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Summary

In this thesis we investigate the theory of planar algebras for type III subfac-

tors. We show directly how to associate a planar algebra to a type III subfactor

using endomorphisms and intertwiners. We begin by describing how to define

a type III version of the Temperley-Lieb planar algebra before giving a general

definition of a type III planar algebra. We define a presenting map using en-

domorphisms and intertwiners and prove that this defines a type III subfactor

planar algebra. We show that the definition of a type III subfactor planar algebra

may be extended by removing the sphericality condition.

We also investigate the reverse implication, and show that if we start with

a type III subfactor planar algebra we can produce a type III subfactor using

techniques from Guionnet-Jones-Shlyakhtenko and free probability.

In the final chapter we investigate the type III version of A2 planar algebras.

We extend the results of Chapter 3 to the A2 setting, defining a type III string

algebra for SU(3) ADE graphs and relating this to planar algebras. We also

discuss further work here relating to A2 planar algebras.
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Chapter 1

Introduction

Interest in the theory of subfactors was initiated by the paper of Jones [37], where

he defined the index and proved that it takes values in the set {4 cos(π/n), n ≥
3} ∪ [4,∞). Besides the index, many other invariants for subfactors have been

defined. These include the principal and dual principal graphs and the standard

invariant [37]. The standard invariant consists of commuting squares of finite

dimensional C∗-algebras. Alternative characterisations of the standard invariant

have been given by Popa’s λ-lattices [76] and Ocneanu’s paragroups [71], [70].

Under certain conditions the standard invariant is a complete invariant. The

index, principal graph and standard invariant of a subfactor N ⊂ M can be

described in terms of bimodules. The theory of bimodules is one of the key tools

in the study of II1 subfactors.

The concept of a planar algebra was first introduced by Jones in [36]. A

planar algebra is a way of representing the standard invariant of an extremal

subfactor using a collection of finite dimensional vector spaces and multilinear

maps which are represented graphically by planar tangles. The idea of a planar

algebra grew from the graphical representation of the Temperley-Lieb algebra,

which first appeared in [44]. The Temperley-Lieb algebra appears as a planar

subalgebra of any planar algebra, this is because the Jones projections satisfy the

Temperley-Lieb relations. Recently it has been shown [15] that planar algebras

may be used to define invariants for non-extremal subfactors also.
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Planar algebras have proved to be a useful tool in the study of subfactors.

Firstly, as mentioned above a subfactor planar algebra is equivalent to the stan-

dard invariant of a subfactor. Another use is in proving the existence of subfactors

with particular principal graphs [74], [5]. They have also been used to construct

subfactors. In particular the work of Guionnet-Jones-Shlyakhtenko [28] provided

the first step in this construction and demonstrated the connections between sub-

factor theory, free probability and random matrices. The link with free probability

is due to the central importance of the Temperley-Lieb algebra in subfactor theory

and the non-crossing pair partitions in free probability. A Temperley-Lieb dia-

gram with n boundary points is just a non-crossing pair partition of n elements.

This work has been continued by Jones-Shlyakhtenko-Walker [42], Kodiaylam-

Sunder [49], [50], [51] and others. They have proved that any subfactor planar

algebra P may be used to construct an inclusion of interpolated free group factors

with P as its standard invariant. This should be compared with results of Popa

and Shlyakhtenko [78], on the universality of LF∞ in subfactor theory.

Another area of research is the A2-planar algebras of Evans-Pugh [23], [24].

These can be used to study SU(3) subfactors.

In parallel to the theory of II1 subfactors is the theory of type III subfactors.

In the II1 case, the existence of a canonical positive definite trace is crucial in

proving many results. The trace defines a conditional expectation, and it is this

expectation which is used to define the index. In the type III case this trace no

longer exists. Despite this Jones index theory has successfully been extended to

the type III case, by Kosaki [52], Longo [58],[59], Hiai [31] and others. In the

type III theory, instead of using the index of the trace preserving conditional

expectation, the index is defined as the minimum over all possible conditional

expectations. The role of bimodules in the type II theory is replaced with the role

of endomorphisms here, since every bimodule is determined up to isomorphism

by an endomorphism in the type III case. An equivalence relation may be defined

on endomorphisms and the equivalence classes are called sectors. The theory of

superselection sectors first appeared in the work of Doplicher, Haag and Roberts

2



[17], in the context of quantum field theory. It was noticed by Longo that this

theory was applicable to the theory of type III subfactors and this was exploited

in the papers [58], [59]. Sector theory can be used to describe the principal and

dual principal graphs and is used in work of Izumi [32] on the classification of

subfactors.

Popa [77] shows under certain conditions the standard invariant is a complete

invariant for type III subfactors and in this case the type III subfactor N ⊂ M

is isomorphic to (N ⊂M)⊗M where N ⊂M is a type II1 subfactor.

In this thesis we investigate the theory of planar algebras for type III subfac-

tors. We show directly how to associate a planar algebra to a type III subfactor.

We do so using endomorphisms and intertwiners, relying on techniques of Izumi

[34], and in particular the characterisation of the spaces of intertwiners between

endomorphisms as string algebras. We show that most of the theory for type II

subfactors carries over to the type III case with some minor changes. We also

investigate the Guionnet-Jones-Shlyakhtenko construction in the type III setting.

We prove that, starting with a type III subfactor planar algebra P , we can con-

struct a type III subfactor with P as its planar algebra. We use techniques from

free probability to study this tower of algebras. We also show how to define a

type III version of the A2-planar algebras.

1.1 Outline of Thesis

We begin in Chapter 2 with a detailed discussion of the background theory. We

focus mainly on the theory of planar algebras for type II subfactors and the

general theory of type III subfactors. We collect here all the definitions and

results from the literature which we will need in the rest of the thesis.

In Chapter 3 we describe how to extend the theory of planar algebras to de-

scribe type III subfactors. We begin with a couple of simple examples. We define

a type III analogue of the Temperley-Lieb planar algebra and show that it may

be used to define inclusions of hyperfinite type IIIλ factors. Using results of Popa

3



mentioned above, we show that this inclusion can be split into a type II inclusion

tensored with a type III factor. Next we make the general definition of a type III

subfactor planar algebra. We define a presenting map using endomorphisms and

intertwiners and prove that this defines a type III subfactor planar algebra. We

also give a detailed construction of type III subfactors using string algebras. We

show that our definition of a type III planar algebra may be extended further,

to define non-spherical planar algebras. This relies on the type II construction of

[15] and the 2-categories associated to a subfactor in the work of Longo-Roberts.

Non spherical planar algebras correspond to subfactors which are not necessarily

extremal. We also discuss how to extend the theory of planar modules to the

type III setting.

In Chapter 4 we show how to use the planar algebras defined in Chapter 3

to construct a tower of type III factors. We define a type III Guionnet-Jones-

Shlyaktenko construction and show that the subfactor constructed from a planar

algebra P has P as its planar algebra. We use a graph construction, similar to

[51], to split the factors into an amalgamated free product of simpler factors.

In Chapter 5 we investigate the type III version of A2-planar algebras. We

extend the results of Chapter 3 to the A2 setting, defining a type III string

algebra for SU(3) ADE graphs and relating this to planar algebras. We also

discuss further work here relating to A2-planar algebras, namely the extension of

the results of Chapter 4 to the A2 setting and skein theory for A2 algebras.
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Chapter 2

Background and Preliminaries

2.1 von Neumann Algebras

A C∗-algebra A is a Banach ∗-algebra with a norm ‖ · ‖ satisfying ‖x∗x‖ = ‖x‖2

for all x ∈ A. It can be shown that any C∗-algebra is isomorphic to a norm

closed ∗-subalgebra of B(H), the space of bounded linear operators on a Hilbert

space H. A von Neumann algebra M is a weakly closed unital ∗-subalgebra

of B(H). In this thesis we will always assume H to be a separable Hilbert

space. A theorem of von Neumann proves that if M is a unital ∗-subalgebra

of B(H), then M is a von Neumann algebra if and only if M = M ′′, where

M ′ = {x ∈ B(H) : xm = mx for all m ∈ M} is the commutant of M . Given

a C∗-algebra A, an element x ∈ A is said to be positive if there exists y ∈ A

with yy∗ = x. The collection of all positive elements of A is denoted by A+. A

simple unital C∗-algebra A is called purely infinite if for every non-zero x ∈ A

there exists y ∈ A with yxy∗ = 1.

A weight φ on a unital C∗-algebra A is a positive linear functional on A. If

a weight φ also satisfies φ(1) = 1 then we call φ a state. A linear map φ : A →
B between C∗-algebras is positive if φ(A+) ⊆ B+. A linear map between von

Neumann algebras is called normal if it is σ-weakly continuous. A trace is a

state φ with φ(xy) = φ(yx) for all x, y ∈ A. A state φ on A is said to be faithful

if φ(x) = 0 implies x = 0 for x ∈ A+.
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Let φ be a faithful normal semifinite weight on a von Neumann algebra M

and let β > 0. Then there exists a unique one paramater group of automorphisms

{σt : t ∈ R} on M such that φ(xy) = φ(yσiβ(x)) for all y ∈ M and all x entire for

σ. In this case σ is called the modular automorphism group and φ is said to satisfy

the KMS condition for σ at inverse temperature β. Given a von Neumann algebra

M with state φ the centraliser of φ is {x ∈ M : φ(xy) = φ(yx) for all y ∈ M}
and is denoted by Mφ. For two von Neumann algebras N ⊂ M the map E :

M → N is a conditional expectation if it is positive and bounded and satisfies

E(1) = 1 and E(n1mn2) = n1E(m)n2 for ni ∈ N and m ∈ M . If there is a trace

tr on M then for x ∈ M by Theorem 5.20 of [21] there is a unique x′ ∈ N such

that tr(xy) = tr(x′y) for all y ∈ N . We call the map E : M → N defined by

x′ =: E(x) the conditional expectation relative to the trace.

Definition 2.1.1. Let B3 be a von Neumann algebra with a finite faithful normal

trace and let Bi be von Neumann subalgebras for i = 0, 1, 2 then the four von

Neumann algebras

B0 ⊂ B1

∩ ∩
B2 ⊂ B3

(2.1)

are said to form a commuting square if they satisfy one of the following conditions,

which are shown to be equivalent in Proposition 9.51 of [21]:

1. EB1(B2) ⊂ B0

2. EB2(B1) ⊂ B0

3. EB1EB2 = EB0

4. EB2EB1 = EB0

5. EB1EB2 = EB2EB1 and B0 = B1 ∩B2

6. EB0(x) = EB1(x) for all x ∈ B2

7. EB0(x) = EB2(x) for all x ∈ B1

6



where EBi
: B3 → Bi is the conditional expectation from B3 → Bi relative to the

trace for i = 0, 1, 2.

A factor is a von Neumann algebra M with trivial centre, that is M ′∩M = C.

Factors are important as any von Neumann algebra may be written as a direct

integral of factors. Factors may be classified as follows.

1. Type In factors are matrix algebras Mn(C) for 1 ≤ n < ∞, type I∞ are

B(`2)

2. Type II1 factors are factors with a finite trace, type II∞ are tensor products

of a II1 factor with a I∞ factor

3. Type III are all other factors.

Type III factors were classified further into type IIIλ for 0 ≤ λ ≤ 1 in [10], where

this classification depends on the Connes spectrum of the factor. Let M be a

von Neumann algebra with modular automorphism group σt. Then the Arveson

spectrum Sp(σt) := {s ∈ R : f̂(s) = 0, f ∈ I(σ)} where I(σ) is the intersection

∩x∈M{f ∈ L1(R) : σf (x) = 0} and σf (x) =
∫
R f(t)σt(x)dt for x ∈ M . If p is

a projection in Mσ we write σp
t (x) = σt(x) for x ∈ Mp = pMp. The Connes

spectrum Γ(σ) = ∩p{Sp(σp
t )} where the intersection is taken over all non zero

projections p in the fixed point algebra Mσ. In fact, by Lemma XI 2.2 of [87]

the intersection may be taken over all projections in the centre of Mσ and thus

in the case where Mσ is a factor the Connes spectrum and Arveson spectrum

coincide. A factor is of type III1 if Γ = R+, type III0 if the Connes spectrum is

{1} and type IIIλ if the Connes spectrum is {λn : n ∈ Z}. An approximately finite

dimensional (AFD) or hyperfinite factor is a factor M which has an increasing

sequence of finite dimensional subalgebras whose union is weakly dense in M .

There is a unique AFD factor of type II1, II∞ and IIIλ for each λ ∈ (0, 1] this was

proved for type II1 in [68], for II∞ in [11] and for type III in [10].

Suppose N , M are factors with N contained in M then N ⊂ M is called a

subfactor. In this thesis we will only consider the case when N and M are either

both type II or both type III.
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2.2 Bratteli Diagrams and Path Algebras

The material in this section may be found for example in Chapter 2 of [21]. Let

A := lim−→An be an approximately finite dimensional (AF) C∗-algebra, that is A

is the inductive limit of finite dimensional C∗-algebras An with inclusion maps

in : An → An+1. It can be shown that there is a unique C∗-norm on the algebraic

inductive limit. Recall that a finite dimensional C∗-algebra is isomorphic to a

direct sum of matrix algebras Mn1 ⊕ · · · ⊕Mnr . The minimal central projections

of such an algebra are of the form 0⊕· · ·⊕0⊕1⊕0⊕· · ·⊕0. Suppose An has minimal

central projections Ω[n] := {p(n)
1 , . . . , p

(n)
r(n)} and let λn = (λ

(n)
ij ) i=1,...,r(n)

j=1,...,r(n+1)
be the

multiplicity matrix for the inclusion An in An+1, that is, the simple subalgebra

of An corresponding to the projection p
(n)
i is embedded in the simple subalgebra

of An+1 corresponding to the projection p
(n+1)
j with multiplicity λ

(n)
ij . Then the

multiplicity graph Gn for the inclusion is the bipartite graph with r(n) vertices

along the top and r(n+1) vertices along the bottom with λ
(n)
ij edges joining vertex

i along the top with vertex j along the bottom. The Bratteli diagram of A is

obtained by concatenating the multiplicity graphs, identifying the vertices along

the bottom of each Gn with those along the top of Gn+1. An example is shown

in Figure 2.1. A Bratteli diagram can be associated to any AF algebra and two

AF algebras with the same Bratteli diagrams are isomorphic.

Suppose we have a Bratteli diagram which describes unital embeddings. We

now describe the path algebra model for such a Bratteli diagram. Suppose m < n

and let i ∈ Ω[m] and j ∈ Ω[n] be vertices in the Bratteli diagram. Let Path(i, j)

denote the collection of paths (of length n−m) from i to j in the Bratteli diagram.

Given paths α ∈ Path(i, j) and β ∈ Path(j, k), α · β ∈ Path(i, k) denotes the

concatenation of the paths. Denote by Aij := M|(Path(i,j))|. Then Aij can be

thought of as being generated by matrix units (µ, ν) where µ and ν are paths in

Path(i, j). Then let A[m,n] =
⊕

i∈Ω[m]
j∈Ω[n]

Aij. For m′ < m < n < n′ the algebra

A[m,n] may be embedded in A[m′, n′] by

(µ, ν) →
∑

(α · µ · β, α · ν · β) (2.2)
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where the sum is over all paths α ∈ Path(k, i) for k ∈ Ω[m′] and β ∈ Path(j, l)

where l ∈ Ω[n′]. The AF C∗-algebra is given by A = lim−→A[0, n] with the inclusions

of A[0, n] → A[0, n + 1] given above.

2.3 II1 subfactors

There are many invariants for II1 subfactors including the index, the standard

invariant, planar algebras, the principal graph and λ-lattices. Throughout this

subsection N ⊂ M will be an inclusion of II1 factors. Standard references for the

theory of II1 factors are [21] and [43].

Using the uniquely defined trace on M define an inner product on M by

〈x, y〉 = tr(y∗x) and denote the completion of M by this inner product by L2(M).

If the action of M on some Hilbert space H is isomorphic to the action of M on

(
⊕n

i=1 L2(M))p where p = (pij) is a projection in Mn(C) ⊗M for some n < ∞
then we define the coupling constant dimMH :=

∑n
i=1 tr(pii). The Hilbert space

L2(M) can be thought of as a left N module, where N acts by left multiplication.

The index [M : N ] is defined to be dimNL2(M). If the action is not of the above

form we say [M : N ] = ∞. Jones proved in [37] that the index of a subfactor

may only take the values {4 cos2 π/n : n = 3, 4, 5, . . .} ∪ [4,∞].

Given a subfactor N ⊂ M there is a unique trace preserving conditional ex-

pectation EN : M → N . The map EN may be extended uniquely to a projection

e1 : L2(M) → L2(N) where L2(N) may be identified with the subspace of L2(M)

generated by the image of the elements of N . This projection is called the Jones

projection. Then let M1 be the von Neumann algebra generated by M and e1

(both acting on L2(M)). It can be shown that M1 is a II1 factor if and only if

[M : N ] is finite. This is called the basic construction. In the finite index case

the trace tr on M extends uniquely to a trace on M1 which we denote also by

tr and this satisfies tr(xe1) = [M : N ]−1tr(x). We may repeat the process on

the subfactor M ⊂ M1, with Jones projection e2 : L2(M1) → L2(M), to get

M2 = 〈M1, e2〉. Continuing iteratively, we get a tower of II1 factors Mi and a
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sequence of projections ei with

N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · ·

Then it can be shown that when [M : N ] < ∞ the grid of relative commutants

N ′ ∩N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ N ′ ∩M2 ⊂ · · ·
∪ ∪ ∪

M ′ ∩M ⊂ M ′ ∩M1 ⊂ M ′ ∩M2 ⊂ · · ·

is a grid of finite dimensional C∗-algebras with a consistent trace. This is called

the standard invariant of the subfactor N ⊂ M .

Recall, e.g. from [21] Section 9.5, that the Temperley-Lieb algebra is the

universal ∗-algebra on n generators E1, . . . , En satisfying the relations

1. E2
i = Ei = E∗

i

2. EiEj = EjEi if |i− j| > 1

3. EiEi±1Ei = δEi for all i

The Jones projections {ei} satisfy the Temperley-Lieb relations, with δ = [M :

N ]−1.

Note that we have {1, e1, . . . , en}′′ ⊂ N ′ ∩Mn for all n.

In [76] an alternative formulation of the standard invariant called a λ-lattice

is defined. In order to define this we first need to define the index for inclusions of

finite dimensional algebras. This definition may be found for example in Chapter

3 of [27]. The index [B : A] for finite dimensional von Neumann algebras A ⊂ B is

defined as follows. If A ' Mn(C), B ' Mm(C) then [B : A] = m2/n2. Otherwise

let A =
⊕n

i=1 Api and B =
⊕m

j=1 Bqj where pi, qj are the collections of minimal

central projections of A, B respectively. Define

Ai,j := qjpiApiqj, Bi,j := piqjBqjpi.

Then define the inclusion matrix ΛB
A by λij = [Bij, Aij]

1
2 if qjpi 6= 0 and λij = 0

otherwise. Then the index [B : A] is defined as ‖ΛB
A‖2.
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A λ-lattice is a collection of finite dimensional algebras Ai,j,i, j ∈ N with

Ai,i = C for all i, Ai,j ⊂ Ak,l for k ≤ i and j ≤ l with a faithful trace on ∪n∈N

A0,n and such that

1. EAi,j
EAk,l

= EAk,l
EAi,j

= EAm,n for m = max{i, k}, n = min{j, l} where

EA is the trace preserving conditional expectation onto A

2. there exists a representation of the sequence of Jones projections {ei}i≥2 in

∪nA0,n with

ej ∈ Ai−2,k for 2 ≤ i ≤ j ≤ k

ej+1xej+1 = EAi,j+1
(x)ej+1 for all x ∈ Ai,j, i ≤ j − 1

ei+1xei+1 = EAi+1,j
(x)ei+1 for all x ∈ Ai,j i ≤ j − 1

3. [Ai,j+1 : Ai,j] ≤ λ−1EAi,j
(ej+1) = λI

[Ai−1,j : Ai,j] ≤ λ−1EAi−1,j
(ei) = λI

A λ-lattice is called standard if [Aij, Akl] = 0 for all 0 ≤ i ≤ j ≤ k ≤ l.

A finite index subfactor is called extremal if EN ′∩M(e1) ∈ C. In [76] it is proved

that the tower of relative commutants of an extremal subfactor forms a standard

λ-lattice and that every standard λ-lattice is the tower of relative commutants for

some extremal subfactor. However even if we start with a hyperfinite subfactor

and associate a λ-lattice to it, the subfactor associated to that λ-lattice in [76]

may not be hyperfinite.

Drawing the Bratteli diagram for the tower of relative commutants at each step

we get the reflection of the previous step plus a possible new part. The principal

graph is obtained by deleting all the reflected parts of the Bratteli diagram, this

is shown in bold in Figure 2.1. The dual principal graph is obtained by repeating

the same procedure for the tower M ′∩M ⊂ M ′∩M1 ⊂ · · · . A subfactor is called

finite depth if its principal graph is finite. Note that the principal graph is finite

if and only if the dual principal graph is finite.

The principal graph may alternatively be described as follows. The collection

of even vertices is given by the irreducible N − N bimodules NXN occuring in
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Figure 2.1: Bratteli Diagram

the decomposition of the bimodules NL2(Mn)N . The odd vertices are bimodules

NXM occuring in the decomposition of the NL2(Mn)M . A vertex corresponding

to NXN is joined to the vertex labelled NYM by n edges if the decomposition of

the bimodule NY ⊗M L2(M)N contains n copies of NXN .

For subfactors of index less than 4 the only possible principal graphs are the

Dynkin diagrams, shown in Figure 2.2. The An graphs, correspond to index

4 cos2(π/n + 1), D2n correspond to index 4 cos2(π/4n − 2), and E6 and E8 cor-

respond to indices 4 cos2(π/12) and 4 cos2(π/30) respectively. For index greater

than 4 it is still an open problem, but all possible graphs of index less than 3+
√

2

were listed by Haagerup in [30], more recently, in the series of papers [64], [62],

[73], [35] it is shown that there are exactly five finite graphs which appear as prin-

cipal graphs of subfactors with index in the interval (4, 5). It has been proved by

Izumi that there are exactly five principal graphs subfactors with index 5, all of

these are subgroup subfactors.
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Figure 2.2: ADE graphs

2.4 String Algebra Construction of II1 Subfac-

tors

Consider the finite graph G with subgraphs G0, G1, G2 and G3 as shown.

V0
G0−→ V1

G3

y yG1

V3
−→
G2 V2

We assume that G0 and G2 are connected and that G0 has more than one edge.

We denote the common vertices of G0 and G3 by V0, the common vertices of G0

and G1 by V1 and so on, as shown in the diagram above. For each edge ξ denote

its source vertex by s(ξ) and range by r(ξ). Denote by ξ̃ the edge ξ with the

opposite orientation. Denote the number of edges between vertices v and w by

nv,w. Suppose we have an assignment of a strictly positive number µ(v) to each

vertex v. For each possible square σ0, . . . , σ3 such that σi is an edge in Gi we

assign a complex number denoted

A
σ0−→ B

σ3

y yσ1

C −→
σ2 D

. This assignment should satisfy

the following conditions.

1. Unitarity Suppose A,D,B, B′ are vertices in G such that B and B′ are in
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the same Vi and suppose σ0,σ
′
0,σ1,σ

′
1 are edges as shown. Then we have the

identity

∑
C,σ2,σ3

A
σ0−→ B

σ3

y yσ1

C −→
σ2 D

A
σ′0−→ B′

σ3

y yσ′1

C −→
σ2 D

= δB,B′δσ0,σ′0δσ1,σ′1 .

2. Renormalisation

A
σ0−→ B

σ3

y yσ1

C −→
σ2 D

=

√
µ(B)µ(C)

µ(D)µ(A)

B
σ̃0−→ A

σ1

y yσ3

D
−→̃
σ2 C

=

√
µ(B)µ(C)

µ(D)µ(A)

C
σ2−→ D

σ̃3

y yσ̃1

A −→
σ0 B

3. Harmonicity : There exists δ′ > 0 such that

δ′µ(v) =
∑
w∈Vk

nv,wµ(w)

for any pair of vertices v and w connected by an edge in G1 or G3. There

also exists δ > 0 such that

δµ(v) =
∑
w∈Vk

nv,wµ(w)

for any pair of vertices v and w connected by an edge in G0 or G2.

Such an system is called a biunitary connection. Fix a vertex in V0 and denote it

by ∗. Normalise µ so that µ(∗) = 1. A connection is called flat if it satisfies

∗ σ1 //

ρ
²²

σ2 // · · · σ2n // ∗
ρ′1

²²

ρ2 ²² ρ′2²²
...

...

ρ2m
²²

ρ′2m²²∗
σ′1

//
σ′1

// · · ·
σ′2n

// ∗

= δσ1,σ′1 · · · δσ2n,σ′2n
δρ1,ρ′1 · · · δρ2m,ρ′2m

for all choices of n,m, σi, σ
′
i, ρi, ρ

′
i. The left hand side of the equation is calculated
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as follows. Suppose we fill the inside of the rectangle with a grid of squares in G.

We call any such choice of edges a configuration. The value of a configuration will

be the product of the 4mn values of the connection contained in the configuration.

The left hand side of the equation is then defined to be the sum over all possible

choices of configuration of the values of the configuration.

Starting with the graph G0 we define a collection of *-algebras A0,k as follows.

A path in G0 is a succession of edges ξ = σ1 · · · σn with r(σi) = s(σi+1) for all i. We

denote by |ξ| the length of ξ. As a vector space A0,k has basis consisting of pairs

of paths (ξ1, ξ2) on G0 with s(ξ1) = s(ξ2) = ∗, r(ξ1) = r(ξ2) and |ξ1| = |ξ2|= k.

We may define a multiplication and *-operation by

(ξ1, ξ2)(ζ1, ζ2) = δξ2,ζ1(ξ1, ζ2)

(ξ1, ξ2)
∗ = (ξ2, ξ1).

Under these operations A0,k is a ∗-algebra. The algebra A0,k may be embedded

in the algebra A0,k+1 as in Equation 2.2 by

(ξ1, ξ2) →
∑

|σ|=1

(ξ1 · σ, ξ2 · σ)

where ξ1 · σ means the concatenation of the two paths and the sum is over all

edges σ with s(σ) = r(ξ1). We may define a trace tr on ∪A0,k by tr(ξ1, ξ2) =

δξ1,ξ2(δ
′)−|ξ|µ(r(ξ1)). Let A0,∞ denote the von Neumann algebra obtained by

taking the completion of ∪A0,k with respect to this trace. It follows from Theorem

10.3 in [21] that the trace on ∪A0,k is unique and hence A0,∞ is a hyperfinite II1

factor.

We define the string algebras Al,k in a similar manner. As a vector space Al,k

has basis given by pairs of paths (α1 · β1, α2 · β2), where αi is a path in G0 with

s(αi) = ∗ and |αi| = k. The path βi is a path in G1 if k is odd and G3 if k is

even. It satisfies r(αi) = s(βi), |βi| = l and r(β1) = r(β2). The multiplication

and ∗-operation are defined exactly as for A0,k. Using the connection it is possible

to transform the basis of Al,k into a basis where we first travel l steps along G3

and then k steps along G0 or G2 or any other combination of paths on G with
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k horizontal steps and l vertical steps. Define a trace on Al,k by trl,k(ξ1, ξ2) =

δ−l(δ′)−kδξ1,ξ2µ(r(ξ)). Let An,∞ be the von Neumann algebra completion ∪k∈NAn,k

with respect to the trace. As before this is a hyperfinite II1 factor.

Define the vertical Jones projection en ∈ An,0 by

en =
∑

ξ,ζ,η

1

δ

√
µ(r(η))µ(r(ζ))

µ(r(ξ))
(ξ · η · η̃, ξ · ζ · ζ̃)

where the sum is over all paths ξ of length n− 2 starting at ∗ and all edges ζ and

η for which the sum makes sense.

Theorem 11.9 of [21] states that the construction above defines a subfactor

A0,∞ ⊂ A1,∞ with [A1,∞, A0,∞] = δ2 and tower

A0,∞ ⊂ A1,∞ ⊂ A2,∞ ⊂ . . .

where the Jones projection of the inclusion An,∞ ⊂ An+1,∞ is given by en. Flatness

of the connection is equivalent to the condition that any element of Ak,0 commutes

with A0,∞. Theorem 11.15 of [21] then states that if the connection is flat, the

relative commutant A′
0,∞ ∩ Ak,∞ is then Ak,0.

2.5 Planar Algebras

The idea of planar algebras was first introduced by Jones in [36] as an alternative

formulation of the standard invariant of a subfactor.

A planar tangle is a disc D0 in the plane with a collection of internal discs Di,

1 ≤ i ≤ n. Each disc Di, 0 ≤ i ≤ n has a 2ki marked points on its boundary. The

interior of D also contains a collection of non-overlapping strings. Strings may

only intersect the boundaries of the discs at the marked points. Every marked

point is the endpoint of exactly one string and each string either forms a closed

loop or has exactly two endpoints, both occuring at marked points of some disc.

For each disc Di one boundary region will be marked with a star. Regions of

a tangle are shaded black or white and adjacent regions are required to have

different colours. A + tangle is one which has the star of D0 in a white region
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Figure 2.3: Tangle T and T in a standard form

and a − tangle has the star of D0 in a black region. An example of a +, 3 tangle

is shown in Figure 2.3. A planar tangle is said to be in standard form if all the

marked points of the discs are along the top edge and the tangle is drawn in such

a way that each horizontal strip contains at most one cup or cap of a string or

one internal disc. A planar tangle with one input disc is called an annular tangle.

If the outer pattern of a tangle S is the same as the pattern of some inner

disc Di of a tangle T then we can form the tangle T ◦i S by gluing S inside Di,

removing the boundary and smoothing the strings.

A planar algebra is a collection of vector spaces P±
i , i ∈ N, with a collection

of multilinear maps ZT (one for each tangle) that are consistent with composition

of tangles and relabelling of internal discs in the obvious way. If T is a tangle

with k0 marked boundary points and n internal discs Di, each with 2ki marked

boundary points then ZT : ⊗n
i=1Pki

→ Pk0 .

Given two elements x, y ∈ Pk, k ∈ N, their product is defined as ZM(x, y)

where M is the multiplication tangle shown in Figure 2.4. This multiplication,

along with the inclusion maps gives P the structure of an associative algebra. The

Fourier transform tangle, shown in Figure 2.5 gives a canonical identification of

the P+
n with P−

n and so we usually just work with the P+
n and we often write

Pn instead of P+
n . Thus when we draw tangles we omit the shading with the
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Figure 2.4: Multiplication Tangle

Figure 2.5: Fourier Transform

understanding that it is determined by the fact that the region containing ∗ is

unshaded.

A planar algebra has modulus δ if, given a tangle T containing a closed loop,

we have ZT = δZT ′ where T ′ is the tangle T with the closed loop removed.

The adjoint T ∗ of a tangle T is the tangle obtained by reflecting the tangle

through a horizontal line through its centre.

A planar ∗-algebra is a planar algebra where the vector spaces Pn have a ∗-

structure which is compatible with the adjoint of a tangle, that is ZT ∗(x
∗) =

(ZT (x))∗ for all x ∈ P and all tangles T .

Given a tangle T we may define two operations trl and trr by joining corre-

sponding points along the top and bottom of the tangle to the left or right as

shown in Figure 2.6. This operation gives a left and right trace on the algebra P .

A planar algebra is called spherical if ZT is invariant under isotopies of the 2

sphere for all 0-tangles T . This is equivalent to the statement that the left and

right traces are equal. In this case let Tr = δ−ntrl = δ−ntrr be the normalised
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Figure 2.6: The traces trr(x) and trl(x)

Figure 2.7: Right and Left Conditional expectations and Jones Projection

trace on Pn.

If the trace is positive definite we may define a postive definite inner product

on P by 〈x, y〉 := Tr(y∗x).

A planar algebra is called connected if the spaces P0 and P1 have dimension

one. A planar algebra is said to be finite dimensional if dimPn < ∞ for all n.

A planar ∗-algebra is a C∗-planar algebra if the trace is non degenerate, it is

finite dimensional and ZT is positive for all 0-tangles T . In this case there is a

unique C∗-norm on P .

A subfactor planar algebra is a planar ∗-algebra with some extra structure:

sphericality, finite dimensionality, positive modulus, connectedness and a positive

definite trace.

In [36] the following important theorem was proved, which justifies the use of

the adjective ‘subfactor’ in the above definition:

Theorem 2.5.1. Let N ⊂ M ⊂ M1 ⊂ . . . be the tower of the basic construction
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of an extremal II1 subfactor N ⊂ M with finite index δ. Then there exists a

unique subfactor planar algebra P with modulus δ such that the vector spaces

Pk = N ′ ∩Mk−1 for all k ≥ 1 and the presenting map ZT is compatible with the

trace, conditional expectations, inclusions and Jones projections.

