and utilize trust management.

VASCODE uses different components to allow Volunteer Computing projects

participants to become data centres and distribute data. In addition, it utilizes

the trust framework to provide the necessary data to clients to select the optimum

data centres for downloading data.

Chapter 7 presented a performance evaluation of the VASCODE framework in

8.3 Future Work 148

terms of using the trust value of data centres to select the optimum data centres,

which consequently affects the total project performance.

In this chapter, a set of experiments were conducted and these used various

scenarios to represent the decentralized data centres layer in different environ-

ments. Results showed that clients with the support of a trust framework have

reliable and consistent download times. In this context, reliable implies that when

a client uses trust values to select the best data centres, it will get an improved

download time each time it uses them to download data. This provides significant

gains for the BOINC project as a whole by reducing download time and therefore

increasing the throughput of results.

The results show also that the clients with the support of a trust framework,

compared with ordinary clients, can avoid the malicious behaviour of some data

centres by avoiding selecting them.

Performance analysis demonstrated that the proposed approach in this thesis

can achieve better scalability and performance compared to the central server

approach that is used in BOINC projects.

8.3 Future Work

This research demonstrates the feasibility of using P2P techniques and trust in

Volunteer Computing. The promising outcomes using this approach opens several

directions for future research:

• Investigating the use of other P2P networks to build the decen-

tralized data layer

One promising extension of this research is to consider how to support dif-

8.3 Future Work 149

ferent P2P networks. The Attic File System, used in this research, is a

centralized P2P system, where peers register their data files to a central

data lookup server, so other peers can download it. Future research could

explore integrating decentralized P2P networks within Volunteer Comput-

ing. Decentralized P2P networks were developed to avoid the use of a

central look up server as it is a point of failure but they have less perfor-

mance due to the exchange of messages before downloading data. It would

be interesting to study the performance of Volunteer Computing projects

when they use this type of P2P network.

• Enhancing the trust framework

The trust model developed in this thesis is based on client feedback, that

is, the model aggregates clients feedback then uses the Beta distribution to

calculate the trust value. This method involves the use of the history of each

data centre. To avoid using historic data to calculate the trust value, other

trust systems could be investigated, such as PolicyMake [41]. In addition,

other trust models such as EigenTrust [70] and PowerTrust [112] could be

investigated to improve the trust framework.

• Developing a theoretical model for Attic file system performance

The performance of the Attic file system is based on the number of data

centres and the chunk size. It would be interesting to develop a theoretical

model that provides the system administrator the number of data centres

that should form the decentralized data layer. Furthermore, it assumes

the best chunk size of the published data which consequently decides the

number of chunks a client should download. This theoretical model could

8.3 Future Work 150

be used to tune the Attic file system and optimize its performance.

• Optimization of trust metrics in large scale networks The three

metrics used in the trust model define the attributes of the data centre,

such as its upload speed, availability and behaviour. When the data centre

client reports its interaction with the data centre, it includes whether the

data centre was available or not, whether the upload speed was satisfied

and if the downloaded data was as expected. In large scale networks, many

factors impact on the data centre attributes. For example, the data centre

provides a considerable bandwidth for uploading data, but because it serves

a number of requests, this causes the clients to be unsatisfied with the

upload speed. The clients will report unsatisfied upload speed on their

feedback even if the data centre has provided considerable bandwidth for

serving data requests. This affects the rate of the data centre during the

selection of this data centre by other clients. Therefore, it is desirable to

study all factors that affect data centre performance, not just using the

clients feedback.

151

Appendix A

Average Download Time and

Standard Error

8.3 Future Work 152

Average Download Tim (Sec) Standard Error
Experiments ATTIC-DW VASCODE-DW ATTIC-DW VASCODE-DW

1 19.04508 15.30233 1.472914 1.101168
2 15.26283 14.71117 0.931645 0.911604
3 19.22108 15.93375 1.970007 1.116071
4 24.07683 16.10325 4.365287 2.722969

Table A.1: Standard Error of experiment Data centres availability in the first
four hour period

Average Download Tim (Sec) Standard Error
Experiments ATTIC-DW VASCODE-DW ATTIC-DW VASCODE-DW

1 0.662121 0.295045 0.662121 0.295045
2 0.733194 0.280766 0.733194 0.280766
3 1.254447 0.278048 1.254447 0.278048
4 0.791529 0.252666 0.791529 0.252666

Table A.2: Standard Error of experiment Effect of Data centres availability in
the second t four hour period

