ON ADJUNCTIONS FOR FOURIER-MUKAI TRANSFORMS

RINA ANNO AND TIMOTHY LOGVINENKO

ABSTRACT. We show that the adjunction counits of a Fourier-Mukai transform ®: D(X1) — D(X2) arise
from maps of the kernels of the corresponding Fourier-Mukai transforms. In a very general setting of proper
separable schemes of finite type over a field we write down these maps of kernels explicitly — facilitating
the computation of the twist (the cone of an adjunction counit) of ®. We also give another description of
these maps, better suited to computing cones if the kernel of ® is a pushforward from a closed subscheme
Z C X1 X Xa. Moreover, we show that we can replace the condition of properness of the ambient spaces X1
and Xg by that of Z being proper over them and still have this description apply as is. This can be used, for
instance, to compute spherical twists on non-proper varieties directly and in full generality.

1. INTRODUCTION

The bounded derived category D(X) of coherent sheaves on a variety X had long been recognized as a
crucial invariant of X which holds a wealth of information about its geometry. In order to work conveniently
with functors between the derived categories of two varieties the language of Fourier-Mukai transforms was
developed by Mukai, Bondal and Orlov, Bridgeland and many others. In brief, we can define a functor
D(X,) — D(X32) by specifying an object in the derived category of D(X; x X5). A morphism between such
defining objects induces a natural transformation between the functors. In this paper we write down the
adjunction counit of a general Fourier-Mukai transform in this language — as morphisms of defining objects.

Let X; and X5 be a pair of smooth projective varieties. We have the following commutative diagram:

X1 XX2 XXl (11)
12 i T23
13

X1XX2 X1><X1 X2><X1

T ™1
Xy Xo Xy

Let £ € D(X; x X3). The Fourier-Mukai transform from Xy to Xo with kernel E is the functor
Op(—)=m (E®7r(—)). (1.2)
Here and throughout the paper all the functors are derived unless mentioned otherwise. It is well-known (e.g.
[BO95], Lemma 1.2) that the left adjoint of ®g is the Fourier-Mukai transform from D(X5) to D(X;) with
kernel EY ® 7}(Ox,) where 7}(Ox,) = 73(wx,)[dim X5]. Denote this adjoint by <I>1§dj. A composition of

Fourier-Mukai transforms is again a Fourier-Mukai transform ([Muk81], Prop. 1.3). In particular, @Edjq) Eis

the Fourier-Mukai transform D(X;) — D(X;) with kernel
Q = ms. (T1,E @ m33EY @ 7'(';37'(!1(0)(1)) . (1.3)

On the other hand, the identity functor Id is the Fourier-Mukai transform D(X;) — D(X;) with kernel
Oa = A,Ox, where A is the diagonal inclusion X; — X3 x X;.
Consider now the left adjunction counit

o'dip, - 1d. (1.4)

In general, morphisms between Fourier-Mukai kernels map neither injectively nor surjectively to natural
transformations between the Fourier-Mukai transforms. Thus there is no a priori reason for (1.4) to come
1
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from some morphism @ — Oa. In this paper we construct explicitly a natural choice of such morphism,
working in a much greater generality of separated schemes of finite type over a field.

The principal application is to compute, and even define, spherical twists. These are an important class of
auto-equivalences of the derived category D(X) of a variety X. They are first examples of genuinely derived
auto-equivalences, in a sense that they are neither shifts, nor come from auto-equivalences of the underlying
abelian category Coh X. In brief, a spherical twist is an auto-equivalence of D(X) produced from a spherical
object in D(X) or, more generally, a spherical functor D(Y') — D(X). Spherical objects were introduced by
Seidel and Thomas in [ST01] as mirror symmetry analogues of Lagrangian spheres on a symplectic manifold.
Their defining properties ensure that the twist by a spherical object is an auto-equivalence of D(X). This was
generalised in [Ann07] to exact functors between triangulated categories in such a way that Seidel-Thomas
spherical objects are precisely the (Fourier-Mukai kernels of) spherical functors D(Spec k) — D(X), where
k is the base field.

Taking the twist of a functor is completely general and does not in itself rely on the fact that the functor
is spherical. The ideal definition would be the following;:

“Definition”: Let C; and C5 be triangulated categories. Let S be an exact functor C7; — C5 which has
a right (resp. left) adjoint R (resp. L). The twist (resp. the dual co-twist) of S is the functor Ts: Cy — Cy
(resp. F§: C1 — C4) which is the functorial cone of the adjunction counit SR — Id (resp. LS — Id).

The problem with this definition is the well-known fact that cones in triangulated categories are not
functorial. The cone of a morphism between two objects is uniquely defined (up to an isomorphism), but a
cone of a morphism between two functors might not exist or might not be unique. This is usually fixed by
restricting to a setting where the cone of a morphism of functors is well-defined, cf. [Ann07], §1. One way is
to consider only the functors which are Fourier-Mukai transforms and only the natural transformations which
come from morphisms of Fourier-Mukai kernels. But then to define a twist of a Fourier-Mukai transform
we need a natural choice of the morphism of Fourier-Mukai kernels underlying the corresponding adjunction
counit, while to compute the twist we need an efficient way of computing the cone of this morphism. This
paper addresses both of these issues.

The construction of the natural morphism of Fourier-Mukai kernels underlying the adjunction counit of a
general Fourier-Mukai transform is carried out in Section 3. Thanks to the recent advances in Grothendieck
duality machinery summarised in Section 2 we can work with separated schemes of finite type over a field
and with derived categories Dg.(—) of unbounded complexes with quasi-coherent cohomology. So let X; and
Xo be two separated schemes of finite type, E a perfect object of D(X; x X3) and ®p the Fourier-Mukai
transform D(X;) — D(X2) with kernel E. Let X5 be proper, so that the left adjoint <I>1§dj of g is again
a Fourier-Mukai transform. Then the left adjunction counit @gdjd)E — 1Id is induced by the morphism
Q = T34 (T} E @ w33 EY ® m33mi (Ox,)) — Oa which roughly is the composition of the following:

T13% (The adjunction unit Id — Aq3,. A7 for the diagonal X7 x Xo Lz, X x Xo % Xl) (1.5)
A,71. (The evaluation map F ® EY — Ox, «xx, on X1 x Xs) (1.6)
A, (The adjunction counit 7.7} (Ox,) — Ox,) (1.7)

For the precise formulas see Theorem 3.1. When X is also proper @, <I>l§dj and (1.5)-(1.7) restrict to the
full subcategories of D,.(—) consisting of bounded complexes with coherent cohomologies. If X5 is smooth
7 (Ox,) = m3(wx,)[dim X;] as before. Theorem 3.2 give the analogous result for the right adjunction counit.

This allows us to define the twist and the dual co-twist of any Fourier-Mukai transform. Section 4 deals
with the issue of computing them. Anyone trying to compute the cone of the decomposition (1.5)-(1.7) will
find it ill-suited to the task if the support of E has high codimension in X; x X5. We give an example in
Section 4.1 with E the structure sheaf Oz of a complete intersection subscheme Z in X; x X5 of codimension
d > 0 which satisfies certain transversality conditions. Then morphisms (1.5) and (1.6) both have huge cones
with non-zero cohomologies in all degrees from —d to 0. However these two cones mostly annihilate each other
and the cone of composition (1.5)-(1.6) is actually quite small. This suggests an alternative decomposition of
(1.5)-(1.6) better suited to computing cones, cf. (4.4).
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In the rest of Section 4 we make this into a general argument. The key idea is to take the decomposition
(1.5)-(1.7) obtained in Section 3 and apply to it the base change for Kiinneth maps. If F is a pushforward of
an object from a closed subscheme Z & X1 X X, then the evaluation map F ® EY — Ox, xx, involves the
derived self-intersection of Z inside X; x X5. In precise terms, it involves the Kiinneth map (see Section 4.3
for the definition) for the fiber square o depicted on the left in (1.8):

7 ——7 7l — X1 xZ
s A
oA i \LLZ Restriction to X7 X Xo i>X1 X Xo X X4 o l iLG (18)
ZT>X1><X2 ZXXlWXlXXQXX]

Thus in (1.5)-(1.6) we first restrict fiber square o to the diagonal X; x X5 in X; X X5 x X3 which turns
it into oA and then we do the Kiinneth map on oa. Given two subschemes, the cone of the Kiinneth map
for the fiber square of their intersection reflects, roughly, how far this intersection is from transverse. In oa
we have the self-intersection of Z in X; x Xo which is the opposite of transverse. This suggests first doing
the Kiinneth map on o, as the intersection of Z x X; with X; x Z in X; x X5 x X; may be more transverse,
and then restricting to the diagonal Z in Z’.

Write 7z for the composition Z & X; x Xo 25 Xy, In Prop. 4.4 we prove that Kiinneth maps commute
with arbitrary base change. Then in Theorem 4.1 we show that the composition (1.5)-(1.7) is isomorphic to
roughly the following (cf. Theorem 4.1 for precise formulas):

713« (The Kiinneth map for o) (1.9)

134027 (The adjunction unit Id — A, A™ for the diagonal Z AL g (1.10)
A7 714 (The evaluation map for E on Z) (1.11)

A, (The adjunction counit Ty (Ox,) — Ox,) (1.12)

This is our preferred decomposition of morphism ¢ — Oa. Theorem 4.2 gives the analogous statement for
the right adjunction counit.

One advantage of decomposition (1.9)-(1.12) is that most of the morphisms in it can become isomorphisms
under fairly reasonable assumptions on F and Z. Indeed, while the Kiinneth map for square o is never
an isomorphism unless Z is the whole of X; x X5, the Kiinneth map for ¢ is an isomorphism whenever the
intersection of Z x Xy with X7 x Z in X; x X5 x X7 is transverse. The evaluation map for E on Z is an
isomorphism whenever F is a line bundle or any invertible object of D(Z). The adjunction counit in (1.12)
is an isomorphism whenever Z ZZ1, X, is such that 751,05 = Ox,, e.g. Z is a blowup of X; or a Fano
fibration over it. This allows for a number of scenarios where the twist or the dual co-twist of ®g can be
written down fairly easily, as we demonstrate in Cor. 4.5.

Another advantage of decomposition (1.9)-(1.12) is that it moves the action away from ambient spaces
X1 x X9 x X7 and X; x X, to their subschemes Z’ and Z. This allows us to replace the assumption of
X5 being proper by the assumption of Z being proper over X; and X5 (see Theorem 4.1). Something to be
appreciated by those who want to do spherical twists on non-compact varieties, e.g. total spaces of cotangent
bundles of projective varieties.

Finally, in Section 5 we give an example of an explicit computation using Theorem 4.1. We consider the
naive derived category transform induced by a Mukai flop. This transform is not an equivalence - it was
proved by Namikawa in [Nam03] by direct comparison of Hom spaces. We demonstrate how its dual co-twist
can be computed quickly and efficiently by our methods.
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author would like to thank the Department of Mathematics of the University of Chicago for their support.
The second author would like to thank the University of Liverpool, the Max-Planck-Institut fiir Mathematik
and the Steklov Mathematical Institute for their hospitality during his work on this paper.



4 RINA ANNO AND TIMOTHY LOGVINENKO

2. PRELIMINARIES

Let k be an algebraically closed field of characteristic 0. The level of generality we choose to work at
in the main body of this paper is that of separated schemes of finite type over k. These assumptions are
necessary for the Grothendieck duality machinery which ensures that the direct image functor in the definition
of a Fourier-Mukai transform has a right adjoint. Without them we cannot expect a general Fourier-Mukai
transform to have a right and a left adjoint.

Some of the auxiliary results we prove along the way hold in a greater generality than the one above.
We would like to think of these results as being of potential interest to others who find themselves in an
unfortunate situation of having to show a complicated diagram of derived functors to commute. We try
therefore to state these results in maximal generality they hold at.

By a ringed space we always mean a commutative ringed space. By a concentrated map of schemes we
mean a map which is quasi-compact and quasi-separated. A scheme X is said to be concentrated if it is
concentrated over Spec Z. If Y is a concentrated scheme, then a map X — Y is concentrated if and only if
X is concentrated [GD64, §1.2].

We make frequent use of a notion of a perfect map of schemes X ER Y, cf. [[I71a, §4]. For maps of finite
type between noetherian schemes f is perfect if and only if it is of finite Tor-dimension, i.e. the derived
functor of f* is cohomologically bounded.

Given an adjoint pair of functors (F,G), by the right adjoint with respect to F' of some natural transfor-
mation FH; — Hy, we mean the natural transformation H; — GH> induced by the adjunction. Similarly,
by the left adjoint with respect to G of some H; — G Hy we mean the FH; — Hs induced by the adjunction.

