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Abstract

Data management in parallel computing systems is a broad and increasingly im-
portant research topic. As network speeds have surged, so too has the movement
to transition storage and computation loads to wide-area network resources. The
Grid, the Cloud, and Desktop Grids all represent different aspects of this move-
ment towards highly-scalable, distributed, and utility computing.

This dissertation contends that a peer-to-peer (P2P) networking paradigm is a
natural match for data sharing within and between these heterogeneous network
architectures. Peer-to-peer methods such as dynamic discovery, fault-tolerance,
scalability, and ad-hoc security infrastructures provide excellent mappings for
many of the requirements in today’s distributed computing environment.

In recent years, volunteer Desktop Grids have seen a growth in data through-
put as application areas expand and new problem sets emerge. These increasing
data needs require storage networks that can scale to meet future demand while
also facilitating expansion into new data-intensive research areas. Current prac-
tices are to mirror data from centralized locations, a technique that is not practical
for growing data sets, dynamic projects, or data-intensive applications.

The fusion of Desktop and Service Grids provides an ideal use-case to re-
search peer-to-peer data distribution strategies in a hybrid environment. Desktop
Grids have a data management gap, while integration with Service Grids raises
new challenges with regard to cross-platform design. The work undertaken here
is two-fold: first it explores how P2P techniques can be leveraged to meet the
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data management needs of Desktop Grids, and second, it shows how the same
distribution paradigm can provide migration paths for Service Grid data.

The result of this research is a Peer-to-Peer Architecture for Data-Intensive
Cycle Sharing (ADICS) that is capable not only of distributing volunteer computing
data, but also of providing a transitional platform and storage space for migrating
Service Grid jobs to Desktop Grid environments.
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CHAPTER 1

Introduction

Data management in distributed and heterogeneous computing environments can
be complex. In the parallel computing domain, there exist a number of solutions
for the movement and storage of files, often tailored to specific architectures or
optimized for a particular set of applications. As network speeds have increased,
so too has the movement to transition storage and computation loads to wide-
area network resources, to facilitate service interconnection, scalability, and utility
computing.

Migrating applications to distributed resources presents a number of chal-
lenges, among them increased data loads and their subsequent management.
Centralized or static solutions that were efficient in tightly-coupled local area net-
work (LAN) configurations can quickly become unwieldy bottlenecks in the new
environment, either due to an inability to scale or otherwise adapt to changing
network dynamics. One computing paradigm that is currently confronting these
data challenges is Desktop Grids, notably within the highly successful volunteer
computing domain.

Volunteer computing has become a popular and successful means of provid-
ing vast amounts of processing power to scientists for little or no direct cost. This
is achieved through the creation of a publicly open system where private individ-
uals (i.e., “volunteers”) install a software program that takes advantage of their
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computer’s processing power when it would otherwise be idle. This gathering
and harnessing of volunteer computing resources has enabled scientific projects
to aggregate hundreds of thousands of idle processors for their research, far be-
yond anything even the world’s largest and most expensive supercomputers could
have provided.

The SETI@Home1 project was instrumental in both the popularity of volunteer
computing and the technical achievements that made it possible. Launched to
the public in 1999, two years after Distributed.net broke new ground, it became
the second large-scale research project to use distributed computing over the
Internet. SETI@Home was successful in popularizing volunteer computing, and
was highly publicized, with a staggering 300,000 computers donating time to the
project within just one week of its launch.

In a volunteer computing scenario, such as that created by SETI@Home, dis-
tributed network resources “donate” their idle cycles to a particular project on a
voluntary basis. By aggregating the vast computing resources of these volunteer
nodes, scientific projects are able to perform massive amounts of calculations
for a relatively low cost that is generally limited to the administrative overhead
of managing the network. When SETI@Home was released to the public, it en-
abled tens of thousands of non-scientists to contribute to science by installing a
simple “screen saver” on their home computers. Behind the scenes, the program
was in reality doing much more than preventing screen burn-in: it was analyzing
vast amounts of radio telescope data, all part of SETI’s search for extraterrestrial
intelligence.

It has been over a decade since SETI@Home first started using personal com-
puters to analyze data, and although in the vastness of space we have yet to find
extraterrestrial intelligence, the project has had a significant effect in the broader
scientific community. Three years after SETI@Home’s launch, the Berkeley In-
frastructure for Open Network Computing (BOINC) was released to the public.
BOINC was the result of a rewrite of the original SETI@Home code-base, but
was written to be generic for any scientific application that needed to process
large numbers of independent simulations. BOINC provided a way for scientists
to “farm out” their parallel processing jobs to computers distributed around the
globe and opened the door for numerous other scientific projects to join the vol-
unteer computing movement.

1SETI@Home grew out of the needed to analyze large amounts of radio-telescope data being
produced by the Search for Extraterrestrial Intelligence (SETI). For more information, see §2.3.
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Figure 1.1: Arecibo Radio Telescope
— The 1000 ft. (305 m) diameter
telescope, located in Puerto Rico,
is the largest single-aperture tele-
scope ever constructed. It collects
radio waves that are analyzed by
the SETI@Home software. Some
might recognize it as the setting for
the end-scenes in the James Bond
movie “Goldeneye,” as well as a
good portion of the movie “Contact.”

With BOINC leading the way, volunteer computing became a very successful
way to harness the hardware resources of personal computers – to date laying
claim to more than 10,000 petaflop/days of computation.2 The applications that
are able to make use of this revolutionary computing paradigm are diverse, with
over 50 projects using BOINC as their main processing engine, and scientific
application domains ranging from genome sequencing to Pi calculations. This
is a very impressive achievement, and it has been instrumental in the success
of many projects that would otherwise have had to vie for much more limited
computational resources.

To date, with little exception, BOINC and other volunteer computing envi-
ronments like it have focused on exploiting idle Central Processing Unit (CPU)
cycles – the lowest hanging fruit, with the least impact on donated resources.
More recently, efforts have been made to leverage the power of fast Graphical
Processing Units (GPUs), which can many times more powerful than consumer
CPUs in floating point calculations [1]. With easily available CPU and GPU re-
sources, focus has been on supporting highly parallel (or even embarrassingly
parallel) processor-intensive applications that can take full advantage of a ma-
chine’s number-crunching abilities. However, other available resources, such as

2As of this writing, the total BOINC credit is over 1 trillion “Cobblestone.” Each 100 “Cobble-
stone” represents a day of sustained computation at a gigaflop.
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hard-disk storage capacities and high-speed network connections, have yet to be
tapped for their potential.

With most home computers now equipped with large underutilized hard drives
and sharp increases in the speed of personal Internet connections, it has re-
cently become both feasible and attractive to extend these volunteer networks
beyond CPU-harvesting to include the distribution and storage of scientific con-
tent. Doing so would increase the range of applications that can run on these
highly distributed systems to include those that have larger data-processing re-
quirements. Utilizing volunteer networks and storage can greatly reduce the data
scalability bottlenecks that can quickly occur when distributing even moderately
sized data-sets to tens of thousands of participants. The problem that occurs
is one of simple scalability. Applications that currently use volunteer computing
generally have very low data throughput demands. For example, a work-unit for
SETI@Home is only a few hundred kilobytes, and those of Einstein@Home are
only several megabytes. Both can run for several hours, meaning that a process-
ing node will only be requesting a few megabytes each day at most. Multiply that
by the tens of thousands of clients subscribed to a project and the data needs
become very large and potentially expensive, yet perhaps still manageable for a
large, organized, and successful project that is able to increase its data replicas
as its user base expands. Contrast this current scenario to a bioinformatics or
image-rendering application, where a node might need hundreds of megabytes,
or potentially gigabytes, for a single simulation. The data distribution needs in
such an application domain can easily explode far beyond any reasonable ability
to maintain project-level servers and mirrors. The problem compounds as the net-
work scales up, and can eventually render the application unsuitable for a highly
distributed environment.

Current scientific volunteer computing software infrastructures such as BOINC
and XtremWeb, which are discussed in §2.3, distribute their data centrally from
a project’s coordinating nodes or servers. In BOINC, this is achieved through a
set of HTTP mirrors, each providing clients with full copies of the data input files
needed for a particular simulation. Similarly, in XtremWeb clients are given the
URIs of data input files, which, although not as coordinated as BOINC, is still a
centralized distribution model. These systems require projects not only to have
the necessary network capacity needed to provide data to all volunteers, but also
to have data readily available and persistent on their servers at all times to ful-
fill client requests. Given that data distribution is still a direct cost incurred by a
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project, the network throughput requirements of serving so many client machines
can prove to be a hinderance when needing to explore new types of data-intensive
application scenarios, ones that are currently prohibitive in terms of their large
data-transfer needs. To maintain data scalability, most current scientific projects
that utilize volunteer computing scale down their problem sizes and/or data resolu-
tions to fit into the bandwidth and storage capacities they have available. Similarly,
projects that have large data needs shy away from using volunteer computing,
knowing that their data requirements could quickly exceed their hosting abilities.

A viable alternative to such limiting centralized systems is to employ the use
of peer-to-peer (P2P) techniques to implement data distribution. “Peer-to-peer”
is used to describe a system where the consumers of information or data are
also the providers. Unlike a traditional web-server, where data are served by
one or more centralized locations and consumed by many, in a P2P system data
are relatively evenly distributed among the network participants, with roles being
interchangeable depending on the needed network topology and requirements at
any given time.

Volunteer computing is a complementary ideology to the P2P computing para-
digm, in which “many hands make light work” and responsibility is shared among
a large set of participants. “Volunteer computing” itself is more of a concept than
a particular technological implementation. Very often volunteer networks are re-
ferred to as “Desktop Grids” (DGs) due to the general notion that they are com-
prised of desktop-grade consumer-oriented computers. One can easily argue that
the processing in BOINC is very peer-to-peer in the ideological sense with respect
to processing power burden-sharing. However, job distribution, aggregation, and
data management remain very centralized. The BOINC software manages the
network connections and data distribution in a strict master/worker relationship,
with all data being transferred solely between an organization’s central servers
and volunteer nodes. There is no data-sharing or information exchange between
individual network participants.

By using a P2P network to distribute scientific data, the individual participants
(i.e., volunteer resources) could help to share input data with one another, chang-
ing the current master/worker paradigm. This is useful because due to the nature
of volunteer computing networks and the inherent calculation errors that occur,
the same simulation is often sent to more than one node for processing, with the
results then being compared to validate any given response. Although effective
in garnishing correct calculations, this requires that all data be distributed twice,
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or in some cases three times, for each simulation. Repeat sending of data is
compounded even more when the same data are used for multiple simulations,
such as in Monte Carlo simulations or parameter sweep applications. The most
obvious case of data redundancy would be for large shared data-sets that need
to be transferred to each individual network node, such as a large bioinformatics
database, thereby requiring the centralized servers to send the same set of data
to N participants, where N is the size of the entire network. Even with a rela-
tively small volunteer pool of 10,000 nodes, a 1-gigabyte input file can become a
painful 10-terabyte distribution problem. Peer-to-peer data distribution could help
offload these requirements to the volunteer network, potentially reducing the cen-
tralized data requirements to one distribution per file, a reduction of many orders
of magnitude.

Another very large potential scientific user-base for Desktop Grids that has yet
to be explored is that of the individual researcher. BOINC has been successful in
providing large, visible, and popular computing projects with additional computa-
tional resources; however, smaller, less visible groups and individual researchers
have been largely left out. This is largely due to the infrastructure, both technolog-
ical and marketing, that is required to have a successful BOINC project. Beyond
defining the scientific problem in a way that can be processed in parallel as a
“bag of tasks,” potential users must deploy servers to host input files, keep track
of databases, and, the most difficult task of all, recruit willing volunteers to donate
their resources towards a particular cause.

This can work well for sufficiently capable groups that have long-term simu-
lation needs, where a high initial investment will easily pay off through years of
sustained “free” computation. However, the setup and maintenance costs are im-
practical, if not impossible, for individual researchers, Ph.D. students, and small
research groups, whose computation needs may be transitory. For example, a
Ph.D. student might need 1,000 CPU years to complete an analysis for his or
her dissertation, or a researcher might want to simulate the results of a small
grant, after which the infrastructure would be dormant until the next need arose.
For these types of users, university labs, Condor pools, and national computing
centers (i.e., clusters and supercomputers), otherwise known as “Service Grids”
(SGs), are a more hospitable environment.

As a result, in many cases, large numbers of highly parallel (i.e., “embarrass-
ingly parallel”) simulations are being run on expensive Service Grid infrastruc-
tures, namely, supercomputers and clusters with complex storage area networks
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(SANs), large memory allocations, and high-speed network interconnects that are
most cost-effective for running the heavy processor-interdependent MPI applica-
tions for which they were designed. This is a very inefficient use of Service Grid
resources for simulations that could otherwise be run on a Desktop Grid. One of
the challenges of moving these applications to a volunteer network or other Desk-
top Grid system is how to distribute the data. On clusters and supercomputers,
data are generally located in a secured storage management system and must
be made available at some publicly addressable space before they can be down-
loaded by volunteer clients. Even if it were possible to host a common BOINC
server for these researchers, to process results and distribute relatively small
work-units and parameter files, the data distribution demands could easily over-
whelm any centralized architecture. This is especially true if the goal is to offload
the widest range of parallel applications, including those with larger input files. A
peer-to-peer system for data distribution could provide a means to decentralize
the data distribution, as well as provide a data bridge between supercomputer/-
cluster and volunteer environments.

Not only would application of a dynamic data-distribution network reduce the
Service Grid resources needed to integrate with or migrate jobs to a Desktop
Grid, it could also mitigate the potential risk involved when moving jobs and data
to the Desktop Grid. By providing an intermediary layer, one is able to limit the
number of peers to which a Service Grid node must distribute data. This can
be further refined by applying project-based security criteria to govern the mem-
bership composition of the data brokers. For the Desktop Grid network, a P2P
data distribution system would also allow current projects to take full advantage
of client-side network and storage capabilities, enabling the exploration of new
types of data-intensive application scenarios, ones that are currently overly pro-
hibitive given their large data transfer needs.

There are many ways peer-to-peer data distribution, or a variant thereof, could
be achieved for volunteer networks, ranging from BitTorrent-style distribution, where
data are centrally tracked and all participants share relatively equal loads, to
KaZaa-like super-peer networks, where select nodes are assigned greater re-
sponsibility in the network and broadcast messages and network flooding are
used to locate information. However, applying a traditional P2P network infras-
tructure to scientific computing, and in particular to volunteer computing, can be
highly problematic. In such environments, policies and safeguards for scientific
data and users’ computers are critical concerns that limit uptake, rather than the

7



1.1 Thesis Goals

technical feasibility of developing a solution. Identifying and adapting to the en-
vironment and its constraints, discussed further in chapters 2 and 3, is a crucial
aspect in applying a new technology in the volunteer computing domain.

A tailor-made solution that could take into account the requirements of scien-
tific communities, as opposed to a generic overarching P2P architecture, would
have the advantage of facilitating different network topologies and data distribu-
tion algorithms while retaining the safety of each participant’s computer. Further,
each scientific application has different network and data needs, and customized
solutions would allow for tailoring the network towards individual requirements, al-
beit with the disadvantage of increased development effort, complexity, and code
maintenance. Any P2P system would have to take into consideration the specific
needs of scientific volunteer computing applications, such as control of security
aspects, legacy application integration, and mechanisms for participants to opt-in
and opt-out of the system.

In the research presented here, I work to show how volunteer computing’s
narrow scope of CPU and GPU harvesting could be expanded to also include the
utilization of network and storage capabilities. Specifically, I will justify pursuing
a P2P-based approach for data distribution and demonstrate how decentralized
P2P networks can be built to distribute scientific data successfully. As I explore
the applicability of a peer-to-peer data-sharing paradigm to volunteer computing
networks, I investigate how P2P technologies and client-side file sharing need to
be adapted to suit the needs of a volunteer-driven computing pool, and what this
means for both the users and the technology involved.

1.1 Thesis Goals

A hypothesis is a proposed explanation for a phenomenon, or a statement of
supposition to be used as the premise for an argument. For a scientific hypothesis
to be validated, one must be able to test and probe it, and subject it to the scientific
method. After these trials, the hypothesis should be accepted and considered as
valid, or disregarded as false or unprovable.

This work is the thesis to provide support for the following hypothesis:

Peer-to-peer file sharing can be successfully applied to the volunteer com-
puting application domain. Through the use of distributed and cached data on
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dynamic networks, both large- and small-scale scientific projects will be able to
more effectively scale in a reliable and secure manner as their projects expand.

The aforementioned hypothesis was proposed as a way to fill a need within the
volunteer computing community for a robust data-management solution that can
scale as network participation and demand increases. The goal of this thesis is to
provide evidence and validation for the hypothesis by investigating the feasibility
and usefulness of applying a peer-to-peer data distribution paradigm to volunteer
networks. The proof of the hypothesis depends not only on the presentation of
a technological solution that “can” distribute data, but also on whether or not the
solution is acceptable to the community and can therefore be considered useful,
valid, and novel.

The additional and narrower goals of this thesis are to show how P2P tech-
nologies can provide a low-cost and low-maintenance alternative to the master/-
worker data-distribution approach currently used in Desktop Grids. One of the
promises of peer-to-peer computing is to leverage the use of spare cycles and
storage in personal computers, thus providing an infrastructure that can perform
complex scientific tasks. An important issue in building P2P systems is providing
an easy way to access, manage, and use these volatile distributed computational
resources, lowering the cost of adaptation and making P2P networks an attractive
option for scientific data distribution. The key element to the research is showing
how P2P provides an extremely well-matched and suitable, perhaps even best-fit,
tool for distributing data in volunteer computing network environments.

BOINC-type projects, which traditionally rely on multiple iterations of calcula-
tions over the same data chunk, provide an ideal use-case for a scientific appli-
cation that would benefit from P2P. Once the data enter the network, they could
potentially be distributed in a decentralized manner among individual peers. This
would allow the centralized servers to inject the data into the network a limited
number of times (ideally one) and therefore require only a fraction of the currently
used total overall bandwidth to distribute the data to all interested parties. By
utilizing a P2P data distribution approach, projects should be able to reduce their
network overhead, not only allowing for cost-cutting, but also facilitating the distri-
bution and analysis of higher-resolution data-sets that are currently being limited
by available network capabilities.

Advanced P2P environments have been built in the past. However, most are
geared toward solving a particular problem and do not provide a generic solution
that can be plugged into any application layer. Many examples exist, particularly in
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the realm of commercial data distribution, for example, KaZaa, Napster, Gnuttella,
and Skype. However, the lack of generic, open, and standard P2P tools and
infrastructures has often made the additional cost of adopting a P2P environment
outweigh the potential benefits for scientific application groups. This has severely
limited its integration and uptake.

It is with respect to the more sophisticated and narrow requirements of volun-
teer computing, and Desktop Grids in general, that I propose and present here
a customizable and brokered Peer-to-Peer Architecture for Data-Intensive Cycle
Sharing (ADICS) that allows fine-grained provisioning of resources and applica-
tion of project-based roles to network participants. Specifically, ADICS provides
a brokered P2P system that offloads central network needs while limiting client
exposure to foreign hosts, thus providing a viable alternative to centralized data
distribution. The brokered network-overlay introduced in ADICS acts as a buffer,
in the form of a select group of trusted data-sharing nodes, between the central
BOINC server, or even a Service Grid, and the Desktop Grid data consumers.
Moreover, through the adaptation of P2P data distribution techniques, centralized
network resource requirements are significantly reduced while fault tolerance and
accessibility are increased.

Beyond arguing the theoretical usefulness of a dynamic distribution paradigm
for volunteer computing, I present a P2P-based solution that conforms to the re-
quirements of a volunteer computing environment. Additionally, application de-
velopers are provided with straightforward migration paths to transition from tradi-
tional client/server models to ADICS. Throughout the work presented here, partic-
ular emphasis is given to, and research focused on, the key areas of P2P overlay
networks, security, scalability, and data integrity.

Specifically, the goals of this thesis are to verify the hypothesis by:

• Conceptualizing how a new data-distribution method for volunteer comput-
ing could be realized.

Is Peer-to-peer a suitable and efficient data-distribution technique for
scientific volunteer computing environments in which data have tradi-
tionally been exchanged in a centralized one-to-many relationship?

• Identifying whether there are scientific projects that currently find transition
to volunteer computing platforms prohibitive due to data challenges.

• Researching security and scalability issues, while identifying potential trade-
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offs and defining optimal solutions.

• Isolating useful and novel data-sharing mechanisms that might be adaptable
to the target environment, while maintaining network security parameters
and user trust.

Research Issues

During the course of this thesis, through the fusion of the goals mentioned in
§1.1 and the investigations performed in chapters 2 and 3, the following basic
principles have been identified as within the scope of the thesis and applicable to
the solution and application domain:

• Solutions must ensure that a high level of security and trust be retained in
the network, while maintaining the integrity of data and preventing unautho-
rized usage.

• Transparent access from existing distributed processing applications, specif-
ically BOINC-based scientific projects, such as Einstein@Home, must be
provided.

• Network design must be able to cope with the large size of scientific com-
puting projects.

While upholding the aforementioned principles, the following questions arise:

• How can the architecture of a data-sharing framework be developed so that
it can be used generically to distribute large datasets?

• What are the hooks for target applications that will enable them to take ad-
vantage of P2P data-sharing networks?

• Can Peer-to-peer technologies be applied to scientific applications in secure
and beneficial ways, without additional cost or substantial risk?

• Should aspects of newly adopted solutions such as Grid technology be com-
bined with peer-to-peer to enable new scenarios?

e.g., X.509 certificates, decentralized data stores, resource brokering
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• Can generic peer-to-peer network building and negotiation be furthered
through use of standardized mechanisms such as XML?

What is the tradeoff between XML overhead and enhanced interoper-
ability and description capabilities?

Evaluation

Given the goals of this thesis, it is expected that the evaluation may include the
following:

• Research supports the hypothesis (security evaluations, scalability trials
and simulations) or does not.

• Comparison of the thesis’s data distribution proposals with the current static
and centralized systems.

• The concept can be proven to work, either in “real life” or in a “network
simulator.”

• Thesis ideas and resulting software are used by other researchers or end-
users, either directly or as the basis for further work.

1.2 Thesis Overview

In this thesis, I outline the reasons for, the challenges in, the benefits of, and the
progress towards applying a Peer-to-Peer Architecture for Data-Intensive Cycle
Sharing (ADICS).

The work presented here is divided into seven chapters: Chapter 1, which you
are currently reading, introduces the subject matter; Chapter 2 delves into the
background, related work, and motivation; Chapter 3 analyzes the issue and dis-
cusses the methodology; Chapter 4 proposes a new network architecture; Chap-
ter 5 gives the implementation details and shows the broader impact; Chapter 6
provides a critical assessment and discusses further work; and, lastly, Chapter 7
concludes.

Pursuant to the research goals that I have identified for the thesis, the rest of
this work is organized as follows:
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Chapter 2: Background, Motivation, and Related Work

This chapter gives background on the technologies currently employed for
scientific computing, the environment and the problem scope of volunteer
computing and its associated data. Related work is discussed and use-
cases are given for how a data management solution is needed, highlighting
the technological gaps that provide the basis and motivation for the research
undertaken here.

Chapter 3: Analysis and Design

Perhaps the most innovative chapter, Chapter 3 delves into an analysis of
the problem, its requirements, and the limitations that must be overcome.
The “plan of attack” and methodology that will be used throughout the re-
search are presented, showing how these relate to the goals of applying a
distributed data management solution to Desktop Grids.

Chapter 4: Peer-to-Peer Architecture for Data-Intensive Cycle Sharing

Here, a Peer-to-Peer Architecture for Data-Intensive Cycle Sharing (ADICS)
is introduced. ADICS serves as the data distribution paradigm and architec-
tural model for the Desktop Grid data distribution presented in this thesis.
Building upon Chapter 3, this chapter relates the proposed system to the
requirements of volunteer computing, and shows how it is able to provide a
new and novel way of distributing input data.

The chapter first shows the general architecture of ADICS, comparing it
against the requirements of the target community. Next, it gives the simula-
tion and mathematical results that are used to help support the thesis and
lead design. The basic design principles are referenced to the use-cases
introduced in Chapter 2, and the major user requirements are outlined. In
addition, architectural strategies that were employed during the design of
the overall system are discussed, as well as the details of the system and
its entities.

Chapter 5: Implementation and Integration with Service and Desktop Grids

Chapter 5 gives the implementation details of the software that was de-
signed to support the thesis. The tactics and guidelines that were used in
the software design process are explained. Additionally, details are supplied
of how the architected system provides enhancements and support for two
large European Union infrastructure projects, applying the thesis principles
to real-world use-cases and integration issues.
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Chapter 6: Assessment and Further Work

Chapter 6 shows the impacts of the research, and how it has been ap-
plied and used beyond original expectations to produce new results and
innovation. Critical assessment of the approach proposed by the thesis
and the software developed to support it are examined, identifying both the
strengths and weaknesses. The chapter also suggests how the thesis and
the software could be improved and enhanced to serve research communi-
ties better, and thus expand the potential impact of the approach presented
here.

Chapter 7: Conclusions

The last chapter provides a synopsis of the thesis, the work that has re-
sulted from it, and the novelty of the approach and its impact. As a final
contribution, the chapter also suggests additional research topics for how
the work presented in this thesis could be expanded into broader applica-
tion domains.

Appendices

In addition to the main text, there are three appendices. Appendix A gives
code examples and logistical instructions for the software developed in this
project. Appendix B gives details of the projects that have furthered the
thesis software and goals. Lastly, Appendix C gives a list of my publications
that are relevant to the research presented in this dissertation.

1.3 Contributions

The focus of this thesis is on exploring how peer-to-peer data distribution could
work to satisfy the data needs of a volunteer computing environment. The ar-
chitecture being proposed here (i.e., ADICS) is a decentralized P2P network, one
that utilizes peer network capabilities to share project data with other network par-
ticipants, therefore providing an alternative – and an improved – data distribution
mechanism for volunteer environments.

In summary, the major contributions of this work include:

• Analysis of current and new scientific volunteer computing applications’ data
requirements and restrictions
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• Validation and application of distributed data management solution for BOINC
and XtremWeb Desktop Grids

• Introduction of migration pathways for Service Grid data to Desktop Grid
environments

In addition to these major contributions, the following are notable contributions
and achievements of this thesis:

• Research provided the theoretical and prototype basis for concept develop-
ment into production software

• Software and ideas contributed to further research by others at both Cardiff
University and abroad

• Dissemination and development of concepts within the volunteer computing
community furthered acceptance of P2P-based data distribution paradigms
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CHAPTER 2

Background, Motivation, and Related Work

Distributed computing, in one form or another, dates back almost to the beginning
of the computer revolution. Local-area networks such as Ethernet were invented
in the 1970s, and APRANET [2] introduced e-mail as far back as the early 1970s.
In the 1980s, Usenet and FidoNet became popular and widespread ways to dis-
seminate information and to support distributed discussion forums, with Bulletin
Board Systems (BBSes) making them available to anyone with a basic computer
and a modem. During the early 1990s, in my teenage years, I even ran a BBS,
providing a forum for online multiplayer gaming, which allowed me and other lo-
cals to compete with long-distance individuals in many turn-based games (such
as Risk) and tournaments. My BBS was a very good example of pre-(consumer-
)Internet distributed computing, where game metadata were propagated through-
out a network of BBSes and results were fed back to determine moves and battle
calculations.

The Internet explosion happened in the years that followed and led the way
for new kinds of distributed computing, ranging from websites processing client
requests for information or consumer product orders, to remote control and mon-
itoring of scientific applications and apparatus. Network speeds increased and
it became possible to link computers together effectively in various ways for task
distribution, including file sharing and scientific computation. This led to the emer-
gence of a new distributed-computing infrastructure for science and engineering,
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termed “the Grid,” in the mid-1990s, followed by the adoption of public resource
computing through the popular SETI@Home project in 1999, and, shortly there-
after, the widespread use of peer-to-peer (P2P) file-sharing programs such as
Napster.

It is within the context of these three technological innovations that this the-
sis positions itself: the fusion of Grid computing, volunteer computing, and dis-
tributed (peer-to-peer) file sharing. This chapter gives an overview of these three
technologies and their developments, as well as the driving motivations and use-
cases for the development of my thesis to explore a distributed data architecture
that can leverage P2P-based file sharing for distributed scientific computing.

2.1 Grid Computing

“The Grid” was not a new idea; rather, it was a coordinated push toward the re-
alization of many distributed computing and integration concepts that have been
around since the early Ethernet-invention era. Predictions of some of the promises
of the Grid, such as easy connectivity and access to large amounts of distributed
computational power, can be seen as early as 1965. It was then that designers
of the Multics operating system envisioned the development of computational fa-
cilities into a system something akin to the electrical grid, where you simply plug
in and get whatever resources you require.

These ambitious goals, of somehow being able to provide computational power
as a raw resource, similar to electricity or water, have yet to be realized. Like
power and water grids, computational grids will be built from the coupling together
of many heterogeneous systems and organizations to form a massive system
that is seen as a unified entity to the end user. Also, as in the development of
integrated electrical systems, policies and standards will have to be created and
deployed in order to guarantee interoperability between networks. Unfortunately
for the development of computational grids, many of the similarities with electrical
grids tend to end there.

Computers are much more complex than electricity or water, and the clients for
the Grid are complex hardware and software applications that may have very spe-
cific, perhaps non-standard dependencies on other software or hardware. Figure
2.1 gives a high-level snapshot of what a Grid deployment might look like, with var-
ious different hardware, software, and scientific apparatus connected to it. When
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Figure 2.1: Typical Grid Computing Infrastructure — shows a typical infrastructure
consisting of many heterogeneous resources controlled by multiple entities (i.e.,
organizations).

one looks beyond the basic technical issues of building a Grid, such as the de-
ployment of networks and the integration of hardware and software installations,
it becomes an even greater challenge to be able to build meaningful application
middleware. To achieve the desired integration that would make the Grid able to
provide CPU cycles and other resources as raw commodities, a software mid-
dleware is needed that will enable the developers of Grid-enabled applications to
have a standardized way of communicating their needs to the resources, whether
software or hardware, that rest on the Grid.

Although the term “Grid” has in the last decade come into widespread use and
has become an accepted term in the larger community outside of academia and
research, actually defining what it means proves to be a somewhat controversial
and difficult task. Even though it is generally agreed that the Grid is the process
of integrating distributed systems and institutions into one or many large virtual
pools of resources, the meaning tends to change depending on who is using it
and his or her agenda.

Ian Foster, largely accepted to be the father of the modern grid, and Carl
Kesselman originally defined in 1998 what they saw as grids in terms of the
infrastructure needed for connecting hardware and software together into large
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computational resources. Specifically, they state:

A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access
to high-end computational capabilities. [3]

A mere two years later, Ian Foster and Steven Tuecke expanded this definition
to make it more generalized and include the concepts of coordinated resource-
sharing and problem-solving. They created the concept of virtual organizations,
which put people and resources into dynamic groups with potentially complex re-
lationships [4]. With this new definition, the Grid became something that was not
confined to creating standards and building software to link resources together so
they could be used in a more effective manner. Grid computing was expanded
from a focused view on computational grids that provide high-end computing ca-
pabilities to include the forming of relationships and policies between sites and
people and the coordination and enablement of resource-sharing and problem-
solving.

In July 2002, Foster became more specific and gave a three-point checklist [5]
for determining whether or not he deems something to be a grid. He defines a
grid in terms of whether or not it is subject to centralized control, whether it uses
standards and open general-purpose protocols and interfaces, and whether or
not it delivers non-trivial qualities of service.

Foster, however, differentiates between something being a grid and the Grid.
Whereas a grid could be anything that couples together distributed, non-centrally
controlled resources and a common set of protocols and standards, the Grid must
be a larger system in which all the individual resources are able to interoperate
with each other through the use of specific standardized InterGrid protocols. In
this scenario, one could be defined as a member of the Grid only if one followed
the chosen standards and implemented the agreed-upon protocols. For example,
if the Open Grid Services Architecture (OGSA) [6] had been selected as the of-
ficial “Grid standard,” one would be part of the grid only if one implemented the
OGSA InterGrid protocols.
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2.1.1 Conflicting Views

Although there is fairly widespread acceptance of Foster’s second definition of
the Grid, given in 2000, there has been some debate over his subsequent views.
Members of industry primarily do business through the sale of proprietary closed
software, and manage computational systems and resources varying greatly in
size and scale. Thus they argue that defining a grid in terms of decentralization
and whether or not it uses standard and open protocols loses sight of the true
purpose of a grid. Further, by defining a grid in these terms, Foster is changing
focus from what a grid actually does to how it is managed and implemented and
what quality of service it provides; these should be attributes of a grid, not its
definition.

In an article titled “Response to Ian Foster’s What is the Grid,” after sharing
his views on how Foster’s latest definition of a grid is too constrained and focused
on the wrong things, Wolfgang Gentzsch, director of Grid Computing at Sun Mi-
crosystems, gives his own definition of what constitutes a grid:

A Grid is a hardware and software infrastructure that provides de-
pendable, consistent, and pervasive access to resources to enable
sharing of computational resources, utility computing, automatic com-
puting, collaboration among virtual organizations, and distributed data
processing, among others. [7]

IBM was one of the major industry players in the development of Grid software
and infrastructure in the early 21st century. By building middleware, portal frame-
works, development tools, and other software infrastructure, it tried to try to take
advantage of the widespread interest in Grid computing that prevailed at that time.
Although it is working closely with Ian Foster and other members from the Globus
Project at Argonne National Labs, IBM’s definition of a grid, like Sun’s, seems
to follow from Foster’s 2000 views and mentions nothing of his 2002 three-point
checklist:

With grid computing you can unite pools of servers, storage sys-
tems and networks into one large system to deliver non-trivial qualities
of service. To an end user or application, it looks like one big virtual
computing system. The systems tied together by a grid might be in
the same room, or distributed across the globe; running on multiple

20



2.1 Grid Computing

hardware platforms; running different operating systems; and owned
by different organizations. [8]

2.1.2 Different Priorities

The differences in the definition and interpretation of the meaning of “the Grid” or
“a grid” coming from industry and research can be attributed to the priorities and
advantages that various groups find in Grid computing, and what they choose to
emphasize.

On the one hand, academic institutes that are developing grid infrastructure
and tools view the Grid mostly as something able to connect various large re-
sources and special instruments. Protocols and standards are of paramount im-
portance, as they determine whether these different resources will be able to
interoperate. Since they are generally working in collaboration with other insti-
tutions and sometimes industry partners, the development of cross-institutional
policies and agreements also plays a vital role.

On the other hand, the research labs and academic institutions that are de-
ploying applications on grids are more focused on the capabilities of grid comput-
ing rather than the details. Although protocols and standards are important for
the underlying infrastructure to be easily integrated into a seamless system, they
are not the focal point of most application developers. They are more concerned
with how the grid will actually improve the performance of their applications in an
easy-to-implement manner and how it will grant them larger access rights and
capabilities.

For those deploying applications on Grids, the primary concerns are perfor-
mance and ease of use. What these developers need and want when building
the grid infrastructure is a common language and set of APIs that will distance
them from the underlying implementation details. This will allow them to focus on
building their specific application codes, rather than on developing low-level grid
infrastructure.

Private industry, being more directly profit- and product-driven, tends to view
the Grid as a way to lower costs, increase margins, and enable new profitable
product lines. By lowering the cost of large-scale computing and of developing
an infrastructure that allows resources to be used at the optimal level, their over-
all operations costs will drop, producing more profit. In addition to lowering the
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costs of current operating procedures and technology, Grid computing promises
to usher in a new era in which it is not necessary for companies and research
labs to maintain their own resources (both hardware and software). Instead, it
will be possible to farm out tasks to third parties, purchasing whatever resources
are needed, when needed. This introduces a new market of consumers, which
promises new revenue sources.

Industry’s interest in Grid computing is not limited to being able to act as com-
puting or storage farms. With Grid computing comes the demand for new types of
software solutions at all levels, from end-user software portals to back-end load-
balancing software that uses grid technologies to dynamically adjust resource
utilization, not to mention all the hardware that various organizations are buying
to build new grids.

The last major Grid user-group is the government. Different governments’
views and definitions of the Grid will naturally vary depending on the country in
question and its priorities. In the United States, one of the ways the Grid is being
sold to the government is as a new way of combining the resources at national lab-
oratories and research centers to build large systems that optimize efficiency and
drive new areas of research that were previously impossible. The same is true
for European collaborations, where deploying a grid infrastructure allows cross-
national collaboration and aggregation of resources, as can be seen in the En-
abling Grids for E-sciencE (EGEE), described in §2.4.1, and NordGrid activities.
It is therefore my view that governments’ view of the Grid closely resembles that
of academics, with the exception that in the case of some government agencies
implementing grid solutions, there may be very centralized control mechanisms
in place and the underlying protocols may not be as open (e.g., defense industry
grids).

The Grid as a more generalized economic catalyst also becomes a priority
that is mainly exclusive to the government. Whereas private industry is more con-
cerned with being able to push its individual products, governments look toward
how they can use their vast resources to stimulate the economy in different ways.
Thus the Grid has recently become an attractive candidate, with large amounts
of funding put toward initiatives such as the German D-Grid, the EGEE, the Tera-
Grid in the USA, and many other large-scale Grid infrastructure initiatives. For the
past several years there has been a big push for the installation of high-speed net-
works that provide the needed interconnectivity. Also there is additional investing
in high-tech innovations in the hope that they will promote larger economic growth
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and act as a stimulus to stagnating economies.

In the United States, it is also important to note the post 9/11 shift in focus
toward homeland security. More emphasis is being put on the ability of the gov-
ernment to respond quickly to dangers arising from terrorist or other attacks and
natural disasters. In this respect, the Grid is thought to be the answer to being
able to quickly acquire the needed resources to perform whatever modeling is
necessary, operating as an in-demand computational utility, much as Len Klein-
rock suggested in 1969.

2.1.3 My View of the Grid

For me, the clearest single definition of the Grid, and what constitutes a grid,
comes from Ian Foster and Steve Tuecke in 2000, where a grid enables coordi-
nated resource-sharing and problem-solving in dynamic, multi-institutional, virtual
organizations. For my own definition, I would expand upon this to incorporate part
of Ian Foster’s latest take on the Grid, in which he stresses that for something to
be a part of the Grid, it must implement whatever inter-Grid protocols have been
widely accepted as the standard.

However, I do not subscribe to Foster’s checklist that defines what constitutes
a grid. I view a grid as an abstract concept that should not be limited to implemen-
tation or policy details. It should be given the loosest definition possible that still
provides meaning, inclusive rather than exclusive. The Grid, in contrast, should
be something concrete, and in order to be part of the Grid, it is necessary that
all members implement the same functionality that can facilitate interoperability.
This requires grid members to agree to a well-defined definition of what being in
the Grid means.

In the end, the Grid will need to be built on strict standards. Although exten-
sions may be added by different groups to suit their individual needs (as we have
seen in the Web world), there will be a base set of functionality that will exclude
one from membership if it is not implemented in full. It is this base set of function-
ality, the standards and technologies that have been agreed upon to implement it,
and the policies that enable it to happen that will eventually define the Grid.
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2.1.4 Service Grids and Desktop Grids Compared

The Grid characteristics described in the preceding section refer mainly to what
has since come to be known as a Service Grid (SG). Service Grids are generally
comprised of large, coordinated sets of resources that work together to provide a
large, integrated computing environment. The most successful Service Grids are
collaborations between large national laboratories, universities, and other well-
organized institutions with a high level of technical expertise. To join one of these
grids, a non-trivial amount of resources is usually required; security arrangements
must be made; a large set of complicated middleware needs to be installed, up-
dated, and maintained by technically adept staff; and formal (legal) agreements
are standard practice. For example, EGEE’s production infrastructure, which pro-
vided about 40,000 CPUs, was composed of a relatively large set of 250 resource
centers around the world.

To use the resources on a Service Grid, one must have valid security creden-
tials as well as a resource allocation. Security is tight, with users normally being
required to have an X.509 certificate issued from an accepted Certificate Author-
ity (CA). This generally requires not only validating one’s identity with a trusted
partner, but also having a scientific affiliation as well as a legitimate problem to
solve. EGEE was an extremely large Grid, with servers and research groups from
all over the world joining it. It managed to provide access for about 200 different
groups (virtual organizations, or VOs), consisting of a few thousand scientists all
told.

Desktop Grids (DGs), in contrast, are generally composed of individual com-
puters (i.e., “Desktops”) that join together to provide an aggregate computing re-
source. Unlike Service Grids, which are based on complex architectures, Desktop
Grids employ a simple architecture aiming to easily integrate a large set of (poten-
tially) dispersed, heterogeneous computing resources. Desktop Grids are oppor-
tunistic, using “scavenged” cycles from otherwise idle computers. This paradigm
represents a complementary trend concerning the original aims of Grid comput-
ing. In Desktop Grid systems, any number of potential contributors can bring re-
sources into the Grid because the barriers to entry are very low: installation and
maintenance of the software is relatively intuitive, no special expertise is required
to join, and resources do not have to be dedicated or static.

Condor [9, 10] provided a specialized workload management system for CPU
scavenging as far back as 1988. Created at the University of Wisconsin, the Con-
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dor developers saw the numerous “idle” computers around campus as potential
resources for memory-light, compute-intensive jobs. The Condor project provided
tools for grouping personal computers into pools of resources and paved the way
for numerous Desktop Grid projects. These new Desktop Grid projects diversi-
fied from Condor’s goals of controlling, managing, and harnessing computational
power from clusters and desktop resources by exploring (after the Internet explo-
sion) a public-facing volunteer-based model, which aimed to take advantage of
highly distributed desktop machines using a loosely coupled opt-in approach.

2.1.4.1 Resource Utilization and Workflow

Another differentiating factor between Service and Desktop Grids is that Ser-
vice Grids have reciprocal agreements for resource utilization among partners,
whereas participants in Desktop Grid systems cannot use the system for their
own goals. In most Desktop Grids, the scavenged cycles are simply “donated,”
with little or no expectation of a return. Complex brokering systems that pro-
portion resource utilization and allocations based upon participation do not exist.
Because of this, the Grid research community considers DGs as limiting solutions
when it comes to resource sharing and solving issues such as load balancing and
peak demand.

From a technical job-distribution and job-running standpoint, the main differ-
ence between SGs and DGs is the way computations are initiated. In Service
Grids, a job submission or a service invocation is what initiates activity, using a
push model, where the service requester pushes jobs, tasks, and service invo-
cations onto passive resources. Once the request is received by the executing
service or node, it becomes active and performs the needed activity. Conversely,
Desktop Grids use a pull model, where resources with spare cycles request (i.e.,
pull) tasks from a repository, which typically is centrally located on a Desktop
Grid server. In this way, resources play an active task-distribution role in a DG
system — initiating their own activity based upon internal resource utilization and
availability.