Average Download Tim (Sec) Standard Error
Experiments ATTIC-DW VASCODE-DW ATTIC-DW VASCODE-DW

1 37.13292 15.72058 2.801357 1.506626
2 37.37925 14.80817 2.548926 0.664261
3 36.933 15 .42683 1.63865 0.628409
4 35.80608 14.91042 2.626752 0.560343

Table A.3: Standard Error of experiment Data centres Honesty

Average Download Tim (Sec) Standard Error
Experiments ATTIC-DW VASCODE-DW ATTIC-DW VASCODE-DW

1 9.113667 1.748167 0.64174 0.512152
2 8.26275 1.214917 0.624947 0.010422
3 8.77825 1.252333 0.422131 0.02659
4 8.958583 1.194917 0.779143 0.006215

Table A.4: Standard Error of experiment Effect of Data centres Speed

8.3 Future Work 153

Average Download Tim (Sec) Standard Error
Experiments ATTIC-DW VASCODE-DW ATTIC-DW VASCODE-DW

1 20.00317 7.831667 3.72237 2.761008
2 16.33108 7.068917 2.761112 3.228559
3 16.79283 7.499917 2.553147 3.315833
4 26.07425 13.77175 3.189383 4.174713

Table A.5: Standard Error of experiment different behaviours of data centres

Average Download Tim (Sec) Standard Error
Experiments ATTIC-DW VASCODE-DW ATTIC-DW VASCODE-DW

1 50.4689 22.9582 3.03840906 5.19510238
2 53.3377 18.8797 2.34148943 0.13468251
3 51.084 18.7644 2.13906154 0.17955403

Table A.6: Standard Error of experiment Data Throttling and SWF

Average Download Tim (Sec) Standard Error
Experiments ATTIC-DW VASCODE-DW ATTIC-DW VASCODE-DW

1 193.7029 103.0719 16.78993 10.76241
2 200.1928 98.802 11.50832 3.050898
3 195.3004 94.4454 11.57912 3.194959

Table A.7: Standard Error of experiment Data Throttling and HWF (128 KB
upload speed)

Average Download Tim (Sec) Standard Error
Experiments ATTIC-DW VASCODE-DW ATTIC-DW VASCODE-DW

1 99.084 3 53.268 5.641064 7.2546
2 97.0235 45.4499 6.787813 0.931566
3 100.942 47.5678 7.33623 0.767633

Table A.8: Standard Error of experiment Data Throttling and HWF (256 KB
upload speed)

8.3 Future Work 154

Average Download Tim (Sec) Standard Error
Experiments ATTIC-DW VASCODE-DW ATTIC-DW VASCODE-DW

1 46.1312 23.6826 1.950102 1.382111
2 48.4787 22.3005 2.839135 0.47572
3 46.3727 24.8445 3.209677 0.39561

Table A.9: Standard Error of experiment Data Throttling and HWF (512 KB
upload speed)

155

Bibliography

[1] The annotated gnutella protocol specification v0.4 document revision 1.6.

http://rfc-gnutella.sourceforge.net/developer/stable/. 33, 36

[2] The arecibo observatory. http://www.naic.edu/. 21

[3] Attic file system. http://www.atticfs.org/. 4, 40

[4] Bittorrent. http://www.bittorrent.com/. 4

[5] BOINC projects list , howpublished=http://boinc.berkeley.edu/wiki/

project_list,. 3

[6] Boinc projects statics. http://boincstats.com/. last accessed May 2012.

16

[7] Climateprediction.net project. http://climateprediction.net/. last ac-

cessed June 2012. 21

[8] The datagrid project. http://eu-datagrid.web.cern.ch/eu-datagrid/.

32

[9] Distributed.net project. http://www.distributed.net/Main_Page. last

accessed June 2012. 16

http://www.naic.edu/
http://www.atticfs.org/
http://www.bittorrent.com/
http://boinc.berkeley.edu/wiki/project_list
http://boinc.berkeley.edu/wiki/project_list
http://boincstats.com/
http://climateprediction.net/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://www.distributed.net/Main_Page

BIBLIOGRAPHY 156

[10] Einstein@home project. http://einstein.phys.uwm.edu/. last accessed

June 2012. 14, 21

[11] emule : Peer-to-peer file sharing application. http://www.emule-project.

net/. 33

[12] European Desktop Grid Initiative (EDGI). http://edgi-project.eu/. 50

[13] fastrack. http://developer.berlios.de/projects/gift-fasttrack/.

35

[14] Freenet. the freenet project. available at. https://freenetproject.org/.

