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Abstract. We show that the adjunction counits of a Fourier-Mukai transform Φ: D(X1) → D(X2) arise

from maps of the kernels of the corresponding Fourier-Mukai transforms. In a very general setting of proper
separable schemes of finite type over a field we write down these maps of kernels explicitly – facilitating

the computation of the twist (the cone of an adjunction counit) of Φ. We also give another description of

these maps, better suited to computing cones if the kernel of Φ is a pushforward from a closed subscheme
Z ⊂ X1 ×X2. Moreover, we show that we can replace the condition of properness of the ambient spaces X1

and X2 by that of Z being proper over them and still have this description apply as is. This can be used, for
instance, to compute spherical twists on non-proper varieties directly and in full generality.

1. Introduction

The bounded derived category D(X) of coherent sheaves on a variety X had long been recognized as a
crucial invariant of X which holds a wealth of information about its geometry. In order to work conveniently
with functors between the derived categories of two varieties the language of Fourier-Mukai transforms was
developed by Mukai, Bondal and Orlov, Bridgeland and many others. In brief, we can define a functor
D(X1)→ D(X2) by specifying an object in the derived category of D(X1 ×X2). A morphism between such
defining objects induces a natural transformation between the functors. In this paper we write down the
adjunction counit of a general Fourier-Mukai transform in this language — as morphisms of defining objects.

Let X1 and X2 be a pair of smooth projective varieties. We have the following commutative diagram:

X1 ×X2 ×X1

π12

wwnnnnnnnnnnnn
π13

��

π23

''PPPPPPPPPPPP

X1 ×X2

π1

zzuuuuuuuuu
π2

''PPPPPPPPPPPPP X1 ×X1

π̃1

tthhhhhhhhhhhhhhhhhhhhhh

π̃2

**VVVVVVVVVVVVVVVVVVVVVV X2 ×X1

π2

wwnnnnnnnnnnnnn
π1

$$I
IIIIIIII

X1 X2 X1

(1.1)

Let E ∈ D(X1 ×X2). The Fourier-Mukai transform from X1 to X2 with kernel E is the functor

ΦE(−) = π2∗ (E ⊗ π∗1(−)) . (1.2)

Here and throughout the paper all the functors are derived unless mentioned otherwise. It is well-known (e.g.
[BO95], Lemma 1.2) that the left adjoint of ΦE is the Fourier-Mukai transform from D(X2) to D(X1) with
kernel E∨ ⊗ π!

1(OX1) where π!
1(OX1) = π∗2(ωX2)[dimX2]. Denote this adjoint by Φladj

E . A composition of
Fourier-Mukai transforms is again a Fourier-Mukai transform ([Muk81], Prop. 1.3). In particular, Φladj

E ΦE is
the Fourier-Mukai transform D(X1)→ D(X1) with kernel

Q = π13∗
(
π∗12E ⊗ π∗23E

∨ ⊗ π∗23π
!
1(OX1)

)
. (1.3)

On the other hand, the identity functor Id is the Fourier-Mukai transform D(X1) → D(X1) with kernel
O∆ = ∆∗OX1 where ∆ is the diagonal inclusion X1 ↪→ X1 ×X1.

Consider now the left adjunction counit

Φladj
E ΦE → Id . (1.4)

In general, morphisms between Fourier-Mukai kernels map neither injectively nor surjectively to natural
transformations between the Fourier-Mukai transforms. Thus there is no a priori reason for (1.4) to come
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from some morphism Q → O∆. In this paper we construct explicitly a natural choice of such morphism,
working in a much greater generality of separated schemes of finite type over a field.

The principal application is to compute, and even define, spherical twists. These are an important class of
auto-equivalences of the derived category D(X) of a variety X. They are first examples of genuinely derived
auto-equivalences, in a sense that they are neither shifts, nor come from auto-equivalences of the underlying
abelian category CohX. In brief, a spherical twist is an auto-equivalence of D(X) produced from a spherical
object in D(X) or, more generally, a spherical functor D(Y )→ D(X). Spherical objects were introduced by
Seidel and Thomas in [ST01] as mirror symmetry analogues of Lagrangian spheres on a symplectic manifold.
Their defining properties ensure that the twist by a spherical object is an auto-equivalence of D(X). This was
generalised in [Ann07] to exact functors between triangulated categories in such a way that Seidel-Thomas
spherical objects are precisely the (Fourier-Mukai kernels of) spherical functors D(Spec k) → D(X), where
k is the base field.

Taking the twist of a functor is completely general and does not in itself rely on the fact that the functor
is spherical. The ideal definition would be the following:

“Definition”: Let C1 and C2 be triangulated categories. Let S be an exact functor C1 → C2 which has
a right (resp. left) adjoint R (resp. L). The twist (resp. the dual co-twist) of S is the functor TS : C2 → C2

(resp. F ′S : C1 → C1) which is the functorial cone of the adjunction counit SR→ Id (resp. LS → Id).

The problem with this definition is the well-known fact that cones in triangulated categories are not
functorial. The cone of a morphism between two objects is uniquely defined (up to an isomorphism), but a
cone of a morphism between two functors might not exist or might not be unique. This is usually fixed by
restricting to a setting where the cone of a morphism of functors is well-defined, cf. [Ann07], §1. One way is
to consider only the functors which are Fourier-Mukai transforms and only the natural transformations which
come from morphisms of Fourier-Mukai kernels. But then to define a twist of a Fourier-Mukai transform
we need a natural choice of the morphism of Fourier-Mukai kernels underlying the corresponding adjunction
counit, while to compute the twist we need an efficient way of computing the cone of this morphism. This
paper addresses both of these issues.

The construction of the natural morphism of Fourier-Mukai kernels underlying the adjunction counit of a
general Fourier-Mukai transform is carried out in Section 3. Thanks to the recent advances in Grothendieck
duality machinery summarised in Section 2 we can work with separated schemes of finite type over a field
and with derived categories Dqc(−) of unbounded complexes with quasi-coherent cohomology. So let X1 and
X2 be two separated schemes of finite type, E a perfect object of D(X1 × X2) and ΦE the Fourier-Mukai
transform D(X1) → D(X2) with kernel E. Let X2 be proper, so that the left adjoint Φladj

E of ΦE is again
a Fourier-Mukai transform. Then the left adjunction counit Φladj

E ΦE → Id is induced by the morphism
Q = π13∗

(
π∗12E ⊗ π∗23E

∨ ⊗ π∗23π
!
1(OX1)

)
→ O∆ which roughly is the composition of the following:

π13∗

(
The adjunction unit Id→ ∆13∗∆∗13 for the diagonal X1 ×X2

∆13−−→ X1 ×X2 ×X1

)
(1.5)

∆∗π1∗ (The evaluation map E ⊗ E∨ → OX1×X2 on X1 ×X2) (1.6)

∆∗
(
The adjunction counit π1∗π

!
1(OX1)→ OX1

)
(1.7)

For the precise formulas see Theorem 3.1. When X1 is also proper ΦE , ΦladjE and (1.5)-(1.7) restrict to the
full subcategories of Dqc(−) consisting of bounded complexes with coherent cohomologies. If X2 is smooth
π!

1(OX1) = π∗2(ωX2)[dimX2] as before. Theorem 3.2 give the analogous result for the right adjunction counit.
This allows us to define the twist and the dual co-twist of any Fourier-Mukai transform. Section 4 deals

with the issue of computing them. Anyone trying to compute the cone of the decomposition (1.5)-(1.7) will
find it ill-suited to the task if the support of E has high codimension in X1 × X2. We give an example in
Section 4.1 with E the structure sheaf OZ of a complete intersection subscheme Z in X1×X2 of codimension
d > 0 which satisfies certain transversality conditions. Then morphisms (1.5) and (1.6) both have huge cones
with non-zero cohomologies in all degrees from −d to 0. However these two cones mostly annihilate each other
and the cone of composition (1.5)-(1.6) is actually quite small. This suggests an alternative decomposition of
(1.5)-(1.6) better suited to computing cones, cf. (4.4).
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In the rest of Section 4 we make this into a general argument. The key idea is to take the decomposition
(1.5)-(1.7) obtained in Section 3 and apply to it the base change for Künneth maps. If E is a pushforward of
an object from a closed subscheme Z

ιZ
↪→ X1 ×X2, then the evaluation map E ⊗ E∨ → OX1×X2 involves the

derived self-intersection of Z inside X1 ×X2. In precise terms, it involves the Künneth map (see Section 4.3
for the definition) for the fiber square σ∆ depicted on the left in (1.8):

σ∆ :

Z

��

// Z

ιZ

��
Z ιZ

// X1 ×X2

Restriction to X1 ×X2
∆13−−−→ X1 ×X2 ×X1←−−−−−−−−−−−−−−−−−−−−−−−−−−−− σ :

Z ′

��

// X1 × Z

ιZ23

��
Z ×X1 ιZ12

// X1 ×X2 ×X1

(1.8)

Thus in (1.5)-(1.6) we first restrict fiber square σ to the diagonal X1 ×X2 in X1 ×X2 ×X1 which turns
it into σ∆ and then we do the Künneth map on σ∆. Given two subschemes, the cone of the Künneth map
for the fiber square of their intersection reflects, roughly, how far this intersection is from transverse. In σ∆

we have the self-intersection of Z in X1 ×X2 which is the opposite of transverse. This suggests first doing
the Künneth map on σ, as the intersection of Z ×X1 with X1×Z in X1×X2×X1 may be more transverse,
and then restricting to the diagonal Z in Z ′.

Write πZ1 for the composition Z
ιZ
↪→ X1×X2

π1−→ X1. In Prop. 4.4 we prove that Künneth maps commute
with arbitrary base change. Then in Theorem 4.1 we show that the composition (1.5)-(1.7) is isomorphic to
roughly the following (cf. Theorem 4.1 for precise formulas):

π13∗ (The Künneth map for σ) (1.9)

π13∗ιZ′∗

(
The adjunction unit Id→ ∆′∗∆

′∗ for the diagonal Z ∆′−−→ Z ′
)

(1.10)

∆∗πZ1∗ (The evaluation map for E on Z) (1.11)

∆∗
(
The adjunction counit πZ1∗π

!
Z1(OX1)→ OX1

)
(1.12)

This is our preferred decomposition of morphism Q → O∆. Theorem 4.2 gives the analogous statement for
the right adjunction counit.

One advantage of decomposition (1.9)-(1.12) is that most of the morphisms in it can become isomorphisms
under fairly reasonable assumptions on E and Z. Indeed, while the Künneth map for square σ∆ is never
an isomorphism unless Z is the whole of X1 ×X2, the Künneth map for σ is an isomorphism whenever the
intersection of Z × X1 with X1 × Z in X1 × X2 × X1 is transverse. The evaluation map for E on Z is an
isomorphism whenever E is a line bundle or any invertible object of D(Z). The adjunction counit in (1.12)
is an isomorphism whenever Z πZ1−−→ X1 is such that πZ1∗OZ = OX1 , e.g. Z is a blowup of X1 or a Fano
fibration over it. This allows for a number of scenarios where the twist or the dual co-twist of ΦE can be
written down fairly easily, as we demonstrate in Cor. 4.5.

Another advantage of decomposition (1.9)-(1.12) is that it moves the action away from ambient spaces
X1 × X2 × X1 and X1 × X2 to their subschemes Z ′ and Z. This allows us to replace the assumption of
X2 being proper by the assumption of Z being proper over X1 and X2 (see Theorem 4.1). Something to be
appreciated by those who want to do spherical twists on non-compact varieties, e.g. total spaces of cotangent
bundles of projective varieties.

Finally, in Section 5 we give an example of an explicit computation using Theorem 4.1. We consider the
naive derived category transform induced by a Mukai flop. This transform is not an equivalence - it was
proved by Namikawa in [Nam03] by direct comparison of Hom spaces. We demonstrate how its dual co-twist
can be computed quickly and efficiently by our methods.

Acknowledgements: We would like to thank Alexei Bondal and Paul Bressler for useful discussions.
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author would like to thank the Department of Mathematics of the University of Chicago for their support.
The second author would like to thank the University of Liverpool, the Max-Planck-Institut für Mathematik
and the Steklov Mathematical Institute for their hospitality during his work on this paper.
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2. Preliminaries

Let k be an algebraically closed field of characteristic 0. The level of generality we choose to work at
in the main body of this paper is that of separated schemes of finite type over k. These assumptions are
necessary for the Grothendieck duality machinery which ensures that the direct image functor in the definition
of a Fourier-Mukai transform has a right adjoint. Without them we cannot expect a general Fourier-Mukai
transform to have a right and a left adjoint.

Some of the auxiliary results we prove along the way hold in a greater generality than the one above.
We would like to think of these results as being of potential interest to others who find themselves in an
unfortunate situation of having to show a complicated diagram of derived functors to commute. We try
therefore to state these results in maximal generality they hold at.

By a ringed space we always mean a commutative ringed space. By a concentrated map of schemes we
mean a map which is quasi-compact and quasi-separated. A scheme X is said to be concentrated if it is
concentrated over Spec Z. If Y is a concentrated scheme, then a map X → Y is concentrated if and only if
X is concentrated [GD64, §1.2].

We make frequent use of a notion of a perfect map of schemes X
f−→ Y , cf. [Ill71a, §4]. For maps of finite

type between noetherian schemes f is perfect if and only if it is of finite Tor-dimension, i.e. the derived
functor of f∗ is cohomologically bounded.

Given an adjoint pair of functors (F,G), by the right adjoint with respect to F of some natural transfor-
mation FH1 → H2, we mean the natural transformation H1 → GH2 induced by the adjunction. Similarly,
by the left adjoint with respect to G of some H1 → GH2 we mean the FH1 → H2 induced by the adjunction.

Throughout the paper we employ a variety of greek letters to denote an assortment of natural maps which
exist between compositions of standard derived functors. These are defined at length over the course of
Sections 2.1-2.3, but for the convenience of our readers we have also compiled a brief index:

αf
the projection formula

f∗A⊗B → f∗(A⊗ f∗B) (2.28)

βf Id→ f∗f∗ (2.22)

γf f∗f∗ → Id (2.22)

δf

the sheafified Grothendieck duality

f∗RHomX(A, f×B)→ RHomY (f∗A,B) (2.31)

εf f∗f× → Id (2.30)

ζg,f f∗g∗
∼−→ (g ◦ f)∗ (2.18)

ηg,f (g ◦ f)∗
∼−→ g∗f∗ (2.17)

θA,B A −→ RHomX (RHomX (A,B) , B) (2.14)

θE E → E∨∨ (2.15)

κf f∗A⊗ f∗B → f∗(A⊗B) (2.27)

κσ
the Künneth map

f1∗(A1)⊗ f2∗(A2)→ h∗
`
g∗1(A1)⊗ g∗2(A2)

´
(4.9)

λf Id→ f×f∗ (2.30)

µσ
the base change

g∗f∗ → f ′∗g
′∗ (2.34)

νf f∗(A⊗B)
∼−→ f∗(A)⊗ f∗B (2.24)

ξ RHomX (A,B)⊗ C → RHomX (A,B ⊗ C) (2.10)

ξE E∨ ⊗ (−)
∼−→ RHomX(E,−) (2.12)

ρ (A⊗B)⊗ C ∼−→ A⊗ (B ⊗ C) (2.7)

τf f∗RHomX(f∗A,B)
∼−→ RHomY (A, f∗B) (2.21)

υA RHom(A⊗ B,C)
∼−→ RHom(B,RHom(A,C)) (2.8)

χf f×A⊗ f∗B → f×(A⊗B) (2.32)

2.1. Derived categories and derived functors. Let X be a scheme or a ringed space. We denote by
D(OX - Mod) the unbounded derived category of the abelian category OX -Mod. We denote by Dqc(X)
(resp. D(X)) the full subcategory of OX -Mod consisting of complexes with quasi-coherent (resp. bounded
and coherent) cohomology. We denote by Dperf(X) the full subcategory of D(X) consisting of the objects
which are locally quasi-isomorphic to a bounded complex of free OX -modules of finite rank.

For a reference text on derived categories and derived functors we recommend [Har66], for the traditional
approach, and [Lip09], for a more modern approach. One should also mention the expositions in [KS06] and
[Nee01]. A key feature of the modern approach is that thanks to the results of [Spa88] we can now work freely
with unbounded complexes. The authors of this paper adhere to a general principle that wherever possible
general results on derived functors and isomorphisms between them should first be proved in the setting of
Dqc(−), and then shown to restrict to the usual setting of D(−) where applicable.

All the functors in this paper are assumed to be derived, unless specifically mentioned otherwise. With
two exceptions listed below we suppress all the usual R’s and L’s and use the same notation for the derived
functor as for its abelian category counterpart. Below we summarize basic facts about the derived functors
we make use of.

Let X be a ringed space. The derived tensor product functor exists as a functor

(−)⊗ (−) : D(OX - Mod)×D(OX - Mod)→ D(OX - Mod).
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and always restricts to a functor Dqc(X) × Dqc(X) → Dqc(X) [Lip09, §2.5]. For X a locally noetherian
scheme and for A ∈ Dperf(X) the functor A⊗− restricts to a functor D(X) → D(X) [Har66, Prop. II.4.3].
Similarly, for any n ∈ Z the derived tensor product functor in n variables (−)⊗ · · · ⊗ (−) exists as a functor
from the product of n copies of D(OX - Mod) into D(OX - Mod) [Lip09, §2.5.9].

