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Abstract 
 

Genetic Algorithms (GAs) are loosely based on the concept of the natural cycle of 

reproduction with selective pressures favouring the individuals which are best suited 

to their environment (i.e. fitness function). However, there are many features of 

natural reproduction which are not replicated in GAs, such as population members 

taking some time to reach puberty. This thesis describes a programme of research 

which set out to investigate what would be the impact on the performance of a GA 

of introducing additional features which more closely replicate real life processes. 

The motivation for the work was curiosity. The approach has been tested using 

various standard test functions. The results are interesting and show that when 

compared with a Canonical GA, introducing various features such as the need to 

reach puberty before reproduction can occur and risk of illness can enhance the 

effectiveness of GAs in terms of the overall effort needed to find a solution. As the 

method simulating the nature rules, Cardiff Genetic Algorithm (CGA) introduces 

several features to each individual in programming modelling the real world. Each 

individual of the population is given a life-span and an age, the population size is 

allowed to vary; and rather than generations, the concept of time steps is introduced 

with each individual living for a number of time steps. An additional feature is also 

discussed involving multiple populations which have to compete for a limited 

resource which can be thought of as “water”. This together with an illness parameter 

and accidental death are used to study the behaviour of these populations.  
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Chapter 1 Introduction 
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1.1 Introduction 

 

Genetic Algorithm (GA) is a computing model simulating Darwin's natural selection 

and biological evolution. As a search procedure of searching optimal solutions by 

simulating natural evolution process, which was first published in an influential 

monograph Adaptation in Natural and Artificial Systems by Professor J. Holland in 

Michigan University in 1975, in the United States. While GA has gradually become 

well-known and has been further developed, the algorithm which Holland originally 

put forward is usually called simple Genetic Algorithm (in the following text, it is 

called Canonical GA for distinguishing). Since the founding of Canonical GA, a 

large number of studies on genetic algorithm have emerged. Applications include 

varying areas, such as job shop scheduling, training feed forward neural network, 

image feature extraction, and image feature recognition (Buckles and Petry, 1992). 

 

This study comes from the research on the history of GAs. One question unresolved 

is what would happen if one form of GA evolved more closely to mimic natural 

species. Apart from developing more applications for modern GAs, will it be of 

more value if we go back to look at the original idea of GA? Hence, Cardiff Genetic 

Algorithm (CGA) does not evolve from a desire to improve the performance of GAs 

but rather evolves more closely mimicking real life. In order to achieve this curious 

aim, this study has the following objectives: identify different frameworks of CGA 

apart from Canonical GA; introduce different species models used in testing and 

operate tests of several functions to show the performance of CGA with single 
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population; summarize the parameter elements‟ effects in CGA; and extend CGA to 

the two-population method.  

 

Purely by chance, it was found that the CGA does perform better than Canonical GA 

on certain test problems. And tests are undertaken to determine whether this 

enhanced performance can be seen in other problems. All the new framework and 

parameters used in this method is trying to give a new way of developing GA, not 

only from the operation itself, but also the fundamental principal of GA. Maybe it is 

not as perfect as what has been developed in normal GAs, but it is still worth trying. 

 

Generally speaking, the research methods applied in this study include combining 

history research, statistics and data research, computer programming and theory 

study all together. Books, journal research results and online resources are very 

important to this research. The selection and functions of modelling parameter‟s 

value used in this study are based on the results of previous researches (e.g. different 

birth-rate and breading ages of the modelling species). Theory study is focus on all 

the section.  



 

4 

 

1.2 Arrangement of Thesis 

 

There are six chapters in this thesis. Following this introductory chapter, the 

subsequent chapter introduces the background knowledge on Genetic Algorithms, 

including the basic theory and different improvement approaches during the last 

three decades. Chapter 3 gives details about the Cardiff Genetic Algorithm (i.e. the 

genetic algorithm developed in this work). New parameters and framework will be 

explained and behaviours of CGA with different models will also be shown in that 

chapter. Comparison between Canonical GA and CGA using three different 

functions is presented in Chapter 3 as well. In Chapter 4, some elements effects for 

the CGA performance will be discussed in details. A new edition of CGA, two-

monkey CGA (TM-CGA) will be introduced and compared with Single CGA in 

Chapter 5, which is the multiple population attempt of CGA. In the final part of the 

thesis, the concluding chapter summarizes the work completed and offers 

expectations for future research. 
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Chapter 2 Genetic Algorithms 
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2.1 Chapter Introduction 

 

This chapter will mainly introduce the theory of genetic algorithms. The following sections 

mainly cover the subjects below: 

 Background knowledge of GA 

 Methodology for GA 

 Important elements and parameters in GAs 

And at last, there is a review of the development of GAs these years. 
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2.2 Background of Genetic Algorithms 

 

Computer programs, generally, are predictable. They start from a point 1 and after 

some specific path reach a point 2. (Ladd, 1996) However, as development of 

robotics has shown, it is not enough to just use deterministic algorithms in software, 

what is needed in some circumstances is the ability to learn and cope with stochastic.  

 

“If you‟re looking for a paradigm of adaptability, look no further than biology” 

(Ladd, 1996). Throughout billions of years, living things have absolutely shown 

their flexibility and adaptability in the changing environment. As Darwin observed 

and concluded, the process of Natural Selection is the mechanism by which 

evolution takes place in the population of specific organisms. According to that rule, 

the evolutionary process of change happens in all forms of life over generations, and 

 

Figure 2.1: Image of DNA 
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evolutionary biology is the study of how evolution occurs. An organism inherits 

features from its parents through genes. Changes (also called mutations) in these 

genes can produce a new trait in the offspring of an organism. If a new trait makes 

these offspring better suited to their environment, they will generally be more 

successful at surviving and reproducing (Chiras, 2006). It causes useful traits to 

become more common. Over many generations, a population can acquire so many 

new traits that it may become a new species. Thanks to the discovery of 

deoxyribonucleic acid (DNA) molecule in 1951 by biologists Crick and Watson 

(Ladd, 1996), the mysterious agents behind evolution are known to be mixing and 

sifting gene pools, acting on variations produced by the differential reproduction and 

mutation of genotypes. As Kehoe said in her book (1998), population can be thought 

of as gene pools, while genes are chemical compounds, segments of long strings of 

DNA which can be called chromosomes. An individual‟s set of genes is their 

genotype. The image of DNA is like the picture shown in Figure 2.1.  

 

http://en.wikipedia.org/wiki/Evolutionary_biology
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Mutation
http://en.wikipedia.org/wiki/Speciation
http://en.wikipedia.org/wiki/Genotype
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2.3 Methodology of GAs 

 

Genetic Algorithms (GA) are designed to simulate Darwinian natural selection and 

biological evolution and, and hence to be utilised to search for optimal / high 

performance solutions.  Learning from the adapting life species to uncountable 

niches in an ever-changing environment, software, in turn, can simulate natural 

techniques in helping optimization and search problems to evolve towards better 

solutions. In 1975, John Holland defined the concept of Genetic Algorithms in his 

paper (Holland, 1975). 

 

According to Mitchell (1998), the main idea of a GA is to set a number of initial 

solutions that reproduce based on their individual fitness in a given environment. 

The evolution usually starts from a population of the randomly selected individuals. 

In every generation, the fitness of each individual will be calculated though certain 

fitness functions. Multiple individuals will be stochastically selected from the 

current population as parents, according to their fitness, and subjected to crossover 

(exchange part of the genes in parents‟ chromosomes) to produce offspring which 

becomes the next generation. Then the new population of the next generation is 

modified and recombined (possibly after randomly mutation). The details of each 

operator of a GA are discussed in the following section. 

 

The feature which is deemed to be most critical is the concept of “the survival of the 

fittest” where selective pressure on the members of the population is applied to 
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ensure that the fittest members of the population, with the fitness being determined 

by an appropriate function, have the greatest chance of reproduction and hence 

passing their genes successfully into the next generation. Typically, each individual 

of the population exists for a “generation” at the end of which the reproductive cycle 

takes place with all members of the population being considered for reproduction 

with selection being stochastically linked to fitness. Often “elitism” is used with a 

fixed percentage of the fittest members of the population being passed through to the 

next generation. This reproductive cycle is nothing like that of many higher order 

life forms which have a population which consists of members of varying ages, 

some of which are fertile and some are not. In such populations, the times at which 

breeding occurs can vary considerably. Also, such organisms are subjected to 

features like competition for food from other life forms and illness. 

 

Figure 2.2 illustrates the framework of GA with explanation given as follows. 
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Figure 2.2: Flow diagram of simple genetic algorithm 
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1 Set initial population size for the real problem and create initial random 

population. 

2 Calculate the fitness value for each member of the population based on 

its evaluation against the current problem. 

3 Check all the fitness with criterion satisfied function. 

 

If „No‟, 

4 Select parents by fitness and solutions with higher fitness value are 

most likely to be parent during reproduction. 

 

5 Copy, crossover & mutation to produce the new offspring then replace 

the weak individuals by the new solution, thus one generation is 

complete. 

Back to step 2. 

 

If „Yes‟, 

6 Problem has been solved. 

 

The procedure of GA (as shown in Figure 2.2) consists of 6 essential steps:   

 

Generally speaking, when confronting a real search problem, the search parameters 

or variables need to be encoded, and represent the problem as a function objective or 

target with which we can decide termination of the run because the objective has 
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been met. Each individual possible solution is like a chromosome in the real life 

species. Once we have the genetic representation and the fitness function (i.e. 

objective function) has been defined, GA proceeds to initialize a population of 

solutions randomly (step 1). After calculated the fitness for every individuals (step 

2), all the fitness of the population will be checked by the criterion satisfied function 

(step 3). If there is any acceptable solution (If „Yes‟), the loop will be finish (step 6), 

otherwise (If „No‟) GA will improve the population through repetitive application of 

parent selection (step 4) and reproduction (including copying, crossover, mutation in 

step 5). The population in the new generation includes two parts: the good fitness 

individuals in the last generation and new offspring produced by crossover and 

mutation. More details about the elements in this process will be discussed in next 

pages. 
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2.4 The Operators of GAs 

 

As mentioned in section 2.3, GA consists of the following components: 

1. Population of chromosomes. 

2. Selection according to fitness. 

3. Crossover to produce new offspring. 

4. Random mutation of new offspring.  

 

In the following pages, these elements will be described with more details. 

 

2.4.1 Chromosome 

The chromosome is typically represented by a form of binary bit string in a GA 

population. Each chromosome represents a point in the search space of all the 

candidate solutions. During the GA process, variation in the populations of 

chromosomes takes place constantly, by replacing one such population with another. 

These chromosomes are also referred to as genotypes, structures, strings or 

individuals. Although chromosomes is not just the problem of coding, there is also 

the representation (i.e. what specific feature of the problem being solved is included 

in the string). Representation is vital because if it is not flexible enough, the search is 

restricted and it may be impossible for the algorithm to find good solutions.  

 

2.4.2 Fitness Assessment 
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The fitness level of each chromosome is assessed with a score which is calculated 

through a certain fitness function. Unlike the objective functions that are used in 

traditional optimization, fitness function in GAs is unable to take constraints into 

account, which are typically included in the objective as penalty functions. GAs‟ 

search will start with relatively weak information on performance and still reach 

good results. Balling (2003) has compared the performances using different kinds of 

fitness function. Comparison result of a simple test function influenced by sundry 

fitness function is presented in Chapter 3. 

 

Since the fitness for each chromosome is defined as the ability of a chromosome to 

solve the problem. One of the common applications of GAs is optimization, which 

aims to identify a set of parameters that maximize or minimize a complex multi-

parameter function.  

 

As a non-numerical example, we can consider elements to be taken into account in 

the concept design phase of a modern vehicle. These elements include length, height, 

weight, power, safety coefficient, time of production, cost of production etc. GA 

solves the problem by defining a 7 parameters function. Each parameter can be 

encoded as a 10 bit string for example, and the chromosome is made up of 70 bit 

strings which comprises and combines the 7 parameter. What would such a fitness 

function mean? How “good” is a car? Can how “good” a car be calculated by some 

formula involving these 7 numbers? Or indeed, involving 700 numbers? As a 

common example, we cannot ask for a large, powerful car with a high safety 
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coefficient as well as a cheap cost and to be produced quickly at the same time. 

Furthermore, there is a limitation for some parameters: a car cannot be as long as a 

train, so it has length limitation; it must be suitable for a person to sit in, so it has 

height limitation. The fitness for this problem is not fixed; it depends on the 

requirements from individual designers or customers. For instance, if the producer 

wants the cheapest car, then the cost of production should be the most important 

element to be considered in the fitness function. If the customer wants a car to be 

comfortable and safe, then the fitness function should contain both the size 

parameters (height, length) and the safety coefficient. Of course, all the parameters 

have linked relationships between each other: when the car is large and fast, 

obviously it should be more expensive than a small and slow one. Thus, how to 

define the fitness function sometimes can be the most difficult but critical part in a 

multi-objective optimisation planning. 

 

2.4.3 Selection 

Generally, there are three types of operators involved in the simplest form of genetic 

algorithm: selection, crossover, and mutation. 

 

Selection operator selects parents according to their fitness (Goldberg, 1989); 

solutions with higher fitness values are more likely to be parent of new solutions 

during reproduction. All selection functions are stochastically designed so that a 

small proportion of less fit solutions are possible to be selected. This helps to keep 

the diversity of the population large, preventing premature convergence on poor 
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solutions. Popular and well-studied selection methods include tournament selection 

and roulette wheel selection. 

 

2.4.3.1 Tournament selection 

There are two stages for tournament selection: the first step is to select a group of N 

(N 2) individuals; the second step is to select the individual with the highest fitness 

from the group to carry out the crossover and mutation, simultaneously all other 

individuals remain in the gene pool waiting for the next loop of selection. Selection 

pressure can be easily adjusted by changing the tournament size. Tournament size is 

inversely proportional to the chance of selection, e.g., with larger tournament size, 

weak individual has smaller chance to be selected, contrariwise. Tournament 

selection has several advantages: it is efficient to encode, and allows the selection 

pressure to be easily adjusted.  

 

The method used in the work of this thesis is tournament selection. However, there 

is a subtle difference. In normal tournament selection, the selected members are 

discarded from the selection candidates for the next selecting run, i.e. they are not 

available for selection when they have already been selected. But in this work, the 

rule is followed only by the parents that are paired up for crossover, to avoid cloning 

a child from a single parent. For selecting the next pair of parents, the individuals 

from the previous selection are still available for the next tournament so that all the 

individuals can potentially be selected several times in each generation. 
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2.4.3.2 Roulette wheel selection 

As another kind of fitness-proportionate selection, roulette wheel selection is also 

used in Genetic Algorithms to select potentially useful solutions for recombination 

(crossover). Generally, candidate solutions with a higher fitness will be more likely 

to be selected comparing to the poorer fitness individual. However, there is still a 

chance that they might not be. On the contrary, with fitness proportionate selection, 

there is also a possibility for some weaker solutions that they may survive in the 

selection process. This is an advantage: although an individual is weak among the 

whole population in one generation, it may include some components which could 

be proved useful in the following recombination process; and through this selection 

rule, those possible useful individual components might be passed through to the 

following generation. As with the tournament selection method, the basic roulette 

wheel selection method is also stochastic sampling with replacement (Haupt R and 

Haupt S, 2004).  

 

The analogy to a roulette wheel can be envisaged by imagining a roulette wheel in 

which each candidate solution represents a pocket on the wheel; the size of the 

pockets is proportionate to the fitness and also to the probability of selection. The 

probability of selecting N chromosomes from the population is equivalent to that of 

playing N games on the roulette wheel, as each candidate is drawn independently (as 

shown in figure 2.3 shown). (Zalzala and Fleming, 1997) 
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Figure 2.3: the roulette wheel selection strategy 
 

2.4.4 Crossover 

This operator is the key of Genetic Algorithms‟ power. There are several forms of 

crossover: e.g. n-point crossover and uniform crossover (Reeves, 1994; Eshelman, 

1991). Taking the one-point crossover as an example, it randomly chooses a point in 

two bit strings and exchanges the subsequence to that locus between two parents to 

produce two offspring. As Holland‟s building blocks hypothesis (1975), the 

crossover operator imitates the rule of biological recombination. Without crossover, 

the species reproduction could have a population containing successful members‟ 

gene from one or the other parent (and also be effect by the mutation), however, no 

member has both. With crossover, beneficial mutations on two parents can take 

place immediately when they reproduce.  

 

Nevertheless, crossover as well as being beneficial in bringing two useful 

components together can also be disruptive and break up a good individual, but 

overall, the selective pressure in GAs is positive. Crossover can be particularly 

Individual Fitness Proportion 

1 1.0 1/8 

2 2.0 1/4 

3 1.5 3/16 

4 0.5 1/16 

5 2.5 5/16 

6 0.5 1/16 
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disruptive when the solutions are close to the best solution, because it is almost 

inevitable that it will disrupt good solutions and in such cases mimetic algorithms 

tend to be used for the final stages (Grefenstette, 1993; De Jong 1975, and Spears, 

1993). If the more successful parents are selected more often than the less successful 

ones and crossovers occur, the offspring are naturally adapted to the environment, 

like native species.  

 

 

2.4.5 Mutation 

This operator randomly chooses a point in one bit-string and changes the bit from 1 to 0 or 

from 0 to 1 with the program using binary coding. Mutation can occur at each bit position in 

a string with some small possibility but it is a competitively intensive way to effect mutation. 