Throughout the paper we employ a variety of greek letters to denote an assortment of natural maps which
exist between compositions of standard derived functors. These are defined at length over the course of
Sections 2.1-2.3, but for the convenience of our readers we have also compiled a brief index:

the projection formula the Kinneth map
oy fLA® B — f.(A® f*B) 2:28) | | Ko | J1a(A1) ® fou(Az) — ha (97(A1) @ g3(A2)) | (4.9)
By Id — fof* (2.22) Ar Id — fX f« (2.30)
*fo. — 1Id 2.22 the base change
i the sheaﬁﬁe‘z Gfrothendieck duality ( ) Ho g*f* - ig/* (234)
Of f« RHomx (A, f*B) - RHomy (f+A,B) | (2.31) vy f*(A® B) l>f’"(A)®f*B (2.24)
€f fef* —1d (2.30) £ | RHomx (A,B)® C — RHomx (A, B®C) | (2.10)
Co.f 19" = (go f)* (218) | | ¢z EV®(—) = RHomx (B, —) (2.12)
Ng.f (90 f)x = gife (2.17) p (A®B)®C > A® (B® C) (2.7)
04, A— RHomx (RHomx (A, B), B) (2.14) ¢ | f« RHomx(f*A, B) = RHomy (A, fB) | (2.21)
) E—EYY (2.15) VA | RHom(A® B,C) - RHom(B, R Hom(A,C)) | (2.8)
Kf f+A® f«B — f«(A® B) (2:27) Xt fXA® f*B — f*(A® B) (2.32)

2.1. Derived categories and derived functors. Let X be a scheme or a ringed space. We denote by
D(Ox-Mod) the unbounded derived category of the abelian category Ox-Mod. We denote by Dg.(X)
(resp. D(X)) the full subcategory of Ox-Mod consisting of complexes with quasi-coherent (resp. bounded
and coherent) cohomology. We denote by Dper(X) the full subcategory of D(X) consisting of the objects
which are locally quasi-isomorphic to a bounded complex of free O x-modules of finite rank.

For a reference text on derived categories and derived functors we recommend [Har66], for the traditional
approach, and [Lip09], for a more modern approach. One should also mention the expositions in [KS06] and
[NeeO1]. A key feature of the modern approach is that thanks to the results of [Spa88] we can now work freely
with unbounded complexes. The authors of this paper adhere to a general principle that wherever possible
general results on derived functors and isomorphisms between them should first be proved in the setting of
Dy.(—), and then shown to restrict to the usual setting of D(—) where applicable.

All the functors in this paper are assumed to be derived, unless specifically mentioned otherwise. With
two exceptions listed below we suppress all the usual R’s and L’s and use the same notation for the derived
functor as for its abelian category counterpart. Below we summarize basic facts about the derived functors
we make use of.

Let X be a ringed space. The derived tensor product functor exists as a functor

(=) ® (=): D(Ox-Mod) x D(Ox-Mod) — D(Ox-Mod).



ON ADJUNCTIONS FOR FOURIER-MUKAI TRANSFORMS 5

and always restricts to a functor Dqc(X) X Dgc(X) — Dgc(X) [Lip09, §2.5]. For X a locally noetherian
scheme and for A € Dpe(X) the functor A ® — restricts to a functor D(X) — D(X) [Har66, Prop. I1.4.3].
Similarly, for any n € Z the derived tensor product functor in n variables (—) ® - -- ® (—) exists as a functor
from the product of n copies of D(Ox-Mod) into D(Ox-Mod) [Lip09, §2.5.9].

The derived functor of the functor Hom x (—, —) of taking the global Hom space between two O x-modules
exists as a functor

RHomx(—,—): D(Ox-Mod)°®® x D(Ox-Mod) — D(I'(Ox)- Mod),
see [Lip09, §2.4]. We make an exception and do not supress ‘R’ here in order to differentiate the object
R Homy (A, B) in D(I'(Ox )- Mod) from the morphism space Homp(x)(A, B). Similarly, the derived functor
of the sheafified Hom functor Hom x(—, —) exists as a functor
RHomx(—,—): D(Ox-Mod)°*? x D(Ox-Mod) — D(Ox-Mod)

We do not suppress ‘R’ here to emphasize the relation with R Hom x. If X is a locally noetherian scheme, then
for any A € D(X) the functor R Hom x (A, —) restricts to a functor D}.(X) — Dg.(X) [Har66, Prop. I1.3.3].
Here DJ.(X) is the subcategory of D,.(X) consisting of complexes with bounded below cohomology. If X is
a noetherian scheme and A is perfect the functor R Homx (A4, —) restricts to a functor Dgc(X) — Dge(X)
and then to a functor D(X) — D(X) [AIL10, Lemma 1.4.6].

Let now Y be another ringed space, and let f: X — Y be a map of ringed spaces.

The derived direct image functor exists as a functor

f«(=): D(Ox-Mod) — D(Oy-Mod),

cf. [Lip09, §3.1]. When f is a concentrated map of schemes f. restricts to a functor Dge(X) — Dgc(Y)
[Lip09, Prop. 3.9.2]. If X and Y are noetherian and f is proper! then f, restricts to a functor D(X) — D(Y)
[[I71a, Théoreme 2.2.1].

The derived inverse image functor exists as a functor

f(=): D(Oy-Mod) — D(Ox-Mod),

cf. [Lip09, §3.1]. When f is a concentrated map of schemes f* restricts to a functor Dgc(Y) — Dqc(X) [Lip09,
Prop. 3.9.1]. If X and Y are locally noetherian and f is perfect, then f* restricts to a functor D(Y) — D(X)
[Har66, Prop. 114.4].

2.2. Adjunctions and dualities for derived functors. Let X be aringed space. For any A € D(Ox-Mod)
the functor
A® (-): D(Ox-Mod) — D(Ox-Mod)
is left adjoint to functor
RHomX(A, —) : D(Ox- MOd) — D(Ox— MOd),
cf. [Lip09, Prop. 2.6.1].

For any A € D(Ox-Mod) denote by AV the object R Homx (A, Ox) € D(Ox-Mod). There is a natural
morphism A — AYY which is an isomorphism for any A € Dpe¢(X) [III71b, Prop. 7.2]. So (—)V restricts to a
self-inverse category equivalence Dpers(X) — Dpert(X )PP giving us the duality functor for perfect complezes.

For any A € Dpert(X) there is a canonical isomorphism AY ® (—) ~ R Homx (A, —), see §2.3(3), so

A® (-): D(Ox-Mod) — D(Ox-Mod)
is both the left and the right adjoint of functor
AY @ (=): D(Ox-Mod) — D(Ox-Mod).

Let now Y be another ringed space and let f: X — Y be a map of ringed spaces. Then functor

f*(=): D(Oy-Mod) — D(Ox-Mod)
is left adjoint to functor

f«(=): D(Ox-Mod) — D(Oy-Mod),
cf. [Lip09, Prop. 3.2.1].

n a non-noetherian world one can work with a more general notion of a quasi-proper scheme map, cf. [Lip09, §4.3].
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Suppose now that X and Y are concentrated schemes and let f: X — Y be a scheme map. Then the
functor

fe(=) Dge(X) = Dqe(Y)
has a right adjoint which we denote as
(=)t Dge(Y) — Dge(X),

cf. [Lip09, Theorem 4.1] or [Nee96, §4].

To state the rest of the Grothendieck duality results in their full presently known generality we would have
to introduce a number of notions (pseudo-coherence, quasi-properness, etc.) which are only meaningfully
different from well-established ones in non-noetherian context. Since the main bulk of this paper deals with
schemes of finite type over a field, we prefer to state these results for noetherian schemes only and refer the
reader to [Lip09, §4] for a more general story.

So let X and Y be noetherian schemes and let f: X — Y be a separated scheme map of finite type.
Adjunction (f, f*) induces a natural morphism d6;: fy R Homx (4, f*B) — RHomy (f.A, B), see §2.3(10),
often referred to as the sheafified Grothendieck duality morphism. For d; to be an isomorphism we need f*
to commute with restriction to open sets of Y [Lip09, §4.6]. When f is proper f* commutes with Tor-
independent base change for all objects in D;;(Y) and so 07 is an isomorphism for all A € Dg.(X) and
B e D(']*‘C(Y) [Lip09, §4.4]. If f is also perfect, then f* commutes with Tor-independent base change for all
of Dgc(Y') and so d¢ is an isomorphism for all A, B € Dy.(Y) [Lip09, Theorem 4.7.4]. Moreover, the natural
map xs: fX(4)® f*(B) = f*(A® B), cf. §2.3(11), is an isomorphism for all A, B € D,.(X) [Nee96, §5].

By a result of Nagata any separated map of finite type between noetherian schemes decomposes as an
open immersion followed by a proper map ([Nag62], or [Voj07] for a more modern exposition). So to make
(=)* commute with flat base change we can try and modify its behaviour over open immersions. Indeed,
there is a unique way to paste (—)* over proper maps with (—)* over étale maps in a way compatible with
étale base change of (—)* (see [Lip09], Theorem 4.8.1 for more detail). The result is the pseudo-functor (—)',
Deligne’s twisted inverse image pseudo-functor, which associates to any finite-type separated map f: X — Y
of noetherian schemes a functor f': Df.(Y) — D}.(X) with a number of nice properties:

1) f'= fX|D;; when f is proper and f' = f*|D;rc when f is étale.
For any f functor f' commutes with Tor-independent base change [Lip09, Theorem 4.8.3].

)
) For perfect f functor f' restricts to a functor D(Y) — D(X) [AIL10, Remark 2.1.5].
) There exists, as explained in [Lip09, §4.9.1], for all A € Dl‘l"c(X) a natural morphism

F(Oy) @ [7(A) = [(A). (2.1)
If f is perfect then (2.1) is an isomorphism [Lip09, Theorem 4.9.4] and the morphism
f*(A) = RHomx ('(Oy), ['(A)) (2:2)

right adjoint to (2.1) with respect to f'(Oy) ® (—) is also an isomorphism [AIL10, Lemma 2.1.10].
(5) If f is a regular immersion of codimension n, then f'(Oy) = wx,y[—n] where wy,y is the top wedge
power of the normal bundle N,y [Har66, Cor. II1.7.3].
(6) If f is smooth of relative dimension n, then f'(Oy) = wx,y[n] where wx/y is the top wedge power
of the sheaf Q% /y of relative differentials [Ver69, Theorem 3].

When f is both perfect and proper, then f' = f* |Dq+c and all the above properties of f' apply to the whole

of f*: Dge — Dge. We do not therefore distinguish between f "and f* when f is perfect and proper.

If f is proper the RHS of (2.2), as a functor in A, has left adjoint f. (f!Oy ® (—)) If f is also perfect we
denote this functor by fi and the fact that (2.2) is an isomorphism implies immediately that fi: Dy.(X) —
Dy (Y) is the left adjoint of f*: Dy.(Y) — Dg4e(X) and the adjunction counit f,f* — Id is the composition

RO = L Oy) @ 7)) B gt et g

Finally, let X be a separated scheme of finite type over a field k and let mp: X — k be the structure
morphism. The functor R Hom x (—, w}ck) restricts to a self-inverse category equivalence D(X) — D(X )PP,
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the global > Grothendieck duality functor Dx . For any separated finite-type map f: X — Y between two

schemes of finite-type over k, the duality D,/ interchanges f* and f' [Lip09, Prop. 4.10.1]. For proper f
the dual of f. under D,y is f. itself - this is precisely the sheafified Grothendieck duality isomorphism.

2.3. Standard relations between derived functors. There exists a number of well-known morphisms and
isomorphisms between compositions of the derived functors listed in Sections 2.1 and 2.2. Here we compile
for the convenience of the reader a list of such elementary relations employed throughout this paper.

For a number of these morphisms of derived functors we say below that they are compatible with the
corresponding natural morphisms for sheaves. For full detail on this the reader should consult the reference
we quote for each result, but roughly we mean the following. A natural transformation of compositions of
derived functors

Rflo...oanHRglo---oRgm (2-3)

is said to be compatible with a natural transformation of compositions of the underlying abelian category
functors

fio-rofn—gio--ogn, (2.4)
if the following diagram commutes
(2.4)
Qofio-ofy ———>Qogio--0gy (2.5)

(2.3) l

Rfio---oRf,0Q——=Rgio---oRg,oQ

where () denotes localisation functor from each chain homotopy category to the corresponding derived category
and the vertical arrows are composed from the natural transformations Qo f; — R f;0Q and Qog; — R g;0Q
that R f; and R g; come equipped with by the definition of a right derived functor. Compositions of left-
derived functors are treated analogously.

(1) Commutativity and associativity of tensor product. Let X be a ringed space. Then for any A, B,C €
D(Ox-Mod) there exist unique natural isomorphisms

A®B = B® A (2.6)
and
p: (A®B)®C S5 A®B®C = A® (B®C) (2.7)

which are functorial in A, B and C' and which are compatible with the corresponding natural isomor-
phisms for sheaves [Lip09, §2.5.7 and §2.5.9].

(2) Sheafified (A® (=), RHom(A, —)) adjunction. Let X be a ringed space. Then for any A, B,C €
D(Ox-Mod) there exist unique natural isomorphism

va: RHomx (A® B,C) = RHomx (B,RHomx (4,C)) (2.8)

compatible with the corresponding natural isomorphism for sheaves [Lip09, Prop. 2.6.1].
Applying the derived global sections functor to (2.8) produces the adjunction isomorphism for the
pair (A® —, R Homx(A,—)). We call its counit the evaluation map of A and denote it by

eva: AQ RHomx (A, —) —1d. (2.9)

An important instance is the morphism A @ AY =2 Oy obtained by applying ev4 to Ox.