The converse to this theorem, i.e. that, given a subfactor planar algebra P ,

one may find an extremal finite index subfactor with P as its planar algebra,

has been proved, for example by Jones using Popa’s λ-lattices. Another proof

using planar algebra techniques appeared in [28], [42], [49] where starting with

a subfactor planar algebra P a subfactor N ⊂ M is explicitly constructed such

that the subfactor planar algebra of N ⊂ M is isomorphic to P . In [2], [29] it was

shown that given any planar algebra it is realised as the standard invariant of a

subfactor of an interpolated free group factor. In [15] it was recently shown that

it is possible to remove the extremality assumption. A non extremal subfactor

corresponds to a non spherical subfactor planar algebra.

Another important construction is the planar algebra of a bipartite graph,

first defined in [38]. This is a useful tool which has been used (for example in

[5],[74]) to find new subfactors by finding their subfactor planar algebra in the

planar algebra of the principal graph. It was recently shown [40] that all finite

depth subfactor planar algebras are planar subalgebras of the planar algebra of

a bipartite graph. The planar algebra of a bipartite graph may be defined as

follows.

Given a bipartite graph G with edges E and vertices V+ and V−, let ∆ be its

adjacency matrix, δ be its Perron-Frobenius eigenvalue and let µ(v) be the entry

of the Perron Frobenius eigenvector corresponding to the vertex v. The planar

algebra P G is the planar algebra with vector spaces given by bounded functions

on loops of the graph of length 2n, starting in V+ for P+
n and V− for P−

n . Given

a tangle T in standard form a spin state σ : {strings}∪ {regions} → E ∪ V+ ∪ V−

is a map taking strings of the tangle to edges of the graph and regions to vertices

such that if an string s borders regions r1 and r2 then σ(s) is an edge from vertex

σ(r1) to σ(r2).
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A spin state assigns a label li to the ith disc of a tangle T, the label is the

loop of length ni on the graph gotten by reading the assignments of vertices and

edges around the edge of the disc, starting with the starred region.

Let S(T ) denote the collection of singularities (maxima and minima) of the

strings of the tangle T in standard form. For a tangle T with a certain spin state

σ each s ∈ S(T ) is assigned a coefficient ψs. For each cup ∪j the value of ψ is

ψ∪j
= µ(v1)/µ(v2) where v1 is the vertex corresponding to the region under the

cup and v2 is the vertex corresponding to the region above it. Similarly for a cap

we put ψ∩j
= µ(v1)/µ(v2) where now v1 is the region above the cap and v2 is the

region below.

The maps ZT are then defined as follows. Suppose T is a k-tangle, and γ is

a loop of length 2k in G. Then the coefficient of ZT corresponding to the basis

element γ is
∑ ∏

discsDi

li
∏

s∈S(T )

ψs

where the sum is over all states inducing γ on the boundary.

The planar algebra of a bipartite graph was shown in [38] to be a spherical,

positive definite planar ∗-algebra with modulus δ.

An important example of a planar algebra is the Temperley-Lieb planar ∗-

algebra TL(δ) where δ > 0 is the modulus. The vector spaces TL+
i (TL−i ) are

the linear span of all planar diagrams with 2i marked points on the boundary,

no internal discs and the marked point in an unshaded (shaded) region. It can

be shown [27] that the vector spaces are generated multiplicatively by the Jones

projections ei, shown in Figure 2.7, which are easily seen to satisfy the Temperley-

Lieb relations. The maps ZT are just given by insertion of the relevant TL

diagrams inside the appropriate inner discs of T , removing all closed loops by

multiplying the result by δ. The Temperley-Lieb planar ∗-algebra is a subalgebra

of the planar algebra of the bipartite graph An−1, where the value of n determines

the value of δ. TL(δ) is a subfactor planar algebra for δ ≥ 2. For δ = 2 cos(π
n
)

(n ≥ 3) we may form a subfactor planar algebra by taking a quotient of TL(δ)

by the ideal I(δ) of all vectors x ∈TL(δ) with tr(x∗x) = 0.
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Figure 2.8: Braiding on Temperley-Lieb Tangles

Figure 2.9: Removing a twist

We can define a crossing on tangles using the linear combination of diagrams

in Figure 2.8, with δ = q + q−1.

The braid group Bn is the group with n− 1 generators σ1, . . . , σn−1 satisfying

the braid relations

σiσj = σjσi if |i− j| > 1

and

σiσi+1σi = σi+1σiσi+1.

It is shown for example in [44] Section 4, [46] Section 2.3 that if σk is the

crossing with k straight strands to the left and n − k − 2 straight strands to

the right, the σk define a representation of the Braid group Bn on the n- strand

Temperley-Lieb algebra TLn.

The crossing defined above also satisfies the second and third Reidemeister

moves and the first Reidemeister move up to a constant as shown in Figure 2.9.

A proof of this may be found for example in Corollory 3.4 and Theorem 3.5 of

[45]

We may use the Temperley-Lieb planar algebra to define a C∗-algebra as

22



follows. Use the trace on TLn to define an inner product by 〈x, y〉 = trn(y∗x) and

take the GNS construction. The C∗ algebra T Ln generated by TLn is a finite

dimensional C∗ algebra which may be embedded in T Ln+1 using the inclusion

of TLn in TLn+1. Taking the inductive limit lim−→T Ln we get an AF C∗-algebra

which we denote by T L.

2.6 A2-Planar Algebras

Here we introduce the A2-planar algebras which were first defined in [23].

Let σ = σ1 · · · σm be a sign string, that is, each σi is either + or − and we write

σ∗ = σm · · · σ1. A planar σ tangle is a disc D0 in R2 with m marked boundary

points containing a possibly empty collection of internal discs D1, . . . , Dn and

a collection of oriented strings. Each disc Dk has mk marked boundary points

with orientations given by σ(k) = σ
(k)
1 · · · σ(k)

mk , and each boundary point is the

endpoint for some string. A boundary point is called a source if the string is

orientated away from it and a sink if it is oriented towards it. Boundary points

with positive orientation are source vertices and those with negative orientation

are sinks. Strings may not intersect the discs at points other than the marked

boundary points but they are allowed to meet at incoming and outgoing trivlalent

vertices and closed loops are also allowed. The tangle is equipped with a colouring

such that each region has colour 0, 1 or 2 and when crossing a downwards oriented

string from left to right the colour increases by 1 mod 3.

The boundary of each disc Dk between the last and first marked points is

marked with a ∗bk
, where bk ∈ {1, 2, 3} is the colour of the region it is adjacent

to. For tangles with no marked boundary points, there are three types, depending

on the colour of the region adjacent to the outer disc.

Similarly to the tangles defined in Section 2.5, tangles can be composed if the

pattern of the outer disc of some tangle S is the same as the pattern of some

inner disc Di of a tangle T (i.e. the two discs have the same number of strings

and all orientations and colourings are compatible). Then T ◦i S is formed by
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Figure 2.10: A ++++- Tangle

Figure 2.11: Kuperberg Relations

gluing S inside Di of T , then removing the outer disc of S and smoothing all the

strings.

Let Pσ(L) be the free vector space generated by coloured σ tangles, with inner

discs labelled by elements of L, quotiented by the Kuperberg relations defined in

Figure 2.11, where δ, α are related by α = δ2 − 1.

A partial braiding may be defined on local parts of tangles by Figure 2.12, with

q ∈ C such that [2]q = δ and [3]q = α. The quantum number [n]q is [n]q = qn−q−n

q−q−1

for n ∈ Z and q ∈ C.

The A2-planar operad P is P = P(L) = ∪σPσ(L).
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Figure 2.12: Braiding

With composition as defined above this has the structure of a coloured operad.

Definition 2.6.1. A general A2-planar algebra is a family of vector spaces P =

{P a
σ , σ any sign string, a ∈ {0, 1, 2}} such that every σ-tangle T has an associated

mulitlinear map ZT : ⊗1≤m≤nP
am
σm

→ P a
σ . The maps ZT are called presenting

maps and they are required to be compatible with composition of tangles and

relabelling of inner discs in a similar manner to the planar algebras defined in the

previous section.

In other words a general A2-planar algebra is an algebra over the A2-planar

operad P . In a general A2-planar algebra, given two tangles a and b in Pσσ∗ , we

can define a multiplication and trace analagously to Section 2.5, i.e. the product

a.b ∈ Pσσ∗ is the σσ∗ tangle formed by stacking a on top of b.

Definition 2.6.2. A general A2-planar algebra is spherical if the presenting map

is invariant under isotopies of the 2-sphere for any ∅-tangle.

For a tangle a ∈ Pσ we may define normalised traces TrL(a) and TrR(a) as

the tangles formed by joining corresponding points along the top and bottom of a

to the left of a for TrL and to the right of a for TrR and then dividing by δ−|σ|. If

P is spherical then these two traces are the same and we write Tr := TrL = TrR.
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Each general A2-planar algebra contains a copy of the A2-Temperley-Lieb algebra

which is just the planar algebra with labelling set L = ∅.
For a σ-tangle T , there is an involution given by reflecting T in a horizontal

line through its centre and reversing the orientations of all strings. The resulting

tangle is denoted by T ∗. We say that P is a general A2-planar *-algebra if

(ZT (x))∗ = ZT ∗(x
∗) for all tangles T and x ∈ P .

Definition 2.6.3. A spherical general A2-planar algebra is said to be non-

degenerate if the trace defines a non degenerate bilinear form on Pσσ∗ for all

σ.

Definition 2.6.4. An A2-planar algebra P is a spherical, non-degenerate gen-

eral A2-planar ∗-algebra which satisfies the following requirements: dim(P0,0) =

dim(P0,1) = dim(P0,2) = 1 and removal of a closed loop causes the presenting

map to be multiplied by δ for some δ > 0.

For a non-degenerate A2-planar algebra we may define an inner product by

〈a, b〉 = Tr(a∗b). It can be shown that a non-degenerate spherical A2-planar

algebra P has a unique C∗-norm, and we call such a P an A2-planar C∗-algebra.

An A2-planar algebra is called flat if strings may be passed over discs. That

is, given any tangle T and any internal disc Dk, let T ′ be the liner combination of

tangles obtained by pulling i strings of T over the disc Dk. If the planar algebra

is flat we require that ZT = ZT ′ , where if T ′ =
∑

ciTi we define ZT ′ =
∑

ciZTi
.

2.7 A2-Planar Algebras for Subfactors

In this section we recall the constructions from [20], [23] of subfactors and planar

algebras associated to the the SU(3) ADE graphs shown in Figure 2.13, a more

complete list may be found for example in [16] or [22]. The A(n) graphs are the

Weyl alcove of SU(3) at level k. The D(n) are obtained as Z3 orbifold of A(n).

We also have the exceptional graphs E and the A(n)∗ and D(n)∗ graphs which are

conjugations of the A(n) and D(n) graphs. Alternatively we can describe A(n)
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Figure 2.13: ADE graphs
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as the graphs associated to diagonal modular invariants. The graphs D(n) are

orbifold modular invariants. The A(n)∗ and D(n)∗ graphs are associated to the

conjugate of the A(n), D(n) modular invariants. Finally the graphs E (8), E (8)∗,

E (12)
i , i = 1, . . . , 5 and E (24) are the graphs associated to exceptional invariants.

For A(n), A(n)∗, D(n), D(n)∗ E (n) we call n the Coxeter number.

For each graph G, let {µ(v)}v be its Perron Frobenius eigenvector with eigen-

value [3]q, q = eiπ/n where n is the Coxeter number of G. Denote by ∗ the

vertex with lowest Perron Frobenius weight, and normalise the eigenvector so

that µ(∗) = 1.

Let G be any finite subgroup of SU(3). We may associate to G a graph GG

called its McKay quiver. Let L be the fundamental representation of G. The

vertices of the graph are the set of irreducible representations {Li} of G and the

number of edges from vertex Li to Lj is the dimension of HomG(Li, Lj ⊗ L).

A type I frame in a graph G is a pair of edges e1, e2 with s(e1) = s(e2)

and r(e1) = r(e2). A type II frame is 4 edges e1, . . . , e4 with s(e1) = s(e4),

s(e2) = s(e3), r(e1) = r(e2) and r(e3) = r(e4).

Given a graph G which is either an ADE graph (but not E (12)
4 ) or GG for

some subgroup G ⊆ SU(3) we can associate a complex number W4α,β,γ to each

oriented triangle in the graph edges α, β, γ as follows.

Definition 2.7.1. A cell system on G is a map that associates a complex number

W4α,β,γ to each oriented triangle in G such that the W satisfy the following rules.

• For any type I frame

∑
k,β,γ

r(β)=s(γ)=k

W4α,β,γW4α′,β,γ = [2]qµ(s(α))µ(r(α))δα,α′

• For any type II frame

∑
k,β1,β2,β3,β4

r(β1)=s(β2)=r(β3)=s(β4)=k

µ(k)−1W4α2,β1,β2W4α3,β2,β3W4α4,β3,β4W4α1,β4,β1 =

µ(s(α1))µ(s(α2))µ(s(α4))δα1,α4δα2,α3+µ(s(α1))µ(s(α2))µ(s(α3))δα1,α2δα3,α4

(2.3)
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In [22] the cells were shown to exist and calculated for the SU(3) ADE graphs,

apart from the graphs E (12)
3 and E (12)

4 .

Let G be any finite SU(3)ADE graph with vertices V and distinguished vertex

∗ ∈ V . Let {µ(v) : v ∈ V } be the Perron Frobenius eigenvector with eigenvalue

[3]q. We construct the double sequence of finite dimensional string algebras in a

similar manner to the construction in Section 2.4.

B0,0 ⊂ B0,1 ⊂ B0,2 ⊂ · · · → B0,∞

∩ ∩ ∩ ∩
B1,0 ⊂ B1,1 ⊂ B1,2 ⊂ · · · → B1,∞

∩ ∩ ∩ ∩
B2,0 ⊂ B2,1 ⊂ B2,2 ⊂ · · · → B2,∞

∩ ∩ ∩ ∩
...

...
...

...

Here the horizontal inclusions are given by the full graph G. If G is not three

colourable, the vertical inclusions are given by all of G but if it is three colourable

the inclusion Bi,j ⊂ Bi+1,j is given by the j−j + 1 part of G. We identify B0,0 = C

with the starred vertex of G.

For the square

Bi,j ⊂ Bi,j+1

∩ ∩
Bi+1,j ⊂ Bi+1,j+1

(2.4)

if i is even we define a connection on the graph G by

Xρ1,ρ2
ρ3,ρ4

=

i
ρ1−→ j

ρ3

y yρ2

k −→ρ4 l

= q2/3δρ1,ρ3δρ2,ρ4 − q−1/3 Uρ1,ρ2
ρ3,ρ4

, (2.5)

and

Uρ1,ρ2
ρ3,ρ4

=
∑

λ

µ(s(ρ1))
−1µ(r(ρ2))

−1
W4λ,ρ3,ρ4W4λ,ρ1,ρ2 .
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If i is odd we define the connection on G by

ρ1−→
ρ̃3

y yρ̃2

−→
ρ4

=

√
µ(s(ρ3))µ(r(ρ2))

µ(s(ρ2))µ(r(ρ3))

ρ1−→
ρ3

y yρ2

−→
ρ4

. (2.6)

Thus we may transform a path from Bi,j → Bi+1,j → Bi+1,j+1 to a path of the

form Bi,j → Bi,j+1 → Bi+1,j+1.

Denote by Bi,∞ the GNS completion of
⋃

n≥1 Bi,n with respect to the Markov

trace defined for (ξ, ζ) ∈ Bi,j by

tr(ξ, ζ) := δξ,η[3]−(i+j)µ(r(ξ)).

It is known [20] that for G = A(n),D(n) the algebra Bi,∞ is a II1 factor and

the double sequence satisfies B′
0,∞ ∩Bi,∞ = Bi,0 for all i.

Define operators U−k ∈ Bi,j by

U−k =
∑

|ξ1|=j−2−k|ρi|=1
|ξ2|=i,|ζ|=k

Uρ3,ρ4
ρ1,ρ2

(ξ1 · ρ1 · ρ2 · ξ2 · ζ, ξ1 · ρ3 · ρ4 · ξ2 · ζ) 0 ≤ k ≤ j − 2

U−j+1 =
∑

|ξ1|=j−1|ρi|=1
|ζ|=k

Uρ3,ρ4
ρ1,ρ2

(ξ1 · ρ1 · ρ2 · ζ, ξ1 · ρ3 · ρ4 · ζ)

where the sum is over all horizontal paths ξi and vertical paths ζ.

In order to relate A2-planar algebras and subfactors, we restrict our attention

to a certain subcollection of tangles, called (i, j) tangles where i, j ∈ N. An (i, j)

tangle T is a planar σ tangle such that the first j boundary points are required

to be sources, the following 2i alternate between sources and sinks and the final

j are all sinks. The (j + 1)-th marked point is a source for a + tangle and a sink

for a − tangle. For a σ of this form, we denote Pσ by Pi,j.

We now define an A2-planar algebra whose vector spaces Pi,j ' Bi,j and whose

presenting map is defined as follows. First we isotope T into standard form. That

is, we draw T in such a way that it can be divided into horizontal strips so that

each strip contains at most one of a cup, a cap, and incoming or outgoing Y

fork, an inverted incoming or outgoing Y fork or a labelled rectangle. For each
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Figure 2.14: Labelling for the strip ∪i

horizontal strip, label the sequence of vertices along the top and bottom edges by

all possible paths in the graph G starting at ∗ and such that downward oriented

strings are labelled by edges in G and upwards oriented strings are labelled by

edges in G̃, the graph G with all orientations reversed.

For a strip ∪i containing a cup joining the i-th and (i+1)-th vertices as shown

in Figure 2.14 the vertices along the top and bottom edge are labelled by paths

in G, in order for the labelling to be consistent we must have αi = βi for all i and

αi+1 = α̃i. Thus the contribution to the presenting map for each pair of paths is

Z(∪i) =
∑

α

√
µ(r(αi))√
µ(s(αi))

δαi,α̃i+1
(α1 · · ·αn, α1 · · ·αi−1 · αi+2 · · ·αn)

where the sum is over all possible paths α := α1 · · ·αn

For a cap joining the i-th and (i + 1)-th vertices along the bottom of the

rectangle the contribution to the presenting map is Z(∩i) = Z(∪i)∗.

For a strip gi containing an outgoing Y-fork joining the i-th and (i + 1)-th

vertices on the top to the i-th vertex on the bottom, label the vertices as in

Figure 2.15. Then we must have αj = βj for 1 ≤ j ≤ i − 1 and αj = βj+1 for

i + 2 ≤ j ≤ n. Thus the contribution to the presenting map is

Z(gi) =
∑

α,β

1√
µ(s(β))µ(r(β))

W (4β̃.αi.αi+1
)(α1 · · ·αn, α1 · · ·αi−1 · β · αi+2 · · ·αn)

where once again we sum over all possible paths α and β, the edge α̃i is αi with

the orientation reversed and W is the complex number defined by the cell system

on the graph.

Similarly for a strip gi containing an incoming inverted Y-fork joining the

i-th vertex on the top to the i-th and (i + 1)-th vertex on the bottom, we label

31



Figure 2.15: Labelling for the strip gi

Figure 2.16: Labelling for the strip ḡ

as in Figure 2.16 and the presenting map is

Z(fi) =
∑ 1√

µ(s(β)µ(r(β))
W (4β.α̃i+1.α̃i

)(α1 · · ·αn, α1 · · ·αi−1βαi+1 · · ·αn).

For inverted Y-forks fi and inverted outgoing Y -forks f̄i we have that Z(fi) =

Z(gi)∗ and Z(f̄i) = Z(ḡi)∗.

For a strip x containing a rectangle with label (ξ, ∗), if there are no through

strings to the left or right of the rectangle the presenting map is just Z(x) = (ξ, ∗).
If there are n through strings to the right, the presenting map Z(x) =

∑
|α|=n(ξ ·

α, α). If there are m through strings to the right, we start by adding m through

strings to the right as above and then use the connection to transform to a path

of the form Z(x) =
∑

|α|=m,ζ cξ,ζ(α · ζ, α) where the constants cξ,ζ come from the

connection. Then if there are n through strings to the left and m to the right the

presenting map is

Z(x) =
∑

|α|=n,|β|=m

cξ,ζ(α · ζ · β, α · β)

where the sum is over all possible paths α of length n and β of length m. If the

rectangle is labelled by a linear combination of paths
∑

λi(ξi, ∗) then just extend

the definition linearly.
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Finally suppose T is a tangle in standard form which is divided into n hor-

izontal strips t1, . . . , tn where t1 is the top strip, t2 is the next one underneath

and so on. Then the presenting map ZT is the product Z(t1) . . . Z(tn) where the

presenting maps of the individual strips are as defined above.

Theorem 2.7.2 (Theorem 6.4, [23]). Let G be an ADE graph with ∗ chosen as the

vertex with lowest Perron Frobenius weight and suppose G has a flat connection.

The above definition of ZT for an A2-tangle makes the double sequence Bi,j into

a flat A2-planar C∗-algebra with parameter α, the Perron-Frobenius eigenvalue of

G, and dimP0,0 = dimP
(0,1)
0,1 = dimP

(0,2)
0,2 = 1.

In the above theorem we use the notation P
(m,n)
i,j = Z(P(m,n)

i,j ), where P(m,n)
i,j is

the subspace of Pi,j spanned by discs where the first n strings are through strings

and strings n + j + 1 to n + j + m are strings which pass over any strings they

cross and are such that there are no discs between them and the right edge of the

tangle.

Definition 2.7.3. An A2-planar algebra is called the A2-planar algebra for the

subfactor N ⊂ M if P0,∞ = N , P1,∞ = M , Pi,∞ = Mi−1 and P ′
0,∞ ∩ Pi,∞ = Pi,0

and ZT satisfies the following conditions.

(i) Z(W−k) = U−k, k ≥ 0,

(ii) Z(fl) = αel, l ≥ 1,

(iii)

(iv)

(v)

where α = [3]q for q such that [M : N ] = [2]q.
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2.8 Type III Factors and Sectors

Let M and N be type III factors and let Mor(M,N) be the collection of unital

normal endomorphisms M → N . If M = N we write End(M) := Mor(M,M).

Suppose N ⊂ M is a subfactor with N and M isomorphic, then there exists

ρ ∈ End(M) with ρ(M) = N ([60], Section 2.8). Suppose there exists a faithful

normal conditional expectation E : M → N then Kosaki describes in [52] a

canonical construction of an operator valued weight E−1 : M ′ → N ′. If 1 is in

the domain of E−1 then we put ind(E) = E−1(1), otherwise we put ind(E) = ∞.

It is shown in Theorem 1 of [31] that if the index is finite then there exists

a unique conditional expectation with ind(E0) = inf ind(E) where the infimum

is taken over all faithful normal conditional expectations from M to N . If the

subfactor is irreducible, that is, if N ′ ∩M = C then the conditional expectation

is unique. If not, let pi be the minimal projections of N ′ ∩M . Then there are

unique conditional expectations Ep : Mp → Np and Proposition 5.4 of [58] states

that the minimal expectation E0 : M → N is related to Ep by

Ep(mp) = (indEp)E0(mp)p

for mp ∈ Mp . The dimension d(ρ) of an endomorphism ρ is defined as d(ρ) = [M :

ρ(M)]
1
2
0 , where [M, N ]0 is the minimal index of N in M . For ρ1, ρ2 ∈ Mor(M,N)

let

(ρ1, ρ2) := {n ∈ N : nρ1(x) = ρ2(x)n for all x ∈ M}
be the intertwiner space. A morphism ρ ∈ Mor(M, N) is said to be irreducible

if the intertwiner space (ρ, ρ) is just C. Define an equivalence relation on endo-

morphisms by ρ1 ∼ ρ2 if there exists a unitary u such that ρ1 = Ad(u)ρ2. Denote

by [ρ] the equivalence class of ρ in Mor(M, N)/ ∼ = Sect(M,N). In the case

N = M we write Sect(M) for Sect(M, M). Sums and products of sectors are

defined as follows. Let

[ρ1][ρ2] = [ρ1ρ2] [ρ1]⊕ [ρ2] = [v1ρ1v
∗
1 + v2ρ2v

∗
2]

where the vi ∈ M are isometries satisfying v1v
∗
1 + v2v

∗
2 = 1. The index satisfies

d(ρ1ρ2) = d(ρ1)d(ρ2) and if [ρ] = [ρ1] ⊕ [ρ2] then d(ρ) = d(ρ1) + d(ρ2)[54]. The
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canonical endomorphism γ for a subfactor ρ(M) ⊂ M is defined as γ(x) = ΓxΓ∗,

where Γ = Jρ(M)JM and JM and JN are the modular conjugations. Then the

conjugate sector of [ρ] is the equivalence class of ρ̄ denoted by ¯[ρ] where ρρ̄ = γ.

Let θ = ρ̄ρ be the dual canonical endomorphism.

Given a finite index subfactor N := ρ(M) ⊂ M it was shown [57] that there

exist isometries r ∈ (id|N , γ|N) and r̄ ∈ (id, γ) which satisfy r∗γ(r̄) = r̄∗r = 1
d(ρ)

and r̄r̄∗ = e1 and rr∗ = e2, where the ei are the Jones projections for the basic

construction of Mi−1 ⊂ Mi, defined for type III factors in Section 3 of [52].

Define rρ = ρ−1(r) and r̄ρ = r̄.

The downward basic construction for a type III subfactor N ⊂ M is the tunnel

M ⊃ N ⊃ γ(M) ⊃ γ(N) ⊃ . . .

which gives the tower of relative commutants

C = M ′ ∩M ⊂ M ∩N ′ ⊂ M ∩ γ(M)′ ⊂ . . .

If we define ζ(x) = JMJNxJNJM then we may construct the Jones tower

N ⊂ M ⊂ ζ(N) ⊂ ζ(M) ⊂ . . .

Note that the subfactor γ(M) ⊂ N is isomorphic to M ⊂ ζ(N).

As in the case of II1 factors, we have the notion of principal and dual principal

graph. These may be defined in terms of endomorphisms and intertwiners [34].

To define the principal graph for ρ(M) ⊂ M first decompose the endomorphisms

1, ρ̄, ρ̄ρ, ρ̄ρρ̄, ρ̄ρρ̄ρ, . . . into irreducibles ρi. The vertices of the graph are labelled

by the [ρi] and an edge joins the two vertices labelled ρi and ρj if ρj appears in

the decomposition of ρρi into irreducibles. The dual graph is defined similarly

but this time we decompose the endomorphisms 1, ρ, ρρ̄, ρρ̄ρ, ρρ̄ρρ̄, · · · . For the

graphs An, D2n, E6 and E8 the fusion rules are given in [32].

Let G be the dual principal graph of the inclusion N = ρ(M) ⊂ M . The even

vertices Geven are labelled by irreducible sectors ρv ∈ Sect(M, M) which occur in

the decomposition of [(ρρ)n] and the odd vertices Godd are labelled by irreducible

sectors ρv ∈ Sect(N, M) which occur in the decomposition of the [(ρρ̄)nρ]. The
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number of edges between v ∈ Geven and w ∈ Godd is the dimension of (ρv, ρwρ).

Let {T (ξ)}ξ be an orthonormal basis of (ρv, ρρw), indexed by all paths ξ of length

one starting at v and ending at w. For a path ξ of length n, ξ = ξ1 · · · ξn let

T (ξ) = T (ξ1) . . . T (ξn). If ξ̃ is the opposite path then let T (ξ̃) = rρT (ξ). This is

an orthonormal basis for (ρw, ρvρ̄).

Similarly, let H be the principal graph of the inclusion ρ(M) ⊂ M . Even

vertices Heven are labelled by irreducible sectors σv ∈ Sect(M,M) which occur

in the decomposition of [(ρ̄ρ)n] and odd vertices Hodd are labelled by irreducible

sectors σv ∈ Sect(N, M) which occur in the decomposition of the [(ρρ)nρ]. Again,

we let {T (η)}η be an orthonormal basis of the intertwiner spaces (σx, σyρ̄) for

paths η of length one with s(η) = x ∈ Hodd t(η) = y ∈ Heven and extend this to

paths of arbitrary length. Note that the conjugation map allows us to identify

the odd vertices of G with those of H.

Next we fix an orthonormal basis {S(ξ)}ξ of the intertwiner spaces (σv′ , ρρv),

with v′ ∈ Godd and v ∈ Geven, and {S(η)} of (σx, ρρy) with x ∈ Heven and

y ∈ Hodd. In this way we get bases for the intertwiner spaces (ρv, (ρρ̄)nρv′) and

(ρv, ρ̄(ρρ̄)nρv′) etc. In order to define bases for spaces such as (ρv, (ρρ̄)nρwρ) we

need to define a connection, since both {ρ̄(T (ξ)S(ν)} and {S(ζ)T (η)} are natural

choices for this basis.

In Section 2.4 of [34] this connection is defined by the rule

ρ(T (ξ))S(ν) =
∑

ζ,η,y

v
ξ−→ w

ζ

y yν

y −→η x

S(ζ)T (η). (2.7)

It was shown that this satisfies the flatness, unitarity and renormalization axioms.

There is a unique (up to equivalence) corespondence between endomorphisms

σ and bimodules Xσ for type III factors. For any endomorphism σ the space

Xσ = Hφ, where Hφ is the GNS Hilbert space associated to the von Neumann

algebra M with state φ, is an M -M bimodule where M acts on the left by ordinary

multiplication and on the right by σ as shown

xξy = xξσ(y) ξ ∈ M, x, y ∈ M.
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For type III factors all bimodules arise in this way up to isomorphism and σ ' σ′

if and only if Xσ ' Xσ′ , whereas for type II1 factors there are bimodules which do

not have this form [21]. Tensor products of bimodules corresponds to composition

of the corresponding endomorphisms, i.e. Xσ ⊗Xσ′ ' Xσσ′ .

Often it is possible to split an inclusion of type III factors into a type II

subfactor tensored with a type III factor. This has been investigated for example

in [77], [56], [33], of particular use to us is the following theorem which was proved

in [77].

Theorem 2.8.1. Let N ⊂ M be a finite index inclusion of type III factors and

suppose there exists a conditional expectation E : M → N . Suppose also the

following conditions hold:

1. N ' N ⊗R, where R is the hyperfinite type II1 factor

2. N ⊂ M is approximately inner and centrally free

3. E and its extensions define a trace on the relative commutants N ′ ∩Mk

4. ΓN,M is strongly amenable

Then N ⊂ M '
(
(∪kN ′

k ∩N) ⊂ (∪kN ′
k ∩M)

)
⊗M .

The principal graph ΓN,M is called amenable if ‖ΓN,M‖2 is equal to the minimal

index. ΓN,M is called ergodic if the trace on the relative commutants N ′
k ∩ M

defined by E−k · · ·E is factorial, where Nk is a tunnel and Ek : Nk → Nk+1 is

the conditional expectation. Then ΓN,M is called strongly amenable if it is both

amenable and ergodic.

Theorem 2.9 of [77] gives the following characterisation of approximate in-

nerness for hyperfinite subfactors, a more general definition may be found in

[77]. Suppose N ⊂ M is an inclusion of hyperfinite factors of type IIIλ for some

λ ∈ (0, 1] then N ⊂ M is called approximately inner if either

1. λ = 1 and E is the minimal expectation or
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2. λ ∈ (0, 1) and there exists a common discrete decomposition, that is, there

exists a II∞ subfactor Ñ ⊂ M̃ and a trace scaling automorphism φ of M̃

fixing Ñ with Ñ oφ Z ⊂ M̃ oφ Z ' N ⊂ M .

We also define central freeness only for hyperfinite subfactors, our definition

is a result of Theorem 3.5 and 4.1 of [77], where a more general definition may

be found. The inclusion N ⊂ M of hyperfinite type III factors is called centrally

free if either

1. N is of type IIIλ for some λ ∈ (0, 1), φ is a λ trace and N ′ ∩Mk ' N ′
φ ∩Mk

for all k or

2. N and M are type III1 and there exists a faithful normal state φ on N such

that N ′ ∩Mk ' N ′
φ ∩Mk for all k.

The following theorem, which is Theorem 3.12 of [53] describes the basic

construction for type III factors.

Theorem 2.8.2. Let N ⊂ M be a type III subfactor with normal conditional

expectation E : M → N . Suppose L is a von Neumann algebra containing M

with normal conditional expectation E : L → M . If there exists a projection e ∈ L

and a constant λ > 0 such that

1. E(e) = λ−1I

2. λE(xe)e = xe for all x ∈ L

3. exe = E(x)e for all x ∈ M

then the subfactor M ⊂ L is isomorphic to the basic construction M ⊂ M1 and

this isomorphism takes e to the Jones projection.