The way using in the program of this thesis, was one point mutation method. One decimal 

figure between 0 and 1 was random chosen to each individual. If that figure was below the 

value of mutation rate, a location is randomly chosen and mutation takes place. In this case, 

every individual has only 1 location to change from 0 to 1 or 1 to 0.   
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2.5 Development GAs 

 

The classes of algorithms known as evolutionary algorithms are grouped together 

because they are said, in some way to mimic natural process. So for instance Particle 

Swarm (Kennedy and Eberhart, 1995) is said to replicate the behaviour of flock of 

creatures such as birds, Ant Colony algorithms (Dorigo, etc. 1996.) are intended to 

replicate the search mechanisms of ants and more recently there has been the 

eponymous Bee Algorithm (Pham, etc. 2007). Probably the most widely used and 

researched of all Evolutionary Algorithms is the Genetic Algorithm first introduced 

by Holland (1975) and since widely applied by many (e.g. Goldberg 1989, Machwe 

and Parmee 2007, Coelho 2002). With all of these algorithms the way in which they 

replicate the natural processes of the relevant organism is fairly limited with the 

search mechanism typically focussing on one particular feature which is deemed to 

be that which gives the search properties and mostly ignoring all of the other 

features because these are thought to be irrelevant.  

 

In the past four decades, many researchers have examined various different methods 

to improve the efficiency or effectiveness or widen the applications of GAs. Some of 

them involved multiple population (parallel GAs) (e.g. Cant‟s-Paz, 1997, 1998, 

Fogarty and Huang, 1991), and others improved the structure by introducing features 

such as new parameters and encoding (Hu, 2008,                                                                                                                                                                   

Schraudolph and Belew, 1992 and Yao and Liu, 1998). For the GA operators, many 

studies appreciate the perspective that reproduction methods which based on the 
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involvement of two parents are more "biology inspired”. Some researches suggest 

that "parents” more than two generate chromosomes of higher quality (Eiben, 1994 

and Ting, 2005).Opinions are divided over the importance of crossover and mutation. 

There are many references in Fogel‟s research (2006) supports the importance of 

mutation-based research. Although crossover and mutation are known as the main 

genetic operators, it is possible to use other operators such as regrouping, 

colonization-extinction, and migration in genetic algorithms (Akbari, 2010). 

Considering Gas are a sub-field of Evolutionary Algorithms, attention should be 

paid to research developments in EA, such as Swan intelligence which includes Ant 

colony optimization (Colorni, 1991 and Prabhakar, 2012), Particle swarm 

optimization (Rania, 2005), and intelligent water drops or IWD algorithms (Hamed, 

2009), and other evolutionary computing algorithms including Bacteriologic 

algorithm (Baudry, 2005), Differential search algorithm (Civiciogly, 2012), 

Gaussian adaptation (Kjellström, 1991) and etc. What‟s more, Multiple Objective 

Optimization in Evolution Algorithm has been introduced to GAs study(Keeney, 

1976, Deb, 1999 and 2002, Coelho 2007). All of these researches quite logically, 

focussed on various aspects of the algorithm. They take a very structured approach 

rooted in mathematics rather than natural processes .It needs to be acknowledged 

that the study has achieved impressive results. 

 

The work which is described in this paper resulted not from a desire to enhance the 

performance of GAs but rather from a curiosity to investigate what would happen if 

the behaviour of a GA was made to more closely mimic the behaviour or various life 

http://en.wikipedia.org/wiki/David_B._Fogel
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forms. GAs are meant to replicate natural behaviour so rather than just selecting 

those features of natural behaviour which are deemed to be desirable, the aim has 

been to selectively introduce other features, which have no obvious advantage and to 

investigate the impact of these features. So this is research driven by curiosity rather 

than having a definite end goal.  

 

What to use to test any search algorithm is always a difficult choice, especially when 

one considers the “no free lunch theorem” (Wolpert and Macready 1997). In this 

work, the approach used has been to use various standard test functions. It is 

recognised that these have particular features and do not replicate all the features 

that one finds in highly complex “real life” fitness functions, but they are easily 

replicated by others, thus offering the chance of checking the results presented and 

the choice of any other fitness function would be equally arbitrary and limited. If 

one is to compare the impact of a change in the structure of a GA, it is necessary to 

have a benchmark against which the impact of the change can be measured. The 

obvious choice is the canonical GA (Goldberg, 1989) and this has been used 

throughout this work. It is recognised that the new features which are being 

investigated may behave very differently in other forms of GA but as there are many 

of these, to undertake this sort of testing is not feasible within a sensible time span. 

 

Throughout this work, the new form of GA is referred to as the CGA (Chen, etc. 

2008) This is still very much a work in progress with work having started some four 

years ago but the results have reached a sufficient stage of maturity for them to be 
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subjected to necessary process of peer review and scrutiny by the wider research 

community. As will be shown in the following chapters of this thesis, there are some 

unexpected results.  
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2.6 Chapter Summary 

 

In this chapter, history and development of GAs are introduced. We also got a brief 

idea of how ordinary GA works and the concept of important operators used in GAs. 

Chromosomes definition, fitness assessment, parents selection and, of course the key 

point of GA, crossover and mutation, are all given in great details. In later chapters, 

these main operators will still be used as in other GAs but there are many new things 

added for the new GA. Chapter 3, 4, and 5 will give more information of CGA as 

our GA method. 
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Chapter 3 Single Population CGA 
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3.1 Chapter Introduction 

 

The brief idea of single population CGA will be described in this Chapter. As a 

method which is simulating the natural rules, CGA introduces several features to 

each individual during programming, modelling the real world.  

 

A fundamental new framework of single population CGA will be introduced in the 

beginning of this chapter. After that, several new parameters, such as time-step, age, 

life-span, breeding age and effective-fitness, etc., which have been used to help the 

population mimicking will be listed and described with more details. Following the 

parameters explained, three different species models using different parameter 

values will be described in 3.4. In addition, there is a description of how does single 

population CGA behave after model comparison. Test programs were used in this 

chapter to compare the performance of CGA and Canonical GA with three 

optimization functions. Chapter summary is the last part in this chapter. 
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3.2 New Framework of Single Population CGA 

 

Simulating the population in the real world is the basic thought of Genetic 

Algorithms. The governing framework for the evolutionary processes is based on the 

initial idea of John Holland from 1975: two selected parents create new offspring 

which keeps their good genes remained in the whole population gene pool; later 

individuals replace former ones and the population continue generation by 

generation. However, in Canonical GA, later generation replace previous generation 

by a high percentage (mostly over 60%) which means that the least fit individuals 

would be slowly eliminated. Indeed, the original concept of GA was a method from 

which real world biological operations were derived. In nature, every creature has a 

certain life span, but only some of the individual can survive and continue their gene 

pool. Furthermore, there is no simultaneous mass replacement of the population 

from one generation to the next. Rather, the generations overlap. The current work 

investigates whether a GA method based on a more natural governing framework is 

possible,  

 

CGA is the result of the above considerations. It is a new approach which is closer to 

the natural evolution than what is currently available. The principal difference 

between the CGA framework and other GAs is the ability of survival between 

generations. Other features include delayed reproduction and the creation of a 

dynamic population where individuals within the population do not need to be all 

replaced in every single iteration.  
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New method in CGA include assigning each individual a certain “life span”, which 

means no matter how poor the fitness is, it would still stay in the population for a 

length of time. CGA also operates in “time-step” rather than “generation”. Another 

aspect of CGA related to the life span is that each individual has its own progressive 

“age”. To simulate nature, the initial ages of every individual are randomly chosen. 

In this way, a big difference in CGA is that only a small number of individual will 

be selected as parents for crossover, whereby probably just three or four children 

will be created per time-step in a population of 1-100. In additional, a new parameter 

of “effective fitness” is introduced for the parents‟ selection. All the parameters 

mentioned above will have further explanation later in Chapter 3.3. 

 

By accepting these brief new ideas, the framework of CGA will be easier to 

understand. As shown in Figure 3.1, the framework with single population can be 

presented like this: 

 

The process starts with the creation of the initial population. Each individual is given 

an initial age, fitness, effective fitness and a life-span. The process then starts to 

work around the main loop (Fig. 3.1). This is shown as multiple lines because the 

bulk of the population works its way around the loop once in each time step. 
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Figure 3.1:  Framework of Single CGA  
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The whole population has its age checked first, with over-age individuals being 

deleted. Next, the remaining individuals have their age checked to see if they are old 

enough to be considered for breeding. Those who are of sufficient age are 

considered for the parent gene pool. The selection process uses tournament selection 

but only a small fraction of population is selected, the number chosen being 

determined by the population creation rate. The rest of the population continues 

around the main loop. The selection of just a fraction of the fertile individuals is 

closer to a real population where not everybody reproduces at the same time. The 

population creation rate is chosen to keep the population to the required size 

(Chapter 4). The breeding processes of crossover and mutation have been 

implemented as they would be in a canonical GA. 

 

After evaluating the new offspring‟s fitness and assigning their life-spans (their 

initial ages will be set as 0), all individuals in the population increase their ages by 

an incremented of 1. There is then a check at the end of the loop to see if the 

finishing criterion satisfies checking. If this is not the case then the process is 

repeated. 

 

To summarize, there are nine steps in the CGA: 
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1. Set initial population size, and maximum number of time-steps; create 

initial random population, give random age and life-span to each individual; 

calculate the fitness and effective fitness values for each member of the 

population. 

2. Age checking for life-span exceeding deletion 

3. Accident deletion 

4. Age checking for breeding 

5. Select parents according to population creation rate and population size 

 

6. Crossover & mutation to produce the new offspring and set age as 0 

7. Evaluate fitness and assign life-span for offspring 

8. All population members including both old and new increase age by 1 

9. Check all the fitness with Criterion Satisfied Function 

If “No”, back to step 2 

If “Yes”, problem has been solved 
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3.3 New Parameters in CGA 

 

As stated above, the aim of the CGA is to assess the impact of the introduction of 

various additional aspects of natural life into a GA. There are many aspects of real 

world behaviour in life forms which could be introduced, so the decision arises as to 

what features should be investigated and also what life forms should be mimicked. 

There are some features which apply to all life forms, such as diseases, the risk of 

food shortages and typical life span. There are also significant differences between, 

for example, plants which typically produce huge numbers of offspring, most of 

which fail to reproduce or are eaten while immature, and mammals which produce 

far fewer offspring but have higher survival rates. In this work, the underlying 

thinking has concentrated more on aspects of the life of fauna rather than flora. 

 

The question then arises as to what aspects should be investigated. The choices that 

have been made are necessarily, to a degree, arbitrary but concern significant aspects 

of the life of animals that are not included in current GAs. 

 

The new features that have been investigated are: 

 

3.3.1 Time-steps: 

In a Canonical GA, generation is used to count the number of iterations, whereas 

CGA uses time-step for the same effect. Real life populations typically contain 

individuals of differing ages; different levels of maturity, hence, the CGA uses time-
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steps rather than generations with most of the population being present in 

succeeding time steps and with breeding producing only a few new children per time 

step.   

 

3.3.2 Age and Life-span: 

In the CGA, for the initial generation, each individual is given a random age which 

is incremented with each time-step, just like a real individual. So there is a mix of 

ages within the population. Life-span is the pre-determined death age of an 

individual. And the life span for the initial population is set based on fitness. When 

their age exceeds their life-span, the individual is deleted from the population - step 

2 in the framework of over-age deletion. Additionally, the concept of accident or 

illness has been investigated where some individuals die before they reach their 

allotted life span. Life-spans are based on their fitness comparing to the average 

fitness of the whole population (there is an example of how to assign life-span in 

3.4.1). 

 

3.3.3 Breeding Age, Effective Fitness and Population Creation Rate: 

For most life forms, during the early stages of their life, they are not able to breed 

and so within the CGA individuals are not allowed to breed as a mimic, all 

individuals have an age at which they reach puberty. Intuitively, this would seem to 

be an irrelevant feature in a GA but as is shown after (Chapter 4), it can have a 

significant impact. So, in the CGA only the individuals whose age exceeds breeding 

age can be selected to be parents.  
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In the CGA, every individual is given a fitness using a fitness function, as in a 

typical GA. If the individual enjoys good health and there are no population stresses 

then the fitness will remain constant throughout life. However, a mechanism called 

illness parameter is used to reduce the fitness for individuals who are subjected to an 

accident or disease. Effective fitness is helping to control the ability of individual 

being selected as parent when reproducing the new offspring. Population creation 

rate is used to determine the number of children which can be created in a single 

time step.  

 

It is typically expressed as an equation, viz: 

Number of children = Population creation rate × Total population. 

 

Population creation rate is a very important number which makes CGA different 

from Canonical GA: it is usually a very small number in CGA; sometimes only one 

or two children per time-step will be born by crossover (and might with mutation 

afterwards). 

 

Using a small number for population creation rate is because we need to fix a 

population creation rate to control the total population size, and if it is too big, the 

size of the population will increase without stop. More details about population 

controlling will be shown in Chapter 4.2. Moreover, although the population 
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creation rate is not high, i.e. the number of children is not big; it can still find the 

optimal solution effectively. 

 

3.3.4 Summary of New Parameters in CGA 

So, every individual in the CGA has, as well as a fitness parameter, such as in 

canonical GA, an age, maximum lifespan and effective-fitness. 

 

As described in the framework, the principal differences between the CGA and other 

GAs can therefore be summarised as the ability of an individual to survive for 

multiple time steps (there are no generations): delayed reproduction and a population 

structure in which individuals within the population are not mostly replaced in every 

iteration and every individual has an age which is either given during the creation of 

the initial population or for later individuals it is set at zero when they are born and 

subsequently incremented for each time step.  

 

The population size in CGA is not static and is determined largely by the life span of 

individuals and the population creation rate of the population. If the parameters are 

set up correctly, when the population finds a good enough solution, the run can be 

terminated. On the other hand, if the search is failing, then the population size is 

gradually reduced to zero during the run or increased without stop, and again, the 

run terminates. Parameters -- age, life-span -- are also introduced to help controlling 

population growth in size (Chapter 4.2). For CGA, each individual has its own age 
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and life-span, only when its life-span expires or has accident (Chapter 5.2), it can be 

deleted from the population. It will not be replaced by any other individuals. 

 

In CGA, there are two fitness-dependent pressures to improve the fitness of the 

population.  Firstly, as usual, the fitter individuals are assigned a greater probability 

to be selected as parents for crossover. Secondly, since there is only a small number 

of genetic crossover taking place in any iteration (compared to Canonical GA), the 

fitter individuals are also assigned a longer life-span so that they can remain in the 

genetic pool for a longer period, and hence have a greater probability of being 

selected for crossover at some point. (See explanation for Figure 3.3) The life-span 

assigned to an individual is thus dependent on its own fitness with respect to the 

fitness of the rest of the population. The life-span value assigned will be between a 

preset lower and upper bound. The values for these limiting bounds, relative to the 

maximum number of time-steps, are important, since the number of time-steps 

divided by the typical life-span of CGA is an approximate comparison to the number 

of generations in Canonical GA. The number of time-steps in CGA thus needs to be 

at least six times more than the typical life-span, in order to allow enough genetic 

operations to take place in a run.   

 

In every iteration, the population is both decreased through deletion of individuals 

and increased through crossover. Age-based deletion is simply the removal from the 

population of individuals whose age exceeds their life-span. The population is then 

increased through usual genetic operators, but the difference here is that only a 



 

38 

 

relatively small number of children are created, according to the prevailing 

population creation rate, whereas in Canonical GA, children are necessarily 

generated to maintain a stable population size. The population creation rate can be 

proportional to the population size (which is normal in natural genetics), and/or 

given an over-riding finite number independent of population size (which is useful if 

the population size gets too small or too big). 

 

More details about population creation rate, effective-fitness and breeding age will 

be discussed in Chapter 4. 
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3.4 Different Species Modelling 

 

The theory of Genetic algorithm is based on modelling the genetic evolutionary 

rules in the natural species. However, even in the real world, some of the species 

adapt much easily to their surroundings. As a result of making the GA closer to real 

genetics, CGA introduced several new items, such as population creation rate, age, 

and life-span etc. Different species have different breeding patterns and life spans. 

For example, fishes lay huge numbers of eggs, which hatch and produce hundreds of 

offspring of which only a small portion will survive. A somewhat different 

behaviour is exhibited by rabbits, which have a relatively short life span, but they 

can give birth 4 times a year, and with 4-6 offspring being produced each time. In 

addition,  monkeys in many societies only have 1 or 2 children in their whole life; 

however, their span is typically longer than the former two species. 

 

We have tested three models in the CGA, which correspond to the above species in 

their reproductive behaviour and life spans. The tests are to determine how various 

features impact on the performance of the CGA. The tests have been made using 

two-variable quadratic function and Ackley‟s function. The results of the tests are 

given in Table 3.1 and 3.2. The failure rate is the number of times that the GA has 

not found the correct solution. The time steps are the number of steps to find the 

correct solution. The number of evaluations gives an indication of the amount of 

work the GA had to do to find the correct solution, with a low number indicating a 

lesser amount of work. 
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As is shown in Table 3.1 below, the comparison is made using two factors:  

The first is failure rate, which is calculated by out of the 15 runs, how many times 

the program has not found an acceptable result within 300 time-steps;  

 

The second factor is an average number of evaluations, which shows how many children 

have been created during the search for the best solution. Generally speaking, the fewer, the 

better. Number of evaluations is a measure of the efficiency of the search. 

