1103.3609v3 [math-ph] 17 Mar 2014

arXiv

The relativistic KMS condition for the thermal
n-point functions of the P(¢), model

Christian D. Jakel* Florian Roblf
School of Mathematics, Cardiff University, Wales, UK

March 18, 2014

Abstract

Thermal quantum field theories are expected to obey a relativistic
KMS condition, which replaces both the relativistic spectrum condition
of Wightman quantum field theory and the KMS condition characterising
equilibrium states in quantum statistical mechanics.

In a previous work it has been shown that the two-point function of
the thermal Z(p)2 model satisfies the relativistic KMS condition. Here
we extend this result to general n-point functions. In addition, we verify
that the thermal Wightman distributions are tempered.

1 Introduction

For many practical purposes it may be sufficient to study thermal field theory
in finite spatial volume, where the Hamiltonian Hj,, has discrete spectrum and
is bounded from below. The thermal expectation value of an observable O at
temperature $~! is then given by the Gibbs state

Tre AHvox O
(O)p = Tre—BHos (1)

However, if one wants to investigate the structural properties resulting from
Poincaré invariance of the underlying equations of motion, thermal equilibrium
states in infinite volume have to be considered. Fortunately, the appropriate
generalisation of (Il) to infinite volume is well-known: in finite volume the
Gibbs states are characterised by their analyticity properties. The latter are
summarised in the KMS condition (see, e.g., [3]). Haag, Hugenholtz and Win-
nink have shown that this characterisation remains valid in the thermodynamic
limit [20]. In fact, in infinite volume one can derive the KMS condition from
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first principles, which characterise thermal equilibrium states phenomenologi-
cally. For example, one can derive the KMS condition from passivity [39] or
stability under small adiabatic perturbations of the dynamics [21][36].

Analyticity properties of the correlation functions were previously used by
Wightman to characterise the vacuum state of a relativistic quantum field the-
ory [47]. The intention was to guarantee stability of the vacuum, and indeed
the requested analyticity properties of the correlation functions ensure that the
energy is bounded from below. But soon it turned out that also most peculiar
structural properties (e.g., the Reeh-Schlieder property [41]) follow from the an-
alyticity properties of the correlation functions. These properties, first rejected
as mathematical artifacts resulting from over-idealisation, are nowadays con-
sidered to be characteristic for any proper quantum field theory. Experiments
testing these properties have yet to be devised, but similar phenomena related
to entanglement in quantum mechanics are intensely investigated.

Although vacuum states and thermal equilibrium states are both charac-
terised by analyticity properties of the correlation functions, there is a pro-
nounced difference between them: a state in thermal equilibrium cannot be
invariant under Lorentz boosts [35][38], even if the equations of motion are in-
variant under Poincaré transformations and the propagation speed of signals is
finite. Hitherto the correlation functions of a thermal state were required to be
analytic only with respect to the time-direction distinguished by the rest-frame
of the equilibrium state. Structural results, which are similar to the ones derived
from the spectrum condition of Wightman field theory, cannot be derived from
the traditional KMS condition alone.

The picture changed fundamentally, when Bros and Buchholz [] (see also
[5][32][33]) recognised that the passivity properties of an equilibrium state should
be visible even to an observer, who is moving with respect to the rest frame dis-
tinguished by the KMS state. Carefully evaluating the consequences, Bros and
Buchholz suggested that the thermal correlation functions of a relativistic sys-
tem can be continued analytically into the tube domain R+i (V+ N (Be — V1)),
where [ plays the role of the reciprocal temperature of the system, e is the unit
vector in the time direction distinguished by the rest-frame, d = 2, 3,... is the
dimension of space-time and V* := {(t,%) € R? | |#| < t} denotes the (open)
forward light-cone. The consequences of the new relativistic KMS condition are
profound, aligning thermal field theory and vacuum field theory w.r.t. basic,
structural aspects [24] [25].

The relativistic KMS condition has been established (see [4]) for a large class
of KMS states constructed by Buchholz and Junglas [8]. Moreover, C. Gérard
and the first author have shown that the relativistic KMS condition holds for
the two-point function of the #2(¢)2 model [I4]. The present work extends the
latter result to general n-point functions.

Content In Section [2] we recall the Euclidean field theory on the cylinder.
Using Minlos’ theorem, we define Gaussian measures on a space of distribu-
tions, supported on a cylinder. Following Glimm and Jaffe, we renormalise the



interaction (Theorem 2) by normal ordering the random variables. This al-
lows us to define the Euclidean Z2(¢)2 model on the cylinder with a spatial
cut-off I € RT (see also [I2]). The corresponding probability measure dy; is
absolutely continuous with respect to the Gaussian measure. Nelson symmetry
(see Theorem [23]#7.)) can be used to remove the spatial cut-off: the Schwinger
functions of the thermal £ (¢)s-model on the two-dimensional Minkowski space
at temperature 8! exist and are equal to the Schwinger functions of the vac-
uum Z(p)z-model on the Einstein universe of spatial circumference 8 (up to
interchanging the interpretation of the Euclidean variables («, ) € Sg x R).

The Osterwalder-Schrader reconstructions, presented in Subsection 23] pro-
vide

i.) a thermal field theory on Minkowski space R'*1, consisting of

— a Hilbert space Hg, together with a distinguished vector 25 € Hg;

— avon Neumann algebra Rg C ZA(Hg), together with an abelian sub-
algebra, generated by the bounded functions of the time-zero fields;

— a one-parameter group of time-translation automorphisms {7, | ¢t €
R} induced by unitary operators e*” with spectrum of L equal to R;

i1.) a vacuum theory on the FEinstein universe (a cylinder, with the position
variable taking values on the circle Sg and the time variable real valued),
consisting of

— a Hilbert space H¢, together with a distinguished vector Q¢ € He;

— avon Neumann algebra Ro C #(Hc ), together with an abelian sub-
algebra, generated by the bounded functions of the time-zero fields;

— a one-parameter group of time-translation automorphisms {7'615 | s €
R} induced by unitary operators e**fc  with Ho > 0.

In Subsection 24 Wightman field theory on the circle is discussed in some
more detail. We identify H¢ with the Fock space I'(H ~2(S 3)) over the Sobolev

space H™2 (Sp) on the circle Sg, and recall the Glimm-Jaffe ¢-bounds. Accord-
ing to Theorem [Z.6 due to Heifets and Osipov, the joint spectrum of Pc and
H¢ is contained in the forward light cone VT := {(p, E) | |p| < E}. Conse-
quently (Theorem [Z.8]) the Fourier transform of the Wightman n-point function
(expressed in relative variables) has support in (V)?~! and the Wightman n-
point-distribution Ql]glil) itself is the boundary value of a polynomially bounded
function Wé"_l), which is analytic in the forward tube (S5 x R —iV+)n~1.

Lemma characterises a set of space-time points in Sg x R, which are
mutually space-like to each other. Locality implies that the Wightman n-point
functions are real valued, if evaluated at these points. Thus, using Schwarz’s
reflection principle, we can extend the Wightman n-point functions on the circle
to functions, which (expressed in relative variables) are holomorphic in

DI = MV X X A1 Vp) + i (VEUVT) xox (VEUVT), (2)



where Vi = {(a,s) | |s| < @ < 8 —s|}, i > 0 and Z?:_ll Ai = 1. The
Edge-of-the-Wedge theorem [47, Theorem 2-16][6] implies that the tempered
distributions Qﬁ(g_l) are the boundary values of functions defined and holomor-
phic in
¢V .= N u DY, (3)
where AV is a complex neighbourhood of A1V x ... x A,—1 V3 (Theorem 2.10).
In Section 3 we return to the thermal Z?(¢)2 model on the two dimensional
Minkowski space. Invoking (2)), Nelson symmetry implies that analytic contin-

uations of the thermal Wightman distributions Ql]glil) can a priori be defined
(as analytic functions) in the domain

(Q uUQH"  —i(MVs x ... x \1Vp)

where the right and left space-like wedges are Q* = {(t,z) € R? | £z > [t|},
and, as before, \; > 0 and E;:ll A= 1.

The existence of products of thermal sharp-time fields is shown in Lemma[31]
Taking advantage of their Euclidean heritage, their domain properties are sum-
marised in Proposition[3.21 The spectral theorem is used to extend the functions
Wén_l) to functions holomorphic in the product of domains

n—1
MTp) X x M1 Tp),  Tp=RP =iV, Y A=1,
j=1

and A\; > 0, j =1,...,n — 1 (Theorem [B4]). The final subsection deals with
the boundary values of these functions. A generalisation of Ruelle’s Holder
inequality for Gibbs states, suggested by J. Frohlich in [I0], is presented in
Theorem A fractional ¢-bound, established in Proposition [3.6] provides a
key ingredient in the proof of the final result (Theorem [B9]), which establishes
that the thermal Wightman n-point-distributions Ql]glil) of the Z(¢)2 model
on the real line are tempered distributions which satisfy the relativistic KMS
condition.

2 Euclidean fields on the cylinder

In 1974 Hgegh-Krohn [23] discovered that the Euclidean field theory on the
cylinder allows to reconstruct two distinct quantum field theories. In this section
we recall the main steps of the two reconstructions [12} [13], leading to a vacuum
theory on the Einstein universe (a cylinder, with the position variable taking
values on a circle and the time variable real valued) and a thermal theory on
1 + 1-dimensional Minkowski space.

2.1 Probability measures on the cylinder

Consider a cylinder S3 x R, with Sg the circle of circumference 8. The coordi-
nates («,z) € Sg x R of a point in the cylinder will refer to either one of the
charts [-3/2,6/2) x Ror [0,3) x R.