The derived functor of the functor HomX(−,−) of taking the global Hom space between two OX -modules
exists as a functor

R HomX(−,−) : D(OX - Mod)opp ×D(OX - Mod)→ D(Γ(OX)- Mod),

see [Lip09, §2.4]. We make an exception and do not supress ‘R’ here in order to differentiate the object
R HomX(A,B) in D(Γ(OX)- Mod) from the morphism space HomD(X)(A,B). Similarly, the derived functor
of the sheafified Hom functor HomX(−,−) exists as a functor

RHomX(−,−) : D(OX - Mod)opp ×D(OX - Mod)→ D(OX - Mod)

We do not suppress ‘R’ here to emphasize the relation with R HomX . If X is a locally noetherian scheme, then
for any A ∈ D(X) the functor RHomX(A,−) restricts to a functor D+

qc(X)→ Dqc(X) [Har66, Prop. II.3.3].
Here D+

qc(X) is the subcategory of Dqc(X) consisting of complexes with bounded below cohomology. If X is
a noetherian scheme and A is perfect the functor RHomX(A,−) restricts to a functor Dqc(X) → Dqc(X)
and then to a functor D(X)→ D(X) [AIL10, Lemma 1.4.6].

Let now Y be another ringed space, and let f : X → Y be a map of ringed spaces.
The derived direct image functor exists as a functor

f∗(−) : D(OX - Mod)→ D(OY - Mod),

cf. [Lip09, §3.1]. When f is a concentrated map of schemes f∗ restricts to a functor Dqc(X) → Dqc(Y )
[Lip09, Prop. 3.9.2]. If X and Y are noetherian and f is proper1 then f∗ restricts to a functor D(X)→ D(Y )
[Ill71a, Théorème 2.2.1].

The derived inverse image functor exists as a functor

f∗(−) : D(OY - Mod)→ D(OX - Mod),

cf. [Lip09, §3.1]. When f is a concentrated map of schemes f∗ restricts to a functor Dqc(Y )→ Dqc(X) [Lip09,
Prop. 3.9.1]. If X and Y are locally noetherian and f is perfect, then f∗ restricts to a functor D(Y )→ D(X)
[Har66, Prop. II4.4].

2.2. Adjunctions and dualities for derived functors. LetX be a ringed space. For anyA ∈ D(OX - Mod)
the functor

A⊗ (−) : D(OX - Mod)→ D(OX - Mod)
is left adjoint to functor

RHomX(A,−) : D(OX - Mod)→ D(OX - Mod),
cf. [Lip09, Prop. 2.6.1].

For any A ∈ D(OX - Mod) denote by A∨ the object RHomX(A,OX) ∈ D(OX - Mod). There is a natural
morphism A→ A∨∨ which is an isomorphism for any A ∈ Dperf(X) [Ill71b, Prop. 7.2]. So (−)∨ restricts to a
self-inverse category equivalence Dperf(X)→ Dperf(X)opp giving us the duality functor for perfect complexes.

For any A ∈ Dperf(X) there is a canonical isomorphism A∨ ⊗ (−) ' RHomX(A,−), see §2.3(3), so

A⊗ (−) : D(OX - Mod)→ D(OX - Mod)

is both the left and the right adjoint of functor

A∨ ⊗ (−) : D(OX - Mod)→ D(OX - Mod).

Let now Y be another ringed space and let f : X → Y be a map of ringed spaces. Then functor

f∗(−) : D(OY - Mod)→ D(OX - Mod)

is left adjoint to functor
f∗(−) : D(OX - Mod)→ D(OY - Mod),

cf. [Lip09, Prop. 3.2.1].

1In a non-noetherian world one can work with a more general notion of a quasi-proper scheme map, cf. [Lip09, §4.3].
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Suppose now that X and Y are concentrated schemes and let f : X → Y be a scheme map. Then the
functor

f∗(−) : Dqc(X)→ Dqc(Y )

has a right adjoint which we denote as

f×(−) : Dqc(Y )→ Dqc(X),

cf. [Lip09, Theorem 4.1] or [Nee96, §4].
To state the rest of the Grothendieck duality results in their full presently known generality we would have

to introduce a number of notions (pseudo-coherence, quasi-properness, etc.) which are only meaningfully
different from well-established ones in non-noetherian context. Since the main bulk of this paper deals with
schemes of finite type over a field, we prefer to state these results for noetherian schemes only and refer the
reader to [Lip09, §4] for a more general story.

So let X and Y be noetherian schemes and let f : X → Y be a separated scheme map of finite type.
Adjunction (f∗, f×) induces a natural morphism δf : f∗RHomX(A, f×B)→ RHomY (f∗A,B), see §2.3(10),
often referred to as the sheafified Grothendieck duality morphism. For δf to be an isomorphism we need f×

to commute with restriction to open sets of Y [Lip09, §4.6]. When f is proper f× commutes with Tor-
independent base change for all objects in D+

qc(Y ) and so δf is an isomorphism for all A ∈ Dqc(X) and
B ∈ D+

qc(Y ) [Lip09, §4.4]. If f is also perfect, then f× commutes with Tor-independent base change for all
of Dqc(Y ) and so δf is an isomorphism for all A,B ∈ Dqc(Y ) [Lip09, Theorem 4.7.4]. Moreover, the natural
map χf : f×(A)⊗ f∗(B) ∼−→ f×(A⊗B), cf. §2.3(11), is an isomorphism for all A,B ∈ Dqc(X) [Nee96, §5].

By a result of Nagata any separated map of finite type between noetherian schemes decomposes as an
open immersion followed by a proper map ([Nag62], or [Voj07] for a more modern exposition). So to make
(−)× commute with flat base change we can try and modify its behaviour over open immersions. Indeed,
there is a unique way to paste (−)× over proper maps with (−)∗ over étale maps in a way compatible with
étale base change of (−)× (see [Lip09], Theorem 4.8.1 for more detail). The result is the pseudo-functor (−)!,
Deligne’s twisted inverse image pseudo-functor, which associates to any finite-type separated map f : X → Y
of noetherian schemes a functor f ! : D+

qc(Y )→ D+
qc(X) with a number of nice properties:

(1) f ! = f×|D+
qc

when f is proper and f ! = f∗|D+
qc

when f is étale.
(2) For any f functor f ! commutes with Tor-independent base change [Lip09, Theorem 4.8.3].
(3) For perfect f functor f ! restricts to a functor D(Y )→ D(X) [AIL10, Remark 2.1.5].
(4) There exists, as explained in [Lip09, §4.9.1], for all A ∈ D+

qc(X) a natural morphism

f !(OY )⊗ f∗(A)→ f !(A). (2.1)

If f is perfect then (2.1) is an isomorphism [Lip09, Theorem 4.9.4] and the morphism

f∗(A)→ RHomX

(
f !(OY ), f !(A)

)
(2.2)

right adjoint to (2.1) with respect to f !(OY )⊗ (−) is also an isomorphism [AIL10, Lemma 2.1.10].
(5) If f is a regular immersion of codimension n, then f !(OY ) = ωX/Y [−n] where ωX/Y is the top wedge

power of the normal bundle NX/Y [Har66, Cor. III.7.3].
(6) If f is smooth of relative dimension n, then f !(OY ) = ωX/Y [n] where ωX/Y is the top wedge power

of the sheaf Ω1
X/Y of relative differentials [Ver69, Theorem 3].

When f is both perfect and proper, then f ! = f×|D+
qc

and all the above properties of f ! apply to the whole
of f× : Dqc → Dqc. We do not therefore distinguish between f ! and f× when f is perfect and proper.

If f is proper the RHS of (2.2), as a functor in A, has left adjoint f∗
(
f !OY ⊗ (−)

)
. If f is also perfect we

denote this functor by f! and the fact that (2.2) is an isomorphism implies immediately that f! : Dqc(X) →
Dqc(Y ) is the left adjoint of f∗ : Dqc(Y )→ Dqc(X) and the adjunction counit f!f

∗ → Id is the composition

f!f
∗(-) = f∗(f !(OY )⊗ f∗(-)) (2.1)−−−→ f∗f

!(-)
adj. counit−−−−−−−→ Id .

Finally, let X be a separated scheme of finite type over a field k and let πk : X → k be the structure
morphism. The functor RHomX

(
−, π!

kk
)

restricts to a self-inverse category equivalence D(X)→ D(X)opp,
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the global 2 Grothendieck duality functor DX/k. For any separated finite-type map f : X → Y between two
schemes of finite-type over k, the duality D•/k interchanges f∗ and f ! [Lip09, Prop. 4.10.1]. For proper f
the dual of f∗ under D•/k is f∗ itself - this is precisely the sheafified Grothendieck duality isomorphism.

2.3. Standard relations between derived functors. There exists a number of well-known morphisms and
isomorphisms between compositions of the derived functors listed in Sections 2.1 and 2.2. Here we compile
for the convenience of the reader a list of such elementary relations employed throughout this paper.

For a number of these morphisms of derived functors we say below that they are compatible with the
corresponding natural morphisms for sheaves. For full detail on this the reader should consult the reference
we quote for each result, but roughly we mean the following. A natural transformation of compositions of
derived functors

R f1 ◦ · · · ◦R fn → R g1 ◦ · · · ◦R gm (2.3)

is said to be compatible with a natural transformation of compositions of the underlying abelian category
functors

f1 ◦ · · · ◦ fn → g1 ◦ · · · ◦ gm (2.4)

if the following diagram commutes

Q ◦ f1 ◦ · · · ◦ fn
(2.4) //

��

Q ◦ g1 ◦ · · · ◦ gm

��
R f1 ◦ · · · ◦R fn ◦Q

(2.3) // R g1 ◦ · · · ◦R gm ◦Q

(2.5)

whereQ denotes localisation functor from each chain homotopy category to the corresponding derived category
and the vertical arrows are composed from the natural transformations Q◦fi → R fi◦Q and Q◦gi → R gi◦Q
that R fi and R gi come equipped with by the definition of a right derived functor. Compositions of left-
derived functors are treated analogously.

(1) Commutativity and associativity of tensor product. Let X be a ringed space. Then for any A,B,C ∈
D(OX - Mod) there exist unique natural isomorphisms

A⊗B ∼−→ B ⊗A (2.6)

and

ρ : (A⊗B)⊗ C ∼−→ A⊗B ⊗ C ∼−→ A⊗ (B ⊗ C) (2.7)

which are functorial in A, B and C and which are compatible with the corresponding natural isomor-
phisms for sheaves [Lip09, §2.5.7 and §2.5.9].

(2) Sheafified (A ⊗ (−), RHom(A,−)) adjunction. Let X be a ringed space. Then for any A,B,C ∈
D(OX - Mod) there exist unique natural isomorphism

υA : RHomX (A⊗B,C) ∼−→ RHomX (B,RHomX (A,C)) (2.8)

compatible with the corresponding natural isomorphism for sheaves [Lip09, Prop. 2.6.1].
Applying the derived global sections functor to (2.8) produces the adjunction isomorphism for the

pair (A⊗−,RHomX(A,−)). We call its counit the evaluation map of A and denote it by

evA : A⊗RHomX(A,−)→ Id . (2.9)

An important instance is the morphism A⊗A∨ evA−−→ OX obtained by applying evA to OX .

2 I.e. over a point. One can obtain duality theories on X relative to any separated, finite-type map πS : X → S with S
noetherian, but only after restricting to objects of D(X) perfect over S (see [Ill71a], Cor. 4.9.2 etc.). Since the objects perfect
over a point are precisely the complexes with bounded and coherent cohomologies, the global duality works for all of D(X).
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(3) Perfect objects and RHom. Let X be a ringed space. For any A,B,C ∈ D(OX - Mod) define

ξ : RHomX (A,B)⊗ C −→ RHomX (A,B ⊗ C) (2.10)

to be the right adjoint with respect to A⊗ (−) of the composition

A⊗ (RHomX (A,B)⊗ C)
ρ−1

−−→ (A⊗RHomX (A,B))⊗ C evA−−→ B ⊗ C. (2.11)

If either of C or A belong to Dperf(X), then ξ is an isomorphism [AIL10, Lemma 1.4.6]. In particular,
for any E ∈ Dperf(X) we have an isomorphism

ξE : E∨ ⊗ (−) ∼−→ RHomX(E,−) (2.12)

of functors D(OX - Mod)→ D(OX - Mod).
The adjunction (E ⊗−,RHomX(E,−)) induces via ξE an adjunction (E ⊗ −, E∨ ⊗ −) whose

adjunction co-unit we also denote by evE :

E ⊗ (E∨ ⊗−)
ξE−−→ E ⊗RHomX(E,−) evE−−→ Id . (2.13)

(4) OX-reflexivity for perfect objects. Let X be a ringed space. For any A,B ∈ D(OX - Mod) define

θA,B : A −→ RHomX (RHomX (A,B) , B) (2.14)

to be the right adjoint with respect to RHomX (A,B)⊗ (−) of

A⊗RHomX (A,B) evA−−→ B.

If B = OX the resulting morphism

θA : A→ A∨∨ (2.15)

an isomorphism for all A ∈ Dperf(X) [AIL10, Prop 1.4.4].

Let E ∈ Dperf. The adjunction (E∨ ⊗−, E∨∨ ⊗−) induces via the isomorphism E
θE−−→ E∨∨ an

adjunction (E∨ ⊗−, E ⊗−) whose adjunction co-unit we denote by evE∨ :

E∨ ⊗ (E ⊗−) θE−−→ E∨ ⊗ (E∨∨ ⊗−)
evE∨−−−→ Id . (2.16)

(5) Pseudofunctoriality of direct and inverse image. Let X, Y , Z be ringed spaces and X
f−→ Y

g−→ Z be
maps of ringed spaces. There exist unique isomorphisms

ηg,f : (g ◦ f)∗
∼−→ g∗f∗ of functors D(OX - Mod)→ D(OZ- Mod) (2.17)

and

ζg,f : f∗g∗ ∼−→ (g ◦ f)∗ of functors D(OZ- Mod)→ D(OX - Mod) (2.18)

which are compatible with the corresponding natural isomorphisms for sheaves. These isomorphisms
give (−)∗ and (−)∗ the structures of a covariant and a contravariant pseudofunctor over the category

of ringed spaces [Lip09, §3.6]. Specifically, for any map X
f−→ Y of ringed spaces we have

ηId,f = ηf,Id = Id and ζId,f = ζf,Id = Id (2.19)

and for any maps X
f−→ Y

g−→ Z
h−→W of ringed spaces the following diagrams commute

(h ◦ g ◦ f)∗
ηh◦g,f //

ηh,g◦f

��

(h ◦ g)∗f∗

ηh,g

��
h∗(g ◦ f)∗

h∗ηg,f

// h∗g∗f∗

and f∗g∗h∗
f∗ζh,g //

ζg,f

��

f∗(h ◦ g)∗

ζh◦g,f

��
(g ◦ f)∗h∗

ηh,g◦f
// (h ◦ g ◦ f)∗

. (2.20)

We write ηh,g,f for the corresponding isomorphism (h ◦ g ◦ f)∗
∼−→ h∗g∗f∗ and ζh,g,f for the corre-

sponding isomorphism f∗g∗h∗
∼−→ (h ◦ g ◦ f)∗.
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(6) Sheafified (f∗, f∗) adjunction. Let X,Y be ringed spaces and let X
f−→ Y be a map of ringed spaces.

For any A ∈ D(OY - Mod) and B ∈ D(OX - Mod) there exists a unique bifunctorial isomorphism

τf : f∗RHomX(f∗A,B) ∼−→ RHomY (A, f∗B) (2.21)

compatible with the corresponding natural isomorphism for sheaves [Lip09, Prop. 3.2.3].
Applying the derived global sections functor to (2.21) produces an adjunction isomorphism for the

pair (f∗, f∗). We denote its unit and counit by

βf : Id→ f∗f
∗ and γf : f∗f∗ → Id . (2.22)

The adjunction (f∗, f∗) is compatible with pseudofunctoriality in the following sense. Let X
f−→ Y

and Y
g−→ Z be maps of ringed spaces, then the following diagrams commute:

Id
βg //

βg◦f **TTTTTTTTTTTTTTTTTTT g∗g
∗ g∗βf // g∗f∗f∗g∗

η−1
g,f◦(g∗f∗ζg,f )

��
(g ◦ f)∗(g ◦ f)∗

and

f∗g∗g∗f∗

ζg,f◦(f∗g∗η−1
g,f )

��

f∗γg // f∗f∗
γf // Id,

(g ◦ f)∗(g ◦ f)∗

γg◦f

44jjjjjjjjjjjjjjjjjjj
(2.23)

see [Lip09, §3.6] for more details.

(7) Monoidal functor structure for inverse image. Let X,Y be ringed spaces and let X
f−→ Y be a map

of ringed spaces. For any A,B ∈ D(OY - Mod) there exists a unique isomorphism

νf : f∗(A⊗B) ∼−→ f∗(A)⊗ f∗B (2.24)

functorial in A and B which is compatible with the corresponding natural isomorphism for sheaves
[Lip09, Prop. 3.2.4(i)]. It is worth noting that as a natural transformation of functors in B isomor-
phism νf is conjugate to τf in sense of [Mac98, §IV.7].