36, 51

[15] The globus toolkit. http://www.globus.org/toolkit/. 32

[16] Great internet mesenne prome search (gmips) ptojects. http://www.

mersenne.org/. last accessed June 2012. 16

[17] Internet usage statistics. http://www.internetworldstats.com/stats.

htm. last accessed May 2012. 16

[18] Kazaa. http://www.kazaa.com/. 4, 33

[19] Ligo, the laser interferometer gravitational-wave observatory. http://www.

ligo.caltech.edu/. 21

[20] morpheus. http://morpheus.en.softonic.com/. 35

[21] Napster. http://www.napster.com. 4, 33, 34

[22] The oxford dictionary. http://oxforddictionaries.com/. 43

http://einstein.phys.uwm.edu/
http://www.emule-project.net/
http://www.emule-project.net/
http://developer.berlios.de/projects/gift-fasttrack/
 https://freenetproject.org/
http://www.globus.org/toolkit/
http://www.mersenne.org/
http://www.mersenne.org/
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://www.kazaa.com/
http://www.ligo.caltech.edu/
http://www.ligo.caltech.edu/
http://morpheus.en.softonic.com/
http://www.napster.com
http://oxforddictionaries.com/

BIBLIOGRAPHY 157

[23] The poco c++ libraries. http://pocoproject.org/. 102

[24] Primegrid project. http://www.primegrid.com/. last accessed June 2012.

21

[25] Rosseta@home project. http://boinc.bakerlab.org/rosetta/. last ac-

cessed June 2012. 14

[26] Seti@home project, howpublished=http://setiathome.berkeley.edu/,.

16

[27] The stanford linear accelerator center (slac). http://www.slac.stanford.

edu/. 32

[28] the large hadron collider (lhc) project. http://lhc.web.cern.ch/lhc/.

32

[29] A taxonomy and survey of grid resource management systems for dis-

tributed computing. Softw. Pract. Exper., 32(2):135–164, February 2002.

31

[30] Grid Computing in Research and Education. IBM reedbooks, 2005. 31

[31] K. Fukui [1] B. Jacob, M. Brown and N. Trivedi. Introduction to grid

computing. Technical report, IBM International Technical Support Organi-

zation, 2005. http://www.redbooks.ibm.com/redbooks/pdfs/sg246778.

pdf. 2, 31

[32] Alfarez Abdul-Rahman and Stephen Hailes. Using recommendations for

managing trust in distributed systems. In IN PROC. OF IEEE MALAYSIA

http://boinc.bakerlab.org/rosetta/
http://setiathome.berkeley.edu/
http://www.slac.stanford.edu/
http://www.slac.stanford.edu/
http://lhc.web.cern.ch/lhc/
http://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf

BIBLIOGRAPHY 158

INTERNATIONAL CONFERENCE ON COMMUNICATION (MICC97),

KUALA LUMPUR, 1997. 81

[33] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual

communities. In Proceedings of the 33rd Hawaii International Conference

on System Sciences-Volume 6 - Volume 6, HICSS ’00, pages 6007–, Wash-

ington, DC, USA, 2000. IEEE Computer Society. 43

[34] A. Agarwal, M. Ahmed, A. Berman, B. L. Caron, A. Charbonneau,

D. Deatrich, R. Desmarais, A. Dimopoulos, I. Gable, L. S. Groer, R. Haria,

R. Impey, L. Klektau, C. Lindsay, G. Mateescu, Q. Matthews, A. Nor-

ton, W. Podaima, D. Quesnel, R. Simmonds, R. J. Sobie, B. St. Arnaud,

C. Usher, D. C. Vanderster, M. Vetterli, R. Walker, and M. Yuen. Gridx1:

A canadian computational grid. Future Gener. Comput. Syst., 23(5):680–

687, June 2007. 32

[35] David P. Anderson. Public computing: Reconnecting people to science.

Madrid, Spain, Novmber 2003. 15

[36] David P. Anderson. Boinc: A system for public-resource computing and

storage. In 5th IEEE/ACM International Workshop on Grid Computing,

pages 4–10, 2004. 3, 17

[37] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan

Werthimer. Seti@home: an experiment in public-resource computing. Com-

mun. ACM, 45(11):56–61, November 2002. 14, 20

[38] David P. Anderson and Gilles Fedak. The computational and storage po-

tential of volunteer computing. pages 73–80, 2006. 16

BIBLIOGRAPHY 159

[39] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey

of peer-to-peer content distribution technologies. ACM Comput. Surv.,

36(4):335–371, December 2004. 33, 34

[40] B. Beverly Yang and H. Garcia-Molina. Designing a super-peer network.

