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Abstract

Thermal quantum field theories are expected to obey a relativistic

KMS condition, which replaces both the relativistic spectrum condition
of Wightman quantum field theory and the KMS condition characterising
equilibrium states in quantum statistical mechanics.

In a previous work it has been shown that the two-point function of
the thermal P(ϕ)2 model satisfies the relativistic KMS condition. Here
we extend this result to general n-point functions. In addition, we verify
that the thermal Wightman distributions are tempered.

1 Introduction

For many practical purposes it may be sufficient to study thermal field theory
in finite spatial volume, where the Hamiltonian Hbox has discrete spectrum and
is bounded from below. The thermal expectation value of an observable O at
temperature β−1 is then given by the Gibbs state

〈O〉β :=
Tr e−βHboxO

Tr e−βHbox
. (1)

However, if one wants to investigate the structural properties resulting from
Poincaré invariance of the underlying equations of motion, thermal equilibrium
states in infinite volume have to be considered. Fortunately, the appropriate
generalisation of (1) to infinite volume is well-known: in finite volume the
Gibbs states are characterised by their analyticity properties. The latter are
summarised in the KMS condition (see, e.g., [3]). Haag, Hugenholtz and Win-
nink have shown that this characterisation remains valid in the thermodynamic
limit [20]. In fact, in infinite volume one can derive the KMS condition from
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first principles, which characterise thermal equilibrium states phenomenologi-
cally. For example, one can derive the KMS condition from passivity [39] or
stability under small adiabatic perturbations of the dynamics [21][36].

Analyticity properties of the correlation functions were previously used by
Wightman to characterise the vacuum state of a relativistic quantum field the-
ory [47]. The intention was to guarantee stability of the vacuum, and indeed
the requested analyticity properties of the correlation functions ensure that the
energy is bounded from below. But soon it turned out that also most peculiar
structural properties (e.g., the Reeh-Schlieder property [41]) follow from the an-
alyticity properties of the correlation functions. These properties, first rejected
as mathematical artifacts resulting from over-idealisation, are nowadays con-
sidered to be characteristic for any proper quantum field theory. Experiments
testing these properties have yet to be devised, but similar phenomena related
to entanglement in quantum mechanics are intensely investigated.

Although vacuum states and thermal equilibrium states are both charac-
terised by analyticity properties of the correlation functions, there is a pro-
nounced difference between them: a state in thermal equilibrium cannot be
invariant under Lorentz boosts [35][38], even if the equations of motion are in-
variant under Poincaré transformations and the propagation speed of signals is
finite. Hitherto the correlation functions of a thermal state were required to be
analytic only with respect to the time-direction distinguished by the rest-frame
of the equilibrium state. Structural results, which are similar to the ones derived
from the spectrum condition of Wightman field theory, cannot be derived from
the traditional KMS condition alone.

The picture changed fundamentally, when Bros and Buchholz [4] (see also
[5][32][33]) recognised that the passivity properties of an equilibrium state should
be visible even to an observer, who is moving with respect to the rest frame dis-
tinguished by the KMS state. Carefully evaluating the consequences, Bros and
Buchholz suggested that the thermal correlation functions of a relativistic sys-
tem can be continued analytically into the tube domain Rd+i (V + ∩ (βe− V +)),
where β plays the role of the reciprocal temperature of the system, e is the unit
vector in the time direction distinguished by the rest-frame, d = 2, 3, . . . is the
dimension of space-time and V + := {(t, ~x) ∈ Rd | |~x| < t} denotes the (open)
forward light-cone. The consequences of the new relativistic KMS condition are
profound, aligning thermal field theory and vacuum field theory w.r.t. basic,
structural aspects [24][25].

The relativistic KMS condition has been established (see [4]) for a large class
of KMS states constructed by Buchholz and Junglas [8]. Moreover, C. Gérard
and the first author have shown that the relativistic KMS condition holds for
the two-point function of the P(ϕ)2 model [14]. The present work extends the
latter result to general n-point functions.

Content In Section 2 we recall the Euclidean field theory on the cylinder.
Using Minlos’ theorem, we define Gaussian measures on a space of distribu-
tions, supported on a cylinder. Following Glimm and Jaffe, we renormalise the
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interaction (Theorem 2.1) by normal ordering the random variables. This al-
lows us to define the Euclidean P(φ)2 model on the cylinder with a spatial
cut-off l ∈ R+ (see also [12]). The corresponding probability measure dµl is
absolutely continuous with respect to the Gaussian measure. Nelson symmetry
(see Theorem 2.3 ii.)) can be used to remove the spatial cut-off: the Schwinger
functions of the thermal P(ϕ)2-model on the two-dimensional Minkowski space
at temperature β−1 exist and are equal to the Schwinger functions of the vac-
uum P(ϕ)2-model on the Einstein universe of spatial circumference β (up to
interchanging the interpretation of the Euclidean variables (α, x) ∈ Sβ × R).

The Osterwalder-Schrader reconstructions, presented in Subsection 2.3, pro-
vide

i.) a thermal field theory on Minkowski space R1+1, consisting of

— a Hilbert space Hβ , together with a distinguished vector Ωβ ∈ Hβ ;

— a von Neumann algebra Rβ ⊂ B(Hβ), together with an abelian sub-
algebra, generated by the bounded functions of the time-zero fields;

— a one-parameter group of time-translation automorphisms {τt,0 | t ∈
R} induced by unitary operators eitL, with spectrum of L equal to R;

ii.) a vacuum theory on the Einstein universe (a cylinder, with the position
variable taking values on the circle Sβ and the time variable real valued),
consisting of

— a Hilbert space HC , together with a distinguished vector ΩC ∈ HC ;

— a von Neumann algebra RC ⊂ B(HC), together with an abelian sub-
algebra, generated by the bounded functions of the time-zero fields;

— a one-parameter group of time-translation automorphisms {τ ′0,s | s ∈
R} induced by unitary operators eisHC , with HC ≥ 0.

In Subsection 2.4 Wightman field theory on the circle is discussed in some
more detail. We identify HC with the Fock space Γ

(
H− 1

2 (Sβ)
)
over the Sobolev

space H− 1
2 (Sβ) on the circle Sβ , and recall the Glimm-Jaffe φ-bounds. Accord-

ing to Theorem 2.6, due to Heifets and Osipov, the joint spectrum of PC and
HC is contained in the forward light cone Ṽ + := {(p,E) | |p| < E}. Conse-
quently (Theorem 2.8) the Fourier transform of the Wightman n-point function
(expressed in relative variables) has support in (V +)n−1 and the Wightman n-

point-distributionW
(n−1)
C itself is the boundary value of a polynomially bounded

function W(n−1)
C , which is analytic in the forward tube (Sβ × R − iV +)n−1.

Lemma 2.9 characterises a set of space-time points in Sβ × R, which are
mutually space-like to each other. Locality implies that the Wightman n-point
functions are real valued, if evaluated at these points. Thus, using Schwarz’s
reflection principle, we can extend the Wightman n-point functions on the circle
to functions, which (expressed in relative variables) are holomorphic in

D(n−1) := (λ1Vβ × . . .× λn−1Vβ) + i (V + ∪ V −)× . . .× (V + ∪ V −) , (2)
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where Vβ :=
{
(α, s) | |s| < α < β − |s|

}
, λi > 0 and

∑n−1
i=1 λi = 1. The

Edge-of-the-Wedge theorem [47, Theorem 2-16][6] implies that the tempered

distributions W
(n−1)
C are the boundary values of functions defined and holomor-

phic in
C(n−1) := N ∪ D(n−1), (3)

where N is a complex neighbourhood of λ1Vβ × . . .× λn−1Vβ (Theorem 2.10).
In Section 3 we return to the thermal P(ϕ)2 model on the two dimensional

Minkowski space. Invoking (2), Nelson symmetry implies that analytic contin-

uations of the thermal Wightman distributions W
(n−1)
β can a priori be defined

(as analytic functions) in the domain

(Q− ∪Q+)n−1 − i (λ1Vβ × . . .× λn−1Vβ) ,

where the right and left space-like wedges are Q± =
{
(t, x) ∈ R2 | ±x > |t|

}
,

and, as before, λi > 0 and
∑n−1

i=1 λi = 1.
The existence of products of thermal sharp-time fields is shown in Lemma 3.1.

Taking advantage of their Euclidean heritage, their domain properties are sum-
marised in Proposition 3.2. The spectral theorem is used to extend the functions

W(n−1)
β to functions holomorphic in the product of domains

(λ1Tβ)× · · · × (λn−1Tβ), Tβ := R
2 − iVβ ,

n−1∑

j=1

λj = 1,

and λj > 0, j = 1, . . . , n − 1 (Theorem 3.4). The final subsection deals with
the boundary values of these functions. A generalisation of Ruelle’s Hölder
inequality for Gibbs states, suggested by J. Fröhlich in [10], is presented in
Theorem 3.5. A fractional φ-bound, established in Proposition 3.6, provides a
key ingredient in the proof of the final result (Theorem 3.9), which establishes

that the thermal Wightman n-point-distributions W
(n−1)
β of the P(ϕ)2 model

on the real line are tempered distributions which satisfy the relativistic KMS
condition.

2 Euclidean fields on the cylinder

In 1974 Høegh-Krohn [23] discovered that the Euclidean field theory on the
cylinder allows to reconstruct two distinct quantum field theories. In this section
we recall the main steps of the two reconstructions [12, 13], leading to a vacuum
theory on the Einstein universe (a cylinder, with the position variable taking
values on a circle and the time variable real valued) and a thermal theory on
1 + 1-dimensional Minkowski space.

2.1 Probability measures on the cylinder

Consider a cylinder Sβ × R, with Sβ the circle of circumference β. The coordi-
nates (α, x) ∈ Sβ × R of a point in the cylinder will refer to either one of the
charts [−β/2, β/2)× R or [0, β)× R.
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Let S (R) denote the set of Schwartz functions on the real line. For con-
sistency we denote the set of C∞-functions on the circle Sβ by S (Sβ). The
Fréchet space S (Sβ × R) is the space of smooth functions f on the cylinder,
which are β-periodic in α and fulfil

∣∣∣(1 + |x|)k ∂pα∂kxf(α, x)
∣∣∣ ≤ Cp,k , p ∈ N, k ∈ N.

S ′(R), S ′(Sβ) and S ′(Sβ×R) denote the dual spaces of S (R), S (Sβ) and
S (Sβ × R). The real-linear subspaces of real valued distributions are indicated
by S ′

R
(R), S ′

R
(Sβ) and Q := S ′

R
(Sβ × R). The Borel σ-algebra Σ on Q is

the minimal σ-algebra containing all open sets in the σ(S ′,S )-topology. The
evaluation map φ(f), f ∈ SR(Sβ × R),

φ(f) : Q→ R, q 7→ 〈q, f〉,

is defined in terms of the duality bracket 〈 . , . 〉. In the present context φ is
called the Euclidean quantum field.

If dµ is a probability measure on the space (Q,Σ), then its Fourier transform

E(f) =

∫

Q

eiφ(f)dµ, f ∈ SR(Sβ × R),

satisfies

i.) E(0) = 1;

ii.) SR(Sβ × R) ∋ f 7→ E(f) ∈ C is continuous;

iii.) for all fi, fj ∈ SR(Sβ × R) and zi, zj ∈ C, i, j = 1, . . . , n,

n∑

i,j=1

ziz̄jE(fi − fj) ≥ 0.

On the converse, Minlos’ theorem [7][15][34][46] states that any function E on
SR(Sβ ×R) satisfying the properties i.)–iii.) is the Fourier transform of a prob-
ability measure dµ on Q.

Generating functionals of the form

E0(f) = e−C(f,f)/2, f ∈ SR(Sβ × R), (4)

with C( . , . ) a weakly continuous positive semi-definite quadratic form, clearly
satisfy the conditions i.)–iii.) of Minlos’ theorem and thus give rise to proba-
bility measures on (Q,Σ). These measures are called Gaussian measures. The
Gaussian measure on Q, with covariance

C(f1, f2) :=
(
f1, (D

2
α +D2

x +m2)−1f2
)
, f1, f2 ∈ S (Sβ × R), (5)

is denoted by dφC . The scalar product ( . , . ) in (5) refers to L2(Sβ × R) and
Dα = −i∂α, Dx = −i∂x. The Euclidean quantum field φ on the cylinder is
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called free, if φ(f) is viewed as a measurable function on the probability space
(Q,Σ, dφC).

