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Summary

To date the majority of MRI studies of white matter (WM) microstructure have used

diffusion tensor MRI (DT-MRI), comparing groups on a voxel-by-voxel basis. There are

limitations to this approach. Firstly, the analysis approach treats each voxel independently,

ignoring the fact that adjacent voxels may come from the same tract (or may come from

completely separate tracts). Secondly, DT-MRI is sensitive to both interesting properties

of WM (e.g., myelination, axon density), and less interesting properties (e.g., intra-voxel

orientational dispersion). In contrast, other imaging approaches, based on different contrast

mechanisms, can provide increased specificity and therefore sensitivity to differences in

one particular attribute of tissue microstructure (e.g., myelin content or axonal density).

Both quantitative magnetization transfer (qMT) imaging and multicomponent relaxometry

provide proxy estimates of myelin content while the combined hindered and restricted model

of diffusion (CHARMED) provides a proxy estimate of axon density.

We present a novel imaging method called tractometry, which permits simultaneous

quantitative assessment of these different microstructural attributes along specific pathways.

Crucially, the metrics were only weakly correlated, suggesting that tractometry provides

complementary WM microstructural information to DT-MRI. In developing the tractometry

pipeline, we also performed a detailed examination of the qMT pipeline, identifying and

reducing sources of variance to provide optimized results.

We also identify a number of issues with the current state-of-the art, including the sta-

bility of tract based spatial statistics (TBSS). We show that conducting a structure-function

correlation TBSS study may lead to vastly different conclusions, based simply on the partic-

ipants recruited into the study. We also address microstructural asymmetry, including the

degree of partial-volume effects (PVEs) from free water, which impact on WM metrics. The

observed spatial heterogeneity of PVEs can potentially confound interpretation in studies

where contralateral hemispheres are used as internal controls, and could either exacerbate

or possibly negate tissue differences.

1



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

Chapter 1

Introduction

Most of us do not think about how powerful or complex our brains really are.

Not until the Renaissance when Andreas Vesalius dissected the human brain it was

considered a vital organ, whereby he gives a detailed description of its complexity

and its possible mechanical function (Catani and Thiebaut de Schotten 2012). This

idea propelled brain research to what it is today.

The brain is composed of two distinct tissue types: white and grey matter. White

matter constitutes the physical ”wiring” of the brain and connects the grey matter.

A schematic of depicting a myelinated axon is shown in Figure 1.1. White matter

Figure 1.1: A schematic of a myelinated axon including the soma, dendrites, axon,
myelin and axon terminals.

controls and support the communication between grey matter areas. Each axon is

approximately 100 mm long and part of a whole wiring system extending to a total

2
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length of 3×105 km (Nagarajan and Stevens 2008). For such a vast network the

conduction velocity of an action potential is important for normal brain function and

is regulated by myelin. The structural characteristics of myelin such as its thickness

and the number of spaces along the axon (known as nodes of Ranvier) reduces the

conduction leak and the cost of conducting an action potential vital for neuronal

communication.

For many years, studies of learning, memory and psychiatric disorders were fo-

cused on the neuron and the chemical action of the synapse, with the white matter

largely considered a passive component. However, the role of white matter in fa-

cilitating efficient information transfer between different brain regions is beginning

to be increasingly recognised. Since the white matter conveys information between

distinct brain regions along specific pathways, and the information transfer is modu-

lated by the axon and myelin properties of those pathways, a deeper understanding of

the white matter necessitates study of these distinct sub-components. In this thesis,

an optimized pipeline for the non-invasive study of these aspects of white matter is

developed, probing specific markers of white matter along specific pathways.

1.1 Motivation

Recent MRI advances in fast imaging methods and gradient technology enabled

the development of quantitative techniques to quantify aspects of tissue microstruc-

ture in white matter. Diffusion weighted MRI probes the translational movement

of water molecules at the micron scale. The anisotropy of the apparent diffusivity

provides a window into microstructural organization of tissue. Importantly, however,

the anisotropy is modulated by a host of factors including, but not limited to, the

axon density, axon diameter, membrane permeability, myelination and architectural

paradigm (the layout of the axons within the voxel). Thus, while diffusion MRI can
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be a sensitive marker of white matter microstructure, it is not very specific. Develop-

ment of these more specific white matter indices has potential to elucidate the role of

individual differences in subcomponents of white matter on the brain function, and

to better understand the impact of white matter microstuctural alteration in disease.

Furthermore, by adopting advanced models of diffusion that (contrary to DT-MRI)

recognise that water diffuses in different sub-components of tissue (e.g. intra- and

extra-axonal spaces), can provide markers that are more specific to axonal proper-

ties. Development of these more specific white matter indices has the potential to

elucidate the role of individual differences in subcomponents of white matter on brain

function, and to better understand the impact of white matter microstructural alter-

ation in disease. Furthermore, to determine their interdependence may shed light on

whether changes in myelin alters neuronal cognitive function or vice versa.

1.2 Outline

This thesis combines a number of quantitative neuroimaging techniques in a novel

and unique way. In particular, quantitative microstructural measures derived from

quantitative magnetization transfer (qMT) imaging, multi-component relaxometry

and advanced models of diffusion are combined and used to characterize white matter

along specific anatomical pathways.

This thesis is organized as follows:

Chapter 2: Neuroimaging This chapter presents an overview of diffusion weighted

MRI, quantitative magnetization transfer imaging and multi-component relax-

ometry, together with a brief summary of clinical and neuroscience applications.

Some limitations and advantages of each method are discussed.
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Chapter 3: Measurement uncertainties in qMT-derived parameters Mag-

netisation transfer imaging derives putative quantification of myelin content

within each voxel. However, noise originating from different sources introduces

variance in the inputs to the fitting, and thus uncertainty in the myelin esti-

mate. This chapter uses a bootstrapping approach to examine the impact of the

number of pre-processing steps in the qMT pipeline on the precision of derived

parameters, aiming to finding the optimal pipeline for qMT.

Chapter 4: Tract-specific Measurements A novel method for tract specific mi-

crostructure measurements is introduced. This method, called tractometry, de-

rives multiple quantitative indices of tissue microstructure (including those from

diffusion MRI, qMT and multi-component relaxometry) along specific white

matter pathways.

Chapter 5: Exploring the Asymmetry in MRI measurements Structural

MR measurements provide us with the opportunity to explore the asymmetry

within white matter structure. This chapter evaluates the asymmetry in white

matter along specific tracts and within the whole white matter skeleton.

Chapter 6: Reproducibility in Tract-based Statistics Tract-based statistics

(TBSS) provides estimates on the correlation between diffusion measurements

and behaviour. However, to date, there have been no investigations into the

reliability of this approach. This chapter uses a bootstrapping approach to eval-

uate the reliability of the method when assessing asymmetry in microstructure

and microstructure-task performance correlations.
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Chapter 2

Neuroimaging

Over the past twenty years MRI has become one of the most powerful non-invasive

tools to study the human body. While MRI has found applications throughout the

body, its remarkable contrast within the brain is where this imaging method has

arguably the greatest impact. It now has become one of the main tools used by

clinical neurology to diagnose many neuropathologies such as demyelinating diseases,

stroke and tumours (Ge et al. 2001; Harris et al. 2004; Schonberg et al. 2006).

Throughout the early years many of the technical developments in MRI were

driven by clinical need, where sequences such as diffusion-weighted imaging was used

in cases such as acute ischaemia due to its unique brain contrast (Le Bihan and Breton

1985; Moseley et al. 1990). However, more recently, cognitive neuroscience has also

been a driving force. Since the early nineties when brain activity was first detected

using MRI, cognitive scientists have been using functional MRI (fMRI) to study brain

function (Ogawa et al. 1992; Kwong et al. 1992). Diffusion-weighted imaging (DWI),

can potentially study the brain’s connections needed for brain function by acquiring

information on the orientation of white matter tracts non-invasively (Le Bihan and

Breton 1985; Basser et al. 1994a; Conturo et al. 1999). The ability to infer the

amount of myelin throughout the brain from methods such as magnetisation transfer

(MT) (Wolff and Balaban 1989; Wolff et al. 1991) and multicomponent relaxometry

(Whittall and MacKay 1989; MacKay et al. 1994; Whittall et al. 1997) and other

techniques that allow us to measure the diameter of the axon (Assaf et al. 2004)
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potentially allows us to study the impact of white matter microstructure on cognition

(Fields 2008).

While these different structural imaging techniques (DWI, restricted diffusion, MT

and multicomponent relaxometry) provide complementary information about the ar-

chitecture of white matter, they have never been implemented together to provide a

more descriptive picture of white matter trajectory and microstructure. This thesis

combines all these techniques in a novel way to potentially give us a better under-

standing of white matter microstructure, and the correlation between different white

matter imaging indices.

2.1 Structural Neuroimaging Methods

In this section the structural techniques used within this thesis are described in

more detail, starting with a brief description of the basics of magnetic resonance

imaging (MRI) and then onto diffusion-weighted, restricted diffusion, magnetisation

transfer and multi-component relaxometry imaging.

Basic MR

The popularity of MRI over other modalities is attributed to its sensitivity to a range

of microenvironmental and chemical properties, such as relaxation times (T1, T2 and

T ∗

2 ). There are three main hardware components in a MRI: a main magnetic field

(B0), a magnetic field gradient system and a radio-frequency system (B1). To be able

to produce an image from these hardware components a sample must possess angular

momentum. All subatomic particles (i.e. protons, neutrons and electrons) have a

discrete amount of spin of either ±1/2, referring to the direction of rotation, thus

nuclei with a even number of subatomic particles do not produce an overall angular

momentum. Therefore, for there to be a net angular momentum nuclei must have
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an odd number of protons or neutrons, such as 31P , 1H and 13C, each possessing a

magnetic dipole moment. Due to the prevalence of water in the human body hydrogen

(1H) is the most common nucleus studied in MRI. The signal from hydrogen within

the body includes contributions from protons in water and non-aqueous protons such

as lipids, proteins and nucleic acids.

In the absence of a magnetic field the spins in a sample are randomly distributed

producing no net magnetic moment (no dominant spin direction). However, when an

external magnetic field (B0) is applied it will cause a torque on the spins causing them

to align parallel or anti-parallel to the applied field. Due to a lower energy state more

spins will align parallel to the field creating a net magnetic moment or magnetisation

along the longitudinal axis. The net magnetisation vector (NMV) precesses, with

a gyroscopic motion, about the direction of the main static field with an angular

frequency that is directly proportional to the strength of the magnetic field known as

the Larmor frequency. The NMV can be tipped away from its equilibrium position by

exchanging energy with the RF system at the Larmor frequency - the process known

as resonance. As the system relaxes back to equilibrium it emits RF that can be

detected by the receive coil. Protons whose Larmor frequencies are within the range

of frequencies (known as bandwidth) of the pulse will undergo relaxation, while the

rest of the sample will provide zero signal. To acquire signal from only a small section

or slice of the sample instead of the whole volume a spatial encoding magnetic field

gradient is used to excite the sample, causing the Larmor frequency within the sample

to vary with position.

There are two main relaxation mechanisms: the transfer of energy from the spin

system to the lattice (spin-lattice or T1 relaxation) and the loss of phase coherence

in the transverse plane (spin-spin or T2 relaxation). Spin-lattice or T1 relaxation de-

scribes the process in which spins transfer energy from an RF pulse to its surrounding

lattice to restore equilibrium, which in turn depends on the mobility of the lattice.
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The rate at which this relaxation occurs (time it takes for the magnetisation to return

to alignment with the longidutinal axis) is described by T1 times. Spin-Spin or T2

relaxation describes the process where spins lose coherence over time due to spin-spin

interactions, resulting in a signal decay which in turn is described by T2 times.

One of the most common MR sequences is the Carr-Purcell spin echo (SE) se-

quence (Hahn 1950; Carr and Purcell 1954). Spins are rotated into the transverse

plane by a RF excitation pulse with a flip angle (FA) of 90◦ and after a certain

time it uses a 180◦ pulse to refocus the spins to generate what is known as a spin

echo signal. Initially after the 90◦ excitation pulse the longitudinal magnetisation is

rotated into the transverse plane and the transverse magnetisation begins to decay,

which in turn depends on the T2 of the substance and the loss of phase coherence

due to B0 inhomoegeneties. After some time (TE/2) a 180◦ refocusing pulse is used

to rotate the magnetisaiton in the x-plane causing the transverse magnetisation to

regain coherence resulting in a spin echo. The amount of time between the initial

excitation pulse and the detection of the spin-echo is known as the echo delay time

(TE). The magnitude of the signal not only depends on how well the transverse mag-

netisation decays but also the recovery of longitudinal magnetisation. The amount

of recovery or magnitude of signal depends on the rate of recovery or T1 relaxation

and the time allowed for the recovery to occur before another pulse is sent known as

repetition time (TR). Importantly, the programmable sequence parameters TR and

TE influence the effect T1 and T2 relaxation times of a substance have on the signal

intensity. Thus, one can acquire different contrasts (T1-weighted, T2-weighted and

proton-density (PD) weighted) by selecting different TEs and TRs (i.e. short TE

(10-20 ms) and short TR (300-600 ms) will produce a T1-weighted image).

Different tissues contain very different molecular structures, for example in carti-

lage the molecular structure is rigid and has very little motional energy at the Larmor

frequency creating a long T1 relaxation time and rapid de-phasing, short T2 times. On
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the other hand, tissue with small or unrestricted molecules will be more mobile creat-

ing long T1 and T2 times as in cerebrospinal fluid (CSF). Precise characterization of T1

and T2 within heterogenous structures such as the brain allows for greater tissue dis-

crimination, segmentation, classification and sensitivity to pathological disorders as

shown by Damadian in (1971). Variation in relaxation times has already been shown

in Parkinson’s disease (Baudrexel et al. 2010), multiple sclerosis (Ramani et al. 2002;

Ge et al. 2001), Alzheimer’s disease (Pitkänen et al. 1996), tumour characterisation

(Tozer et al. 2011) and muscle disease (Sinclair et al. 2010). Initially T1-weighted,

T2-weighted and proton density were used to observe brain abnormalities due to their

sensitivity, however they are not specific on which white matter structure is creating

the differences in measured signal.

Pulse Sequences

Many of SE pulse sequences used today are based on Carr and Purcell SE sequence

such as the fast spin echo and echo planar imaging (EPI). Others modify the sequence

as in the Carr-Purcell-Meiboom-Gill (CPMG) spin echo experiment where a train of

spin echos is applied and is commonly used in T2 imaging. Another common pulse

sequence is the gradient echo sequence. It differs from the SE by having a smaller

excitation pulse (< 90◦) and no 180◦ refocusing pulse. Instead of a 180◦ RF pulse it

applies a bipolar readout gradient to produce an echo. This is achieved by dephasing

the spins with a negatively pulsed gradient before they are rephased by an opposite

gradient with opposite polarity to generate the echo. The magnitude of the signal

depends on the size of the longitudinal magnetization and the flip angle (FA) used.

The lower the FA the smaller the amount of magnetisation tipped into the transverse

plane, thus speeding up the recovery time of the longitudinal magnetisation allowing

for shorter TR/TE and more importantly scan time. Thus, GE sequences tend to

be faster than SE sequences leading to new contrasts between tissues and increased
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signal magnitude in a shorter amount of time. Furthermore, when longitudinal mag-

netisation and transverse magnetisation are kept constant within GE sequences these

sequences are known at steady-state sequences.

Steady-state refers to the equilibrium condition that comes about when the mag-

netisation experiences regularly spaced and rapid trains of radio frequency (RF) pulses

conditional on TR < T1, whereby the magnetisation does not fully recover between

pulses. The ability for magnetisation to be in steady state depends on tissue param-

eters, such as T1 and T2, and sequence parameters, such as TR and flip angle (FA).

Most importantly its dependence on the phase between the magnetisation and the

axis of the RF pulses gives pulse programmers the flexibility to manipulate the trans-

verse magnetisation different ways such as spoiled gradient recalled echo (SPGR) and

balanced-steady-state free precession (bSSFP).

MR Inhomogeneity

Quantitative imaging is full of challenges especially as the main magnetic field in-

creases. The two major issues are radio frequency (B1) and static field (B0) inho-

mogeneities that cause artefacts that lead to a decrease in the accuracy of these

quantitative values (Volz et al. 2010). B1 inhomogeneity causes variation in the flip

angle (FA) and the sensitivity of the receive coil across the field-of-view causing vari-

ation within the signal across an image volume. B0 inhomogeneity is a result of field

discontinuities not caused by the applied linear gradients, resulting in spins being

encoded in the wrong position leading to image distortion. Field discontinuities can

be found at tissue borders with very different magnetic susceptibility, such as air and

bone. To increase the accuracy of quantitative values B0 and B1 field maps are used

to correct field inhomogeneities throughout the acquired images.

There have been several proposed B1 mapping methods over the years. All aim

to quantify the RF excitation angle compared to the nominal or desired angle. A few
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of the more popular magnitude based methods are briefly described here. First, the

most common method is the double angle method (DAM) where the actual angles are

calculated from signal ratios of two different nominal excitation angles (where one is

twice the RF amplitude of the other) (Stollberger and Wach 1996; Cunningham et al.

2006). For a spin-echo pulse sequence the ratio of the two images can provide a scaling

factor (αcorr) to correct the nominal amplitude (α1) ( αcorr = 1/α1 arccos (S1/(2S2)))

when the two images are acquired with identical TE, TR and refocusing pulse. Second,

based on the gradient echo (GE) sequence at large excitation angles the signal is

linearly-fitted at the zero crossing (or the signal null) corresponding to the excitation

angle of 180◦ (Dowell and Tofts 2007). Thirdly, the actual flip angle imaging (AFI)

method is based on fast low angle shot (FLASH) imaging, where the flip angle is

held constant and the ratio of images with two different repetition times are taken

(Yarnykh 2007). Phase based methods are less common and are based on the use

of composite RF pulses to create B1-dependent phase offsets in the image (Morrell

2008) or a Bloch-Siegert shift to create a B1 dependent signal phase (Sacolick et al.

2010).

On the other hand there is one B0 method that is used more than any other and

is based on phase differences (Jezzard and Balaban 1995). A spin-echo or a gradient-

echo is used to measure the phase difference between two different images acquired

at different echo times to create a map to correct for B0 inhomogeneity.

Summary

Within this thesis I will focus on white matter structural imaging. The sequences

used to quantify white matter structure are quantitative T1, T2, magnetisation transfer

and restricted-diffusion. Multi-component quantitative T2 methods probe different T2

relaxation times that different brain structures have, where relaxation times between

10-50 ms are thought to be from water trapped between the myelin bilayers. The
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myelin water fraction (MWF) is the ratio of water trapped within the myelin bi-

layers (short T2) to the total water present in the voxel. Magnetisation transfer

imaging provides an estimate of the macromolecular proton fraction (MMPF), which

is a measure of the number of trapped protons in the macromolecular pool, such as

myelin, relative to the total number of protons present. In contrast to these two

techniques, diffusion-weighted imaging, provides us with unspecific information on

white matter structure since its sensitive to differences in myelination, axonal density,

axonal diameter or orientation of fiber bundles. On the other hand, diffusion-weighted

images can give detailed images on the orientation of the fibre tracts. If one acquires

diffusion images at multiple-diffusion times more specific measures, such as axon

diameter, can be estimated. The specifics of these techniques are outlined in the

sections that follow.

2.1.1 Diffusion-Weighted Imaging

Diffusion-weighted imaging (DWI) obtains image contrast from the self-diffusion

of water molecules. Self-diffusion involves translational movement of molecules via

thermally driven random motion and was first characterised by the botanist Robert

Brown in 1828. Within living tissue apparent-diffusion of water molecules changes

due to various boundaries such as cellular structure. However, it is impossible to

determine or predict the motion of a single water molecule in a sample. Moreover,

in the limit of a large number of water molecules Albert Einstein proved that the

squared displacement averaged over all the molecules in the sample is proportional

to diffusion time τD (Einstein 1905):

< r2 >= 6DτD (2.1)
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Spin diffusion measurements began about half a century after Einstein’s discovery

when both Hahn (1950) and Carr and Purcell (1954) demonstrated that self-diffusion

can be measured using nuclear magnetic resonance (NMR). In 1965 Stejskal and

Tanner introduced the pulsed field gradient (PFG) spin echo method which allowed

one to measure diffusion in liquids (Stejskal and Tanner 1965). Within the PFG

sequence the initial gradient pulse is applied following a 90◦ excitation pulse labeling

a spin according to its spatial location (i.e. its z-coordinate when a Z gradient, g, is

applied). Any type of motion after this pulse causes molecules to acquire phase shifts

Φ(z1) of their transverse magnetisation Mxy. Then a 180◦ pulse is applied reversing

or refocusing Mxy and the second gradient pulse after a diffusion time, τD, alters the

phase by −Φ(z2). If the spins were stationary the phase increments caused by the

two gradients pulses cancel giving no net phase change. On the other hand the phase

accrual for mobile spins are not perfectly rewound by the second gradient, resulting

in a phase shift. If the spins moved incoherently a distribution of phases is created

(loss of phase coherence), leading to signal attenuation measured by:

S(TE) = S(0) · exp [−bD] (2.2)

The two unknowns in this equation are S0, the echo amplitude without diffusion

encoded-gradients and the diffusion coefficient, D. b is a independent experimen-

tal variable determined by pulse sequence parameters. The b-value for trapeziodal

diffusion-encoding gradients pulses applied in the x direction of duration (δ) and

amplitude (g), separated in time by ∆ yields:

bxx = (γg)2
[(

∆− δ

3

)

δ2 +
ε3

30
− ε3

6
δ

]

(2.3)

where G is the strength of the gradient pulse applied before and after the 180 radio

frequency pulse and ε is the rise and fall times for the diffusion gradients. Acquiring
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data for more than one b-value allows one to solve for the diffusion coefficient when

the echo time (TE) is the same for each b-value.