2.1.4.2 Exposure and Access

Both Service and Desktop Grids can be publicly exposed, or constrained to pri-
vate domains. A public grid refers to a grid that connects resources from different
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administrative domains, is typically interconnected by a wide-area network, and
has a facility for new non-affiliates to join. Private (typically local) grids, in con-
trast, mostly connect resources from within the same administrative domain using
a local-area network or a Virtual Private Network (VPN). The European Grid Ini-
tiative (EGI) [11], the Open Science Grid (OSG) [12], and the TeraGrid [13] are
examples of large, public Service Grids, whereas the Oxford Campus Grid [14])
exemplifies a non-public Service Grid interconnecting local clusters. A good ex-
ample of a local Desktop Grid is a university lab with a Condor pool.

Grids

Pull Model 
(Desktop Grids)

Non-public or Local Grids 
(e.g., SGE and Condor)

Public or Global Grids 
(e.g., EGEE and OSG)

Public or Global DGs
(e.g., Einstein@Home)

Non-Public or Local DGs
(e.g., UoW LDG)

Push Model 
(Service Grids)

Figure 2.2: Taxonomy of Grid systems — shows a Grid taxonomy from the Desk-
top Grid point of view.

Within Desktop Grids, two general categories emerge, as shown in Figure 2.2.
First, there are large-scale public Desktop Grids, with open participation policies,
and second, there are non-public or local Desktop Grids that are often comprised
of institutional resources. Local Desktop Grids can be broken down further into
volunteer and, for lack of a better word, “involuntary” Desktop Grids. In an invol-
untary DG, individual desktop owners are instructed to contribute their resources.
Examples are the University of Westminster’s (UoW) DG and the Extremadura
School DG. The Extremadura School DG is a public Desktop Grid in which the
regional government (in Spain) instructed the schools of the region to contribute
their desktops to the system. Likewise, the University of Westminster DG consists
of university lab computers that have been joined together to provide a several-
thousand-node computing resource for the university.

Volunteer Desktop Grids usually solicit the general public to donate resources,
so called “Public-Resource Computing,” and would be classified as public Desk-
top Grids. They have been extremely successful. For further discussion of the
volunteer computing movement and the software and projects involved, see §2.3.
It should be noted that all the previously mentioned Desktop Grid systems are
centralized, with a common point of reference for job assignment and result ag-

26



2.2 Cloud Computing

gregation; however, there are some decentralized Desktop Grid systems, with the
OurGrid DG infrastructure from Brazil being a perfect example [15].

2.2 Cloud Computing

The scalability, underutilization, and load-balancing issues that helped promote
Grid computing also led to another new form of highly successful and popular
distributed processing called “Cloud” computing. In the years after the dot-com
bubble, Amazon played a key role in the development of Cloud computing when it
modernized its data centers, and, similar to many computer networks, had to build
to meet peak demand (such as the holiday season, or other large volume times),
leaving much of its capacity idle for long periods of time. Seeking to leverage
this opportunity, Amazon released a new product in 2006, Amazon Web Services
(AWS) [16], that allowed external customers to use these idle cycles. More devel-
opments followed (Eucalyptus [17], OpenNebula [18]), leading to the ability to run
a full-fledged virtual machine (VM) on a third party’s resources, and the “Cloud
Computing” movement had begun.

“Cloud computing” is a term used to describe the latest incarnation of on-
demand, scalable network computing. In Cloud computing one sees the compu-
tational and storage resources, and more recently even services themselves, as
black boxes to one’s application. Complex and simple services can be hosted
in the Cloud, and since a Cloud is really just a highly scalable infrastructure for
hosting practically any software program with any network-contactable service
endpoints, what constitutes an individual Cloud is at the complete discretion of
the service provisioners. Figure 2.3 shows the versatility of the Cloud, where ev-
erything is thrown in, ranging from application servers and distributed databases
to program code.

This new computing paradigm has become possible due to advances in virtual
machine technology. Virtual machines allow all the operating systems themselves
to be treated as applications running on an operating system. Therefore, just as
one might have multiple browser sessions open, one can have multiple operating
systems open. It is even possible to have virtual operating systems running within
a virtual operating system, albeit with an additional performance cost.
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Figure 2.3: Abstract View of Cloud Computing — gives a high-level view of Cloud
computing, where everything is thrown into “the Cloud” and is accessible as inde-
pendent resources. Clouds can host individual programs, such as in Microsoft’s
Azure, or full-fledged operating systems, as in Rackspace and Amazon’s S3. No
common service interfaces or standards exist for the Cloud or the services that
are deployed into it.

2.2.1 Flexibility and Scalability Benefits

Having the operating system itself as an application opens up a new range of
possibilities. If the entire operating system, and everything installed within it, can
be represented as a single file on another operating system, one is now able to
backup, restore, easy clone, and start multiple instances over a completely config-
ured system and dependent applications, all in an automated and scalable fash-
ion. This is where Cloud computing comes in; Cloud computing recognizes that
because multiple operating systems can now be run as virtual machines on one
piece of physical hardware (i.e., one machine), those configurations can them-
selves be fine-tuned to whatever the task requirements might be, and then turned
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on and off on demand. For example, with virtualization and Cloud computing, it
is no longer necessary to purchase an entire physical machine at a Web-hosting
company to run one’s website. Rather, one can simply purchase a virtual ma-
chine that is running “somewhere.” Perhaps a dozen other virtual machines are
running on the same piece of hardware; it doesn’t matter as long as the quality of
service that one is paying for is being provided.

Since each virtual image instance might use only a fraction of the real com-
putational power and storage available, in the event that more storage or more
computational power is needed by a particular instance, a new hard disk does not
need to be purchased and new memory does not necessarily need to be inserted
because a physical limitation has been reached. This is because a particular vir-
tual machine needing more resources can simply be reconfigured to use a larger
proportion of what is available, and if and when the physical hardware reaches
its limit, a subset of the VMs running upon it can simply be transferred to new
physical hardware.

A new kind of dynamic resource distribution was born. No longer does hard-
ware need to be tightly coupled to the software running on it. For computation,
it is therefore no longer necessary to know where something is running; instead,
one can simply take comfort in the fact that it is running. The same applies to
data. In a Cloud computing paradigm it is not necessary to know the location of
data, only to be certain of their existence, availability, and the quality of service
that can be expected when trying to access files.

2.2.2 Cloud Computing as a Business Model

Many large businesses have become heavily involved and invested in Cloud com-
puting. This includes not only the big names in the consumer software market and
online industry, such as Amazon, Google, and Microsoft, but also many compa-
nies dedicated only to Cloud computing, such as Rackspace. The large corporate
shift toward Cloud computing is much more concentrated than the commercial
backing of previous distributed computing systems. The primary reason for this
shift is that Cloud-based technologies can be widely sold as useful service host-
ing to a wider audience than traditional Service or Desktop Grids. Companies
investing in the Cloud see the potential of not only leasing storage and CPU cy-
cles, but also providing value-added services that can be easily customized or
replicated to new customer bases. For example, Amazon’s Simple Storage Ser-
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vice (S3) [19] provides a seemingly endless amount of storage to anyone willing
to pay for it, and this can prove beneficial for scientific applications, as explored by
Palankar and colleagues [20], albeit with a direct fiscal cost. And when Amazon
needs more storage space, it simply adds new servers to its data farms. At no
point does the end-user need to worry about expanding in-house data capacity or
buying new disks.

The same scalability principles apply to service hosting. For example, Mi-
crosoft’s Azure service allows programmers to write .NET applications and deploy
them to their cloud service layer. Azure provides more than just a flat operating
system package. It also provides an entire .NET hosting environment in which
users are able, for example, to store data in a distributed SQL database. And
unlike a traditional database for which, as demand increases, a larger and more
powerful machine would be needed to handle the requests or a distributed system
would have to be employed, Azure’s SQL service does this automatically, scaling
dynamically based upon demand. The ability to easily scale can be very benefi-
cial to companies using these services. By offloading scalability to someone else
in the Cloud, businesses no longer need to worry about overbuying hardware and
software to meet peak demand.

2.2.3 High Performance versus Highly Scalable Computing

Many might feel that the recent success and rush toward Cloud computing make it
the next evolutionary step after Grid computing, supplanting it for large computing
needs. This would be a false assumption because one must differentiate between
high-performance computing (HPC) and highly scalable computing (HSC). Cloud
computing provides a highly scalable environment, where resources can be bro-
kered on demand and consumption can easily scale to meet problem size. This
is an excellent system for disparate, embarrassingly parallel problems and com-
putation, such as many consumer-facing applications — for example, websites,
credit card processing, and parallel data processing.

What neither Desktop Grids nor Cloud Computing can provide is a high-perfor-
mance computing environment. Not every problem can be broken into discrete
computing segments that can be independently computed over long periods of
time without requiring network processing and synchronization. Programs that
rely on the Message Passing Interface (MPI) [21, 22] are typical examples of ap-
plications that would perform very poorly on Cloud computing resources [23]. MPI
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was designed as a way to tightly integrate separate memory spaces by provid-
ing a high-throughput message passing interface for calculations to communicate
and coordinate. MPI seeks to emulate what a shared-memory system would be
able to provide, but with a greater latency and the requirement that “messages”
are sent between nodes rather than via a shared memory space that can be
accessed by all. The advantages of using MPI are that an application can be
deployed on a relatively cheap cluster and run on many hundreds of processors,
which “act” as if they are a single application and computer. A shared-memory
system of similar scale would be tremendously expensive, if not impossible, to
create. Most (≈83%) of the Top 500 [24] supercomputers these days are actually
clusters, with the vast majority of the rest being closely related, massively paral-
lel processing (MPP) computers, leaving symmetric processing (SMP) machines,
Constellations, and Vector computers mostly in the past.

Despite being built primarily with some of the same fundamental building
blocks as Clouds (i.e., mass market CPUs), Grids provide a very valuable re-
source for High-Performance Applications that Clouds currently do not. Due to
their high-speed interconnects, Grids have fast disk access and interprocessor
communication facilities that are lacking in even the best Cloud environments. I
see it as very unlikely that the Cloud will suppliant Grid capabilities in the near
future for HPC, given the fractured nature of Cloud operations and their general
lack of dedicated high-speed interconnects such as InfiniBand, Gigabit ethernet,
and, in the not-so-distant past, Myrinet.

Service Grids therefore have a different target group than Cloud computing,
one that needs high-performance computing, not just highly scalable computing.
Desktop Grids, however, are very similar to Clouds, in that they are providing a
high-latency environment. Indeed, most Desktop Grid applications could be run
on Cloud resources, and there is a push to convert much of the DG infrastructure
to rely on virtual machines. Commercial Clouds, however, still prove to be an
order of magnitude more expensive than the highly successful “volunteer com-
puting” Desktop Grids that preceded them [25].

2.3 Volunteer Computing

Volunteer Computing, also referred to as “Public-Resource Computing,” is a rel-
atively recent phenomenon that surfaced with the broadening of the consumer
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Internet. In the mid-1990s the Search for Extraterrestrial Intelligence (SETI) [26]
project was collecting very large amounts of radio data from radio telescopes in
Mexico. Each of the telescopes pointed into outer space and listened for narrow-
bandwidth radio signals (not known to occur naturally) that might have been trans-
mitted (albeit thousands if not millions of years ago) across the cosmos by some
form of intelligent extraterrestrial life. The problems that arise when searching
for these signals – beyond the basic question of whether or not they exist – are,
first of all, the vast distances of space and, later, the Earth’s atmosphere. As
radio waves are transmitting through space, they can come in contact with inter-
ference (e.g., radiation, and solid objects such as stars and planets); after they
finally reach Earth, a large amount of interference can be picked up by the tele-
scopes due to the Earth’s atmosphere and other environmental considerations. It
can therefore be very difficult to distinguish between what might be an interesting
wave from an advanced civilization saying “Hi” and artifacts and other “garbage”
that might be corrupting the signal. Computer models using advanced algorithmic
analysis can be applied to the data to “clean them up” and to differentiate signal
noise from interesting signals. However, these models can require vast amounts
of computing resources, not necessarily because a given analysis takes a large
amount of processing time, but rather due to the vastness of the data itself.

With large numbers of computers becoming connected to the Internet in the
1990s, and in line with the thoughts of Distributed.net [27] (est. 1997) and the
Great Internet Mersenne Prime Search (GIMPS) [28] (est. 1995), SETI researchers
had an idea: What if some of the millions of people who now owned personal com-
puters could be convinced to install a non-intrusive program that would look like a
screensaver but would in the background process radio-telescope signals? Since
SETI data did not need to be analyzed in parallel on an expensive Service Grid
machine, the data sets could be split into discrete data partitions, each of which
could be independently analyzed to see whether any interesting signals arose.
Furthermore, due to the loosely coupled nature of the computation and the data
being relatively unrelated, it was not even necessary that certain data elements
be analyzed before or after others. SETI split their data analysis into a so-called
“bag of tasks,” which would then be distributed among many thousands, and even
tens of thousands, of independent computing nodes, as shown in Figure 2.4. This
was done through a newly created software project to coordinate task distribution
and result aggregation entitled SETI@Home [29, 30].

SETI@Home was extremely well received. It provided contributors with feed-
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Figure 2.4: Volunteer Computing Workflow — gives a diagram showing how a a
central project sends work to a much larger number of distributed resources for
computation.

back, through a screensaver, that engaged the public and let them directly partic-
ipate in a huge scientific experiment. Tens of thousands of people donated their
computing power and became part of what is termed “public distributed comput-
ing” or “public resource computing” [31], in which jobs are executed by privately
owned and often donated computers. SETI@Home had created, within a very
short time-frame, for the purposes of raw computational power, the largest (dis-
tributed) supercomputer in the world, with processing power far exceeding any-
thing that could be built and maintained in the lab. The project was so successful
that the SETI@Home software was rewritten into a general framework to allow
other scientists to do the same thing: the Berkeley Open Infrastructure for Net-
work Computing.
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2.3.1 Berkeley Open Infrastructure for Network Computing

The Berkeley Open Infrastructure for Network Computing (BOINC) [32, 33] ex-
panded beyond organizational boundaries and became the largest and most suc-
cessful volunteer computing application to date, taking advantage of unaffiliated
and donated computing resources. In the years that followed its release, more
than 501 distinct scientific projects adapted their applications to run on BOINC,
and almost three million total computers from over 200 countries have registered
to date [34]. The scientific applications making use of BOINC are very diverse,
ranging from NASA’s Climate@Home [35], which focuses on long-term climate
prediction, to Einstein@Home’s [36], aimed at detecting certain types of gravita-
tional waves. Although these projects may be diverse in their scientific nature,
they all share a common thread: they have scientific problems that can be split
into discreet work units that can be computed in parallel in a highly distributed
and volatile environment, and they are CPU-intensive, with a large ratio of CPU
cycles relative to data transfer requirements.

The BOINC software stack contains a scheduling server and a client program
that are installed on users’ machines. The client software periodically contacts the
scheduling server to report its hardware and availability, and in response receives
a set of instructions (i.e., “work unit”) for downloading and executing a job (see
Figure 2.5). After a client completes the work unit, it uploads resulting output
files to the scheduling server and requests more work. This disconnected nature
of work generation, distribution, and result aggregation makes BOINC especially
well suited to the volatile nature of volunteer computing networkings. To adapt an
application to BOINC, a new project must not only prepare its data and executable
code to work with the appropriate libraries and client/server infrastructure, but
also set up and maintain its own individual servers and databases to manage the
project’s data distribution and result aggregation.

The BOINC server is the key part of a BOINC-based Desktop Grid. It provides
an entry point for the users; stores applications, their related work units and user
information; and deals with requests from BOINC clients. BOINC servers use a
Web server (e.g., Apache) for the project users, which exposes a simple Web
page offering basic functionalities: user registration, statistics, query, and BOINC
client download requests. The BOINC server also operates as a user forum re-
lated to the project, where users can ask questions and report their problems.

1There are over 50 known BOINC projects. At the time of this writing, the BOINC website has
a list of 25 with which they have been in direct contact: http://boinc.berkeley.edu/projects.php
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BOINC uses a relational database (MySQL) for storage of applications, their re-
lated work units, as well as client and user information.

BOINC	  Core	  Client	  

Project	  	  
task	  local	  

storage	  

	  	  	  Compu'ng	  resource	  

project	  
data	  

Volunteer	  PC	  

URI	  
HTTP	  
HTTPS	  
	  

Web Server 

Input 

Upload Handler 

BOINC	  
Scheduler	  

Figure 2.5: BOINC Architecture — showing how the different components interact
over a wide-area network.

For data distribution, BOINC projects generally use a single centralized Web
server or, in the case of more popular projects, a set of mirrors. In the current
release of the BOINC client software, standard HTTP requests are used to down-
load input files. This centralized architecture, although very effective, incurs addi-
tional costs and can be a potential bottleneck when tasks share input files or the
central server has limited bandwidth. This can lead to additional costs on BOINC
projects and can quickly become taxing on hardware resources, as well as ineffi-
cient, especially as replication factors increase and many tasks begin to share the
same input files. Projects can add more mirrors to accommodate increased loads;
however, this puts extra administrative burden on the project organizer, incurs a
network cost, and can prove very time-consuming to manage.

BOINC uses a centralized architecture for task management and data distri-
bution. Each project that uses the BOINC middleware is responsible not only
for setting and maintaining its own entire infrastructure, but also for attracting
volunteers to perform the computations. Although this has been an extremely
successful approach for well-known and popular projects, it fails to provide an ef-
fective model for individual researchers to leverage volunteer computing. Seeing
this gap, other projects have been developed that create a “community computa-
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tion” paradigm, where the users of the infrastructure are also the volunteers. In
this scenario, scientists donate their idle cycles to the community and are later
afforded the ability to leverage the community resources when they need to per-
form a particular compute-intensive task. OurGrid and XtremWeb are examples
of this more ad hoc “peer-to-peer”-based volunteer computing.

2.3.2 XtremWeb

XtremWeb [37], like BOINC, is a software system that gathers unused resources
on donated computers and makes them available to scientific projects. Unlike
BOINC, which has centralized servers and in which users subscribe to a relatively
static set of projects for which they will donate their CPU time, XtremWeb allows
multiple users and multiple (changing) applications to run concurrently on the
system.

XtremWeb	  Client	  

Project	  	  
task	  local	  

storage	  

	  	  	  Compu'ng	  resource	  
Volunteer	  PC	  

URI	  
HTTP	  
HTTPS	  
	  

XtremWeb Server 

project	  
data	  

Figure 2.6: Data Access in XtremWeb — shows data access in XtremWeb, a
Desktop Grid computing platform.

XtremWeb provides a platform in which scientists and volunteers can share
their respective resources with one another; it is often the case that providers of
resources are also the users of the system. If one were to think of BOINC as a
large, stable, managed, and centralized volunteer computing system for distribut-
ing workloads, XtremWeb would be its smaller peer-to-peer cousin that organizes
resources in an ad hoc manner and allows the running of arbitrary code, provided
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it has been signed and verified by a trusted party. Similar to BOINC, work units
in XtremWeb are provided with the URIs of input files, as shown in Figure 2.6.
These are downloaded as a preprocessing step when a client job is launched.

2.3.3 Volunteer Computing Application Profiles

Chapter 1 briefly introduced how the volunteer computing platform has become a
popular means of providing vast amounts of processing power to scientific appli-
cations through the use of personal home computers. Many projects have suc-
cessfully taken advantage of the BOINC middleware to garnish vast amounts of
computing resources for their data analysis needs. To date, with little exception,
the projects using BOINC have had a very large CPU processing time to data
transfer ratio, thereby allowing a significant amount of offline computation with a
relatively low data-transfer cost.

In this section, three existing highly successful volunteer computing applica-
tions are profiled, to set the stage for discussing the needs, limitations, and future
of data delivery for volunteer computing networks. Each of these projects repre-
sents a variance in current BOINC-based applications. The first is SETI@Home,
the original BOINC project, which has relatively small work-unit sizes, at 340 KB
each. The second is Einstein@Home, a highly successful project analyzing grav-
itational wave data. Einstein@Home requires ≈6.5 MB of data for one work unit.
The last application examined is Climateprediction.net, which has even larger
data input requirements with ≈200 MB per work unit.

2.3.3.1 SETI@Home: Searching for Alien Life

The SETI@Home project, introduced in Chapter 1, is analyzing data from large
radio telescopes, hoping that signals or patterns containing messages from ex-
traterrestrial life can be identified. SETI@Home is the project that started the
BOINC middleware and therefore has the longest history of using BOINC. It is ar-
guably the most successful and well-known volunteer computing project to date.
It fits very well into a volunteer computing distributed data paradigm, having rel-
atively small work-unit sizes and a relatively long average processing time of two
hours on a CPU (15–20 minutes on a fast GPU); see Table 2.1.

The data needs of the≈233,000 active users require project servers to provide
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Table 2.1: SETI@Home Projecta Overview

SETI@Home

Replication Task Size Upload Rate Processing Time Tasks Per Day
2 340 KB 50 MB/s ≈2 hours ≈1,000,000

a Does not incorporate initial 3 MB download of the software that occurs when
each client joins the project, or when the software is updated approximately every
six months.

≈50 Mbp/s of consistent upload, which equates to serving over 16 Petabytes a
month. To provide result checking and ensure job validity, each SETI@Home task
is replicated to two unique workers. Input data are not shared beyond the two
workers that analyze a task, meaning that data requests to project servers could
theoretically be cut in half if files were shared among network participants. The
current throughput of SETI@Home as a computational platform is an impressive
550 Teraflops, putting it on par with many of the top supercomputers in the world.

2.3.3.2 Einstein@Home: Exploring the Fabric of the Universe

In early 2005, Einstein@Home [36] began using BOINC to distribute data col-
lected from the LIGO detectors [38] and Arecibo Observatory’s radio telescope
(see Figure 1.1) to tens of thousands of volunteer computers to search for continu-
ous gravitational waves. Six months after its launch, Einstein@Home was already
producing 20 teraflops of sustained computational power, and was transferring
half a terabyte in data each month to serve demand. At the time, that represented
the equivalent of a 20-million-dollar supercomputer with a seven-thousand-dollar-
per-day electrical bill. However, these were all donated resources, and the direct
cost to the SETI@Home project was only a small fraction of this amount. Seven
years later, at the time of this writing, Einstein@Home’s processing power has
increased to an impressive 250 teraflops. This puts its processing power on par
with many of the top 50 supercomputers in the world.

Einstein@Home currently performs three different data analysis tasks. The
first is the gravitational wave search that started Einstein@Home. This search
analyzes collected data for constant, monochromatic, gravitational waves, such
as those that might be given out by celestial artifacts such as rapidly spinning
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non-axisymmetric neutron stars. These signals do not change very much in their
amplitude or frequency. Therefore, they can be searched for and detected more
easily than gravitational waves from supernovae or neutron star and black hole
mergers, which would have higher amplitudes and require more complicated anal-
ysis. Typical jobs require four to five hours on a CPU to compute about seven
megabytes of data. To conserve bandwidth and processing power, each job is
initially sent to only two different hosts to verify results (i.e., form a quorum), with
a third host being used when one of the original results is not returned on time
or when the quorum disagrees. The overall failure rate of a computational task,
due to download errors, host errors, or other problems, is ≈6%, of which only
≈0.1% is due to quorum disagreements. Currently, the continuous gravitational
wave search processes ≈75,000 results per day, representing a total data-load of
over 15 terabytes a month in combined outgoing data transfer.

Figure 2.7: Mirror Locations for Einstein@Home — shows how Einstein@Home
achieves data distribution through full mirroring of input data to five geographi-
cally distributed sites around the globe, in addition to the original data source.
Data originate at UWM, and the five partner sites are part of the LIGO Scientific
Collaboration (LSC).

Similar to other BOINC projects, Einstein@Home mirrors its input files to sev-
eral geographically distributed sites to provide data scalability, as shown in Fig-

39



2.3 Volunteer Computing

ure 2.7. One problem with this centralized approach is that as additional data
sources come online, higher-resolution data become available, or compute/data
ratios change due to increasing processor speeds, the data-transfer needs can
increase substantially. The current solution to this problem is to increase network
speeds continually, add more mirroring servers, and/or down-sample and prepro-
cess the data. In addition, the Einstein@Home team has invented a procedure
they call “locality scheduling,” where tasks are preferentially assigned to machines
that have already downloaded shared input files in a previous simulation. How-
ever effective they might be in the short term, these methods necessitate addi-
tional logistical work and do not provide a dynamic solution that doesn’t require
direct human intervention and resource allocation.

The other, newer analysis in the Einstein@Home project is pulsar searches:
one in radio and one in gamma-rays. For these searches, the raw data are stored
at the Albert Einstein Institute (AEI) in Hannover, rather than University of Wiscon-
sin - Milwaukee, where Einstein@Home gravitational raw data are located. Unlike
the gravitational wave analysis, the data for the pulsar searches are not mirrored.
The gamma-ray analysis does not need mirroring or any complicated data man-
agement solution because the input files are small, less than one megabyte each.
For the binary radio pulsar (BRP) search, the data are not mirrored because they
are not reused very much; and the act of mirroring itself would require the data to
be transferred at least once, thereby significantly reducing any benefit except to
reduce peak demand.

Table 2.2: Einstein@Home Projecta Overview

Einstein@Home

Replication Task Size Upload Rate Processing Time Tasks Per Day
Gravitational Wave Analysis

2 6–7 MB a (5 mirrors) ≈5 hours ≈75,000
Binary Radio Pulsar

2 ≈32 MBb 30 MB/s ≈40 min. (GPU) ≈700,000

a Does not incorporate initial 40 MB download for each new client joining project.
b Once or twice a year, for a period of approximately two weeks; task size in-
creases as the end of a run is reached and analysis needs to be done on data that
are spread over the whole frequency range, which initiates a ”full sized” download
for each task.
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A BRP search can effectively utilize a computer’s GPU, completing an analy-
sis of 32 megabytes of data in ≈40 minutes. This faster processing time of larger
data sets has created a significant increase in data demands. Whereas the grav-
itational wave search consumed approximately one megabyte of data every 30
minutes, the BRP search can consume almost a megabyte per minute. This is
set to increase as the analysis code is optimized even more for GPU processing.

Currently, the two pulsar searches are fed (outgoing) from a single Web server,
equipped with a 16 disk RAID-6. To serve the pulsar data, around 700,000 down-
loads a day, an average bandwidth of ≈30 MB/s is required, with a peak of over
double that at 70 MB/s. Apache had been used in the beginning to serve HTTP
data, but quickly hit a bottleneck. The Einstein@Home team then switched to
lighttpd, which alleviated the problem for a short time, before finally grinding to a
halt as data requests increased beyond its capacity. The latest solution is to use
nginx, the Web server that powers Facebook, Git, and Sourceforge. Currently Ng-
inx is able to satisfy the team’s requests; however, it is exploring other distribution
options to satisfy future and growing demand.

2.3.3.3 Climateprediction.net: Predicting the Future of the World’s Climate

Climateprediction.net (CPDN) [39] is a parameter sweep application that investi-
gates uncertainties of climate model input parameters. By reducing the likelihood
that the input variables are flawed, CPDN is able to help climate models achieve
more accurate results. CPDN does this by running hundreds of thousands of dif-
ferent models (i.e., a large climate ensemble) and looking at divergence patterns
and how the model output varies when given slight changes to various physics
parameters. By analyzing these changes, CPDN is able to provide a better un-
derstanding of how the models are affected, which can be used to fine-tune the
models and help them provide more accurate predictions.

By leveraging the power of volunteer computing, CPDN was able to achieve,
within a short time after launching in September 2003, a larger processing capac-
ity than the Earth Simulator in Japan, which at the time was the world’s largest
climate modeling facility. Currently CPDN has an average performance of ≈35
Teraflops, with over 250,000 total users, 20,000 of whom are active on a regular
basis.

The project is run primarily by Oxford University in the United Kingdom. Cli-
mate Prediction.net is currently composed of two experiments: Weather At Home
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Table 2.3: Climate Prediction.net Project Overview

Climate Prediction.net

Replication Task Size Upload Rate Processing Time Valid Results a

Weather at Home
3 131 MB ≈3 mb/s ≈4.5 days ≈32%

HadCM3N
2 55 MB ≈3 mb/s ≈31 days ≈14%

a Unlike most other BOINC projects, CPDN puts no time limits on work units, and
given the nature of the parameter sweep, it is not imperative that every work unit is
computed, as it would be in a data analysis project such as Einstein@Home. The
lack of time limits and extremely long processing times of work units contribute to
the extremely low rate of valid result return.

and HadCM3N. Data are managed by seven upload servers, each providing on
average 0.39 MB/s, or an equivalent total of 234 GB per day. The project’s data re-
quirements and throughput are given in Table 2.3. One aspect that distinguishes
CPDN from other BOINC projects is that the output file size is significantly larger:
for the Weather At Home experiment, output data are 74 MB, and for HadCM3N
they are a significant 215 MB.

2.4 Service and Desktop Grid Interoperability

Service and Desktop Grid environments are separate entities, with different in-
frastructures, APIs, user bases, and target application types. When the research
supporting this dissertation began, there existed no way to leverage the individual
advantages of one environment over the other. That is, there was no unified Ser-
vice and Desktop Grid environment, and there were no bi-lateral migration paths
between the two. Combining these two distinct computing platforms would enable
researchers to use the well-known Service Grid infrastructure, while at the same
time having the availability of Desktop Grid resources when they wanted to run
an “embarrassingly parallel” application that did not require the tightly coupled
Service Grid systems. Achieving a unifying solution for these two different en-
vironments required overcoming a number of difficult technical hurdles, such as
minimizing or eliminating the high overhead of setting up a Desktop Grid project
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and finding a way either to harmonize or work around the different security infras-
tructures.

Interoperation between Service and Desktop Grids had been explored before,
for example, in the Lattice project [40] at the University of Maryland, the SZTAKI
Desktop Grid [41] in Hungary, the Condor project at the University of Wisconsin,
and the Superlink project [42] at Technion. These various projects looked at the
different aspects of combining Service and Desktop Grids, yet didn’t seek to pro-
vide a user-driven infrastructure that allowed on-demand submission of jobs from
Service to Desktop Grids. For instance, the Condor project implemented a mech-
anism for backfilling Desktop Grid jobs into Service Grids when peak demand was
not met, thereby ensuring the Service Grids were fully utilized.

One far-reaching goal of fusing SG and DGs is the notion of combining job ex-
ecution between the two environments into a single computing infrastructure that
can be leveraged by everyday scientists. When looking for a complete Service-
Desktop Grid interoperability solution, the European Union Enabling Desktop Grids
for e-Science (EDGeS) project’s goal of providing job migration between the En-
abling Grids for E-sciencE (EGEE) Service Grid and BOINC and XtremWeb vol-
unteer computing platforms is noteworthy. It comes the closest to full interoper-
ability among the various projects that have attempted to combine the two sys-
tems.

2.4.1 Enabling Grids for E-sciencE (EGEE)

Enabling Grids for E-sciencE (EGEE) [43] was a very large and well-funded2 Eu-
ropean Union project. It followed in the footsteps of the EU DataGrid to build on
advances in Grid computing technology and provide a robust Grid infrastructure
for research. It was originally entitled “Enabling Grids for E-Science in Europe,”
but was later changed (dropping the “Europe”) to reflect its more global orienta-
tion. During its reign, the EGEE was the largest Grid infrastructure in the world,
lasting from 2004–2010, under three successful and consecutive rounds of fund-
ing proposals. Discussing the nature of EGEE is very relevant to the research
presented here because it was the main Grid environment active during the for-
mulation of the solutions and ideas presented in Chapters 3 and 4. It set the stage

2The EGEE was funded in three phases. The first lasted from 2004–2006, the second from
2006–2008, and the third from 2008–2010. The total funding for the three EGEE projects ex-
ceeded 130 million Euros.
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of much for the data requirements that Service to Desktop Grid migration might
present.

EGEE connected many different institutional clusters and supercomputers from
around Europe (and later globally) into a single Grid entity with common elements,
such as storage, job queues, and a shared security infrastructure. For storage –
the element that is most relevant to the research presented here – the EGEE had
a system called the “Storage Resource Manager” (SRM) [44], which provided a
replica catalog based upon Logical File Names (LFNs). To access data stored in
the catalog, as depicted in Figure 2.8, a user authenticated with his or her Grid
certificate and provided the LFN associated with the file they wished to retrieve.
The SRM catalog contained a mapping of each LFN to replicas (SURLs) around
the network. The user was able to query these SURL locations to gain access to
a TURL, or temporary file location. The TURL provided a real and valid endpoint
that the user could contact using a known transport protocol (e.g., GridFTP [45]
or HTTPS) to download the file.

To access any service on EGEE, users had to identify themselves through
Grid (X.509) certificates, which required pass-phrases to unlock, and needed to
have short-term proxies delegated in order to authorize tasks. After a proxy was
created, it could be delegated to a MyProxy [46] server, where other services
could retrieve and subsequently use it. In addition to the creation and delega-
tion of proxies, user credentials were often classified, based upon their Virtual
Organization (VO), in the Virtual Organization Membership Service (VOMS) [47].
VOMS allowed grouping of users based upon their security credentials, providing
means to partition the user-space and allowing granular authorization. It should
be noted that the negotiation steps performed to access a file always involved a
user’s (private, personal, and never to be shared) certificate to identity him/her
on the network. At no time were files provided or exposed to non-authenticated
parties.

EGEE provided researchers with access to computing resources on demand,
from anywhere in the world and at any time of day, provided they had the appro-
priate credentials and allocations. Ease of access and the ability to analyze a
larger amount of data within short timescales attracted participation from a wide
range of scientific disciplines. When the EGEE-III project was finally completed in
April 2010, it boasted 13,000 users, with ≈13 million jobs per month, running on
a worldwide multi-institutional and transnational network comprised of over 300
computing centers.
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Figure 2.8: EGEE Data Access — shows a simplified view of data access within
the EGEE Service Grid computing platform.

It is useful to compare the EGEE achievements with those of the Desktop
Grids presented in §2.3.3. Even though the total CPU cores of EGEE rose from
76,000 in 2008 to almost 200,000 at the end of the project, this was still dwarfed by
the combined power of BOINC in terms of sheer computational muscle. However,
what differentiates the EGEE from Desktop Grids and makes it such a worth-
while investment is the fact that it can run high-performance applications, rather
than only the highly scalable “bag of task” simulations that thrive in Desktop Grid
environments.

Much of the EGEE infrastructure, tools (notably gLite [48]), and concepts live
on in the European Grid Infrastructure (EGI) [11]. National Grid Initiatives (NGI),
such as the UK’s National Grid Service (NGS), provide the Grid infrastructure and
support for scientific computation in their respective countries. The EGI’s role is
to manage the international collaborations between these NGIs that enable (as
was done under EGEE) individual researchers to share and combine comput-
ing resources in international collaborative research projects. The EGI is active
today and has several related projects that support it, such as the Integrated Sus-
tainable Pan-European Infrastructure for Researchers in Europe (EGI-InSPIRE)
project and e-ScienceTalk [49].

Given the vast resources in Desktop Grid environments, and the potential to
increase their sizes for relatively small investments, coupled with the high cost
of creating a large service Grid, it is very desirable to shift any applications from
Service to Desktop Grids if they can function in that environment. By migrating
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jobs between the platforms, researchers and administrators can help preserve
the costly and complex Service Grid infrastructure for the tightly coupled MPI
applications it is designed to support, thus reducing overall costs and increasing
usability.

2.4.2 Enabling Desktop Grids for e-Science (EDGeS)

One of the obstacles in transitioning Service Grid jobs that could run on Desktop
Grids to the new environment is user uptake. Scientists invest a large amount of
effort in getting their applications running on any infrastructure, especially one as
complex as a Service Grid. Any move to transfer these jobs to a new and vastly
different platform would come at a high cost, with perhaps limited direct benefit
– unless, of course, the project had substantial and sustaining data-analysis re-
quirements like Einstein@Home and SETI@Home. Naturally, the Service Grid
would become less taxed and be able to accommodate more tightly coupled jobs
if more applications were migrated. However, a scientist who has invested time in
transferring his or her job to a Desktop Grid does not necessarily directly see this
benefit. What the scientists could potentially reap as the transfer reward would be
the increased CPU availability that can come in a Desktop Grid infrastructure.

Unfortunately, the promise of limitless CPUs in Desktop Grids, and in par-
ticular volunteer computing environments, comes at a cost. Technical hurdles
aside, before any application can successfully run on a volunteer Desktop Grid,
donating users must be convinced to commit their resources to that particular ap-
plication. For an individual scientist, or a small- to medium-sized research group,
this might prove difficult. For example, in the current BOINC community, the top
five projects (all of them large and well-funded) account for a disproportional 50%
of all donated resources. Beyond the difficulty in building and maintaining a user
base, transitioning applications to a Desktop Grid requires a substantial hosting
infrastructure to serve input files, retrieve output, and distribute working units. For
larger projects, the benefits can far outweigh the costs; however, for the majority
of the 13,000 users involved in the EGEE, deploying a Desktop Grid infrastructure
might prove unattainable.

The Enabling Desktop Grids for e-Science (EDGeS) [50, 51] project sought to
bridge this gap by providing tools and infrastructure to transfer jobs automatically
from Service to Desktop Grids, with only minor modifications to the job code [52],
and without the need for end-users to set up and maintain complicated infras-
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tructure. EDGeS began in 2008 with the goals of researching and developing
“bridging technology” to move jobs from EGEE to BOINC/XtremWeb, and vice
versa (see Appendix B for more information). To achieve these lofty goals, a
number of obstacles had to be overcome. For example, most applications writ-
ten for the EGEE use the Message Passing Interface (MPI) for coordinating work
between processors, something not available on Desktop Grid clients. Typically,
EGEE jobs also rely upon local disk access or the EGEE’s internal SRM system
(see Figure 2.8) to retrieve input files and store output. Moreover, job manage-
ment and queuing systems in the two environments are vastly different; therefore,
there existed a need either to integrate the systems or somehow develop adapters
that are able to transition between the two disparate environments.

Figure 2.9: Job Migration from EGEE to BOINC — shows how job migration takes
place within the EDGeS architecture.

Figure 2.9 gives an overview of how an EGEE job was transferred to BOINC
in EDGeS, and could still be transferred using the follow-on EDGI infrastructure
discussed in Chapter 6. To begin, an EGEE user logs onto an EGEE resource
and submits a normal job from the command line (described by the Job Descrip-
tion Language (JDL)) to the Workload Management System (WMS), which acts
as a meta-scheduler. Once WMS receives the job, it queries for information about
available resources and finds, among the available resources, the modified com-
puting element of EDGeS. The user can also directly suggest the EDGeS job
manager to handle the job. Either way, the WMS system is then able to submit
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the job to the EDGeS GRAM [53] job manager. The job manager retrieves the
executable from the EDGeS application repository, where validated executables
are stored, and sends it to the Generic Grid to Grid (3G) [54] bridge. The 3G
bridge will translate the job into (in this case BOINC) work units and add them to
the queue. Once in the Desktop Grid queue, they are retrieved by clients through
a pull mechanism, are executed, and any resulting output is returned. For more
in-depth detail on how EDGeS developed these solutions – including its core com-
ponent, the 3G bridge, which moves jobs from Service to Desktop Grids (and vice
versa) – see the work by Caillat [55] and Kacsuk [56] and colleagues.

Beyond the validation and movement of an application, its metadata, exe-
cutable, and parameter files, input and output data must also be managed when
migrating jobs between Service to Desktop Grids. Notice that Figure 2.9 makes
no mention of the input data and how they are transferred to worker nodes. For
smaller file sizes and low throughput applications, this could be achieved by host-
ing input files on the EDGeS BOINC server. However, this solution quickly be-
comes a bottleneck for large input files or popular applications where thousands
of clients might connect.

One key component to EDGeS was the ability to satisfactorily handle the data
requirements that arise during job migration [57]. In a traditional Service Grid
or high-performance cluster environment, large data input and output files can
normally be stored on centralized and well-connected mass storage systems,
thereby facilitating the easy access and sharing of data between individual com-
pute nodes. When a job is moved from a Service Grid to a Desktop Grid environ-
ment, these systems are unlikely to be either available or accessible to Desktop
Grid worker nodes. The lack of data availability produces a need for a new man-
agement infrastructure that can get the required input data for a given job and
propagate it to each individual client machine that will be performing calculations.

Knowing the need for a new data management paradigm to integrate Service
and Desktop Grids, the EDGeS project devoted one of its three joint research ac-
tivities (JRAs) to this task. JRA3 was tasked with the research and development
of a data management solution that could support the transfer of data to and from
these two disparate environments. The data access and data-handling solutions
developed in EDGeS are extremely relevant to the work presented here because
much of the research and software supporting the hypothesis presented in Chap-
ter 1 was developed in and funded by EDGeS. I served as the work-package
leader for JRA3. Throughout this dissertation many of the data management top-
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ics, research ideas, and subsequent solutions were shaped by the requirements
not only of data distribution within Desktop Grids but also of data transition from
Service Grid environments to Desktop Grid computing platforms.

2.4.3 Data Management Obstacles

For EDGeS and projects like EDGeS, data availability could be achieved easily if
the Service Grid layer (e.g., EGEE’s SRM) was exposed directly to Desktop Grid
participants, which had all the necessary libraries and credentials to access and
retrieve the needed information. However, this would both require modifications
to the Desktop Grid software (i.e., BOINC and XtremWeb) and expose Service
Grid file systems to public networks and insecure computers. Although such an
approach would closely mimic the current functionality found in most Desktop Grid
projects, where data are distributed to all participants from a central machine or
through a set of known and static mirrors, it is not feasible or desirable given its
security implications and unrealistic software dependencies.

Beyond security implications, Service Grid systems might not technically be
able to service the increased requirements that come with deploying jobs to a
Desktop Grid. In most cluster environments, data are stored locally or copied to
a local file system prior to job execution, allowing many processors fast and easy
access to a shared disk. Once a job is moved to a Desktop Grid, each peer wish-
ing to perform work must download an individual copy of the data to be analyzed.
For example, a parameter sweep application (see Sequence Correlations in Table
2.4 below) needing to run 100,000 jobs using a 100 MB input file would require
10 Petabytes of network traffic from the Service to the Desktop Grid. Even in less
dramatic cases, the additional load of serving every input file to each individual
node over a Wide Area Network (WAN) can quickly lead to a very large drain on
network bandwidth, in addition to potentially taxing I/O systems. This is espe-
cially true for distributed storage systems such as EGEE’s SRM, where individual
replica locations, depending on their specifications, might not be able to handle
the increased loads.

EDGeS required a system that could adapt to varying input-file sizes and repli-
cation factors without unduly stressing or exposing EGEE resources. EGEE se-
curity infrastructure and policies prevent access to local files from foreign and
untrusted hosts, meaning that they somehow have to be transferred to an inter-
mediary location for distribution. Anonymous access is generally not an issue for
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BOINC (and less so XtremWeb) projects because they are able to have dedicated
and network-isolated data servers. However, the EGEE SRM strictly required
X.509 certificate authentication to access data; volunteer nodes would not have
access to the needed keys and software libraries to make use of them. Com-
plex solutions for proxy delegation could be developed, but again, these would
require major modification to the BOINC and XtremWeb client and server codes
(a very undesirable solution that could adversely impact volunteer participation),
quickly making such solutions problematic, both technically and politically. Even
if these steps were feasible, any solutions would be particular to the individual
Service and Desktop Grid systems and would not provide a generic and flexible
way of publishing data that could be used by other scientific projects with different
Service Grid infrastructures.