 

Table 3.1: Results of failure rate and Average number of evaluation by using 

different species models on Hyperbolic and Ackley function. 

Species models Failure rate Average Number of evaluation 

Two variables Hyperbolic Function 

Fish 0.26 1131 

Rabbit 0.33 1396 

Monkey 0.06 170 

Two variables Ackley Function 

Fish 0.4 9181 

Rabbit 0.2 1709 

Monkey 0.4 441 

 

From Table 3.1, it can be seen that Monkey model was overall slightly more 

successful, but took significantly fewer number of children to achieve this result in 

both hyperbolic function and Ackley function.  
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In Table 3.2, details of Ackleys‟s function test have been listed to show the result for 

every run and average number of evaluations of all runs and only success runs. 

 

Table 3.2:  Comparison result of success time steps and number of evaluations by 

using different species models for Ackley function. 

Run 

No. 

Monkey 

 

Rabbit 

 

Fish 

Time 

steps 

Number of 

evaluations 

Time 

steps 

Number of 

evaluations 

Time 

steps 

Number of 

evaluations 

1 4 8 6 12 5 200 

2 12 24  7920 16 380 

3 10 20 5 84 4 150 

4  1039 17 264 8 250 

5  835 19 344  26460 

6 151 270 14 216 8 190 

7  824 17 276 7 250 

8 16 32 5 88  26250 

9  1214 21 328 10 340 

10 10 20 14 216  26100 

11  925  7384  25620 

12 6 12  8040 18 770 

13  1267 7 140  25580 

14 24 53 7 152 8 320 

15 33 66 4 72  5110 

Failure rate 

 0.4  0.2  0.4 

Average number of evaluations of all runs 

 441  1709  9181 

Average number of evaluations of success runs only 

 56  183  317 
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All of the runs of in each modelling tests, initial population is exactly the same, 

which means although they start from the same point, but results might be different. 

The blank time-steps block in Table 3.2 means it has not obtained an acceptable 

solution before the program being terminated at 300 time-steps. The number of 

evaluation for that unsuccessful run is the total new individual numbers who has 

been created until program ends. The two average number of evaluation shows 

Monkey model is effective even on just successful runs. This indicates that, for the 

chosen test functions, a lower birth rate and relatively longer life span lead to 

savings in computational effort. Thus it would seem that keeping genetic material 

for a number of time steps and having a relatively low death rate has some 

advantages. Given the better-performed Monkey model, this is the only model used 

in all of the following tests. Not that, for the rabbit and fish models, two extreme 

situations occurred. Either success easily obtained or acceptable results can never be 

shown. By checking details of the individuals, it seems that when two parents create 

offspring, as they are allowed to create many (several) in one time-step; it results in 

many of the new offspring being similar to each other. And individuals‟ life-spans of 

these two models are comparably shorter. So when these new individuals go into the 

whole population, older ones were deleted. Therefore, it dilutes the variety of the 

gene pool. This might be the reason why after certain time-steps, the population are 

full of similar individuals thus best results are hardly achieved. 
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3.5 Behaviours of Single CGA 

 

3.5.1 Performance of CGA 

Figure 3.2 shows the behaviour of CGA on an optimisation search of a two-variable 

quadratic function (0 is the final goal) over twenty separate runs. 

The function of this optimisation problem is:  

2

2

2

121 )11()9(),(  xxxxf
.        (1) 

 

Ordinary binary coding and tournament selection criterion were used. 28 bit binary 

code was set in programming for each individual, 14 bits each for parameters 1x and

2x . The population size was initially set at 40 and life-span values were assigned 

according to fitness ranking in the population: the minimum and maximum of 30 

and 50 time-steps were assigned to the least and the most fit individuals respectively. 

Life-spans for other individuals were linearly scaled based on their fitness (Fig. 3.2).  

Figure 3.2: Life span evaluation method. 
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As shown in Fig 3.2, the linear life span evaluation function is the simplest case. The 

minimum and maximum value is randomly chosen as an example to show no matter 

how fitted one individual being evaluated in each time step, it may vary in real 

programming. The rule is: individual with average fitness is set with a life-span of 

40;.The better the fitness, the bigger the life-span. The best fitted individual will 

have a life-span of 50. On the contrary, the worst fitted one can only have a 

decreased life-span of 30. In this case, a maximum age of 50 was allocated to each 

individual in this initial population. At the start of the first iteration, only a few 

individuals were deleted due to their long age. But when the initial population 

creation rate was set at 5% of the population whenever it is below 80 (and at 2.5% 

otherwise), the population will increase to over 80 in about the first 50 time-steps 

(Fig. 3.3). 

 

Fig. 3.3 shows the size and mean fitness of the population, and the fitness of the best 

fit individual, over the time-steps. The behaviour and pattern in each of these were 

similar for the 20 runs. Generally, where the population creation rate (explained in 

previous chapter 3.3.3, and discussed in following chapter) is around or just under 

2.5%, the population size eventually stabilises. As the population creation rate 

increases (e.g. 5%), then the population would steadily and continuously increase. It 

can be seen in Fig. 3.3 that once the population has stabilised; it hovers generally 

around 80. Although it appears in Fig. 3.3 that the scatter in the data decreases with 

time (e.g. the scatter was smaller at time-step 900 than at time-step 300), this
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Figure 3.3: Characteristics of CGA over 20 runs. 



 

46 

 

apparent “convergence” is due to the fact that only five of the 20 runs shown in Fig. 

3.3 continued for 1000 time-steps: the other 15 terminated earlier because the fitness 

criterion had been achieved. 

 

It can also be seen in Fig. 3.3 that, at least for the function in eqn.1

2

2

2
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, the CGA exhibit convergent behaviour with a 

progressive improvement in the population fitness. The initial population typically 

began with an average fitness of around 50 to 70, and there was then an exponential-

like sharp early improvement to fitness of around 5 by time-step 50-100, with a 

gentle gradual improvement thereafter. Since the maximum lifespan in these CGA 

runs was 50, in the period of time-step 50-100 of CGA population will basically 

change to all new offspring which would be equivalent to the first two generations in 

Canonical GA (i.e. the two generation after the initial randomly generated 

population) (based on the evaluation of children creation numbers, assuming 

crossover rate in Canonical GA is 0.5, and population creation rate in CGA is 

0.03/0.05). In light of this, the rapid population improvement by time-step 100 is 

thus quite remarkable. 

 

The fitness of the best individual also improves very quickly, as shown by the 

enlargement in Fig. 3.3 of the area around the origin. A typical run (is been 

highlighted in thicker lines to more clearly) show its behaviour. It can be seen that, 

for successive time-steps, the average fitness of a population fluctuates, and the  
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fitness of the best individual is more stable but also it fluctuates due to the death of 

the fittest individual (there is no elitism being used). This is a typical feature of the 

CGA where only two children are produced per time-step, so one would not expect a 

better individual to emerge with every time-step, or even every few time-steps. 

Indeed, a best-fitness individual can remain the so throughout its lifespan, and as 

already mentioned, when it is eventually deleted due to old age, the fitness of the 

fittest individual can decrease as can be seen at around time-step 100.  

 

There are two fitness-dependent pressures to improve the fitness of the population in 

CGA, these are: 

1. The breeding election process and 

2. Life-span.  

 

The parent selection mechanism (tournament selection) is the same as that which is 

used in many ordinary GA programming, whereas life-span/effective fitness is a 

particular feature of the CGA. The lifespan assigned to an individual is thus 

dependent on its own fitness with respect to age (Fig. 3.2). In a typical GA, weak 

individuals tend to be quickly replaced by new off-spring, so convergence tends to 

happen relatively quickly. However, as is often stated, there is a possibility that the 

weaker individuals contain some good genetic material. So that giving a reasonable 

life-span, all the individuals can enhance the chances of selecting poorer individuals 

which may possess a reasonable amount of advantaged genes. This is likely to slow  
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Plots of CGA 

 
Plots of Canonical GA 

Figure 3.4: Plots of fitness when the fittest individuals are close to the optimum. 
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the convergence process while a good solution is still achievable. To show how the 

search process is different for the two types of GA, in Fig. 3.4, gives a plot of all the 

individuals in the search space of a canonical GA, when the search is close to the 

optimum. As can be seen, all the individuals are crowded around the one solution 

point. However, for the CGA there is still a significant spread in the population so 

diversity is being maintained for longer and yet the fittest solution is very close to 

the optimum. The all area of 1x and 2x  is the initial searching area. And the cross at 

(9, 11) is the final goal. 

 

The modelling of the real world phenomenon where stronger and healthier 

individuals tend to live and the dynamic re-assignment of the life-span for each 

individual at every time step (since the fitness of the population evolves, and hence 

the ranking of an individual within the population will change with each time-step), 

this can be a computationally wasteful exercise, because it is unlikely to bring much 

change. Therefore, in the results presented in Fig.3.4, life-span is evaluated only 

once for each individual, either at the initial random population setting or at birth in 

later operation, and the average fitness of the whole population at that time is used 

as the benchmark; higher fitness one will get longer life-span, while lower one‟s 

life-span will be reduced (Fig. 3.2). Therefore, in the current work, the lifespan has 

been static for each individual, either at birth or at the initiation of the run where the 

life span itself is kept constant during the creation of the initial random population. 
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3.5.2 Three Test Functions 

In order to further compare the performance of a Canonical GA and the CGA, three 

test functions have been selected, namely:  

1. Quadratic hyperbolic function, 

 
2
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2. De Jong‟s fifth test function  

 

3. Ackley‟s function 

 21
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All of them are with two variables.  

 

The following results focus on the comparison of the efficiency and effectiveness of 

the two methods. For all the results, both methods started using exactly the same 

initial population for each function, which were created by choosing the 40 weakest 

from a total of 60 randomly created individuals in Hyperbolic and De Jong‟s 

functions and 80 out of 120 in Ackley‟s function. This was done to make the 

problem reasonably challenging. The crossover rate used in the canonical GA was 

60%, with the 24/40 poorer individuals being replaced and the top 16/40 being 
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passed through to the next population. For the CGA, the population creation rate was 

set as 5% when the population size was below 80, above which, it was reduced to 

2.5% in Hyperbolic and De Jong‟s function; 3% and 1.5% judging by population 

size of 160 in Ackley‟s function. So typically, fewer than four individuals were 

created every time-step, and those children were added to the total population but 

did not replace any former individual. There is only one way of removing an 

individual from the population and this is when its life-span is achieved. The 

mutation rate was the same for both methods at 2%. 

 

Both types of GA have been programmed to run on the same computer using code 

written in MS Visual C++ (thanks to the help from books written by Horton, Meyers, 

Michalewicz, Raphael and Schildt) with every effort being made to make the code 

identical where possible.  The three test functions used and the respective results are 

presented below. In each case, as well as the optimum solution, an acceptable 

solution is given, this being a solution which is deemed close enough to the 

optimum for convergence to have effectively occurred. The details and discussion of 

comparison results will be shown in section 3.5.3. 
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3.5.2.1 Quadratic hyperbolic function 

The first test function is a hyperbolic function with two variables. In Table 3.3 it 

shows the details for the quadratic function and its solution information: 

 

 

 

Table 3.3: Two variable hyperbolic function and solution details 

Equation 
2

2

2
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 (2). 

Optimum result f (9, 11) = 0 

Acceptable solution f < 0.4. 

 

 

 

Several parameters have been used in the two types of GAs. Lists are shown and compared 

in Table 3.4: 
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Table 3.4: Parameters for hyperbolic function used in Canonical GA and CGA 

 Canonical 

GA 

CGA 

Coding type Binary code. 

14 bits for each parameter of 1x  and 2x . 

28 bits string for every individual 

Initial population size 40 

Crossover type Single point crossover 

Crossover rate (Canonical) 

Population creation rate  (CGA) 

60% Population <80, 5% 

Population 80, 2.5% 

Mutation rate 2% 2% 

Generation limit (Canonical) 

Time steps limit (CGA) 

50 300 

Deletion method Replaced 

by new  

individuals 

Life span exceeding  

Special parameters  Age range: 30-50 

Initial ages are random chosen 

Effective fitness type: box 

Accident rate: 1% 
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Both Canonical GA and CGA started from the same initial population, Table 3.5 

below shows the best and the worst 3 individuals‟ two values with its own fitness 

and age: 

 

Table 3.5: The initial population for hyperbolic function used in Canonical GA and 

CGA (the best 3 and the worst 3 individuals are shown) 

1x  2x  fitness age 

1.16 0.285 176.277 42 

0.608 0.843 173.59 45 

16.186 0.748 156.742 37 

        

2.787 11.712 39.1083 17 

4.103 7.223 38.2463 15 

14.823 9.14 37.3669 49 

 

It can be seen that the initial fitness levels were all far away from the target 0. The 

results for the application of this test function to both types of GA are presented in 

Figs. 3.5 & 3.6. These clearly show that there are some significant differences in 

performance between the two variations of the GA. 
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Figure 3.5:  Canonical GA with hyperbolic function 

 
Figure 3.6:  CGA with hyperbolic function. 
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In both figures, the best fitness and average fitness show significant improvements 

during the initial stages, with the canonical GA appearing to perform better. 

However, the two plots have different X axes. For the canonical GA the X axis is for 

generations, whereas for the CGA it is time steps. In a CGA time step, only a few 

individuals are created and deleted, and fitness evaluation is only needed for the new 

individuals. Therefore, in terms of computational effort, fifty generations of the 

Canonical GA are roughly equivalent to 300 time steps of the CGA. The population 

size is only shown in the plot for the CGA because only in the CGA is a dynamic 

population size allowed. For the canonical GA, the population size is constant at 

forty. 

 

As shown in Figs 3.5 & 3.6, the average fitness of the CGA is much less variable 

than that of the Canonical GA. The average fitness of the canonical GA exhibits 

some significant fluctuations through the generations, the main reason being 60% of 

the population is changed in every generation, and this significant percentage of new 

individuals obviously affects the average fitness. Another reason is in the Canonical 

GA, the population convergences very quickly (see Fig. 3.4), all the individuals are 

very similar, that may results in no obvious improvement by crossover, so the main 

improvements in the offspring are created by mutation. On the other hand, for the 

CGA, in each time step, only two to four children are created by and less than five 

individuals are deleted for exceeding their life-spans. Considering the population 

size is around 80, the influence from new population members and death on the 

average fitness is small, and hence the fitness curve is smoother. 
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3.5.2.2 De Jong’s fourth test function 

This is the next test function; one of De Jong‟s functions has been chosen to test. 

Table 3.6 gives the information of this function. 

 

 

 

Table 3.6: Two variables De Jong‟s function (1975) and solution details. 

Equation 

      (3). 

Final 

result 

f (-32, -32) = 1 

Accept 

solution 

f > 0.98. 
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Table 3.7 gives the parameters used for the tests on De Jong‟s function. 

 

Table 3.7: Parameters for De Jong‟s function used in Canonical GA and CGA. 

 Canonical GA CGA 

Coding type Binary code. 

15 bits for each parameter of 1x and 2x . 

30 bits string for every individual 

Initial population size 40 

Crossover type Single point crossover 

Crossover rate (Canonical) 

Population creation rate (CGA) 

60% Population <80, 5% 

Population 80, 2.5% 

Mutation rate 2% 2% 

Generation limit (Canonical) 

Time steps limit (CGA) 

300 500 

Deletion method Replaced 

by new 

individuals 

Life span exceeding  

Special parameters  Age range: 30-50 

Initial ages are random chosen 

Effective fitness type: box 

Accident rate: 1% 

 



 

59 

 

Three best and three worst fitness individuals from the initial population for De 

Jong‟s function are shown in Table 3.8 with its own fitness and age. 

 

Table 3.8: The initial population for De Jong‟s function used in Canonical GA and 

CGA (the best 3 and the worst 3 individuals are shown) 

1x  
2x  fitness age 

-61.202 55.368 0.002 20 

-53.775 61.128 0.002 39 

38.844 -63.976 0.002 44 

        

27.721 40.76 0.00200253 26 

-40.439 27.608 0.00200309 44 

-7.536 -39.488 0.00200465 9 

 

Same again as hyperbolic function, the initial population for De Jong‟s function is 

also the worst 40 from random chosen 80 individuals. All of them are far away from 

the real solution. 

 

Figure 3.7 and 3.8 shows the performance of De Jong‟s function on Canonical GA 

and CGA separately. 
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Figure 3.7:  Canonical GA with De Jong‟s function 

 
Figure 3.8:  CGA with De Jong‟s function 
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Figs. 3.7 and 3.8 give the results for De Jong‟s function with the former showing the 

performance of the canonical GA and the latter with the CGA. The x axis of the 

former is for generations and for the latter, time steps; so the amount of work 

involved for 400 generations is substantially more than for 600 time steps. In Fig. 

3.7, the final best fitness solution from Canonical GA comes at about the 140 

generations. And in Fig. 3.8, the final solution from CGA comes around 360 time-

steps.  

 

It can be seen from Figs. 3.7 and 3.8, the average fitness of the two methods figures 

quite different shapes. The average individual during the progress in Fig. 3.7 keeps 

changing drastic between generations. The reason for this is because in every new 

generation, there are always some new fitness individuals, created by crossover and 

mutation, replaced part of the previous population. The new ones might be worse 

than former ones, so the average fitness have been reduced. On the contrary, average 

fitness curve is much smoother. The reason is there is much less population changes 

in CGA. And all new individual is added to the whole population not replacing any 

of them. There are still some deletions by exceeding life-span or accident risk but 

still less compared to the Canonical GA.  