Let Z(R) denote the set of Schwartz functions on the real line. For con-
sistency we denote the set of C*°-functions on the circle Sz by .7(S3). The
Fréchet space #(Sg x R) is the space of smooth functions f on the cylinder,
which are p-periodic in o and fulfil

1+ |z))F 820k f(o,2)| < Cpr,  pEN, keN.

S(R), '(Sp) and #’(Ss x R) denote the dual spaces of #(R), .#(S3) and
(S x R). The real-linear subspaces of real valued distributions are indicated
by S%(R), F%(Ss) and Q = S%(Ss x R). The Borel o-algebra ¥ on @ is
the minimal o-algebra containing all open sets in the o(’,.%)-topology. The
evaluation map ¢(f), f € Sr(Ss x R),

o(f): Q@ =R, q—(qf)

is defined in terms of the duality bracket (., .). In the present context ¢ is
called the Fuclidean quantum field.
If du is a probability measure on the space (@, Y), then its Fourier transform

E(f) = /Qew”’du, f € %x(Ss x R),

satisfies
i.) E(0) =1,
ii.) SR(Sp xR) > f+— E(f) € C is continuous;
i#i.) for all f;, f; € SR(Sg x R) and z;,2; € C, 4,5 =1,...,n,

n

ij=1

On the converse, Minlos’ theorem [T)[15][34][46] states that any function E on
R(Ss x R) satisfying the properties i.)—i4i.) is the Fourier transform of a prob-
ability measure du on Q.

Generating functionals of the form

Eo(f)=e CUD2 0 fe #(Ss xR), (4)

with C(., .) a weakly continuous positive semi-definite quadratic form, clearly
satisfy the conditions i.)—iii.) of Minlos’ theorem and thus give rise to proba-
bility measures on (@, X). These measures are called Gaussian measures. The
Gaussian measure on @, with covariance

C(f1, f2) == (fr,(DE+D2+m*) " fa),  f1,f2€.5(Ss xR), (5)

is denoted by d¢c. The scalar product (., .) in (&) refers to L?(Sg x R) and
Dy = —i0y, Dy = —i0,. The Euclidean quantum field ¢ on the cylinder is



called free, if ¢(f) is viewed as a measurable function on the probability space
(Q7 X, d¢C) :

In this work we are interested in non-Gaussian measures (see Theorem 23
below). They formally result from adding a polynomial of the form & (y), where
P(N), A € R, is a polynomial which is bounded from below, to the Hamiltonian
of the free massive boson field.

In two dimensions, the singularities, which arise from taking powers of the
Euclidean field ¢ at a point (a,x) € Sz X R, can be removed by first normal
ordering :.:. (see [15, [46]) the monomials ¢(f)™, n € N,

[n/2] |
. n. ._ n: n—2m (_l )m 6
Yo 1= D gy 0 (el ) ()
with respect to a covariance ¢, and then taking appropriate limits. [.] denotes

taking the integer part. We will normal order with respect to different covari-
ances ¢, some of them being limiting cases of the covariance C' defined in ().

Normal-ordering of point-like fields is ill-defined (i.e., one cannot replace the
test function f € S&(Ss x R) in (@) by a two dimensional Dirac §-function),
but integrals over normal-ordered point-like fields can be defined rigorously: set,
for k€ N and k € RT,

Sp(a) := 71 Z e and  6.(x) := rx(k),

In|<k

where v,, = 27n/3, n € N, and x is an arbitrary, absolutely integrable function
in C5°(R) with [ x(z)dz = 1. With these notations we have the following result
due to Glimm and Jaffe:

Theorem 2.1 (Ultraviolet renormalisation [I3][15]). For f € L'(Ss x R) N

L?(Sg x R), the following limit exists in (| LP(Q,%,d¢c):
1<p<oo

lim fla,2) :¢(0k(. — @) @6, (. — x))n ;o dadz. (7)

k,k—00 SgxR

We denote it by fsﬁx[R flay ) 9o, 2)":c dadx.

Remark This key theorem, which follows from exactly the same arguments
as in the vacuum case analyzed by Glimm and Jaffe [15], establishes a crucial
step forward in the construction of the Z2(y)2 model in finite volume, as it takes
care (see Eq. ([8)) below) of the wltraviolet renormalisation.

Let Z(\) =3, ¢jM be a real valued polynomial, which is bounded from
below. Replacing the function f in (@) by the characteristic function of the set
Sg x [—1,1], 1 € R", and applying [46, Lemma V.5], we deduce that

B/ . .
o Joha JLi 2 (dlae))io dade LYQ,%,dgo) if 0<l<oo. (8)



The Euclidean Z(¢)2 model on the cylinder with a spatial cut-off [ € RY is
specified by setting

1 _ 82 . 3 .
A )

The partition function Z; is chosen such that fQ dp;y = 1. If I < oo, then the
measure dy; is absolutely continuous with respect to the Gaussian measure d¢c,
with Radon-Nikodym derivative dy;/d¢¢c given by (8). However, the limit of
the functions in (§) fails to be in L'(Q,%,d¢c) as | — oo, and therefore the
formal limiting measure can not be absolutely continuous with respect to the
Gaussian measure. In fact, in order to show that a countably additive Borel
measure exists in the limit [ — oo, it is sufficient to show (see Theorem
below) that

lim [ ®Ddy = Ex(f), € 7(SpxR), (10)
l—+o0 Q
defines a generating functional on .#%(Sg x R) satisfying the properties i.)—iii.)
of Minlos’ theorem.

2.2 Sharp-time fields, Existence of the Euclidean measure
in the thermodynamic limit, and Nelson symmetry

Cluster expansions (see e.g. [19]) certainly allow one to control the limit in
(@@). But for the thermal Z?(y)s model, in which we are interested, there is
another option, which was first explored in this context by Hgegh-Krohn [23]:
Nelson symmetry. It results from replacing the product measure dadz in the
exponent in ([@) by iterated integrals with respect to the two measures da and
dz, in different orders. The delicate point, which will now be addressed in some
more detail, is that one of the limits in () can be interchanged with one of the
integrations.
In [I3] it has been shown that

i.) for hy,he € SR(R) and 0 < oy, < S,
lim C(ék( — al) & hl,ék/(. - 042) ® hg)

kK —o00
—|or—azle —(B—la1—az|)e
e +e

— (h, h ) (11
( ! 2¢(1 — e=Pe) %) L2 (Rode) (11)

1

with € := (Dg + m2) 2,

ii.) for g1,92 € SR(Sp) and z1, 22 € R,
lim (g1 ®35 5 R

i ® ACIE 9 ® K// L - ( b - a.. ) )
n,nl’goo (gl ( Il) 92 ( IEQ)) g 2v 92 L2%(Sg,da)
(12)

with v := (Di + m2)%.



Thus, for h € S&(R), g € &r(S) and o € S, = € R fixed, the sequences of
functions

{¢(5;€(. —a)® h)}keD\J and {(b(g ® 0 (. — :C))}KGN

are Cauchy sequences in ﬂ1<p<oo L?(Q,%,d¢¢). This can be derived from the
definition of the generating Gaussian functional, as (@) implies

0, podd,
Pdde — 13
[, purraoe {<p— DILC(f, )72, p even, (13)
with n!l =n(n —2)(n —4)---1. We can therefore define sharp-time fields

(o h) = lim o(6s(.—a)®h), é(g,z) = Jim_ P(g@6.(.—x). (14)

We note that both ¢(c, h) and ¢(g, z) belong to (., ., LP(Q, X, d¢c).
Lemma 2.2 (Integrals over sharp-time fields [13]).
i.) For h € LY(R) N L?(R) and o € [0,2m) the limit

lim [ h(z) :d(a, 04x(. — )" i, do (15)
K— 00 R
exists i (N1<po0o LP(Q, %, ddc). Denote it by [ h(z) : ¢p(a,2)" :¢, da.
Normal ordering in ([I3) is with respect to the temperature 3~1 covariance
on R: for hi,hs € 7 (R)

o (1+eF)
Colh, h2) = (hl’ 2¢(1 — e FPe) 2> L2(Rdz) (16)
ii.) For g € L*(Sg) N L3(Ss) and x € R the limit
lim g(a) :p(0k (. — @), 2)" ¢,y dav (17)

k—o00 SB

exists in ()<, LP(Q,2,dgc). Denote it by fS3 g(a) :¢p(a, z)":c da.

Normal ordering in (I7) is w.r.t. the covariance

1

Cs(g1,92) == (91, 5,92 91,92 € (Sp)- (18)

)LQ(Sg,da),

Returning to the integral in (7)), we let f be the characteristic function on
S x [—1,1]. This enables us to rewrite (@) as limg x—oo F'(k, %), where

(n/2] vy _ 1 (2) $(2)y\m
Pl = > O Bl e g0~ )2 0, - )" "

— ml(n —2m)! ax[=1,1]



and 51(3;)@ (o, ) := k() ® 6. (). Interchanging integrals and limits is permitted
by the existence of the limits in (@), (I5) and ([I7). Performing the two limits
in different orders results in

(= 1Co(0s,62) i
kEanFkn—KlergoZ m'n—2m /da/cliﬂli]¢a5 z))
and

[n/2]
2C5(8k, 0k, n—2m
lim F(k,n):klim Z 7 (= 505k, 3k) / /dongék @), z) o

m'n—2m

Note that in the latter expression normal ordering is done w.r.t. the covari-
ance Cg, whilst in the former normal ordering is done with respect to the tem-
perature 3~! covariance Cy on R.