2.4.3.1 SG→ DG Use Cases

Table 2.4 shows the data parameters for many of the applications that were in-
volved in EDGeS.3 It should be apparent that in several cases the data sizes and
per-job throughput requirements far exceed those used by the popular and on-
going volunteer projects seen in §2.3.3. Data volume and access requirements
make it impractical to facilitate the bridging and hosting of these applications with
a traditional centralized model. Additional roadblocks to easy integration occur
when one considers that EDGeS facilitates the bridging of an arbitrary number of
applications, each with different application sizes and user-bases. It is therefore
unlikely that either the EDGeS Desktop Grid server or the end-user (i.e., the sci-
entist running the job) will have sufficient storage and server capacity to host all
the work units and input data. This is especially true for transient applications,
where the work isn’t sustaining like Einstein@Home, but rather is a short-lived
project (i.e., a short research grant or Ph.D. student validating his or her results)
that doesn’t have the resources and time to construct a mirrored server array to
host input files.

The EDGeS 3G Bridge, introduced in §2.4.2, is meant to be a generic platform
to transfer jobs from Service to Desktop Grids. As part of this role, and to deliver a
functioning system, the infrastructure must provide a way to host or distribute input
data files. Since EGEE is a decentralized platform, or a federation of institutions,
there is no “centralized” place to host all these files in a public-facing fashion,

3For more information and applications, see: http://www.edges-grid.eu/web/edges/49
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Table 2.4: EDGeS Applications’ Data Management Needs

Name Files/WU File Sizegh Outputg Exec Time Tasks/Dayg

ISDEP 6a 2 1 30 min. 50,000
pLINK 2 380 0.5
ViSAGE 2 2 1 1 min. 10,000
Desktop Grid
Pattern Finder
(DGPF)

2 0.5 0.5 5 min. 3,100

Distributed Audio
Retrieval using Tri-
ana (DART)

6b 52 0.01 2 min. 1,000

itemgrid 1 <1 <1 60 min. 1,000
E-Marketplace
Model Integrated
with Logistics
(EMMIL)

1c 1 10 10 min. 1,000

X-ray 0.1d 0.2 1 20 min. 10,000
VisIVO 4e 1000 50 30 min. 2,000
GT4Tray 1 – 1000 1 – 1000 1 – 1000 1 – 240 min. 200
Multiscale Im-
age and Video
Processing

5f 1 1 20 min. 1024

Sequence Corre-
lations

1 100 50 180 min. 100,000

MOPAC 3 0.1 0.5 4 min. 100,000

a Does not include pre-stage files of 80 MB for each new host.
b Does not include pre-stage files of 312 MB for each new host.
c Does not include pre-stage files of 80 MB for each new host.
d Does not include pre-stage files of 2 MB for each new host.
e Does not include pre-stage files of 15 MB for each new host.
f Does not include pre-stage files of 150 MB for each new host.
g Estimation is of the upper bounds of the number of tasks that would be available
each day for processing.
h Sizes represented in megabytes.

as needed by a Desktop Grid. Arbitrarily choosing a specific site to host all the
EGEE→DG files (such as an EDGeS project server) would quickly prove to be a
bottleneck, as well as unsustainable, because it would disappear as the project
finishes, and/or as different groups join or leave the EGEE and wish to leverage
bridge technology.
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It becomes apparent that a system is required that can dynamically restructure
itself to accommodate the changing nature of EGEE membership, grants, and in-
frastructure improvements, as well as provide the measurable Quality of Service
(QoS) that is needed to host the input files. A dynamic self-load-balancing system
is needed, with the ability to reconfigure, add new servers, and change relative
loads as the applications and needs evolve. The characteristics described here
closely mimic those found in “peer-to-peer” networks, making them worth explor-
ing as a possible research avenue.

2.5 Peer-to-Peer Networking

The term “peer-to-peer” (P2P) has generally been categorized as the ability to
use resources on the “edges of the Internet” [58–60]. The “edges of the Internet”
refer to those computers, systems, and devices that are not part of the integral
backbone of the Internet, but rather sit on the periphery, such as home PCs, mo-
bile devices, and other consumer-grade and widespread electronics. One of the
promises of P2P computing is to leverage these heterogeneous and distributed
resources to perform complex and useful tasks, where the system aggregate pro-
vides non-trivial levels of service. Following this loose definition, volunteer com-
puting projects (e.g., BOINC) can be described as peer-to-peer even though they
are centrally managed and communication is client/server.

More narrowly, peer-to-peer networking refers to a system where the partici-
pants interact on similar terms and can participate, more or less, as equals. In
P2P networking, the focus is on providing the environment and the tools to con-
nect many heterogeneous and dynamic resources together, in interactions and
roles that are not restricted to traditional client/server models. Thus P2P network-
ing is about how to enable what can be complex and highly dynamic relationships
among a variety of software or hardware resources. P2P then becomes a term
that describes a general problem domain and a set of solutions on how to ad-
dress interconnectivity issues in a highly dynamic and unreliable environment. In
the data management domain, P2P has proved highly successful for distributing
files among millions of users, and “peer-to-peer” is used to describe both the net-
work topology and a social organization scheme in which participants operate as
servers and also as clients, often concurrently, depending on the circumstances,
network requirements, and user demand.
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When constructing a peer-to-peer network, it is important to keep in mind the
great heterogeneity of the devices. Unlike the main Internet routers, systems, and
servers that comprise the backbone of the Internet and provide much of the infras-
tructure that we rely on, devices at the “edge of the network” vary greatly in their
capabilities. For example, a consumer laptop might have significant storage abil-
ities and processor speeds yet lack any GPS function, whereas a mobile phone
might have GPS and sufficient storage yet be constrained by minimal memory
and battery issues. Also important is the realization that in a P2P network, the
home computers, mobile devices, and other systems that comprise the system
are extremely volatile. At any moment they can be switched on or off, thereby
changing the network topology and thus requiring a system that can easily adapt
to a great number of failures and a constant need for reconfiguration.

2.5.1 The Explosion of P2P File-Sharing

Many software systems have been developed since the advent of the consumer
Internet, but perhaps none has been as controversial as peer-to-peer file-sharing.
P2P systems and their uses have been central in the debate over how information
and data are shared on the Internet (and how to prevent it). When discussing
the history and developments in distributed file-sharing, it is useful to explore
the (somewhat controversial) history and evolution of peer-to-peer data networks,
which has led to much of the technical innovation in the distributed computing
field.

Napster [61] was perhaps the first famous use of peer-to-peer file-sharing, at-
tracting millions of users. It provided a user-friendly and easy way for people to
use their PCs to connect to other peoples’ PCs and exchange files. The majority
of the files transferred on Napster were MP3 encoded music files, the majority
of them copyrighted. To orchestrate the millions of connected systems, Napster
servers acted as metadata caches for locating information, with the end-data (i.e.,
music files) being stored on the participants’ personal home computers. Once
a requested file was located, the requestor would directly download it from the
hosting machine. Participants could both receive and send files, and even share
partial copies of files with one another to create whole sets. Therefore, in the
Napster network, the location of information was completely centralized on their
servers, but the distribution was “peer-to-peer.” This model is often referred to
as a “brokered” approach, and it was extremely successful, allowing the Napster
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network to successfully scale to a peak of 25 million users and 80 million files.
Since much of the network traffic on Napster was copyrighted music and its use
was widespread,4 lawsuits from the music industry quickly ensued. Through a
combination of legal actions against Napster and a fear of stiff fines directed to-
ward users, Napster’s popularity fell, to be replaced by several other peer-to-peer
systems such as Limewire, eMule, Kazaa, and Gnuttela.

Armed with the knowledge that a large part of Napster’s demise had been due
to its centralized architecture – which, although technically sufficient, provided
a single entity that could fail or be targeted for “shutdown” – Napster’s succes-
sors investigated new distribution mechanisms. The remainder of this section
discusses the evolution of peer-to-peer file-sharing and the new technologies that
began to be developed in the years following Napster.

2.5.2 Peer-to-Peer File Distribution Taxonomy

Practically every website on the World Wide Web (WWW) uses a centralized
model to host its webpages, files, and other content. In a typical Internet hosting
environment, a Web server (or series of load balancing Web servers) is used to
satisfy requests for multiple clients. Such a straightforward and centralized ap-
proach works quite well if all data can be aggregated to one location and the
servers can successfully scale to meet demand. Most large companies, espe-
cially those involved in e-Commerce, such as Apple and Amazon, ensure that
they have sufficient servers to satisfy anticipated peak demand, although this re-
quires “over-building” capacity to meet transient and infrequent periods of peak
demand. Amazon’s over-building of capacity to meet peak demand led to its re-
lease of its Cloud computing infrastructure, as detailed in §2.2, to sell the extra
cycles when they aren’t being used. For companies and websites that lack addi-
tional capacity, when something unexpected becomes popular or in high demand,
such as a particular news story or website, an effective denial-of-service attack
can be launched when bottlenecks are reached, grinding the targeted website or
service to a halt.

Despite advances in P2P networks, attempts to provide distributed website
caching [62], and the introduction of Cloud computing, centralized distribution
and control have remained the pivotal means of sharing most content, and for

4Other file-sharing networks had existed before, but they had not been nearly as successful
and easy to use, and therefore not as threatening as Napster to copyright holders.
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good reason. Cloud computing requires a migration cost for existing systems
and often a “buy-in” to a particular Cloud provider’s system, as well as a direct
sustaining cost that must be paid to host the services. Peer-to-peer networks have
a reputation for being unreliable and the plaything of Internet pirates, and have
only recently begun to shake this stigma. Additionally, many P2P systems provide
only “best guess” estimates of availability and limited quality of service, making
them inherently unreliable for real-time interactions such as website hosting. File-
sharing, however, is not as interactive as webpage requests, with a natural latency
built into any system where large amounts of data are being transferred. For file-
sharing, the scalability and distributed storage benefits of P2P often outweigh any
potential network latency or other quality-of-service (QoS) metrics that might be
sacrificed; this makes it an attractive technology.

2.5.3 Flat Networks

As Napster began to face legal trouble in 2000, other peer-to-peer technologies
came to the forefront as new ways to share files, without relying on the centralized
system that would prove to be Napster’s downfall. The first of this new breed of
P2P software protocols eliminated the centralized tracker system found in Napster
and instead found metadata by querying peer nodes directly in a rudimentary
method called “network flooding.” In network flooding, messages are broadcast
throughout the network in a very egalitarian approach for a certain number of
hops (routing depth), until they at last expire or have reached all nodes in the
network.

Flat networks are advantageous in the sense that they give very accurate and
up-to-date search information by going directly to the source (i.e., end machines
that contain the data) to query for availability. However, they suffer from a sig-
nificant disadvantage due to the high message overheads incurred by network
flooding, which becomes especially pronounced as network size increases.

2.5.3.1 Gnutella (Early Versions)

The Gnutella software was released under the GNU General Public License (GPL)
[63], making it available to freely use, reuse, and modify. This is in stark contrast
to Napster, which was a proprietary and closed-source software program dis-
tributed and developed by a private company. Gnutella’s open-source availability,
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as well as timing, made it highly popular. The ability to change and reuse the
Gnutella software and protocol also allowed it to be more dynamic than Napster
was, evolving over time from a community of interest and adapting to new dis-
tribution needs and network advancements. The first version of Gnutella was a
completely unstructured network that used network flooding to locate information.
Despite its advantages of being decentralized and dynamic on large volatile net-
works, such as the void left by Napster, network flooding proved highly inefficient.
As more messages flooded the network, speeds slowed to a crawl. Not only are
connection operations expensive in terms or resource utilization, but querying an
entire network of millions with metadata requests can become a huge network
load, trumping that of the actual data being sent.

The limitations of deep network flooding became apparent to Gnutella devel-
opers, and by version 0.4 of the protocol, they sought to gain scalability by lim-
iting search depth to seven hops, and having peers connected only to five other
nodes. The new flooding algorithm yielded a maximum potential network flood of
57 routed messages for each query – substantial, yet only a small fraction of the
network. This still proved inefficient and unscalable in such a large network, often
led to inaccurate results (since only a small partition of the network was being
searched), and had a reputation for still rendering the network unusable by low-
bandwidth machines because too much traffic was being consumed by metadata
queries.

Gnutella’s failure to scale on a flat network should not be seen as an indica-
tion that flat networks did not have their place in peer-to-peer environments. For
small-sized networks such as LANs or mobile ad hoc networks, network flooding
approaches can be extremely effective. Apple’s Bonjour protocol is an example of
this and is Hewlett Packard’s direct jet printer software. The User Datagram Proto-
col (UDP) and other network protocols that are used every day by our computers
also use network flooding to locate resources and send messages.

After Gnutella proved flat networks to be unfeasible for Internet-scale connec-
tivity levels, other metadata searching and management solutions began to be
explored, namely, centralized/decentralized, distributed hash tables, and “super
peer” topologies.
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2.5.4 Centralized/Decentralized

As opposed to a completely centralized solution, a centralized/decentralized ap-
proach provides the reliability of a centralized server with the scalability and task-
sharing of a decentralized network. A centralized/decentralized model can be
very successful in providing up-to-date, accurate, and efficient metadata man-
agement, coupled with a load-balanced distributed mechanism. However, it also
has the disadvantage of a centralized entity that can become a bottleneck or oth-
erwise fail. Centralized/decentralized models are often referred to as a “brokered”
approach, because a centralized entity “brokers” the interactions among a large
group of network participants and acts as a central organizer for communications.

2.5.4.1 Napster

Napster [64], the first highly successful use of peer-to-peer file-sharing, was laun-
ched in 1999 and finally closed down in July 2001. It was run by a private company
that hosted all metadata about the network and its content at the company’s cen-
tralized servers. The vast majority of all data on the Napster network consisted
of MP3-encoded music files. To participate in the Napster network, clients would
connect to the Napster server, where they would register the files they wished
to share and could also initiate search requests. Once queries matches were
made, a user could initiate download requests directly with other network par-
ticipants without routing any “data” traffic through Napster’s servers. The model
was extremely successful and scaled to a peak of 80 million hosts before Napster
was finally sued over copyright concerns and its user-base migrated to alternative
networks.

2.5.4.2 BitTorrent

BitTorrent [65] was created in mid-2001, and remains a popular file distribution
protocol to date. Like its predecessor, Napster, BitTorrent follows a centralized/de-
centralized approach and is extremely successful and efficient in distributing files.
All file metadata are stored in one location,5 a centralized tracker that has an
index of each node on the network that contains parts of the targeted file. Un-

5There are alternative trackers for BitTorrent which allow the tracking files to be distributed, as
well as distributed tracker indexes. However, the default and most widely used implementation of
the BitTorrent tracker is centralized.
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like Napster, locating the tracker (and therefore the data) is out of the bounds
of the BitTorrent protocol and depends on other metadata engines, websites, or
indexes. BitTorrent is most beneficial when distributing frequently used and siz-
able data [66], such as Linux distributions and, more controversially, copyrighted
movies and music.

Similar to the legal battles that faced Napster, the indexes that share infor-
mation about where to find BitTorrent trackers are often targeted for shutdown
by those who believe their copyrights are being violated. However, what differ-
entiates BitTorrent from Napster is that each tracker contains only the information
about one file. In BitTorrent there is no central metadata repository, and no tracker
index is central to the existence of BitTorrent. Unlike most P2P networks, BitTor-
rent does not create one large network; rather, it creates many small networks,
each of which focuses on the efficient distribution of a single file. BitTorrent has
survived the legals battles that disrupted Napster partially because its software
and protocol are generic and can be used for distributing any type of file (and
often do so). Also, the company that created BitTorrent does not host the entire
network’s metadata, which would inevitably include links to copyrighted material.
The result for BitTorrent is a strong case for plausible deniability that the software
is being used illegally, weakening any legal basis for shutting down BitTorrent and
identifying the protocol as a distributor of illegal software products.

To obtain information about a file to download, a peer must download a cor-
responding .torrent file. This file contains the file’s length, name and hashing
information, and the url of a tracker, which keeps a global registry of all the peers
sharing the file. Trackers help peers establish connections between each other
by responding to a user’s file request with a partial list of the peers having parts,
or chunks, of the file. A tracker does not participate in the actual file distribution;
each peer decides locally which data to download based on data collected from its
neighbors. Therefore, each peer is responsible for maximizing its own download
rate.

One notable difference between BitTorrent and other P2P software is that Bit-
Torrent does not incorporate peer and file discovery algorithms. Its main focus
is on optimizing the distribution of files. This is done by enabling multiple down-
load sources through the use of file partitioning, tracking, and file-swarming tech-
niques. One feature in BitTorrent that has diverged from many other P2P software
products is its enforcement of collaboration between users by a mandatory fair
use doctrine called “tit-for-tat.” In tit-for-tat, network participants are (generally)

58



2.5 Peer-to-Peer Networking

able to receive file segments only if they are also providing them, a policy that
enforces fairness in the network and helps maintain network parity.

Although BitTorrent is a very effective software system for distributing large,
frequently used files, its tit-for-tat policy and lack of a centralized tracking mech-
anism make it unusable for BOINC data distribution. However, many of the con-
cepts employed by BitTorrent, such a file-swarming, two-stage MD5 hashing, and
centralized tracking (i.e., brokered architecture), are very applicable and useful
for Desktop Grid data management.

2.5.4.3 BlobSeer

BlobSeer [67] is a data management system designed to support high-throughput
data-intensive applications over a wide-area-network (WAN). To do this, Blob-
Seer employs a Napster-like topology, where there is a “provider manager” that
keeps information about storage space and schedules placement of new data
items. Data is stored in Binary Large Objects (BLOBs), which act as containers
for smaller application data. This has the benefit of limiting the amount of unique
identifiers on the network, and lowering metadata management costs. Full meta-
data and storage information is distributed across the network for scalability and
redundancy. The target community for BlobSeer is MapReduce [68] applications,
and the infrastructure can be accessed and used through a custom application
programming interface (API).

2.5.5 Distributed Hash Tables

Distributed hash tables (DHTs) rely on structured lookup algorithms to locate in-
formation. As the name suggests, a distributed hash table acts much like a local
hash lookup, with unique keys that map to values, although a DHT operates in
a distributed manner. There are many examples of DHT networks and the un-
derlying protocols and routing algorithms that make them possible. Tapestry [69],
Pastry [70], CAN [71], and Chord [72] are some of the most well known. They
all share the same concept — that individual pieces of information, referenced by
unique keys, are stored in structured locations that can be identified and found.
To locate information, a search is sent to a node on the network. That node will
then see if it is responsible for that key space, and if so, respond with the relevant
data. If the node is not responsible for that key space, it will look in its neighbor
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table (a list of other nodes it can connect to) to see who is “closest” to the key
space in question, and route the message to them. This sequence continues until
the information is found, or a node cannot find a neighbor with a closer mapping,
in which case the key/value pair does not exist on the network.

A simple example of a distributed-hash-table-style distribution would be to take
all the words in the English language and assign them to 26 different nodes, with
each being responsible for all words that start with its assigned letter. Each node
has a certain number of neighbors it keeps track of (network “degree”), which we
will set to two. For simplicity’s sake, let each node have only one neighbor, and
let it be the next letter in the alphabet. If a node at position A wanted to search
for a word starting with the letter D, it would have to traverse three hops before
it arrived at its final destination: A → B → C → D. In this simplistic scenario, the
maximum route length a query would have to traverse before locating an answer
would be N, where N is the size of the network.

There is a direct relationship between routing length and degree. The greater
the degree, the less routing length needed, and vice versa. A network with N
degrees, where N is equal to the size of the network, would be a terribly ineffi-
cient and very “flat” network with extremely high maintenance costs when nodes
enter and leave the network, since the entire overlay would have to be rebuilt on
every entry or exit. Conversely, a network with a very low degree would require
potentially extremely long routing lengths to find information, leading to excessive
message overheads and network traffic.

DHTs retain lookup tables that help map a particular request to the appropri-
ate node, and they generally have a list of neighbors that help requests to find
responsible nodes in a structured manner. When using a DHT-type system, users
are normally guaranteed a certain efficiency for any given lookup, with a set num-
ber of hops relative to the size of the network. It is also generally accepted that in
DHT networks, if a given piece of information is on the network, it can be located.
These types of systems are extremely powerful when searching for known and
structured data.

The most common choice for DHTs is to use a symmetrical degree/routing
length of O(log n). Degree/route length is not optimal in terms of degree/route
length tradeoff, although such topologies typically allow more flexibility in choice
of neighbors. Many DHTs use that flexibility to pick neighbors that are close in
terms of latency in the physical underlying network. Table 2.5 gives an overview
of several routing-length to degree comparisons in DHTs, which are governed by

60



2.5 Peer-to-Peer Networking

the degree/diameter tradeoff that is fundamental in graph theory [73].

Table 2.5: DHT Efficiency — shows Degree vs. Routing Length
Degree Route length

O(1) O(n)
O(log n) O(log n / log(n log n))
O(log n) O(log n)

O(1) O(log n)
O(
√

n) O(1)

2.5.5.1 OceanStore

OceanStore [74] is a global, distributed, Internet-based storage infrastructure. It
consists of cooperating servers that work as both server and client. The data are
split up into fragments that are stored redundantly on the servers. For search,
OceanStore provides the Tapestry subsystem, and updates are performed by us-
ing Byzantine consensus protocol. However, this adds an unnecessary overhead
since file search is not a requisite for BOINC and supporting replication implies the
use of a distributed locking service, which incurs further performance penalties.

2.5.5.2 Freenet

Freenet [75] is fully distributed but employs a heuristic key-based routing in which
each file is associated with a key, and files with similar keys tend to cluster on a
similar set of nodes. Queries are likely to be routed through the network to such a
cluster without needing to visit many peers. Freenet is concerned with building a
censorship-resistant network for information and not necessarily a distributed file
system. Although Freenet uses keys and routing similar to a DHT, Freenet isn’t
strictly a DHT system and does not guarantee that data will be found. The high
focus on anonymity and the inability to guarantee data availability make Freenet
a poor choice for BOINC data distribution.

2.5.6 Decentralized Super-Peer Topologies

Whereas flat networks are the purest form of an unstructured network, a super-
peer topology takes the flexibility of a flat network and enhances it by promot-
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ing more capable nodes to greater responsibility. In these types of systems, the
more capable nodes, or “super peers,” take the responsibility of message relay-
ing and forming the base network topology. Although the method of distributing
the queries in this type of system can have a larger overhead, it also allows for a
greater flexibility than does a DHT-style system, by providing for custom and fuzzy
matching of data to queries.

A super-peer network is one where all entities on the network are not created
equal, as they are in a flat network. Some of the peers act as metadata cash-
ers, and they keep track of a certain subset of the network and what is located
on it. This allows for much faster searching and retrieval of information. Instead
of an individual node being required to search through all other members of the
network, the super peers aggregate and relay the requests to other super peers
that contain metadata stores. One of the side effects of having a super-peer net-
work is that when one of the super peers goes offline, the network could become
partitioned and/or metadata could be lost. This risk can easily be eliminated by
overlapping the metadata that each super peer has and by a having edge nodes
connect to more than one super peer (e.g., three in Gnutella). The amount of
metadata replication between the super-peer layers dictates how much network
volatility can be tolerated before failures begin to occur: more overlap reduces
failures, but increases network load and synchronization.

The decentralized super-peer approach was quickly adopted by the succes-
sors of Napster as the preferred method of constructing peer-to-peer networks.
The most popular software programs that developed and used super-peer tech-
nologies were Kazaa, its clones6 LimeWire and Morpheus, and Gnutella.

2.5.6.1 Gnutella (Version 0.6 and Up)

Gnutella [76] built upon its previous work to construct a decentralized file-sharing
system, seeking ways to lower message traffic overhead and make it scale to
millions of users. This was done by abandoning a fully distributed approach and
adopting the notions of “ultrapeers” and “leaves.” Ultrapeers became responsible
for message relaying and were typically better computers on higher-speed con-
nections not located behind firewalls. As such, they served as routers for requests

6Kazaa developed the FastTrack network which used super nodes to improve scalability (and
later became the basis of Skype). However, the Kazaa client software was known to install mal-
ware and adware on users’ machines. LimeWire and Morpheus were both developed as malware-
free alternatives to Kazaa that piggybacked on the FastTrack network.
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and responses for leaf nodes (i.e., normal peers). Through the use of “ultrapeers”
(aka super peers), a network overlay was created out of a small subset of the en-
tire network. Because the overlay network was smaller and generally comprised
of higher-performance and less volatile machines, it could more easily scale and
route messages.

In the previous versions of Gnutella (see §2.5.3.1), each node was connected
to approximately five peers, and search queries were sent out onto the network
with a maximum of seven hops, yielding a maximum of 57 recipients for a given
request and a large amount of network traffic. Within the new ultrapeer overlay,
each leaf node is typically connected to three ultrapeers and each ultrapeer is
connected to at least 32 others. With this higher outdegree (and larger number
of potential recipients), the maximum number of hops a query can travel was
lowered to four. This modification dramatically reduced the message overhead
required for locating information and maintaining network connectivity, enabling
Gnutella to scale to millions of participants.

2.5.6.2 Kazaa

Kazaa [77, 78] is similar to Gnutella, although it extends upon this by exploit-
ing peer heterogeneity and organizing the peers into two classes, Super Nodes
(SNs) and Ordinary Nodes (ONs). SNs are generally more powerful in terms of
connectivity, bandwidth, and processing power, and are not behind NAT systems.
In order to bypass firewall and NAT systems, Kazaa uses dynamic port numbers
along with a hierarchical design where a node can act as a relay between two
other nodes. Like Gnutella, Kazaa’s file discovery mechanism creates unneces-
sary traffic and its Super Node architecture applied to data distribution on BOINC
could generate an unacceptable level of network traffic while relaying requests.

2.5.7 Tightly Coupled LAN-Oriented File-Sharing Systems

There are a number of highly effective P2P file systems that were built for high-
performance reads and writes. These systems typically operate in an environ-
ment where network speeds are high and latency is low. Although not applicable
to the BOINC environment, which is a widely distributed WAN with varying speeds
and network connectivity, it is worth mentioning these variants of P2P file-sharing
systems, in order to provide a comphrensive overview of the technologies and
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breadth of the P2P file-sharing realm.

2.5.7.1 Google File System (GFS)

Google File System (GFS) [79] (latest incarnation dubbed “Colossus”) is a dis-
tributed storage solution that scales in performance and capacity while being
resilient to hardware failures. GFS was designed to operate in a trusted envi-
ronment where the application is the main influence of usage patterns. The GFS
typical file size was expected to be in the order of gigabytes and the application
workload to consist of large continuous reads and writes.

2.5.7.2 FreeLoader

FreeLoader [80] aggregates unused desktop storage space and I/O bandwidth
into a shared cache/scratch space for hosting large, immutable datasets and ex-
ploiting data access locality. It is designed for large scientific results (outputs
of simulations). FreeLoader focuses on aggregating space and bandwidth in a
corporate LAN setting. It adopts a certain degree of centralized control in data
placement and replication, for better data access performance. The overall archi-
tecture of FreeLoader shares many similarities to GFS.

2.5.7.3 Farsite

Farsite [81] was a Microsoft Research project from 1999-2005 that aimed to pro-
vide users with a persistent non-volatile distributed storage system. Farsite aggre-
gated the space of desktop clients to collaboratively establish a virtual file server,
without the need for a central server. It provided a global name space, as well
as access control for both public and private files. It was implemented by pro-
viding multiple encrypted replicas of each file among a set of client machines,
then referencing the files through an hierarchal directory that was maintained by
a distributed directory service.

Much of the research into Farsite was figuring out how to ensure high availabil-
ity and security while building the system from cooperating yet mutually distrusting
hosts. Farsite uses the Byzantine agreement protocol to establish trust within an
untrusted environment. The project was designed primarily for high-speed LAN
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networks and as a way to provide real-time access to files. The experiences of
the Farsite project are documented in [82].

2.5.7.4 Frangipani

Frangipani [83] was a performance-oriented Distributed Storage System designed
in the late 1990s. It was typically used by applications that require a high level
of performance. It followed a server-client architecture and was implemented on
top of the Petal system, employing Petal’s low-level distributed storage services.
Like Farsite, it was designed to be used within the bounds of an institution where
servers are assumed to be connected by a secure high-bandwidth network. This
architecture choice makes it unsuitable for WAN distribution of BOINC files. Fur-
thermore, like OceanStore, Frangipani also implements a distributed locking ser-
vice, causing a considerable performance drop when servers access the same
file.

2.5.7.5 stdchk

stdchk [84] was designed to harvest idle storage space in Desktop Grids and
clusters to provide a common space for checkpointing files. One characteristic
of stdchk is that it requires high-throughput in its write operations, yet reads are
far less important and may never occur. This is because checkpoint files are
periodically written to save program state, and only need to be read in the case
that the program was halted and needs to be restarted. This design makes stdchk
useful for local Desktop Grid or cluster systems, where nodes are interconnected
by high-speed networks, yet impractical in a highly distributed network such as
volunteer Desktop Grids.

2.6 Bridging the Data Management Gap

The motivation for the research presented here is twofold: first, to develop a so-
lution that can distribute data within Desktop Grids, and second, to provide a
data-hosting environment that is able to facilitate the movement of localized Ser-
vice Grid data into a broader Desktop Grid distribution environment. Fortunately,
these goals are complementary, both fundamentally dealing with the distribution

65



2.6 Bridging the Data Management Gap

of data within a Desktop Grid, with the caveat of additional application use-cases
from the Service Grid layer that had not yet been applied in Desktop Grids.

Desktop Grid environments have different requirements from other file-sharing
P2P communities because security can become a more complex issue than sim-
ply guaranteeing data validity (see §3.4.2). In Desktop Grids, there can be a
requisite that only certain amounts of data are shared with an individual peer.
Also communities can be reluctant to introduce a system that would have peers
directly sharing with one another because this might be perceived to have poten-
tial security implications for clients as ports are opened for outside connectivity.
It is therefore important not only for data integrity and reliability to be ensured,
but also to have available safeguards that can limit peer nodes’ exposure to mali-
cious attacks. It is these types of requirements and research questions that has
prompted my work to investigate, design, and ultimately create a custom P2P
network for data distribution. The goal is to envisage a new type of system that
goes beyond basic file-sharing to incorporate the domain-specific needs inherent
in the scientific application domain, providing both client and server safeguards
and stricter controls for project administrators as to which network participants
receive and distribute data.

It is possible to improve the current centralized distribution mechanisms em-
ployed by volunteer computing projects, by providing a viable alternative that
leverages peer resources and P2P technologies. Several colleagues and I have
explored the application of using P2P in volunteer computing as a means to of-
fload the central network needs [85]. There are many ways this could be imple-
mented, ranging from a BitTorrent-style network [65], where data are centrally
tracked and all participants share relatively equal loads, to Kazaa-like super-peer
networks [86], where select nodes are assigned greater responsibility in the net-
work.

Several of the popular and proven P2P technologies discussed in this chap-
ter, as well as commercial solutions like Amazon’s S3 or Google’s GFS, could
be configured and/or customized and then effectively applied to provide for the
data needs of BOINC or XtremWeb, at least as they relate strictly to distribution.
However, in the case of commercial products, like the Cloud, there is a direct
monetary cost involved, and for P2P systems like BitTorrent, the facility to secure
or limit who is able to receive, cache, or propagate different pieces of information
is generally limited or nonexistent. These limitations make it difficult to directly
adopt an existing technology to the Desktop Grid application domain. However,
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they do provide a solid technological base and much of the fundamental research
that is needed to develop a new technology that conforms to both Desktop Grid
data distribution and the Service to Desktop Grid migration requirements.

Applying any P2P infrastructure to scientific computing, and particularly in vol-
unteer computing, can be highly problematic. In such environments, policies and
safeguards for scientific data and users’ computers become more critical con-
cerns for limiting update rather than any technical feasibility. To be successful,
any solution must take into account the requirements of scientific communities, as
opposed to focusing on overarching P2P architecture. A balance must be struck
between the advantages of facilitating different network topologies and data distri-
bution algorithms and retaining the safety of each participant’s computer. Further,
each scientific application has different network and data needs; customized solu-
tions would allow for tailoring the network toward individual requirements, despite
the disadvantage of increased development effort, complexity, and code mainte-
nance.

When considering using P2P data access technologies in the scientific appli-
cation domain, two broad challenge areas must be addressed: social acceptabil-
ity and technological challenges. Socially, peer-to-peer technologies, especially
when used for sharing data, are often viewed with a skeptical eye, having long
been associated with widespread file-sharing of copyrighted material.

In addition, there is substantial concern that mixing peer-to-peer with volun-
teer computing could, in the event of malicious attacks on the network, cause
irreparable damage to the volunteers’ trust in the network, thereby adversely af-
fecting their willingness to continue donating resources. During the development
of this thesis, such concerns were ongoing and took on a very important role dur-
ing the design process. When researching an appropriate system to build, it is
necessary to identify solutions that not only move forward Desktop Grid utiliza-
tion, but also introduce peer-to-peer networks and P2P file-sharing as both valid
and legitimate options for scientific computing.

Within the technical area, security and scalability are the main issues being
considered. Scalability for large P2P networks has evolved into two general cate-
gories, which were discussed earlier: Distributed Hash Tables (DHTs) and super-
peer topologies. Both of these approaches are valid and have their unique ad-
vantages and disadvantages depending on the problem one is trying to solve,
generally with a tradeoff between speed, accuracy, and flexibility. Finding the cor-
rect balance for each individual situation is the important factor. With this in mind,
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scalability research focuses here on designing an adaptable network that can au-
tomatically change its topology to optimally balance network load, an especially
useful trait in the case of super-peer technologies, where effective algorithms can
help promote an efficient and scalable design.

Security is a much larger issue. Due to the sensitive and vulnerable nature of
Desktop Grids, it is critical not only that peer nodes are secure from malicious at-
tacks, but also that data integrity and reliability are ensured. The easiest solution,
and the one perhaps the most susceptible to attacks, is a pure P2P network, in
which any node is allowed to receive and share information with any other node
on the network. This allows for the most network flexibility and client resource
usability. However, since in this scenario any node has the capability to promote
information, it also has the ability to flood the network with false information. Even
though safeguards and hashing can be put in place to mitigate these effects, there
is still the potential for malicious network utilization. In a more restricted network,
where only “trusted” peers are allowed to act as data cachers and rendezvous
nodes, the probability that this will happen is diminished; however, usability and
flexibility are reduced as a result.

Beyond EDGeS and its subsequent follow-on project entitled EDGI, the re-
search presented in the rest of this dissertation is focused on providing a solu-
tion for the broader scientific community. As shown in §2.3.3, the network band-
width and server requirements on volunteer computing projects can quickly be-
come large, as the network scales and more people join a project. Other BOINC
projects have much larger input files; for example, in Rosetta@Home files are
three to four megabytes and have similar computing times to SETI@Home. Net-
work requirements can start to become prohibitive for projects, resulting in sci-
entific problems being often scaled down (e.g., by lowering the resolution of in-
put files or preprocessing data) to fit into the available network space. These
requirements and restrictions prevent new forms of applications from migrating
to Desktop Grids, like those in Table 2.4. They include applications that have
input files in the gigabytes, not the megabytes scale (e.g., analyzing medical im-
agery and searching large protein databases). In addition, a new push is being
made toward running Desktop Grid applications in virtual machines, to facilitate
fine-grained control over the application while protecting host machines. How-
ever, these efforts are currently being held back by the large data requirements
needed to distribute the images. Enabling the applications mentioned here, and
many others that are not, to make use of the vast power of Desktop Grids would
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be a large step toward further enabling computational science, while at the same
time providing sustainability paths for applications that have traditionally been re-
stricted to supercomputers and other Service Grid infrastructure.
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CHAPTER 3

Analysis and Design

Chapter 2 introduced the state-of-the-art in distributed and volunteer computing
networks, showing how Desktop Grids would greatly benefit from the application
of a robust data management solution. There, many of the top peer-to-peer (P2P)
technologies and methodologies were outlined.

This chapter will analyze the requirements for Desktop Grids as they relate to
data sharing, and give a check-list for what should be considered when looking
to provide new data distribution mechanisms. As will be shown, existing solutions
fail to solve some of the fundamental problems that occur in volunteer computing
environments. The lack of a direct mapping between existing software and the
volunteer computing application domain often is not due to a technical deficiency
regarding the actual distribution of files. Rather, it is the insufficient flexibility of ex-
isting systems to adapt to the social context of volunteer computing and integrate
with legacy applications. Legacy application integration is a very important issue
when attempting to apply a new technology to an existing network, especially one
comprised of hundreds of thousands of active “volunteer” participants.

In addition to domain requirements, there are a number of scalability and se-
curity issues that arise when building a P2P network for volunteer computing.
Security in these systems goes beyond the traditional notion of simply ensuring
authentication or file integrity. Scalability not only needs to take into account net-
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work bandwidth, but also the potential sizes of data as they relate to job through-
put and its distribution over time.

Volunteer computing communities can also be reluctant or hostile towards in-
troducing a system that would have peers directly sharing with one another, as it
might have the potential (or, almost more important, perceived potential) to have
security implications for clients. A true P2P system requires participation and
sharing from many nodes, generally necessitating ports to be opened for outside
connectivity and untrusted peers to be given network responsibility. Since the
success of volunteer Desktop Grids depends on an active and pleased commu-
nity of donors, the importance of guaranteeing social acceptance from volunteers
is of upmost importance. It is therefore imperative that not only data integrity and
reliability be ensured by any system to be deployed in this application domain, but
also to have available safeguards that can limit peer nodes’ exposure to malicious
attacks and provide assurances to the community.

It is with regard to these security and scalability requirements, the inherent
legacy integration issues, and the social context of the target application domain,
that this chapter analyzes and designs a suitable system for Desktop Grid data
distribution.

3.1 Methodology

The approach used in this chapter to analyze the problem space and develop a
design is first to look at the core user requirements (see §3.4) needed to develop
a successful solution that has the potential to be adopted by the volunteer com-
puting community. After identifying a core set of principles that must be upheld,
current technologies are analyzed for their mapping to these requirements (see
§3.5). Concurrent to exploring existing middleware, the useful mechanisms cur-
rently employed, as well as the needed adaptations to create a useable system
are noted. These lessons are then applied to the development of a new network
paradigm (see §3.6). The resulting network infrastructure and design is then vali-
dated through simulations using real-world metrics from the volunteer computing
community (see §4.5). This infrastructure is then improved through an iterative
simulation process and is used as the basis for both the protocol developed in
Chapter 4 and the concrete network implementation described in Chapter 5.

It is therefore with a requirements-gathering process, an analysis of the state-
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of-the-art, and an exploration into new solutions which are then verified through
real world metrics, that this chapter designs a new P2P network for data distribu-
tion.

3.2 Problem Scope and Analysis

As volunteer computing projects gain in popularity, their user-bases expand, or
their data sizes increase, network requirements can easily become more de-
manding, forcing projects to upgrade both their computer hardware and network
capacities to cope with increased demand. In these scenarios, the centralized
data architecture currently employed by BOINC (see §2.3.1) and other Desktop
Grid systems (see §2.3.2) can be potential bottlenecks when tasks require large
input files or the central server has limited bandwidth. With new data manage-
ment technologies, it will be possible to explore new types of data-intensive ap-
plication scenarios — ones that currently are overly prohibitive given their large
data transfer needs (see Table 2.4). There are many applications that could either
expand their current problem scope or migrate to a Desktop Grid environment if
the middleware had support for scalable data management.

Peer-to-peer data sharing techniques, like those presented in §2.5, can be
used to introduce a new kind of data distribution system for volunteer and Desktop
Grid projects - one that can provide a flexible network overlay that distributes load,
and could potentially take advantage of plentiful client-side network capabilities.
In addition to serving Desktop Grid computing needs, P2P networks could be
used as a migration mechanism to transition Service Grid data to Desktop Grid
environments. Figure 3.1 shows an idealistic view of how such a P2P network
would be viewed by each target application domain – simply as a “black box”
where data can be stored and retrieved.

This functionality could be implemented in a variety of forms, ranging from
BitTorrent-style networks (see §2.5.4.2) in which all participants share relatively
equally [87], to more constrained and customizable unstructured P2P networks
where fine-grained data distribution and discovery strategies could be explored.
However, adapting P2P-style data distribution to Desktop Grids is not without its
difficulties. Desktop Grid environments have differing needs than general file-
sharing P2P communities, primarily because security can become more of a
complex issue than solely guaranteeing data validity. Also, scalability needs to
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Figure 3.1: Idealistic P2P network for Service and Desktop Grids.

be achieved with the unique characteristic that nodes cannot be forced to act as
data providers to be consumers (as required in many existing P2P networks).
Additionally, in Desktop Grids, it can be a requisite that only certain amounts of
data are shared with an individual peer, further limiting the ability to adopt existing
“fair” distribution strategies that would self-build and balance in a traditional P2P
network.

This chapter explores the requirements for volunteer computing and how they
shape the decision-making process that leads to a suitable system. Beyond the
scope of distribution within volunteer computing environments, this chapter also
analyzes the issue of file transition between Service and Desktop Grids. Although
volunteer computing is the primary use-case analyzed in this chapter, it should be
noted that many of the principles, requirements, and design concepts are appli-
cable to other distributed application domains such as Cloud computing.

For the EDGeS (see §2.4.2) and EDGI projects (see Appendix B for more in-
formation), creating a hybrid computing environment that incorporates both Ser-
vice and Desktop Grids is fundamental requirement. However, there exist several
technological hurdles that arise when trying to transition files between these two
infrastructures. Chief among them is how to properly distribute the sometimes
large (in Desktop Grid computing terms) input files to the highly distributed worker
nodes for processing.
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Unlike in a Service Grid environment, Desktop Grids do not have a shared
high-speed disk or high speed interconnects. It is necessary for each input file
to be individually transferred over a Wide Area Network (WAN) to the compute
node that will process the job. For the vast majority of BOINC projects, initial data
staging is done by central project administrators who have direct access to all
input data and replicate it to a series of mirroring Web servers. However, in the
case of EDGeS, this transitioning must be incorporated into standard command-
line tools, as the input data cannot be known a priori, and must be deployed
directly by end-users, since ultimate job submission lies in their hands.

For the purposes of the research presented here, an initial hypothesis has
been formed which states that distributing data in a self-organizing peer-to-peer
fashion is a suitable and useful mechanism in Desktop Grids and for Service to
Desktop Grid migration. To prove this hypothesis a new network paradigm is
being proposed. Part of designing a new system is to analyze the user require-
ments and evaluate current state-of-the-art in the field for potential incorporation
and/or adaptation. Based on this analysis, this chapter then explores custom so-
lutions tailored specifically for the volunteer computing environment. To validate
the choices made and show their applicability to the problem set and ability to
satisfy real-world requirements, simulations are then performed on the chosen
network overlays. Lastly, this chapter gives the initial network design of a peer-to-
peer data management system for Desktop Grids.