In Data Engineering, 2003. Proceedings. 19th International Conference on,

pages 49 – 60, march 2003. 35

[41] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust man-

agement. In In Proceedings of the 1996 IEEE Symposium on Security and

Privacy, pages 164–173. IEEE Computer Society Press, 1996. 44, 45, 150

[42] Sonja Buchegger and Jean-Yves Le Boudec. A robust reputation system

for p2p and mobile ad-hoc networks. 2004. 84

[43] V. Cahill, E. Gray, J.-M. Seigneur, C.D. Jensen, Yong Chen, B. Shand,

N. Dimmock, A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis,

P. Nixon, G. Di Marzo Serugendo, C. Bryce, M. Carbone, K. Krukow, and

M. Nielson. Using trust for secure collaboration in uncertain environments.

Pervasive Computing, IEEE, 2(3):52 – 61, july-sept. 2003. 84

[44] C. Castelfranchi and R. Falcone. Principles of trust for mas: Cognitive

anatomy, social importance, and quantification. In Proceedings of the 3rd

International Conference on Multi Agent Systems, ICMAS ’98, pages 72–,

Washington, DC, USA, 1998. IEEE Computer Society. 82

[45] Gilles Fedak Cecile, Gilles Fedak, Cecile Germain, and Vincent Neri.

Xtremweb : A generic global computing system. In In Proceedings of the

BIBLIOGRAPHY 160

IEEE International Symposium on Cluster Computing and the Grid (CC-

GRID01, pages 582–587, 2001. 3, 22

[46] Yu;Wei Chan, Tsung;Hsuan Ho, Po;Chi Shih, and Yeh;Ching Chung.

Malugo a peer to peer storage system. Int. J. Ad Hoc Ubiquitous Com-

put., 5(4):209–218, May 2010. 39

[47] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven

Tuecke. The data grid: Towards an architecture for the distributed manage-

ment and analysis of large scientific datasets. JOURNAL OF NETWORK

AND COMPUTER APPLICATIONS, 23:187–200, 1999. 32

[48] Andrew A. Chien. Architecture of the entropia distributed computing sys-

tem andrew a. chien. In International Parallel and Distributed Processing

Symposium, pages 15–19, 2002. 24

[49] Bram Cohen. Incentives build robustness in bittorrent. In Proceedings of

the 1st Workshop on Economics of Peer-to-Peer Systems, 2003. 40, 50, 51

[50] Bled Electronic Commerce, Audun Jsang, and Roslan Ismail. The beta

reputation system. In In Proceedings of the 15th Bled Electronic Commerce

Conference, 2002. 84

[51] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion

Stoica. Wide-area cooperative storage with cfs. In Proceedings of the eigh-

teenth ACM symposium on Operating systems principles, SOSP ’01, pages

202–215, New York, NY, USA, 2001. ACM. 38

BIBLIOGRAPHY 161

[52] Frank Dabek, M. Frans Kaashoek, and C. Smith. A distributed hash table.

Technical report, 2005. 37

[53] Ernesto Damiani, De Capitani di Vimercati, Stefano Paraboschi, Pierangela

Samarati, and Fabio Violante. A reputation-based approach for choosing

reliable resources in peer-to-peer networks. In Proceedings of the 9th ACM

conference on Computer and communications security, CCS ’02, pages 207–

216, New York, NY, USA, 2002. ACM. 42

[54] Choon Hoong Ding, Sarana Nutanong, and Rajkumar Buyya. Peer-to-peer

networks for content sharing. Technical report, Laboratory, University of

Melbourne, Australia, 2003. 35

[55] EDGeS Project. http://www.edges-grid.eu/. 50

[56] AbdelHamid Elwaer, Andrew Harrison, Ian Kelley, and Ian Taylor. Attic:

A case study for distributing data in boinc projects. In Proceedings of the

2011 IEEE International Symposium on Parallel and Distributed Processing

Workshops and PhD Forum, IPDPSW ’11, pages 1863–1870, Washington,

DC, USA, 2011. IEEE Computer Society. 40

[57] I. Foster. The grid: A new infrastructure for 21st century science. Grid

Computing: Making the Global Infrastructure a, 2003. 2, 31

[58] Ian Foster. What is the grid? - a three point checklist. GRIDtoday, 1(6),

July 2002. 31

[59] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure

BIBLIOGRAPHY 162

toolkit. International Journal of Supercomputer Applications, 11:115–128,

1996. 32

[60] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid:

Enabling scalable virtual organizations. Int. J. High Perform. Comput.