Now let U(a, x), with a € [0,27) and x € R, denote the unitary operators
implementing the rotations and translations on the cylinder in L?(Q, %, du) (for
further details see next section). It follows that the L!-function (8) equals

o JL U0 (P55, :2(¢(a,0)):c, da)da fﬁw U(a,0)(f1, :2(6(0,2)):c, dz)da

(19)
A proof of this identity can be found in [I3] Lemma 5.3]. The analog of (I9)
in the case 8 = oo is known as Nelson symmetry (see e.g. [46]). Interpreting x
in ([9) as the imaginary time one notices that dy = lim;_, - djy is the Euclidean
measure of the vacuum £ (p)s model on the circle. This argument can be made
rigorous (see [13, Theorem 7.2], [23]) by exploiting various properties of a time
dependent heat equation (see [13}, Appendix A]).

Theorem 2.3. Consider sharp-time fields as defined in (14), and integrals
over normal ordered products as defined in (13) and (I7).

i.) (Thermodynamic limit of Euclidean measures). For f € C§R(Ss x R)

8/2 . .
Ez(f) = lim i/ (£ _f U(0,z) (f 52 P(0(,0)):cp da)dmd¢c '
l—+oo J) Q
(20)

i1.) (Nelson symmetry). For f € CiR(Ss x R)

Ez(f) = lim i e e — 252 U (@O0 (JL,:P(8(00):ic dz)dad¢c
=400 Zl
(21)

The map f — Eo(f) is continuous in some Schwartz semi-norm and thus
extends to #(Sg x R) [13, Theorem 7.2 ii.)]. It satisfies the conditions of
Minlos’ theorem and thus defines a probability measure dy.



Remark This result solves the infrared problem for the thermal field theory
under consideration. As mentioned before, we could have used cluster expan-
sions to resolve this problem. However, Nelson symmetry will play a key role in
the sequel, enabling us to transfer results between the two models it connects.

Before we continue, we recall two results, which refer to the LP-spaces for
the interacting measure dy:

Lemma 2.4. [I3, Propositions 7.3 and 7.5]
i.) (Sharp-time fields are in LP(Q, X, du)). Let h € S&(R) and o € Sg. Then
the sequence ¢ (0 (.—)®@h) is Cauchy in Ni<p<oo LP(Q, 2, dp) and hence
¢l h) = lim ¢(0k(. —a)®@h) € [ LP(Q,X,dp).
k— o0 1<p<oo

Moreover, the map

Sﬁ - ﬂlSp<oo LP(Q,Z,d’U)
o = o(a, h)

is continuous for h € SR(R) fized.

ii.) (Convergence of sharp-time Schwinger functions, Part I). Let h; € C§R(R)
and o; € Sg, 1 <i<n. Then

; i (e hy) - CCTR))
i [ (LT ) = [ (I e
szl Q]:l

In Section [3.I] we will show that products of Euclidean sharp-time fields are
as well elements of (., LP(Q,%,du). This will allow us to extend results
of Frohlich [I0], Frohlich and Birke [2], and Klein and Landau [30] concerning
the reconstruction of thermal Green’s functions.

2.3 The Osterwalder-Schrader Reconstruction
The cylinder Sz x R is invariant under rotations and translations
ta e (a,2) = (a+ a2+ 2'), o €]0,27), 2’ €R,

as well as the reflections v: (a,z) — (—a,z) and v': (o, 2) — (a, —z). The
pull-backs

(t&a/’zl)f)(a,x) = f (t(al,)m,)(a,x)) =fla—d,z—1")

acting on the testfunctions f € .#(Ss x R), induce actions on the tempered
distributions ¢ € Q:

(taran®)(F) = (@ 78, ra)(f) == (g, eaf), and  (F@)(f) == (g,¥,f).

Lifting these maps to measurable functions of distribution one finds that

10



i.) the map U(a,2)F(q) := F(t(alm)q), q € Q, defines a two-parameter group
of measure-preserving *-automorphisms of L*°(Q, X, du), strongly contin-
uous in measure, and strongly continuous two-parameter groups of isome-

tries of LP(Q, X, du) for 1 < p < oo;

i1.) the maps RF(q) := F(rq) and R'F(q) := F(r'q) extend to two measure
preserving x-automorphisms of L>°(Q, X, du) and to isometries of LP(Q, X, du)
for 1 <p < o0.

Since du is translation and rotation invariant, U (v, y) is unitary on the Hilbert
space L?(Q,%,du) for v € [0, 8) and y € R.

Notation. For 0 <~ < f3 (resp. 0 < y < 00) we denote by ¥y ;] (resp. »0:9]) the
sub o-algebra of the Borel o-algebra ¥ generated by the functions e'*(f) with
f € SR(Ss x R) and supp f C [0,7] x R (resp. supp f C Sg x [0,y]).

Next define two scalar products:
VE,G € I3(Q. Sp.s/0.di) ;. (F,C) ;:/ RF)G dp,
Q

and
VE,G e L2(Q,20®) du):  (F,GQ) ::/ R'(F)G dp.
Q

The measure dy is Osterwalder-Schrader positive with respect to both reflec-
tions R and R':

VF € L*(Q, S(o,5/2,dp) : (F,F) >0
and

VG e L3H(Q, %10 du) : (G,G) >0.

Let N' C L*(Q, ¥0,8/2), dp) be the kernel of the positive quadratic form (., .)
and NV’ C L?(Q,%19°) dy) the kernel of the positive quadratic form (., .)".
Set

Hs = L*(Q, S0 /9, dp) /N and He = L2(Q,X0:), du) /N

The completions of the pre-Hilbert spaces are taken w.r.t. the norms (., .)%
and (., .)’%, respectively. The canonical projection from L2(Q,E[07I3/2],du)
to Hp and from L?(Q, X0 du) to He are denoted by V and V', respectively.
The distinguished vectors

Qg :=V(1), Qe :=V'(1),

arise as the image of 1, the constant function equal to 1 on Q.

11



The abelian algebra

i.) L>(Q, %0y, du) preserves L?(Q, Y0,5/2),di) and N. Thus a representa-
tion mg of L>(Q, X0y, du) on the Hilbert spaces Hp is given by

ma(A)V(F) := V(AF), F e L*(Q,%p0,5/2,dp), A€ L¥(Q,0y,dn);
ii.) L=(Q, %10 du) preserves L2(Q, X% du) and N’. Thus one obtains a
representation m¢ of L=(Q, 219, du) on H e, specified by

mo(B)YV'(G) :=V'(BG), G e L*Q,%%) du), Be L=(Q,x du).

The corresponding von Neumann algebras can be interpreted as the algebras
generated by bounded functions of the thermal time-zero fields on the real line
and the vacuum time-zero fields on the circle, respectively.

The reconstruction of the dynamics requires a more pronounced distinction
of the two cases under consideration, which in the thermal case relies on a
remarkable result on local symmetric semi-groups by Frohlich [T1] and, inde-
pendently, Klein and Landau [31]:

i.) The semigroup {U(a,0)}s>0 does not preserve L2(Q,Z[07ﬂ/2},du). But
setting, for 0 <~y < 3/2,

Dyi=VM,,  with My :=L*(Q,%p /2, dp),

one can define, for 0 < a < ~, a linear operator P(«): D, — Hg with
domain D by setting

P(a)Vy := VU (a,0)1, P e M,.
The triple (P(a), Dq, 8/2) forms a local symmetric semigroup (see [L1][31]):

a.) for each a, 0 < a < 3/2, D, is a linear subset of Hg such that
Dy DD, if0<a<y<3/2, and

D= U D,

0<a<p/2

is dense in Hg;

b.) for each o, 0 < o < /2, P(a) is a linear operator on Hg with
domain D,;

c.) P(0)=1, P(a)Dy C Dy_q for 0 < a <~ < /2, and
P(a)P(7) = P(a+7)

on DaJr’y for a, 7, & +7 € [Oaﬂ/2]7

12



ii.)

d.) P(«) is symmetric, i.e.,
(U, P(a)¥') = (P(a)¥', D), 0<a<p/2,
for all U, 0" € D, and 0 < a < 3/2;
e.) P(«) is weakly continuous, i.e., if ¥ € D, 0 < < /2, then
a— (U, P(a)¥)
is a continuous function of « for 0 < a < .

By the results cited [II][31] there exists a selfadjoint operator L on Hg
such that for 0 < o <

V(U(O&, O)F) = e_aLV(F)v Fe Lz(Qv E[O,,B/2—'y]a du)

The selfadjoint operator L is said to be associated to the local symmetric
semigroup (P(a),Dy,[3/2). Since 1 € M, and L*>(Q, X0y, dp) M., C
M., for all 0 < v < B/2, it follows that ei?s(MQy € ’D(e_gL), where
e'?s(h) = 75(e9(ON) with h € C53(R).

Lemma 2.5. D, is dense in Hg for 0 < v < /2.
Proof. Assume that
(U, d)=0 VdeD,. (22)
Now consider, for hi, ho € CSR(R) fixed, the analytic function
2 (U, e (h)e=zLeidaha) o), {zeC|0<Rz<[/2}.  (23)

Clearly, e'¢s(h)e=RzLeits(h2) g € D, for 0 < Rz < 7 and consequently,
because of (22), the analytic function (23] vanishes on an open line seg-
ment in the interior of its domain, and is therefore identically zero. It
follows that

(U, ei®s(h)e=5Leita(h2) ) = 0 Vhy hy € CR(R).  (24)

The set {ei‘bﬁ(hl)e_gLew’ﬂ(h?)Qﬂ | hi,he € CGR(R)} is dense in Hg [30,
Theorem 11.2], and therefore (24) implies ¥ = 0. In other words, D, is
dense in Hg. O

The semi-group U (0, z), 2 > 0, preserves the half-space L?(Q, X[0°°) dp)
as U(0,z) maps L*(Q, Xjo,o0), dpt) into itself. Following [29] one can there-
fore define a self-adjoint positive operator Ho on He such that for G €

L2(Q7 E[O,oo)adﬂ)
V'(U(0,2)G) = e *HeV'(@), x> 0. (25)

The operators e *H¢ 2 > 0, form a strongly continuous semigroup of
contractions on Hc¢.