Map νf is compatible with the associativity of the tensor product in the following sense. Let

X
f−→ Y be a map of ringed spaces. Then the following diagram

f∗ ((A⊗B)⊗ C)

f∗ρ

��

νf // f∗ (A⊗B)⊗ f∗C
νf⊗Id// (f∗A⊗ f∗B)⊗ f∗C

ρ

��
f∗ (A⊗ (B ⊗ C))

νf
// f∗A⊗ f∗ (B ⊗ C)

Id⊗νf
// f∗A⊗ (f∗B ⊗ f∗C)

(2.25)

commutes for any A,B,C ∈ D(OY - Mod) [Lip09, §3.4].

Map νf is compatible with pseudofunctoriality in the following sense. Let X
f−→ Y and Y

g−→ Z be
maps of ringed spaces. Then the following diagram commutes

f∗g∗ (A⊗B)
f∗νg //

ζg,f

��

f∗ (g∗A⊗ g∗B)
νf // f∗g∗A⊗ f∗g∗B

ζg,f⊗ζg,f
��

(g ◦ f)∗ (A⊗B)
νg◦f

// (g ◦ f)∗A⊗ (g ◦ f)∗B

(2.26)

for all A,B ∈ D(OZ- Mod) [Lip09, §3.6].

(8) Monoidal functor structure for direct image. Let X,Y be ringed spaces and let X
f−→ Y be a map of

ringed spaces. For any A,B ∈ D(OX - Mod) define morphism

κf : f∗A⊗ f∗B → f∗(A⊗B), (2.27)

functorial in A and B, to be the right adjoint with respect to f∗ of the composition

f∗(f∗A⊗ f∗B)
νf−→ f∗f∗A⊗ f∗f∗B

γf⊗γf−−−−→ A⊗B.
Map κf is compatible with the associativity of the tensor product and with pseudofunctoriality in

a way analogous to map νf [Lip09, §3.4 and §3.6].
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(9) Projection formula. Let X,Y be ringed spaces and let X
f−→ Y be a map of ringed spaces. For any

A ∈ D(OX - Mod) and B ∈ D(OY - Mod) define the projection formula morphism

αf : f∗A⊗B → f∗(A⊗ f∗B) (2.28)

to be the right adjoint with respect to f∗ of the composition

f∗(f∗A⊗B)
νf−→ f∗f∗A⊗ f∗B

γf⊗Id−−−−→ A⊗ f∗B.
If X and Y are concentrated schemes, then αf is an isomorphism for all A ∈ Dqc(X) and B ∈ Dqc(Y )
[Lip09, Prop. 3.9.4].

The projection formula is compatible with pseudofunctoriality in the following sense. Let X
f−→ Y

and Y
g−→ Z be maps of ringed spaces. Then the following diagram

A⊗ g∗f∗B
αg // g∗ (g∗A⊗ f∗B)

g∗αf // g∗f∗ (f∗g∗A⊗B)

g∗f∗(ζf,g⊗Id)'
��

A⊗ (g ◦ f)∗B

Id⊗ηf,g '

OO

αg◦f
// (g ◦ f)∗ ((g ◦ f)∗A⊗B)

ηg◦f

' // g∗f∗ ((g ◦ f)∗A⊗B)

(2.29)

commutes for any A ∈ D(OZ- Mod) and B ∈ D(OX - Mod) [Lip09, Prop. 3.7.1].

(10) The sheafified Grothendieck duality morphism. Let X and Y be concentrated schemes and let X
f−→ Y

be a map of schemes. Denote the unit and counit of the (f∗, f×) adjunction by

λf : Id→ f×f∗ and εf : f∗f× → Id . (2.30)

The (f∗, f×) adjunction is compatible with pseudofunctoriality, in the sense that the analogues of
diagrams (2.23) for δf and λf also commute, see [Lip09, Cor. 4.1.2] for more details.

Define for any A ∈ Dqc(X) and B ∈ Dqc(Y ) the sheafified Grothendieck duality morphism

δf : f∗RHomX(A, f×B)→ RHomY (f∗A,B) (2.31)

to be the composition

f∗RHomX(A, f×B)
γf−→ f∗RHomX

(
f∗f∗A, f

×B
) τf−→ RHom

(
f∗A, f∗f

×B
) εf−→ RHom (f∗A,B) .

When X and Y are Noetherian and f is proper δf is an isomorphism for all A ∈ Dqc(X) and
B ∈ D+

qc(Y ) [Lip09, Theorem. 4.4.1]. If, in addition to the above, f is perfect, δf is an isomorphism
for all A ∈ Dqc(X) and B ∈ Dqc(X) [Lip09, Theorem 4.7.4].

(11) Let X,Y be concentrated schemes and let X
f−→ Y be a map of schemes. For any A ∈ Dqc(X) and

B ∈ Dqc(Y ) define morphism

χf : f×A⊗ f∗B → f×(A⊗B) (2.32)

functorial in A and B to be the right adjoint with respect to f∗ of the composition

f∗(f×A⊗ f∗B)
α−1
f−−→ f∗f

×A⊗B εf⊗Id−−−−→ A⊗B

where α−1
f is the inverse of the projection formula isomorphism. When f is proper and perfect χf is

an isomorphism [Lip09, Exercise 4.7.3.4(a)].
(12) Base change. Let σ be a commutative square

X ′
g′ //

f ′

��

X

f

��
Y ′ g

// Y

(2.33)

of ringed spaces. We define the base change morphism

µσ : g∗f∗ → f ′∗g
′∗ (2.34)
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to be the right adjoint with respect to f ′∗ of the composition

f ′∗g∗f∗
ζg,f′−−−→ (g ◦ f ′)∗f∗ = (f ◦ g′)∗f∗

ζ−1
f,g′−−−→ g′∗f∗f∗

γf−→ g′∗

or, equivalently [Lip09, Prop. 3.7.2], the left adjoint with respect to g∗ of the composition

f∗
βg′−−→ f∗g

′
∗g
′∗

η−1
f,g′−−−→ (f ◦ g′)∗g′∗ = (g ◦ f ′)∗g′∗

ηg,f′−−−→ g∗f
′
∗g
′∗.

This defines µσ as a morphism of functors D(OX - Mod) → D(O′Y - Mod). When σ is a square of
concentrated schemes the base change map restricts to a morphism of functors Dqc(X)→ Dqc(Y ′).

We use σT to denote the transposed square

X ′
f ′ //

g′

��

Y ′

g

��
X

f
// Y.

(2.35)

In particular, we denote by µσT the base change map f∗g∗ → f ′∗g′∗ for σT .
If the restriction of µσ to complexes with quasi-coherent cohomology is an isomorphism, then σ

is said to be independent. A fiber-square of concentrated schemes is independent if and only if it is
Tor-independent, i.e. for any x ∈ X and y′ ∈ Y ′ such that f(x) = g(y′) = y ∈ Y we have

ToriOY,y (OX,x,OY ′,y′) = 0 for all i > 0, (2.36)

cf. [Lip09, Theorem 3.10.3]. In particular, a fiber-square of concentrated schemes is independent if
f or g are flat. Another good reference for the above material is [Kuz06, §2.4], where the proofs are
carried out via computations with the underlying Fourier-Mukai kernels.

2.4. Further relations. To prove our main results in Section 3 we need three technical results which we
could not find in the literature. The first two state that the projection formula commutes with certain
adjunction units and counits of the direct image functor.

Lemma 2.1. Let X
g−→ Y

f−→ Z be maps of ringed spaces. Let A ∈ D(OY - Mod) and B ∈ D(OZ- Mod).
Then the following diagram commutes:

f∗A⊗B
f∗βg⊗Id //

αf

��

f∗g∗g
∗A⊗B

f∗αg◦αf
��

f∗ (A⊗ f∗B)
f∗βg

// f∗g∗g∗ (A⊗ f∗B)
f∗g∗νg

// f∗g∗ (g∗A⊗ g∗f∗B) .

(2.37)

Proof. By functoriality of αf it suffices to show that the square

f∗ (A⊗ f∗B)

f∗βg

��

f∗(βg⊗f∗ Id) // f∗ (g∗g∗A⊗ f∗B)

f∗αg

��
f∗g∗g

∗ (A⊗ f∗B)
f∗g∗νg

// f∗g∗ (g∗A⊗ g∗f∗B)

commutes. This square is the image under f∗ of the square

A⊗ f∗B

βg

��

βg⊗Id // g∗g∗A⊗ f∗B

αg

��
g∗g
∗ (A⊗ f∗B)

g∗νg
// g∗ (g∗A⊗ g∗f∗B) .

(2.38)
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To show that (2.38) commutes we show that its left adjoint with respect to g∗ commutes. By definition of
αg its left adjoint with respect to g∗ is (γg ⊗ Id) ◦ νg. So the left adjoint with respect to g∗ of (2.38) is

g∗ (A⊗ f∗B)
g∗(βg⊗Id) //

νg
,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ g∗ (g∗g∗A⊗ f∗B)

νg // g∗g∗g∗A⊗ g∗f∗B

γg⊗Id

��
g∗A⊗ g∗f∗B

and by functoriality of νg it suffices to show that the following composition is the identity morphism:

g∗A⊗ g∗f∗B g∗βg⊗Id−−−−−→ g∗g∗g
∗A⊗ g∗f∗B γg⊗Id−−−−→ g∗A⊗ g∗f∗B.

Rewrite it as (g∗βg ◦ γg) ⊗ Id. Since βg and γg are the unit and the counit of the adjunction (g∗, g∗), the

morphism g∗A
g∗βg◦γg−−−−−→ g∗A is the identity morphism. The result follows. �

Lemma 2.2. Let X, Y , Z be concentrated schemes and X
g−→ Y

f−→ Z be scheme maps. Let A ∈ Dqc(Y ) and
B ∈ Dqc(Z). Then the following diagram commutes:

f∗g∗g
×A⊗B

f∗εg⊗Id //

f∗αg◦αf
��

f∗A⊗B

αf

��
f∗g∗ (g×A⊗ g∗f∗B)

f∗g∗χg

// f∗g∗g× (A⊗ f∗B)
f∗εg

// f∗ (A⊗ f∗B) .

(2.39)

Proof. The proof is analogous to that of Lemma 2.1. By functoriality of αf it suffices to show that the image
under f∗ of

g∗g
×A⊗ f∗B

εg⊗Id

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXX

αg

��
g∗ (g×A⊗ g∗f∗B) g∗χg

// g∗g× (A⊗ f∗B) εg
// A⊗ f∗B.

commutes. Since αg is an isomorphism, this is equivalent to the diagram

g∗g
×A⊗ f∗B

εg⊗Id

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXX

g∗ (g×A⊗ g∗f∗B)

α−1
g

OO

g∗χg
// g∗g× (A⊗ f∗B) εg

// A⊗ f∗B.

commuting. But as εg is the adjunction counit, the composition εg ◦g∗χg is the left adjoint of χg with respect
to g×. By the definition of χg this left adjoint is precisely (εg ⊗ Id) ◦ α−1

g . The result follows. �

The third result shows that for a perfect object E the adjunction co-units for E ⊗ (−) commute with the
associativity of the tensor product:

Lemma 2.3. Let X be a ringed space. Then for any A ∈ D(OX- Mod) and E ∈ Dperf (X) the following
diagrams commute

E ⊗ (E∨ ⊗A)
evE //

ρ−1

��

A

Id

��
(E ⊗ E∨)⊗A

evE(OX)⊗Id
// A

and

(E∨ ⊗ E)⊗A
evE(OX)⊗Id //

ρ

��

A

Id

��
E∨ ⊗ (E ⊗A)

evE∨
// A.

(2.40)
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Proof. The adjunction counit E ⊗ (E∨ ⊗A) evE−−→ A was defined as the composition

E ⊗ (E∨ ⊗A) ∼
Id⊗ξE // E ⊗RHom(E,A)

evE // A .

Therefore its right adjoint with respect to E ⊗ (−) is isomorphism ξE . But isomorphism ξE was defined to
be the right adjoint with respect to E ⊗ (−) of the composition

E ⊗ (E∨ ⊗A)
ρ−1

−−→ (E ⊗ E∨)⊗A evE(OX)⊗Id−−−−−−−−→ A.

Therefore the left diagram commutes.
For the right diagram, recall that by its definition the adjunction co-unit E∨ ⊗ (E ⊗A)

evE∨−−−→ Id is

E∨ ⊗ (E ⊗A) ∼
(Id⊗θE)⊗Id // E∨ ⊗ (E∨∨ ⊗A)

evE∨ // A .

Since the left diagram commutes and ρ is functorial, we can rewrite the composition above as

E∨ ⊗ (E ⊗A)
ρ−1
// (E∨ ⊗ E)⊗A ∼

θE // (E∨ ⊗ E∨∨)⊗A
evE∨ (OX) // A .

To show that the right diagram commutes it now remains only to show that

E∨ ⊗ E ∼
Id⊗θE // E∨ ⊗ E∨∨

evE∨ (OX) // OX

is the map E∨⊗E evE(OX)−−−−−−→ OX . The right adjoint of the composition above with respect to E∨⊗ (−) is just

the map E θE−−→ E∨∨. But θE was defined as the right adjoint with respect to E∨⊗(−) of E∨⊗E evE(OX)−−−−−−→ OX .
The claim follows. �

Define a morphism

evE : E∨ ⊗ E ⊗ (−) −→ Id (2.41)

to be the composition

E∨ ⊗ E ⊗ (−)
ρ−→
∼

(E∨ ⊗ E)⊗ (−)
evE(OX)⊗Id−−−−−−−−→ Id .

By Lemma 2.3 the canonical isomorphisms identifying E∨⊗E⊗− with E∨⊗(E ⊗−) and E⊗(E∨ ⊗−) identify
(2.41) with the adjunction counits for the adjunctions (E∨ ⊗ −, E ⊗ −) and (E ⊗ −, E∨ ⊗ −), respectively.
We thus abuse notation by speaking of (2.41) as “the adjunction counit” for these two adjunctions.

3. Adjunction morphisms for Fourier-Mukai transforms

3.1. Compact case. Let X1 and X2 be a pair of separable schemes of finite type over an algebraically closed
field k of characteristic 0 with X2 proper. We have the following commutative diagram

X1 ×X2 ×X1

π12

wwnnnnnnnnnnnn
π13

��

π23

''PPPPPPPPPPPP

X1 ×X2

π1

zzuuuuuuuuu
π2

''PPPPPPPPPPPPP X1 ×X1

π̃1

tthhhhhhhhhhhhhhhhhhhhhh

π̃2

**VVVVVVVVVVVVVVVVVVVVVV X2 ×X1

π2

wwnnnnnnnnnnnnn
π1

$$I
IIIIIIII

X1 X2 X1

(3.1)

All the morphisms in it are separated and of finite-type. They are also flat, and therefore perfect. Moreover,
morphisms π1 and π13 are proper.

Definition 3.1. Let E be a perfect object of D(X1 ×X2). The Fourier-Mukai transform ΦE from X1

to X2 with kernel E is the functor Dqc(X1)→ Dqc(X2) given by

ΦE(−) = π2∗ (E ⊗ π∗1 (−)) .
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By the adjunctions described in Section 2.2 functor ΦE has both left and right adjoints. The left adjoint
Φladj
E is isomorphic to the Fourier-Mukai transform from X2 to X1 with kernel E∨⊗π!

1(OX1). The composition
Φladj
E ΦE is then isomorphic [Muk81, Prop 1.3] to the Fourer-Mukai transform from X1 to X1 with kernel

Q = π13∗
(
π∗12E ⊗ π∗23E

∨ ⊗ π∗23π
!
1(OX1)

)
.

Let now ∆ denote the diagonal inclusion X1 ↪→ X1 ×X1 and, by abuse of notation, let it also denote the
induced inclusion X1 ×X2 ↪→ X1 ×X2 ×X1, so that there is the following fiber square:

X1 ×X2
� � ∆ //

π1

��

X1 ×X2 ×X1

π13

��
X1

� �

∆
// X1 ×X1

(3.2)

The identity functor Id is isomorphic to the Fourier-Mukai transform from X1 to X1 with kernel ∆∗OX1 . We
now state the main result of this section:

Theorem 3.1. Let X1 and X2 be two separable schemes of finite type over k with X2 proper. Let E be a
perfect object of D(X1 ×X2) and ΦE be a Fourier-Mukai transform from Dqc(X1) to Dqc(X2) defined by E.

The adjunction counit γE : Φladj
E ΦE → Id is isomorphic to the morphism of Fourier-Mukai transforms

Dqc(X1)→ Dqc(X1) induced by the following morphism of their kernels:

Q = π13∗
(
π∗12E ⊗ π∗23E

∨ ⊗ π∗23π
!
1(OX1)

) π13∗β∆−−−−−→ π13∗∆∗∆∗
(
π∗12E ⊗ π∗23E

∨ ⊗ π∗23π
!
1(OX1)

)
(3.3)

π13∗∆∗∆∗
(
π∗12E ⊗ π∗23E

∨ ⊗ π∗23π
!
1(OX1)

)
' ∆∗π1∗

(
E ⊗ E∨ ⊗ π!

1(OX1)
)

(3.4)

∆∗π1∗
(
E ⊗ E∨ ⊗ π!

1(OX1)
) ∆∗π1∗ evE−−−−−−−→ ∆∗π1∗

(
π!