In this work we are interested in non-Gaussian measures (see Theorem 2.3
below). They formally result from adding a polynomial of the form P(ϕ), where
P(λ), λ ∈ R, is a polynomial which is bounded from below, to the Hamiltonian
of the free massive boson field.

In two dimensions, the singularities, which arise from taking powers of the
Euclidean field φ at a point (α, x) ∈ Sβ × R, can be removed by first normal
ordering : . :c (see [15, 46]) the monomials φ(f)n, n ∈ N,

:φ(f)n :c :=

[n/2]∑

m=0

n!

m!(n− 2m)!
φ(f)n−2m

(
−1

2
c(f, f)

)m
(6)

with respect to a covariance c, and then taking appropriate limits. [ . ] denotes
taking the integer part. We will normal order with respect to different covari-
ances c, some of them being limiting cases of the covariance C defined in (5).

Normal-ordering of point-like fields is ill-defined (i.e., one cannot replace the
test function f ∈ SR(Sβ × R) in (6) by a two dimensional Dirac δ-function),
but integrals over normal-ordered point-like fields can be defined rigorously: set,
for k ∈ N and κ ∈ R+,

δk(α) := β−1
∑

|n|≤k

eiνnα and δκ(x) := κχ(κx),

where νn = 2πn/β, n ∈ N, and χ is an arbitrary, absolutely integrable function
in C∞

0 (R) with
∫
χ(x) dx = 1. With these notations we have the following result

due to Glimm and Jaffe:

Theorem 2.1 (Ultraviolet renormalisation [13][15]). For f ∈ L1(Sβ × R) ∩
L2(Sβ × R), the following limit exists in

⋂
1≤p<∞

Lp(Q,Σ, dφC):

lim
k,κ→∞

∫

Sβ×R

f(α, x) :φ
(
δk(.− α)⊗ δκ(.− x)

)n
:C dα dx. (7)

We denote it by
∫
Sβ×R

f(α, x) :φ(α, x)n :C dαdx.

Remark This key theorem, which follows from exactly the same arguments
as in the vacuum case analyzed by Glimm and Jaffe [15], establishes a crucial
step forward in the construction of the P(ϕ)2 model in finite volume, as it takes
care (see Eq. (8) below) of the ultraviolet renormalisation.

Let P(λ) =
∑

j cjλ
j be a real valued polynomial, which is bounded from

below. Replacing the function f in (7) by the characteristic function of the set
Sβ × [−l, l], l ∈ R+, and applying [46, Lemma V.5], we deduce that

e−
∫ β/2

−β/2

∫ l
−l

:P(φ(α,x)):C dαdx ∈ L1(Q,Σ, dφC) if 0 < l <∞ . (8)
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The Euclidean P(φ)2 model on the cylinder with a spatial cut-off l ∈ R+ is
specified by setting

dµl :=
1

Zl
e
−

∫ β/2

−β/2

∫

l
−l

:P(φ(α,x)):C dαdx
dφC . (9)

The partition function Zl is chosen such that
∫
Q dµl = 1. If l < ∞, then the

measure dµl is absolutely continuous with respect to the Gaussian measure dφC ,
with Radon-Nikodym derivative dµl/dφC given by (8). However, the limit of
the functions in (8) fails to be in L1(Q,Σ, dφC) as l → ∞, and therefore the
formal limiting measure can not be absolutely continuous with respect to the
Gaussian measure. In fact, in order to show that a countably additive Borel
measure exists in the limit l → ∞, it is sufficient to show (see Theorem 2.3
below) that

lim
l→+∞

∫

Q

eiφ(f)dµl =: EP(f), f ∈ S (Sβ × R), (10)

defines a generating functional on S ′
R
(Sβ × R) satisfying the properties i.)–iii.)

of Minlos’ theorem.

2.2 Sharp-time fields, Existence of the Euclidean measure

in the thermodynamic limit, and Nelson symmetry

Cluster expansions (see e.g. [15]) certainly allow one to control the limit in
(10). But for the thermal P(ϕ)2 model, in which we are interested, there is
another option, which was first explored in this context by Høegh-Krohn [23]:
Nelson symmetry. It results from replacing the product measure dαdx in the
exponent in (9) by iterated integrals with respect to the two measures dα and
dx, in different orders. The delicate point, which will now be addressed in some
more detail, is that one of the limits in (7) can be interchanged with one of the
integrations.

In [13] it has been shown that

i.) for h1, h2 ∈ SR(R) and 0 ≤ α1, α2 ≤ β,

lim
k,k′→∞

C
(
δk(.− α1)⊗ h1, δk′(.− α2)⊗ h2

)

=
(
h1,

e−|α1−α2|ǫ + e−(β−|α1−α2|)ǫ

2ǫ(1− e−βǫ)
h2

)
L2(R,dx)

, (11)

with ǫ :=
(
D2

x +m2
) 1

2 ;

ii.) for g1, g2 ∈ SR(Sβ) and x1, x2 ∈ R,

lim
κ,κ′→∞

C
(
g1 ⊗ δκ(.− x1), g2 ⊗ δκ′(.− x2)

)
=
(
g1,

e−|x1−x2|ν

2ν
g2

)
L2(Sβ ,dα)

,

(12)

with ν :=
(
D2

α +m2
) 1

2 .
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Thus, for h ∈ SR(R), g ∈ SR(Sβ) and α ∈ Sβ , x ∈ R fixed, the sequences of
functions

{
φ
(
δk(.− α)⊗ h

)}
k∈N

and
{
φ
(
g ⊗ δκ(.− x)

)}
κ∈N

are Cauchy sequences in
⋂

1≤p<∞ Lp(Q,Σ, dφC). This can be derived from the
definition of the generating Gaussian functional, as (4) implies

∫

Q

φ(f)pdφC =

{
0, p odd ,

(p− 1)!! C(f, f)p/2, p even ,
(13)

with n!! = n(n− 2)(n− 4) · · · 1. We can therefore define sharp-time fields

φ(α, h) := lim
k→∞

φ
(
δk(.− α)⊗ h

)
, φ(g, x) := lim

κ→∞
φ
(
g ⊗ δκ(.− x)

)
. (14)

We note that both φ(α, h) and φ(g, x) belong to
⋂

1≤p<∞ Lp(Q,Σ, dφC).

Lemma 2.2 (Integrals over sharp-time fields [13]).

i.) For h ∈ L1(R) ∩ L2(R) and α ∈ [0, 2π) the limit

lim
κ→∞

∫

R

h(x) :φ(α, δκ(.− x))n :C0
dx (15)

exists in
⋂

1≤p<∞ Lp(Q,Σ, dφC). Denote it by
∫
R
h(x) : φ(α, x)n :C0

dx.

Normal ordering in (15) is with respect to the temperature β−1 covariance
on R: for h1, h2 ∈ S (R)

C0(h1, h2) :=
(
h1,

(1 + e−βǫ)

2ǫ(1− e−βǫ)
h2

)
L2(R,dx)

. (16)

ii.) For g ∈ L1(Sβ) ∩ L2(Sβ) and x ∈ R the limit

lim
k→∞

∫

Sβ

g(α) :φ(δk(.− α), x)n :Cβ
dα (17)

exists in
⋂

1≤p<∞ Lp(Q,Σ, dφC). Denote it by
∫
Sβ
g(α) :φ(α, x)n:Cβ

dα.

Normal ordering in (17) is w.r.t. the covariance

Cβ(g1, g2) :=
(
g1,

1

2ν
g2

)
L2(Sβ ,dα)

, g1, g2 ∈ S (Sβ). (18)

Returning to the integral in (7), we let f be the characteristic function on
Sβ × [−l, l]. This enables us to rewrite (7) as limk,κ→∞ F (k, κ), where

F (k, κ) =

[n/2]∑

m=0

n!
(
− 1

2C(δ
(2)
k,κ, δ

(2)
k,κ)
)m

m!(n− 2m)!

∫

Sβ×[−l,l]

dα dx φ
(
δk(· − α)⊗ δκ(· − x)

)n−2m
,

8



and δ
(2)
k,κ(α, x) := δk(α)⊗ δκ(x). Interchanging integrals and limits is permitted

by the existence of the limits in (7), (15) and (17). Performing the two limits
in different orders results in

lim
k,κ→∞

F (k, κ) = lim
κ→∞

[n/2]∑

m=0

n!
(
− 1

2C0(δκ, δκ)
)m

m!(n− 2m)!

∫

Sβ

dα

∫

[−l,l]

dx φ
(
α, δκ(·−x)

)n−2m

and

lim
k,κ→∞

F (k, κ) = lim
k→∞

[n/2]∑

m=0

n!
(
− 1

2Cβ(δk, δk)
)m

m!(n− 2m)!

∫

[−l,l]

dx

∫

Sβ

dα φ
(
δk(·−α), x

)n−2m
.

Note that in the latter expression normal ordering is done w.r.t. the covari-
ance Cβ , whilst in the former normal ordering is done with respect to the tem-
perature β−1 covariance C0 on R.

Now let U(α, x), with α ∈ [0, 2π) and x ∈ R, denote the unitary operators
implementing the rotations and translations on the cylinder in L2(Q,Σ, dµ) (for
further details see next section). It follows that the L1-function (8) equals

e
−

∫ l
−l

U(0,x)(
∫ β/2

−β/2
:P(φ(α,0)):Cβ

dα)dx
= e

−
∫ β/2

−β/2
U(α,0)(

∫ l
−l

:P(φ(0,x)):C0
dx)dα

.
(19)

A proof of this identity can be found in [13, Lemma 5.3]. The analog of (19)
in the case β = ∞ is known as Nelson symmetry (see e.g. [46]). Interpreting x
in (19) as the imaginary time one notices that dµ = liml→∞ dµl is the Euclidean
measure of the vacuum P(ϕ)2 model on the circle. This argument can be made
rigorous (see [13, Theorem 7.2], [23]) by exploiting various properties of a time
dependent heat equation (see [13, Appendix A]).

Theorem 2.3. Consider sharp-time fields as defined in (14), and integrals
over normal ordered products as defined in (15) and (17).

i.) (Thermodynamic limit of Euclidean measures). For f ∈ C∞
0R(Sβ × R)

EP(f) = lim
l→+∞

1

Zl

∫

Q

eiφ(f) e
−

∫

l
−l

U(0,x)
(

∫ β/2

−β/2
:P (φ(α,0)):Cβ

dα
)

dx
dφC .

(20)

ii.) (Nelson symmetry). For f ∈ C∞
0R(Sβ × R)

EP(f) = lim
l→+∞

1

Zl

∫

Q

eiφ(f) e
−

∫ β/2

−β/2
U(α,0)(

∫

l
−l

:P (φ(0,x)):C0
dx)dαdφC .

(21)

The map f 7→ EP(f) is continuous in some Schwartz semi-norm and thus
extends to S (Sβ × R) [13, Theorem 7.2 ii.)]. It satisfies the conditions of
Minlos’ theorem and thus defines a probability measure dµ.
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Remark This result solves the infrared problem for the thermal field theory
under consideration. As mentioned before, we could have used cluster expan-
sions to resolve this problem. However, Nelson symmetry will play a key role in
the sequel, enabling us to transfer results between the two models it connects.

Before we continue, we recall two results, which refer to the Lp-spaces for
the interacting measure dµ:

Lemma 2.4. [13, Propositions 7.3 and 7.5]

i.) (Sharp-time fields are in Lp(Q,Σ, dµ)). Let h ∈ SR(R) and α ∈ Sβ. Then
the sequence φ

(
δk(.−α)⊗h

)
is Cauchy in

⋂
1≤p<∞ Lp(Q,Σ, dµ) and hence

φ(α, h) := lim
k→∞

φ
(
δk( . − α)⊗ h

)
∈

⋂

1≤p<∞

Lp(Q,Σ, dµ).