The application of spin diffusion measurements in MRI by Le Bihan and Breton in

1985 created a new contrast technique coined ’diffusion-weighted’ imaging. For many

MRI experiments diffusion times are in the order of 50-100 ms making the average

displaced distance measured to be around 10-15 µm. Even at such small distances

water molecules are hindered by cell membranes, inclusions, fibres and/or macro-

molecules reducing their overall displacement. Consequently, the diffusion coefficient

appears to be reduced when measured providing us with the term ’apparent diffusion

coefficient’ (ADC). For tissue the average ADC has been measured to be 0.7× 10−3

mm2s−1 significantly smaller than the diffusion of free water 3 × 10−3 mm2s−1 (Le

Bihan et al. 1986). This novel contrast started to be used clinically in early 1990s for

certain pathological states or injuries, such as ischemia and tumours (Moseley et al.

1990; Le Bihan et al. 1988). Shortly after the introduction of DWI, Moseley noticed

that signal attenuation was dependant on the orientation of the diffusion-sensitising

gradient (Moseley et al. 1990). Applying gradients along the three orthogonal axis

permits the orientational dependence of the ADC to be evaluated. For instance, if

the diffusion weighted intensities are the same in all three directions the diffusion

is said to be isotropic. On the other hand if at least one of these directions has

higher intensity than the other two the tissue is described as anisotropic. As a re-

sult, a substantial amount of information about tissue structure can be interpreted

from only these three diffusion-encoded images. However, in highly organised tissues,

such as white matter, sampling the ADC along only three directions is insufficient to

completely describe the diffusion profile.
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Figure 2.1: Schematic of the diffusion weighted imaging within grey and white matter.

Diffusion Tensor

In 1994 Basser et al. introduced diffusion tensor imaging (DTI) a three-dimensional

technique that characterised a tissue’s physical properties, microstructure and archi-

tectural organisation, unlike any other imaging modality that came before it. This

technique makes it practical to acquire knowledge of white matter fibre orientation

and microstructure from a series of diffusion-weighted images in which the gradients

are applied in different directions. The diffusion profile is represented by a symmetric

matrix, which represents the diffusion tensor:

D =













Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz













(2.4)

The three diagonal terms of the diffusion tensor describe the molecular mobility along

the x, y and z axes. In contrast, the three off-diagonal terms describe the degree of

correlation between the diffusion along the primary axes (x,y,z). The signal measured
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during a diffusion tensor sequence is a modification to equation 2.2 to incorporate the

tensor and is given by:

S = S0 · exp
[

−bgTDg
]

(2.5)

where g is a vector for the motion probing gradients (MPG) and the superscript T in-

dicates the transpose of a vector. Since the tensor is symmetric (i.e. Dxy = Dyx) there

are only six unique elements of the diffusion tensor (D), thus only six independent

diffusion-encoding gradient directions are required. The matrix D is diagonalized to

provide eigenvectors, ei, and non-zero eigenvalues, λi (i = 1, 2, 3), that correspond

to the main diffusion directions and diffusivities. The diffusion tensor is often repre-

sented by an ellipsoid, whereby the principal axes is given by the eigenvectors and the

lengths are represented by the diffusion distance for a given time which is proportional

to the square root of the diffusivity (eigenvalues). Eigenvectors and eigenvalues can

be seen in the following matrix factorisation (Basser et al. 1994b)

D =













Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz













=
[

e1 e2 e3

]T













λ1 0 0

0 λ2 0

0 0 λ3













[

e1 e2 e3

]

(2.6)

Measuring the signal at different gradient directions can provide different points on

the ellipsoid surface giving its size, shape and orientation (Figure 2.2). The mean-

squared displacement of molecules (average ellipsoid size) is described by the mean

diffusivity, which depends on the amount of barriers in the sample. Rotationally

invariant scalar indices can be calculated, such as the trace, to provide an overall

amount of diffusivity within a voxel (Papadakis et al. 1999):

Tr(D) = λ1 + λ2 + λ3 (2.7)
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The most commonly used index is fractional anisotropy (FA), which measures the

fraction of D that can be assigned to anisotropic diffusion and varies between 0

(isotropic diffusion) and 1 (for infinite anisotropy (i.e., with λ1 � λ2 = λ3)) (Basser

and Pierpaoli 1996). FA can be calculated using the following equation:

FA =

√

3[(λ1− < λ >)2 + (λ2− < λ >)2 + (λ3− < λ >)2]
√

2(λ2
1 + λ2

2 + λ2
3)

(2.8)

where < λ > is the mean of the three eigenvalues λi. A principal eigenvector map

is weighted by FA to provide a colour-coded map dependent on orientation where

the x, y and z vector components are represented by the colours red, green and

blue, respectively (Pajevic and Pierpaoli 1999) (Figure 2.2 A). These maps have been

shown to be highly sensitive to subtle disease processes not normally seen with other

MRI contrast sequences (Moseley 2002). The quality of diffusion data is dependent

on the choice of diffusion gradient directions and orientation of the sample (Basser

and Pierpaoli 1996; Skare et al. 2000). Large diffusion gradient can lead to an

over-estimate of diffusion anisotropy due to a reduction of the signal to noise ratio

(SNR) (Pierpaoli and Basser 1996). Furthermore, only using six diffusion-encoded

gradient directions increases the sensitivity of the resulting diffusion map to noise and

increasing the number of measurements improves noise performance and precision

(Papadakis et al. 1999). For n number of motion probing directions the diffusion

tensor is now solved by linear equations:
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where gi = (xi, yi, zi)
T is the MPG vector, S0 is the signal intensity without MPGs

and Si is signal intensity for each MPG vector (i = 1, . . . , n) (Masutani et al. 2003).

Tensor imaging measures anisotropy per voxel providing directional information used

in tractography or fibre tracking in fibrous tissues, such as white matter and muscle

(Basser and Pierpaoli 1996; Basser and Jones 2002). Tensor information is processed

using two main fibre tracking algorithms: deterministic streamline (Mori et al. 1999;

Conturo et al. 1999; Jones et al. 1999; Mori et al. 1999; Basser et al. 2000) and

probabilistic tractography (Parker et al. 2003; Parker et al. 2003; Poupon et al.

2000).

Figure 2.2: A) Example of colour encoded fibre orientation maps. B) Constrained
spherical deconvolution (CSD) overlaid onto a region of interest drawn on the colour
encoded fibre orientation map.

Deterministic algorithms rely on line propagation techniques to reconstruct white

matter pathways by the following procedure: identification of a suitable starting po-

sition (the seed point), propagated along the estimated fibre orientation and then

terminated when appropriate termination criteria are met (Mori and van Zijl 2002).

Reliable reconstruction of specific pathways is dependent on suitable placement of

seedpoints and waypoints to constrain the tracking, which - in turn - depends on the

end user’s knowledge of neuroanatomy (Catani et al. 2002; Catani and Thiebaut de

Schotten 2008). For white matter tracts that run in close proximity to each other
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regions, of interests are needed with Boolean logic for reconstruction: AND, OR and

NOT gates (e.g. NOT-gates are used to stop tracking going past a ROI) (Conturo

et al. 1999). Deterministic tractography is still one of the most popular white matter

tracking algorithms even with two major limitations. First, the deterministic algo-

rithm only provides a single estimate of trajectory for each supplied seed point, thus

ignoring branching fasiculi. Secondly, there is no indication of the confidence that can

be assigned to the reconstructed trajectory. Noise present in the system introduces

uncertainty in the estimate of fibre orientations (i.e. e1) (Basser and Pajevic 2000;

Jones 2003) potentially leading to errors within a pathway (Lazar and Alexander

2003; Tournier et al. 2002; Lori et al. 2002; Jones 2003).

Probabilistic algorithms make an effort to overcome these limitations by providing

a probability distribution for a trajectory, instead of a single fit. Starting from a

seed point the most likely direction for the next step is chosen from a distribution of

orientations, the white matter track is propagated this way where each step is selected

at random from a local probability density function (PDF) of fibre orientations. This

procedure results in a number of potential pathways through a specified seedpoint

where each voxel is assigned a value for the percent of pathways that pass that

voxel originating from the seedpoint. Thus, areas of the brain that contain higher

densities of resulting tracks have a higher probability to be connected to the seedpoint

(Behrens et al. 2003; Parker et al. 2003). In contrast, there are cases where a lower

probability is unexpectedly assigned, such as when a tract branches off to multiple

destinations reducing the proportion of tracks reaching any one of the destinations.

The probability density function (PDF) and the estimation of uncertainty of the

diffusion tensor (Parker et al. 2003; Tournier et al. 2003) are estimated either using

bootstrap methods (Jones 2008b; Jones and Pierpaoli 2005; Jones 2003; Lazar and

Alexander 2005), Bayesian inference methods (Behrens et al. 2003) or Monte Carlo

methods (Parker et al. 2003). One should note that streamline probabilistic tracking
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is no more accurate than deterministic tracking, therefore they are affected by the

same limitations. The probabilistic technique only expresses the ’precision’ a pathway

can be reconstructed from the given data and model algorithm. Hence, the results

do not determine the ’connectivity’ of white matter pathways (Jones 2010).

Factors that Affect Diffusion Tensor Measurements

Diffusion-weighted imaging is inherently sensitive to motion of water molecules on the

order of 5-15 µm, thus other motions such as subject motion, breathing motion and

even cardiac pulsation will lead to significant signal phase shifts leading to a decrease

in image quality (Le Bihan et al. 1988; Chenevert and Pipe 1991; Le Bihan and

Turner 1991; Wirestam et al. 1996; Skare and Andersson 2001; Jones and Pierpaoli

2005; Nunes et al. 2005). There are also machine-dependent errors, such as eddy

currents, gradient nonlinearity, B0 and B1 inhomogeneities that can effects image

quality (Alexander et al. 2001).

In the 1990s the focus on improved data quality was to optimise the pulse sequence.

To reduce motion sensitivity a rapid image technique single-shot echo planar imaging

(EPI) was introduced. However, single-shot data acquisitions suffer from artefacts

caused by B0 susceptibility changes at air/tissue interfaces and geometric distortions

produced by eddy currents. Many approaches have been applied to reduce B0 arte-

facts such as shielded gradients, postprocessing, or more advanced pulse sequences

(Provenzale and Sorensen 1999; Janke et al. 2004; Kennedy and Zhong 2004). To

reduce the artefacts within EPI a shorter echo train length and smaller echo spacing

have been introduced. Two such methods are parallel imaging and segmented k-space

sampling. Parallel imaging was developed in the late 1990s (Pruessmann et al. 1999)

and has been a popular method to reduce EPI distortions and B0 inhomogeneities.

Another effect of large diffusion gradients is eddy currents, which depending on their

magnitude and direction lead, to either translation, shearing or scaling (Haselgrove
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and Moore 1996) The fast switching of the diffusion gradients can also induce a

Lorentz force on the gradient coil causing mechanical motion or vibration of the coil

(Boujraf et al. 2001). To reduce the effects of eddy currents bipolar gradients have

been used (Alexander et al. 1997; Reese et al. 2003). With the help of increased gra-

dient hardware quality and eddy-current compensation schemes in modern scanners

these distortions are less problematic.

An effect on data quality that is implicit to in vivo is cardiac pulsation, which

leads to nonlinear motion and local deformations corrupting the final diffusion sig-

nal (Enzmann and Pelc 1992; Poncelet et al. 1992; Turner et al. 1990; Jiang et al.

2002; Skare and Andersson 2001). Motion of the order of 0.5 mm has been seen

during the cardiac cycle (Enzmann and Pelc 1992; Poncelet et al. 1992) leading to

signal dropouts and residual misalignments and, in turn, errors in diffusion estimates.

To avoid these artefacts cardiac gating is used, where the acquisition is triggered to

the cardiac cycle. Unfortunately, the effective pulse repetition time for this acquisi-

tion is dependent on the heart rate of the participant leading to longer scan times.

Another common confound in in vivo experiments is partial volume effects due to

cerebrospinal fluid contamination. Fortunately, it mainly occurs in voxels around the

ventricles and the perimeters of the brain parenchyma (Alexander et al. 2001; Pa-

padakis et al. 2002). CSF-contamination leads to elevated ADC and decreased FA

values, subsequently affecting the delineation of tracts close to ventricles since these

voxels are not assigned as WM and will be ignored during tracking algorithms. A

number of models have been introduced to separate the diffusion properties of the

brain tissue from the surrounding free water (Alexander et al. 2001; Behrens et al.

2003; Papadakis et al. 2002; Pasternak et al. 2009). The method by Pasternak

(2009) is used within this thesis since it does not require additional data-sets with

different b-values (Pierpaoli and Jones 2004) or suffer from reduced SNR as in the

fluid-attenuated inversion recovery technique (Papadakis et al. 2002). Pasternak’s
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’Free Water Elimination’ (FWE) models two compartments, tissue and CSF, from

the diffusion signal by imposing a bi-tensor model with additional biological and

physical constraints, such as local smoothness constraints on the tissue compartment

(Pasternak et al. 2009).

There are a number of factors that affect the diffusion signal that are of interest

ranging from microscopic axons and myelin sheaths, to large structures like fibre

bundles. If there are a number of heterogenously orientated fibres the diffusion signal

within the voxel will appear isotropic when modeled by DTI, thus masking the small

differences within microscopic factors. Knowing such effects it is difficult to interpret

a change in diffusion anisotropy and conclude which factor actually accounts for the

change (Wheeler-Kingshott and Cercignani 2009). There are a number of possible

explanations for a decrease in FA for example: a decrease in principal diffusivity,

an increase in the diffusivity perpendicular to the main axis (radial diffusivity) and

a change in both principal and perpendicular diffusivity. Even though it was first

thought that diffusion anisotropy was due to structures such as myelin, it has been

found through histological staining that anisotropic diffusion can appear in immature

mammals even before myelin exists (Wimberger et al. 1995).

A set of studies were conducted to determine the origin of anisotropy in white mat-

ter and found that intact cell membranes were the main determinant of anisotropy,

although myelination did modulate anisotropy (Beaulieu and Allen 1994a; Beaulieu

and Allen 1994b; Beaulieu and Allen 1996; Farrell et al. 2010). Over the years

there has been a number of studies trying to interpret such changes within diffusion

anisotropy and used histological measurements to try to interpret diffusion measure-

ments (Beaulieu and Allen 1994b; Wimberger et al. 1995). Correlations between

histological myelin measurements and diffusion experiments have been shown to be

correlated especially within disease models (Peled et al. 1999; Klawiter et al. 2011).

Furthermore, it has been shown that axonal loss did not cause a decrease in principal
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diffusivity (Song et al. 2002; Herrera et al. 2008). Therefore, caution should be

taken when interpreting changes in regions of heterogeneous fibre orientations using

diffusion tensor models, especially as a proxy marker of WM integrity.

New Diffusion Models Beyond the Tensor

Most diffusion MRI studies still use the tensor model due to its simplicity even though

it has been shown numerous times that it is inadequate in regions of heterogeneous

orientations, like ’crossing fibres’ (Tuch et al. 2002; Alexander et al. 2002; Tuch et al.

2003; Wedeen et al. 2005; Tournier et al. 2004; Anderson 2005). The amount of

heterogeneous orientations within the brain has been found to be more common than

initially thought (a third of all WM voxels) leading to high amount of orientational

inaccuracies when modeling the diffusion signal by a diffusion tensor (Behrens et al.

2007). There are a number of factors that can cause heterogeneous orientations such

as curving, fanning, kissing and crossing to name a few (Figure 2.3). Measures of

anisotropy, FA and axial and radial diffusivities, are very sensitive to intra-voxel ori-

entational dispersion (Alexander et al. 2001; Beaulieu 2002; Wheeler-Kingshott and

Cercignani 2009), furthermore orientational issues in tensor based tractography lead

to either false-positive or false-negative connections (Alexander et al. 2001; Behrens

et al. 2007). Due to these limitations and issues of diffusion tensor methodology there

has been a number of new higher order models that attempt to model the underly-

ing tissue more accurately. A few of these models are: diffusion spectrum imaging

(DSI) (Wedeen et al. 2005), Q-ball imaging (QBI) (Tuch 2004), combined hindered

and restricted model of diffusion (CHARMED), diffusion kurtosis imaging (DKI)(?),

(Assaf et al. 2004), spherical deconvolution (SD) (Tournier et al. 2004; Anderson

2005) and combining SD and residual bootstraps to acquire a probability tracking

algorithm (Jeurissen et al. 2011). CHARMED and SD were used within this thesis

and will be briefly described in the next two sections.
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Figure 2.3: Schematic of possible complex fibre orientations within a MRI voxel. A)
Kissing fibres B) Curving/bending fibres C) Crossing fibres.

Combined Hindered and Restricted Diffusion

This novel technique extends diffusion imaging by separating its signal into two

components: hindered and restricted water diffusion - known as the combined hin-

dered and restricted water diffusion (CHARMED) model (Assaf et al. 2004). The

CHARMED model assumes there are two different diffusion environments that con-

tributed to the net signal decay: hindered diffusion in the extra-axonal volume (in-

cluding extra- and intra-cellular spaces) and restricted diffusion in the intra-axonal

volume (Figure 2.4). The hindered diffusion compartment is characterised with a sin-

gle diffusion tensor (Gaussian diffusion), while the restricted compartment is charac-

terised using a model of restricted diffusion within cylinders (non-Gaussian diffusion).

The restriction of water molecules in a system is dependent on the diffusion time

in a MR experiment. If the diffusion times are very short most molecules will move

freely without reaching any boundaries. As the diffusion times increases a threshold

is reached where the diffusion distance equals the characteristic size of a boundary

(i.e. axon diameter). The physical process that dominates the signal decay at such

high b-values is restricted diffusion, while at low b-values hindered diffusion is more

significant. The volume fraction of the restricted diffusion provides an estimate of the

axon density within a voxel. Restricted diffusion and axon density has the possibility

to be sensitive to a wide range of WM pathologies involving axon changes. Application
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Figure 2.4: Schematic of the CHARMED diffusion model showing the two modes of
diffusion in white matter: hindered outside the cylinders and restricted within the
cylinders (Assaf et al. 2004).

of this approach has not been widely used since it requires more than one 3D diffusion

acquisition with different b-value shells to be able to characterise both the hindered

and restricted compartments.

Spherical Deconvolution

Spherical deconvolution goes beyond the diffusion tensor model by assuming the diffu-

sion weighted signal is a linear combination of various fibre populations present within

a voxel (Tournier et al. 2004). This method increases the number of potential fibre

populations to infinity allowing the summation to be an integral over the distribution

of fibre orientation when assuming a particular convolution kernel (Tournier et al.

2004; Anderson 2005). This technique assumes that each fibre population generates

a diffusion weighted profile, where the measured diffusion signal profile is defined by

spherical convolution of response function with fibre orientation distribution (FOD).

Thus, the FOD can be estimated by applying spherical deconvolution of the response

function to the measured diffusion signal. The first few applications of spherical de-

convolution showed that it was susceptible to noise leading to a constrained spherical

deconvolution model (Tournier et al. 2007). Within the constrained model negative
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values are minimised within the reconstructed FOD, since these values were biolog-

ically impossible. Results from spherical deconvolution using constrained spherical

deconvolution can be seen in Figure 2.2 B.

There have been many different spherical deconvolution methods that differ from

the original implementation by Tournier et al. (2004) where different convolution

kernels are assumed, such as a diffusion tensor model (Anderson 2005; Dell’Acqua

et al. 2007; Dell’acqua et al. 2010; Kaden et al. 2007; Kaden et al. 2008).

2.1.2 Magnetisation Transfer

Magnetisation transfer (MT) imaging is a magnetic resonance (MR) method that

harnesses information on the relative density of macromolecules within the brain.

This technique was first demonstrated using continuous-wave saturation by Wolff and

Balaban (1989) using an animal spectrometer. MT can provide quantifiable informa-

tion on macromolecular components such as: protein, lipids and cellular membranes,

which are invisible to conventional longitudinal T1 and transverse T2 scans due to

their very short T2 decay times (∼ 10µs, broad frequency line widths > 10 kHz)

(Wolff et al. 1991; Wolff and Balaban 1989; Portnoy and Stanisz 2007; Samson et al.

2006). Furthermore, MT has been demonstrated to be a valid biomarker for white

matter (WM) pathologies such as; inflammation, demyelination (loss of myelin), and

axonal loss (Stanisz et al. 2004; Stanisz et al. 1999; Sled and Pike 2001).

Most MT acquisitions apply an off-resonance radiofrequency (RF) pulse that se-

lectively saturates the macromolecular magnetisation. Off-resonance pulses causes

water protons to transfer magnetisation from the saturated macromolecules to free

water protons, through cross-relaxation or chemical exchange resulting in a decrease

in the measurable free pool’s signal. (Kucharczyk et al. 1994; Ceckler et al. 1991)

(Figure 2.5). Until recently most magnetisation transfer effects were reported in terms
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Figure 2.5: Schematic of the molecular model for magnetisation transfer. Magnetisa-
tion transfer can be from either chemical exchange between the bulk solvent and the
solvation layer or cross-relaxation between the macromolecular matrix and hydroxyl
or amine groups (X = O,N) which in turn exchanges rapidly with the bulk solvent.
(Liepinsh and Otting 1996; Ceckler et al. 2001)

Figure 2.6: Representation of absorption lineshapes for the two pools.
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of a MT ratio (MTR). MTR is calculated from only two images with and without the

saturating pulse and are maps of the percent signal loss caused by the MT saturation

pulse (Dousset et al. 1992). This ratio, however, is influenced by a complex combi-

nation of biological (including T1 making it difficult to separate the effects of reduced

macromolecular density or increased water) and experimental parameters (making it

difficult to examine particular pathological syndromes between different labs )(Dous-

set et al. 1995; Does et al. 1998; Dousset et al. 1995; Deloire-Grassin et al. 2000;

Gareau et al. 2000). Different pathologies are characterised by either an increase

in water content arising from edema or inflammation or a decrease in nonaqueous

tissue caused by demyelination and/or axonal loss, thus making it impossible to pin-

point which pathological processes are accountable for the decrease in MTR. As a

result a number of groups have introduced quantitative MT (qMT) approaches using

a range of different frequency offsets (∆) modelling both experimental and biological

parameters (Sled and Pike 2000b; Ramani et al. 2002). Providing a more informative

picture, such as the macromolecular proton fraction (includes myelin) also known as

a MMPF-map. Even though the MMPF-map does not provide an independent mea-

sure of myelin there is increasing evidence that changes from demyelinating diseases

are reflected in a decrease in the value of MMPF (Sled and Pike 2001; Tozer et al.