2 Le. over a point. One can obtain duality theories on X relative to any separated, finite-type map ng: X — S with S
noetherian, but only after restricting to objects of D(X) perfect over S (see [IlI71a], Cor. 4.9.2 etc.). Since the objects perfect
over a point are precisely the complexes with bounded and coherent cohomologies, the global duality works for all of D(X).
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Perfect objects and R Hom. Let X be a ringed space. For any A, B,C' € D(Ox-Mod) define
¢&: RHomx (A,B)® C — RHomx (A,B® () (2.10)
to be the right adjoint with respect to A ® (=) of the composition

—1
A® (RHomx (A,B)®C) L— (A RHomx (A,B)) ® C =4 B® C. (2.11)
If either of C' or A belong to Dpe(X), then & is an isomorphism [AIL10, Lemma 1.4.6]. In particular,
for any E € Dper(X) we have an isomorphism
(p: BV @ (—) = RHomx(E,—) (2.12)

of functors D(Ox-Mod) — D(Ox-Mod).
The adjunction (F® — RHomx(F,—)) induces via {g an adjunction (F ® —, EY ® —) whose
adjunction co-unit we also denote by evg:

E® (B ®-) 5 E@RHomx (B, —) 22 1d. (2.13)
Ox -reflexivity for perfect objects. Let X be a ringed space. For any A, B € D(Ox-Mod) define
0a5: A— RHomyxy (RHomyx (A, B),B) (2.14)

to be the right adjoint with respect to R Homyx (A4, B) ® (—) of
A®RHomx (A, B) &4 B.
If B = Ox the resulting morphism
Oa: A— AYY (2.15)
an isomorphism for all A € Dpe,(X) [AIL10, Prop 1.4.4].

Let E € Dpes. The adjunction (EY ® —, EVY ® —) induces via the isomorphism E b5, EVV an
adjunction (EY ® —, F ® —) whose adjunction co-unit we denote by evpv:

evpv

EY®(FE®-) % Yo EYe-) Id. (2.16)

Pseudofunctoriality of direct and inverse image. Let X, Y, Z be ringed spaces and X Ly 4 Zbe
maps of ringed spaces. There exist unique isomorphisms

Ng.f: (g0 f)x = gufe of functors D(Ox-Mod) — D(Oz-Mod) (2.17)
and

Copt [F9" = (go f)*  of functors D(Oz-Mod) — D(Ox-Mod) (2.18)

which are compatible with the corresponding natural isomorphisms for sheaves. These isomorphisms
give (—)« and (—)* the structures of a covariant and a contravariant pseudofunctor over the category

of ringed spaces [Lip09, §3.6]. Specifically, for any map X Ly of ringed spaces we have
M,y ="np1a =1d and  Gay = (ra =1d (2.19)
and for any maps X Ly%zh W of ringed spaces the following diagrams commute

Nhog, f fCh,g

(hogof)—>(hog).fe —and  frg"h" ——— f*(hog)" . (2.20)
nh,QOfi inhyg Cg,fi \LChoy,f
ha(g o f) == hegufs (go f)*h* 5 —=(hogo f)

Mg, f g

We write 7, g7 for the corresponding isomorphism (ho go f). = h.g.f« and (4 ¢ for the corre-
sponding isomorphism f*g*h* = (hogo f)*.
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(6) Sheafified (f*, f«) adjunction. Let XY be ringed spaces and let X LY bea map of ringed spaces.
For any A € D(Oy-Mod) and B € D(Ox-Mod) there exists a unique bifunctorial isomorphism
i f« RHomx (f*A,B) = RHomy (A, f.B) (2.21)

compatible with the corresponding natural isomorphism for sheaves [Lip09, Prop. 3.2.3].
Applying the derived global sections functor to (2.21) produces an adjunction isomorphism for the
pair (f*, f.). We denote its unit and counit by

Br: Id — fof* and ¢ f*f. — 1d. (2.22)

The adjunction (f*, fi) is compatible with pseudofunctoriality in the following sense. Let X Ly
and Y % Z be maps of ringed spaces, then the following diagrams commute:

ﬁg % g:8 % — f*’Y« « 8l
Id 9«9 ! gxfxf"g 179" g« fe - I fs d Id,
x in;}o(g*f*%,f) and Cg,fo(f*g*ng_,})l / (2.23)
(go f)e(go f) (go f)*(go f)«

see [Lip09, §3.6] for more details.

(7) Monoidal functor structure for inverse image. Let X, Y be ringed spaces and let X Iy be a map
of ringed spaces. For any A, B € D(Oy-Mod) there exists a unique isomorphism

vi: ff(A® B) = f (A @ f*B (2.24)
functorial in A and B which is compatible with the corresponding natural isomorphism for sheaves
[Lip09, Prop. 3.2.4(i)]. It is worth noting that as a natural transformation of functors in B isomor-

phism vy is conjugate to 7; in sense of [Mac98, §IV.7].
Map vy is compatible with the associativity of the tensor product in the following sense. Let

XL vbea map of ringed spaces. Then the following diagram

F(A®B)©C)—> f (An B e f*C 225 (fAg f*B) @ f*C (2.25)

- |

I'(A@(B®C) —> A0 [ (B&C) 1> ["Ae (f*B® [*0)

commutes for any A, B,C € D(Oy-Mod) [Lip09, §3.4].
Map vy is compatible with pseudofunctoriality in the following sense. Let X Ly andy % Z be

maps of ringed spaces. Then the following diagram commutes

Frot(A® B) —1 % f* (¢*A® " B) — 2> f*g*"A® f*g*B (2.26)

Cg,fl lqg,f®<g,f

(go f)*(A® B) (gof)*A®(go f)*B

Vgof
for all A, B € D(Oz-Mod) [Lip09, §3.6].

(8) Monoidal functor structure for direct image. Let XY be ringed spaces and let X Ly bea map of
ringed spaces. For any A, B € D(Ox-Mod) define morphism

functorial in A and B, to be the right adjoint with respect to f* of the composition
FF(fA® LB S rAe 1B 2 Ag B,

Map ky is compatible with the associativity of the tensor product and with pseudofunctoriality in
a way analogous to map v [Lip09, §3.4 and §3.6].
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(9) Projection formula. Let X,Y be ringed spaces and let X LY be a map of ringed spaces. For any
A € D(Ox-Mod) and B € D(Oy-Mod) define the projection formula morphism

ar: fLA® B — f.(A® f*B) (2.28)

to be the right adjoint with respect to f* of the composition

(A0 B) L A B Y2 A g B,

If X and Y are concentrated schemes, then a is an isomorphism for all A € Dy.(X) and B € Dy (Y)
[Lip09, Prop. 3.9.4].

The projection formula is compatible with pseudofunctoriality in the following sense. Let X Ly
and Y 4 Z be maps of ringed spaces. Then the following diagram

gxQf

A®g.f.B 9« (A® fuB) ———> 9. [« (["g"A® B) (2.29)
id ®nfng: :lg*f*(Cf,g@ﬂd)
A8 (g0 fuB 5> (g0 D). (g0 f)*A® B) ;== g.f. ((go [)*A® B)

commutes for any A € D(Oz-Mod) and B € D(Ox-Mod) [Lip09, Prop. 3.7.1].

(10) The sheafified Grothendieck duality morphism. Let X and Y be concentrated schemes and let X Ly
be a map of schemes. Denote the unit and counit of the (f, f*) adjunction by

A Id— f*fe and  ep: fuf* —1d. (2.30)

The (f«, f*) adjunction is compatible with pseudofunctoriality, in the sense that the analogues of
diagrams (2.23) for 67 and Ay also commute, see [Lip09, Cor. 4.1.2] for more details.
Define for any A € Dy(X) and B € Dy (Y) the sheafified Grothendieck duality morphism

dr: [« RHomx (A, f*B) — RHomy (f.A, B) (2.31)
to be the composition
fe RHomx (A, f*B) 2L f.RHomx (f*f. A, f*B) ~5 RHom (f. A, f.f*B) -5 RHom (f.A, B).

When X and Y are Noetherian and f is proper d; is an isomorphism for all A € Dg.(X) and
B € D{.(Y) [Lip09, Theorem. 4.4.1]. If, in addition to the above, f is perfect, d; is an isomorphism
for all A € Dy(X) and B € Dyc(X) [Lip09, Theorem 4.7.4].

(11) Let X,Y be concentrated schemes and let X L Y bea map of schemes. For any A € D,.(X) and
B € Dy.(Y) define morphism

Xy [PA® f*B — f*(A® B) (2.32)
functorial in A and B to be the right adjoint with respect to f, of the composition

F(f A0 FB) 2 A9 B 22 g B

where a;l is the inverse of the projection formula isomorphism. When f is proper and perfect x is
an isomorphism [Lip09, Exercise 4.7.3.4(a)].
(12) Base change. Let o be a commutative square

X/ L X
/| lf (2:33)
Y ——>Y
of ringed spaces. We define the base change morphism

tio: g fe — fig” (2.34)
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to be the right adjoint with respect to f* of the composition
Xk C f! * fo * * *
gt S (g f) = (Fog) f L g f e g
or, equivalently [Lip09, Prop. 3.7.2], the left adjoint with respect to g. of the composition
71
* * n *
o2 pglg T (Fog)g = (go f)eg” 2L gl
This defines p, as a morphism of functors D(Ox-Mod) — D(O}-Mod). When o is a square of

concentrated schemes the base change map restricts to a morphism of functors Dg.(X) — Dgc(Y”).
We use o7 to denote the transposed square

’

x Ly

g/J/ lg (2.35)

In particular, we denote by ju,r the base change map f*g, — f*g. for 0.

If the restriction of u, to complexes with quasi-coherent cohomology is an isomorphism, then o
is said to be independent. A fiber-square of concentrated schemes is independent if and only if it is
Tor-independent, i.e. for any x € X and y' € Y’ such that f(z) = g(y') =y € Y we have

Tor’byﬂ((?x,m7 Oyry) =0 foralli>0, (2.36)

cf. [Lip09, Theorem 3.10.3]. In particular, a fiber-square of concentrated schemes is independent if
f or g are flat. Another good reference for the above material is [Kuz06, §2.4], where the proofs are
carried out via computations with the underlying Fourier-Mukai kernels.

2.4. Further relations. To prove our main results in Section 3 we need three technical results which we
could not find in the literature. The first two state that the projection formula commutes with certain
adjunction units and counits of the direct image functor.

Lemma 2.1. Let X &V L5 Z be maps of ringed spaces. Let A € D(Oy-Mod) and B € D(Oz-Mod).
Then the following diagram commutes:

fxBg®I1d
f+A®B ’ f+9:9"A® B

ozfi if*ocgoocf (2.37)
[« (A® f*B) e Jx9+9" (A® f*B) mgf*g* (g"A®g"f*B).

Proof. By functoriality of o it suffices to show that the square

. £ (By® 7 1d) i} .
[« (A® f*B) [« (9:9"A® f*B)

| |5

J+9:9" (A® f*B) ——— f.9: (g"A®g" f*B)

frgsvyg
commutes. This square is the image under f, of the square

Bg®1d
A® f*B ? 9+9"A® [*B

ﬁyi lo‘g (238)
9" (A® [*B) g, 9 (g"A® G " B).
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To show that (2.38) commutes we show that its left adjoint with respect to g. commutes. By definition of
oy its left adjoint with respect to g is (74 ® Id) o v4. So the left adjoint with respect to g. of (2.38) is

* * g*(ﬁg®1d) * * * v * * * £k
g (A® f*B) 9 (9:9"A® f*B) —>g*g.9" A® g" [*B
> l'yg®ld

and by functoriality of v, it suffices to show that the following composition is the identity morphism:

’Yy®1d

*9®Id * * * * * * *
L>g 9+ ARG "B —— g"A® g f"B.

Rewrite it as (g* 04 0 v4) ® Id. Since B, and 7, are the unit and the counit of the adjunction (g*,g.), the

g*ﬁg O7Yg
- =

morphism g*A g* A is the identity morphism. The result follows. O

Lemma 2.2. Let X, Y, Z be concentrated schemes and X %Y 1, 7 be scheme maps. Let A € Dy (Y) and
B € Dy.(Z). Then the following diagram commutes:

frea®Id
fe9.9*A® B - fA® B

f*agoafl J/af (239)
fegx (9" A@ g f*B) > fugug™ (A® [*B) ——= f. (A® [*B).

Proof. The proof is analogous to that of Lemma 2.1. By functoriality of a it suffices to show that the image
under f, of

9+9"A® f*B

€g®Id
Qg

9: (9" A® G [*B) g5 > 99" (A® f*B) —= A® f*B.
commutes. Since oy is an isomorphism, this is equivalent to the diagram

9+9"A® f*B

e, ®Id
a_lT g

g

9+ (9" A® g f*B) g5 > 9:9" (A® f*B) —= A® [*B.

commuting. But as ¢, is the adjunction counit, the composition €, 0 g, X, is the left adjoint of x, with respect
to g*. By the definition of x, this left adjoint is precisely (e, ® Id) o a;l. The result follows. O

The third result shows that for a perfect object E the adjunction co-units for F ® (—) commute with the
associativity of the tensor product:

Lemma 2.3. Let X be a ringed space. Then for any A € D(Ox-Mod) and E € Dper(X) the following
diagrams commute

E®(EV®A)GV—E>A (EV®E)®AM>A
pli 4 and pl Id (2.40)
v _—
Feb)eA e A EV®(E®A) —((F— A
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Proof. The adjunction counit £ ® (EY ® A) 2B, A was defined as the composition

Id ®¢E evg

E® (EY® A) E®RHom(E, A) A.