 

Another important observation from Fig. 3.8 is the drop in the best fitness at about 

180 time-steps. Such behaviour can happen in CGA but the same is not possible in 

canonical GA when using elitism.  



 

62 

 

 

3.5.2.3 Ackley’s test function 

The third function to test is Ackley‟s function (1987).  

Function details are shown in Table 3.9. 

 

Table 3.9: Two variables Ackley‟s function and solution details. 

Equation  21

2

2

2

1

2.0

21 2sin2cos3),( xxxxexxf  

      (4) 

Final result  f (1.5096, -0.7548) = -4.5901 

 f (-1.5096, -0.7548) = -4.5901. 

Accept 

solution 

f < -4.179466 

 

Parameters used on Ackley‟s function have been compared in Table 3.10.  

The initial population used on Ackley‟s function is 80. The best five and worst five 

from the initial population are shown in Table 3.11 with its own fitness and age. 
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Table 3.10: Parameters for Ackley‟s function used in Canonical GA and CGA. 

 Canonical GA CGA 

Coding type Binary code. 

26 bits for each parameter of 1x  and 2x . 

54 bits string for every individual 

Initial population size 80  

Crossover type Single point crossover 

Crossover rate (Canonical) 

Population creation rate (CGA) 

60% Population <160, 3% 

Population 160, 1% 

Mutation rate 5% 2% 

Generation limit (Canonical) 

Time steps limit (CGA) 

300 500 

Deletion method Replaced 

by new 

individuals 

Life span exceeding  

Special parameters  Age range: 50-150 

Initial ages are random chosen 

Effective fitness type: box 

Accident rate: 1% 
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Table 3.11: The initial population for Ackley‟s function used in Canonical GA and 

CGA (the best 5 and the worst 5 individuals are shown) 

1x  
2x  fitness age 

-6.40122 -5.12326 11.8265 12 

-6.14135 -2.4903 11.1986 20 

-3.36298 -5.44451 10.9331 100 

-3.4027  6.57897 10.3373 9 

3.55048 3.78686 9.1845 83 

        

2.30763 - 0.342879 0.280655 172 

1.82824 2.95866 0.83682 83 

1.3106 5.54501 -0.924539 88 

-4.88734 -.0672618 -1.70308 87 

1.5775 3.62062 -.2.2205 131 

 

Figs. 3.9 and 3.10 give the results for De Jong‟s function with the former showing 

the performance of the canonical GA and the latter with the CGA. 
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Figure 3.9: Single population Canonical GA for Ackley function 

 

Figure 3.10: Single population CGA for Ackley function 
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One of the pitfalls of comparing algorithms and their efficiency / effectiveness is 

that it is possible to improve the performance by reconfiguring the parameters and 

operators and so an absolute comparison cannot be made. In this work for the 

Canonical GA, single point crossover was tried first, but the algorithm tended to 

converge fairy quickly on sub-optimal solutions. It was found that multiple point 

crossovers gave better performance and so this has been employed to obtain the 

above results. 

 

3.5.3 Performance Comparison between Single CGA and Canonical GA 

Except the core different of the method ideas, all other conditions were the same in 

Canonical GA and CGA. For every function, each method has been tested for 15 

runs respectively. From the results for the above three functions, it is possible to 

make a comparison between the Canonical GA and the CGA, give the above 

provisos about the comparisons not being absolute and the limitations expressed in 

the No Free Lunch Theorem (Wolpert & McReady 1997).  

 

As is shown in Table 3.12 below, the comparison is made using two factors:  

1. Failure rate, which means out of the 15 runs, how many times the program not 

found an acceptable result within 300 time-steps (CGA) or 50 generations 

(Canonical GA. The failure rate is therefore a measure of the performance of the 

search);  
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2. Number of evaluations, which shows how many children have been created 

during the search for the best solution. Generally speaking, the fewer, the better. 

Number of evaluations is a measure of the efficiency of the search. 

 

The reason why 300 times-steps in CGA equal to 50 generation in Canonical GA is 

that: in Canonical GA, crossover rate is 60%, so there are 24 (if the initial population 

is 40) new individuals in every generation. But in CGA, maximum four new 

individuals can be created in each time-step under the control of population creation 

rate of 5% with population 80. In this case, 300 time-steps and 50 generations are 

equal. 

 

As shown in Table 3.12, these three functions have been chosen be because of their 

distinctly different shapes. The test summary of the failure rate and number of 

evaluations are listed below. 
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Table 3.12: Performance comparison between Canonical GA and CGA (Hyperbolic, De 

Jong‟s and Ackley test functions). 

 Canonical GA CGA 

Hyperbolic 

 

Failure rate 0.4 0.06 

Number of evaluations 173 170 

 

De Jong‟s 

 

Failure rate 0.6 0.53 

Number of evaluations 2608 577 
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Ackley 

 

Failure rate 0.73 0.4 

Number of evaluations 12614 441 

 

It can be seen from Table 3.13 that the failure rates of the CGA and canonical GA 

are similar, with the CGA having the edge. For hyperbolic function, the results of 

two methods are not much different in number of evaluation but a slightly better in 

failure rate. But for other two functions, the significant difference is in the average 

number of evaluations per successful run, in other words the efficiency. 

 

For De Jong‟s function, the number of evaluation required by the CGA is almost a 

quarter of those of the Canonical GA and for Ackley‟s, it is around 3.5%. This 

indicates that on the simple function the canonical is similar to the CGA but on the 

more complex functions, the CGA does better. For the chosen test functions, the 

Cardiff GA is more efficient than the Canonical GA. Work using other test functions 

indicates that these results are typical and in no instance has the CGA been found to 

be less efficient than the Canonical GA. Cardiff GA can reach the required answer 

more quickly and with less computational effort. 
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Take the details from Ackley‟s function as an example.  

As the result of Canonical GA, only 4 times are successful in the 15 runs, which are 

run 1, 4, 7 and 11. The successful generations are: 

110 for 1
st
 run,  

227 for 4
th

 run, 

119 for 7
th

 run  

and 186 for 11
th

 run.  

The failure rate is 0.73. The average number of children been produced when the 

good result is obtained is 12614.  

Table 3.13: In CGA, time step numbers and number of evaluations when acceptable 

results appeared are: 

Run No. Time steps Number of evaluations 

1 4 8 

2 12 24 

3 10 20 

4  1039 

5  835 

6 151 270 

7  824 

8 16 32 

9  1214 

10 10 20 

11  925 

12 6 12 

13  1267 

14 24 53 

15 33 66 

 



 

71 

 

As is shown in Table 3.13, the failure rate for the CGA with Ackley‟s function is 0.4, 

which is considerably performed better than the canonical GA. Also the average 

number of children which have been required to produce these results is 441, 

compared to 12614 for the canonical GA. This indicates that, for certain types of 

problem (bearing in mind the No Free Lunch Theorem, introducing the features 

contained within the CGA can be beneficial. 
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3.6 Chapter Summary 

 

This chapter briefly introduces the idea of single population CGA. This is a genetic 

algorithm mimicking natural population. Like age, life span, population creation rate, 

etc., many familiar names have been used in the CGA modelling program. By using 

these parameters, a new framework of CGA was built. By giving different values to 

the new parameters, a variety of species can be mimicked. The result shows a longer 

life span and lower population creation rate as monkey model has a better 

performance in some specific function. Using the monkey model, after comparing 

three different test functions, current tests results show CGA requires fewer genetic 

operations and is computationally faster than Canonical GA overall when it does 

locate the correct answer. We could say that the newly proposed CGA brings an 

improvement on giving more diversity on the searching space in that it offers a new 

sort of framework for GAs which is much closer to the real world. 
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Chapter 4 Element Effects in Single CGA 
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4.1Chapter Introduction 

 

After describing the framework of CGA and the performance comparison between 

Canonical GA and CGA in three test functions, a deeper question arises:  which 

affects the performance of CGA. Since several new parameters have been 

introduced into this new method, the influence of these items is worth testing and 

discussing. 

 

In this part, population creation rate, life-span, effective-fitness and breeding-age 

have been tested with the two-variable hyperbolic function. At the end of this 

chapter, there is also a tracking of an individual‟s family tree which shows how the 

best solution is created and what would be the required effect to get it. 
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4.2 Elements in Population-size Control 

 

Having established the superior performance of the Monkey model, the next step is 

to look in more detail at the features of life span, the age at which puberty is reached 

and fertility after puberty is reached. Intuition suggests that keeping mature 

individuals in the population for longer than is absolutely necessary is a waste, 

although the results in the previous section indicate there is real benefit to be gained 

from having individuals with relatively long life spans. 

 

To answer these questions, various tests have been undertaken and these are 

discussed in the following sections. 

 

Different from Canonical GA, CGA has a changeable population size during the 

time-steps. How to control the population affects the performance of CGA. Because 

non-stop increasing population will let the program stuck (i.e. Numbers of 

population will be increased dramatically in a way not linear but geometrically 

within short period of time. But computer cannot handle those massive operations 

and it often lead to break down).On the other hand, the population terminated too 

early may cause the failure of solution searching. 

 

Fig. 4.1 illustrates the impact that the birth rate generates on the population size. The 

function for testing was two-variable Hyperbolic function. To compare the birth-rate 

influence, all the other parameters were kept the same (initial population size is 40; 
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effective fitness is box type (will be explained in next section 4.3.1), breeding age is 

between 25 and 50 and maximum life span is 50). The only deletion during the time-

step is life-span exceeding deletion. 

 

Figure 4.1: Population sizes under different Population creation rates 

(Hyperbolic function). 

 

In Fig. 4.1, four curves represent the four population changes along with time-steps 

under different population creation rates. Four population creation rates have been 

tested: high, low, middle, and a population creation rate according to population size. 
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They are 0.029 for the high rate, 0.027 for the low rate, 0.028 for the middle rate and 

a changeable rate control by population size (when the population is less than 100, 

population creation rate will be 0.03; once it is over 100, 0.015 will be used).  

 

All tests start from the same initial population with the same parameter except 

population creation rate. Large different numbers have been tested as well with the 

same function. But those three sets of numbers been selected in Fig 4.1 indicate  that 

a small difference in population creation rate causes significant differences, which 

means even close numbers make the population very sensitive. The results presented 

for the population creation rate 0.028 are not always stable as what shown in Fig. 4.1. 

The reason is the individual been created by crossover and mutation is not exactly 

the same every time. When the better fitness individual comes at early time-steps, it 

will remain in the population and create more children for a longer time by have a 

longer life-span. So it will help population grow. If the new individuals are not good 

enough, their life-spans will be shorter in result of poorer fitness. The population 

size will drop down by cutting those off earlier. In this case, the population may 

reduce to extinction. It is changeable between increase non-stops and extinct early. 

For the above reasons, the population creation rate used in all the other tests is 

variable according to population size as this is the only way to keep things 

reasonably stable. In the tests, it is using a higher rate to produce more children and 

let population grow, .When it reaches the population limit, lower rate will be used to 

reduce the new-born speed and let population decrease by life-span exceeding 

deletion.  
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4.3 Effective Fitness and Breeding Age 

 

Every species has a span of time during which mature individuals are fertile. In 

monkey species, this is roughly from the ages of 15 to 45 but the level of fertility is 

not constant during this time. Assume the CGA is to incorporate more of the features 

of real genetics, thus there should be some variation in the level of fertility for each 

individual.  

 

The way that this has been implemented in the CGA is to introduce a feature called 

effective fitness, where the raw fitness is modified with a function which has been 

investigated in Table 4.1.  

 

4.3.1 Shapes of Effective Fitness 

According to the explanation of effective fitness, ability for individual chosen as 

parent will be determined by both effective-fitness and its own age. It can be 

different shapes for effective-fitness in order to enable comparison. The shapes in 

the Table 4.1 give a graphical representation of the effective fitness with this being a 

function with a range between zero and one which modifies the basic fitness by 

multiplication. In the examples shown the individuals have a maximum life span of 

100 time-steps and the function applies over the lifespan. 
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Table 4.1: Comparison of different Effective-fitness (Hyperbolic function). 

 Shape 

(Effective-fitness vs. Age) 

Failure 

rate  

Number of 

evaluations 

Triangle 

 

0.06 124 

Hyperbolic 

 

0.06 133 

E
ch

el
o
n

 

1 

 

0.93 121 

2 

 

0.06 121 



 

80 

 

Box 

1 

 

0.06 129 

2 

 

0.06 90 

3 

 

0.33 263 

 

 

Table 4.1, shows that four different types of function have been investigated with 

variations for some of the functions in terms of the time span to which they apply. 

As with the previous example, the efficiency and effectiveness is demonstrated 

using two measures of number of evaluations and failure rate. Efficiency is number 

of evaluation, effectiveness is failure rate. Failure rate counted the number of 

unsuccessful runs from a total of 15, and success indicates the algorithm located the 

acceptable solution within limited time steps. Number of evaluation, as before, is the 
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number of offspring produced by the time an acceptable solution is located. In Table 

4.1, it is the average of the 15 runs: with, for the unsuccessful runs all 500 time steps 

being counted. 

 

The most successful in terms of effort is “Box 2” which achieved success on every 

run with an average of only 90 for the 15 runs. It is interesting to compare this with 

“Box 3” which is of the same shape but allows early breeding. This shows quite 

clearly that within the CGA, delayed breeding is a benefit. One presumes that this is 

because it prevents the breeding of younger individuals with older, less fit members 

of the population. This hypothesis is supported by a comparison of the performance 

achieved with the other functions. 

 

4.3.2 Starting Age of Breeding and Best Breeding Age Range 

If delayed breeding is a useful feature, the question arises as to what extent it should 

be delayed. The above example is for 50 time steps but is it the best choice? Another 

choice is for how long an individual should remain fertile. Again the above 

examples are for a maximum of 100 time steps, but is this the optimum value? 

Figure 4.2 gives the results of tests on these two parameters. All other parameters 

and functions used are the same as shown in Tables 3.3 & 3.4.  
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Figure 4.2: Average best fitness (20 runs) comparison among three different 

breeding age range and different starting breeding age. 

 

Figure 4.2 shows the results of implementing different breeding ages. The x axis 

represents the ages at which fertility commences and the y axis stands for the 

average best fitness obtained from 20 runs (zero is the optimal function solution). 

The three lines represent three different ranges of fertility, these being 20, 30 and 50 

time-steps. For example, the first data point from the left hand side on the red line at 
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approximately  Age =10, Fitness = 0.022) means, the average best fitness in 20 runs 

is 0.022, when the breeding starts from age 10 and the breeding range determined as 

50 time-steps (age 10 to 59). .  

 

As is shown by the results in Fig. 4.2, delaying the breeding age somewhat is 

beneficial but beyond roughly 60 time steps the benefits disappear. At 60 time steps, 

it is not too early, and not too late, just at half of the life span to avoid children 

paired with their parents. Also it is better to have a relatively lengthy period of 

fertility with the best results in fig.4.2 being obtained for 50 time-steps. 
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4.4 Family Tree - Champion Family and Mutation in Single CGA 

 

As the aim to see how a best solution is created, a citizen number has been given to 

each individual. By tracking the best result‟s family tree, there are two things which 

catch attention. One is mutation is which has not taken the most important role in the 

whole program. Another is that best result always comes from the champion family. 

The above results indicate that delayed breeding is beneficial, so it is instructive to 

examine how the breeding process works by providing a family tree for the “best” 

solution. This has been achieved by allocating a citizen number to each individual. 

The tracking of the best result‟s family ancestors show two important factors. The 

first is that mutation is not a particularly significant factor although this could be a 

test problem specific feature. The second is that best result always comes from the 

champion family. These two factors will be explained in a minute. 

 

To enable the family tree to be deciphered, it is necessary to explain the coding used. 

This is as follows: 

(Age)            (Age)          ------age to crossover 

Parent 1 *     Parent 2      ------parents citizen numbers 

                     Time-step   ------time-step for crossover 

           Child                    ------child citizen number 
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Figure 4.3: Family tree for first fit solution (De Jong‟s fifth test function) 
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Red circle implies this individual is used to be a Champion during the time steps 

* means child is produced both through mutation and crossover, otherwise only 

crossover. 

 

Fig. 4.3 shows the family tree for first fit solution, which shows how the first fit 

solution individual produces. All its former generations are listed in this family tree. 

The individuals on the top without arrows pointed to are from initial population. Not 

all of the initial population are taking part in the best solution creating process. But 

quite a few of them are repeatedly chosen as parents in this champion family. 