13



The next step in the reconstruction program is to define non-abelian von
Neumann algebras Rg C #B(Hg) and Re C B(Hc ), generated by the operators

Tt70(7TIQ(A)) = eitLFB(A)e_itL, teR, Ae€ LOO(Q, E{O},du),
and

7 o (nc(A) =" Moro(A)e™He, o e R, AeL™(Q,31, du),

*-automorphisms of Rz and Re,

respectively. Clearly 70 and T(l)yg extend to
respectively.

The algebra Rg C #(Hg) has a cyclic and separating vector, namely g.
The time-translation invariant state wg (a normalised positive linear functional)
on Rz defined by

o.)@(a) = (Q,@,aﬂﬂ), aER,@,
is invariant under the spatial translations induced by t(g ), ¥ € R. Furthermore,
it satisfies the KMS condition [30]: the functions
Fhyoh (B =ty ooty — b)) = (Qp 7, (700 )) gy (792 (00)) )

extend to analytic functions in the domain
{(21, 1) ECTT Sz <0, =B < 7] szk}
and satisfy the KMS boundary condition: for each 1 <k <n

Fryoho (81,00, 8k—2,S5—1 — 0, Sk, -, Sn—1)

= Fhpoohnshtsehe1 (Sks oo o3 Sn—15Sns S1, - -+ 5 Sk—2) (26)

with s, =t, —t; and s =tp —tpy1, k=1,...,n—1,and hy,..., h, € CGR.
The algebra Re C Z(Hc) has a cyclic vector, namely Qc. The state we
on R¢,
we(a) :=(Qe,aQe), a € Re,

is invariant under the rotations induced by t(, o), v € [0,27), and satisfies the
spectrum condition (see Theorem 2.6 below), which characterises vacuum states.
Since we is the unique vacuum state (see below), the commutant Ry, of R¢
equals C - 1 and therefore Re = Z(Hce).

2.4 The Wightman functions on the Einstein universe

The Hilbert space H¢ reconstructed in the previous section is unitarily equiv-
alent to the Fock space F(H*% (S3)) over the Sobolev space H™2 (Sp) of order
—% on Sg, equipped with the norm

=

9> = (9. 2) ) o,y - v = (D2t m?)

14



To ease the notation we simply identify corresponding operators and vectors.
For g € /&(Ss) the Segal field operator on H¢, given by

bolg) = iV (@0

d\ A=0

is thereby identified with the Fock space field operator

dc(g) = %(a*w”g) +a(v12g)) (27)

built up from bosonic creation and annihilation operators a*(f) and a(f) (see,
e.g., [A0]). Note that the map f + a*(f) is linear, while the map f — a(f) is
anti-linear.

The (angular) momentum operator Po := dI'(D,) on the circle Sg has
discrete spectrum. Define

V.= g (P (pc(a)):cpda.

The operator sum
dI'(v) +V — E¢

is essentially selfadjoint on its natural domain D(dI'(v)) N D(V) and bounded
from below. Its closure equals the Hamiltonian He of the 2(¢¢)2 model on
the circle Sg, which has been (re-)constructed in the previous section (see (23))).
The additive constant F¢ is chosen such that zero is the lowest eigenvalue, i.e.,
inf Spec (Hc) = 0. This eigenvalue is non—degeneraute(ﬂ7 and the corresponding
eigenvector ¢ can be chosen such that (Q¢,2°) > 0. Here Q° denotes the

Fock vacuum vector in I‘(H’% (Sg)).
Moreover, the Glimm-Jaffe ¢-bounds (see e.g. [9[I8][19], the exact variant
we use can be found in [I3] Proposition 5.4]) hold: for ¢ > 1 and some C € RT,

1/2 -1
£60(9) < Clgll, g, (Ho+ oY Voe HA(Sy),  (29)
and
+6c(9) < Cllgllu-1(s,)(He +¢)  Vge H'(Sp). (29)
The following remarkable result is due to Heifets & Osipov [22]; see also [27].

Theorem 2.6 (Spectrum Condition [22]). The joint spectrum of P and He is
purely discrete and contained in the forward light cone V' :={(p, E) | |p| < E}.

1Glimm and Jaffe have shown in [I7] that the Hamiltonian H with a spatial cutoff, rather
than on a spatial circle, i.e., with periodic boundary conditions, satisfies the properties stated
in this paragraph. Similar arguments apply to H¢, see the proof of Proposition 5.4 in [13].
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The unitary operators Uc(a, 0) € B(He) given by
Uc(a,o) = e'loHc—ale), a € [0,27), o € R, (30)

implement the two parameter group of automorphisms 7;, , of R¢ on the Hilbert
space Ho. Let g; € .7(Sp) and set

oc(gi,00) == ei"iHCgbc(gi)e*i”iHc, i=1,...,n.

By Stone’s theorem, the map o — Ux(0,0) is strongly continuous. Together
with the bound (28] this implies that

W(gn)(ghala s Gnyon) = (Qc, dc(g1,01) -+ dc(gn, 04)0)

exists and is a separately continuous multi-linear functional of the arguments
(giy0:0), i =1,...,n, as they vary over .#(S5) x R. It follows from the nuclear
theorem [47] that this functional can be uniquely represented as a tempered
distribution of the n vectors (e, 0;) € Sg x R. Denote the corresponding dis-
tribution by

Wén)(a17017 .. .,Oén,Un) = (907¢C(a1701) .. ¢C(an70n)Qc) (31)

Translation invariance implies that Wén) depends only on the relative coordi-
nates

&= (ap —@jy1,00 — 0i41), i=1,...,n—1,

or more precisely, that there exists a tempered distribution ‘,ZB(C? Y such that
917(0”71)(61,52, o) = Wc(n)(aladl,am@, ey Oy, Op). (32)

We interpret Ql]glil) as a periodic generalised function, and so its continuous
Fourier transform is a tempered distribution, which can be identified with its
discrete Fourier transform.

Lemma 2.7. Let 958171) denote the Fourier transform of 917(6771). Then the

distributional support of i\ﬁgz—l) is contained in the joint spectrum of Pc and
He.

Proof. The Fourier transform of Qﬁgf*l) is
m(g*l) ((plu El)u (p27 E?)u sy (pn—h En—l)) =

1 n—1 . )£ n—
= (27‘—6)_("_1) /dgl e dgn—l e’ Ej:l (P5: Es) &5 w(C 1)(617 s 7571—1) ’
where

(n—1) _
We (o1 —az,01 —02,...,0p-1 — Qp,0p_1 —0p) =

= (Qc, ¢c(ar)ete2=He g (g, _q)etlon —on-1He g (0, )00
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Next insert, as suggested in [47], a basis of common eigenfunctions . j of the
operators Po, He: for all ® € He the unitary operators Ue(cq, s) defined in
(0) can be expressed as

Uc(a,0)® = Z giloe—ak) (Phoe, @) Uy .
(k,e)€Sp(Pc,Hc)

Now consider, for ®, ® € H¢ fixed, the map

(E,p)— | da / do e 1 ET=P) (P (o, 0)D)
S

= Z /daei —97 %

(k,e)eSp(Pc,Hc)
X / da PR (@ &)(', ¥y, )
Sp
- 3 2m6(E — €)0p(Vgc, ®) (P, Wy o).
(k,e)eSp(Pc,Hc)

The sum on the r.h.s. Vanlshes if (p,E) ¢ Sp(Pc,He). This implies that

the distributional support of QII Y is contained in the joint spectrum of P¢
and HC |

Theorem 2.8. For each n > 1, %81_1) has support in (XN/JF)"’l and Qﬁ(g_l)
is the boundary value of a polynomially bounded function Wsrn_l) analytic in the
forward tube (Sg x R — iV )"~ where V't :={(t,x) € R? | |z| < t}.

Proof. The support property of Qﬁﬁgf*l) was established in Lemma 277l By the
Bros-Epstein-Glaser Lemma [40, Theorem IX.15] there exists a polynomial P
and a polynomially bounded function G~ : R2"»~1) — C obeying

supp G("1 C (V+)(n-1),
such that W " = P(D)G~V, with
oF1t o tbnaithi+

OB} Opl! - OBy opy

P(D): s ki, l; € N.

Consequently an analytic continuation Wﬁfl of Qﬁglfl) to (Sgx R—iV+)n—1
can be defined:

W-(i-n_l)(gl - i7717 o ,57171 - Z.T]nfl) =
= 2nB)" "V P(=i(& —im, .. Eno1 — in-1)) X
n—1 —i(€i—ini ) (v . Es
X f(SgX[R)”*l Hj:l dpjdEj e (& —iny)-(pj Ej) X

xG("fl)((plv By (Pa-1, Bn1)) -
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If n; € VT for all j € {1,...,n — 1}, this integral exists. Furthermore, its
boundary value for (n1,...,7,—1) N\, 0 is QII(C" -, Polynomial boundedness of

the analytic function Wsrnfl) results from the following inequality [40, Theorem
IX.16]:

WD = im, - Gt = i)

S O ‘P(—’L(&l — ’L"I]l, e ,gn,1 — Z?’]nfl))| (1 + d((?’]l, e ,nnfl))iN) .

C is a constant, d((m1,...,M,—1)) is the distance of (n1,...,7,-1) to O(VF)n~1
and N is a positive integer. O

Next we investigate the consequences of locality on the circle Sg = [0, ).

Lemma 2.9. The tempered distributions Wén)(al,ol, ey Qo) defined in
1) are real valued for (oy,01,. .., an,0,) € J™, where

(Ozi,Ui) S S@ X |R,
(01,01, ... 0m,00) € J™ & (i1 — iy 0441 — 03) € AV, (33)
SN =1, A >0,

with Vg :={(a,0) | lo| <a<B—|o|} CSgxRandi=1,...,n—1.