Therefore its right adjoint with respect to £ ® (—) is isomorphism £g. But isomorphism £g was defined to
be the right adjoint with respect to E ® (—) of the composition

eVE(Ox)®Id
—_—

E®(E'0A) S (EoE) oA A

Therefore the left diagram commutes.
For the right diagram, recall that by its definition the adjunction co-unit EY @ (E ® A) —25 Id is

evpv

EV®(EVY® A) A.

EY @ (E® A) (Id®0NE)®Id

Since the left diagram commutes and p is functorial, we can rewrite the composition above as

evpv (0Ox)

e (EY®EYY)® A A.

~

-1
EV®(E®A) L > (EY®E)®A
To show that the right diagram commutes it now remains only to show that

oE—2% L pvepv 09 Lo,

eve(Ox

is the map EY @ E ) Ox. The right adjoint of the composition above with respect to EY ® (—) is just

the map E 95, pvv, But 0 was defined as the right adjoint with respect to EV®(—) of EV®QF eve(Ox), Ox.
The claim follows. O
Define a morphism
evp: EY®@E® (—) — Id (2.41)
to be the composition
Vi P Vi CVE(Ox)®Id
EVQE®R(-) — (EVQE)®(-) ——— Id.

By Lemma 2.3 the canonical isomorphisms identifying EY® E®— with EY®(F ® —) and EQ(EY ® —) identify
(2.41) with the adjunction counits for the adjunctions (EY @ —, F ® —) and (F ® —, E¥Y ® —), respectively.
We thus abuse notation by speaking of (2.41) as “the adjunction counit” for these two adjunctions.

3. ADJUNCTION MORPHISMS FOR FOURIER-MUKAI TRANSFORMS

3.1. Compact case. Let X; and X5 be a pair of separable schemes of finite type over an algebraically closed
field k of characteristic 0 with X5 proper. We have the following commutative diagram

Xl X X2 X X1
T2 iﬂ_ 23
13

X1 X X2 X1 X Xl X2 X X1 (31)

™1 To ) T2
X1 Xo Xy

All the morphisms in it are separated and of finite-type. They are also flat, and therefore perfect. Moreover,
morphisms 7; and 713 are proper.

Definition 3.1. Let E be a perfect object of D(X; X X3). The Fourier-Mukai transform ®p from X;
to X, with kernel E is the functor Dy.(X1) — Dgc(X2) given by

Pp(—) =mu (E@ 7 (—)).
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By the adjunctions described in Section 2.2 functor ®g has both left and right adjoints. The left adjoint
@lgdj is isomorphic to the Fourier-Mukai transform from X» to X; with kernel EV ®7}(Ox,). The composition
@Edjfb g is then isomorphic [Muk81, Prop 1.3] to the Fourer-Mukai transform from X; to X; with kernel

Q = mis. (112 E @ 733 EY @ m3ymi (Ox,)) -

Let now A denote the diagonal inclusion X; — X7 x X and, by abuse of notation, let it also denote the
induced inclusion X7 x X5 — X7 X X3 x X7, so that there is the following fiber square:

Xl XXQ(—A>X1XX2XX1

| | (32)

chf- Xl X X1

The identity functor Id is isomorphic to the Fourier-Mukai transform from X; to X; with kernel A, Ox,. We
now state the main result of this section:

Theorem 3.1. Let X; and X be two separable schemes of finite type over k with Xo proper. Let E be a
perfect object of D(X1 x X2) and ®g be a Fourier-Mukai transform from Dy.(X1) to Dy.(X2) defined by E.

The adjunction counit vg: @gdjq);; — Id is isomorphic to the morphism of Fourier-Mukai transforms
Dyo(X1) = Dye(X1) induced by the following morphism of their kernels:

Q = miz. (112 E @ 133 EY @ myzmi (Ox, ) TN Wy (T2 E @ w33 EY @ myym (Ox,)) (3.3)
T13: 0, A% (1], E @ 33 EY ® W;SW!I(OXI)) ~ Am. (EQEY® ) (Ox,)) (3.4)
A, (E® EY @ 78 (0x,)) 222, A my, (7)(Ox,)) (3.5)
A*ewl
A, (0x,) —5 A, Ox, (3.6)

where (3.4) is composed of isomorphism va: A* (—® —) = A* (=) ® A* (=) and of pseudofunctoriality
isomorphisms corresponding to the identities T30 A = Aomy and a0 A =mo30 A =1d.

We first need the following crucial lemma:

Lemma 3.2. Let o be the fiber square

X1 XXQXXl%Xl XXQ

| | (37)

X1 X X2 ?XQ

Then the following diagram of functors commutes:

Vmo

T M4 1d
" lz Zi”m*“‘ﬂﬂ (3.8)

* %,k
7T23*7T12M7T23*A*A T19-

Proof. It suffices to show that the right adjoints with respect to 75 of the composition

T23xBa

* I * * %
T Tos — T23+T 1o T3« A A5 (3.9)
and of the composition

-1
Y= Mro3,80C 0 A
Tymos — Id ————2— mog, AL AT, (3.10)
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coincide. By the definition of morphism pu, the right adjoint with respect to 75 of (3.9) is

—1
T2 By g «  Mm2,7m23%Mny 710

% T2+T23x06A
Moy —— M4 TM124T g ————— M4 Mo34 Mg —

772*7723*A*A*7Tik2
which by functoriality of 7, x,, © 75}, is the same as

—1
T2+ Bryg % T2xT12:08A Nrg,ma3%Mngy 719

T2 — > T2xT12+T19g — W2*7T12*A*A*7TT2 7T2*7T23*A*A*7TT2~ (311)
By pseudofunctoriality of the direct image, cf. (2.20), the morphism of functors

Nrg,ma3 07];21,7\—12
T TM125 Dy ————————— M2 T23: Ay
is the same as the morphism of functors

-1
T2, (77723,A°7I7,12,A)

T T2+ D 7T2*7T23*A*
and we can therefore rewrite (3.11) as

-1
7]7r23,A0"77\—12,7\—A
e AN

571' * * % % * __%
T (Id 2 Ty 2 B2, s ALA o T3+ AW A 71'12) : (3.12)

By the compatibility of § with pseudofunctoriality as per diagram (2.23) we can rewrite (3.12) as

r1g0 715,800, 733,807,
Mo <Id Brizea (112 0 A), (12 0 A)* r12,8%0mg.8 Tian AL A TS Tir23, 85108 7r23*A*A*7rf2> .
Cancelling out 77;112,A O Nrys,a and noting that fBr,,.a = Id since w3 0 A = Id yields
723,800,
T (Id W—IQA> 7723*A*A*7TT2> .
which is clearly the right adjoint of (3.10) with respect to 75. The result follows. g
Proof of Theorem 3.1. Set
Q' =3y (MOx, ® BY) @ n},E
so that @ = m13,Q’. Since w13 0 A = my3 0 A = Id we have a natural isomorphism
A'Q 8 Aty (rlOx, ® BY) © Aty B 2250t oy o BY @ F. (3.13)
We therefore define a morphism
AQ B oy @ BV 9 E 22 10y, (3.14)
Let us write the morphism of functors induced by the morphism @ (33)-@6), A,Ox, of FM-kernels as:
Fau (113.Q' © 71 (=) 22 o (113.8.07Q' @ 7 () (3.15)
~ N nA”’lon;llsaA ~ PN
s (T13+ A A" Q' ®@ 71 (=) ————— Tou (Aum AQ @ 71 () (3.16)
~ * ~ % 3.14) ~
T (A A*Q @ 71 (=) 22 7o, (AumyurlOx, @ 75(-)) (3.17)
Fox (A1 Ox, ® 7 (=)) —5 Fou (AL Ox, ® 75 (—)) (3.18)

On the other hand, ® g is the composition of functors 77, E ® (—) and ma.. Each of these functors has a left
adjoint, these adjoints are 7, (7 Oy, ® —), EV ® (—) and 73, respectively. Therefore, the adjunction counit
élgdj@ g — Id is the composition of the three corresponding adjunction counits:

T (T10x, ® EY @ m3mas (E @ 77 (—))) BLER (10x, ® EY @ E®@ 7} (—)) (3.19)
T (T10x, ® BY @ E@ 7} (=) 5 714 (M Ox, @ 7} (—)) (3.20)

€xy OXmy
R —

T (M Ox, ® 7} (=) Id (3.21)
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The claim of the theorem is that the composition (3.19)-(3.21) is isomorphic to the composition (3.15)-(3.18).
Let us clarify some terminology. We say that two morphisms of functors f — g and f’ — ¢’ are isomorphic
if there exist connecting isomorphisms f — f’ and ¢ = ¢’ such that the diagram

f—syg (3.22)

fl—y

commutes. Clearly it is an equivalence relation on the set of all morphisms between all functors between two
given categories. In particular, it is transitive.

If we further have a morphism of functors g — h which is isomorphic to a morphism of functors g’ — h”
then f — g — h is isomorphic to f/ — ¢ = ¢" — R, where the connecting isomorphism ¢’ = ¢’ is the
composition of the inverse of the connecting isomorphism g — ¢’ with the connecting isomorphism g = ¢”.

Our strategy therefore is to consecutively replace the morphisms which compose (3.19)-(3.21) by isomorphic
ones until we obtain (3.15)-(3.18). However, every time we replace a composant by an isomorphic one, we
introduce a new connecting isomorphism. In the end we have to compose a long chain of these isomorphisms
(each composed of natural isomorphisms detailed in §2.3) and simplify the result. It is a mechanical exercise
in pseudofunctoriality of direct and inverse image and the associativity of tensor product. To present it in
full detail would be very tedious, the end result being always obvious from the start. This had long been
lamented in the literature, cf. [Har66, §I1.6]. To keep the focus on the substance of a proof we only state the
final result of each such computation of a connecting isomorphism, unless something non-trivial is involved.
For our most meticulous readers (and our most inquisitive referees) we have included in the Appendix an
unabbreviated proof, where all such computations are carried out in full detail.

We begin with morphism (3.19). By Lemma 3.2 it is isomorphic to

T (EV @ T O0x, @ Ta3.7y (B @ 7} (*))) fo

Tia (EV ® T Ox, ® mase AuA*ly (B @ 7} (7))). (3.23)

By Lemma 2.1 morphism (3.23) is further isomorphic to

mremas, (Q @ it (7)) — 202 mas, Ay (ATQ' ® ATmiyn (). (3.24)
Finally, since 71 omeg = fp0m13 and w0719 = 710713, see diagram (3.1), the corresponding pseudofunctoriality
isomorphisms imply that (3.24) is isomorphic to

~ * o~k vaof ~ * Kk~
autias (Q' ® T3] (=) = Tz Ay (A"Q' @ A'mris@y () (3.25)
We proceed to morphism (3.20) which is induced by the adjunction counit 7Oy, ® EV ® E — 7{Ox,. By
its definition morphism (3.14) is isomorphic to this adjunction counit, and so (3.20) is isomorphic to

. (A*Q @ 7} (=) — sy, (7 (Ox,) @ 7 () (3.26)

As 9 0 A = 71 o A = Id by pseudofunctoriality (3.26) is isomorphic to

oA, (AQ @ mi A7 (=) S 7 Ay, (mLOx, @ mEATRE (<)) . (3.27)

Finally, the same pseudofunctoriality isomorphisms imply that (3.21) is isomorphic to

€y OXmy

Fous At (11 Ox, ® T AT () T ALA T (=) (3.28)

We have now shown that (3.19), (3.20) and (3.21) are isomorphic to (3.25), (3.27) and (3.28), respectively.
Next, we compute the connecting isomorphisms. The isomorphism connecting (3.25) to (3.27) works out to
be the pseudofunctoriality isomorphism

—1
NAa,719Mr g,
R =Ll

Foemiz Ay (A*Q' @ A iy (—)) FouAumre (A Q @ T AR (—)) (3.29)

and the isomorphism connecting (3.27) to (3.28) works out to be the identity.
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We can now conclude that the adjunction counit <I>1§dj<I>E — Id, being the composition of (3.19), (3.20)
and (3.21), is isomorphic to the composition of (3.25), (3.29), (3.27) and (3.28). The claim of the theorem
then follows from the fact that the following diagram commutes:

Tox (M13:Q" @ 7] (=) —————— T2uT13+ (Q' @ m{371 () (3.30)
(3.15) (3.25)
Tow (M13: A A Q' @ 7T (—)) — = Toum3:As (A*Q' @ A%} 7F(—))
(3.16) (3.29)
e (Aum1 A*Q' ® T} (—)) ——> T Aurr (A* Q' @ T AT ()
(3.17) (3.27)
Tow (AT Ox, @ (=) —> FouAuTris (71'!10)(1 @ T AT (—))

(3.18) (3.28)

72« (A Ox, ® 71 (—)) = T2 AL AT ()

where the horizontal isomorphisms are all due to the projection formula. To see that diagram (3.30) indeed
commutes, observe that its topmost square commutes by Lemma 2.1, the middle two commute by functoriality
and the lowermost square commutes by Lemma 2.2. O

An identical proof yields an analogous result for the right adjunction counit:

Theorem 3.2. Let X7 and X5 be two separable schemes of finite type over k with Xo proper. Let E be a
perfect object of D(X;1 x X3) and Vg be a Fourier-Mukai transform from Dg.(X2) to Dy.(X1) defined by E.