3.3 Application Environment

The BOINC architecture1 is based on a strict master/worker model, with a cen-
tral server responsible for dividing applications in thousands of small indepen-
dent tasks and then distributing the tasks to participants, or worker nodes, as
they request work units. To simplify network communication and bypass any NAT
problems that might arise with bidirectional communication, the centralized server
never initiates communication with worker nodes; rather, all communication is in-
stantiated from the worker when more work is needed or results are ready for
submission. In the current implementation of BOINC, data distribution and scal-
ing is achieved though the use of multiple centralized and mirrored HTTP servers

1XtremWeb data requirements are very similar to BOINC. Therefore, in this chapter, data shar-
ing references and solutions for BOINC can be seen as equality applicable to the XtremWeb
architecture.
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that share data with the entire network (see §2.3.1 for more information).

The centralized architecture of BOINC creates a single, or in the case of mir-
rored servers, a small number of failure points and potential bottlenecks and fails
to take advantage of plentiful client-side network bandwidth and storage capabil-
ities. If broader resources could be successfully used to distribute data sets, not
only would it allow for larger data files to be distributed, but it would also mini-
mize the needed central networking capabilities. This would substantially lower
the operating costs of many BOINC projects, while allowing for a broader range
of applications to leverage volunteer computing. To decentralize the current data
model of BOINC, as well as provide load balancing for XtremWeb, a peer-to-peer
data distribution approach is proposed here.

When considering the practical application of P2P technologies to the “pro-
duction” BOINC environment, several concerns must be adequately addressed if
the solution is to be successful. For the purposes of this research, the following
four are given priority. Section 3.4 explores them in more detail.

Scalability and Network Topology — Ability must exist not only to adapt on
the Wide Area Network (WAN), but also to detect and exploit Local Area
Network (LAN) topologies, using relative proximity and response times. The
ability to hone network topologies and requests based upon proximity is a
useful way to further limit the amount of necessary bandwidth needed to
serve project files, as well as limit broader (i.e., Internet) network conges-
tion. The trade-off is generally that the looser the system becomes in its abil-
ity to adopt and utilize network proximity (such as providing caching nodes
on LANs), the more complex the system becomes and prone to abuse and
potential misconfiguration.

Data Integrity and Security — A mechanism for identifying hosts that supply
bad data, and subsequently banning them from the network or having ways
to avoid using them (i.e., through de-prioritization), must be included to en-
sure network stability. The issue of which nodes are able to propagate data
on the network, and therefore have the ability to inflict damage, should de-
pend upon the individual policies of each hosting project, to give flexibility
to a number of scenarios and project requirements. In the most restrictive
case, only trusted and verified participants would be certified to propagate
data. In more lax security configurations, which exploit a larger pool of re-
sources, security would have to be more flexible. Regardless of the deci-
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sion, data signing can help to prevent analysis of corrupted data, leaving the
primary concern being how to limit network flooding by “bad” providers.

User Security and Client-Side Configuration — A peer-to-peer infrastructure
should protect the users and ideally have a way to automatically configure
routers or bypass NAT issues. Depending on an individual project’s configu-
ration, firewall and router issues could be problematic, with a general trade-
off between “punching holes” in clients’ firewalls to exploit their bandwidth
and the security concerns of doing so, as well as the extra software devel-
opment and configuration this demands. In volunteer computing projects it
is especially important to provide a high level of security to participants. If
NATs are bypassed, it must to be done in a secure and transparent (to the
end-user) manner.

Legacy Software Integration — Any new technology for Desktop Grids must
integrate with the current client and server software. For the purposes of
the research presented here, this equates to integration with BOINC and
XtremWeb. It is important for any software that wishes to provide an added
value to the larger BOINC and XtremWeb communities to have little or no
impact on current operating procedures. Requiring external libraries or other
similar dependencies could prove to be problematic and greatly limit uptake.
The BOINC client is currently written in C++; any successful add-on would
most likely have to adapt to this requirement. XtremWeb is written in Java,
and would likewise require compatible libraries to send and receive data.

It is useful to note that the above considerations are not exhaustive of all re-
search topics that could be explored when designing a new data management
system. Rather, they represent a subset of topics that have been identified for
this work, each of which having a direct impact upon the target end-user com-
munity. The selection process for these traits was to view the problem domain
from the standpoint of a volunteer computing application developer, and seek the
practical steps that are needed to employ a successful system. Other important
issues such as fault-tolerance (also integral to any data management solution,
and a thesis topic in and of itself) and the management of small file sizes out-
side the scope of volunteer computing are intentionally omitted, allowing the work
presented here to be scoped.
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3.4 Design Considerations

This section discusses in further detail the four target issues raised in §3.3 that
have been identified as useful when considering a new data distribution paradigm
for volunteer computing. Note that the list presented here is not exhaustive and
does not seek to provide an all-encompassing taxonomy of every potential metric
for designing data distribution networks that are optimal for every Desktop Grid
application. For example, the size of the network can vary dramatically between
the extremely popular BOINC projects and their less successful counterparts,
which could result in a high-performance solution for one being less than per-
fect in another situation. For each project within BOINC, these factors will vary
slightly and these differences can make designing an optimal network for all of
the BOINC community a challenging task. Yet as shown in [88], the application of
a P2P network layer would allow many additional and unused network and stor-
age resources to be leveraged by BOINC projects without sacrificing necessary
processing power. Even a generic solution should still have an overall positive
impact.

Therefore, rather than identifying and attempting to solve every issue for every
application, this section isolates a small number of the broad and general factors
that become important for the majority of applications. These factors are signif-
icant when designing and deploying a data-serving network in the domain and
across the large scales such as those seen in the BOINC community.

For the research presented here, the following discussion, then, is seen as
the base litmus test for the selection and development of the underlying network
technology and topology. The metrics identified here show the principal compo-
nents that are crucial in the development of a new system that is suitable for a
wide range of Desktop Grid applications. Concurrent to this exploration, the need
for translation paths from Service to Desktop Grids is accounted for, in order to
provide greater impact and usability by the EDGeS and EDGI projects.

It should be noted that for optimal matching and highest performance, one
should go beyond these principal metrics, and further fine-tune the architecture
presented in Chapter 4 to their individual application needs and environment.
However, any such further optimization for specific projects or alternative metrics
is considered as outside of the scope of the research presented here.
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3.4.1 Scalability and Network Topology

There are a number of scalability considerations for data distribution in a volunteer
computing environment. This is especially true given the large number of nodes
that can join the network, compounded with the size and sensitivity of data. Too
little flexibility of the system to scale can lead to an overload on data serving
nodes, while too much flexibility can entail looser security criteria and policies
with regard to which network peers are allowed to propagate and cache data.
Most current projects in BOINC have limited data needs for an individual work
unit (e.g., a few megabytes); however, they still require large network bandwidths
and distributed caching due to the sheer size of their volunteer networks. For
example, the SETI@Home project, which has relatively small 340 KB input files,
requires ≈50 Mbp/s of consistent upload to serve its ≈233,000 active users (see
§2.3.3.1).

A viable alternative for data distribution is to employ the use of peer-to-peer
techniques. P2P systems can support the on-demand auto-election (and de-
election) of network participants to be data providers, which can enable network
scalability as the number of requests expand and contract. The application of
using P2P in volunteer computing as a means to offload the central network needs
has been explored in [85]. There are many ways this could be implemented,
ranging from a BitTorrent-style network [65], where data is centrally tracked (i.e.,
potential bottleneck) and all participants share relatively equal loads, to Kazaa-like
super-peer networks [86] where select nodes are assigned greater responsibility
in the network and there is no central authority.

Beyond the ability to scale network throughput and capacity, the above exam-
ple showing SETI@Home requirements raises the issue of appropriate network
topologies. Recall the discussion in Chapter 2 that presented a peer-to-peer file
distribution taxonomy (see §2.5.2). With hundreds of thousands of active users,
flat networks become unrealistic, as proven by the example of early Gnutella ver-
sions. Tightly coupled and LAN-oriented systems are likewise irrelevant, as they
were not designed to operate over wide area networks and would perform poorly.
Therefore, when seeking a P2P solution, it becomes necessary to look at the
remaining approaches of Centralized/Decentralized and Distributed Hash Tables
(DHTs).

Since within volunteer computing environments it is unlikely that all network
participants will be sharing data, a direct use of distributed hash tables, which
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would require all nodes to be part of the content network, is not possible. In
addition, for most Desktop Grid applications (as well as for this research) the
problematic issue is data distribution to worker nodes, generally not long-term
data storage. Therefore, creating a network that broadly uses DHTs between
all peers to map discrete data to known locations is a less interesting task than
managing initial data distribution.

In any realistic scenario for volunteer computing, only a subset of the network
would be able and required to store and share files; otherwise adoption would be
severely limited. Therefore, the initial topology must be a hybrid or centralized/de-
centralized network, with some peers having more responsibility (e.g., acting as
data repositories) than others. DHTs could still prove useful as a way to locate and
distribute data among the data sharing overlay, as shown in [89]; however, their
adoption then becomes an implementation and optimization issue rather than a
core network design requirement.

Using the above logic to implement the data-sharing aspects of BOINC would
require a new overlay network to be created that contains only those nodes that
have been chosen to act as data providers. This is very similar in concept to
the current static mirrored system that most BOINC projects use (i.e., a sub-
set of available resources performs additional work), however, with the funda-
mental difference that the selection of mirrors becomes dynamic and decentral-
ized, while allowing for greater caching flexibility beyond full-mirroring of an entire
dataset. In addition, within the data sharing overlay, nodes could propagate data
among themselves, rather than relying on direct synchronization with the raw data
source. By partitioning files and allowing individual segments to be concurrently
distributed across a larger network, members of a data caching overlay can be
both consumers and providers of the same file, greatly increasing throughput
through a concept called “file swarming” (see Figure 3.2). Additionally, this pro-
cess can be further honed to use more advanced distribution algorithms such as
FastReplica [90], which allow for the exploitation of varying Internet paths.

In addition to being able to adequately serve the data needs of the network
and efficiently distribute files, any P2P system for Desktop Grids needs to be
able to support a network topology that allows projects to restrict the data sharing
layer based upon their own individual security criteria and needs. This is nec-
essary because many projects do not want arbitrary nodes to be able to cache
large amounts of their data, in addition to the general security implications of al-
lowing anyone to act as a data provider, where he/she could flood the network
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Figure 3.2: Data Center File Distribution — shows how Data Centers can share
files (and verified partial files) among one-another, speeding distribution.

with bad requests and cause unnecessary congestion. Such restriction can be
implemented through the application of a “trusted” overlay that provides lookup
services to find data and controls which peers in the network are able to regis-
ter as data providers — thereby controlling data distribution policies through a
restriction of data advertisements.

3.4.2 Data Integrity and Security

Data security, especially when dealing with scientific and commercial data, can be
a complex matter. At the most basic level there is the issue of file integrity, or en-
suring that files have not become corrupted or manipulated in transit. Verifying file
integrity is a fairly well-understood subject area and there are suitable solutions
to this issue, such as validation of file authenticity through signing and compar-
ing hashes from the downloaded file with those provided by the project’s (trusted)
central authority. To limit the effect of malicious or badly configured hosts, larger
files can be split into smaller discreet “chunks” which are then individually hashed
and verified, as seen in Figure 3.3. Such segmentation allows clients to detect
bad data early on and blacklist offending hosts. After all chunks are downloaded
and verified, clients reassemble the resulting file and verify it in its entirety before
proceeding with job processing.
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Figure 3.3: File Segmenting and Swarming — shows how files can be split into
distinct segments. This allows for intermittent checking of data integrity as well
as partial and quicker replication across the Data Center overlay due to double
hashing.

When building a P2P network for volunteer computing, there are a number
of security requirements beyond the traditional notion of simply ensuring file in-
tegrity. Due to the volatile and insecure nature of these networks (e.g., BOINC
and XtremWeb), a product of their open participation policies, there can be rea-
son to enforce limitations on which entities are allowed to distribute and cache
data. Especially when opening the data distribution channels to wider (possibly
public) participation, security can become a concern. Since file integrity can be
sufficiently guaranteed due to the centralized nature of data origins, the more in-
teresting research questions in the realm of data security become those of how
to verify and authenticate the different network agents that will be propagating
information and/or caching input data. This analysis can be broken down into the
two broad subject areas of authentication and authorization.

Authentication is the verification process by which an entity identifies itself to
others and gives evidence of its validity. Public Key Infrastructure (PKI) [91,
92] is a proven tool that can be fairly effective for performing peer identity
authentication. In the simplest case, this can be done by having a central
authority (e.g., the BOINC manager) sign and issue either full or proxy cer-
tificates to those it deems trustworthy enough to distribute data on its behalf.
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When another peer on the network contacts this “trusted” entity, it can use
the public key from the centralized BOINC manager to verify the authentic-
ity of the trusted peer. This process can likewise be performed in reverse,
provided clients are also issued certificates, as a means for the data dis-
tributers to validate the identity of the clients and verify that they have the
proper credentials to retrieve data. The process of using certificates for mu-
tual authentication can provide individual peers with certainty that the host
from which they are retrieving data has been delegated the proper authority
and visa versa.

Beyond file integrity verification, more advanced and customizable use-cases
that provide for interaction between multiple virtual organizations and hi-
erarchal delegation (e.g., certificate-chaining and cross-certification agree-
ments) can be derived from this simple arrangement [92, 93]. Although
these offer the ability to compose advanced workflows and promote delega-
tion of authority, they are beyond the scope of this research and not deemed
necessary to implement a suitable data distribution network for straightfor-
ward master/worker bag-of-task applications on Desktop Grids.

Authorization is a much more interesting question than authentication. This is
primarily because there are standardized techniques for authentication that
can be widely applied to many different applications with little or no modifica-
tion. Authorization, conversely, is application-specific, differing with each in-
dividual application’s unique needs and authority structures. Although there
are tools to help define authorization policies and enforce them [94], the
policies themselves will be different with each application.

At the most basic level of authorizing select peers to cache and distribute
data as they see fit, authorization can be straightforward and unproblem-
atic. For example, it is possible to issue certificates (e.g., X.509) to the data
cachers (as mentioned in the authentication section) that would then allow
them to be validated as data distributers and authorize for tasks by mapping
their Distinguished Names (DNs) to roles. So long as each data caching
host has equal access rights relative to all other data cachers, solutions like
this can prove useful; however, they can become limiting if more advanced
solutions are needed that partition standard CRUD (Create, Read, Update,
Delete) operations.

To differentiate between who can create, read, update, or delete files, more
dynamic and customizable architectures are needed. It is when more dy-
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namic and customizable queries are needed, such as fine-tuned control
over specific data and its caching policies, that the management of an autho-
rization infrastructure and Access Control Lists (ACLs) can quickly become
complex. Thus, depending on application requirements, the issue can re-
quire a higher level of diligence, and any scheme that goes beyond a simple
yes/no query must be customized specifically to the target environment and
its individual policies.

For example, in the BOINC environment, possible ways in which a reason-
able level of authorization could be implemented would be to tie certificate
issuance into the centralized scoring system that keeps track of users and
groups that are contributing cycles to the project. In this scenario, when
a new potential data server enters the network, it would contact the group
of data servers in the network and offer to join them. After certificate ex-
change to authenticate identity, a lookup could be done against the scoring
system to see if the newcomer meets the requirements to join the data cen-
ter network. If this was successful, the newcomer could then be added to a
centralized or decentralized list of “authorized data providers.”

If this were implemented in the absence of a centralized authority, for ex-
ample, in some XtremWeb scenarios where no central credit system exists,
one issue that would arise would be how to continuously validate the data
center layer and remove data centers that have turned rogue or been com-
promised since joining the network and passing the initial validation step.
One potential solution would be to issue only proxy certificates that expire
after a given amount of time, thereby requiring periodic re-authorization.
Then when clients connect to a stale data center, they could verify the life-
time and expiration date of the certificate.

3.4.3 User Security and Client-Side Configuration

User security refers to the ability to protect the “volunteers” in the network from
any harm that could possibility be inflicted on their machines by another network
participant. This is a very important issue when one is within the realm of vol-
unteer computing, as the resources typically are donated home computers that
likely contain volunteers’ important personal information and documents. In the
case of a security breech in which these volunteer resources were compromised
by some malicious entity, the potential fallout could be enormous. Fear of a harsh
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backlash has been one of the limiting factors to the incorporation of standard P2P
technologies into the BOINC middleware. Even in the event where no actual se-
curity breech takes place, requiring peers to share data with one another via P2P
protocols, such as with BitTorrent which enforces sharing, could have the down-
side of alienating potential volunteers. This can be due to a number of factors,
ranging from a volunteer’s unwillingness to donate network resources (perhaps
due to bandwidth requirements from other computers on the same network or
a metered data connection) to misconceived public perception that associates
peer-to-peer technological implementations with some of the more controversial
uses of the technology (e.g., illegal file sharing).

In addition to the sociological issues, there are also technical hurdles to be
overcome when incorporating client (personal) computers into a data sharing net-
work as data providers. The asymmetric up/download speeds of most consumer
Internet connections generally relegate uploading bandwidth to a small fraction
of the download speed. How to route data through Network Address Translation
(NAT) systems is another key problem since most home networks lie behind a
router (a result of the limited IPv4 address space) and are not directly contactable
by other Internet entities. Even in the case where these obstacles can be over-
come, for example through using uPnP or proxy servers, personal firewalls often
have to be configured by end-users to allow external connections.

As data consumers, security implications are less pronounced than when act-
ing as data providers. To retrieve data from the network, clients do not need to
expose their machines to outside connections. Rather, they initiate pull requests
to data providers, thus requiring firewalls to be minimally configured for outbound
access only (and maintenance of established connections), as is the norm. The
use of file swarming, as depicted in Figure 3.4, allows clients to exploit multiple
network paths, as well as to leverage more than one data endpoint to maximize
download speeds. Such a system does expose clients in the sense that the data
providers know their identities and could subsequently attack them or provide
bad data. However, as shown in §3.4.2, bad data can be marginalized and in
this scenario, exposure to foreign hosts is no different or more risky than any
commonplace Internet browsing experience where IP addresses are exchanged.

When considering user security, it is necessary to be cognizant of the notion
that the BOINC and XtremWeb communities rely upon volunteers to function.
Any new data distribution scheme that is implemented must allow users to opt
out if they do not wish to share their bandwidth or storage capacity. Even in
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Figure 3.4: File Swarming to Client Machines — shows clients downloading from
multiple Data Centers, which exploits network paths, distributes load, and poten-
tially addresses asymmetric speed distribution.

the instance where users have opted to share data, a high-level of consideration
has to be given to ensure that their computers are adequately protected from
attacks. In BOINC environments this is currently solved by having a centralized,
and presumably non-hostile, authority that distributes both executables and data.
In XtremWeb, it is done through mutual trust of the community: that malicious
users will not exploit network resources. Even in these scenarios, there is still
a chance that servers could be compromised, or that executables have inherent
security flaws. Such risks are generally minimal and if and when they occur, would
likely be the consequence of inaction on the part of application stakeholders (i.e.,
projects) to pursue a more rigid security policy.

3.4.4 Legacy Software Integration

Beyond the issues discussed in the previous sections, there is an additional very
important factor that needs to be considered for application uptake and longevity:
the ability to integrate with existing Desktop Grid software. As shown in §2.3,
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Figure 3.5: High-Level P2P View — shows how a “P2P Cloud” could manage file
distribution for project servers.

there are several dozen Desktop Grid projects actively operating that use either
the BOINC or XtremWeb middleware. Each of these projects shares a common
thread with one another: each has a highly parallel problem that can be split into
thousands of independent tasks and asynchronously processed. It is these prop-
erties that allow the projects to exploit a Desktop Grid environment and utilize the
numerous volunteer computing resources that are made available in the process.
What isn’t apparent, however, are the vastly different levels of data intensity within
the projects. This can manifest itself in the form of varying data input and output
file sizes, changing replication facts and different throughput requirements.

Ideally, a data distribution network for Desktop Grids would be one where both
input/output data could simply be pushed/pulled from a data management “black-
box” which is self-organized and balanced based upon network demands and
availability.

A conceptual workflow, as shown in Figure 3.5, illustrates how data could be
sent and retrieved from such an idealistic P2P network, described as follows:

1. Input data is published to the network and a Logical File Name (LFN) is
returned. The data-sharing network would then self-replicate the data for
distribution.

2. The logical file reference, LFN1, is injected into workunits as the location of
input data. The workunits are sent to the volunteer PCs for processing.
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3. Client machines use the LFN1 reference to retrieve the concrete file from
the network. Once download is completed, the workunit can be started.

4. Output data is likewise published to the network, with the client receiving a
new file reference, LFN2, corresponding to its published file.

5. LFN2 is returned to the project’s servers as part of the completed job’s meta-
data.

6. The project server can then retrieve the concrete file referenced by LFN2 at
any time, or leave it on the network for storage.

Beyond data intensity, projects also differ in which Desktop Grid middleware
they are using. For the purposes of this search, that equates to BOINC or
XtremWeb. The choice of middleware determines how data is hosted and dis-
tributed throughout the project, as well as the native programming language that
any adapters or enhancements to the software in which it would need to be im-
plemented. In the case of BOINC, client software is C/C++ based and any en-
hancements to BOINC should likewise be in those languages, as it cannot be
expected that a Java Runtime Environment (JRE), or other library, is installed on
clients’ machines. Conversely, Xtremweb is written in Java, and therefore any
enhancements to XtremWeb would also need to be implemented in a way that
eases integration.

One fundamental difference between deploying a new solution for XtremWeb
and BOINC is the size of the existing network. XtremWeb is a more dynamic piece
of software than BOINC, with a smaller group of active clients that could likely be
updated to a new version of the software if additional features warranted the effort.
It is likely, therefore, that enhancements and the addition of new libraries could
be built-in to a new release cycle. BOINC, on the other hand, has hundreds of
thousands of active volunteers, many of which do not often update their software.
Backwards capability is key for BOINC, or finding ways to retrofit a new solution
into old clients, without requiring any client-side modification.

3.5 Analysis of P2P Network Architectures

Applying a P2P data distribution approach could be achieved in a variety of forms.
The most straightforward method would be to adapt a current P2P technology to
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Desktop Grids. This approach was explored (in collaboration with colleagues from
Coimbra and INRIA) in [95], where a modified BitTorrent2 was used to distribute
BOINC files, and in [89], where a DHT-based Content Delivery Network (CDN)
variant was analyzed.

In this section, the results of the analysis of those two different approaches
are given, as well as the proposal for a new network paradigm that combines the
strengths of these technologies, while limiting network function and complexity to
the necessary components to implement a useful and novel solution for Desktop
Grids.

3.5.1 BitTorrent

For the BitTorrent experiments, input files were published to a BitTorrent network,
and the location of the .torrent metadata file is injected into workunits, in a style
similar to that proposed in the first three steps of Figure 3.5. The centralized Bit-
Torrent tracker, as seen in Figure 3.6, keeps a list of which entities on the network
have a given file. When a client wishes to retrieve input, it parses its BitTorrent
metadata file (Step 1: File.torrent), contacts the tracker (Step 2: Tracker), and
receives a list of download endpoints. File transfer then begins, with the client re-
ceiving small segments of the input data from several servers (Step 3: File.data),
and (most likely also) registering itself as a data provider to concurrently share
completed segments of the file with others on the network.

The analysis proved very positive towards using BitTorrent, or another simi-
lar P2P software middleware, as a distribution mechanism. The BitTorrent tests
showed a significant speedup in overall download time coupled with a significant
reduction in load on central data severs, with very little computational overhead.
BitTorrent was shown to be able to fairly effectively solve the data needs of BOINC
as they relate strictly to distribution. However, it has limited security beyond en-
suring file integrity and has no notion of grouping or peer hierarchy. An out-of-the
box BitTorrent solution also constrains the system to one in which clients are ac-
tive data providers, a requirement that makes it an unsatisfactory match for the
requirements identified in §3.4. It is also difficult to implement due to private net-
works and client policies. Fortunately, the technologies and techniques used in

2BitTorrent was chosen because it has proven to be both scalable and efficient and could be
especially beneficial to projects that have large input files that can be shared between numerous
independent workers. See §2.5.4.2 for more details.
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Figure 3.6: BitTorrent and BOINC — shows how BitTorrent could be used with
BOINC to distribute files.

BitTorrent, such as file swarming, chunking, and double-hash verification, are ex-
tremely useful and relevant and the positive analysis of BitTorrent proves as a
fundamental building block for identifying useful features for further data distribu-
tion methods.

3.5.2 Super-Peer Topologies

Similar to the analysis of the BitTorrent example, a solution for Desktop Grid data
distribution was sought in “super-peer” networks (see §2.5.6). These networks
allow active participation by numerous hosts, but do not require role equality, and
necessarily enforce a strict BitTorrent-like “tit-for-tat” policy to ensure network par-
ity and balance load. The use of super-peer networks, as shown in Figure 3.7,
and their applicability to Desktop Grids was analyzed (in collaboration with ICAR-
CNR) in [96–99]. In the aforementioned research, a traditional super-peer net-
work topology is explored, in which many peers act as relays for messages and
data traffic, in a method very similar to that employed by later versions of Gnutella
(see §2.5.6.1). In such a system, responsibility is often dynamic and entities can
perform more than one function, with promotion and demotion into different role
categories, depending on network need.

Although initially attractive as a means to manage network load and construct
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Figure 3.7: Super-Peer Network — shows how some roles overlap and entities
can have different scopes, network connections, and responsibilities.

a P2P network, this approach suffers from the complexity of message overhead,
lack of centralized control, and, if one wants to adopt a pre-existing super-peer
technology, there is the cost of “buy-in” to their network building concepts and im-
plementations. After the success of simulating super-peer networks, Peer-to-Peer
Simplified (P2PS) [100], and JXTA [101] were explored as potential middleware
to construct a new data sharing network. Although both P2PS and JXTA pro-
vide generic tools for building super-peer networks, they proved to be limiting
either in their ability to scale or to form role-based groups where the developer
can explicitly form the topology and control message relaying without major mod-
ifications. Specifically, P2PS and JXTA were abandoned because of two main
reasons. First, neither allow the fine-grained access controls needed for the data
layer. Second, there were no caching policies in either system for data rather
than metadata (adverts or queries). Therefore, the data layer would essentially
have to be built from scratch, meaning that the benefits of either system are re-
duced to providing their respective P2P abstractions. It was therefore decided
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that the benefits of using these systems were far outweighed by the drawbacks of
the additional dependencies they placed upon the end-user, and their increased
complexity.

Many of the traits shown by JXTA and P2PS were not seen as desirable to
Desktop Grid applications wishing to leverage P2P file distribution. Although they
provided a base-middleware, they added additional complexity and did not neces-
sarily reduce development or design time. In addition, it was seen as undesirable
to relinquish control over network and data propagation to the constraints imposed
by existing systems. These, and other loosely coupled super-peer networks, re-
quired overly complex security mechanisms to construct their overlays (if security
is desired), through the use of distributed certificate management and authentica-
tion protocols [93]. Lastly, the given middleware for super-peer networks was no-
tably in the form of low-level frameworks that still require significant and nontrivial
programming modification to construct a functioning system. Therefore, although
super-peer networks were deemed capable of performing the tasks needed, they
suffer from too much complexity and required substantial modification.

3.6 Conclusions

Chapter 2 gave an overview of many of the popular and proven P2P systems that
use different methods to enable data distribution. There exist also commercial
solutions like Amazon’s S3 [19] or Google’s file system (GFS) [79], that could be
fairly effectively applied to provide for the data needs of BOINC or XtremWeb, at
least as they relate strictly to distribution. However, in the case of commercial
products, there is a direct monetary cost involved, and for P2P systems like Bit-
Torrent, the facility to secure or limit who is able to receive, cache, or propagate
different pieces of information is generally limited or nonexistent. These limitations
make it difficult to directly adopt one of the above as a product for data distribution
for scientific applications such as BOINC, however, they do provide a good basis
for building a new technology that conforms to the project requirements.

This Chapter has focused on defining the requirements and scoping the ap-
plication domain for Desktop Grid data solutions. Current technologies were in-
vestigated to find a suitable “out of the box” match for data distribution. Through
the process of evaluation, it become apparent that in volunteer computing envi-
ronments, policies and safeguards for scientific data and users’ computers be-

91



3.6 Conclusions

come more critical concerns for limiting update rather than any technical feasibil-
ity. Scalability becomes the balancing act of applying a highly scalable system
(e.g., Kazaa) with a reliable and well-defined central authority that can regulate
the system. A tailor-made solution that could take into account the requirements
of scientific communities, as opposed to a generic overarching P2P architecture,
would have the advantage of facilitating different network topologies and data
distribution algorithms, whilst retaining the safety of each participant’s computer.
Further, each scientific application has different network and data needs, and cus-
tomized solutions would allow for tailoring the network towards individual require-
ments, albeit with the disadvantage of increased development effort, complexity,
and code maintenance.

Although even in this scenario, there are still chances that the servers could
be compromised, or that the executables distributed have inherent security flaws,
this is generally a very minimal risk and would be a consequence of actions of the
application stakeholders, not third-party unknown distributers. It is these consid-
erations and requirements that make applying P2P protocols such as BitTorrent,
which enforce tit-for-tat sharing, problematic, as the specification is explicit in its
requirement that all peers must share in order to receive, exposing network par-
ticipants to harm or misuse. This is a very important issue when one is within
the realm of volunteer computing, as the resources are typically donated home
computers that likely contain volunteers’ important personal information and doc-
uments. In the case of a security breech in which these volunteer resources were
compromised by some malicious entity, the potentially fallout could be enormous.

Fear of a harsh backlash has been one of the limiting factors to the incor-
poration of standard P2P technologies into the BOINC middleware. Even in the
event where no actual security breach takes place, requiring peers to share data
with one another via P2P protocols could have the down-side of alienating po-
tential volunteers. This could result from any number of factors, ranging from a
volunteer’s unwillingness to donate network resources (perhaps due to bandwidth
requirements from other computers on the same network or a metered data con-
nection) to misconceived public perception that associates all peer-to-peer tech-
nological implementations with the more controversial uses of the technology.

A new solution that combines the flexibility and dynamic nature of super-peer
networks, with the simplicity of BitTorrent, seemed to be a promising match for
Desktop Grids. As we have seen from the earlier requirements analysis, in vol-
unteer computing communities, security can be a much larger issue than simply
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Figure 3.8: Proposed Network Topology — gives a snapshot of a simplified net-
work topology with a limited number of roles. Data Centers share data amongst
themselves and respond to Worker-node client requests.

guaranteeing data validity, and file distribution strategies can be more complex
than providing full replica mirroring. A successful network infrastructure needs
to be a more flexible solution than BitTorrent, and offer a more straightforward
and easily governed network topology than a traditional super-peer topology. The
ultimate goals should be to minimize network entities to core functions, limit mes-
sage traffic and upkeep due to churn, provide a central authority that can easily
be governed and managed, and enable some form of network segmentation into
providers and clients to facilitate volunteer computing needs — and all while still
achieve effective distributed data propagation.

Figure 3.8 gives a visual representation of how a more simplified network could
look. Here, a single overlay provides data distribution, in contrast to the more
complex super-peer network shown in Figure 3.7, where some nodes act as mes-
sage overlays and may or may not serve data given a particular request chain.
The design of a new “Architecture for Data Intensive Cycle Sharing” (ADICS) is in-
troduced in the next chapter. ADICS is constructed with adherence to the design
principles introduced here. Its new design proposes a “Data Center” network that
eliminates the message-relaying super-peer overlay (like those found in Gnut-
tela) and favors a Napster-inspired topology, where a central authority controls
metadata distribution and file registration. As will be seen in Chapter 4, this new
topology matches well to the requirements of volunteer computing environments,
while still leveraging the power of P2P data brokering.
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CHAPTER 4

A Peer-to-Peer Architecture for Data-Intensive Cycle

Sharing

The Data Center network organization introduced in this Chapter is a Peer-to-
Peer Architecture for Data-Intensive Cycle Sharing (ADICS) [102, 103]. ADICS
offers itself as a data distribution paradigm that can be used to balance network
loads and offset storage requirements for highly parallel scientific applications. It
is specifically targeted at meeting the challenges involved in volunteer computing
environments. The core infrastructure of ADICS is focused as much on environ-
mental considerations as it is on idealized technology. As a software development
package and research topic, ADICS is proposed with close consideration of the
issues raised in Section 3.4, while at the same time maintaining a desire to con-
struct a core infrastructure that is fairly application agnostic. Therefore it can be
used with other applications seeking distributed data management.

Building upon the analysis presented in the previous chapter, here the details
of the ADICS design given here, show how and why different infrastructure deci-
sions were reached. It is here that the correlation between design, background,
and requirements coalesce to form a new system that not only addresses data
transfer within Desktop Grids, but also transition between Service and Desktop
Grids. The migration of data between these two different environments is partic-
ularly relevant, as it showcases the flexibility of the system and also defines the
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context within which much of ADICS was researched and developed.

This chapter is organized as follows. First, an architectural model is given that
shows the network topology, entities, message types, and the key infrastructure
elements in ADICS. Next, the data sharing protocol is given in more detail. The
design is then rated against the requirements specified in Chapter 3, paying par-
ticular emphasis to the four design issues identified there. Simulation is used next
to verify the design and help to fine-tune the protocol definition. Lastly, a first iter-
ation software prototype (the basis for the next chapter’s final implementation) is
discussed and concluding remarks are given.

4.1 Architectural Model

To achieve a new network design for Desktop Grids that allows for distributed
data management, while preserving the simplicity of centralized management, a
Napster-style architectural model is proposed. Key to the design presented here
is the concept of “Data Centers” (DCs), which serve as the core component in
the distribution network overlay. Data Centers act as partial replica caches (see
Figure 3.8), with membership to the Data Center overlay (optionally) controlled by
a project’s central authority. To support file distribution and replica management,
the Data Centers exchange files with one another and each is able to serve as a
mirror of a segment of the project’s input data.

Unlike a traditional super-peer network (see Figure 3.7 in Chapter 3), the Data
Center overlay membership is controlled and does not include additional mes-
sage relaying peers. A simplified view of the relationship between Data Centers
and other network entities is given in Figure 3.2. Limiting network entities and
constructing the network as a single overlay with shared responsibility is a funda-
mental design decision that helps to reduce complexity and increase manageabil-
ity and oversight of the network. Individual members of the Data Center overlay
can enforce local policies and preferences regarding how much and how often
they provide replica services. At the same time they provide a distributed cache
that doesn’t require complete mirroring, which is inefficient and greatly increases
participation requirements.

Lastly, a Data Center overlay can be augmented with a managed security
infrastructure that enables a secure network to regulate the distribution of data
based upon project preferences. Therefore, “secure” data centers are a way of
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implementing a super-peer topology for data sharing that would restrict the set of
peers that are allowed to propagate data. In this scenario, policies can be set by
each Desktop Grid project as to which participants, if any, are allowed to host and
redistribute data. Here a centralized entity can control the distribution and veri-
fication of security credentials and roles. Beyond simply restricting Data Center
membership, policies can also be introduced to govern the relative sensitivity of
data and retention policies. By maintaining control of network membership, new
types of functionality and advanced scenarios can be introduced with minimal
invasive network tinkering and upkeep.

Figure 4.1: ADICS: Client Message Workflow — shows the basic flow of mes-
sages from a Worker to various other network entities.

Figure 4.4 shows the basic flow of messages for a client wishing to retrieve
data from the network in an ADICS architecture. First, the Network Manager
(e.g., BOINC or XtremWeb) is contacted to get a workunit (steps 1 and 1b), which
contains an input data endpoint. Next, the Data Lookup Server provides the client
with the locations of Data Centers on the network that are active replicas of the
data (steps 2 and 2b) . Lastly, the client contacts one or more of the data end-
points (i.e., data centers) to download the data (steps 3 and 3b). After successful
completion, the client is then able to continue and process the workunit.

The roles and network messages that enable this scenario are discussed in
more detail in §4.2. Note how the network complexity differs from that of a tradi-
tional super-peer network, in that message relaying is simplified and centralized.
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This makes the ADICS network very similar in nature to how early Napster worked
and also reminiscent of BitTorrent trackers, which efficiently manages data repli-
cas through a centralized entity.

In ADICS, the centralized network role that manages client requests and stores
metadata about the locations of download endpoints is called the Data Lookup
Service. Similar to a BitTorrent tracker (discussed in §2.5.4.2 and §3.5.1), it keeps
track of file hash information and location endpoints. However, where a BitTorrent
tracker is limited to managing a single file, the Data Lookup Service acts as a
metadata repository for the entire network, similar to Napster’s implementation.
One other major difference between both Napster and BitTorrent and the Data
Center/Data Lookup Service scheme described in this chapter is the potential for
the addition of security criteria that restrict these layers to a subset of the available
peers and the adherence to the concepts outlined in §3.4, as seen in §4.4.

4.2 Roles

The following roles have been identified as essential towards building the pro-
posed network: data lookup service, schedulers, data providers, data centers,
data seeds1, and worker nodes (i.e., data consumers).

The layering of these roles in the network can best be described as three
tiered. The first tier is composed of a restricted number of (likely static) entities
that typically would be managed by the project administrators. This fixed layer
is composed of any data providers, the data lookup service, and/or schedulers.
The next tier is the core data-sharing overlay that hosts the data seeds and data
centers. The purpose of the second tier is to dynamically organize in a way that
can respond to network demand. As the data-sharing layer is larger than the
core management layer and also requires a larger pool of resources (in order to
distribute files), it is likely that it would employ looser membership criteria. The
last tier is that of the end-recipients, or worker-nodes, which do not provide data
to the network, but rather play the important role as primary data consumers. Due
to the nature of Desktop Grids, the size of the worker node network is expected
to be orders of magnitude larger than the other layers, and will be responsible for

1Data Seeds are a specialized use-case of the Data Center role that allows for propagation of
data from third party entities to the Data Center overlay. Their inclusion is needed as an integration
step for the EDGeS and EDGI projects, where clients can be end-users that lack the ADICS
network publication tools.
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issuing the majority of pull requests from both the first and second tiers to locate
and retrieve data.

The following gives an overview of the aforementioned network roles and their
relative responsibilities and interactions in the network.

The Data Lookup Service (DLS) is the centralized2 entity in the ADICS archi-
tecture that allows other network participants to locate data on the network,
create or modify metadata, and publish new information. It’s key roles are
as follows:

• Provides a storage cache of addresses and objects

• Establishes a bootstrap endpoint to locate other network entities

• Manages authorization and authentication of publishers and retrievers
of data

• Acts as a “gatekeeper” to the network by potentially restricting meta-
data (about data and endpoints) to authorized peers

The Scheduler is another centralized network entity that responds to replication
requests and ensures that data are being propagated to the Data Center
layer. Although a conceptually different role than that of the Data Lookup
Service, in ADICS, the Scheduler role (and code) has been integrated into
the DLS for simplicity. The messages that are exchanged to query and
register with the Scheduler are, however, independent, enabling it to be
separated for efficiency or refactoring if the need arose.

Figure 4.2 shows how Data Centers contact the scheduler on a predeter-
mined interval (e.g., every 60 minutes) to request new work. Control of
data propagation rests with a centralized entity (the Scheduler), while the
burden of initiating requests lies with individual nodes in the Data Center
layer. This model decouples data propagation and does not rely upon a
well-constructed Data Center overlay to function, since those that wish to
participate will contact the Scheduler, and those that do not, will refrain. This
limits the effect of “bad” Data Center hosts, which, in a super-peer network,
might not be relaying distribution requests properly.

The key functions of the Scheduler are to:
2The Data Lookup Service could be distributed into a DHT or other load-balancing metadata

catalog if needed. However, for the purposes of this research it is restricted to a centralized entity.
Even in the case of distribution, it would still serve as a conceptual “centralized” layer for metadata
handling.
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Figure 4.2: ADICS: Data Center and Scheduler Interaction — shows how Data
Centers periodically contact the Scheduler to request more work in a PULL model.

• Receive publication requests from the DLS, specifying distribution-specific
metadata such as the Time To Live (TTL) and Replication Count

• Respond to queries from members of the Data Center layer with repli-
cation objects, keeping track of the replication count to ensure that files
are distributed only to their MAX level

• Tag files as stale when their TTL has expired, passing relevant DELETE
requests to the Data Center layer

Data Providers are the last of the likely centralized (or limited) entities on the
ADICS network. They are the peers that are able to authorize to the Data
Lookup Service and publish data that will be transferred to the Data Center
overlay. To share a file on the network, a Data Provider must first contact
the Data Lookup Service with a publication request, providing relevant meta-
data, including the location of an initial seed for the data (see Data Seed).
If the publication is successful, the metadata will be registered with the DLS
and sent to the Scheduler, and shortly the Data Center overlay will begin its
caching process, as follows:

• Publishes files to the network, providing needed metadata, file con-
tents, or seed endpoint

• Returns GUID to end-user, which can be used to reference ADICS-
published data

Data Centers provide the distributed data management layer that serves client
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requests and offloads network bandwidth and storage demands. Unlike in
a super-peer network, each Data Center is an independent entity that is
not linked to other Data Centers and does not contain a “neighbor list” to
create the network overlay. Rather, Data Centers independently contact
the Data Lookup Service (as all clients do) to receive download locations.
This simplification eliminates the burden of network maintenance and recon-
struction due to churn. By pushing responsibility to the DLS, authorization
and authentication are also greatly simplified, at the cost of the creation of
a centralized point of failure.

When a Data Center is retrieving a file from the network, it can use the
fact that files are split into multiple distinct chunks to download from several
other Data Center endpoints at the same time, in a mechanism known as file
swarming, as shown in Figures 3.2 and 3.4. In ideal conditions, file swarm-
ing allows download bandwidth to be fully utilized, while exploiting multiple
network paths. This enables faster downloads while concurrently protect-
ing against corrupt data, as smaller segments of the file can be individually
verified and accepted/discarded.

The key features of Data Centers are as follows:

• Store network data and acts as a partial replica of project files

• Serve requests from Workers and other Data Centers, providing file
contents

• Query the Scheduler for new “work” to process in the form of file-
replication requests

Data Seed nodes are special instances of DataCenters. They are able to relay
requests from data publishers to add new data to the network. This is useful
in cases where the data publisher might not be able to propagate initial data
itself, such as when it has limited bandwidth or is restricted behind a fire-
wall. The usefulness of data seeds becomes apparent in the next chapter
when discussing integration with service grid layers, where end-users might
need to publish data and would benefit from having a third-party transfer
agent that could “seed” the data to the network. In addition, by providing a
third-party that is able to publish data to the network, it is possible to further
decentralize the authorization procedures for data publication. For exam-
ple, if a DataLookup Service trusts a set of DataSeeds, it is up to each of
these DataSeeds to determine on whose behalf they are willing to publish

100



4.2 Roles

data. By decoupling the authorization needed for CRUD operations related
to ADICS, responsibility can be pushed closer to the Service Grids on which
they are issued. This allows for each Service Grid to implement its own pol-
icy for ADICS publications (for example, allowing all members of a certain
VO to publish to ADICS, or having the job managers auto-publish), with-
out requiring the ADICS network to be updated with each individual policy
update.