2005; Davies et al. 2004; Levesque et al. 2005).

Two-pool Model

The most widely adopted quantitative magnetisation transfer (qMT) model for the

human brain is the two-pool model; pool A (free water) consisting of mobile spins and

pool B (macromolecular-bound) consisting of restricted or immobile spins. Different

chemical environments and distinct spectroscopic line shapes characterise protons

from each pool. Protons within the free pool have long T2 times and are represented

by a sharp lineshape, whereas the macromolecular pool is represented by a broad

29



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

absorption lineshape due to its short T2 times (Figure 2.6). Having such a broad

absorption lineshape means that the macromolecular pool to be more sensitive to

off-resonance irradiation.

Pool B is selectively saturated by applying a radio-frequency (RF) pulse several

kilohertz off-resonance from the Larmor frequency leading to magnetisation trans-

fer between Pool A and B and an attenuation in the MR signal (Wolff and Bala-

ban 1989) (Figure 2.7). The amount of attenuation is a function of RF parameters

(amplitude(B), duration (τ), shape (e.g. Gaussian), duty cycle, frequency offset),

the concentration of macromolecules and the exchange rate between the two pools.

Importantly, other unwanted factors have been shown to affect attenuation are: wa-

ter content, non-myelin macromolecules (as in neuroinflammation) and field inhomo-

geneities if not corrected for (Stanisz et al. 2004; Stanisz et al. 1999; Sled and Pike

2001).

Figure 2.7: Two-pool model of magnetisation transfer where the shaded areas repre-
sent saturated spins (Henkelman et al. 1993).

Within the two-pool model a number of biological properties are modeled in-

cluding the magnetisation exchange between the two pools (R), longitudinal (T1) and

transverse (T2) relaxation times of free water and macromolecular protons and relative
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number of macromolecular protons. Figure 2.7 shows the corresponding relaxation

rate for longitudinal magnetisation for each pool, RA and RB, their loss of longi-

tudinal magnetisation due to RF irradiation RRFA,B and the total number of spins

MA,B
0 . Selectively modifying the magnetisation state of pool B using off-resonance

RF pulses the relaxation properties and the exchange rate of pool B can be inferred

by observing the change in pool A.

Henkelman et al. (1993) were among the first researchers to characterise the

magnetisation transfer phenomenon mathematically using a non-Bloch behaviour and

non-Lorentzian lineshapes for the bound pool. Using a continuous-wave (CW) MT

experiment consisting of a single long (> 5s) with constant amplitude RF pulse the

magnetisation is determined by solving modified Bloch equations by assuming the

system is in steady-state(Henkelman et al. 1993). It was shown within CW MT

experiments the signals in the brain attenuate differently: white matter (49%), grey

matter (39%) and cerebral spinal fluid (CSF) (4%) (Henkelman et al. 1993).

Modeling Continuous-Wave MT Sequences

At the start of a continuous-wave experiment the magnetisation of pool A and B

are at equilibrium. However, soon after the start of the experiment an off-resonance

RF pulse selectively saturates pool B causing its magnetisation to be disturbed.

The system then relaxes back to its equilibrium state through magnetisation transfer

between pool B and A via chemical exchange and cross-relaxation (dipolar coupling)

(Forsen and Hoffman 1963) (Figure 2.5).

In steady state conditions pools A and B are described by pseudo-first-order rate

constants RMA
0 (exchange between B to A) and RMB

0 (exchange between A to B).
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This chemical exchange can be modeled by adding it to the Bloch equations (Henkel-

man et al. 1993):

dMA
z

dt
= Ra(M

A
o −MA

z )− RMB
o MA

z +RMA
o M

B
z + ω1M

A
y (2.10)

dMB
z

dt
= RB(M

B
o −MB

z )− RMA
o M

B
z +RMB

o MA
z + ω1M

B
y (2.11)

dMA,B
x

dt
= −MA,B

x

T2A,B

− 2π∆MA,B
y (2.12)

dMA,B
y

dt
= −

MA,B
y

T2A,B

− 2π∆MA,B
x − ω1M

A,B
z (2.13)

where the magnetisation for pools A and B are separated into x, y and z spatial

components (MA,B
x,y,z) and MA

0 and MB
0 the magnetisation of each pool at equilibrium.

The angular frequency of precession induced by the off-resonance RF pulse is ω1 =

γB1 and ∆ is the off-resonance frequency of the RF pulse.

The Bloch equations for the macromolecular or semisolid pool is replaced by a

single longitudinal component to better describe the behaviour of the macromolecular

protons, where rate of saturation for the magnetisation is: (Morrison and Henkelman

1995):

RRFB = ω2
1g(2π∆TB

2 ) (2.14)

where g is the absorption lineshape of spins in the macromolecular pool and is a

function of the macromolecular pool’s transverse relaxation time T b
2 and ∆. The
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macromolecular lineshape, g, in biological tissues is represented by a super-Lorentzian

(Morrison and Henkelman 1995; Sled and Pike 2001):

RRFB(ω1,∆) = ω2
1

√
2π

[

TB
2

∫ 1

0

1

3u2 − 1
exp−2

(

2π∆TB
2

3u2 − 1

)2

du

]

(2.15)

Solving the above differential equations for the steady state condition the left

hand sides of equations 2.10, 2.11, 2.12 and 2.13 are simply set to zero. This solution

allows for the longitudinal magnetisation of the free pool, MA
z , to be solved,

MA
z =

RB

[

RMB
0

RA

]

+RRFB +R +RB

[

RMB
0

RA

]

(RB +RRFB) +
(

1 +
(

ω1

2π∆

)2
[

1
RAT2A

])

(RB +RRFB +R)
(2.16)

where RRFB is the rate of loss of macromolecular longitudinal magnetisation due to

off-resonance irradiation of amplitude ω1 and offset frequency ∆.

An experimental representation of the CW experiment when either magnetisation

transfer occurs or not can be seen in Figure 2.8. Within this plot the upper curve,

dashed line, demonstrates the relative magnetisation measured when no exchange

between water proton spins occurs. Note at offset frequency values below 10kHz there

is saturation of water, known as direct effect (Mdir). If it were possible to selectively

saturate the macromolecular pool directly, then without exchange, the dotted line

would be observed. The macromolecules broad lineshape is demonstrated by the fact

they can be saturated out to 35 kHz. The sigmoidal solid line is the saturation of

the liquid pool exchanging with the macromolecular pool. The shaded region is the

magnetisation transfer (MMT ) between the two pools.

Equation 2.16 is a solution for the CW technique, however this technique is im-

practical for experiments using conventional scanners due to long scan times and high

specific absorption (SAR) values. Instead, pulsed RF sequences consisting of multiple

short-shaped Gaussian off-resonance pulses are used. Within the pulsed RF sequence
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Figure 2.8: A schematic of longitudinal magnetization of the liquid and macromolec-
ular pool. The dashed line represents saturation due to the direct effect (Mdir), the
dotted line saturation for the macromolecular pool only and the solid line is the sat-
uration of the liquid pool exchanging with the macromolecular pool. The shaded
region is the saturation from magnetisation transfer (Henkelman et al. 2001).

the assumptions in equation 2.16 are violated since the system is no longer in steady-

state since the T1 relaxation times of both pools are longer than the time-varying RF

pulses amplitudes (Pool A ∼ 700− 1200 ms and Pool B ∼ 300− 600ms at 1.5 T).

Modeling Pulsed MT Sequences

Unlike in the steady-state condition where all four time derivatives are equal to zero

the pulsed MT experiment requires the Bloch equations 2.10, 2.11, 2.12 and 2.13

to be solved in the time domain, due to their short RF pulses and time-varying

pulse amplitudes (Graham and Henkelman 1997). The following differential matrix

equation represents the pulsed MT sequence (Sled and Pike 2000b):

dM(t)

dt
= Λ(t)M(t) + βM0 (2.17)

where M is a four dimensional magnetisation vector (MA
X ,M

A
Y ,M

A
Z ,M

B
Z ) and M0 is

the equilibrium value of each magnetisation component. The matrices Λ and β are
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made up of the coefficients from Henkelman’s equations 2.10, 2.11, 2.12 and 2.13. As

noted before for pulse MT experiment Λ is time-varying, thus no general solution

exists.

Several studies have been presented as a simplification of the solution for the

time varying modified Bloch equations. Sled and Pike (2000b) proposed a model

that approximates the effect of a MT pulse on the free pool by rapid saturation of

longitudinal magnetisation and on the macromolecular pool by a rectangular pulse

with the same average power. Later, Ramani et al. (2002) proposed a simpler model

in which they introduced a ”continuous wave power equivalent” (CWPE) for the

short pulsed MT sequences. In the same year, Yarnykh (2002) introduced a MT

technique where the direct saturation on the liquid pool is neglected and the RF

pulse is approximated by equal-power rectangular pulses. Ramani’s model will be

described in the section that follows since it is the model used throughout this thesis.

Ramani’s Approximation

Ramani’s approximation for the pulsed MT sequence by means of a CW equivalent

average power approximates the amplitude ω1(t) by a constant, CWPE. The constant

for the saturation pulse amplitude ω1CWPE is defined as (Ramani et al. 2002):

ω1CWPE = γB1CWPE =

√

∫ τ

0
ω2
1(t)dt

TR
(2.18)

where TR is the repetition time for the pulsed SPGR MT sequence and the integral

on the right-hand side is evaluated for the power deposited by the RF pulse for both

CW and pulsed MT per TR (for a 3D acquisition). Equation 2.18 can be simplified

to be equal to the mean square saturating field averaged over a time TR′ (PSAT )

(Ramani et al. 2002):

ω1CWPE = γ
√

PSAT (2.19)
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where γ is the gyromagnetic ratio of the proton. The mean square saturating field

(PSAT ) is a function of the shape, duration (τSAT ) and maximum amplitude (BSAT )

of the applied RF pulse:

PSAT = p2B
2
SAT

τSAT

TR′
(2.20)

where p2 is the ratio of the mean amplitude of the saturation pulse squared over a

rectangular pulse of the same height. The applied saturating RF pulse results in an

excitation flip angle θSAT that is used during MR acquisition and is a function of its

shape, duration (τSAT ) and maximum amplitude (BSAT ):

θSAT =
180

π
γp1B1SAT τSAT (2.21)

where p1 it the ratio of the mean amplitude of saturation pulse to that of a rectangular

pulse of the same amplitude. Knowing the values of θSAT allows BSAT to be calculated

from equation 2.21. Furthermore, substituting equation 2.20 into equation 2.19 allows

one to calculate ω1CWPE.

Instead of normalizing Henkelman’s equation 2.16 (divide byMA
0 ) as done by other

groups (Henkelman et al. 1993; Portnoy and Stanisz 2007) Ramani keeps M a
0 on both

sides of the equation to maintain dimensionality. This allows the MT-weighted signal

from the liquid pool, S(ω1,∆), to be measured (Ramani et al. 2002):

S(ω1,∆) = gMA
Z

= gMA
o ·

(

RB

[

RMB
0

f

RA

]

+RRFB(ω,∆)+RB+RMA
o

)

[

RMB
0

f

RA

]

(RB+RRFB(ω,∆))+
(

1+( ω1

2π∆)
2
[

1

RAT2A

])

(RB+RRFB(ω,∆)+RMA
0
)

(2.22)

where g is a scaling factor (function of scanner dependent parameters, such as the

gain of the RF amplifier) and the macromolecular proton fraction (MMPF) defined

as:

MMPF =
MB

o

MB
o +MA

o

(2.23)
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where Ma
0 and M b

0 are fully relaxed magnetisation values of the free water and macro-

molecular pools, respectively. Solving the non-linear equation 2.22 requires at least

six independent measurements of ω1 and ∆ since there are six qMT parameters to

solve for: RMA
0 ,

MMPF
RA(1−MMPF )

, RB,
1

RATA
2

, TB
2 , gMA

0 (Ramani et al. 2002). Further-

more, MMPF can be solved by measuring RA separately and calculating using the

equation below (Henkelman et al. 1993):

RA = RAobs −
RMA

0 f(RB −RAobs)

RB − RAobs +RMA
0

(2.24)

qMT parameters such as MMPF have been shown to be sensitive to the loss of

myelin, thus making MMPF a unique measure for WM characterisation (Sled and

Pike 2001; Odrobina et al. 2005). However, there are limitations to the accuracy of

Ramani’s approximation of the MT-weighted signal. Ramani’s model is only valid

when the decrease in T1-weighting is negligible since it does not model the effects

of excitation pulses and TR. Furthermore, Ramani’s model assumes the MT pulse

is applied continuously making the duty cycle a factor in the accuracy of its fitted

parameters. However, it has been shown that if the duty cycle is at least 50% it will

not affect the accuracy of the fit (typical for many in vivo experiments) (Cercignani

and Barker 2008).

2.1.3 Multicomponent Reloxometry

Multicomponent relaxometry of T2 is a method that obtains contrast by probing

the inhomogenous environment of a sample. If a sample was homogeneous and can

be defined as a single compartment the T2 relaxation would be monoexponential.

However, we know the brain is heterogeneous and different measurable T2 times cor-

respond to unique water environments due to their distinct T2s. Within the central

nervous system there are four distinct water environments: the jelly-roll like structure
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of myelin provides a perfect environment for the magnetisation exchange between the

trapped water with its lipoproteins (short T2 time), the cerebral spinal fluid (CSF)

which is similar to pure water, intracellular and extracellular water. The last two

water environments are often indistinguishable by the majority of T2 MRI techniques

and thus are grouped into one water peak. The remaining three T2 components give

rise to water peaks within a healthy individual of: 10-50 ms for the myelin bilayers,

70-90 ms for the cytoplasm (includes intra and extracellular) and > 2s for the CSF

(MacKay et al. 1994; MacKay et al. 2006).

Figure 2.9: Representation of a multi-echo T2 sequence with two separate water peaks:
myelin and intra/extracellular water.

The first multicomponent T2 experiment used a two-echo Carr-Purcell-Meiboom-

Gill (CPMG) pulse sequence to separate T2 times and amplitudes into the two com-

partments (Armspach et al. 1991). The year following the introduction of CMPG, a

single-slice multi-echo pulse sequence known as the ’Poon-Henkelman’ sequence was

introduced to include additional crusher gradients with alternating polarity on either

side of the refocusing pulse to suppress the B1 inhomogeneity and signal from outside

the slice (Poon and Henkelman 1992). Shortly afterwards, the CPMG sequence was
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further expanded to 32-echos leading to a better characterisation of the T2 decay and

the quantification of multiple water environments within a sample or tissue (Whittall

et al. 1997). This allowed for three parameters to be estimated from T2 distributions:

area fraction, geometric mean T2 time and geometric T2 width ratio. The water frac-

tions are calculated by integrating the peaks between T2min and T2max and dividing

it by the total area of the T2 distribution (Figure 2.9). In the WM, the average MWF

is around 11.3% (the highest being in the corpus callosum at 13%). However, note

that the MWF is above zero within GM at around 3.1% (Whittall et al. 1997).

There are a number issues and limitations with the CPMG pulse sequence. The

main disadvantage is that it can only acquire data from a single slice due to mag-

netization transfer effects from off-resonance excitations in adjacent slices. Also, at

higher fields it has been hypothesised that B1 increases the peak water width within

the GM when compared to WM due to the higher concentration of iron (Oh et al.

2006).

Since the initial implementation of CPMG a number of developments and alterna-

tive sequences have been introduced. A ten minute spiral acquisition that includes a

T2-prep, 12 non-linearly spaced echoes, RF cycling scheme for 16 slices was introduced

and shown to have no MT effects or T1 recovery artefacts (Oh et al. 2006). In the same

year a three dimensional Poon-Henkelman sequence was introduced which included

an additional phase-encoding gradient in Gz for each echo, a 90◦ slab-selective pulse

and non-alternating-descending z-axis crusher gradient pulse (Mädler and MacKay

2006). Another method requiring prior assumptions of the number of compartments

and their T2 times is the linear combination of TEs which dissociated myelin water

from the total water (Jones et al. 2004; Vidarsson et al. 2005). The three-echo linear

combination technique with echo times and weights chosen to maximise intracellular

(IE) water and cerebrospinal fluid (CSF) was initially introduced for six slices with

a five minute scan time (Jones et al. 2004; Vidarsson et al. 2005), which was then
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later applied to the whole brain taking a total of fifteen minutes of scan time (Bells

et al. 2007). More recently, using different methodology Deoni et al. (2008, 2008)

combined spoiled gradient recalled echo (SPGR) and fully-balanced steady-state free

precession (bSSFP) acquisitions to acquire full brain coverage with high resolution in

under ten minutes. T1 and T2 water fractions for both myelin and intracellular water

are determined in this technique known as multi-component driven equilibrium single

pulse observation of T1 and T2 (mcDESPOT). This technique has the advantage over

conventional 2D quantitative T2 techniques due to its higher signal to noise efficiency,

shorter acquisition times and a larger contribution of short T2 species to the measured

signal since both TE and TR are held constant (Deoni et al. 2003). The quantitative

T2 technique used throughout this thesis is mcDESPOT and will be described in the

sections below.

DESPOT

Before the introduction of mcDESPOT quantitative measures of T1 (driven-equilibrium

single-pulse observation of T1 - DESPOT1) and T2 (DESPOT2) were introduced.

DESPOT1 was introduced to overcome the shortcomings of conventional T1 sequences,

inversion-recovery (IR) and saturation-recovery (SR), with either their low SNR or

resolution and long scan times. DESPOT1 is a variable flip angle (FA) method us-

ing spoiled gradient echo (SPGR) sequence that was originally introduced in 1974

(Christensen et al. 1974) in NMR and later explored by other researchers (Homer

and Beevers 1985; Wang et al. 1987; Fram et al. 1987; Homer and Roberts 1990;

Homer and Roberts 1987; Deoni et al. 2003) to estimate T1 with the same accuracy

as IR and SR methods. DESPOT2 was a T2 sequence proposed to use the highly

efficient imaging method of steady-sate free precession (SSFP) which was originally

introduced in 1958 (Carr 1958).
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DESPOT1 acquires multiple spoiled-GRE images at various flip angles altering

the amount of T1 weighting allowing T1 to be fit for every voxel. This technique uses

spoiling to influence the residual magnetisation so it does not contribute to the total

signal, thus establishing a spoiled steady state and a relatively pure T1 image. The

total signal from each of the different flip angles will produce a signal curve that

depends on T1, which can easily be linearized to determine the T1 (Wang et al. 1987;

Deoni et al. 2003). DESPOT1 determines T1 contrast simply by acquiring a set of

two SPGR images with varying flip angles (α) at a constant TR and measuring the

SPGR signal (SSPGR). Plotting SSPGR/ sinα against SISPGR/ tanα for the linear

equation allows for the calculation of T1(Deoni et al. 2003):

SSPGR

sin(α)
= E1

SSPGR

tanα
+M0(1− E1) (2.25)

where M0 is a factor proportional to the equilibrium longitudinal magnetization and

E1 = exp−TR
T1

. A T1 map is determined from calculating the slope of the estimated

line for each voxel:

T1 = − TR

ln slope
(2.26)

DESPOT2 acquires multiple fully balanced steady-state free precession (bSSFP) im-

ages at various flip angles at a constant TR (TR ≤ T2 ≤ T1 ), thus altering the amount

of T2 and T1 weighting. By acquiring both spoiled-GRE in DESPOT1 and bSSFP

images at several flip angles T1 and T2 can be estimated. The DESPOT2 sequence

makes use of both longitudinal and transverse magnetisation being in a steady-state.

The only source of phase accumulation after each TR is from residual transverse

magnetisation. Thus, the signal (SSSFP ) for each of the different flip angles (α) will

produce a signal curve that depends on both T1 and T2 relaxation times of the tissue

as well as TR and M0. DESPOT2 determines T2 from a series of images with very

short TR (less than 10 ms) and alternating the flip angle (α) by linearizing SSSFP
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within every voxel (Deoni et al. 2003). Plotting SSSFP/ sinα against SSSFP/ tanα

for the linear equation below allows us to calculate T2 when T1 is already known:

SSSFP

sinα
=

E1 − E2

1− E1E2

SSSFP

tanα
+

M0(1− E1)

1− E1E2

(2.27)

where E2 = exp−TR/T2. The T2 can be determined from the slope ((E1 −E2)/(1−

E1E2)) and intercept (M0(1− E1)/(1− E1E2))

T2 = − TR

ln slope−E1

slope×E1−1

(2.28)

The ability to linearize the signal equations of SPGR and SSFP sequences allows T1

and T2 to be rapidly acquired since only two flip angles are required. Furthermore,

the flip angles are optimised to increase the accuracy and precession of T1 and T2 as

described in (Deoni et al. 2004).

Challenges

The flexibility of steady-state sequences to harness different tissue properties also

causes challenges if one is not cautious during quantification. It has been shown that

variable flip angle bSSFP acquisitions are sensitive to MT effects (Crooijmans et al.

2011; Weber et al. 2009; Gloor et al. 2008). Other important biological confounds in

the measurement of bSSFP include water diffusion (Bieri and Scheffler 2007) and ex-

change between different T2 pools (Deoni et al. 2008). The last confound is exploited

in the technique multi-component DESPOT (mcDESPOT) and is discussed in more

detail in the next section.

Steady-state sequences are affected by a number of systematic variations listed

here. Firstly, flip angle, which can arise from either B1 inhomogeneity or slice profile

errors (Deoni et al. 2005). Secondly, B0 inhomogeneity (Deoni 2009) which produces

the artefact know as ’banding’ and is a result of the transverse magnetisation acquiring
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a net phase shift (Deoni et al. 2004) in areas of discontinuous magnetic susceptibility,

such as the sinuses.