Moreover, the map

Sβ → ⋂
1≤p<∞ Lp(Q,Σ, dµ)

α 7→ φ(α, h)

is continuous for h ∈ SR(R) fixed.

ii.) (Convergence of sharp-time Schwinger functions, Part I). Let hi ∈ C∞
0 R

(R)
and αi ∈ Sβ, 1 ≤ i ≤ n. Then

lim
l→∞

∫

Q

( n∏

j=1

eiφ(αj ,hj)
)
dµl =

∫

Q

( n∏

j=1

eiφ(αj ,hj)
)
dµ.

In Section 3.1 we will show that products of Euclidean sharp-time fields are
as well elements of

⋂
1≤p<∞ Lp(Q,Σ, dµ). This will allow us to extend results

of Fröhlich [10], Fröhlich and Birke [2], and Klein and Landau [30] concerning
the reconstruction of thermal Green’s functions.

2.3 The Osterwalder-Schrader Reconstruction

The cylinder Sβ × R is invariant under rotations and translations

t(α′,x′) : (α, x) 7→ (α+ α′, x+ x′), α′ ∈ [0, 2π), x′ ∈ R,

as well as the reflections r : (α, x) 7→ (−α, x) and r
′ : (α, x) 7→ (α,−x). The

pull-backs

(t
(α′,x′)
∗ f)(α, x) := f

(
t
−1
(α′,x′)(α, x)

)
= f(α− α′, x− x′)

acting on the testfunctions f ∈ S (Sβ × R), induce actions on the tempered
distributions q ∈ Q:

(t(α′,x′)q)(f) := 〈q, t(−α′,−x′)
∗ f〉, (rq)(f) := 〈q, r∗f〉, and (r′q)(f) := 〈q, r′∗f〉.

Lifting these maps to measurable functions of distribution one finds that
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i.) the map U(α, x)F (q) := F (t−1
(α,x)q), q ∈ Q, defines a two-parameter group

of measure-preserving ∗-automorphisms of L∞(Q,Σ, dµ), strongly contin-
uous in measure, and strongly continuous two-parameter groups of isome-
tries of Lp(Q,Σ, dµ) for 1 ≤ p <∞;

ii.) the maps RF (q) := F (rq) and R′F (q) := F (r′q) extend to two measure
preserving ∗-automorphisms of L∞(Q,Σ, dµ) and to isometries of Lp(Q,Σ, dµ)
for 1 ≤ p <∞.

Since dµ is translation and rotation invariant, U(γ, y) is unitary on the Hilbert
space L2(Q,Σ, dµ) for γ ∈ [0, β) and y ∈ R.

Notation. For 0 ≤ γ ≤ β (resp. 0 ≤ y ≤ ∞) we denote by Σ[0,γ] (resp. Σ
[0,y]) the

sub σ-algebra of the Borel σ-algebra Σ generated by the functions eiφ(f) with
f ∈ SR(Sβ × R) and supp f ⊂ [0, γ] × R (resp. supp f ⊂ Sβ × [0, y]).

Next define two scalar products:

∀F,G ∈ L2(Q,Σ[0,β/2], dµ) : (F,G) :=

∫

Q

R(F )G dµ,

and

∀F,G ∈ L2(Q,Σ[0,∞), dµ) : (F,G)′ :=

∫

Q

R′(F )G dµ.

The measure dµ is Osterwalder-Schrader positive with respect to both reflec-
tions R and R′:

∀F ∈ L2(Q,Σ[0,β/2], dµ) : (F, F ) ≥ 0

and
∀G ∈ L2(Q,Σ[0,∞), dµ) : (G,G)′ ≥ 0.

Let N ⊂ L2(Q,Σ[0,β/2], dµ) be the kernel of the positive quadratic form ( . , . )

and N ′ ⊂ L2(Q,Σ[0,∞), dµ) the kernel of the positive quadratic form ( . , . )′.
Set

Hβ := L2(Q,Σ[0,β/2], dµ)/N and HC := L2(Q,Σ[0,∞), dµ)/N ′.

The completions of the pre-Hilbert spaces are taken w.r.t. the norms ( . , . )
1
2

and ( . , . )′
1
2 , respectively. The canonical projection from L2(Q,Σ[0,β/2], dµ)

to Hβ and from L2(Q,Σ[0,∞), dµ) to HC are denoted by V and V ′, respectively.
The distinguished vectors

Ωβ := V(1), ΩC := V ′(1),

arise as the image of 1, the constant function equal to 1 on Q.
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The abelian algebra

i.) L∞(Q,Σ{0}, dµ) preserves L
2(Q,Σ[0,β/2], dµ) and N . Thus a representa-

tion πβ of L∞(Q,Σ{0}, dµ) on the Hilbert spaces Hβ is given by

πβ(A)V(F ) := V(AF ), F ∈ L2(Q,Σ[0,β/2], dµ), A ∈ L∞(Q,Σ{0}, dµ);

ii.) L∞(Q,Σ{0}, dµ) preserves L2(Q,Σ[0,∞), dµ) and N ′. Thus one obtains a
representation πC of L∞(Q,Σ{0}, dµ) on HC , specified by

πC(B)V ′(G) := V ′(BG), G ∈ L2(Q,Σ[0,∞), dµ), B ∈ L∞(Q,Σ{0}, dµ).

The corresponding von Neumann algebras can be interpreted as the algebras
generated by bounded functions of the thermal time-zero fields on the real line
and the vacuum time-zero fields on the circle, respectively.

The reconstruction of the dynamics requires a more pronounced distinction
of the two cases under consideration, which in the thermal case relies on a
remarkable result on local symmetric semi-groups by Fröhlich [11] and, inde-
pendently, Klein and Landau [31]:

i.) The semigroup {U(α, 0)}α>0 does not preserve L2(Q,Σ[0,β/2], dµ). But
setting, for 0 ≤ γ ≤ β/2,

Dγ := VMγ , with Mγ := L2(Q,Σ[0,β/2−γ], dµ),

one can define, for 0 ≤ α ≤ γ, a linear operator P (α) : Dγ → Hβ with
domain Dγ by setting

P (α)Vψ := VU(α, 0)ψ, ψ ∈ Mγ .

The triple (P (α),Dα, β/2) forms a local symmetric semigroup (see [11][31]):

a.) for each α, 0 ≤ α ≤ β/2, Dα is a linear subset of Hβ such that
Dα ⊃ Dγ if 0 ≤ α ≤ γ ≤ β/2, and

D :=
⋃

0<α≤β/2

Dα

is dense in Hβ ;

b.) for each α, 0 ≤ α ≤ β/2, P (α) is a linear operator on Hβ with
domain Dα;

c.) P (0) = 1, P (α)Dγ ⊂ Dγ−α for 0 ≤ α ≤ γ ≤ β/2, and

P (α)P (γ) = P (α+ γ)

on Dα+γ for α, γ, α+ γ ∈ [0, β/2];

12



d.) P (α) is symmetric, i.e.,

(Ψ, P (α)Ψ′) = (P (α)Ψ′,Ψ), 0 ≤ α ≤ β/2,

for all Ψ,Ψ′ ∈ Dα and 0 ≤ α ≤ β/2;

e.) P (α) is weakly continuous, i.e., if Ψ ∈ Dγ , 0 ≤ γ ≤ β/2, then

α 7→ (Ψ, P (α)Ψ)

is a continuous function of α for 0 ≤ α ≤ γ.

By the results cited [11][31] there exists a selfadjoint operator L on Hβ

such that for 0 ≤ α ≤ γ

V(U(α, 0)F ) = e−αLV(F ), F ∈ L2(Q,Σ[0,β/2−γ], dµ).

The selfadjoint operator L is said to be associated to the local symmetric
semigroup (P (α),Dα, β/2). Since 1 ∈ Mγ and L∞(Q,Σ{0}, dµ)Mγ ⊂
Mγ for all 0 ≤ γ ≤ β/2, it follows that eiφβ(h)Ωβ ∈ D(e−

β
2
L), where

eiφβ(h) .= πβ(e
iφ(0,h)) with h ∈ C∞

0R(R).

Lemma 2.5. Dγ is dense in Hβ for 0 < γ < β/2.

Proof. Assume that
(Ψ,Φ) = 0 ∀Φ ∈ Dγ . (22)

Now consider, for h1, h2 ∈ C∞
0R(R) fixed, the analytic function

z 7→ (Ψ, eiφβ(h1)e−zLeiφβ(h2)Ωβ), {z ∈ C | 0 < ℜz < β/2}. (23)

Clearly, eiφβ(h1)e−ℜzLeiφβ(h2)Ωβ ∈ Dγ for 0 < ℜz < γ and consequently,
because of (22), the analytic function (23) vanishes on an open line seg-
ment in the interior of its domain, and is therefore identically zero. It
follows that

(Ψ, eiφβ(h1)e−
β
2
Leiφβ(h2)Ωβ) = 0 ∀h1, h2 ∈ C∞

0R(R). (24)

The set {eiφβ(h1)e−
β
2
Leiφβ(h2)Ωβ | h1, h2 ∈ C∞

0R(R)} is dense in Hβ [30,
Theorem 11.2], and therefore (24) implies Ψ = 0. In other words, Dγ is
dense in Hβ .

ii.) The semi-group U(0, x), x ≥ 0, preserves the half-space L2(Q,Σ[0,∞), dµ)
as U(0, x) maps L2(Q,Σ[0,∞), dµ) into itself. Following [29] one can there-
fore define a self-adjoint positive operator HC on HC such that for G ∈
L2(Q,Σ[0,∞), dµ)

V ′(U(0, x)G) = e−xHCV ′(G), x > 0. (25)

The operators e−xHC , x > 0, form a strongly continuous semigroup of
contractions on HC .
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The next step in the reconstruction program is to define non-abelian von
Neumann algebrasRβ ⊂ B(Hβ) and RC ⊂ B(HC), generated by the operators

τt,0(πβ(A)) := eitLπβ(A)e
−itL, t ∈ R, A ∈ L∞(Q,Σ{0}, dµ),

and

τ ′0,σ(πC(A)) := eiσHCπC(A)e
−iσHC , σ ∈ R, A ∈ L∞(Q,Σ{0}, dµ),

respectively. Clearly τt,0 and τ ′0,σ extend to *-automorphisms of Rβ and RC ,
respectively.

The algebra Rβ ⊂ B(Hβ) has a cyclic and separating vector, namely Ωβ .
The time-translation invariant state ωβ (a normalised positive linear functional)
on Rβ defined by

ωβ(a) := (Ωβ , aΩβ), a ∈ Rβ ,

is invariant under the spatial translations induced by t(0,y), y ∈ R. Furthermore,
it satisfies the KMS condition [30]: the functions

Fh1,...,hn(t1 − t2, . . . , tn−1 − tn) :=
(
Ωβ , τt1(e

iφβ(h1)) . . . τtn(e
iφβ(hn))Ωβ

)

extend to analytic functions in the domain

{
(z1, . . . , zn−1) ∈ Cn−1 | ℑzk < 0, −β <∑n−1

k=1 ℑzk
}

and satisfy the KMS boundary condition: for each 1 ≤ k < n

Fh1,...,hn(s1, . . . , sk−2, sk−1 − iβ, sk, . . . , sn−1)

= Fhk,...,hn,h1,...,hk−1
(sk, . . . , sn−1, sn, s1, . . . , sk−2) (26)

with sn = tn − t1 and sk = tk − tk+1, k = 1, . . . , n− 1, and h1, . . . , hn ∈ C∞
0R.

The algebra RC ⊂ B(HC) has a cyclic vector, namely ΩC . The state ωC

on RC ,
ωC(a) := (ΩC , aΩC), a ∈ RC ,

is invariant under the rotations induced by t(γ,0), γ ∈ [0, 2π), and satisfies the
spectrum condition (see Theorem 2.6 below), which characterises vacuum states.
Since ωC is the unique vacuum state (see below), the commutant R′

C of RC

equals C · 1 and therefore RC = B(HC).