Let α be an automorphism of N ⊂ M . Then α may be extended to Mk

inductively by setting α(ek) = ek, where ek is the Jones projection for Mk−2 ⊂
Mk−1. Then Φ defined by

Φ(α) := {α|M ′∩Mk
}k

is called the Loi invariant.
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2.9 The Cuntz-Krieger Algebras

Given an N × N (N < ∞) matrix A with entries in {0, 1} and no zero rows

or columns the Cuntz-Krieger algebra OA is defined as the universal C∗-algebra

generated by n non zero partial isometries Si 1 ≤ i ≤ N satisfying the relations

Qi =
∑

j

Ai,jPj PiPj = δi,j

where Pi = SiS
∗
i and Qi = S∗i Si. The algebra OA was first defined by Cuntz and

Krieger in [12]. In the case where A is an N × N matrix with N ≥ 2 and all

entries equal to one, OA is the Cuntz algebra ON .

Given a multi index µ = (µ1, . . . , µn) the operator Sµ = Sµ1 . . . Sµn is non zero

if and only if Aµi,µi+1
= 1 for all 1 ≤ i ≤ N . The algebra OA is the completion of

the linear span of operators of the form SµS
∗
ν for multi indices µ, ν. Denote by

FA the AF algebra which is the inductive limit of the finite dimensional algebras

F n
A = span{SµPiS

∗
ν ; |µ| = |ν| = n, 1 ≤ i ≤ N}. Each F n

A may be written as a

direct sum of matrix algebras F i
n which are the closed linear span of the operators

SµPiSν , |µ| = |ν| = n, 1 ≤ i ≤ N , and the embedding of F n
A in F n+1

A is given by

A, that is, the algebra F i
n is contained in the algebra F j

n+1 with multiplicity Ai,j.

For an N ×N matrix A with entries in the positive integers, let Σ = {(i, k, j)|
i, j ∈ {1, . . . , N}, 1 ≤ k ≤ Ai,j} and A′((i1, j1, k1), (i2, k2, j2)) := δj1,i2 . If A′ is

irreducible and not a permutation matrix then OA is the algebra on |Σ| = m

generators Si subject to the relations S∗i Si =
∑

j∈Σ A′
i,jSjS

∗
j .

There is an automorphism group of OA given by λA
t (Si) = tSi for t ∈ T. It

can be shown [12] that FA is the fixed point algebra of OA under the action of λ.

As in [72] we define states on OA as follows.

Given a Cuntz-Krieger algebraOA with A an N×N matrix, let ω = (ω1, . . . , ωN)

∈ RN and σω
t (Si) = eitωiSi. Let ΩA = {(ai)

∞
i=1|Aai,ai+1

= 1} be the set of one

sided infinite admissible words.

Let Φ be the conditional expectation from OA onto span{SξS
∗
ξ}. It was shown

in [12] that C(ΩA) ' span{SξS
∗
ξ}. Hence we may define a state on OA by first

projecting onto span{SξS
∗
ξ} and then integrating with respect to some measure.
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Assume that there exist xi > 0, 1 ≤ i ≤ N and β > 0 such that
∑N

i=1 xi = 1

and xi =
∑

j exp[−βωi]Aijxj. Define a probability measure ν on ΩA by its value

on the cylinder sets ΩA(ξ1, . . . ξn) := {(ai) ∈ ΩA : ai = ξi, 1 ≤ i ≤ n} by

ν(ΩA(ξ1, . . . ξn)) = eβωξ1 · · · eβωξ1xξn . Then the state φω := ν ◦ Φ is the unique

KMS state for the modular automorphism group σω at inverse temperature β

[72].

It has been shown (eg in [72], Theorem 4.2) that the weak completion of OA

with respect to this state gives the AFD type IIIλ factor, with λ dependent on

the choice of ω. More specifically, given ω = (ω1, . . . , ωN) then we may define a

word length ωξ on words ξ in ΩA by ωξ = ωξi
+ . . . + ωξn for ξ = ξ1 · · · ξn. If for

every two loops ξ and η the ratio ωξ/ωη ∈ Q then OA completes to give the AFD

type IIIλ factor. In this case the closed additive subgroup of R generated by βωξ

is rZ for some r > 0 and λ = e−r. If ωξ/ωη /∈ Q for some ξ, η then we get the

AFD type III1 factor.

2.10 Free probability

Most of the results in this section may be found for example in [69] or [88].

A noncommutative probability space is a unital algebra A over C with a linear

functional φ : A → C such that φ(1) = 1. The space (A, φ) is called a C∗-

probability space if A is a C∗-algebra and φ is a state and it is called a W ∗-

probability space if A is a von Neumann algebra and φ is normal. An element

a ∈ A is called a noncommutative random variable and its distribution µa is the

function C[a] → C defined by µa(p) = φ(p(a)) for any polynomial p ∈ C[a]. If

(Ai)i∈I are disjoint subalgebras of A then Ai are said to be free if φ(a1 · · · an) = 0

whenever aj ∈ Aij , ij 6= ij+1 for all j and φ(aj) = 0 for all j. If (Ai, φi) i ∈ I is

a family of noncommutative probability spaces let A := ∗i∈IAi be the algebraic

free product, then by 1.4.1 of [88] there exists a unique linear map φ on A such

that φ|Ai
= φi and the Ai are free with respect to φ.

Suppose (Hi, Ωi), i ∈ I, is a collection of Hilbert spaces Hi with distinguished
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unit vector Ωi. The free product (H, Ω) = ∗i∈I(Hi, Ωi) is the Hilbert space

H = CΩ⊕
⊕

n∈N
(

⊕

i1 6=i2 6=...6=in

Ho
i1
⊗ · · · ⊗Ho

in)

where Ho
i = Hi ª Ωi.

In order to define the free product of W ∗-probability spaces, suppose (Ai, φi)

are von Neumann algebras and πi : Ai → B(Hi) is a representation of Ai on the

Hilbert space Hi for all i. Let H = ∗Hi and let

H(i) = CΩ⊕
⊕

n∈N

⊕
i1 6=i2 6=...6=in

i1 6=i

(Ho
i1
⊗ · · · ⊗Ho

in).

Then the free product A = ∗Ai is the von Neumann algebra (∪λ(Ai))
′′ where Ai

is represented on H by λi(a) = Vi(πi(a)⊗ 1H(i))V
∗
i . Here Vi : Hi ⊗H(i) → H is

defined by

Ωi ⊗ Ω → Ω

Ho
i ⊗ Ω → Ho

i

Ωi ⊗Ho
i1
⊗ · · · ⊗Ho

in → Ho
i1
⊗ · · · ⊗Ho

in

Ho
i ⊗Ho

i1
⊗ · · · ⊗Ho

in → Ho
i ⊗Ho

i1
⊗ · · · ⊗Ho

in .

2.10.1 Free Group Factors

Let G be a group. Then the left regular representation of G on `2(G) is defined

by (λgξ)(h) = ξ(g−1h) for ξ ∈ `2(G), g, h ∈ G. The group von Neumann algebra

L(G) is defined as the von Neumann algebra generated by the λg with trace given

by tr(λg) = δg,e where e is the unit of G. It is well known that in the case that G

is an infinite conjugacy class (ICC) group, i.e. a group where the conjugacy class

of every non identity element is infinite, L(G) is a factor, a proof may be found

for example in [86], Proposition 7.9. In particular the free group factors L(Fn) are

II1 factors. The problem of whether L(Fn) is isomorphic to L(Fm) for m 6= n was

one of the motivations for the beginning of the study of free probability, however

this problem still remains open. It is a well known result that L(Fn) = ∗n
i=1L(Z),

this follows from the fact Fn
∼= ∗n

i=1Z and L(G ∗ H) ∼= L(G) ∗ L(H). The
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interpolated free group factors L(Fr) for 1 < r ≤ ∞ were defined by Dykema

[18] and Rădulescu [80]. If r ∈ N, with n ≥ 2 then the interpolated free group

factor L(Fr) is a free group factor. The interpolated free group factors satisfy

(L(Fr))t ' L(F1+(r−1)/t) for all 0 < t < ∞ and 1 < r ≤ ∞. For a II1 factor M

with trace tr we use the notation Mt := pMp where p is a projection in M with

tr(p) = t, it was shown in [68] that Mt is well defined, that is pMp ' qMq if p

and q are projections, both of trace t.

2.10.2 Free cumulants

Before we define the free cumulants we must introduce non-crossing partitions.

Let n ∈ N be fixed. Then π = {U1, . . . , Um} is a partition of {1, . . . , n} if the

Ui are disjoint subsets of {1, . . . , n} and their union is {1, . . . , n}. We call the Ui

the blocks of π. The partition π is called a non-crossing partition if whenever

a1, a2 ∈ Ui and b1, b2 ∈ Uj with i 6= j the situation 1 ≤ a1 < b1 < a2 < b2 ≤ n does

not occur. The collection of all non-crossing partitions is denoted by NC(n). The

number of non-crossing partitions of a set with n elements is Cn = 1/(n + 1)
(
2n
n

)

the nth Catalan number. There is a natural partial order on NC(n), for π,

σ ∈ NC(n) we say π ≤ σ if each block of π is contained in some block of σ.

We write 0n, 1n for the smallest and largest element of NC(n) respectively. For

any two non-crossing partitions π1, π2 ∈ NC(n) the join π1 ∨ π2 is the smallest

σ ∈ NC(n) with π1 ≤ σ and π2 ≤ σ. The partition π is called a non-crossing

pair partition if each block has exactly two elements. The collection of non-

crossing pair partitions of n elements is denoted NC2(n), where obviously here

we must have n even. There are Cn elements of NC2(2n) and hence there is a

bijection between NC(n) and NC2(2n). The Kreweras complement of a partition

π ∈ NC(n) is the largest non-crossing partition σ of the set {1, . . . , n} such that

π ∪ σ is a non-crossing partition of the set {1, 1, . . . , n, n}.
Let (A, φ) be a non commutative probability space. Then we may define

functions φn : ×nA → C by φn(a1, . . . , an) = φ(a1 · · · an). For any π ∈ NC(n) we
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can define the extensions φπ of the φn by

φπ(a1, . . . , an) =





φn(a1, . . . , an) if π = 1n

φσ(a1, . . . , ai, φ(ai+1 · · · ai+j)ai+j+1, . . . an) if π = σ ∪ 1[i+1,i+j]

.

The free cumulants κn are defined by κπ(a1, . . . , an) =
∑

σ≤π φσ(a1, . . . , an)µ(σ, π)

where µ is the Möbius function defined recursively by µ(π, π) = 1,

µ(σ, π) = −∑
σ≤τ<π µ(σ, τ) for σ < π.

It was proved (e.g Theorem 4.2.1 [69]) that, given a non commutative proba-

bility space (A, φ) with subalgebras Ai for i ∈ I, the algebras Ai are free if and

only if the cumulants κn(a1, . . . , an) are zero unless all the aj are in the same

subalgebra Ai.

2.10.3 Amalgamated Free Products

Given a collection of free probability spaces (Ai, φi) for i = 1, . . . , n with a com-

mon subalgebra B such that φi|B = φj|B for all i, j and conditional expectation

maps ψi : Ai → B. Let A = ∗BAi be the algebraic amalgamated free prod-

uct. Then the map ψ : A → B is the amalgamated free product of the ψi if it

satisfies ψ|Ai
= ψi and ψ(a1 . . . am) = 0 for ak ∈ Ai(k) with ψi(k)(ak) = 0 and

i(k) 6= i(k +1) for 1 ≤ k ≤ m. In the case of amalgamated free products we have

B valued cumulants, defined by the formula

κn(a1, . . . , an) :=
∑

π∈NC(n)

ψπ(a1, . . . , an)µ(π, 1n).

An alternative definition was given by Speicher in [83]. If an algebra A is the

algebraic free product with amalgamation over B of subalgebras Ai then φ is

the free product state if and only if its B valued cumulants κn(a1, . . . , an) are all

zero for all n and whenever there exists j, k such that aj ∈ Ai(j), ak ∈ Ai(k) and

i(j) 6= i(k).

Often it is useful to think of the free product A1 ∗B A2 with amalgamation

over B as the algebra generated by B + Λ(A◦
1, A

◦
2) where A◦

i denotes the kernel

of the conditional expectation φi and Λ(C,D) means the collection of alternating

products of elements of C and D.
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2.11 Crossed product of a C∗-algebra by an en-

domorphism

Let A be a unital C∗-algebra and Φ be an endomorphism of A. A covariant

representation of (A, Φ) is a pair (π, S) where π is a non degenerate representation

of A on some Hilbert space H and S is an isometry with π(Φ(x)) = Sπ(x)S∗ for

all x ∈ A. Then the crossed product of A by Φ is a triple (B, iA, t) consisting of

a unital C∗-algebra B, a unital homomorphism iA : A → B and an isometry t in

B such that

• iA(Φ(a)) = tiA(a)t∗

• for every covariant representation (π, S) of (A, α) on a Hilbert space H there

exists a unital representation σ of B on H with σ ◦ iA = π and σ(t) = S

• t and iA(A) generate B.

Given such a pair (A, Φ) denote by A∞ the inductive limit of A
Φ→ A

Φ−→ A · · · .
It was shown in Proposition 2.2 of [84] that the crossed product defined above

exists if and only if A∞ 6= 0 and in this case it is unique and we usually write

AoΦ N for the crossed product B.

2.12 Bicategories

The theory of bicategories was first introduced in [3], all the material in this

section may be found in [55] or [14].

Definition 2.12.1. A bicategory B is

• a collection of objects B0 called 0-cells.

• for each a, b ∈ B0 there is a category B(a, b) whose objects α ∈ ob(B(a, b))

are called 1-cells of B, denoted a
α→ b, and whose morphisms f ∈ Mor(B(a, b))

are called 2-cells of B, denoted α
f→ β.

44



• for each a, b, c ∈ B0 there is a functor ⊗ : B(a, b)× B(c, a) → B(c, b)

• for each triple α ∈ B(a, b), β ∈ B(c, a), γ ∈ B(d, c) of 1 cells there is an

isomorphism fα,β,γ : (α ⊗ β) ⊗ γ → α ⊗ (β ⊗ γ) such that the following

diagram commutes

((α⊗ β)⊗ γ)⊗ δ

fα⊗β,γ,δ

²²

fα,β,γ⊗1δ // (α⊗ (β ⊗ γ))⊗ δ
fα,β⊗γ,δ // α⊗ ((β ⊗ γ)⊗ δ)

1α⊗fβ,γ,δ

²²
(α⊗ β)⊗ (γ ⊗ δ)

fα,β,γ⊗δ

// α⊗ (β ⊗ (γ ⊗ δ))

for all α ∈ B(a, b), β ∈ B(c, a), γ ∈ B(d, c) and δ ∈ B(e, d)

• for each a ∈ B0 there is an identity morphism a
1a→ a

• for each 1 cell a
α→ b there exist isomorphisms 1b ⊗ α

λa→ α and α⊗ 1a
ρa→ α

in Mor(B(a, b)) such that the following diagram commutes

(α⊗ 1a)⊗ β

ρα⊗1β %%KKKKKKKKK

αα,1,β // α⊗ (1a ⊗ β)

1α⊗λβyysssssssss

α⊗ β

for α ∈ ob(B(a, b)), β ∈ ob(B(c, a)).

A 2-category is a strict bicategory, that is, a bicategory where the associativity

and unit constraints are just the identity.

Let B, B′ be two bicategories. A weak morphism (F, φ) from B to B′ consists

of

1. a function F : B0 → B′0

2. functors Fab : B(a, b) → B′(F (a), F (b))

3. natural isomorphism φ such that for all a, b, c ∈ B0 we have φabc : ⊗′◦(F bc⊗
F ab) → F ac ◦ ⊗

4. for all a ∈ B0 there is an invertible φa ∈ MorB(a, a) 1F (a)
φa→ F (1a)
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Suppose (F, φ) and (G,ψ) are morphisms between bicategories B, B′. Then

a weak transfomation between F and G is a 1-cell σa ∈ obB′(F (a), G(a)) for all

a ∈ B0 a natural transformation σa,b : σb ⊗′ F a,b → Ga,b ⊗ σa satisfying

σa ⊗′ 1F (a)

1σa⊗′φa

²²

ρ′σa // σa 1G(a) ⊗ σa
λ′σa

oo

ψa⊗1σa

²²
σa ⊗′ F (1a) σ1a

// G(1a)⊗′ σa

σc ⊗′ F (α)⊗′ F (β)

1⊗φα,β

²²

σf⊗′1F (α) // G(α)⊗′ σb ⊗′ F (β)
1G(α)⊗′σg // G(α)⊗′ G(β)⊗′ σa

ψα,β⊗1σa

²²
σc ⊗′ F (α⊗ β) σα⊗β

// G(α⊗ β)⊗′ σa

for all α ∈ obB(b, c), β ∈ B(a, b) a, b, c ∈ B0.

Definition 2.12.2. A one cell a
α→ b in a bicategory B is said to have a right

dual α# if there exists a one cell b
α#→ a such that there exist 2-cells α#⊗ α

eα→ 1a

and 1b
cα→ α⊗ α# satisfying

(1α ⊗ eα) ◦ (cα ⊗ 1α) = 1α

and

(eα ⊗ 1α#) ◦ (1α# ⊗ cα) = 1α#

A bicategory is said to be rigid if every 1 cell has a right dual.

The composition # ◦# defines a functor ## from B to B.

A bicategory is said to be pivotal if it is right rigid and there exists a weak

trasformation a : idB → ## with aε = 1ε for all ε ∈ B0
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Chapter 3

Planar Algebra for Type III

subfactors

In this chapter we explain how to define a planar algebra for a type III subfactor.

The main idea we use is from [34], where it was show that starting from a subfactor

ρ(M) ⊂ M one can construct a C∗-algebra Oρρ = ∪n,m((ρρ̄)n, (ρρ̄)m) which is

isomorphic to the Cuntz Krieger algebra O∆∆t where ∆ is the adjacency matrix

for the principal graph.

Using the characterisation of the principal graph in terms of intertwiners de-

scribed in Section 2.8 it was shown in [34] that Oρρ is characterised by the two

conditions

• Oρρ is generated by
⋃

n≥0((ρρ)n, (ρρ)n) and rρ and

• rρT (ξ+)T ∗(ξ−)r∗ρ = 1
d(ρ)

∑
η,ζ,|η|=|ζ|=1

√
µ(r(η))µ(r(ζ))T (η · η̃ ·ξ+)T ∗(ζ · ζ̃ ·ξ−)

for T and rρ, rρ as defined in Section 2.8.

In Section 3.3 we show that using a string algebra construction similar to

Section 2.4 we can define hyperfinite type IIIλ subfactors and characterise their

relative commutants in terms of paths in the graph.

Next, in Section 3.4 we give the general definition for a type III planar algebra

and we prove that the algebra Oρρ̄ has the structure of a type III subfactor planar

algebra.
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We then extend the definition slightly, to define the planar algebra of subfac-

tors which are not necessarily extremal, using a method similar to [15].

We conclude the chapter by introducing type III planar modules, this is a tool

that has proved very useful in the type II theory.

We now begin by defining some simple extensions of two planar algebras to

the type III setting, first the Temperley-Lieb algebra and next a matrix example.

3.1 Type III Temperley-Lieb Planar Algebra

A planar diagram is a rectangle in the plane with a collection of marked points

along the top and bottom edges. The interior of the diagram contains a collection

of non intersecting strings. Each marked point is the endpoint of exactly one

string. All strings either form closed loops or have exactly two endpoints, each

occuring at a marked point. Planar diagrams are defined up to planar isotopies

which leave the boundary fixed. Often when drawing tangles we will denote n

parallel strands by a thick strand with the number n adjacent to it. We may

equip diagrams with a checkerboard shading. We call a diagram a + diagram if

the region adjacent to the first marked point is unshaded and a − diagram if it

is shaded.

Let Tm
n,± denote the collection of all planar ± diagrams with n points along

the bottom and m points along the top where n + m is even.

A diagram x ∈ Tm
n,± may be embedded in Tm+k

n+k,± by adding k vertical through

strings on the right and thus we have an embedding of Tm
n,± in Tm+k

n+k,± for any

k ≥ 0. The product xy of a diagram x ∈ Tm1
n1,± with y ∈ Tm2

n2,± is defined as

follows. If n1 < m2 then embed x in Tm1+m2−n1
m2,± , then stack x on top of y, aligning

corresponding marked points. Then remove the marked points and if necessary

smooth the strings. The product xy is therefore an element of Tm1+m2−n1
n2,± . If

n1 > m2 then we embed y in T n1
n2+n1−m2,± and proceed similarly. It is easy to see

that this multiplication is associative. Figure 3.1 shows the product of x ∈ T 3
5,+

with y ∈ T 2
2,+.

48



Figure 3.1: Multiplication of planar diagrams

For x ∈ Tm
n,± define x∗ ∈ T n

m,± to be the diagram obtained by reflecting x

in a horizontal line through its centre. Note that this satisfies x∗∗ = x and

(xy)∗ = y∗x∗.

Let δ > 1. For each n,m let T m
n,± be the linear span over C of Tm

n,±. Let Im
n,±

be the ideal in T m
n,± generated by the relation ‘closed loop=δ’ (i.e any diagram

x containing a closed loop is equivalent to δx′ where x′ is just x with the loop

removed). Then let Vm
n,± be the quotient of T m

n,± by Im
n,±. Note that V0

0,± ' C,

since the only elements of V0
0 are scalar multiples of the empty diagram. The

dimension of Vm
n,± is the Catalan number CN = 1

N+1

(
2N
N

)
where N = 1

2
(n + m),

since the dimension of Vm
n,± is the number of non crossing pair partitions on 2N

elements. Hence Vm
n,± is finite dimensional for all n,m.

The space Vm
n,± can be naturally embedded in the space Vm+1

n+1,± using the linear

extension of the embedding of Tm
n,± in Tm+1

n+1,±. Using this embedding we take the

algebraic inductive limit lim−→V
j+2k
j,± =: Vk,±. Let O±

TL := ⊕k∈ZVk,±, so elements

of O±
TL are finite direct sums of elements of the Vk,±. Then we may equip O±

TL

with the multiplication given by the bilinear extension of the multiplication and

the ∗-operation given by the conjugate linear extension of the ∗-operation defined
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Figure 3.2: Map from O+
TL to O−

TL

above. It is easily seen by drawing the diagrams that the multiplication and ∗-

operations are compatible with the identification of x ∈ Vn+2k
n,± with x′ ∈ Vn+2k+N

n+N,± .

Under these operations O±
TL is an associative unital ∗-algebra. For each n let F n

TL

be the subalgebra of O±
TL spanned by diagrams with n marked points along the

top and bottom edge. Using the map shown in Figure 3.2, where x is any OTL

tangle, it is easy to see that O+
TL ' O−

TL. Thus we usually just work with O+
TL

and write OTL instead of O+
TL.

Let α = ln δ. For any n,m ∈ N and any diagram x ∈ Tm
n , define σt(x) := eαi(m−n)tx,

and extend linearly to all Vm
n . The action σt is compatible with the embedding of

Tm
n in Tm+k

n+k and so σt can be extended to Vk. Since for x ∈ Tm1
n1

, y ∈ Tm2
n2

we have

σt(xy) = eαi(m1+m2−n1−n2)txy = σt(x)σt(y), σt is multiplicative on all of OTL. Also

(σt(x))∗ = σt(x
∗) and so σt is a ∗-automorphism. Let S(x) = α/2π

∫ 2π
α

0
σt(x)dt

for x ∈ OTL. Note that the map t 7→ σt(x) is continuous and so the integral is

well defined. The operator S is positive since the integral is the limit of Riemann

sums of the form
∑n−1

i=0 σti(x)(ti+1 − ti) which are obviously positive. Since S

satisfies S2 = S, S is a projection from OTL onto TL := ∪nF
n
TL.

Let trn be the usual trace on F n
TL, that is tr is the trace on the Temperley-Lieb

algebra defined in Section 2.5, defined on elements of V n
n by joining corresponding

points along the top and bottom of the diagram and let Tr be the normalised

trace, defined by Tr(x) = δ−ntrn(x) for x ∈ V n
n . The trace Tr may be extended

linearly to F n
TL, noting that it is zero on the ideal In

n since it is zero on the

generator by definition. Note that Tr is scalar valued, since the only elements of
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Figure 3.3: Braiding

F 0
TL are scalar multiples of the empty diagram.

When δ < 2, let In
n be the ideal in F n

TL generated by x ∈ F n
TL with Tr(x∗x) = 0

and let Fn
TL = F n

TL/In
n and let OTL be the quotient of OTL by traceless vectors.

When δ ≥ 2, Tr is positive definite and we put Fn
TL = F n

TL and OTL = OTL.

Then Fn
TL is just the ordinary Temperley-Lieb algebra on n generators defined in

2.5.

We define a state on the algebra OTL by φ := Tr ◦ S. The state φ is positive

since it is the composition of two positive operators, S and Tr.

We define an inner product on OTL by (x, y) = φ(y∗x) and let HTL be the

Hilbert space completion. Let λ : OTL → OTL be the action of OTL on itself

by left multiplication. We wish to show that λ is bounded and hence may be

extended uniquely to an element of B(HTL). Let ∪ ∈ V 2
0 be the diagram with

two marked points along the top joined by a single string.

Using the crossing defined in Figure 3.3, with q + q−1 = δ, we may define a

braiding on OTL in the same way as in Section 2.5.

Lemma 3.1.1. The planar algebra OTL is generated as a ∗-algebra by the type II

Temperley-Lieb algebra and the element ∪ ∈ T 2
0 . Every element x ∈ OTL may be

written as a finite sum

x =
∑

∪nxn + x0 +
∑

(∪∗)nx−n (3.1)

for some xi in the type II Temperley-Lieb planar algebra

Proof. This is clear since if we have any diagram in Tm
n with m = n+2k for some

k ≥ 0 then there must be at least k cups along the top. At least one of these
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Figure 3.4: Writing tangles in OTL as products of ∪ and TL tangles

joins two adjacent vertices. This may be moved to one side using the braiding

as in Figure 3.4. This shows that a tangle in x ∈ T n+2k
n can be written as a

product of a linear combination of Temperley-Lieb tangles, a copy of ∪ and a

tangle in T
n+2(k−1)
n . The procedure can be repeated k times and thus we get a

product of a linear combinationn of T n+2k
n+2k tangles with some copies of ∪ and a

T n
n tangle. Thus there exists x̃ ∈ T n+2k

n+2k with x = x̃∪k and so every tangle in

OTL may be written in the form 3.1. Since we know from Section 2.5 that the

ordinary Temperley-Lieb algebra is generated by Jones projections we have that

OTL is generated by Jones projections and ∪.

Proposition 3.1.2. Let a ∈ OTL and let λa denote the action of a on OTL by left

multiplication. Then λa is bounded and may be extended uniquely to an element

of B(HTL) and so OTL ⊂ B(HTL).

Proof. Since, by Lemma 3.1.1, OTL is generated by TL diagrams and ∪, all that

needs to be proved is that left multiplication by ∪ or by a ∈ TL are bounded.

First let a ∈ TL and suppose a has k strings along its top and bottom edge. Let

x =
∑

cixi where the xi ∈ Tmi
ni

are diagrams in OTL and ci ∈ C. It is easy to

see that 〈axi, axj〉 is zero unless ni −mi = nj −mj and so we just need to prove

that there exists C > 0 such that ‖ax‖ ≤ C‖x‖ for x =
∑

cixi where all the

xi ∈ T ni+N
ni

. Here we are using ‖ · ‖ for the inner product norm on HTL. We may

suppose that xi ∈ TM+N
M for some M with M + N > k. Then

‖ax‖2 =〈ax, ax〉 =
∑
i,j

〈ciaxi, cjaxj〉

=
∑
i,j

〈cia
′x′i, cja

′x′j〉 = ‖a′x′‖2
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Figure 3.5: The tangles a′ and x′

where a′ is the image of a in TM+N
M+N , x′i is the TM+N

M+N tangle shown in Figure 3.5

and x′ =
∑

cix
′
i. Since a′ and x′ are both elements of the Temperley-Lieb algebra

and the inner products on TL and OTL agree on TL, we may use boundedness

of the multiplication there to get ‖a′x′‖ ≤ ‖a′‖op‖x′‖ where ‖ · ‖op is the operator

norm. Thus, since ‖x′‖ = ‖x‖ we have ‖ax‖ ≤ ‖a′‖op‖x‖ as required.

Next we wish to show that there exists C > 0 such that 〈∪x,∪x〉 ≤ C‖x‖2

for all x ∈ OTL. To show this, let x =
∑

cixi where the xi ∈ V mi
ni

are diagrams

in OTL and ci ∈ C. Then

〈∪x,∪x〉 =
∑
i,j

cic
∗
j〈∪xi,∪xj〉

=
∑
i,j

δni−mi,nj−mj
δ−(pi,j+2)cic

∗
j trpi,j+2(∪xix

∗
j∪∗)

=
∑

δni−mi,nj−mj
δ−(pi,j+1)cic

∗
j trpi,j

(xix
∗
j) = δ‖x‖2

where pi,j = ni if mi > nj and pi,j = mj if mi < nj. It is easy to see that the map

a → λa is multiplicitive since λab = λaλb and the map is injective since, for any

a 6= 0, 〈λa(1), λa(1)〉 = 〈a, a〉 > 0 and so λa is zero if and only if a is zero.
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Figure 3.6: KMS condition

Thus we can define a C∗-algebra OTL by taking the norm completion of OTL

in B(HTL) and a von Neumann algebra MTL by taking the weak completion.

Let Ω ∈ HTL be the image of 1 ∈ OTL in HTL and define a state ψ on B(HTL)

by ψ(x) = 〈xΩ, Ω〉. Then ψ is a faithful normal state on B(HTL) which agrees

with φ on the image of OTL. Denote by ϕ the restriction of ψ to MTL.

Proposition 3.1.3. The state ϕ is the unique KMS state on MTL for σt and

the inverse temperature β is also unique and equal to 1.

Proof. To show ϕ is a KMS state at inverse temperature β = 1 we calculate for

example ϕ(xy) for x ∈ Tm1
n1

, y ∈ Tm2
n2

. Then ϕ(xy) = 0 unless m1−n1 = n2−m2.

Suppose that with m1 < n2 and n1 < m2. In this case we see as in Figure 3.6 that

ϕ(xy) = Trn2(xy) = δm2−n2Trm2(yx) = δn1−m1ϕ(yx) = ϕ(yσi(x)). The other

cases may be proved similarly. The element x is entire since σit(x) = eα(m1−n1)t

is an analytic continuation of σt. Hence φ is a KMS state for σt.
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Uniqueness can be proved in a similar way to Example 5.3.27 of [7]. Let ψ

be any KMS state for σt at temperature β. Since ψ(σt(x)) = eαit(m−n)ψ(x) for

x ∈ Tm
n and by properties of the KMS state ψ is σt invariant, we must have that

ψ(x) = 0 for all x ∈ Tm
n with n 6= m. Hence ψ is the trace on TL, since it is

contained in the fixed point algebra Oσ
TL, and zero everywhere else. Since the

trace on TL is unique, we must have ψ = ϕ. To prove uniqueness of β let x ∈ Tm1
n1

and y ∈ Tm2
n2

. By the KMS condition ϕ(xy) = ϕ(yσiβ(x)) = e−αβ(n1−m1)ϕ(yx).

Both sides of this equation are zero unless m1− n1 = n2−m2, so suppose this is

the case and also suppose n1 > m2 (a similar calculation shows the result holds

for m2 > n1 also). Then, since ϕ(xy) = δ−m2tr(xy) and ϕ(yx) = δ−n2tr(yx) it is

easy to see that the KMS condition is satisfied if and only if β = 1.

Since the KMS state ϕ is unique, by Theorem 5.3.30 of [7], the von Neumann

algebra completion of OTL is a factor. The centraliser of MTL is the II1 factor

MTL generated by the Temperley-Lieb algebra. It is easy to see that MTL is

contained in the centraliser of MTL, for the reverse inclusion note that the con-

ditional expectation S maps MTL to Mσ
TL. For any x ∈ (MTL)ϕ there exists

a net xi in OTL converging weakly to x and so S(xi) is a net in TL converging

weakly to S(x) = x and hence x ∈ MTL. Thus the Connes spectrum and Arveson

spectrum coincide. Since σt is periodic with period 2π/α, MTL is a type IIIλ

factor for λ = e−α = 1/δ.

Proposition 3.1.4. The C∗-algebra OTL is simple and purely infinite.

Proof. We prove this in a similar way to Theorem 3.1 of [82]. We need to show

that for each non-zero x ∈ OTL there exists v ∈ OTL such that v∗xv = 1. As in

[82] we prove this in four steps. Let T L be the C∗-algebra generated by (type II)

Temperley-Lieb tangles and define t := δ−
1
2∪. Let Φ be the endomorphism on

T L defined by Φ(x) = txt∗ for x ∈ T L. Let E : OTL → T L be the conditional

expectation defined by E(x) = α/2π
∫ 2π/α

0
σt(x)dt.

Step 1: We prove that for every non-zero projection p ∈ T L there is a partial

isometry u ∈ T L and m ∈ N such that (t∗)mu∗putm = (t∗)mu∗utm = 1.
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Let p be any non-zero projection in T L. Choose m ∈ N such that δ−2m =

Tr(tm(t∗)m) ≤ Tr(p). Then we may find u ∈ T L with tm(t∗)m = u∗u and

uu∗ ≤ p and thus (t∗)mu∗putm = (t∗)mu∗utm = 1.