To reduce B1 inhomogeneities one can use an optimised RF pulse and a 3D acquisi-

tion (Deoni et al. 2003). To further reduce B1 inhomogeneities affecting quantitative

values a B1 field map is required. In DESPOT1 a B1 field map is acquired by com-

bining SPGR images with an inversion-recovery(IR)-SPGR image to calibrate the flip

angle (Wang et al. 2006; Deoni 2007).

A number of solutions have been introduced to reduce the banding artefact within

bSSFP acquisitions such as: minimise TR (Deoni et al. 2005), combine images with

altered RF phases by shifting the bands (Vasanawala et al. 2000) or/and RF pulse

phase-cycling SSFP images (Deoni et al. 2004). Combining phase-cycling with a

calibrated phase-precession map (B0 map) for bSSFP images and calculating the B1

maps reduces the artefacts within the DESPOT technique (Deoni 2009), allowing for

a better characterisation of the confound within the bSSFP model caused by multiple

T2 pools as applied in mcDESPOT.

mcDESPOT

Combining high resolution DESPOT1 (SPGR) and DESPOT2 (bSSFP) 3D sequences

while incorporating B0 and B1 maps allows for rapid whole brain images with reduced

inhomogeneity and partial volume effects. Within the brain there are two or more

separable exchanging species that can be seen using these two SPGR and bSSFP

techniques (Deoni et al. 2007; Deoni et al. 2008). The two-component system is

used to describe the mcDESPOT signal which is a linear summation of the signal

from each of the species when TE and TR are much less than T2 (Deoni et al. 2008).

In this section a brief introduction of the two-component SPGR and bSSFP signal

model will be provided, for a more detailed explanations see (Deoni et al. 2007).

Assuming a two-compartment tissue model in chemical equilibrium the ’steady-state’
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sequences can be separated into two exchanging species: fast (F) and slow (S) (Deoni

et al. 2007). The SPGR magnetisation (MSS
SPGR) is separated into the two exchanging

species as described by:

MSS
SPGR =

ρ(I − eASPGRTR) sinα

1− eASPGRTR cosα
(2.29)

where α is the flip angle, I is a 2x2 identity matrix, ρ is a vector representing the

equilibrium longitudinal magnetisation for the fast (fF ) and slow (fS) species volume

fractions,

ρ =





fS

fF



 (2.30)

and A represents the matrix of the exchange rates between the two species, KFS and

KSF , and their T1 values,

ASPGR =





− 1
T1,F

−KFS KSF

KFS − 1
T1,S

−KSF



 (2.31)

The exchange rates are the reciprocals of the mean residence times τF and τS. In

the steady-state condition the exchange rates and volume factions for each pool can

be coupled, fFKFS = fSKSF . Extending the SPGR result to include the bSSFP

magnetisation (MSS
bSSFP ):

MSS
bSSFP =

(eAbSSFPTR − I)A−1
bSSFPC

I − eAbSSFPTRR(α)
(2.32)

where α is the flip angle, I is a 6x6 identity matrix, R(α) is a rotation matrix repre-

senting the RF pulse (Deoni et al. 2007) and MSS
bSSFP is a vector containing the x,y

and z magnetization of the fast (F) and slow (S) species:

MSS
bSSFP = [MSS

x,FM
SS
x,SM

SS
y,FM

SS
y,SM

SS
z,FM

SS
z,S ]

T (2.33)
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and C is a vector that relates the equilibrium longitudinal magnetisation and volume

fractions for each species:

C = ρ
[

0 0 0 0 fF
T1,F

fS
T1,S

]

(2.34)

Furthermore, since bSSFP includes both T1 and T2 the AbSSFP is a matrix that

expands upon ASPGR to include T2 and off-resonance:

AbSSFP =















−

1

T
2,F

− KFS KSF ∆ωF 0 0 0

KFS −

1

T
2,S

− KSF 0 ∆ωS 0 0

−∆ωF 0 −

1

T
2,F

− KFS KSF 0 0

0 −∆ωS KFS −

1

T
2,S

− KSF 0 0

0 0 0 0 −

1

T
1,F

− KFS KSF

0 0 0 0 KFS −

1

T
1,S

− KSF















(2.35)

The measured magnetisation from the bSSFP sequence is the total transverse mag-

netisation, represented by the summation of the components MSS
x,F +MSS

x,S + iMSS
y,F +

iMSS
y,S (Deoni et al. 2008). Within this mcDESPOT model the fast- and slow-relaxing

species represent myelin and intra- and extracellular water compartments, respec-

tively. The commonly used MWF is represented by fF , where in this case it is

independent of exchange between myelin water and IE water because the exchange

been the two is modeled by mcDESPOT. The myelin residence time is τF , which may

be linked to myelin thickness (Kolind and Deoni 2011). For healthy controls myelin

water fraction from mcDESPOT range from 4% to 25% in WM and are < 10% in

GM structures (Deoni et al. 2008).

Summary

Within the last decade white matter microstructural imaging using MRI has come a

long way. Diffusion MRI is sensitive to microstructural changes, but not specific to

either myelin or axon diameter changes. However, DTI provides us with estimates

of diffusion anisotropy and fibre orientation. On the other hand, both magnetisation
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transfer imaging, myelin water imaging and restricted diffusion imaging provides us

with more specific estimates of myelin and axon diameter. The comparison of all

three white matter microstructural techniques are discussed in detail in Chapter 4.
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Chapter 3

Measurement uncertainties in

qMT-derived parameters

3.1 Introduction

Magnetisation transfer (MT) imaging is a magnetic resonance (MR) imaging tech-

nique that uniquely provides a measure of the relative density of macromolecules

within tissue by harnessing information on the exchange between water protons and

macromolecules such as protein, lipids and cellular membranes, which are invisible to

conventional MR scans owing to their very short T2 decay times (∼10 µs)(Wolff and

Balaban 1989). MT models typically split the brain into two different compartments

by grouping spins into a free or liquid pool consisting of water protons with a long T2

(T2 >10 ms) and a restricted or semisolid (macromolecular) pool consisting of protons

within lipids with very short T2s (T2 <100 us).

Routinely quantitative MT (qMT) experiments achieve their contrast by applying

a series of off-resonance radio-frequency (RF) pulses (of amplitude (ω1) and offset

frequencies (∆ ∼1000 Hz away from the water peak)) that selectively saturates the

macromolecular pool. The resulting decrease in the signal measured from the free

pool is attributed to the transfer of magnetization from saturated macromolecules to

free water protons occurring through cross-relaxation or chemical exchange (Ceckler

et al. 1991; Kucharczyk et al. 1994). The rapid exchange of magnetization between

the two pools causes the free-water signal to attenuate after the off-resonance pulse
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is applied. The amount of attenuation depends on both experimental parameters,

such as RF pulse parameters (amplitude (B), duration (τ), shape (e.g. Gaussian),

duty cycle, frequency offset), and biological parameters, such as the concentration of

macromolecules in the sample, exchange rate between the two pools and longitudinal

and transverse relaxation times of each pool.

The macromolecular proton fraction (MMPF), is a measure which aims to in-

fluence out experimental factors and provide a quantitative measure of the number

of trapped protons in the macromolecular pool (such as myelin), relative to the to-

tal number of protons present (Ramani et al. 2002). Importantly, the MMPF has

been shown to related to myelin lipid content measured using the Luxol fast blue

stain within both postmortem fixed tissue (Schmierer et al. 2007) and fresh tissue

(Schmierer et al. 2008). Not only does MMPF provide a unique contrast, but it also

has been demonstrated to be a valid biomaker for pathological white matter (WM)

syndromes, such as; inflammation, demyelination and axonal loss (Stanisz et al. 1999;

Pike et al. 2000; Siger-Zajdel and Selmaj 2001; Sled and Pike 2001; Stanisz et al.

2004; Schmierer et al. 2007).

With the expanding use of qMT parameters, such as MMPF, it is critical to

characterize their associated uncertainties, and to find the experimental factors that

contribute the most to these uncertainties, so that the precision of qMT parameters

can be maximized.

This study uses a bootstrapping approach to examine the impact of a number

of pre-processing steps in the qMT pipeline on the precision of derived parameters,

aiming to finding the optimal pipeline for qMT.

The precision and accuracy of the fitted parameter estimates within qMT models

rely partly on the choice of sampling points: ω1 and ∆. A recent study explored opti-

mal MT configurations of sample points using Cramer-Rao lower-bound optimization
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to minimize the variance with respect to the sample points (Cercignani and Alexan-

der 2006). Here, we used the optimized sampling scheme derived from Cercignani

and Alexander’s study. However, in addition to the sampling scheme, there are other

factors that affect the precision and accuracy of the qMT parameters. For exam-

ple, radio-frequency non-uniformity (B1) and static field inhomogeneity (B0) (Barker

et al. 1998; Stanisz et al. 1999; Sled and Pike 2001; Lewis and Fox 2004; Stanisz et al.

2004) if uncorrected can potentially change the estimates of qMT results between 5-

20% (5% for MMPF, 20% for TB
2 )(Sled and Pike 2000a). The static magnetic field

(B0) and the RF magnetic field (B1) inhomogeneites can be estimated by separate

pulse sequences and used to correct systematic errors caused by both inhomogeneities

(Sled and Pike 2000a; Ropele et al. 2005).

A qMT protocol therefore requires acquisition of a number of separate images

including a number of MT points (i.e., different offset frequencies and amplitudes), a

quantitative T1 map, a B1-map and a static field inhomogeneity map. All these steps

contribute to the variation within the qMT model fits, and it is therefore desirable

to fully explore the impact of varying attributes of the protocol, such as the methods

used for B0/B1 correction, and qMT pulse sequences. Such an analysis will allow us

to determine the best analysis pipeline that produces the smallest uncertainly in the

measurements.

To fully characterize the variance in the qMT parameters, it is necessary to ac-

count for possible interactions between various sources of noise, such as physiological

noise, scanner instability and susceptibility variations. However, deriving a complete

analytical model that includes all of these variations is extremely challenging, and re-

quires prior assumptions regarding the statistical distributions of the various sources

of noise.
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In this work, we adopt a different approach to quantify the uncertainties within

the qMT pipeline and use wild bootstrapping (O’Gorman and Jones 2006; Zhu et al.

2008) as it does not require assumptions about noise distributions, and obtains such

information from the data themselves. Bootstrapping is a nonparametric statistical

method, which implicitly accounts for all sources of noise (including physiological

and instrumental noise) and has previously been shown to be a powerful method for

characterizing uncertainty in human imaging data, such as those from diffusion tensor

imaging (DTI) (Pajevic and Basser 2003). The advantage of a model-based resam-

pling technique, such as wild bootstrapping, over more conventional bootstrapping

methods, is that there is no need to repeat the acquisition to determine uncertainties

(Zhu et al. 2008).

Here, an optimized wild bootstrap method was used on in vivo human brain data

to: (1) estimate regional distributions of qMT uncertainties in brain tissue, and (2)

to assess the combined effects of different factors on the uncertainties within qMT

estimates, identifying largest sources of variance, and therefore pointing towards an

optimal qMT pipeline. The factors explored along the qMT-processing pipeline that

may influence the uncertainty within qMT parameters were:

1. The B1 inhomogeneity mapping / correction method

2. The B0 inhomogeneity mapping / correction method

3. The choice of T1 mapping method

4. Two different qMT slab profiles (axial or sagittal acquisition) to match either

the 3D SPGR FA-T1 pipeline (axial) or the mcDESPOT pipeline (sagittal).
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3.2 Material and Methods

3.2.1 Participants

Three healthy right-handed participants (age= 24.3 ± 0.6, female = 2) were in-

cluded in this study. Informed consent was obtained prior to scanning and the study

was performed with ethics approval from the ethics review board at our institution.

3.2.2 Imaging acquisition

Quantitative Magnetization Transfer MRI (qMT)

Two different types of qMT protocols were used:

1. An optimized 3D MT-weighted fast spoiled gradient recalled-echo (SPGR) se-

quence (Cercignani et al. 2005) with the following parameters: axially orien-

tated, TR/TE = 25.826/2.18 ms; Gaussian MT pulses, duration τ = 14.6 ms;

Gaussian MT pulses duration = 14.7 ms ;FOV = 240 mm; acquisition matrix

= 96x96x76; BW=±15.63Hz; FA = 5.

2. An optimized 3D MT-weighted fast spoiled gradient recalled-echo (SPGR) se-

quence (Cercignani et al. 2005) with the following parameters: sagittally ori-

entated, TR/TE = 26.65/1.86 ms; Gaussian MT pulses, duration τ = 14.6 ms;

FOV = 220 mm; acquisition matrix = 128x96x64; BW=±31.25 Hz; FA = 5.

For both qMT sequences the following off-resonance irradiation frequencies (∆)

and their corresponding saturation pulse amplitude (θSAT ) for the 11 MT weighted

images were optimized using Cramer-Rao lower bound optimization (Cercignani and

Alexander 2006) are: ∆ = [1000.0 Hz, 1000.0 Hz, 12062.0 Hz, 47185.0 Hz, 56363.0
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Hz, 2751.0 Hz, 1000.0 Hz, 1000.0 Hz, 2768.0 Hz, 2791 Hz, 2887.0 Hz] and their

corresponding θSAT = [332.0◦, 333.0◦, 628.0◦, 628.0◦, 332.0◦, 628.0◦, 628.0◦, 628.0◦,

628.0◦, 628.0◦, 628.0◦].

Multi-component driven-equilibrium single-pulse observation (mcDESPOT)

The mcDESPOT protocol consists of a combination of sagittally oriented SPGR,

balanced steady state free precession (bSSFP) and inversion-recovery prepared SPGR

(IR-SPGR) sequences (Deoni et al. 2008; Deoni et al. 2008). All three were acquired

with a FOV of 220 mm; 1.7 mm anterior-posterior x 1.7 mm left-right x 1.7 mm

superior-inferior, with frequency encoding in the superior-inferior direction for a total

mcDESPOT scan time of approximately 8 minutes. Additional sequence specific

parameters were:

• SPGR: TE/TR = 2.1/4.7 ms; BW = ±25 kHz; flip angle (α) = [3◦, 4◦, 5◦, 6◦,

7◦, 9◦, 13◦, 18◦].

• bSSFP: TE/TR = 1.6/3.2 ms; BW = ±62.5; α = [10.6◦, 14.1◦, 18.5◦, 23.8◦,

29.1◦, 35.3◦, 45◦, 60◦] for both phase-cycling acquisitions of 0◦ and 180◦.

• IR-SPGR: TE/TE = ms; BW = ±25; α = 5◦; inversion time = 450 ms.

Additional Scans

In addition to the four main protocols, field maps and T1 maps were also acquired. For

B1 maps, two fast-spin echo sequences with two different angles (N, 2N) were collected

(TE = 1.6ms, TR = 3.2 ms, matrix = 128x128, FOV =300x300x500mm3, scan time

=1min each) for each flip angles, i.e. 90◦, and 45◦ to enable the ’double angle’ method

(Cunningham et al. 2006) to be used. For B0 maps two 3dgrass with different TE’s

were acquired (TE = 9ms and 7ms,respectively, TR= 20ms,matrix=128x128,FOV=

220x220x3mm3)(Jezzard and Balaban 1995). For T1 maps three 3D SPGRs (TR =
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6.9 ms, TE = 1.1 ms, matrix = 96x96, FOV = 240x240x 250 mm3) were acquired

with three different excitation flip angles (θ = 15◦, 5◦, 3◦).

3.2.3 mcDESPOT Data Pre-Processing

SPGR and bSSFP images for each participant were linearly coregistered using

an affine (12 degrees of freedom) technique based on mutual information to the first

image in the sequence to correct for interscan and intrascan motion (Jenkinson and

Smith 2001). SPGR and IR-SPGR images were used for DESPOT1 with High-speed

Incorporation (DESPOT1-HIFI) of RF Field Inhomogeneities processing as described

in (Deoni et al. 2006; Deoni 2007), resulting in B1 field and T1 maps. Furthermore,

the B1 field and T1 maps were used in the calculation of B0 field and T2 maps using two

phase-cycled bSSFP data using the DESPOT2 with full modeling (DESPOT2-FM)

algorithm (Deoni et al. 2004).

3.2.4 qMT Data Pre-Processing

All eleven MT-weighted SPGR volumes for each participant were linearly coregis-

tered to the MT-volume with the most contrast using an affine (12 degrees of freedom)

technique based on mutual information to correct for interscan motion (Jenkinson and

Smith 2001). The 11 MT-weighted SPGR images and T1obs map were then modeled

by Ramani’s two pool pulsed MT approximation (Ramani et al. 2002). This model

requires three additional maps/sequences:

1. A static field (B0) map to correct for inhomogeneities within the static field.

2. An amplitude of radio-frequency (B1) map to measure inhomogeneities within

the radio-frequency pulses.
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3. A map of the longitudinal relaxation rate, T1obs, (derived from either the DESPOT

or 3D SPGR 3 flip angle pipeline) - to provide an estimate of the longitudinal

relaxation rate for the liquid pool (RA
1 ) using the approximation proposed by

Henkelman et al. (1993), to determine the macromolecular proton fraction,

MMPF.

These three maps were all linearly co-registered using an affine (12 degrees of

freedom) technique to the same MT-volume used in the previous registrations.

From a nonlinear least-squares fit of the model according to (Ramani et al. 2002), a

total of six maps are produced: RB
1 , RMA

0 , gM
A
0 , MMPF/RA

1 (1−MMPF ),1/RA
1 T

A
2

and TB
2 , where RA

1 and RB
1 are the reciprocals of the T1 of the A and B pools,

respectively, TA
2 and TB

2 are the transverse relaxation times of each pool, MA
0 the

initial magnetization of the A pool and g the scanner gain.

3.2.5 Evaluating qMT fits

Initially, residuals (ε) between the observed signal and the signal predicted from

the model fit were computed for each MT point within each protocol/pipeline, and

the average residual deviation (RD) was evaluated according to:

σ = 100%

√

√

√

√

N
∑

i=1

(Fiti −Datai)2

N
(3.1)

Where N is the number of MT points (11 in this case).

3.2.6 Assessment of uncertainties within qMT

Uncertainties were derived using a wild bootstrap technique. For each of 1000

iterations the residuals, ε, were uniquely and randomly multiplied by either (+/-1)

54



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

Table 3.1: A list of the different pipelines used for bootstrap analysis. Each of the
following pipelines were carried out for both the axial and sagittal acqusitions, thus
the total number of different pipelines added to be 36 for each participant (axial =
P1-19,sagittal = P19-P36). For each of the three maps used in MT modelling: T1, B0

and B1, two different acquisitions were performed. T1 maps: mcDESPOT technique
and 3D SPGR 3 FA technique. B1 maps: mcDESPOT technique and double angle
method (DAM). B0 maps: mcDESPOT analysis and gradient-echo (GRE) technique.

Protocol T1 B0 B1

mcDESPOT SPGR 3-FA mcDESPOT DAM mcDESPOT GRE

P1/P19
P2/P20
P3/P21
P4/P22
P5/P23
P6/P24
P7/P25
P8/P26
P9/P27
P10/P28
P11/P29
P12/P30
P13/P31
P14/P32
P15/P33
P16/P34
P17/P35
P18/P36
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and added to the original dataset to produce a resampled dataset represented in

Figure (3.1) (Zhu et al. 2008). Bootstrap analysis was carried out using various

combinations of field maps (B0 and B1), T1 maps and qMT acquisitions (See Table

3.1). 1000 bootstrap iterations were performed for each of the 36 pipelines presented

in Table 3.1 for all three participants, resulting in a total of 108,000 model fits for

each volume (more if one includes every voxel). The total processing time would be

approximately 4,503 days on a single procession, however on CUBRIC’s cluster it was

shorted to approximately 90 days (50 nodes with a total of 200 processing cores).

Prior to further analysis, all quantitative maps from the different pipelines were

non-linearly registered to MNI space using a synthetic T1-weighted image, calculated

from the T1-map resulting from the DESPOT pipeline using in house software (Deoni

et al. 2006), as the source image. The registration used the approach of Rueckert et al.

(1999) as implemented in FNIRT - a part of the FSL software package (Andersson

et al. 2007a; Andersson et al. 2007b).

Following registration to MNI space, each T1 map was segmented using the ap-

proach described by Ashburner and Friston (Ashburner and Friston 2000) to produce

a white matter mask. The results of the bootstrap analysis were then used to com-

pute standard errors and 95% confidence intervals (estimated from the 2.5th and 97.5th

quantiles) for MMPF, TB
1 and RMB

0 within all pipelines.

To assist in visualization of the similarity / heterogeneity of results, the WM

masked standard error maps for a given slice location were collapsed into a single

vector, and a cross-correlation (CC) was performed. Each resulting CC-matrix was

then re-ordered using the Fiedler vector of the normalized Laplacian formed from

this CC-matrix (Barnard et al. 1993). This step was performed to assist in finding

similarities (adjacent entries in the re-ordered CC-matrix) and dissimilarities (entries
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that are far apart in the re-ordered CC-matrix) within uncertainties within the qMT

pipelines.

3.2.7 Analysis of variance

The effect of different MT protocols on uncertainty was assessed using a two-way

analysis of variance (ANOVA) to test which aspects of the MT protocol (36 levels)

do/do not significantly affect uncertainties within the qMT parameters across three

MNI slices (39,42 and 53) (significance level was set to p <0.05). If the protocol was

evaluated as a significant factor and the interaction between the protocol and slice

was determined to be insignificant, a multi-comparisons (Turkey-Kramer, p <0.05)

test was used to determine which pairs were significantly different, and which were

not.

3.3 Results

The results of the study are divided into two parts. The first section presents

and describes the residuals within qMT measures across the participants, while the

second section presents and describes the uncertainty of qMT parameters using a wild

bootstrap analysis.