The adjunction counit vg: \I/E\I'};dj — 1Id s isomorphic to the morphism of Fourier-Mukai transforms
Dyo(X1) — Dye(X1) induced by the following morphism of objects of D(X;1 x X1):

Q = 134 (T12EY @ m3sE ® 71'{2%!1((9)(1)) Ti3Pa, T13: A A% (T EY @ 33 E ® 71'{2#!1((9)(1)) (3.31)
T3 A A" (T EY @ mhs E ® 7rf27r!1((’)xl)) ~ Am, (EQEY® 7711((9)(1)) (3.32)

A.mi. (E@ EY @7 (0x,)) 258, Ay, (71 (Ox,)) (3.33)

Ayt (Ox,) 2270 AL Oy, (3.34)

where (3.32) is composed of isomorphism va: A* (—® —) = A* (=) ® A* (=) and of pseudofunctoriality
isomorphisms corresponding to the identities m3 0 A = Aom; and 30 A =m930 A =1d.

3.2. Non-compact case. In practice, one often has to deal with cases when neither X; nor X, are proper.
A common way to deal with such situations is to restrict to the full subcategories of objects with proper
support. However, with a bit of care it is still possible to work in full generality.

So let X and X3 be any two separable schemes of finite type over k, not necessarily proper, and let E' be
a perfect object of D(X; x X5). We want to write down the left adjoint @gdj of g = ma, (F @75 (—)), but
since 7 is not necessarily a proper morphism, the left adjoint to 7] does not necessarily exist.

To construct @gdj, we compactify X5 - that is, we choose an open immersion j: X «— X, with Xy proper
over k, cf. [Nag62], or [Voj07] for a more modern exposition. We shall abuse the notation by using j to also
denote immersions X7 x Xo — X7 x X and X7 x X5 x X7 — X7 x X5 x X; where it causes no confusion. For
any such compactified product space we shall denote by 7; and 7;; projections onto corresponding factors.
Also, write E for j+E.
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We have the following commutative diagram:

X1XX2<3—)X1XX2

AN

X2 < X2

Lemma 3.3. Let E € Dy, p(X1 x X2). There is an isomorphism of functors Dye(X1) — Dye(X2)

By jDp (3.36)
Its left adjoint with respect to j. is an isomorphism of functors Dgc(X1) — Dgc(X2)

s = Pp. (3.37)
Proof. For the first claim, we set (3.36) to be

—1
4,75 N7y, 50071 4
2 med PTUY

Op = Tou (JuE @ 71 (=)) =5 Taufi (B @ j°71 () Jemax (B @i (=) = j-Pp.

For the second claim: (3.37) is the composition of the image of (3.36) under j* with the adjunction counit
Vit 7%j«®g — ®g. And +; is an isomorphism since j is an open immersion [GD60, Prop. 9.4.2]. U

We now need the following key lemma:

Lemma 3.4. Let X be a concentrated scheme and let U 2+ X be an open immersion. Let D‘ (X)) be the full
subcategory of Dy.(X) formed by the images of the objects of Dy.(U) under j.. Let DI (X) and D;erf( ) be
the full subcategories of DgC(X) consisting of complexes with bounded and coherent cohomology and of perfect
complexes. Then:

(1) Functors j. and j* restrict to mutually inverse equivalences between D? (X) and Dye(U).

(2) For any A € Dye(X) functors A® (=) and RHomx (A, —) restrict to functors D} .(X) — DJ.(X)

and are identified by j* with j*A® (=) and R Homy (j*A, —).
(3) Let X' I, X be a concentrated map and consider the following base change diagram:
j/
U/ > X/
o gl l ; (3.38)

The functors f. and f* restrict to functors between Dg;(X’) and D}.(X) and are identified by the
equivalences j* and j"* with functors g, and g*.

(4) Let X be Noetherian. The equivalence j* identifies D7 (X) and D;Wf(X) with D'*(U) and D;leif(U)
the full subcategories of D(U) and Dyperr(U) consisting of objects whose support is closed in X .

(5) Let X be Noetherian. For any A € DJ (X) functor R Homx (—, A) restricts to a functor DI (X) —

Dj.(X) and the equivalence j* identifies it with R Homy(—,j*A).

Proof. Since j is an open immersion, the adjunction co-unit j*j. 2, 1d is an isomorphism. It follows that
Jx is fully faithful, so its restriction to a functor D4.(U) — D;(X) is tautologically an equivalence. It also
follows that j* is the inverse equivalence to j.. This settles claim (1).

For claim (2), it follows from the projection formula isomorphism

A® (=) =5 (i A® -)
that A ® (—) restricts to a functor D7(X) — D;(X) and that this restriction is identified by j* with
J*A® (=) Dge(U) = Dqe(U).
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The assertion for the functor R Hom x (A, —) follows similarly from the sheafified adjunction isomorphism
J« RHomy (j*A, —) = RHomx (4, j.(—)).
° —1

The claim (3) follows in the same way from the pseudo-functoriality isomorphism f,j., M TN J+gx and
the flat base change isomorphism f*j, =% j/g*.

For claim (4), first note that j is an open immersion of Notherian schemes and thus perfect. Now let A
be any object of DI(X) and let B = j*A so that A = j,B. Since j is perfect, B lies in D(U). We have
Suppy B = (Suppyx A) NU and we need to check that this set is closed in X. Since A € D(X), we know that
Suppy A is closed in X and any point p € X lies in Suppx A if and only if ;A # 0, where ¢, is the inclusion
map. On the other hand, for any p € X \ U we have tyA = 135.B = 0 by the base change formula. Hence
Suppy A C U, so Supp;; B = Suppy A and hence closed in X. We conclude that B € D*(U) as required.

Conversely, let B € D(U) and let A = j.B. Since B € D(U) we can find a fat enough closed subscheme
Z £ U with the underlying set Supp;; B to ensure that B ~ k,.C for some C' € D(Z). Since Suppy; B is closed
in X, the composite map Z 9%, X is a closed immersion. We conclude that A = JxB ~ j k. C ~ (j 0 k),.C
lies in D(X), as required.

We have now shown that j* identifies D7(X) with D*(U). Finally, any inverse image functor takes perfect
complexes to perfect complexes [IlI71b, Cor. 4.19.1], therefore j* takes D;er +(X) to D;lesr #(U). Conversely,
let A be a perfect object in D!*(U), then it is, in particular, of finite Tor-dimension. As j is perfect, j,A is
also of finite Tor-dimension [Il171a, Cor. 3.7.2]. Since we already know that j.A € D(X), we conclude that

j«A is perfect. Thus j* identifies Dgerf (X) with D;éif(U). This settles claim (4).

For claim (5), take any B € D’(X). Then, as before, we can find a closed immersion Z %, U and an object
C € D(Z) such that B = (j o k).C. We then have a functorial isomorphism

R Homy ((j o k).C, A) 225 5 k. R Homy (C, (j o k)'A)

which shows that functor R Homx (—, A) restricts to a functor D7(X) — D’ (X). Finally, this restriction is
identified by j* with R Homy (—, j*A) because j is an open immersion and hence the natural morphism

jJ*RHomx (B,A) - RHomx (j*B,j*A)
is an isomorphism [AIL10, Lemma 2.1.7]. O
Corollary 3.5. The Fourier-Mukai transform
Op: Dye(X1) = Dye(X2)
has a left adjoint @Edj, and this adjoint is isomorphic to the Fourier-Mukai transform
\I/Ev®ﬂ!1(oxl) © Dge(X2) = Dge(Xn).
If Suppy, « x, E is proper over X and Xo, then g and @gdj restrict to functors between D(X1) and D(Xs).

Proof. We only prove the first claim, as the assertion about the restriction to D(X;) and D(X5) is standard.

By Lemma 3.3 functor ® is isomorphic to j.®g. Hence it restricts to a functor Dg.(X1) — DJ.(X2). Thus,
by the same lemma, ® g is isomorphic to the composition

iy P i
Dye(X1) == DI (X3) Lo Dye(X2).

By Lemma 3.4(1) the functor D .(X5) Z, D,.(X2) is an equivalence whose inverse is the functor j.. Therefore
j ladj
E

T1x (Ev & 77'!1(OX1) & ﬁ';]*(_)) :
By Lemma 3.4(2)-(5) this is further isomorphic to
7_"'1*].* (EV ®j*7_711(OX1) ® W;(*)) .

®x has a left adjoint @l];ldj isomorphic to ®=% j,, that is to

Since 71 = 7 0 j, the claim now follows by the pseudofunctoriality of (—). and (—)'. O
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(3.36)

The isomorphism &5 —— 5. ®g of functors induces the unique isomorphism
ol =, lpd jx (3.39)
of their left adjoints Dy.(X2) — Dge(X1) which makes the diagram
ladj
ol (3.40)
(3.39)0(3.36)l~ e
q)ladj ) ~ (bladj@ 1d
E J Jx®PE ;i E E 4

of functors Dgc(X1) — Dgc(X1) commute. Therefore the adjunction co-unit @lgdj dp 22 1d is isomorphic to
the adjunction co-unit <I>lEfdj o3 22, 1d. The standard Fourier-Mukai kernel of CIJZEdj by is

Q = T13s (1B @ 733 EY @ w371 (Ox,))
and Theorem 3.1 supplies us with the morphism @ — A,Ox, which induces @gdj o J2E, 1d. We obtain:

Proposition 3.6. The adjunction counit vg : @gdeI)E — Id is isomorphic to the morphism of Fourier-Mukai
transforms Dge(X1) — Dge(X1) induced by the morphism Q@ — A, Ox, of Theorem 8.1.

As a non-essential aside, the standard Fourier-Mukai kernel of CID?djq) g itself is
Q = M3 (1], B @ 133 EY @ w3ym1 (Ox,))

The functors @gdjé g and <I>1Efdj<I> 7 are isomorphic, but it does not a priori mean that @ and @ are isomorphic.
However, it is easy to check that they are — we leave the details as an exercise for the reader.

4. AN ALTERNATIVE DESCRIPTION FOR THE PUSHFORWARD KERNELS

Whenever E is direct image of an object from the derived category of some subscheme of X; x X5 the
decomposition of the morphism Q — Oa given in Theorem 3.1 is usually very poorly suited for computing
cones. We first illustrate this in Section 4.1 with an example where E is the structure sheaf of a global complete
intersection subscheme and so everything can be worked out explicitly using Koszul-type resolutions. For a
general closed subscheme of X7 X X5 such a resolution does not exist and a different approach is needed. But
with an insight obtained from Section 4.1 we set up some general machinery in Sections 4.2 and 4.3 which we
then apply in Section 4.4 to obtain a better description of the morphism @ — Oa for F being a pushforward
from an arbitrary closed subscheme.

4.1. The global complete intersection example. Let X; and X5 be a pair of smooth varieties over k with
X, proper. Let A be a vector bundle of rank d on X; x X, and let s be a regular global section of N'. Let Z be
the zero-locus of s in X x X», it is a closed subscheme of codimension d and normal bundle N|z. Let Z x X
and Xy x Z be Tor-independent in X; x Xy x X7, i.e. the derived tensor product Ozxx, ® Ox,xz is Oz
where Z' = (Z x X1)N (X1 x Z). We can rewrite the first two morphisms in the decomposition of Theorem 3.1
for E = Oy as the images under m3, (— ® 733750y, ) of the following morphism in Dg.(X1 x Xo x X3):

A, ev
15,07 @ 150% P2 A, (07 0 0%) 22222, A, Oy, xx,. (4.1)

Note that by the flat base change for the twisted inverse image pseudofunctor (see §2.2) the object 7} Ox, is
just the shifted line bundle Tiwx, [dim Xs].
The structure sheaf Oz has a global Koszul resolution on X7 x X5

/\de—>/\d_1Nv—>"'—>NV—>0X1><X2 (42)

whose differential maps are defined in the usual way by valuations at s. In particular, they all vanish along Z.
Dualizing the Koszul complex, we see immediately that O is isomorphic to Oz ® AYN[—d] in D(X; x Xa).

We have 75 (Z) = Z x X1 and 755 (Z) = X1 x Z. So 7150z ~ Ozxx,, while 13;0% = Ox,xz ®
733(ANTN)[—d]. Thus 7},07 ® 7350%, the first term in (4.1), equals Ozxx, ® Ox, xz ® 733 (AN) [=d]. By
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assumption Z x X; and X; x Z are Tor-independent, and 735 AY A'[—d] is a line bundle, so we conclude that
the first term in (4.1) equals (w33 A2 N)|z/[—d].

On the other hand, A, (Oz ® 0%), the second term in (4.1), is isomorphic to the image under A, of the
restriction of the dual of the complex (4.2) to Z. Since all the differentials vanish along Z, this equals

d
A (07 2Nz % B AW ) = @D AN s [l (4.3)
=0

where A(Z) is the image of Z under X; x X, A, X1 x Xy x X;.

