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Abstract. In most cases where it has been shown to exist the derived McKay correspondence
D(Y )

∼−→ DG(Cn) can be written as a Fourier-Mukai transform which sends point sheaves of
the crepant resolution Y to pure sheaves in DG(Cn). We give a sufficient condition for E ∈
DG(Y × Cn) to be the defining object of such a transform. We use it to construct the first
example of the derived McKay correspondence for a non-projective crepant resolution of C3/G.
Along the way we extract more geometrical meaning out of the Intersection Theorem and learn
to compute θ-stable families of G-constellations and their direct transforms.
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1. Introduction

It was observed by McKay in [McK80] that the representation graph (better
known now as the McKay quiver) of a finite subgroup G of SL2(C) is the Cox-
eter graph of one of the affine Lie algebras of type ADE, while the configuration
of irreducible exceptional divisors on the minimal resolution Y of C2/G is dual
to the Coxeter graph of the finite-dimensional Lie algebra of the same type. It
followed that the subgraph of nontrivial irreducible representations coincided
with the graph of irreducible exceptional divisors. This led Gonzales-Sprinberg
and Verdier in [GSV83] to construct an isomorphism of the G-equivariant K-
theory of C2 to the K-theory of Y , which induced naturally a choice of such
bijection. This became known as the (classical) McKay correspondence.

In [Rei97] M.Reid proposed that the K-theory isomorphism might lift to the
level of derived categories. It became known as the derived McKay correspon-
dence conjecture:

Conjecture 1. Let G be a finite subgroup of SLn(C) and let Y be a crepant
resolution of Cn/G, if one exists. Then

D(Y ) ∼−→ DG(Cn) (1.1)
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where D(Y ) and DG(Cn) are bounded derived categories of coherent sheaves
on Y and of G-equivariant coherent sheaves on Cn, respectively.

To date and to the extent of our knowledge this conjecture has been settled for
the following situations:

1. G ⊂ SL2,3(C); Y the distinguished crepant resolution G-Hilb;
([KV98], Theorem 1.4; [BKR01], Theorem 1.1).

2. G ⊂ SL3(C) abelian; Y any projective crepant resolution;
([CI04], Theorem 1.1).

3. G ⊂ SLn(C) abelian; Y any projective crepant resolution;
([Kaw05], special case of Theorem 4.2).

4. G ⊂ Sp2n(C); Y any symplectic (crepant) resolution;
([BK04], Theorem 1.1).

In the case 3 the construction is not direct and it isn’t clear what form does the
equivalence (1.1) take, but in each of the cases 1, 2 and 4, the equivalence (1.1)
is constructed directly and we observe that the constructed functor sends point
sheaves Oy of Y to pure sheaves (i.e. complexes with cohomologies concen-
trated in degree zero) in DG(Cn). Another property (cf. though [Orl97], Theo-
rem 2.18) that these functors share is that each can be written as a Fourier-Mukai
transform ΦE(−⊗ ρ0) (see Def. 3) for some object E ∈ DG(Y × Cn).

A straightforward application (Prop. 3) of the established machinery of Fourier-
Mukai transforms shows that if an equivalence (1.1) is a Fourier-Mukai trans-
form ΦE(− ⊗ ρ0) which sends point sheaves to pure sheaves, then its defining
object E is itself a pure sheaf. Moreover, the fibers of E over Y have to be
simple (G-EndCn(E|y) = C for all y ∈ Y ), orthogonal in all degrees (G-
Exti

Cn(E|y1
, E|y2

) = 0 if y1 6= y2) and the Kodaira-Spencer maps have to be
isomorphisms.

Let Y now be any irreducible separated scheme of finite type over C. A
gnat-family F on Y is a coherent G-sheaf on Y ×Cn, flat over Y , such that for
any y ∈ Y the fiber F|y of F is a G-constellation supported on a single G-orbit.
That is, F|y is a finite length coherent G-sheaf on Cn whose support is a single
G-orbit and whose global sections haveG-representation structure of the regular
representation. Such family F has a well-defined Hilbert-Chow morphism πF :
Y → Cn/G, it sends any y ∈ Y to the G-orbit that F|y is supported on (Prop.
2). Let Y and F be any such for which πF is birational and proper. In this paper
we give a sufficient condition for the functor ΦF (−⊗ ρ0) to be an equivalence
(1.1). Notable, in the view of Prop. 3, is that this condition only asks for the
non-orthogonality locus of F to be of high enough codimension. The simplicity
of F and the Kodaira-Spencer maps being isomorphisms follow automatically:

Theorem 1. Let G be a finite subgroup of SLn(C). Let Y be an irreducible
separated scheme of finite type over C and F be a gnat-family on Y . Assume
Y and F such that the Hilbert-Chow morphism πF is birational and proper.
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If for every 0 ≤ k < (n+ 1)/2, the codimension of the subset

Nk = {(y1, y2) ∈ Y × Y \∆ | G- Extk
Cn(F|y1

,F|y2
) 6= 0} (1.2)

in Y × Y is at least n+ 1− 2k, then the functor ΦF (−⊗ ρ0) is an equivalence
of categories D(Y ) ∼−→ DG(Cn).

Once ΦF (− ⊗ ρ0) is known to be an equivalence usual methods ([Rob98],
Theorem 6.2.2 and [BKR01], Lemma 3.1) apply to show that Y is non-singular
and πF is crepant. The set Nk in (1.2) can be thought of as the locus of the
degree k non-orthogonality in F .

Our proof of Theorem 1 is based on the ideas introduced in [BO95] and
[BKR01], particularly on the Intersection Theorem trick introduced in the lat-
ter. However, not wishing to restrict ourselves to just quasi-projective schemes
necessitates more work in applying the Intersection Theorem. This is done in
Section 2, which is a self-contained piece of abstract derived category theory
for a locally noetherian scheme X . There we propose a generalisation of the
concept of the homological dimension of E ∈ Db

coh(X) which we call Tor-
amplitude , and use it to show that the inequality

hom. dim. E ≥ codimX SuppE

of [BM02], Corollary 5.5 refines to

Tor-ampE ≥ codimX SuppE + coh-ampE.

Other notable points of our proof of Theorem 1 are a different approach to
Grothendieck duality when constructing the left adjoint to ΦF (− ⊗ ρ0) and an
application of [Log06], Prop. 1.5 which states that outside the exceptional set
of Y any gnat-family has to be locally isomorphic to the universal family of
G-clusters. The latter is everywhere simple and its Kodaira-Spencer maps are
isomorphisms. Then the locus of points of Y where objects of F are not simple
or the Kodaira-Spencer map isn’t an isomorphism turns out to have too high a
codimension to exist at all.

The question of an existence of a derived McKay correspondence which
sends point sheaves to pure sheaves is thus reduced to that of an existence of
a gnat-family satisfying the non-orthogonality condition of Theorem 1. This is
particularly relevant whenever G is abelian, for then all the gnat-families on a
given resolution Y → Cn/G had been classified and their number was shown
to be finite and non-zero ([Log06], Theorem 4.1).

When n = 3, Theorem 1 reduces to:

Corollary 1. Let G be a finite subgroup of SL3(C). Let Y , F and πF be as in
Theorem 1. Let E1, . . . , Ek be the irreducible exceptional surfaces of πF . Then
if general points of any surface Ei are orthogonal in degree 0 in F to general
points of any surface Ej (including case j = i) and of any curve El ∩Em, then
ΦF (−⊗ ρ0) is an equivalence of categories.
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By a general point of an intersection of k exceptional surfaces we mean a point
that doesn’t lie on an intersection of any k + 1 exceptional surfaces.

In Section 4 we show how to compute the degree 0 non-orthogonality locus
of a gnat-family. We use this in Section 5 to give following application of Corol-
lary 1: for G the abelian subgroup of SL3(C) known as 1

6(1, 1, 4) ⊕ 1
2(1, 0, 1)

(see Section 5.1) and for Y a certain non-projective crepant resolution of C3/G
(see Section 5.2) we construct a gnat-family F on Y which satisfies the con-
dition in Corollary 1. This gives the first example of the derived McKay corre-
spondence for a non-projective crepant resolution of C3/G.

It also leads to an important observation: the properties that F must then
possess in view of Proposition 3 imply that Y is a fine moduli space of G-
constellations, representing the functor of all gnat-families whose members (fi-
bres over closed points) are isomorphic to members of F . At present the only
moduli functors known forG-constellations come from the notion of θ-stability.
Their fine moduli spaces M (cf. [CI04]) are constructed via the method intro-
duced by King in [Kin94]. However, Y can’t be one of M as these are all, due
to the GIT nature of their construction in [Kin94], projective over Cn/G. This
raises the question as to whether there could exist a more general notion of ‘sta-
bility’, related perhaps to Bridgeland-Douglas stability [Bri02], which would
allow for functors with non-projective moduli spaces.