Therefore, the DataSeed provides the following capabilities:

• Receives requests from clients to publish data to the network

• Authorizes to the DataLookup Server and relays publication requests

• Can serve initial copies of input data to the ADICS network (acting as
an initial DataCenter)

• Potentially authorizes and maintains ACL lists of authorized users for
CRUD operations to network

Worker Nodes do not perform a data sharing function in the ADICS network;
rather, they are included here as the vital end-user component. The term
“worker node” is used here to describe data consumers on the network that
retrieve information (i.e., data), yet do not share it subsequently or other-
wise participate in ADICS. ADICS worker nodes correspond to the ADICS-
enabled worker nodes that would exist in a Desktop Grid environment, which
could download data from the P2P network before processing a distributed
job.

The functions of a Worker Node are as follows:

• Queries the network manager (e.g., BOINC or XtremWeb job distribu-
tion server) for new work

• Upon receiving new work, contacts the DataLookup Service for each
ADICS input file to retrieve a list of DataCenters with the needed input
files

• Requests and downloads input files from one or more DataCenters

• Works/processes workunits

• Uploads resulting output data to network manager (e.g., BOINC or
XtremWeb upload server)
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4.3 Data Sharing Protocol

To enable the interaction between ADICS network entities, a message protocol is
needed. To aide in further discussion of how the network operates, this section
introduces some of the core components of the ADICS protocol. The protocol de-
scribed here is the foundation for the one used in Chapter 5 for the EDGeS/EDGI
implementation of ADICS. There, a more detailed description of the messages,
parameters, and interactions is given.

Here, the base messages needed for further discussion of the interactions
defined in §4.2 are specified. Each message satisfies a key function needed to
enable the core interactions between ADICS network entities. Note that the mes-
sages and object specifications are flexible, and can be enhanced and augmented
for additional functionality and future requirements.

A DataUnit specifies a piece of data that is shared on the network. It has pa-
rameters such as ID, Size, Name, Date, Description, MD5 sums, as well as
payload information (i.e., the actual data).

A DataPointer is a collection of DataUnits, with the augmented information as
to which locations on the network (i.e., DataCenters) are potential cachers.

A DataQuery is used to query a DataLookup Service for the location of data
on the network as identified by a specified ID. A successful DataQuery will
return a DataPointer that has the locations of several potential replicas.

A DataRequest is a request sent from an interested party to a DataCenter with a
request for a particular segment of data. Note that the sequence for down-
loading from a DataCenter is the same regardless of the consumer, whether
it is an end-user Worker Node or another DataCenter.

4.3.1 Publishing and Replication

Figure 4.3 shows how a file would be published to the ADICS network if network
flooding, neighbor lists, and a distributed DLS layer were used to propagate in-
formation. In the given example, a DataCenter first instantiates a DataPropigator
agent. The DataPropigator will hash the file and use the resulting checksum to lo-
cate the DataLookup Service that is responsible for the file’s address space. The
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Figure 4.3: Publishing a File Using Network Flooding — gives a sequence di-
agram showing how flow of messages would look if one were to use network
flooding to publish files to the network.

DLS is contacted and a RegisterDataRequest, which contains metadata about
the file, such as maximum replications, file size, and MD5 checksums, is made.
Provided that the DataPropigator has sufficient authority to publish files on the
network, the DLS will respond with a unique file identifier. Note that the DLS
would then potentially need to update its content network with the new informa-
tion, depending on the DHT configuration.

The DataPropigator uses this ID to create a DataAdvertisement that is sent
to other DataCenters through network flooding.3 Contained within the DataAd-
vertisement is the location of the DLS that is responsible for the file. When a
DataCenter receives the request, it is first forwarded onto its neighbors, then a

3Flooding is performed on a known number of neighbors (N) and to a certain network depth
(D), which guarantees that a maximum of ND nodes will receive the request
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local decision is made on whether or not to cache the given file. If a positive
decision is reached, the new DataCenter will contact the DLS, authenticate, and
request to be a DataCenter. Provided authentication is successful and more repli-
cas are needed, the DataCenter will be added to the DLS’s list and will proceed
with the file download.

Such a system was originally conceived for ADICS and it requires a relatively
complex P2P network, with multiple levels of updating, and potentially severe per-
formance hits if there is large network churn. Instead of the solution presented
in Figure 4.3, ADICS uses a system that is much simpler and more streamlined.
First, to publish a file, a Publisher (e.g., DataSeed) contacts the DLS and au-
thenticates. If successful, it is registered as the first cache and the file replication
information (e.g., TTL, max replicas, size) is transferred to the Scheduler. As the
Scheduler periodically gets requests from DataCenters who are willing to cache
information, it simply assigns the given file as new queries arrive. Each new Dat-
aCenter then independently downloads the file from existing network resources
and registers with the DLS as a new cache. Overall, this is a much less complex
distribution algorithm, which has the added benefit of transforming the replication
workflow from PUSHing requests to a PULL model.

4.3.2 Downloading

Figure 4.4 gives a general overview of the message interactions that take place
when a client queries for data on the network. Briefly, each DataUnit is described
by a DataQuery that gives hints as to how to locate the data on the network. In
the case of the current system implementation, which is working to locate BOINC-
like data with defined data mappings, the “hint” is actually a unique ID of the data
in question. However, such a strict mapping is not enforced and queries are
extendable and can be application-specific, allowing for more advanced querying
mechanisms and fuzzy matching. The DataLookup Service is responsible for
mapping the requests to resulting DataPointer responses. It is also in charge of
assigning unique IDs when files are published to the network and keeping track of
the DataCenters which have registered themselves as keeping replicas of a given
file.

When a client machine wishes to download a file described by a DataQuery,
the following workflow takes place:
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Figure 4.4: ADICS: Flow of Messages for a Download Operation — shows the
flow of messages from the client to the various other network entities in a basic
data query and download operation.

1. The client contacts a DataLookup Service on the network and provides it
with a DataQuery request. The DataLookup Service checks to see if it finds
a match for this DataUnit. In case no match is found, it returns a 404. When
a DataUnit match is found, its associated list of DataCenters is retrieved.
These two properties (DataUnit metadata and List<DataCenter>) are com-
bined into a List<DataPointer> that is returned to the client.

2. Upon receipt of the List<DataPointer> for a particular DataQuery, the client
can extract the DataCenter location information from each DataPointer. The
client is then able to directly use this reference to contact one or more Dat-
aCenters for full or partial retrieval.

3. The client generates a DataRequest based upon the file it is interested in
receiving and sends it to a DataCenter. The DataRequest is able to indicate
the specific byte-range that the client is interested in. This allows for file
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swarming to take place in the event that multiple DataCenters are able to
provide different partitions of the file simultaneously.

For file security and integrity checking, the DataLookup Service can (option-
ally) store a list of MD5 checksums for different defined chunks of the file. These
allow both end-users and DataCenters to individually verify smaller portions of
the file before attempting to reassemble. Naturally, the final MD5 checksum of the
entire file is also supplied. For the highest level of security, it is advised that clients
adhere to the chunk-size hint that is provided with the DataPointer; however, this
is not obligatory. Making this an optional parameter allows for the partial and re-
sumed retrieval of files from different DataCenters and offers the largest amount
of flexibility for optimizing network bandwidth.

4.4 Evaluation Against Requirements

It is important to measure the design of a new data network for Desktop Grids
against how it is able to satisfy the specific needs of the target communities and
fit into a volunteer computing paradigm. In the following section, the four target
issues identified in §3.4 are discussed, with emphasis on how they relate to the
proposed ADICS network.

4.4.1 Scalability and Network Topology

Similar to the mechanisms employed by BitTorrent and the Julia Content Distribu-
tion Network [104], network proximity would have to be determined to map nodes
adequately and decide if any are on a local network. However, if the network
parameters are set to limit the participants to known hosts, the likelihood of in-
ternal LAN nodes being available to a given peer as a data center is significantly
diminished. In these cases, a two-tier system of data servers is envisioned: one,
in the traditional case, which meets certain selection criteria, but is available on
the larger network via a public address; another which has also met the selection
criteria for a “trusted node,” yet is unavailable to the larger network, but still is
available to distribute files to local peers. Alternatively, LAN data centers could
have lower security requirements placed upon them because the data is digitally
signed to verify integrity. However, this could allow for malicious exploits involving
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the reporting of false results, should multiple recipients on the same LAN be given
identical tasks to compute.

For cases in which the Distribution Factor is low, the use of DataCenters still
might be desirable. This is because the DataCenters can act as a distributed
buffer for the network, thereby providing a more consistent throughput for the
nodes of the network. In volunteer systems, like BOINC, users connect at random
times, which cannot be regulated by the main server. Therefore, it is likely that
there are times in which multiple workers will demand data at the same time,
which could be followed by periods of little activity. Farming out the data to a set
of decentralized data servers could enable a buffer that would dampen down the
effects of such spurious activity requests to the main server. In this scheme, the
main server would push the data to the data centers consistently so that data
was always available to feed the workers in the system. Then in periods of high
activity, the main server would simply act as a coordinator for the downloads (i.e.,
tell a worker to go to data center x to download the data, rather than serving it
itself). Such buffering would provide tolerance to inconsistencies in the network
usage.

For decentralized data servers, the use of a push or a pull model very much
depends on the Distribution Factor for the network. For high values of Distribution
Factor, it is likely that a pull model would benefit, because many nodes will be
requesting the same data and therefore the data would naturally replicate over
the data centers in the network through their demand. Further, for higher values
of Distribution Factor, the network may benefit by splitting data files across the
data centers, using a similar scheme to BitTorrent and making the main BOINC
server operate in much the same way as a BitTorrent tracker. However, data
caching would be scoped to only the data centers, rather than every peer in the
network being forced to replicate and serve data. The level of file swarming would
need to be determined by the size of the Distribution Factor.

The proposed ADICS system uses a Napster-style “known peers” for WAN
discovery, coordinated through a centralized DataLookup Service. This allows
for a simplified network topology (as opposed to network flooding and neighbor
lists). The drawback of such an approach would be if the centralized system fails
or is unable to scale. However, as shown by the real-world Napster and BitTorrent
cases, centralized metadata servers can be extremely effective and scale to large
degrees, so long as they are not also burdened with core data-sharing duties.
The DataLookup / Data Center partition in the ADICS network decouples these
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responsibilities and should allow the DataLookup Server to scale independently
to meet network demand. If network size increases beyond that which a single
server can satisfy, solutions such as the Julia Content Distribution Network can
be explored for more advanced network topology exploitation.

4.4.2 Data Integrity and Security

Decisions as to which participants, if any, are allowed to host and redistribute data
are made during the registration and replication request phases, allowing project-
specific policies to govern and restrict the set of peers that are allowed to prop-
agate data. The ADICS implementation, dubbed Attic (see Chapter 5), provides
the core tools to facilitate these interactions, as well as a default implementation
(using passwords and X.509 certificates). These generic tools can be extended to
more complex scenarios that go beyond simple “yes/no” restricting of data center
membership. For example, constraints could be introduced to govern the relative
sensitivity of data and retention policies and match these against authorization
tables that map certificate distinguished names (DNs) against network privileges.
Adding these new types of functionalities would allow for more advanced use-
cases, albeit with the additional costs of software and network complexity.

Such grouping can be used to restrict data sharing on the network to a subset
of peers that match certain performance and security thresholds. By implement-
ing an opt-in and, for the moment central, validation system for data sharing, many
of the security considerations explored in [102], such as router configuration, au-
tomatically opening ports, and rouge hosts providing data, can be marginalized.
In this scheme, the data center subset of peers on the network act as “true peers”
in the sense that both send and receive on an equal standing with their data cen-
ter neighbors; however, they act solely as servers to the data consuming worker
nodes. One benefit of this approach is that workers continue to operate relatively
unchanged from their previous working conditions, with the relatively minor addi-
tion of a distributed data lookup. Based upon the preliminary simulation results
of [96, 105, 106], it is our belief that decentralized data centers can prove to be
both valid and useful solutions to distributing data in Desktop Grid environments.
There is, however, a tradeoff between functionality and complexity that needs to
be adequately addressed and balanced if such technologies are to be adopted by
production environments such as BOINC.

Depending on an individual projects configuration, firewall and router issues
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could be a potential problem or a complete non-issue. In a free-for-all system
where any member node is permitted to be a data center, there could obviously
be problems with that node’s being behind a NAT. In this instance, the tradeoff
between “punching holes” in the firewall and the potential benefit of the node’s
available network bandwidth would have to be determined. For more restricted
systems, in which pre-specified static or semi-dynamic nodes are dynamically
promoted to be data centers as the network requires, firewall and router issues
could be minimized, for example, through enforcing eligibility criteria for data cen-
ters to only those nodes that have a publicly addressable network space. In this
instance, semi-dynamic, is referring to nodes that have gone through some pre-
screening that verifies them as good candidates for data-centers, such as ob-
taining a specific certificate or accumulated substantial project credits. However,
when they actually perform as data centers is determined dynamically, based
upon network properties.

Current design of ADICS is working with the assumption that a more secured
sharing will be desired and enforced. This requires data center peers to be pub-
licly accessible machines, thereby for the moment forgoing the potential pitfalls of
attempting to implement automatic firewall configuration, leaving this as a future
implementation issue outside of the scope of this research.

4.4.3 User Security and Client-Side Configuration

As with Data Integrity and Security, the issue of how much relative freedom net-
work participants have to manipulate the network will depend on the individual
policies of each hosting project. In the most restrictive case, the only nodes that
would be allowed to propagate data would be well known and trusted, thereby
affording the same level of security currently available in the centralized network.
In looser security configurations, which are configured to harvest more participant
network resources, the security issues would be roughly equivalent to BitTorrent,
as discussed in [95]. The advantage of the system proposed here is that there are
middle-ground options lying between these two extreme alternatives that could be
exploited.

ADICS relies on the data signing and validation procedures currently utilized
by BOINC, which essentially guarantee that requested data will be what is ulti-
mately retrieved. However, to effectively distribute a single data file from multiple
data centers to an individual host, BitTorrent-style file-swarming techniques are
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being investigated. This requires two-level hashing of data, once on the individ-
ual chunks and once on the entire file. This additional chunk-level hashing helps
prevent malicious or misconfigured DataCenters from propagating “bad chunks”
to the network.

Authentication is the verification process by which an entity identifies itself to
others and gives evidence to its validity. Public key infrastructure is a proven tool
that can be fairly effectively applied for performing peer identity authentication.
In the simplest case, this can be done by having a central authority (i.e., the
BOINC manager) sign and issue either full or proxy certificates to those it deems
trustworthy enough to distribute data on its behalf.

When another peer on the network contacts this “trusted” entity, it can use the
public key from the centralized BOINC manager to verify the authenticity of the
trusted peer. This process can likewise be performed in reverse, provided clients
also are issued certificates, as a means for the data distributers to validate the
identity of the clients and verify that they have the proper credentials to retrieve
data. The process of using certificates for mutual authentication can be a fairly
effective solution that would provide individual peers with certainty that the host
they are retrieving data has been delegated the proper authority and visa versa.
More interesting use-cases that provide for interaction between multiple virtual or-
ganizations (VOs) and hierarchal delegation (e.g., certificate-chaining and cross-
certification agreements) can be derived from this simple arrangement, but are
beyond the scope of this research [92, 93].

For the BOINC environment, possible ways in which a reasonable level of
authorization could be implemented would be to tie certificate issue into the cen-
tralized scoring system that keeps track of users and groups that are contributing
cycles to the project. In such a scenario, when a new potential data server enters
the network, it would contact the group of data servers in the network and offer
to join them. After certificate exchange to authenticate identity, a lookup could
be done against the scoring system to see if the newcomer meets the require-
ments to join the data center network. If this is successful, the newcomer could
then be added to a centralized or decentralized list of “authorized data centers” or
alternatively added to the table of contactable centers from the other centers.

If this were implemented in the absence of a centralized authority, one issue
that would arise would be how to continuously validate the data center layer to
remove data centers that have turned rouge or been compromised since joining
the network and passing the initial validation step. One potential solution would be
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to issue only proxy certificates that expire after a given amount of time, thereby
requiring periodic re-authorization. Then when clients connect to a stale data
center, they could verify the lifetime and expiration date of the certificate.

For the proposed ADICS network, the authorization and authentication can be
further simplified, since the DataLookup Service essentially controls the access
lists of what agents are able to publish or retrieve information from the network.
Similarly, the DataSeeds can maintain tables of authorized “sub publishers” that
can use them as network proxies. By choosing the network design proposed
previously, ADICS is able to offer simplified and easy-to-maintain network autho-
rization and role management, while restricting entity membership and limiting
access to network resources.

4.4.4 Legacy Software Integration

The (potentially, depending on project setup) “secure” DataCenter approaches
outlined in this Chapter, in the form of ADICS, would demand radical changes to
existing software such as BitTorrent or even generic P2P network-building middle-
ware like JXTA. This is primarily due to two distinct areas: internal integration with
Desktop Grids and external library dependencies. Regarding internal integration,
BitTorrent or any other solution beyond FTP or HTTP would require changes to
the core BOINC client code to handle the new protocol. This is problematic, as
there are tens of thousands of BOINC clients that would then need to be updated
in order to enable P2P file sharing. Moreover, the restriction to allow opting-out
of the system makes it difficult to apply BitTorrent-like solutions which enforce
participation.

ADICS does not require workers to participate in the data distribution. There-
fore, the fundamental software integration issue that confronts ADICS is how to
allow BOINC (and other Desktop Grid software) to use the ADICS network with-
out requiring changes to the core client code. A solution to this problem is pre-
sented in the next chapter (see §5.3), where a proxy project is run as a daemon
in the background and intercepts P2P network requests. This solution allows
non-intrusive legacy software integration.
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4.5 Validation of Design through Experimentation

After the initial ideas for the ADICS network were conceptualized, basic simu-
lations were performed using NS-2 [107, 108], to evaluate how packets would
flow given the ADICS network topology and identify potential bottlenecks. Next, a
generalized “dynamic caching” data distribution paradigm was explored in collab-
oration with ICAR-CNR using a custom simulation framework [99, 105]. The work
presented there was more generalized than the ADICS network that has been
proposed here; however, the results and arguments for P2P data distribution led
to a refinement of the ADICS protocol. Specifically, it presented an argument that
using dynamic data caching, while knowing the network and data properties, al-
lows for a more efficient configuration of data server replication, as opposed to the
current static-sized set used by BOINC projects. During these initial simulations,
much was also learned about how the network would be able to scale and what
proportion of network resources would need to be partitioned as data providers
to adequately satisfy demand.

Based upon the preliminary results of [105], the ADICS protocol was further
developed [85, 99]. This section introduces the subsequent simulation work4 in
the development of ADICS, which was used to test its validity in a Desktop Grid
environment and verify the design before implementation. It should be noted
that the simulations here use realistic BOINC project metrics. This allows not
only for the validation of the ADICS network architecture, but also helps to fine-
tune run-time environment parameters, such as Data Center loads and network
topologies. For a discussion of further testing and results of the protocol running
on a deployed Grid, please see §6.2.

Recall Figure 4.4, shown earlier in this chapter, and repeated here as Figure
4.5. It shows the basic entities that will be simulated for the ADICS network, as
well as the sequence of messages exchanged in the system. There are several
kinds of nodes, each of which can implement one or more different roles. The fol-
lowing gives a brief review of the different roles and the associated functionalities,
as they pertain to the simulations given in this section:5

4The simulations introduced in this section were done in collaboration with colleagues from
the University of Calabria and ICAR-CNR (specifically, Daniela Barbalace and Carlo Mastroianni),
who designed the simulation software presented here and have been instrumental in providing
this analysis.

5Note that the functionalities for the simulations are simplified versions of those in the ADICS
protocol and may differ slightly from those presented in the protocol specification.
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Figure 4.5: Client Message Workflow Used for Simulations — shows the basic
flow of messages from a Worker to the various other network entities used for
ADICS simulations.

• The Network Manager manages the Worker Node requests, assigning them
the workunits (WUs) that represent distributed and computationally intense
simulations to be run on the network. The Network Manager stores a copy
of all the input data and, at the beginning of data transfer, it distributes these
items to the Data Center overlay, which acts as the caching layer serving
download requests from Worker Nodes. The DLS retains an up-to-date
cache of Data Center addresses and the list of items each has stored.

• The Data Center receives some data items from the Network Manager and
stores them for Worker Node requests. When a worker asks a cacher for
some data, it sends this data through a direct connection.

• The Data Lookup Service (DLS) is a node that plays this role and should pro-
vide the worker with a list of Data Centers that store the data item needed
to execute an assigned workunit. After contacting the DLS for location infor-
mation, Worker Nodes can contact the Data Centers (i.e., cachers) directly
to retrieve the data item. The exact procedure to retrieve data is described
later in this section. For the purposes of the simulations provided here, it is
assumed that the Data Lookup Service is included in the Network Manager
role, but in general, these nodes could be different.

• The Worker Node is a node able to execute a workunit. It periodically
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Figure 4.6: Caching Algorithm in a Sample Network — shows the flow of mes-
sages when caching a file in the Data Center overlay.

queries the Network Manger for a new job and subsequently retrieves re-
quired input data items needed for job execution. When it finishes process-
ing a workunit, each Worker Node produces some results. For the purposes
of the simulations performed here, the results of workunits, and their asso-
ciated output data, are ignored, due to their inconsequence in measuring
input data distribution.

Figures 4.6 and 4.7 depict the sequence of messages exchanged among the
Network Manager, the Data Centers, and the workers. In particular, this sample
network contains three Data Centers, seven workers and the Network Manager
(which includes the functionality of the Data Lookup Service).

At the beginning, the Network Manager sends its data items to the cachers
(i.e., Data Centers). The particular caching strategy adopted in this work is the
one described in [90]. The aim of the simulations here and the initial phase of
input data deployment in ADICS is to support a FastReplica method, which has
shown to be efficient and reliable at quickly replicating large files.

There are a few basic ideas exploited in FastReplica. In order to replicate a
large file among n nodes, the original file is partitioned into n subfiles of equal
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Figure 4.7: Workunit’s Execution in a Sample Network — shows the flow of mes-
sages when a client downloads the input files for a workunit.

size. Each subfile is transferred to a different node in the Data Center group.
After initial distribution, each node propagates its subfile to the remaining nodes
in the group. Thus, instead of replicating the entire file to n nodes using n Internet
paths, FastReplica is able to exploit n ∗ n Internet paths within the replication
group, where each path is used for transferring only 1/nth of the file. This also
avoids the bandwidth of the unique data source (e.g., the Network Manager) from
becoming saturated, since the bulk of the transfer is happening within the data
caching overlay.

In the simulation work presented here, as in FastReplica, input files are divided
among cachers. Data files are represented as a set of data items, with each
data item corresponding to a subfile that is cached in its entirety. Moreover, a
new parameter, DReplicationFactor, is introduced that indicates the number of
Data Centers on which each data item should be replicated. This is done to limit
bloating of the network and allow partial caching, since it is not useful to replicate
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all files (in their entirety) to all cachers on the network. Rather, partial replicas are
useful to distribute load and provide an acceptable quality of service, allowing, for
example, a 1 GB file to be split into one hundred 10 MB subfiles (aka chunks) and
replicated to multiple points on the network. The DReplicationFactor specifies
how often each of these “chunks” should be replicated, providing a distributed
replica of the file among a large number of cachers.

For example, as shown in Figure 4.6, notice that there are three data items
and a DReplicationFactor of two. Therefore the Network Manager sends a data
item to each cacher (step 1, NMDataTransfer), and the cacher propagates its data
item to another cacher (step 2, FRDataTransfer), in order to replicate the data item
to two nodes (as requested by the DReplicationFactor value of two). Thus, each
cacher sends the item to DReplicationFactor − 1 other randomly chosen data
cachers.

Each of the scenarios presented here has a total number of workunits (aka
jobs), NJob, and a number of different data items, NDataItem. The same data
item can be given as input for different jobs. The number of times a data item
needs to be assigned to workers is on average: NdataAssign = Njob/NDataItem.
Moreover, there are N data cachers (Ndatacachers) and each data item is repli-
cated on DReplicationFactor of these. In the absence of swarming, DReplication-
Factor should be lower than NdataAssign, so that each of these DReplicationFac-
tor data cachers can serve several job requests.

FastReplica helps to mitigate the scenario when the Network Manager be-
comes a bottleneck. Instead of sending to the network a number of data items
equal to (NDataItem) multiplied by the replication factor (DReplicationFactor),
FastReplica transfers each data item (NDataItem) once, and subsequently each
cacher is responsible for the completion of the replication algorithm to the other
caching nodes.

Figure 4.7, shows the steps needed for the execution of a workunit. A Worker
Node, W1, joins the network and connects directly to the Network Manager NM ,
asking for a job with a GetWorkUnit request (Step 3).

In Step 4, the Network Manager answers the Worker, using a WorkUnit Re-
sponse, and assigns a workunit to the Worker Node. The message also contains
other information, which the Worker can use to ask the Manager for components
the worker is missing, for example, the required data items.

After the assignment phase, the Worker retrieves the data item for the as-
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signed workunit. The Worker must search for a Data Center that stores the
required input data. The Network Manager keeps a cache of all Data Center
locations. The Worker sends the DataLookup Request (Step 5) using the infor-
mation of the previous message (WorkUnit Response), to the Data Lookup Ser-
vice (for the purposes of this simulation, this is the same entity as the Network
Manager). The Data Lookup Service/Network Manager sends a DataLookup Re-
sponse (Step 6) back to the Worker, which contains the location of one or more
Data Centers that have the needed data. In the final steps of downloading, the
Worker retrieves the data item fragments simultaneously from different sources
(Steps 7 and 8), by using file swarming, as in BitTorrent (see §2.5.4.2), to mini-
mize the download time.

The message sent by the Worker to download data is a Data Query. When
a Data Center receives a Data Query, it responds with a Data Fragment, which
contains the requested data payload.

In the above scenario, when the Network Manager receives a query for a WU,
it returns to the Worker a list of Data Centers that have that data item. The worker
can download the fragments of this data item in parallel from different sources. If
the number of fragments (NFragment) is lower than the number of Data Centers
that have that data item, the Network Manager will choose NFragment Data
Centers among those that are less loaded to put in the list. Each data packet sent
to the Worker contains the data itself (the payload) and other support information.

As mentioned previously, the simulation presented here analyzes the effi-
ciency of input file distribution. The result sets that are generated from processing
workunits are out-of-scope and not taken into account.

The phase in which the Data Centers (aka Data Cachers) acquire data items
and the one in which Workers request these items are executed in parallel. When
a Worker requests data locations from the Network Manger, it receives the most
recent list of Data Center addresses, which is updated as new cachers propagate
information.

To achieve the simulation of the ADICS network topology presented in §4.1,
the simulation software presented in [96] was modified to support the ADICS and
EDGeS project demands. In the following, the most substantial differences and
modifications are listed:

• In EDGeS, the Data Center and the Network Manager are contacted di-
rectly, not through a P2P search. In the previous version of the simulator, a
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P2P search was performed each time a worker had to contact the Network
Manager or a Data Center for the first time. This is the fundamental dif-
ference between a network flooding approach used by many P2P software
implementations and the centralized discovery system proposed in ADICS.

• In EDGeS, the Network Manager is the only super-peer in the network,
to which all the Workers must be connected. Workers are not connected
among themselves. To be able to contact a Date Center, each Worker must
contact the Network Manager, which retains a list of available Data Centers
and relays those addresses to Workers. Conversely, in the previous simula-
tion work presented in [96] and [105], Workers could be directly connected
to a Data Center or Rendezvous node for message relaying and discovery.

In order to validate the protocol using realistic network metrics, stats from
three of the most important BOINC projects were gathered: Rosetta@Home, Ein-
stein@Home and SETI@Home. Below is a list of the most relevant parameters
that can be replicated through simulation for each of these projects:

• Size of a workunit (WU)

• Processing Time of a WU

• Size of Initial Data (The first WU that a worker performs requires more data,
because, for example, it needs the source code of the application.)

• Results/Day. The number of results products in one day corresponds to the
number of WUs correctly performed by all the workers within one day

• Participants (Worker pool size)

• Replication factor. The replication factor defines how many times a WU
must be performed in order to check results coming from different workers.
It must not be confused with DReplicationFactor, that represents the number
of times a data item should be replicated on the cachers.

• %NewWorkers: indicates the percentage of new users in the network, that
is, how many workers ask for a WU for the first time. This helps to simulate
network churn.

Tables 4.1, 4.2 and 4.3 show the stats mentioned above for these three projects.
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Table 4.1: Rosetta@Home Project Statistics

Size of a Workunit 3 MB
Processing Time of a Workunit 3 hours
Size of Initial Data 17 MB
Results in a Day 115,000
Number of Data Centers variable from 3 to 20
Participants 100,000

Table 4.2: SETI@Home Project Statistics

Size of a Workunit 340 KB
Processing Time of a Workunit 2 hours
Size of Initial Data 2.5 MB
Results in a Day 1 Million
Number of Data Centers variable from 3 to 20
Participants 500,000
Replication factor 2

For the purposes of the simulation analysis presented here, the number of
Workers was reduced in order to obtain results more quickly. Consequently, the
size of the projects was scaled appropriately to keep results consistent and ac-
curate. In the remainder of this section, the performance indexes that were com-
puted through the simulations are analyzed.

• The percentage of bandwidth utilization: in previous simulations, the uti-
lization of Data Centers was calculated as the percentage of time in which
the Data Centers have at least one active connection (there is, at least one
Worker that is retrieving data). This metric proved not to be very useful
for analyzing network demand and the efficiency of distribution. Therefore,
for the simulation work shown here, it is the percentage of bandwidth used
on each Data Center in a given time that is analyzed, lending the ability to
gauge network throughput and demand distribution.

In BOINC it is not realistic to assume that the bandwidth of a Data Center is
equal to that of a Worker, as the Worker-node layer generally consists of a
large number of edge nodes. Data Centers are assumed to be a more pow-
erful computers with larger available bandwidths (for example, 100 Mbp/s)
than the Workers, which usually have only consumer Internet connections
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Table 4.3: Einstein@Home Project Statistics

Size of a Workunit 3.2 MB
Processing Time of a Workunit 5 hours
Size of Initial Data 40 MB
Results in a Day 50,000
Number of Data Centers variable from 3 to 20
Participants 200,000
Replication factor 2

an order of magnitude less. Therefore, it is useful to determine how many
connections are active in a given time span, and what percentage of a Data
Center’s bandwidth is used by those connections. For example, if the num-
ber of connections to a Data Center, multiplied by the bandwidth that each
Worker is using (e.g., 10 Mbp/s), is lower than the total available bandwidth
of the Data Center (100 Mbp/s), then each Worker will have its maximum
download bandwidth available (i.e., 10 Mb/s). Alternatively, if the total avail-
able bandwidth of the Data Center isn’t sufficient to satisfy all Workers at full
speed, it is fairly divided among the connected Workers (resulting in speeds
<10 Mb/s). The same strategy of bandwidth sharing and division has been
implemented between the Network Manager and the cachers.

• The average speed of download : this index is defined as the average speed
of a Worker (in Mbp/s) in downloading the data items used to process the
assigned workunits.

• The percentage of new users: due to the vastness and volatility of volunteer
computing projects, which often involve tens of thousands of computers,
many of which leave the network while others join, the simulations shown
here account for a continuous arrival of new Workers. This is important
because of the (potential and substantial) difference between old and new
Workers that occurs during the initialization stage. For example, new Work-
ers often download more data, as in the case of the Einstein@Home project,
where the first WU requires 40 MB rather than 3.2 MB (see §2.3.3.2 for ex-
planation). To simulate old Workers leaving and new Workers joining the
network (a phenomenon known as “network churn”), each simulated Worker
downloads the initial data (e.g., 40 MB) not only for the first workunit, but
also with each subsequent workunit given a certain probability (parameter
%NewWorkers is set to 20% by default). Thus, when the new %NewWork-
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ers trigger goes off, the act of an old Worker leaving and a new Worker
joining is simulated, and the tests are able to account for network churn.

• The average download time is the average needed time to download an
entire data item.

• The overall execution time is the time needed to retrieve and process all the
workunits, that is, to complete the given simulation run.

Performance Evaluation

The simulation analysis was performed using an event-based simulator and the
parameters shown in Table 4.4. The ADICS/EDGeS scenario and the related
network and protocol parameters are set to assess the representative BOINC
applications identified earlier in this section. The DReplicationFactor was fixed
to three for the experiments and the size of each project was scaled (as well as
result sets) to quickly run the simulations. A table containing the values of the
number of Workers and of results/day is reported below.

Table 4.4: Values Used in the Simulations

Rosetta@Home
Number of Jobs 12,000
Number of Workers 10,000

SETI@Home
Number of Jobs 10,000
Number of Workers 5,000

Einstein@Home
Number of Jobs 5,000
Number of Workers 10,000

Figure 4.8 shows the average bandwidth utilization vs. the number of Data
Centers, for the three different projects. It can be noticed that, as the number
of Data Centers increases, their bandwidth utilization decreases. This is an ex-
pected result and occurs because Workers can download the needed data from
additional sources, reducing each cacher’s individual load. However, this trend
has an optimum: if the number of Data Centers increases over a certain thresh-
old, the bandwidth utilization does not decrease further; this is primarily due to
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Figure 4.8: Bandwidth Utilization vs. the Number of Data Centers — shows the
average bandwidth utilization vs. the number of Data Centers, for each of the
three selected projects.

the new cachers not being selected as download targets, as the network already
has sufficient capacity. Therefore, they sit idle.

It also can be seen in Figure 4.8 that the different size of the data items in
each project impacts heavily on the optimum number of the Data Centers that
should be used. For example, SETI@Home, has relatively small input data (≈
340 KB) and simulations show the optimum number of Data Centers is around
106. However, for Einstein@Home, more Data Centers (i.e., 20) are required,
due to the larger size of the input data items and different numbers of Worker
nodes.

We can derive the optimum number of Data Centers from Figure 4.9. For each
of the three different projects, the mean speed of the Workers to download data

6It should be noted that the “optimum” number of Data Centers is directly related to the network
bandwidth metrics of the Data Center overlay. In a network with slower Data Centers, more would
be required, and visa versa.
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Figure 4.9: Download Speed of Workers vs. the Number of Data Centers —
shows the average download speed of Workers vs. the number of Data Centers,
for each of the three selected projects.

vs. the number of Data Centers is shown. Ten Data Centers allows Workers to
fully utilize their download bandwidths for SETI@Home, whereas 14 are needed
for Rosetta@Home and 20 for Einstein@Home.

Figure 4.10 depicts the mean time that a Worker takes to download a data item
from the Data Center overlay. As the number of cachers increases, the download
time decreases, but the threshold mentioned above is confirmed here also. If
the number of Data Centers increases over a certain threshold, these nodes are
not proportionally used and the network experiences diminishing returns when
adding cachers.

Finally, in Figure 4.11, the trend for overall execution time vs. the number
of Data Centers can be seen. It is interesting to notice that, for SETI@Home,
this value is almost constant. This behavior could be explained by looking at the
execution time of a workunit. While in Einstein@Home and Rosetta@Home the
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Figure 4.10: Download Time vs. the Number of Data Centers — shows the aver-
age download time vs. the number of Data Centers, for each of the three selected
projects.

process time and the download time are comparable, in SETI@Home the down-
load time is proportionally much smaller than the execution time. Therefore, for
SETI@Home, an increase in the number of cachers does not have as pronounced
effect on the overall time to completion as it does with the other projects.

4.6 Summary

The simulations show that the ADICS network can solve real-life volunteer com-
puting data distribution needs with a relatively small number of Data Centers. It
should be noted that in all three examples, the number of optimal cachers was
greater than the current centralized mirroring employed by projects. This can be
attributed to the large cost of running a data mirror for Desktop Grid projects.
Since mirroring requires a full copy of all input data, rather than the partial caches
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Figure 4.11: Execution Time vs. the Number of Data Centers — shows the overall
execution time vs. the number of Data Centers, for each of the three selected
projects.

used by ADICS, the hardware requirements (e.g., storage and bandwidth) to host
a mirroring site are large. Also, due to the manual nature of setting up mirroring
servers (there is no automatic system for doing so in BOINC or XtremWeb), addi-
tional system administrator time is needed to setup and maintain a data serving
site. This results in fewer, very powerful and capable, mirroring locations being
used to distribute project data.

ADICS provides an alternative, where the threshold to serve project data is
greatly reduced, allowing a broader, yet less intensive use of caching sites to
serve project data. The benefits of a more widely distributed and more highly
scalable network are seen not only in automatic load balancing and increased
participation, but also in a potential decrease in overall hard maintenance costs,
which can inhibit volunteer computing solutions for projects that lack the dedicated
infrastructure to host and serve their input data.
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4.6 Summary

The software architecture introduced here was showcased in the Enabling
Desktop Grids for e-Science (EDGeS) project. It was prototyped in Java and used
serialized Java Objects as a messaging layer and Remote Procedure Calls (RPC)
to invoke actions on network entities. ADICS was successfully prototyped in the
EDGeS project and showcased in the EDGeS reviews and demonstrations. Fol-
lowing validation of the research ideas presented here, a follow-on project (EDGI)
was created (see Appendix B), where ADICS was further developed into a more
versatile and useful software infrastructure.

The ADICS architecture remained the same in EDGI, with changes taking
place in the format of the way messages are relayed around the network. Instead
of passing Java Objects, an XML-based REST model was implemented, allowing
for better integration with legacy applications and Service Grid infrastructures.
Chapter 5 of this thesis delves into the details of this second incarnation of ADICS,
dubbed “Attic.” It shows the details of Attic’s implementation and how the REST-
model helped to further solve the issue of data distribution within Desktop Grids.
In addition, the next chapter gives details regarding the data transitioning between
Service and Desktop Grid infrastructures.
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CHAPTER 5

Implementation and Integration with Service and

Desktop Grids

The goals of both the Enabling Desktop Grids for e-Science (EDGeS) and Eu-
ropean Desktop Grid Initiative (EDGI) projects (see §2.4 and Appendix B) are to
transition jobs from Service to Desktop Grids. EDGeS also contained a compo-
nent for transitioning Desktop Grid jobs to Service Grids; however, this particular
feature is not discussed in detail here as it was not included in the follow-on EDGI
project. EDGI expanded upon EDGeS to move much of the prototype software
researched there towards a production system. In addition to these goals, EDGI
also seeks to integrate other Service Grid architectures, namely the Advanced
Resource Connector (ARC) [109] and the Uniform Interface to Computing Re-
sources (UNICORE) [110].

When discussing the research and integration that took place in EDGeS and
is currently taking place in EDGI, there are three main data-related components:
first, the data distribution framework that implements the design given in Chapter
4; second, the Service Grid integration steps and tools that allows publication of
files to the data distribution framework and incorporation of these new inputs into
Desktop Grid workunits; lastly, the client-side (legacy) application changes that
needed to take place to enable Desktop Grid users (i.e., BOINC and XtremWeb
clients) to retrieve the referenced input files.
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This chapter investigates each of these key components in detail and gives
the relevant implementation details. The combination and intersection of these
three aspects provides a concrete example of the research ideas proposed in
this thesis. The resulting implementation is a data-sharing network for Desktop
Grids that provides a usable solution to the integration challenges of Service to
Desktop Grid data migration. Its development, acceptance, and ultimate use in
the community serves as a demonstration of the applicability and proof of the
hypothesis developed in Chapter 1.
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package of EDGeS and also the JRA1 work package of EDGI were both in-
strumental in the development of the bridging technology that integrates At-
tic with the ARC (see §5.2.2), UNICORE (see §5.2.3) and gLite (see §5.2.1)
Service Grids (for a background discussion, see §2.4). These activities
were often complex and involved efforts from several different partners in
the development of scenarios, the design, and the Service Grid component
implementation. This list notably includes researchers at SZTAKI (gLite),
University of Copenhagen (ARC), and Paddleborn (Unicore); however, oth-
ers have also contributed.

The BOINC plug-ins for Attic (see §5.3) wouldn’t have been possible with-
out design help from the BOINC community and substantial programming
efforts on the part of students and researchers at Cardiff, notably Kieren
Evans. Likewise, without development and testing efforts from researchers
at IN2P3, the protocol handlers and integration with XtremWeb (see §5.4)
would not have been possible.

Software License

All software described in this chapter and provided by both the EDGeS and
EDGI projects is available under open-source software licenses. The Attic
infrastructure detailed here, which is the core output of this research, is re-
leased under a liberal Apache license, making it available for public, private,
and commercial use.

Availability

Attic, as well as the Attic BOINC proxy project, are freely available on at
the Attic website [111].1 Attic source code is also hosted on GitHub [112]
for long term sustainability. Other software components, such as the 3G
Bridge, ARC, UNICORE, and gLite, are likewise available in public source-
code repositories. Links to their documentation and related files can be
found on the EDGI website [113].

5.1 Attic

The following section gives a description of the Attic architecture. Attic is the
second iteration of the ADICS architecture described in Chapter 4. The first iter-

1The latest technical developer’s documentation (e.g., Javadoc API guide), installation instruc-
tions, and software downloads are available at this location.
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ation had essentially the same message protocol and network entities; however,
it lacked a REST-interface and protocol handler implementations. The software
was renamed “Attic” to represent more fully its functionality as a place to “store
things,” as well as an opportunity to remove a long acronym from the software
name. ADICS now refers to the protocol and infrastructure, whereas Attic is the
concrete software implementation. Although the first incarnation of Attic (aka
P2P-ADICS) was useful as a proof of the ADICS architecture, its limitations made
integration with pre-existing Service and Desktop Grid architectures difficult. To
solve these integration issues, the software presented here was constructed. It
uses the lessons learned from the first software development and the ADICS ar-
chitecture to extend the system to utilize HTTP for message interaction and use
REST principles for exposing metadata on the network.

5.1.1 Introduction

A primary aim of the Attic software package is to be integrated easily into existing
software stacks, both at a wire protocol level and at an API level. Hence the design
of the system makes use of existing standards where possible. In particular, Attic
uses HTTP exclusively, both for control messages and for data transfer. Unlike
systems based on SOAP, which use HTTP to simply tunnel messages between
participating parties, Attic takes a RESTful approach, making full use of what
HTTP has to offer. There are two primary reasons for taking this design decision:

• Attic is about sharing binary data and HTTP is particularly well-suited to
exchanging arbitrary data because it models all messages as a byte stream
associated with a particular MIME type.

• Using HTTP allows the system to integrate easily with Web environments,
in particular the Web browser. The Web browser is the primary interface
to distributed systems for non-computer specialists. Providing access to
the Attic system via this ubiquitously understood interface is of primary im-
portance to any project involved in encouraging volunteer behavior among
non-specialists.