Appl., 15(3):200–222, August 2001. 31

[61] Diego Gambetta. Can we trust trust? In Trust: Making and Breaking

Cooperative Relations, pages 213–237. Basil Blackwell, 1988. 82

[62] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.

Bayesian Data Analysis, Second Edition (Chapman & Hall/CRC Texts in

Statistical Science). Chapman and Hall/CRC, 2 edition, July 2003. 84

[63] Tyrone Grandison and Morris Sloman. A survey of trust in internet ap-

plications. Communications Surveys Tutorials, IEEE, 3(4):2 –16, quarter

2000. 43

[64] Minaxi Gupta, Paul Judge, and Mostafa Ammar. A reputation system

for peer-to-peer networks. In Proceedings of the 13th international work-

shop on Network and operating systems support for digital audio and video,

NOSSDAV ’03, pages 144–152, New York, NY, USA, 2003. ACM. 46

[65] Ragib Hasan, Zahid Anwar, William Yurcik, Larry Brumbaugh, and Roy

Campbell. A survey of peer-to-peer storage techniques for distributed file

systems. In Proceedings of the International Conference on Information

Technology: Coding and Computing (ITCC’05) - Volume II - Volume 02,

ITCC ’05, pages 205–213, Washington, DC, USA, 2005. IEEE Computer

Society. 39

BIBLIOGRAPHY 163

[66] Audun Josang and Jochen Haller. Dirichlet reputation systems. In Proceed-

ings of the The Second International Conference on Availability, Reliability

and Security, ARES ’07, pages 112–119, Washington, DC, USA, 2007. IEEE

Computer Society. 84

[67] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and repu-

tation systems for online service provision. Decis. Support Syst., 43(2):618–

644, March 2007. 42

[68] Lalana Kagal, Scott Cost, Timothy Finin, and Yun Peng. A framework for

distributed trust management. In In To appear in proceedings of IJCAI-01

Workshop on Autonomy, Delegation and Control, 2001. 44

[69] S Kamvar. Eigenrep: Reputation management in p2p networks. Technical

report, Stanford University, 2002. 42

[70] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The

eigentrust algorithm for reputation management in p2p networks. In Pro-

ceedings of the 12th international conference on World Wide Web, WWW

’03, pages 640–651, New York, NY, USA, 2003. ACM. 46, 81, 150

[71] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew

Levine, and Daniel Lewin. Consistent hashing and random trees: dis-

tributed caching protocols for relieving hot spots on the world wide web.

In Proceedings of the twenty-ninth annual ACM symposium on Theory of

computing, STOC ’97, pages 654–663, New York, NY, USA, 1997. ACM.