 

Also from Fig. 4.3, it can be seen that many family members of the final solution 

were previous champions. In another words, the final result‟s family comes from a 

succession of previous fittest individuals for a given time step(s). And also it can be 

seen from Fig. 4.3 that some of the individuals, even not local champion, did 

crossover several times in different time-step, which shows one of the benefit of 

CGA – letting individuals remain in the population for quite a long time.  Also the 

family tree, despite the relatively large amount of crossover, only two mutations 

happened. I have tried the higher mutation rate, but the results did not have much 

difference. It indicates that mutation is not a major feature for the given test problem. 
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4.5 Chapter Summary 

 

In this chapter, we analysed factors which influence the single population CGA‟s 

performance, In CGA, population is very sensitive when choosing close population 

creation rate. Population creation rate controls the population size in order to get 

more steady search and children numbers. And effective-fitness type had chosen 

together with population creation rate range affect the speed of solution finding. In 

addition, mutation operator in CGA will help the solution finding. But compared 

with crossover, mutation is not a decisive action.  
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Chapter 5 Multiple Population CGA 
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5.1 Chapter Introduction 

 

As mentioned in section 2.5, parallel genetic algorithms have been introduced to 

develop better GA performance to solve difficult problems. Erick (1995) gives a 

summary of research on Parallel Genetic Algorithms, borrowing an idea from which, 

I tried the multiple population in CGA (Chen, 2010). In this section, the 

performance of a two population CGA is examined. The motivation for trying a two 

population GA comes from the wish to model species‟ real life behaviour when 

competing for resources and to see what impacts this will have on the behaviour and 

performance of CGA. This is possible because the fundamentals of CGA are much 

closer to nature (e.g. the introduction of parameters such as „age‟, effective fitness 

and life-span in chapter 3.3). Hence, the fundamental principle of multiple 

populations with CGA is not simply copying the framework of a “normal” multi-

population GA. It is more like species competition in the real world. 

 

The reason we named this new method „two monkey species CGA‟ is because for 

each population, only the parameters modelling the monkey species were used in the 

current tests (Monkey modelling, see Chapter 3.4). 

 

In this chapter, firstly there are several new features in the two-monkey CGA (TM-

CGA), apart from the Single CGA, which need to introduce specifically. Secondly, 

compared with the single GGA, there is a brief explanation of the framework of TM-
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CGA in section 5.3. Finally, the behaviours comparison between Single CGA and 

Two Monkey CGA is described at the end of this chapter. 
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5.2 New Parameters in TM-CGA 

 

The novelty of the TM-CGA is that unlike the normal multiple populations GA, 

there is no combination or exchange between the two populations. The only shared 

aspect is they are both under the same pressure of there being a limited resource 

which we call “water”. 

 

In addition to the features like age, life-span and etc. in single CGA, there are 

several things newly introduced in two-monkey CGA, such as “water”, “illness” and 

“accident”.  

 

In each time-step, the population is decreased both through age-based deletion and 

accidental death. Age-based deletion is simply the removal from the population of 

an individual whose age exceeds its life-span. Besides, the second type of deletion is 

used whereby a small proportion of the population suffers “accidental death”. The 

risk of “accident” is according to the illness parameter of each individual, which is 

further related to the fitness.  

 

Under the pressure of limitation resource - “water”, once the total population size of 

two populations is over “water” supply (i.e. in the current test, this is set at 120 

individuals), all the individuals from 121 upwards, chosen on the basis of low fitness 

have their illness parameter incremented. This means only the 120 fittest individuals 
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can avoid increasing their illnesses. The random accident selector generates a 

random number and then an individual is selected at random. If this individual‟s 

illness is greater than the random number then it is deleted from the population; so 

called death by “accident”. 

 

So for each time step of TM-CGA there are two pressures on the population size 

these being: 

1. The population is increased through crossover and mutation; the population 

creation rate controls the speed of increase (chapter 4.2). 

2.  The population is decreased through the deletion of individuals, the latter being 

through age by life-span exceeding deletion and “accident” deletion. 
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1. Two populations are acting as single CGA completely separately. 

2. When the total number of individuals of the two populations 

exceeds the “water” supply, for the numbers of the weaker individuals 

(i.e. the least fit) who exceed the limit population allowed for the water 

supply are given an increased rate of illness. 

3.  Randomly selected individuals are subjected to an accident, the risk 

of which is according to their illness parameter, i.e. an individual with 

a high illness parameter is more likely to be killed off.  

 

After the accident deletion, go back to step 1. 

5.3 Framework of TM-CGA 

 

An understanding the parameters used in this new method makes it easier to 

understand the framework of TM-CGA. So the framework can be represented as 

follows: 

 

To make it more vivid and accessible, Fig 5.1 shows the framework in a different 

way. As shown in Fig 5.1, the process starts with the creation of the initial 

population. As in the single CGA (chapter 3.2), each individual is given an age, 

fitness, effective fitness and a life span, but one more parameter will be given as 

well – illness rate, which is set at zero in the beginning. The two sub-CGAs are 
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using exactly the same initial population. The process then starts to work around the 

main loops, but in two separate sub-populations. The thick circle line indicates the 

majority of the population, and the thinner line shows deletion or crossover, etc. 

operators mean only a small number of the individuals are taking part. 

 

All the main processes in the sub-CGA are almost the same as that in single CGA 

(Fig 3.1). Things needed to pay attention to are:  

The box which connects the two circles together is the key point of TM-CGA and is 

the only point of intersection between two sub-populations. “Water” pressure will be 

added here to all the two populations. Illness rate for the lower fitness individuals 

will be increased when the total population exceeds the “water” supply. 

 

Accident deletion is the other way to reduce the population size apart from life-span 

exceeding deletion. A random number will be chosen for accident deletion. Every 

individual will be comparing its illness rate with that accident number. If the illness 

rate is bigger than that number, this individual will be deleted from the population. 

So when the total population goes beyond the “water” limit, it will result in 

increasing the illness rate, which makes the poorer individual have a higher risk on 

the accident deletion scale. 
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Figure 5.1: Framework of two populations CGA 
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5.4 Behaviour of TM-CGA 

 

Accepting the new parameters and the framework of TM-CGA, the behaviours of 

this two population CGA will be shown and discussed in this section. And also the 

comparison between single CGA and TM-CGA will be listed in the later thesis.  

 

De Jong‟s fifth test function (details in chapter 3.5.2.2, Table 3.6, 3.7 and 3.5) is 

used in testing. Ordinary binary coding and tournament selection criterion have been 

used. The initial size of each population is 40 and life-span values have been 

assigned according to the fitness ranking in each population (60 was the maximal 

life-span for the fittest individual, while 40 was the minimal life-span for the worst 

one, and all the others were in between according to their fitness by linear scaling). 

Every individual was also given a random age in the range zero to 50 time-steps. 

The population creation rate was 4% of population. 

 

5.4.1 Performance of TM-CGA 

Figs. 5.2 & 5.3 below illustrate the behaviour of the two-Monkey CGA for an 

optimization using a two-variable De Jong‟s function. 
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Figure 5.2: Population size changes with time-steps in TM-CGA (De Jong‟s 

function). 

 

 

Figure 5.3: Best fitness individual from population 1 & 2 and average fitness 

values of two sub-populations along with time-steps (De Jong‟s function). 
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Fig. 5.2 shows the changes in population size for both population 1 and 2 during 500 

time-steps. The two populations were identical in the beginning. As can be see from 

around time-step 200, the size of population 1 started to increase. After checking 

with the individual output record and the fitness graph (Figure 5.3), there was a 

hypothesis that the reason for this change is because population 1 generated one or 

more highly fit individuals and this resulted in an overall increase in the fitness of 

the population. The way that the accident rate works is that the life-span of fitter 

individuals tends to be somewhat longer than the less fit which means they have an 

enhanced chance of breeding and therefore increasing the overall fitness of the 

population. It can be seen from Fig. 5.3 that the average fitness of population 1 does 

start to become significantly better than that of population2 from around time-step 

280, when the total population size is over 120 (population 1 is around 80, 

population 2 about 40). As this exceeds the “water” limit, the weaker individuals 

suffer increasing levels of illness which lead to a high accident risk. This causes the 

rapid drop in the size of population 2 after 320 time-steps. 

 

Fig. 5.3 shows the best and average fitnesses of population 1 and 2 over the 500 

time-steps. The best fitness of population 1 shows a significant increase at about 250 

time-step when an individual representing the optimum answer is produced. Also 

from tracking all the individuals, the family tree of the first best individual can be 

made. The results show that the best solution came mostly from the champions of 

previous time-steps. Almost all the local champions appeared in the best result‟s 

family. In addition, there are not many of the family members which have been 
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produced through mutation (only one member has been mutated). This indicates that 

for this problem and form of GA, the best results are produced mostly from 

crossover. And this is not a special case, most of the runs show the same 

characteristic. 

 

5.4.2 Competition between Single CGA and TM-CGA 

The comparison of performances between Single CGA and Two-Monkey CGA is 

shown in Table 5.1. The performance of TM-CGA has been compared to that of an 

equivalent Single CGA for De Jong‟s function. The function has two variables, and 

it was encoded with 34 bit binary strings to adequately cover a search space of -

65.535 to 65.535 with three decimal places. Both the S-CGA and TM-CGA have 

been programmed to run on the same computer using C++, so that the performance 

of the two GAs can be directly compared. 

 

In Table 5.1, comparisons for these two methods are based on: failure rate and the 

number of evaluations that have been produced to enable the program to locate a 

satisfactory result. Failure rate means in 15 times random runs, how many 

unsuccessfual runs can occur within 500 time-steps. Number of evaluations means 

when an acceptable result appeared, such number of children have been created, this 

is one way to consider how many genetic operations have occurred. The results of 

the comparison are quite interesting. Althought the successful rate of S-CGA (0.04) 

is smaller than the TM-CGA (0.8), a study of the number of evaluations shows TM-
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CGA, when successful, locates the answer with less effort (i.e. fewer children) than 

the S-CGA. 

 

Table 5.1: Performance of Single CGA and Two-Monkey CGA for De Jong‟s test 

function. 

Failure rate 

Single CGA 

Number of evaluations of the success 

runs 

Average number of 

evaluations 

0.04 

797 872 

754 

 

762 951 

679 570 

714 560 

773 

 

0.8 

Two-Monkey CGA 

Population 1 Population 2 Total Average 

567 329 (best) 896 

654 
272 (best) 263 535 

270 (best) 261 531 
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5.5 Chapter Summary 

 

The newly proposed TM-CGA has been described in this Chapter. It shows an 

improvement on the single CGA in some respects because it offers a new sort of 

framework for multiple populations GA which is much closer to modelling the real 

world. Tests in this thesis have shown that although TM-CGA has a higher failure 

rate than the S-CGA, but it requires fewer genetic operations and is overall 

computationally faster than S-CGA when it does locate the correct answer. 
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Chapter 6 Discussion and Conclusion 
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In this thesis, after reviewing the history and development of GAs, we got a brief 

idea of how ordinary GA works. Chapter 3, 4, and 5 gave more information of the 

GA method – Cardiff Gigantic Algorithm (CGA). Brief ideas of single population 

CGA were described. This is a genetic algorithm that mimics natural population. 

Age, life span, population creation rate, etc., are many of the familiar names that 

have been used in the CGA modelling program. By using those parameters, a new 

framework of CGA was built. By giving different values to the new parameters, a 

variety of species can be mimicked. And the result shows a longer life span and 

lower population creation rate just like monkey model has a better performance in 

some specific functions. From the results, this newly proposed CGA has been shown 

an improvement by giving more diversity within the searching space. It offers a new 

sort of framework for GAs which is much closer to the real world. 

 

Later on, we analyse factors which influence the single population CGA‟s 

performance. In CGA, population is very sensitive when choosing close population 

creation rate. Population creation rate controls the population size in order to get a 

more steady search and children numbers. Effective-fitness type chosen together 

with the population creation rate range affects the speed of solution finding. In 

addition, the mutation operator in CGA will help the solution finding. But compared 

with crossover, mutation is not a decisive action.  

 

The newly proposed two-population CGA, Two-Monkey CGA (TM-CGA) is shown 

last. It shows an improvement on the single CGA in some respects because it offers 
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a new sort of framework for multiple populations GAs which is much closer to 

modelling the real world. Tests in this thesis show that TM-CGA has a higher failure 

rate than the S-CGA. But it requires fewer genetic operations and is overall 

computationally faster than S-CGA when it does locate the correct answer. This is 

interesting because although there is only a very loose coupling between the two 

populations with no exchange of genetic material, the presence of two populations 

influences the search. The main influence is through the illness parameter. 

 

It is a new approach for this fundamentally different method. Although improvement 

in some test functions were seen, there is still much more to be explored and tested 

in order to see the full picture of CGA. Further implementations and testing are 

necessary. But the proposed CGA-based algorithms offer an interesting and novel 

alternative to other forms of GA. 

 

Future work in Civil Engineering 

In civil engineering, genetic algorithms are helpful in many areas during this decade, 

such as optimization of structure design (Jenkins, 1991), detecting structural damage 

(Au, 2003), pipe network optimization (Zheng, 2013) and so on. CGA, as a new 

family member of GAs, can be experimented in these areas. However, because 

different problems have different requests and situations, there is no single method 

which solves all of the problems. It is still good news that there is a different 

approach available and hope that this CGA will fit some of them. 
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Appendix 

 

Code for the programming 

A. Initialize program (Ackley) 

 

#include <stdlib.h> 

#include <iostream.h> 

#include <stdio.h>  

#include <time.h>  

#include <math.h> 

#include <cmath> 

#include <string> 

#include <iomanip.h> 

#include <fstream>  

 

using namespace std; 

 

void sort(); 

double bin2dec(int,int); 

double bin2dec2(int); 

double fit(int); 

 

int individual[500][54]; 

int age[500]; 

int swap1; 
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int swap2; 

int swap3; 

 

ofstream fout("out.txt");   

 

main() 

{ fout << "The initial numbers are: \n"; 

 int c1,c2,d; 

 int i,j; 

 srand((unsigned)time(NULL)); 

 

 for(i=0; i<120; i++) 

 { for(j=0; j<15; j++) 

  { c1=rand()%2; 

   c2=rand()%2; 

   individual[i][j]=c1; 

   individual[i][j+26]=c2; 

   d=rand()%200; 

   age[i]=d; 

  }} 

 

 sort(); 

 

 for(i=80; i<120; i++) 

 { for(int j=0; j<54; j++) 
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  individual[i][j]=0; 

  age[i]=0; 

 } 

 

 for(i=0; i<80; i++) 

 { fout<<bin2dec(1,i)<<" " <<bin2dec(2,i) <<"{"<<fit(i)<<")"<<"   "; 

 } 

 

 fout << "\n\n"; 

 

 fout<<"initial[80][54]={"; 

 for(i=0; i<80; i++) 

 { fout<<",{"; 

  for(j=0; j<54; j++) 

  { fout<<individual[i][j]<<",";} 

  fout<<"}\n                 "; 

 } 

 fout<<"}\n"; 

 

 fout<<"\ninitial_age[80]={"; 

 for(i=0; i<80; i++) 

 { fout<<age[i]<<",";} 

 

 return 0; 

} 
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void sort() 

{ for(int i=0; i<120; i++) 

 { for(int j=i+1; j<120; j++) 

  { if(fit(j)>fit(i)) 

   {for(int m=0; m<54; m++) 

    { swap2=individual[i][m]; 

     individual[i][m]=individual[j][m]; 

     individual[j][m]=swap2; 

    } 

 

    swap3=age[i]; 

    age[i]=age[j]; 

    age[j]=swap3; 

   }}}} 

 

double fit(int i) 

{ double fitness=0; 

 double x1=(double)bin2dec(1,i); 

 double x2=(double)bin2dec(2,i); 

  

 fitness=(double)exp(-

0.2)*(double)sqrt((double)pow((double)x1,2)+(double)pow((double)x2,2))+(double)3*(

(double)cos((double)2*(double)x1)+sin((double)2*(double)x2));  

 return fitness; 
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} 

 

double bin2dec(int m,int i) 

{double dec=0; 

 int j; 

 if(m==1) 

 {for(j=1; j<27; j++) (double)dec+=(double)(individual[i][j])*(double)pow(2.0,(26-

j)); 

 

  if(individual[i][0]==0) return (double)dec/10000000; 

  else return -(double)dec/10000000; 

 } 

 else if(m==2) 

 {for(j=1; j<27; j++) 

(double)dec+=(double)(individual[i][j+27])*(double)pow(2.0,(26-j)); 

 

  if(individual[i][26]==0)  return (double)dec/10000000; 

  else return -(double)dec/10000000; 

 } 

 else {for(j=0; j<54; j++)  

   (double)dec+=(double)(individual[i][j])*(double)pow(2.0,(53-j)); 

  return (double)dec/1000; 

 }} 
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B. Single CGA (Ackley) 

 

#include <stdlib.h> 

#include <iostream.h> 

#include <stdio.h>  

#include <time.h>  

#include <math.h> 

#include <cmath> 

#include <string> 

#include <iomanip.h> 

#include <fstream>  

#include<time.h> 

 

using namespace std; 

 

void initialize(); 

void generation(); 

void deletion(); 

void accident(); 

void putout(int); 

void printout(int); 

double child_number(); 

void select_parent(int); 

void crossover(int); 

void new_generation(int); 
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void mutation(int); 

void new_individual(); 

void average(int); 

double bin2dec(int,int); 

double bin2dec2(int); 

double fit(int); 

double effective_fitness(int); 

double val1(double); 

double val2(double); 

void alivenumber(int); 

void sort(int); 

void re_initial(); 

void migration(); 

 

int g; 

int initial[80][54]={};         //get from initialize program 

int individual[500][54]; 

int initial_age[80]={};         //get from initialize program 

double fitness[1000]; 

int sort_number[1000]; 

double illness[1000]; 

int age[500]; 

int life_span[500]; 

int swap1; 

int swap2; 
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int swap3; 

int swap4; 

 

double best_x1; 

double best_x2; 

int best_illness; 

int best_age; 

double best_fitness; 

double total_fitness; 

double average_fitness; 

double parent_average; 

double parent_best1; 