Proof. Assume that the space-time points («;, 0;) and (o, 0;) are space-like to
each other for all choices of i # j and 4,5 € {1,...,n}. Then, as a consequence
of locality, all the field operators ¢¢(«;, 0;) commute (as quadratic forms) with

each other and therefore Wén) (1,01, ... ,ap,0,) equals

(Qc, dc(on,01) - de(an,0,)Qc) = (Qc, dc(an, o) - dc(ar,01)Qc)

— Wén)(al,al, ey Qi O)e

In other words, the tempered distributions Wén) (a1,01,...,an,0,) are real
valued. Thus the lemma follows, once we have shown that the set J(™ consists
of points, which are pairwise space-like to each other.

A point (o, o) on the cylinder is space-like to the origin (0, 0) iff (o, 0) € V.
Space-likeness is a symmetric relation and therefore it suffices to prove that
(e, 04) is space-like to (o, 05) for i > j, i.e.,

(aj,05) = (@,04) € Vg for i>j. (34)
Moreover, for 0 < A < 1,

Vap = {(a,0) € W [|al + o] < AB},
with W the wedge {(a,0) € [0,8) xR | @ > |o|}. The map n: [0,27) x R — R*,

(@, 0) = |l + o],
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defines a norm. Denote its restriction to the wedge W by njy. Equ. (B4) now
follows from the triangle inequality:

‘I‘l|W ((aj,oj) — (ai,oi)) = n‘W((aj — Q1,05 — Uj_1) + ...
oot (ai+1 — O, 0441 — O'l))
< n‘W((aj — Q1,05 — Uj—l)) + ...

ooy (g1 — @iy 0041 — 03))

n—1
<N-1Bt+N—aB+ A NB<BY =5,
k=1

and therefore ([B3]) implies [34). We note that the set of n points on the cylinder,
which are space-like to each other, is actually larger than J). O

Because the tempered distributions Wén) (1,01, ... ,ap,0,) defined in (3T
are real valued for (ay,01,...,ap,0,) € J™ we can apply the Schwarz reflec-
tion principle. The function

W(*n_l)(gl + iﬁl’ o 75"71 + innfl) - Wi"’_l)(gl - 7;7715 .. 757171 - iﬁn—l)
B / 1=} dp;dE;
(SgxR)n—1 (2776)n_1

is analytic on (Sg x R+iV ") x -+ x (Sg x R+4V™") and polynomially bounded
as 1; \, 0. Since V7T is a cone, VT x ... x VT is a cone (by definition).
Applying the Edge-of-the-Wedge theorem [47, Theorem 2-16], we conclude that
there exists a complex neighbourhood A of A1V x ... x \,,—1V3 and a function
W(qu) defined and holomorphic in A" U (Sg x R—iV )"~ 1U(Ss x R+iVF)n—1
which coincides with the restriction of the distributions Qﬁ(g_l) (&1,82, .+, &n-1)

defined in B2) to Vs x ... x A\,—1V3. In fact, by only partially reordering
the fields (see the proof of Lemma [2.9) and using the support properties of

et(&i+in;)-(p; . Ej) ﬁ(g}—l) ((ph B, .., (Pa1, En—l))-

the Fourier transform stated in Theorem 2.8 we can extend W(Cn_l) into the
regions (Sg X RFiVT) x -+ x (Sg x RFiV™T) (the F all being independent).
Note that relative coordinates are used in Wén_l) and therefore reordering of
the arguments results in 1V + being replaced by —iV . Thus we arrive at the

following result:
Theorem 2.10. There exists of a function Wén_l) holomorphic in

c"Y .= N u DY, (35)

which coincides with the restriction of the distributions ‘lﬁgﬁl) (&1,82, .+, &n-1)
defined in (32) to M Vg X ... X N\y—1Vg. Here N is a complex neighbourhood of

MV x ... x N1 Vp and
DO = MV X o X A1 Va) + i(VIUV ) x ... x (VTUVT)

with \; > 0 and Z;:ll Xi = 1. (In fact, one can take the union over these \;’s,
j=1,...,n—1).
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3 The relativistic KMS condition for the P(¢).
model

In the previous section we have seen that the Wightman functions on the circle

are the boundary values of a function W(Cn_l) holomorphic in the region €~
(see (B8)). Now define a new function

Wi = Wi Yozt (36)
where = is the coordinate transformation
(21, W1,y 21, Wp—1) > (21, —Gw1, ..., 02,1, —1Wp_1)

on C2(»=1Y. Then Wén_l) is analytic in the domain

(@ UM —iMVs x ... x X1 V3) UEN, (37)
with \; > 0 and Z?;ll A; = 1, where the right and left wedges are

QF ={(r.y) e R | £y > ||}

Our aim is to show that

i.) the thermal Wightman functions Wén_l) introduced in (36) extend to
functions analytic in the product of domains

n—1
MTp) %o x A1 Tp),  Tp=R*—iVs, > A\=1, (38)
Jj=1

and A\; > 0,7 =1,...,n—1. In fact, one can take the union over these \;’s;

i1.) the boundary values of the analytic functions Wénil) as Jz; \( 0 yield
tempered distributions.

We will also ensure that these tempered distributions are indeed the Wightman
distributions of the thermal field theory on the real line. We proceed in several
steps.

3.1 Products of sharp-time fields and their domains

The representation mg defined in Section is a regular CCR representation
(see [13]), and therefore one can define for h € C§%(R) the Segal field operators

¢ﬁ(h) = —i%wﬁ (ei¢(0,sh))

. 39
o (39)
While Stone’s theorem is convenient to show that ¢g(h) exists as a self-adjoint
unbounded operator, it provides little control on the domain of ¢g(h). In fact,
a priori it is not even clear whether Q3 is an element of D(¢g(h)). We will need
several steps to resolve these domain problems.
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Lemma 3.1.
i.) (Products of sharp-time fields). Let h; € S°(R) fori=1,...,7, 7 € N,
and 0 < oy <...<a; <B. Then

$laj, hy) - dlar, ) € [ LP(Q Do, dp), JEN.  (40)

1<p<oo

i1.) (Convergence of sharp-time Schwinger functions, Part IT). Let h; € C§%(R)
and o; € Sg, 1 <i<n. Then

1im/¢0<n, n) oo, hy) du = /¢an7 n) - @lai, hy) dp.

l—o0

Proof. i.) Consider an approximation of the Dirac d-function: ¢, (z) := kx(kx),
with x a function in C§°(R) and [ x(z)dz = 1. It has been shown in [I3|
Proposition 7.3] that

Jim (0. — i) @ hy) € | LPQ.Z.dw),  hi € Z&(R).

1<p<oo

For later purpose, we briefly recall the proof:

[ 66 ~a)@n) an
Q

= ()" dd;p

where Wi, 4 (f) is a solution of the heat equation

(2, Wiserog) A(01(- = ai) @h)) Q0) |

(ij[a 0 (f) = Wi (f) (—He +idc(fs)), a<b,

with the boundary condition Wi, 4)(f) = 1 and with fi(.) := f(.,b) € Zr(Sps)
for f € S&(Sp xR). Now, if f = 0x(. — ;) ® h;, then the function f, € S&(S3)
is equal to 0x(. — a;)hi(z). Tt follows from (29)), i.e., estimate (5.9) in [I3]
Proposition 5.4], that h; € C§x(R) implies
Foo Ok(- — i)hi(x)) < cllop(. — i) hi(@)l| g1 (s,) (Ho +1)
< clhi(@)[ 10kl zr-1(s,) (Hc +1).

Set 1 (x) := c|hi(z)] H(SkHH*l(Sg) and apply [I3] Lemma A.8] to obtain

dp _
| Wit (B = ) @ 1) | <t iz eI (a)
Since 0y (. — ;) converges to §(. — ;) in H™1(Sg) and h; € C§%(R) for i =
1,...,7, we see that limy_, o ||7x]]1 < 00 and limy o0 ||7k]|cc < 00. Thus
/ 6, h)l dps < 00 (42)
Q
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The estimate ([@0) with p = 1 then follows from the Holder inequality

/Q|¢<aj,hj>---¢<a1,h1>| dusi]f[l</Q|¢<ai,hi>|j du>1/j |

The higher LP-estimates follow as well, as (o, hg) may equal (az, ), k,1 =

1,...

,J- Yjo,a)-measurability follows from the fact that a.) for all k& there is

an ey, (the 0 were chosen to have compact support) such that

k(- —)@h) € [ LP(Q So.arte] i)

1<p<oo

and b.) the upper continuity of .

i1.) Now let h; € C§%(R) and «a; € Sg, 1 < i <n. Part ii.) follows from

lim /Q B hn) - Slas, ) dpu

l—00
dr n
= i (90 Wieaa (S X G- —a) @ i) Qe) ||
= d(am, hy) - dlag, hy) dp

Q

for supp 0x(. — ;) ® h; C Sg x [—a,al, i =1,...,n, as for s < —a < a <t the
map (s,t) = (Qc, Wi 4(f)Qc) is constant. O

The existence of products of sharp time fields in L?(Q, Y, du) allows us to

investigate their domains, taking advantage of their Euclidean heritage:

Proposition 3.2. Let h; € C§%(R), 1 < i <n. Then

7

i.) Qg € D(L) and LOg = 0;

ii.) If aq,...,cn >0 and 2?21 a; < B/2, then

e L gg(hy_1) - e Fhs(h1)s € D(ds(hn)) (43)

and

Pp(hn)e™ *  Fg(hn1) - e Fhg(h1)Qs € D(e”*F).  (44)

Moreover, the linear span of such vectors is dense in Hg and

e Log(hy)e 1L dg(hpo1)...eLps(h1)Qp
= V(U(an, 0)¢(0, hp)U(tn—1,0)9(0, hyn—1) - - - U(a1,0) (0, hl));
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i) If0<ap <---<ap <B8/2and 8/2 < apy1 < ... < a, <3, then

_ e(a"_B)LQQ(hn)e(m“l_a”)L(bB(hn—l) .. e(ak+l—ak+2)L¢B(hk+1)Qﬂ )
e g (hn)e T G (ho) - e 1T gy (hy)Qg) . (45)

iv.) [le= B/ DLgg(hy) - da(h1)Qs| = | 05(hn) - - dp(h1)Qs].