Acknowledgements: The author would like to express his gratitude to S.
Mukai, D. Kaledin, D. Orlov and A. Bondal for useful discussions while the
paper was written, to A. Craw for observing a crucial link with the work in
[CMT05a], [CMT05b] which inspired the Proposition 6 and to A. King and an
anonymous referee for many helpful comments on the first draft. The paper was
originally completed during the author’s stay at RIMS, Kyoto, and he would
like to thank everyone at the institute for their hospitality. A substantial revision
was then carried out during the author’s stay at Mittag-Leffler Institute/KTH,
Stockholm, and he would like to thank them also.

2. Cohomological and Tor amplitudes

We clarify terminology and introduce notation. By a point of a scheme we
mean both a closed and non-closed point unless specifically mentioned oth-
erwise. Given a point x on a scheme X we write (Ox,mx) for the local ring
of x, k(x) for the residue field Ox/mx and ιx for the point-scheme inclusion
Spec k(x) ↪→ X . Given an irreducible closed set C ⊂ X , we write xC for the
generic point of C and we sometimes write simply (OC ,mC) for the local ring
of xC . All complexes are cochain complexes. Given a right (resp. left) exact
functor F between two abelian categories A and B, we denote by LF (resp.
RF ) the left (resp. right) derived functor between the appropriate derived cat-
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egories, if it exists, and by Li F (•) (resp. Ri F (•)) the −i-th cohomology of
LF (•) (resp. the i-th cohomology of RF (•)).

For X a smooth variety the results of Lemmas 1 and 2 below have appeared
in the proof of Proposition 1.5 in [BO95]. We show them to hold in a more
general setting of a locally noetherian scheme.

Lemma 1. Let X be a locally noetherian scheme. Let F be a coherent sheaf on
X and C be an irreducible component of SuppX F . Then for every point x ∈ C

Li ι∗xF 6= 0 for 0 ≤ i ≤ codimX(C). (2.1)

Proof. Recall (cf. [Mat86], §19) that if a minimal free resolution L• of a finitely
generated module M for a local ring (R,m, k) exists, then

dimk Tori(M,k) = rkLi

Since X is locally noetherian minimal free resolutions of F exist in all lo-
cal rings. Write FC for the localisation of F to the local ring OC of xC . As
Li ι∗xF = Tori

OC
(FC ,k(x)) it suffices to prove that the length of the minimal

free resolution of FC is at least codimX(C).
Consider the standard filtration ([Ser00], I, §7, Theorem 1) of FC by sub-

modules 0 = M0 ⊂ · · · ⊂ Mn = FC with each Mi/Mi−1 isomorphic to
OC/p for some p ∈ SuppOC

(FC). As the defining ideal of C is minimal in
SuppX(F), SuppOC

(FC) consists of just mC . So eachMi/Mi−1 is isomorphic
to kC and hence F is a finite-length OC-module. Then by the New Intersection
Theorem (e.g. [Rob98], Theorem 6.2.2) the length of the minimal resolution of
FC is at least dimOC . As dimOC = codimX(C) the claim follows.

Lemma 2. Let X be a locally noetherian scheme. Let F be a coherent sheaf on
X of finite Tor-dimension. For any p ∈ Z define

Dp = {x ∈ X | Li ι∗xF 6= 0 for some i ≥ p}. (2.2)

Then each Dp is closed and codimX(Dp) ≥ p.

Proof. It suffices to prove both claims for the caseX = Spec R withR noethe-
rian. Write F for Γ (F). As Lp ι∗xF = Torp

R(F,k(x)) the first claim follows
from the upper semicontinuity theorem ([GD63], Théorème 7.6.9).

For the second claim let C be any irreducible component of Dp and let FC

be the localisation of F to the local ring OC . Then Torp
OC

(FC ,k(xC)) 6= 0 by
the defining property of Dp. We have ([Mat86], §19, Lemma 1)

proj dimOC
FC = sup{i ∈ Z | Tori

OC
(FC ,k(xC))}

hence proj dimOC
FC ≥ p. By the Auslander-Buchsbaum equality we have

depthOC
OC = proj dimOC

FC + depthOC
FC

and thus codimX C = dimOC ≥ depthOC
OC ≥ p as required.
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The main idea behind the proof of the following proposition we owe to Bon-
dal and Orlov in [BO95], Proposition 1.5.

Proposition 1. Let X be a locally noetherian scheme and F ∈ Db
coh(X) an

object of finite Tor-dimension. Denote by Hi the ith cohomology sheaf of F .
Then for any point x ∈ X we have

− sup{i ∈ Z | x ∈ SuppHi} = inf{j ∈ Z | Lj ι∗xF 6= 0}. (2.3)

Let C be an irreducible component of SuppHl for some l such that also
C * SuppHm for any m < l. Then

codimX C − inf{i ∈ Z | C ⊆ SuppHi} = sup{j ∈ Z | Lj ι∗xC
F 6= 0}.

(2.4)

Proof. Fix a point x ∈ X . The main ingredient of the proof is the standard
spectral sequence (eg. [GM03], Proposition III.7.10) associated to the filtration
of L ι∗xF by the rows of the Cartan-Eilenberg resolution of F :

E−p,q
2 = Lp ι∗x(Hq) ⇒ Eq−p

∞ = Lp−q ι∗x(F ). (2.5)

Denote by h the highest non-zero row of E••
2 . As all rows above row h and

all columns to the right of column 0 in E••
2 consist entirely of zeroes

Figure 1

we conclude by inspection of the complex that 0 = En
∞ for all n > h and

Hh|x = E0,h
2 = Eh

∞ = L−h(ι∗x(F )). This gives (2.3).
To obtain (2.4) set x to be the generic point ofC and defineE••

• as above. For
any m < l we have C * SuppHm and hence L ι∗xHm = 0. So all the rows of
E••

2 below l consist of zeroes. On the other hand, C is an irreducible component
of Hl and by Lemma 2 the set of points y ∈ X , such that there is a non-zero
Li ι∗y(Hl) with i > d, is closed and of codimension at least d+ 1. Then this set
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can not contain x for the closure of x is C whose codimension is d. Hence all
columns to the left of column−d inE••

2 consist entirely of zeroes. We conclude
thatEn

∞ = 0 for all n > l−d and Ld ι∗xHl = E−d,l
2 = El−d

∞ = Ld−l ι∗xF . Thus,
as Ld ι∗xHl 6= 0 by Lemma 1, we obtain (2.4).

Definition 1. Let A be an abelian category and E• be a cochain complex of
objects of A. Define its cohomological amplitude, denoted by coh-ampE•, to
be the length of the minimal interval in Z containing the set

{i ∈ Z | H i(E•) 6= 0}. (2.6)

If no such interval exists we say that coh-ampE = ∞.

Trivially coh-ampE• is the minimal length of a bounded complex quasi-
isomorphic to E•, if any exist, and infinity, if none do.

Definition 2. Let R be a ring or a sheaf of rings and E• be a cochain complex
of objects of Mod-R. Define its Tor-amplitude, denoted by Tor-ampRE

•, to
be the length of the minimal interval in Z containing the set

{i ∈ Z | ∃ A ∈ Mod -R such that Tori
R(E•, A) 6= 0}. (2.7)

If no such interval exists we say that Tor-ampRE = ∞.

Def. 2 can be seen to be equivalent to [Kuz05], Def. 2.20.
Let now X be any scheme. It follows from [Har66], Prop 4.2, that an ob-

ject of Db(Mod -X) has finite Tor-amplitude if and only if it is of finite Tor-
dimension, i.e. quasi-isomorphic to a bounded complex of flat sheaves.

Lemma 3. Let X be a locally noetherian scheme and E ∈ Db
coh(X) an object

of finite Tor-dimension. Denote by l the length of the shortest complex of flat
sheaves quasi-isomorphic to E, and by k the length of the smallest interval in
Z containing the set

{i ∈ Z | ∃ x ∈ X such that Li ι∗x(E) 6= 0}. (2.8)

Then l = Tor-ampOX
E = k.

Proof. Implications l ≥ Tor-ampOX
E and Tor-ampOX

E ≥ k are trivial. We
claim that k ≥ l. Let n, k ∈ Z be such that the interval [−n − k,−n] contains
the set (2.8). Then (2.3) and (2.4) of Proposition 1 show that Hi(E) = 0 unless
i ∈ [n, n + k]. Since resolutions by flat modules exist on X , there exists a
complex F • of flat sheaves quasi-isomorphic to E and with Fi = 0 for all
i > n + k. We claim that we can truncate F • at degree n and keep it flat, i.e.
that the sheaf Fn/ ImFn−1 is flat. But as Hi(F •) = 0 for i < n, the complex

· · · → Fn−2 → Fn−1 → Fn → 0 → . . .
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is a flat resolution ofFn/ ImFn−1. Hence L1 ι∗x(Fn/ ImFn−1) = L−n+1 ι∗x(E)
and so vanishes for all x ∈ X by assumption. Thus we obtain a length k com-
plex of flat-sheaves quasi-isomorphic to E, i.e. k ≥ l.