 

int new_gene[500][54]; 

int parent_number[500]; 

int parent[500][54]; 

int parent_n[500]; 

int parentnumber=0; 

int Chld[500][54]; 

int age_new_gene[500]; 

int new_life_span[500]; 

double new_illness[1000]; 

double f; 

int accident_number; 

int over_lifespan; 
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int mutate_gene; 

int alive_number; 

 

double range; 

 

int number; 

ofstream tout("table.txt"); 

main() 

{ srand((unsigned)time(NULL)); 

 initialize(); 

 g=0; 

 printout(g); 

 average(g); 

 for(int i=0; i<80; i++) 

 { if(fit(i)>average_fitness) 

  { life_span[i]=195-int((fit(i)-average_fitness)/range); 

   if(life_span[i]<190) 

    life_span[i]=190; 

  } 

  else 

  {           life_span[i]=195+int((average_fitness-fit(i))/range); 

   if(life_span[i]>200) 

    life_span[i]=200; 

  }} 
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 putout(g); 

 

 do 

 {g++; 

     generation(); 

  deletion(); 

  accident(); 

  average(g); 

  printout(g); 

  putout(g);   

 }while(g!=500); 

 return 0; 

} 

 

void initialize() 

{ int i,j; 

 for(i=0; i<80; i++) 

 { for(j=0; j<54; j++) 

  {individual[i][j]=initial[i][j];} 

  age[i]=initial_age[i]; 

  illness[i]=1; 

 }} 

 

void alivenumber(int g) 

{ for(int i=0; bin2dec(3,i)!=0 && i<500; i++) 
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 {alive_number=i+1;} 

} 

 

void average(int g) 

{ total_fitness=0; 

 average_fitness=0; 

 best_fitness=fit(0); 

 best_x1=bin2dec(1,0); 

 best_x2=bin2dec(2,0); 

 best_illness=illness[0]; 

 best_age=age[0]; 

 number=0; 

 

 alivenumber(g); 

 

 for(int i=0; i<alive_number; i++) 

 { total_fitness+=(double)fit(i); 

  if(fit(i)<best_fitness) 

  { best_fitness=fit(i); 

   best_x1=bin2dec(1,i); 

   best_x2=bin2dec(2,i); 

   best_illness=illness[i]; 

   best_age=age[i]; 

   number=i; 

  }} 
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 average_fitness=(double)total_fitness/(double)i; 

 range=(average_fitness-best_fitness)/5; 

} 

 

 

void putout(int g) 

{ tout<< g <<" "<<alive_number<<" alive, "; 

 tout<<f<<" Children, "; 

 tout<<accident_number<<" accident, "; 

 tout<<over_lifespan<<" lifespan, "; 

 tout<<"average_fitness: "<<(double)average_fitness; 

 tout<<", best_fitness: "<<best_fitness; 

 tout<<" ("<<best_x1<<", "<<best_x2<<", "<<best_age<<") "; 

 tout<<"\n"; 

} 

 

int test_function() 

{ if(best_fitness<(-0.417946) ) 

  return 1; 

 else  

  return 0; 

} 

 

double fit(int i) 
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{ double fitness1=0; 

 double x1=(double)bin2dec(1,i); 

 double x2=(double)bin2dec(2,i); 

  

 fitness1=(double)exp(-

0.2)*(double)sqrt((double)pow((double)x1,2)+(double)pow((double)x2,2))+(double)3*(

(double)cos((double)2*(double)x1)+sin((double)2*(double)x2));  

 return fitness1; 

} 

 

double val1(double x1,double x2) 

{ double value1=0; 

 value1=(double)x1*(double)exp(-

0.2)/(double)sqrt((double)pow((double)x1,2)+(double)pow((double)x2,2))-

(double)6*sin((double)2*(double)x1); 

 return value1; 

} 

 

double val2(double x1,double x2) 

{ double value2=0; 

 value2=(double)x2*(double)exp(-

0.2)/(double)sqrt((double)pow((double)x1,2)+(double)pow((double)x2,2))+(double)6*c

os((double)2*(double)x2); 

 return value2; 

} 
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double effective_fitness(int i) 

{ double c; 

 if(age[i]>50 && age[i]<=150) c=(double)(1.00); 

 else c=(double)(0); 

 return c; 

} 

double bin2dec(int m,int i) 

{double dec=0; 

 int j; 

 if(m==1) 

 { for(j=1; j<27; j++)  

   (double)dec+=(double)(individual[i][j])*(double)pow(2.0,(26-j)); 

  if(individual[i][0]==0) return (double)dec/10000000; 

  else return -(double)dec/10000000; 

 } 

 else if(m==2) 

 {for(j=1; j<27; j++)  

  (double)dec+=(double)(individual[i][j+27])*(double)pow(2.0,(26-j)); 

  if(individual[i][26]==0)  return (double)dec/10000000; 

  else return -(double)dec/10000000; 

 } 

 else 

 {for(j=0; j<54; j++)  (double)dec+=(double)(individual[i][j]); 

  return (double)dec; 

 }} 
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double bin2dec2(int i) 

{ double dec=0; 

 int j; 

 for(j=0; j<54; j++)  (double)dec+=(double)(new_gene[i][j]); 

 return (double)dec; 

} 

 

void printout(int g) 

{ cout<<g<<": \n";} 

void generation() 

{ re_initial(); 

 f=child_number(); 

 if(f==0) 

 { new_generation(0); 

  new_individual(); 

 } 

 else if(f==(-1)) 

 { for(int i=0; i<500; i++) 

   for(int j=0; j<54; j++) 

    individual[i][j]=0; 

 } 

 else 

 { select_parent(f); 

  crossover(f); 
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  new_generation(f); 

  new_individual(); 

 }} 

 

void re_initial() 

{ parentnumber=0; 

 parent_average=0; 

 parent_best1=0; 

 for(int i=0; i<500; i++) 

 { parent_number[i]=0; 

  parent_n[i]=0; 

  mutate_gene=0; 

  age_new_gene[i]=0; 

  new_life_span[i]=0; 

  new_illness[i]=0; 

  for(int j=0; j<54; j++) 

  { Chld[i][j]=0; 

   new_gene[i][j]=0; 

  }}} 

 

 

double child_number() 

{ int f; 

 for(int c=0; c<alive_number; c++) 

 { if(effective_fitness(c)>0) 
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  { parent_number[parentnumber]=c; 

   parentnumber++; 

   parent_average+=fit(c); 

   if(fit(c)<parent_best1) parent_best1=fit(c); 

  }} 

 

 parent_average=parent_average/parentnumber; 

 

 if(alive_number==0) f=(-1); 

 else if(parentnumber==0)     f=0; 

 else if(alive_number>=160)  f=(int)((double)0.01*(double)alive_number); 

 else f=(int)((double)0.03*(double)alive_number); 

 return f; 

} 

 

void select_parent(int f) 

{ int m,p; 

 int n,q; 

 for(int i=0; i<f; i++) 

 { m=rand()%parentnumber; 

  n=rand()%parentnumber; 

  p=rand()%parentnumber; 

  q=rand()%parentnumber; 

   

  if(fit(parent_number[m])<fit(parent_number[n])) 
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  {for(int j=0; j<54; j++) 

   {parent[2*i][j]=individual[parent_number[m]][j];} 

  } 

  else  

  { for(int j=0; j<54; j++) 

   {parent[2*i][j]=individual[parent_number[n]][j]; } 

  } 

  if(fit(parent_number[p])<fit(parent_number[q])) 

  {for(int j=0; j<54; j++) 

   {parent[2*i+1][j]=individual[parent_number[p]][j];} 

  } 

  else  

  {for(int j=0; j<54; j++) 

   {parent[2*i+1][j]=individual[parent_number[q]][j];} 

  }}} 

void crossover(int f) 

{ int b; 

 int i,j; 

 for(i=0; i<f; i++) 

 { srand((unsigned)time(NULL)); 

  b=rand()%54; 

  for(j=0; j<b; j++) 

  { individual[499][j]=parent[2*i+1][j]; 

   individual[498][j]=parent[2*i][j]; 

  } 
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  for(j=b; j<54; j++) 

  { individual[499][j]=parent[2*i][j]; 

   individual[498][j]=parent[2*i+1][j]; 

  } 

  if(fit(499)<fit(498)) 

  {for(j=0; j<54; j++) Chld[i][j]=individual[499][j]; } 

  else {for(j=0; j<54; j++) Chld[i][j]=individual[498][j];} 

 

  for(j=0;j<54;j++) 

  { individual[499][j]=0; 

   individual[498][j]=0; 

  }}} 

void new_generation(int f) 

{ int i,j; 

 for(i=0; i<alive_number; i++) 

 { for(j=0; j<54; j++) 

  {new_gene[i][j]=individual[i][j];} 

  age_new_gene[i]=age[i]+1; 

  new_life_span[i]=life_span[i]; 

  new_illness[i]=illness[i]; 

 } 

 for(int m=0; m<f; m++) 

 { for(j=0; j<54; j++) 

  {new_gene[i][j]=Chld[m][j];} 

  age_new_gene[i]=1; 
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  new_life_span[i]=500; 

  new_illness[i]=1; 

  mutation(i); 

  i++; 

 }} 

void mutation(int i) 

{ int b; 

 srand((unsigned)time(NULL)); 

 if((rand()%1000)<50) 

 { b=rand()%54; 

  new_gene[i][b]=abs(new_gene[i][b]-1);  

 }} 

 

void new_individual() 

{ int i, j; 

 for(i=0;i<500;i++) 

 { for(j=0;j<54;j++) individual[i][j]=0; 

  age[i]=0; 

  life_span[i]=0; 

  illness[i]=1; 

 } 

 for(i=0; i<500; i++) 

 { for(j=0; j<54; j++) 

  {individual[i][j]=new_gene[i][j];} 

  age[i]=age_new_gene[i]; 
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  life_span[i]=new_life_span[i]; 

  illness[i]=new_illness[i]; 

 }} 

 

void deletion() 

{ int i; 

 for(i=0; i<500; i++) 

 { if(life_span[i]==500) 

  {if(fit(i)>average_fitness) 

   { life_span[i]=195-int((fit(i)-average_fitness)/range); 

    if(life_span[i]<190) life_span[i]=190; 

   } 

   else 

   { life_span[i]=195+int((average_fitness-fit(i))/range); 

    if(life_span[i]>200) 

    life_span[i]=200; 

   }}}} 

 

void accident() 

{ int i,j,m,n,b; 

 alivenumber(g); 

 over_lifespan=0; 

 for(i=1,m=0; m<alive_number; m++,i++) 

 { if(age[i-1]>life_span[i-1]) 

  { for(n=i-1; n<=alive_number; n++) 
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   {for(j=0; j<54; j++)  individual[n][j]=individual[n+1][j]; 

   age[n]=age[n+1]; 

   life_span[n]=life_span[n+1]; 

   illness[n]=illness[n+1]; 

   } 

   i--; 

   over_lifespan++; 

  }} 

 

 alivenumber(g); 

 accident_number=0; 

 

 for(i=1,m=0; m<alive_number; m++,i++) 

 { b = rand()%1000; 

  if(b<10) 

  { for(n=i-1; n<=alive_number; n++) 

   { for(j=0; j<54; j++) 

     individual[n][j]=individual[n+1][j]; 

    age[n]=age[n+1]; 

    life_span[n]=life_span[n+1]; 

    illness[n]=illness[n+1]; 

   } 

   i--; 

   accident_number++; 

  }}} 
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C. TM-CGA (De Jong) 

 

#include <stdlib.h> 

#include <iostream.h> 

#include <stdio.h>  

#include <time.h>  

#include <math.h> 

#include <cmath> 

#include <string> 

#include <iomanip.h> 

#include <fstream>  

#include<time.h> 

 

using namespace std; 

 

void initialize(); 

void change1(); 

void change2(); 

void change_back1(); 

void change_back2(); 

void generation1(); 

void generation2(); 

void deletion(); 
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void accident(); 

void putout(); 

void printout(int); 

double child_number1(); 

double child_number2(); 

void select_parent1(int); 

void select_parent2(int); 

void crossover1(int); 

void crossover2(int); 

void new_generation1(int); 

void new_generation2(int); 

void mutation1(int); 

void mutation2(int); 

void new_individual1(); 

void new_individual2(); 

void average1(int); 

void average2(int); 

double bin2dec1(int,int); 

double bin2dec12(int); 

double fit1(int); 

double effective_fitness1(int); 

double bin2dec2(int,int); 

double bin2dec22(int); 

double fit2(int); 

double effective_fitness2(int); 
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double val1(double,double); 

double val2(double,double); 

void alivenumber1(int); 

void alivenumber2(int); 

void sort(int); 

void re_initial1(); 

void re_initial2(); 

 

int g; 

int initial1[40][34]={}; // get from initialize program 

int initial2[40][34]={}; // get from initialize program 

 

int initial_age1[40]={}; // get from initialize program 

int initial_age2[40]={}; // get from initialize program 

int individual1[500][34]; 

int individual2[500][34]; 

double fit[500]; 

int sort_number[500]; 

int citizen_number1[10000]; 

double illness1[1000]; 

int citizen_number2[10000]; 

double illness2[1000]; 

int age1[500]; 

int age2[500]; 

int life_span1[500]; 
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int life_span2[500]; 

int swap1; 

int swap2; 

int swap3; 

int swap4; 

 

int crossover_mask[34]={ }; // set an binary string 

int mutation_mask[34]={ }; // set an binary string 

 

double best11; 

double best12; 

int best13; 

int best14; 

int best15; 

double best_fitness1; 

double total_fitness1; 

double average_fitness1; 

double parent_average1; 

double parent_best1; 

 

double best21; 

double best22; 

int best23; 

int best24; 

int best25; 
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double best_fitness2; 

double total_fitness2; 

double average_fitness2; 

double parent_average2; 

double parent_best2; 

 

int new_gene1[500][34]; 

int new_gene2[500][34]; 

int parent_number1[500]; 

int parent_number2[500]; 

int parent1[500][34]; 

int parent2[500][34]; 

int parent_n1[500]; 

int parent_n2[500]; 

int parentnumber1=0; 

int parentnumber2=0; 

int Chld1[500][34]; 

int Chld2[500][34]; 

int age_new_gene1[500]; 

int age_new_gene2[500]; 

int new_life_span1[500]; 

int new_life_span2[500]; 

int mutate_gene1; 

int mutate_gene2; 

int alive_number1; 
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int alive_number2; 

 

double a[2][25]={{-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-

16,0,16,32},{-32,-32,-32,-32,-32,-16,-16,-16,-16,-

16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32}}; 

 

ofstream fout("out.txt");   

ofstream tout1("table1.txt"); 

ofstream tout2("table2.txt"); 

ofstream pout1("composition1.txt"); 

ofstream pout2("composition2.txt"); 

ofstream rout1("parent1.txt"); 

ofstream rout2("parent2.txt"); 

 

main() 

{srand((unsigned)time(NULL)); 

 initialize(); 

 g=1; 

 printout(g); 

 average1(g); 

 average2(g); 

 for(int i=0; i<40; i++) 

 { if((fit1(i)/average_fitness1)<0.5) 

   life_span1[i]=40; 

  else if((fit1(i)/average_fitness1)>=0.5 && (fit1(i)/average_fitness1)<0.55) 
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   life_span1[i]=41; 

  else if((fit1(i)/average_fitness1)>=0.55 && (fit1(i)/average_fitness1)<0.6) 

   life_span1[i]=42; 

  else if((fit1(i)/average_fitness1)>=0.6 && (fit1(i)/average_fitness1)<0.65) 

   life_span1[i]=43; 

  else if((fit1(i)/average_fitness1)>=0.65 && (fit1(i)/average_fitness1)<0.7) 

   life_span1[i]=44; 

  else if((fit1(i)/average_fitness1)>=0.7 && (fit1(i)/average_fitness1)<0.75) 

   life_span1[i]=45; 

  else if((fit1(i)/average_fitness1)>=0.75 && (fit1(i)/average_fitness1)<0.8) 

   life_span1[i]=46; 

  else if((fit1(i)/average_fitness1)>=0.8 && (fit1(i)/average_fitness1)<0.85) 

   life_span1[i]=47; 

  else if((fit1(i)/average_fitness1)>=0.85 && (fit1(i)/average_fitness1)<0.9) 

   life_span1[i]=48; 

  else if((fit1(i)/average_fitness1)>=0.9 && (fit1(i)/average_fitness1)<0.95) 

   life_span1[i]=49; 

  else if((fit1(i)/average_fitness1)>=0.95 && (fit1(i)/average_fitness1)<1.05) 

   life_span1[i]=50; 

  else if((fit1(i)/average_fitness1)>=1.05 && (fit1(i)/average_fitness1)<1.1) 

   life_span1[i]=51; 

  else if((fit1(i)/average_fitness1)>=1.1 && (fit1(i)/average_fitness1)<1.15) 

   life_span1[i]=52; 

  else if((fit1(i)/average_fitness1)>=1.15 && (fit1(i)/average_fitness1)<1.2) 

   life_span1[i]=53; 
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  else if((fit1(i)/average_fitness1)>=1.2 && (fit1(i)/average_fitness1)<1.25) 

   life_span1[i]=54; 

  else if((fit1(i)/average_fitness1)>=1.25 && (fit1(i)/average_fitness1)<1.3) 

   life_span1[i]=55; 

  else if((fit1(i)/average_fitness1)>=1.3 && (fit1(i)/average_fitness1)<1.35) 

   life_span1[i]=56; 

  else if((fit1(i)/average_fitness1)>=1.35 && (fit1(i)/average_fitness1)<1.4) 

   life_span1[i]=57; 

  else if((fit1(i)/average_fitness1)>=1.4 && (fit1(i)/average_fitness1)<1.45) 

   life_span1[i]=58; 

  else if((fit1(i)/average_fitness1)>=1.45 && (fit1(i)/average_fitness1)<1.5) 

   life_span1[i]=59; 

  else 

   life_span1[i]=60; 