38

BIBLIOGRAPHY 164

[72] Ian Kelley and Ian Taylor. A peer-to-peer architecture for data-intensive

cycle sharing. In Proceedings of the first international workshop on Network-

aware data management, NDM ’11, pages 65–72, New York, NY, USA,

2011. ACM. 50

[73] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers, November 1998. 31

[74] Eleni Koutrouli and Aphrodite Tsalgatidou. Reputation-based trust sys-

tems for p2p applications: design issues and comparison framework. In

Proceedings of the Third international conference on Trust, Privacy, and

Security in Digital Business, TrustBus’06, pages 152–161, Berlin, Heidel-

berg, 2006. Springer-Verlag. 42

[75] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick

Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weather-

spoon, Westley Weimer, Chris Wells, and Ben Zhao. Oceanstore: an archi-

tecture for global-scale persistent storage. SIGPLAN Not., 35(11):190–201,

November 2000. 39, 51

[76] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a

role-based trust-management framework. In Proceedings of the 2002 IEEE

Symposium on Security and Privacy, SP ’02, pages 114–, Washington, DC,

USA, 2002. IEEE Computer Society. 44

[77] J. Liang, R. Kumar, and K. Ross. The kazaa overlay: A measurement

study. 2004. 35

BIBLIOGRAPHY 165

[78] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter

of idle workstations. In Proceedings of the 8th International Conference of

Distributed Computing Systems, June 1988. 3, 22

[79] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and

replication in unstructured peer-to-peer networks. In Proceedings of the

16th international conference on Supercomputing, ICS ’02, pages 84–95,

New York, NY, USA, 2002. ACM. 36

[80] S. Marsh. Formalising trust as a computational concept, 1994. 44, 47

[81] Petar Maymounkov and David Mazires. Kademlia: A peer-to-peer infor-

mation system based on the xor metric. pages 53–65, 2002. 37

[82] G.E. Moore. Cramming more components onto integrated circuits. Pro-

ceedings of the IEEE, 86(1):82 –85, jan. 1998. 13

[83] Ahmed MEDDAHI Mourad AMAD and Djamil ASSANI. Peer to peer

networks management survey. 3IJCSI International Journal of Computer

Science, 2012. 33

[84] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model of

trust and reputation for e-businesses. In Proceedings of the 35th Annual

Hawaii International Conference on System Sciences (HICSS’02)-Volume

7 - Volume 7, HICSS ’02, pages 188–, Washington, DC, USA, 2002. IEEE

Computer Society. 43

[85] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model of

trust and reputation for e-businesses. In Proceedings of the 35th Annual

BIBLIOGRAPHY 166

Hawaii International Conference on System Sciences (HICSS’02)-Volume

7 - Volume 7, HICSS ’02, pages 188–, Washington, DC, USA, 2002. IEEE

Computer Society. 84

[86] Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive

Technologies. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001. 33

[87] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. Technical Report

1999-66, Stanford InfoLab, November 1999. Previous number = SIDL-

WP-1999-0120. 81

[88] Pawel Plaszczak and Richard Wellner. Grid Computing: The Savvy Man-

ager’s Guide. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2005. 31

[89] B. Pourebrahimi, K.L.M. Bertels, and S. Vassiliadis. A survey of peer-to-

peer networks. In Proc. 16th Annual Workshop on Circuits, Systems and

Signal Processing, Veldhoven, The Netherlands, November 2005. 36

[90] Josep M. Pujol, Ramon Sangüesa, and Jordi Delgado. Extracting reputa-

tion in multi agent systems by means of social network topology. In Pro-

ceedings of the first international joint conference on Autonomous agents

and multiagent systems: part 1, AAMAS ’02, pages 467–474, New York,

NY, USA, 2002. ACM. 47

[91] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A scalable content-addressable network. In Proceedings of the

BIBLIOGRAPHY 167

2001 conference on Applications, technologies, architectures, and protocols

for computer communications, SIGCOMM ’01, pages 161–172, New York,

NY, USA, 2001. ACM. 37

[92] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Rep-

utation systems. Commun. ACM, 43(12):45–48, December 2000. 42

[93] Jordi Sabater and Carles Sierra. Regret: A reputation model for gregarious

societies. In Proceedings of the fifth international conference on Autonomous

agents, AGENTS ’01, pages 194–195, New York, NY, USA, 2001. ACM. 43,

80

[94] Jordi Sabater and Carles Sierra. Social regret, a reputation model based

on social relations. SIGecom Exch., 3(1):44–56, December 2001. 47

[95] Jordi Sabater and Carles Sierra. Reputation and social network analysis in

multi-agent systems. In Proceedings of the first international joint confer-

ence on Autonomous agents and multiagent systems: part 1, AAMAS ’02,

pages 475–482, New York, NY, USA, 2002. ACM. 47

[96] Aameek Singh and Ling Liu. Trustme: Anonymous management of trust

relationships in decentralized p2p systems. In Proceedings of the 3rd In-

ternational Conference on Peer-to-Peer Computing, P2P ’03, pages 142–,

Washington, DC, USA, 2003. IEEE Computer Society. 42

[97] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of the 2001 conference on Applications, tech-

BIBLIOGRAPHY 168

nologies, architectures, and protocols for computer communications, SIG-

COMM ’01, pages 149–160, New York, NY, USA, 2001. ACM. 37

[98] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Prin-

ciples and Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 2006. 13

[99] Ian J. Taylor and Andrew Harrison. From P2P and Grids to Services on the

Web: Evolving Distributed Communities. Springer Publishing Company,

Incorporated, 2nd edition, 2009. 34

[100] W. T. Luke Teacy, Jigar Patel, Nicholas R. Jennings, and Michael Luck.

Travos: Trust and reputation in the context of inaccurate information

sources. Journal of Autonomous Agents and Multi-Agent Systems, 12:2006,

2006. 84

[101] Joseph D. Touch. Overlay networks. Computer Networks, 36(2/3):115–116,

2001. 37

[102] Dimitrios Tsoumakos and Nick Roussopoulos. Analysis and comparison of

p2p search methods. In Proceedings of the 1st international conference on

Scalable information systems, InfoScale ’06, New York, NY, USA, 2006.