Whenever X is a quasi-projective scheme, or any other scheme where there
exist resolutions by locally-free sheaves, replacing the word ‘flat’ by the word
‘locally-free’ throughout Lemma 3 and its proof shows that for anyE ∈ Db

coh(X)
its Tor-amplitude is the length of the shortest complex of locally-free sheaves
quasi-isomorphic to E. In other words, Tor-ampOX

E is the homological di-
mension of E introduced in [BM02]. The following can thus be compared to
the inequality hom.dim.E ≥ codimC of [BM02]:

Theorem 2. Let X be a locally noetherian scheme and E ∈ Db
coh(X) an object

of finite Tor-dimension. Then

Tor-ampOX
E ≥ codim SuppE + coh-ampE (2.9)

and for any irreducible component C of SuppE we have

Tor-ampOC
EC = codimC + coh-ampOC

EC . (2.10)

Remark: To see that the inequality (2.9) can be strict, consider X = A1 and
E = OX ⊕Ox for some closed point x ∈ X .

Proof. Denote by Hi the ith cohomology sheaf of E. Set

n = inf
x∈suppE

{i ∈ Z|x ∈ SuppHi} m = sup
x∈suppE

{i ∈ Z|x ∈ SuppHi}

l = inf
x∈suppE

{i ∈ Z|Li ι∗xE 6= 0} h = sup
x∈suppE

{i ∈ Z|Li ι∗xE 6= 0}

and observe that m− n = coh-ampE and h− l = Tor-ampOX
E (Lemma 3).

By (2.3) of Proposition 1 we have

−m = l. (2.11)

Let D be any irreducible component of SuppHn. We then have

codim SuppE − n ≤ codimD − n = sup{i ∈ Z|Li ι∗xD
E 6= 0} ≤ h

(2.12)

with the middle equality due to (2.4) of Proposition 1 applied to D. Subtracting
(2.11) from (2.12) we obtain (m− n) + codim SuppE ≤ (h− l). This shows
(2.9).

To obtain (2.10) we observe that on Spec OC the support of the localisation
EC consists of a single point xC . Therefore applying the above argument to
X ′ = Spec OC and E′ = EC we have D = xC = SuppE′ which makes both
the inequalities in (2.12) into equalities.
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3. Derived McKay correspondence

Given a scheme S denote byDqc(S) (resp.D(S)) the full subcategory of the de-
rived category of OS- Mod consisting of complexes with quasi-coherent (resp.
bounded and coherent) cohomology. For S a scheme of finite type over C and
H a finite group acting on S on the left by automorphisms anH-sheaf is a sheaf
E ofOS-modules equipped with a lift of theH-action to E . For the technical de-
tails see [BKR01], Section 4. Denote byOS- ModH (resp. QCohH S, CohH S)
the abelian category of H-sheaves (resp. quasi-coherent, coherent H-sheaves)
on S and by DH

qc(S) (resp. DH(S)) the full subcategory of the derived category
ofOS- ModH consisting of complexes with quasi-coherent (resp. bounded and
coherent) cohomology.

3.1. Integral transforms

Let N and M be schemes of finite type over C. Denote by πN and πM the
projections N ×M → N and N ×M →M .

Definition 3. Let E be an object of Dqc(N ×M) of finite Tor-dimension. An
integral transform ΦE is a functor Dqc(N) → Dqc(M) defined by

ΦE(−) = RπM∗(E
L
⊗ π∗N (−)). (3.1)

The object E is called the kernel of the transform. If ΦE is an equivalence of
categories it is further called a Fourier-Mukai transform.

If a groupG acts onN andM then, for any E ∈ DG
qc(N ×M) of finite Tor-

dimension, (3.1) defines an integral transformDG
qc(N) → DG

qc(M). If the group
action onN is trivial denote by (−⊗ρ0) the functorDqc(N) → DG

qc(N) which
gives a sheaf the trivial G-equivariant structure. It is exact and has an exact left
and right adjoint (−)G, the functor of taking the G-invariant part ([BKR01],
Section 4.2). We also use the terms integral and Fourier-Mukai transform for
the functors Dqc(N) → DG

qc(M) of the form ΦE(− ⊗ ρ0) where ΦE is some
integral transform DG

qc(N) → DG
qc(M).

When N and M are smooth and proper varieties it is well known that ΦE

has a left adjoint ΦE∨⊗π∗M (ωM )[dim M ] ([BO95], Lemma 1.2). The lemma be-
low allows to generalise this to certain integral transforms between non-proper
schemes. We use methods of Verdier-Deligne as per the exposition in [Del66]
to which we refer the reader for all the necessary definitions.

Lemma 4. Let N and M be separable schemes of finite type over C with M
smooth of dimension n. Let E ∈ D(N ×M) be of finite homological dimension
with Supp(E) proper over N . Then the functor

π∗N (−)
L
⊗ E : D(N) → D(N ×M)
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has a left adjoint

RπN∗(−
L
⊗ E∨ ⊗ π∗M (ωM ))[n] : D(N ×M) → D(N). (3.2)

Proof. First we compactify M : choose an open immersion M ↪→ M̄ with M̄
smooth and proper [Nag]. Then πN decomposes as an open immersion ι : N ×
M ↪→ N × M̄ followed by the projection π̄N : N × M̄ → N . As π̄N is smooth
and proper Grothendieck-Serre duality for smooth and proper morphisms (e.g.
[Har66], VII4.3) implies that π̄∗N : D(N) → D(N × M̄) has a left adjoint

R π̄N∗(−)⊗ π̄∗MωM̄ [n]

where π̄M : N × M̄ → M̄ is the projection onto the second component.
By the duality for open immersions ([Del66], Prop. 4) the left adjoint to the

(exact) functor ι∗(−) exists as an (exact) functor ι! from Coh(N ×M) to the
category pro-Coh(N × M̄). For the definition of pro-Coh(N × M̄) and the
generalities on pro-objects see [Del66], n◦ 1. The functor ι! may be calculated
as follows: givenA ∈ Coh(N×M) take any Ā ∈ Coh(N×M̄) which restricts
to A on N ×M . Then

ι!(A) = lim−→Hom(InĀ,−) (3.3)

where I is the ideal sheaf defining the complement N × (M̄ \M).

Finally, as E is of finite homological dimension, the left adjoint of (−)
L
⊗E

is (−)
L
⊗ E∨ where E∨ is RHom(E,ON×M ).

Therefore the left adjoint of π∗N (−)
L
⊗ E exists as the functor

R π̄N∗(ι!(−
L
⊗ E∨)⊗ π̄∗M (ωM ))[n] (3.4)

from pro -D(N ×M) to pro -D(N). To finish the proof it suffices now to show

that ι!(−
L
⊗E∨) = ι∗(−

L
⊗E∨). Then applying the projection formula to ι∗(−

L
⊗

E∨) ⊗ π̄∗M (ωM ) in (3.4) and observing that ι ◦ π̄M = πM and ι ◦ π̄N = πN

yields (3.2).
We have Id = ι∗ι∗ on QCoh(N × M) ([GD60], Prop. 9.4.2). It induces

by the adjunction of [Del66], Prop. 4 natural transformations Υ : ι! → ι∗ of

functors Coh(N × M) → pro - QCoh(N × M̄) and Υ ′ : ι!(−
L
⊗ E∨) →

ι∗(−
L
⊗ E∨) of functors D(N ×M) → pro -D(N × M̄). By [Del66], Prop.

3 and the exactness of ι! and ι∗, to show Υ ′ to be an isomorphism of functors
it suffices to show that Υ is an isomorphism on the cohomology sheaves of
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−
L
⊗ E∨. The support of these is proper over N by the assumption on E. For

any A ∈ Coh(N ×M) we have

Hom(ι!(A), ι∗(A)) = lim−→HomN×M̄ (IkĀ, ι∗(A)) (3.5)

using the notation of (3.3). From the construction of the adjunction in [Del66],
Prop. 4 it is immediate that Υ (A) is the unique element of RHS of (3.5) which
restricts to N × M as Id ∈ HomN×M (A,A). If Supp(A) is proper over
N , we can take Ā = ι∗A in (3.3). Moreover, Ikι∗(A) = ι∗(A) for all k.
Therefore (3.3) yields ι!(A) = ι∗(A) and moreover the RHS of (3.5) is just
Hom(ι∗A, ι∗A). It is then clear that Υ (A) = Id, as required.