 } 

 

 for(i=0; i<40; i++) 

 { if((fit2(i)/average_fitness2)<0.5) 

   life_span2[i]=40; 

  else if((fit2(i)/average_fitness2)>=0.5 && (fit2(i)/average_fitness2)<0.55) 

   life_span2[i]=41; 

  else if((fit2(i)/average_fitness2)>=0.55 && (fit2(i)/average_fitness2)<0.6) 

   life_span2[i]=42; 

  else if((fit2(i)/average_fitness2)>=0.6 && (fit2(i)/average_fitness2)<0.65) 

   life_span2[i]=43; 
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  else if((fit2(i)/average_fitness2)>=0.65 && (fit2(i)/average_fitness2)<0.7) 

   life_span2[i]=44; 

  else if((fit2(i)/average_fitness2)>=0.7 && (fit2(i)/average_fitness2)<0.75) 

   life_span2[i]=45; 

  else if((fit2(i)/average_fitness2)>=0.75 && (fit2(i)/average_fitness2)<0.8) 

   life_span2[i]=46; 

  else if((fit2(i)/average_fitness2)>=0.8 && (fit2(i)/average_fitness2)<0.85) 

   life_span2[i]=47; 

  else if((fit2(i)/average_fitness2)>=0.85 && (fit2(i)/average_fitness2)<0.9) 

   life_span2[i]=48; 

  else if((fit2(i)/average_fitness2)>=0.9 && (fit2(i)/average_fitness2)<0.95) 

   life_span2[i]=49; 

  else if((fit2(i)/average_fitness2)>=0.95 && (fit2(i)/average_fitness2)<1.05) 

   life_span2[i]=50; 

  else if((fit2(i)/average_fitness2)>=1.05 && (fit2(i)/average_fitness2)<1.1) 

   life_span2[i]=51; 

  else if((fit2(i)/average_fitness2)>=1.1 && (fit2(i)/average_fitness2)<1.15) 

   life_span2[i]=52; 

  else if((fit2(i)/average_fitness2)>=1.15 && (fit2(i)/average_fitness2)<1.2) 

   life_span2[i]=53; 

  else if((fit2(i)/average_fitness2)>=1.2 && (fit2(i)/average_fitness2)<1.25) 

   life_span2[i]=54; 

  else if((fit2(i)/average_fitness2)>=1.25 && (fit2(i)/average_fitness2)<1.3) 

   life_span2[i]=55; 

  else if((fit2(i)/average_fitness2)>=1.3 && (fit2(i)/average_fitness2)<1.35) 
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   life_span2[i]=56; 

  else if((fit2(i)/average_fitness2)>=1.35 && (fit2(i)/average_fitness2)<1.4) 

   life_span2[i]=57; 

  else if((fit2(i)/average_fitness2)>=1.4 && (fit2(i)/average_fitness2)<1.45) 

   life_span2[i]=58; 

  else if((fit2(i)/average_fitness2)>=1.45 && (fit2(i)/average_fitness2)<1.5) 

   life_span2[i]=59; 

  else 

   life_span2[i]=60; 

 } 

 

 do 

 { g++; 

  if(alive_number1!=0) 

   generation1(); 

  if(alive_number2!=0) 

   generation2(); 

 

  printout(g); 

  average1(g); 

  average2(g); 

  deletion(); 

  accident(); 

  if(g%5==0) 

  { pout1<<"\n"<<g<<":\n"; 
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   pout2<<"\n"<<g<<":\n"; 

   for(i=alive_number1-1; i>0; i--) 

   { 

    pout1<<age1[i]<<", "<<fit1(i)<<"\n"; 

   } 

   for(i=alive_number2; i>0; i--) 

   { 

    pout2<<age2[i]<<", "<<fit2(i)<<"\n"; 

   } 

  } 

 }while(g!=500); 

 return 0; 

} 

 

void initialize() 

{ int i,j; 

 for(i=0; i<40; i++) 

 { for(j=0; j<34; j++) 

  { individual1[i][j]=initial1[i][j]; 

   individual2[i][j]=initial2[i][j]; 

  } 

  age1[i]=initial_age1[i]; 

  age2[i]=initial_age2[i]; 

 } 
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 for(i=0; i<10000; i++) 

 { citizen_number1[i]=i+1; 

  citizen_number2[i]=i+1; 

  illness1[i]=1; 

  illness2[i]=1; 

 }} 

 

void alivenumber1(int g) 

{ alive_number1=0; 

 for(int i=0; bin2dec1(3,i)!=0 && i<500; i++) 

 { alive_number1++; 

 }} 

void alivenumber2(int g) 

{ alive_number2=0; 

 

 for(int i=0; bin2dec2(3,i)!=0 && i<500; i++) 

 {alive_number2++; 

 }} 

 

void average1(int g) 

{ total_fitness1=0; 

 average_fitness1=0; 

 best_fitness1=fit1(0); 

 best11=bin2dec1(1,0); 

 best12=bin2dec1(2,0); 
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 best13=0; 

 best14=0; 

 best15=0; 

 alivenumber1(g); 

 for(int i=0; i<alive_number1; i++) 

 { total_fitness1+=(double)fit1(i); 

  if(fit1(i)>best_fitness1) 

  { best_fitness1=fit1(i); 

   best11=bin2dec1(1,i); 

   best12=bin2dec1(2,i); 

   best13=citizen_number1[i]; 

   best14=illness1[i]; 

   best15=age1[i]; 

  }} 

 average_fitness1=(double)total_fitness1/(double)i; 

 tout1<< g <<" "<<alive_number1<<" alive, "<<"average_fitness1: "; 

 tout1<<(double)average_fitness1; 

 tout1<<", best_fitness: "<<best_fitness1; 

 tout1<<" ("<<best11<<", "<<best12<<", "<<best15<<") "<<best13; 

 tout1<<"\n"; 

} 

 

void average2(int g) 

{ total_fitness2=0; 

 average_fitness2=0; 
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 best_fitness2=fit2(0); 

 best21=bin2dec2(1,0); 

 best22=bin2dec2(2,0); 

 best23=0; 

 best24=0; 

 best25=0; 

 alivenumber2(g); 

 for(int i=0; i<alive_number2; i++) 

 { total_fitness2+=(double)fit2(i); 

  if(fit2(i)>best_fitness2) 

  { best_fitness2=fit2(i); 

   best21=bin2dec2(1,i); 

   best22=bin2dec2(2,i); 

   best23=citizen_number2[i]; 

   best24=illness2[i]; 

   best25=age2[i]; 

  }} 

 average_fitness2=(double)total_fitness2/(double)i; 

 tout2<< g <<" "<<alive_number2<<" alive, "<<"total_fitness2: "; 

 tout2<<(double)average_fitness2; 

 tout2<<", best_fitness: "<<best_fitness2; 

 tout2<<" ("<<best21<<", "<<best22<<", "<<best25<<") "<<best23; 

 tout2<<"\n"; 

} 
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int test_function() 

{ if((val1(best11,best12)==0 && val2(best11,best12)==0 && best11<65.534 && 

best11>(-65.534) && best12<65.534 && best12>(-65.534)) 

  || (val1(best21,best22)==0 && val2(best21,best22)==0 && best21<65.534 

&& best21>(-65.534) && best22<65.534 && best22>(-65.534)))  

  return 1; 

 else  return 0; 

} 

 

double fit1(int i) 

{ double fitness=0; 

 double x1=bin2dec1(1,i); 

 double x2=bin2dec1(2,i);  

 for(int j=1; j<26; j++) 

 { fitness+=1/(j+pow((x1-a[0][j-1]),6)+pow((x2-a[1][j-1]),6));  

 } 

 fitness=(fitness+0.002)/1.002; 

 return fitness; 

} 

 

double fit2(int i) 

{ double fitness=0; 

 double x1=bin2dec2(1,i); 

 double x2=bin2dec2(2,i);  

 for(int j=1; j<26; j++) 
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 { fitness+=1/(j+pow((x1-a[0][j-1]),6)+pow((x2-a[1][j-1]),6));  

 } 

 fitness=(fitness+0.002)/1.002; 

 return fitness; 

} 

 

double effective_fitness1(int i) 

{ double c; 

 if(age1[i]>=25 && age1[i]<life_span1[i]) 

  c=(double)(1.00); 

 else c=(double)(0); 

 return c; 

} 

 

double effective_fitness2(int i) 

{ double c; 

 if(age2[i]>=25 && age2[i]<life_span2[i]) 

  c=(double)(1.00); 

 else c=(double)(0); 

 return c; 

} 

 

double val1(double x1,double x2) 

{ double value1=0; 

 for(int j=1; j<26; j++) 
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  value1+=(double)(-6)*(double)pow((double)((double)x1-(double)a[0][j-

1]),5)/(double)pow((double)((double)j+(double)pow((double)((double)x1-

(double)a[0][j-1]),6)+(double)pow((double)((double)x2-(double)a[1][j-1]),6)),2);  

 return value1; 

} 

 

double val2(double x1,double x2) 

{ double value2=0; 

 for(int j=1; j<26; j++) 

  value2+=(double)(-6)*(double)pow((double)((double)x2-(double)a[1][j-

1]),5)/(double)pow((double)((double)j+(double)pow((double)((double)x1-

(double)a[0][j-1]),6)+(double)pow((double)((double)x2-(double)a[1][j-1]),6)),2); 

 return value2; 

} 

 

double bin2dec1(int m,int i) 

{ double dec=0; 

 int j; 

 if(m==1) 

 { for(j=1; j<17; j++)  

   (double)dec+=(double)(individual1[i][j])*(double)pow(2.0,(16-j)); 

  if(individual1[i][0]==1) 

   return (double)(-1)*dec/1000; 

  else return (double)dec/1000; 

 } 
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 else if(m==2) 

 { for(j=1; j<17; j++)  

   (double)dec+=(double)(individual1[i][j+17])*(double)pow(2.0,(16-

j)); 

  if(individual1[i][17]==1) 

   return (double)(-1)*dec/1000; 

  else return (double)dec/1000; 

 } 

 else 

 { for(j=0; j<34; j++)  

   (double)dec+=(double)(individual1[i][j])*(double)pow(2.0,(33-j)); 

  return (double)dec/1000; 

 }} 

double bin2dec2(int m,int i) 

{ double dec=0; 

 int j; 

 if(m==1) 

 { for(j=1; j<17; j++)  

   (double)dec+=(double)(individual2[i][j])*(double)pow(2.0,(16-j)); 

  if(individual2[i][0]==1) 

   return (double)(-1)*dec/1000; 

  else return (double)dec/1000; 

 } 

 else if(m==2) 

 { for(j=1; j<17; j++)  
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   (double)dec+=(double)(individual2[i][j+17])*(double)pow(2.0,(16-

j)); 

  if(individual2[i][17]==1) 

   return (double)(-1)*dec/1000; 

  else return (double)dec/1000; 

 } 

 else 

 { for(j=0; j<34; j++)  

   (double)dec+=(double)(individual2[i][j])*(double)pow(2.0,(33-j)); 

  return (double)dec/1000; 

 }} 

 

double bin2dec12(int i) 

{ double dec=0; 

 int j; 

 for(j=0; j<34; j++)  

  (double)dec+=(double)(new_gene1[i][j])*(double)pow(2.0,(33-j)); 

 return (double)dec/1000; 

} 

double bin2dec22(int i) 

{ double dec=0; 

 int j; 

 for(j=0; j<34; j++)  

  (double)dec+=(double)(new_gene2[i][j])*(double)pow(2.0,(33-j)); 

 return (double)dec/1000; 
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} 

 

void printout(int g) 

{ cout<<g<<": \n"; 

 fout<<g<<": \n"; 

} 

 

void generation1() 

{ re_initial1(); 

 double f1=child_number1(); 

 if(f1==0) 

 { new_generation1(0); 

  new_individual1(); 

 } 

 else if(f1==(-1)) 

 { for(int i=0; i<500; i++) 

   for(int j=0; j<34; j++) 

    individual1[i][j]=0; 

 } 

 else 

 { select_parent1(f1); 

  crossover1(f1); 

  new_generation1(f1); 

  new_individual1(); 

 }} 
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void generation2() 

{ re_initial2(); 

 double f2=child_number2(); 

 if(f2==0) 

 { new_generation2(0); 

  new_individual2(); 

 } 

 else if(f2==(-1)) 

 { for(int i=0; i<500; i++) 

   for(int j=0; j<34; j++) 

    individual2[i][j]=0; 

 } 

 else 

 { select_parent2(f2); 

  crossover2(f2); 

  new_generation2(f2); 

  new_individual2(); 

 }} 

 

void re_initial1() 

{ parentnumber1=0; 

 parent_average2=0; 

 parent_best1=0; 

 for(int i=0; i<500; i++) 
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 { parent_number1[i]=0; 

  parent_n1[i]=0; 

  mutate_gene1=0; 

  age_new_gene1[i]=0; 

  new_life_span1[i]=0; 

  for(int j=0; j<34; j++) 

  { Chld1[i][j]=0; 

   new_gene1[i][j]=0; 

  }}} 

void re_initial2() 

{ parentnumber2=0; 

 parent_average2=0; 

 parent_best2=0; 

 for(int i=0; i<500; i++) 

 { parent_number2[i]=0; 

  parent_n2[i]=0; 

  mutate_gene2=0; 

  age_new_gene2[i]=0; 

  new_life_span2[i]=0; 

  for(int j=0; j<34; j++) 

  { Chld2[i][j]=0; 

   new_gene2[i][j]=0; 

  }}} 
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double child_number1() 

{ int f; 

 for(int c=0; c<alive_number1; c++) 

 { if(effective_fitness1(c)>0) 

  { parent_number1[parentnumber1]=c; 

   parentnumber1++; 

   parent_average1+=fit1(c); 

   if(fit1(c)>parent_best1) 

    parent_best1=fit1(c); 

  }} 

 parent_average1=parent_average1/parentnumber1; 

 rout1<<g<<" : "<<"parent number is: "<<parentnumber1<<", parent best is: 

"<<parent_best1<<", average is: "<<parent_average1<<"\n"; 

 if(alive_number1==0) f=(-1); 

 else if(parentnumber1==0) f=0; 

 else f=(int)((double)0.04*(double)alive_number1); 

 return f; 

} 

 

double child_number2() 

{ int f; 

 for(int c=0; c<alive_number2; c++) 

 { if(effective_fitness2(c)>0) 

  { parent_number2[parentnumber2]=c; 

   parentnumber2++; 
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   parent_average2+=fit2(c); 

   if(fit2(c)>parent_best2) 

    parent_best2=fit2(c); 

  }} 

 parent_average2=parent_average2/parentnumber2; 

 rout2<<g<<" : "<<"parent number is: "<<parentnumber2<<", parent best is: 

"<<parent_best2<<", average is: "<<parent_average2<<"\n"; 

 

 if(alive_number1==0) f=(-1); 

 else if(parentnumber2==0) f=0; 

 else     f=(int)((double)0.04*(double)alive_number2); 

 return f; 

} 

 

void select_parent1(int f) 

{ int m,p; 

 int n,q; 

 //srand((int)time(0)) 

 for(int i=0; i<f; i++) 

 { m=rand()%parentnumber1; 

  n=rand()%parentnumber1; 

  p=rand()%parentnumber1; 

  q=rand()%parentnumber1; 

  if(fit1(parent_number1[m])>fit1(parent_number1[n])) 

  { for(int j=0; j<34; j++) 
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   { parent1[2*i][j]=individual1[parent_number1[m]][j]; 

   } 

   fout<<"1 selected parents is: 

"<<citizen_number1[parent_number1[m]]<<"("<<age1[parent_number1[m]]

 <<","<<fit1(parent_number1[m])<<")"<<"\n"; 

  } 

  else  

  { for(int j=0; j<34; j++) 

   { parent1[2*i][j]=individual1[parent_number1[n]][j]; 

   } 

   fout<<"1 selected parents are: 

"<<citizen_number1[parent_number1[n]]<<"("<<age1[parent_number1[n]]<<","<<fit1(

parent_number1[n]) <<")"<<"\n"; 

  } 

  if(fit1(parent_number1[p])>fit1(parent_number1[q])) 

  { for(int j=0; j<34; j++) 

   { parent1[2*i+1][j]=individual1[parent_number1[p]][j]; 

   } 

   fout<<"1 selected parents is: 

"<<citizen_number1[parent_number1[p]]<<"("<<age1[parent_number1[p]]<<","<<fit1(

parent_number1[p]) <<")"<<"\n"; 

  } 

  else  

  { for(int j=0; j<34; j++) 

   { parent1[2*i+1][j]=individual1[parent_number1[q]][j]; 
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   } 

   fout<<"1 selected parents are: 

"<<citizen_number1[parent_number1[q]]<<"("<<age1[parent_number1[q]]<<","<<fit1(

parent_number1[q]) <<")"<<"\n"; 

  }}} 

 

void select_parent2(int f) 

{ int m,p; 

 int n,q; 

 //srand((int)time(0)) 

 for(int i=0; i<f; i++) 