2.4 The Wightman functions on the Einstein universe

The Hilbert space HC reconstructed in the previous section is unitarily equiv-
alent to the Fock space Γ

(
H− 1

2 (Sβ)
)
over the Sobolev space H− 1

2 (Sβ) of order
− 1

2 on Sβ , equipped with the norm

‖g‖2 =
(
g, (2ν)−1g

)
L2(Sβ ,dα)

, ν =
(
D2

α +m2
) 1

2 .
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To ease the notation we simply identify corresponding operators and vectors.
For g ∈ SR(Sβ) the Segal field operator on HC , given by

φC(g) := −i d
dλ

V ′(eiφ(0,λg))
∣∣∣
λ=0

,

is thereby identified with the Fock space field operator

φC(g) =
1√
2

(
a∗(ν−1/2g) + a(ν−1/2g)

)−
, (27)

built up from bosonic creation and annihilation operators a∗(f) and a(f) (see,
e.g., [40]). Note that the map f 7→ a∗(f) is linear, while the map f 7→ a(f) is
anti-linear.

The (angular) momentum operator PC := dΓ(Dα) on the circle Sβ has
discrete spectrum. Define

V :=

∫

Sβ

:P(φC(α)):Cβ
dα .

The operator sum
dΓ(ν) + V − EC

is essentially selfadjoint on its natural domain D(dΓ(ν)) ∩ D(V ) and bounded
from below. Its closure equals the Hamiltonian HC of the P(φC)2 model on
the circle Sβ , which has been (re-)constructed in the previous section (see (25)).
The additive constant EC is chosen such that zero is the lowest eigenvalue, i.e.,
inf Spec (HC) = 0. This eigenvalue is non-degenerated1, and the corresponding
eigenvector ΩC can be chosen such that (ΩC ,Ω

◦) > 0. Here Ω◦ denotes the

Fock vacuum vector in Γ
(
H− 1

2 (Sβ)
)
.

Moreover, the Glimm-Jaffe φ-bounds (see e.g. [9][18][19], the exact variant
we use can be found in [13, Proposition 5.4]) hold: for c >> 1 and some C ∈ R+,

±φC(g) ≤ C ‖g‖
H−

1
2 (Sβ)

(HC + c)1/2 ∀g ∈ H− 1
2 (Sβ) , (28)

and
±φC(g) ≤ C ‖g‖H−1(Sβ)(HC + c) ∀g ∈ H−1(Sβ) . (29)

The following remarkable result is due to Heifets & Osipov [22]; see also [27].

Theorem 2.6 (Spectrum Condition [22]). The joint spectrum of PC and HC is

purely discrete and contained in the forward light cone Ṽ + := {(p,E) | |p| < E}.
1Glimm and Jaffe have shown in [17] that the Hamiltonian H with a spatial cutoff, rather

than on a spatial circle, i.e., with periodic boundary conditions, satisfies the properties stated
in this paragraph. Similar arguments apply to HC , see the proof of Proposition 5.4 in [13].
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The unitary operators UC(α, σ) ∈ B(HC) given by

UC(α, σ) := ei(σHC−αPC), α ∈ [0, 2π), σ ∈ R, (30)

implement the two parameter group of automorphisms τ ′α,σ ofRC on the Hilbert
space HC . Let gi ∈ S (Sβ) and set

φC(gi, σi) := eiσiHCφC(gi)e
−iσiHC , i = 1, . . . , n.

By Stone’s theorem, the map σ 7→ UC(0, σ) is strongly continuous. Together
with the bound (28) this implies that

W
(n)
C (g1, σ1, . . . , gn, σn) :=

(
ΩC , φC(g1, σ1) · · ·φC(gn, σn)ΩC

)

exists and is a separately continuous multi-linear functional of the arguments
(gi, σi), i = 1, . . . , n, as they vary over S (Sβ) × R. It follows from the nuclear
theorem [47] that this functional can be uniquely represented as a tempered
distribution of the n vectors (αi, σi) ∈ Sβ × R. Denote the corresponding dis-
tribution by

W
(n)
C (α1, σ1, . . . , αn, σn) ≡

(
ΩC , φC(α1, σ1) · · ·φC(αn, σn)ΩC

)
. (31)

Translation invariance implies that W
(n)
C depends only on the relative coordi-

nates
ξi = (αi − αi+1, σi − σi+1), i = 1, . . . , n− 1,

or more precisely, that there exists a tempered distribution W
(n−1)
C such that

W
(n−1)
C (ξ1, ξ2, . . . , ξn−1) = W

(n)
C (α1, σ1, α2, σ2, . . . , αn, σn). (32)

We interpret W
(n−1)
C as a periodic generalised function, and so its continuous

Fourier transform is a tempered distribution, which can be identified with its
discrete Fourier transform.

Lemma 2.7. Let W̃
(n−1)
C denote the Fourier transform of W

(n−1)
C . Then the

distributional support of W̃
(n−1)
C is contained in the joint spectrum of PC and

HC .

Proof. The Fourier transform of W
(n−1)
C is

W̃
(n−1)
C

(
(p1, E1), (p2, E2), . . . , (pn−1, En−1)

)
=

= (2πβ)−(n−1)

∫
dξ1 · · · dξn−1 ei

∑n−1

j=1
(pj ,Ej)·ξj W

(n−1)
C (ξ1, . . . , ξn−1) ,

where

W
(n−1)
C (α1 − α2, σ1 − σ2, . . . , αn−1 − αn, σn−1 − σn) =

=
(
ΩC , φC(α1)e

i(σ2−σ1)HC · · ·φC(αn−1)e
i(σn−σn−1)HCφC(αn)ΩC

)
.
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Next insert, as suggested in [47], a basis of common eigenfunctions Ψǫ,k of the
operators PC , HC : for all Φ ∈ HC the unitary operators UC(α, s) defined in
(30) can be expressed as

UC(α, σ)Φ =
∑

(k,ǫ)∈Sp(PC ,HC)

ei(σǫ−αk) (Ψk,ǫ,Φ)Ψk,ǫ .

Now consider, for Φ,Φ′ ∈ HC fixed, the map

(E, p) 7→
∫

Sβ

dα

∫

R

dσ e−i(Eσ−pα)(Φ′, U(α, σ)Φ)

=
∑

(k,ǫ)∈Sp(PC ,HC)

∫

R

dσ e−i(E−ǫ)σ×

×
∫

Sβ

dα ei(p−k)α(Ψk,ǫ,Φ)(Φ
′,Ψk,ǫ)

=
∑

(k,ǫ)∈Sp(PC ,HC)

2πδ(E − ǫ)δk,p(Ψk,ǫ,Φ)(Φ
′,Ψk,ǫ).

The sum on the r.h.s. vanishes, if (p,E) /∈ Sp(PC , HC). This implies that

the distributional support of W̃
(n−1)
C is contained in the joint spectrum of PC

and HC .

Theorem 2.8. For each n ≥ 1, W̃
(n−1)
C has support in (Ṽ +)n−1 and W

(n−1)
C

is the boundary value of a polynomially bounded function W(n−1)
+ analytic in the

forward tube (Sβ × R − iV +)n−1, where V + := {(t, x) ∈ R2 | |x| < t}.

Proof. The support property of W̃
(n−1)
C was established in Lemma 2.7. By the

Bros-Epstein-Glaser Lemma [40, Theorem IX.15] there exists a polynomial P
and a polynomially bounded function G(n−1) : R2(n−1) → C obeying

supp G(n−1) ⊆ (Ṽ +)(n−1),

such that W̃
(n−1)
C = P (D)G(n−1), with

P (D) =
∂k1+...+kn−1+l1+...ln−1

∂Ek1

1 ∂pl11 · · · ∂Ekn−1

1 ∂p
ln−1

1

, ki, li ∈ N .

Consequently an analytic continuation W(n−1)
+ of W

(n−1)
C to (Sβ ×R− iV +)n−1

can be defined:

W(n−1)
+ (ξ1 − iη1, . . . , ξn−1 − iηn−1) =

= (2πβ)−(n−1)P
(
−i(ξ1 − iη1, . . . , ξn−1 − iηn−1)

)
×

×
∫
(Sβ×R)n−1

∏n−1
j=1 dpjdEj e

−i(ξj−iηj)·(pj ,Ej) ×

×G(n−1)
(
(p1, E1), . . . , (pn−1, En−1)

)
.
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If ηj ∈ V + for all j ∈ {1, . . . , n − 1}, this integral exists. Furthermore, its

boundary value for (η1, . . . , ηn−1) ց 0 is W
(n−1)
C . Polynomial boundedness of

the analytic function W(n−1)
+ results from the following inequality [40, Theorem

IX.16]:
∣∣∣W(n−1)

+ (ξ1 − iη1, . . . , ξn−1 − iηn−1)
∣∣∣

≤ C
∣∣P
(
−i(ξ1 − iη1, . . . , ξn−1 − iηn−1)

)∣∣ (1 + d((η1, . . . , ηn−1))
−N
)
.

C is a constant, d((η1, . . . , ηn−1)) is the distance of (η1, . . . , ηn−1) to ∂(V
+)n−1

and N is a positive integer.

Next we investigate the consequences of locality on the circle Sβ ≡ [0, β).

Lemma 2.9. The tempered distributions W
(n)
C (α1, σ1, . . . , αn, σn) defined in

(31) are real valued for (α1, σ1, . . . , αn, σn) ∈ J (n), where

(α1, σ1, . . . , αn, σn) ∈ J (n) ⇔





(αi, σi) ∈ Sβ × R,
(αi+1 − αi, σi+1 − σi) ∈ λiVβ ,∑n−1

i=1 λi = 1, λi > 0,

(33)

with Vβ := {(α, σ) | |σ| < α < β − |σ|} ⊆ Sβ × R and i = 1, . . . , n− 1.

Proof. Assume that the space-time points (αi, σi) and (αj , σj) are space-like to
each other for all choices of i 6= j and i, j ∈ {1, . . . , n}. Then, as a consequence
of locality, all the field operators φC(αi, σi) commute (as quadratic forms) with

each other and therefore W
(n)
C (α1, σ1, . . . , αn, σn) equals

(
ΩC , φC(α1, σ1) · · ·φC(αn, σn)ΩC

)
=
(
ΩC , φC(αn, σn) · · ·φC(α1, σ1)ΩC

)

= W
(n)
C (α1, σ1, . . . , αn, σn).

In other words, the tempered distributions W
(n)
C (α1, σ1, . . . , αn, σn) are real

valued. Thus the lemma follows, once we have shown that the set J (n) consists
of points, which are pairwise space-like to each other.

A point (α, σ) on the cylinder is space-like to the origin (0, 0) iff (α, σ) ∈ Vβ .
Space-likeness is a symmetric relation and therefore it suffices to prove that
(αi, σi) is space-like to (αj , σj) for i > j, i.e.,

(αj , σj)− (αi, σi) ∈ Vβ for i > j. (34)

Moreover, for 0 < λ ≤ 1,

Vλβ = {(α, σ) ∈ W | |α|+ |σ| < λβ} ,

with W the wedge {(α, σ) ∈ [0, β)×R | α > |σ|}. The map n : [0, 2π)×R → R+,

(α, σ) 7→ |α|+ |σ|,
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defines a norm. Denote its restriction to the wedge W by n|W . Equ. (34) now
follows from the triangle inequality:

n|W ((αj , σj)− (αi, σi)) = n|W

(
(αj − αj−1, σj − σj−1) + . . .

. . .+ (αi+1 − αi, σi+1 − σi)
)

≤ n|W ((αj − αj−1, σj − σj−1)) + . . .

. . .+ n|W ((αi+1 − αi, σi+1 − σi))

< λj−1β + λj−2β + . . .+ λiβ ≤ β

n−1∑

k=1

λk = β,

and therefore (33) implies (34). We note that the set of n points on the cylinder,
which are space-like to each other, is actually larger than J (n).