3.2. G-constellations and gnat-families

Definition 4. Let G be a finite subgroup of GLn(C). A G-constellation is a co-
herent G-sheaf V on Cn whose global sections Γ (V) have the G-representation
structure of the regular representation Vreg.

TwoG-constellations V,W are orthogonal in degree k ifG-Extk
Cn(V,W) =

G-Extk
Cn(W,V) = 0.

Let now Y be a scheme of finite type over C. We endow Y with the trivial
G-action, thus we can speak of G-sheaves on Y and on Y × Cn.

Definition 5. A gnat-family on Y (short forG-natural or geometrically natural)
is an object F of CohG(Y ×Cn), flat over Y , such that for every closed y ∈ Y
the fiber F|y is a G-constellation supported on a single G-orbit. The Hilbert-
Chow map πF of F is the map Y → Cn/G defined by y 7→ SuppCn F|y. A
gnat-family on a fixed morphism Y

π−→ Cn/G is a gnat-family on Y whose
Hilbert-Chow map coincides with π.

Two subsets C and C ′ of Y are orthogonal in degree k in F if for every
y ∈ C and y′ ∈ C ′ the fibers F|y and F|y′ are orthogonal in degree k. The
family F is orthogonal in degree k if Y is orthogonal to Y in degree k in F .

Proposition 2. For any gnat-familyF its Hilbert-Chow map πF is a morphism.

Proof. Denote by R the ring C[x1, . . . , xn]. For any G-constellation V , the ac-
tion of R on H0(V) restricts to the action of RG on H0(V)G. Clearly

(AnnRH
0(V))G ⊆ AnnRG H0(V)G. (3.6)

The LHS of (3.6) is the image of SuppCn V in Cn/G. If this support is a sin-
gle G-orbit, then (AnnRH

0(V))G is maximal in RG and (3.6) is an equality.
Therefore it suffices to construct a morphism Y → Cn/G which sends each
y ∈ Y to AnnRG H0(F|y)G. We construct it thus: the invariant part of πY ∗(F)
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is a line bundle on Y , which has a RG-module structure induced from F . This
structure defines a homomorphism RG → OY . The corresponding morphism
Y → Cn/G is easily seen to send each y ∈ Y to AnnRG H0(F|y)G.

Lemma 5. If F is a gnat-family on Y and πF : Y → Cn/G is proper, then F
is of finite homological dimension in DG(Y × Cn) and the integral transform
ΦF : DG

qc(Y ) → DG
qc(Cn) restricts to DG(Y ) → DG(Cn).

Proof. Let ι be the open immersion Y × Cn → Y × Pn. As SuppF is proper
over Y , ι∗F is coherent. Quite generally, given any coherent sheafA on Y ×Pn

flat over Y , consider the adjunction co-unit ξ : π∗Y πY ∗A → A. As πY is
proper andA is flat over Y , π∗Y πY ∗A is lffr (locally free of finite rank). Twisting
by some power of π∗PnO(1) we can make ξ surjective. But then ker ξ is again
coherent and flat over Y . We set initially A = ι∗F and repeat this construction
until ker ξ becomes lffr. This has to happen eventually as ι∗F is flat over Y
and Pn is smooth. Thus we obtain an lffr resolution of ι∗F of finite length.
Restricting it to Y × Cn demonstrates the first claim.

For the second claim: since πY is flat, the pullback π∗Y (−⊗ ρ0) is exact and

takesD(Y ) toDG(Y ×Cn). SinceF is of finite homological dimension,F
L
⊗−

takes DG(Y × Cn) to DG(Y × Cn). Moreover the image Im(F
L
⊗ −) lies in

the full subcategory of DG(Y × Cn) consisting of the objects with support in
SuppF . Finally, πF being proper implies that SuppF is proper over Cn, hence

RπCn∗ takes Im(F
L
⊗−) to DG(Cn) ([GD61], Corollaire 3.2.4).

The following demonstrates a certain relevance of gnat-families:

Proposition 3. Let G be a finite subgroup of SLn(C), Y a variety and E ∈
DG(Y × Cn) an object such that ΦE(− ⊗ ρ0) is an equivalence D(Y ) ∼−→
DG(Cn) which sends point sheaves on Y to pure sheaves. Then E is a gnat-
family over Y and its Hilbert-Chow map πE is a crepant resolution of Cn/G.
Moreover

G- Exti(E|y1
, E|y2

) =

{
C if y1 = y2, i = 0
0 if y1 6= y2

(3.7)

and for any y ∈ Y the (Kodaira-Spencer) map Ext1(Oy,Oy) → G- Ext1(E|y, E|y)
is an isomorphism.

Proof. By [Huy06], Example 5.1(vi),E|y = ΦE(Oy⊗ρ0), whence the assertion
(3.7) and the Kodaira-Spencer maps being isomorphisms. By [Bri99], Lemma
4.3, it follows thatE is a pure sheaf flat over Y . Then by Lemma 4 the inverse of
ΦE(−⊗ ρ0) is ΦE∨[n](−)G. It maps OCn to (πY ∗E

∨[n])G, so the cohomology
sheaves of (πY ∗E

∨[n])G are coherent OY -modules. Since πY ∗ is affine, the
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support ofE∨[n] is finite over Y . As Supp(E∨[n]) = SuppE, we conclude that
for each y ∈ Y the support of E|y is a finite union of G-orbits. The simplicity
of E|y further implies that it has to be a single G-orbit. To show that Γ (E|y) has
G-representation structure of Vreg it suffices, by flatness of E, to show it for any
single y ∈ Y . As the set {E|y}y∈Y is an image of a spanning class of D(Y )
under Φ(−⊗ ρ0), it is a spanning class for DG(Cn). Hence for every G-orbit Z
in Cn there exists y ∈ Y such thatE|y is supported atZ. ChooseZ to be any free
orbit. The only simple G-sheaf supported on a free orbit is its structure sheaf,
therefore Γ (E|y) ' Vreg. We conclude that E is a gnat-family and that πE is
surjective and an isomorphism outside the singularities of Cn/G. By [Rob98],
Theorem 6.2.2 and [BKR01], Lemma 3.1, Y is smooth and πE is crepant. It
remains to show that πE is proper, which is equivalent to SuppY×Cn E being
proper over Cn and that follows, e.g., from πCn∗E having to be coherent, as it
is a cohomology sheaf of the complex ΦE(OY ⊗ ρ0).

3.3. Main results

We now give the proof of Theorem 1. Its general framework follows those of
[BO95], Theorem 1.1 and of [BKR01], Theorem 1.1. We note two principal
differences: [BO95] works with smooth varieties, while we assume Y to be a
not necessarily smooth scheme (whence the content of Section 2); [BKR01]
adopts a two-step strategy to establish the left adjoint of ΦF (− ⊗ ρ0), whereas
our Lemma 4 achieves this directly.

Proof (Proof of Theorem 1).
We divide the proof into five steps:
Step 1: We claim that ΦF (− ⊗ ρ0) has a left adjoint (ΨF )G, where ΨF is a

certain integral transform DG(Cn) → DG(Y ).

Recall that ΦF = RπCn∗(F
L
⊗ π∗Y (−)). The issue here is the left adjoint of

π∗Y (−) as πY , though smooth, is manifestly non-proper. But the support of F

is proper, so by Lemma 4 the functor RπY ∗(−
L
⊗ F∨[n]) is the left adjoint to

π∗Y (−)
L
⊗ F . The claim now follows, for π∗Cn is the left adjoint to RπCn∗ and

(−)G is the left (and right) adjoint of −⊗ ρ0.
Step 2: We claim that the composition (ΨF )G ◦ ΦF (− ⊗ ρ0) is an integral

transform ΦQ for some Q ∈ D(Y × Y ) and that for any closed point (y1, y2)
in Y × Y and any k ∈ Z we have

Lk ι∗y1,y2
Q = G- Extk(F|y1

,F|y2
)∨. (3.8)

The first assertion is a standard result due to Mukai in [Muk81], Proposition
1.3. The second assertion follows from the formula (5) of [BKR01], Sec. 6, Step
2 by the adjunction of L ι∗y1,y2

and ιy1,y2∗.
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Step 3: We claim that Q is a pure sheaf and that its support lies within the
diagonal Y ∆−→ Y × Y .

First note that since Y × Y is of finite type over C, it is certainly Jacobson
(see [GD66], §10.3) and so any closed set of Y × Y is uniquely identified by
its set of closed points. We implicitly use this property at several points of the
argument below.

Recall the closed set Nk of (1.2). As the support of any G-constellation is
proper and as ωCn = OCn ⊗ ρ0 as a G-sheaf since G ⊆ SLn(C), Serre duality
applies to yield

G- Extk
Cn(F|y1

,F|y2
) = G- Extn−k

Cn (F|y2
,F|y1

)∨.