Thus the decomposition (4.1) is not practical from the point of view of computing cones. Its first map goes
from (733 AY N)|z/[—d], a single sheaf sitting in the degree d, to EB?:O NN a(z)[—i], a huge complex with
non-zero cohomologies in all degrees from 0 to d. Its second map goes from this huge complex to Oa(x, x x,)s
a single sheaf sitting in the degree 0. We get two huge cones with non-zero cohomologies in all degrees from
0 to d which almost entirely annihilate each other when we take the cone of the map between them.

In the rest of this section we prove, in a much more general setting, that there exists a more economical
decomposition than (4.1). Applied to the case at hand, our result will tell us that the decomposition (4.1)
filters through the summand ANz (z)[—d] of @?:0 N N|a(z)[—i], and can be written simply as:

*(Oxl XXQ*)OZ)\/

Z' A (Z A
228, NN | a2 [—d] ~ ALOY ALOx, xx, (4.4)

(w35 AT Nz [~d]

The cones of these two maps are small compared to those in (4.1) and easy to compute.

4.2. A decomposition of the evaluation map. Let YV END'e be a map of concentrated schemes.

Proposition 4.1. For any E € D(Oy-Mod) the following diagram commutes

f.E@RHom (f.E,Ox) <2 1.E® f.RHom (E, f*Ox) .

k¥

fr (E@RHom (E, f*Ox))
cvs (4.5)

fof*Ox

cf

Ox

Proof. Let us show that the right adjoint of (4.5) with respect to f.F ® (—) commutes. The result in [Lip09,

Prop. 3.2.4(ii)] tells what is the right adjoint of f,E @ f,(=) — f.(E ® —) with respect to f,E ® (—). It
follows immediately that the right adjoint of

LE® f.RHom (E,—) ~L f.(E@RHom (E,—)) <& f, ()
with respect to f,F ® (—) is
feRHom (E,—) 5 f, R Hom (f*f.E,—) > RHom (f.E, f.—).
Therefore the right adjoint of the composition e o evg oky in (4.5) is
fe RHom (E, f*Ox) L f. R Hom (f*f.E, f*Ox) -5 RHom (f.E, f.f*Ox) L RHom (f.E,Ox).
By definition this is just the sheafified Grothendieck duality morphism
. RHom (E, f*Ox) 25 RHom (f.B, Ox).
So is clearly the right adjoint of the composition evy g o (Id®d¢) in (4.5). The claim follows. O
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4.3. Kiinneth maps and the base change. Let Y L X bea map of concentrated schemes. Morphism
Kf: fo(—=) ®@ fu(=) = fs (— ® —) can be interpreted as the Kiinneth map of the commutative square:

y —4>y
Idl lf (4.6)
Y T> X
We recall the basics on the Kiinneth map, cf. [Lip09, §3.10]:
Definition 4.2. Let

Zi>y2

o: ml ifz (4.7)

Y1 *>X
f1

be a commutative square of concentrated schemes. Setting h = f; o g1 = f5 o go define the Kinneth map to
be the bifunctorial morphism

Fo: f1a(A1) @ f2.(A2) = ha (97(A1) @ 95(A2))  Ai € D(Y3) (4.8)

which is the composition

Fra(A2) ® Fou(Az) Zoh (f1u(A) @ fou(A2)) 2 b (B Fru(Ay) © B* fon (Ag)) 2500252, (4 g)

Vi1 ®Vfo
—_

<;1{91®<f721,g2 * ik * ik * *
—————ha (91 f1 f1(A1) ® 93 f5 f2:(A2)) hy (91(A1) ® g5(A2))
with 8), being the adjunction unit Idx — h.h* and ~yy, being the adjunction counits f;" fi, — Idy,.

A commutative square is called Kinneth-independent if its Kiinneth map is a bifunctorial isomorphism.
For fiber squares of concentrated schemes this notion of independence is equivalent to several others:

Proposition 4.3 ([Lip09], Theorem 3.10.3). Let
Z = Yl Xx Y2 L’ Y2

o gli ifa (4.10)

Y —————X

f1

be a fiber square of concentrated schemes, then the following are equivalent:

(1) o is independent, i.e. the base change map uy: f7 fax — 91495 s a functorial isomorphism.

(2) o is Kiinneth-independent.

(3) o is Tor-independent, i.e. for any pair of points y1 € Y1 and ys € Yo with f1(y1) = fa(ye) =z € X
we have

Tort,. . (Ovy 41, Ova ) = 0 for all i > 0. (4.11)
What we saw in Section 4.1 is a special case of a very general base change statement for Kiinneth maps:
Proposition 4.4. Let

7257,

o gll ifz (4.12)

YlT)X
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be a commutative square of concentrated schemes and set h = f1 o091 = faogs. Let u: X' — X be any
morphism and let o’ be the fiber product of o with X' over X, that is - the outer square (Z',Y{,Y3, X’) in
the commutative diagram

Y/

X/

A & Yy
e
g, gll lfz i (4.13)
Yl T> X
f

where Y] =Y, Xx pu X', Z' = Z xXx pu X' = Z Xy, g0 Y] and the four squares between ¢’ and o are the

corresponding fiber squares. Let also h' = f{ o g| = f4 o gh. Finally, to unburden the notation, write

1
nu,f{ Onfl,u
-

o 1y, for the pseudofunctoriality isomorphism fi.u. Us f1 -

oS
e (g, for the pseudofunctoriality isomorphism u* ff ————— fi*u*
o iy, for the base change map u* f1. — fi,u* of the corresponding fiber square.

and analogously for fs,g1,92 and h.
Then for any objects Ay € D(Y1) and Ay € D(Y3):

(1) The following diagram commutes in D(X'):
U (fr( A1) ® fou(A2)) == u"ha (g7 (A1) @ g5 (42))
(Hfl ®Nf2)°”ul \Lh;((<gl®gg2)ouu)°#h (414)
P (" A1) © f3. (0" Az) —— B (g (u” A1) © g (u* A2))
(2) The following diagram commutes in D(X):

K

J1:(A1) ® fou(Ag) ——————— hy (g7 (A1) ® g5(A2))

o Jps

utt” (f14 (A1) © f2x(A2)) hauu” (97 (A1) ® g5(Az2)) (4.15)
e (15 ®Hf2)°"u)l iu*h;((<gl®C92)oyu)onh
U (f1. (0" A1) © fo, (" A2)) == uahl, (91" (u” A1) © g5 (u” Az))

Proof. By definition, the right adjoint of the base change map u*h, + h’u* with respect to u* is the
composition h, LN N uchiu*. Tt follows that the diagram (4.15) is the right adjoint of the
diagram (4.14) with respect to u., so we only need to prove that (4.15) commutes.

Let B ™ h,u.C be any morphism between some B € D(X) and some C' € D(Z'). Let [ be the left adjoint
u*h*B — C of m with respect to h,u,. By compatibility of the inverse image/direct image adjunction with
pseudofunctoriality, the left adjoint with respect to u,h’ of the composition B —= hyu,C' I, uhlC is the

-1
composition h*u*B S, w*h*B L C. Hence the left adjoint with respect to u,h), of the upper-right half

Vo Ohu By nhoh*u*(491®<g2)
e,

f1eA1®@ for As =% by (g7 A1 ® g5 A2) haus (u* g7 A1 @ u* g5 Ag)

wh, (g u* AL @ gy'u* Ag)



24 RINA ANNO AND TIMOTHY LOGVINENKO

-1
of (4.15) is the composition of h™*u* (f1. A1 ® fo.As) Ch—> w*h* (f1+ A1 ® farAs) with the left adjoint of

I * * Vo Ol Buy * ok * P (Coy ®Cq * ok * ok
FLi® oy 2% b (g7 AL @ g5 Az) 2202 b, (u”gi Ay @ u” g3 Ay) B 1 s), haus (97" u" A1 ® g5'u” Az)

with respect to hy . Making use of the definition of k, in (4.9), this adjoint works out to be

vuo (@, v ¢y, Jou v ®; ugivs i Cos
<® fiA ) . ®u DI A S Qug A = Q) g A
7

9

Composing with A™*u* (f1. A1 ® forAs2) nh—> u*h* (f1. A1 @ faxA2) and simplifying we see that the left adjoint
of (4.15) with respect to u.h is

Ik, ok <®1 <;l{lvgg>oyh/°h,*l’u /* * ® ‘g’,*gfz Ik %k Ik, ok
h*u ®fz*Az ®g Ut fic A ®g f fixAi ®gz A;.
Similarly, the left adjoint of the lower—left half
u*(®1 ,ufi)ou*uu

J1+A1® f2. Ag LR (f1+A1 ® faxAz) w, (flou" Ay @ fo ot Ay) = ulhl, (g7 u* Ay @ ghu” As)

of (4.15) with respect to u.h! works out as

®vg;,1q,>oyh/oh’*vu ®, /

* ok R * plx, ® qlf Hii * plk lgl ’Yf * ok

o (@) Qi ks S22 @ o e @t
A

It therefore suffices to show that the followmg diagram commutes for ¢ = 1,2 and for all A; € D(YZ—)

rx m—1
¢,

9;
f/*U*fz*A — U *.f fz*
f;*l‘fil iU*wi (4.16)

ST i As T> u*A;.
ol . . .. . ’ ijl U*'Yfi
By definition of py, in (2.34) the right adjoint with respect to f/* of fl*u*fi. —— uw*f}fi, —— u*

precisely u* f;. B, fl.u*. So the right adjoint with respect to f/* of (4.16) is the diagram
U*fz*Az

iy
i l ’

z* d

is

which clearly commutes. 0

4.4. The adjunction counits for the pushforward Fourier-Mukai kernels. We can now apply the
generalities of the previous two sections to obtain an alternative decomposition to that in Theorem 3.1 of the
morphism of Fourier-Mukai kernels which induces the canonical adjunction morphism @gdj ®r — Id in case
where F is a pushforward of an object on some Z — X7 x Xo.

Let X; and X, be a pair of separable schemes of finite type over k. Let Z % X; x X, be a closed
immersion proper over both X; and Xs. Denote by 7z1 the composition Z 22, X x Xo =5 Xy, Consider
the following fiber squares:

Zx X1 25 Xy x Xy x X3 Xy x 725 X, % Xy x Xy

g12: szml lﬂlz and 023 TFZzBl \Lﬂzs

7 X1 x Xo Z‘LZ>X1XX2-
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Then Z' = (Z x X1) N (X; x Z) 25 X1 x X, x X fits into the fiber square

Lrgg

Z/

o L’lzl < \LLZ% . (417)
ZXX17u>X1XX2XX1.

X1><Z

Let oa denote the square obtained from (4.17) by base change X7 x X5 2, X x X9 x Xq:

Id

Z Z
X\ /
7 Y Xy x Z
1d L/ni x lbzz?, Lz (4.18)
ZXXlTIQ)XlXXQXXl
/ > Iy
A X1 X X2

Lz

Observe that:

e Composition Z 25 7/ 25 X, x X, x X equals Z ™% X; 25 X) x X,.

o Compositions Z 2 Z' 22, Z x X; 722, Z and Z 25 Z x X; 222, Z are the identity map.

e Compositions Z 2,z s, X1 x Z 2% Z and Z 2, X, x Z T2, 7 are the identity map.

Theorem 4.1. Let Ez € D(Z) be such that E = 1z.(Ez) is perfect in D(X1 x X3). Let @ be the Fourier-

Mukai transform D(X1) — D(X3) with kernel E. The adjunction counit (I>l§dj(I>E — Idx, s isomorphic to
the morphism of Fourier-Mukai transforms induced by the composition:

Qz = T3« (1212715 Bz @ Lz23.7 503 RHom (Ez, w5 (Ox,)))

T13eko

Tigetzrs (157515 E7 © 155503 RHom (Ez, w1 (Ox,)))

T13xlz/ . BA

T13eLz DA (V37510 F 7 @ 5503 RHom (Ez, 7, (0x,)))

| Amz1e ((Cogrg iy 8®Cn oy ) OVA ) 0N 7y O L A (4.19)
Autz1. (Ez @ RHom (Ez, 71 (0x,)))

Acmzix(eve,)

Aumz1:7 (Ox, )

Dweryy

A, Ox,
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Proof. Assume first that X5 is proper. By Theorem 3.1 the adjunction counit <I>l§dj & — Idx, is induced by
the morphism of Fourier-Mukai kernels which we reproduce here for the convenience of our readers:

T3« (T E @ 735 (EY @ 71(Ox,))) D2, s ALAF (i, E @ 735 (EY @ 11(0x,))) 4.20
ng*A*A* (7TT2E ® 7T§3 (Ev ® ﬁll(OXl))) ~ AT (E ® EY X 7T!1(OX1)) 4.21

Leme(vp @) A (71(0x,))

A*eﬂl

Ay (m1(Ox,)) — A Ox, .