Because the tempered distributions W
(n)
C (α1, σ1, . . . , αn, σn) defined in (31)

are real valued for (α1, σ1, . . . , αn, σn) ∈ J (n), we can apply the Schwarz reflec-
tion principle. The function

W(n−1)
− (ξ1 + iη1, . . . , ξn−1 + iηn−1) = W(n−1)

+ (ξ1 − iη1, . . . , ξn−1 − iηn−1)

=

∫

(Sβ×R)n−1

∏n−1
j=1 dpjdEj

(2πβ)n−1
ei(ξj+iηj)·(pj ,Ej) W̃

(n−1)
C

(
(p1, E1), . . . , (pn−1, En−1)

)
.

is analytic on (Sβ ×R+ iV +)× · · ·× (Sβ ×R+ iV +) and polynomially bounded
as ηi ց 0. Since V + is a cone, V + × . . . × V + is a cone (by definition).
Applying the Edge-of-the-Wedge theorem [47, Theorem 2-16], we conclude that
there exists a complex neighbourhood N of λ1Vβ × . . .×λn−1Vβ and a function

W(n−1)
C defined and holomorphic in N ∪ (Sβ×R−iV +)n−1∪(Sβ×R+iV +)n−1,

which coincides with the restriction of the distributions W
(n−1)
C (ξ1, ξ2, . . . , ξn−1)

defined in (32) to λ1Vβ × . . . × λn−1Vβ . In fact, by only partially reordering
the fields (see the proof of Lemma 2.9) and using the support properties of

the Fourier transform stated in Theorem 2.8, we can extend W(n−1)
C into the

regions (Sβ × R ∓ iV +)× · · · × (Sβ × R ∓ iV +) (the ∓ all being independent).

Note that relative coordinates are used in W(n−1)
C and therefore reordering of

the arguments results in iV + being replaced by −iV +. Thus we arrive at the
following result:

Theorem 2.10. There exists of a function W(n−1)
C holomorphic in

C(n−1) := N ∪ D(n−1), (35)

which coincides with the restriction of the distributions W
(n−1)
C (ξ1, ξ2, . . . , ξn−1)

defined in (32) to λ1Vβ × . . .× λn−1Vβ. Here N is a complex neighbourhood of
λ1Vβ × . . .× λn−1Vβ and

D(n−1) := (λ1Vβ × . . .× λn−1Vβ) + i (V + ∪ V −)× . . .× (V + ∪ V −)

with λi > 0 and
∑n−1

i=1 λi = 1. (In fact, one can take the union over these λj’s,
j = 1, . . . , n− 1).
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3 The relativistic KMS condition for the P (φ)2
model

In the previous section we have seen that the Wightman functions on the circle

are the boundary values of a function W(n−1)
C holomorphic in the region C(n−1)

(see (35)). Now define a new function

W(n−1)
β := W(n−1)

C ◦ Ξ−1 , (36)

where Ξ is the coordinate transformation

(z1, w1, . . . , zn−1, wn−1) 7→ (iz1,−iw1, . . . , izn−1,−iwn−1)

on C2(n−1). Then W(n−1)
β is analytic in the domain

(
(Q− ∪Q+)n−1 − iλ1Vβ × . . .× λn−1Vβ

)
∪ ΞN , (37)

with λi > 0 and
∑n−1

i=1 λi = 1, where the right and left wedges are

Q± =
{
(τ, y) ∈ R

2 | ±y > |τ |
}
.

Our aim is to show that

i.) the thermal Wightman functions W(n−1)
β introduced in (36) extend to

functions analytic in the product of domains

(λ1Tβ)× · · · × (λn−1Tβ), Tβ := R
2 − iVβ ,

n−1∑

j=1

λj = 1, (38)

and λj > 0, j = 1, . . . , n−1. In fact, one can take the union over these λj ’s;

ii.) the boundary values of the analytic functions W(n−1)
β as ℑzj ց 0 yield

tempered distributions.

We will also ensure that these tempered distributions are indeed the Wightman
distributions of the thermal field theory on the real line. We proceed in several
steps.

3.1 Products of sharp-time fields and their domains

The representation πβ defined in Section 2.3 is a regular CCR representation
(see [13]), and therefore one can define for h ∈ C∞

0R
(R) the Segal field operators

φβ(h) := −i d
ds
πβ

(
eiφ(0,sh)

) ∣∣∣
s=0

. (39)

While Stone’s theorem is convenient to show that φβ(h) exists as a self-adjoint
unbounded operator, it provides little control on the domain of φβ(h). In fact,
a priori it is not even clear whether Ωβ is an element of D(φβ(h)). We will need
several steps to resolve these domain problems.
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Lemma 3.1.

i.) (Products of sharp-time fields). Let hi ∈ S ∞
R

(R) for i = 1, . . . , j, j ∈ N,
and 0 ≤ α1 ≤ . . . ≤ αj < β. Then

φ(αj , hj) · · ·φ(α1, h1) ∈
⋂

1≤p<∞

Lp(Q,Σ[0,αj ], dµ), j ∈ N . (40)

ii.) (Convergence of sharp-time Schwinger functions, Part II). Let hi ∈ C∞
0 R

(R)
and αi ∈ Sβ, 1 ≤ i ≤ n. Then

lim
l→∞

∫

Q

φ(αn, hn) · · ·φ(α1, h1) dµl =

∫

Q

φ(αn, hn) · · ·φ(α1, h1) dµ.

Proof. i.) Consider an approximation of the Dirac δ-function: δκ(x) := κχ(κx),
with χ a function in C∞

0 (R) and
∫
χ(x) dx = 1. It has been shown in [13,

Proposition 7.3] that

lim
k→∞

φ (δk( . − αi)⊗ hi) ∈
⋂

1≤p<∞

Lp(Q,Σ, dµ), hi ∈ SR(R).

For later purpose, we briefly recall the proof:
∫

Q

(
φ (δk( . − αi)⊗ hi)

)p
dµ

= (−i)p dp

dλp
(
ΩC , W[−∞,+∞]

(
λ
(
δk( . − αi)⊗ hi

))
ΩC

) ∣∣∣
λ=0

,

where W[a,b](f) is a solution of the heat equation

d

db
W[a,b](f) =W[a,b](f)

(
−HC + iφC(fb)

)
, a ≤ b,

with the boundary condition W[a,a](f) = 1 and with fb( . ) := f( . , b) ∈ SR(Sβ)
for f ∈ SR(Sβ ×R). Now, if f = δk(.−αi)⊗hi, then the function fx ∈ SR(Sβ)
is equal to δk( . − αi)hi(x). It follows from (29), i.e., estimate (5.9) in [13,
Proposition 5.4], that hi ∈ C∞

0R
(R) implies

±φC (δk( . − αi)hi(x)) ≤ c ‖δk( . − αi)hi(x)‖H−1(Sβ)
(HC + 1)

≤ c |hi(x)| ‖δk‖H−1(Sβ)
(HC + 1).

Set rk(x) := c |hi(x)| ‖δk‖H−1(Sβ)
and apply [13, Lemma A.8] to obtain

∥∥∥∥
dp

dλp
W[−∞,+∞] (λ (δk( . − αi)⊗ hi))

∥∥∥∥ ≤ p! ‖rk‖p∞ e‖rk‖1‖rk‖
−1
∞ . (41)

Since δk( . − αi) converges to δ( . − αi) in H−1(Sβ) and hi ∈ C∞
0R

(R) for i =
1, . . . , j, we see that limk→∞ ‖rk‖1 <∞ and limk→∞ ‖rk‖∞ <∞. Thus

∫

Q

|φ(αi, hi)|j dµ <∞ . (42)
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The estimate (40) with p = 1 then follows from the Hölder inequality

∫

Q

|φ(αj , hj) · · ·φ(α1, h1)| dµ ≤
j∏

i=1

(∫

Q

|φ(αi, hi)|j dµ

)1/j

.

The higher Lp-estimates follow as well, as (αk, hk) may equal (αl, hl), k, l =
1, . . . , j. Σ[0,α]-measurability follows from the fact that a.) for all k there is
an ǫk (the δk were chosen to have compact support) such that

φ (δk( . − αi)⊗ hi) ∈
⋂

1≤p<∞

Lp(Q,Σ[0,αi+ǫk], dµ)

and b.) the upper continuity of µ.
ii.) Now let hi ∈ C∞

0 R
(R) and αi ∈ Sβ , 1 ≤ i ≤ n. Part ii.) follows from

lim
l→∞

∫

Q

φ(αn, hn) · · ·φ(α1, h1) dµl

= lim
k→∞

dn

dλ1 · · · dλn
(
ΩC ,W[−a,a] (

∑n
i=1 λi (δk( . − αi)⊗ hi))ΩC

) ∣∣∣
λi=0

=

∫

Q

φ(αn, hn) · · ·φ(α1, h1) dµ ,

for supp δk( . − αi)⊗ hi ⊂ Sβ × [−a, a], i = 1, . . . , n, as for s ≤ −a ≤ a ≤ t the
map (s, t) 7→ (ΩC ,W[s,t](f)ΩC) is constant.

The existence of products of sharp time fields in L2(Q,Σ, dµ) allows us to
investigate their domains, taking advantage of their Euclidean heritage:

Proposition 3.2. Let hi ∈ C∞
0 R

(R), 1 ≤ i ≤ n. Then

i.) Ωβ ∈ D(L) and LΩβ = 0;

ii.) If α1, . . . , αn ≥ 0 and
∑n

j=1 αj ≤ β/2, then

e−αn−1Lφβ(hn−1) · · · e−α1Lφβ(h1)Ωβ ∈ D
(
φβ(hn)

)
(43)

and

φβ(hn)e
−αn−1Lφβ(hn−1) · · · e−α1Lφβ(h1)Ωβ ∈ D

(
e−αnL

)
. (44)

Moreover, the linear span of such vectors is dense in Hβ and

e−αnLφβ(hn)e
−αn−1Lφβ(hn−1) . . . e

−α1Lφβ(h1)Ωβ

= V
(
U(αn, 0)φ(0, hn)U(αn−1, 0)φ(0, hn−1) · · ·U(α1, 0)φ(0, h1)

)
;
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iii.) If 0 ≤ α1 ≤ · · · ≤ αk ≤ β/2 and β/2 ≤ αk+1 ≤ . . . ≤ αn ≤ β, then

∫

Q

( n∏

j=1

φ(αj , hj)
)
dµ

=
(
e(αn−β)Lφβ(hn)e

(αn−1−αn)Lφβ(hn−1) · · · e(αk+1−αk+2)Lφβ(hk+1)Ωβ ,

e−α1Lφβ(h1)e
(α1−α2)Lφβ(h2) · · · e(αk−1−αk)Lφβ(hk)Ωβ

)
. (45)

iv.) ‖e−(β/2)Lφβ(hn) · · ·φβ(h1)Ωβ

∥∥ = ‖φβ(hn) · · ·φβ(h1)Ωβ

∥∥.