Step 2: Next we prove that for every non-zero x ∈ T L and m ∈ N there is a

non-zero projection p such that ‖pxΦm(p)‖ ≤ 1
3
‖x‖.

Let λ = inf sp|x∗|, where we denote by sp(x) the spectrum of x. If λ <

1
3
‖x‖ then choose a continuous function f : [0, ‖x‖] → R+ with f(t) = 0 for

t > 1
3
‖x‖ and f(|x∗|) 6= 0. Then let p be a non-zero projection in the closure

of the subalgebra f(|x∗|)T Lf(|x∗|). Then p satisfies ‖px‖ ≤ 1
3
‖x‖. Hence

‖pxΦm(p)‖ ≤ 1
3
‖x‖. If λ > 1

3
‖x‖ then |x∗| is invertible. Hence u = |x∗|−1x ∈ T L

is a unitary. If we take p = 1−utm (t∗)mu∗ then puΦm(p) = 0 and so pxΦm(p) =

p(|x∗| − 2
3
‖x‖)uΦm(p). Hence

‖pxΦm(p)‖ ≤ 1

3
‖x‖.

Step 3: For any x ∈ OTL with E(x) = 1 and any ε > 0 there is an isometry

v ∈ OTL with ‖v∗xv − 1‖ ≤ ε.

By Proposition 3.1.1 any x in OTL may be written as
∑∪nxn+x0+

∑
(∪∗)nx−n.

For x of this form, E(x) = x0. Thus any x ∈ OTL with E(x) = 1 may be approx-

imated by elements of the form
∑N

n=1(t∗)nx−n + 1 +
∑N

n=1 xntn with xn ∈ T L
and so it is sufficient to show that for any x of the above form there exists an

isometry v and j 6= 0 such that v∗xv =
∑

(t∗)nx′−n + 1 +
∑

x′ntn with x′i ∈ TL

such that ‖x′i‖ ≤ ‖xi‖ and ‖x′j‖ ≤ 1
3
‖xj‖. By the previous step, there exists

a projection p ∈ T L with ‖pxjΦ
j(p)‖ ≤ 1

3
‖xj‖. Hence, with u,m as in step 1,

v = putm is an isometry with the required property.

Step 4: Finally we show that for any non-zero x ∈ (OTL)+ there exists z ∈
OTL with z∗xz = 1.

It suffices to show that there exists z such that ‖z∗xz − 1‖ < 1, since then

z∗xz is invertible. Hence, by the previous step, we just need to find z such that

E(zxz∗) = 1. Let x0 = E(x). Then x0 is a non-zero positive element of T L.

Choose ε with 0 < ε < ‖x0‖ and put f(t) = max{t− ε, 0} Then f(x0)TLf(x0) ⊂
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Figure 3.7: The endomorphism ρ

x
1
2
0 TLx

1
2
0 . Since T L is AF and so real rank zero, by Theorem 2.6 of [8] there

exists a non zero projection p ∈ f(x0)TLf(x0). Then p = x
1
2
0 yx

1
2
0 for some

positive y ∈ T L. Let e = y
1
2 x0y

1
2 then by step one we may find u ∈ T L and

m ∈ N such that (t∗)mu∗eutm = 1. Then z = y
1
2 utm has expectation one since

E(z∗xx) = E((t∗)mu∗y
1
2 xy

1
2 utm) = (t∗)mu∗eutm = 1.

Proposition 3.1.5. The C∗-algebra OTL is isomorphic to the crossed product

OTL ' T L oΦ N where T L is the C∗-algebra generated by Temperley-Lieb dia-

grams and the endomorphism Φ is given by Φ(x) = δ−1 ∪ x∪∗ for x ∈ TL.

Proof. By Lemma 3.1.1 OTL is generated by TL and δ−1/2∪ ∈ OTL. Since

(δ−1/2∪)∗δ−1/2∪ = 1 and δ−1/2 ∪ (δ−1/2∪)∗ = e0, δ−
1
2∪ is an isometry. Since

T L is simple and AF it follows from Theorem 2.6 of [8] that it has real rank zero,

and from [6], Example 5.1 that it has comparability of projections. Thus it fol-

lows from Theorem 3.1 of [82] that the crossed product T LoN is simple. There

exists a homomorphism from T L o N → OTL = C∗(TL,∪) and since we know

T LoN is simple this must be an isomorphism. Hence OTL is the crossed product

of T L with N by the endomorphism Φ of TL defined by Φ(x) = δ−1 ∪ (x)∪∗ for

any x ∈ TL.

An endomorphism ρ can be defined on OTL as in Figure 3.7. From Figure 3.7

it is clear that ρ(xy) = ρ(x)ρ(y), ρ(x∗) = (ρ(x))∗ and ρ(1) = 1 for all x, y ∈ OTL.
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Figure 3.8: Conditional expectation tangle

For the case δ < 2 we will show in Proposition 3.4.8 that OTL may be realised

as a subalgebra of the planar algebra of the graph An, where δ = 2 cos(π/n). It

follows from this and Proposition 3.3.6 that the commutant (ρm(MTL))′∩MTL is

just the ∗-algebra Fm
TL. We use this fact in the proof of the following proposition,

however we note here that the following proposition is not used to prove any

further results in this thesis, in particular it is not needed to prove Propositions

3.3.6 and 3.4.8.

Proposition 3.1.6. Suppose δ = 2 cos π/n for some n ≥ 3. Then ρ(MTL) ⊂
MTL is an extremal finite index subfactor which is isomorphic to the subfactor

N ⊗MTL ⊂ M ⊗MTL where M is the type II1 factor which is the weak closure

of the algebra generated by Temperley-Lieb diagrams with the same number of

marked points on the top and bottom and N is the II1 factor generated by diagrams

with a through strand joining the leftmost marked points on top and bottom.

Proof. To see this we need to check the conditions of Theorem 2.8.1. There is

a conditional expectation E : M → ρ(M) defined by Figure 3.8 with m = 1.

Morevoer, for any m, Figure 3.8 defines a conditional expectation Em : M →
ρm(M). By the comment above the proposition the relative commutants ρk(M)′∩
M ' F k

TL. Thus it is clear that the conditional expectation Ek implements a trace

on ρk(M)′∩M . For finite graphs it is shown in 1.3.6 of [75] that the condition ΓN,M

is strongly amenable is always true. To show ρ(MTL) ⊂ MTL is approximately

inner we need to prove the existence of a simultaneous discrete decomposition. A
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theorem of Loi ([56], Theorem 2.8) states that for a type IIIλ subfactor N ⊂ M

the simultaneous discrete decomposition always exists if N ′ ∩M is a factor and

the conditional expectation is minimal. Since ρ(MTL)′∩MTL is one dimensional,

there is only one conditional expectation. Thus ρ(MTL) ⊂MTL is approximately

inner. The only thing left to check is central freeness. Corollary 3.7 of [77] states

that for IIIλ factors, central freeness of N ⊂ M is equivalent to the condition that

the principal graph of N ⊂ M is the same as the principal graph for the type

II∞ subfactor appearing in the common discrete decomposition. It is known (e.g.

[53] Theorem 5.13) that this is always true for type III subfactors with principal

graphs An for n 6= 4m − 3. In the case n = 4m − 3 the type II principal graph

may be An or D2m. However, since we know that the higher relative commutants

are the Temperley-Lieb algebras which are generated by Jones projections, the

Loi invariant must be trivial. Hence, by the discussion preceding Theorem

5.13 of [53], the principal graph must be A4m−3. Hence all the conditions of

Theorem 2.8.1 are satisfied, and ρ(MTL) ⊂ MTL is isomorphic to the subfactor(
(∪kρk(M)′ ∩ ρ(MTL) ⊂ (∪kρk(MTL)′ ∩MTL)

)
⊗MTL.

Next we show how to decompose the endomorphism ρ into irreducibles, similar

to [63], [25]. In order to do this we need to define a tensor category C whose objects

are elements of ∪nT n
n and for any x ∈ T n

n , y ∈ T m
m the morphisms in Hom(x, y)

are elements of T m
n . The trivial object in C is the empty diagram and the tensor

product is given by horizontal juxtaposition. From C we define a matrix category

Mat(C) which has objects given by direct sums of objects in C and morphisms

given by matrices of morphisms in C, that is Hom(x1⊕· · ·⊕xn, y1⊕· · ·⊕ym) is an

m× n matrix whose i, j entry is an element of Hom(xj, yi). The tensor product

on C gives a tensor product on Mat(C), where the tensor product on objects is

given by distributing over the direct sum and the tensor product of morphisms

is given by the ordinary tensor product of matrices.

Let ρ ∈ ob(C) be the diagram consisting of a single vertical strand. Clearly ρ

is irreducible since Hom(ρ, ρ) is in V1
1 which is one dimensional. Then ρ⊗ ρ = ρ2
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is the diagram with two vertical strands. It is easy to see that Hom(ρ2, ρ2) is

two dimensional as it is spanned by the identity diagram and the element ∪∪∗.
Thus we may decompose ρ2 into irreducibles. First we can see that (ρ2, ρ0) is

one dimensional as it is spanned by ∪. The space Hom(ρ2, ρ1) is empty by

definition and thus we must have that ρ2 = id ⊕ ρ2 where ρ2 is an irreducible

endomorphism in V2
2 . The irreducible endomorphisms are represented graphically

in the same way as the Jones Wenzl idepotents in the type II case. They satisfy

the same relations and we have that ρρn ' ρn−1 ⊕ ρn+1 where the isomorphism

is represented graphically by

3.2 Planar algebra for infinite tensor product of

matrices

Let N = 1⊗Mp ⊗Mp ⊗ . . . and M = Mp ⊗Mp ⊗ . . . and consider the subfactor

N ⊂ M of index p2. The Jones tower is then N ⊂ M ⊂ Mp ⊗M ⊂ Mp ⊗
Mp ⊗M ⊂ . . . and the relative commutants N ′ ∩Mn = ⊗nMp where Mn is the

nth step in the basic construction. For this we recall Example 2.6 of [36]: in the

setting of type II planar algebras, Jones defines a planar algebra P whose vector

spaces are Pk = (V ⊗ V ∗)⊗k, V is a vector space of dimension p with dual V ∗

so V ⊗ V ∗ ' Mp ' End(V ). Internal discs of colour ki of tangles are labelled
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by elements of (V ⊗ V ∗)⊗ki with 2ki factors in the tensor product. Given a fully

labelled tangle T we define the presenting map ZT : ⊗Pki
→ Pk0 as follows.

First let σ be a map (which we will call a state) from the strings of T to

the set {1, . . . , p}. For any internal disc D the state σ assigns a sequence of

indices j1, . . . jm to the strings meeting D along its top edge and i1, . . . im to the

strings meeting D along its bottom edge. Thus if D is labelled by the element

R ∈ (V ⊗ V ∗)⊗m, following Jones notation we denote the number Rj1,...jm
i1,...im

by σ(D).

The presenting map then gives an element of (V ⊗V ∗)⊗k0 , where the entry of

ZT indexed by j1,...,jk

i1,...,ik is

(ZT )j1,...,jk

i1,...,ik :=
∑

states inducing
(i1,...,ik)

(j1,...,jk)
on boundary

∏

internal discsD

σ(D)

where the sum is taken over all states on the tangle that induce the correct indices

on the boundary disc D0. The value of a closed loop is thus p, the dimension of

V , since there will always be a choice of p labels for a loop.

3.2.1 Type III Planar Algebra for Tensors I

We may generalise this example in two ways to give a type III subfactor. For

the first generalisation, suppose V has dimension n, the vector spaces Pk are as

before as are the maps σ and ZT . Let {c1, . . . , cn} ∈ Rn
+ and let D be the matrix




e−βc1 0 · · · 0

0 e−βc2 · · · 0
...

...
. . .

...

0 0 · · · e−βcn




where β is chosen so that the matrix has trace 1. We modify the trace of the

previous example to get a state φ defined as follows. Starting with a tangle T

we join corresponding points along the top and bottom with a string. Each of

these joining strings has a weight, diagramatically we indicate this with a dot on

the string. Then when we take the presenting map, if a state assigns the value
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k to one of the joining strings we multiply by eβck . Taking the completion with

respect to this state gives the hyperfinite type IIIλ factor, where λ = ln β. Thus

this is the planar algebra of the subfactor (N, φ) ⊂ (M, φ) of the hyperfinite type

IIIλ factor since each Pk = (M⊗k
n , φ), which is the relative commutant Mk ∩M

of this subfactor. Here φ is the state defined by φ(x) = tr(⊗kD · x) for x ∈ M⊗k
n .

3.2.2 Type III Planar Algebra for Tensors II

For our second example we enlarge the vector spaces to get a type III algebra

with non-tracial state. Let V be a p dimensional vector space. We define a planar

algebra P = ⊕klim−→P i+2k
i where P j

i = (V )⊗i ⊗ (V ∗)⊗j and presenting maps ZT

defined below.

A (n,m)-tangle is a disc in the plane which we shall often draw as a box

for convenience (i.e. in order to keep track of what we mean by the top and

bottom edge), with n marked points along the top edge and m along the bottom

edge. The interior of the disc contains a possibly empty set of internal discs

Di 1 ≤ i ≤ k(T ) each with ni marked points along the top and mi along the

bottom, along with a collection of non-intersecting strings, each of which has

both endpoints on marked points of the discs or form closed loops.

The adjoint of a labelled tangle is gotten by reflecting it in a horizontal line

through its centre and replacing the labels by their adjoints. As in the above

type II example an input disc Di is labelled by an element of (V )⊗ni ⊗ (V ∗)⊗mi ,

so a box with n marked points on the top and bottom is an element of ⊗nMp.

For a tangle T we define a state σ : {strings of T} → {1, 2, . . . , p}. If the

state σ assigns the indices j1, . . . , jmk
and i1, . . . , ink

to the top and bottom edges

of a disc Dk (labelled by some R ∈ (V )⊗nk ⊗ (V ∗)⊗mk) then we say σ(Dk) is

the number Rj1,...jmk

i1,...ink . As in the type II case, the presenting map of a fully

labelled (n, m) tangle T defines an element of (V )⊗n⊗ (V ∗)⊗m, its entry indexed

by i1,...,in
j1,...,jm is the number:

(ZT )i1,...,in
j1,...,jm :=

∑
compatible

states σ

∏

internal discs D

σ(D).
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Once again, by compatible state we mean a state on the tangle which induces

the correct indices on the boundary of D0 and here closed loops can be removed

by multiplying the resulting tangle by p. This presenting map is compatible

with the composition of tangles and the star operation as required. Note that

with this presenting map we recover ordinary matrix multiplication for two discs

x, y labelled by elements of Mp (or ⊗nMp) using the ZT where T is the usual

multiplication tangle which stacks x on top of y and joins corresponding strings.

The multiplicitive identity here is just the tangle with all vertical through strings.

Define an action of R on P by σt(x) = e2πiktx for x ∈ P n+k
n . We define a state

in a similar way to the state on OTL, by φ := Tr ◦ S, where S : P → ⋃
n P n

n

is the projection defined by S(x) =
∫ 1

0
σt(x)dt for x ∈ Pm

n and Tr is defined on

(n, n)-tangles by joining corresponding marked points along the top and bottom.

Note that φ gives the usual trace on elements of ⊗nMp.

This construction gives the subfactor N ⊗ Q ⊂ M⊗ Q, with N , M the II1

factors above and Q is the type III factor which is the weak completion of P with

respect to the trace defined by φ. The tower of relative commutants

(N ⊗Q)′ ∩ (N ⊗Q) ⊂ (N ⊗Q)′ ∩ (M⊗Q) ⊂ (N ⊗Q)′ ∩ (M1 ⊗Q) ⊂ . . .

is in this case given by

C ⊂ Mp ⊂ Mp ⊗Mp ⊂ . . .

As in the algebra OTL, in the planar picture the commutants are the dia-

grams with the same number of marked points on the top and bottom. Checking

dimensions we see the spaces have the correct dimension, the (0, 0) space has

dimension one, and the dimensions of the (n, n) space is p2n, since we have 2n

marked points and p choices of label for each.

3.2.3 Fixed Point Algebras

Let N ⊂M be as in the section 3.2.2, but now we require dimV = 2. Let G be

a finite subgroup of SU(2). Then G acts on M as follows. Let e1, e2 be a basis
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Figure 3.9: Action of g ∈ G on a tangle x ∈ P 3
2

for V and let (gij) ∈ G then αg(e1) = g11e1 + g21e2 and αg(e2) = g12e1 + g22e2.

Then the inclusion NG ⊂MG is a subfactor. It was shown in [27] that the tower

of relative commutants is just the tower of fixed point algebras of the tower of

the original subfactor.

The action of G on the planar algebra is as shown in the Figure 3.9 multiply

along the top by g and along the bottom by g∗.

It is well known that (⊗M2)
SU(2) is isomorphic to the Temperley-Lieb algebra

and hence MSU(2) 'MTL.

Finite subgroups of SU(2) are classified by the affine Dynkin diagrams. The

An diagrams correspond to the cyclic subgroups. The cylcic subgroup corre-

sponding to An is generated by the diagonal matrix {e2πi/n, e−2πi/n}. If the state

σ assigns the value 1 to a string, multiply the diagram by e2πi/n, if it assigns the

value 2, multiply by e−2πi/n. Then x ∈ Pm
n is in the fixed point algebra if when-

ever σ assigns the value 1 to k strings and 2 to l strings then e2πki/ne−2πli/n = 1

where k + l = n + m.

3.3 String Algebra construction of type III fac-

tors

In this section we generalise the string algebra construction of Section 2.4 to

define hyperfinite type III subfactors.
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Let G be the graph:

V0
G0−→ V1

G3

y yG1

V3
−→
G2 V2

with finite subgraphs Gi and vertices ∪0≤i≤3Vi such that G0 and G3 share common

vertices V0, G0 and G1 share vertices V1, G2 and G1 share vertices V2 and finally G2

and G3 share vertices V3. The graph G has a distinguished vertex marked ∗ in V0.

We assume that the graphs G0 and G2 are connected. Suppose that there exists

an assignment of positive numbers µ(v) to each vertex v and a pair of positive

numbers δ, δ′ such that there exists a connection on G satisfying the unitarity,

renormalisation and harmonicity conditions described in Section 2.4. A string

is a pair of paths (ξ1, ξ2) in G with the same start and end point but possibly

different lengths. We can define a multiplication and ∗-operation on strings as

follows. Let

(ξ1, ξ2).(ζ1, ζ2) =





(ξ1, ζ2 · ξ′2) if ξ2 = ζ1 · ξ′2
(ξ1 · ζ ′1, ζ2) if ζ1 = ξ2 · ζ ′1
0 otherwise

and

(ξ1, ξ2)
∗ = (ξ2, ξ1),

where ξ · ζ is the concatenation of ξ and ζ. In other words, if r(ξ) = s(ζ), ξ is a

path of length m and ζ is a path of length m then ξ ·ζ is the path of length n+m

obtained by first travelling along ξ and then travelling along ζ, in the case where

r(ξ) 6= s(ζ) we define ξ · ζ = 0. Note that ((ξ1, ξ2).(ζ1, ζ2))
∗ = (ζ1, ζ2)

∗(ξ1, ξ2)
∗.

We may define a collection of vector spaces A(m,n),p as follows. For m, n or p

less than 0 the space A(m,n),p is empty by definition. For m,n ∈ N then A(m,n),0

is the vector space with basis given by the collection of paths (ξ1, ξ2) where ξ1,

ξ2 are paths in G0 with s(ξ1) = s(ξ2) = ∗, r(ξ1) = r(ξ2) and |ξ1| = m, |ξ2| = n.

Note that in this case A(0,0),0 = C can be identified with the distinguished vertex
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∗. The space A(m,n),0 can be naturally embedded in A(m+1,n+1),0 using the map

(ξ1, ξ2) 7→
∑

σ

(ξ1 · σ, ξ2 · σ)

where the sum is over all edges σ ∈ G0 for which the composition makes sense.

This embedding is compatible with the above multiplication and ∗-operation. Let

Ak,0 = lim−→A(m,m+2k),0 and A∞,0 =
⊕

k∈ZAk,0. The multiplication and ∗-operation

above make A∞,0 into an associative ∗-algebra with unit (∗, ∗).
We can define a state ψ on A0,0 as follows. First define an action of R on

strings (ξ, ζ) by σt((ξ, ζ)) = eln δit(|ξ|−|ζ|)(ξ, ζ). Then we define a state by ψ(ξ, ζ) =

δξ,ζδ
−|ξ|µ(r(ξ)).

Let S : A∞,0 → A0,0 be the map defined by

S(ξ1, ξ2) :=
ln δ

2π

∫ 2π/ ln δ

0

σt(ξ1, ξ2)dt = δ|ξ1|,|ξ2|(ξ1, ξ2).

Then we may prove in a similar way to Section 3.1 that S is a faithful conditional

expectation of A∞,0 into A0,0.

We may then define a state φ on the algebra A∞,0 by φ = ψ ◦ S. Using φ we

may define an inner product on A∞,0 by 〈x, y〉 = φ(y∗x). Let H∞,0 be the Hilbert

space completion of A∞,0 in this inner product.

Proposition 3.3.1. Let x ∈ A∞,0. Denote by λx the action of x on A∞,0 by

left multiplication. Then λx is a bounded operator for the inner product norm on

A∞,0 and so it may be extended uniquely to an element of B(H∞,0).

Proof. Let ∪ ∈ A(2,0),0 denote the element
∑

e(eẽ, ∗), where the sum is over all

edges e ∈ G0. The algebra A∞,0 is generated by A0,0 and ∪ , since if (ξ, ζ) ∈
A(n,n−2k),0, then (ξ, ζ) = (ξ, (eẽ)k · ζ) ·∑|σ|=n+k((eẽ)

kσ, σ). Let x =
∑

ci(αi, βi) ∈
A∞,0 where ci ∈ C and (αi, βi) ∈ A(mi,ni),0. Then

‖ ∪ x‖2 =〈∪x,∪x〉 = φ(x∗ ∪∗ ∪x)

=φ(
∑

cic
∗
j(βi, αi)(∗, eẽ)(ff̃ , ∗)(αj, βj))

=
∑

e

φ(x∗x) = n‖x‖2,
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where n is the number of edges adjacent to ∗, so multiplication by ∪ is bounded.

Next, let a = (ξ, ζ) ∈ A0,0. Then

‖ax‖2 =〈ax, ax〉 = φ(x∗a∗ax)

=φ(
∑
i,j

cic
∗
j(βi, αi)(ζ, ξ)(ξ, ζ)(αj, βj))

=φ(
∑
i,j

cic
∗
j(βi, αi)(ζ, ζ)(αj, βj))

For each i, j let (βi, αi)(αj, βj) = (γij, ηij). Suppose |αi| ≥ |ζ| = n. Then

(βi, αi)(ζ, ζ)(αj, βj) = (γij, ηij)δ(αi)[1,n],ζ and so

φ((βi, αi)(ζ, ζ)(αj, βj)) =δ(αi)[1,n],ζφ((γij, ηij))

=δ(αi)[1,n],ζδ
−|γij |µ(r(γij))

where we use the notation (α)[1,n] to mean the path made up of the first n edges

of α. Similarly if |αj| ≥ |ζ| we get

φ((βi, αi)(ζ, ζ)(αj, βj)) = δ(αj)[1,n],ζφ((γij, ηij)).

If both |αi| and |αj| are less than |ζ| then (βi, αi)(ζ, ζ)(αj, βj) = (γijζi, ηijζj),

where ζk are paths made up of the last |ζ| − |αk| edges of ζ, and so

φ((βi, αi)(ζ, ζ)(αj, βj)) = δ−(|γij |+|ζ1|)µ(r(ζ)) ≤ δ−|γij |µ(r(γij)),

where the inequality follows from the eigenvalue condition.

Hence in all cases we have φ((βi, αi)(ζ, ζ)(αj, βj)) ≤ φ((βi, αi)(αj, βj)) and so

‖ax‖ ≤ ‖x‖ Thus the action of A∞,0 on A∞,0 by left multiplication is bounded

and so it may be extended to an operator in B(H∞,0).

Denote by A∞,0 the C∗-algebra generated by A∞,0 in the GNS representation

with with respect to φ and let M∞,0 denote the weak completion of A∞,0 in the

GNS representation with respect to this state. Let (M0,∞)φ be the centraliser of

φ.

Proposition 3.3.2. The state φ is the unique KMS state on M∞,0 for the mod-

ular automorphism group σt at the inverse temperature β = 1.
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Proof. That φ is a KMS state at inverse temperature β is easily checked, we use

the same argument to prove uniqueness as in [19]. Suppose ψ is any KMS state

for the modular automorphism group σ at inverse temperature β. Then by the

KMS condition ψ(x) = 0 unless x is in the fixed point algebra of σ. Then for any

(ξ1, ξ2) ∈ A(n,m),0 with σt(ξ1, ξ2) = (ξ1, ξ2) we have

ψ((ξ1, ξ2)) = ψ((ξ1, ξ1)(ξ1, ξ2)) = ψ((ξ1, ξ2)σt(ξ1, ξ1)) = ψ((ξ1, ξ2)(ξ1, ξ1)).

The product (ξ1, ξ2)(ξ1, ξ1) is zero unless either ξ1 = ξ2 · ζ1 or ξ2 = ξ1 · ζ2, but in

both cases, since (ξ1, ξ2) is in the fixed point of σ we must have ζi = 0. Hence

ψ(ξ1, ξ2) is zero unless ξ1 = ξ2. Hence ψ is zero outside A0,0 and is the trace on

A0,0 and so ψ = φ.

Let A0,0 be the C∗-algebra generated by A0,0 in the norm ‖x‖2 = φ(x∗x). Let

U = δ−1
∑

e∈E;s(e)=∗

√
µ(r(e))(e · ẽ, ∗)

and let Ψ be the endomorphism of A0,0 defined by Ψ(x) = UxU∗.

Proposition 3.3.3. The C∗-algebra A∞,0 is simple and purely infinite.

Proof. This can be proved in exactly the same way as the analogous result for

OTL in Proposition 3.1.4. Using the fact that any pair of paths (ξ, η) ∈ A(n,n+k),0

may be written as (ξ′, η′) · ∪ for some (ξ′, η′) ∈ A(n,n+k−2),0 we can prove that any

x ∈ A∞,0 may be written as a finite sum

x =
∑

Unxn + x0 +
∑

(U∗)nx−n

for some xi in the type II string algebra. Since A0,0 is simple and AF and thus

has the comparibility property of projections the proof of 3.1.4 carries over.

Proposition 3.3.4. Then A∞,0 = A0,0 oΨ N.

Proof. This is proved in exactly the same way as Proposition 3.1.5. The algebra

A0,0 is simple and AF, hence it satisfies the conditions of Theorem 3.1 of [82]

and so the crossed product A0,0 oΨ N is simple. It is easy to check that U is

an isometry and A∞,0 is generated by A0,0 and U . By Proposition 3.3.3 A∞,0 is

simple and hence it is isomorphic to the crossed product A0,0 oΨ N.
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Proposition 3.3.5. The von Neumann algebra M∞,0 is the type IIIλ factor for

λ = δ′.

Proof. It was proved in Theorem 3 of [9] that the von Neumann algebra comple-

tion of a nuclear algebra is hyperfinite and it was proved in Theorem 3.1 of [67]

that the crossed product of a nuclear algebra by an endomorphism is nuclear. The

C∗-algebra A∞,0 is nuclear since by Proposition 3.3.4 it is the crossed product of

a nuclear algebra by an endomorphism. Hence the von Neumann algebra M∞,0

is hyperfinite. It is a factor, since by Proposition 3.3.2 φ is the unique KMS state,

and by Theorem 5.3.30 of [7] it is a factor state. Using the same method as the

discussion preceding Proposition 3.1.4 we may prove that the centraliser (M∞,0)φ

is isomorphic to the von Neumann algebra generated by the type II string alge-

bra and so it is a factor. Hence the Connes spectrum and Arveson spectrum are

equal. Then the modular automorphism group has period 2π
ln δ

. Hence M∞,0 is

type IIIλ with λ = e− ln δ = 1/δ.

To define the vector spaces A(m,n),p we start at the vertex ∗ and first travel

horizontally along G0 using a pair of paths in A(m,n),0 ending at a vertex v in V0

or V1 and then travel vertically along G3 or G1 using a pair of paths (ζ1, ζ2) with

|ζi| = p for i = 1, 2. The vector space A(m,n),p is the linear span over C of all

possible pairs of paths of this form. In order to make these vector spaces well

defined require the existence of a connection. We could equally have chosen to

use a basis where we travel along G3 first and then out along G0 or G2 or any

other combination of paths in G with the required lengths and endpoints. The

connection allows us to change basis between these different paths. As in the II1

case the connection must satisfy the unitarity, harmonicity and renormalisation

conditions defined in Section 2.4. As before we let Ak,p = lim−→A(m,m+2k),p and

A∞,p =
⊕

k∈ZAk,p. The A∞,p can be given the structure of a unital associative

∗-algebra, with multiplication and ∗-operation similar to A∞,0. We can define

states φp on A∞,p in a similar way to the states defined on A∞,0 above. Let

Sp be the projection onto the subalgebra A0,p defined by Sp(ξ, ζ) = δ|ξ|,|ζ|(ξ, ζ).

Suppose ξ,ξ′ are paths of length p in the vertical graph G1 both starting at ∗
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and ending at r(ξ) = r(ξ′). Suppose also ζ, ζ ′ are paths in the horizontal graphs

G0 or G2 (depending on the parity of r(ξ)) of length m, n respectively with

s(ζ) = s(ζ ′) = r(ξ) and r(ζ) = r(ζ ′). Then we define the state ψp on A(m,n),p by

ψn(ξ · ζ, ξ′ · ζ ′) := δξ,ξ′δζ,ζ′δ
−n(δ′)−pδn,mµ(r(ξ)).

The state φp is then the composition ψp◦Sp. Using this state we can form an inner

product in the usual way by 〈x, y〉 = φp(y
∗x) and taking the weak completion

with respect to this inner product we have an increasing sequence of von Neumann

algebras

M∞,0 ⊂M∞,1 ⊂M∞,2 ⊂M∞,3 ⊂ . . .

A similar proof to that of Proposition 3.3.5 shows that each M∞,n is a hyperfinite

type IIIλ factor. Next we will show that the basic extension of M∞,n ⊂M∞,n+1

is M∞,n+2. We also show that the relative commutant M′
∞,0 ∩M∞,k is A(k,k),0

for all k. In order to do this we first define certain projections and conditional

expectations and check the conditions of Theorem 2.8.2 are satisfied.

Define the vertical Jones projection en ∈ A(0,0),n+1 by

en =
∑

ξ,ζ,η

1

δ

√
µ(r(η))µ(r(ζ))

µ(r(ξ))
(ξ · η · η̃, ξ · ζ · ζ̃)

where ξ, ζ, η are paths in G3 with |ξ| = n − 1, |ζ| = |η| = 1, s(ξ) = ∗ and the

reverse edge of ξ is indicated by ξ̃. As in the II1 case we can show the en satisfy

en = e2
n = e∗n and enen±1en = δ−2en. If we use the connection to transform en into

an element of A(t,t),s, t+s = n+1, it still has the same form. We will show below

that en is the Jones projection for the basic construction of M∞,n−1 ⊂M∞,n.

For m sufficiently large, the vector space A(m,m+k),n is generated by A(m−1,m−1+k),n

and the Jones projection em−1. This is because the graph is finite and so eventu-

ally the Bratteli diagram at each step is a reflection of the previous step.

Define the map Ek : A(k,k),0 → A(k−1,k−1),0 by

Ek(ξ1 · σ1, ξ2 · σ2) = δσ1,σ2δ
−1µ(r(σ1))

µ(s(σ1))
(ξ1, ξ2)

where |ξ1| = |ξ2| = k − 1 and |σ1| = |σ2| = 1. Then it is easy to check that Ek is

a conditional expectation and it satisfies φ ◦ Ek = φ.
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Consider the following inclusion of vector spaces

A(m,n),p ⊂ A(m+1,n+1),p

∩ ∩
A(m,n),p+1 ⊂ A(m+1,n+1),p+1

(3.2)

For the horizontal inclusions we may define maps E
(m,n),p+1
(m+1,n+1),p+1 : A(m+1,n+1),p+1 →

A(m,n),p+1 as follows. Let (ξ1, ξ2) ∈ A(m,n),p+1 and let ζi be an edge in the hor-

izontal graph starting at r(ξi). Then, similarly to the definition of Ek above,

let

E
(m,n),p+1
(m+1,n+1),p+1(ξ1 · ζ1, ξ2 · ζ2) = δζ1,ζ2δ

−1µ(r(ζ))

µ(s(ζ))
(ξ1, ξ2).