ACM. 36

[103] Honghao Wang, Yingwu Zhu, and Yiming Hu. To unify structured and

unstructured p2p systems. In Proceedings of the 19th IEEE International

Parallel and Distributed Processing Symposium (IPDPS’05) - Papers - Vol-

ume 01, IPDPS ’05, pages 104.1–, Washington, DC, USA, 2005. IEEE

Computer Society. 37

BIBLIOGRAPHY 169

[104] Mark Witkowski, Alexander Artikis, and Jeremy Pitt. Experiments in

building experiential trust in a society of objective-trust based agents. In

Proceedings of the workshop on Deception, Fraud, and Trust in Agent So-

cieties held during the Autonomous Agents Conference: Trust in Cyber-

societies, Integrating the Human and Artificial Perspectives, pages 111–132,

London, UK, UK, 2001. Springer-Verlag. 80

[105] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust for

peer-to-peer electronic communities. IEEE Trans. on Knowl. and Data

Eng., 16(7):843–857, July 2004. 42

[106] Beverly Yang and Hector Garcia-Molina. Comparing hybrid peer-to-peer

systems. In Proceedings of the 27th International Conference on Very Large

Data Bases, VLDB ’01, pages 561–570, San Francisco, CA, USA, 2001.

Morgan Kaufmann Publishers Inc. 34

[107] Walt Teh-Ming Yao. Fidelis: a policy-driven trust management framework.

In Proceedings of the 1st international conference on Trust management,

iTrust’03, pages 301–317, Berlin, Heidelberg, 2003. Springer-Verlag. 44

[108] Bin Yu and Munindar P. Singh. A social mechanism of reputation man-

agement in electronic communities. In Proceedings of the 4th International

Workshop on Cooperative Information Agents IV, The Future of Informa-

tion Agents in Cyberspace, CIA ’00, pages 154–165, London, UK, UK, 2000.

Springer-Verlag. 47

[109] Lan Yu, Willy Susilo, and Rei Safavi-Naini. X2bt trusted reputation sys-

tem: a robust mechanism for p2p networks. In Proceedings of the 5th inter-

BIBLIOGRAPHY 170

national conference on Cryptology and Network Security, CANS’06, pages

364–380, Berlin, Heidelberg, 2006. Springer-Verlag. 42

[110] Ting Yu, Marianne Winslett, and Kent E. Seamons. Interoperable strategies

in automated trust negotiation. In Proceedings of the 8th ACM conference

on Computer and Communications Security, CCS ’01, pages 146–155, New

York, NY, USA, 2001. ACM. 44

[111] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An

infrastructure for fault-tolerant wide-area location and. Technical report,

Berkeley, CA, USA, 2001. 37

[112] Runfang Zhou and Kai Hwang. Powertrust: A robust and scalable rep-

utation system for trusted peer-to-peer computing. IEEE Trans. Parallel

Distrib. Syst., 18(4):460–473, April 2007. 47, 81, 150

	Publications
	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Research Problem and Motivation
	1.3 Research Hypothesis
	1.4 Research Objectives
	1.5 Research Contributions
	1.6 Organization of the thesis

	2 Background
	2.1 Introduction
	2.2 What is Volunteer Computing
	2.3 Scientific and Volunteer Computing
	2.4 Potential of Volunteer Computing
	2.5 BOINC Middleware
	2.5.1 Goals of BOINC
	2.5.2 BOINC Architecture
	2.5.2.1 BOINC Server Side
	2.5.2.2 BOINC Client Side

	2.5.3 Interaction between BOINC Client and BOINC Servers
	2.5.4 Projects that currently use BOINC
	2.5.4.1 SETI@home
	2.5.4.2 Climateprediction.net
	2.5.4.3 PrimeGrid
	2.5.4.4 Einstein@home

	2.6 Other Idle CPU Cycle Sharing Systems
	2.6.1 Condor
	2.6.2 XtremWeb
	2.6.3 Entropia

	2.7 Classification of Idle CPU Cycles Systems
	2.7.1 Resource type
	2.7.2 Scalability
	2.7.3 Security
	2.7.4 Computing Model
	2.7.5 Architecture
	2.7.6 Data model

	2.8 Summary

	3 Related Work
	3.1 Grid Computing
	3.1.1 Grid Types
	3.1.1.1 Computational grid
	3.1.1.2 Data Grid

	3.1.2 The Globus Toolkit

	3.2 P2P Systems
	3.2.1 Classification of P2P Systems
	3.2.1.1 Hybrid P2P Networks
	3.2.1.2 Partially centralized P2P Networks
	3.2.1.3 Pure P2P Networks