Proof. Let us first note that (@8] formally results from differentiating the fol-
lowing identity, which is a conequence of e'?(0:1) ¢ L>(Q, X0y, dp) for h; €
Ci%(R) and the Osterwalder-Schrader reconstruction outlined in Section 2.3:

- PRIACTRE) du
J, (L)
n k
:/ R(U(ﬁ,o) 11 ei¢(0‘j>hj)> [T ) du
Q =1

j=k+1
— (V(U(ﬁ7 O)G—i¢(—an,hn) o e—i¢(_ak+l7hk+l)) ,V(ei¢(ak7hk) . .ei¢(a1,h1)))

= (e(an*ﬁ)Le*i%(hn)e(an—lfan)Le*i%(hnfl) . .e(ak+1*ak+2)Le*i¢B(hk+1)Qﬁ ,

e~ Lgids(hi)glar—az)Lgigs(ha) .e(ak—l—ak)Lei%(hk)Qﬂ) ,

forl1<i<m,and 0 < a3 <---<ap<f/2and 8/2 <aps1 <...<a, <p.
Note that inserting the identity U(8,0) = 1 ensures that (8 — ;) € [0, 5/2] for
i=k+1,...,n. However, we have to ensure that (@3] is well-defined.

i.) See [31, Lemma 8.4]: 1 € M, thus Qg € D, and e *LQp = P(a)Qp = Qp
as U(a,0)l =1 for 0 < a < f3;

ii.) The case n = 1, namely Q3 € D (¢5(h1)) and
e Los(h)Qs € Hg for 0<aq <B3/2
was proven in [I4]. In fact,
e g5(h1)Qps € D(ds(ha)),
as ¢(0, ha) acts as a multiplication operator on ¢(aq, k1) and
$(0, ha)d(ar, 1) € Mgya_q,
by Lemma B1li.). As P(a)D~y C Dy_q, it follows that

e g5(ha)e” * Fhp(h1)Qs € Dgjo—ar—as
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and ¢(0, hz)p(aa, ha)d(ar + az, hi) € Mgja_qa, —qa, implies
™ g5(ha)e™ d5(h1)Qp € D(¢p(hs)) -
Iterating this argument it follows that
V(d(ag, hi) -+ dlog + ...+ aw, b)) € Dgjasys

if Y8 o <y < /2. Thus (@3) and @) follow.
Next we prove that
e L g (hn)e™ g (1) .. e” s (hn) Qg

is dense in Hg for aq,...,a, > 0 and Z?:l a; < (/2. Assume that, for
U e Hp and all f,g € Cg%(R),

Vm,n € N: (W, ps(f) e P 295(9)™ ) = 0. (46)
ote that is well-defined as a consequence o . e
(Note that (B) is well-defined q f @d).) Ther?
(0, eiabﬂ(f)efﬁL/?ei%(g)QB) —0. (47)

But vectors of the form ei¢5(-f)e_BL/2ei¢ﬁ(9)Q[3, f,9 € C§%(R), are dense
[30L Theorem 11.2] in Hg, and therefore (@) implies ¥ = 0, establishing
the claim.

i) W0 < <...<ar <pB/2and /2 < agy1 < ... < a, < B, then
according to ii.)

(e(an_ﬂ)L¢ﬁ(hn)e(an—l_an)qu)ﬁ (hnfl) . e(ak+l_ak+2)L¢ﬁ(hk+1)Qﬁ ,
e gg(hr)e” 2G5 (hy) . em (kTR gy (hy ) Q5)

is well-defined and equals

(V(¢(ﬁ —ap,hy) . 9B — g, hk+1)) 7V(¢(04ka hi) - (o, hl))) =

= Jo B (TDis 68 — g, ) ) Ty él,hy) du

= fQ R (U(B, O) H?:k+1 ¢(_aj= hj)) H§:1 ¢(aja hj) dp
= fQ R (H?:k+1 ¢(_aj= hj)) H§:1 ¢(aj7 hj) dp
= fQ (H;'l:kJrl ¢(aj= hj)) H§:1 ¢(aj7 hj) dp

- fQ H?Zl d(aj, hy) dp.

We made again use of U(S,0) = 1, which holds by periodicity.

2From Prop. A6 i.) and Theorem 7.2 7) in [I3] it follows that the vector valued function
s,t > V(e?=?(0:eit@(8/2,9)) is entire for f, g € C5%R(R).
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iv.) By ii.) we have ¢5(hy)da(hn—1) - da(h1)Qs € D(e~?L/?). Now
=225 () ba(ha1) -+~ 5 () Q]| =

= [[V(U(8/2.0)6(0, ) -+~ (0, b)) ||”

= JoU(B/2,0)6(0,hn) - (0, ha) RU(B/2,0) $(0, i) - -~ $(0, ha) dpa

= Jo 80, hn) - 6(0,h1) U(=B/2,0) RU(B/2,0) $(0, hn) - - $(0, 1) dps
= [V (¢(0, hn) -+~ (0, m)|I* = b (hn)dp(hin—1) - - - b5 (h1) Q%

again using U(5,0) =
|

The extension of these results to real times is our next objective. Given the
self-adjoint operator ¢g(h), h € Cgx(R), set

bp(t, h) == e pg(h)e™™  teR.

The domain of the self-adjoint operator ¢g(t,h) is e*“D(¢g(h)). That prod-
ucts of field operators smeared out in time can be applied to the distinguished
vector {13 will be shown in the final subsection.

3.2 Analyticity properties of the thermal Wightman dis-
tributions

We can now proceed by using the following remarkable consequence of the KMS
condition established by Araki (see Equ. (1.27) in Lemma A, [I]).

Lemma 3.3 (Araki). Let wg be a (T, 5)-KMS state over a von Neumann alge-
bra R. Let (21,...,2n—1) € C" 7' with 3z; >0 for j=1,....,n—1, and

Q21+ ...+ Sz—1 + 32, < 6/2, Sz, >0,
Szp_1+ ...+ Szpr1 + Sz < B/2, Sl >0, 242 = 2.
Moreover, let z, =i — Z?:_ll zi. It follows that there exists some j = 1,...,k

such that for Ag,...A, € R one has

7 _— -— 7 . . .
(elszAzezzk,lLAz 1o zzlLA*Qﬁ ezszAk+lezzk+1LAk+2 L. elzn,lLAnezanQﬁ)
_ (.izh L Gzl g% 1z izj1L g%
= (errtAp e AL e AT Qp
ezzk+lLAk+2ezzk+2LAk+3 zzn 1LA ezanA zzj 1LA ezzJLQﬂ)
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- e~/ Ce 11
with Szp 1,z > 0,

Szj + Szjp1 + ...+ Sz + Sz < B/2,
Qzjo1+Szj—2+ ... +S21 + Sz + ...+ Szige + Sz < B/2,
and 2 + 2} = Zky1 for some k=0,1,...,n — 1.

The identity stated applies to bounded operators of the fields, but the fields
themselves may be approximated by bounded operators (see, e.g., Equ. (53]
below). After removing these approximations, one finds

(€ Lp(hr)e™ 1 Lp(hy_1) - e L p(h1) Qs
L p(hpr1)e 1 L () - - e L g(hy el L)
= / dzq - -day, hy(z1) - - hn(xn)Wén_l)(zl,xl — Lo,y Zn—1, L1 — Tn).
R2
Note that for 27 = ... = Rz, = 0 the existence of the lh.s. follows from
Proposition[3.214:.). The extension to non-vanishing real parts will be discussed

below. But before we do so, we choose sequences of absolutely integrable func-
tions hgk) € C5°(Sp), i =1,...,n, tending to the Dirac distributions 6(. — xy)

as k — oo. For Rz; =0 and Sz; > 0,7 =1,...,n — 1, the limit £ — oo exists
and yields
Wénfl)(zl, Tl — X2,y 21y Tp—1 — )

_ (e?/k/LJri(zk7zk+1)P¢(5)eizk,1LJri(zk,l7mk)P¢(5) . eHLqLi(mlfmg)P(b(é)QB ,
eizLL¢(5)eizk+1L7i(zk+17mk+2)P¢(5) . eizn,lLfi(zn,l7zn)P¢(5)Qﬁ).
Setting a} = x1 — x2, 2 = w3 — x3, etc., this identity takes the following form

(n—1) / /
We (21,2 Zn1, T )

_ (e@L-i-imgP(b(a)eiz;ﬁ1L+iw;71P¢(5) . eELm'lP(b(a)Qﬁ
eiz;cL—im%P¢(5)eizk+1L—iw§€+1P¢(5) L eizyl*lL_imilflp(b(é)QB) .
We have set x, = x}, + 7/, using the same ratio of the absolute values as in the

splitting of zi, = 2, + z}..
In particular,
||eiz;cL_iw;€P¢(6)eizk+1L_iwk+1P¢(6) .. eiz2k71L_im2k71P¢(5)Qﬂ) ||2
_w(2k-1)
=W5 " (22k—1,T2k—1, - s Tk 15 Thet 1, Zhs Thy 2kt 1, Thetd - - - Z2k—1; T2k—1)

with 2z, = 2z}, and z, = 2z} It follows that the vector valued function

(thy Thy o tp—1,Tp_1) —
bt (g ettt i P g () . gftakmr B P (6)0
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can be analytically continued into the region
(Q - UQTF —iXi Vs x ... x A1V, (48)

with A; > 0 and 32751\ = 1/2.