A*’n—l* (E & EY ® ’/T'l(OXl))

where the connecting isomorphism (4.21) is A4 ((Cryp,A @ Cras,A) ©VA) O NA 7y © n7:1137A'
We have F = 1z.FE7 and

1
EY ®7TI10X1 = (LZ*EZ)V X 7T!1(9X1 (.2—19% RHom (LZ*Ez,W!loXl) —Z, Lz« RHom (Ez,’/T!ZlOXl) . (424)

poT T
Using the isomorphisms mjstz. —— 1212:Thqo and Ttz —— L793.T 595 and functoriality of Ba, we see

that (4.20) is isomorphic to

T13s (L2127 107 @ L793:y0s RHom (Ez, w5, 0x,))
iﬂ'm*BA (4.25)

T13: AL A* (LZIZ*nggEZ [029] LZ23*7T}23 RHom (Ez, W!ZIOXI)) .
By Prop. 4.1 it also follows that (4.22)-(4.23) is isomorphic to the composition

Aty (1z+E7 @ 1z RHom (Ez, 7, 0x,))

AuT1akion

Atz (Ez @ RHom (Ez, 7, 0x,))

Acmisizaevey,

At zatym (Ox,) (4.26)

A*ﬂl*ﬂz

A,my.mi(Ox,)

A*e,,l

A (Ox,).
The connecting isomorphism from (4.25) to (4.26) works out to be
T13+ A A* (LZlg*W}uEZ ® Lz23+T 93 R Hom (EZ, W!ZlOXl))
Zl(ﬂazm@“f’zm)m’A
T13+ Ay (LZ*A*T('E12EZ ®Q Lz A* o RHom (EZ, n’Zloxl)) (4.27)
Zlﬁ*ﬂ'l*(LZ*CWZIQ,A@LZ*szgs,A)onA,wl ong A

ATy (LZ*EZ ®tz« RHom (Ez, W!ZlO)(l))
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By functoriality the bottom isomorphism of (4.27) commutes with the top morphism of (4.26), so we
conclude that (4.20)-(4.23) is isomorphic to the composition of

T13 (12124712 F 2 ® 12237503 RHom (Ez, w5, Ox,))

LEERCIN

T3 AL A* (LZlg*ﬂ'}mEZ ® L723+T 93 R Hom (EZ, Tr!Zlel))

> | T3 Au ((Hz12®pz23)0vA) (4.28)
T13: 84 (120 Ty, By @ 17, M T RHom (Ez, 75,0x,))

T13x DsKop

ng*A*LZ* (A*’R’EMEZ X A*ﬂ—%23 RHom (EZﬂTIZlOXl))
with

T13+ Al 7z (A*W}lZEZ ® A* 53 R Hom (EZ,WIm@Xl))

| Aurra (Cr g1, A®Cr 5.8 )0NA, 7y 0N A

ATl zx (EZ R RHom (EZ, ﬁ!Zl@Xl))

Aumisizeevey,

Azt (Ox,) (4.29)
Amive,

A7 (Ox,).

A*eﬂl

A Ox,

The claim of the theorem follows by applying the base change for Kiinneth maps of Prop. 4.4(2) to (4.28)
and noting that as mz1 = 7 o tz so by compatibility of the (f., f*) adjunction with pseudo-functoriality,
counits mi.€,, and €, at the bottom of (4.29) compose to give €, .

Suppose now X, is not proper. Then, following Section 3.2, we compactify Xs by choosing an open
immersion j: X, — Xy with X5 proper. Similar to the conventions in Section 3.2, we use j to also denote
all the compactification maps induced by j: Xo — X5 and we put a bar over various objects and morphisms

to denote their compactified versions. E.g. we denote the inclusion Z <% X; x X, EN X1 X X, by iz. By
the argument above the compactified version of the composition (4.19) gives a morphism Q7 — Ap x, Which

induces the compactified adjunction counit @gdj &5 — Idx,. By the results of Section 3.2 the compactified
and the uncompactified adjunction counits are naturally isomorphic, therefore to prove the claim of the
theorem it suffices to exhibit an isomorphism Q7 — @z which composed with the uncompactified (4.19)
gives the compactified (4.19).

All the morphisms in (4.19) except for the first one are independent of the ambient space X5. To be more
precise, we have Ty30lz = T130j0Lz = w30tz , and hence the compactified versions of last four morphisms
in (4.19) are isomorphic to the uncompactified ones via pseudofunctoriality isomorphisms. It therefore suffices
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to find an isomorphism Q; — @y that would make the following diagram commute:

Q M3 lo T13%L 75 (L’l"QWEIQEZ ® L53Thes R Hom (EZ, ﬂ-IZloXl))
NT :anlg,LZ, SR (4.30)

Q — T13elzw (15T 510E2 @ U550 RHom (Ez, 75, 0x,)) -
But 713, ~ T134jx and square o is obtained from square & by the base change j: X x Xox X; — X x X5 x X].
So the desired statement is precisely the base change for Kiinneth maps of Prps. 4.4. O

We have similarly:

Theorem 4.2. Under the assumptions of Theorem 4.1 let Vg: D(X3) — D(X1) be the Fourier-Mukai

transform with kernel E. The adjunction counit \IJE\IIEZCU — Id is isomorphic to the morphism of Fourier-

Mukai transforms induced by the composition:

! !

s = T3 (1212751, RHom (Bz, w1 Ox,) ® 12237595 E7)
T13x Ko

: »1o RH Ez,7,,0x,) ® ThosF
T13xLZ'« \T 7192 om\Lz,T71Ux, T 79347
ST PVNCIN
AA* (1, RHom (Ez, O P )/
T13xLZ2'+ 858" (T 719 om (Ez,Tz10x,) © Tza3liz
-1
~ A*ﬂ'z”(<<ﬂz12,L’121A®Cﬂz23,L’23,A)OVA>°77Av"Z1°"w13,LZ,,A (431)
|

AT 714 (RHom (EZ,W'Zl(’)Xl) ® EZ)
AuTz1xeVE,

Amz1.my (Ox,)

Aseryy

A.Ox,.

One of the main advantages of the alternative decompositions offered by Theorems 4.1 and 4.2 is that most
of the morphisms in them can become isomorphisms under fairly reasonable assumptions on Z, X; and Xs.
We can then write down twists of @5 and Vg fairly easily, for example:

Corollary 4.5. Let X1 and X be separable schemes of finite type over a field k. Let Z <% X1 x X, be
a regular closed immersion proper over X1 and Xs. Suppose 7z1.0z = Ox, where Tz is the composition
75 X x Xo I8 X Suppose also that Z x X1 and X1 X Z are Tor-independent inside X1 x Xo X X1 and
denote by Z' their intersection. Denote by vz the inclusion Z' — X1 x X x X;.

Then the Fourier-Mukai kernel of the dual co-twist of o, : D(X1) — D(X2) 18 M134tz4 (L ® Ias[1]) where
Tas is the ideal sheaf of the diagonal Z in Z' and L is the pullback of 7%, (Ox,) via X1 x Z to Z'.

Proof. The Fourier-Mukai kernel of the dual co-twist of ® is the cone of the morphism of kernels underlying
@gdj & — Id. Applying Theorem 4.1, we note that under the assumptions of this corollary, all the morphisms
in (4.19) become isomorphisms with the exception of

/ l !
Tietzrs (157510 E7 @ Um0 RHom (Ez, w5, 0x,))
iﬂls*Lz/*ﬁA

/ / !
T13:L2 AN (V575107 @ U5shes RHom (Ez, 75, 0x,)) -
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Since Fz = Oz the above simplifies to the direct image under 71341774 of
! Ba !
L/2>§7T}237721(0X1> — AAT (legﬂ'}%”m (OXl)) .

Write £ for 155750575, (Ox,). By Lemma 2.1 (with f = Id) the morphism £ Do ALA*L s isomorphic to

LR Oz — AA*Oy). Since Oy Pa, AL A*Oyz is just the sheaf restriction Oz — A,Oz, its cone is Zas[1]
and the claim follows. O

5. AN EXAMPLE

Let us give a concrete example of using the results of section 4. For this example we choose the naive
derived category transform induced by the Mukai flop. This transform is not an equivalence - it was proved
by Namikawa in [Nam03] by direct comparison of Hom spaces. Below we use Cor. 4.5 to compute the kernel
which defines its dual co-twist as the Fourier-Mukai transform. We stress that the value of this section lies
not in the answer itself, but in demonstrating how the methods of the paper apply to obtain it. However, the
reader may observe that the kernel we obtain is a line bundle supported on the zero-section of the product.
We shall demonstrate in [AL] that this is the reason for the braiding which occurs between natural spherical
twists in the derived categories of the cotangent bundles of complete flag varieties (see [KT07], §4).

Let V' be a 3-dimensional vector space and let X; be the scheme T*P(V'), that is - the total space of the
cotangent bundle of P(V'). Similarly, let X5 be the scheme T*P(V"). These schemes admit the following
description:

—

X, = 0o cCc U CcV Z:{ U, CV, OzGEHd(V) ‘ dim Uy =1,a(V) C Uy, Ot(Ul) =0 }
« «
V2 AN

Xo=¢0CU CVp={UCV,a€End(V) |dimU; =2,a(V) CUs, a(Uz) =0 }

We also have a variety
(o7 «

m
Z=< 0°CcU;y Cc UyCcV

with natural “forgetful” maps ¢ : Z — X which forget one of the subspaces. Each map ¢, is isomorphic to
the blow-up of the zero section carved out by a = 0 in Xj;. Both blowups have the same exceptional divisor
F' C Z which is carved out by a = 0:

F={0cU cU, CV}.

The resulting birational transformation X; --» Xs which transforms the zero-section P(V) — X; into the
zero-section P(VV) — X, is a local model of a four-dimensional Mukai flop. Note that maps ¢ are proper
and, since each map ¢y, is a blowup of X}, we have ¢, 0z = Ox, .

Let ® be the functor ¢o.¢] from D(X;) to D(X2) and let us compute its dual co-twist. The functor ® is
a Fourier-Mukai transform with the kernel 15,0z, where 1z = ¢1 X ¢ : Z — X7 x X5. We have:

041704270/1 041>042,0t’1
L L
X1 xXox Xy = 0 C Ul,UQ,U{ c Vv

ZxXy={ PN
0°cUy CcU CV,0cCU CV
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X Z [e %) A?q\ (12:(1/1 CYQZ(X/I

X 7 = —~ < .
' 0 CU CV,0CU CU CV
It follows that Z' = (Z x X;) N (Xy x Z) C X1 x X3 x X7 can be described as

, « (6%
— m
Z 0°c h,Uy C Uy CV

chmmm}'

Observe that for any point of Z’ we have U; = U] or a = 0 (or both). Therefore Z’ consists of two
irreducible components: the diagonal AZ and the zero section

P={0cCcU,,U; cUsyCV}.

The intersection AZN P considered as a subvariety of AZ is the exceptional divisor F' of the blowups Z LN X;

described above. On the other hand, let P P, P(V) x P(V') be the map which forgets the subspace Us. It

is the blowup of the diagonal of P(V) x P(V) and its exceptional divisor in P is carved out by Uy = Uj, i.e.
itis F = AZ N P again.
By Cor. 4.5 the dual co-twist of @ is the Fourier-Mukai transform X; — X7 with kernel

K= T13xL7" & (,C ®IA[1]) S D(X1 X Xl)
Here ¢z is the inclusion Z’ — X; x X5 x Xy, Za is the ideal sheaf of AZ in Z’ and L is the pullback of
#,(Ox,) to Z' via X; x Z.

Since Z % X, is the blow-up of the zero-section P(V) — X; whose codimension is 2, we know that
#,(Ox,) is the line bundle Oz (F) where F is the exceptional divisor of the blow-up. On the other hand,
pulling back along the projection

Z —P(V) xP(VY)
induces an isomorphism
Pic Z ~ PicP(V) x PicP(V'").
A simple calculation shows that Oz (F') is the pullback of Op(yvyxp(yv)(—1,—1). Similarly
Pic Z' ~ PicP(V) x PicP(V") x PicP(V)
and £, being the pullback to Z’ of ¢} (Ox,) via X; x Z, is then the pullback of Opvyxpvvyxev) (0, =1, —1).

Since Z’ has two irreducible components AZ and P, we have Zan ~ 1p,Op(—AZ N P) where 1p is the
inclusion P — Z’. We therefore have K ~ mi3.tz/4tps (LpL Q@ Op(—F)[1]). A simple computation shows
that Op(—F) is the pullback of Op(v)xpvv)xpv)(—1,1,—1) and therefore 1L @ Op(—F) is the pullback of
OP(V)XP(VV)XP(V)(_I) 0, —2). We conclude that K ~ m13.Lz/4tpcPig (OP(V)XIP’(V)(_L —2)[1]).

Now observe that the following diagram commutes

Lp Lyt

P Z/ X1 X Xg X X1
¢13\L Wlsl
]P(V) X P(V) X1 X X1

to
where 1 is the zero-section inclusion of P(V) x P(V) into X; x X;. We conclude that

K ~ 10.013:913 (Opv)xpv) (=1, =2)[1]) 2 tox (Op(vyxp(vy (—1, —2)[1]) .