Proof. Let us first note that (45) formally results from differentiating the fol-
lowing identity, which is a conequence of eiφ(0,hj) ∈ L∞(Q,Σ{0}, dµ) for hi ∈
C∞

0 R
(R) and the Osterwalder-Schrader reconstruction outlined in Section 2.3:

∫

Q

( n∏

j=1

eiφ(αj ,hj)
)
dµ

=

∫

Q

R

(
U(β, 0)

n∏

j=k+1

e−iφ(−αj ,hj)

) k∏

j=1

eiφ(αj ,hj) dµ

=
(
V
(
U(β, 0)e−iφ(−αn,hn) . . . e−iφ(−αk+1,hk+1)

)
,V(eiφ(αk,hk) · · · eiφ(α1,h1))

)

=
(
e(αn−β)Le−iφβ(hn)e(αn−1−αn)Le−iφβ(hn−1) · · · e(αk+1−αk+2)Le−iφβ(hk+1)Ωβ ,

e−α1Leiφβ(h1)e(α1−α2)Leiφβ(h2) · · · e(αk−1−αk)Leiφβ(hk)Ωβ

)
,

for 1 ≤ i ≤ n, and 0 ≤ α1 ≤ · · · ≤ αk ≤ β/2 and β/2 ≤ αk+1 ≤ . . . ≤ αn ≤ β.
Note that inserting the identity U(β, 0) = 1 ensures that (β − αi) ∈ [0, β/2] for
i = k + 1, . . . , n. However, we have to ensure that (45) is well-defined.

i.) See [31, Lemma 8.4]: 1 ∈ Mα, thus Ωβ ∈ Dα and e−αLΩβ = P (α)Ωβ = Ωβ

as U(α, 0)1 = 1 for 0 ≤ α ≤ β;

ii.) The case n = 1, namely Ωβ ∈ D (φβ(h1)) and

e−α1Lφβ(h1)Ωβ ∈ Hβ for 0 ≤ α1 ≤ β/2

was proven in [14]. In fact,

e−α1Lφβ(h1)Ωβ ∈ D(φβ(h2)) ,

as φ(0, h2) acts as a multiplication operator on φ(α1, h1) and

φ(0, h2)φ(α1, h1) ∈ Mβ/2−α1

by Lemma 3.1 i.). As P (α)Dγ ⊂ Dγ−α, it follows that

e−α2Lφβ(h2)e
−α1Lφβ(h1)Ωβ ∈ Dβ/2−α1−α2
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and φ(0, h3)φ(α2, h2)φ(α1 + α2, h1) ∈ Mβ/2−α1−α2
implies

e−α2Lφβ(h2)e
−α1Lφβ(h1)Ωβ ∈ D(φβ(h3)) .

Iterating this argument it follows that

V
(
φ(αk, hk) · · ·φ(α1 + . . .+ αk, h1)

)
∈ Dβ/2−γ ,

if
∑k

i=1 αk ≤ γ ≤ β/2. Thus (43) and (44) follow.

Next we prove that

e−αnLφβ(hn)e
−αn−1Lφβ(hn−1) . . . e

−α1Lφβ(h1)Ωβ

is dense in Hβ for α1, . . . , αn ≥ 0 and
∑n

j=1 αj ≤ β/2. Assume that, for
Ψ ∈ Hβ and all f, g ∈ C∞

0 R
(R),

∀m,n ∈ N : (Ψ, φβ(f)
ne−βL/2φβ(g)

mΩβ) = 0. (46)

(Note that (46) is well-defined as a consequence of (44).) Then2

(Ψ , eiφβ(f)e−βL/2eiφβ(g)Ωβ) = 0 . (47)

But vectors of the form eiφβ(f)e−βL/2eiφβ(g)Ωβ , f, g ∈ C∞
0 R

(R), are dense
[30, Theorem 11.2] in Hβ , and therefore (47) implies Ψ = 0, establishing
the claim.

iii.) If 0 ≤ α1 ≤ . . . ≤ αk ≤ β/2 and β/2 ≤ αk+1 ≤ . . . ≤ αn ≤ β, then
according to ii.)
(
e(αn−β)Lφβ(hn)e

(αn−1−αn)Lφβ(hn−1) . . . e
(αk+1−αk+2)Lφβ(hk+1)Ωβ ,

e−α1Lφβ(h1)e
−(α2−α1)Lφβ(h2) . . . e

−(αk−αk−1)Lφβ(hk)Ωβ

)

is well-defined and equals
(
V
(
φ(β − αn, hn) . . . φ(β − αk+1, hk+1)

)
,V
(
φ(αk, hk) · · ·φ(α1, h1)

))
=

=
∫
Q
R
(∏n

j=k+1 φ(β − αj , hj)
)∏k

j=1 φ(αj , hj) dµ

=
∫
Q
R
(
U(β, 0)

∏n
j=k+1 φ(−αj , hj)

)∏k
j=1 φ(αj , hj) dµ

=
∫
Q
R
(∏n

j=k+1 φ(−αj , hj)
)∏k

j=1 φ(αj , hj) dµ

=
∫
Q

(∏n
j=k+1 φ(αj , hj)

)∏k
j=1 φ(αj , hj) dµ

=
∫
Q

∏n
j=1 φ(αj , hj) dµ .

We made again use of U(β, 0) = 1, which holds by periodicity.

2From Prop. A6 i.) and Theorem 7.2 i) in [13] it follows that the vector valued function
s, t 7→ V(eisφ(0,f)eitφ(β/2,g)) is entire for f, g ∈ C∞

0 R(R).
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iv.) By ii.) we have φβ(hn)φβ(hn−1) · · ·φβ(h1)Ωβ ∈ D
(
e−βL/2

)
. Now

∥∥e−βL/2φβ(hn)φβ(hn−1) · · ·φβ(h1)Ωβ

∥∥2 =

=
∥∥V
(
U(β/2, 0)φ(0, hn) · · ·φ(0, h1)

)∥∥2

=
∫
Q
U(β/2, 0)φ(0, hn) · · ·φ(0, h1) RU(β/2, 0) φ(0, hn) · · ·φ(0, h1) dµ

=
∫
Q
φ(0, hn) · · ·φ(0, h1) U(−β/2, 0)RU(β/2, 0) φ(0, hn) · · ·φ(0, h1) dµ

=
∫
Q φ(0, hn) · · ·φ(0, h1) RU(β, 0) φ(0, hn) · · ·φ(0, h1) dµ

= ‖V (φ(0, hn) · · ·φ(0, h1))‖2 = ‖φβ(hn)φβ(hn−1) · · ·φβ(h1)Ωβ‖2 ,

again using U(β, 0) = 1.

The extension of these results to real times is our next objective. Given the
self-adjoint operator φβ(h), h ∈ C∞

0R
(R), set

φβ(t, h) := eitLφβ(h)e
−itL, t ∈ R .

The domain of the self-adjoint operator φβ(t, h) is eitLD(φβ(h)). That prod-
ucts of field operators smeared out in time can be applied to the distinguished
vector Ωβ will be shown in the final subsection.

3.2 Analyticity properties of the thermal Wightman dis-

tributions

We can now proceed by using the following remarkable consequence of the KMS
condition established by Araki (see Equ. (1.27) in Lemma A, [1]).

Lemma 3.3 (Araki). Let ωβ be a (τ, β)-KMS state over a von Neumann alge-
bra R. Let (z1, . . . , zn−1) ∈ Cn−1 with ℑzj ≥ 0 for j = 1, . . . , n− 1, and

ℑz1 + . . .+ ℑzk−1 + ℑz′k ≤ β/2 , ℑz′k ≥ 0 ,

ℑzn−1 + . . .+ ℑzk+1 + ℑz′′k ≤ β/2 , ℑz′′k ≥ 0 , z′k + z′′k = zk .

Moreover, let zn = i −∑n−1
i=1 zi. It follows that there exists some j = 1, . . . , k

such that for A0, . . . An ∈ R one has

(
eiz

′

kLA∗
ke

izk−1LA∗
k−1 · · · eiz1LA∗

1Ωβ, e
iz′′

kLAk+1e
izk+1LAk+2 · · · eizn−1LAne

iznLΩβ

)

=
(
eiz

′

k+1
LA∗

k+1e
izkLA∗

k · · · eizj+1LA∗
j+1Ωβ ,

eiz
′′

k+1LAk+2e
izk+2LAk+3 · · · eizn−1LAne

iznLA1 · · · eizj−1LAje
izjLΩβ

)
,
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with ℑz′k+1,ℑz′′k+1 ≥ 0,

ℑzj + ℑzj+1 + . . .+ ℑzk + ℑz′′k+1 ≤ β/2 ,

ℑzj−1 + ℑzj−2 + . . .+ ℑz1 + ℑzn + . . .+ ℑzk+2 + ℑz′k+1 ≤ β/2 ,

and z′k+1 + z′′k+1 = zk+1 for some k = 0, 1, . . . , n− 1.

The identity stated applies to bounded operators of the fields, but the fields
themselves may be approximated by bounded operators (see, e.g., Equ. (55)
below). After removing these approximations, one finds

(
eiz

′′

kLφ(hk)e
izk−1Lφ(hk−1) · · · eiz1Lφ(h1)Ωβ ,

eiz
′

kLφ(hk+1)e
izk+1Lφ(hk+2) · · · eizn−1Lφ(hn)e

iznLΩβ

)

=

∫

R2

dx1 · · ·dxn h1(x1) · · ·hn(xn)W(n−1)
β (z1, x1 − x2, . . . , zn−1, xn−1 − xn).

Note that for ℜz1 = . . . = ℜzn = 0 the existence of the l.h.s. follows from
Proposition 3.2 ii.). The extension to non-vanishing real parts will be discussed
below. But before we do so, we choose sequences of absolutely integrable func-

tions h
(k)
i ∈ C∞

0 (Sβ), i = 1, . . . , n, tending to the Dirac distributions δ( . − xk)
as k → ∞. For ℜzi = 0 and ℑzi > 0, i = 1, . . . , n − 1, the limit k → ∞ exists
and yields

W(n−1)
β (z1, x1 − x2, . . . , zn−1, xn−1 − xn)

=
(
eiz

′′

kL+i(xk−xk+1)Pφ(δ)eizk−1L+i(xk−1−xk)Pφ(δ) · · · eiz1L+i(x1−x2)Pφ(δ)Ωβ ,

eiz
′

kLφ(δ)eizk+1L−i(xk+1−xk+2)Pφ(δ) · · · eizn−1L−i(xn−1−xn)Pφ(δ)Ωβ

)
.

Setting x′1 = x1 − x2, x
′
2 = x2 − x3, etc., this identity takes the following form

W(n−1)
β (z1, x

′
1, . . . , zn−1, x

′
n−1)

=
(
eiz

′′

kL+ix′′

kPφ(δ)eizk−1L+ix′

k−1Pφ(δ) · · · eiz1L+ix′

1Pφ(δ)Ωβ ,

eiz
′

kL−ix′

kPφ(δ)eizk+1L−ix′

k+1Pφ(δ) · · · eizn−1L−ix′

n−1Pφ(δ)Ωβ

)
.

We have set xk = x′k + x′′k, using the same ratio of the absolute values as in the
splitting of zk = z′k + z′′k .

In particular,

‖eiz′

kL−ix′

kPφ(δ)eizk+1L−ixk+1Pφ(δ) · · · eiz2k−1L−ix2k−1Pφ(δ)Ωβ

)
‖2

= W(2k−1)
β (z2k−1, x2k−1, . . . , zk+1, xk+1, zk, xk, zk+1, xk+1 . . . , z2k−1, x2k−1)

with zk = 2z′k and xk = 2x′k. It follows that the vector valued function

(tk, xk, . . . tn−1, xn−1) 7→
eitkL−ixkPφ(δ)eitk+1L−ixk+1Pφ(δ) · · · eit2k−1L−ix2k−1Pφ(δ)Ωβ
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can be analytically continued into the region

(Q− ∪Q+)k − iλkVβ × . . .× λ2k−1Vβ , (48)

with λi > 0 and
∑2k−1

i=k λi = 1/2.
On the other hand, by first applying Lemma 3.3 and then removing the

approximations in a similar manner as above, one can establish the following
identity:

W(n−1)
β (z1, x1, . . . , zn−1, xn−1)

=
(
eiz

′

k+1
L+ix′

k+1Pφ(δ)eizkL+ix′

kPφ(δ) · · · eizj+1L+ix′

j+1Pφ(δ)Ωβ , (49)

eiz
′′

k+1Lφ(δ)eizk+2L−ixk+2P · · · eiznL−ixnPφ(δ)eiz1L−ix1P · · · eizj−1L−ixj−1Pφ(δ)Ωβ

)
.

where xn = −xn−1 − xn−2 − . . .− x1.

Clearly, there are n−1 different expressions for W(n−1)
β which can be gained

by repeated application of Lemma 3.3.

Theorem 3.4. The thermal Wightman functions W(n−1)
β introduced in (36)

are analytic in the product of domains

(λ1Tβ)× · · · × (λn−1Tβ), Tβ := R
2 − iVβ ,

n−1∑

j=1

λj = 1, (50)

and λj > 0, j = 1, . . . , n− 1. In fact, one can take the union over these λj’s.