	3.2.2 P2P Network Structure
	3.2.2.1 Unstructured P2P Networks
	3.2.2.2 Structured P2P Networks

	3.3 P2P Storage Systems
	3.3.1 Cooperative File System
	3.3.2 OceanStore
	3.3.3 Malugo
	3.3.4 BitTorrent
	3.3.5 Attic File System

	3.4 Comparison of Different Peer-to-Peer File Systems
	3.5 Managing Trust in P2P Systems
	3.5.1 Trust Definition
	3.5.2 Reputation Definition
	3.5.3 Trust and Reputation Technologies in P2P Systems
	3.5.3.1 Policy-based trust systems
	3.5.3.2 Reputation Based Trust Systems
	3.5.3.3 Social network based trust systems

	3.6 Summary

	4 Evaluation of the Current State of the Art: BOINC and Attic
	4.1 Attic File System
	4.1.1 Attic File System Components
	4.1.2 Message Types
	4.1.3 Security
	4.1.4 Persistence
	4.1.5 Attic Downloading Mechanism

	4.2 Experiments Results and Discussion
	4.2.1 Testbed Environment
	4.2.2 Experiment Preparation
	4.2.3 The Impact of Chunk Size
	4.2.4 The Impact of Different Numbers of Clients and data centres
	4.2.5 Comparative Evaluation of BOINC with Attic

	4.3 Summary

	5 System Architecture
	5.1 Design Goals
	5.2 System Requirements
	5.2.1 Data Caching
	5.2.2 Trust
	5.2.3 Data Management
	5.2.3.1 Data Source
	5.2.3.2 Data Downloading

	5.2.4 Bandwidth Throttling

	5.3 System Architecture
	5.3.1 VASCODE Layer
	5.3.2 The VACSCODE Trust Framework
	5.3.2.1 Modelling Trust
	5.3.2.2 Beta Distribution
	5.3.2.3 Calculating Trust
	5.3.2.4 Combining Trust Metrics
	5.3.2.5 Resulting Trust Framework Architecture
	5.3.2.6 Data Centre Selection Algorithm
	5.3.2.7 Messaging between components in the framework

	5.4 Summary

	6 Implementation
	6.1 Implementation Overview
	6.2 VASCODE Components
	6.2.1 VASCODE-DL
	6.2.1.1 httpeer Server
	6.2.1.2 Reputation Manager
	6.2.1.3 Reputation Database

	6.2.2 VASCODE-DC
	6.2.2.1 Resource Manager
	6.2.2.2 httpeer Server
	6.2.2.3 Data Cache

	6.2.3 VASCODE-DW
	6.2.3.1 Trust Process
	6.2.3.2 Data Centres Selection
	6.2.3.3 Download Manager
	6.2.3.4 Feedback generator
	6.2.3.5 VASCODE-DW Fault Recovery

	6.3 VASCODEâ•ﬁ BOINC Integration
	6.3.1 Integrating VASCODE-DW into BOINC Client
	6.3.2 Modifying BOINC Core Client
	6.3.3 VASCODE Proxy

	6.4 Summary

	7 Evaluation Of Hypothesis
	7.1 Objectives
	7.2 VASCODE Trust framework Evaluation
	7.2.1 Evaluation Scenarios
	7.2.1.1 Data centresâ•Ž behaviours
	7.2.1.2 Clientâ•Žs preferences
	7.2.1.3 Scenarios

	7.2.2 Testbed Environment
	7.2.3 Experimental Hypotheses
	7.2.4 Experimental Error
	7.2.5 Effect of Data Centres Availability
	7.2.5.1 Experiment Setup
	7.2.5.2 Experiment Achievement

	7.2.6 Effect of Data Centre Honesty
	7.2.6.1 Experiment Set up
	7.2.6.2 Experiment Achievement

	7.2.7 Effect of Data Centres Speed
	7.2.7.1 Experiment Setup

	7.2.8 Experiment Achievement
	7.2.9 Effect of different behaviours of Data Centres
	7.2.9.1 Experiment Setup
	7.2.9.2 Experiment Achievement

	7.3 VASCODE Data Throttling Evaluation
	7.3.1 Data Throttling and SWF
	7.3.2 Data Throttling and HWF

	7.4 Summary

	8 Conclusion and Future Work
	8.1 Research Summary
	8.2 Conclusions
	8.3 Future Work

	A Average Download Time and Standard Error
	Bibliography
	Bibliography