1(OX1)
)

(3.5)

∆∗π1∗π
!
1(OX1)

∆∗επ1−−−−→ ∆∗OX1 (3.6)

where (3.4) is composed of isomorphism ν∆ : ∆∗ (−⊗−) ∼−→ ∆∗ (−) ⊗ ∆∗ (−) and of pseudofunctoriality
isomorphisms corresponding to the identities π13 ◦∆ = ∆ ◦ π1 and π12 ◦∆ = π23 ◦∆ = Id.

We first need the following crucial lemma:

Lemma 3.2. Let σ be the fiber square

X1 ×X2 ×X1
π12 //

π23

��

X1 ×X2

π2

��
X1 ×X2 π2

// X2.

(3.7)

Then the following diagram of functors commutes:

π∗2π2∗

µσ '
��

γπ2 // Id

' ηπ23,∆◦ζ
−1
π12,∆

��
π23∗π

∗
12 π23∗β∆

// π23∗∆∗∆∗π∗12.

(3.8)

Proof. It suffices to show that the right adjoints with respect to π∗2 of the composition

π∗2π2∗
µ−→ π23∗π

∗
12

π23∗β∆−−−−−→ π23∗∆∗∆∗π∗12 (3.9)

and of the composition

π∗2π2∗
γπ2−−→ Id

ηπ23,∆◦ζ
−1
π12,∆−−−−−−−−−→ π23∗∆∗∆∗π∗12 (3.10)
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coincide. By the definition of morphism µσ the right adjoint with respect to π∗2 of (3.9) is

π2∗
π2∗βπ12−−−−−→ π2∗π12∗π

∗
12

ηπ2,π23◦η
−1
π2,π12−−−−−−−−−−→ π2∗π23∗π

∗
12

π2∗π23∗β∆−−−−−−−→ π2∗π23∗∆∗∆∗π∗12

which by functoriality of ηπ2,π23 ◦ η−1
π2,π12

is the same as

π2∗
π2∗βπ12−−−−−→ π2∗π12∗π

∗
12

π2∗π12∗β∆−−−−−−−→ π2∗π12∗∆∗∆∗π∗12

ηπ2,π23◦η
−1
π2,π12−−−−−−−−−−→ π2∗π23∗∆∗∆∗π∗12. (3.11)

By pseudofunctoriality of the direct image, cf. (2.20), the morphism of functors

π2∗π12∗∆∗
ηπ2,π23◦η

−1
π2,π12−−−−−−−−−−→ π2∗π23∗∆∗

is the same as the morphism of functors

π2∗π12∗∆∗
π2∗ (ηπ23,∆◦η

−1
π12,∆

)
−−−−−−−−−−−−−→ π2∗π23∗∆∗

and we can therefore rewrite (3.11) as

π2∗

(
Id

βπ12−−−→ π12∗π
∗
12

π12∗β∆−−−−−→ π12∗∆∗∆∗π∗12

ηπ23,∆◦η
−1
π12,π∆−−−−−−−−−−→ π23∗∆∗∆∗π∗12

)
. (3.12)

By the compatibility of β with pseudofunctoriality as per diagram (2.23) we can rewrite (3.12) as

π2∗

(
Id

βπ12◦∆−−−−→ (π12 ◦∆)∗(π12 ◦∆)∗
ηπ12,∆◦ζ

−1
π12,∆−−−−−−−−−→ π12∗∆∗∆∗π∗12

ηπ23,∆◦η
−1
π12,∆−−−−−−−−−→ π23∗∆∗∆∗π∗12

)
.

Cancelling out η−1
π12,∆

◦ ηπ12,∆ and noting that βπ12◦∆ = Id since π12 ◦∆ = Id yields

π2∗

(
Id

ηπ23,∆◦ζ
−1
π12,∆−−−−−−−−−→ π23∗∆∗∆∗π∗12

)
.

which is clearly the right adjoint of (3.10) with respect to π∗2 . The result follows. �

Proof of Theorem 3.1. Set
Q′ = π∗23

(
π!

1OX1 ⊗ E∨
)
⊗ π∗12E

so that Q = π13∗Q
′. Since π12 ◦∆ = π23 ◦∆ = Id we have a natural isomorphism

∆∗Q′ ν∆−−→ ∆∗π∗23

(
π!

1OX1 ⊗ E∨
)
⊗∆∗π∗12E

ζπ23,∆⊗ζπ12,∆−−−−−−−−−→ π!
1OX1 ⊗ E∨ ⊗ E. (3.13)

We therefore define a morphism

∆∗Q′
(3.13)−−−−→ π!

1OX1 ⊗ E∨ ⊗ E
evE−−→ π!

1OX1 . (3.14)

Let us write the morphism of functors induced by the morphism Q
(3.3)−(3.6)−−−−−−−→ ∆∗OX1 of FM-kernels as:

π̃2∗ (π13∗Q
′ ⊗ π̃∗1(−))

β∆−−→ π̃2∗ (π13∗∆∗∆∗Q′ ⊗ π̃∗1(−)) (3.15)

π̃2∗ (π13∗∆∗∆∗Q′ ⊗ π̃∗1(−))
η∆,π1◦η

−1
π13,∆−−−−−−−−−→ π̃2∗ (∆∗π1∗∆∗Q′ ⊗ π̃∗1(−)) (3.16)

π̃2∗ (∆∗π1∗∆∗Q′ ⊗ π̃∗1(−))
(3.14)−−−−→ π̃2∗

(
∆∗π1∗π

!
1OX1 ⊗ π̃∗1(−)

)
(3.17)

π̃2∗
(
∆∗π1∗π

!
1OX1 ⊗ π̃∗1(−)

) επ1−−→ π̃2∗ (∆∗OX1 ⊗ π̃∗1(−)) (3.18)

On the other hand, ΦE is the composition of functors π∗1 , E ⊗ (−) and π2∗. Each of these functors has a left
adjoint, these adjoints are π1∗(π!

1OX1 ⊗−), E∨ ⊗ (−) and π∗2 , respectively. Therefore, the adjunction counit
Φladj
E ΦE → Id is the composition of the three corresponding adjunction counits:

π1∗
(
π!

1OX1 ⊗ E∨ ⊗ π∗2π2∗ (E ⊗ π∗1 (−))
) γπ2−−→ π1∗

(
π!

1OX1 ⊗ E∨ ⊗ E ⊗ π∗1 (−)
)

(3.19)

π1∗
(
π!

1OX1 ⊗ E∨ ⊗ E ⊗ π∗1 (−)
) evE−−→ π1∗

(
π!

1OX1 ⊗ π∗1 (−)
)

(3.20)

π1∗
(
π!

1OX1 ⊗ π∗1 (−)
) επ1◦χπ1−−−−−→ Id (3.21)
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The claim of the theorem is that the composition (3.19)-(3.21) is isomorphic to the composition (3.15)-(3.18).
Let us clarify some terminology. We say that two morphisms of functors f → g and f ′ → g′ are isomorphic

if there exist connecting isomorphisms f ∼−→ f ′ and g
∼−→ g′ such that the diagram

f //

∼
��

g

∼
��

f ′ // g′

(3.22)

commutes. Clearly it is an equivalence relation on the set of all morphisms between all functors between two
given categories. In particular, it is transitive.

If we further have a morphism of functors g → h which is isomorphic to a morphism of functors g′′ → h′′

then f → g → h is isomorphic to f ′ → g′
∼−→ g′′ → h′′, where the connecting isomorphism g′

∼−→ g′′ is the
composition of the inverse of the connecting isomorphism g

∼−→ g′ with the connecting isomorphism g
∼−→ g′′.

Our strategy therefore is to consecutively replace the morphisms which compose (3.19)-(3.21) by isomorphic
ones until we obtain (3.15)-(3.18). However, every time we replace a composant by an isomorphic one, we
introduce a new connecting isomorphism. In the end we have to compose a long chain of these isomorphisms
(each composed of natural isomorphisms detailed in §2.3) and simplify the result. It is a mechanical exercise
in pseudofunctoriality of direct and inverse image and the associativity of tensor product. To present it in
full detail would be very tedious, the end result being always obvious from the start. This had long been
lamented in the literature, cf. [Har66, §II.6]. To keep the focus on the substance of a proof we only state the
final result of each such computation of a connecting isomorphism, unless something non-trivial is involved.
For our most meticulous readers (and our most inquisitive referees) we have included in the Appendix an
unabbreviated proof, where all such computations are carried out in full detail.

We begin with morphism (3.19). By Lemma 3.2 it is isomorphic to

π1∗
“
E∨ ⊗ π!

1OX1 ⊗ π23∗π
∗
12 (E ⊗ π∗1 (−))

”
β∆−−−−−−→ π1∗

“
E∨ ⊗ π!

1OX1 ⊗ π23∗∆∗∆
∗π∗12 (E ⊗ π∗1 (−))

”
. (3.23)

By Lemma 2.1 morphism (3.23) is further isomorphic to

π1∗π23∗ (Q′ ⊗ π∗12π
∗
1 (−))

ν∆◦β∆−−−−−−−−→ π1∗π23∗∆∗ (∆∗Q′ ⊗∆∗π∗12π
∗
1 (−)) . (3.24)

Finally, since π1◦π23 = π̃2◦π13 and π1◦π12 = π̃1◦π13, see diagram (3.1), the corresponding pseudofunctoriality
isomorphisms imply that (3.24) is isomorphic to

π̃2∗π13∗ (Q′ ⊗ π∗13π̃
∗
1(−))

ν∆◦β∆−−−−→ π̃2∗π13∗∆∗ (∆∗Q′ ⊗∆∗π∗13π̃
∗
1(−)) (3.25)

We proceed to morphism (3.20) which is induced by the adjunction counit π!
1OX1 ⊗E∨⊗E → π!

1OX1 . By
its definition morphism (3.14) is isomorphic to this adjunction counit, and so (3.20) is isomorphic to

π1∗ (∆∗Q′ ⊗ π∗1 (−))
(3.14)−−−−−−−→ π1∗

(
π!

1(OX1)⊗ π∗1 (−)
)

(3.26)

As π̃2 ◦∆ = π̃1 ◦∆ = Id by pseudofunctoriality (3.26) is isomorphic to

π̃2∗∆∗π1∗ (∆∗Q′ ⊗ π∗1∆∗π̃∗1 (−))
(3.14)−−−−→ π̃2∗∆∗π1∗

(
π!

1OX1 ⊗ π∗1∆∗π̃∗1 (−)
)
. (3.27)

Finally, the same pseudofunctoriality isomorphisms imply that (3.21) is isomorphic to

π̃2∗∆∗π1∗
(
π!

1OX1 ⊗ π∗1∆∗π̃∗1 (−)
) επ1◦χπ1−−−−−→ π̃2∗∆∗∆∗π̃∗1 (−) . (3.28)

We have now shown that (3.19), (3.20) and (3.21) are isomorphic to (3.25), (3.27) and (3.28), respectively.
Next, we compute the connecting isomorphisms. The isomorphism connecting (3.25) to (3.27) works out to
be the pseudofunctoriality isomorphism

π̃2∗π13∗∆∗ (∆∗Q′ ⊗∆∗π∗13π̃
∗
1(−))

η∆,π1◦η
−1
π13,∆−−−−−−−−−→ π̃2∗∆∗π1∗ (∆∗Q′ ⊗ π∗1∆∗π̃∗1 (−)) . (3.29)

and the isomorphism connecting (3.27) to (3.28) works out to be the identity.
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We can now conclude that the adjunction counit Φladj
E ΦE → Id, being the composition of (3.19), (3.20)

and (3.21), is isomorphic to the composition of (3.25), (3.29), (3.27) and (3.28). The claim of the theorem
then follows from the fact that the following diagram commutes:

π̃2∗ (π13∗Q
′ ⊗ π̃∗1(−)) ∼ //

(3.15)

��

π̃2∗π13∗ (Q′ ⊗ π∗13π̃
∗
1(−))

(3.25)

��
π̃2∗ (π13∗∆∗∆∗Q′ ⊗ π̃∗1(−)) ∼ //

(3.16)

��

π̃2∗π13∗∆∗ (∆∗Q′ ⊗∆∗π∗13π̃
∗
1(−))

(3.29)

��
π̃2∗ (∆∗π1∗∆∗Q′ ⊗ π̃∗1(−)) ∼ //

(3.17)

��

π̃2∗∆∗π1∗ (∆∗Q′ ⊗ π∗1∆∗π̃∗1(−))

(3.27)

��
π̃2∗

(
∆∗π1∗π

!
1OX1 ⊗ π̃∗1(−)

) ∼ //

(3.18)

��

π̃2∗∆∗π1∗
(
π!

1OX1 ⊗ π∗1∆∗π̃∗1(−)
)

(3.28)

��
π̃2∗ (∆∗OX1 ⊗ π̃∗1(−)) ∼ // π̃2∗∆∗∆∗π̃∗1(−)

(3.30)

where the horizontal isomorphisms are all due to the projection formula. To see that diagram (3.30) indeed
commutes, observe that its topmost square commutes by Lemma 2.1, the middle two commute by functoriality
and the lowermost square commutes by Lemma 2.2. �

An identical proof yields an analogous result for the right adjunction counit:

Theorem 3.2. Let X1 and X2 be two separable schemes of finite type over k with X2 proper. Let E be a
perfect object of D(X1 ×X2) and ΨE be a Fourier-Mukai transform from Dqc(X2) to Dqc(X1) defined by E.

The adjunction counit γ′E : ΨEΨradj
E → Id is isomorphic to the morphism of Fourier-Mukai transforms

Dqc(X1)→ Dqc(X1) induced by the following morphism of objects of D(X1 ×X1):

Q̃ = π13∗
(
π∗12E

∨ ⊗ π∗23E ⊗ π∗12π
!
1(OX1)

) π13∗β∆−−−−−→ π13∗∆∗∆∗
(
π∗12E

∨ ⊗ π∗23E ⊗ π∗12π
!
1(OX1)

)
(3.31)

π13∗∆∗∆∗
(
π∗12E

∨ ⊗ π∗23E ⊗ π∗12π
!
1(OX1)

)
' ∆∗π1∗

(
E ⊗ E∨ ⊗ π!

1(OX1)
)

(3.32)

∆∗π1∗
(
E ⊗ E∨ ⊗ π!

1(OX1)
) ∆∗π1∗ evE−−−−−−−→ ∆∗π1∗

(
π!

1(OX1)
)

(3.33)

∆∗π1∗π
!
1(OX1)

∆∗επ1−−−−→ ∆∗OX1 . (3.34)

where (3.32) is composed of isomorphism ν∆ : ∆∗ (−⊗−) ∼−→ ∆∗ (−) ⊗ ∆∗ (−) and of pseudofunctoriality
isomorphisms corresponding to the identities π13 ◦∆ = ∆ ◦ π1 and π12 ◦∆ = π23 ◦∆ = Id.

3.2. Non-compact case. In practice, one often has to deal with cases when neither X1 nor X2 are proper.
A common way to deal with such situations is to restrict to the full subcategories of objects with proper
support. However, with a bit of care it is still possible to work in full generality.

So let X1 and X2 be any two separable schemes of finite type over k, not necessarily proper, and let E be
a perfect object of D(X1 ×X2). We want to write down the left adjoint ΦladjE of ΦE = π2∗ (E ⊗ π∗1(−)), but
since π1 is not necessarily a proper morphism, the left adjoint to π∗1 does not necessarily exist.

To construct ΦladjE , we compactify X2 - that is, we choose an open immersion j : X2 ↪→ X̄2 with X̄2 proper
over k, cf. [Nag62], or [Voj07] for a more modern exposition. We shall abuse the notation by using j to also
denote immersions X1×X2 → X1× X̄2 and X1×X2×X1 → X1× X̄2×X1 where it causes no confusion. For
any such compactified product space we shall denote by π̄i and π̄ij projections onto corresponding factors.
Also, write Ē for j∗E.
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We have the following commutative diagram:

X1 × X̄2

π̄2
&&LLLLLLLLLLL

π̄1

{{vvvvvvvvv
X1 ×X2

π2

&&MMMMMMMMMMM
? _

joo

X1 X̄2 X2.? _

j
oo

(3.35)

Lemma 3.3. Let E ∈ Dperf (X1 ×X2). There is an isomorphism of functors Dqc(X1)→ Dqc(X̄2)

ΦĒ
∼−→ j∗ΦE . (3.36)

Its left adjoint with respect to j∗ is an isomorphism of functors Dqc(X1)→ Dqc(X2)

j∗ΦĒ
∼−→ ΦE . (3.37)

Proof. For the first claim, we set (3.36) to be

ΦĒ = π̄2∗ (j∗E ⊗ π̄∗1(−))
αj−→ π̄2∗j∗ (E ⊗ j∗π̄∗1(−))

ηj,π2◦η
−1
π̄2,j
◦ζπ̄1,j−−−−−−−−−−−→ j∗π2∗ (E ⊗ π∗1(−)) = j∗ΦE .

For the second claim: (3.37) is the composition of the image of (3.36) under j∗ with the adjunction counit
γj : j∗j∗ΦE → ΦE . And γj is an isomorphism since j is an open immersion [GD60, Prop. 9.4.2]. �

We now need the following key lemma:

Lemma 3.4. Let X be a concentrated scheme and let U
j−→ X be an open immersion. Let Dj

qc(X) be the full
subcategory of Dqc(X) formed by the images of the objects of Dqc(U) under j∗. Let Dj(X) and Dj

perf (X) be
the full subcategories of Dj

qc(X) consisting of complexes with bounded and coherent cohomology and of perfect
complexes. Then:

(1) Functors j∗ and j∗ restrict to mutually inverse equivalences between Dj
qc(X) and Dqc(U).