3.3.1 Evaluating qMT fits

Figure 3.2 shows the mean residuals across all pipelines: (A) qMT protocol axially

oriented (B) qMT protocol sagittally oriented. Across all protocols MT-weighted

volumes seven and eight consistently have large residuals (Figure 3.2 (A) and (B)).

Results from P8Ax as an example, demonstrate that the residuals from volumes: one,

two, seven and eight are more likely to be negative (Figure 1(C)). Interestingly, these
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STEP 1:
Data acquisition

&
qMT fitting

Acquire qMT data volume
[Baseline : So, S(ω1,∆)1,

S(ω1,∆)2, ...S(ω1,∆)NqMTw
]

Non-Linear Regression
Y = f(xi) + ε = Yfit + ε

Initial fit by
Non-Linear Least Squares

Y = Yfit + ε

Calculating the
initial fitting error (ε)

ε = Y − Yfit

STEP 2:
Wild Bootstrap

generation

Scaling
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MMPF, RMoB, T2b
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STEP 3:
Wild Bootstrap

Summary Statistics

Uncertainty Estimation

σMMPF =
√

∑N

n=1
(MMPFn−<MMPF>)2

N−1

Figure 3.1: The wild bootstrap pipeline for qMT analysis. This figure illustrates the
order of the different steps need to get to the desired result for the determination of
uncertainty in qMT estimates. (Zhu et al. 2008)
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Table 3.2: Summary of fitted MT Parameters for all 36 protocols: macromolecular
proton fraction (MMPF), the semisolid pool fraction, RMB

0 , and the transverse re-
laxation time for the semisolid pool TB

2 and the average residual deviation (σ) for
a given slice (MNI slice 42). Upper and lower limits of the 95% confidence interval
from wild-bootstrap analysis are shown in parentheses. (P1-18 = axial acquistion,
P19-P36 = sagital acquisiton)

Protocol MMPF RMB
O (s−1) TB

2 (µs) σ(%)
P1 0.13 (0.067-0.21) 1.72 (0.86-3.22) 8.77 (5.89-11.93) 0.60
P2 0.11 (0.058-0.17) 1.78 (0.86-3.36) 8.78(5.89-11.96) 0.63
P3 0.13 (0.070-0.22) 1.76 (0.86-3.32) 8.75 (5.88-11.87) 0.60
P4 0.11 (0.058-0.17) 1.79 (0.86-3.36) 8.78 (5.89-11.95) 0.62
P5 0.16 (0.074-0.29) 2.03 (1.07-3.71) 8.72 (5.87-11.81) 0.57
P6 0.13 (0.071-0.20) 2.03 (1.07-3.72) 8.73 (5.87-11.84) 0.59
P7 0.16 (0.074-0.29) 2.03 (1.07-3.70) 8.71 (5.88-11.81) 0.56
P8 0.13 (0.071-0.20) 2.03 (1.07-3.68) 8.73 (5.88-11.82) 0.59
P9 0.083 (0.047-0.13) 1.79 (0.86-3.49) 8.76 (5.89-11.86) 0.61
P10 0.097 (0.054-0.15) 2.03 (1.06-3.73) 8.73 (5.88-11.85) 0.62
P11 0.13 (0.069-0.22) 1.77 (0.87-3.30) 8.75 (5.88-11.85) 0.59
P12 0.11 (0.058-0.17) 1.79 (0.87-3.37) 8.77 (5.89-11.93) 0.62
P13 0.083 (0.047-0.13) 1.79 (0.85-3.50) 8.78 (5.89-11.90) 0.63
P14 0.083 (0.047-0.13) 1.80 (0.85-3.53) 8.78 (5.89-11.90) 0.62
P15 0.16 (0.074-0.29) 2.04 (1.08-3.70) 8.72 (5.88-11.79) 0.56
P16 0.13(0.071-0.20) 2.04 (1.08-3.72) 8.71 (5.87-11.81) 0.58
P17 0.098(0.054-0.16) 2.08 (1.07-3.94) 8.82 (5.90-12.01) 0.61
P18 0.097 (0.054-0.15) 2.02 (1.05-3.74) 8.73 (5.87-11.88) 0.61
P19 0.12 (0.062-0.20) 1.91 (0.95-3.45) 8.51 (5.84-11.30) 0.82
P20 0.13 (0.061-0.21) 1.92 (0.95-3.48) 8.53 (5.84-11.35) 0.86
P21 0.14 (0.074-0.22) 1.91 (0.95-3.48) 8.51 (5.84-11.30) 0.80
P22 0.11 (0.061-0.17) 1.92 (1.16-3.74) 8.51 (5.84-11.34) 0.86
P23 0.16 (0.080-0.28) 2.18 (1.15-3.74) 8.49 (5.84-11.29) 0.73
P24 0.13 (0.074-0.20) 2.18 (1.16-3.74) 8.49 (5.83-11.32) 0.77
P25 0.16 (0.080-0.29) 2.19 (1.16-3.75) 8.47 (5.84-11.30) 0.73
P26 0.13 (0.074-0.20) 1.93 (0.95-3.58) 8.51 (5.83-11.30) 0.77
P27 0.085 (0.049-0.13) 2.18 (1.15-3.73) 8.50 (5.83-11.32) 0.84
P28 0.098 (0.058-0.15) 1.92 (0.95-3.48) 8.49 (5.82-11.30) 0.81
P29 0.14 (0.074-0.22) 1.93 (0.95-3.48) 8.51 (5.85-11.29) 0.79
P30 0.12 (0.061-0.19) 1.92 (0.94-3.58) 8.51 (5.84-11.33) 0.84
P31 0.085 (0.049-0.13) 1.92 (0.95-3.56) 8.50 (5.83-11.33) 0.87
P32 0.085 (0.049-0.13) 1.92 (0.95-3.56) 8.51 (5.83-11.33) 0.87
P33 0.16 (0.080-0.28) 2.19 (1.16-3.74) 8.49 (5.84-11.28) 0.73
P34 0.13 (0.074-0.20) 2.19 (1.16-3.72) 8.50 (5.84-11.29) 0.76
P35 0.099 (0.058-0.15) 2.17 (1.14-3.73) 8.49 (5.82-11.31) 0.88
P36 0.098 (0.058-0.15) 2.17 (1.15-3.72) 8.45 (5.82-11.31) 0.82
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MT-weighted volumes all have the lowest offset frequency (∆) of the eleven MT

points, at 1000 Hz. High residuals in low off-set frequencies (∼ 1000 Hz) were also

seen by Portnoy and Stanisz (2007). MT-weighted volume five (with the highest off-

set frequency 56,363 Hz) appears to be consistently overestimated across all pipelines.

The residuals within the MT-weighted volumes six, nine, ten and eleven appear more

heterogeneous (both positive and negative values throughout the image). All these

MT-weighted volumes have an offset frequency around 2700 Hz. Agreement between

the fitted curves and the measured data is good, with average residual deviations per

slice, σ, across all axial protocols of 0.60% and across all sagittal acquisitions 0.81%

(See Table 3.2 for details). These results suggest that the fitted MT parameters from

the sagittal acquired MT-weighted data (P19-P36Sag) produced higher residuals on

average compared to the axially acquired MT-weighted data (P1-P18Ax) (T (18) =

27.63 p<0.001, multiple comparison were corrected by using Bonferoni). It should

be noted that the average SNR within the axially acquired MT-weighted data is

147.7 ± 27.2 and the sagittally acquired MT-weighted data is 135.4 ± 35.5, which

is approximately 8% lower than the axial acquisition, and may well explain this

difference in the residuals.

3.3.2 Assessment of uncertainties within qMT

The MT parameters derived from fits to the measured data are summarized in

Table 3.2. Specifically, macromolecular proton fraction, MMPF, the semisolid pool

fraction, RMB
0 , and the transverse relaxation times for the semisolid pool T B

2 , are

shown. Uncertainties in the fitted parameters across the wild bootstraps are expressed

in terms of 95% confidence intervals (showing the upper and lower limits since the

interval was not always symmetric).
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Figure 3.2: For a given slice, the mean residuals for all MT-weighted images within a
WM mask (N=11). (A) Average residuals of the signal intensity for all qMT pipelines
of the axially orientated acquisition where the standard deviation is represented by
the shaded red area (B) Average residuals of the signal intensity for all qMT pipelines
of the sagittaly orientated acquisition where the standard deviation is represented by
the shaded red area (C) Residual results from data acquired with P8 are displayed
as an example. Row 1 includes both positive and negative residuals, Row 2 positive
residuals only and Row 3 negative residuals only.
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Fitted parameters from all the protocols agree within stated uncertainties. The

protocols tested for a given slice have similar estimated values of MMPF, RMB
0 ,

and TB
2 and uncertainty as indicated by the width of the 95% confidence interval.

Measurement uncertainties in in vivo qMT data can be visualized in Figure 3.3,

which shows example results from P16Ax for one participant. Across all three slices

the uncertainties within the ventricles is high indicating the lowest precision across the

brain. For both MMPF and TB
2 the uncertainties within the ventricles are quite high

demonstrating that for both these parameters, the MT model does not accurately

model the signal in the ventricles or voxels that are mainly represented by free water.

Importantly, large variation can be seen throughout a few WM regions within the

uncertainty map of MMPF and RMB
0 especially in areas surrounding the ventricles,

suggesting partial volume contamination from CSF and that the model is unable to

account for this extra source of variance in the MMPF and RMB
0 parameters . It is

of note, however, that for TB
2 this is not the case and uncertainties throughout the

WM and GM are fairly homogeneous.

Overall, measurement uncertainties for MT parameters: RMB
0 , MMPF and TB

2

across all protocols and participants are shown in Figures 3.4-3.6, respectively. Re-

sults from 〈σ(RMB
0 )〉 show that the uncertainties across protocols are similar. It is

of note, however, that the uncertainties within (RMB
0 ) in the area of the genu of the

corpus callosum (where macromolecular content is expected to be high) are slightly

higher within all protocols especially the axially oriented acquisitions (P1-18Ax). Un-

certainty within MMPF demonstrates a higher variability across protocols, where

certain protocols stand out (P5Ax, P7Ax, P15Ax, P23Sag, P25Sag and P33Sag) as hav-

ing high uncertainty within this parameter. These three protocols for both axial and

sagittal acquisitions are unique in that they combine the 3 FA SPGR T1 map with the

mcDESPOT B0 map. Within these protocols many of the voxels throughout the white

matter mask have high uncertainties for 〈σ(MMPF )〉. Again, like the 〈σ(RMB
0 )〉 pa-
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Figure 3.3: Wild bootstrap estimates for MMPF, RMB
0 and T2B from P16 data

sets for one participant for three slices are shown (MNI=39,42,53). Row 1 is the
anatomical T1 template (MNI152) for each slice, Row 2 the average MMPF and Row
3-5 〈σ(MMPF )〉 (dimensionless), 〈σ(RMB

0 )〉 (s−1) and 〈σ(TB
2 )〉 µs, respectively.

Overall, most of the WM regions in all three slices have good measurement precision
indicated by blue/green colours in all three uncertainty maps. In addition, areas where
there are increased uncertainties are within the grey matter and more specifically the
ventricles.
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rameter the uncertainties of 〈σ(MMPF )〉 within the genu is high across many of the

protocols (P5-P8Ax, P10Ax, P15-P18Ax, P23-P26Sag, P28Sag, P33-P36Sag). All these

protocols for both axial and sagittal acquisitions are unique in that they all use the

3 FA SPGR T1 map. In the central regions of white matter the uncertainty maps

of TB
2 demonstrate higher uncertainty within protocols P1-18Ax (axially orientated),

than the sagittally orientated protocols P19-P36Sag.
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Figure 3.4: For a given slice, wild bootstrap estimates for 〈σ(RMB
0 )〉 (s−1) across all

protocols (P1-P36) within all 3 participants.

On the whole the wild-bootstrapping procedure reveals a large variability of mea-

sured uncertainties across protocols and tested parameters (RMB
0 , MMPF and TB

2 ).

The cross-correlation of the results from axial and sagittal acquisitions for the uncer-

64



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

���������

�� �	 �
 �� �� �
 �� �� ��

��� ��� ��	 ��
 ��� ��� ��
 ��� ���

��� �	� �	� �		 �	
 �	� �	� �	
 �	�

�	� �	� �
� �
� �
	 �

 �
� �
� �



� �������
�

Figure 3.5: For a given slice, wild bootstrap estimates for 〈σ(MMPF )〉 (dimension-
less) across all protocols (P1-P36) within all 3 participants.
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Figure 3.6: For a given slice, wild bootstrap estimates for 〈σ(T B
2 )〉 (µs) across all

protocols (P1-P36) within all 3 participants.
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tainty MMPF map reveals a large heterogeneity in the results (Figure 3.7). Selecting

protocols in the last two rows of each CC-matrix in (A) shows that protocols P9Ax

and P14Ax have similar uncertainties and as in Figure 3.5 have low uncertainty across

WM; and (B) shows that protocols P27Sag and P32Sag have similar uncertainties and

as in Figure 3.5 have low uncertainties. These two protocols are unique in that they

do not combine a B1 map with the mcDESPOT T1 map.
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Figure 3.7: For a given slice the cross-correlations of MMPF uncertainty for each
protocol/pipeline within all participants (N=16). (A) for axial protocol (P1-18) (B)
for sagittal protocol (P19-P36).

3.3.3 Analysis of variance

The two-way ANOVA revealed that the protocol factor had a significant effect

on three of the qMT parameters studied: 〈σ(RMB
0 )〉 (F (35, 2) = 4.53, p <0.0001),

〈σ(MMPF )〉 (F (35, 2) = 4.53, p<0.0001), and 〈σ(TB
2 )〉 (F (35, 2) = 8.21, p<0.0001).

No significant effect from the interaction between slice and protocol was observed.

The results from the multi-comparisons for each map is as follows. For 〈σ(RMB
0 )〉

maps four protocols were labeled as having very high uncertainty (P13Ax, P14Ax,

P17Ax and P18Ax) and the protocols that were determined to be significantly differ-

ent from these four protocols were P19Sag, P21Sag, P27Sag, P29Sag, P30Sag (p<0.05).

For 〈σ(MMPF )〉 maps four protocols stood out as having extremely high uncertain-

67



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

ties (P1Ax, P5Ax, P7Ax and P15Ax) and the protocols that were determined to be

significantly different from these four protocols were P9Ax, P13Ax, P27Sag and P32Sag

(p <0.05). The uncertainty maps for TB
2 revealed four protocols with high uncertain-

ties (P13Ax, P14Ax, P17Ax and P18Ax) and the protocols that were determined to be

significantly different from these four protocols were P19Sag, P21Sag, P25Sag, P29Sag,

P34Sag and P33Sag (p<0.05).
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3.4 Discussion

In the present study we used wild-bootstrapping to measure the uncertainties in

qMT parameters in white matter across different qMT protocols. Two main findings

resulted from our study. First, the residual deviation demonstrated that there are

large differences in the residuals between the axial and sagittal acquisitions. Secondly,

from wild-bootstrap analysis the uncertainties across protocols and between the three

parameters studied were inconsistent. For example, within P13Ax the uncertainty

within MMPF maps was deemed to be significantly lower than other protocols with

the highest measured uncertainty, however, within TB
2 maps it is one of the protocols

with the highest uncertainty. In other words, different protocols are optimal for

different parameters. If one is most interested in estimating MMPF as precisely

as possible, P13Ax appears to be the protocol of choice. However, to obtain reliable

estimates of all three parameters (RMB
0 , MMPF and TB

2 ), P27Sag was the best option

since its uncertainty was low across all participants and parameters.

The residuals measured within MT-weighted fits demonstrate that certain offset

frequencies produce higher errors. Specifically, the lowest offset frequency of 1000 Hz

(MT points: 1, 2, 7 and 8), led to the largest residuals being largest with a saturation

pulse (θSAT = 628) (MT points: 7 and 8). Portnoy and Stanisz (2007) showed similar

results that MT model using the CWPE approximation underestimated parameters

when the offset frequency was 1000 Hz and below. With offset frequencies of this

relatively small magnitude, the RF pulse frequency becomes close to the resonance

frequency of the free water pool, and thus the direct effect (direct saturation of

the liquid pool) will affect the measured MT-weighting. Therefore, it is desirable

to acquire MT-weightings far enough away from 1000 Hz to make the direct effect

negligible, but to cover enough of the frequency range to produce a reasonable model

fit. Indeed, Portnoy and Stanisz (2007) have shown that the CWPE approximation

does not model the system accurately below an offset frequency of 5 kHz resulting
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in a reduction of approximately 1% in magnetisation of the liquid pool. On the

whole all pulsed MT experiments/models have difficulty modeling the magnetization

behaviour at low off-resonance frequencies. Moreover, with more qMT experiments

being performed at higher magnetic field strengths the minimum offset frequency

may need to be increased since fluctuations within the system (i.e. increased T1

or decreased T2) could cause the direct effect to persist at higher offset frequencies

(Portnoy and Stanisz 2007). Thus, the cutoff frequency may need to be re-evaluated

in our experiment and others that use CWPE approximation at higher field strengths.

Our results showed that the qMT fit residuals from the axial acquisitions (P1-

P18Ax) were lower than the sagittal acquisitions, which may be explained by the 8%

difference in SNR between the the two sets of protocols (axial = 147.7 ± 27.2, sagittal

= 135.4 ± 35.5).

In addition to RF noise, there are a number of other factors that introduce variance

within the MRI system such as field inhomogeneities, which add variance within the

measure MT-weighted signals and individual T1 maps. Errors from T1 maps and field

maps can propagate into the qMT parameter estimation, thus these errors need to be

evaluated and reduced. In the presence of field inhomogeneities, accurate modeling

requires characterization of both B1 and B0 field distributions throughout the sample

(Portnoy and Stanisz 2007). However, to reduce the influence of inhomogeneity on the

free water pool it is recommended to apply a 1kHz cut off to the offset frequency to be

further away from the direct saturation of the water pool (Portnoy and Stanisz 2007).

Not sampling data at points below 1 kHz should not decrease the precision of qMT

parameters since the signal change at these lower offset frequencies are mainly due to

direct saturation of the liquid pool (A) and changes are independent of the sample’s

MT properties (Sled and Pike 2000a). Alternatively, there are a number of studies

that have demonstrated that accurateB1 andB0 field maps provide more accurate MT

calculations and thus more precise MT parameters (Sled et al. 2004; Ropele et al.
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2005; Samson et al. 2006; Gochberg and Gore 2007). For example, Ropele et al.

(2005) demonstrated that due to differences in coil characteristics between scanners

differences of approximately 50% in MTR were observed between participants if B1

errors were not corrected.

Uncertainties estimated from wild bootstraps (N=1000) for parameters RMB
0 ,

MMPF and TB
2 clearly demonstrate that uncertainties within and surrounding the

ventricles are quite high. This is not unexpected since the ventricles are filled with free

water and the CWPE model poorly characterizes this pool, especially at low offset

frequencies (Portnoy and Stanisz 2007). On the other hand, the CWPE approxima-

tion can satisfactorily characterize the semisolid pool (B) since the uncertainties are

lower within GM and WM as seen in Figure 3.2.

Our study revealed an unexpected result from the bootstrapping results, in that

all three parameters had lower uncertainty with the sagittal acquisition than the axial

acquisition. This appears counter-intuitive since one might predict from the residual

deviation results that the uncertainty from the sagittal acquisition would produce

higher uncertainty. However, this might arise from the model not fitting the data as

well with the sagittal acquisition as it does with the axial acquisition.It should be

noted, though, that the residual deviations measured within sagittal acquisition were

significantly higher than the axial acquisition its average residual deviation is still

below 1%, which is still a very good fit.

The variability in the uncertainties found in all three qMT parameters tested

clearly illustrates the need to optimize the qMT method to reduce the uncertainties

within a qMT protocol. Furthermore, the set of parameters that produced the lowest

uncertainty in a given parameters was different for each qMT parameter. Specifically,

the uncertainty in P13Ax was evaluated as low within MMPF maps, however, for TB
2

maps it was evaluated as high. The uncertainty within MMPF maps demonstrated
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clear differences between the protocols. Protocols (P5Ax, P7Ax, P15Ax, P23Sag, P25Sag

and P33Sag) were found to have high uncertainty compared to the other protocols and

more importantly heterogeneous uncertainty throughout white matter. The common

features within these protocols are the combination of mcDESPOT B1 map and SPGR

3-FA T1 maps where there were no other protocols with this combination. This result

is likely a result of poor estimation of B1 within the mcDESPOT acquisition especially

when using the SPGR 3-FA T1 map to estimate MMPF. The protocols that used a B1

map produced by the double angle method in combination of the SPGR 3-FA T1 maps

produced lower overall uncertainty, however this uncertainty was heterogeneously

distributed throughout the brain, with high uncertainty in the genu of the corpus

callosum. Considering the optimal protocol to have both low and homogenously

distributed uncertainty throughout WM for all three model parameters, protocol

P19Sag or P27Sag appears to be the best options. The first protocol P19Sag entailed

using mcDESPOT to measure all three maps (B1 and B0 inhomogeneity maps and T1

map). The second protocol P27Sag entailed using mcDESPOT for the T1 map and had

not field maps used in its analysis. This result demonstrates that the field maps used

within this experiment may not appropriately characterize the field inhomogeneity

within MT-weighted images especially if on wanted low uncertainity within MMPF,

but for low uncertainty within RMB
0 and TB

2 field maps from mcDESPOT were

deemed appropriate. Further investigation and evaluation of different field mapping

methods is needed. Although improvements in measured uncertainties within some

of the parameters, as a result of changing the protocol, were relatively small, it is

important that the uncertainty is homogenously throughout white matter especially

for clinical applications where qMT may be used to detect subtle changes in disease

development that are undetectable with traditional MR contrast techniques.