On the other hand, by first applying Lemma and then removing the
approximations in a similar manner as above, one can establish the following
identity:

-1
Wén )(Zlazlv'-'vznflvxnfl)
_ (eiz;c+lL+iz;€+1P¢(5)emL+im%P¢(5) . eizj+1L+iz;.+1P¢(5)Qﬁ 7 (49)
eiz/k/+1L¢(5)eizk+2L7izk+2P . eianfimnPd)(é)eizlLfile . eiZj,lLfimj,lpd)(é)Qﬁ)'
where z,, = —Zp—-1 — Tp—2 — ... — T1.

Clearly, there are n — 1 different expressions for Wé"_l) which can be gained
by repeated application of Lemma [3.3

Theorem 3.4. The thermal Wightman functions Wénil) introduced in (36)
are analytic in the product of domains

n—1
MT3) X - X A Tp),  Tpi=R?—iVs, d=1, (50
j=1

and \; >0, j=1,...,n—1. In fact, one can take the union over these \;’s.

Proof. We recall that Wé"_l) is an analytic function in the domain (7). Within
the domain ([3T), the Cauchy Schwarz inequality yields

‘Wénil)(zlaxl + Y1,y =1, Tn—1 + Yn—1)

<|

eﬂLer;cP(bﬁ(5o)eizk,1L+z‘(mk,1—iyk,1)P o eELH(acl—iyl)P(bﬁ((;O)Qﬁ H

Here yi, = y;, + v, is split according to the same ratio as z, = z;, + zJ..
As L and P are self-adjoint operators, the spectral theorem implies that the
vector valued function

> ‘ eiz;c’Lfi(kariyg)P(bﬁ((SO) . eizn—lLfi(zn71+iynfl)P¢ﬁ(50)95

(Z]/C/, wg) — eiz;c,Liiw;c,P(bﬁ(éo) . eizn,lLfi(zn,hLiyn,l)Pgbﬁ (50)96

is analytic in the domain (2}, w}) € R? 4+ i2£Vjs (as the norm of the vector
i?Rz;c'L—i%w;c/P)-

is preserved by applying the unitary e And consequentely, the

function Wénil) extends to an analytic function in the domain

((Q— uQ") — Mlvﬁ) SO ((Q— uQ*) — iAk,lvﬁ) (51)
x ([R2 — Mkvﬁ) x ((Q* uQt) - vaﬁ) X ... X ((Q* uQt) — Mn,lvg),
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with A\; > 0 and Z;le Ai = 1. Using the expression (@) one can replace k by
k+1in (EI). Iterating this procedure (eventually renaming the variables) and

applying Hartogs’ theorem [49] p. 30] one concludes that Wén_l) is analytic in
the domain (B0). O

3.3 Temperedness of the thermal Wightman distributions

For a quantum system confined to a box, Ruelle [43][44] has used a Holder
inequality, which applies to the trace in the Gibbs state. It was pointed out by
Frohlich [I0] that this Holder inequality is crucial in the present context.

Theorem 3.5 (Holder inequality). Let wg be a (1, 3)-KMS state over a von
Neumann algebra R. Define for, p € N and A € RT,

i i 1/
[Allp = ws (e"H/PA - e /PA) T

p times

Let (21, .., 2,) € C* with 0 < Rz, Y500 Ry < 1/2 and 377 Rz; < 1/2,

and let p; be the smallest, positive integer such that 1% < min{Rz;1, Rz}, with
J

Zn41 = Zn and zg = z1. Then

‘wg (AneitnBL o AleitlﬁLAO)

< ([ ollpo -~ - [1An]lp, (52)

th:izj'

for all Ao, ..., A, € RY. (The subscript | t; = iz; indicates the analytic con-
tinuation from t; toiz;, j=1,...,n.)

Proof. The proof of this results relies on the theory of non-commutative LP-
spaces and is given in [26]. O

Note that because of the time-invariance of the KMS state, the r.h.s. in (52))
does not depend on ¥z;, i =1,...,n.

Proposition 3.6. For 0 < e <1 fized there exist constants c1,co > 0 such that

lie
toc(9) < allglly-3-5 g, (Ho +e2)2" (53)

forall g e H-275(S).
Proof. Set Hy = dI'(v). Tt is sufficient to prove that
Alg) = (Ho+1) * 0wt ig)(Ho+1) 13

is a bounded operator on Fock space, uniformly bounded for ||g|l2 < 1. The
first order estimate (see, e.g., [42] Equ. (2.21)])

(H() —+ 1) < Cg(HC —+ 02) for Co,C3 > 1

and operator monotonicity of the map A — A* for 0 < a < 1 (see, e.g., [28]
Example 4.6.46]) then ensure the fractional ¢-bound (G3).
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We now follow ideas of Rosen (see, e.g., [42 Proof of Lemma 6.2]). We
show that A(g) is a bounded bilinear form in Fock space. The desired operator
extension then follows from the Riesz representation theorem. It is sufficient to
show that, for ||g|l2 <1,

[(©, A(9) )] < call®] - [[¥],
for @, ¥ arbitrary vectors on Fock space and ¢4 > 0 a constant. Now (see (27))

[(®, A(g)¥)| < %(K(Ho + 1)_i_%@,a*(u%g)(ﬂo + 1)_%—%\1;”

+ (@ (v g)(Ho + 1)~ =20, (Ho + 1) 745 W)])

Since H, (CO ) commutes with the number operator, and both terms are of the same

structure, it is sufficient to prove that for ®,, € ’Hgl) and ¥, _1 € ’Hgﬁl) with
[ @l [¥rall <1

(HE +1)73 28y, 0" (wig)(HE + 1) 20, 0)]
<[+ 1)@, || - [la* (5 g)(HY + 1) 71750, 4|

is uniformly bounded in n. For simplicity it is assumed (in the second inequality
below) that the mass m > 1, so that Z;:ll v(k;) + 1 > n; otherwise one is left
with yet another n-independent constant. Now

— * £ 0 _1_ e
(n+1)"Y2 @, )2 |la* (v g)(HS +1) 71750,y |2

n 2
Sm”q’nﬂ
2
1 “dk; v(kn)? §(ky) ~
0 e S RS
= P (o ) +1)
& ®,||?

S e |

< 2
1 / “ dk; (k) =
X _n P g(kn) \Ifnfl(kl,kQ,...knfl)
B Fl_Il v(k;) <Zi_11 vik;) +1
<lgl3 [ @nll® [n-l?,
which establishes the claim. O

The Euclidean time zero field ¢(0,h) € LP(Q,%,du), 1 < p < oo, can be
approximated by a sequence of functions in L>°(Q, X, du). The latter can be
decomposed in their positive and negative part. Define, for h € Y&(R) and

a€10,p),

(54)

+ (OZ, h) = .
0 otherwise .
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It follows from [45l Lemma 3.5] that ¢Ef)(0, h) — ¢(_e)(0, h) converges to ¢(0,h)
as £ — oo in any Lg-norm with ¢ < p. We can use this result to define approxi-
mations for the thermal time-zero field ¢g(h): set

07 (h) = m3(4 (0. 1)) (55)
and ¢F (¢, h) := el oF (h)e L t € R.
Lemma 3.7. For h € S&(R) and p € N even, the expressions
0l 2= mae (b 65 (1 e o7 (£ 1)} (56)
are bounded from above by Yp!- |h|s, for some Schwartz norm |.|s.

Proof. Set ¢ (ar, h) = limysoo ¢ (a, 1), o € [0, B). We have

|||h|||p—max{hm / H¢<f>(_ ) aw o [ T80 (20 4 }
Q k=1

cons{ [ TLos(420) an, [ TTo-(0) o]
< mae { /{D2 b4 (0,1)" Ay /{D2 6- (0.0 du}. (57)

In the first line we have used the definition of the norm || - ||, , in the third line
we have used the Holder inequality for L?(Q, X, du) and translation invariance
of du.

Since p € N is even and the supports of ¢ (0, h) and ¢_ (0, h) are disjoint,

[os@nrans | o0 Pt [ 6 (0,h)P du
Q supp ¢ (0,h) supp ¢(0,h) -
— [ s ap. (58)
Q

Taking advantage of the fractional ¢-bound (B3]) we can apply [I3] Lemma A.7,
p. 167], which states that there is a constant ¢ > 0 such that

‘ / dp PAHEREN)
for N\€C, x=(5—€¢7',0<e<1/2and
(@) == @) 106] 35 s, -

The limit & — oo exists, as the Dirac §-function is in all Sobolev spaces H? for
q < —1/2. Denote r(z) := limj_,o 7% (x). Applying Cauchy’s formulad on the

< eCl Al (59)

3As_ mentioned before, Prop. A6 i.) and Theorem 7.2 %) in [13] imply that the map A —
[ dp e?(Pk®h) s entire.
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circle of radius R centred around A = 0 yields
/ $(0, h)P dp < p! R7Pect7IMIZ
Q

Optimizing this bound w.r.t. R yields

cxe

p/ >
/Q 5 (0, 1) dps < p! <7> IrlE, < ot P, (60)

p/>
Here we have used sup,¢), (%) < oo and the fact that

1/
Il = 181,35 s, ([ I

can be estimated by a Schwartz semi-norm if h € (R) and s > 2. Combin-
ing (B8) and (60) we arrive at

IRl < p!nf%
which establishes the lemma. O

Remark 3.8. Using the ¢-bound (28) one can use the equation preceding [13,
Equ. (A.9), p. 165] to arrive at Fréohlich’s bound

/ei¢(g®h)du < ol Ih@IPCs09) | g H12(S,) | he IA(R),

stated (for the special case g = 1) a characteristic function) in [10, Equ. (7)].
However, using only this bound, we were unable to establish the existence of the
products estimated in Lemma[3.7]

Theorem 3.9. The thermal Wightman functions
-1
ngn )(tl — 9,01 — T2, ... tn1 — tny Tp—1 — Tp)

are tempered distributions, which satisfy the relativistic KMS condition, i.e.,
they

i.) are the boundary values of functions Wén_l) analytic in the interior of the
product of domains

(MTp) x - X (An—1Tp), Ts :=R* — iV, (61)

where \; >0,i=1,...,n—1 andzzzll)\izl;
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i1.) satisfy the following boundary condition: for any time-like vector e =

(co,e1) € VT
li—% Wﬁ(?n_l) (51791, ey Sk—1,Yk—1,5k — 1€0, Yk — €1, ..., Spn_1, ynil)
=05 (51,51, 501, Un 1) (62)
and
iii% Wﬁ(?n_l) (51791, ey Sk—1Yk—1,5k — i3 +ieo, Yk + €1, ..., 5n_1, ynfl)
_ Qﬁ(ﬁn_l)(sk, Yks s Sns Yns S1o YLy - - - » 5k727yk*2) (63)

for all (s1,91 .-+, 8n—1,Yn—1) € R2("=V) We have set s, = t, — tjp1 and
Yp = Tp—Tr+1, 1 < k <n, and in addition, s, = t,—t1 and y, = T, —T1.