(2) For any A ∈ Dqc(X) functors A ⊗ (−) and RHomX(A,−) restrict to functors Dj
qc(X) → Dj

qc(X)
and are identified by j∗ with j∗A⊗ (−) and RHomU (j∗A,−).

(3) Let X ′
f−→ X be a concentrated map and consider the following base change diagram:

σ :
U ′

j′ //

g

��

X ′

f

��
U

j // X

(3.38)

The functors f∗ and f∗ restrict to functors between Dj′

qc(X
′) and Dj

qc(X) and are identified by the
equivalences j∗ and j′∗ with functors g∗ and g∗.

(4) Let X be Noetherian. The equivalence j∗ identifies Dj(X) and Dj
perf (X) with Dcls(U) and Dcls

perf (U),
the full subcategories of D(U) and Dperf (U) consisting of objects whose support is closed in X.

(5) Let X be Noetherian. For any A ∈ D+
qc(X) functor RHomX(−, A) restricts to a functor Dj(X) →

Dj
qc(X) and the equivalence j∗ identifies it with RHomU (−, j∗A).

Proof. Since j is an open immersion, the adjunction co-unit j∗j∗
γj−→ Id is an isomorphism. It follows that

j∗ is fully faithful, so its restriction to a functor Dqc(U) → Dj(X) is tautologically an equivalence. It also
follows that j∗ is the inverse equivalence to j∗. This settles claim (1).

For claim (2), it follows from the projection formula isomorphism

A⊗ j∗(−)
αj−→ j∗(j∗A⊗−)

that A⊗ (−) restricts to a functor Dj(X)→ Dj(X) and that this restriction is identified by j∗ with

j∗A⊗ (−) : Dqc(U)→ Dqc(U).
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The assertion for the functor RHomX (A,−) follows similarly from the sheafified adjunction isomorphism

j∗RHomU (j∗A,−)
τj−→ RHomX (A, j∗(−)) .

The claim (3) follows in the same way from the pseudo-functoriality isomorphism f∗j
′
∗
ηj,g◦η−1

f,j′−−−−−−→ j∗g∗ and
the flat base change isomorphism f∗j∗

µσ−−→ j′∗g
∗.

For claim (4), first note that j is an open immersion of Notherian schemes and thus perfect. Now let A
be any object of Dj(X) and let B = j∗A so that A = j∗B. Since j is perfect, B lies in D(U). We have
SuppU B = (SuppX A)∩U and we need to check that this set is closed in X. Since A ∈ D(X), we know that
SuppX A is closed in X and any point p ∈ X lies in SuppX A if and only if ι∗pA 6= 0, where ιp is the inclusion
map. On the other hand, for any p ∈ X \ U we have ι∗pA = ι∗pj∗B = 0 by the base change formula. Hence
SuppX A ⊂ U , so SuppU B = SuppX A and hence closed in X. We conclude that B ∈ Dcls(U) as required.

Conversely, let B ∈ Dcls(U) and let A = j∗B. Since B ∈ D(U) we can find a fat enough closed subscheme
Z

k−→ U with the underlying set SuppU B to ensure that B ' k∗C for some C ∈ D(Z). Since SuppU B is closed

in X, the composite map Z
j◦k−−→ X is a closed immersion. We conclude that A = j∗B ' j∗k∗C ' (j ◦ k)∗C

lies in D(X), as required.
We have now shown that j∗ identifies Dj(X) with Dcls(U). Finally, any inverse image functor takes perfect

complexes to perfect complexes [Ill71b, Cor. 4.19.1], therefore j∗ takes Dj
perf (X) to Dcls

perf (U). Conversely,
let A be a perfect object in Dcls(U), then it is, in particular, of finite Tor-dimension. As j is perfect, j∗A is
also of finite Tor-dimension [Ill71a, Cor. 3.7.2]. Since we already know that j∗A ∈ D(X), we conclude that
j∗A is perfect. Thus j∗ identifies Dj

perf (X) with Dcls
perf (U). This settles claim (4).

For claim (5), take any B ∈ Dj(X). Then, as before, we can find a closed immersion Z k−→ U and an object
C ∈ D(Z) such that B = (j ◦ k)∗C. We then have a functorial isomorphism

RHomX ((j ◦ k)∗C,A)
ηj,k◦δj◦k−−−−−−→ j∗k∗RHomZ

(
C, (j ◦ k)!A

)
which shows that functor RHomX (−, A) restricts to a functor Dj(X)→ Dj

qc(X). Finally, this restriction is
identified by j∗ with RHomU (−, j∗A) because j is an open immersion and hence the natural morphism

j∗RHomX (B,A)→ RHomX (j∗B, j∗A)

is an isomorphism [AIL10, Lemma 2.1.7]. �

Corollary 3.5. The Fourier-Mukai transform

ΦE : Dqc(X1)→ Dqc(X2)

has a left adjoint ΦladjE , and this adjoint is isomorphic to the Fourier-Mukai transform

ΨE∨⊗π!
1(OX1 ) : Dqc(X2)→ Dqc(X1).

If SuppX1×X2
E is proper over X1 and X2, then ΦE and ΦladjE restrict to functors between D(X1) and D(X2).

Proof. We only prove the first claim, as the assertion about the restriction to D(X1) and D(X2) is standard.
By Lemma 3.3 functor ΦĒ is isomorphic to j∗ΦE . Hence it restricts to a functor Dqc(X1)→ Dj

qc(X̄2). Thus,
by the same lemma, ΦE is isomorphic to the composition

Dqc(X1)
ΦĒ−−→ Dj

qc(X̄2)
j∗−→ Dqc(X2).

By Lemma 3.4(1) the functorDj
qc(X̄2)

j∗−→ Dqc(X2) is an equivalence whose inverse is the functor j∗. Therefore
ΦE has a left adjoint ΦladjE isomorphic to Φladj

Ē
j∗, that is to

π̄1∗
(
Ē∨ ⊗ π̄!

1(OX1)⊗ π̄∗2j∗(−)
)
.

By Lemma 3.4(2)-(5) this is further isomorphic to

π̄1∗j∗
(
E∨ ⊗ j∗π̄!

1(OX1)⊗ π∗2(−)
)
.

Since π1 = π̄1 ◦ j, the claim now follows by the pseudofunctoriality of (−)∗ and (−)!. �
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The isomorphism ΦĒ
(3.36)−−−−→ j∗ΦE of functors induces the unique isomorphism

Φladj
Ē

∼−→ ΦladjE j∗ (3.39)

of their left adjoints Dqc(X̄2)→ Dqc(X1) which makes the diagram

Φladj
Ē

ΦĒ

∼(3.39)◦(3.36)

��

γĒ

++VVVVVVVVVVVVVVVVVVVVVVVVVVV

ΦladjE j∗j∗ΦE
∼
γj

// ΦladjE ΦE γE
// Id

(3.40)

of functors Dqc(X1)→ Dqc(X1) commute. Therefore the adjunction co-unit ΦladjE ΦE
γE−−→ Id is isomorphic to

the adjunction co-unit Φladj
Ē

ΦĒ
γĒ−−→ Id. The standard Fourier-Mukai kernel of Φladj

Ē
ΦĒ is

Q̄ = π̄13∗
(
π̄∗12Ē ⊗ π̄∗23Ē

∨ ⊗ π̄∗23π̄
!
1(OX1)

)
and Theorem 3.1 supplies us with the morphism Q̄→ ∆∗OX1 which induces Φladj

Ē
ΦĒ

γĒ−−→ Id. We obtain:

Proposition 3.6. The adjunction counit γE : ΦladjE ΦE → Id is isomorphic to the morphism of Fourier-Mukai
transforms Dqc(X1)→ Dqc(X1) induced by the morphism Q̄→ ∆∗OX1 of Theorem 3.1.

As a non-essential aside, the standard Fourier-Mukai kernel of Φladj
E ΦE itself is

Q = π13∗
(
π∗12E ⊗ π∗23E

∨ ⊗ π∗23π
!
1(OX1)

)
The functors Φladj

E ΦE and Φladj

Ē
ΦĒ are isomorphic, but it does not a priori mean that Q and Q̄ are isomorphic.

However, it is easy to check that they are — we leave the details as an exercise for the reader.

4. An alternative description for the pushforward kernels

Whenever E is direct image of an object from the derived category of some subscheme of X1 × X2 the
decomposition of the morphism Q → O∆ given in Theorem 3.1 is usually very poorly suited for computing
cones. We first illustrate this in Section 4.1 with an example where E is the structure sheaf of a global complete
intersection subscheme and so everything can be worked out explicitly using Koszul-type resolutions. For a
general closed subscheme of X1×X2 such a resolution does not exist and a different approach is needed. But
with an insight obtained from Section 4.1 we set up some general machinery in Sections 4.2 and 4.3 which we
then apply in Section 4.4 to obtain a better description of the morphism Q→ O∆ for E being a pushforward
from an arbitrary closed subscheme.

4.1. The global complete intersection example. Let X1 and X2 be a pair of smooth varieties over k with
X2 proper. Let N be a vector bundle of rank d on X1×X2 and let s be a regular global section of N . Let Z be
the zero-locus of s in X1×X2, it is a closed subscheme of codimension d and normal bundle N|Z . Let Z×X1

and X1 × Z be Tor-independent in X1 ×X2 ×X1, i.e. the derived tensor product OZ×X1 ⊗ OX1×Z is OZ′
where Z ′ = (Z×X1)∩(X1×Z). We can rewrite the first two morphisms in the decomposition of Theorem 3.1
for E = OZ as the images under π13∗

(
−⊗ π∗23π

!
2OX1

)
of the following morphism in Dqc(X1 ×X2 ×X1):

π∗12OZ ⊗ π∗23O∨Z
β∆−−→ ∆∗ (OZ ⊗O∨Z)

∆∗ evOZ−−−−−−→ ∆∗OX1×X2 . (4.1)

Note that by the flat base change for the twisted inverse image pseudofunctor (see §2.2) the object π!
1OX1 is

just the shifted line bundle π∗2ωX2 [dimX2].
The structure sheaf OZ has a global Koszul resolution on X1 ×X2

∧dN∨ → ∧d−1N∨ → · · · → N∨ → OX1×X2 (4.2)

whose differential maps are defined in the usual way by valuations at s. In particular, they all vanish along Z.
Dualizing the Koszul complex, we see immediately that O∨Z is isomorphic to OZ ⊗∧dN [−d] in D(X1 ×X2).

We have π−1
12 (Z) = Z × X1 and π−1

23 (Z) = X1 × Z. So π∗12OZ ' OZ×X1 , while π∗23O∨Z = OX1×Z ⊗
π∗23(∧dN )[−d]. Thus π∗12OZ ⊗ π∗23O∨Z , the first term in (4.1), equals OZ×X1 ⊗OX1×Z ⊗ π∗23

(
∧dN

)
[−d]. By



ON ADJUNCTIONS FOR FOURIER-MUKAI TRANSFORMS 21

assumption Z ×X1 and X1×Z are Tor-independent, and π∗23 ∧dN [−d] is a line bundle, so we conclude that
the first term in (4.1) equals (π∗23 ∧d N )|Z′ [−d].

On the other hand, ∆∗ (OZ ⊗O∨Z), the second term in (4.1), is isomorphic to the image under ∆∗ of the
restriction of the dual of the complex (4.2) to Z. Since all the differentials vanish along Z, this equals

∆∗
(
OZ

0−→ N|Z
0−→ . . .

0−→ ∧dN|Z
)

=
d⊕
i=0

∧iN|∆(Z)[−i], (4.3)

where ∆(Z) is the image of Z under X1 ×X2
∆−→ X1 ×X2 ×X1.

Thus the decomposition (4.1) is not practical from the point of view of computing cones. Its first map goes
from (π∗23 ∧d N )|Z′ [−d], a single sheaf sitting in the degree d, to

⊕d
i=0 ∧iN|∆(Z)[−i], a huge complex with

non-zero cohomologies in all degrees from 0 to d. Its second map goes from this huge complex to O∆(X1×X2),
a single sheaf sitting in the degree 0. We get two huge cones with non-zero cohomologies in all degrees from
0 to d which almost entirely annihilate each other when we take the cone of the map between them.

In the rest of this section we prove, in a much more general setting, that there exists a more economical
decomposition than (4.1). Applied to the case at hand, our result will tell us that the decomposition (4.1)
filters through the summand ∧dN|∆(Z)[−d] of

⊕d
i=0 ∧iN|∆(Z)[−i], and can be written simply as:

(π∗23 ∧d N )|Z′ [−d]
Z′→∆(Z)−−−−−−→ ∧dN|∆(Z)[−d] ' ∆∗O∨Z

∆∗(OX1×X2→OZ)∨
−−−−−−−−−−−−−→ ∆∗OX1×X2 . (4.4)

The cones of these two maps are small compared to those in (4.1) and easy to compute.

4.2. A decomposition of the evaluation map. Let Y
f−→ X be a map of concentrated schemes.

Proposition 4.1. For any E ∈ D(OY - Mod) the following diagram commutes

f∗E ⊗RHom (f∗E,OX)

evf∗E

""E
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

f∗E ⊗ f∗RHom (E, f×OX) .

κf

��

Id⊗δfoo

f∗ (E ⊗RHom (E, f×OX))

evE

��
f∗f
×OX
εf

��
OX

(4.5)

Proof. Let us show that the right adjoint of (4.5) with respect to f∗E⊗ (−) commutes. The result in [Lip09,
Prop. 3.2.4(ii)] tells what is the right adjoint of f∗E ⊗ f∗(−)

κf−−→ f∗(E ⊗ −) with respect to f∗E ⊗ (−). It
follows immediately that the right adjoint of

f∗E ⊗ f∗RHom (E,−)
κf−−→ f∗ (E ⊗RHom (E,−)) evE−−→ f∗ (−)

with respect to f∗E ⊗ (−) is

f∗RHom (E,−)
γf−→ f∗RHom (f∗f∗E,−)

τf−→ RHom (f∗E, f∗−) .

Therefore the right adjoint of the composition εf ◦ evE ◦κf in (4.5) is

f∗RHom
(
E, f×OX

) γf−→ f∗RHom
(
f∗f∗E, f

×OX
) τf−→ RHom

(
f∗E, f∗f

×OX
) εf−→ RHom (f∗E,OX) .

By definition this is just the sheafified Grothendieck duality morphism

f∗RHom
(
E, f×OX

) δf−→ RHom (f∗E,OX) .

So is clearly the right adjoint of the composition evf∗E ◦ (Id⊗δf ) in (4.5). The claim follows. �
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4.3. Künneth maps and the base change. Let Y
f−→ X be a map of concentrated schemes. Morphism

κf : f∗(−)⊗ f∗(−)→ f∗ (−⊗−) can be interpreted as the Künneth map of the commutative square:

Y

Id

��

Id // Y

f

��
Y

f
// X

(4.6)

We recall the basics on the Künneth map, cf. [Lip09, §3.10]:

Definition 4.2. Let

σ :

Z

g1

��

g2 // Y2

f2

��
Y1

f1

// X

(4.7)

be a commutative square of concentrated schemes. Setting h = f1 ◦ g1 = f2 ◦ g2 define the Künneth map to
be the bifunctorial morphism

κσ : f1∗(A1)⊗ f2∗(A2)→ h∗ (g∗1(A1)⊗ g∗2(A2)) Ai ∈ D(Yi) (4.8)

which is the composition

f1∗(A1)⊗ f2∗(A2)
βh−→h∗h∗ (f1∗(A1)⊗ f2∗(A2)) νh−→ h∗ (h∗f1∗(A1)⊗ h∗f2∗(A2))

ζ−1
f1,g1

⊗ζ−1
f2,g2−−−−−−−−−→ (4.9)

ζ−1
f1,g1

⊗ζ−1
f2,g2−−−−−−−−−→h∗ (g∗1f

∗
1 f1∗(A1)⊗ g∗2f∗2 f2∗(A2))

γf1⊗γf2−−−−−→ h∗ (g∗1(A1)⊗ g∗2(A2))

with βh being the adjunction unit IdX → h∗h
∗ and γfi being the adjunction counits f∗i fi∗ → IdYi .

A commutative square is called Künneth-independent if its Künneth map is a bifunctorial isomorphism.
For fiber squares of concentrated schemes this notion of independence is equivalent to several others:

Proposition 4.3 ([Lip09], Theorem 3.10.3). Let

σ :

Z = Y1 ×X Y2

g1

��

g2 // Y2

f2

��
Y1

f1

// X

(4.10)

be a fiber square of concentrated schemes, then the following are equivalent:
(1) σ is independent, i.e. the base change map µσ : f∗1 f2∗ → g1∗g

∗
2 is a functorial isomorphism.