For the vertical inclusions we may similarly define maps E
(m+1,n+1),p
(m+1,n+1),p+1 :

A(m+1,n+1),p+1 → A(m+1,n+1),p as follows. Let (ξ1, ξ2) ∈ A(m+1,n+1),p and let ζi

be an edge in the vertical graph starting at r(ξi). Then let

E
(m+1,n+1),p
(m+1,n+1),p+1(ξ1 · ζ1, ξ2 · ζ2) = δζ1,ζ2δ

−1µ(r(ζ))

µ(s(ζ))
(ξ1, ξ2).

The renormalisation condition of the connection gives us the equality

∑
σ2,σ4

µ(r(σ2))
√

µ(r(σ3))µ(r(σ′3))
µ(s(σ2))µ(s(σ3))

σ1−→
σ3

y yσ2

−→
σ4

σ′1−→
σ′3

y yσ2

−→
σ4

This implies that the maps E defined above satisfy E
(m,n),p
(m+1,n+1),pE

(m+1,n+1),p
(m+1,n+1),p+1 =

E
(m,n),p
(m,n),p+1E

(m,n),p+1
(m+1,n+1),p+1.

Denote by Ep−1 the conditional expectation Ep−1 : M∞,p → M∞,p−1. Then

for x ∈ A(m,n),p, we have Ep−1(x) is given by the conditional expectation of x onto

A(m,n),p−1.

We check the conditions of Theorem 2.8.2 for N = M∞,0, M = M∞,1, L =

M∞,2 and the conditional expectations and e1 as defined above. For the first
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condition:

E1(e1) =E1(
∑

ξ,ζ,η

1

δ

√
µ(r(η))µ(r(ζ))

µ(r(ξ))
(ξ · η · η̃, ξ · ζ · ζ̃))

=
∑

ξ,η

1

δ2
(ξ · η, ξ · η) =

1

δ2
Id.

(3.3)

For condition 2, let x = (α · β1 · β2, α
′ · β′1 · β′2) ∈ A(m,n),2 where |α| = m,

|α′| = n and |βi| = |β′i| = 1. Then

xe1 =
∑

|ξ|=n,|ζ|=|η|=1

1

δ

√
µ(r(η))µ(r(ζ))

µ(r(ξ))
(α · β1 · β2, α

′ · β′1 · β′2)(ξ · η · η̃, ξ · ζ · ζ̃)

=
∑

ζ

1

δ

√
µ(r(β′2))µ(r(ζ))

µ(r(α′))
δβ′1,β̃′2

(α · β1 · β2, α
′ · ζ · ζ̃).

(3.4)

Then

E1(xe1) =E1(
∑

ζ

1

δ

√
µ(r(β′2))µ(r(ζ))

µ(r(α′))
δβ′1,β̃′2

(α · β1 · β2, α
′ · ζ · ζ̃))

=
µ(r(β2))

µ(s(β2))

1

δ2

√
µ(r(β′2))µ(r(β2))

µ(r(α′))
δβ′1,β̃′2

(α · β1, α
′ · β̃2)

=
1

δ2

√
µ(r(β′2))µ(r(β2))

µ(s(β2))
δβ′1,β̃′2

(α · β1, α
′ · β̃2)

(3.5)

and so we have

δ2E1(xe1)e1 =δ2
∑
|ξ|=n−1
|ζ|=|η|=1

1

δ3

√
µ(r(η))µ(r(ζ))

µ(r(ξ))

√
µ(r(β′2))µ(r(β2))

µ(s(β2))
δβ′1,β̃′2

(α · β1, α
′ · β̃2)(ξ · η · η̃, ξ · ζ · ζ̃)

=
∑

ζ

1

δ

√
µ(r(β′2))µ(r(ζ))

µ(r(α′))
δβ′1,β̃′2

(α · β1 · β2, α
′ · ζ · ζ̃)

=xe1

(3.6)

as required.

For condition 3, let x ∈ A(m,n),1. Then x is of the form x = (α1 · β1, α2 · β2)

with |α1| = m, |α2| = n and |βi| = 1. We embed x in A(m,n),2 as
∑

|σ|=1(α1 · β1 ·
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σ, α2 · β2 · σ)

e1xe1 =
∑

|ξ|=|ζ|=n−1,
|νi|=|γi|=|σ|=1

1

δ2

√
µ(r(ν1))µ(r(ν2))

µ(r(ξ))

√
µ(r(γ1))µ(r(γ2))

µ(r(ζ))
(ξ · ν1 · ν̃1, ξ, ·ν2 · ν̃2)

(α1 · β1 · σ, α2 · β2 · σ)(ζ · γ1 · γ̃1, ζ · γ2 · γ̃2)

=
∑

δβ1,β2δν2,γ1δγ1,β1

1

δ2

√
µ(r(ν1))µ(r(ν2))

µ(r(ξ))√
µ(r(γ1))µ(r(γ2))

µ(r(ζ))
(α1 · ν1 · ν̃1, α2 · γ2 · γ̃2)

=
∑
ν1,γ2

δβ1,β2

1

δ2

µ(r(β1))

µ(s(β1))

√
µ(r(ν1))µ(r(γ2))

µ(r(α1))
(α1 · ν1 · ν̃1, α2 · γ2 · γ̃2).

(3.7)

On the other hand we have

E1(x) =
1

δ

µ(r(β1))

µ(s(β1))
δβ1,β2(α1, α2)

and so

E1(x)e1 =
∑

ξ,ζ,η,ν

δβ1,β2

1

δ2

µ(r(β1))

µ(s(β1))

1

δ

√
µ(r(η))µ(r(ζ))

µ(r(ξ))
(α2 · ν1 · ν2, α2 · ν1 · ν2)(ξ · η · η̃, ξ · ζ · ζ̃)

=
∑

ζ,η

δβ1,β2

µ(r(β1))

µ(s(β1))

1

δ2

√
µ(r(η))µ(r(ζ))

µ(r(α1))
(α2 · η · η̃, α2 · ζ · ζ̃)

(3.8)

and so condition 3 holds.

Thus we may apply Theorem 2.8.2 to conclude that M∞,0 ⊂ M∞,1 ⊂ M∞,2

is the basic construction with Jones projection e1. We may repeat this calculation

to show that M∞,k ⊂ M∞,k+1 ⊂ M∞,k+2 is the basic construction with Jones

projection ek+1 for all k > 0.

Proposition 3.3.6. For the algebras defined above, if the connection is flat we

have M′
∞,0 ∩M∞,k = M(k,k),0.

Proof. To prove this we use Ocneanu’s compactness argument [71]. Let x ∈
M′

∞,0∩M∞,k and denote by xl,n its conditional expectation in A(l,l+2n),k. Let d be

the smallest integer such that the Bratteli diagram for the inclusion A(d,d+2n),k ⊂
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A(d+1,d+1+2n),k is a reflection of the Bratteli diagram for the previous step. Then

for all 2t > d the algebras A′
(2t,2t+2n),0 ∩A(2t,2t+2n),k are isomorphic since they are

string algebras with basis consisting of pairs of paths of length k on the graph G3

which are allowed to start at any vertex in V0. Denote by B a finite dimensional

C∗-algebra isomorphic to these algebras and let φ2t,n : A′
(2t,2(t+n)),0∩A(2t,2(t+n)),k →

B denote the isomorphism. Note also that the algebras A′
(2t,2(t+n)),0∩A(2t+2,2(t+n)+2),k

are all isomorphic, denote by B̃ an algebra isomorphic to these algebras with

isomorphism φ̃2t,n : A′
(2t,2(t+n)),0 ∩ A(2t+2,2(t+n)+2),k → B̃. Then {φ2t,n(x2t,n)}t

is a bounded sequence in B since ‖φ2t,n(x2t,n)‖ ≤ ‖x2t,n‖ and by compactness

we may find a sequence {tk}k such that the subsequences {φ2tk,n(x2tk,n)}k and

{φ2tk+2,n(x2tk+2,n)}k both converge. Let z and z′ be their respective limits. We

may embed any string in B into B̃ by adding the horizontal identity string of

length 2 at the beginning or at the end. Thus, using the connection we can

identify z · id2 with id2 · z′, where id2 is the string
∑

|σ|=2(σ, σ), since we know

that limt→∞ ‖x2t,n − x2t+2,n‖ = 0. Now we wish to show that we have in fact

z · id2 = id2 · z′ as strings. It is easily shown that z′.e = e.z′ and e.id = id.e where

e is the horizontal Jones’ projection. Hence we have

(z.id)× (id.e) =(id · z′)× (e · id) = e · z′

=z′ · e = (z′.id)× (id.e).

Taking conditional expectations we have that z = z′ in B. Let z(v) denote the

component of z with initial vertex v. Then we have that limt→∞ ‖x2t,n−z(∗)‖ = 0

if the connection is flat and hence x = z(∗) ∈ A(k,k),0

The algebras A0,k are the type II string algebras, and the state φω
k is the

ordinary trace here. Denote by H0,k the Hilbert space completion with respect

to the trace. Let A0,k be the C∗-algebra generated by A0,k, and M0,k the von

Neumann algebra completion in B(H0,k). Similarly to Proposition 3.3.4, it can

be proved that A∞,k is the crossed product of A0,k by an endomorphism.

Proposition 3.3.7. Let k ≥ 0 then A∞,k ' A0,k oΨ N where Ψ(x) = UkxU∗
k for

x ∈ A0,0 and Uk is the image of the isometry U = δ−
1
2

∑
e(eẽ, ∗) in A0,k.
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Finally we want to show that the subfactor M∞,0 ⊂ M∞,1 is isomorphic to

(N ⊂ M)⊗M∞,1 for some II1 subfactor N ⊂ M . In order to do this we again use

Theorem 2.8.1. In the case when we have a tower of type III1 factors, by [77] the

conditions of the theorem are automatically satisfied. In the IIIλ case we need

to check central freeness and approximate innerness. It is known that a common

discrete decomposition of a subfactor N ⊂ M of type IIIλ exists if N ′ ∩M is a

factor so this is automatically true for M∞,0 ⊂ M∞,1 if the graph G has only

one edge adjacent to the vertex ∗. Central freeness is equivalent to requiring the

type II and III graphs to coincide, so we know this is true for the ADE graphs

(apart from A4n−3).

3.4 Definition of Type III planar algebra

An (n0,m0) tangle T is a disc D0 in the plane with a possibly empty collection of

internal discs Di 1 ≤ i ≤ k(T ). Each disc Di 0 ≤ i ≤ k(T ) has ni marked points

along the top and mi along the bottom (usually discs will be drawn as rectangles

so ‘top’ and ‘bottom’ are clear) such that for each i the sum mi + ni ∈ 2N. The

interior of D0/
⋃

1≤i≤k(T ) Di contains a collection of non intersecting strings, each

string either has exactly two endpoints, which occur at marked points of the Di,

or forms a closed loop. Each marked point is the endpoint of exactly one string.

The interior of the tangle is shaded black and white in such a way that adjacent

regions always have different shadings. A disc with pattern (n,m) will be called

a +(n,m) disc if the region adjacent to the first marked point (which we usually

indicate with a ∗) is unshaded and a −(n,m) disc if the region is shaded. The

inner discs may be labelled using some labelling set L = ∪n,mL(n,m). Tangles are

defined up to planar isotopy. A tangle is said to be in standard form if all the

discs are converted to rectangles with all marked points along the top edge and

the tangle is drawn in such a way that it may be split horizontally into strips with

each strip containing at most one cup, one cap or one inner disc. When drawing

tangles we will often denote n parallel strands by a thick strand with the number
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n written beside it.

A tangle T is fully labelled if there is an assignment of l ∈ L(n,m) to each

internal (n, m)-disc Dk. Denote the collection of all planar tangles with labels in

L by P(L). We now define a composition in P(L).

If the pattern of the outer disc of some tangle S ∈ P(L) is the same as the

pattern of some inner disc Di of a tangle T ∈ P(L) then we may form the tangle

T ◦i S by gluing S inside Di, removing the outer boundary and smoothing the

strings.

Definition 3.4.1. A type III planar algebra is a collection of vector spaces Pm
n,±,

n, m ∈ N with inclusion maps i : Pm
n,± → Pm+1

n+1,± and a collection of linear maps ZT

(one for each tangle T ∈ P(L)) such that, for T as above ZT : ⊗k(T )
i=1 Pmi

ni,± → Pm0
n0,±

such that the ZT are compatible with composition and relabelling of internal

discs, more precisely, we require that the following diagram commutes, for all

tangles T with k(T ) inner discs and tangles S with k(S) inner discs for which the

composition T ◦l S makes sense:

(⊗l−1
i=1P

mi
ni,±)⊗ (⊗k(S)

j=1 P
tj
sj ,±)⊗ (⊗k(T )

i=l+1P
mi
ni,±)

1⊗ZS⊗1

²²

ZT◦S

**UUUUUUUUUUUUUUUUUUUUU

Pm0
n0,±

⊗k(T )
i=1 Pmi

ni,±

ZT

44hhhhhhhhhhhhhhhhhhhhhh

where the empty tensor product is defined to be C. Let Pk,± = lim−→P n+2k
n,± and let

P± = ⊕k∈ZPk,±. The map ZT is called the presenting map of the tangle T .

Using the Fourier transform tangle shown in Figure 2.5 we can show that

Pm
n,+ is anti-isomorphic to Pm

n,− if at least one of n, m are non-zero, and so in

general we will work only with the + part and write Pm
n to mean Pm

n,+, and for

n = m = 0 we write P+ or P− depending on the shading of the region adjacent

to the outer boundary. Thus when drawing tangles we usually omit the shading

since the region containing ∗ is always assumed to be unshaded.
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Figure 3.10: The tangles M(x, y) and I
(n+1,m+1)
(n,m) (x)

We say a planar algebra P has modulus (δ+, δ−) if there exist constants δ±

with ZT = δε where T is the ε(0, 0) tangle with a single closed shaded (for ε = −)

or unshaded (for ε = +) loop in its interior. If δ+ = δ− = δ we call P unimodular.

Each planar algebra P± contains a copy of the Temperley-Lieb planar algebra O±
TL

as the subalgebra with labelling set L = ∅ where the presenting map is just the

identity map.

There are inclusion tangles, shown in Figure 3.10 which embed a ±(n,m)

tangle in a ±(n + k, m + k) tangle by adding k through strings to the right.

An annular (m,n; m′, n′) tangle is a tangle T for which the outer disc has

pattern (m,n) and T exactly one inner disc, with pattern (m′, n′).

In order to define the multiplication in the planar algebra we have a class of

multiplication tangles, shown in Figure 3.10, which map Pm1
ni
⊗Pm2

n2
→ Pm2+m1−n2

n1

(or Pm2
n1+n2−m1

depending on whether n2−m1 is positive or negative). The product

of x ∈ Pm1
n1

and y ∈ Pm2
n2

is then defined as ZM(x, y) where M is the appropriate

multiplication tangle. The element Z1(1) ∈ P is the identity for this multiplica-

tion, where 1 is the tangle where all the strands are through strands.

The adjoint T ∗ of a tangle T is defined as the tangle obtained by reflecting T

in a horizontal line through its centre. If T is labelled (by some labelling set with

a *-operation), the labels must be replaced by their adjoints. A type III planar ∗-

algebra is a planar algebra with an involution on P satisfying ZT ∗(x
∗) = (ZT (x))∗
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Figure 3.11: The adjoint of a tangle

for all x ∈ P and all tangles T .

It is easy to see that the collection of all planar tangles is generated by OTL,

multiplication tangles and annular tangles. To show this, just draw any tangle

in standard form. Each horizontal strip is either an annular tangle or an element

of OTL and the multiplication of the horizontal strips is given by multiplication

tangles.

We now define a partial braiding on P . We use the same crossing as in

Section 2.5, replacing local parts of planar tangles by the linear combination

shown in Figure 3.3. Recall from Section 2.5 that this satisfies the second and

third Reidemeister moves, but removing a twist results in multiplication by a

scalar as shown in Figure 2.9. However in general we cannot pass strings over

or under discs. Given a planar tangle T , let T ′ be the linear combination of

tangles obtained by passing j strings of T over some inner disc Di of T as shown

in Figure 3.12. A planar algebra P is called flat if ZT = ZT ′ for all T and all

possible choices of i and j, where as before if T ′ =
∑

i∈I ciTi, we denote by ZT ′

the linear combination
∑

i∈I ciZTi
. Note that in this case it is still not possible

in general to pull strings under discs.

A type III planar algebra P is spherical if ZT is invariant under isotopies of

the 2-sphere for all 0, 0 tangles T .

Let σt be the action of R on P defined by σt(x) = eαi(n−m)tx for α = ln δ and

x ∈ Pm
n and extend linearly to all of P . As in OTL, we define a projection S

from P onto P0 by the linear extension of the map S(x) = α/2π
∫ 2π/α

0
σt(x)dt for
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Figure 3.12: Flatness

x ∈ Pm
n . We may define states on the P0 in a similar way to the trace on the

II1 planar algebra. In terms of planar tangles the states TrR and TrL are gotten

by joining corresponding marked points along the top and bottom of the tangle,

where the strings pass either to the right (for TrR) or to the left of the tangle

(for TrL), and possibly multiplying by a scalar factor. Then the states φR and

φL are the composition of TrR or TrL with the projection S.

Proposition 3.4.2. Let P be a type III planar algebra. Then P is spherical if

and only if φR = φL.

Proof. This is proved exactly as in [36]. Suppose P is spherical. Then for any

x ∈ Pm
n , φR(x) = 0 = φL(x) if n 6= m. For any x ∈ P n

n φR(x) = φL(x) since if we

imagine φR(x) on the surface of a sphere, we can loop the n strings on the right

of φR(x) around the sphere to get φL(x). If φR = φL then P is spherical since

all spherical isotopies are generated by planar isotopies plus the isotopy taking

φR(x) to φL(x)[1].

Proposition 3.4.3. A flat planar algebra P is spherical.

Proof. We just need to check that φL and φR agree. This is exactly the same as

in the type II case in [36], since φL and φR are zero for any x ∈ Pm
n with n 6= m.

For x ∈ P n
n , φR(x) = φL(x) since we may pass the strings on the right of φR(x)

over the rest of the tangle as shown in Figure 3.13 and remove the twists using
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Figure 3.13: Passing a string over a tangle

Figure 3.14: Spherical planar algebras are unimodular

the partial braiding. Since there is one positive and one negative crossing, the

scalar factors involved in removing the twists cancel.

For a spherical planar algebra we write φ instead of φR = φL. A spherical

planar algebra must be unimodular since by Figure 3.14 φL(1) = δ+ and φR(1) =

δ− where 1 ∈ P 1
1 is the one-string identity.

A planar algebra is non-degenerate if φ(x∗x) > 0 for all x 6= 0 and in this case

we may define a non degenerate inner product on P by 〈x, y〉 := φ(y∗x).

Proposition 3.4.4. A planar algebra P is non-degenerate if and only if ZA(x) =

0 for all (0, 0; m,n)-annular tangles A implies x = 0.
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Proof. We can prove this in exactly the same way as the proof of Lemma 1.29 in

[36]. First suppose that P is non-degenerate and x 6= 0. Then φ(x∗x) 6= 0 and

φ(x∗x) is the result of applying an annular tangle to x. For the converse, given

any (0, 0; m,n)-annular tangle A we may find y ∈ P such that A(x) = φ(xy).

Thus there exists y such that φ(xy) 6= 0 and by Cauchy-Schwarz we have that

φ(x∗x) 6= 0.

A planar algebra is finite dimensional if dimPm
n < ∞ for all n,m, connected

if P± has dimension 1 and irreducible if dimP 1
1 = 1.

Proposition 3.4.5. Let P be a non-degenerate finite dimensional type III planar

∗-algebra. Then there is a unique C∗-norm on P .

Proof. It is proved in [36] that a type II planar algebra has a unique C∗-norm.

Since the subalgebra P0 ⊂ P is a type II planar algebra it has a unique C∗-norm

‖ · ‖C∗ . We can use this to define a norm ‖ · ‖P on all of P by ‖x‖P = ‖x∗x‖
1
2
C∗

for x ∈ Pk. To see this is a norm, ‖ax‖P = a‖x‖P and ‖x‖P = 0 implies x = 0

both follow from the corresponding properties of ‖ · ‖C∗ , for subadditivity

‖x + y‖2
P =‖(x + y)∗(x + y)‖C∗

≤‖x∗x‖C∗ + 2‖x∗y‖C∗ + ‖y∗y‖C∗

≤‖x‖2
P + 2‖x‖P‖y‖P + ‖y‖2

P

=(‖x‖P + ‖y‖P )2.

It is easy to see that this is a C∗-norm and it agrees with ‖ · ‖C∗ on P0. To prove

uniqueness, suppose ‖ · ‖ is any other C∗-norm on P . It must agree with ‖ · ‖C∗

on P0 and so ‖x‖2 = ‖x∗x‖ = ‖x∗x‖C∗ = ‖x‖2
P .

Therefore we will call a non-degenerate finite dimensional type III planar ∗-

algebra a type III C∗-planar algebra.

Definition 3.4.6. A type III subfactor planar algebra is a spherical, finite di-

mensional, connected planar ∗-algebra with modulus δ > 0 and a positive definite

state φ.
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We define an endomorphism ρ on (n,m)-tangles as in Figure 3.15.

The endomorphism ρ maps P+ to P−. We may similarly define ρ̄ as the

endomorphism which maps P− to P+ by adding a single through string to the

left. We also define the conditional expectation tangles EL and ER as in Figure

3.16.

The map δ−1ZEL
is the conditional expectation of P onto the subalgebra P (1)

which is the subalgebra where the first and last endpoints of each tangle are

joined by a through string. Drawing diagrams, it is easy to see that EL satisfies

EL(axb) = aEL(x)b for a, b ∈ P (1) and x ∈ P . To show positivity of EL, let

x =
∑

xi ∈ P then EL(xx∗) = x′x′∗ where x′ =
∑

x′i and x′i is defined in the

Figure 3.17.

The map δ−1ZER
defines a positive conditional expectation from P n

n → P n−1
n−1 .

3.4.1 Type III Planar Algebra Associated to a Subfactor

Given a finite bipartite graph G with distinguished vertex ∗, one may associate a

type III planar algebra as follows. Suppose the Perron Frobenius eigenvalue of G
is δ with eigenvector entry µ(v) corresponding to the vertex v. The vector spaces

Pm
n are spaces of pairs of paths (ξ, ζ) where |ξ| = n, |ζ| = m, s(ξ) = s(ζ) = ∗ and

r(ξ) = r(ζ). The multiplication and ∗-operation defined in Section 3.3 makes P

into a ∗-algebra. The labelling set is just P . The presenting map ZT of a tangle

T is as follows. First isotope the tangle to standard form and then presenting

maps for individual rectangles are as in [23] which were described in Section 2.7.

That is, suppose we have a strip with a cup joining the ith vertex along the top

with the (i+1)th vertex along the top and the rest of the strings through strings.

We may label the diagram by a pair of paths from G. We require that a through

string must have the same label along its top and bottom edges. Thus we have

that the nth edge along the bottom must agree with the nth edge along the top

for the first i− 1 edges, and the nth edge along the bottom must agree with the

n + 2 edge for the remaining edges along the bottom. Also the edge i on the top
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Figure 3.15: The endomorphism ρ(x)

Figure 3.16: Conditional expectations EL(x) and ER(x)

Figure 3.17: The tangle x′i
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must be the opposite edge as i + 1. Thus the map Z∪ is defined as

Z∪ =
∑

ξ,η

√
µ(s(η))

µ(r(η))
(ξ1 · · · ξiη · η̃ · ξi+1 · · · ξn, ξ1 · · · ξn)

where the sum is over all possible paths ξ and η. Similarly we have that

Z∩ =
∑

ξ,η

√
µ(s(η))

µ(r(η))
(ξ1 · · · ξn, ξ1 · · · ξiη · η̃ · ξi+1 · · · ξn).

For a strip containing a rectangle with label (ξ, ∗) and no vertical strings to the

left or right then ZT is just (ξ, ∗). If the rectangle has n vertical through strings to

the left first attach the n string identity
∑

|µ|=n µ to the right to get
∑

µ(ξ ·µ, µ).

Using the connection transform this to the an element of the string algebra with

the identity on the left, i.e.
∑

µ,ζ cξ(ν · ζ, ν), where

cξ =
∑

ζ,µ,ν

v
ξ−→ w

ζ

y yν

y −→η x

are given by the connection defined in Section 2.8. Note that if the connection

is flat this presenting map defines a flat planar algebra.Finally, if there are m

through strings on the right, label them by the m string identity
∑

|ν|=m ν. Hence

the presenting map of a strip b containing a labelled box with n through strings

to the left and m to the right is the element

Zb :=
∑

µ,ζ,ν

cζ(µ · ζ · ν, µ · ν)

The presenting map of T is then ZT = Z(t1) . . . Z(tn) where t1 is the top rectangle,

t2 is the one directly below it and so on.

Now we show that for a type III subfactor ρ(M) ⊂ M using the identification

of string algebras with spaces of intertwiners in [34] we can use the definition of

Z above to define a type III subfactor planar algebra.

Proposition 3.4.7. Let ρ(M) ⊂ M be a extremal type III subfactor with d(ρ)
1
2 =

δ < ∞ and for each n,m let

P 2m
2n =((ρρ)n, (ρρ)m)

P 2m+1
2n+1 =((ρρ)nρ, (ρρ)mρ)
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Let Pk = ∪nP
n+k
n and P = ⊕kPk and let φ = tr ◦S be the state defined in Section

3.4. Then the above definition of Z makes P into a type III subfactor planar

algebra with modulus δ and Z(x) = x for each x ∈ P (where by Z(x) we mean the

presenting map of a tangle with a single input box labelled by x). For all n,m ∈ N
and x ∈ P , Z satisfies

(i)

(ii)

(iii)

Here EN ′∩Mn is the conditional expectation N ′ ∩Mn+1 → N ′ ∩Mn and E is

the minimal expectation M → N .

If Z ′ is another planar structure on P satisfying the 4 conditions above and

such that Z ′(x) = Z(x) for all labelled discs x and also Z ′(∪) = Z(∪) then

Z ' Z ′.

Proof. As in [34] (and Section 2.8) we identify the vector spaces ((ρρ)n, (ρρ)m)

with vector spaces with basis given by pairs of paths (ξ1, ξ2) in the principal/dual

principal graph of ρ(M) ⊂ M with |ξ1| = n, |ξ2| = m, s(ξ1) = s(ξ2) = ∗ and

r(ξ1) = r(ξ2).

Let Z be as defined above. We begin by showing that the definition of Z

is independent of isotopies of the tangle. By the discussion at the beginning of

the proof of Theorem 4.2.1 of [36] we just need to check the isotopies of Figures

3.18,3.19, 3.21 and 3.22. This is almost exactly the same as the proof in [23].

Firstly, straightening a string with a cup and cap does not change Z since for

a strip t with a string with a cup and cap then we can split the strip into two

strips, as shown in Figure 3.18, t1 has a cap joining points i + 1 and i + 2 along

the bottom and t2 has a cap joining points i and i + 1 on the top.

Then Z(t) = Z(t1)Z(t2) with
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Figure 3.18: Straightening a cup and cap

Z(t1) =
∑

ξ,η

√
µ(s(η))

µ(r(η))
(ξ1 · · · ξn, ξ1 · · · ξi+1 · η · η̃ · ξi+2 · · · ξn)

Z(t2) =
∑

ζ,ν

√
µ(s(ν))

µ(r(ν))
(ζ1 · · · ζi · ν · ν̃ · ζi+1 · · · ζn, ζ1 · · · ζn)

and so Z(t) =
∑

ξ,ν,η δµ,ν̃

√
µ(s(ν))
µ(r(ν))

√
µ(s(η))
µ(r(η))

(ξ1 · · · ξn, ξ1 · · · ξn) = idn. A similar

computation shows that flattening a string with a cap and then a cup does not

change Z either.

Next, we show that isotopies involving labelled discs do not change Z. For the

first isotopy of Figure 3.19 we show that interchanging the vertical coordinates

of the rectangle and cap does not change Z.

Suppose t2 is the horizontal strip containing the rectangle x with label (ξ, ∗)
on the left hand side of the equation. Then

Z(t2) =
∑

αi,ζ

cξ,ζ(α1 · ζ · α2 · α3, α1 · α2 · α3)

where the sum is over all αi with |α1| = i, |α2| = k, |α3| = l and ζ with |ζ| = j and

the constants cξ,ζ come from the connection. Then, if t1 is the strip containing
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the cup,

Z(t1) =
∑

βi,η

√
µ(s(η))

µ(r(η))
(β1 · β2 · β3 · η · η̃ · β4, β1 · β2 · β3 · β4)

where now we sum over all βi with |β1| = i, |β2| = j, |β3| = k, |β4| = l and

|η| = 1. Hence

Z(t) = Z(t1)Z(t2) =
∑

η,ζ,αi

δβ1,α1δβ2,ζδβ3,α2δβ4,α3cξ,ζ

√
µ(s(η))

µ(r(η))
(α1·ζ·α2·η·η̃·α3, α1·α2·α3).

Then if we label the upper and lower strip of the right hand side by s1, s2

respectively we have

Z(s1) =
∑

|α1|=i,|α2|=j,
|α3|=k,|α4=l,|η|=1

√
µ(s(η))

µ(r(η))
(α1 · α2 · η · η̃ · α3, α1 · α2 · α3)

and

Z(s2) =
∑

|β1|=i,|β2|=k,
|β3|=2,|β4|=l,|ζ|=j

cξ,ζ(β1 · ζ · β2 · β3 · β4, β1 · β2 · β3 · β4).

Hence

Z(s) =Z(s2)Z(s1)

=
∑

η,ζ,αi

δβ1,α1δα2,ζδβ2,α3δβ4,α3δβ3,ηη̃cξ,ζ

√
µ(s(η))

µ(r(η))
(α1 · ζ · α2 · η · η̃ · α3, α1 · α2 · α3)

which is equal to the left hand side. To show that we may interchange the vertical

coordinates of a labelled rectangle to the right of a cap, as in the second equation

of 3.19 we can use the partial braiding as shown in Figure 3.20 to transform this

to the above situation.

For the isotopies described in Figure 3.21 we show that pulling a rectangle

down to the left of another rectangle does not change Z. Given two rectangles

x and y, labelled (ξ1, ∗) and (ξ2, ∗) then the horizontal strip containing the first

rectangle will be

Z(s1) =
∑

|ζ|=k,|α1|=j,
|β1|=l,|γ|=m,|δ1|=n

cξ1,ζ1(α1 · ζ1 · β1 · γ · δ1, α1 · β1 · γ · δ1)
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Figure 3.19: Isotopies involving a cup and labelled rectangle

Figure 3.20: Isotopies involving a cup and a labelled rectangle II
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Figure 3.21: Isotopies involving two labelled rectangles

and the strip containing the second rectangle will be

Z(s2) =
∑

|α2|=j,|β2|=l,
|ζ2|=m,|δ2|=n

cξ2,ζ2(α2 · β2 · ζ2 · δ2, α2 · β2 · δ2).

Multiplying these we see

Z(s1)Z(s2) =
∑

|ζ|=k,|α1|=j,
|β1|=l,|ζ2|=m,|δ1|=n

cξ1,ζ1cξ2,ζ2(α1 · ζ1 · β1 · ζ2 · δ1, α1 · β1 · δ1).

On the other hand, letting t1, t2 be the horizontal strips on the left hand side we

get

Z(t2) =
∑

|ζ′1|=k,|α4|=j,

|β4|=l,|δ4|=n

cξ1,ζ′1(α4 · ζ ′1 · β4 · δ4, α4 · β4 · δ4)

and

Z(t1) =
∑

|ζ′2|=m,|α3|=j,|γ|=k

|β3|=l,|δ3|=n

cξ2,ζ2(α3 · γ · β3 · ζ ′2 · δ3, α3 · γ′ · β3 · δ3)

and so Z(t1)Z(t2) = Z(s1)Z(s2) as required.

The final planar isotopy that needs to be checked is that rotating a box by

2π does not change Z. We demonstrate this for a box with two marked points,

the method carries over to a box with an arbitrary number of marked points. Let

the box be labelled by (ξ, ∗), with |ξ| = 2. Then splitting the diagram in Figure
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Figure 3.22: Rotation of a rectangle

3.22 into five horizontal strips as shown we get

Z(s1) =
∑

|αi|=1

(α1 · α2, α3 · α̃3 · α1 · α1)

Z(s2) =
∑

|βi|=1

(β1 · · · β4, β1 · β5 · β̃5 · β2 · · · β4)

Z(s3) =
∑

|γi|=1,|ζ|=2

cξ,ζ(γ1 · γ2 · ζ · γ3 · γ4, γ1 · · · γ4)

Z(s4) =
∑

|δi|=1

(δ1 · δ2 · δ̃2 · δ3 · δ4, δ1 · ·δ3 · δ4)

Z(s5) =
∑

|ε|=1

(ε · ε̃, ∗).