Second, Attic allows its messages to be serialized to several widely supported
data formats, specifically XML, Javascript Object Notation (JSON) [114], as well
as XHTML. Supporting these different serialization mechanisms allows Attic data
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types to be integrated seamlessly into a number of environments ranging from
Web browsers to Grid systems based on XML standards. Furthermore, at an API
level, these technologies are supported across many programming and scripting
languages. This makes integration with existing software stacks easier. Already,
there are Attic components written for Java, C and the Unix shell.

An example of the benefits of this approach will be shown in the integration
of the EDGI bridge component with the Attic network, described in detail in Sec-
tion 5.2. This integration is extremely lightweight, requiring only components that
are known already to exist on a bridge component.

Role

Handler Handler Handler

Channel

HTTP

Role

Handler Handler

Wire

TLS

X509

Identity

Action

Figure 5.1: Attic Component Layers.

Figure 5.1 shows how the main components within Attic are layered. At the top
of the stack is the concept of a Role. A Role encapsulates behavior that allows
it to act out particular message exchanges in the Attic network. The primary
Roles defined by Attic (based strongly upon the design given in Chapter 4) and
referenced in this section are the following:

Worker — A node that downloads data and processes it on behalf of a Desktop
Grid/volunteer computing project.
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DataCenter (DC) — A node that provides caching facilities on the network and
stores data.

DataProducer (DP) — A node that exposes data to the network.

DataLookup Service (DLS) — A node that allows producers and caching agents
to register the data they have, and workers and caching agents to discover
that data. A DataLookup may also take into account constraints provided at
publish time when responding to discovery queries.

DataSeed — A node that allows brokered publishing of data. A DataSeed ac-
cepts data from a DataProducer and publishes it to a DataLookup Service
on its behalf. In the process, the seed becomes the initial entry point for
accessing the data.

A Handler is a component that responds to particular message events, for
example data queries, or requests to download. Typically, a Role draws on the
functionality of several Handlers to support its behavior.

The Channel layer provides an abstraction to the underlying message ex-
changes that take place over the wire. Channel components interface to the
HTTP library. This library performs the actual data transfer.

Security runs vertically through the system. At the Role level, nodes are un-
derstood as Identities. An identity encapsulates a unique name, a token used
to verify the identity, and a set of actions that are associated with the role. This
allows an identity to be both authenticated and authorized to perform a particular
activity. Currently, identities based on X.509 certificate chains are implemented.
In this case, the unique name of an identity is the Distinguished Name (DN) as
defined by the peer’s certificate, and the token is the signed certificate chain in-
cluding the peer’s certificate and any authenticating certificates attached to it.

The action that is taking place during a particular request is defined at the
Handler layer. This is determined by the URL that the request is directed to and
the HTTP method being used. At the Channel layer, identities are understood
as X.509 certificates. Each secured request contains a local certificate and a re-
mote certificate. At the HTTP layer, these certificates are used to perform mutual
authentication with Transport Layer Security (TLS) [115].

An overview of the roles and how they exchange messages is depicted in
Figure 5.2.
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Figure 5.2: Attic Protocol Workflow.

1. Data is published to a DataLookup Service using a DataAdvert. This may
contain constraints such as the amount of replicas that are desired across
the network and the lifetime of the data.

2. DataCenter nodes query the DLS for data to cache, using DataQuery mes-
sages. These may also be constrained; for example, they may specify max-
imum data size or project name.

3. In response to a query, a DataCenter receives a DataPointer containing
endpoints associated with a metadata description.

4. The DataCenters proceed to download from the endpoints specified in the
pointer.

5. Having downloaded the data, a DataCenter then notifies the DLS that is has
the data, again using a DataAdvert message.

6. The DLS updates the pointer with the DataCenter’s endpoint, adding it to
the known list of replicas.

7. A Worker node then invokes an HTTP GET on a DataPointer endpoint.
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8. The Worker proceeds to download from the endpoints specified in the pointer,
in a manner identical to how a DataCenter retrieves a file.

5.1.2 Message Types

There are a number of message types used within Attic to allow describing, pub-
lishing, and querying data. They are currently serialized to wire as Javascript
Object Notation (JSON) by default. XML and XHTML are also supported. JSON
messages are between 1

3
and 1

2
smaller than XML, which is a motivator for

choosing JSON as the default implementation.

The different message types and their usage are described below.

DataDescription — This type defines metadata about some data, for example
a name, description, or project associated with the data. It also contains
an identifier. This must be a Universally Unique Identifier (UUID) [116] (aka
Globally Unique Identifier, or GUID). This could change if Attic adopted a
hierarchical file system; however, at the moment, a UUID is required. A
DataDescription also contains a FileHash.

FileHash — This type defines metadata about some data at the byte level.
Specifically, it contains the length of the data and an MD5 hash of the
bytes. It may also contain a list of FileSegmentHash objects.

FileSegmentHash — This describes a portion of data including the
start offset and end offset in bytes, as well as an MD5 hash of
the portion. A segment is created by a minter (e.g., a publisher)
of a DataDescription who decides how big segments should be.
The use of FileSegmentHashes allows for double-hashing, which
improves network security and data integrity checking.

DataAdvert — A DataAdvert is used to publish the existence of data and the host
that has that data. It is used by both publishing agents and caching agents.
A caching agent is one that has previously retrieved information about data
(in the form of a DataPointer), has downloaded the data, and is notifying
the network that it now has the data. This type contains a DataDescription,
an endpoint, as well as optional Constraints. A minter of a DataDescrip-
tion should include a FileHash including segment hashes. When a caching
agent notifies the network that it has cached the data, these details are not
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needed, because agents can match against UUID contained in the DataDe-
scription.

Constraints — These are simple properties that can be added to a DataAd-
vert. They have a Type, one of String, Date, Integer, Double, Long or
Boolean, as well as a string key and string value

DataQuery — This type is used to query for data. Like the DataAdvert, this can
contain Constraints to restrict the types of data that are received from the
query. The response to a DataQuery is a PointerCollection. A pointer col-
lection contains one or more DataPointers. A DataAdvert may contain infor-
mation that is not necessarily intended for public consumption, in particular
the constraints. This is why adverts are not returned when agents query for
data, but DataPointers are returned instead. Hence, logically, a DataPointer
is created or amended when an advert is received by an agent that also
responds to DataQueries, i.e., one that issues DataPointers on request.

DataPointer — This type contains a DataDescription and list of Endpoints. These
are the endpoints from which the data can be retrieved. It is generated by
services that have received any number of DataAdverts corresponding to a
particular DataDescription. It is up to the client to decide which endpoints to
use and which to forego.

PointerCollection — This type is simply a list of DataPointers.

Endpoint — This type is essentially a URI, but it can also contain another URI
within it. When an endpoint appears in a DataPointer or DataAdvert, it may
contain a meta URI. This is a URI from which metadata about the data to
which the main URI points can be retrieved. This allows clients to query
the particular endpoint to find out what segments it contains, in a manner
very similar to BitTorrent. Currently, two query strings are supported, which,
when appended to the meta URI return slightly different data.

The first is a filehash query, which returns the FileHash of a description
referenced by the query value.

Filehash query to the meta endpoint http://www.example.org/attic/meta

http://www.example.org/attic/meta?filehash={description-id}
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The second is a description query, which returns a representation of a full
DataDescription.

DataDescription query to the meta endpoint
http://www.example.org/attic/meta

http://www.example.org/attic/meta?description={description-id}

The current implementation also supports path variants of these queries, for
example:

http://www.example.org/attic/meta/description/{description-id}

and

http://www.example.org/attic/meta/filehash/{description-id}

5.1.3 Component Implementation

Attic is not tied to a particular HTTP implementation. The current implementation
uses HttPeer [117], a HTTP library developed as part of the OMII funded WHIP
project [118, 119]. HttPeer is a very lightweight library that allows easy server-
and client-side HTTP data transfers. The Restlet framework [120] would also
make a suitable HTTP back-end, although it is a larger code-base and some of
the optimizations and security features could be harder to implement (being a
third party library).

Attic is insulated from the HTTP implementation via a set of interfaces for
sending and receiving data and control messages. These are based on the con-
cept of InChannels and OutChannels. The former receive messages from the
wire and pass them to server-side components. The latter are used by client-side
components to push data onto the wire. Figure 5.3 shows the classes involved in
the channel sub-system.

A ChannelFactory is used to create in and out channels. An InChannel takes
a ChannelRequestHandler as an argument during creation. Request handlers
receive messages along with metadata about the message when something ar-
rives at the InChannel. Specifically, the handler receives a ChannelData object
(not shown in Figure 5.3 for brevity). A ChannelData object is a container class
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Figure 5.3: Channel Interfaces.

with a number of properties such as the request endpoint, the request data ob-
ject, the response data object, an action, — one of the HTTP methods — and an
outcome — mapped to the HTTP response status code. ChannelData is used at
both the server-side, by a ChannelRequestHandler, as well as at the client-side.
On the client-side, the application asks a factory to create an OutChannel using
the desired endpoint. After this is done, it inserts some data into it, and calls
the channel’s send(ChannelData) method. This returns synchronously, contain-
ing (possibly the same) ChannelData object with outcome and response data in
it.

The system uses a typical HTTP architecture in which different han-
dlers are mapped to different URL paths (note the getPath() method of the
ChannelRequestHandler interface). Apart from this, a handler handles a request
using the handleRequest(ChannelData) method.

Extending the ChannelRequestHandler is the AbstractRequestHandler class.
This provides some functionality for handler implementations, in particular break-
ing the request into HTTP method actions. Hence subclasses of this abstract
class do not have to explicitly work out the request type. Instead, they can pro-
cess messages directly in a Servlet framework, much in the way that an extension
of abstract HttpServlet can.

The existing extensions to the AbstractRequestHandler are shown in Fig-
ure 5.4. Their roles are enumerated below:
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Figure 5.4: Channel Handlers.

ConfigRequestHandler handles requests for managing the Web configuration.
It responds to the GET method by returning the Web form, and likewise
processes the form’s POST requests.

DescriptionRequestHandler handles requests for metadata, specifically
DataDescriptions and FileHashes

DataRequestHandler handles requests for data. It deals only with GET meth-
ods at the moment. There is the possibility that it could handle queries in
the form of an HTTP POST. This would allow clients to specify bandwidth
constraints on data delivery by the server.

PointerReqestHandler handles requests dealing with DataPointers, DataAd-
verts, and DataQueries. There is a fair amount of decision making to be
done with these types, so this handler delegates most of the logic to an
AdvertProcessor (see below).

SeedRequestHandler handles requests to publish data. Typically, a data pub-
lisher will act as a seed itself, but this is not always the case. A publisher
may push data to a node prepared to receive both a DataAdvert and the
associated data. The seed then becomes the publisher itself, passing the
DataAdvert to the network and storing the data locally.

Some handlers implement the Authenticating interface. This interface is
used to specify a request action that is being performed by the client, based on
the request path and the HTTP method being used by the client. These actions
are mapped to identities, specifically the Distinguished Name of the client’s X.509
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certificate. The security implementation is discussed in more detail in §5.1.7.
Actions include core functionality such as PUBLISH and CACHE.

The other core interface along with ChannelRequestHandler is the Role inter-
face. A Role has a reference to an instance of an Attic object. This is the central
point of entry for an application, providing the glue between configuration options
and different roles. A Role is initialized with an instance of Attic. It does not
expose any service capabilities, although strictly speaking, it could. The basic im-
plementation of a Worker node implements the Role interface. The worker does
not require any running servers. It merely makes client requests.

Extending the Role interface is the ServiceRole interface. This is designed for
nodes that provide a service to the network. As well as extending the Role, it also
extends ChannelRequestHandler. Therefore it binds an instance of Attic with the
server-side message receiving interfaces. A ServiceRole is designed to create a
channel and register as a handler with it, but to delegate the processing to other
handlers based on the request path and the path of its registered handlers. Ser-
viceRole exposes an addChannelRequestHandler method, which allows a service
to add arbitrary handlers to its own path to provide capabilities.

The AbstractServiceRole provides some core methods for services
to extend. In particular, it knows how to determine which registered
ChannelRequestHandler should be invoked, based on the request path of the
ChannelData, as well as checking the authentication key of the handler. If it re-
turns one based on the request path, it is compatible with the identity that is
making the request. This allows subclasses to know that, if the request gets as
far as them, then the requesting agent has been authorized and authenticated. To
support this behavior, ServiceRole exposes addIndentity and removeIdentity

methods.

Two further extensions to the ServiceRole interface are currently defined. The
Publisher interface is implemented by roles that initiate data onto the network.
A publisher typically creates an authoritative metadata description which is regis-
tered with the network and downloaded by caching and worker nodes. Registra-
tion happens via the publish(DataAdvert) method.

The AdvertProcessor interface is implemented by nodes that receive
DataAdverts and DataQueries during their message processing. Typically, this
is a role taken on by a DataLookup Service. The two methods receive an advert
or query, and the ChannelData is used to process the request. It is the responsi-
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bility of the AdvertProcessor to manipulate the ChannelData and set the response
data and outcome of it.

5.1.4 Role Implementations

The way roles are defined in the interfaces and utility implementations of
ServiceRole and ChannelRequestHandler means that there is much flexibility in
how the different capabilities are combined to create nodes that perform particular
services to the network. This is to allow for flexible network conditions. For exam-
ple, in a centralized system, there may be a single authorized node that performs
the registration and exposure of published data. In a decentralized network, on
the other hand, nodes may publish their data to their neighbors or to a federation
of look up services. These differences imply that the logic implemented by nodes
may vary, in terms of security and the message exchanges that nodes need to
support.

Currently supported roles are:

DataWorker — This component knows how to pull data given a remote endpoint
that references a DataPointer document. It implements the DataReceiver

interface which is notified when data has finished downloading. It does
not support any persistent services other than the configuration service de-
scribed next.

ConfigServiceRole — This is a Web configuration service that can be attached
to an Attic instance to provide online configuration. It runs on the default
port of an initialized service (or falls back to 28842) unless the port number
has been set in the configuration itself. It is available at the absolute path
/attic/config on the host on which it is running.

DataPublisher — The DataPublisher component can index local files and
publish DataAdverts, given a bootstrap endpoint to which to publish
to. It implements the Publisher interface in addition to extending
AbstractServiceRole. Indexing involves taking a File or Directory and a
template DataDescription specifying metrics such as project and file size,
and creating a full metadata description with data chunk hashes. During
the process of indexing, any files being indexed are renamed to the UUID
in the resulting DataDescription. By default, the DataDescription is writ-
ten to disk, allowing the mapping between a file and a description to be
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discovered again on start up. The default location to put files to be in-
dexed is <attic-home-directory>/<role>/data, where role is the role of
the component storing data. For a DataPublisher this is dp, for a DataCen-
ter, this dc, and for a Worker this is dw. The default location for writing
out matching DataDescriptions is <attic-home-directory>/<role>/desc.
For example, if the Attic home directory is ~/.attic, which is the default
on Unix-like machines, then the data directory for a Publisher would be
/.attic/dp/data and the directory in which DataDescriptions are stored
would be /.attic/dp/desc

DataSeed — The DataSeed component extends the DataPublisher by adding
a SeedRequestHandler to its list of message handlers. Subscribing to the
role of a seed handler allows remote clients to push data to it. This data
is then published by the seed to the network. The handler first accepts
a DataDescription which is expected to be a template, that is, excluding
a list of segments. Any identifier, if present, will also be overwritten and
replaced by a generated UUID. In response to receipt of a description, the
seed handler returns an endpoint on the seed node of where to send the
actual data. The client then uses an HTTP POST to send the data. When
the seed has received the data, it publishes the data description to its look-
up service (i.e., DLS) as a DataAdvert. Contained within this advert is the
location of the seed as an endpoint. In response to its publication, the seed
gets an endpoint to a DataPointer from the look-up service. The seed then
forwards this to the client.

Currently the seed returns an attic or attics URL to the client. These URL
schemes are used to allow transparent data access from an endpoint refer-
encing a DataPointer document. The attic scheme is used for non-secured
endpoints (HTTP) and the attics scheme is used for secured (HTTPS)
endpoints. Changing the scheme of the URL to its HTTP variant will allow
normal retrieval of the data pointer from the remote endpoint.

DataLookup — This component acts as a look-up service (aka, the Data
Lookup Service) for other nodes. It implements the AdvertProces-
sor interface as well as extending AbstractServiceRole. In particu-
lar, it accepts requests to publish DataAdverts and requests to cache
data via DataQueries. The current implementation provides the path
/dl/meta/pointer, where requests to publish and cache can be directed
via a POST request, e.g., https://example.org/dl/meta/pointer. This
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is the publish URL when a caching agent has downloaded data. Fol-
lowing the download, the new replica notifies the look-up service with
a DataAdvert in a POST request. The endpoint the request is di-
rected towards is the same endpoint of the existing pointer. For exam-
ple, https://example.org/dl/meta/pointer/12345678902 is a DataPointer
URL, and when a DataLookup service receives a publish request containing
a DataAdvert, the implementation does the following:

• If the request is directed at the publish URL and no matching DataAd-
vert is found in the local cache, the DataAdvert is cached and a new
DataPointer is created from the description and the endpoint in the ad-
vert. If a matching DataAdvert is found locally, an associated local
DataPointer will also exist. If this is the case, then this is a request
to update or re-publish the DataPointer. The DataDescription in the
DataAdvert is copied to the local DataPointer, as well as the endpoint
in the advert. Existing endpoints in the pointer are not removed. The
assumption is made that the data being referenced by the advert and
pointer has not changed, otherwise a new DataAdvert should be pub-
lished.

Updating or republishing an advert is subject to ownership constraints.
Ownership of a DataAdvert is currently expressed via the identity de-
fined on a secure connection. That is, the identity of the requester is
determined by the certificate being used in the communication and is
mapped to the advert at publish time. If an update is requested to a
DataPointer that has an identity mapping and the update request does
not contain an identity (i.e., is not performed over a secure connec-
tion), or the supplied identity does not match, the update will fail. If
the identities match, then the request has come from the minter of the
DataAdvert and therefore authority exists to manipulate the metadata.
Note that deleting an advert, and hence the DataPointer associated
with it, can also be done only if the initial advert was published using
an identity and the request to delete it has a matching identity.

These constraints are overridden if the Attic security configuration
setTestMode property is set to “true” (see §5.1.8 for details).

• If the request is directed at the pointer URL, a mapped DataPointer
2Note that under the current implementation, a UUID for an Attic URL would not likely result in

1234567890, but rather a hash-like string such as 09aa632b-0031-42be-a2e2-49c706e704d8. For
space considerations, 1234567890 is used to denote an Attic identifier in this text.
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should already be cached by the look-up service. If not, an error is
returned. Otherwise, the endpoint in the DataAdvert is added to the
endpoints in the extant DataPointer.

To remove itself from the list of endpoints in a particular pointer, an
agent can send a DataAdvert with a constraint key of dereference and
a value of “true.”

• When the implementation encounters a DataQuery, it expects the
query to be directed at the publish URL, not a pointer URL. This is
because a request to cache is for any data, not a particular file. The
term any is qualified by the Constraints set on the query itself. The
response to a DataQuery is a PointerCollection. This is a list of Dat-
aPointers that match the query. Note that matching and constraints
are currently implemented in base forms, and would need to be ex-
panded to support enhanced scenarios. The main constraint that is
currently implemented is the replica constraint on a advert. This value
restricts the number of times a data pointer is issued in response to a
query. Other than that a very simple equality match is currently made
between advert constraints and query constraints. For example, if both
share a project constraint with a string type this is equal, then the query
will match the advert. Constraints have types (see §5.1.2) which can
be used to express slightly better matching semantics, such as before
and after for date types, and less than or greater than for number types.

DataCenter — A DataCenter acts as a client in that it requests DataPointers from
a DataLookup service and downloads the data from the endpoints described
in the pointers. It should be noted that a DataCenter does not typically
process any data, but simply caches it. Once it has downloaded the data, it
sends a DataAdvert to the DataLookup Service, in the hope that the look-up
service will add its endpoint to the relevant DataPointer. DataCenters are
also the nodes that send DataQueries to the look-up service; hence they
receive a list of DataPointers in response to the query.

The Role interface exposes methods that attach it to an instance of an Attic.
The init(Attic) method is called to pass an instance of Attic to the role, pro-
viding it with a central point to retrieve configuration information. This allows the
new entity to launch any components it needs to in order to fulfill its tasks. Simi-
larly, the shutdown method is used to close down any components and clean up.
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Note that while these methods can be called directly on Role implementations,
this is not recommended because the Attic instance itself needs initializing at
some point. Instead, client code should create an instance of Attic and call the
attach(String, Role) method on it, passing in the role, and a string identify-
ing it. Then, by calling the init method on the Attic instance, the role’s init

method will be called within that, at the correct time of initialization. The applies
to the shutdown method of Attic.

5.1.5 Downloading

Because the richness of new features that could be added is almost unlimited,
the aim of the downloading sub-system design is to be as extendable as possible
considering the various dependencies and relationships between components.
This enables Attic to be enhanced for the particular use-cases of each project
that wishes to employ it, a key design feature.

The process of downloading data begins with a DataPointer, as download-
ing from multiple servers using Attic requires that one is in possession of a
DataPointer. Typically, these can be retrieved from the DataLookup Server, al-
though they could theoretically be distributed out-of-bounds. DataCenters often
query for a collection of available pointers because they are interested in caching,
as opposed to processing the actual data. Workers, on the other hand, will query
for a pointer based on the UUID (or GUID) of the DataDescription that is refer-
enced by the pointer, because they require a particular data object to process. As
described in §5.1.2, a DataPointer represents a description of data and a list of
Endpoints that potentially have some or all of the referenced data. The Endpoint

element represents the URL at which the data is available. It can optionally con-
tain a meta URL. This is a URL from which metadata about the data (either a
DataDescription or a FileHash) can be retrieved. An example XML serialization
of a portion of a DataPointer is shown in Listing 5.1. For comparison, its JSON
equivalent is given in Listing 5.2.
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Listing 5.1: XML Rendering of a DataAdvert �
<?xml version="1.0" encoding="UTF -8"?>

<DataAdvert xmlns="http:// atticfs.org">

<DataDescription xmlns="http: //p2p -adics.org">

<id>12c667d6 -2d5d -4904 -9c2c -6746251 b81ef</id>

<name>SimulationInputFile.dat</name>

<project >EDGeS </project >

<description >Input for simulation </description >

<FileHash >

<hash>661 c7f5e462be8ced9a8a6d8a1c7e6 </hash>

<size>12407432 </size>

<Segment >

<hash>bedbfd11fa5fb4fd6b97349f45b6b3 </hash>

<start>0</start >

<end>524287 </end>

</Segment >

...

...

...

<Segment >

<hash>32 ce5368d98243a2a9abeccc2ddc5c </hash>

<start>12058624 </start>

<end>12407431 </end>

</Segment >

</FileHash >

</DataDescription >

<Constraints >

<Constraint type="Date">

<key>expires </key>

<value>Sat Jun 30 23 :59:59 GMT 2012</value>

</Constraint >

<Constraint type="Integer">

<key>replica </key>

<value>3</value >

</Constraint >

</Constraints >

</DataAdvert >
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Listing 5.2: JSON Rendering of a DataAdvert �
{

"DataAdvert": {

"DataDescription": {

"id": "b426c41b -d5a3 -4138 -93ec -60 a8be2a6c0c",

"name": "SimulationInputFile.dat",

"project": "EDGeS",

"description": "Input for simulation",

"FileHash": {

"hash": "661 c7f5e462be8ced9a8a6d8a1c7e6",

"size": 12407432 ,

"Segment": [

{

"hash": "bedbfd11fa5fb4fd6b97349f45b6b3",

"start": 0,

"end": 524287

},

...

...

...

{

"hash": "32 ce5368d98243a2a9abeccc2ddc5c",

"start": 12058624 ,

"end": 12407431

}

]

}

},

"Constraints": {

"Constraint": [

{

"type": "Date",

"key": "expires",

"value": "Sat Jun 30 23:59:59 GMT 2012"

},

{

"type": "Integer",

"key": "replica",

"value": "3"

}

]

}

}

}
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The first step in the download process is to contact all the endpoints that
expose a meta URL along with the data URL. A query is sent to the meta
URL for a list of the hashed segments stored by each host. This series of
queries is performed by a RequestResolver. The output of the process re-
sults in a RequestCollection. This is a list of EndpointRequest objects. An
EndpointRequest is a mapping of many hashed segments to a single host. A
RequestCollection orders the requests according to the Round Trip Time (RTT)
of the request for hashed segments. This allows the client to ascertain how fast
each server is currently responding. It also allows the Worker to weed out any
endpoints that are not responding at all, or return an error status to the request,
for example, an HTTP Not Found status code. Endpoints that did not supply a
meta endpoint are added as reserve mappings to the collection and used as a
last resort during downloading. Hence, not supplying a meta endpoint results in
the host’s always being far down the list of potential endpoints. This mechanism
is used by the DataSeed component to de-prioritize itself.

It should be noted that the RTT-based selection of DataCenters can be en-
hanced with more complex and intelligent scenarios that can optimize download
times. For example, a promising Quality of Service (QoS) enhancement for Attic
that uses peer-reporting mechanisms to keep track of download heuristics was
implemented as a Ph.D. project at Cardiff University (see Appendix B).

Downloading data based on a RequestCollection is done using a Downloader

instance. A Downloader takes, or creates a DownloadTableCreator in-
stance. A DownloadTableCreator takes a RequestCollection and creates a
DownloadTable from it. This table contains a queue of SegmentRequest objects.
These are mappings of a single endpoint to a single hashed segment as de-
fined in the DataDescription element of the original DataPointer. They also
contain a list of sub-segments. These sub-segments are the actual chunks that
are downloaded and may be smaller than the hashed segment defined in the
data description. SegmentRequests are prioritized using the policy of the table
creator and a SegmentRequestComparator implementation that is supported by
the DownloadTable instance being created. The two currently supported policies
are to either split the chunks evenly between available endpoints and prioritize
according to the speed of the RTT metrics, or to split the chunks between the
available endpoints based on the index of the chunk in the file. This latter policy
is used by the AtticInputStream for the Attic URL implementation (see §5.1.6).
It ensures that data arrives roughly in the order in which it is defined in the meta-
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data, meaning less reordering needs to happen within the stream exposed to the
client application. This is a critical step for providing the InputStream needed by
clients such as XtremWeb (see §5.4).

Next, a template view of the data is created. It is possible that not all the
segments of a file are currently available and therefore it cannot be downloaded
to completion. This template is matched against by the DownloadTable during
the download process to determine the point at which all possible data has been
retrieved.

Once a DownloadTable instance is available, the downloader uses implemen-
tations of the AbstractRequestor to remove SegmentRequests from the table’s
queue. The amount of concurrent threads performing download is determined by
the getMaxFileConnections configuration parameter of the Attic download config
(see §5.1.8). When a requestor has completed the download of a sub-segment
contained in a SegmentRequest, it notifies the table of either success or failure.
Depending on policy, a retry may be attempted, or an alternative endpoint with
the same hashed segment is located in the table and used to complete the down-
load. This process continues until the status of the data being rebuilt matches
the status of the data as defined during construction of the RequestCollection.
If a full set of hashed segments was attainable from the endpoints provided in the
DataPointer then the COMPLETE status should be achieved during download. If a
table cannot achieve the initial status, and the table is exhausted, with no more
possible endpoints to download from, then the table completes anyway, leaving
the downloaded data in an unfinished state. Such an occurrence would result in
the return of an appropriate status such as DISCONTINUOUS, signaling that there
are gaps in the downloaded data, or CONTINUOUS, meaning data is either missing
from the beginning of the data or from the end of it.

Figure 5.5 shows the process of converting a DataPointer into a prioritized
queue of requests for individual chunks. The first two endpoints in the pointer
contain meta URLs, so these are queried for the chunks they have and ordered
according to their RTT. The second endpoint has a faster RTT, so it appears ear-
lier in the list of EndpointRequests. The third endpoint has no meta URL, so it is
added to the end of the list, logically containing all segments; therefore, an end-
point with no meta URL is presumed to have all segments. The EndpointRequests

are then converted to SegmentRequests. The policy for ordering segment requests
shares out segments as evenly as it can between servers. Hence Segment 2 that
is available at the slower endpoint is prioritized above the Segment 2 at a faster
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Figure 5.5: Segmenting Data.

endpoint. This allows the client to concurrently download both segments from
different servers. The segments that are possibly available at the endpoint with
no meta URL are added as back-up requests to be attempted as a last resort.

From an application perspective, downloading is done by passing a
RequestCollection and an instance of the DataReceiver interface to a down-
loader, then calling its download() method. The DataReceiver receives notifica-
tion when download has completed.

5.1.6 Attic URLs

To simplify integration with other systems (e.g., XtremWeb), the Attic implemen-
tation supports the concept of an Attic URL. These are URLs that use an Attic-
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specific scheme and can therefore be attached (e.g., in Java) to an Attic protocol
handler. Two types of scheme are supported — attic for unsecured transfer and
attics for secured communications. Along with this URL scheme, the implemen-
tation provides an extension to the URLStreamHandler class defined by Java. A
stream handler is called upon by a java.net.URL instance to create a connection
to the location defined by the URL string. Using the Attic protocol/stream han-
dler allows applications to create a URL with an attic scheme and read directly
from the URL’s input stream, with only very minor modifications to their code (i.e.,
registering the protocol handler and including the Attic jar file).

An Attic URL ultimately points to a DataPointer at an HTTP endpoint. This
means that by substituting the attic scheme with http, and dereferencing it, one
can directly receive the requested document. For example, the standard attic
URL for any file will result in its DataPointer document. Therefore, what an attic

URL ultimately provides is a pointer to comprehensive metadata that references
multiple endpoints; those endpoints themselves reference the actual data that can
be obtained using http/https.

When an application calls the URL.openStream() method on an Attic URL, a
new input stream is created. Underneath, it contains multiple input streams cor-
responding to the endpoints defined in the DataPointer, which are concurrently
downloaded, reassembled into the correct order, and passed back through the
requesting input stream. The same downloading techniques are used as when
downloading to the local file system, with the exception that the streams are re-
turned directly to the application rather than being written out to file.

The fact that the streams are passed directly back to the application limits the
possibility for verifying the data against the MD5 hashes defined in the metadata.
The policy taken by the stream (which can be configured) is to attempt verification
if the hashed chunks defined in the metadata are less than or equal in size to the
set in-memory buffer. If the hashed chunks are too big to verify in memory, then
the application must take on this responsibility.

5.1.7 Security

Security in Attic is currently implemented using TLS and mutual authentication
with X.509 certificates. To enable the security features of Attic, Java keystores
must be available at runtime and contain local keys and certificates, as well as
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trusted certificates. These can be set using the security configuration options.

While signed certificates provide authentication of an entity, they do not allow
for more fine-grained authorization of actions based on the identity in the certifi-
cate. To achieve this, Attic uses a mapping between an application-level defined
action and a certificate’s Distinguished Name (DN).

The ServiceRole interface, exposes an addIdentity and removeIdentity

method. The Identity interface encapsulates a unique identity, an object that
is used to determine the authenticity of the identity, along with a list of sup-
ported or allowed roles. Two implementations currently exist — X509Identity and
DNIdentity. The first of these is used when a message arrives at a service. The
ChannelData is populated with both the remote and local certificates (if any) being
used during the transaction. These can be retrieved using the ChannelData meth-
ods getRemoteIdentity and getLocalIdentity respectively. The DNIdentity

is currently used by the default in-memory identity implementation that stores
Identities and their allowed roles. Equality between the distinguished name of
the two types of Identity is used to determine whether the currently connected
peer is allowed to perform a particular action. The current action is determined
by querying the appropriate ChannelRequestHandler, provided it implements the
Authenticating interface. Hence a correlation between the Authenticating in-
stance’s action and the roles allowed by a particular Identity determine whether
or not a peer may perform a particular request.

5.1.8 Configuration

An instance of Attic comes with a set of configuration classes dealing with different
aspects of the system. These are listed below.

org.atticfs.config.security.SecurityConfig deals with security-related
configuration.

setSecure(boolean):void — whether to use secure connections or not (i.e.,
HTTP or HTTPS).

setRequireClientAuthentication(boolean):void — whether or not to require
clients to authenticate themselves with a certificate if using secure connec-
tions.
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addKeyStore(Keystore keystore):void — this adds a keystore (local private
key and matching public certificate in a Java keystore) to the secu-
rity config. When a secure socket is created, the local keystores are
used to locate a certificate for the local peer. Attic uses the standard
Java mechanism for storing keys and certificates in keystore files. The
org.atticfs.config.security.Keystore class is a container for data re-
lating to a Java keystore. It includes properties for specifying the lo-
cation of the keystore, (e.g., file path, keystore password, key pass-
word, keystore alias, keystore type, and encryption algorithm). An
org.atticfs.config.security.Keystore can also be mapped to an au-
thority (host/port combination). This allows different keys to be used de-
pending on the port the server is running on. A value of default means the
keystore will be used for any connections that do not specify a host and port
matching the current endpoint.

addTrustStore(Keystore keystore):void — this is similar to the addKeystore

method, adding a trust keystore. These are used when creating a secure
socket. The certificate of the remote peer is matched against certificates in
the trust stores. A certificate will be allowed if it appears in the trust store or
is signed by a certificate in the trust store. By default, Attic also trusts the
default certificate authorities that ship with the current Java installation.

setTestMode(boolean testMode) — primarily designed for debugging, this al-
lows the deletion and updating of pointer metadata without the need for an
identity to be provided in the request. The default value is “false.” It also
supports the listing of all data pointers currently stored by a DataLookup
Service, wrapped in a PointerCollection container.

org.atticfs.config.data.DataConfig deals with data-related configuration,
for example, setting hashed chunk sizes and specifying how much local disk
space should be provided to Attic for data storage.

setMaxLocalData(long maxLocalData) — this sets the total amount of space
(in bytes) that Attic is allowed to use on downloaded data. This is relevant
for DataCenter nodes in particular. The default value is 100 GB.

setFileSegmentHashSize(int fileSegmentHashSize) — this sets the size (in
bytes) for hashed segments of data. The default value is 500 KB.
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setWriteDescriptionsToDisk(boolean writeDescriptionsToDisk) — this de-
termines whether to write out metadata descriptions to disk when indexing
files. By default this is true. Writing descriptions out means they will not be
indexed next time the node starts up.

setDataQueryInterval(long dataQueryInterval) — this sets the interval be-
tween querying for data in seconds. This is used particularly by DataCenter
nodes. The default query interval is one hour.

org.atticfs.config.download.DownloadConfig deals with download-related
configuration, for example, how many threads to allow per download.

setStreamToTargetFile(boolean streamToTargetFile) — if set to “true,” when
downloading, interim files will not be created. Instead data will be written
directly to the final file. Downloaded blocks that do not pass verification are
marked as invalidated portions of the final file until a segment download for
that file succeeds.

setBufferSize(int bufferSize) — this sets the in-memory buffer size while down-
loading.

setMaxTotalConnections(int maxTotalConnections) — this sets the maxi-
mum total connections (i.e., threads) allowed by a client during downloading.

setMaxFileConnections(int maxFileConnections) — this sets the maximum
total connections (i.e., threads) allowed by a client per file.

setConnectionIdleTime(int connectionIdleTime) — this sets the idle time on
open connections. This is used at the server side to close connections that
have been left open by clients. The default value is three minutes.

setDownloadChunkSize(int downloadChunkSize) — this sets the size of
chunks to download. These are typically smaller than hashed chunks as
defined in the metadata. This means multiple smaller chunks are down-
loaded before a single hashed chunk of data can be verified. The default
size is 256 KB.

setRetryCount(int retryCount) — this sets the number of times a failed down-
load for a chunk is retried (from the same server). The default value is two.
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org.atticfs.config.stream.StreamConfig deals with streaming-related
configuration, for example, whether to attempt verification of chunks before re-
turning them to the application. This is used by the atticConnection class that
extends URLConnection and is used for the attic URL scheme.

setAttemptVerification(boolean attemptVerification) — this determines
whether to attempt verification of data before passing it to the application
stream. Actual verification depends on the hashed chunk size defined in the
DataDescription that is being downloaded and the size of the in-memory
buffer described below.

setMaxBufferSize(int maxBufferSize) — this sets the maximum in-memory
buffering of streaming data. If this value is greater than or equal to the
size of hashed chunks in the data, and attempt verification is set to “‘true,”
data will be verified before passing it to the application stream. Verification
failures are retried.

When using Attic simply as a URL protocol handler, these properties can
be directly set in the atticConnection class using the URLConnection method
setRequestProperty(String, key, String value). The memory buffer key
is org.atticfs.protocol.attic.max.inmemory.buffer and the verification at-
tempt key is org.atticfs.protocol.attic.attempt.verification. The values
can be given as strings, e.g., for the int 10, “10” and for the boolean true, “true.”

org.atticfs.config.html.HtmlConfig. This class wraps the above-specified
configuration objects and exposes them via an HTML interface, as shown in Fig-
ure 5.6. It is used by the ConfigServiceRole and ConfigRequestHandler to expose
a Web interface to the configuration options. This interface is typically available
at the path /attic/config on a running instance of Attic and allows easy system
administrator configuration of Attic options.

5.1.9 Summary

The preceding section has given an overview of the Attic software. Attic is the sec-
ond generation (and current) implementation of the ADICS research and design
specified in Chapter 4. The Attic implementation has proven very useful for data
integration with current Desktop Grid middleware, as will be shown in §5.2. Nat-
urally, software and requirements evolve and there are enhancements that could
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Figure 5.6: Configuration Interface.
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be made to Attic that would increase both its usability and its functionality. Several
of these features and enhancements have been identified and are discussed in
the Future Work section of Chapter 6.

5.2 Data Migration Using Attic

The following section gives an overview of the data paths from the EDGI Service
Grid infrastructures to the Attic network. Specifically, this section focuses on how
data moves to Attic from a target SG through the bridge, and is then made ac-
cessible to client machines. Each of the three target Service Grids of EDGI, gLite
(see §5.2.1), ARC (see §5.2.2), and UNICORE (see §5.2.3) are described in this
section, along with their needed modifications to transition data to Desktop Grids.
It should be noted that much of the integration work described here is the result
of collaborative efforts in the EDGeS and EDGI projects. Design and architecture
were often co-developed, with the Attic enhancements, Service Grid adapters,
and 3G Bridge enhancements being performed by different partner institutions
proportional to expertise and project involvement.3

It is useful to describe the enhancements and needed infrastructure changes
here, as they show how the Attic software, and ADICS architecture, has been
adapted to real-world situations. Overviews of each Service Grid data infrastruc-
tures are given to provide an idea of the heterogeneity of the target systems and to
show how these diverse Service Grids were able to adapt to conform to a generic
data transition mechanism. This discussion is especially useful as it shows how
the design decision to use a new protocol and REST principles eases integration
and provides flexibility.

5.2.1 Data Transition from gLite→ DG

When a job is moved from gLite to a Desktop Grid for execution, there is a need
for the job to receive its input data. gLite input data is generally stored in user-
accessible and secured locations accessible through the gLite Storage Resource
Management System (SRM). Users have Logical File Names (LFNs) that relate

3Please note that several of the images, as well as textual descriptions of SG→DG job migra-
tion in this section, were taken from EDGI’s D6.1 deliverable entitled “D6.1 Supplementary report
on: Data distribution paths from SGs to DGs,” which I coordinated. [121]
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to their files and they are able to query the SRM for concrete locations of their
files. This process generally requires authentication, although the files could also
be found in other locations outside of the SRM. For data distribution to Desktop
Grids, certain input files can be passed directly through the 3G Bridge [122]4 (e.g.,
smaller or infrequently used files); however, some files would benefit from being
distributed through the Attic data network, due to their size or reuse frequency.

Support for moving files from gLite to ADICS/Attic was implemented in pro-
totype form in the EU FP7 EDGeS project by extending the EDGeS Compute
Element (CE) with additional code. In EDGI, the CE component of the gLite →
DG bridge was further extended to support file references and improve data han-
dling [123]. These enhancements make moving files to the Attic network much
easier, more integrated, generic, and seamless than they were in EDGeS. In ad-
dition, the CE component used in the EDGeS solution was replaced with the more
improved CREAM CE [124] component in EDGI.

The integration of Attic P2P data network and the gLite→ DG bridge involved
the following tasks to be performed:

• preparation of gLite jobs (shown as gLite UI in Figure 5.7)

• extension of CREAM CE component

• modification of the 3G Bridge

• modification of DC-API

• proper setup of the targeted BOINC project

5.2.1.1 Preparation of gLite Jobs

In order to make use of Attic in BOINC projects with the gLite → DG scenario, a
few requirements must be met. In addition, users need to set up their jobs to fulfill
some requirements.

One requirement is that the targeted BOINC project must be set up properly to
support handling Attic-featured workunits. Second, clients of the targeted BOINC
project must attach to an Attic-proxy project as described in §5.3.

4The “3G Bridge” is the name of the software toolkit that enables migration of Service Grid jobs
to Desktop Grid infrastructure.
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A user (see Figure 5.7) must perform following tasks in order to use Attic with
a BOINC project:

• upload required files into Attic using the attic-deploy Command Line In-
terface (CLI) tool, which is a wrapper for curl and sends a file to an At-
tic DataSeed, which, as mentioned previously, is a specialized Data Center
(cacher) in the Attic network that can serve as an initial staging point for
files, and

• for every file published to Attic, modify the job descriptor to reference the
remote (i.e., Attic) files instead of the original input so the gLite→ DG bridge
can handle these files.

If a user has an input file called foo.bar to publish in Attic and use in
BOINC, the following file has to be submitted with the job instead of foo.bar:
foo.bar.3gbridgeremove. The file should contain the following information, each
in a new line:

Figure 5.7: Required Modifications for gLite→ DG Job Execution.

• the remote URL of the file (for example the Attic URL, or the HTTP URL of
the file). In the case of Attic, this URL is returned from the attic-deploy

script,
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• the MD5 hash of the uploaded file, which can either be determined by using
md5sum or by giving attic-deploy an optional argument to output the md5sum,
and

• the size of the file (in bytes). This is an optional parameter, the value of
which can be determined by using the du command.

It follows from the above steps that the original contents of the already pub-
lished files are not transferred through the gLite → DG bridge. Instead, only one
small (metadata) file is transferred.

In this case, the EDGI CE component of the gLite→ DG bridge has only one
task related to the .3gbridgeremote files: the contents of the file should be parsed
and sent to the target 3G Bridge as a file reference.

5.2.1.2 Extension of the CREAM CE Component

When the CREAM CE component (see Figure 5.7) receives a job, it reads its input
file list based on gLite job objects. Every input file has the following properties in
the job object: the name of the input file and the GridFTP URL of the file. The
CREAM CE fetches all the input files and places them under a storage accessible
through HTTP(s). The same file content is persisted only once; therefore, if a
user submits jobs with the same input file (e.g., 1000 times), the given file is
saved only once on the storage. As soon as an incoming job’s files have been
fetched by the CREAM CE, the job is sent to the target 3G Bridge service, using
references to input files, not the real file contents. A file reference includes the
following information: name of the file, URL of the file (i.e., location on the CREAM
storage), MD5 hash of the file, and size of the file. The URL, MD5 and size are
(normally) calculated by the CREAM CE.