Importantly, we showed using a wild bootstrap method is a powerful method in

describing the uncertainty within qMT parameters that are used to describe subtle
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changes in WM as in pathologies like MS. There is a critical need for the application

of such methods in providing a component of quality control and parameter uncer-

tainty estimation. In comparison to rescanning techniques, wild bootstrapping allows

for the estimation of uncertainty in a more cost-effective manner (in terms of data ac-

quisition) and can be used to further optimize qMT protocols and other quantitative

methods. Continued efforts in optimizing and determining the best protocol through

determining the best offset frequencies (perhaps moving further away from direct

saturation), saturation pulses, inhomogeneity field maps (B1 and B0) and T1 maps,

will help us reduce the uncertainties further and to produce homogenous uncertainty

maps for qMT parameters, such as MMPF.
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Chapter 4

Tract-specific Measurements

4.1 Introduction

Neuronal white matter consists of a complex array of networks connecting cor-

tices throughout the brain by means of distinct tracts. The microstructure of these

tracts mediates the ’information’ transfer or electrical transmission between the dif-

ferent cortical regions vital for functional connectivity. Most white matter fiber tracts

within the brain are wrapped with an insulating membrane, known as myelin, which

enhances fast electrical transmission along the axons. The microstructure of white

matter is comprised of different subcomponents (including myelin and axons), and

changes to any of those subcomponents will lead to neurological deficits. In under-

standing these deficits, it is important to be able to specifically probe these different

subcomponents. The ability to quantify these subcomponents non-invasively is there-

fore of great importance within clinical neuroimaging research.

Regardless of recent developments in imaging technology, quantifying tissue mi-

crostructure subcomponents non-invasively is challenging. The difficulties in assessing

myelin with magnetic resonance arise from that fact that its signal quickly decays to

zero in a matter of microseconds (∼10 us) and its signal is indistinguishable from

other non-aqueous constituents in brain tissue (MacKay et al. 2006). Similarly, ax-

onal density is difficult to estimate due to the heterogeneous nature of the surrounding

tissue containing astrocytes, glia and extracellular molecules. A further limitation or

challenge relevant to assessing myelin or axons non-invasively is spatial resolution,
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since for healthy white matter axon diameters are in the range of 0.5-20 µm and

myelin thickness is close to 1 µm. Nevertheless, a number of indirect magnetic reso-

nance techniques have been used to further our understanding of myelin development,

axonal loss and white matter pathology. Studies of conditions in which myelin is com-

promised, such as multiple-sclerosis (MS) (MacKay et al. 1994; Brochet and Dousset

1999; Assaf et al. 2002; Cercignani et al. 2009; Levesque et al. 2010) and schizophre-

nia (Flynn et al. 2003), have demonstrated that a decrease in myelination impacts

functional connectivity, resulting in behavioural changes. Although these results are

encouraging, there is no single technique that can capture specific changes in both

axon and myelin thus no consensus on the best imaging method to measure changes

in white matter microstructure.

The most common methods used to indirectly infer on changes/differences in

myelination include diffusion-weighted imaging, quantitative magnetization transfer

imaging and multi-component relaxometry. Other methods, such as those that quan-

tify non-Gaussian diffusion processes have the potential to provide greater specificity

to axonal damage or loss than Gaussian-diffusion-based methods, such as diffusion

tensor MRI. Thus, while there is a spectrum of imaging methods that have differential

sensitivities to myelin and axon properties, it is unclear how they compare with each

other and how differently they characterise tissue microstructure.

Diffusion MRI (Le Bihan and Breton 1985) is able to probe white matter mi-

crostructure due to the fact that axons (and their subcomponents) create coherent

obstacles to diffusion and therefore an orientational dependency of the apparent dif-

fusion coefficient (Moseley et al. 1990). Frequently, this orientational dependence is

modeled by a second-rank tensor assuming a uni-modal Gaussian displacement pro-

file, and a diffusion tensor is fitted to the signals in each voxel (Moseley et al. 1990;

Pierpaoli et al. 1996). Tensor estimates provide scalar indices, such as fractional

anisotropy (FA) - a normalized index of the standard deviation of the eigenvalues
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that has a range of 0-1 and radial diffusivity (RD) - the average of the eigenvalues

perpendicular to the principal diffusion direction (Basser and Pierpaoli 1996).

Due to the excellent sensitivity of diffusion tensor imaging to various white mat-

ter structures it has been developed as a tool to investigate white matter pathways.

Diffusion properties such as fractional anisotropy (FA), radial diffusivity and prin-

cipal diffusion direction (eigenvector with the largest eigenvalue) have been used in

a number of clinical, neuroscience and neurodevelopmental studies (Johansen-Berg

et al. 2007; Johansen-Berg 2007). However, diffusion indices complex measures are

influenced by various microstructural properties such as, axonal density and diame-

ter, myelination and intra-voxel axon orientational dispersion (Beaulieu 2002). Thus,

while diffusion measures are very sensitive to a change in microstructure, they are

very non-specific indices (Beaulieu and Allen 1994a; Beaulieu 2002) and need to be

interpreted with caution. In various animal models, invariably using isolated path-

ways, where all axons are aligned along the same axis, it has been shown that a

reduction in myelin leads to an increase in the radial diffusivity (Song et al. 2002;

Song et al. 2003). These studies have led some investigators to regard changes in

RD, therefore, as a marker of changes in myelin. However, it is important to note

that diffusion can be significantly hindered in the perpendicular direction (compared

to the longitudinal direction) even when there is no myelin present (Beaulieu 2002).

It is also known that the radial diffusivity changes with differences in axon diameter.

Finally, when there is intravoxel orientational dispersion, the link between a change

in RD and myelin content becomes even less clear.

Magnetisation transfer (MT) is a magnetic resonance (MR) imaging technique

that provides a measure of the relative density of macromolecules within the tissue

by harnessing information on the exchange of magnetization between macromolec-

ular and water protons. MT provides quantifiable information on macromolecular

components such as; protein, lipids and cellular membranes, which are invisible to
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conventional longitudinal T1 and transverse T2-weighted scans owing to their very

short T2 decay times (∼10µs) (Wolff and Balaban 1989). Often, MT acquisitions

use time-varying pulsed amplitudes to apply an off-resonance radiofrequency (RF)

pulse that selectively saturates the macromolecular magnetization (Sled and Pike

2001; Ramani et al. 2002; Yarnykh 2002). The resulting decrease in the signal mea-

sured from the free pool is attributed to the transfer of magnetization from saturated

macromolecules to free water protons occurring through cross-relaxation or chemical

exchange (Ceckler et al. 1991; Kucharczyk et al. 1994).

MT models typically split the brain into two different compartments by grouping

spins into: a free or liquid pool (Pool A) consisting of water protons with a long T2

(T2 >10 ms) and a restricted or semisolid (macromolecular) pool (Pool B) consisting

of protons within lipids with very short T2s (T2 <100 µs). Magnetisation transfer

imaging provides an estimate of the macromolecular proton fraction (MMPF), which

is a measure of the number of trapped protons in the macromolecular pool, such as

myelin, relative to the total number of protons present (Ramani et al. 2002). Impor-

tantly, the MMPF has been shown to related to myelin lipid content measured using

the Luxol fast blue stain within both postmortem fixed tissue (Schmierer et al. 2007)

and fresh tissue (Schmierer et al. 2008). A number of research groups have demon-

strated through histological staining of white matter that magnetisation transfer ratio

(MTR - ratio between two volumes with and without an MT-pulse)(van Waesberghe

and Barkhof 1999; Bot et al. 2004; Schmierer et al. 2008) significantly correlates with

axonal density. Furthermore, MMPF has been shown to be a predictor of demyelina-

tion and remyelination within postmortem MS white matter studies (Schmierer et al.

2007). (Schmierer et al., 2007). It has thus been argued that MT parameters, such

as the MMPF, are biomarkers for white matter pathologies such as inflammation,

demyelination and axonal loss (Stanisz et al. 1999; Sled and Pike 2001; Stanisz et al.

2004; Davies et al. 2005; Levesque et al. 2005; Tozer et al. 2005).
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Multi-component relaxometry (MCR) exploits the fact that different liquid sub-

populations have unique relaxation times to provide detailed information on the

brain’s microstructure, including myelin water. Conventionally, multi-component T2

relaxometry is performed using a multi-spin echo sequence, a 32- or 48-echo Carr-

Purcell-Meiboom-Gill (CPMG) pulse sequence (MacKay et al. 1994). However, this

sequence requires at least 15 minutes of scan time for only a few slices/very thick

slices (Wu et al. 2006). This time requirements makes the multi-echo approach im-

practical for most applications, leading to the introduction of a number of alternative

multi-component relaxometry techniques to reduce scan time (Jones et al. 2004; Vi-

darsson et al. 2005; Bells et al. 2007; Deoni et al. 2008; Deoni et al. 2008). In this

work, we used the technique developed by Deoni et al. known as multi-component

driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) (Deoni et al.

2008; Deoni et al. 2008) which combines two rapid sequences: spoiled gradient re-

called echo (SPGR) and balanced steady-state free precession (bSSFP) over a range

of optimised flip angles. The mcDESPOT approach combines phase-cycling with a

calibrated phase-precession map (B0, off-resonance) for bSSFP images (Deoni et al.

2004) and transmit magnetic inhomogeneity (B1) maps to reduce artifacts caused by

field inhomogeneities (Deoni 2009). The advantage of mcDESPOT over multi-echo

techniques is its higher signal to noise efficiency and shorter acquisition times, in turn

resulting in smaller motion artifacts (Deoni et al. 2003).

Multi-component relaxometry models for white matter have at least three dis-

tinguishable water environments classified according to their relaxation times: water

trapped in the myelin bilayer or sheath (T2 = 10-50 ms), water in the intracellular

and extracellular space (T2 = 70-90 ms) and cerebral spinal fluid (T2 >2s)(MacKay

et al. 1994; MacKay et al. 2006). Dividing the signal from the myelin water by the

signal from total water gives a metric known as the myelin water fraction (MWF)

(MacKay et al. 1994), which is commonly regarded as a marker of myelin in white

78



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

matter. Comparison studies between MWF and histological-derived estimates us-

ing Luxol fast blue showed that changes in MWF and changes in actual myelin are

highly correlated (Moore et al. 2000; Laule et al. 2006; Laule et al. 2008). MWF

has been used to measure changes in white matter microstructure due to lesions and

MS (Vavasour et al. 1998; Whittall et al. 2002; Laule et al. 2004).

Diffusion MR techniques that characterize the non-Gaussian properties of the sig-

nal are thought to provide enhanced sensitivity to intra-axonal compartments (while

extra-axonal water diffusion is assumed to be Gaussian). In white matter, the dif-

fusion MR signal digresses from mono-exponential decay, especially at high diffusion

weightings or b-values (>1500 s/mm2), suggesting the existence of more than one

compartment. At higher b-values, the signal attenuation is dominated by slower

diffusing species (assumed to be intra-axonal), while at lower b-values, signal attenu-

ation is dominated by the faster-diffusing species, assumed to be hindered molecules

in the extra-axonal space. The combined hindered and restricted model of diffusion

(CHARMED) analysis pipeline (Assaf et al. 2004; Assaf and Basser 2005) acquires

diffusion-weighted signals from a variety of diffusion weightings, including high and

low. The CHARMED model separates the diffusion signal into two compartments:

a hindered extra-axonal compartment, which is described by an effective diffusion

tensor, and one or more intra-axonal compartments, which are described by a model

of restricted diffusion within impermeable cylinders. CHARMED estimates provide

micro-structural parameters, such as, fibre orientation, extra- and intra-axonal vol-

ume fractions (albeit T2-weighted) and axonal diffusivities. The intra-axonal volume

fraction estimated from CHARMED has been used as an index of axonal density.

The potential of this metric as a biomarker for axonal microstructural changes aris-

ing from short term neuro-plasticity has recently been reported by Tavor et al. (2011).

The CHARMED model has been extended to provide estimates of the axon diameter
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distribution within a white matter bundle (Assaf et al. 2008; Barazany et al. 2009;

Alexander et al. 2010).

Despite the growing number of experiments using different microstructure metrics

in assessments of white matter, there has been limited work on the correlation be-

tween these different white matter metrics in vivo and along specific neuronal tracts.

A great number of correlation studies have used postmortem brains (Schmierer et al.

2007), excised tissue (Stanisz and Henkelman 1998; Peled et al. 1999) or in vivo

animal experiments (Andrews et al. 2006) due to of the ability to safely use strong

MR gradients and provide complimentary histological measurements. One such post-

mortem study combined MTR, T2-relaxometry and diffusion metrics (RD and FA),

which revealed that all indices were predictors of myelin content and MTR was found

to be the greatest predictor (Schmierer et al. 2008). However, within excised, the

peripheral nerve, tissue it was found that MWF, axonal water and MTR all corre-

lated weakly (Does et al. 1998). Only a handful of experiments have compared these

metrics within the brain, such correlations include: DTI and MWF (Mädler et al.

2008), DTI and qMT (Underhill et al. 2009), qMT and MWF (Levesque et al. 2010)

and MWF and MTR (Vavasour et al. 2011). Mädler et al. (2008) found signifi-

cant correlations between MWF-FA and MWF-RD within regions of interest drawn

in various white matter areas (genu of the corpus callosum(cc), minor and major

forceps, splenium of the cc and posterior internal capsule) and grey matter areas

(caudate nucleus, putamen, thalamus, cingulated gyrus, insular cortex and cortical

gray). However, Underhill et al. (2009) found no correlation between DTI metrics:

FA, ADC, RD and λ1 and qMT metrics (MMPF). In addition, Levesque et al. (2010)

found no significant correlations between qMT-MMPF and MWF maps in MS human

data. This lack of correlation within white matter imaging metrics most likely reflects

the differences in the physical principles underpinning their generation. In this work,

a novel comprehensive assessment of tract-specific microstructural measurements is
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introduced. This method, called ’tractometry’, combines macromolecular measure-

ments from quantitative magnetization (MMPF), multi-component T2 species from

relaxometry (MWF) and ’restricted diffusion’ measurements from CHARMED along

specific white matter pathways reconstructed from diffusion MRI. Results provide

insights into the relationship between these microstructure metrics and help explain

the relationship between radial diffusivity and other metrics of axon or myelin mor-

phology.

4.2 Material and Methods

4.2.1 Participants

A total of twenty-seven healthy right-handed female participants (mean age=

31.7±4.0 y) were included in this study, where a subset of six participants was included

in the CHARMED acquisition. Informed consent was obtained prior to scanning and

the study was performed with ethics approval from the ethics review board at our

institution.

4.2.2 MR Imaging acquisition

MRI data were acquired on a 3 T General Electric HDx MRI system (GE Medical

Systems, Milwaukee, WI) using an eight channel receive only head RF coil (Medical

Devices). Four different MRI protocols were used: high angular resolution diffusion-

weighted, quantitative magnetization transfer, mcDESPOT and CHARMED (total

scan time 1 hour and with CHARMED 1.5 hours).
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4.2.3 High Angular Resolution Diffusion-Weighted MRI

A twice-refocused spin-echo EPI diffusion-weighted acquisition was peripherally

gated to the cardiac cycle using an in-house modified version of the vendor’s diffusion-

weighted sequence resulting in 2-3 slices per R-R interval, conditional on the partic-

ipant’s heart rate. The diffusion-weighted protocol consisted of: sixty axial slices,

with effective TR = 20/15 R-R intervals; effective TE = 87ms; acquisition matrix

= 96x96; slice thickness = 2.4 mm; FOV of 230 mm; b-value of 1200 s/mm2 along

60 isotropically distributed gradient directions (Jones et al. 1999); six non-diffusion

weighted images; ASSET factor = 2 (Jones and Leemans 2011); total acquisition time

= 30 minutes.

4.2.4 mcDESPOT

The mcDESPOT protocol consists of a combination of sagittally oriented SPGR,

bSSFP and inversion-recovery prepared SPGR (IR-SPGR) sequences (Deoni et al.

2008; Deoni et al. 2008). All three were acquired with a FOV of 220 mm; 1.7

mm anterior-posterior x 1.7 mm left-right x 1.7 mm superior-inferior, with frequency

encoding in the superior-inferior direction for a total mcDESPOT scan time of ap-

proximately 8 minutes. Additional sequence specific parameters were:

• SPGR: TE/TR = 2.1/4.7 ms; BW = ±25 kHz; flip angle (α) = [3◦, 4◦, 5◦, 6◦,

7◦, 9◦, 13◦, 18◦].

• bSSFP: TE/TR = 1.6/3.2 ms; BW = ±62.5; α = [10.6◦, 14.1◦, 18.5◦, 23.8◦,

29.1◦, 35.3◦, 45◦, 60◦] for both phase-cycling acquisitions of 0◦ and 180◦.

• IR-SPGR: TE/TE = ms; BW = ±25; α = 5◦; inversion time = 450 ms.
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4.2.5 Quantitative Magnetization Transfer MRI

An optimized 3D MT-weighted fast spoiled gradient recalled-echo (SPGR) se-

quence (Cercignani et al. 2005) was used with the following parameters: TR/TE

= 26.65/1.86 ms; Gaussian MT pulses, duration τ = 14.6 ms; FOV = 230 mm; ac-

quisition matrix = 128x96x66; BW=±244Hz. The off-resonance irradiation frequen-

cies (∆) and their corresponding saturation pulse amplitude (θSAT ) for the 11 MT

weighted images were optimized using Cramer-Rao lower bound optimization (Cer-

cignani and Alexander 2006) are: ∆ = [1000.0 Hz, 1000.0 Hz, 12062.0 Hz, 47185.0

Hz, 56363.0 Hz, 2751.0 Hz, 1000.0 Hz, 1000.0 Hz, 2768.0 Hz, 2791 Hz, 2887.0 Hz]

and their corresponding θSAT = [332.0◦, 333.0◦, 628.0◦, 628.0◦, 332.0◦, 628.0◦, 628.0◦,

628.0◦, 628.0◦, 628.0◦, 628.0◦].

4.2.6 CHARMED

A spin-echo EPI diffusion-weighted acquisition was used to acquire whole brain

coverage of CHARMED data with the following parameters: TR/TE = 17000/114

ms; ∆/δ = 50/43 ms; FOV = 230 mm; slice thickness = 2.4 mm; number of slices =

39; in-plane resolution = 1.8 x 1.8 mm2. The diffusion encoding gradients were applied

along 130 noncolinear directions at 8 different b values: 937, 1875, 2812, 3750, 4687.5,

5625, 6562.5, 7500 s/mm2; resulting in a total acquisition time of approximately 30

minutes.

4.2.7 Additional Scans

In addition to the four main protocols, field maps were also acquired. For B1 maps

a two fast-spin echo sequences with double-angles were collected (TE = 1.6ms, TR =

3.2 ms, flip angles = 90, 45, respectively, matrix = 128x128, FOV =300x300x500mm3,
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scan time =1min each)(Cunningham et al. 2006) and for B0 maps a two 3dgrass

with different TE’s were collected (TE = 9ms and 7ms,respectively, TR= 20ms, ma-

trix=128x128, FOV= 220x220x3mm3)(Jezzard and Balaban 1995).

4.2.8 Diffusion Data Pre-Processing

Diffusion-weighed images were corrected for participant motion and global geo-

metric distortions using an affine (12 degrees of freedom) coregistration technique

based on mutual information to the first non-diffusion weighted volume. This was

followed by appropriate re-orientation of the diffusion encoding vectors (Leemans

et al. 2009) and modulation of the signal intensity by the Jacobian determinant of

the transformation (Jones and Cercignani 2010). The diffusion-weighted data were

modeled three ways: (a) a single tensor (Basser et al. 1994b) was fitted using non-

linear least squares estimation providing quantitative scalar indices such as fractional

anisotropy (FA), mean diffusivity (MD), principal eigenvalue (λ1), radial diffusivity

(RD), mode of anisotropy (AM), geometric measures (GEO) and intervoxel diffusion

coherence (IVDC); (b) a two compartment modelling approach termed ’Free Water

Elimination’ (FWE) (Pasternak et al. 2009) yielding diffusion metrics that are cor-

rected for CSF partial-volume contamination and a tissue volume fraction Vf ; and

(c) constrained spherical harmonic deconvolution (CSD) to extract a fibre orienta-

tion density function (fODF) (Tournier et al. 2004) in each voxel to allow fibre tract

reconstruction through areas of crossing fibres. The AM varies between -1 and +1

to describe the different shape types of anisotropy within a voxel and ranges from

planar (λ1 ∼ λ2 > λ3 e.g. in regions of crossing fibres of two similar density fibre

populations or regions of ”kissing” fibres) to linear (λ1 > λ2 ∼ λ3 e.g. in regions

where is a dominating single fibre population) (Ennis and Kindlmann 2006; Wang

et al. 2008). The GEO is a decomposition of the diffusion tensor into basic geometric
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shapes: linear (λ1 >> λ2 ∼ λ3) where diffusion is largely in the direction of λ1 and

planar (λ1 ∼ λ2 >> λ3) where diffusion is restricted to a plane represented by λ1

and λ2 (Westin et al. 2002). IVDC provides a quantitative measure of the direc-

tional coherence of the principal water diffusion based on the eigenvectors within a

voxel and its neighbours. In areas where the directional diffusion is uniform IVDC

increases, while IVDC approaches zero in areas where diffusion is heterogenous as in

the ventricles (Wang et al. 2008).

4.2.9 mcDESPOT Pre-Processing

SPGR and bSSFP images for each participant were linearly coregistered using

an affine (12 degrees of freedom) technique based on mutual information to the first

image in the sequence to correct for interscan and intrascan motion (Jenkinson and

Smith 2001). SPGR and IR-SPGR images were used for DESPOT1 with High-speed

Incorporation (DESPOT1-HIFI) of RF Field Inhomogeneities processing as described

in (Deoni et al. 2006; Deoni 2007), resulting in B1 field and T1 maps. Furthermore,

the B1 field and T1 maps were used in the calculation of B0 field and T2 maps using

two phase-cycled bSSFP data using the DESPOT2 with full modeling (DESPOT2-

FM) algorithm (Deoni et al. 2004). Combining high-resolution DESPOT1-HIFI and

DESPOT2-FM 3D sequences allowed for the fitting of the multi-component DESPOT

model (Deoni et al. 2008; Deoni et al. 2008). This model provides whole brain

estimates for the following parameters: myelin water fraction (MWF), myelin water

residence time and intra- and extra-cellular (IE) water and myelin water T1 and T2.