Hence Z =
∑

cξ,ζ(ζ, ∗) which, by the definition of the connection, is equal to

(ξ, ∗).
Hence our definition is independent of all planar isotopies. To show that P

is a subfactor planar algebra, we must show that is is spherical, connected, finite

dimensional, has modulus δ > 0 and the state φ is positive definite. The finite

dimensionality of Pm
n is true by definition, as is the fact that P 0

0 = (id, id) has

dimension one. The planar algebra P is spherical since the connection defined in

Section 2.8 is flat. To show that the planar algebra has modulus δ, the Perron

Frobenius eigenvalue of the graph, let t be a horizontal strip with a closed loop
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Figure 3.23: Calculating δ

with i through strings to the left and j through strings to the right. Then

Z(t) = Z(t1)Z(t2) where t1 is the strip with a cap joining strings i and i + 1 on

the bottom and t2 is the strip with a cap in the corresponding position on the

top edge as shown in Figure 3.23. Then

Z(t1) =
∑

ξ,η

√
µ(r(η))√
µ(s(η))

(ξ1 · · · ξn, ξ1 · · · ξi · η · η̃ · ξi+1 · · · ξn)

Z(t2) =
∑

ζ,ν

√
µ(r(ν))√
µ(s(ν))

(ζ1 · · · ζi · ν · ν̃ · ζi+1 · · · ζn, ζ1 · · · ζn)

and

Z(t) =
∑

ζ,ν:s(ν)=r(ζi)

µ(r(ν))

µ(s(ν))
(ζ, ζ) = δidn.

We now show that the state on the planar algebra is positive. Let x be a tangle

with label (ξ1, ξ2). Then Z(φ(ξ1, ξ2)) = δξ1,ξ2δ
−|ξ1|µ(t(ξ1)). This is exactly the

state we defined on the string algebra, which is positive since it is the composition

of a projection and the unique positive definite trace on the string algebra.

Next we must show that P satisfies the three conditions in the statement of

the proposition. For the first one, using the definition of Z we calculate the left

hand side to be

∑

ξ,α,β

√
µ(r(α))µ(r(β))

µ(r(ξi−1))
(ξ1 . . . ξi−1 · α · α̃ · ξi · · · ξn, ξ1 . . . ξi−1 · β · β̃ · ξi . . . ξn)
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which is which is δ times the Jones projection in the string algebra. The second

condition is satisfied by definition.

Now we must show that we have the correct conditional expectations. The

minimal expectation E : M → ρ(M) is given by E(x) = ρ(r∗ρ(x)r) for r ∈
(id, ρ̄ρ). The presenting map of the left conditional expectation tangle gives

exactly this map with r = Z(∪). The right conditional expectation is the ex-

pectation from N ′ ∩Mn onto N ′ ∩Mn−1, which is exactly the same as the type

II case. This follows from the fact that P 2n
2n = ((ρρ̄)n, (ρρ̄)n) ' N ′ ∩ M2n and

P 2n+1
2n+1 = ((ρρ̄)nρ, (ρρ̄)nρ) ' N ′ ∩M2n+1

The uniqueness can be proved exactly as in Jones’ paper [36]. Suppose Z and

Z ′ are two presenting maps on P satisfying Z(x) = x = Z ′(x) for all x ∈ M

and Z(∪) = Z ′(∪). Then we want to show that for any planar tangle T we have

Z(T ) = Z ′(T ). Let T be a type III planar tangle. Putting T in standard form we

see it is a product of OTL tangles and tangles containing a single labelled disc,

possibly with some strings to the left and right. Since OTL is generated by ∪ and

Jones projections, we know that Z = Z ′ on OTL. We also know that Z = Z ′

for any strip containing a labelled disc or a labelled disc with through strings to

the right. All that is left is to show that Z and Z ′ agree on strips containing a

labelled disc with strings to the left. Since we are assuming the connection is flat,

this is trivial.

Next we show that for δ < 2 the planar algebra OTL may be realised as the

planar algebra defined using the string algebra construction for the graph An

where δ = 2 cos(π/n).

Proposition 3.4.8. Let P be the planar algebra with presenting map defined

using the string algebra construction for the Dynkin diagram An. Then P ' OTL.

Proof. The ordinary Temperley-Lieb algebra may be described as the (type II)

string algebra of the graph An. In order to prove OTL may be described as the

type III string algebra of An, first we define linear maps κ : Vk → Vk+1 for k ∈ Z
by
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Then κ is invertible with inverse κ−1 : Vk+1 → Vk. We can similarly define

maps κ̃ : A(n,n+2m),0 → A(n−1,n+2m+1),0 by κ̃(ξ1 · · · ξn, ζ1 · · · ζn+2m)

= (ξ1 · · · ξn−1, ζ1 · · · ζn+2m · ξ̃n).

If x ∈ Vk with k > 0 then (κ−1)k(x) is in V0 which is the type II Temperley-

Lieb planar algebra. Let χ be the isomorphism from V0 to the type II string

algebra of An defined by mapping the diagramatic Jones projection ei in V0

to the corresponding Jones projections in An. We wish to show that Z de-

fines a surjective map from V n+2m
n → A(n,n+2m),0 and then, since dim(V n+2m

n ) =

dim(V n+m
n+m ) = dimA(n+m,n+m),0 = dimA(n,n+2m),0 we have that Z is a bijection

and hence Z : OTL → A∞,0 is an isomorphism. Let x ∈ A(n,n+2m),0. Then

κ̃m(x) ∈ A(n+m,n+m),0 and then χ(κ̃m(x)) defines a unique element of V0. Thus,

letting x̃ = κ−mχ(κ̃m(x)) we have that for any x ∈ V there exists x̃ ∈ V with

Z(x̃) = x and so Z is surjective.

3.5 Perturbations of Planar Algebras

In [15] it was shown that for type II planar algebras it is possible to remove the

condition of extremality by defining planar algebras which are not necessarily

spherical. We now show that this is also possible for type III planar algebras.

First we define an analogue of the bimodule planar algebra of [15], [26]. In the

type II setting the appropriate bicategory is the bicategory of bifinite bimodules.
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However in the type III setting we use instead the following bicategory B, details

of which may be found for example in [65], [61].

Let N = ρ(M) ⊂ M be a type III subfactor. Let B be the 2-category whose

objects are {ρ(M),M}, whose 1-morphisms generated by ρ and ρ̄ and whose

2-morphisms are intertwiners. The tensor product of 1-morphisms is given by

composition, i.e ρ1⊗ρ2 = ρ1ρ2 and the tensor product of intertwiners u ∈ (ρ1, ρ2),

v ∈ (σ1, σ2) is given by u⊗ v = uρ1(v).

Recall from Section 2.8 that there exist isometries r and r̄ with r ∈ (idM , ρ̄ρ),

r̄ ∈ (idN , ρρ̄) and r̄∗⊗1ρ◦1ρ⊗r = 1ρ and r∗⊗1ρ̄◦1ρ̄⊗r̄ = 1. Such an r is said to be

a solution of the conjugate equations. Suppose ρ =
∑

ρi is a sum of irreducibles.

Then there exist partial isometries wi with wiρw∗
i = ρi and

∑
i wiw

∗
i = 1. There is

a unique (up to unitary equivalence) ri ∈ (1, ρiρ̄i) and the sum r =
∑

i w
∗
i ⊗wi◦ri

is said to be the standard solution of the conjugate equations. The standard left

inverse for ρ is a collection of mappings φσ,τ : (ρσ, ρτ) → (σ, τ) defined by

φσ,τ (x) = r∗ ⊗ 1τ ◦ 1ρ̄ ⊗ x ◦ r ⊗ 1σ. Similarly one can define the standard right

inverse ψσ,τ : (σρ, τρ) → (σ, τ) by ψσ,τ (x) = 1τ ⊗ r∗ ◦ x⊗ 1ρ̄ ◦ 1σ ⊗ r. It is proved

in Lemma 3.9 of [61] that ψ and φ are faithful positive maps and ψ1,1 = φ1,1 if

and only if r is standard. For any choice of r′ ∈ (1, ρρ̄), r̄′ ∈ (1, ρ̄ρ) there exists

an invertible element y ∈ (ρ, ρ) such that r′ = (1ρ ⊗ y) ◦ r and r̄′ = (y∗ ⊗ 1ρ) ◦ r̄.

The minimal conditional expectation E : M → ρ(M) may be defined in terms of

standard r by E(x) = 1ρ̄ ⊗ r̄∗ ◦ x⊗ 1ρ̄ ◦ 1ρ̄ ⊗ r̄. The bicategory B is right rigid if

ρ(M) ⊆ M is a finite index subfactor, since in this case a unique ρ̄ always exists

by Proposition 6.25 of [65]. Thus any choice of r defines a pivotal structure on

B.

As in [15] we can associate a planar algebra P to the bicategory B by letting

the vector spaces Pm
n be spaces of intertwiners from (ρρ̄ρ . . .) → (ρρ̄ρ . . .) or

(ρ̄ρ . . .) → (ρ̄ρ . . .) where there are n terms on the left and m on the right. Fix

some r ∈ (1, ρ̄ρ) and r̄ ∈ (1, ρρ̄). Then, given a tangle T we can define the

presenting map via the assignments shown in Figure 3.24 where σn is (ρρ̄ . . .)

with n terms if the left hand side is shaded and (ρ̄ρ . . .) with n terms if the left
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Figure 3.24: Presenting map for horizontal strips

hand side is unshaded.

Proposition 3.5.1. Given a type III factor M and a finite index endomorphism

ρ ∈ End(M) there is a unique finite dimensional, connected, positive definite type

III C∗-planar algebra structure with states φL and φR and

P 2m
2n =





((ρρ̄)n, (ρρ̄)m)

((ρ̄ρ)n, (ρ̄ρ)m)

P 2m+1
2n+1 =





(ρ̄(ρρ̄)n, ρ̄(ρρ̄)m)

(ρ(ρ̄ρ)n, ρ(ρ̄ρ)m)

(3.9)

and such that for all x, y ∈ P we have the following identities
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where e±1 are the Jones projections for the inclusions ρ(M) ⊂ M and ρ̄ρ(M) ⊂
ρ(M).

Proof. The first thing that needs to be checked is that the definition of Z above

is invariant under the three planar isotopies in Figure 3.25 for all x, y ∈ P and

all nk, ik, jk ∈ N.

Smoothing a string as in (i) leaves Z unchanged since Z(∩⊗ 1ρ)Z(1ρ⊗∪) =

r∗ ◦ ρ(r) = 1 = Z(1) by the conjugate equations.

Interchanging the vertical coordinates of discs labelled x, y as shown in (ii)

of Figure 3.25 doesn’t change Z, since, if we assume nk, jk, ik are all even and

the extreme left hand side of the diagram is unshaded, the left hand side is

equal to (ρρ)n1/2(x)(ρρ)(n1+j1+n2)/2(y). Since ρn1/2(x) ∈ ((ρρ)n1+i1/2, (ρρ)n1+j1/2)

this equals (ρρ)(n1+i1+n2)/2(y)(ρρ)n1/2(x) which is equal to the right hand side.

Invariance of Z can similarly be shown for other values of nk, jk, ik and either

shading.

The final planar isotopy we need to consider is rotation. For simplicity we give

a proof here for a disc x ∈ (ρ̄, ρ̄) and the general case may be proved similarly.

The presenting map is r∗⊗ 1ρ̄ ◦ 1ρ̄⊗ r̄∗⊗ 1ρρ̄ ◦ 1ρ̄ρ⊗x⊗ 1ρρ̄ ◦ 1ρ⊗ r̄⊗ 1ρ̄ ◦ 1ρ⊗ r =

r∗ ⊗ 1ρ̄ ◦ 1ρ̄ ⊗ r̄ ⊗ 1ρ ◦ 1ρ̄ρ ⊗ x⊗ 1ρρ̄ ◦ 1⊗ r∗ ◦ 1ρ ⊗ r = x, where the first equality
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follows from pivotality and the second follows from the conjugate equations.

The planar algebra is finite dimensional by definition, it is connected because

P 0
0 = (id, id) is one dimensional by definition, positivity follows because the state

φ is the composition of a projection with a trace, the trace is positive definite

because Z(tr(x)) = r∗ ◦ x ⊗ 1 ◦ r for x ∈ P 1
1 , which is positive, since if x = y∗y

then Z(tr(x)) = (y ◦ r)∗(y ◦ r). The four conditions listed follow directly from

the definitions of Z and B. Uniqueness is proved in exactly the same way as in

the proof of Proposition 3.4.7.

Proposition 3.5.2. Let P be the planar algebra defined in the previous proposi-

tion. Sphericality of P corresponds to extremality of the subfactor ρ(M) ⊂ M .

Proof. From the previous section we know that sphericality is equivalent to the

condition that the states φR and φL agree. From [61] we know that the left and

right inverses for ρ agree if and only if the isometry r ∈ (id, ρρ) is standard, and in

this case the conditional expectation is minimal and so the subfactor ρ(M) ⊂ M

is extremal.

For finite depth subfactors, the above construction is exactly the same as the

planar algebra defined in the previous section. To see this just use the identifica-

tion of the intertwiner spaces ((ρρ̄)n, (ρρ̄)m) etc with spaces of pairs of paths in

the graph and dual graph of the subfactor described in Section 2.8.

Given a type III planar algebra we can define a bicategory B as follows. Let

B0 have exactly two elements denoted + and −; for each choice of η, ε ∈ {+,−}
the category B(ε, η) is the category whose objects are natural numbers and a

morphism in B(ε, η) from n to m is an element of Pm
nε . Composition of morphisms

is by multiplication in the planar algebra, the identity morphism is the empty

tangle. The tensor product of objects is just addition in N and the tensor product

of morphisms is by placing the tangles side by side as shown in Figure 3.26.

A rigid structure may be defined on B using the adjoint in the planar algebra.

For a 0-cell ε define ε# := ε. For a 1-cell k ∈ ob(B(ε, η)) define k# := k ∈
ob(B(η, ε)). The evaluation map is given by Z(∪) and coevaluation by Z(∩).
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Figure 3.25: Planar isotopies

Figure 3.26: Tensor product of morphisms u⊗ v
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Figure 3.27: Perturbation of Cups and Caps

A 2-cell x ∈ Mor(k, l), for k ∈ ob(B(ε, η)), l ∈ ob(B(η, γ)), corresponds to an

element of P l
k and so to define x# ∈ Mor(l, k) we take the adjoint in the planar

algebra.

Similarly to [15] we define a weight of a planar algebra to be an invertible

element z ∈ P 1
1 such that the element zk := (z ⊗ z−1)⊗k is in the centre of P k

k

for all k ≥ 0. Suppose that there exist a, b ∈ P with z = ab then we define

a perturbation P (a,b) of P to be the planar algebra with the same vector spaces

Pm
n as P but where the presenting map is altered by replacing cups and caps as

shown in the Figure 3.27.

It is clear that this presenting map is well defined, i.e. it is invariant under

planar isotopies. If z ∈ C then P (a,b) is called a scalar perturbation. Note that for

irreducible planar algebras scalar perturbations are the only possible perturba-

tions, since P 1
1 ' C. If a planar algebra has modulus (δ+, δ−) then its perturbation

by a scalar z = λ has modulus (λ−1δ+, λδ−) and so it is possible to perturb P to

a unimodular planar algebra by perturbing by the weight λ =
√

δ+/δ−.

Proposition 3.5.3. There is a one to one correspondence between the weights
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of a planar algebra P and pivotal structures on the strict 2-category associated to

P .

Proof. Let z be a weight of P . Then, for k ∈ B(ε, η), the two cell k
τk→ k defined

by τk = zk is a pivotal structure. To check this we need to show that τ ε,η is a

natural transformation, i.e. that τfτ−1 = f and that τk⊗l = τk ⊗ τl. The first

equality follows from the fact that z is central. The second equality is easy to

verify, since by drawing diagrams it is clear that both sides of the equation are

equal to zk+l.

Conversely if τ is a pivotal structure on P then z = τ ∈ Mor(1, 1) = P 1
1 is

a weight of P , we just need to check that it is central, but this follows from the

fact that τ is a natural transformation.

For the rest of this section we assume P is a type III finite dimensional con-

nected C∗-planar algebra which has positive definite states φR and φL.

Proposition 3.5.4. The planar algebra P has a spherical planar algebra in its

perturbation class.

Proof. The states φR and φL are related by φR(x) = φL(z⊗kx) for some invertible

z ∈ P 0
0 . Thus perturbing P by z

1
2 gives a spherical planar algebra.

Proposition 3.5.5. The perturbation class of P contains a unique spherical pla-

nar algebra P. P is the unique unimodular planar algebra attaining the minimal

index in its perturbation class.

Proof. This is proved in exactly the same way as in [15]. If P is spherical and

Q is a perturbation of P by the weight z ∈ P 1
1 . Then let pi be the collection of

minimal central projections of P 1
1 and let ci = trpi, so δP =

∑
i ci. Then there

exists λi > 0 such that (δQ+, δQ−) = (
∑

λici,
∑

λ−1
i ci). Then the index of Q is

∑
λiλ

−1
j cicj ≥ (

∑
ci)

2 = δP . Hence P has the minimal index in its perturbation

class if it is spherical.

Conversely, suppose P is unimodular and has minimal index δ. Let Q be a

spherical planar algebra in the perturbation class of P . Then Q must have the

same index as P and the weight z must be a scalar. Hence z = 1 and Q = P .
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If P is the planar algebra associated to a subfactor as in Proposition 3.5.1, a

choice of perturbation z corresponds to a choice of r′ ∈ (id, ρ̄ρ). Any r′ can be

written in terms of the standard r as r′ = x⊗ id ◦ r for some invertible x ∈ (ρ, ρ).

3.6 Planar Modules

In this section we define modules over a type III planar algebra P . This was

first investigated by Jones in [39], and the Temperlely-Lieb modules were studied

further in [81], [41]. This was then used, for example in [74] construction of

the planar algebra of the Haagerup subfactor and more recently in [14], [13] to

investigate the Drinfeld centre of planar algebras. A similar construction for

A2-planar algebras appeared in [24].

It would be interesting in the type III case see if planar modules could be

used to investigate the Longo-Rehren subfactors, given the connection between

Longo-Rehren subfactors and the Drinfeld centre described for example in [66]

and the above mentioned connection between type II Temperley-Lieb modules

and the Drinfeld centre.

We now define planar modules for type III planar algebras in exactly the same

way as the type II theory developed in [39].

Definition 3.6.1. An annular tangle is a tangle T with a distinguished internal

disc. If the outer disc has pattern (n0,m0) and the inner disc has pattern (n1,m1)

then it is called an annular (n0,m0)− (n1,m1) tangle.

Definition 3.6.2. A planar module V is a collection of vector spaces V m
n for

n, m ∈ N with an action of P . For each annular (n0,m0) − (n1,m1) tangle with

internal discs Di of pattern (ni,mi) there is a linear map ZT : V m1
n1
⊗(⊗N

i=2P
mi
ni

) →
V m0

n0
which satisfies all the usual compatibility requirements for presenting maps

of planar algebras.

A planar algebra P is always a module over itself, where the action of P on

itself is by composition. We will call this the trivial module. Another way to define
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planar modules is in terms of the annular category AnnP as follows. Let AnnP

be the category whose objects are pairs of natural numbers (n,m) and whose

morphisms are given by annular tangles with labelling set P . Composition of

morphisms is given by gluing of tangles. Let FAP be the category with the same

objects as AnnP but whose morphisms are linear combinations of morphisms,

and composition of morphisms is the linear extension of composition in AnnP .

Definition 3.6.3. The annular algebra AP is the quotient of FAP by the relation

δ = ©.

Denote by AP (n,m) the subalgebra of annular tangles with pattern (n,m) on

both the internal and external discs.

A module V is said to be irreducible if it has no non zero proper submodule

and it is said to be indecomposable if it cannot be written as V = U ⊕ W for

some submodules U and W . The following proposition may be proved similarly

to Lemma 2.11 of [39].

Proposition 3.6.4. A P -module V is indecomposable if and only if V m
n is an

indecomposable AP (n,m) module for all n,m.

Proof. If V m
n is indecomposable for all n,m then it is clear that V is indecom-

posable. To prove the converse assume that V is indecomposable but that there

exists a proper AP (n, m) submodule W ⊂ V m
n . Then AP (W ) is a submodule of

V and AP (W )m
n ⊂ V m

n so AP (W ) is a proper submodule of V .

The rank of an annular tangle T is the minimum number of strings crossed by

any closed loop in the interior of T enclosing the distinguished internal disc. The

weight of a module V is the smallest n such that V n
n is non-zero (equivalently,

the weight is the smallest n such that V j
i with i + j = n is non zero). For the

rest of the section we assume P is a type III C∗-planar algebra. The ∗-structure

on P induces a ∗-structure on AP where the ∗-operation on an annular tangle T

is given by reflecting T about a circle halfway between the inner and outer discs.

A Hilbert P -module is a P module H such that each Hm
n is a finite dimensional
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Hilbert space with compatible inner products satisfying 〈ax, y〉 = 〈x, a∗y〉 for all

x, y ∈ Hm
n and a ∈ AP . Any spherical C∗-planar algebra P is a Hilbert P -module

with inner product 〈x, y〉 = φ(y∗x).

Proposition 3.6.5. Let V be a Hilbert P -module and W ⊂ V m0
n0

is an irreducible

APm0
n0

-submodule of V m0
n0

for some n0,m0. Then AP (W ) is an irreducible P -

submodule of V .

Proof. This may be proved in a similar way to Lemma 3.4 of [39]. For Hilbert

modules irreducibility is the same as indecomposability, since if U is a proper

submodule of a Hilbert module V then U ⊕ U⊥ = V , so by Proposition 3.6.4 we

just need to show that AP (W )m
n is an irreducible APm

n submodule for all n,m.

Suppose that AP (W )m
n is not irreducible. Then there exist x, y ∈ AP (W )m

n with

AP (x)m
n ⊥ AP (y)m

n . We may write x = ax0 and y = by0 with x0, y0 ∈ W

and a, b ∈ AP (W )((n0,m0), (n,m)). Then AP (a∗ax0)
m0
n0

and AP (b∗by0)
m0
n0

are

orthogonal submodules of AP (W )m0
n0

.

We may use this lemma, along with the fact that if U,W are APm
n invariant

subspaces of V m
n for some module V then U ⊥ V implies that AP (U) ⊥ AP (W ),

to decompose a module V into a countable orthogonal direct sum. First, sup-

pose k = weight(V ) and decompose V k
k into irreducible AP k

k modules Ui. Then

AP (Ui) ⊥ AP (Uj) for all i 6= j. Taking the orthogonal complement we get a

module with higher weight that k and we may continue the process, decompos-

ing this module into irreducibles and so on. To decompose the modules V m
n for

n 6= m we just use the decomposition of the V n
n and the fact that as vector spaces

V m
n ' V k

k for k = (n+m)/2. Let ÂP
m

n be the ideal in ÂP
m

n generated by elements

with rank less than n + m.

Proposition 3.6.6. Let V be a Hilbert P -module and let Wk be the APm
n sub-

module of V m
n spanned by the (n,m) graded pieces of all P submodules of weight

less than n + m. Then

(Wm
n )⊥ = ∩

a∈ÂP
m

n
ker(a)
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Figure 3.28: The tangles ε1 and ε2

Proof. First, let w ∈ Wm
n . We will show that w ⊥ ∩ kera. We can write w =

∑
aiwi for some annular tangles ai. We can find tangles ti with t∗i tiai = ai and

tia ∈ ÂPm
n . Let v ∈ ∩kera then 〈v, aiwi〉 = 〈t∗ta∗i v, wi〉 = 0 for all i.

For the opposite inclusion, suppose w ∈ (Wm
n )⊥. Then we want to show

w ∈ ∩ ker(a). For any v ∈ Wm
n we have that 〈aw, v〉 = 〈w, a∗v〉 = 0.

3.6.1 Temperley-Lieb modules

As in [39] we may define the Temperley-Lieb modules. The type III annu-

lar Temperley-Lieb algebra ATL is the algebra of annular tangles with no in-

ternal discs besides the distinguished one. It is easy to see that the quotient

ATLm
n /ÂTLm

n is generated by the rotation tangle, since any tangle in TLm
n with

n + m through strings must be a rotation of the identity. Define the map σ± on

annular (0, 0) tangles as the map which puts a single non-contractible circle of

shading ± into the interior of the tangle. The module ATL±± is generated by the

map σ∓σ± since the only possible strings in the interior of the tangle are con-

tractible and non contractible circles, and the contractible ones may be removed

by multiplying by δ. Suppose V is an irreducible Hilbert TL module of lowest

weight zero. Then the maps σ act by a scalar λ with 0 ≤ λ ≤ δ. We prove

λ ≤ δ using the tangles ε1, ε2 in Figure 3.28. It is easy to see that δ−1εi is a

projection and ε1ε2ε1 = λ2ε1. Taking the norm of both sides gives the required

inequality. Thus the 0-weight modules are determined by the numbers λ, δ and

the dimension of ATL+
+ and ATL−−.

As vector spaces we know V m
n ' Vk where k = n + m and Vk is the type II
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Temperley-Lieb modules defined in [39], [41].

The main use of Temperley-Lieb modules so far is in decomposing the bipartite

graph planar algebras into irreducible Temperley-Lieb modules. In [81], [41] it

is shown how to decompose the bipartite graph planar algebra for the ADE

graphs into Temperley-Lieb modules and this was also used e.g. in [74] to find

the subfactor planar algebra of the Haagerup subfactor inside the bipartite graph

planar algebra. The type III planar algebra of a bipartite graph may be defined

in a similar manner to the type II case. Basically the idea is to use the same

construction as in Section 3.4.1 apart from now we do not require the existence

of a connection and we do not constrain the paths on the graph to start only at

∗, now we allow them to start at any vertex. Thus the presenting map may be

defined on horizontal strips by

Z(∪) =
∑

(ξ · α · α̃ · ζ, ξ · ζ)

where the sum is over all paths with |ξ| = i, |α| = 1, |ζ| = j and r(ξ) = s(α) =

s(ζ). For a strip containing a labelled rectangle with label γ the presenting map

is

Z(x) =
∑

(ξ · γ · ζ, ξ · ζ)

Using the methods of the proof of Proposition 3.4.7 that this presenting map

is invariant under planar isotopies. However the bipartite graph planar algebra

is not in general a subfactor planar algebra, since the space P 0
0 is usually not

isomorphic to C.

The decomposition of type II planar algebras into modules gives a decompo-

sition of P0 into planar modules, for a type III planar algebra P . Then the Pk

may be decomposed by applying annular tangles to P0.
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Chapter 4

Constructing Subfactors from

Planar Algebras

In Chapter 3 we showed how to associate a planar algebra to a type III subfac-

tor. In this chapter we would like to perform the opposite construction, that is,

starting with a planar algebra P we would like to find a type III subfactor such

that the planar algebra P is its subfactor planar algebra. Our construction is

similar to the constructions in [28], [49], [42] for II1 subfactors. In these papers

they define alternative algebra structures on P and then take the GNS represen-

tation. The difficult thing here is proving boundedness of the representation, but

this can be done using planar algebra methods. Then it is proved that the von

Neumann algebras obtained form the Jones tower of a subfactor II1 that has P

as its planar algebra. In our construction we use a larger class of planar tangles

and obtain a tower of type III factors. Then in Section 4.1.1 we use techniques

from free probability to investigate these subfactors. We use methods similar to

[2], [51], [29].

4.1 Subfactors Associated to a type III Planar

Algebra

Let P be a type III subfactor planar algebra. Let Pm+t
n+t =: P t

n,m, where we shall
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Figure 4.1: A tangle in P t
n,m

Figure 4.2: Inner product on P t
n,m

draw elements of P t
n,m as rectangular boxes with n strings to the left, m strings to

the right and 2t strings on top with the marked boundary point always at the top

left corner. An example is shown in Figure 4.1. Often when drawing tangles we

omit the outer boundary. Define an inclusion map P t
n,m → P t

n+1,m+1 by adding a

horizontal string underneath the tangle. Let Grk(P
t
m) = lim−→P t

k+n,k+n+2m and let

Grk(P ) be the vector space direct sum ⊕m,tGrk(P
t
m). An element x ∈ Grk(P ) is

a finite sum
∑

n,t xn,t where xn,t ∈ Grk(P
t
m). Denote by xt =

∑
n xn,t. Define an

inner product on the P t
n,m by Figure 4.2.

We define an algebraic structure on the Grk(P ) as follows. For x ∈ P t1
n1,m1

,

y ∈ P t2
n2,m2

the multiplication x?k y (which we usually just write as x?y) is defined

as in Figure 4.3. More precisely, if m1 = n2 join the vertices along the right edge

of x with the corresponding vertices on the left edge of y sum over all diagrams

with the last i vertices on the top edge of x joined to the first i vertices from

the top of y. If m1 6= n2, first apply the inclusion tangle |m1 − n2| times to x if

m1 < n2 or to y if m1 > n2 and then multiply as above. This multiplication is

then extended bilinearly to all of Grk(P ).

This multiplication is associative because x ? (y ? z) and (x ? y) ? z are both
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Figure 4.3: Multiplication in Grk(P )

Figure 4.4: Adjoint in Grk(P )

sums over all ways of joining the top vertices of x, y and z. The multiplicitive unit

Ik in Grk is just the usual unit in P , that is, Ik is the diagram with k horizontal

strings and no other strings.

The adjoint x† is obtained by reflecting x about a vertical line through its

centre and moving the marked boundary point to the top left of the resulting

tangle. Drawing the diagrams, it is easy to see that (x ? y)† = y† ? x†. Note that

for x ∈ P t
n,m this adjoint operation is the composition of the adjoint in P with a

rotation of the marked point ∗ clockwise by 2t strings.

Thus with the multiplication and ∗-operation defined above Grk(P ) is an

associative unital ∗-algebra. Note that for t = 0 these are the ordinary adjoint

and multiplication in P defined in Section 3.4.

The algebra Grk(P ) is included in Grk+1(P ) using the inclusion map which

takes a diagram in Grk(P ) and adds and extra horizontal string below. Thus we

have an increasing sequence Gr0(P ) ⊂ Gr1(P ) ⊂ . . . of ∗-algebras.

There is a state ϕk on Grk(P ) defined by ϕk(x) := φ(x0) for x ∈ Grk(P ), where

φ is the state on the planar algebra P defined by composition of the projection

onto P0 with the trace. Note also the tower of algebras constructed in [49] and

[42] is contained in the tower of algebras defined above, by restricting to tangles
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Figure 4.5: The state ϕ

with exactly k strings to the right and left and our state ϕk restricts to their

trace. There is a conditional expectation map Ek : Grk+1 → Grk defined as the

tangle with the bottom string on the left and right side joined. It can be seen

diagramatically that this satisfies Ek(x1yx2) = x1Ek(y)x2 for all xi ∈ Grk(P ) and

y ∈ Grk+1(P ). Note that this also satisfies ϕk ◦ Ek = ϕk+1. The inner product

on Grk(P ) is defined as usual as 〈x, y〉k = ϕk(y
† ? x). Note that in this inner

product Grk(P
t
n) ⊥ Grk(P

t′
n′) for any (n, t) 6= (n′, t′). Let Hk denote the Hilbert

space completion of Grk(P ) with respect to this inner product. A vector x ∈ Hk

is a sum
∑

n,t xn,t with xn,t ∈ Grk(P
t
n) and

∑
n,t ‖xn,t‖2 < ∞.

We wish to show that Grk(P ) acts on the Hilbert space Hk by left multipli-

cation and that Grk(P ) ⊂ B(Hk). We prove this in a similar way to [49].

Proposition 4.1.1. Let k ∈ N and let x ∈ P t1
n1,m1

⊂ Grk(P ). Then there exists

a constant C > 0 such that ‖x ? y‖Hk
≤ C‖y‖Hk

for all y ∈ P t2
n2,m2

⊂ Grk(P ),

Proof. We prove this as follows. Firstly we redraw the tangle ‖x?y‖2 as shown in

figure 4.6. Then we may replace the left and right hand sides of the tangle with

positive elements u∗u and v∗v of the planar algebra. We do this in such a way

that we can calculate the norm of u in terms of x and v in terms of y. Then the

tangle may be written as the inner product 〈u∗u, v∗v〉. Using the Cauchy-Schwarz

inequality we can then prove the boundedness of the left multiplication.

We may suppose that m1 = n2, otherwise we may add horizontal strings to x

or y without changing its norm in Hk. Then ‖x ? y‖2
Hk

is shown in Figure 4.6.

Assume that n2 ≥ m1 (otherwise just add n2 − m1 closed discs around the

outside of the tangle and multiply by δ−(n2−m1)). Then, for each i we can replace
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Figure 4.6: ‖x ? y‖2
Hk

the left and right hand sides of the tangle in Figure 4.6 by positive elements u∗i ui

and v∗i vi in Pm1+n1+i
m1+n1+i as described below.

First, we can redraw the left hand side of Figure 4.6 as in Figure 4.7.