It follows that codimNk = codimNn−k for all k.
Let C be an irreducible component of SuppQ. Denote by yC its generic

point, by OC the local ring of yC and by QC the localisation of Q to OC . For
any k denote by Mk the set {y ∈ Y × Y | Lk ι∗yQ 6= 0} and let l and m
be the infimum and the supremum of the set {k ∈ Z | yC ∈ Mk}, hence
Tor-ampOC

QC = m− l (Lemma 3). By (3.8) the closure of Ml \∆ is Nl, so
yC ∈ Ml implies yC ∈ ∆ or yC ∈ Nl. Similarly for Nm. Thus either yC ∈ ∆
or yC ∈ Nl ∩Nm. The latter would imply that

codimC ≥ codimNl ≥ n− 2l + 1
codimC ≥ codimNm = codimNn−m ≥ 2m− n+ 1

and therefore that codimC ≥ m− l + 1. But then codimC would be strictly
greater than Tor-ampOC

QC , which contradicts Theorem 2. Thus yC lies within
∆ and, since Y is separated, so does all of C.

We have now shown that SuppQ ⊆ ∆, so codim SuppQ ≥ n. But as Cn

is smooth and n-dimensional, (3.8) implies

Lk ι∗yQ = 0 ∀y ∈ Y, k /∈ 0, . . . , n (3.9)

so Tor-ampQ ≤ n. By Theorem 2 Tor-ampQ = n and coh-ampQ = 0.
Together with (3.9) this implies that Q is a pure sheaf.

Step 4: We claim that Q is the structure sheaf O∆ of the diagonal ∆ and
therefore ΦF (−⊗ ρ0) is fully faithful.

The adjunction co-unit ΦQ → IdD(Y ) induces a surjective OY×Y -module
morphism Q

ε−→ O∆. Let K be its kernel, we then have a short exact sequence

0 → K → Q
ε−→ O∆ → 0. (3.10)

Choosing some closed point (y, y) ∈ ∆ and applying functor L ι∗y,y(−) to (3.10)
we obtain a long exact sequence of C-modules

· · · → G- Ext1Cn(F|y,F|y)∗
αy−→ Ω1

Y,y → Ky,y → G- EndCn(F|y)∗
εy−→ C → 0 → . . . .
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The map εy is surjective due to any G-constellation having automorphisms con-
sisting of scalar multiplication. It is an isomorphism wheneverF|y is simple, i.e.
when the scalar multiplication automorphisms are all we get. The map αy is the
dual of the Kodaira-Spencer map of F at y ∈ Y , which takes a tangent vector
at y to the infinitesimal deformation in that direction in the family F . Hence for
any y ∈ Y , such that F|y is simple and such that the Kodaira-Spencer map of F
is injective at y, the long exact sequence above shows that K|y,y = 0.

Having proved that SuppQ ⊆ ∆ we have proved by (3.8) that any two
G-constellations in F are orthogonal. Denoting by q the quotient map Cn →
Cn/G we claim that for any closed point x ∈ Cn/G, such that q−1(x) is a free
orbit of G, the fiber π−1

F (x) consists of at most a single point. This is because,
by definition of πF , all the G-constellations parametrised by π−1

F (x) are sup-
ported on q−1(x) - and any two G-constellations supported at the same free or-
bit are easily seen to be isomorphic. Thus πF is an isomorphism on the smooth
locus X0 of Cn/G. By [Log06], Proposition 1.5 the family F on X0 (identi-
fied with an open subset of Y via πF ) is locally isomorphic to the canonical
G-cluster family q∗OCn |X0 . As any G-cluster is simple and as the Kodaira-
Spencer map of q∗OCn |X0 is trivially injective K|y,y = 0 for any y ∈ X0.
Therefore codimY×Y SuppK ≥ n+ 1, as X0 is open in ∆.

On the other hand, since Tor-ampQ = Tor-ampO∆ = n, the short exact
sequence (3.10) implies that Tor-ampK ≤ n. As that is smaller than the codi-
mension of its support, K = 0 by Theorem 2. Thus Q ' O∆, the adjunction
co-unit is an isomorphism and ΦF (−⊗ ρ0) is fully faithful.

Step 5: We claim that ΦF (−⊗ ρ0) is an equivalence of categories.
AsD(Y ) is fully faithfully embedded inDG(Cn) the trivial Serre functor of

the latter induces a trivial Serre functor on the former. Therefore the left adjoint
to ΦF (− ⊗ ρ0) is also its right adjoint. Then ΦF (− ⊗ ρ0) is an equivalence of
categories by [Bri99], Theorem 3.3.

Proof (Proof of Corollary 1).
It suffices to demonstrate that F satisfies the condition of Theorem 1. Thus

we have to show that codimN0 ≥ 4 and codimN1 ≥ 2. But, as seen in the
proof of Theorem 1, Nk lies within the fibre product Y ×C3/G Y for all k.
As πF is birational its fibres are at most divisors and so the codimension of
Y ×C3/G Y is at least 2.

It remains to show that N0 ≥ 4. The assumptions of the Corollary ensure
that N0 is contained in the union of all sets of form (Ei ∩ Ej) × (Ek ∩ El) or
Ei × (Ei ∩ Ej ∩ Ek), and the codimension of each of these sets is 4.

4. Orthogonality in degree zero

Throughout this section we denote by G a finite abelian subgroup of SLn(C),
by Y a smooth scheme of finite type over C and by F a gnat-family on Y . We



16 Timothy Logvinenko

assume that the Hilbert-Chow morphism πF associated to F is birational and
proper. The main purpose of this section is to show how, given any pair of closed
points of Y , one checks whether the corresponding pair of G-constellations are
orthogonal in degree 0.

We denote by Vgiv the representation ofG given by its inclusion into SLn(C).
The (left) action of G on Vgiv induces a right action of G on Vgiv

∨ which we
make into a left action by setting:

g · f(v) = f(g−1 · v) for all v ∈ Vgiv, f ∈ Vgiv
∨, g ∈ G. (4.1)

We denote by x1, . . . , xn the common eigenvectors of the action of G on Vgiv
∨.

We denote by R the symmetric algebra S(Vgiv
∨) with the induced left action

of G. Then R = C[x1, . . . , xn] and as an affine G-scheme Cn is Spec R. We
denote by G∨ the character group Hom(G,C∗) of G. A rational function f ∈
K(Cn) is said to be G-homogeneous of weight χ ∈ G∨ if we have f(g.v) =
χ(g) f(v) for all v ∈ Cn where f is defined. We denote by ρ(f) the weight χ
of such f . It follows from (4.1) that G acts on f by ρ(f)−1.

From here on we employ freely the terminology and the results of [Log06].

4.1. The McKay quiver of G

By a quiver we mean a vertex set Q0, an arrow set Q1 and a pair of maps
h : Q1 → Q0 and t : Q1 → Q0 giving the head hq ∈ Q0 and the tail tq ∈ Q0

of each arrow q ∈ Q1. By a representation of a quiver we mean a graded vector
space

⊕
i∈Q0

Vi and a collection of linear maps {αq : Vtq → Vhq}q∈Q1 .

Definition 6. The McKay quiver of G is the quiver whose vertex set Q0 are the
irreducible representations ρ ofG and whose arrow setQ1 has dim HomG(ρi, ρj⊗
Vgiv) arrows going from the vertex ρi to the vertex ρj .

We have Vgiv
∨ =

⊕
Cxi, asG-representations. Denote byUχ the 1-dimensional

representation on which G acts by χ ∈ G∨. By Schur’s lemma

G- Hom(Uχi ⊗ Vgiv
∨, Uχj ) =

{
C if χj = χiρ(xk)−1 k ∈ {1, . . . , n}
0 otherwise

.

Thus each vertex χ of the McKay quiver of G has n arrows emerging from it
and going to vertices χρ(xk)−1 for k = 1, . . . , n. We denote the arrow from χ
to χρ(xk)−1 by (χ, xk). Let now A be a G-constellation viewed as an RoG-
module ([Log06], Section 1.1) and let⊕Aχ be its decomposition into irreducible
representations of G. Then the RoG-module structure on A defines a repre-
sentation of the McKay quiver into the graded vector space ⊕Aχ, where the
map αχ,xk

is just the multiplication by xk, i.e.

αχ,xk
: Aχ → Aχρ(xk)−1 , v 7→ xk · v. (4.2)
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4.2. Degree 0 orthogonality of G-constellations

Let A and A′ be two G-constellations and φ be an RoG-module morphism
A → A′. Let

⊕
G∨ Aχ and

⊕
G∨ A′χ be decompositions of A and A′ into one-

dimensional representations of G. By G-equivariance φ decomposes into linear
maps φχ : Aχ → A′χ.