However, gLite users may pass Attic references through the system. Let us
assume a user has a job with an input file called foo.bar, and has uploaded this
file to Attic. Thus, the user knows the Attic URL of the file, the MD5 hash of the
file, and the size of the file. In this case if a user doesn’t want to push the original
contents of file foo.bar into gLite, he/she has the possibility instead to send an
Attic reference. In order to do so, he/she has to replace the file foo.bar with
foo.bar.3gbridgeremote in the Job Description Language (JDL) and place the
following information into foo.bar.3gbridgeremote: Attic URL of the file, MD5
hash of the file, and size of the file in bytes.
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Once the CREAM CE detects a file ending with the .3gbridgeremote suffix
among the input files, it parses the file’s contents and uses the information stored
in the file as the file reference to the target 3G Bridge service. To be precise, given
that a file called foo.bar.3gbridgeremote is specified in the JDL, the CREAM CE
will send an input file reference called foo.bar to the target 3G Bridge service,
using the additional metadata stored in the transferred file (i.e., Attic URL, MD5
hash, and file size).

5.2.1.3 Modification of 3G Bridge

To achieve the above integration, the 3G Bridge component had to be modified to
handle remote file references. This entailed both the Web service interface and
the database schema being modified to enable the sending and storing of MD5
hash and file-size information.

The DC-API-Single plug-in was also modified to manage files published
through Attic. To detect Attic files, each file of a job passing through the bridge
is checked to see if the file’s URL prefix (i.e., protocol) begins with attic:// or
attics://. If so identified, the 3G Bridge considers the given file as published
within Attic (a fairly safe assumption) and adds the file (e.g., an empty foo.bar) to
the workunit using a modified DC-API function call. This modified DC-API func-
tion receives the original file’s MD5 hash and size as stored in the remote file
reference sent by the modified CREAM CE.

5.2.1.4 BOINC Project Setup

In order to make the Attic integration fully functional with BOINC, one additional
configuration must be done on the targeted BOINC project server. This mod-
ification is that the BOINC project must be set up to use the MD5 hash infor-
mation stored by the DC-API function called by the 3G Bridge. For this, the
<cache md5 info/> -tag must be added in the BOINC project’s configuration file
within the <config> -section. This will make BOINC use the MD5 hash informa-
tion stored by the DC-API function (instead of calculating it) for the added file.
By injecting the MD5 hash into BOINC, the 3G Bridge is able to guarantee that
BOINC uses the original MD5 of the file (as sent by the gLite user) instead of the
calculated value, which would be incorrect, as the calculated value would reflect
the hash of the place-holder file instead of the actual data.
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Using the above mechanism, one is able to trick the BOINC project into using
the (remotely) published files’ MD5 hash and size information in the same manner
as a local file.

Similarly, on the client side, the MD5 hash and file size information is checked
only after the given file has already been fetched from Attic with the help of the
Attic-proxy application (see §5.3).

5.2.1.5 Modification of DC-API

There were two limitations that had to be eliminated in order to make DC-API fit
to the new requirements imposed by the 3G Bridge←→ Attic integration.

1. Under the Attic BOINC Proxy project, an HTTP redirection for the files that
are uploaded to Attic takes place. To differentiate among normal BOINC in-
puts and Attic inputs, Attic requires a predefined format of the physical name
of the file registered under BOINC. Since the 3G Bridge handles workunits
and their inputs through the DC-API interface and this interface generates
the name of the inputs according to its internal rules, DC-API had to be mod-
ified to let the name of the file be defined externally. That is, the 3G Bridge
had to be modified to support preservation of file names.

2. In BOINC, MD5 hash values are generated on the BOINC server for all
input files and then checked on the clients after download. Since under the
modifications to support Attic a proxy-file is sent to BOINC, this checking
would fail for the downloaded file if comparing hashes from the original input.
To solve this issue, the DC-API had to be modified to let the MD5 hash
value be defined externally and passed into BOINC. This works provided
the target BOINC project is configured appropriately, as shown in “BOINC
project setup.”

The original method of DC-API for inserting input files for a workunit is as
follows:
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Listing 5.3: Original Method to Add a Workunit with the DC-API �
1 int DC_addWUInput

(

3 DC_Workunit *wu,

const char *logicalFileName ,

5 const char *URL , DC_FileMode fileMode

);

To eliminate the limitations mentioned above, this was extended with a variable
argument list, making it possible to define the MD5 hash and size information of
files:

Listing 5.4: Modified Method to Add a Workunit with the DC-API �
int DC_addWUInputAdvanced

2 (

DC_Workunit *wu,

4 const char *logicalFileName ,

const char *URL , DC_FileMode fileMode ,

6 const char *md5hash ,

const char *fileSize

8 );

If the fileMode argument’s value is DC FILE REMOTE, the function assumes two
additional arguments: the MD5 hash (i.e., md5hash) of the file and the size of the
file in bytes (i.e., fileSize). By using the extended method, the bridge is able to
define, and pass on to BOINC, the name of the input file, the MD5 hash, and the
file size.

5.2.1.6 Example Job Submission

The use-case given here assumes a user has an application using an input file
called foo.bar, with the following JDL:

Listing 5.5: Original gLite JDL Specification �
Executable = "samplejob";

2 InputSandbox = {"samplejob", "foo.bar"};

OutputSandbox = {"samplejob.out"};
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First, the user calculates the MD5 hash (using some tool, for example the
Linux md5sum command) and size of the file. For example, an MD5 hash might
be b87e8e01fb079a938640c6646242c20a, and the size could be 9053342 bytes.
The user then uploads the file to Attic and receives an attic:// URL as out-
put, for example attic://example.org/dl/meta/pointer/1234567890. Next, the
user creates a file called foo.bar.3gbridgeremote with the following contents:

attic://example.org/dl/meta/pointer/1234567890

b87e8e01fb079a938640c6646242c20a

9053342

The foo.bar reference within the JDL is then replaced by a reference to
foo.bar.3gbridgeremote (thus, not the original file’s content, but a small meta-
data file is passed through the bridge):

Listing 5.6: Modified gLite JDL Specification with Reference to Attic Metadata �
1 Executable = "samplejob";

InputSandbox = {"samplejob", "foo.bar.3 gbridgeremote"};

3 OutputSandbox = {"samplejob.out"};

At this point the job can be submitted. All the specified (i.e., in the JDL)
input files are uploaded to the gLite Workload Management System (WMS).
The WMS selects the CREAM CE for execution and sends the job onward
for processing. At this point, the CREAM CE fetches the job’s input files. In
case of this particular job, it identifies a remote file reference in the form of
foo.bar.3gbridgeremote. The bridge reads the file’s remote (Attic) URL, MD5 hash
and size from the stored metadata. The CE then sends this information to the se-
lected 3G Bridge service, using the filename without the 3gbridgeremote suffix,
but with the other metadata. For example, in the above scenario, it would use file-
name foo.bar, URL attic://example.org/dl/meta/pointer/1234567890, MD5
hash b87e8e01fb079a938640c6646242c20a and size 9053342.

Once the 3G Bridge has received the job, it calls the DC-API plug-in to submit
the job to BOINC. The DC-API plug-in uses the extended DC addWUInput function
to add the remote file to the BOINC workunit. The extended DC-API function
realizes that the file reference is an Attic file reference, and operates as follows:

• adds the file foo.bar to the workunit,

• creates an empty file called 1234567890 within the BOINC project server’s
download directory,
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• assigns the URL of the 1234567890 file to the foo.bar input, and

• assigns the MD5 hash b87e8e01fb079a938640c6646242c20a to the foo.bar
input,

• assigns the size 9053342 to the foo.bar input.

From this point on, once a client fetches the created workunit, it is the task of
the Attic Proxy application (running on the client machine) to fetch the file. This
will be done not from the BOINC project servers, but rather from the distributed
Attic data sharing network.

5.2.2 Data Transition from ARC→ DG

The way data is handled in NorduGrid, and subsequentially with the Advanced
Resource Connector (ARC), differs from the other major Service Grid middle-
ware. In ARC, data transfers are centralized at each participating site, rather than
hosting a centrally managed infrastructure such as gLite’s SRM. This is a result
of ARC being specifically designed to be as non-intrusive as possible. A key re-
quirement for ARC was that a site deploying ARC should not have to install any
software on the nodes. A related requirement was that nodes might not even
have network access outside the cluster. This means that the ARC server at a
site works as a gateway that must take care of all data transfers related to the
Grid. For performance and fault tolerance, the data transfer service (called up-
and downloaders) can be split from the ARC server and replicated across several
machines. These nodes can then be tailored for fast I/O and network. This ap-
proach also has the advantage of providing a site-wide cache and not tying down
cluster nodes waiting for off-site file transfers.

The ARC up- and downloaders support a wide range of standard inter-
net protocols (e.g., FTP and HTTP), standard grid protocols (e.g., GSIFT-
P/GridFTP), and ARC-specific protocols such as Chelonia. A full de-
scription of ARC and it’s supported data protocols can be found at
http://www.nordugrid.org/manuals.html.
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5.2.2.1 Data Transition to Desktop Grids

For the purposes of completeness, three possible scenarios for data transfer from
the ARC environment to Desktop Grid clients are identified. Scenario 1 regards
files stored in authenticated storage inside the ARC system; Scenario 2 refers to
files which are already made available in an open manner and could be directly
downloaded by DG clients; and Scenario 3 deals with the case of files that would
benefit from Attic file distribution due either to their size or use frequency.

Please note that for a detailed explanation of the ARC Bridge and its imple-
mentation, see [123]. The text here is designed to be an overview of the different
data scenarios and to give an introduction to the Attic implementation that can be
used as a reference and comparison for the other Service Grid systems in EDGI
that use Attic.

Three different data transfer paths for ARC → DG were identified as needed for
the ARC Bridge implementation, and are as follows:

Scenario 1: Data in authenticated storage The first scenario concerns data
that comes directly from a client or data available only on ARC-specific in-
frastructure such as Chelonia, or that which requires authentication to ac-
cess, such as GSIFTP. This data is downloaded by the ARC Bridge (which
has credentials to access the data) and then is published on a local Web
server, making the files available through HTTP. The locations of these files,
along with associated metadata, are then transferred to the 3G Bridge. Af-
ter transferral, the Desktop Grid clients can directly download the input files
from the HTTP server associated with the ARC Bridge. Note that this situa-
tion is centrally serving data, in a manner very similar to a BOINC server.

Scenario 2: Data already available somewhere for DG clients The second
path is for data that is already available through a standard protocol (e.g.,
HTTP or FTP) and does not require credentials to access. In this case the
ARC Bridge will not stage the data locally, but will transfer only the URL and
metadata to the 3G Bridge. Desktop clients can then directly download the
data from the original source.

Scenario 3: Data benefiting from Attic hosting The final path for transferring
data to DG clients relates to Attic files. For files that are frequently used, it
makes sense to stage them to Attic, so that multiple clients can download
them and the Attic network manages the load and scalability factors involved
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in the distribution. Uploading files to Attic is considered out-of-scope of the
ARC and 3G Bridges, since the user knows best if a given file is frequently
used and large enough that it should be distributed with Attic. It should
be noted that the ARC bridge could try to make this determination, based
upon historical examinations of files or executables, or through some other
Artificial Intelligence (AI) mechanisms, but the cost/benefits of doing so have
yet to be evaluated.

For the moment, as in the gLite implementation, Attic file-uploading is left to the
end-user or his/her Virtual Organization (VO). Note that the file catalogs used by
ARC VOs are already capable of storing Attic URLs as alternates, and therefore
can be used for this purpose. In this scenario, the ARC Bridge works similarly as
in the second path, functioning as a pass-through for the Attic URL. The Desktop
Grid client will then retrieve the data from Attic after the 3G Bridge makes the
appropriate modifications to the workunit to dereference the file.

	  
Figure 5.8: Transitioning Data Through the ARC Bridge to Attic — shows how
data is first published to Attic, then the file reference location (URL) and MD5
hash as passed through the 3G bridge.
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The new features developed by EDGI (i.e., the Attic support and the sup-
port for bypassing data-staging on the ARC Bridge) can be used seamlessly
by an ARC client. In addition to specifying a URL, it is necessary to specify
the MD5 sum and (optionally) the size of the file in question. This is handled
by appending options to the URL in the standard ARC fashion described in:
http://www.nordugrid.org/documents/URLs.pdf.

Below are examples of the four possible ways of specifying an input file.

• A local file:
(inputFiles=(‘‘foo.bar’’ ‘‘’’))

→ Use the foo.bar file from the client’s current working directory and stage
it through the bridge.

• A Grid file:
(inputFiles=(‘‘foo.bar’’ ‘‘gsiftp://example.org/foo.bar’’))

→ Retrieve the file from a NorduGrid storage element and stage it through
the bridge.

• A Grid file on a public server:
(inputFiles=(‘‘foo.bar’’ ‘‘http://example.org/public/foo.bar;

md5=b87e8e01fb079a938640c6646242c20a:size=9053342’’))

→ Do not stage the file through the bridge, but let the clients retrieve the file
directly.

• An Attic file:
(inputFiles=(‘‘foo.bar’’ ‘‘attic://example.org/dl/meta/pointer/

1234567890; md5=b87e8e01fb079a938640c6646242c20a:size=9053342’’))

→ The Attic file bypasses the staging; instead it is retrieved directly by the
clients as in the preceding example.

Figure 5.8 shows the general path as data moves through the network. Note
how the input file itself is uploaded directly to Attic before the job is submitted to
the 3G Bridge, and only the file reference and associated metadata are passed
through the 3G Bridge. This architecture is very similar to that provided for the
gLite implementation (see §5.2.1) and puts the least amount of stress on the
bridge, while retaining file distribution decision-making power with a client5 (in

5File uploading is handled using the Attic CLI program (or associated libraries) that allows
users to pre-stage the files to the Attic network before submitting dependent jobs.
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this case ARC), who has better knowledge of whether or not a file should be
distributed to the Attic system. For a more detailed discussion of data transfer
with ARC through the 3G Bridge, see [123].

5.2.3 Data Transition from UNICORE→ DG

The last Service Grid infrastructure included in EDGI is that of Uniform Interface
to Computing Resources (UNICORE). As in the preceding sections, the text here
seeks to describe the basic architecture and show how it relates to Attic. Figure
5.9 gives an overview of the UNICORE data architecture, which is divided across
three layers: client, service, and system. Users and their applications can access
UNICORE via different client tools and the UNICORE System’s Services. The
UNICORE System’s Services, associated with the service layer, are loosely cou-
pled Java Web services registered in typically one well-known Service Registry.
The fundamental services offered are the following:

• A XNJS-Service, which embeds a Compute Resource (e.g., a cluster) inside
the UNICORE system. This allows a user access to compute a job.

• The Storage Management Service, which embeds a global (system-wide)
Storage Resource. A user can upload large or often-used input files to this
global storage. After job execution a user can download the job’s results
from the global storage. The Storage Management Service is a so-called
“Atomic Service” inside UNICORE and operates independently of other core
services in a Web-Service based implementation.

Beside the components shown in Figure 5.9, there are several other services,
such as the Workflow Orchestration, Common Information Service, and the UNI-
CORE Virtual Organization Service for querying a VOMS service. One or more
services can be running inside a hosting environment. Every inside connection to
a service has to pass an access policy-enforcing gateway. The residual layer (the
system layer) represents a concrete system or resource, e.g., a cluster. The as-
sociated local resource management system controlling the cluster is integrated
into UNICORE via the Target System Interface. In addition, a local resource or
cluster typically has it’s own storage (see §2.4.1).

UNICORE internally supports BFT transfer, OGSA ByteIO, UDT, HTTP and
GridFTP storage access for downloading input files and uploading output data.

168



5.2 Data Migration Using Attic

	  
Figure 5.9: UNICORE Architecture — shows how UNICORE is segregate into
client, service, and system layers (solid horizontal lines).

The Storage Management Service, a Java Web Service, is an abstract filesystem-
like view on a storage resource and therefore is an adapter between the UNI-
CORE System and the real storage. Originally used for local or cluster shared
filesystem, it is currently used to integrate the Hadoop Distributed File Sys-
tem [125] into UNICORE clusters. The UNICORE storage adapter is built with
extension in mind. Therefore, API-level functionality is reduced to a small subset
of primitive functions that must be implemented for every type of storage.

5.2.3.1 Potential Data Transition Paths

During the analysis of ways to move UNICORE input files (or their references)
through the EDGI bridge and to make them available to DG clients, three transition
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paths were identified. This section will discuss the possibilities and efforts of each
variant. The analysis considers the following aspects: required effort to realize
solution, gains in functionality, and user usability factors (and acceptance).

	  
Figure 5.10: Combined EDGI and UNICORE Architecture — shows the overall
architecture developed in EDGI consisting of UNICORE, an arbitrary Desktop
Grid (accessed through the 3G Bridge), and a compact representation of the
Application Repository and Attic. The green line shows a user uploading data to
the UNICORE Global Storage (e.g., to Attic via an Attic-Adapter). The thin black
lines show data flow during the process of job execution.

Separate system (Variant 1) The first option identified for moving files from UNI-
CORE to Desktop Grids is to implement a system similar to that employed
by gLite and ARC. In this type of system, publication of files is out-of-bounds,
the resulting file locations (i.e., URLs) and associated metadata (e.g., MD5
hash and file size) are passed to the 3G Bridge to be processed and popu-
lated into DG workunits.

For this to take place, users, scripts, or applications would use the Attic com-
mand line interface (CLI) to publish data to the Attic network. The resulting
attic:// URL would be included by UNICORE in the job description (i.e.,
JDL) that is sent to the 3G Bridge.
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The advantages of this situation are that it decouples publication from the
bridge and keeps the decision-making process close to the users as to what
files should be distributed with Attic. Many files are not suitable for Attic
and it is desirable and efficient to use Attic only to distribute files that are
larger and/or are required by multiple clients. It is difficult to automatically
ascertain if a given file should be sent to Attic, or simply hosted on a project
Web server. Also, since publishing files off-line is the path employed by both
the gLite and ARC implementations, it would not require a new, UNICORE-
specific, Attic plug-in to achieve UNICORE/Attic integration.

The disadvantage of this approach is the same as with gLite and ARC. It
requires the user (or the user’s agent) to decide which files to publish. Since
this path maintains that the user must specify the files that are multi-use,
public, and should be moved to Attic, it requires a certain degree of user
education to put into production.

Subcomponent of UNICORE (Variant 2) UNICORE’s global storage systems
are accessible via the Storage Management Service, which can be seen as
an adapter to arbitrary file-like storages. An example user scenario using an
adapter is shown in Figure 5.10. This would be a natural integration of Attic
for end users and would not require them to modify their behavior, as the
same UNICORE commands and interfaces could be used to publish files to
Attic. By using the default UNICORE storage mechanism, the Attic-Storage
becomes a part of the UNICORE-Ecosystem. Thus a UNICORE user can
access Attic storage in a manner similar to any other type of (UNICORE)
storage and isn’t forced to learn something new or adapt scripts or applica-
tions. The DG-side will get the native Attic-url; thus a DG client can access
Attic directly.

To achieve this solution, which would allow UNICORE users to push files to
Attic through their standard interfaces, two classes have to be implemented
as shown in Figure 5.11. Additionally, a UNICORE-specific DataSeed host
would have to be implemented to pre-stage the files to the Attic network. The
parameters of the methods expect Java byte-streams, which are provided
by the Attic library for client-downloading.

The advantage of this approach is the seamless integration for end-users,
who do not need to learn the Attic-specific CLIs used common to ARC and
gLite. However, the disadvantages are that it requires extra development ef-
fort, creates a UNICORE-specific solution, and also requires the creation of

171



5.2 Data Migration Using Attic

	  

Custom Extension

Storage Management

SMSBaseImpl

FixedStorageImpl

SMSAtticImpl AtticStorageAdapter

IStorageAdapter

Storage Management Service

Figure 5.11: UNICORE Storage Adapter Implementation — shows a rough class
diagram in which the two classes at the lower end contain the adapter functionality
of a UNICORE Storage Service.

both publication and retrieval mechanisms within the UNICORE-Ecosystem,
since both directions are required for implementation of the UNICORE file
API.

Semiautomatic System (Variant 3) The last evaluated data transition path is
an extension to Variant 2 and solves an additional issue: UNICORE users
are typically from non-computer science disciplines and don’t understand
the technical details and steps involved in file publication and retrieval. In
some cases a user may not have enough knowledge to decide correctly
whether or not a file can be sent to special purpose storage (like Attic) in-
stead of UNICORE storage. In this case, the users would likely ignore Attic,
which would result in a degradation of the overall performance of the tar-
geted EDGI-solution.

As shown in Figure 5.10, the storage-TSI is responsible for delivering data to
the Desktop Grids. This component could be extended, so that “appropriate”
files are not handed over via HTTP, but instead via Attic. The UNICORE
Storage Mechanism would be able to handle the file transfer between two
Storage Management Services (provided Attic adapters were implemented).

In the case that users are aware of the performance degradation of not
using Attic, they can (and should) opt to use Attic separately. However,
despite being semi-automatic by trying to determine which files “should”
be sent to Attic, this solution is limited by the intelligence of the AI making
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these decisions. An evaluation would be need as to whether it is possible to
programmatically define what “appropriate files” are. To this end, systems
such as disk caches and history counters could be explored.

5.2.3.2 Resulting Implementation

Variant 1 proved itself the easiest to deploy, and kept the implementation in-line
with the system that has been developed for gLite and ARC. Although it requires
that the users, or some other intermediary program, to make an explicit decision to
publish files to Attic, it is still a useful system that can prove beneficial for Desktop
Grid jobs. Creating an Attic Adapter for the UNICORE Storage Service remains
an option for future exploration; however, it would require additional development
efforts that are beyond the scope of this research.

5.3 BOINC Integration

BOINC data distribution, as seen in Figure 5.12, and detailed in §2.3.1, is cur-
rently provided through centralized HTTP Web servers. To provide redundancy
and scalability, BOINC projects mirror this data to many servers around the world.
This system works fairly well for BOINC projects. However, it has the disadvan-
tage of requiring centralized project servers to distribute vast amounts of project
data, leading to additional costs both in terms of hardware and network capac-
ity, as well as support technicians. Furthermore, projects such as EDGeS and
EDGI, in which data can move from Service Grids to a volunteer BOINC Desktop
Grid, it can be problematic to host these large data sets, since there is no central
“project” to which they belong (because they come from many different users). A
solution that leverages existing client-side network capabilities to share data can
be advantageous in both of these scenarios.

The Attic software described earlier in this chapter, along with the Service
Grid enhancements and 3G Bridge translation software, provides a dynamic data
sharing network for BOINC that is more flexible than BOINC’s current static server
setup. In Attic, data is first published to a P2P network layer consisting of volun-
teer hosts that opted to donate networking and storage resources to the project.
These resources can be either typical volunteer PCs, or a set of known resources,
if the project’s security policy dictates such an action. In either case, once the data
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has been published, it self propagates through the network until a certain (option-
ally pre-defined) maximum replication count is reached. The replication number
is defined at publish time by the data publishing agent (e.g., as a command-line
parameter).

BOINC	  Core	  Client	  

Project	  	  
task	  local	  

storage	  

	  	  	  Compu'ng	  resource	  

project	  
data	  

Volunteer	  PC	  

URI	  
HTTP	  
HTTPS	  
	  

Web Server 

Input 

Upload Handler 

BOINC	  
Scheduler	  

Figure 5.12: Current BOINC Download Workflow — depicts current BOINC down-
load practices, where input data is downloaded directly from a static list of HTTP
mirrors.

When publishing a file to Attic, the data publishing agent will specify the lo-
cation of a “seed” DataCenter (e.g., a DataSeed or other hosted environment)
that has the initial copy of the data. The seed location will be registered with the
DataLookup Service as an initial replica, with the caveat that it can be optionally
de-prioritized once more replicas are on the network, to help prevent too much
network load being put upon the seed. Once a publication is complete, a unique
URI is returned to the publisher that references this piece of data. This URI can
then be used by BOINC clients to retrieve the file from replica hosts (i.e. addi-
tional Data Centers that have cached the file). Specifically, for the BOINC client,
this is done seamlessly through the local Attic Proxy project that runs on the client
machine, as described in §5.3.
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Attic Proxy

The Attic Proxy [126] application is designed to allow the Berkeley Open In-
frastructure for Networked Computing (BOINC) (see §2.3.1) access to the Attic
system. To avoid patches to or a re-write of the BOINC Core Client, which would
cause many incompatibilities with older clients and projects, the Attic Proxy was
written. This application sits in the background on the computer doing the pro-
cessing, i.e., the client. The recommended way to distribute the application is to
create a second BOINC project specifically to host the Attic Proxy. This will have
the non cpu intensive flag set, so that when the BOINC client connects, it knows
that it should run the application while ignoring any rules on CPU and memory
usage. After the Attic Proxy project is attached, any scientific project can use it
to access files hosted on Attic. Figure 5.13 shows how the Attic Proxy integrates
with the BOINC server and client machines.

BOINC  
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Figure 5.13: BOINC Downloading Using Attic — shows a simplified depiction of
how a BOINC application could use Attic to download data using the local BOINC
proxy application discussed in §5.3.

To provide the “local proxy” shown in the figure, Attic Proxy runs a limited
embedded Web server on (by default) port 23456. When a request for a file
is sent to this server, the ID is extracted from the URI and is used to retrieve
the file from Attic. Once the file is retrieved, it is sent using the still-open HTTP
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connection. From a client’s point of view, it simply appears as if the Web server is
taking a long time to respond.

Figure 5.14: Attic Proxy Workflow — shows the workflow for downloading a file in
BOINC using the Attic Proxy.

The process of downloading from Attic, as shown in Figure 5.14, is as follows:

1. BOINC client requests a file containing a UUID from the project.

2. The project detects the UUID in the request and redirects to the Attic Proxy
running on the client.

3. Attic Proxy receives a request for a file from the BOINC middleware, which
has a reference to a (local) URL the proxy handles.
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4. The pointer collection (as XML or JSON) is retrieved from the DataLookup

Service, a remote REST-based Web service that stores caching locations
and metadata about the Attic network.

5. The Pointer Collection is returned.

6. Requests are made to Attic Data Centers (i.e. Endpoints) for the various
chunks of the file.

◦ If a chunk’s MD5 hash does not match the expected hash, the process
is repeated from Step 6. If the max retries limit is reached, the process
fails with a 404 error.

7. The downloaded chunks are downloading and reassembled into a single
file. The MD5 hash of this file is checked. If it fails, Attic Proxy returns a 404

error.

8. The final file is sent back the BOINC client over the open HTTP connection.

In order for a BOINC client to retrieve files via the Attic Proxy, a redi-
rect rule must be defined for the project’s download folder that detects when
a request is made for a file whose name is a UUID. This redirect points to
http://localhost:23456/data/<<file>>. As the Attic Proxy runs on a PC host-
ing a BOINC client, it is likely that this system will be carrying out many CPU
and memory intensive tasks. With this in mind, steps were taken to reduce the
footprint of the application.

To keep memory usage to a minimum, downloaded chunks (individual pieces
of a larger file, that can later be reassembled) are stored as files instead of in
memory. This is also useful for larger files, which could cause much page swap-
ping if stored in memory. The download processes (i.e., threads) are set to a
lower priority than normal, allowing them to yield to other tasks. Any non-time-
essential loops have extra Sleep(1) calls in them to facilitate this yielding more
easily.

The Attic Proxy is written in ANSI C to ensure that it does not add any ad-
ditional requirements to BOINC clients (as seen in the requirements specified in
§3.4.4). It uses the libXML2 library for parsing XML, libCurl for HTTP client fea-
tures, and the Mongoose-embedded Web server for serving requests. Attic Proxy
has been tested and has been found to work Windows XP or higher (32 and 64
bit), Mac OSX 10.4 or higher, and Linux.
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5.4 XtremWeb Integration

The XtremWeb platform (XWHEP) (see §2.3.2) addresses data access by two
meanings. First it implements data access using Uniform Resource Identifier
(URI) [127]. Describing URIs in detail is out of scope of this document, but the
reader may at least be aware that URIs are standardized data locators, each of
which is mainly composed of a schema, a server address, and eventually a path.
The schema defines the protocol used; the server address defines the location
over the Internet; and the path defines the location inside the server without giving
a clue as to the storage technology effectively used. Some well known schema
examples are FTP for file transfer protocol, and HTTP for the hyper text transfer
protocol. It is the middleware (the server and the distributed clients) responsibility
to use URI correctly and especially to interpret the schema correctly.

Proposing URI usage to access data, XWHEP allows any URI-capable client
to access data, as well as referencing data from jobs. Any job managed by
XWHEP may use data in this way, for example, for input files and results sets.
All data is defined by URIs, enabling both inputs and results to be stored any-
where – independently of the location and technologies. XWHEP is therefore
data agnostic. This is true for any data used from inside the platform.

XWHEP proposes its own URI schema: xw://. Any data may then be stored
in an XWHEP data repository. If this is the case, the data URI schema is xw and
the data transfer protocol is the one defined by XWHEP. Clients must have access
to an implementation of the XWHEP transfer protocol.

Figure 5.15 shows data access in the XWHEP platform. Using the XWHEP, a
user may access (i.e., insert, read, write, remove) data independently of the tech-
nology used as soon as the data is referred by URI. Also, a the client has access
to an implementation of the protocol. The other part of the platform, the computing
element (a.k.a., the worker), works the same way since it uses the same XWHEP
communication library. When the worker downloads a job, it accesses the job’s
data and stores the job’s results, which are then referenced through URIs.

Attic Protocol Handler

The XtremWeb API uses the java.net.URL object to access streams of data
from arbitrary endpoints. A URL exposes an InputStream from which data can be
read. Attic integrates with XtremWeb by registering new URL protocol handler
with the XtremWeb system for the attic:// and attics:// URL schemes [128].
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Figure 5.15: XWHEP Architecture — shows how data is accessed.

The first uses a non-secured TCP connection while the second uses mutually
authenticated TLS over TCP. The Attic URL handler can be registered with any
system by calling the AtticProtocol.registerAttic() static method. After reg-
istering, if an Attic-specified scheme is encountered, then the Java Virtual Ma-
chine will invoke the Attic URL handler. Since XtremWeb is a Java application
that opens a connection to download any URIs for job input files, this integrates
easily.

Once the Attic protocol handler is registered with XtremWeb, there is essen-
tially no more integration necessary to enable XtremWeb to download Attic files.
The Attic library acts as a “black-box” that, once referenced, provides the needed
functionality for XtremWeb without requiring any further modification to its code
beyond the few lines of registering the protocol handler. This is achieved by the
Java Runtime Environment, which automatically loads the appropriate library to
download the attic:// file; XtremWeb processing continues as normal (i.e., as it
would with a standard http or https URL).
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Internally, the Attic URL handler creates a new AtticURLConnection to handle
the actual streaming. The AtticURLConnection creates a stream source and a
stream sink. The source pulls data from the remote endpoints using the down-
loading mechanism described in §5.1.5. Specifically, the stream source has a
DownloadTable with a priority queue based on the sequence of chunks. Hence the
chunks are more likely to be downloaded in order of their byte offsets. The stream
sink receives the chunks from the source as and when they arrive. The sink is im-
plemented as ajava.io.InputStream, specifically an instance of AtticInputStream,
and is the input stream that the URL exposes to client code. Thus it has standard
methods for reading bytes. The fact that the bytes are coming from different re-
mote servers is transparent to client code.

The AtticInputStream uses a priority blocking queue to store chunks that
arrive asynchronously from the stream source. When client code calls its read

method, the input stream checks to determine if a stream is currently being read.
If so, it attempts to read the client specified number of bytes from the current
stream. Otherwise it looks in its queue for the next available stream and begins to
read from that one. If the current stream does not have as many bytes available
as were requested in the read method, then the next stream in the queue is used
to complete the read request.

The stream source notifies the sink (asynchronously to the reading process
instigated by the client code) when all chunks have been downloaded. When this
occurs the sink places a poison marker stream in the queue so that, when it re-
moves this stream from the queue, it knows that there are no more data available
and it can return the correct value (-1 as specified by the java.io.InputStream

API) to the client code.

If any chunks arrive out of order, despite the sequential prioritization of the
DownloadTable, the input stream holds these temporarily until the missing chunks
that sequentially precede it are inserted into the queue.

The streaming of data does not use any interim storage on the local machine.
Rather, the stream source passes the handles of the remote data streams directly
to the stream sink, i.e., the AtticInputStream. Configuration also allows for veri-
fication of data as it is downloaded. In this case the configured in-memory buffer
must be large enough to hold a full chunk which can be verified using the MD5
hash in the metadata.

The above system allows XtremWeb to use Attic with little essential modifi-
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cation to its existing code (about three lines) and in a manner identical to how it
handles FTP, HTTP, or other file transport protocols. Thus, XtremWeb integra-
tion is much simpler and native than the BOINC solution, yet provides no less
functionality.
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CHAPTER 6

Assessment

One important element of conducting successful research is assessing how it im-
pacts the broader community and contributes to knowledge in the target field. A
key element to applied science is gauging the applicability and performance of
any new system and showing how it proves itself novel and ultimately useful. This
chapter’s goal is to evaluate the work presented in this dissertation. Two meth-
ods are used: first, seeing how ADICS impacted the Desktop Grid and related
communities, and second testing the ADICS data management architecture. Af-
ter presenting these two aspects to ADICS’ evaluation, the chapter concludes by
identifying areas in which the protocol and its resulting software implementation
could be improved upon.

6.1 Community Impact

The research involved in the development of ADICS and its impact upon the scien-
tific community is both qualitative and quantitative. Qualitatively, the fundamental
question is: How has ADICS positively impacted its target communities and other-
wise created value-added benefits and further research? Quantitative evaluation
metrics further this discussion by seeking to explore how the improvements can
be measured and compared against base-line functionality. For example, one
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quantitive metric would be if the use of ADICS provides a more useable, scalable,
or higher-performance data distribution paradigm than the current state-of-the-art
solutions.

Focusing on broader impact, I believe the research undertaken here has had
an impact far beyond providing a novel thesis topic. First, the base research
into ADICS’ new data management approach led to the successful completion of
the original grant that funded it. Second, the ideas that grew out of that original
work led to a new data distribution architecture (ADICS, see Chapter 4), which
was substantially involved in the creation and execution of two large multi-year
European infrastructure projects (EDGeS and EDGI). Third, the development of
ADICS and its ideas contributed to other research projects at Cardiff University.
Lastly, through the collaborations and resources made available in EDGeS and
EDGI, the ADICS data distribution paradigm was able to evolve into a useful and
well-received software package (see Chapter 5) for data distribution both within
Desktop Grids and also for data migration between Service and Desktop Grids.

For a further discussion of the projects impacted by this work, their details,
and how they tie together both technically and chronologically, see Appendix B.

Perhaps the greatest demonstration of the influence of this research is that
the developers of the world’s largest Desktop Grid middleware, BOINC (see
§2.3.1), have been supportive collaborators in the development of ADICS, and
have shown an interest in integrating Attic into their core software. Modifications
to BOINC have already taken place to enable Attic connectivity, with the addi-
tion of a new project flag that enables add-on projects such as the Attic Proxy
(see §5.3) to run in the background as daemons. The ADICS infrastructure was
also presented to the wider Desktop Grid community thorugh an invitational talk
at the 7th BOINC Workshop in Hannover [129] and was well received. This ac-
ceptance by BOINC and dissemination into the BOINC community highlight the
impact of the research, both (1) as a way of making peer-to-peer data distribution
acceptable (by conforming to the requirements of the target community) within
volunteer computing environments, and (2) as proof that the ADICS architecture
has passed the high bar of community acceptance and been deemed a useful
candidate for enhancing Desktop Grids.

Further integration with BOINC would have a massive impact on the use of At-
tic. However, such integration work is beyond the scope of the research presented
here, and is left as a tantalizing future task.
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6.2 Attic in Action

The prior section showed how ADICS has impacted the research community, by
being reviewed, accepted and then actively developed and further enhanced into
the Attic software. This is a powerful indicator of the usefulness and need for
ADICS, and can be seen as a positive qualitative assessment the ADICS ideas
within the broader scientific community.

Another important factor in determining the applicability of ADICS and its Attic
implementation is quantitative evaluation. Following the simulations of the ADICS
architecture (see §4.5), a prototype implementation was developed and show-
cased at EDGeS’s final review. During the EDGI project, this software was further
enhanced into the Attic implementation (see Chapter 5) , which is REST-based
and uses standard transport protocols (e.g., HTTP/s). The Attic software was first
tested at the computing lab at Cardiff University, and later deployed to the EDGI
infrastructure. In this section, the results of the Attic testing are given, which
compare it to BOINC and also demonstrate how the network functions.

6.2.1 Laboratory Testing

For the laboratory tests [130], which occurred in 2011 and were led by Abdel-
hamid Elwaer, 19 Linux machines from the computing lab at the School of Com-
puter Science and Informatics were used. Of these 19 machines, 18 ran various
combinations of clients and Data Centers. Each of these machines was a 2.8
GHz Pentium 4 with 2 GB of RAM. The 19th machine was a 2.0 GHz Dual Core
Pentium with 3 GB RAM and was used to run either the Data Lookup Server or
the BOINC data server, depending on the experiment.

The machines were connected through a high-speed LAN network, where the
port speed could be throttled to simulate lower throughput. Thus a subset of the
machines was set to 10 Mbp/s, while others were configured for 100 Mbp/s. This
enabled a simulation of “home users,” connected via broadband connections and
also higher-speed project servers.

Figure 6.1 shows an evaluation of a single BOINC Web server compared with
various Attic network configurations. For each simulation, the same 10 MB data
file was requested, but the number of clients varied among one, three, and nine.
As the figure indicates, Attic gives similar results when running a single Data Cen-
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Figure 6.1: Gives testing results showing how an increase in the number of Data
Centers and servers helps the network scale as demand increases.

ter, with slightly reduced network speeds. This is due to the message overhead
of negotiating an Attic transfer (i.e., querying for individual chunks, reassembling,
and prioritizing endpoints) versus a single HTTP request. However, as Attic adds
additional Data Centers, the download time decreases and the benefits of the
network become apparent. This is a similar effect to adding additional BOINC
mirrors; however, the cost of adding an additional Attic Data Center is much lower,
since the entire data set (which can be hundreds of gigabytes) does not need to
be mirrored.

These tests show results very similar to the results of the simulations de-
scribed in §4.5. This is very promising for Attic (and subsequently ADICS) be-
cause achieving such results was the ultimate goal set forth when designing the
ADICS network and undertaking this research project.
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6.2.2 Production Testing

The Attic software has been deployed to most of the partner institutions within the
EDGI project as part of its Service Activity (SA1). Table 6.1 shows the partner
institutes in EDGI, as well as their locations. Each has been given resources
to deploy the Attic software. As can be seen from the table, the potential Attic
network spans a wide geographic area throughout Europe. This makes the EDGI
deployment an ideal test case for Attic deployment, as it represents a widespread
virtual organization, with differing network resources and proximity.

Table 6.1: EDGI Attic Infrastructure – Partners

Institute Abbreviation Country
Laboratory of Parallel and Distributed
Systems

MTA SZTAKI Hungary

University of Westminster UoW United Kingdom
University of Paderborn UPB Germany
University of Copenhagen UCPH Denmark
AlmereGrid — The Netherlands
University of Coimbra FCTUC Portugal
University of Zaragoza UNIZAR Spain
Cardiff University CU United Kingdom
National Center for Scientific Research CNRS France
National Institute for Research in Com-
puter Science and Control

INRIA France

Within the EDGI infrastructure, each partner’s Attic deployment assumes one
or more roles (e.g., Data Center and Data Lookup Service). Table 6.2 shows
the distribution of Attic entities within EDGI and their hostnames. Due to the
concentration of Attic-centric development at Cardiff University, it hosts the central
Data Lookup Service, as well as the main Data Seed. Other EDGI institutions are
delegated Data Centers, which (in an ideal world) would spread the Attic network
load evenly across the project partner sites.

Table 6.3 gives the details of each Attic instance that is currently deployed. All
Attic-hosting machines are Linux-based, although with differing distributions (e.g.,
Centos, Debian, Ubuntu, and Scientific Linux). The decision to use Linux was not
due to a fundamental requirement of Attic, as it is written in Java and could also
easily run on Windows or OSX. Rather, the choice was made in part because
of the powerful security and configuration mechanisms of Linux, which facilitate
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Table 6.2: EDGI Attic Infrastructure – Role Distribution

Role Institute Host
Data Center MTA SZTAKI attic.lpds.sztaki.hu
Data Center UoW attic.cpc.wmin.ac.uk
Data Center UPB attic.edgi.pc2.uni-paderborn.de
Data Center UCPH edgi-attic.nbi.dk
Data Center AlmereGrid server23.almeregrid.nl
Data Center FCTUC edgi.dei.uc.pt
Data Center UNIZAR attic.ibercivis.es
Data Lookup Service CU voldemort.cs.cf.ac.uk
Data Seed CU s-vmg.cs.cf.ac.uk
Data Center CU s-vmh.cs.cf.ac.uk
Data Center CNRS — ∗

Data Center INRIA — ∗

∗ At the time of this writing, the Attic software is in the process of being deployed
at this site.

easy deployment and configuration, and also due to the individual preferences of
project partners.

Table 6.3: EDGI Attic Infrastructure – Details

Host HDD Memory Architecture Cores
attic.lpds.sztaki.hu 500GB 2GB AMD VM 1
attic.cpc.wmin.ac.uk 1TB 4GB AMD Opteron 4
attic.edgi.pc2.uni-paderborn.de 300GB 8GB Intel Xeon 8
voldemort.cs.cf.ac.uk 1TB 6GB AMD Opteron 4
edgi-attic.nbi.dk 1.1TB 12GB Intel Xeon 8
server23.almeregrid.nl 1TB 8GB Intel Xeon 4
edgi.dei.uc.pt 2TB 12GB Intel i8 8
attic.ibercivis.es 500GB 4GB AMD 16
s-vmg.cs.cf.ac.uk 75GB 8GB VM 2
s-vmh.cs.cf.ac.uk 75GB 8GB VM 1

6.2.2.1 EDGI Deployment Testing

To test Attic, two BOINC projects were setup. The first hosted the Attic Proxy (see
§5.3), which was modified to store download metrics on client machines. The
second project, entitled “md5hash,” was a new application created specifically for
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this testing. Md5hash did not process any scientific data, rather it supported a
parameter, cpu time, that specified the amount of gigaflops on the client machine
it should consume. This enabled precise control over how long each work unit
would take to complete its CPU-intensive tasks, letting the testing focus on data
transfer. In addition, at the end of its computation md5hash was programmed to
transfer the download metrics stored by the Attic Proxy to the BOINC server as
its program output. This allowed for the mapping of download times and transfer
metrics to individual work units.

Figure 6.2: Shows how files are deployed by a user and propagated through
EDGI’s Attic infrastructure.