In case (i), where m1 + n1 + i = 2t1 + i + 2d for d ≥ 0, we can take ui to be

the tangle shown inside the dotted line. In the case m1 + n1 + i = 2t1 + i − 2d

for some d > 0, the tangle in (ii) of Figure 4.7 is Ed(x
′x′∗), for x′ as defined in

Figure 4.8. This is positive, since the tangle x′x′∗ is a positive element of the

type II planar algebra and Ed : P 2t1−i−d
2t1−i−d → P 2t1−i−2d

2t1−i−2d is the (right) conditional

expectation in the type II planar algebra which is known to be positive. Hence
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Figure 4.7: Replacing LHS of ‖(x ? y)i‖2
Hk

with a positive tangle

Figure 4.8: The tangle x′
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we may choose ui to be its unique positive square root in the type II subfactor

planar algebra P0.

Next we show how we may replace the right hand side by a positive element

of P0. First flip y about a vertical axis and rotate the marked point of y as shown

in Figure 4.9. Denote by ỹ the flipped and rotated tangle obtained from y. The

tangle ỹ∗i ỹi can be replaced by a positive ṽ∗i ṽi for vi ∈ P0 using a similar procedure

to the replacement of x∗x by u∗i ui described in the previous paragraph.

Then, since ṽ∗i ṽi is positive, EL(ṽ∗i ṽi) must be positive, where EL is the left

conditional expectation. Therefore EL(ṽ∗i ṽi) has a unique positive square root

vi ∈ P0.

Flip vi about a vertical axis and add n1 −m2 strings to the left. Call this vi.

Then v∗i vi is equal to the left hand side of the last tangle in Figure 4.6.

Returning to the expression for ‖x ? y‖2
Hk

in Figure 4.6 we use ui, vi defined

above to get the tangle shown in Figure 4.11. This is 〈u∗i ui, v
∗
i vi〉 where we are

using the inner product in P n+m+i
n+m+i .

Denote by ‖ · ‖n the inner product norm in P n
n . It is clear from the diagrams

that ‖u‖n1+m1+i = δ−(n1+m1+i)tr(x∗x), where tr is the non-normalised trace on

P n1+m1+i
n1+m1+i , and ‖vi‖n1+m1+i = δ−(n1+m1+i)δm2δn1‖y‖Hk

. Thus we have that

‖x ? y‖2
Hk

=‖
min{2t1,2t2}∑

i=0

(x ? y)i‖2
Hk

≤M
∑

i

‖(x ? y)i‖2
Hk

=M
∑

i

δ−m2δn1+m1+i〈uiu
∗
i , v

∗
i vi〉

≤M
∑

i

δ−m2δn1+m1+i‖ui‖2‖vi‖2

≤M
∑

i

δn1δ−(n1+m1+i)tr(x∗x)‖y‖2
Hk

(4.1)

where M = (1 + min{2t1, 2t2}). Hence the result follows letting

C =

2t1∑
i=0

δ−(m1+i)(1 + 2t1)tr(x
∗x), (4.2)

which does not depend on y.
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Figure 4.9: Replacing RHS of ‖(x ? y)i‖2
Hk

with a positive tangle I
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Figure 4.10: Replacing RHS of ‖(x ? y)i‖2
Hk

with a positive tangle II

Figure 4.11: ‖(x ? y)i‖2
Hk

= ‖uivi‖2
P n+m+i

m+n+1
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Proposition 4.1.2. Let x ∈ P t
n,m ⊂ Grk(P ), then there exists a constant D < ∞

such that ‖x ? y‖Hk
≤ D‖y‖Hk

for all y ∈ Grk(P ).

Proof. Let k ∈ N and let y ∈ Grk(P ). Then y is a finite sum of elements
∑

yn,t

with yn,t ∈ Grk(P
t
n) and

‖x ? y‖2
Hk

=‖
∑
n,t

x ? yn,t‖2
Hk

=
∑

n

‖
∑

t

x ? yn,t‖2
Hk

≤
∑

n

(2t1 + 1)
∑

t

‖x ? yn,t‖2
Hk

≤(2t1 + 1)C
∑

‖yn,t‖2
Hk

= (2t1 + 1)C‖y‖2
Hk

(4.3)

with C as in Equation 4.2.

Then propositions 4.1.1, 4.1.2 show that left multiplication by an element of

Grk(P ) defines a bounded operator on a dense subspace of Hk and hence may be

extended to an element of B(Hk). Consequently, Grk(P ) may be thought of as a

∗-subalgebra of B(Hk). Let Mk(P ) be the weak completion of Grk(P ) in B(Hk).

As in the type II case we now prove that theMk’s form an increasing sequence

of von Neumann algebras and that

1. Mk is a type III factor

2. M0 ⊂M1 is an extremal subfactor with index δ

3. M′
0 ∩Mk = Pk,k for all k

4. M0 ⊂M1 ⊂M2 ⊂ . . . is the basic construction

5. M′
i ∩ Mk is the subalgebra of Pk,k generated by tangles with i vertical

strings to the left for 0 ≤ i ≤ k.

Proposition 4.1.3. The inclusion of Grk(P ) ⊂ Grk+1(P ) extends to an inclusion

of their weak completions Mk(P ) ⊂Mk+1(P ).

115



The proof of this Proposition follows from Lemma 4.1 of [33] which we state

here.

Lemma 4.1.4. Let A be a C∗-algebra with a state φ and let (πφ, Hφ, Ωφ) be

the GNS triple. Suppose also that Ωφ is separating for πφ(A)′′. Let B be a

unital ∗-subalgebra of A such that ψ is the restriction of φ to B with GNS triple

(πψ, Hψ, Ωψ). Then there exists a ∗-isomorphism Φ : πφ(B)′′ → πψ(B)′′ with

Φ(πφ(x)) = πψ(x) for all x ∈ B.

To show that Mk is a type III von Neumann algebra we calculate the Connes

spectrum. We do this in exactly the same way as the analagous calculation for

MTL in Section 3.1. Define an action σk
s of R on Mk by the linear extension

of the map σs(x) = ei(n−m)s ln δx, x ∈ P t
n,m. The state φk is the KMS state for

the modular automorphism group σk
s at inverse temperature β = 1. The fixed

point subalgebra of σs is the von Neumann algebra generated by Grk(P0). It

was shown in [49] that this is a type II1 factor and so the Connes spectrum and

Arveson spectrum coincide and equal {λZ} for λ = 1/δ. Hence Mk is type IIIλ.

To prove that M′
0 ∩Mk = Pk,k, we use a similar method to the one used by

Kodiyalam and Sunder in [49]. Their proof shows that x ∈ M′
0 ∩Mk implies

that x0,t = 0 for all t > 0, we extend this to show that xn,t = 0 unless n = t = 0.

First we need some notation. Let T ((m,n), {a1, . . . , a2t}, {b1, . . . , b2t})s
s′ ,

m, n, ai, bi, s, s
′, t ∈ N, m + n ∈ 2N, a1, b1 ∈ 2N+ 1, be the annular tangle shown

in Figure 4.12, with 2s + m + n marked points along the outer boundary and

2s′ + m + n along the inner boundary. The last m + n points along the inner

boundary are joined by a string to the corresponding point on the inner boundary

as shown. The points 2a1 + 1, . . . , 2at are joined to the points 2b1 + 1, . . . , 2bt.

The remaining marked points are capped off in pairs with no nested caps.

Let Ct
n,m ⊂ P t

n,m be the subspace generated by tangles with t cups along

the top edge. Let Ck ⊂ Mk(P ) be the subalgebra generated by the (weak)

closure of ⊕m∈Z
t∈N

Ck,m,t, where Ck,m,t := lim−→Ct
k+n,k+n+m. Let C⊥ be the orthogonal

complement of C in Grk(P ) with respect to the inner product 〈·, ·〉k. Now we

give analogues of Lemma 5.6-Lemma 5.8 in [49].
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Figure 4.12: T ((m,n), {a1, . . . , a2t}, {b1, . . . , b2t})s
s′

Figure 4.13: x ∈ C⊥

Lemma 4.1.5. Let x ∈ P t
m,m+n and suppose that x ∈ C⊥. Then the map x →

z = ([xn,t,∪])t+1 is injective with inverse given by

x =
t∑

s=

δ−sZT ((m,n),{1,...,2(t−s+1)},{2s+1,...,2(t+1)})t
t+1

(z) (4.4)

Proof. The condition x ∈ C⊥ is equivalent to the condition in Figure 4.13 for all

n, t.

If x ∈ C⊥, let z = ([xn,t,∪])t+1 ∈ P t+1
m,m+n, as shown in Figure 4.14.

It is easy to see that the second equation of Figure 4.14 must hold, by applying

the tangle shown in Figure 4.15 to the equation above it. Then, summing over

all k, most terms on the right hand side cancel and we get the equation of Figure

4.16.

Now, cap off points i and i + 1 for i ∈ {1, 3, . . . , 2t − 1} along the top. The

second term on the right is zero and the other terms give Equation 4.4

Lemma 4.1.6. Let x =
∑

xn,t ∈ C⊥ with xn,t ∈ Grk(P
t
n) for all n, t and suppose
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Figure 4.14: z = ([xn,t,∪])t+1

Figure 4.15: Annular tangle

Figure 4.16: Summing over k

[x,∪] = 0. Then

xn,t =
t∑

s=1

δ−s+d−1(ZT ((n,m),{1,...,(t−s+1)},{2(s+d)−1,...,2(t+d)})t
t′
(xn,s)

− ZT ((n,m),{1,...,2(t−s+1)},{2(s+d)+1,...,2(t+d+1)})t
t′
(xn,s))

where d = t′ − t and for each n, we choose m so that xn,t ∈ P t
m,m+n ⊂ Grk(P ).

Proof. We prove this in exactly the same way as the proof of Corollary 5.7 of
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Figure 4.17: ([
∑

n,t xn,t,∪])s

[49]. We begin by proving the d = 1 case and then prove the general case by in-

duction on d. Since [x,∪] = 0 we must have ([
∑

n,t xn,t,∪])s = ⊕n(([xn,s−1,∪])s +

([xn,s+1,∪])s) = 0 for all s. Thus we have the equation of Figure 4.17.

The right hand side of Figure 4.17 is equal to

ZT ((m,n),{1,...,2t},{1,...,2t})t
t+1

(xn,t+1)− ZT (n+m,{1,...,2t},{3,...,2(t+1)})t
t+1

(xn,t+1)

The left hand side is equal to ([xn,t−1,∪])t and so by Lemma 4.1.5 we have

xn,t−1 =
t∑

s=0

δ−sZT ((m,n),{1,...,2(t−s)},{2s+1,...,2t})t−1
t

(ZT ((m,n),{1,...,2t},{1,...2t})t
t+1

(xn,t+1)

− ZT ((m,n),{1,...,2t},{3,...,2(t+1)})t
t+1

(xn,t+1))

=
t−1∑
s=1

δ−s(ZT ((m,n),{1,...,2(t−s)},{2s+1,...,2t})t−1
t+1

(xn,t+1)

− ZT ((m,n),{1,...,2(t−s)},{2s+3,...,2(t+1)})t−1
t+1

(xn,t+1))

(4.5)

Thus the lemma is true for d = 1. Next assume inductively that

xn,t+1 =
t+1∑
r=1

δ−r+d−1ZT ((m,n),{1,...,2(t+2−r)},{2(r+d)−1,...,2(t+d+1)})t+1
t′

(xn,t′)

−ZT ((m,n),{1,...,2(t+2−r)},{2(r+d)+1,...,2(t+d+2)})t+2
t′

(xn,t′)
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Substituting this into equation 4.5 we get

xn,t−1 =
t−1∑
s=1

t+1∑
r=1

δ−r−s+d−1(ZT ((m,n),{1,...,2(t−s)},{2s+1,...,2t})t−1
t+1

(ZT ((m,n),{1,...,2(t+2−r)},{2(r+d)−1,...,2(t+d+1)})t+1
t′

(xn,t′)

− ZT ((m,n),{1,...,2(t+2−r)},{2(r+d)+1,...,2(t+d+2)})t+1
t′

(xn,t′))

− ZT ((m,n),{1,...,2(t−s)},{2s+3,...,2(t+1)})t−1
t+1

(ZT ((m,n),{1,...,2(t+2−r)},{2(r+d)−1,...,2(t+d+1)})t+1
t′

(xn,t′)

− ZT ((m,n),{1,...,2(t+2−r)},{2(r+d)+1,...,2(t+d+2)})t+2
t′

(xn,t′)))

=
t−1∑
s=1

δ−s+d−1(ZT ((m,n),{1,...,(t−s)},{2(s+d)−1,...,2(t−1+d)})t−1
t′

(xn,t′)

− ZT ((m,n),{1,...,2(t−s)},{2(s+d)+1,...,2(t+d)})t−1
t′

(xn,t′))

+
∑

s,r,s+r<t+2

δ−r+d−s(ZT ((m,n),{1,...,2(t+2−r−s)},{2(r+d+s)−1,...,2(t+d+1)})t−1
t′

(xn,t′)

− ZT ((m,n),{1,...,2(t+2−r−s)},{2(r+d+s)+1,...,2(t+d+2)})t−1
t′

(xn,t′))

+
∑

r,s,r+s<t+1

δ−r−s+d−1(−ZT ((m,n),{1,...,2(t+1−r−s)},{2(r+d+s)+1,...,2(t+d+1)})t−1
t′

(xn,t′)

+ ZT ((m,n),{1,...,2(t+1−r−s)},{2(r+d+s)+3,...,2(t+d+2)})t−1
t′

(xn,t′))

The first sum gives the required expression for xn,t−1 while the r, s term of the

second sum cancels with the r − 1, s term of the third sum.

Lemma 4.1.7. Let x ∈ P t
n,m ⊂ Grk(P ) and let

y = ZT ((m,n),{a,...,a+2k},{b,...,b+2k})t′
t
(x) ∈ P t′

n,m ⊂ Grk(P ).

Then ‖y‖2
Hk
≤ δt+t′−2k‖x‖2

Hk
.

Proof. This may be proved similarly to Lemma 5.8 in [49] The norm ‖y‖2
Hk

is

δ−nZT where T is the tangle in Figure 4.18.

We can remove the t′−k closed loops by multiplying by δt′−k and the remaining

tangle is ‖x′‖P where x′ is the tangle obtained from x ∈ P by applying the

appropriate rotations and t−k conditional expectation operators and ‖·‖P is the
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Figure 4.18: ‖y‖2
Hk

norm in P defined using the state φ. Since the rotation operator has norm one

and the conditional expectation has norm δ we get ‖y‖2
Hk
≤ δt′−kδt−k‖x‖2

Hk
.

The following two propositions are analogues of Proposition 5.4 and 5.5 in

[49].

Proposition 4.1.8. Let x =
∑

t,n xn,t ∈ Mk with xn,t ∈ Grk(P
t
n). Suppose x

commutes with the image of ∪ ∈ OTL in Grk(P ). Then x ∈ C.

Proof. Suppose x =
∑

xn,t ∈ C⊥ satisfies [x,∪] = 0. Then, by Lemma 4.1.6, we

have

xn,t =
t∑

s=1

δ−s+d−1(ZT (n+m,{1,...,(t−s+1)},{2(s+d)−1,...,2(t+d)})t
t′
(xn,s)

− ZT (n+m,{1,...,2(t−s+1)},{2(s+d)+1,...,2(t+d+1)})t
t′
(xn,s))

Hence by Lemma 4.1.7 we have that ‖xn,t‖2 ≤ ∑t−1
s=1 δ−s+d−1δt+t′−(t−s)‖xn,s‖2

for all s > t and hence, since ‖xn,s‖ → 0 as s →∞ we must have xn,t = 0 for all

n and t.

Let d be the OTL tangle with exactly two nested cups along its top edge and

no other strings.

Proposition 4.1.9. Suppose x ∈ Grk(P ) commutes with the image in Grk(P )

of both ∪ and d. Then x ∈ P ⊂ Grk(P ).

121



Figure 4.19: Relation between xn,t and yn,t

Figure 4.20:
∑t+1

s=t−1([xn,s, d])t = 0

Figure 4.21: Capping off the equation
∑t+1

s=t−1([xn,s,d])t = 0

Proof. We know from above that if x ∈ Grk(P ) commutes with ∪ then x ∈ C.

For any x =
∑

n,t xn,t ∈ C, then each xn,t can be written as yn,t with t cups along

the top as shown in Figure 4.19.

If the commutant [x, d] = 0 then for each n and t we must have
∑t+1

s=t−1([xn,s,d])t =

0 which is equivalent to the equation in Figure 4.20

If t > 0 we may repeatedly cap off the 4th and 5th marked points along the

top to get the equation of Figure 4.21
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Figure 4.22: The tangle θn,m

Then capping off points 1 and 2, 3 and 6 and 4 and 5 gives the equation

(δ3 − δ)(yn,t + yn,t−1) = 0 and since δ > 1 this means that yn,2t = −yn,2t+1 =: yn

for all t. Hence

‖x‖2 =
∑

‖xn,t‖2 =
∑

‖xn,0‖2 +
∑

n

‖yn‖2(δ + δ2 + δ3 + . . .)

and since we know that ‖x‖ is finite and δ > 1 we must have yn = 0 for all n.

Thus x =
∑

xn,0 i.e. x ∈ P ⊂ Grk(P ).

Proposition 4.1.10. Let x ∈M′
0 ∩Mk. Then x ∈ Pk,k.

Proof. By Propositions 4.1.8 and 4.1.9 we have that M′
0 ∩Mk ⊂ P ⊂ Grk(P ).

Let y ∈ P ⊂ Grk(P ), i.e. y ∈ Grk(P
0
n). Then, if y commutes with the element

θn,m defined in Figure 4.22 for all n,m ∈ N, then y must be in P k
k . Hence

M′
0 ∩Mk ⊂ P k

k . When we embed M0 ⊂Mk we do so by adding k strings along

the bottom, hence any tangle living on the bottom k strings will commute with

everything in M0. Hence M′
0 ∩Mk = Pk,k.

We now show that M0 ⊂ M1 ⊂ M2 ⊂ . . . is the basic construction. The

conditional expectation EMi
: Mi+1 → Mi is the restriction to Mi+1 of the

extension to Hi+1 → Hi of Ei : Gri+1(P ) → Gri. This follows since we can

identify Hi with the GNS Hilbert space associated to (Mi, φi) and, since Hi is

included in Hi+1 by the extension of the inclusion map from Gri(P ) → Gri+1(P )

the conditional expectation must be the extension of the diagramatic one.

Proposition 4.1.11. For the algebras Mi defined above we have the following

identities

1. EM1(e) = δ−2I
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2. δ2EM1(xe)e = xe for all x ∈M2

3. exe = EM0(x)e for all x ∈M1

where EMi
: Mi → Mi−1 is the conditional expectation and e ∈ P 0

2,2 is the tangle

defined by u†u, where u is as in Figure 4.24.

Proof. For the first equation we have

For the second equation, suppose x ∈ P t
n,m ⊂ Gr2(P ). Then

Thus

and

Hence δ2EM1(xe)e = xe. For the third identity, suppose x ∈ P 2
n,m ⊂ Gr1(P ).

Then

To calculate EM0(x)e, first embed EM0(x) in Gr2(P ) and multiply as shown.
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Figure 4.23: The conditional expectation E

Similarly, to calculate exe, first embed x in Gr2(P ) and multiply as follows.

Thus by Theorem 2.8.2 M1 ⊂M2 is isomorphic to the basic extension of the

subfactor M0 ⊂ M1 and this isomorphism takes e to the Jones projection. We

can repeat this argument to show that M0 ⊂ M1 ⊂ M2 ⊂ . . . is the tower for

this subfactor.

Proposition 4.1.12. The conditional expectation E : M1 →M0 is minimal.

Proof. By Proposition 2 of [47] the minimal expectation is the unique conditional

expectation satisfying cE(x) =
∑

i uixu∗i for x ∈ M′
0 ∩M1, c > 0 and a basis

{ui} of the conditional expectation. The element u shown in Figure 4.24 is a

basis for the conditional expectation. This is because x = uE(u∗x), which is easy

125



Figure 4.24: The tangle δ
1
2 u

to verify by drawing diagrams. For any x ∈ M′
0 ∩M1, then x has a horizontal

strand joining the bottom endpoints on each side. In this case we have that

δE(x) = uxu∗ and so E is minimal.

Proposition 4.1.13. Let P be a type III subfactor planar algebra and let M0 ⊂
M1 be the subfactor defined above using P . Then P is the subfactor planar algebra

of M0 ⊂M1

Proof. Let P be the subfactor planar algebra associated to the subfactor M0 ⊂
M1. We need to show that P2m

2n = ((ρρ̄)n, (ρρ̄)m) and P2m+1
2n+1 = ((ρρ̄)nρ, (ρρ̄)mρ).

If m = n the spaces are isomorphic to the relative commutant M ′
0∩Mn. Therefore

P n
n ' Pn

n . For m 6= n, we know the all the intertwiner spaces are generated by the

spaces with m = n and a single element in (id, ρρ̄). Then, by uniqueness of the

planar algebra satisfying the conditions of Proposition 3.4.7 we have P ' P .

4.1.1 Graph Construction

Next we would like to identify the subfactor M0 ⊂M1. In [29], [50], [51], [2] the

authors use techniques from free probability to prove that for II1 factors the above

construction gives subfactors of interpolated free group factors. In this section

we use similar methods to investigate the type III analogue of this construction.

We begin, as in [2] by associating a probability space to a finite graph G with

vertices V , edges E and Perron Frobenius eigenvector (µ(v))v∈V with eigenvalue δ.

Let (ξ, η, ζ) be a triple of paths in the graph G such that r(ξ) = s(η), r(η) = s(ζ)

and r(ζ) = s(ξ). Let V t
n,m be the linear span of all paths (ξ, η, ζ) in G with

|ξ| = n, |η| = 2t and |ζ| = m.
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We define an inclusion map i : V t
n,m → V t

n+1,m+1 by

i(ξ, η, ζ) =
∑
e∈E

(e · ξ, η, ζ · e)

where as usual ξ · η means the concatenation of ξ and η and is zero if r(ξ) 6= s(η)

for any paths ξ, η. For each k ∈ N let (Vk)
t
m = lim−→V t

k+n,k+n+m and let Vk =
⊕

m∈Z,t∈N(Vk)
t
m. We now define a multiplication #k on Vk, let

(ξ1, η1, ζ1)#k(ξ2, η2, ζ2) =





(ξ1,
∑

k σk, ζ2) if ξ2 = ζ1

(ξ1,
∑

k σk, ζ2ζ
′
1) if ξ2ζ

′
1 = ζ1

(ξ′2ξ1,
∑

k σk, ζ2) if ξ2 = ζ1ξ
′
2

0 otherwise

where ξi = (ξi)1 · · · (ξi)ti and σi =
∏2t1

k=2t1−i
µ(s((η1)k))
µ(r((η1)k))

(η1)1 . . . (η1)2t1−i(η2)i . . . (η2)2t2

if (η1)2t1−i+j = (η̃2)j for 1 ≤ j ≤ i and σi = 0 otherwise.

Denote by Grk(G) the algebra Vk with multiplication #k.

Define a state ψk on Grk(G) by

ψk(ξ, η, ζ) = δξ,ζ̃δη,t(ξ)δ
−|ξ|µ(r(ξ)).

The state ψk is the composition of the projection P : Vk → ⊕m(Vk)
0
m with

the trace from the type II algebra and so it is positive definite. Similarly to

the calculation for Grk(P ) in the previous section it can be shown that ψ is

the KMS state at inverse temperature 1 for the modular automorphism group

σt(ξ, η, ζ) = eαiβ(|ξ|−|ζ|)(ξ, ζ, η) where α = ln δ.

If we think of a triple (ξ, η, ζ) as a planar diagram in the previous section with

the strings on the left representing the path ξ, the strings on top representing η

and those on the right representing ζ then Grk(G) with the multiplication and

state defined above is the same as the multiplication and state for Grk(P ) defined

in the previous section.

We may define another algebraic structure on Vk as follows. Let Grk(G) be V
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with multiplication ?k and state φk defined below. Let

(ξ1, η1, ζ1) ?k (ξ2, η2, ζ2) =





(ξ1, η1 · η2, ζ2) if ξ2 = ζ1

(ξ1, η1 · η2, ζ2ζ
′
1) if ξ2ζ

′
1 = ζ1

(ξ′2ξ1, η1 · η2, ζ2) if ξ2 = ζ1ξ
′
2

0 otherwise

Define a state on Grk(G) by

φk(ξ, η, ζ) = δξ,ζ̃

∑

π∈NC(2t)

∏

{i,j}∈π,i<j

δηi,η̃j

∏

C∈K(π)

(µ(vη
C))2−|C|δξ,ζ̃δ

−|ξ|

Where K(π) denotes the Kreweras complement of π and vη
C is the vertex cor-

responding to C ∈ K(π) (i.e. if i ∈ C then vC is the vertex corresponding to

r(ηi) = s(ηi+1)). There is a φk-preserving conditional expectation E from Grk(G)

to the subalgebra generated by elements of the form (ξ, v, η) for v ∈ V and ξ, η

paths in G of length at least k. This is defined for any (ξ, η, ζ) ∈ Grk(G) by

E(ξ, η, ζ) =
∑

π∈TL(|η|)

∏

{(i,j)∈π,i<j}
δηi,η̃j

µ(t(ηi))

µ(s(ηi))
(ξ, s(η), ζ).

In [42] it was shown that for the type II case the algebras Gr and Gr are

isomorphic. We now show that their proof carries over to the type III case. The

proof involves the natural action of certain classes of Temperley-Lieb diagrams

on Grk(G) and Grk(G). An epi Temperley-Lieb diagram is an element of TLn
m

where n < m and all the n marked points along the top are joined to marked

points along the bottom. Denote by ETL the collection of epi TL diagrams. Let

NNETL be the collection of non nested ETL diagrams i.e. ETL diagrams where

no cap along the bottom edge encloses another cap. A TL diagram T ∈ Tm
n acts

on (ξ, η, ζ) as follows. First, split the vertices of T into three collections, Vcup,

the vertices along the top connected by a cup to another vertex along the top,

Vcap the vertices along the bottom connected to another vertex by a cap, Vthrough

the vertices which are the end points of some through string. Then T (ξ, η, ζ) is

zero unless ηi = η̃j if the vertices i, j ∈ Vcap are joined by a cap. In this case the

resulting triple T (ξ, η, ζ) := (ξ, σ, ζ) satisfies σi = ηj if vertex i along the top is
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connected by a string to vertex j along the bottom and if vertex k along the top

is connected to vertex l along the top then σk =
∑

e∈E e and we have σl = σ̃k.

Let Ξ : Grk(G) → Grk(G) be the map defined by Ξ(ξ, η, ζ) =
∑

T∈ETL T (ξ, η, ζ)

and let Ψ : Gr(G) → Gr(G) be the map defined by Ψ(ξ, η, ζ) =
∑

T∈NNETL T (ξ, η, ζ)(−1)nT , where nT is the number of caps of T . Similarly to

[42] we may prove the following two propositions.

Proposition 4.1.14. The maps Ξ and Ψ defined above satisfy ΞΨ = ΨΞ = Id.

Proof. Let (ξ, η, ζ) ∈ Gr(G) then ΞΨ(ξ, η, ζ) will be a sum of the form
∑

σ cσ(ξ, σ, ζ)

where σ is a ‘subpath’ of η, that is, if σ = σ1 · · · σn and η = η1 · · · ηm then σi = ηj(i)

and for i < k then j(i) < j(k). Then each σ 6= η with n outermost caps will have

coefficient cσ =
∑n

t=1(−1)t
(

n
t

)
= 0. Hence ΞΨ(ξ, η, ζ) = (ξ, η, ζ). A similar proof

shows ΨΞ is the identity.

Proposition 4.1.15. ψ(Φ(x)) = φ(x) for all x ∈ Grk(G).

Proof. Clearly ψ(T (ξ, η, ζ)) = 0 unless T ∈ TL0
n with |η| = n. Hence

ψ(Ξ(ξ, η, ζ) =ψ(
∑

T∈TL

∏

(i,j)∈T

µ(s(η))2δηi,η̃j
δs(η),r(η)

µ(r(ηi))

µ(s(ηi))
(ξ, η, ζ))

=δζ,ξ̃

∑
T∈TL

∏

(i,j)∈T

µ(s(η))2δηi,η̃j
δs(η),r(η)

µ(r(ηi))

µ(s(ηi))
δ−|ξ|.

Since by definition

φ(ξ, η, ζ) = δξ,ζ

∑

π∈NC(2t)

∏

{i,j}∈π,i<j

δηi,η̃j

∏

C∈K(π)

µ(vη
C)2−|C|δξ,ζ̃δ

−|ξ|,

we need to show that

∏

(i,j)∈T

µ(s(η))2δηi,η̃j
δs(η),r(η)

µ(r(ηi))

µ(s(ηi))
=

∏

C∈K(π)

(µ(vη
C))2−|C|.

For any C ∈ K(π), we need to show that the weight µ(vη
C) appears in the product

on the left hand side 2 − |C| times. This is true since if C does not contain the

vertex 2n then there must be one pair (i, j) ∈ T such that vC = r(ηi) and |C| − 1

pairs (i, j) ∈ T with vC = s(ηi) and so µ(vη
C) must appear to the power 2−|C|. If

2n ∈ C then vC = µ(s(η)) must appear as the vertex s(ηi) for |C| pairs (i, j) ∈ T

and hence appears to the power 2− |C| in the left hand side.
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Similarly to the previous section we may use the algebras Grk(G) to define a

type III factor. We use the state ψ to define an inner product on Grk(G) in the

usual way, and let Hk be the Hilbert space completion of Grk. Then let Grk act

on itself by left multiplication.

Proposition 4.1.16. Let x ∈ Grk(P ) and let λx : Grk(P ) → Grk(P ) be the

action of x on Grk(P ) by left multiplication. Then there exists a constant C > 0

such that ‖λx(y)‖ ≤ C‖y‖ for all y ∈ Grk(P ) and hence λx extends uniquely to

an element of B(Hk).

Proof. Let x = (ξ, η, ζ) ∈ Grk(P ). As a first step we show that there exists K > 0

such that ‖(x#y)t‖ ≤ K‖y‖ for all y = (ξ′, η′, ζ ′) ∈ Grk(G), where (x#y)t is the

element of x#y in P t
n,m. To prove this, first suppose that |ξ′| > |ζ|. Then we may

suppose ξ′ = ζξ′ and ηt1−i = η̃′i for all 1 ≤ i ≤ t, since if this is not the case the

product (x#y)t is zero and the proposition is trivially true. Then we have

‖(x#y)t‖ =‖(ξ · ξ′0, η[1,t1−t]η
′
[t,t2], ζ

′)
µ(r(η))

µ(s(ηt1−t))
‖

=δ−|ξξ′0|µ(s(η))
µ(r(η))

µ(s(ηt1−t))

µ(r(η′))
µ(s(η))

=δ−|ξ|+|ζ|
µ(r(η))

µ(s(ηt1−t))
‖y‖

and so the claim is proved. Now suppose that |ξ′| ≤ |ζ|. Again we may assume

ηt2−i = η̃′i for all 1 ≤ i ≤ t and also that ζ = ζ0ξ
′. Then we have

‖(x#y)t‖ =δ−|ξ|µ(s(η))
µ(r(η))

µ(s(ηt1−t))

µ(r(η′))
µ(s(η))

≤δ|ζ|−|ξ
′|δ−|ξ|µ(s(η))

µ(r(η))

µ(s(ηt1−t))

µ(r(η′))
µ(s(η))

=δ|ζ|−|ξ|
µ(r(η))

µ(s(η))
‖y‖

where the inequality follows from the fact that δ|ζ|−|ξ
′| ≥ 1.

Next we must show that for a finite sum y =
∑N

i=1 ci(ξi, ηi, ζi) there exists a
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constant C > 0 with ‖x#y‖ ≤ C‖y‖.

‖x#y‖ = ‖
∑

i

ci(ξ, η, ζ)#(ξi, ηi, ζi)‖

≤
∑
i,t

‖ci((ξ, η, ζ)#(ξi, ηi, ζi))t‖

≤
∑
i,t

Kiciµ(r(ηi)) ≤ C‖y‖

where ‖(x#(ξi, ηi, ζi))t‖ ≤ Ki‖(ξi, ηi, ζi)‖

The above proposition shows that Grk(G) ⊂ B(Hk) and we may take the

weak completion to get a von Neumann algebra Mk. Since φk is the unique KMS

state, Mk is a factor. By calculating the Connes spectrum we can see it is type

III. Lemma 4.1.4 proves that the inclusion Grk ⊂ Grk+1 extends to an inclusion

of the associated von Neumann algebras.

The basic idea for the rest of the section is that for algebra Grk(P ) generated

by triples (ξ, η, ζ) is made up of the part generated by pairs (ξ, ζ), which is

isomorphic to a Cuntz-Krieger algebra, and the part generated by paths η, which

is isomorphic to the algebra defined by Kodiyalam and Sunder in [2]. Let A be the

adjacency matrix of G and let OA be the corresponding Cuntz-Krieger algebra.