Let {αq} and {α′q} be the corresponding representations of the McKay quiver
into graded vector spaces ⊕Aχ and ⊕A′χ, as per (4.2). Each αq is a linear map
between one-dimensional vector spacesAtq andAhq and so is either a zero-map
or an isomorphism, similarly for the maps α′q. So for each arrow of the McKay
quiver we distinguish the following four possibilities:

Definition 7. Let q be an arrow of McKay quiver of G. With the notation above
we say that with respect to an ordered pair (A,A′) ofG-constellations the arrow
q is:

1. a type [1, 1] arrow, if both αq and α′q are isomorphisms.
2. a type [1, 0] arrow, if αq is an isomorphism and α′q is a zero map.
3. a type [0, 1] arrow, if αq is a zero map and α′q is an isomorphism.
4. a type [0, 0] arrow, if both αq and α′q are zero maps.

Proposition 4. Let q and (A,A′) be as in Definition 7 and let φ be any RoG-
module morphism A→ A′. Then:

1. If q is a [1, 0] arrow, then Ahq ⊆ kerφ.
2. If q is a [0, 1] arrow, then Atq ⊆ kerφ.
3. If q is a [1, 1] arrow, Atq and Ahq either both lie in kerφ or both don’t.

Proof. Write q = (χ, i) where χ ∈ G∨ and i ∈ {1, . . . , n}. Recall that αq is the
map Atq → Ahq corresponding to the action of xi on Atq. Then R-equivariance
of the morphism φ implies a commutative square

Ahq
φhq // A′hq

Atq
φtq

//

αq

OO

A′tq

α′q

OO

from which all three claims immediately follow.

Corollary 2. Let (A,A′) be an ordered pair of G-constellations. If every com-
ponent of the McKay quiver path-connected by [1, 1]-arrows has either a [0, 1]-
arrow emerging from it or a [1, 0]-arrow entering it, then

HomRoG(A,A′) = 0.
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If, also, every component has either a [0, 1]-arrow entering it or a [1, 0]-arrow
emerging from it, then we further have

HomRoG(A′, A) = 0

and therefore A and A′ are orthogonal in degree 0.

4.3. Divisors of zeroes

The Hilbert-Chow morphism πF : Y → Cn/G is birational, thus it defines a
notion of G-Cartier and G-Weil divisors on Y ([Log06]), Section 2). The family
F , in a sense of a sheaf of OY ⊗ (RoG)-modules on Y , can be written as⊕

χ∈G∨ L(−Dχ), whereDχ areG-Weil divisors. For any other such expression⊕
L(−D′

χ) of F there exist f ∈ K(Y ) such that D′
χ = Dχ + (f) for all

χ ∈ G∨ ([Log06], Section 3.1).

Definition 8. Let q = (χ, xk) be an arrow in the McKay quiver of G. We define
the divisor of zeroes Bq of q in F to be the Weil divisor

Dχ−1 + (xi)−Dχ−1ρ(xi). (4.3)

Note that Bq is always an ordinary, integral Weil divisor on Y .

Proposition 5. Let (χ, xk) be an arrow in the McKay quiver of G and Bχ,xk

be its divisor of zeroes in F . Let y be a closed point of Y and A be the G-
constellation F|y. Then in the corresponding representation {αq}q∈Q1 of the
McKay quiver the map αχ,xk

is a zero map if and only if y ∈ Bχ,xk
.

Proof. The map αχ,xk
: Aχ → Aχρ(xk)−1 is the action of xk on Aχ. This map

is the restriction to the point y of the global section β of the OY -module

HomG,OY
(OY xk ⊗Fχ,Fχρ−1(xk)) (4.4)

defined by xk ⊗ s 7→ xk · s for any section s of the χ-eigensheaf Fχ.
As G acts on a monomial of weight χ by χ−1 the χ-eigensheaf of F is

L(−Dχ−1). Hence (4.4) is canonically isomorphic to the following sub-OY -
module of K(Cn):

L(Dχ−1 + (xk)−Dχ−1ρ(xk)) (4.5)

and the isomorphism maps β to the global section 1 ∈ K(Cn) of (4.5). Which
vanishes precisely on the Weil divisor Bχ,xk

= Dχ−1 + (xk)−Dχ−1ρ(xk).

Proposition 5 together with Corollary 2 show that the data of the divisors of
zeroes ofF is all that is necessary to determine whether any given pair of closed
points of Y are orthogonal in degree 0 in F .
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4.4. Direct transforms

Let Y ′ and Y ′′ be two crepant resolutions of Cn/G isomorphic outside of a
closed set of codimension≥ 2. E.g. the case n = 3 where all crepant resolutions
are related by a chain of flops ([Kol89]). We fix a birational isomorphism and use
it to identify Y ′ and Y ′′ along the isomorphism locus U . Since the complement
of U is of codimension ≥ 2 in Y ′ (resp. Y ′′) any line bundle or divisor on U
extends uniquely to a line bundle or a divisor on Y ′ (resp. Y ′′). The same is true
of a family of G-constellations as for G abelian any such family is a direct sum
of line bundles. For any family V ′ of G-constellations on Y ′ we define its direct
transform V ′′ to Y ′′ to be the unique extension to Y ′′ of the restriction of V ′ to
U . Observe that if V ′ is of form

⊕
χ L(−D′

χ) for some G-Weil divisors D′
χ on

Y ′ then V ′′ is the family
⊕
L(−D′′

χ) where each D′′
χ is the direct transform of

D′
χ.

If F can be shown to be a direct transform of some everywhere orthogonal
in degree 0 family F ′ on some Y ′, it greatly reduces the number of calculations
necessary to determine the degree 0 non-orthogonality locus of F . Let U be as
above. As F is the direct transform of F ′, the restriction of F to U ⊂ Y is
isomorphic to the restriction of F ′ to U ⊂ Y ′. So the calculations only have to
be carried out for points in Y × Y \ U × U .

4.5. Theta stability and gnat-families

We recall basic facts about θ-stability for G-constellations, cf. [CI04], Section
2.1. Let Z(G) =

⊕
χ∈G∨ Zχ be the representation ring of G and set

Θ = {θ ∈ HomZ(Z(G),Q) | θ(Vreg) = 0}

For any θ ∈ Θ, a G-constellation A is θ-stable (resp. θ-semistable) if for every
sub-RoG-module B of A we have θ(B) > 0 (resp. θ(B) ≥ 0). We say that θ
is generic if every θ-semistable G-constellation is θ-stable. This is equivalent to
θ being non-zero on any proper subrepresentation of Vreg.

Let π be any proper birational morphism Y → Cn/G. A gnat-family V on
Y

π−→ Cn/G is normalized if VG ' OY . Such V can be written uniquely as⊕
χ∈G∨ L(−Dχ) for some G-Weil divisors Dχ with Dχ0 = 0 ([Log06], Cor.

3.5). Denote by E the set of all prime Weil divisors on Y whose image in Cn/G

is either a point or a coordinate hyperplane x|G|i = 0. AsG is abelian, any branch
divisor of Cn → Cn/G, if it exists, is one of the hyperplanes x|G|i = 0. Hence,
by [Log06], Prop. 3.14 and 3.15, each Dχ is of form

∑
E∈E qχ,EE. Denote by

U the open subset of Y consisting of points lying on at most one divisor in E.
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Definition 9. Let θ be an element of Θ. We define a map

wθ :
{

normalized gnat-families on Y π−→ Cn/G
}
→ Q

by

wθ(V) =
∑
E∈E

∑
χ∈G∨

θ(χ)qχ,E . (4.6)

The domain of definition of wθ is finite ([Log06], Corollary 3.16), so for any
θ ∈ Θ there is at least one normalized gnat-family maximizing wθ.

Proposition 6. Let M be any family which maximizes wθ(M). Then for any
point y ∈ U the fiber of M at y is a θ-semistable G-constellation. If, moreover,
θ is generic, then such family M is unique.

Proof. WriteM as
⊕
L(−Mχ). Suppose that the fiber ofM is not θ-semistable

at some y ∈ U . Denote this fiber by A, its decomposition into irreducible rep-
resentations by

⊕
χ∈G∨ Aχ and the corresponding representation of the McKay

quiver by {αq}. As A isn’t θ-semistable there exists a non-empty proper subset
I of G∨ such that A′ =

⊕
χ∈I Aχ is a sub-RoG-module of A and θ(A′) < 0.

Denote by J the complementG∨\I . Denote byQI→J the subset {q ∈ Q1 | tq ∈
I, hq ∈ J} of the arrow set Q1 of the McKay quiver and similarly for QJ→I ,
QI→I , QJ→J . Then A′ being closed under the action of R implies that for any
q ∈ QI→J the map αq is a zero map. Which by Proposition 5 implies y ∈ Bq.