APPENDIX A. THE UNABRIDGED PROOF OF THEOREM 3.1

Here we give a complete version of the proof of Theorem 3.1. It contains explicit computations of all the
connecting isomorphisms which we left out of the version in the main body of the paper so as to emphasise the
meaningful part of the proof. The version below is for referees and others who relish seeing how the monoidal
structure of the inverse image functor commutes with pseudofunctoriality and with the associativity of tensor
product. Lasciate ogne speranza, voi ch’intrate.
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Proof. Set
/ * ! \Y *
Q =733 (7r1(9X1 ®F ) Q@ il

so that Q = m3.Q’. Since 72 0 A = 793 0 A = Id we have a natural isomorphism

ATQ —2 s A'my, (i Ox, @ BY) @ Ay B S225m2 (o @ BY) @ B, (A.1)
We therefore define a morphism
. E®(EY®(-))—Id
A A (o o BY) @ p L2 L (A.2)

In these terms, the morphism of FM-transforms D(X) — D(X) induced by Q 83)-@6), AQOx is:

Foe (M13:Q ® 7} (=)) 2220 Ty, (13 ALA*Q @ 7] (—)) (A.3)

-1
NA,m1 My 5,4
R Sl

Fay (M3 ALA*Q ® 71 (—)) Fon (AT AQ @ 71 (=) (A4)
(A.2)

Tow (AT A Q' ® 71 (=) —— Fraw (Aumiam Ox, ® 71 (—)) (A.5)

1
T —1d

Fax (Aumrm Ox, ® 71 (—)) Tox (AL Ox, ®@ 71 (—)) (A.6)
On the other hand, ® g is the composition of functors 75, E ® (—) and ma.. Each of these functors has a left
adjoint, these adjoints are 71, (7,Ox, ® —), EY ® (=) and 73, respectively. Therefore, the adjunction counit
<I>1§dJ<I> g — Id is the composition of the three corresponding adjunction counits:

P
5w —1d

T (M Ox, ® (BY @ mymy. (B @i (-)))) ———— m. (mOx, @ (BY @ (E@ 71 (-)))) (A7)

) EY®(E®(-))—Id

. (110x, ® (B @ (E@ 7 (-))) 1 (110x, ® 7 (=) (A.8)

s (7r!1(9X1 @i (—)) —1d (A.9)

The claim of the theorem is that the composition (A.7)-(A.9) is isomorphic to the composition (A.3)-(A.6).
Let us clarify some terminology. We say that two morphisms of functors f — g and f’ — ¢’ are isomorphic
if there exist connecting isomorphisms f — f’ and ¢ = ¢’ such that the diagram

f——9 (A.10)

commutes. Clearly it is an equivalence relation on the set of all morphisms between all functors between two
given categories. In particular, it is transitive.

If we further have a morphism of functors g — h which is isomorphic to a morphism of functors g’ — h”
then f — g — h is isomorphic to f' — ¢’ = ¢ — A", where the connecting isomorphism ¢’ = ¢” is the
composition of the inverse of the connecting isomorphism g — ¢’ with the connecting isomorphism g = ¢”.

Our strategy therefore is to consecutively replace the morphisms which compose (3.19)-(3.21) by isomorphic
ones until we obtain (3.15)-(3.18).
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Observe that the following diagram, whose vertical arrows are all isomorphisms, commutes:

(a7

1 (10x, ® (BY ® n3mas (B ® 7} (-)))) 1. (710x, ® (BY ® (E® 7} (-))))

p— 1 p— 1

1d @ (75 mo. —1d)

T1x ((Ev ® ﬁ!loxl) ® mymox (E @ wf (7))) Tl ((Ev ®7T!1©X1) ® (E®ny (*)))

-1
# Id®<n”23’AOCW12A)

Ba

T ((Ev ® 77!1(9)(1) ® w23+l (E @ 7y (—))) T1x ((Ev ® 7"!10)(1) ® To3x Ak AV, (B ® mf (_)))

—1

Aoz INECE YN T

Ba

m1emaz, (733 (BY @ 710, ) ® 7ly (E @ 7} () 1emag, Aud* (735 (BY @ 71 0x, ) ® 7}y (E@ 7} ()

p*lo(1d®u,r12) p*lo(1d®u,r12)
SN

T1%T23, ((71'53 (E'v ® ﬂll(’)xl) ® ‘rr’sz) ® iyl (7)) > m1.723, AL AT ((71';3 (Ev ®7T!10X1) ® ﬂ{zE) ® w7l (7))

Id YA

vAOBA

m1amas, (755 (BY ® 7i0x, ) @ 712 B) ® niyn] (-)) m1emas, A (A% (735 (EY @ 11Ox, ) @ 71, E) ® A%niym (-))

(A.11)

The first square in it commutes by functoriality of p~!, the second commutes by Lemma 3.2, the third

commutes by Lemma 2.1, the fourth commutes by functoriality of S and the fifth commutes tautologically.

We now want to simplify the connecting isomorphism in the right column of (A.11). By compatibility of
the projection formula with pseudofunctoriality (see diagram (2.29)) we have an equality

QA O Oy © (Id ®777T23’A) = (C;;:,,A ® Id) O Nraz,A © (aﬂzzoA)

of two morphisms
(EBY @ m10x,) @ A5y (BE@ 7] (=) — T3 Ay (A'm3s (BY @ mOx, ) ® A1, (E@ 71 () -
Since ma3 0 A =1Id, we have ay,,0n = Id. It follows that the right-hand column of (A.11) equals to
1. (70x, @ (BY ® (B@ i (-))) (A12)

o1

. ((BY @ 7ox, ) @ (E@ ] ()

-1 -1
(4”23,A®<W121A>0""23’A
T1xT23, Ax (A*ﬂ'gg (Ev ® WEI(QXI) ® A*Trfz (E ® 71'1‘ (7)))

qup_lo(Id ®u.,rl2)ou£1

T1x7T23, Ax (A* (‘”;3 (Ev ® 71'!1(9)(1) ® Tri‘QE) ® A*ﬂ'ik27l'{ (7))
Note that 1/&1 and Id ®v,,, commute by functoriality. Note further, that by the compatibility of the map
va with the associativity of the tensor product (see diagram (2.25)) we have an equality
vaop tovyt = (vy ®@Id)op ' o(Id®wa)
of two morphisms

A*mss (BY © 77!1(9X1) @ A* (] E @ miymy (=) — A (33 (EY © 77!10X1) ® T E) ® A riymt (—).
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It follows that composition (A.12) equals to
w1 (70x, ® (BY ® (E® i (-))) (A.13)
o1
. ((BY @ 74 0x,) ® (B i (-))
(crh a®(vaormzocsl, o))onmas a
T1am23, Ax (A3, (BY @ 11 0x, ) @ (A" 112 E ® A*niynl (5)))
(va'@ra)ort

T1aT23, A (A* (7753 (Ev ® W!loxl) ® "sz) ® A" mipm] (*))

By compatibility of v with pseudofunctoriality (see diagram (2.26)) we have an equality

VA OVryp © 12, A = Vri20A © (<W127A ® 77127 )
of morphisms
E@ni(—) — A'nj, B ®@ Arrini(—).
Since w13 0 A = Id we further have vz,,oa = Id. Therefore

1 _
( T3, ® (VA OVry © 7r12,A>) O Moz, A = (Cﬂ'23 A® ( T12,A ® 7r12,A>) O Nras,A

n (A.13). Finally, by functoriality of p and of 7,,, A we have

- —1 —1 ~1 ~1
P ! o (Cﬂ'23 A ® ( T12,A ® 12, A)) O Nrog, A = (( Ta3,A ® 7r12,A> ® Cﬂlg,A) O Nz, A O P
We conclude that (A.13) equals to

1. (r10x, ® (BY @ (B @} (-)))) (A.14)

lﬂlwl

. (((BY @ 7iox, ) ® E) @ 77 (-))

-1 (-1 -1 -1
\L ((VA °(<W23A®<ﬂ12¢))®<W12YA)°"”23*A

T14T23, Ak (A* (71';3 (Ev ® Wlloxl) ® WIQE) ® A*"f{gﬂ'r (_))

Recall now that we write Q’ for 735 (EY ® 71Ox,) ® 7}, E and note that vito (<7:2137A ® C;IZ,A> in (A.14)
is precisely the inverse of isomorphism (A.1). So what we have shown above is that (A.7) is isomorphic to

vaofBa

Trams (Q © 7hmi(—) 2222 1 oA, (AQ ® A'riymh(-) (A.15)
with the connecting isomorphism on the RHS being

(A)T'®C, Y A )onmyy,a0p  top™!
T (w;ox1®<EV®<E®wr<—>»)( ) T1amase A (A'Q' ® Ayl (-))

As 71 0 o3 = e 0 13 and mp o w9 = 71 0 M3 (see diagram (3.1)) we have the following commutative square

* * (A.15) * * %k *
T1aT3x (Q' @ o™y (=) — = M1T23: Au (A*Q' @ A miymi (—))

—1 -1
(Id®(€,~r1 s Cm,m))onm,ﬂlsonﬁ,ml l(ld@(c%1 . Cnmz))Oﬁﬁa,moml,m

213+ (Q' @ 1377 (—)) Y T3+ D4 (A*Q" ®@ A* 37 (—))
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We finally conclude that (A.7) is isomorphic to

vaofBa

ToxMi3s (Q @ T3] (=) —— ToumizAs (A"Q ® A3 (—)) (A.16)

with the connecting isomorphism on the RHS being

(Aan"lecc!t Oy, myg,A00 TopTt
m. (w0x, ® (BY © (B () ( bripa)rramine

FoaT13:Ax (A*Q' @ AT mi3®] (=) . (A7)
Here we have used the fact that by pseudofunctoriality relations (2.19) and (2.20) we have

Niz,m1s © Ny mag © Nmag,A = Nig,mis © Nmyomag, A = Nig,mig © Nigomis,A = Nig,mi3,A

1 _ -1

.. -1 _
and similarly Gz .0 Grymis © Gy A = CGaympa

Next, we note that the following diagram commutes:

. (A.8)
T (77'10){1 ® (Ev ® (E ® (_))))

w1 (710x; ® 7] (5)) (A-18)

p_lop_l Id

((-®EV)®E—1d

T1x (((7\'!1(9)(1 ®EV)®E)®WT (—)) T1x (7'!1‘9X1 ® (_))

(A1)~ 1gid 1d
(A.2)
1. (A7Q @ 7] () 1. (71Ox, @ 71 ()
(Id ®(;111A)°77%2,A (Id ®C;11,A)Onﬁ2’A

(A.2)
FouAumiy (A*Q' @ T A™R] (—)) —————————> Fau A, (7] Ox, ® 1A ()

Here the top square commutes by Lemma 2.3, the second square commutes by the definition of map (A.2)
and the third square commutes by the functoriality. Therefore (A.8) is isomorphic to

. N A2) -

oAy, (A Q @ mi A7 (=) B 2y Ay, (1L Ox, @ TEA™ R (). (A.19)
And finally, the following square
, (A.9)
s (ﬁioxl ® w7 (—)) o 1d (A.20)
(Id ®C,;111A)on.,~r2,Al C;II’AOTI;‘-%A
1 (71O x, @7F(=))—=1d
FanAumis (710X, ® 77 ALR] (2) (riox, @i ) Fou ALATRT (—)

commutes by functoriality. Therefore (A.9) is isomorphic to

71'1*(71'!10)(1 ®7rf(—))—>1d

FouAumis (M1 O0x, @ TIALF] () T AL A T (=) . (A.21)

We now compute the connecting isomorphisms. Composing the inverse of (A.17), the isomorphism in the
right column of (A.11), with the isomorphism in the left column of (A.18) we obtain

1 -1
(Id ® (Cﬁl,Ao<‘r‘r1,w13,A))OnﬁQ,An;\r%WlS,A

T3 Ay (ATQ ® A™mis7] (—)) T2 Ay (A™Q ® T ARY (—))
and by pseudofunctoriality relations (2.19) and (2.20) this is equal to

(10 ®(¢3, 0Crig.a) ) onam onr )y A

Tz As (A*Q' @ A* iy (—)) oAty (A Q' @ T A7 (=) (A22)

On the other hand, the composition of the inverse of the isomorphism in the right column of (A.18) with the
isomorphism in the left column of (A.20) is clearly Id.
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We can now conclude that the adjunction counit @Edjtb g — Id, being the composition of (A.7), (A.8) and
(A.9), is isomorphic to the composition of (A.16), (A.22), (A.19) and (A.21). The claim of the theorem then
follows from the fact that the following diagram commutes:

Traw (M13.Q @ 71 (=) TouT3s (@ ® mi37T (=) (A.23)

(A.3) (A.16)

e (T13: A A" Q' @ T (=) — Toumi3: A (A*Q' ® A*mi371 ()
(A.4) (A.22)
Tow (A A*Q' @ 71 (—))

(A.5) (A.19)

7~T2*A*7T1* (A*Q/ & WTA*ﬁT(_))

T2 *T1xT1 U X, 7~T1 - *N>7~r2* T (T Ux, & 7T '}vrl -
Fon (Al Ox, @ 71(—) A O, ® T A (=)

(A.6) (A.21)

o« (B Ox, @ 71 (—)) = T2 AL AT ()

where the horizontal isomorphisms are all due to the projection formula. To see that diagram (A.23) indeed
commutes, observe that its topmost square commutes by Lemma 2.1, the middle two commute by functoriality

and the lowermost square commutes by Lemma 2.2. O
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