Let v ∈ V be a vertex of G and let pv be the projection onto the subspace of

Grk(G) generated by triples (ξ, η, ζ) with r(ξ) = v. Let λ : Grk(P ) → Grk(P )

be the left regular representation. Then for a vertex v, λv is the projection of

Grk(P ) onto the subalgebra of tangles with vertex v in the top left corner. Then

pv corresponds to the projection Pv =
∑

α∈G,t(α)=v SαS∗α in OA and the projection

λv of Grk(G) defined in [51]. Then pvGrk(G)pw is the tensor product of PvOAPw

with the algebra λ([v])Gr(G)λ([w]).

We need the following theorem which is Theorem 4.1.2 of [69]:

Theorem 4.1.17. Let (A, φ) be a non commutative probability space and let

m, n ∈ N. Suppose that there exist 1 ≤ i(1) < i(2) < . . . < i(m) = n. Then for

any σ ∈ NC(m) and a1, . . . , an ∈ A

κσ(a1 · · · ai(1), . . . , ai(m−1)+1 · · · ai(m)) =
∑

π∈NC(n);π∨0̂m=σ̂

κπ(a1, . . . , an)
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where if σ is a non-crossing partition of the set (A1, . . . , Am) and each Aj =

ai(j−1)+1 · · · ai(j) then σ̂ is defined as the non-crossing partition on the set

(a1, . . . , ai(m)) where for any aj ∈ Aj and ak ∈ Ak then aj ∼σ̂ ak if and only if

Aj ∼σ Ak.

Let B ⊂ A be von Neumann algebras with a conditional expectation φ : A →
B. Suppose Ai, i ∈ I are subalgebras of A with B ⊂ Ai for all i, and suppose

each Ai is generated by a subset Gi. Then, combining the above theorem with

Speichers definition of the amalgamated free product as in Section 2.10.3 we

see that the algebra A is the free product of the subalegbras Ai, i ∈ I with

amalgamation over B if and only if for gk ∈ Gik then κ(g1, . . . , gn) = 0 unless all

the gk are in the same Gi.

The algebra Grk(G) is generated by subalgebras Grk(Ge) where Grk(Ge) is

the algebra generated by triples (ξ, ηe, ζ) where ηe is either a path containing

only e and ẽ or an empty path. Each Grk(Ge) is multiplicatively generated by

the set Γe := {(ξ, e, ζ) : ξ, ζ paths in G} ∪ {(ξ, ẽ, ζ) : ξ, ζ paths in G} . Using the

conditional expectation defined above we may calculate the OA valued cumulants

κ, similarly to Proposition 3.1 of [2].

Proposition 4.1.18. For the algerbras Grk(G) defined above, the OA-valued cu-

mulants κn(xi1 , . . . , xin) xin ∈ Γein
are all zero unless n = 2 and xi1 and xi2 are

from the same subalgebra Grk(Ge).

Proof. The proof is similar to the proof of Proposition 3.1 in [2]. Define the

cumulants κn by the rule that κn = 0 for all n 6= 2 and κ2((ξi, η1, ζ1), (ξ2, η2, ζ2)) =

δη1,eδη1,η̃2

µ(r(e))
µ(s(e))

(ξ1, ζ1) · (ξ2, ζ2). Let κπ be the multiplicative extensions of the κn.

Then we wish to show that

E(x1, . . . , xn) =
∑

π∈NC(n)

κπ(x1, . . . , xn)

Note that κπ must be zero unless π is a pair partition. In that case, there must ex-

ist k with {k, k+1} ∈ π and it is easy to see that κπ = κσ(x1, . . . , x
′
k−1, xk+2, . . . , xn)
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where x′k−1 is the product of xk−1 with κ(xk, xk+1) = µ(r(xk)) and then by in-

duction on we see that κπ =
∏

{i,j}∈π
i<j

µ(r(ei))
µ(s(ei))

(ξ, ζ) where (ξ, ζ) =
∏

(ξi, ζi). Hence

∑

π∈NC(n)

κπ(x1, . . . , xn) =
∑

π∈NC(n)

∏
{i,j}∈π

i<j

µ(t(ei))

µ(s(ei))
(ξ, ζ) = E(x1 · · ·xn)

Hence we may split the algebra Grk(G) into a free product, as in Corollary

3.2 of [2].

Proposition 4.1.19. Grk(G) = ∗⊗vPvOAPv{Grk(Ge) : e ∈ E} and also, taking

completions we get Mk(G) = ∗⊗vPvOAPv{Mk(Ge) : e ∈ E} where Mk(Ge) is the

von Neumann algebra completion of Grk(Ge) in B(Hk).

Thus the algebra Grk(Ge) can be written as

⊕
v,w∈V

PvOV Pw ⊗ pvGr(Ge)pw

where pv is the projection (v, v, v) ∈ Gr(Ge). In [2] the algebra Gr(Ge) was

shown to be equal to M2(LZ) ⊕ C ⊕ He where He is a Hilbert space with basis

given by V/{s(e), r(e)} where the projecions ps(e) =


 1 0

0 0


 ⊕ 1 ⊕ 0, pt(e) =


 0 0

0 1


 ⊕ 0 ⊕ 0 and the pv are orthogonal one dimensional projections in H

for v ∈ V/{s(e), t(e)}.
In the case where there is only one vertex the above algebra has a simple form.

By [2], if the graph has two edges e and ẽ the type II part is LF2 and A is the

matrix (2). Hence Mk(G) is a tensor product of LF2 with a hyperfinite type III

factor, since the von Neumann algebra completion of O2 is a hyperfinite type III

factor.

For more complicated graphs, the free product in Proposition 4.1.19 is difficult

to understand. Most of the literature on amalgamated free products of type III

factors focuses on free products with amalgamation over finite subalgebras, and

the results seem difficult to generalise to the infinite case.

133



Chapter 5

A2-Planar Algebras

In this chapter we return to the setting of A2-planar algebras, defined by Evans

and Pugh in [23] and described in Section 2.6 of this thesis. Section 5.1 of the

chapter describes how to use the methods of Chapter 3 to extend the theory of

A2-planar algebras to describe type III subfactors. The rest of the chapter is

concerned with further work. Section 5.2.1 describes how to extend some of the

skein theory results of [74], [5], [63] to describe the skein theory of subfactors

with graph D(2n). Finally, in Section 5.2.2 we discuss extensions of the Guionnet

Jones Shylaktenko [28], [42], [49] construction to A2-planar algebras.

5.1 Type III A2- Planar algebras

5.1.1 Type III A2- Temperley-Lieb

We now define an A2 analogue of type III planar algebra OTL. An A2-OTL tangle

is a rectangle with n marked points along the top and n+3k marked points along

the bottom for some n ∈ N and k ∈ Z with n+3k ≥ 0. The marked points along

the top are source vertices for oriented strings which have as their endpoint either

a sink vertex along the bottom or an incoming trivalent vertex. Let T n+3k
n be the

vector space spanned by such diagrams, quotiented by the Kuperberg relations

shown in Figure 2.11. If k = 2m the vector space T n+3k
n is finite dimensional

since it is either a type II A2 Temperley-Lieb diagram or the rotation of a type
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II A2 Temperley-Lieb diagram. Thus finite dimensionality follows from finite

dimensionality of the type II A2-Temperley-Lieb algebra proved in Lemma 3.11

[23]. If k is odd, T n+3k
n is finite dimensional since a basis may be written in terms

of a basis of T
n+3(k+1)
n multiplied by the diagram with three vertices joined at

a trivalent vertex. Thus each T n+3k
n is a finite dimensional vector space. There

is an embedding i of T n+3k
n into T n+1+3k

n+1 by adding a vertical through string to

the right. In this way we may take the inductive limit Tk := lim−→T n+3k
n and put

T =
⊕

k∈Z Tk. Note that T0 is the A2 Temperley-Lieb algebra defined in [23]. We

may define a braiding on T in exactly the same way as in Figure 2.12.

Let x ∈ T n+3k
n and y ∈ Tm+3j

m be single diagrams and suppose m+3j < n. To

form the product x · y first embed y in T n
n−3j and then stack x on top of y. Join

the corresponding strings on the bottom edge of x and the top edge of y, remove

the vertices, smooth the strings and if necessary use the Kuperberg relations to

remove any closed loops or embedded digons or squares. If n > m + 3j then

we embed x in Tm+3j+3k
m+3j and take the product in a similar way. An example

is shown in Figure 5.1. The multiplication on T is the bilinear extension of

the multiplication defined above. There is also a ∗-operation taking T n+3k
n to

T n
n+3k, where, given a diagram x the adjoint x∗ is formed by flipping x around a

horizontal axis.

Let W ∈ T 3
0 be (δ ·(δ2−1))−

1
2 = (αδ)−

1
2 times the tangle with 3 vertices along

the top, joined by a single trivalent vertex as shown in Figure 5.2. Let Φ be the

endomorphism of T defined by Φ(x) = WxW ∗ for x ∈ T .

Proposition 5.1.1. The algebra T is generated by T0 and W . Every x ∈ T

may be written as a finite sum

x =
∑

W nxn + x0 +
∑

(W ∗)nx−n

for some xi ∈ T0.

Proof. Suppose x ∈ T n+3k
n . We can write x as a product of T0 tangles and W ’s

as follows. Let x′ be the tangle x with k copies of W ∗ added along the bottom,
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Figure 5.1: Multiplication in A2-OTL

Figure 5.2: The tangle (αδ)
1
2 W
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as shown in Figure 5.3. Let Wn,k be the image of the tangle with k copies of W

along the top in T n+3k
n showin in Figure 5.4. Then x = x′Wn,k.

Figure 5.3: The tangle x′

Figure 5.4: The tangle Wn,k

The following proposition may be proved in exactly the same way as Propo-

sition 3.1.4.

Proposition 5.1.2. The algebra A2-OTL is simple and purely infinite.

Let σt be the action of R on T defined by σt(x) = eγi(m−n)tx for γ = ln α

and x ∈ Tm
n . Then let S : T → T0 be the conditional expectation defined by the

linear extension of the map S(x) = γ/2π
∫ 2π

γ

0 σt(x)dt for a diagram x ∈ Tm
n . Let

Tr be the normalised trace on T0, defined on x ∈ T n
n by joining corresponding

137



points along the top and bottom and multiplying by α−n. Then define a state φ

on T by φ := Tr ◦ S.

Let H be the Hilbert space completion of T with respect to the inner product

defined by φ and let T act on H by left multiplication.

Proposition 5.1.3. Let λx : T → T , x ∈ T be the action of T on itself by left

multiplication. Then λx is a bounded operator for all x ∈ T and hence may be

extended uniquely to an element of B(H).

Proof. Since we know that T is generated by W and T0 and multiplication by

T0 is bounded, we need to show multiplication by W and by elements of T0 is

bounded. Let x ∈ H then we wish to show there exists C > 0 with ‖Wx‖ ≤ C‖x‖.
This follows from the computation ‖Wx‖2 = 〈Wx,Wx〉 = α−3〈W ∗Wx, x〉 =

α−3〈x, x〉 and so we obtain the desired inequality with C = α−3. To show that

multiplication by a ∈ A2 − TL is bounded we can use the same proof as for

Proposition 3.1.2, except here we must replace x =
∑

i cixi by x′ =
∑

i cix
′
i as

shown in Figure 5.3.

Let T be the C∗-algebra generated by T in B(H) and let T0 be the C∗-algebra

generated by T0. The algebra T is a simple AF C∗-algebra and so we can prove

the following proposition in a similar way to 3.1.5

Proposition 5.1.4. The algebra T is the crossed product of T0 by the endomor-

phism Φ.

Proof. From above we know that T is generated by the A2-Temperley-Lieb alge-

bra and the isometry W . Since the C∗-algebra T0 is simple, its crossed product

by Φ is also simple and hence T ' T0 oΦ N.

Let M be the weak completion of T in the GNS representation associated

to the state φ. Then φ is a KMS state at temperature β = 1 for the modular

automorphism group σt. The following proposition may be proved in exactly the

same way as Proposition 3.1.3
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Proposition 5.1.5. The state φ defined above is the unique KMS state on M for

the modular automorphism group σt and the inverse temperature β is also unique.

Proposition 5.1.6. The algebra M is the AFD type IIIλ factor, where λ = 1
α
.

Proof. This is proved in a similar way to Proposition 3.3.5. We know that M

is a factor since the KMS state is unique and hence a factor state. That M is

hyperfinite follows from the nuclearity of the A2 Temperley-Lieb C∗-algebra which

is preserved after taking the crossed product. The modular automorphism group

σt is periodic with period 2π/β and so M is type IIIλ with λ = e−γ = 1/α.

5.1.2 Type III ADE string algebra

Now we describe how the string algebra construction for type III factors from

Section 3.3 may be extended to construct subfactors from finite SU(3)-ADE
graphs.

Let G be a finite SU(3)-ADE graph such that there exists a connection on G
and a cell system as in Section 2.7. Let n be the Coxeter number and let q = eiπ/n.

Put α = [2]q and δ = [3]q. For m ∈ N and k ∈ Z with m + 3k ≥ 0, let B(m,m+3k),0

be the vector space over C with basis given by pairs of paths (ξ1, ξ2) on G with

s(ξ1) = s(ξ2) = ∗, r(ξ1) = r(ξ2), |ξ1| = m and |ξ2| = m + 3k. We may define

embeddings i : B(m,m+3k),0 → B(m+n,m+n+3k),0 by i(ξ+, ξ−) :=
∑

σ(ξ+ · σ, ξ− · σ)

where the sum is over all paths σ of length n starting at t(ξ1). Thus we define

Bk,0 := lim−→B(m,m+3k),0 and B∞,0 :=
⊕

k∈ZBk,0. The vector space B∞,0 can be

given the structure of an associative *-algebra with the same operations as in

section 3.3. That is, there is a multiplication defined by

(ξ1, ξ2).(ζ1, ζ2) =





(ξ1, ζ2 · ξ′2) if ξ2 = ζ1 · ξ′2
(ξ1 · ζ ′1, ζ2) if ζ1 = ξ2 · ζ ′1
0 otherwise

and *-operation defined by (ξ1, ξ2)
∗ = (ξ2, ξ1).

Suppose G is three colourable. Then we define the vector space B(m,m+3k),n

to be the spaces with basis pairs of paths (σ1 · ξ1, σ2 · ξ2) where σi is a path of
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length n starting at ∗ in the 0 − 1 part of G with r(σ1) = r(σ2) and (ξ1, ξ2) is a

pair of paths of length (m,m + 3) starting at r(σ1) with r(ξ1) = r(ξ2). As before

we can define inclusion maps B(m,m+3k),n → B(m+1,m+1+3k),n and then let Bk,n =

lim−→B(m,m+3k),n and B∞,n :=
⊕

k∈ZBk,n. Using the same connection defined in 2.5

we can transform paths of the above form to paths where, for example, we travel

first along a path (ξ1, ξ2) ∈ B(m,m+3k),0 ending at some vertex v of colour bv and

then travel along a path of length n the bv-bv + 1 part of G. Thus we may embed

B(m,m+3k),n into B(m,m+3k),n+1 by (ξ1 · ζ1, ξ2 · ζ2) 7→
∑

(ξ1 · ζ1 · σ, ξ2 · ζ2 · σ) where

the sum is over all vertical paths σ in Gbv−bv+1. If G is not three colourable, we

use the whole graph for the vertical inclusions.

For x ∈ B(m,m+3k),n and y ∈ B(m′,m′+3k′),n′ we define the product as follows.

First put both x and y in the basis where we first travel vertically along the

0̄ − 1̄ part of G and then horizontally along G. Suppose x = (ξ1 · ζ1, ξ2 · ζ2) and

y = (ξ′1 · ζ ′1, ξ′2 · ζ ′2) in this basis. Then if m + 3k = m′, n = n′ we define the

product xy = δξ2,ξ′1δζ2,ζ′1(ξ1 · ζ1, ξ
′
2 · ζ ′2) if m + 3k 6= m′ or n 6= n′ we first apply the

inclusion maps above to x or y and then multiply.

Define an action of R on B(m,m+3k),n by σt(ξ1, ξ2) = eγit(3k)(ξ1, ξ2). Using

this we define a state ψn on B0,n by ψn(ξ1, ξ2) = δξ1,ξ2α
−3kµ(r(ξ1)). The map

Φn : B∞,n → B0,n, Φn(ξ1, ξ2) = γ/2π
∫ 2π/γ

0
σt(ξ1, ξ2)dt is a faithful conditional

expectation. We can then define a state on B∞,n by φn := ψn ◦ Φn. Let H∞,n be

the Hilbert space completion of B∞,n with respect to the inner product defined

by 〈x, y〉 := φn(y∗x). It can be shown as in Proposition 3.3.1 that the action of

B∞,n on itself by left multiplication is bounded and hence B∞,n may be thought

of as a subalgebra of B(H∞,n).

Proposition 5.1.7. Let B∞,n be the C∗-algebra obtained by taking the norm

completion of the algebra B∞,n with respect to the inner product norm. Let W =

(δ(δ2 − 1))−
1
2

∑
|σ|=3 W4σ1,σ2,σ3(σ, ∗) be an isometry of B∞,0 and let Wn be its

image in B∞,n. Define the endomorphism Ψ of B∞,n by Ψ(x) = Wn(x)W∗
n. Then

B∞,n = B0,n oΨ N

LetM∞,n be the completion of B∞,n with respect to the inner product defined
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by φn. As in Proposition 3.3.2 it can be shown that φ is the unique KMS state

for the modular automorphism group σ and hence M∞,n is a factor. Since B∞,n

is the crossed product of a nuclear algebra with N, it is nuclear and hence M∞,n

is hyperfinite. As in Proposition 3.3.5 we can show that M∞,n is the hyperfinite

IIIλ factor for λ = 1/α. Define the Jones projections by

en =
∑

|ξ|=n−2,|ζ|=|η|=1

1

α

√
µ(r(η))µ(r(ζ))

µ(r(ξ))
(ξ · η · η̃, ξ · ζ · ζ̃)

Thus we have an increasing sequence of type IIIλ factors M∞,0 ⊂ M∞,1 ⊂
M∞,2 . . ..

Proposition 5.1.8. The sequence M∞,0 ⊂ M∞,1 ⊂ M∞,2 . . . is the basic con-

struction for the subfactor

M∞,0 ⊂M∞,1.

Proof. Using Theorem 2.8.2 and the Jones projections defined above, the propo-

sition may be proved in exactly the same way as for the bipartite graph case.

Proposition 5.1.9. Let M∞,i be as above and suppose the connection is flat.

Then M′
∞,0 ∩M∞,n = B(n,n),0 for all n ∈ N.

Proof. This may be proved using Ocneanu’s compactness argument in exactly

the same way as the proof of Proposition 3.3.6 apart from instead of Bn,(l+2k,l+2k)

we use Bn,(l+3k,l+3k).

5.1.3 A2-Planar Algebra for type III subfactors

Let P be a general A2-Planar algebra, as in Definition 2.6.1. Define σ(i, j, k) to

be the sign string −iσ̃j+
i+3k where σ̃j is the alternating sign string of length 2j

which starts with a −. Write P(i,j,k) for Pσ(i,j,k). Define inclusion maps I
(i,j+1,k)
(i,j,k) :

P(i,j,k) → P(i,j+1,k) and I
(i+1,j,k)
(i,j,k) : P(i,j,k) → P(i+1,j,k) as in Figure 5.5, recall the

crossing on A2-tangles is defined as in Figure 2.12 .

Let P(j,k) = lim−→P(i,j,k) be the algebraic direct limit and let P :=
⊕

j∈N
k∈Z

P(j,k)

be the vector space direct sum, where P(i,j,k) is empty when i + 3k < 0. We can
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Figure 5.5: Inclusion tangles I
(i+1,j,k)
(i,j,k) (x) and I

(i,j+1,k)
(i,j,k) (x)

define a multiplication on tangles as follows. If the pattern of the bottom edge

of x is the same as the pattern of the top edge of y then the product x · y is

just x stacked on top of y. If the patterns do not match, apply the inclusion

maps IR and IL to x and/or y until the patterns do match and then stack. The

bilinear extension of this map defines an associative multiplication on P via the

identification x·y = Z(M(x, y)) where M is the appropriate multiplication tangle

and x, y ∈ P .

As usual, we define an involution ∗ on tangles by flipping about a horizontal

axis. Then we may define an involution on P by ZT (x)∗ = ZT ∗(x
∗). Under these

operations P is an associative ∗-algebra. We call such a P a type III A2-planar

algebra. We define a state φ on P by φ = Tr◦S where Tr is the trace on the type

II A2-planar algebra and S is the projection from P onto
⊕

j∈N Pj,0. As usual,

we may use φ to define an inner product 〈·, ·〉 by 〈x, y〉 := φ(y∗x).

Definition 5.1.10. Let P be a general A2-planar algebra. A type III A2-planar

algebra is P =
⊕

j∈N
k∈Z

P(j,k) where the P(j,k) are as defined above, P(0,0,0) has

dimension 1 and Pi,j,k is finite dimensional for all i, j, k.

The following proposition may be proved in exactly the same way as Propo-

sition 3.4.5.

Proposition 5.1.11. Suppose P is a non degenerate finite dimensional type III

A2-planar algebra such that Z is a positive map on P0,0,0. Then there exists a

unique C∗-norm on P .

142



We call such a planar algebra a type III A2 C∗-planar algebra.

Next we show how to use the string algebra construction of the previous

section to define a type III A2-planar algebra.

Proposition 5.1.12. Let G be an ADE graph with flat connection. Let [3]q = δ

be its Perron Frobenius eigenvalue and let [2]q = α. Let Z be the presenting

map defined in section 2.7 and let P be the the planar algebra defined above with

Pi,j,k ' B(i,i+3k),j. Then P is a flat type III A2-C
∗-planar algebra such that

(i) Z(W−k) = U−k, k ≥ 0,

(ii)

(iii)

(iv)

Proof. Most of the proof carries over from the proof of Proposition 3.4.7, in terms

of invariance of Z under planar isotopies, the only ones that need to be checked

are shown in Figures 5.6, 5.7, 5.8. For these invariance is proved exactly as in

[23]. We show the first isotopy of Figure 5.6. The presenting map of the top strip

on the left hand side is

Z(t1) =
∑

|α|=n,|ξ|,|η|=1
|β|=m

√
µ(r(η))

µ(s(η))
(α · ξ · β, α · ξ · η · η̃ · β)

and the presenting map for the bottom strip is

Z(t2) =
∑

|γ|=n,|νi|=1
|δ|=m

1√
µ(s(ν1))µ(r(ν1))

W (4ν3,ν1,ν2)(γ · ν1 · ν2 · ν4 · δ, γ · ν3ν4 · δ)

Multiplying we get

Z(t) =
∑

|α|=n,|β=m|
|νi|=1

1√
µ(s(ν1))µ(r(ν1))

W (4ν3,ν1,ν4)(α · ν1 · β, α · ν3 · ν4 · β)
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which is equal to the right hand side. All the other isotopies in Figure 5.6 may

be proved similarly.

For the isotopy in Figure 5.7, the strips on the left hand side give

Z(t1) =
∑

|α|=n,|β|=1,
|γ|=m,|νi|=1

1√
µ(s(ν3))µ(r(ν3))

W (4ν1,ν3,ν2)(α · β · ν1 · γ, α · β · ν2 · ν3 · γ)

Z(t2) =
∑

|α′|=n,|β′|=1,

|γ′|=m,|ν′
i
|=1

1√
µ(s(ν ′3))µ(r(ν ′3))

W (4ν′3,ν′1,ν′2)(α
′ · ν ′1 · ν ′2 · β′ · γ′, α′ · ν ′3 · β′ · γ′).

The strips on the right hand side give

Z(s1) =
∑

|α|=n,|β|=1,
|γ|=m,|νi|=1

1√
µ(s(ν1))µ(r(ν1))

W (4ν1,ν3,ν2)(α · ν1 · β · γ, α · ν2 · ν3 · β · γ)

Z(s2) =
∑

|α|=n,|β|=1,
|γ|=m,|νi|=1

1√
µ(s(ν ′3))µ(r(ν ′3))

W (4ν′3,ν′1,ν′2)(α
′ · β′ · ν ′1 · ν ′2 · γ′, α′ · β′ · ν ′3 · γ′)

and so both sides equal

∑
|α|=n,|γ|=m,

|ν′
i
|=|νi|=1

1√
µ(s(ν3))µ(r(ν3))

1√
µ(s(ν ′3))µ(r(ν ′3))

W (4ν1,ν3,ν2)W (4ν′3,ν′1,ν2
)

(α · ν1 · ν ′1 · γ, α · ν3 · ν ′3 · γ)

For isotopies involving rectangles, for the first one, if x has label (ξ, ∗) the left

hand side is

Z(t1) =
∑

|α|=n,|β|=m,|γ|=p
|δ|=q,|νi|=1

1√
µ(s(ν3))µ(r(ν3))

W (4ν3,ν1,ν2)(α · β · γ · ν1 · ν2 · δ, α · β · γ · ν3 · δ)

Z(t2) =
∑

|α′|=n,|ζ|=m,|γ|=p

|δ|=q,|ν′|=1

cξ,ζ(α · ζ · γ · ν ′ · γ, α · ζ · γ · ν ′ · γ)

and so

Z(t) =
∑

|α|=n,|ζ|=m,|γ|=p
|δ|=q,|νi|=1

1√
µ(s(ν3))µ(r(ν3))

W (4ν3,ν1,ν2)cξζ(α ·ζ ·γ ·ν1 ·ν2 ·δ, α ·γ ·ν3 ·δ)

Similarly on the left hand side we have

Z(s1) =
∑

|α′|=n,|ζ|=m,|γ|=p

|δ|=q,|ν′|=1

cξ,ζ(α · ζ · γ · ν ′ · γ, α · ζ · γ · ν ′ · γ)

Z(s2) =
∑

|α|=n,|β|=m,|γ|=p
|δ|=q,|νi|=1

1√
µ(s(ν3))µ(r(ν3))

W (4ν3,ν1,ν2)(α · β · γ · ν1 · ν2 · δ, α · β · γ · ν3 · δ)
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and so Z(t1)Z(t2) = Z(s1)Z(s2)

For the second isotopy in Figure 5.8 we use the same trick with the braiding

as for the isotopies involving a cup and rectangle in the proof of Proposition 3.4.7

to transform it into the situation of the first equation in 5.8.

Figure 5.6: Isotopies involving an incoming trivalent vertex and a cup or cap

Figure 5.7: Isotopies involving two trivalent vertices

Next we verify that the definition gives a C∗-planar algebra. The spaces P(i,j,k)

are finite dimensional by definition, with P(0,0,0) ' C by definition. The state is

positive definite, since it is the composition of the projection onto P(j,0) with the

positive definite trace on P(j,0) from the type II string algebra. The last thing we
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Figure 5.8: Isotopies involving a trivalent vertex and marked point

need to check are the four conditions in the statement of the theorem. The first

one is exactly the same as the first condition in Proposition 3.4.7. The second

one may be proved as in [23].

Z(W−k) =(
∑

W (4η3,η1,η2)
1√

µ(s(η1))µ(r(η1))
(ξ · η1 · η2 · ζ, ξ · η3 · ζ))·

(
∑

W (4η4,η5,η6)
1√

µ(s(η4))µ(r(η4))
(ξ′ · η4 · ζ ′, ξ · η5 · η5 · ζ ′))·

=Uη1η2
η5η6

(ξ · η1 · η2 · ζ, ξ · η5 · η6 · ζ)

The two condtions involving the inclusions follow from the definition of the inclu-

sions in the string algebra. For the conditional expectations, the right expectation

is exactly as in the type II case, the left expectation is the minimal expectation

defined by E(x) = ρ(rρ(x)r∗)

5.2 Further Work

5.2.1 Skein Theory for D(n) Planar Algebra

Further work to be completed on A2-planar algebras is the extension of the skein

theory results of [63], [5], [74], [4] to the A2 setting. Here we begin to describe

the analogue of the description of the D2n planar algebra using generators and

relations in [63]. The D2n planar algebra may be described as the unique planar
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Figure 5.9: The graph A(6)

Figure 5.10: The graph D(6)

algebra with a single generator S in the P4n−4 modulo the relations

1. the modulus is δ = 2 cos(π/4n− 2)

2. rotating the marked point of S is equivalent to multiplying by i

3.

4.

The SU(3) analogue of this is the planar algebra of the D2n graphs. Here for

simplicity we will look only at the graph D(6) shown in Figure 5.10. The graph

D6 is an orbifold of the graph A(6) shown in Figure 5.9.

The SU(3) analogue of the Jones Wenzl idempotents are the Jones Wenzl

projectors, defined in [85], [48]. They satisfy the relations P(m,n)⊗ ↓∼= P(m+1,n) ⊕
P(m−1,n+1)⊕P(m,n−1) and P(m,n) = 0 for all m,n with m+n ≥ 4 and which may be
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Figure 5.11: Relations between Jones Wenzl Projectors

Figure 5.12: Capping off Projectors gives zero

represented graphically by Figure 5.11. They also satisfy the relations in Figure

5.12 for any position of the cap or Y-fork.

The A(n) planar algebra is generated by the Jones Wenzl projectors with the

relation Pr,s = 0 whenever r + s = n.

The vertices of D(6) correspond to the projectors P(0,0), P(0,1) and P(1,0) as

shown and the projector P(1,1) splits into 3 projections x1, x2, x3. From the graph

we can see the projectors satisfy the following relations:

x1 ⊕ x2 ⊕ x3
∼= P(1,1)

xi⊗ ↓∼= P(1,0)

xi⊗ ↑∼= P(0,1)

P(0,1)⊗ ↓∼= x1 + x2 + x3 + P(0,0)

By drawing the Bratteli diagrams for D(6) and A(6) and using Lemma 6.3.1 from

[79] which tells us that dimB(i,j) = dimB(i+k,j−k) we see that the (1, 1) box space

of the D(6) planar algebra has dimension two higher than the corresponding space
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Figure 5.13: Hom(xi⊗ ↓, ↓)

for A(6), this tells us that we must have two linear independent generators in this

space. These generators satisfy the relations

P(1,1) ⊕ S ⊕ S2 = x1

P(1,1) ⊕ ωS ⊕ ω2S2 = x2

P(1,1) ⊕ ω2S ⊕ ωS2 = x3

where ω = e
2π
3 . This implies

x1 + x2 + x3 = P(1,1)

x1 + ω2x2 + ωx3 = S

x1 + ωx2 + ω2x3 = S2.

Hence S satisfies the property S3 = P and so multiplying an xi by S results in a

scalar multiple of xi. The number of edges between any two vertices of the graph

D(6) give us the dimensions of the spaces of homomorphisms between the corre-

sponding projections. Looking at this graphically gives us Figure 5.13. Thus, we

see in this case that there are two morphisms between P0,1 and P1,0. Therefore

there is some diagram in P++− that is not a Temperley-Lieb diagram, and so it

must contain a copy of S or S2. We also see that the space of homomorphisms

between the xi⊗ ↓ and P0,1 is one. Graphically we have the picture of Figure

5.13.

Hence one of these diagrams must give zero. Possibly this indicates that we

have the uncapability condition on the xi, similar to condition 3 in the presenta-

tion of the D2n planar algebra.
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In order to develop a skein theory we must find ways of simplifying diagrams

with multiple copies of the generator in them, to do this we must for example

find ways of passing strings over or under the generators and relations to simplify

diagrams when the generators are joined with a certain amount of strings. From

the fact that the projector P(2,2) = 0 we would guess that the diagram S⊗S(where

we just place two copies of S side by side) should be zero. Therefore we must

look at other ways of combining the S, to do so we can for example look at the

analogue of Wenzl’s relation and use this and the fact that we wish Pm,n to be

zero when m + n ≥ 4 to find relations on S.

5.2.2 Constructing Subfactors from A2-Planar Algebras

Another problem which could be investigated further is using A2-planar algebras

to construct subfactors, both of type II and type III, using some generalisation of

the Guionnet-Jones-Shlyakhtenko construction in [28] or the orthogonal version

from [49], [42].

As in the Guionnet-Jones-Shlyakhtenko construction we need to define some

kind of filtered or graded multiplication to allow multiplication between different

Pσ and a tracial state on the planar algebra with this multiplication. In the A2

case, there is extra complication due to the orientations of the strings.

In the original paper, a Fock space model was used, where the von Neumann

algebras were generated as subspaces of B(H) where

H = `(Γ)⊕
⊕

H⊗k

where Γ is some bipartite graph and H is a Hilbert space whose orthonormal

basis consisting of the edges of Γ. The commutants of the basic operators ∪
and d were calculated and this was used to show the von Neumann algebras were

factors. In the A2 case, it may be possible to use the work of Evans and Pugh [22]

on spectral measures of the ADE graphs to study this. In the Fock space model,

`(Γ) should be replaced by `(Γ)⊗ `(Γ) and H should be replaced by H ⊗ H̄.
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