Proof. We recall that W(n−1)
β is an analytic function in the domain (37). Within

the domain (37), the Cauchy Schwarz inequality yields
∣∣∣W(n−1)

β (z1, x1 + iy1, . . . , zn−1, xn−1 + iyn−1)
∣∣∣

≤
∥∥∥eiz′

kL+y′

kPφβ(δ0)e
izk−1L+i(xk−1−iyk−1)P · · · eiz1L+i(x1−iy1)Pφβ(δ0)Ωβ

∥∥∥

×
∥∥∥eiz

′′

kL−i(xk+iy′′

k )Pφβ(δ0) · · · eizn−1L−i(xn−1+iyn−1)Pφβ(δ0)Ωβ

∥∥∥ .

Here yk = y′k + y′′k is split according to the same ratio as zk = z′k + z′′k .
As L and P are self-adjoint operators, the spectral theorem implies that the

vector valued function

(z′′k , w
′′
k ) 7→ eiz

′′

kL−iw′′

kPφβ(δ0) · · · eizn−1L−i(xn−1+iyn−1)Pφβ(δ0)Ωβ

is analytic in the domain (z′′k , w
′′
k ) ∈ R2 + iλk

2 Vβ (as the norm of the vector

is preserved by applying the unitary eiℜz′′

k L−iℜw′′

kP ). And consequentely, the

function W(n−1)
β extends to an analytic function in the domain

(
(Q− ∪Q+)− iλ1Vβ

)
× . . .×

(
(Q− ∪Q+)− iλk−1Vβ

)
(51)

×
(
R
2 − iλkVβ

)
×
(
(Q− ∪Q+)− iλk+1Vβ

)
× . . .×

(
(Q− ∪Q+)− iλn−1Vβ

)
,
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with λi > 0 and
∑n−1

i=1 λi = 1. Using the expression (49) one can replace k by
k + 1 in (51). Iterating this procedure (eventually renaming the variables) and

applying Hartogs’ theorem [49, p. 30] one concludes that W(n−1)
β is analytic in

the domain (50).

3.3 Temperedness of the thermal Wightman distributions

For a quantum system confined to a box, Ruelle [43][44] has used a Hölder
inequality, which applies to the trace in the Gibbs state. It was pointed out by
Fröhlich [10] that this Hölder inequality is crucial in the present context.

Theorem 3.5 (Hölder inequality). Let ωβ be a (τ, β)-KMS state over a von
Neumann algebra R. Define for, p ∈ N and A ∈ R+,

‖A‖p := ωβ

(
eitL/pA · · · eitL/pA︸ ︷︷ ︸

p times

)1/p
↾t=iβ

.

Let (z1, . . . , zn) ∈ Cn with 0 ≤ ℜzj,
∑m

j=1 ℜzj ≤ 1/2 and
∑n

j=m+1 ℜzj ≤ 1/2,

and let pj be the smallest, positive integer such that 1
pj

≤ min{ℜzj+1,ℜzj}, with
zn+1 = zn and z0 = z1. Then

∣∣∣ωβ

(
Ane

itnβL · · ·A1e
it1βLA0

)
↾tj=izj

∣∣∣ ≤ ‖A0‖p0
· · · ‖An‖pn (52)

for all A0, . . . , An ∈ R+. (The subscript ↾ tj = izj indicates the analytic con-
tinuation from tj to izj, j = 1, . . . , n.)

Proof. The proof of this results relies on the theory of non-commutative Lp-
spaces and is given in [26].

Note that because of the time-invariance of the KMS state, the r.h.s. in (52)
does not depend on ℑzi, i = 1, . . . , n.

Proposition 3.6. For 0 ≤ ǫ ≤ 1 fixed there exist constants c1, c2 > 0 such that

±φC(g) ≤ c1 ‖g‖
H−

1
2
−

ǫ
2 (Sβ)

(HC + c2)
1
2
+ǫ (53)

for all g ∈ H− 1
2
− ǫ

2 (Sβ).

Proof. Set H0 = dΓ(ν). It is sufficient to prove that

A(g) ≡ (H0 + 1)−
1
4
− ǫ

2φC(ν
1
2
+ ǫ

2 g)(H0 + 1)−
1
4
− ǫ

2

is a bounded operator on Fock space, uniformly bounded for ‖g‖2 ≤ 1. The
first order estimate (see, e.g., [42, Equ. (2.21)])

(H0 + 1) ≤ c3(HC + c2) for c2, c3 ≫ 1

and operator monotonicity of the map λ 7→ λα for 0 ≤ α ≤ 1 (see, e.g., [28,
Example 4.6.46]) then ensure the fractional φ-bound (53).
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We now follow ideas of Rosen (see, e.g., [42, Proof of Lemma 6.2]). We
show that A(g) is a bounded bilinear form in Fock space. The desired operator
extension then follows from the Riesz representation theorem. It is sufficient to
show that, for ‖g‖2 ≤ 1,

|(Φ, A(g)Ψ)| ≤ c4‖Φ‖ · ‖Ψ‖ ,
for Φ,Ψ arbitrary vectors on Fock space and c4 > 0 a constant. Now (see (27))

|(Φ, A(g)Ψ)| ≤ 1√
2

(
|((H0 + 1)−

1
4
− ǫ

2Φ, a∗(ν
ǫ
2 g)(H0 + 1)−

1
4
− ǫ

2Ψ)|

+ |(a∗(ν ǫ
2 ḡ)(H0 + 1)−

1
4
− ǫ

2Φ, (H0 + 1)−
1
4
− ǫ

2Ψ)|
)
.

Since H
(0)
C commutes with the number operator, and both terms are of the same

structure, it is sufficient to prove that for Φn ∈ H(n)
C and Ψn−1 ∈ H(n−1)

C with
‖Φn‖, ‖Ψn−1‖ ≤ 1

|((H(0)
C + 1)−

1
4
− ǫ

2Φn, a
∗(ν

ǫ
2 g)(H

(0)
C + 1)−

1
4
− ǫ

2Ψn−1)|
≤ ‖(n+ 1)−

1
4Φn‖ · ‖a∗(ν

ǫ
2 g)(H

(0)
C + 1)−

1
4
− ǫ

2Ψn−1‖
is uniformly bounded in n. For simplicity it is assumed (in the second inequality

below) that the mass m ≥ 1, so that
∑n−1

i=1 ν(ki) + 1 ≥ n; otherwise one is left
with yet another n-independent constant. Now

(n+ 1)−1/2 ‖Φn‖2 ‖a∗(ν
ǫ
2 g)(H

(0)
C + 1)−

1
4
− ǫ

2Ψn−1‖2

≤ n

(n+ 1)1/2
‖Φn‖2

× 1

βn

∫ n∏

j=1

dkj
ν(kj)

∣∣∣∣∣
ν(kn)

ǫ
2 g̃(kn)(∑n−1

i=1 ν(ki) + 1
)1/4+ǫ/2

Ψ̃n−1(k1, k2, . . . kn−1)

∣∣∣∣∣

2

≤ n

(n+ 1)1/2n1/2
‖Φn‖2

× 1

βn

∫ n∏

j=1

dkj
ν(kj)

∣∣∣∣∣

(
ν(kn)∑n−1

i=1 ν(ki) + 1

) ǫ
2

g̃(kn) Ψ̃n−1(k1, k2, . . . kn−1)

∣∣∣∣∣

2

≤ ‖g‖22 ‖Φn‖2 ‖Ψn−1‖2 ,
which establishes the claim.

The Euclidean time zero field φ(0, h) ∈ Lp(Q,Σ, dµ), 1 ≤ p < ∞, can be
approximated by a sequence of functions in L∞(Q,Σ, dµ). The latter can be
decomposed in their positive and negative part. Define, for h ∈ SR(R) and
α ∈ [0, β),

φ
(ℓ)
± (α, h) =

{
±φ(0, h) if 0 ≤ ±φ(α, h) ≤ ℓ

0 otherwise .
(54)
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It follows from [45, Lemma 3.5] that φ
(ℓ)
+ (0, h) − φ

(ℓ)
− (0, h) converges to φ(0, h)

as ℓ→ ∞ in any Lq-norm with q < p. We can use this result to define approxi-
mations for the thermal time-zero field φβ(h): set

φ±ℓ (h) := πβ
(
φ
(ℓ)
± (0, h)

)
(55)

and φ±ℓ (t, h) := eitLφ±ℓ (h)e
−itL, t ∈ R.

Lemma 3.7. For h ∈ SR(R) and p ∈ N even, the expressions

|||h|||p := max
{
limℓ→∞ ‖φ+ℓ (t, h)‖p , limℓ→∞ ‖φ−ℓ (t, h)‖p

}
(56)

are bounded from above by p
√
p! · |h|S , for some Schwartz norm | . |S .

Proof. Set φ±(α, h) = limℓ→∞ φ
(ℓ)
± (α, h), α ∈ [0, β). We have

|||h|||pp = max

{
lim
ℓ→∞

∫

Q

p∏

k=1

φ
(ℓ)
+

(
kβ

p
, h

)
dµ , lim

ℓ→∞

∫

Q

p∏

k=1

φ
(ℓ)
−

(
kβ

p
, h

)
dµ

}

= max

{∫

Q

p∏

k=1

φ+

(
kβ

p
, h

)
dµ ,

∫

Q

p∏

k=1

φ−

(
kβ

p
, h

)
dµ

}

≤ max

{∫

Q

φ+ (0, h)
p
dµ ,

∫

Q

φ− (0, h)
p
dµ

}
. (57)

In the first line we have used the definition of the norm ‖ · ‖p , in the third line
we have used the Hölder inequality for Lp(Q,Σ, dµ) and translation invariance
of dµ.

Since p ∈ N is even and the supports of φ+(0, h) and φ−(0, h) are disjoint,
∫

Q

φ± (0, h)
p
dµ ≤

∫

suppφ+(0,h)

φ+(0, h)
p dµ+

∫

suppφ(0,h)−

φ−(0, h)
p dµ

=

∫

Q

φ(0, h)p dµ . (58)

Taking advantage of the fractional φ-bound (53) we can apply [13, Lemma A.7,
p. 167], which states that there is a constant c > 0 such that

∣∣∣∣
∫

dµ eiλφ(δk⊗h)

∣∣∣∣ ≤ ec|ℑλ|κ‖rk‖
κ

κ (59)

for λ ∈ C, κ = (12 − ǫ)−1, 0 < ǫ < 1/2 and

rk(x) := |h(x)| ‖δk‖
H−

1
2
−

ǫ
2 (Sβ)

.

The limit k → ∞ exists, as the Dirac δ-function is in all Sobolev spaces Hq for
q < −1/2. Denote r(x) := limk→∞ rk(x). Applying Cauchy’s formula3 on the

3As mentioned before, Prop. A6 i.) and Theorem 7.2 i) in [13] imply that the map λ 7→∫
dµ eiλφ(δk⊗h) is entire.
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circle of radius R centred around λ = 0 yields

∫

Q

φ(0, h)
p
dµ ≤ p!R−pecR

κ‖r‖κ

κ .

Optimizing this bound w.r.t. R yields

∫

Q

φ (0, h)p dµ ≤ p!

(
cκe

p

)p/κ

‖r‖p
κ
≤ p! |h|p

S
. (60)

Here we have used supp∈N

(
cκe
p

)p/κ
<∞ and the fact that

‖r‖κ = ‖δ‖
H−

1
2
−

ǫ
2 (Sβ)

(∫
|h(x)|κdx

)1/κ

can be estimated by a Schwartz semi-norm if h ∈ S (R) and κ > 2. Combin-
ing (58) and (60) we arrive at

|||h|||pp ≤ p! |h|p
S
,

which establishes the lemma.

Remark 3.8. Using the φ-bound (28) one can use the equation preceding [13,
Equ. (A.9), p. 165] to arrive at Fröhlich’s bound

∫
e±φ(g⊗h)dµ ≤ ec

∫

R
dx |h(x)|2Cβ(g,g) , g ∈ H−1/2(Sβ) , h ∈ L2

R
(R) ,

stated (for the special case g = 1[0,l] a characteristic function) in [10, Equ. (7)].
However, using only this bound, we were unable to establish the existence of the
products estimated in Lemma 3.7.