Proof. The domain of analyticity of the thermal Wightman functions Wénil)
stated in i.) was established in Theorem B4l Thus it remains to establish i.).
We first prove that the boundary values in the distinguished time direction (1, 0)
define tempered distributions. In the sequel, we show that the boundary values
in a time-like direction e = (eq, e1) coincide with them.

Within their domain of analyticity the Wightman functions can be approx-
imated by the expectation values of bounded operators: let h € C§R(R) and
set

¢E(t7h> = (bz_(tvh)_gbé_(tvh)a teR.

To ease the notation, put

§:(t1_t27"'7tn71_tn)5
a= (a1 —ag...,0p1—ap),
y=(r1 -2, ., Tn 1 —Tn) .

Now define, using the nuclear theorem, the kernels Wy, 4 (s — iq, g) with
0<ap<...<ap < B, by requiring that

/dirl coodwy, Wy g, (8 —da,y) ha(wy) - by ()
= WB (¢€1 (rlu hl) T ¢én (T"nu h’ﬂ)) rri:ti“l’iai

for all hi,...,h, € CGR(R). As before, the subscript [ 7; = t; + icy; indicates

the analytic continuation from ¢; to ¢; +ic;, i =1,...,n.
Clearly,
lim Wy, . ¢, (—ia,y)
ei*}OO
= lim ¢(€1)(a1,$1) . qﬁ(f”)(al,xl) du

= B (—7;(0[1 _a2)7y15"'5_i(o‘n71 _an)vynfl) .
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We have used the notation introduced in paragraph ii.), Theorem B9 In addi-
tion, we have set ¢(¥) (a, h) := (bf) (o, h)—¢(_e)(a, h). Since the functions involved
are all bounded on compact sets of their domain of analyticity, it follows that
for0<a,<...<a1<B,i=1,...,n,

lim Wy, 0, (s —ia,y)

Zi‘)OO
= én_l)(& —i(on — ), Y1,y Sn1 — (@1 — ) yn—1) ,  (64)

uniformly on compact sets in their domain of analyticity. We denote this limit
by W (s —ia,y).

We now show that there exist uniform bounds (independent of £;,i = 1,...,n)
as we approach the real boundary of the domain of analyticity: by construction

/dxl odazn, W(s —ida,y) ha(zr) - ha(zn)

= é}i—r>noo wps (¢€1 (Tlv hl) T (bfn (Tm hn)) My =t; +icy (65)

for 0 < ay, < ... < ay < . Now the Holder inequality (B2) implies that each of
the 2™ terms arising from the linear polar decomposition can be estimated: for
O<ap,<...<ap < p,i=1,...,n, we have

. + +
Jim_fos (6% 71, 68, ) o
< i {19 (b, bl (167, (tns )l
<Z o Bhly e lhly .t ta€R, (66)

with p; = pi(a) the smallest integer such that

1 .
< —-minf{a1 —a;, a; — i1}, i=1,...,n.

pila) B

(Setting g = 8 — oy, and 11 = 8 — «1.) In the second inequality in (G6) we
have used Lemma B.7 to conclude that for p sufficiently largeﬁ

. p
Jim (16 Wl < Al < §/21- bl < 21l

Thus, for 0 < a, < ... < ay < f3,

/d:rl oday, W(s —ida,y) ha(zr) - ha(zn)

Note that p;(Aa) ~ A~ 1p;(a) for A\, 0.

4Recall that p! < (p/2)P for p > 6.
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We will now show, following ideas in [40, p. 24], that this bound ensures
that the boundary values exist as tempered distributions as «; \, 0: define,
for A € (0,1] fixed, a tempered distribution T,(\) € .%/(R"~!) by setting, for
ge SR,

To(N)(g) == /{Rni1 ds g(§)/d:§1 wdan, W(s —ida,y) h(z1) - h(zn) .

Let Tg(k)(/\), k=1,2,..., denote the k-th distributional derivative, specified by
setting

TN () (67)

= /{Rni1 d§/dx1 woodw, W(s —ida,y) hi(zy) - ho(2n) <ZQ' &)kg(é) .

Thus, by the fundamental theorem of calculus,

k—1
To(N) = Ta(1) + Y Q;(N T (1)
j=1

1 1 1
—/ d/\k/ dA,H--./ dA; TP (Ay) . (63)
A Ak A2 -

The @;’s in (G8) are suitable polynomials. The limit A | 0 in (G8]) can be taken,
provided that there exists a k such that

lim
A0

1 1 1
Joan [ancr [Can Té’“><A1><g>\<c-||g||y, (69)
A Ak Ao

with ¢ > 0 a constant and ||g||.» a Schwartz semi-norm. This is done by es-
timating Tg(k)()\)(g) as given in (@10 for A € (0,1]: choose some m € N large
enough so that ., , ds(1+ [s])”™ < oco. Then, for A € (0,1],

TN =C sup |(1+]s)™|

) >3’
- — S
S < a5 g(s)

x p1(Aa) - pn(Aa) - |hils - [hnls
<C' A\, 0,0 >0. (70)

1 1 1
/ d)\k/ dAg—1-- / dAg AT"
A )\k >\2

for k sufficiently large, i.e., & > n + 1. Combining ([@9), (70Q), and (TI) one
concludes that the limit of T, () exists as A | 0 and that each term in the limit
is less than or equal to a constant times an .#/(R"~!)-seminorm of g. Thus

Note that

lim
pNIS)

< 00 (71)

W(s —ia,z) = Wé"_l)(sl —i(ar — @2),y1,- -, Sn—1 — i(An—1 — On), Yn—1) -
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converges in ./ (R"~1) as a | 0 to a tempered distribution. The latter is denoted
by Qﬂé”*l)(tl —t2, 21 — X2, .., tn1 — ln, Tn-1 — Tn).

Now suppose that e = (71, 21,...Th—1,2n-1) € R2("=1) ig an (n — 1)-tuple of
time-like unit vectors (7;,2;) € V', and that h; € C§R(R), i = 1,...,n. To ease
the notation we set

h(z) = hi(z1) - hal2n) ,

o, = (7'1(041 —ag)y .y Tt (@1 — Oén)) )

Toe(MN)(g) = /[Rmdﬁ g(é)/dwl oday ha(xy) - hy(2n)

x W ((s,y) — idae +ira(e — (1,0)))
= / ds g(§) /dxl cooday, h(xy 4+ iAz1) - (@1 + idzp—1)h(2,)
Rn—1
x W((s —ira,.y))
where we have used the fact that the h;’s, i = 1,...,n, are entire and the esti-
mates in the Paley-Wiener theorem (Theorem IX.11 [40]) to shift the hyperplane
of integration in second equality.
Since h; € CGR(R), h(z; +1iAz;) = h(x;) as A \( 0. Since such h;’s, are dense
in .Z(R),
lim T (M) (g) = Ta, (0) (9) = Ta(0)(g) -

Thus, the limit of W((§, z) — zge) coincides with the tempered distribution

-1
Qﬂgl )(t1 —to, X1 — X2y b1 — by T — Tyy)

encountered before.
The KMS boundary condition follows by differentiating (see (39))) the bound-
ary condition of the corresponding Weyl operators given in (26]). O

Remark 3.10. We note that the thermal Wightman distributions
Qﬂ%nfl)(fl — 2,1 — T, .., bpm1 — ln, Tp—1 — Tn)

are analytic functions as long as the (t;,x;), i = 1,...n, are mutually space-like
points. This can be shown by an argument similar to the one outlined in the
discussion preceding Theorem 210

4 Summary and Outlook

For quite some time the pioneering work of Hgegh-Krohn [23] did not find the

recognition it deserves. However, the thermal Z?(y)s model should be seen as
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a binding link between statistical mechanics and quantum field theory. The
authors believe that by providing more detail on the construction of this model
(see [I2][13]) and verifying that it satisfies key axioms, other scientists might get
motivated to look at this model in more detail. In fact, the physical properties
of this model have hardly been explored so far. It would be interesting to know
how, for instance, the specific heat behaves as a function of the temperature
and the coupling constants. A more challenging question is to investigate the
particle content of this model. Eventually, one may want to set up scattering
theory at positive temperature or prove the uniqueness of the KMS state for
all temperatures and all allowed values of the coupling constant. There are
strong indications that the correlation functions decay exponentially in space-
like directions, and thus it seems to the authors that all of these questions can
be resolved with reasonable amount of work.
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