(2) σ is Künneth-independent.
(3) σ is Tor-independent, i.e. for any pair of points y1 ∈ Y1 and y2 ∈ Y2 with f1(y1) = f2(y2) = x ∈ X

we have

ToriOX,x (OY1,y1 ,OY2,y2) = 0 for all i > 0. (4.11)

What we saw in Section 4.1 is a special case of a very general base change statement for Künneth maps:

Proposition 4.4. Let

σ :

Z

g1

��

g2 // Y2

f2

��
Y1

f1

// X

(4.12)
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be a commutative square of concentrated schemes and set h = f1 ◦ g1 = f2 ◦ g2. Let u : X ′ → X be any
morphism and let σ′ be the fiber product of σ with X ′ over X, that is - the outer square (Z ′, Y ′1 , Y

′
2 , X

′) in
the commutative diagram

Z ′

g′1

��

g′2 //

u

  @
@@

@@
@@

@ Y ′2

f ′2

��

u

~~~~
~~

~~
~~

Z

g1

��

g2 // Y2

f2

��
Y1

f1

// X

Y ′1
f ′1

//

u

>>~~~~~~~
X ′

u

``AAAAAAAA

(4.13)

where Y ′i = Yi ×X,fi,u X ′, Z ′ = Z ×X,h,u X ′ = Z ×Yi,gi,u Y ′i and the four squares between σ′ and σ are the
corresponding fiber squares. Let also h′ = f ′1 ◦ g′1 = f ′2 ◦ g′2. Finally, to unburden the notation, write

• ηf1 for the pseudofunctoriality isomorphism f1∗u∗
ηu,f′1

◦η−1
f1,u−−−−−−−→ u∗f

′
1∗.

• ζf1 for the pseudofunctoriality isomorphism u∗f∗1

ζ−1
u,f′1
◦ζf1,u

−−−−−−−→ f ′∗1 u
∗

• µf1 for the base change map u∗f1∗ → f ′1∗u
∗ of the corresponding fiber square.

and analogously for f2, g1, g2 and h.
Then for any objects A1 ∈ D(Y1) and A2 ∈ D(Y2):
(1) The following diagram commutes in D(X ′):

u∗ (f1∗(A1)⊗ f2∗(A2))
u∗κσ //

(µf1⊗µf2)◦νu
��

u∗h∗ (g∗1(A1)⊗ g∗2(A2))

h′∗((ζg1⊗ζg2)◦νu)◦µh
��

f ′1∗(u
∗A1)⊗ f ′2∗(u∗A2)

κσ′
// h′∗ (g′∗1 (u∗A1)⊗ g′∗2 (u∗A2))

(4.14)

(2) The following diagram commutes in D(X):

f1∗(A1)⊗ f2∗(A2)
κσ //

βu

��

h∗ (g∗1(A1)⊗ g∗2(A2))

h∗βu

��
u∗u

∗(f1∗(A1)⊗ f2∗(A2))

u∗((µf1⊗µf2)◦νu)
��

h∗u∗u
∗ (g∗1(A1)⊗ g∗2(A2))

u∗h
′
∗((ζg1⊗ζg2)◦νu)◦ηh

��
u∗(f ′1∗(u

∗A1)⊗ f ′2∗(u∗A2))
u∗κσ′

// u∗h′∗ (g′∗1 (u∗A1)⊗ g′∗2 (u∗A2))

(4.15)

Proof. By definition, the right adjoint of the base change map u∗h∗
µh−−→ h′∗u

∗ with respect to u∗ is the

composition h∗
h∗βu−−−→ h∗u∗u

∗ ηh−→ u∗h
′
∗u
∗. It follows that the diagram (4.15) is the right adjoint of the

diagram (4.14) with respect to u∗, so we only need to prove that (4.15) commutes.
Let B m−→ h∗u∗C be any morphism between some B ∈ D(X) and some C ∈ D(Z ′). Let l be the left adjoint

u∗h∗B → C of m with respect to h∗u∗. By compatibility of the inverse image/direct image adjunction with
pseudofunctoriality, the left adjoint with respect to u∗h′∗ of the composition B

m−→ h∗u∗C
ηh−→ u∗h

′
∗C is the

composition h′∗u∗B
ζ−1
h−−→ u∗h∗B

l−→ C. Hence the left adjoint with respect to u∗h′∗ of the upper-right half

f1∗A1⊗f2∗A2
κσ−−→ h∗ (g∗1A1 ⊗ g∗2A2)

νu◦h∗βu−−−−−→ h∗u∗ (u∗g∗1A1 ⊗ u∗g∗2A2)
ηh◦h∗u∗(ζg1⊗ζg2)
−−−−−−−−−−−−→ u∗h

′
∗ (g′∗1 u

∗A1 ⊗ g′∗2 u∗A2)
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of (4.15) is the composition of h′∗u∗ (f1∗A1 ⊗ f2∗A2)
ζ−1
h−−→ u∗h∗ (f1∗A1 ⊗ f2∗A2) with the left adjoint of

f1∗A1⊗f2∗A2
κσ−−→ h∗ (g∗1A1 ⊗ g∗2A2)

νu◦h∗βu−−−−−→ h∗u∗ (u∗g∗1A1 ⊗ u∗g∗2A2)
h∗u∗(ζg1⊗ζg2)
−−−−−−−−−−→ h∗u∗ (g′∗1 u

∗A1 ⊗ g′∗2 u∗A2)

with respect to h∗u∗. Making use of the definition of κσ in (4.9), this adjoint works out to be

u∗h∗

(⊗
i

fiAi

)
νu◦

“N
i u
∗ζ−1
fi,gi

”
◦u∗νh

−−−−−−−−−−−−−−−→
⊗
i

u∗g∗i f
∗
i fi∗Ai

N
i u
∗g∗i γfi−−−−−−−→

⊗
i

u∗g∗iAi

N
i ζgi−−−−→

⊗
i

g′∗i u
∗Ai

Composing with h′∗u∗ (f1∗A1 ⊗ f2∗A2)
η−1
h−−→ u∗h∗ (f1∗A1 ⊗ f2∗A2) and simplifying we see that the left adjoint

of (4.15) with respect to u∗h′∗ is

h′∗u∗

(⊗
i

fi∗Ai

) „N
i ζ
−1
f′
i
,g′
i

«
◦νh′◦h

′∗νu

−−−−−−−−−−−−−−−→
⊗
i

g′∗i f
′∗
i u
∗fi∗Ai

N
i g
′∗
i ζ
−1
fi−−−−−−−→

⊗
i

g′∗i u
∗f∗i fi∗Ai

N
i g
′∗
i u
∗γfi−−−−−−−−→

⊗
i

g′∗i u
∗Ai.

Similarly, the left adjoint of the lower-left half

f1∗A1⊗f2∗A2
βu−−→ u∗u

∗ (f1∗A1 ⊗ f2∗A2)
u∗(

N
i µfi)◦u∗νu−−−−−−−−−−−→ u∗ (f ′1∗u

∗A1 ⊗ f ′2∗u∗A2)
u∗κσ′−−−−→ u∗h

′
∗ (g′∗1 u

∗A1 ⊗ g′∗2 u∗A2)

of (4.15) with respect to u∗h′∗ works out as

h′∗u∗

(⊗
i

fi∗Ai

) „N
i ζ
−1
f′
i
,g′
i

«
◦νh′◦h

′∗νu

−−−−−−−−−−−−−−−→
⊗
i

g′∗i f
′∗
i u
∗fi∗Ai

N
i g
′∗
i f
′∗
i µfi−−−−−−−−→

⊗
i

g′∗i f
′∗
i f
′
i∗u
∗Ai

⊗ig′∗i γf′
i−−−−−→
⊗
i

g′∗i u
∗Ai

It therefore suffices to show that the following diagram commutes for i = 1, 2 and for all Ai ∈ D(Yi)

f ′∗i u
∗fi∗Ai

g′∗i ζ
−1
fi //

f ′∗i µfi
��

u∗f∗i fi∗Ai

u∗γfi

��
f ′∗i f

′
i∗u
∗Ai γf′

i

// u∗Ai.

(4.16)

By definition of µfi in (2.34) the right adjoint with respect to f ′∗i of f ′∗i u
∗fi∗

ζ−1
fi−−→ u∗f∗i fi∗

u∗γfi−−−→ u∗ is

precisely u∗fi∗
µfi−−→ f ′i∗u

∗. So the right adjoint with respect to f ′∗i of (4.16) is the diagram

u∗fi∗Ai
µfi

%%KKKKKKKKKK
µfi

��
f ′i∗u

∗Ai
Id
// f ′i∗u

∗Ai

which clearly commutes. �

4.4. The adjunction counits for the pushforward Fourier-Mukai kernels. We can now apply the
generalities of the previous two sections to obtain an alternative decomposition to that in Theorem 3.1 of the
morphism of Fourier-Mukai kernels which induces the canonical adjunction morphism ΦladjE ΦE → Id in case
where E is a pushforward of an object on some Z ↪→ X1 ×X2.

Let X1 and X2 be a pair of separable schemes of finite type over k. Let Z ιZ−→ X1 × X2 be a closed
immersion proper over both X1 and X2. Denote by πZ1 the composition Z

ιZ−→ X1 ×X2
π1−→ X1. Consider

the following fiber squares:

σ12 :

Z ×X1
ιZ12 //

πZ12

��

X1 ×X2 ×X1

π12

��
Z ιZ

// X1 ×X2

and σ23 :

X1 × Z
ιZ23 //

πZ23

��

X1 ×X2 ×X1

π23

��
Z ιZ

// X1 ×X2.
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Then Z ′ = (Z ×X1) ∩ (X1 × Z)
ιZ′−−→ X1 ×X2 ×X1 fits into the fiber square

σ :

Z ′

ιZ′

''OOOOOOOOOOOOO

ι′12

��

ι′23 // X1 × Z

ιZ23

��
Z ×X1 ιZ12

// X1 ×X2 ×X1.

. (4.17)

Let σ∆ denote the square obtained from (4.17) by base change X1 ×X2
∆−→ X1 ×X2 ×X1:

Z

Id

��

Id //

∆

##G
GGGGGGGG Z

ιZ

��

∆

wwnnnnnnnnnnnnn

Z ′

ιZ′ ''OOOOOOOOOOOOO

ι′12

��

ι′23 // X1 × Z
GFED@ABCσZ23ιZ23

��
Z ×X1 ιZ12

// X1 ×X2 ×X1

Z ιZ
//

∆

;;xxxxxxxxx
GFED@ABCσZ12

X1 ×X2

∆

ggPPPPPPPPPPPP

(4.18)

Observe that:

• Composition Z
∆−→ Z ′

ιZ′−−→ X1 ×X1 ×X1 equals Z πZ1−−→ X1
∆−→ X1 ×X1.

• Compositions Z ∆−→ Z ′
ι′12−−→ Z ×X1

πZ12−−−→ Z and Z
∆−→ Z ×X1

πZ12−−−→ Z are the identity map.

• Compositions Z ∆−→ Z ′
ι′23−−→ X1 × Z

πZ23−−−→ Z and Z
∆−→ X1 × Z

πZ23−−−→ Z are the identity map.

Theorem 4.1. Let EZ ∈ D(Z) be such that E = ιZ∗(EZ) is perfect in D(X1 ×X2). Let ΦE be the Fourier-
Mukai transform D(X1) → D(X2) with kernel E. The adjunction counit ΦladjE ΦE → IdX1 is isomorphic to
the morphism of Fourier-Mukai transforms induced by the composition:

QZ = π13∗
(
ιZ12∗π

∗
Z12EZ ⊗ ιZ23∗π

∗
Z23 RHom

(
EZ , π

!
Z1(OX1)

))
π13∗κσ

��
π13∗ιZ′∗

(
ι′∗12π

∗
Z12EZ ⊗ ι′∗23π

∗
Z23 RHom

(
EZ , π

!
Z1(OX1)

))
π13∗ιZ′∗β∆

��
π13∗ιZ′∗∆∗∆∗

(
ι′∗12π

∗
Z12EZ ⊗ ι′∗23π

∗
Z23 RHom

(
EZ , π

!
Z1(OX1)

))
' ∆∗πZ1∗

““
ζπZ12,ι

′
12,∆
⊗ζπZ23,ι

′
23,∆

”
◦ν∆

”
◦η∆,πZ1◦η

−1
π13,ιZ′ ,∆

��
∆∗πZ1∗

(
EZ ⊗RHom

(
EZ , π

!
Z1(OX1)

))
∆∗πZ1∗(evEZ )
��

∆∗πZ1∗π
!
Z1(OX1)

∆∗επZ1

��
∆∗OX1

(4.19)
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Proof. Assume first that X2 is proper. By Theorem 3.1 the adjunction counit ΦladjE ΦE → IdX1 is induced by
the morphism of Fourier-Mukai kernels which we reproduce here for the convenience of our readers:

π13∗
(
π∗12E ⊗ π∗23

(
E∨ ⊗ π!

1(OX1)
)) β∆−−→ π13∗∆∗∆∗

(
π∗12E ⊗ π∗23

(
E∨ ⊗ π!

1(OX1)
))

(4.20)

π13∗∆∗∆∗
(
π∗12E ⊗ π∗23

(
E∨ ⊗ π!

1(OX1)
))
' ∆∗π1∗

(
E ⊗ E∨ ⊗ π!

1(OX1)
)

(4.21)

∆∗π1∗
(
E ⊗ E∨ ⊗ π!

1(OX1)
) ∆∗π1∗(evE ⊗ Id)−−−−−−−−−−−→ ∆∗π1∗

(
π!

1(OX1)
)

(4.22)

∆∗π1∗
(
π!

1(OX1)
) ∆∗επ1−−−−→ ∆∗OX1 . (4.23)

where the connecting isomorphism (4.21) is ∆∗π1∗ ((ζπ12,∆ ⊗ ζπ23,∆) ◦ ν∆) ◦ η∆,π1 ◦ η−1
π13,∆

.
We have E = ιZ∗EZ and

E∨ ⊗ π!
1OX1 = (ιZ∗EZ)∨ ⊗ π!

1OX1

(2.10)−−−−→ RHom
(
ιZ∗EZ , π

!
1OX1

) δ−1
ιZ−−→ ιZ∗RHom

(
EZ , π

!
Z1OX1

)
. (4.24)

Using the isomorphisms π∗12ιZ∗
µ
σT12−−−→ ιZ12∗π

∗
Z12 and π∗23ιZ∗

µ
σT23−−−→ ιZ23∗π

∗
Z23 and functoriality of β∆, we see

that (4.20) is isomorphic to

π13∗
(
ιZ12∗π

∗
Z12EZ ⊗ ιZ23∗π

∗
Z23 RHom

(
EZ , π

!
Z1OX1

))
π13∗β∆

��
π13∗∆∗∆∗

(
ιZ12∗π

∗
Z12EZ ⊗ ιZ23∗π

∗
Z23 RHom

(
EZ , π

!
Z1OX1

))
.

(4.25)

By Prop. 4.1 it also follows that (4.22)-(4.23) is isomorphic to the composition

∆∗π1∗
(
ιZ∗EZ ⊗ ιZ∗RHom

(
EZ , π

!
Z1OX1

))
∆∗π1∗κσ∆

��
∆∗π1∗ιZ∗

(
EZ ⊗RHom

(
EZ , π

!
Z1OX1

))
∆∗π1∗ιZ∗ evEZ
��

∆∗π1∗ιZ∗ι
!
Zπ

!
1(OX1)

∆∗π1∗ειZ
��

∆∗π1∗π
!
1(OX1)

∆∗επ1

��
∆∗(OX1).

(4.26)

The connecting isomorphism from (4.25) to (4.26) works out to be

π13∗∆∗∆∗
(
ιZ12∗π

∗
Z12EZ ⊗ ιZ23∗π

∗
Z23 RHom

(
EZ , π

!
Z1OX1

))
' (µσZ12⊗µσZ23)◦ν∆

��
π13∗∆∗

(
ιZ∗∆∗π∗Z12EZ ⊗ ιZ∗∆∗π∗Z23 RHom

(
EZ , π

!
Z1OX1

))
' ∆∗π1∗(ιZ∗ζπZ12,∆⊗ιZ∗ζπZ23,∆)◦η∆,π1◦η

−1
π13,∆

��
∆∗π1∗

(
ιZ∗EZ ⊗ ιZ∗RHom

(
EZ , π

!
Z1OX1

))
(4.27)
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By functoriality the bottom isomorphism of (4.27) commutes with the top morphism of (4.26), so we
conclude that (4.20)-(4.23) is isomorphic to the composition of

π13∗
(
ιZ12∗π

∗
Z12EZ ⊗ ιZ23∗π

∗
Z23 RHom

(
EZ , π

!
Z1OX1

))
π13∗β∆

��
π13∗∆∗∆∗

(
ιZ12∗π

∗
Z12EZ ⊗ ιZ23∗π

∗
Z23 RHom

(
EZ , π

!
Z1OX1

))
' π13∗∆∗((µZ12⊗µZ23)◦ν∆)

��
π13∗∆∗

(
ιZ∗∆∗π∗Z12EZ ⊗ ιZ∗∆∗π∗Z23 RHom

(
EZ , π

!
Z1OX1

))
π13∗∆∗κσ∆

��
π13∗∆∗ιZ∗

(
∆∗π∗Z12EZ ⊗∆∗π∗Z23 RHom

(
EZ , π

!
Z1OX1

))

(4.28)

with

π13∗∆∗ιZ∗
(
∆∗π∗Z12EZ ⊗∆∗π∗Z23 RHom

(
EZ , π

!
Z1OX1

))
' ∆∗π1∗(ζπZ12,∆⊗ζπZ23,∆)◦η∆,π1◦η

−1
π13,∆

��
∆∗π1∗ιZ∗

(
EZ ⊗RHom

(
EZ , π

!
Z1OX1

))
∆∗π1∗ιZ∗ evEZ
��

∆∗π1∗ιZ∗ι
!
Zπ

!
1(OX1)

∆∗π1∗ειZ
��

∆∗π1∗π
!
1(OX1).

∆∗επ1

��
∆∗OX1

(4.29)

The claim of the theorem follows by applying the base change for Künneth maps of Prop. 4.4(2) to (4.28)
and noting that as πZ1 = π1 ◦ ιZ so by compatibility of the (f∗, f×) adjunction with pseudo-functoriality,
counits π1∗ειZ and επ1 at the bottom of (4.29) compose to give επZ1 .

Suppose now X2 is not proper. Then, following Section 3.2, we compactify X2 by choosing an open