The support of each Mχ consists only of the prime divisors in E ([Log06],
Prop. 3.14 and 3.15). The same is true of the principal divisors (xi) for their
images in Cn/G are the coordinate hyperplanes x|G|i = 0. Therefore, by their
defining equation (4.3), the support of each of the divisors of zeroes Bq of M
consists also only of the prime divisors in E. As y lies on allBq with q ∈ QI→J ,
y must lie on at least one divisor in E. But, as y ∈ U , y also lies on at most one
divisor in E. Denote this unique divisor by E, then

q ∈ QI→J ⇒ E ⊂ Bq. (4.7)

Define a new G-Weil divisor set {M ′
χ} by setting M ′

χ to be Mχ if χ ∈ I and
Mχ + E if χ ∈ J . Then divisors {B′

q} defined from {M ′
χ} by equations (4.3)

can be expressed as

B′
q =


Bq if q ∈ QI→I , QJ→J

Bq + E if q ∈ QJ→I

Bq − E if q ∈ QI→J

. (4.8)
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Since {Bq} are all effective (4.8) and (4.7) imply that {B′
q} are also all effective.

Therefore
⊕
L(−M ′

χ) is a normalized gnat-family. But

wθ(M′) = wθ(M) +
∑
χ∈J

θ(χ) (4.9)

which contradicts the maximality of wθ(M) since
∑

χ∈J θ(χ) = −θ(A′) > 0.
For the second claim let N =

⊕
L(−Nχ) be another normalized family

θ-semistable over U . Let B′
q be divisors of zeroes of N . Then

Bq −B′
q = (Mtq −Ntq)− (Mhq −Nhq). (4.10)

Take any E′ ∈ E such that the sets {mχ,E′} and {nχ,E′} of the coefficients
of E′ in {Mχ} and {Nχ} are distinct. Then J ′ = {χ ∈ G∨ | nχ,E′ > mχ,E′}
is a non-empty proper subset of G∨. Denote by I ′ its complement. For any
q ∈ QI′→J ′ the coefficient of E′ in the RHS of (4.10) is strictly positive. As
B′

q is effective we conclude that q ∈ QI′→J ′ implies E′ ⊂ Bq. So for any
y ∈ E′ the restriction (

⊕
χ∈I′ L(Mχ))|y is a sub-RoG-module of M|y. But

as M is θ-semistable on U and as U ∩ E′ 6= ∅ we must have
∑

χ∈I′ θ(χ) ≥ 0.
Similarly if q ∈ QJ ′→I′ , then the RHS of (4.10) is strictly negative, so E′ ⊂ B′

q

and θ-semistability of N implies
∑

χ∈J ′ θ(χ) = −
∑

χ∈I′ θ(χ) ≥ 0. Therefore∑
χ∈I′ θ(χ) = 0 and θ is not generic.

The fine moduli space Mθ of θ-stable G-constellations can be constructed
via GIT theory, together with the universal family Mθ. The Hilbert-Chow mor-
phism πθ ofMθ is projective. As the universal family is defined up to an equiv-
alence of families, that is up to a twist by a line bundle, we can assume Mθ to
be normalised.

Assume for the rest of this section that n = 3. If θ is generic, then Mθ is a
projective crepant resolution of C3/G and Mθ is everywhere orthogonal in all
degrees. As any two crepant resolutions of a canonical treefold are connected by
a chain of flops, Mθ and Y are isomorphic outside of a codimension 2 subset.
The maps Y π−→ C3/G and Mθ

πθ−→ C3/G fix a choice of a birational isomor-
phism between Y and Mθ. This, as described in Section 4.4, defines a notion of
direct transforms between Y and Mθ.

Corollary 3. Let θ ∈ Θ be generic. Let M be the unique normalized gnat-
family on Y which maximizes the map wθ. Then M is isomorphic to the direct
transform of Mθ from Mθ to Y .

Proof. By the first claim of Proposition 6,M is θ-stable on U . So, by its defini-
tion, is the direct transform of Mθ to Y . Hence, by the second claim of Propo-
sition 6, M and the direct transform of Mθ must be isomorphic.
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5. Non-projective example

In this section we give an application of the Theorem 1 whereby we construct
explicitly a derived McKay correspondence for a choice of an abelian G ⊂
SL3(C) and of a non-projective crepant resolution Y of C3/G.

5.1. The group

We set the group G to be 1
6(1, 1, 4)⊕ 1

2(1, 0, 1). That is, the image in SL3(C) of
the product µ6 × µ2 of groups of 6th and 2nd roots of unity, respectively, under
the embedding:

(ξ1, ξ2) 7→

ξ1ξ2 ξ1
ξ41ξ2

 . (5.1)

We denote by χi,j the character of G induced by (ξ1, ξ2) 7→ ξi
1ξ

j
2.

Calculating the McKay quiver of G (cf. Section 4.1), we obtain:

Figure 2

The way we’ve chosen to depict the McKay quiver reflects the fact that it has a
universal cover quiver naturally embedded into R2. This point of view will not
be essential for our argument but a curious reader should consult [CI04], Section
10.2 and [Log04], Section 6.4.
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5.2. The resolution

We define the crepant resolution Y of C3/G using methods of toric geometry.
For the specifics related to G-constellations see [Log03], Section 3.

We define the relevant notation. The embedding (5.1) defines a surjection of
torii

0 // G // (C∗)3 // T // 0 . (5.2)

Applying Hom(•,C∗) to (5.2) we obtain the character lattices of the torii:

0 // M // Z3
ρ // G∨ // 0 . (5.3)

Given any character m = (k1, k2, k3) ∈ Z3 of (C∗)3 we denote by xm the
Laurent monomial xk1

1 x
k2
2 x

k3
3 in R. Applying Hom(•,Z) to (5.3) we obtain the

dual lattices

0 // (Z3)∨ // N // Ext1(G∨,Z) // 0 .

Let e1, e2, e3 be the basis of (Z3)∨ dual to x1, x2, x3. The dual lattice N is
generated over (Z3)∨ by 1

6(1, 1, 4) and 1
2(1, 0, 1). The quotient space C3/G is

the toric variety given by a single cone σ≥0 =
∑

R≥0ei in N . Let Y be the
toric variety whose fan F in N is the subdivision of σ≥0 which triangulates the
junior simplex ∆ = {(k1, k2, k3) ∈ σ≥0 |

∑
ki = 1} as depicted below

Figure 3

where by ei we denote the following elements of N

e1 = (1, 0, 0) e2 = (0, 1, 0) e3 = (0, 0, 1)
e4 = 1

6(1, 1, 4) e5 = 1
3(1, 1, 1) e6 = 1

2(1, 1, 0)
e7 = 1

6(1, 4, 1) e8 = 1
2(1, 0, 1) e9 = 1

6(4, 1, 1)
e10 = 1

2(0, 1, 1).

(5.4)
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Denote by π the map Y → C3/G defined by the inclusion of F into σ≥0. All the
maximal cones of F are basic inN , so Y is smooth. The generators ei of the rays
of F lie in ∆, so the map π is crepant([Rei87], Prop. 4.8). Finally, the argument
of [KKMSD73], Chapter III, §2E, Example 2 shows that π is non-projective.

The quotient torus T acts on Y and to each k-dimensional cone σ in F cor-
responds a (3 − k)-dimensional orbit of T . We denote it by Sσ and denote by
Eσ the closure of Sσ, it is the union of all orbits Sσ′ with σ ⊆ σ′. For each cone
〈ei〉 in the fan F, we denote by Si the codimension 1 orbit S〈ei〉 and by Ei the
divisor E〈ei〉. Similarly we use Si,j and Ei,j for the codimension 2 orbit S〈ei,ej〉
and the surface E〈ei,ej〉 and we use Ei,j,k for the toric fixed point E〈ei,ej ,ek〉.

5.3. The family

The map Y π−→ C3/G defines the notion of G-Weil divisors on Y . Any nor-
malized gnat-family on Y π−→ C3/G is of the form

⊕
χ∈G∨ L(−Dχ) for some

G-Weil divisors Dχ with Dχ0,0 = 0. Moreover, as explained in [Log06], Sec-
tion 3.5, there exists the maximal shift family⊕L(−Mχ) such that for any other
normalized gnat-family ⊕L(−Dχ) we have

Mχ ≥ Dχ (5.5)

for all χ ∈ G∨. We denote this family by F and shall prove it to satisfy the
assumptions of Corollary 1.