4.2.10 qMT Pre-Processing

All eleven MT-weighted SPGR volumes for each participant were linearly coregis-

tered to the MT-volume with the most contrast using an affine (12 degrees of freedom)
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technique based on mutual information to correct for interscan motion (Jenkinson

and Smith 2001). Furthermore, the map of the longitudinal relaxation rate, T1obs,

which was measured with DESPOT-HIFI processing was linearly registered using an

affine (12 degrees of freedom) technique to the same MT-volume used in the previ-

ous registration. The 11 MT-weighted SPGR images and T1obs map were modeled

by the two pool Ramani’s pulsed MT approximation (Ramani et al. 2002), which

included corrections for static field (B0) and amplitude of radio-frequency (B1) field

inhomogeneities. In total this model has six maps were produced: RB
1 , RMA

0 , gM
A
0 ,

MMPF/RA
1 (1−MMPF ),1/RA

1 T
A
2 and TB

2 , where RA
1 and RB

1 are the reciprocals of

the T1 of the A and B pools, respectively, TA
2 and TB

2 are the transverse relaxation

times of each pool, MA
0 the initial magnetization of the A pool and g the scanner

gain. The longitudinal relaxation rate, T1obs, estimated from the DESPOT pipeline

was used in the estimation of the longitudinal relaxation rate for the liquid pool

(RA
1 ) using the approximation proposed by Henkelman et al. (1993), allowing one to

determine the macromolecular proton fraction, MMPF.

4.2.11 CHARMED Pre-Processing

An in-house program (Matlab, The Mathworks, Natick, MA) was used to calculate

CHARMED parameters based on previous work (Assaf et al. 2004). The calculations

were performed using a non-linear least squares (Levemberg-Marquardt minimization)

giving the estimation of restricted volume fraction, Fr.

4.2.12 Registration of White matter microstructure indices

Prior to further analysis, all quantitative maps from the different pipelines were

first coregistered. To this end, all data were non-linearly registered to the FA map for

each participant. Prior to registration, a synthetic T1-weighted image was calculated
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from the T1-map (Deoni et al. 2006) and then used to non-linearly register the

DESPOT images to the FA map of a participant (a nonlinear registration was used to

compensate for EPI geometric distortions present in the diffusion data, that were not

present in the DESPOT data). The non-linear registration approach was performed

using the approach of Rueckert et al. (1999) as implemented in FNIRT - a part of the

FSL software package (Andersson et al. 2007a; Andersson et al. 2007b). Similarly, a

synthetic T1-weighted image was derived from the calculated T1 map of the free-water

pool (TA
1 ) from the qMT pipeline and used to non-linearly register the qMT data to

the FA map of the participant.

4.2.13 Partial Volume Corrections of MWF and MMPF

When interpreting parameters such as myelin water fraction (MWF) and macro-

molecular proton fraction (MMPF), implicitly one thinks of the amount of signal

coming from the tissue that has a short T2 (MWF) or is macromolecular (MMPF).

In voxels that only contain tissue, this interpretation is clear. However, in areas bor-

dering CSF, for example, the finite volume of the voxel means that the signal comes

partially from the tissue and partially from ’free water’ (e.g. CSF). While methods

have been developed in diffusion MR to account for CSF-partial volume contami-

nation (Pasternak et al. 2009; Metzler-Baddeley et al. 2012), CSF-partial volume

effects are largely ignored in methods such as mcDESPOT and qMT. We recently

suggested a way in which the free water fraction derived from co-registered diffu-

sion data could be used to correct other quantitative maps for CSF-contamination

(Bells et al. 2011). Using the tissue-volume fraction map from diffusion imaging data

the MWF and MMPF were corrected for partial volume effects (PVE)s. MWF and

MMPF corrected data were calculated by dividing the measured MWF or MMPF by
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the tissue volume fraction arising from Pasternak’s pipeline, thus giving us a measure

of uncontaminated MWF and MMPF values.

4.2.14 Fibre Tract Reconstructions

The tracking algorithm used here is an adptation of the standard streamline trac-

tography for CSD (Jeurissen et al. 2011), whereby every voxel in the data set is

considered as a possible seedpoint for the initiation of tracking and fODF peak es-

timation (Tournier et al. 2004; Tournier et al. 2007; Tournier et al. 2008) using

ExploreDTI (Leemans et al. 2009). Afterwards, the fODF peak direction that is

most aligned with the previous stepping direction is extracted and then the trajec-

tory is advanced by a fixed step size (0.5 mm). Tracking is halted when the fODF

peak intensity falls below the fixed threshold (0.1) or/and a maximum angle between

two consecutive steps exceeds (30◦). Three-dimensional reconstructions of the follow-

ing tracts: uncinate fasciculus (UNC), cortico-spinal tract (CST) and splenium of the

corpus callosum (sCC) were made using the neuroanatomical landmark techniques

that have been previously shown to be highly reproducible (Catani et al. 2002) (See

Figure 4.1 for reconstructed tracts). Metrics of MD, RD, λ1, FA, Vf , MMPF and

MWF were computed for individual streamlines at every 0.5 mm step and averaged

to produce tract-specific mean values (Jones et al. 2005).

4.2.15 Correlation along specific white matter tracts

Correlations in microstructural metrics was looked for between the following met-

rics: FA, MD,λ1/L1, RD, MWF and MMPF. Correlations of tract-averages were ex-

amined using a Pearson-correlation, preceded by a one-sample Kolmogorov-Smirnov

to test for Gaussianity. Correlation measures were then adjusted for multiple compar-
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isons using the false discovery rate (FDR) approach (5%) (Benjamini and Hochberg

1995).

4.2.16 Tractometry Analysis

All tract-reconstructions and metric overlays were performed with ExploreDTI

(Leemans et al. 2009). The following maps were overlaid onto all tracts: FA, MD,

RD, geometric image (GEO), mode of anisotropy (AM), intervoxel diffusion coherence

(IVDC), MWF, MMPF and Fr. A Pearson-correlation between the following indices:

FA, RD, MWF, MMPF and Fr were calculated for all steps along the left cortico-

spinal tract (CST). To explore the relationship between the various parameters in

greater detail, scatter plots were made of the data in a pairwise fashion. Domains

within the scatter plots were identified using simple boundaries (e.g. dividing the

scatter plot ranges into quadrants, with upper and lower 50th percentile for both

metrics). Subsequently these domains were backprojected onto the CST tract for

visualisation.

��� ��� ���

Figure 4.1: Example of the three tracts used in the analysis of this chapter. Cortico-
spinal tract (CST), splenium of the corpus callosum (sCC) and uncinate fasciculus
(UNC).
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4.3 Results

A comprehensive comparison was conducted of the inter-correlations between the

mean tract values of different white matter metrics across all 27 participants in the

corticospinal tract (CST), splenium of the corpus callosum (sCC) and uncinate (UNC)

fasciculus (Table 4.1-4.3, Figure 4.2). In Figure 4.2, the CST is used as an example

to demonstrate the scatter plots for each comparison made (FA, RD, MWF, MMFP,

T1 and Fr). Two significant inverse correlations were found within the reconstructed

CST tracts for both left and right hemispheres: FA versus RD and MWF versus

T1. No other pair-wise correlation reached significance. White matter metric correla-

tions within the sCC are represented in Table 4.2. A significant inverse relationship

was found between: FA versus RD, FA versus T1 and MWF versus T1, while only

within the native (uncorrected CSF metrics) a significant inverse relationship was

found between RD and MMPF (Table 4.2). No other pair-wise correlation reached

significance. In the uncinate, significant inverse correlations were found between FA

and RD and between MWF and T1 for both the right and left hemisphere. In metrics

not corrected for free water, the only pair-wise correlation that was significant was

between RD and MWF in the right uncinate. No other pairwise metric correlations

within the UNC reached significance.

To appreciate the impact of macrostructure on the microstructural metrics, pa-

rameters of interest were visualized along the trajectories of the three bundles: CST,

sCC and UNC (Figure 4.3, 4.4 and 4.5). The differences in the spatial distribution of

the different indices along the bundles can be clearly appreciated within these figures.

In Figure 4.3 the metrics for CST are shown, where the metrics MWF, MMPF, Fr

and FA all get progressively lower as the tract approaches the cortex, as expected.

The diffusion metrics FA and AM appear to be more sensitive to areas of intra-

voxel orientational heterogeneity and as expected give similar results to inter-voxel

orietnational heterogeneity (IVDC). Overall, FA appears to be more heterogeneous
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Table 4.1: Statistical results for the CST and the correlations between indices for
27 participants: Pearson coefficient (Superscripts ’u’ and ’c’ indicate the data are
uncorrected or corrected for CSF-contamination by FWE approach, respectively).
LS (left hemisphere), RS (right hemisphere), FA (fractional anisotropy), RD (radial
diffusivity), MWF (myelin water fraction), MMPF (macromolecular proton fraction),
T1 (longitudinal relaxation time), Fr (restricted diffusion), ? ? ? (p <0.001) ?? (p
<0.01), ? (p <0.05), + (p <0.05 - does not pass FDR multiple comparisons).

Side FAu RDu MWFu MMPFu T1 Fr
FAu LS -0.49??? -0.11 0.17 0.06 0.2

RS -0.52??? -0.12 0.11 0.009 -0.07
RDu LS 0.060 -0.16 0.11 0.067

RS 0.066 -0.10 0.11 0.20
MWFu LS 0.13 -0.40??? -0.067

RS 0.11 -0.49??? -0.20
MMPFu LS 0.18 0.20

RS 0.088 0.33
T1

u LS 0.067
RS 0.067
Side FAc RDc MWFc MMPFc T1 Fr

FAc LS -0.61??? -0.11 0.18 0.0028 0.2
RD -0.71??? -0.12 0.12 -0.037 0.067

RDc LS 0.12 0.23 0.031 0.067
RD 0.048 0.05 0.088 0.2

MWFc LS -0.17 -0.62??? -0.067
RD -0.15 -0.73??? -0.20

MMPFc LS 0.19 0.067
RD 0.071 0.067
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Figure 4.2: Scatter plots for the CST for different white matter metrics. Left hemi-
sphere (blue), right hemisphere (red), FA (fractional anisotropy), RD (radial diffu-
sivity), MWF (myelin water fraction), MMPF (macromolecular proton fraction), T1
(longitudinal relaxation time), Fr (restricted diffusion).
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Figure 4.3: Tract-specific microstructural measurements or tractometry of the CST.
FA (fractional anisotropy), MD (mean diffusivity), RD (radial diffusivity), GEO (geo-
metric image), AM (mode of diffusion), IVDC (intravoxel diffusion coherence), MWF
(myelin water fraction), MMPF (macromolecular proton fraction), Fr (restricted dif-
fusion).
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Table 4.2: Statistical results for the sCC and the correlations between indices for
27 participants: Pearson coefficient (Superscripts ’u’ and ’c’ indicate the data are
uncorrected or corrected for CSF-contamination by FWE approach, respectively). FA
(fractional anisotropy), RD (radial diffusivity), MWF (myelin water fraction), MMPF
(macromolecular proton fraction), T1 (longitudinal relaxation time), Fr (restricted
diffusion), ? ? ? (p <0.001) ?? (p <0.01), ? (p <0.05), + (p <0.05 - does not pass
FDR multiple comparisons).

FAu RDu MWFu MMPFu T1 Fr
FAu -0.68??? 0.18 0.24 -0.34??? -0.067
RDu -0.15 -0.35?? 0.31 -0.20

MWFu 0.11 -0.60??? -0.20
MMPFu 0.10 -0.067

T1
u -0.067

FAc RDc MWFc MMPFc T1 Fr
FAc -0.77??? 0.066 0.11 -0.40?? 0.067
RDc 0.071 -0.24 0.25 -0.067

MWFc -0.15 -0.62??? -0.067
MMPFc 0.16 0.067

�� �� ��

��� �� 	
��

��� ��
� ��

Figure 4.4: Tract-specific microstructural measurements or tractometry of the sCC.
FA (fractional anisotropy), MD (mean diffusivity), RD (radial diffusivity), GEO (geo-
metric image), AM (mode of diffusion), IVDC (intravoxel diffusion coherence), MWF
(myelin water fraction), MMPF (macromolecular proton fraction), Fr (restricted dif-
fusion).
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Table 4.3: Statistical results for the UNC and the correlations between indices for
27 participants: Pearson coefficient (Superscripts ’u’ and ’c’ indicate the data are
uncorrected or corrected for CSF-contamination by FWE approach, respectively).
LS (left hemisphere), RS (right hemisphere), FA (fractional anisotropy), RD (radial
diffusivity), MWF (myelin water fraction), MMPF (macromolecular proton fraction),
T1 (longitudinal relaxation time), Fr (restricted diffusion), ? ? ? (p <0.001) ?? (p
<0.01), ? (p <0.05), + (p <0.05 - does not pass FDR multiple comparisons).

Side FAu RDu MWFu MMPFu T1 Fr
FAu LS -0.62??? 0.07 0.17 -0.13 0.07

RS -0.57??? 0.22 0.11 -0.11 -0.2
RDu LS -0.17 -0.05 0.11 -0.2

RS -0.33? -0.09 0.26 0.07
MWFu LS -0.19 -0.62??? 0.33

RS -0.01 -0.65??? 0.20
MMPFu LS 0.16 -0.07

RS 0.15 0.07
T1

u LS -0.33
RS 0.20
Side FAc RDc MWFc MMPFc T1 Fr

FAc LS -0.64??? 0.07 0.06 -0.20 0.07
RD -0.63??? 0.14 -0.002 -0.19 -0.07

RDc LS -0.54 0.008 0.12 -0.06
RD -0.20 0.02 0.25 0.06

MWFc LS -0.24 -0.70??? 0.33
RD -0.16 -0.80??? 0.20

MMPFc LS 0.12 0.07
RD 0.16 0.2
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Table 4.4: Statistical results for CST within the left hemisphere: Pearson coefficient
(r), 95% CI (confidence interval), r bias (B) (how much it overestimates or under-
estimates the correlation).(Superscripts ’u’ and ’c’ indicate the data are uncorrected
or corrected for CSF-contamination by FWE approach, respectively). FA (fractional
anisotropy), RD (radial diffusivity), MWF (myelin water fraction), MMPF (macro-
molecular proton fraction), T1 (longitudinal relaxation time), Fr (restricted diffusion),
? ? ? (p <0.001) ?? (p <0.01), ? (p <0.05), + (p <0.05 - does not pass FDR multiple
comparisons).

FAu RDu MWFu MMPFu T1 Fr
FA r=-0.97??? r=0.19??? r=0.11??? r=-0.16??? r=0.025

CI95 [-0.97,-0.96] CI95[0.12,0.26] CI95[0.04,0.18] CI95[-0.24,-0.08] CI95 [-0.04,0.11]

B = 0.0009 B = -0.001 B = -0.0003 B = 0.001 B = 0.005

RD r=-0.16??? r=-0.09?? r=0.16??? r=-0.03

CI95 [-0.24,-0.09] CI95 [-0.16,-0.03] CI95[0.08,0.25] CI95 [-0.10,0.03]

B = 0.0008 B = 0.0002 B = -0.001 B = 0.0007

MWF r=0.46??? r=-0.82??? r=0.37???

CI95[0.41,0.51] CI95[-0.85,-0.79] CI95 [0.29,0.44]

B = -0.00009 B = 0.0006 B = -0.00003

MMPF r=-0.62??? r=0.37???

CI95[-0.66,-0.59] CI95 [0.17,0.26]

B = -0.0005 B = -0.0003

T1 r=-0.43***

CI95[-0.35,-0.26]

B = 0.0006
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Figure 4.5: Tract-specific microstructural measurements or tractometry of the UNC.
FA (fractional anisotropy), MD (mean diffusivity), RD (radial diffusivity), GEO (geo-
metric image), AM (mode of diffusion), IVDC (intravoxel diffusion coherence), MWF
(myelin water fraction), MMPF (macromolecular proton fraction), Fr (restricted dif-
fusion).

throughout the whole tract than non-diffusion metrics (MWF, MMPF and Fr), which

we attribute to the fact that FA is exquisitely sensitive to intra-voxel orientational

dispersion whereas, to the best of our knowledge, Fr, MWF and MMPF are not. Fig-

ure 4.4 presents results for the splenium of the corpus callousm. As with the CST,

MWF, MMPF, Fr and FA all decreased as the tract heads towards grey matter. The

same metrics also decrease in the inferior section of the tract where it links the right

and left hemispheres. Notably, the MD is high within this same area, which is in close

proximity to the third ventricle suggesting that CSF contamination correction may

not be perfect. Furthermore, the diffusion metrics, such as FA and AM, within the

sCC do not appear to be more sensitive in areas of intra-voxel heterogeneity. Finally

for the UNC, metrics MWF, MMPF and FA have similar patterns throughout the

tract (Figure 4.5). All three metrics are lower as the tracts reach the grey matter

and where the UNC bends in the area where it connects the temporal and frontal
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Figure 4.6: Histogram-scatter plots for the CST for different white matter metrics in
one participant within all voxels demonstrating where majority of the voxels lie. FA
(fractional anisotropy), RD (radial diffusivity), MWF (myelin water fraction), MMPF
(macromolecular proton fraction), T1 (longitudinal relaxation time), Fr (restricted
diffusion).
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lobes. Within this mid-section, or where the UNC bends, the MD does not appear to

increase, hence the decrease within the other white matter metrics is unlikely to be

CSF partial volume artifact. The mode of anisotropy (AM) is heterogeneous through-

out the tract and low especially in the mid-section of the UNC where the individual

streamlines tend to fan suggesting that the low FA is most likely driven by crossing

or kissing fibre configurations.
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Figure 4.7: Reconstructed tracts illustrating high (blue) and low (red) white matter
metrics within the left CST. FA (fractional anisotropy), RD (radial diffusivity), MWF
from mcDESPOT (myelin water fraction), MMPF from qMT (macromolecular proton
fraction), T1 from mcDESPOT (longitudinal relaxation time), Fr from CHARMED
(restricted diffusion).

For a more comprehensive comparison a single participant was used to illustrate

the inter-correlations between the different white matter metrics within the left CST.

Pair-wise Pearson correlations were computed between all metrics for the CST along

with the confidence interval and corresponding bias (how much the correlation over
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Figure 4.8: Reconstructed tracts illustrating the mode of anisotropy (AM) within CST
and the correlations between FA versus MWF and FA versus MMFP. The scatter
plots for both correlations are divided into two regions (1) low FA-high MWF or
MMPF (reconstructed in red) (2) all other areas (reconstructed in blue) and then
backprojected onto the CST tract.
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Figure 4.9: Reconstructed tracts illustrating the mode of anisotropy (AM) within
CST, where three region of interest (ROI) are drawn in regions of low AM and HARDI
glyphs are illustrated. ROI on the top left demonstrates more than one dominant fibre
through HARDI glyphs and the reconstruction of a crossing-fibre drawn in purple.
The other two ROIs also illustrate that area of low AM clearly have multiple fibres
crossing the voxel.

or underestimates the estimation of r) (Table 4.4). If we consider correlations above

0.3 to be significant, where at least the relationship between the variables can explain

9% of the variance the correlations that reached significance (r > 0.3 considered a

medium effect size) (Cohen 1988), where an inverse relationship between FA and RD

(r=-0.97), a positive relationship between MWF and MMPF (r = 0.46) and a positive

between MWF and Fr (r=0.37) was seen. Furthermore, the following metrics were

significantly negatively correlated with T1: MWF (r=-0.82), MMPF (r=-0.62) and

Fr (r=-0.44) (Table 4.4). Figure 4.6 shows histograms-scatter plots for all pairs of

indices obtained from the CST. With the exception of FA vs RD (where a highly

linear relationship is seen), all other joint histograms do not demonstrate a strong

linear correlation between the two parameters, echoing the results from the Pearson

correlation analysis obtained from the tract means.
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Figure 4.10: Reconstructed tracts illustrating correlations between fractional
anisotropy (FA) versus myelin water fraction (MWF), FA versus macromolecular
proton fraction (MMPF) and FA versus Fr. The scatter plots for all correlations
are divided into three regions (1) high FA (reconstructed in red) (2) low FA and
high white matter metric (MWF or MMPF) (reconstructed in yellow) (3) low-FA
and low white matter metric (MWF or MMPF) (reconstructed in blue) and then
backprojected onto the CST tract.

102



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

����������� ��������� ����������

��� ��� ����

���� �� ��

Figure 4.11: Reconstructed tracts illustrating correlations between myelin water frac-
tion (MWF) versus macromolecular proton fraction (MMPF), MWF versus restricted
diffusion (Fr) and MMPF versus Fr. The scatter plots for all correlations are divided
into three regions (1) high WM metric (reconstructed in red) (2) low WM metric and
high WM metric (reconstructed in yellow) (3) low WM metric and low WM metric
(reconstructed in blue) and then backprojected onto the CST tract.
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To explore the spatial distribution of each white matter metric further, each was

divided into the upper and lower 50th percentile and projected back onto the tracts.

The results (Figure 4.7) demonstrate that the white matter metrics: MWF, MMPF

and Fr all decrease as the white matter heads towards grey matter, while FA and

RD appear to be more sensitive to areas of intra-voxel heterogeneity (tract curvature

/dispersion) and are thus more heterogeneously distributed throughout the whole

tract, than MWF and MMPF. Fr is less homogeneous than both MWF and MMPF

particularly in areas where the tract narrows and heads towards the brain stem.