immersion j : X2 → X̄2 with X̄2 proper. Similar to the conventions in Section 3.2, we use j to also denote
all the compactification maps induced by j : X2 → X̄2 and we put a bar over various objects and morphisms
to denote their compactified versions. E.g. we denote the inclusion Z

ιZ−→ X1 × X2
j−→ X1 × X̄2 by ῑZ . By

the argument above the compactified version of the composition (4.19) gives a morphism Q̄Z → ∆OX1
which

induces the compactified adjunction counit Φladj
Ē

ΦĒ → IdX1 . By the results of Section 3.2 the compactified
and the uncompactified adjunction counits are naturally isomorphic, therefore to prove the claim of the
theorem it suffices to exhibit an isomorphism Q̄Z

∼−→ QZ which composed with the uncompactified (4.19)
gives the compactified (4.19).

All the morphisms in (4.19) except for the first one are independent of the ambient space X2. To be more
precise, we have π̄13 ◦ ῑZ′ = π̄13 ◦j ◦ ιZ′ = π13 ◦ ιZ′ , and hence the compactified versions of last four morphisms
in (4.19) are isomorphic to the uncompactified ones via pseudofunctoriality isomorphisms. It therefore suffices
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to find an isomorphism Q̄Z
∼−→ QZ that would make the following diagram commute:

Q
π13∗κσ // π13∗ιZ′∗

(
ι′∗12π

∗
Z12EZ ⊗ ι′∗23π

∗
Z23 RHom

(
EZ , π

!
Z1OX1

))

Q̄

∼

OO

π̄13∗κσ̄
// π̄13∗ῑZ′∗

(
ι′∗12π

∗
Z12EZ ⊗ ι′∗23π

∗
Z23 RHom

(
EZ , π

!
Z1OX1

))
.

' ηπ13,ιZ′
◦η−1
π̄13,ῑZ′

OO

(4.30)

But π13∗ ' π̄13∗j∗ and square σ is obtained from square σ̄ by the base change j : X1×X2×X1 → X1×X̄2×X1.
So the desired statement is precisely the base change for Künneth maps of Prps. 4.4. �

We have similarly:

Theorem 4.2. Under the assumptions of Theorem 4.1 let ΨE : D(X2) → D(X1) be the Fourier-Mukai
transform with kernel E. The adjunction counit ΨEΨradj

E → Id is isomorphic to the morphism of Fourier-
Mukai transforms induced by the composition:

Q′Z = π13∗
(
ιZ12∗π

∗
Z12 RHom

(
EZ , π

!
Z1OX1

)
⊗ ιZ23∗π

∗
Z23EZ

)
π13∗κσ

��
π13∗ιZ′∗

(
π∗Z12 RHom

(
EZ , π

!
Z1OX1

)
⊗ π∗Z23EZ

)
π13∗ιZ′∗β∆

��
π13∗ιZ′∗∆∗∆∗

(
π∗Z12 RHom

(
EZ , π

!
Z1OX1

)
⊗ π∗Z23E

∨
Z

)
' ∆∗πZ1∗

““
ζπZ12,ι

′
12,∆
⊗ζπZ23,ι

′
23,∆

”
◦ν∆

”
◦η∆,πZ1◦η

−1
π13,ιZ′ ,∆

��
∆∗πZ1∗

(
RHom

(
EZ , π

!
Z1OX1

)
⊗ EZ

)
∆∗πZ1∗ evEZ
��

∆∗πZ1∗π
!
Z1(OX1)

∆∗επZ1

��
∆∗OX1 .

(4.31)

One of the main advantages of the alternative decompositions offered by Theorems 4.1 and 4.2 is that most
of the morphisms in them can become isomorphisms under fairly reasonable assumptions on Z, X1 and X2.
We can then write down twists of ΦE and ΨE fairly easily, for example:

Corollary 4.5. Let X1 and X2 be separable schemes of finite type over a field k. Let Z ιZ−→ X1 × X2 be
a regular closed immersion proper over X1 and X2. Suppose πZ1∗OZ = OX1 where πZ1 is the composition
Z

ιZ−→ X1×X2
π1−→ X1. Suppose also that Z ×X1 and X1×Z are Tor-independent inside X1×X2×X1 and

denote by Z ′ their intersection. Denote by ιZ′ the inclusion Z ′ ↪→ X1 ×X2 ×X1.
Then the Fourier-Mukai kernel of the dual co-twist of ΦOZ : D(X1)→ D(X2) is π13∗ιZ′∗ (L ⊗ I∆′ [1]) where

I∆′ is the ideal sheaf of the diagonal Z in Z ′ and L is the pullback of π!
Z1(OX1) via X1 × Z to Z ′.

Proof. The Fourier-Mukai kernel of the dual co-twist of ΦE is the cone of the morphism of kernels underlying
ΦladjE ΦE → Id. Applying Theorem 4.1, we note that under the assumptions of this corollary, all the morphisms
in (4.19) become isomorphisms with the exception of

π13∗ιZ′∗
(
ι′∗12π

∗
Z12EZ ⊗ ι′∗23π

∗
Z23 RHom

(
EZ , π

!
Z1OX1

))
π13∗ιZ′∗β∆

��
π13∗ιZ′∗∆∗∆∗

(
ι′∗12π

∗
Z12EZ ⊗ ι′∗23π

∗
Z23 RHom

(
EZ , π

!
Z1OX1

))
.
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Since EZ = OZ the above simplifies to the direct image under π13∗ιZ′∗ of

ι′∗23π
∗
Z23π

!
Z1(OX1)

β∆−−→ ∆∗∆∗
(
ι′∗23π

∗
Z23π

!
Z1(OX1)

)
.

Write L for ι′∗23π
∗
Z23π

!
Z1(OX1). By Lemma 2.1 (with f = Id) the morphism L β∆−−→ ∆∗∆∗L is isomorphic to

L⊗ (OZ′ → ∆∗∆∗OZ′). Since OZ′
β∆−−→ ∆∗∆∗OZ′ is just the sheaf restriction OZ′ → ∆∗OZ , its cone is I∆′ [1]

and the claim follows. �

5. An example

Let us give a concrete example of using the results of section 4. For this example we choose the naive
derived category transform induced by the Mukai flop. This transform is not an equivalence - it was proved
by Namikawa in [Nam03] by direct comparison of Hom spaces. Below we use Cor. 4.5 to compute the kernel
which defines its dual co-twist as the Fourier-Mukai transform. We stress that the value of this section lies
not in the answer itself, but in demonstrating how the methods of the paper apply to obtain it. However, the
reader may observe that the kernel we obtain is a line bundle supported on the zero-section of the product.
We shall demonstrate in [AL] that this is the reason for the braiding which occurs between natural spherical
twists in the derived categories of the cotangent bundles of complete flag varieties (see [KT07], §4).

Let V be a 3-dimensional vector space and let X1 be the scheme T ∗P(V ), that is - the total space of the
cotangent bundle of P(V ). Similarly, let X2 be the scheme T ∗P(V ∨). These schemes admit the following
description:

X1 =

 0 ⊂ U1

α
||

⊂ V

α
zz

 :=
{
U1 ⊂ V, α ∈ End(V ) dimU1 = 1, α(V ) ⊆ U1, α(U1) = 0

}

X2 =

 0 ⊂ U2

α
||

⊂ V

α
zz

 :=
{
U2 ⊂ V, α ∈ End(V ) dimU2 = 2, α(V ) ⊆ U2, α(U2) = 0

}
We also have a variety

Z =

 0 ⊂ U1 ⊂ U2 ⊂
α

ww
V

α
ww


with natural “forgetful” maps φk : Z → Xk which forget one of the subspaces. Each map φk is isomorphic to
the blow-up of the zero section carved out by α = 0 in Xk. Both blowups have the same exceptional divisor
F ⊂ Z which is carved out by α = 0:

F = {0 ⊂ U1 ⊂ U2 ⊂ V } .

The resulting birational transformation X1 99K X2 which transforms the zero-section P(V ) ↪→ X1 into the
zero-section P(V ∨) ↪→ X2 is a local model of a four-dimensional Mukai flop. Note that maps φk are proper
and, since each map φk is a blowup of Xk, we have φk∗OZ = OXk .

Let Φ be the functor φ2∗φ
∗
1 from D(X1) to D(X2) and let us compute its dual co-twist. The functor Φ is

a Fourier-Mukai transform with the kernel ιZ∗OZ , where ιZ = φ1 × φ2 : Z → X1 ×X2. We have:

X1 ×X2 ×X1 =

 0 ⊂ U1, U2, U
′
1

α1,α2,α
′
1

zz ⊂ V

α1,α2,α
′
1uu


Z ×X1 =

{
0 ⊂ U1 ⊂ U2

α1=α2

ww ⊂ V

α1=α2

vv
, 0 ⊂ U ′1

α′1
||

⊂ V

α′1xx

}
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X1 × Z =

{
0 ⊂ U1

α1
||

⊂ V

α1
zz

, 0 ⊂ U ′1 ⊂ U2

α2=α′1

ww ⊂ V

α2=α′1
vv

}
.

It follows that Z ′ = (Z ×X1) ∩ (X1 × Z) ⊂ X1 ×X2 ×X1 can be described as

Z ′ =

{
0 ⊂ U1, U

′
1 ⊂ U2

α

vv ⊂ V

α
tt

α(V ) ⊆ U1 ∩ U ′1

}
.

Observe that for any point of Z ′ we have U1 = U ′1 or α = 0 (or both). Therefore Z ′ consists of two
irreducible components: the diagonal ∆Z and the zero section

P = {0 ⊂ U1, U
′
1 ⊂ U2 ⊂ V } .

The intersection ∆Z∩P considered as a subvariety of ∆Z is the exceptional divisor F of the blowups Z
φi−→ Xi

described above. On the other hand, let P
φ13−−→ P(V ) × P(V ) be the map which forgets the subspace U2. It

is the blowup of the diagonal of P(V )× P(V ) and its exceptional divisor in P is carved out by U1 = U ′1, i.e.
it is F = ∆Z ∩ P again.

By Cor. 4.5 the dual co-twist of Φ is the Fourier-Mukai transform X1 → X1 with kernel

K = π13∗ιZ′∗ (L ⊗ I∆[1]) ∈ D(X1 ×X1).

Here ιZ′ is the inclusion Z ′ ↪→ X1 × X2 × X1, I∆ is the ideal sheaf of ∆Z in Z ′ and L is the pullback of
φ!

1(OX1) to Z ′ via X1 × Z.

Since Z
φ1−→ X1 is the blow-up of the zero-section P(V ) ↪→ X1 whose codimension is 2, we know that

φ!
1(OX1) is the line bundle OZ(F ) where F is the exceptional divisor of the blow-up. On the other hand,

pulling back along the projection
Z → P(V )× P(V ∨)

induces an isomorphism
PicZ ' Pic P(V )× Pic P(V ∨).

A simple calculation shows that OZ(F ) is the pullback of OP(V )×P(V ∨)(−1,−1). Similarly

PicZ ′ ' Pic P(V )× Pic P(V ∨)× Pic P(V )

and L, being the pullback to Z ′ of φ!
1(OX1) via X1×Z, is then the pullback of OP(V )×P(V ∨)×P(V )(0,−1,−1).

Since Z ′ has two irreducible components ∆Z and P , we have I∆ ' ιP∗OP (−∆Z ∩ P ) where ιP is the
inclusion P ↪→ Z ′. We therefore have K ' π13∗ιZ′∗ιP∗ (ι∗PL ⊗OP (−F )[1]). A simple computation shows
that OP (−F ) is the pullback of OP(V )×P(V ∨)×P(V )(−1, 1,−1) and therefore ι∗PL⊗OP (−F ) is the pullback of
OP(V )×P(V ∨)×P(V )(−1, 0,−2). We conclude that K ' π13∗ιZ′∗ιP∗φ

∗
13

(
OP(V )×P(V )(−1,−2)[1]

)
.

Now observe that the following diagram commutes

P
ιP //

φ13

��

Z ′
ιZ′ // X1 ×X2 ×X1

π13

��
P(V )× P(V )

ι0
// X1 ×X1

where ι0 is the zero-section inclusion of P(V )× P(V ) into X1 ×X1. We conclude that

K ' ι0∗φ13∗φ
∗
13

(
OP(V )×P(V )(−1,−2)[1]

)
' ι0∗

(
OP(V )×P(V )(−1,−2)[1]

)
.

Appendix A. The unabridged proof of Theorem 3.1

Here we give a complete version of the proof of Theorem 3.1. It contains explicit computations of all the
connecting isomorphisms which we left out of the version in the main body of the paper so as to emphasise the
meaningful part of the proof. The version below is for referees and others who relish seeing how the monoidal
structure of the inverse image functor commutes with pseudofunctoriality and with the associativity of tensor
product. Lasciate ogne speranza, voi ch’intrate.
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Proof. Set

Q′ = π∗23

(
π!

1OX1 ⊗ E∨
)
⊗ π∗12E

so that Q = π13∗Q
′. Since π12 ◦∆ = π23 ◦∆ = Id we have a natural isomorphism

∆∗Q′ ν∆−−−−−→ ∆∗π∗23

(
π!

1OX1 ⊗ E∨
)
⊗∆∗π∗12E

ζπ23,∆⊗ζπ12,∆−−−−−−−−−→
(
π!

1OX1 ⊗ E∨
)
⊗ E. (A.1)

We therefore define a morphism

∆∗Q′
(A.1)−−−→

(
π!

1OX1 ⊗ E∨
)
⊗ E

E⊗(E∨⊗(−))→Id
−−−−−−−−−−−−→ π!

1OX1 . (A.2)

In these terms, the morphism of FM-transforms D(X)→ D(X) induced by Q
(3.3)−(3.6)−−−−−−−→ ∆OX is:

π̃2∗ (π13∗Q
′ ⊗ π̃∗1(−)) Id→∆∗∆

∗

−−−−−−→ π̃2∗ (π13∗∆∗∆∗Q′ ⊗ π̃∗1(−)) (A.3)

π̃2∗ (π13∗∆∗∆∗Q′ ⊗ π̃∗1(−))
η∆,π1◦η

−1
π13,∆−−−−−−−−−→ π̃2∗ (∆∗π1∗∆∗Q′ ⊗ π̃∗1(−)) (A.4)

π̃2∗ (∆∗π1∗∆∗Q′ ⊗ π̃∗1(−))
(A.2)−−−→ π̃2∗

(
∆∗π1∗π

!
1OX1 ⊗ π̃∗1(−)

)