In the notation of Section 5.2 each divisor Mχ is of form
∑
qχ,iEi. The

coefficients qχ,i can be calculated via formula

qχ,i = inf{ei(m) | m ∈ σ∨≥0 ∩ ρ−1(χ)}. (5.6)

A detailed example of such calculation can be seen in [Log03], Example 4.21.
In our case, we obtain qχ,i to be:

χ \ i 4 5 6 7 8 9 10 χ \ i 4 5 6 7 8 9 10

χ0,0 0 0 0 0 0 0 0 χ2,0
2

6

4

6
0

2

6
0

2

6
0

χ4,0
4

6
1
2

6
0

4

6
0

4

6
0 χ1,1

1

6

2

6

3

6

1

6

3

6

4

6
0

χ1,0
1

6

2

6

3

6

4

6
0

1

6

3

6
χ4,1

4

6

2

6
0

1

6

3

6

1

6

3

6

χ3,1
3

6
1

3

6

3

6

3

6
1 0 χ3,0

3

6
1

3

6
1 0

3

6

3

6

χ0,1 1 1 0
3

6

3

6

3

6

3

6
χ5,1

5

6

4

6

3

6

5

6

3

6

2

6
0

χ5,0
5

6

4

6

3

6

2

6
0

5

6

3

6
χ2,1

2

6

4

6
0

5

6

3

6

5

6

3

6

(5.7)
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The principal G-Weil divisors (xk) can be calculated with a formula

(xi) =
1
12

10∑
j=1

ej(x12
i )Ej , (5.8)

cf. [Log03], Prop. 3.2. In our case we obtain:

(x1) = E1 +
1

6
E4 +

1

3
E5 +

1

2
E6 +

1

6
E7 +

1

2
E8 +

4

6
E9

(x2) = E2 +
1

6
E4 +

1

3
E5 +

1

2
E6 +

4

6
E7 +

1

6
E9 +

1

2
E10

(x3) = E3 +
4

6
E4 +

1

3
E5 +

1

6
E7 +

1

2
E8 +

1

6
E9 +

1

2
E10

(5.9)

Substituting the data of (5.9) and (5.7) into the formula (4.3) we calculate for
every arrow of the McKay quiver its divisor of zeroes in F :

Bχ0,0,1 = E1 Bχ1,1,1 = E1 + E4 + E5 + E6 + E7 + E8 + E9

Bχ0,0,2 = E2 Bχ1,1,2 = E2 + E6 + E7

Bχ0,0,3 = E3 Bχ1,1,3 = E3 + E4 + E8

Bχ4,0,1 = E1 Bχ1,0,1 = E1 + E6 + E9

Bχ4,0,2 = E2 Bχ1,0,2 = E2 + E4 + E5 + E6 + E7 + E9 + E10

Bχ4,0,3 = E3 Bχ1,0,3 = E3 + E4 + E10

Bχ2,0,1 = E1 + E5 + E9 Bχ4,1,1 = E1 + E8 + E9

Bχ2,0,2 = E2 + E5 + E7 Bχ4,1,2 = E2 + E7 + E10

Bχ2,0,3 = E3 + E4 + E5 Bχ4,1,3 = E3 + E4 + E5 + E7 + E8 + E9 + E10

Bχ5,1,1 = E1 + E6 + E8 + E9 Bχ3,1,1 = E1 + E6 + E8 + E9

Bχ5,1,2 = E2 + E6 Bχ3,1,2 = E2 + E5 + E6 + E7 + E9

Bχ5,1,3 = E3 + E8 Bχ3,1,3 = E3 + E4 + E5 + E8 + E9

Bχ5,0,1 = E1 + E6 Bχ3,0,1 = E1 + E5 + E6 + E7 + E9

Bχ5,0,2 = E2 + E6 + E7 + E10 Bχ3,0,2 = E2 + E6 + E7 + E10

Bχ5,0,3 = E3 + E10 Bχ3,0,3 = E3 + E4 + E5 + E7 + E10

Bχ2,1,1 = E1 + E8 Bχ0,1,1 = E1 + E4 + E5 + E8 + E9

Bχ2,1,2 = E2 + E10 Bχ0,1,2 = E2 + E4 + E5 + E7 + E10

Bχ2,1,3 = E3 + E4 + E8 + E10 Bχ0,1,3 = E3 + E4 + E8 + E10.

(5.10)

5.4. A sample calculation

Corollary 2 together with the table (5.10) are all that we need to check any two
G-constellations in F for the degree 0 orthogonality. Below we give an example
of a calculation which verifies that any point on the torus orbit S8 and any point
on the torus orbit S1,7 are orthogonal in degree 0 in F .

Let a be any point of S8. Then a lies on no divisor Ei other than E8. Hence
a ∈ Bq if and only if E8 ⊂ Bq. Let A be the fiber of F at a and {αq} be
the corresponding representation of the McKay quiver. By Proposition 5 for any
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arrow q the map αq is a zero map if and only if E8 ∈ Bq. On Figure 4 we use
the table (5.10) and mark all the zero-maps in {αq} by drawing a line through
the corresponding arrow of the McKay quiver. Similarly if b is a point of S1,7

then b lies on no Ei other than E1 and E7. Let B be the fiber of F at b and {βq}
be the corresponding representation. As above βq is a zero-map if and only if
either E1 or E7 belongs to Bq. On Figure 5 we mark all the zero-maps {βq}.

Figure 4 Figure 5

Figure 6 Figure 7

On Figure 6 we combine the markings of Figures 4 and 5. The arrows left
unmarked are the arrows of type [1, 1] with respect to the pairA,B (Def. 7). It is
clear that the components path-connected by [1, 1]-arrows are: {χ0,0, χ2,1, χ5,0, χ1,1},
{χ5,1, χ4,1, χ2,0}, {χ1,0, χ3,1} and {χ0,1, χ4,0, χ3,0}. Now, with Cor. 2 in mind,
we search the borders of these four regions for the [1, 0] and [0, 1]-arrows. The
[1, 0]-arrows are the ones unmarked on Figure 4 but marked on Figure 5 and
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vice versa for [0, 1]. On Figure 7 we’ve marked on the border of each region
an incoming and an outgoing [0, 1]-arrow. By Cor. 2 we see that A and B are
orthogonal in degree 0.

5.5. Final calculations

We now claim thatF is the direct transform of the universal family ofG-clusters
on G-Hilb(C3). In the notation of Section 4.5 define θ+ ∈ Θ by θ+(χ0,0) =
1 − |G| and θ+(χ) = 1 for χ 6= χ0,0. Evidently θ+ is generic. It follows from
the original observation by Ito and Nakajima in [IN00], §3, that G-clusters can
be identified with θ+-stableG-constellations, thus identifyingG-Hilb(C3) with
the fine moduli space Mθ+ . On the other hand, inequalities (5.5) imply that F
maximizes ωθ+ on Y π−→ C3/G. Hence, by Corollary 3,F is the direct transform
of Mθ+ from G-Hilb(C3) to Y .

For a detailed description of an algorithm which allows one to calculate the
toric fan of G-Hilb(C3) see in [CR02]. For our group G we obtain:

Figure 8

The general points of an exceptional surface Ei, as per the statement of
Corollary 1, are precisely the codimension 1 torus orbit Si. Similarly, the gen-
eral points of an exceptional curve Ei ∩ Ej are precisely the codimension 2
torus orbit Si,j . Comparing Figure 8 with the fan of Y on Figure 3 we see that
the only codimension 1 or 2 torus orbits in Y whose corresponding cones aren’t
also contained in the fan of G-Hilb(C3) are S1,7, S2,4 and S3,9. The argument
in Section 4.4 reduces verifying that F satisfies the conditions of Corollary 1, to
checking that each of these three orbits is orthogonal in degree 0 in F to every
codimension 1 orbit Si.

We claim that, in fact, it suffices to check it for just one of these orbits. Let
φ be the rotation of the fan of Y around the ray e5 which rotates Figure 2 clock-
wise by 2π/3. Let ψ be the rotation of the plane containing the McKay quiver
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on the Figure 3 anti-clockwise by 2π/3 with center at χ0,0. Observe that the
permutation of the divisors Ei defined by φ and the permutation of the arrows
of the McKay quiver defined by ψ leave the numerical data (5.10) of divisors of
zeroes of F invariant1. It follows that the orthogonality calculation of Section
5.4 for any pair of torus orbits S, S′ and the same calculation for φ(S), φ(S′)
differ on Figures 4-7 only by a rotation by ψ. The claim now follows as the
cones of S1,7, S2,4 and S3,9 are permuted by φ.

We choose to treat S1,7. We repeat the calculation of Section 5.4 for S1,7

and every other orbit Si and list below the analogues of Figure 7. From them, as
elaborated in Section 5.4, the reader could readily ascertain the orthogonality in
F of the torus orbits involved.

We conclude, by Corollary 1, that the integral transform ΦF (− ⊗ ρ0) is an
equivalence of categories D(Y ) → DG(C3) and that a posteriori the family F
is everywhere orthogonal in all degrees.

(S1, S1,7) and (S7, S1,7) (S2, S1,7)

1 This invariance is a consequence of the fan of Y being symmetric and ofF being intrinsically
defined as the maximal shift family.
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(S3, S1,7) (S4, S1,7)

(S5, S1,7) (S6, S1,7)

(S9, S1,7) (S10, S1,7)
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