 { m=rand()%parentnumber2; 

  n=rand()%parentnumber2; 

  p=rand()%parentnumber2; 

  q=rand()%parentnumber2;   

  if(fit2(parent_number2[m])>fit2(parent_number2[n])) 

  { for(int j=0; j<34; j++) 

   { parent2[2*i][j]=individual2[parent_number2[m]][j]; 

   } 

   fout<<"2 selected parents is: 

"<<citizen_number2[parent_number2[m]]<<"("<<age2[parent_number2[m]]<<","<<fit

2(parent_number2[m])<<")"<<"\n"; 

  } 

  else  

  { for(int j=0; j<34; j++) 
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   {parent2[2*i][j]=individual2[parent_number2[n]][j]; 

   } 

   fout<<"2 selected parents are: 

"<<citizen_number2[parent_number2[n]]<<"("<<age2[parent_number2[n]]<<","<<fit2(

parent_number2[n]) <<")"<<"\n"; 

  } 

  if(fit2(parent_number2[p])>fit2(parent_number2[q])) 

  { for(int j=0; j<34; j++) 

   { parent2[2*i+1][j]=individual2[parent_number2[p]][j]; 

   } 

   fout<<"2 selected parents is: 

"<<citizen_number2[parent_number2[p]]<<"("<<age2[parent_number2[p]]<<","<<fit2(

parent_number2[p]) <<")"<<"\n"; 

  } 

  else  

  { for(int j=0; j<34; j++) 

   { parent2[2*i+1][j]=individual2[parent_number2[q]][j]; 

   } 

   fout<<"2 selected parents are: 

"<<citizen_number2[parent_number2[q]]<<"("<<age2[parent_number2[q]]<<","<<fit2(

parent_number2[q]) <<")"<<"\n"; 

  }}} 

 

void crossover1(int f) 

{ for(int i=0; i<f; i++) 
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 { int m=rand()%34; 

  for(int j=0; j<m; j++) 

  {  individual1[499][j]=parent1[2*i+1][j]; 

   individual1[498][j]=parent1[2*i][j]; 

  } 

  for(j=m; j<34; j++) 

  { individual1[499][j]=parent1[2*i][j]; 

   individual1[498][j]=parent1[2*i+1][j]; 

  } 

  if(fit1(499)>fit1(498)) 

  { for(int j=0; j<34; j++) 

    Chld1[i][j]=individual1[499][j]; 

  } 

  else 

  { for(int j=0; j<34; j++) 

    Chld1[i][j]=individual1[498][j]; 

  } 

  for(j=0;j<34;j++) 

  { individual1[499][j]=0; 

   individual1[498][j]=0; 

  }}} 

 

void crossover2(int f) 

{ for(int i=0; i<f; i++) 

 { int m=rand()%34; 
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  for(int j=0; j<m; j++) 

  {  individual2[499][j]=parent2[2*i+1][j]; 

   individual2[498][j]=parent2[2*i][j]; 

  } 

  for(j=m; j<34; j++) 

  { individual2[499][j]=parent2[2*i][j]; 

   individual2[498][j]=parent2[2*i+1][j]; 

  } 

  if(fit2(499)>fit2(498)) 

  { for(int j=0; j<34; j++) 

    Chld2[i][j]=individual2[499][j]; 

  } 

  else 

  { for(int j=0; j<34; j++) 

    Chld2[i][j]=individual2[498][j]; 

  } 

  for(j=0;j<34;j++) 

  { individual2[499][j]=0; 

   individual2[498][j]=0; 

  }}} 

void new_generation1(int f) 

{ int i,j; 

 for(i=0; i<alive_number1; i++) 

 { for(j=0; j<34; j++) 

  {new_gene1[i][j]=individual1[i][j]; 
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  } 

  age_new_gene1[i]=age1[i]+1; 

  new_life_span1[i]=life_span1[i]; 

 } 

 for(int m=0; m<f; m++) 

 { for(j=0; j<34; j++) 

  { new_gene1[i][j]=Chld1[m][j]; } 

  age_new_gene1[i]=1; 

  new_life_span1[i]=100; 

  mutation1(i); 

  i++; 

 }} 

 

void new_generation2(int f) 

{ int i,j; 

 for(i=0; i<alive_number2; i++) 

 { for(j=0; j<34; j++) 

  { new_gene2[i][j]=individual2[i][j]; } 

  age_new_gene2[i]=age2[i]+1; 

  new_life_span2[i]=life_span2[i]; 

 } 

 for(int m=0; m<f; m++) 

 { for(j=0; j<34; j++) 

  {new_gene2[i][j]=Chld2[m][j]; } 

  age_new_gene2[i]=1; 
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  new_life_span2[i]=100;  

  mutation2(i); 

  i++; 

 }} 

 

void mutation1(int i) 

{int j,b; 

 //srand((int)time(0)) 

 b = rand() % 1000; 

 if(b<=20) 

 { j=rand()%34; 

  new_gene1[i][j]=abs(new_gene1[i][j]-1); 

  fout<<"\n"<<"mutation individual in p1: "<<citizen_number1[i]<<"\n"; 

 }} 

 

void mutation2(int i) 

{ int j,b; 

 //srand((int)time(0)) 

 b = rand() % 1000; 

 if(b<=20) 

 { j=rand()%34; 

  new_gene2[i][j]=abs(new_gene2[i][j]-1); 

  fout<<"\n"<<"mutation individual in p2: "<<citizen_number2[i]<<"\n"; 

 }} 
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void new_individual1() 

{ int i, j,m; 

 for(i=0;i<500;i++) 

 { for(j=0;j<34;j++) 

   individual1[i][j]=0; 

  age1[i]=0; 

  life_span1[i]=0; 

 } 

 for(i=0,m=0; i<500; i++,m++) 

 { if(age_new_gene1[m]<=new_life_span1[m] && age_new_gene1[m]!=0 ) 

  { for(j=0; j<34; j++) 

   { individual1[i][j]=new_gene1[m][j];  } 

   age1[i]=age_new_gene1[m]; 

   life_span1[i]=new_life_span1[m]; 

  } 

  else if(age_new_gene1[m]>new_life_span1[m]) 

  { fout<<"\n-----------------------dead citizen 1: 

"<<citizen_number1[i]<<", age: "<<age_new_gene1[m]<<", "<<new_life_span1[m]; 

   for(int p=i;p<10000; p++) 

   { citizen_number1[p]=citizen_number1[p+1]; 

    illness1[p]=illness1[p+1]; 

   } 

   i=i-1; 

  } 

  else if(age_new_gene1[m]==0) 
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   break; 

 } 

 

 fout<<"\n"; 

 for(i=0;i<500;i++) 

  if(age1[i]==1) fout<<"1 Child is: "<<citizen_number1[i]<<"\n"; 

} 

 

void new_individual2() 

{ int i, j,m; 

 for(i=0;i<500;i++) 

 { for(j=0;j<34;j++) 

   individual2[i][j]=0; 

  age2[i]=0; 

  life_span2[i]=0; 

 } 

 for(i=0,m=0; i<500; i++,m++) 

 { if(age_new_gene2[m]<=new_life_span2[m] && age_new_gene2[m]>0) 

  { for(j=0; j<34; j++) 

   { individual2[i][j]=new_gene2[m][j]; } 

   age2[i]=age_new_gene2[m]; 

   life_span2[i]=new_life_span2[m]; 

  } 

  else if(age_new_gene2[m]>new_life_span2[m]) 
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  { fout<<"\n-----------------------dead citizen 2: 

"<<citizen_number2[i]<<", age: "<<age_new_gene2[m]<<", "<<new_life_span2[m]; 

   for(int p=i;p<10000; p++) 

   { citizen_number2[p]=citizen_number2[p+1]; 

    illness1[p]=illness1[p+1]; 

   } 

   i=i-1; 

  } 

  else if(age_new_gene2[m]==0) 

   break; 

 } 

 

 fout<<"\n"; 

 for(i=0;i<500;i++) 

  if(age2[i]==1) fout<<"2 Child is: "<<citizen_number2[i]<<"\n"; 

} 

 

void deletion() 

{ int i,m; 

 int b; 

 int total_number; 

 for(i=0; i<500; i++) 

 { fit[i]=0; 

  sort_number[i]=0; 

  if(life_span1[i]==100) 
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  {  if((fit1(i)/average_fitness1)<0.5) 

     life_span1[i]=40; 

    else if((fit1(i)/average_fitness1)>=0.5 && 

(fit1(i)/average_fitness1)<0.55) 

     life_span1[i]=41; 

    else if((fit1(i)/average_fitness1)>=0.55 && 

(fit1(i)/average_fitness1)<0.6) 

     life_span1[i]=42; 

    else if((fit1(i)/average_fitness1)>=0.6 && 

(fit1(i)/average_fitness1)<0.65) 

        life_span1[i]=43; 

    else if((fit1(i)/average_fitness1)>=0.65 && 

(fit1(i)/average_fitness1)<0.7) 

     life_span1[i]=44; 

    else if((fit1(i)/average_fitness1)>=0.7 && 

(fit1(i)/average_fitness1)<0.75) 

     life_span1[i]=45; 

    else if((fit1(i)/average_fitness1)>=0.75 && 

(fit1(i)/average_fitness1)<0.8) 

     life_span1[i]=46; 

    else if((fit1(i)/average_fitness1)>=0.8 && 

(fit1(i)/average_fitness1)<0.85) 

     life_span1[i]=47; 

    else if((fit1(i)/average_fitness1)>=0.85 && 

(fit1(i)/average_fitness1)<0.9) 
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     life_span1[i]=48; 

    else if((fit1(i)/average_fitness1)>=0.9 && 

(fit1(i)/average_fitness1)<0.95) 

     life_span1[i]=49; 

    else if((fit1(i)/average_fitness1)>=0.95 && 

(fit1(i)/average_fitness1)<1.05) 

     life_span1[i]=50; 

    else if((fit1(i)/average_fitness1)>=1.05 && 

(fit1(i)/average_fitness1)<1.1) 

     life_span1[i]=51; 

    else if((fit1(i)/average_fitness1)>=1.1 && 

(fit1(i)/average_fitness1)<1.15) 

     life_span1[i]=52; 

    else if((fit1(i)/average_fitness1)>=1.15 && 

(fit1(i)/average_fitness1)<1.2) 

     life_span1[i]=53; 

    else if((fit1(i)/average_fitness1)>=1.2 && 

(fit1(i)/average_fitness1)<1.25) 

     life_span1[i]=54; 

    else if((fit1(i)/average_fitness1)>=1.25 && 

(fit1(i)/average_fitness1)<1.3) 

     life_span1[i]=55; 

    else if((fit1(i)/average_fitness1)>=1.3 && 

(fit1(i)/average_fitness1)<1.35) 

     life_span1[i]=56; 
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    else if((fit1(i)/average_fitness1)>=1.35 && 

(fit1(i)/average_fitness1)<1.4) 

     life_span1[i]=57; 

    else if((fit1(i)/average_fitness1)>=1.4 && 

(fit1(i)/average_fitness1)<1.45) 

     life_span1[i]=58; 

    else if((fit1(i)/average_fitness1)>=1.45 && 

(fit1(i)/average_fitness1)<1.5) 

     life_span1[i]=59; 

    else 

     life_span1[i]=60; 

   }} 

 

  if(life_span2[i]==100) 

  {if((fit2(i)/average_fitness2)<0.5) 

   life_span2[i]=40; 

  else if((fit2(i)/average_fitness2)>=0.5 && (fit2(i)/average_fitness2)<0.55) 

   life_span2[i]=41; 

  else if((fit2(i)/average_fitness2)>=0.55 && (fit2(i)/average_fitness2)<0.6) 

   life_span2[i]=42; 

  else if((fit2(i)/average_fitness2)>=0.6 && (fit2(i)/average_fitness2)<0.65) 

   life_span2[i]=43; 

  else if((fit2(i)/average_fitness2)>=0.65 && (fit2(i)/average_fitness2)<0.7) 

   life_span2[i]=44; 

  else if((fit2(i)/average_fitness2)>=0.7 && (fit2(i)/average_fitness2)<0.75) 



 

168 

 

   life_span2[i]=45; 

  else if((fit2(i)/average_fitness2)>=0.75 && (fit2(i)/average_fitness2)<0.8) 

   life_span2[i]=46; 

  else if((fit2(i)/average_fitness2)>=0.8 && (fit2(i)/average_fitness2)<0.85) 

   life_span2[i]=47; 

  else if((fit2(i)/average_fitness2)>=0.85 && (fit2(i)/average_fitness2)<0.9) 

   life_span2[i]=48; 

  else if((fit2(i)/average_fitness2)>=0.9 && (fit2(i)/average_fitness2)<0.95) 

   life_span2[i]=49; 

  else if((fit2(i)/average_fitness2)>=0.95 && (fit2(i)/average_fitness2)<1.05) 

   life_span2[i]=50; 

  else if((fit2(i)/average_fitness2)>=1.05 && (fit2(i)/average_fitness2)<1.1) 

   life_span2[i]=51; 

  else if((fit2(i)/average_fitness2)>=1.1 && (fit2(i)/average_fitness2)<1.15) 

   life_span2[i]=52; 

  else if((fit2(i)/average_fitness2)>=1.15 && (fit2(i)/average_fitness2)<1.2) 

   life_span2[i]=53; 

  else if((fit2(i)/average_fitness2)>=1.2 && (fit2(i)/average_fitness2)<1.25) 

   life_span2[i]=54; 

  else if((fit2(i)/average_fitness2)>=1.25 && (fit2(i)/average_fitness2)<1.3) 

   life_span2[i]=55; 

  else if((fit2(i)/average_fitness2)>=1.3 && (fit2(i)/average_fitness2)<1.35) 

   life_span2[i]=56; 

  else if((fit2(i)/average_fitness2)>=1.35 && (fit2(i)/average_fitness2)<1.4) 

   life_span2[i]=57; 
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  else if((fit2(i)/average_fitness2)>=1.4 && (fit2(i)/average_fitness2)<1.45) 

   life_span2[i]=58; 

  else if((fit2(i)/average_fitness2)>=1.45 && (fit2(i)/average_fitness2)<1.5) 

   life_span2[i]=59; 

  else 

   life_span2[i]=60; 

  }} 

 

 total_number=alive_number1+alive_number2; 

 

    if(total_number>120) 

 { for(i=0; i<=alive_number1; i++) 

  { fit[i]=fit1(i); 

   sort_number[i]=i*10+1; 

  } 

  for(m=0; m<alive_number2; m++,i++) 

  { fit[i]=fit2(m); 

   sort_number[i]=m*10+2; 

  } 

  sort(total_number); 

  for(i=total_number; i>120; i--) 

  { if(sort_number[i]%2==1) 

   { b=(sort_number[i]-1)/10; 

    fout<<"\n-----------------------illness citizen 1: 

"<<citizen_number1[b]; 
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    illness1[b]=illness1[b]+0.5; 

    fout<<", illness1 is: "<<illness1[b]; 

    fout<<"\n"; 

   } 

   else if(sort_number[i]%2==0) 

   { b=(sort_number[i]-2)/10; 

    fout<<"\n-----------------------illness citizen 2: 

"<<citizen_number2[b]; 

    illness2[b]=illness2[b]+0.5; 

    fout<<", illness2 is: "<<illness2[b]; 

    fout<<"\n"; 

   }}}} 

 

void sort(int n) 

{ int i,j; 

 for(i=0; i<n; i++) 

 { for(j=i+1; j<n; j++) 

  { if(fit[j]>fit[i]) 

   { swap1=fit[i]; 

    fit[i]=fit[j]; 

    fit[j]=swap1; 

    swap2=sort_number[i]; 

    sort_number[i]=sort_number[j]; 

    sort_number[j]=swap2; 

   }}}} 
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void accident() 

{ int i,j,m,n,b; 

 for(i=0,m=0; m<alive_number1; m++,i++) 

 { b = rand()%1000; 

  if(b<2*illness1[i]) 

  { fout<<"\n-----------------------accident 1: "<<citizen_number1[i]<<", 

age: "<<age1[i]<<", illness1: "<<illness1[i]<<", b: "<<b<<"\n"; 

   for(n=i; n<alive_number1; n++) 

   { for(j=0; j<34; j++) 

     individual1[n][j]=individual1[n+1][j]; 

    age1[n]=age1[n+1]; 

   } 

   for(j=0; j<34; j++) individual1[n][j]=0; 

   age1[n]=0; 

   for(int p=i;p<10000; p++) 

   { citizen_number1[p]=citizen_number1[p+1]; 

    illness1[p]=illness1[p+1]; 

   } 

   i=i-1; 

  }} 

 

 for(i=0,m=0; m<alive_number2; m++,i++) 

 { b = rand()%1000; 

  if(b<2*illness2[i]) 
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  { fout<<"\n-----------------------accident 2: "<<citizen_number2[i]<<", 

age: "<<age2[i]<<", illness2: "<<illness2[i]<<", b: "<<b<<"\n"; 

   for(n=i; n<alive_number2+1; n++) 

   {for(j=0; j<34; j++) individual2[n][j]=individual2[n+1][j]; 

   age2[n]=age2[n+1]; 

   } 

   for(j=0; j<34; j++) individual2[n][j]=0; 

   age2[n]=0; 

   for(int p=i;p<10000; p++) 

   { citizen_number2[p]=citizen_number2[p+1]; 

    illness2[p]=illness2[p+1]; 

   } 

   i=i-1; 

  }}} 

 

 

 