(A.5)

π̃2∗
(
∆∗π1∗π

!
1OX1 ⊗ π̃∗1(−)

) π1∗π
!
1→Id−−−−−−→ π̃2∗ (∆∗OX1 ⊗ π̃∗1(−)) (A.6)

On the other hand, ΦE is the composition of functors π∗1 , E ⊗ (−) and π2∗. Each of these functors has a left
adjoint, these adjoints are π1∗(π!

1OX1 ⊗−), E∨ ⊗ (−) and π∗2 , respectively. Therefore, the adjunction counit
Φladj
E ΦE → Id is the composition of the three corresponding adjunction counits:

π1∗
(
π!

1OX1 ⊗ (E∨ ⊗ π∗2π2∗ (E ⊗ π∗1 (−)))
) π∗2π2∗→Id−−−−−−→ π1∗

(
π!

1OX1 ⊗ (E∨ ⊗ (E ⊗ π∗1 (−)))
)

(A.7)

π1∗
(
π!

1OX1 ⊗ (E∨ ⊗ (E ⊗ π∗1 (−)))
) E∨⊗(E⊗(−))→Id−−−−−−−−−−−→ π1∗

(
π!

1OX1 ⊗ π∗1 (−)
)

(A.8)

π1∗
(
π!

1OX1 ⊗ π∗1 (−)
)
→ Id (A.9)

The claim of the theorem is that the composition (A.7)-(A.9) is isomorphic to the composition (A.3)-(A.6).
Let us clarify some terminology. We say that two morphisms of functors f → g and f ′ → g′ are isomorphic

if there exist connecting isomorphisms f ∼−→ f ′ and g
∼−→ g′ such that the diagram

f //

∼
��

g

∼
��

f ′ // g′

(A.10)

commutes. Clearly it is an equivalence relation on the set of all morphisms between all functors between two
given categories. In particular, it is transitive.

If we further have a morphism of functors g → h which is isomorphic to a morphism of functors g′′ → h′′

then f → g → h is isomorphic to f ′ → g′
∼−→ g′′ → h′′, where the connecting isomorphism g′

∼−→ g′′ is the
composition of the inverse of the connecting isomorphism g

∼−→ g′ with the connecting isomorphism g
∼−→ g′′.

Our strategy therefore is to consecutively replace the morphisms which compose (3.19)-(3.21) by isomorphic
ones until we obtain (3.15)-(3.18).
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Observe that the following diagram, whose vertical arrows are all isomorphisms, commutes:

π1∗
“
π!

1OX1 ⊗
`
E∨ ⊗ π∗2π2∗

`
E ⊗ π∗1 (−)

´´” (A.7) //

ρ−1

��

π1∗
“
π!

1OX1 ⊗
`
E∨ ⊗

`
E ⊗ π∗1 (−)

´´”
ρ−1

��
π1∗

““
E∨ ⊗ π!

1OX1

”
⊗ π∗2π2∗

`
E ⊗ π∗1 (−)

´”
µ

��

Id⊗
“
π∗2π2∗→Id

”
// π1∗

““
E∨ ⊗ π!

1OX1

”
⊗
`
E ⊗ π∗1 (−)

´”
Id⊗

„
ηπ23,∆

◦ζ−1
π12,∆

«
��

π1∗
““
E∨ ⊗ π!

1OX1

”
⊗ π23∗π

∗
12
`
E ⊗ π∗1 (−)

´” β∆ //

απ23

��

π1∗
““
E∨ ⊗ π!

1OX1

”
⊗ π23∗∆∗∆

∗π∗12
`
E ⊗ π∗1 (−)

´”
ν
−1
∆ ◦α∆◦απ23

��
π1∗π23∗

“
π∗23

“
E∨ ⊗ π!

1OX1

”
⊗ π∗12

`
E ⊗ π∗1 (−)

´” β∆ //

ρ−1◦
“
Id⊗νπ12

”
��

π1∗π23∗∆∗∆
∗
“
π∗23

“
E∨ ⊗ π!

1OX1

”
⊗ π∗12

`
E ⊗ π∗1 (−)

´”
ρ−1◦

“
Id⊗νπ12

”
��

π1∗π23∗

““
π∗23

“
E∨ ⊗ π!

1OX1

”
⊗ π∗12E

”
⊗ π∗12π

∗
1 (−)

” β∆ //

Id

��

π1∗π23∗∆∗∆
∗
““
π∗23

“
E∨ ⊗ π!

1OX1

”
⊗ π∗12E

”
⊗ π∗12π

∗
1 (−)

”
ν∆

��
π1∗π23∗

““
π∗23

“
E∨ ⊗ π!

1OX1

”
⊗ π∗12E

”
⊗ π∗12π

∗
1 (−)

” ν∆◦β∆ // π1∗π23∗∆∗
“
∆∗

“
π∗23

“
E∨ ⊗ π!

1OX1

”
⊗ π∗12E

”
⊗∆∗π∗12π

∗
1 (−)

”
(A.11)

The first square in it commutes by functoriality of ρ−1, the second commutes by Lemma 3.2, the third
commutes by Lemma 2.1, the fourth commutes by functoriality of β∆ and the fifth commutes tautologically.

We now want to simplify the connecting isomorphism in the right column of (A.11). By compatibility of
the projection formula with pseudofunctoriality (see diagram (2.29)) we have an equality

α∆ ◦ απ23 ◦ (Id⊗ηπ23,∆) =
(
ζ−1
π23,∆

⊗ Id
)
◦ ηπ23,∆ ◦ (απ23◦∆)

of two morphisms(
E∨ ⊗ π!

1OX1

)
⊗∆∗π∗12 (E ⊗ π∗1 (−)) −→ π23∗∆∗

(
∆∗π∗23

(
E∨ ⊗ π!

1OX1

)
⊗∆∗π∗12 (E ⊗ π∗1 (−))

)
.

Since π23 ◦∆ = Id, we have απ23◦∆ = Id. It follows that the right-hand column of (A.11) equals to

π1∗
“
π!

1OX1 ⊗
`
E∨ ⊗

`
E ⊗ π∗1 (−)

´´”
ρ−1

��
π1∗

““
E∨ ⊗ π!

1OX1

”
⊗
`
E ⊗ π∗1 (−)

´”
„
ζ
−1
π23,∆

⊗ζ−1
π12,∆

«
◦ηπ23,∆

��
π1∗π23∗∆∗

“
∆∗π∗23

“
E∨ ⊗ π!

1OX1

”
⊗∆∗π∗12

`
E ⊗ π∗1 (−)

´”
ν∆◦ρ

−1◦
“
Id⊗νπ12

”
◦ν−1

∆

��
π1∗π23∗∆∗

“
∆∗

“
π∗23

“
E∨ ⊗ π!

1OX1

”
⊗ π∗12E

”
⊗∆∗π∗12π

∗
1 (−)

”

(A.12)

Note that ν−1
∆ and Id⊗νπ12 commute by functoriality. Note further, that by the compatibility of the map

ν∆ with the associativity of the tensor product (see diagram (2.25)) we have an equality

ν∆ ◦ ρ−1 ◦ ν−1
∆ =

(
ν−1

∆ ⊗ Id
)
◦ ρ−1 ◦ (Id⊗ν∆)

of two morphisms

∆∗π∗23

(
E∨ ⊗ π!

1OX1

)
⊗∆∗ (π∗12E ⊗ π∗12π

∗
1 (−)) −→ ∆∗

(
π∗23

(
E∨ ⊗ π!

1OX1

)
⊗ π∗12E

)
⊗∆∗π∗12π

∗
1 (−) .
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It follows that composition (A.12) equals to

π1∗
“
π!

1OX1 ⊗
`
E∨ ⊗

`
E ⊗ π∗1 (−)

´´”
ρ−1

��
π1∗

““
E∨ ⊗ π!

1OX1

”
⊗
`
E ⊗ π∗1 (−)

´”
„
ζ
−1
π23,∆

⊗
„
ν∆◦νπ12◦ζ

−1
π12,∆

««
◦ηπ23,∆

��
π1∗π23∗∆∗

“
∆∗π∗23

“
E∨ ⊗ π!

1OX1

”
⊗
`
∆∗π∗12E ⊗∆∗π∗12π

∗
1 (−)

´”
“
ν
−1
∆ ⊗Id

”
◦ρ−1

��
π1∗π23∗∆∗

“
∆∗

“
π∗23

“
E∨ ⊗ π!

1OX1

”
⊗ π∗12E

”
⊗∆∗π∗12π

∗
1 (−)

”

(A.13)

By compatibility of ν with pseudofunctoriality (see diagram (2.26)) we have an equality

ν∆ ◦ νπ12 ◦ ζ−1
π12,∆

= νπ12◦∆ ◦
(
ζ−1
π12,∆

⊗ ζ−1
π12,∆

)
of morphisms

E ⊗ π∗1(−) −→ ∆∗π∗12E ⊗∆∗π∗12π
∗
1(−).

Since π12 ◦∆ = Id we further have νπ12◦∆ = Id. Therefore(
ζ−1
π23,∆

⊗
(
ν∆ ◦ νπ12 ◦ ζ−1

π12,∆

))
◦ ηπ23,∆ =

(
ζ−1
π23,∆

⊗
(
ζ−1
π12,∆

⊗ ζ−1
π12,∆

))
◦ ηπ23,∆

in (A.13). Finally, by functoriality of ρ and of ηπ23,∆ we have

ρ−1 ◦
(
ζ−1
π23,∆

⊗
(
ζ−1
π12,∆

⊗ ζ−1
π12,∆

))
◦ ηπ23,∆ =

((
ζ−1
π23,∆

⊗ ζ−1
π12,∆

)
⊗ ζ−1

π12,∆

)
◦ ηπ23,∆ ◦ ρ−1.

We conclude that (A.13) equals to

π1∗
“
π!

1OX1 ⊗
`
E∨ ⊗

`
E ⊗ π∗1 (−)

´´”
ρ−1◦ρ−1

��
π1∗

“““
E∨ ⊗ π!

1OX1

”
⊗ E

”
⊗ π∗1 (−)

”
„„
ν
−1
∆ ◦

„
ζ
−1
π23,∆

⊗ζ−1
π12,∆

««
⊗ζ−1
π12,∆

«
◦ηπ23,∆

��
π1∗π23∗∆∗

“
∆∗

“
π∗23

“
E∨ ⊗ π!

1OX1

”
⊗ π∗12E

”
⊗∆∗π∗12π

∗
1 (−)

”

(A.14)

Recall now that we write Q′ for π∗23

(
E∨ ⊗ π!

1OX1

)
⊗ π∗12E and note that ν−1

∆ ◦
(
ζ−1
π23,∆

⊗ ζ−1
π12,∆

)
in (A.14)

is precisely the inverse of isomorphism (A.1). So what we have shown above is that (A.7) is isomorphic to

π1∗π23∗ (Q′ ⊗ π∗12π
∗
1(−))

ν∆◦β∆−−−−→ π1∗π23∗∆∗ (∆∗Q′ ⊗∆∗π∗12π
∗
1(−)) (A.15)

with the connecting isomorphism on the RHS being

π1∗
(
π!

1OX1 ⊗ (E∨ ⊗ (E ⊗ π∗1 (−)))
) “(A.1)−1⊗ζ−1

π12,∆

”
◦ηπ23,∆◦ρ

−1◦ρ−1

−−−−−−−−−−−−−−−−−−−−−−−→ π1∗π23∗∆∗ (∆∗Q′ ⊗∆∗π∗12π
∗
1(−)) .

As π1 ◦ π23 = π̃2 ◦ π13 and π1 ◦ π12 = π̃1 ◦ π13 (see diagram (3.1)) we have the following commutative square

π1∗π23∗ (Q′ ⊗ π∗12π
∗
1(−))

(A.15) //

“
Id⊗

“
ζ−1
π̃1,π13

◦ζπ1,π12

””
◦ηπ̃2,π13◦η

−1
π1,π23

��

π1∗π23∗∆∗ (∆∗Q′ ⊗∆∗π∗12π
∗
1(−))“

Id⊗
“
ζ−1
π̃1,π13

◦ζπ1,π12

””
◦ηπ̃2,π13◦η

−1
π1,π23

��
π̃2∗π13∗ (Q′ ⊗ π∗13π̃

∗
1(−))

ν∆◦β∆

// π̃2∗π13∗∆∗ (∆∗Q′ ⊗∆∗π∗13π̃
∗
1(−))

.
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We finally conclude that (A.7) is isomorphic to

π̃2∗π13∗ (Q′ ⊗ π∗13π̃
∗
1(−))

ν∆◦β∆−−−−→ π̃2∗π13∗∆∗ (∆∗Q′ ⊗∆∗π∗13π̃
∗
1(−)) (A.16)

with the connecting isomorphism on the RHS being

π1∗
“
π!

1OX1 ⊗
`
E∨ ⊗ (E ⊗ π∗1 (−))

´” “
(A.1)−1⊗ζ−1

π̃1,π13,∆

”
◦ηπ̃2,π13,∆◦ρ

−1◦ρ−1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ π̃2∗π13∗∆∗
`
∆∗Q′ ⊗∆∗π∗13π̃

∗
1(−)

´
. (A.17)

Here we have used the fact that by pseudofunctoriality relations (2.19) and (2.20) we have

ηπ̃2,π13 ◦ η−1
π1,π23

◦ ηπ23,∆ = ηπ̃2,π13 ◦ ηπ1◦π23,∆ = ηπ̃2,π13 ◦ ηπ̃2◦π13,∆ = ηπ̃2,π13,∆

and similarly ζ−1
π̃1,π13

◦ ζπ1,π12 ◦ ζ−1
π12,∆

= ζ−1
π̃1,π13,∆

.
Next, we note that the following diagram commutes:

π1∗
“
π!

1OX1 ⊗
`
E∨ ⊗

`
E ⊗ π∗1 (−)

´´” (A.8) //

ρ−1◦ρ−1

��

π1∗
“
π!

1OX1 ⊗ π
∗
1 (−)

”
Id

��
π1∗

“““
π!

1OX1 ⊗ E
∨
”
⊗ E

”
⊗ π∗1 (−)

” “(−)⊗E∨
”
⊗E→Id

//

(A.1)−1⊗Id

��

π1∗
“
π!

1OX1 ⊗ π
∗
1 (−)

”
Id

��
π1∗

`
∆∗Q′ ⊗ π∗1 (−)

´ (A.2) //

„
Id⊗ζ−1

π̃1,∆

«
◦ηπ̃2,∆

��

π1∗
“
π!

1OX1 ⊗ π
∗
1 (−)

”
„

Id⊗ζ−1
π̃1,∆

«
◦ηπ̃2,∆

��
π̃2∗∆∗π1∗

`
∆∗Q′ ⊗ π∗1∆∗π̃∗1 (−)

´ (A.2) // π̃2∗∆∗π1∗
“
π!

1OX1 ⊗ π
∗
1∆∗π̃∗1 (−)

”

(A.18)

Here the top square commutes by Lemma 2.3, the second square commutes by the definition of map (A.2)
and the third square commutes by the functoriality. Therefore (A.8) is isomorphic to

π̃2∗∆∗π1∗ (∆∗Q′ ⊗ π∗1∆∗π̃∗1 (−))
(A.2)−−−→ π̃2∗∆∗π1∗

(
π!

1OX1 ⊗ π∗1∆∗π̃∗1 (−)
)
. (A.19)

And finally, the following square

π1∗
“
π!

1OX1 ⊗ π
∗
1 (−)

”
„

Id⊗ζ−1
π̃1,∆

«
◦ηπ̃2,∆

��

(A.9) // Id

ζ
−1
π̃1,∆

◦ηπ̃2,∆

��
π̃2∗∆∗π1∗

“
π!

1OX1 ⊗ π
∗
1∆∗π̃

∗
1 (−)

” π1∗
“
π!

1OX1
⊗π∗1 (−)

”
→Id
// π̃2∗∆∗∆

∗π̃∗1 (−)

(A.20)

commutes by functoriality. Therefore (A.9) is isomorphic to

π̃2∗∆∗π1∗
(
π!

1OX1 ⊗ π∗1∆∗π̃∗1 (−)
) π1∗(π!

1OX1⊗π
∗
1 (−))→Id

−−−−−−−−−−−−−−−−→ π̃2∗∆∗∆∗π̃∗1 (−) . (A.21)

We now compute the connecting isomorphisms. Composing the inverse of (A.17), the isomorphism in the
right column of (A.11), with the isomorphism in the left column of (A.18) we obtain

π̃2∗π13∗∆∗ (∆∗Q′ ⊗∆∗π∗13π̃
∗
1(−))

“
Id⊗

“
ζ−1
π̃1,∆

◦ζπ̃1,π13,∆

””
◦ηπ̃2,∆η

−1
π̃2,π13,∆−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ π̃2∗∆∗π1∗ (∆∗Q′ ⊗ π∗1∆∗π̃∗1 (−))

and by pseudofunctoriality relations (2.19) and (2.20) this is equal to

π̃2∗π13∗∆∗ (∆∗Q′ ⊗∆∗π∗13π̃
∗
1(−))

“
Id⊗

“
ζ−1
∆,π1

◦ζπ13,∆

””
◦η∆,π1◦η

−1
π13,∆−−−−−−−−−−−−−−−−−−−−−−−−→ π̃2∗∆∗π1∗ (∆∗Q′ ⊗ π∗1∆∗π̃∗1 (−)) . (A.22)

On the other hand, the composition of the inverse of the isomorphism in the right column of (A.18) with the
isomorphism in the left column of (A.20) is clearly Id.
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We can now conclude that the adjunction counit Φladj
E ΦE → Id, being the composition of (A.7), (A.8) and

(A.9), is isomorphic to the composition of (A.16), (A.22), (A.19) and (A.21). The claim of the theorem then
follows from the fact that the following diagram commutes:

π̃2∗ (π13∗Q
′ ⊗ π̃∗1(−)) ∼ //

(A.3)

��

π̃2∗π13∗ (Q′ ⊗ π∗13π̃
∗
1(−))

(A.16)

��
π̃2∗ (π13∗∆∗∆∗Q′ ⊗ π̃∗1(−)) ∼ //

(A.4)

��

π̃2∗π13∗∆∗ (∆∗Q′ ⊗∆∗π∗13π̃
∗
1(−))

(A.22)

��
π̃2∗ (∆∗π1∗∆∗Q′ ⊗ π̃∗1(−)) ∼ //

(A.5)

��

π̃2∗∆∗π1∗ (∆∗Q′ ⊗ π∗1∆∗π̃∗1(−))

(A.19)

��
π̃2∗

(
∆∗π1∗π

!
1OX1 ⊗ π̃∗1(−)

) ∼ //

(A.6)

��

π̃2∗∆∗π1∗
(
π!

1OX1 ⊗ π∗1∆∗π̃∗1(−)
)

(A.21)

��
π̃2∗ (∆∗OX1 ⊗ π̃∗1(−)) ∼ // π̃2∗∆∗∆∗π̃∗1(−)

(A.23)

where the horizontal isomorphisms are all due to the projection formula. To see that diagram (A.23) indeed
commutes, observe that its topmost square commutes by Lemma 2.1, the middle two commute by functoriality
and the lowermost square commutes by Lemma 2.2. �
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