Three separate tests were performed, using 1 MB, 10 MB, and 100 MB in-
put files. For each run, 100 md5hash work units were created. Client nodes
consisted of 25 virtual machines running on an OpenStack Cloud at Cardiff Uni-
versity. Each VM was configured as a 64-bit Linux client with a single core, 15 GB
of HDD space, and 2 GB of RAM. The cpu time parameter was set to one sec-
ond, to increase Attic network requests by several orders of magnitude over what
100 clients would normally request. This was done to simulate a higher-volume
network such as that of Einstein@Home, where a job takes an average of five
hours to run (i.e., 18,000 seconds), and requires only a few (i.e., 6–7) megabytes
of input data.

Figure 6.2 shows how files were distributed through the testing. The workflow
is the same for the testing described here as it would be for any user of gLite,
ARC, or UNICORE that is transitioning jobs from Service to Desktop Grids using
the tools described in §5.2.
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So as not to skew the network results, the Data Center at Cardiff University
(see Table 6.3) was disabled during the runs, leaving a total pool of seven Data
Centers. If this had not been done, many clients would have requested input
files from that machine over the high-speed LAN, and not made use of the other
Attic servers. The Data Seed at Cardiff was used in the testing; however, this
does not affect where clients download from, due to the automatic de-prioritization
mechanisms described in §5.1.5. Figures 6.3 and 6.4 show the relevant metadata
for the 10 MB file, such as different endpoints (i.e., Data Centers) on the network
that cached the file, and also the individual segment sizes and hash values.

Table 6.4: Attic Deployment Tests – 10 MB

Average Pre Processing Time 0.02s
Average Post Processing Time 0.06s
Duplicate Requests 55
Total # of Requests 2,082
Total Data Centers Utilized 5
Average Data Centers Utilized 2.59
Average Download Time 48.66s
Average Requests per Data Center 416.4
Average Download Time per Chunk 0.19s
Highest Average Mb/s 10.38
Lowest Average Mb/s 0.04
Network Speed 5.46 Mb/s

Tables 6.4 and 6.5 show the results of the testing for the 10 MB and 100
MB files. As can be seen from the tables, the pre- and post- processing time
needed by Attic is very minimal when compared to overall download times. This
is consistent with the results shown in Figure 6.1, where Attic was compared
with BOINC. Interesting to note is the great discrepancy between the fastest and
slowest Data Centers in the network for the 10 MB tests, where a total of five Data
Centers were used. The fastest was performing at a respectable 10 megabits
per second, yet the slowest was barely functioning at all. In the 100 MB tests,
only three Data Centers were selected, resulting in an increased overall “Network
Speed” due to the removal of the non-performers. On average, however, most
Data Centers performed adequately.

Overall, the testing has shown that the Attic network functions as expected,
providing load distribution among the participants. Section 6.3 discusses further
work that could take place to enhance the Attic implementation. Particularly rel-
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Figure 6.3: Shows the portion of a Data Pointer used in the Attic deployment tests
that contains the “endpoint” information (i.e., Data Centers) about where files can
be retrieved from.

evant to the testing performed here would be the addition of quality of service
enhancements for Data Center selection, which would limit the effect of slow or
non-performing hosts.
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Figure 6.4: Shows the portion of a Data Pointer used in the Attic deployment tests
that contains the “chunk” information about files.

6.3 Further Work

The ADICS architecture has remained stable throughout the last two years, during
the EDGI project. The concepts of the Data Lookup Service, Data Centers, and
Data Seeds, and their entity interactions, have proved useful for the Desktop Grid
community and led to the development of Attic. The Attic software is a concrete
implementation of the ADICS network design, and thus evolves more quickly and
is more subject to feature enhancements and changes in user requirements that
do not affect the fundamental underlying network topology of ADICS. It is a rare
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Table 6.5: Attic Deployment Tests – 100 MB

Average Pre Processing Time 0.13s
Average Post Processing Time 0.51s
Duplicate Requests 0
Total # of Requests 19,405
Total Data Centers Utilized 3
Average Data Centers Utilized 2.35
Average Download Time 43s
Average Requests per Data Center 6,468.33
Average Download Time per Chunk 0.76s
Highest Average Mb/s 10.75
Lowest Average Mb/s 1.12
Network Speed 6.87 Mb/s

(probably nonexistent) software product that is able to sustain itself without being
periodically augmented with new features and updated as the computing environ-
ment changes. It is with this in mind that this section seeks to outline ways in
which either the ADICS architecture or the Attic software could be improved or
enhanced with further work that is beyond the scope of this dissertation.

6.3.1 Distributed Lookup Service

Currently, the metadata tracking entity of ADICS is a single Data Lookup Service.
This solution works well for projects that have centralized entities that can manage
the DLS and assure its stability, such as BOINC projects or the EDGI project. By
keeping metadata management centralized (a concept also used by BitTorrent’s
trackers), control can be exerted over security mechanisms and data propagation
policies without great complexity. However, to leverage the ADICS architecture in
a more loosely coupled manner, as would be needed to make it useful for other
file-sharing applications, the DLS would benefit from decentralization.

Decentralized metadata management could be accomplished by applying Dis-
tributed Hash Table (DHT) concepts (see §2.5.5). DHT enhancements would
split responsibility for metadata management among network participants, pro-
vide greater scalability, and eliminate the potential bottleneck of a centralized
server. There exist proven and available DHT implementations that could be
used for this task. Alternatively, metadata management could be delegated to
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another infrastructure that already implements a DHT. In this scenario, the Data
Lookup Service would not be used, and Attic (as an implementation of ADICS)
could function as a low-level transport protocol in a framework like BitDew [131],
which provides a scalable metadata management layer that would sit on top of
Attic in a functional hierarchy.

6.3.2 Monitoring

One very important aspect to having a data distribution system is being able to
monitor its performance. Monitoring is not only a way to garner useful results
about the data being transferred on the network, but can also be leveraged to
provide extensive QoS metrics and aid in server selection and the choice to either
expand or contract the network. Since the ADICS network and the subsequent At-
tic implementation decentralize control of the data distribution, these metrics are
not available in any centralized location. The Data Lookup Service knows which
Data Centers have a given file, and could potentially keep track of the number of
requests made for a given data entry. However, the DLS has no information about
which Data Centers ultimately serve a file, or the speeds at which they do so.

Aggregating the individual transfer and storage metrics from each Data Center
to a centralized location, such as the EDGI Monitoring system [132], would prove
extremely beneficial for overseeing the Attic network and providing future QoS
upgrades. Listing 6.1 shows an example of how project-based metrics could be
pushed to the monitoring system. In this example, file metrics are combined
based upon their project tags, and then uploaded to the monitoring server. This
provides a base level of management, and would enable administrators to see
how their network is being used and partitioned over the different projects that
are making use of it. Listing 6.2 provides a more granular yet verbose view of
data transfers. In that example, the overall transfer for individual files is provided,
leaving project aggregation for the monitoring subsystem.
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Listing 6.1: Project-Based Monitoring Schema �
<report time="1302361914248" zone="GMT" version="1.1">

<monitoring_data >

<report_start > 10-3 -2011 10 :58:26 </report_start >

<report_end > 10-4-2011 10 :58:26 </report_end >

<datacenter_ip > 192.168.0.1 </datacenter_ip >

<upload_aggregate project="edgi_dsp">

<uploaded unit="KB">45</uploaded >

</upload_aggregate >

.

.

.

</monitoring_data >

</report >

Listing 6.2: File-Based Monitoring Schema �
<report time="1302361914248" zone="GMT" version="1.1">

<monitoring_data >

<report_start > 10-3 -2011 10 :58:26 </report_start >

<report_end > 10-4-2011 10 :58:26 </report_end >

<datacenter_ip > 192.168.0.1 </datacenter_ip >

<file ID="987654. dat" name="DSPInput.dat"

project="edgi_dsp">

<chunk_size unit="KB">10<chunk_size >

<chunk_requests >840</chunk_requests >

<total_transferred unit="KB">8400</size>

</file>

.

.

.

<xfer unit="MB" direction="UP">500</xfer>

<xfer unit="MB" direction="DOWN">100</xfer>

</monitoring_data >

</report >

6.3.3 Quality of Service Enhancements

Following the collection of monitoring metrics, greater levels of Quality of Service
(QoS) could be applied to the Attic network. As discussed in §5.1.5, the current
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choice of download endpoints (i.e., Data Centers) is done through a basic Round
Trip Time (RTT) query. However, a snapshot of network latency, which is what a
RTT gives, can be a poor metric for choosing download locations. The QoS work
outlined in Appendix B shows promise in creating a robust selection criterion for
Data Centers, basing selection on historical performance metrics and trust values.
If that system were combined with the verbose monitoring information collection
proposed in §6.3.2, it would make a powerful addition to Attic, increasing network
speeds and reliability.

Another important QoS metric is ensuring that the system has sufficient space
and bandwidth to store and serve the requests that are being made. By design,
each Data Center determines its own bandwidth and storage contributions. This
is an important element to ensure participation at all levels, rather than enforc-
ing strict quotas. However, as these metrics are not centrally tracked, the main
metadata management server for the network (i.e., the DLS) cannot determine if
it should reject further caching requests to ensure the delivery and storage qual-
ity of existing artifacts. Rather, it is expected that Data Centers will remove stale
data to free-up capacity, and/or the network will scale by increasing the size of the
Data Center overlay. This scenario allows for the greatest freedom and autonomy
for the Data Centers, yet creates a potential quality of service deficit, and should
therefore be explored further.

6.3.4 General Improvements

There are several additional areas in which the general performance and stability
of the Attic implementation could be improved:

• The middleware used to implement wire-level transport and XML parsing
in Attic [133] should be changed to one that is more current and updated.
There have recently been reports of network errors causing Data Centers
to throw exceptions when they receive invalid messages (e.g., XML and
JSON), rather than gracefully recovering. It is believed these stem from in-
consistencies in the XML parser libraries in the EDGI production infrastruc-
ture. Updating the underlying message-layer code that serializes/deserial-
izes the XML and JSON messages should be able to alleviate this problem.
Jersey [134] is an excellent candidate, as it is a solid and up-to-date soft-
ware package that supports multiple mime types for both input and output.
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• The current mechanism for transferring data from a Service Grid to a Desk-
top Grid is to use a Data Seed to stage the data to the network. Currently,
there is no round-robin or other load-balancing mechanism in place to dis-
tribute loads among multiple Data Seeds. In a production environment, this
can lead to centralized points of failure.

• The Attic implementation for storing metadata on the Data Lookup Servers
and Data Centers is rudimentary, using in-memory objects that get periodi-
cally persisted to flat files. This should be upgraded to use a RDMS, which
will increase reliability and help aid recovery in the event of sudden machine
failure/reboots.

• Integrating with existing systems and uptake is important for Attic/ADICS to
succeed. Further efforts should be put into finalizing the integration with
BOINC and ultimately using Attic to run data-intensive applications on a
production level.
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CHAPTER 7

Conclusions

Software evolves and computing landscapes change. Since the onset of this the-
sis, much focus in the research and commercial communities has turned from
Grid to Cloud computing infrastructures, and all the while, the data needs of the
Desktop Grid community have continued to grow. In each of these environments,
data management, with all that it entails, remains a topic of great interest, invest-
ment, and research.

The hypothesis supporting the research undertaken here is that peer-to-peer
file sharing strategies can successfully be applied to the volunteer computing ap-
plication domain. Unlike Service Grids and Clouds, which are generally centrally
managed with large support infrastructures, most Desktop Grids are comprised
of volatile, heterogeneous, and geographically distributed volunteer computing
resources. These characteristics, combined with the large scale, legacy applica-
tions, and diverse user communities inherent in volunteer Desktop Grids make
them an ideal platform in which to propose, and test, new data management
paradigms.

After a thorough investigation of the proposed hypothesis, that “peer-to-peer
file sharing can be successfully applied to the volunteer computing application
domain,” this dissertation asserts it is true. This contention is validated both by
the work presented here and also through the following metrics: first, the ADICS
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ideas were accepted (and significantly funded) in two fair sized European Union
projects; second, the research community acknowledged ADICS as valid re-
search through peer-reviewed publications; and finally, Desktop Grid community
acceptance was achieved and extensive progress was made towards integrating
Attic into existing middleware systems.

7.1 Summary

The advantage and appeal of volunteer computing is its cost effectiveness, giving
access to potentially tens of thousands of resources for a small fraction of the
“real” costs.1 Given the relatively low budgets of volunteer computing projects (the
vast majority are scientific research) and their reliance on donated resources, it is
unlikely that the future data-distribution paths for these projects will be to simply
offload their storage and network needs to commercial Clouds. A distributed load-
balancing solution that leverages the (existing) network and storage capabilities
of donor machines would be an ideal (and low-cost) solution.

The need for a new data-distribution paradigm is a known problem within the
community, not only as a way to enable new applications to make use of volun-
teer networks, but also to facilitate current trends toward using virtual machines
to provide a homogeneous, configurable, and safe execution environment. In all
scenarios, data loads are increasing, often by orders of magnitude, and the ur-
gency of solving the “data problem” is becoming more pronounced.

Many ideas from peer-to-peer networking can be successfully applied to the
Desktop Grid computing domain. Important to the process of applying P2P tech-
nologies to Desktop Grids is understanding the community context and identifying
their requirements. This is especially important when considering a “donation-
based” volunteer computing environment, where donor retention is of paramount
importance. An out-of-the-box P2P software infrastructure, such as BitTorrent,
is unable to address many of the issues present in Desktop Grids, especially as
they relate to participation and user security. Likewise, generic P2P middleware
projects, such as JXTA, often impose network topologies and message relaying
infrastructures that can be an obtuse match for volunteer networks, and that would
require extensive modifications to function properly.

1In volunteer computing, costs are shifted from centralized projects to the donors. It is the
donors who manage the computer resources, providing periodic hardware upgrades and paying
maintenance costs such as electricity and network connectivity charges.
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In addition to the data needs within Desktop Grids, there has recently been
a push to provide migration mechanisms to move jobs from Service to Desktop
Grids. This is partially a sustainability issue and partially a practical resource-
utilization one. For sustainability, the costs of maintaining and building new Ser-
vice Grids is immense, and any solution that can minimize Service Grid resource
requirements is welcomed. As a practical matter, there are a large number of
“embarrassingly parallel” applications that run on expensive, tightly coupled Ser-
vice Grid infrastructures that could also function in a Desktop Grid environment.
Often the barriers to transitioning these jobs to Desktop Grids are the high upfront
cost of configuring Desktop Grid middleware and the issue of attracting donors.
The EDGeS and EDGI projects have provided bridging mechanisms to ease this
transition; however, they each require a robust (preferably decentralized) data
management solution. This is due to the nature of Service Grid data that are
often in secured storage and need to be publicly exposed, and also to the na-
ture of Desktop Grids, which require input files to be distributed to each Worker
node over a Wide Area Network (WAN), a task that necessitates large network
resources.

The Peer-to-Peer Architecture for Data-Intensive Cycle Sharing (ADICS) and
its subsequent REST-based implementation, Attic, seek to fill these voids. ADICS
takes many of the best practices and techniques from the P2P world and fuses
them with the requirements of Desktop Grids (especially volunteer computing
communities) to provide a new approach for data distribution. The architecture
proposed by ADICS distributes load by providing a network with a partial replica
overlay, as opposed to the current practice of full-mirroring to scale. The idea pro-
posed in ADICS of partial replicas, combined with dynamic network strategies,
lowers the barriers to participation and allows for network (re)configuration and
load balancing. Yet unlike many P2P networks, vital control remains in the hands
of project administrators and data-sharing is not forced on all network entities.

For Service to Desktop Grid migration, ADICS provides a system where data
can be pushed to the P2P environment by the Service Grid nodes that have the
necessary security credentials to access the data. This not only alleviates the
security problems associated with somehow allowing untrusted users access to
Service Grid storage elements, but also offloads the data distribution, making the
integration of Service and Desktop Grids more accessible.
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7.2 Future Work

Section 6.3 identified several key improvements and further work that could be
undertaken to improve the ADICS architecture and its Attic software implementa-
tion. It should be noted, however, that beyond simply making the software more
robust and increasing its impact on the existing Desktop Grid communities, there
are a number of interesting new research areas that could benefit from ADICS.

Here I propose areas of future work where I think it would be interesting to
continue ADICS research. ADICS was designed to be a generic data sharing
architecture, albeit one that could be used successfully to distribute Desktop Grid
data. Likewise, the core Attic implementation is not tied to a particular problem
domain or application context. It is implemented using Service Oriented Architec-
ture (SOA) and Representational State Transfer (REST) principles. As such, the
possibilities and range for using ADICS (and Attic) for further data management
investigation are broad.

One area in which I would be especially keen to transition ADICS into is the
mobile application domain. I believe peer-to-peer techniques, combined with en-
cryption, error correction, and erasure coding, can be effective tools for data re-
tention and sharing in highly volatile networks. In such an environment ADICS
would be able not only to aggregate storage capacity, but also could be adapted
to share latent bandwidth. This could be useful for tasks ranging from combining
upstream bandwidths to enable high-definition video streaming (e.g., from a kids’
soccer game) to low-cost roaming on ad hoc data networks.

Another intriguing topic is leveraging peer networks to create distributed
shared disks – that would live beyond any particular computing device or user,
similar to Dropbox [135] but, secure, encrypted, and not centrally managed by a
corporate entity. It is not unrealistic to have data living in a “peer cloud,” where
cost can be minimized while concurrently protecting privacy and intellectual prop-
erty rights. Access Control Lists (ACLs) could be applied to the data to facilitate
easy sharing and management. The P2P filesystem could even be integrated into
client operating systems, by using technologies such as FUSE [136] – making it
simple to drag and drop files into a “distributed and shared disk.” With this tech-
nology freely available, secured, and private, it could provide a very useful tool
for backing up and sharing personal information and files. Personally, I would be
very interested in using such a system as it would greatly simplify coordinating
family photo albums, video libraries, and data backups.
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APPENDIX A

Code Examples

This appendix gives several typical examples of using Attic and instantiating many
of its network roles. For further instructions on how to use Attic, as well as
JavaDocs and other auxiliary information, refer to the project website under:

http://www.atticfs.org

Note that the Attic software is available under a liberal Apache license, making
it available for public, private, and commercial use. The latest source code for Attic
and the LibAFS proxy application can be found on GitHub under the following:

https://github.com/ikelley/Attic

https://github.com/keyz182/afs proxy

Attic URL handler

The Attic protocol handler provides a way to read attic:// URLs directly into
Java programs, treating them as ordinary (i.e., built-in, such as http and ftp) URLs.
This allows applications, such as XtremWeb (see §5.4), to reference attic://

URLs anywhere in their code after the handler has been registered and the ap-
propriate libraries have been included. This is an extremely powerful tool for
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integration, as it allows Attic to be incorporated into any number of third-party
middleware systems with very minimal modification (i.e., only a few lines of code).

Listing A.1 gives an example of how, after registration of the handler, an
attic:// URL can be easily read using a standard InputStream.

Listing A.1: Code Example: Attic URL Handler �
// register the attic: and attics: (secure) URL schemes

2 // NOTE: this will not destroy existing mappings.

AtticProtocol.registerAttic ();

4 // The URL should point to a DataPointer

URL url = new URL("attic :// www.example.org :9876"

6 + "/dl/meta/pointer /1234567890");

File file = new File("out.dat");

8

// open the stream

10 InputStream in = url.openStream ();

FileOutputStream fout = new FileOutputStream(file);

12

byte[] bytes = new byte [8192];

14 int c;

while ((c = in.read(bytes)) != -1) {

16 fout.write(bytes , 0, c);

}

18 fout.flush ();

fout.close ();

20 in.close ();

Creating a DataWorker and Downloading Data

The DataWorker role showcases how to download data from the Attic network.
The mechanisms and workflow for retreiving data from the network are the same,
regardless of the client, be it a DataWorker, DataCenter, or other network en-
tity. Listing A.2 dhows how an Attic configuration is initialized, and then the
DataPointer is retrieved, with a callback registered for when the final data ar-
rive back at the requestor. In the default configuration, the resulting data will be
written to file in the dw directory.
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Listing A.2: Code Example: DataWorker Instance Downloading a File �
tic = new Attic ();

2 attic.setRole(StringConstants.ROLE_DW );

4 ConfigServiceRole confService = new ConfigServiceRole ();

attic.attach("attic", confService );

6

DataWorker dw = new DataWorker ();

8 attic.attach(StringConstants.DATA_WORKER , dw);

attic.init ();

10

try {

12 dw.getPointer(new Endpoint("https :// example.org/"

+ "dl/meta/pointer"));

14 } catch (IOException e) {

e.printStackTrace ();

16 }

Creating a DataLookup Service

The DataLookup Service provides the fundamental role of storing the authori-
tative metadata information about files and which DataCenters have replicated
them on the network. For Attic to function properly, a DataLookup Service must
exist somewhere in the network, as the other network entities use it as the boot-
strap endpoint to initiate network queries. Listing A.3 shows how a basic instance
of a DataLookup Service can be initialized on the network.

Listing A.3: Code Example: DataLookup Service �
Attic attic = new Attic ();

2 attic.setRole(StringConstants.ROLE_DL );

attic.attach("attic", new ConfigServiceRole ());

4

DataLookup dl = new DataLookup ();

6 attic.attach(StringConstants.DATA_LOOKUP , dl);

attic.init ();
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Creating a DataCenter with a Custom Query Interval

DataCenters periodically query the Scheduler to request new replication work.
The default query interval is one hour; however, this can be customized by system
administrators to more adequately match their application’s needs. For example,
when testing Attic, a much shorter query interval would be recommended, as
this would increase the speed of propagation on the network, with the additional
cost of increased message queries. For less frequently updated networks, the
query interval could be set to daily or weekly, and even synchronized to query for
network updates during off-peak hours to minimize network demand. Listing A.4
shows a DataCenter being initialized with a query interval of two minutes.

Listing A.4: Code Example: DataCenter with Custom Query Interval �
1 Attic attic = new Attic ();

attic.setRole(StringConstants.ROLE_DC );

3 attic.getDataConfig (). setDataQueryInterval (120);

attic.setBootstrapEndpoint("https :// example.org"

5 + "/dl/meta/pointer");

7 DataCenter dc = new DataCenter ();

attic.attach(StringConstants.DATA_CENTER , dc);

9 attic.init ();

Attic Instance Supporting Multiple Roles

In Attic, there are multiple roles that can be performed by network entities, such
as a DataCenter, DataSeed, or DataLookup Service. Often these roles are logi-
cally split between different virtual or physical machine hardware, to provide load
balancing. However, it can also be desired to run multiple roles on the same Java
Virtual Machine (JVM) and network port. This might be to accommodate network
firewall policies that are allowing only a limited number of ports, or to minimize the
overhead of the JVM. It can be foreseen that often the DataLookup Service and
either a DataCenter or DataSeed could be combined.

As the Attic implementation references each role in a different namespace
(e.g., dc, dl, or ds), there are no conflicts within the software when support-
ing more than one role within the same Attic instance. Listing A.5 shows a
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DataCenter and a DataLookup Service being started in the same instance (and
likewise the same port).

Listing A.5: Code Example: Attic Instance Supporting Multiple Roles �
1 Attic attic = new Attic ();

attic.addRole(StringConstants.ROLE_DC );

3 attic.getDataConfig (). setDataQueryInterval (120);

attic.setBootstrapEndpoint("https :// example.org"

5 + "/dl/meta/pointer");

7 DataCenter dc = new DataCenter ();

attic.attach(StringConstants.DATA_CENTER , dc);

9 attic.addRole(StringConstants.ROLE_DL );

11 DataLookup dl = new DataLookup ();

attic.attach(StringConstants.DATA_LOOKUP , dl);

13 attic.init ();

Secured DataSeed

The DataSeed node in Attic enables third parties, such as command-line utilities,
to publish files to the Attic network. It is an extremely useful function when in-
tegrating Attic with legacy applications, as discussed in §5.2. Listing A.6 shows
how to create a DataSeed that is secured (using certificates) and requires client
authentication to publish files to the network.

205



Listing A.6: Code Example: Secured DataSeed �
1 Attic attic = new Attic ();

attic.setBootstrapEndpoint("https :// example.org"

3 + "/dl/meta/pointer");

attic.addRole(StringConstants.ROLE_DS );

5 DataSeed dataSeed = new DataSeed ();

attic.attach(StringConstants.DATA_PUBLISHER , dataSeed );

7

// set up keystores and security config.

9 // These are stored , so actually this doesn’t have to

// be done on every start up

11 SecurityConfig sc = attic.getSecurityConfig ();

sc.setSecure(true);

13 sc.setRequireClientAuthentication(true);

15 URL trustUrl = getClass (). getClassLoader ()

.getResource("keystores/trust.keystore");

17 String trust = trustUrl.toString ();

19 Keystore ts = new Keystore(trust ,

"ca -keystore -password", "ca-keystore -alias");

21 ts.setName(key + "-trust.properties");

sc.addTrustStore(ts);

23

URL keyUrl = getClass (). getClassLoader ()

25 .getResource("keystores/seed -key.keystore");

String keystore = keyUrl.toString ();

27

Keystore ks = new Keystore(keystore ,

29 "seed -keystore -password", "seed -keystore -alias");

ks.setName("seed -key.properties");

31 sc.addKeyStore(ks);

33 attic.init ();

35 // NOTE: adding DN names after init method

dataSeed.addIdentity("CN=machine1.example.org ,

37 OU=attic , O=Example , L=Cardiff , ST=Wales , C=UK",

StringConstants.CACHE_KEY );

39 dataSeed.addIdentity("CN=machine2.example.org ,

OU=attic , O=Example , L=Cardiff , ST=Wales , C=UK",

41 StringConstants.CACHE_KEY );
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APPENDIX B

Impact Details

This appendix provides an overview of the projects that the ADICS research has
had an impact on. It is useful to recount the trajectory of ADICS development
through each of these projects, as it helps to demonstrate how this thesis evolved
over time by gaining greater exposure and insight into the problem domains. Be-
yond its natural evolution through greater exposure, the ADICS architecture was
also shaped through input from external user-groups and partners who identified
new areas in which the protocol could be applied.

The details of those projects, in rough chronological order, are given in the
remainder of this appendix.

Secure Decentralized Data Sharing in Dynamic Dis-

tributed Networks

My research in the data management aspects of distributed computing was first
undertaken through an Engineering and Physical Sciences Research Council
(ESPRC) grant (EP/C006291/1) to investigate: “Secure Decentralized Data Shar-
ing in Dynamic Distributed Networks.” The goals of that project were to iden-
tify new mechanisms to distribute Desktop Grid (notably Einstein@Home, see
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§2.3.3.2) input data. This was seen as advantageous because, in the case of
Einstein@Home, new gravitational wave datasets were coming online, and their
mirroring solution for distributing files to workers required many powerful cen-
tralized network servers, as well as system administrator oversight. Partitioning
the data over a widespread network would reduce centralized loads and allow
for greater scaling and higher-resolution input data. The project, with its goals
of investigating secure decentralized data sharing mechanisms for dynamic dis-
tributed networks, provided much of the backbone research for the development
of ADICS and Attic. Ultimately, the ESPRC project was successful, resulting in
the development of the ADICS architecture and its first prototype implementation.

During the course of the aforementioned ESPRC project, the ADICS ideas
were disseminated through the FP6 CoreGRID Network of Excellence [137], a
new P2P research group was formed, and ties were made with colleagues in the
Service and Desktop Grid communities. ADICS became an interesting proposi-
tion for Desktop Grid data distribution, as well as a way to help transition Service
Grid data to a Desktop Grid environment. Discussions about how ADICS could
be leveraged in a hybrid Service and Desktop Grid environment led to inclusion
of ADICS in a new EU proposal entitled “Enabling Desktop Grids for e-Science”
(EDGeS).

Enabling Desktop Grids for e-Science (EDGeS)

The Enabling Desktop Grids for E-Science (EDGeS) [50] was an EU FP7 Infras-
tructures project that aimed to provide integration paths between Service Grids
and Desktop Grids. The targets of the project were user communities that re-
quired large computing power that was not available or accessible in available
scientific e-Infrastructures. In order to support the specific needs of these scien-
tific and other communities, EDGeS worked to interconnect the large European
Service Grid infrastructure (EGEE) with existing Desktop Grid (DG) systems such
as BOINC and XtremWeb.

Building a bridge between Service and Desktop Grids provided users with
the ability to transparently execute applications on either platform involved in the
new integrated infrastructure. Using the advantages of both approaches allowed
the EDGeS infrastructure to take a major step towards a European-wide scientific
grid, where an extremely large number of resources could be integrated to support

208



grand-challenge scientific and other applications. The involvement of low-cost
(volunteer) Desktop Grids into the European scientific grid infrastructure enabled
EDGeS to boost the number of available resources and therefore contribute to a
sustainable European Grid infrastructure.

Cardiff University was in charge of the “Data Access” joint research activity
(JRA 3). JRA3, under my direction, further developed ADICS, focusing both on
building a network to share and distribute data within Desktop Grids, and also on
migrating data to the Desktop Grid environment from Service Grid infrastructures.
To this end, JRA3 further honed the research started in the ESPRC proposal,
while broadening it to incorporate other Desktop Grids and address the issue of
data migration.

Transitioning of data between these two systems was a very important ele-
ment to EDGeS because it required some way to distribute gLite (i.e., Service
Grid) data that could adapt to varying input-file sizes and replication factors with-
out unduly stressing or exposing the Service Grid layer. As the EGEE security
infrastructure and policies prevented access to local files from foreign and un-
trusted hosts, there was no obvious way to transfer these files, except to institute
a large array of Web-server mirrors, which could prove costly and obtuse to man-
age. An ADICS solution, which dynamically organized partial replicas throughout
the network, was seen as a way to greatly reduce resource requirements while at
the same time providing the needed scalability.

EDGeS was a successful project, resulting in much cross-institutional re-
search, interesting results such as the simulations shown in Chapter 4, and the
employment of several students and researchers at Cardiff. To culminate the data
activities of the project, a prototype implementation of the ADICS system was
created and successfully demonstrated at the final EU project review.
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Project facts:

Contract number: RI-211727
Project type: I3
Start date: 01/01/2008
Duration: 27 months
Total budget: 2,871,480e
Funding from the EC: 2,450,000e
Total funded effort in person-month: 409.6

Project partners:

1* Magyar Tudomanyos Akademia Szami-
tastechnikai es Automatizalasi Kutatointezete

MTA SZTAKI HU

2 Center of Extremadura for Advanced Tech-
nologies

CIEMAT ES

3 Foundation for the Development of Science
and Technology in Extremadura

FUNDECYT ES

4 Institut National de Recherche en Informa-
tique en Automatique

INRIA FR

5 University of Westminster UoW UK
6 Cardiff University CU UK
7 Faculty of Sciences and Technology of the

University of Coimbra
FCTUC PT

8 Stichting AlmereGrid AlmereGrid NL
9 Institut National de Physique Nucléaire et de

Physique des Particules
IN2P3 FR

* Project coordinator.

European Desktop Grid Initiative (EDGI)

The European Desktop Grid Initiative (EDGI) [113] followed the EDGeS project
as a way to transition much EDGeS’ work into a production infrastructure, while
concurrently expanding the infrastructure to include additional Desktop and Ser-
vice Grids as well as Cloud computing infrastructures. EDGI supports user com-
munities in both the European Grid Initiative (EGI) and National Grid Initiatives
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(NGI). The target user groups in EDGI are the heavy users of Distributed Com-
puting Infrastructures (DCIs) that require an extremely large number of CPUs to
complete their simulations. To achieve greater scalability and facilitate a more
efficient use of resources, EDGI augments existing DCIs (typically composed of
clusters and supercomputers), by extending them to include public and institu-
tional Desktop Grids and Clouds. The long-term goals of EDGI are to provide a
sustainable European computing infrastructure that includes a robust system of
federated Desktop Grids.

Through the strength and success of the ADICS research ideas developed
in EDGeS, Cardiff University was again involved in the proposal submission and
subsequent (successful) project. With regard to data management and the work
presented here, EDGI provided a forum for transitioning ADICS’ core research
and prototype into a concrete reference implementation (see Attic in Chapter 5),
a process that had only begun to be realized inside the EDGeS project.

With the additional support of the EDGI project, Attic was able to be devel-
oped. Attic created a transparent and easy-to-integrate data management sys-
tem that supported the legacy software systems being used in production Service
and Desktop Grids. Integration was done primary through the use of Representa-
tional State Transfer (REST) principles, using standard HTTP/S as the underlying
transport mechanism. This enabled the Attic network to be reachable from the ad-
ditional ARC (see §5.2.2) and UNICORE (see §5.2.3) Service Grid infrastructures
that were added as target communities in EDGI. The integration enhancements
and implementation improvements also made Attic a useful candidate for BOINC
and XtremWeb data distribution.

Project facts:

Contract number: RI-261556
Project type: CP-CSA
Start date: 01/06/2010
Duration: 27 months
Total budget: 2,436,000e
Funding from the EC: 2,150,000e
Total funded effort in person-month: 281
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Project partners:

1* Magyar Tudomanyos Akademia Szami-
tastechnikai es Automatizalasi Kutatointezete

MTA SZTAKI HU

2 Institut National de Recherche en Informa-
tique en Automatique

INRIA FR

3 Centre National de la Recherche Scientifique CNRS FR
4 University of Westminster UoW UK
5 Cardiff University CU UK
6 University of Zaragoza Unizar-Ibercivis ES
7 Faculty of Sciences and Technology of the

University of Coimbra
FCTUC PT

8 Stichting AlmereGrid AlmereGrid NL
9 University of Paderborn UPB DE
10 University of Copenhagen UCPH DK

* Project coordinator.

Distributed Audio Retrieval Using Triana (DART)

In addition to the projects mentioned above, Attic (and therefore ADICS) has had
an impact on local research within the Distributed Computing Group at Cardiff
University. The Distributed Audio Retrieval using Triana (DART) [138, 139] project
is an example of this. DART worked to build a decentralized overlay for the pro-
cessing of audio information for applications interested in Music Information Re-
trieval (MIR). The project was partially funded under the data research activities of
both EDGeS and EDGI to prototype job transitions between Service and Desktop
Grids. This resulted in DART implementations for both XtremWeb and BOINC,
as well as plans to integrate the data retrieval mechanisms of DART (which were
centralized) with the Attic network. Attic integration, however, was not fully real-
ized before the completion of the DART project.
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Optimisation Techniques for Data Distribution in Vol-

unteer Computing

The Attic network was also used as the base software for a thesis on Quality of
Service (QoS) in distributed networks, entitled “Optimisation Techniques for Data
Distribution in Volunteer Computing.” In this work, partially funded by the EDGI
project, Cardiff Ph.D. student Abdelhamid Elwaer enhanced the selection mech-
anisms of Attic to use availability, honesty, and speed heuristics to determine
Data Center selection. As can be seen in the experiments presented in Elwaer’s
work [130, 140, 141], where a 10 MB file was downloaded by a varying number
of clients and Data Centers, the addition of advanced QoS metrics greatly en-
hances the speed and reliability of the Attic network. The use of Attic outside of
the projects it was first involved in is significant because it shows that the work
presented here is robust enough to be used as the basis for further research.
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APPENDIX C

Publication List

The following lists the publications (and posters) most relevant to this disser-
tation. I either wrote or had a significant contribution to each of these journal
articles, conference and workshop papers, book chapters, or technical
reports. Many of them formed the basis for the research presented here. The
list is presented in reverse chronological order; it should be noted that many pa-
pers originated as technical reports, and were then extended into full conference
papers or journal articles. Likewise, several workshop papers were selected for
inclusion in collections or books.

I. Kelley, T. Kiss, and I. Taylor “Secure Decentralised Data Sharing in Dy-
namic Distributed Networks.” Poster at the RCUK Cybersecurity Research
Showcase. London, UK. 23 November 2011.

I. Kelley and I. Taylor, “A Peer-to-Peer Architecture for Data-Intensive Cycle
Sharing,” in Proceedings of the First International Workshop on Network-
Aware Data Management (NDM 11). Seattle, WA, U.S.A. 14 November
2011.

A. Elwaer, A. Harrison, I. Kelley, and I. Taylor. “Attic: A Case Study for Dis-
tributing Data in BOINC Projects,” in Proceedings of the Fifth Workshop on
Desktop Grids and Volunteer Computing Systems (PCGrid 2011). Anchor-
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age, AL, U.S.A. 20 May 2011.

T. Kiss, I. Kelley, and P. Kacsuk, “Porting Computation and Data Intensive
Applications to Distributed Computing Infrastructures Incorporating Desktop
Grids,” in Proceedings of the International Symposium on Grids and Clouds
(ISGC). 25 March 2011.

C. Mastroianni, P. Cozza, D. Talia, I. Kelley, and I. Taylor. “A Scalable Super-
Peer Approach for Public Scientific Computation.” Journal of Future Gener-
ation Computer Systems. Volume 25 , Issue 3, pp. 213–223, March 2009.

Z. Balaton, Z. Farkas, G. Gombas, P. Kacsuk, R. Lovas, A. C. Marosi, A.
Emmen, G. Terstyanszky, T. Kiss, I. Kelley, I. Taylor, O. Lodygensky, M.
Cardenas-Montes, G. Fedak, and F. Araujo. “EDGeS: The Common Bound-
ary Between Service and Desktop Grids.” Parallel Processing Letters (PPL),
Special Issue on Grid Architectural Issues: Scalability, Dependability, Adapt-
ability. Volume: 18, Issue: 3, pp. 37–48. September, 2008.

I. Kelley and I. Taylor. “Bridging the Data Management Gap Between Service
and Desktop Grids,” in Proceedings of the 7th International Conference on
Distributed and Parallel Systems (DAPSYS 2008). Debrecen, Hungary. 3–5
September 2008.

F. Costa, L. Silva, G. Fedak, and I. Kelley. “Optimizing Data Distribution in
Desktop Grid Platforms.” Parallel Processing Letters (PPL), Special Issue
on Grid Architectural Issues: Scalability, Dependability, Adaptability. Vol-
ume: 18, Issue: 3, pp. 391–410. September, 2008.

G. Fedak, H. He, O. Lodygensky, Z. Balaton, Z. Farkas, G. Gombas, P.
Kacsuk, R. Lovas, A. C. Marosi, I. Kelley, I. Taylor, G. Terstyanszky, T. Kiss,
M. Cardenas-Montes, A. Emmen, and F. Araujo. “EDGeS: A Bridge between
Desktop Grids and Service Grids,” in Proceedings of the Third ChinaGrid
Annual Conference (ChinaGrid 2008). Dunhuang, China. 20–22 August
2008

I. Kelley and I. Taylor. “Bridging the Data Management Gap Between Service
and Desktop Grids.” Distributed and Parallel Systems, In Focus: Desktop
Grid Computing, pp. 13–26. Peter Kacsuk, Robert Lovas and Zsolt Nemeth
(Editors), Springer, August 2008.
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D. Barbalace, D. Talia, I. Kelley, I. Taylor, and C. Mastroianni. “A Data-
Sharing Protocol for Desktop Grid Projects.” CoreGRID Network of Excel-
lence – Institutes on Knowledge and Data Management & Grid Systems,
Tools and Environments. Technical Report TR-0165. August 2008.

F. Costa, L. Silva, I. Kelley, and I. Taylor. “P2P Techniques for Data Distri-
bution in Desktop Grid Computing Platforms.” Making Grids Work, Marco
Danelutto, Paraskevi Fragopoulou and Vladimir Getov (Editors), Springer,
July 2008.

P. Cozza, I. Kelley, C. Mastroianni, D. Talia, and I. Taylor. “Cache-Enabled
Super-Peer Overlays for Multiple Job Submission on Grids.” Grid Middle-
ware and Services: Challenges and Solutions, pp. 155–169. Domenico
Talia, Ramin Yahyapour, and Wolfgang Ziegler (Editors), Springer, July
2008.

F. Costa, L. Silva, G. Fedak, and I. Kelley. “Optimizing the Data Distribution
Layer of BOINC with BitTorrent.” CoreGRID Network of Excellence – Insti-
tute on Architectural Issues: Scalability, Dependability, Adaptability. Techni-
cal Report TR-0139. June 2008

M. Cardenas-Montes, A. Emmen, A. C. Marosi, F. Araujo, G. Gombas, G.
Fedak, I. Kelley, I. Taylor, O. Lodygensky, P. Kacsuk, R. Lovas, T. Kiss, Z.
Balaton, Z. Farkas, and G. Terstyanszky, “EDGeS: BridgingDesktop and
Service Grids,” in Proceedings of the Second Iberian Grid Infrastructure
Conference (IBERGRID 2008). Porto, Portugal. 12–14 May 2008.

F. Costa, L. Silva, G. Fedak, and I. Kelley. “Optimizing the Data Distribution
Layer of BOINC with BitTorrent,” in Proceedings of the Second Workshop
on Desktop Grids and Volunteer Computing Systems (PCGrid 2008) held
in conjunction with the IEEE International Parallel & Distributed Processing
Symposium (IPDPS). Miami, Florida, U.S.A. 18 April 2008

Z. Balaton, Z. Farkas, G. Gombas, P. Kacsuk, R. Lovas, A. C. Marosi, A.
Emmen, G. Terstyanszky, T. Kiss, I. Kelley, I. Taylor, O. Lodygensky, M.
Cardenas-Montes, G. Fedak, and F. Araujo. “EDGeS: The Common Bound-
ary Between Service and Desktop Grids,” in Proceedings of the CoreGRID
Integration Workshop 2008: Integrated Research in Grid Computing. Crete,
Greece. 2–4 April 2008.

216



F. Costa, L. Silva and I. Kelley. “Using a Content Distribution Network for
Data Distribution in Desktop Grid Computing Platforms.” Poster at the Core-
GRID Integration Workshop 2008: Integrated Research in Grid Computing.
Crete, Greece. 2–4 April 2008.

P. Cozza, I. Kelley, C. Mastroianni, D. Talia, and I. Taylor. “Use of P2P Over-
lays for Distributed Data Caching in Public Scientific Computing.” CoreGRID
Network of Excellence – Institute on Knowledge and Data Management.
Technical Report TR-0112. October 2007.

F. Costa, L. Silva, I. Kelley and I. Taylor. “Peer-To-Peer Techniques for Data
Distribution in Desktop Grid Computing Platforms.” CoreGRID Network of
Excellence – Institute on Architectural Issues: Scalability, Dependability,
Adaptability. Technical Report TR-0095. July 2007.

P. Cozza, I. Kelley, C. Mastroianni, D. Talia, and I. Taylor. “Cache-Enabled
Super-Peer Overlays for Multiple Job Submission on Grids,” in Proceedings
of the CoreGRID workshop on Grid Middleware, in conjunction with ISC07.
Dresden, Germany. 25–26 June 2007.

F. Costa, L. Silva, I. Kelley, and I. Taylor. “P2P Techniques for Data Distri-
bution in Desktop Grid Computing Platforms,” in Proceedings of the Core-
GRID Workshop on Grid Programming Model, Grid and P2P Systems Ar-
chitecture, Grid Systems, Tools and Environments (CIW’07). Crete, Greece.
12–13 June 2007.
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