Theorem 3.9. The thermal Wightman functions

W
(n−1)
β

(
t1 − t2, x1 − x2, . . . , tn−1 − tn, xn−1 − xn

)

are tempered distributions, which satisfy the relativistic KMS condition, i.e.,
they

i.) are the boundary values of functions W(n−1)
β analytic in the interior of the

product of domains

(λ1Tβ)× · · · × (λn−1Tβ), Tβ := R
2 − iVβ , (61)

where λi > 0, i = 1, . . . , n− 1 and
∑n−1

i=1 λi = 1;
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ii.) satisfy the following boundary condition: for any time-like vector e =
(e0, e1) ∈ V +

lim
e→0

W(n−1)
β

(
s1, y1, . . . , sk−1, yk−1, sk − ie0, yk − ie1, . . . , sn−1, yn−1

)

= W
(n−1)
β

(
s1, y1, . . . , sn−1, yn−1

)
(62)

and

lim
e→0

W(n−1)
β

(
s1, y1, . . . , sk−1, yk−1, sk − iβ + ie0, yk + ie1, . . . , sn−1, yn−1

)

= W
(n−1)
β

(
sk, yk, . . . , sn, yn, s1, y1, . . . , sk−2, yk−2

)
(63)

for all (s1, y1 . . . , sn−1, yn−1) ∈ R2(n−1). We have set sk = tk − tk+1 and
yk = xk−xk+1, 1 ≤ k < n, and in addition, sn = tn−t1 and yn = xn−x1.

Proof. The domain of analyticity of the thermal Wightman functions W(n−1)
β

stated in i.) was established in Theorem 3.4. Thus it remains to establish ii.).
We first prove that the boundary values in the distinguished time direction (1, 0)
define tempered distributions. In the sequel, we show that the boundary values
in a time-like direction e = (e0, e1) coincide with them.

Within their domain of analyticity the Wightman functions can be approx-
imated by the expectation values of bounded operators: let h ∈ C∞

0R(R) and
set

φℓ(t, h) := φ+ℓ (t, h)− φ−ℓ (t, h) , t ∈ R .

To ease the notation, put

s = (t1 − t2, . . . , tn−1 − tn) ,

α = (α1 − α2, . . . , αn−1 − αn) ,

y = (x1 − x2, . . . , xn−1 − xn) .

Now define, using the nuclear theorem, the kernels Wℓ1,...,ℓn(s − iα, y) with
0 < αn < . . . < α1 < β, by requiring that

∫
dx1 · · · dxn Wℓ1,...,ℓn(s− iα, y) h1(x1) · · ·hn(xn)
.
= ωβ

(
φℓ1(r1, h1) · · ·φℓn(rn, hn)

)
↾ri=ti+iαi

for all h1, . . . , hn ∈ C∞
0R(R). As before, the subscript ↾ ri = ti + iαi indicates

the analytic continuation from ti to ti + iαi, i = 1, . . . , n.
Clearly,

lim
ℓi→∞

Wℓ1,...,ℓn(−iα, y)

= lim
ℓi→∞

∫

Q

φ(ℓ1)(α1, x1) · · ·φ(ℓn)(α1, x1) dµ

= W(n−1)
β

(
−i(α1 − α2), y1, . . . ,−i(αn−1 − αn), yn−1

)
.
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We have used the notation introduced in paragraph ii.), Theorem 3.9. In addi-

tion, we have set φ(ℓ)(α, h) := φ
(ℓ)
+ (α, h)−φ(ℓ)− (α, h). Since the functions involved

are all bounded on compact sets of their domain of analyticity, it follows that
for 0 < αn < . . . < α1 < β, i = 1, . . . , n,

lim
ℓi→∞

Wℓ1,...,ℓn(s− iα, y)

= W(n−1)
β

(
s1 − i(α1 − α2), y1, . . . , sn−1 − i(αn−1 − αn), yn−1

)
, (64)

uniformly on compact sets in their domain of analyticity. We denote this limit
by W(s− iα, y).

We now show that there exist uniform bounds (independent of ℓi,i = 1, . . . , n)
as we approach the real boundary of the domain of analyticity: by construction

∫
dx1 · · ·dxn W(s− iα, y) h1(x1) · · ·hn(xn)

= lim
ℓi→∞

ωβ

(
φℓ1(r1, h1) · · ·φℓn(rn, hn)

)
↾ri=ti+iαi

(65)

for 0 < αn < . . . < α1 < β. Now the Hölder inequality (52) implies that each of
the 2n terms arising from the linear polar decomposition can be estimated: for
0 < αn < . . . < α1 < β, i = 1, . . . , n, we have

lim
ℓi→∞

∣∣∣ωβ

(
φ±ℓ1(r1, h1) · · ·φ

±
ℓn
(rn, hn)

)
↾ri=ti+iαi

∣∣∣

≤ lim
ℓi→∞

‖φ±ℓ1(t1, h1)‖p1
· · · ‖φ±ℓn(tn, hn)‖pn

≤ p1
2

· · · pn
2

· |h1|S · · · |hn|S , t1, . . . , tn ∈ R , (66)

with pi ≡ pi(α) the smallest integer such that

1

pi(α)
<

1

β
min {αi+1 − αi , αi − αi−1} , i = 1, . . . , n .

(Setting α0 = β − αn and αn+1 = β − α1.) In the second inequality in (66) we
have used Lemma 3.7 to conclude that for p sufficiently large4

lim
ℓ→∞

‖φ±ℓ (t, h)‖p ≤ |||h|||p ≤ p
√
p! · |h|S <

p

2
· |h|S .

Thus, for 0 < αn < . . . < α1 < β,
∫
dx1 · · ·dxn W(s− iα, y) h1(x1) · · ·hn(xn)

≤ p1(α)

2
· · · pn(α)

2
· |h1|S · · · |hn|S , t1, . . . , tn ∈ R .

Note that pi(λα) ∼ λ−1pi(α) for λց 0.

4Recall that p! < (p/2)p for p ≥ 6.
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We will now show, following ideas in [40, p. 24], that this bound ensures
that the boundary values exist as tempered distributions as αi ց 0: define,
for λ ∈ (0, 1] fixed, a tempered distribution Tα(λ) ∈ S ′(Rn−1) by setting, for
g ∈ S (Rn−1),

Tα(λ)(g) :=

∫

Rn−1

ds g(s)

∫
dx1 · · · dxn W(s− iλα, y) h(x1) · · ·h(xn) .

Let T
(k)
α (λ), k = 1, 2, . . ., denote the k-th distributional derivative, specified by

setting

T (k)
α (λ)(g) (67)

=

∫

Rn−1

ds

∫
dx1 · · · dxn W(s− iλα, y) h1(x1) · · ·hn(xn)

(
iα · ∂

∂s

)k

g(s) .

Thus, by the fundamental theorem of calculus,

Tα(λ) = Tα(1) +

k−1∑

j=1

Qj(λ)T
(j)
α (1)

−
∫ 1

λ

dλk

∫ 1

λk

dλk−1 · · ·
∫ 1

λ2

dλ1 T
(k)
α (λ1) . (68)

The Qj’s in (68) are suitable polynomials. The limit λ ↓ 0 in (68) can be taken,
provided that there exists a k such that

lim
λ↓0

∣∣∣∣
∫ 1

λ

dλk

∫ 1

λk

dλk−1 · · ·
∫ 1

λ2

dλ1 T
(k)
α (λ1)(g)

∣∣∣∣ < c · ‖g‖S , (69)

with c > 0 a constant and ‖g‖S a Schwartz semi-norm. This is done by es-

timating T
(k)
α (λ)(g) as given in (67) for λ ∈ (0, 1]: choose some m ∈ N large

enough so that
∫
Rn−1 ds (1 + |s|)−m <∞. Then, for λ ∈ (0, 1],

∣∣∣T j
α(λ)(g)

∣∣∣ = C sup
t∈Rn−1

|(1 + |s|)m|
∣∣∣∣∣

(
iα · ∂

∂s

)j

g(s)

∣∣∣∣∣
× p1(λα) · · · pn(λα) · |h1|S · · · |hn|S

≤ C′ · λ−n , C, C′ > 0 . (70)

Note that

lim
λ↓0

∣∣∣∣
∫ 1

λ

dλk

∫ 1

λk

dλk−1 · · ·
∫ 1

λ2

dλ1 λ
−n
1

∣∣∣∣ <∞ (71)

for k sufficiently large, i.e., k ≥ n + 1. Combining (69), (70), and (71) one
concludes that the limit of Tα(λ) exists as λ ↓ 0 and that each term in the limit
is less than or equal to a constant times an S (Rn−1)-seminorm of g. Thus

W(s− iα, x) = W(n−1)
β

(
s1 − i(α1 − α2), y1, . . . , sn−1 − i(αn−1 − αn), yn−1

)
.
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converges in S ′(Rn−1) as α ↓ 0 to a tempered distribution. The latter is denoted

by W
(n−1)
β (t1 − t2, x1 − x2, . . . , tn−1 − tn, xn−1 − xn).

Now suppose that e = (τ1, z1, . . . τn−1, zn−1) ∈ R2(n−1) is an (n− 1)-tuple of

time-like unit vectors (τi, zi) ∈ V +, and that h̃i ∈ C∞
0R(R), i = 1, . . . , n. To ease

the notation we set

h(x) = h1(x1) · · ·hn(xn) ,
ατ =

(
τ1(α1 − α2), . . . , τn−1(αn−1 − αn)

)
.

Then

Tαe(λ)(g)
.
=

∫

Rn−1

ds g(s)

∫
dx1 · · ·dxn h1(x1) · · ·hn(xn)

×W
(
(s, y)− iλαe+ iλα(e− (1, 0))

)

=

∫

Rn−1

ds g
(
s
) ∫

dx1 · · · dxn h(x1 + iλz1) · · ·h(xn−1 + iλzn−1)h(xn)

×W
(
(s− iλατ , y)

)
,

where we have used the fact that the hi’s, i = 1, . . . , n, are entire and the esti-
mates in the Paley-Wiener theorem (Theorem IX.11 [40]) to shift the hyperplane
of integration in second equality.

Since h̃i ∈ C∞
0R(R), h(xi+ iλzi) → h(xi) as λց 0. Since such hi’s, are dense

in S (R),
lim
λ↓0

Tα,e(λ)(g) = Tατ
(0)
(
g
)
= Tα(0)

(
g
)
.

Thus, the limit of W
(
(s, x)− iαe

)
coincides with the tempered distribution

W
(n−1)
β (t1 − t2, x1 − x2, . . . , tn−1 − tn, xn−1 − xn)

encountered before.
The KMS boundary condition follows by differentiating (see (39)) the bound-

ary condition of the corresponding Weyl operators given in (26).

Remark 3.10. We note that the thermal Wightman distributions

W
(n−1)
β (t1 − t2, x1 − x2, . . . , tn−1 − tn, xn−1 − xn)

are analytic functions as long as the (ti, xi), i = 1, . . . n, are mutually space-like
points. This can be shown by an argument similar to the one outlined in the
discussion preceding Theorem 2.10.

4 Summary and Outlook

For quite some time the pioneering work of Høegh-Krohn [23] did not find the
recognition it deserves. However, the thermal P(ϕ)2 model should be seen as
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a binding link between statistical mechanics and quantum field theory. The
authors believe that by providing more detail on the construction of this model
(see [12][13]) and verifying that it satisfies key axioms, other scientists might get
motivated to look at this model in more detail. In fact, the physical properties
of this model have hardly been explored so far. It would be interesting to know
how, for instance, the specific heat behaves as a function of the temperature
and the coupling constants. A more challenging question is to investigate the
particle content of this model. Eventually, one may want to set up scattering
theory at positive temperature or prove the uniqueness of the KMS state for
all temperatures and all allowed values of the coupling constant. There are
strong indications that the correlation functions decay exponentially in space-
like directions, and thus it seems to the authors that all of these questions can
be resolved with reasonable amount of work.
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[24] Jäkel, C., The Reeh-Schlieder property for thermal field theories, J. Math.
Phys. 41 (2000) 1745–1754.
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