Similarly, T1 also increases in the same areas suggesting subtle changes in white

matter microstructure. In areas where FA is low, but neither MWF nor MMPF

decrease, the mode of anisotropy, AM, is low, suggesting that these areas contain one

or more fibres that are crossing or kissing. To further explore the differences between

these parameters, data points lying in the upper 50%-ile of MMPF /MWF and lower

50%-ile of FA are identified and projected back onto the tracts (Figure 4.8), where

it is seen that the low FA/ high MWF and low FA/ high MMPF regions occupy

very similar regions in the pathway. Interestingly, these areas correspond closely to

the locations where AM is negative - areas of crossing or kissing fibres. To drive

down further into this phenomenon, three ROIs are drawn and HARDI glyphs are

reconstructed for the voxels within each ROI (Figure 4.9). In the first case it is clear

that there are crossing fibres as demonstrated by the reconstructed crossing fibre

plotted in purple. For the second and third ROIs, it is evident that in areas of low FA

but high MWF or MMPF there is more than one fibre entering those voxels as seen

through the HARDI glyphs. Thus, FA appears to be more sensitive to areas where

crossing fibres are seen than other white matter metrics such as MWF and MMPF.

To further investigate the spatial distribution of different combinations of white

matter metrics, each pair-wise scatter plot was subdivided into 3 separate domains: (i)

Upper 50%-ile of FA; (ii) Lower 50%-ile of FA and upper 50%-ile of MWF/MMPF/Fr;
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and (iii) Lower 50%-ile of FA and lower 50%-ile of MWF/ MMPF/Fr, and the data

points lying within these domains were back-projected onto the tracts for visualization

and interpretation (Figures 4.10). The spatial distributions thus obtained for the three

metrics (MWF/ MMPF and Fr) are very similar to each other. Finally, Figure 4.11

shows a similar analysis for the relationship between non-DTI metrics.

4.4 Discussion

We studied white matter using diffusion-tensor MRI, CHARMED, quantitative

magnetization transfer imaging and multi-component relaxometry, each of which has

its strengths and limitations. Diffusion-weighted imaging is sensitive to changes in

white matter structure, however it is not specific with regard to which microstructural

subcomponent drives this change (i.e., myelin or axon diameter). CHARMED, on

the other hand, collects data at multiple b-values and fits a two compartment model

that aims to extract quantitative data from both extra- and intra-axonal water. It

is assumed that the latter provides more specificity to change in axon properties.

Quantitative magnetization transfer imaging using pulsed MT is sensitive not only to

myelin, but also other semisolids within its macromolecular measurements. Despite

the fact that the concentration of nonaqueous molecules is higher within myelin it

has been shown that the magnetization transfer of myelin water is nine times more

efficient than in the intermediate T2 compartment demonstrating that the observed

MT is mainly due to myelin (Stanisz et al. 1999). Myelin-water mapping, from multi-

component T2 imaging, characterizes myelin indirectly by measuring water trapped

within the bilayer and inferring those changes as variations in myelin content. All

these methods have been previously studied, but not all together within a group of

participants along a specific white matter tract.
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Diffusion tensor MRI-based tractography was initially used to reconstruct white

matter pathways, but is limited in voxels that contain more than a single dominant

fibre (Vos et al. 2012). Such limitations lead to recent developments into advanced dif-

fusion weighted imaging methods such as high angular resolution diffusion (HARDI)

(Frank 2001; Tuch et al. 2002; Wedeen et al. 2005) crossing fibres within voxels are

able to be resolved allowing for a more detailed description of the tissue composi-

tion (Douaud et al. 2011). Combining the ability to distinguish crossing fibres using

diffusion-weighted images and other more specific techniques that allow measure of

myelin or axon diameter, such as quantitative magnetization transfer imaging, allows

for a more details microstructure description along a specific white matter tract -

termed ’Tractometry ’.

Tractometry is a powerful tool that combines the ability to distinguish crossing

fibres using HARDI with quantitative white matter images to investigate the corre-

lations between different white matter metrics. Results show that there was no or

little correlation found between white matter microstructure measurements. Com-

paring the mean values of specific metrics along the splenium of corpus callosum,

uncinate and cortico-spinal tracts resulted in FA and RD being highly correlated,

as expected. Another significant correlation found was between MWF and T1 in all

three tracts. This is an interesting result and indicates that for a control participant

population quantitative T1 maps are adequate for a microstrucutral measure. How-

ever, this may not be the case for a clinical population when things like inflammation

will affect these values differently. However, only for sCC a significant correlation

between MMPF and RD and for the UNC a significant correlation between MWF

and RD were found. These findings suggest that even in highly organized fibre ar-

rangements like the sCC, high FA values do not directly correspond to higher degree

of myelin content as measured in MWF and MMPF maps, demonstrating that intra-

voxel orientational coherence is the main factor driving regional variations in RD and
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FA and myelin content or axonal density could play a peripheral role in these DTI pa-

rameters. Moreover, there are clearly some similarities between these microstructure

measurements since correspondences between MWF or MTR/MMPF with diffusion

metrics have been reported using multiple ROIs within different white matter struc-

tures (Mädler et al. 2002; Bells et al. 2007). Although, like in this research Underhill

et al. (2009) found no correlation between DTI metrics, FA and RD, versus MMPF

and Levesque et al. (2010) found no significant correlations between MMPF and

MWF maps in MS human data. The reason for the differences among these findings

may be because the two studies that found a significant correlation used multiple

white-matter structures to measure correlation, thus increasing the range of observed

values within the measures and the likelihood of finding a relationship. Instead of

using ROIs another study used a voxel-based method to demonstrate a negative cor-

relation between RD and MWF (Mädler et al. 2008). In our study, we found a very

weak correlation between RD and MWF (r ∼ 0.2 for CST) emphasizing that other

factors such as fibre arrangements, packing, volume fraction and angular orientation

distribution also play a major role in this relationship (Beaulieu and Allen 1994a;

Beaulieu and Allen 1994b) and demonstrates that RD is over interpreted as a direct

measure of myelin.

Focusing on the correlation calculations along a specific white matter tract - left

CST, it was shown that there is little or no correlation when comparing the same

metrics in a voxel-wise fashion. Areas of low FA found in the CST can be attribute

to intra-voxel heterogeneity from dispersion, curvature or crossing-fibres. It has been

previously found that in white matter areas with disorganized fibre bundles, or mul-

tiple fibre crossings, that low FA values could be found despite MWFs being high

(Oouchi et al. 2007) as seen here in this experiment. Correlations between white

matter metrics, such as MMPF and MWF, were weak indicating that they pro-

vide complementary information, but are mainly independent as suggested by others
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(Tozer et al. 2005; Levesque et al. 2010). Stronger correlations have been seen

between white matter measures in clinical populations (i.e. MS lesion), but this is

most likely due to the larger variation in values measured between non-healthy white

matter (increased severity within MS lesions) and healthy white matter (Tozer et al.

2005).

Despite the evidence of a strong relationship between myelination and white mater

metrics (i.e. MTR, MWF) through animal research (Deloire-Grassin et al. 2000;

Zaaraoui et al. 2008), confirming a similar relationship in humans is more challenging

in humans since it requires post-mortem tissue. Histological measurements can be

performed at 3 to 10 microns; conversely MRI is usually on the order of 1 mm. One

study attempted to correlate DTI metrics with histological stains and found that RD

was altered with demyelination, and axon injury (Klawiter et al. 2011). In our healthy

subjects, we found no correlation between RD and white matter measurements like

MWF or MMPF. Several studies have demonstrated strong correlations between MTR

reduction and the amount of demyelination (Dousset et al. 1992; Deloire-Grassin et al.

2000; Barkhof et al. 2003; Schmierer et al. 2004; Schmierer et al. 2008), meanwhile

others have shown a significant correlation between MTR and axonal density (Gass

et al. 1994; van Waesberghe et al. 1999), while others have demonstrated both

(Mottershead et al. 2003; Schmierer et al. 2007). In fixed brains a significant

correlation (r2 = 0.6) between FA and MWF in normal white matter was found in most

structures (MacKay et al. 2006). This supports previous findings that FA is weakly

modulated by myelin, but mostly dominated by intact axonal membranes (Beaulieu

2002). These studies all demonstrate the differences in magnetization transfer and

multi-component relaxometry experiments, suggesting they measure slightly different

mechanisms.

Previously there have been a number of research groups that have studied the

differences between MWF and MMPF using postmortem or animal models. A few
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have found that MWF is less sensitive to inflammation and edema than MMPF using

human models (Moore et al. 2000). Inflammation will increase the amount of free

water within the area thus affecting the MMPF since the semisolid protons including

macromolecules, such as myelin, are independent of free water. Although we corrected

for CSF contamination, we cannot prove with this experiment that it eliminated all

CSF contamination. Even fewer have studied the relationship between MMPF/MTR

and axonal changes. One group found a high correlation between MTR and axonal

loss measured using retinal nerve fiber layer thickness, which is independent of the

level of demyelination (Klistorner et al. 2011). Within the current research we cannot

provide concrete evidence as to which measure is more specific to myelin, however

there is a difference between the microstructure measures that are sensitive to different

things and making both valuable to use in future studies.

Tractometry provides a comprehensive assessment of multiple microstructure met-

rics in a unique way - along specific white matter tracts. While it demonstrates

promising results, there remains a few issues to be addressed before it is widely trans-

lated into clinical applications. Most importantly the concern regarding the specificity

of all white matter measurements and how they are affected by changes of free water

within a voxel as in inflammation. Where weak correlations between measurements

are seen, these are driven by different mechanisms. Importantly, we find little corre-

lation between proxy indices of myelination and axonal morphology, suggesting that

additional complementary WM microstructural information is obtained with our ap-

proach.
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Chapter 5

Exploring the Asymmetry in MRI

measurements

5.1 Introduction

Asymmetric-hemispheric cognitive functionality is an important attribute of the

human brain, generally referred to as lateralization (Geschwind and Galaburda 1985).

It is believed that functional and structural asymmetry results from years of evolu-

tionary interhemispheric specialization, such as language representation (Toga and

Thompson 2003) and visuo-spatial processing (Corballis 1997; Vogel et al. 2003).

Affirmation for left hemispheric dominance within language processing was first in-

troduced by Broca (1861) with further evidence from lesion, functional and structural

anatomical findings (Geschwind and Levitsky 1968; Geschwind and Galaburda 1985;

Stephan et al. 2003; Toga and Thompson 2003). The ability to characterize the lat-

eralization within white matter microstructure with MR provides potential insights

into functional asymmetry (Büchel et al. 2004; Park et al. 2004; Stephan et al. 2007;

Putnam et al. 2010; Wahl et al. 2010).

Diffusion MRI (Le Bihan et al. 1986; Moseley et al. 1990) has become one of the

most popular techniques used by the neuroscientific community (Geschwind and Lev-

itsky 1968; Geschwind and Galaburda 1985; Stephan et al. 2003; Toga and Thompson

2003). The principal source of contrast in diffusion tensor MRI is that axons (and

its subcomponents) within white matter create coherent obstacles to diffusion, thus
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creating an orientational dependency of the apparent diffusion coefficient (Moseley

et al. 1990). In diffusion tensor MRI, this orientational dependence is modeled by

a second-rank tensor assuming a uni-modal Gaussian displacement profile, and a

diffusion tensor is fitted to the signals in each voxel (Basser et al. 1994b; Basser

and Pierpaoli 1996). Tensor estimates provide scalar indices, such as the fractional

anisotropy (FA) - a normalized index of the standard deviation of the eigenvalues

that has a range of 0-1 (Basser and Pierpaoli 1996).

Due to the excellent sensitivity of diffusion tensor imaging to various sub-components

of white matter at the microstructural level, it has been widely used as a tool to inves-

tigate white matter pathways, including their lateralization. Diffusion properties such

as FA and the radial diffusivity (given by the average of the two smallest eigenvalues

of the tensor,
1

2
(λ2 + λ3)) have been used to probe the language pathway and it was

found to have a leftward asymmetry (Powell et al. 2006), meaning that the diffusion

metrics (e.g. FA) in the left hemisphere tend to be larger than in the right. Differences

in structural asymmetry of diffusion MRI metrics have been reported in a number of

clinical populations. For example, Lange et al.(2010) reported increased rightward

lateralization of the tensor skewness within autism compared to controls, and right

temporal lobe epilepsy patients demonstrated increased ipsilateral FA-asymmetry to

the seizure focus compared to left temporal lobe epilepsy patients (Ahmadi et al.

2009). In contrast, in studies of other clinical populations, differences in asymme-

try are not always found. For example, Takao et al.(2010) found no difference in

asymmetry of diffusion measurements between schizophrenia and controls.

One concern with clinical applications is that most diffusion studies do not take

into account partial volume artifacts caused by cerebrospinal fluid (CSF) contamina-

tion, resulting in errors within diffusion parameters (Alexander et al. 2001; Metzler-

Baddeley et al. 2012; Vos et al. 2011). Clearly, ignoring CSF contamination will

inappropriately elevate diffusion indices, such as, principal eigenvalue (λ1), radial dif-

111



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

fusivity (RD) and mean diffusivity (MD), whereas it will inappropriately decrease

fractional anisotropy (FA) (Alexander et al. 2001; Pfefferbaum and Sullivan 2003).

This also has implications for the reconstruction of white matter pathways (Vos et al.

2011). Moreover, the location of a white matter pathway influences how vulnerable it

is to CSF contamination. For example, periventricular pathways like the fornix and

splenium / genu of the corpus callosum are more prone to CSF contamination (Con-

cha et al. 2005; Jones and Cercignani 2010). Considering that CSF-contamination

effects are heterogeneously distributed across the brain, there is no simple global cor-

rection that can be applied, e.g. scaling by intracranial volume. If it were the case

that all structures were affected in the same manner, then asymmetry measurements

would negate this artifact. However, as this is not the case, failing to correct for CSF

contamination may also affect assessment of microstructural lateralization.

A number of groups have proposed methods to correct for CSF-contamination. In

one approach, CSF contamination is corrected by fitting the diffusion-weighted signal

to a two-compartment model: tissue and CSF (Pierpaoli and Jones 2004). However,

this approach requires the collection of additional diffusion-weighted data at various

b-values, resulting in increased scan time. Alternatively, the ’Free Water Elimination’

(FWE) approach proposed by Pasternak et al.(2009) uses a single b-value diffusion

acquisition and fits two compartments: tissue and CSF. This approach is able to

estimate CSF contamination on conventional diffusion MRI data (i.e. single b-value

or single shell (Jones et al. 1999)) by imposing local smoothness constraints on the

tissue compartment and using a regularisation term to estimate the tissue volume

fraction, Vf , (i.e., the fraction of the signal that is attributed to tissue), and to

provide diffusion metrics that are corrected for CSF-contamination.

One concern with DT-MRI derived metrics such as fractional anisotropy (FA)

and radial diffusivity (RD), is that they are not straightforward to interpret - as they

are influenced by various microstructural properties including axonal density and di-
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ameter, myelination and the intravoxel architectural configuration (Beaulieu 2002).

Consequently, these measures are very sensitive, albeit very non-specific indices of

tissue microstructure. Other quantitative microstructural imaging methods, such as

quantitative magnetization transfer imaging (Henkelman et al. 1993; Sled and Pike

2001; Ramani et al. 2002) and multi-component T2 relaxometry (MacKay et al.

1994; Deoni et al. 2008; Deoni et al. 2008) provide greater specificity to a particular

subcomponent of the tissue microstructure (in this case, myelin), compared to con-

ventional diffusion-weighted imaging. If functional lateralization occurs in tandem

with structural lateralization, and there are accompanying differences in myelination,

then using these more specific markers may accordingly provide new insights into the

inter-hemispheric distribution of white matter attributes.

Magnetisation transfer (MT) imaging harnesses contrast based on the exchange

of magnetization between macromolecular and water protons, providing a measure of

the relative density of macromolecules within the brain (such as protein, lipids and

cellular membranes) that are invisible to conventional T1-weighted and T2-weigthed

scans on account of their short relaxation times (Wolff and Balaban 1989; Wolff et al.

1991; Kucharczyk et al. 1994; Samson et al. 2006). MT parameters, such as MMPF,

have been shown to provide valid biomarkers for white matter pathologies such as;

inflammation, demyelination and axonal loss (Stanisz et al. 1999; Sled and Pike 2001;

Stanisz et al. 2004).

Multi-component relaxometry (MCR) exploits the fact that different liquid sub-

populations have unique relaxation times to provide detailed information on the

brain’s microstructure, including myelin water. Dividing the signal from the myelin

water by the signal from total water gives a metric known as the myelin water frac-

tion (MWF) (MacKay et al. 1994), which is commonly regarded as a marker of

myelin in white matter. Comparison studies between MWF and histological-derived

estimates using Luxol fast blue showed that changes in MWF and changes in ac-
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tual myelin are highly correlated (Moore et al. 2000; Laule et al. 2006; Laule et al.

2008). Furthermore, it has been shown that MWF is unaffected by inflammation in

histological-derived estimates using hematoxylin and eosin (inflammation) (Gareau

et al. 2000). MWF has been used to measure changes in white matter microstructure

due to lesions and MS (Vavasour et al. 1998; Whittall et al. 2002; Laule et al. 2004).

The aim of this study was to measure asymmetry within different white matter

metrics. We combine for the first time a number of different quantitative white mat-

ter metrics including those derived from diffusion tensor MRI and from qMT and

MWF, to address the question of whether more specific white matter metrics provide

a more specific characterization of microstructural asymmerty than diffusion-weighted

measurements alone. First, we examine the asymmetry within specific white matter

pathways, reconstructed using tractography. For this part of the study, we focused on

a number of tracts known for their asymmetry within diffusion or structural measures

(Thiebaut de Schotten et al. 2011): arcuate fasciculus (AF), Cingulum (Ci), Inferior-

Fronto-Occipital Fasciculus (IFO), Inferior Longitudinal Fasciculus (ILF), Uncinate

Fasciculus (UF) and Optic Radiation (OpR). Secondly, we adopted a whole brain

approach to look for asymmetry on a voxel-by-boxel basis using tract-based spatial-

statistics (TBSS) (Smith et al. 2006). Finally, we studied the impact of performing

Pasternak’s free water elimination (FWE) correction for CS-contamination on asym-

metry, on both the tract-based and voxel-based analyses.

5.2 Material and Methods

5.2.1 Participants

A total of twenty-one healthy right-handed female participants (mean age= 36.7±4.0

y) were included in this study. Informed consent was obtained prior to scanning and
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the study was performed with ethics approval from the ethics review board at our

institution.

5.2.2 MR Imaging acquisition

MRI data were acquired on a 3 T General Electric HDx MRI system (GE Med-

ical Systems, Milwaukee, WI) with an eight channel receive coil (Medical Devices).

Three different MRI scans were acquired: diffusion-weighted, magnetization trans-

fer and mcDESPOT. Please refer to Chapter 4 for specific acquisition parameters

and pre-processing steps for each MRI technique (DTI, qMT and mcDESPOT)- in-

cluding details on registration of each white matter microstructure index and partial

volume correction for myelin water fraction (MWF) and macromolecular proton frac-

tion (MMPF).

5.2.3 Tract-specific Asymmetry

Asymmetry in tract-specific mean values was assessed for the following indices:

corrected FAc, MDc, λc
1, RD

c, MWFc MMPFc and Vf tissue volume calculated from

FWC analysis and uncorrected FAu, MDu, λu
1 , RD

u, MWFu and MMPFu (where c

and u are used to indicate CSF-contamination corrected metrics, and uncorrected,

respectively). Left/right asymmetry was examined using a two-tailed paired t-test

using mean tract values, preceded by a one-sample Kolmogorov-Smirnov test to check

for Gaussianity. The t-tests compared right against left, so that a negative T-statistic

means that the left is larger than the right. The results were then adjusted for mul-

tiple comparisons using the false discovery rate (FDR) approach (5%) (Benjamini

and Hochberg 1995). Next, an asymmetry index was computed between tracts in the

right hemisphere (RH) and left hemisphere (LH) for all the tracts under investigation

for all participants (Asymmetry Index = 2(RH-LH)/(LH+RH)), resulting in a lat-
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eralization measure for each individual participant. To assess asymmetry across the

twenty-one participants a group lateralization index was calculated (Lateralization In-

dex=(# of participants with rightward lateralization - # with left lateralization)/(#

with rightward lateralization + # with leftward lateralization)) for each tract under

investigation: AF, Ci, IFO, ILF, UNC and OpR. Statistical significance was tested

using a one-sample t-test and was then adjusted for multiple comparisons using the

false discovery rate (FDR) approach (5%).

5.2.4 Voxel-Based Asymmetry Analysis

Whole brain left/right asymmetry assessments for each metric (FA, MD, λ1, RD,

MWF, MMPF and Vf) were performed using tract-based spatial statistics (TBSS)

(Smith et al. 2006) using a study specific template. Following the standard skele-

tonization of the mean FA, a threshold of FA>0.2 was applied to only include ma-

jor white matter pathways and ignore the peripheral pathways with higher inter-

participant variability and make the skeleton less sensitive to CSF contamination.

The FA skeleton was then symmetrised and all remaining metrics were projected

onto this skeleton. For each skeleton voxel, the difference between the left and right

hemisphere was computed, resulting in asymmetry measures (results for left >right

and right >left). Voxel-based analysis for each metric was carried out using randomize

(Nichols and Holmes, 2002) a permutation-based unpaired t-test (5000 permutations)

with threshold cluster enhancement (TFCE) (Smith and Nichols 2009) for each index.

Asymmetry was considered significant when the p-value was <0.05 after correction

for multiple comparisons.
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5.3 Results

5.3.1 Hemispheric asymmetries using Tractography

Interhemispheric differences for all indices for the reconstructed tracts are shown

in Figure 5.1 with their corresponding t-statistic and p-value presented in Table 5.1.

Figure 5.1(A) shows the lateralization index for all white matter metrics along the

AF. A significant leftward asymmetry was found across most of the white matter

measurements for the arcuate fasciculus (AF), with the exception of FA and MMPF.

A trend for leftward lateralization was found within MMPF the lateralization was

not significant after correcting for multiple comparisons. Importantly, after perform-

ing the correction for CSF-contamination, some asymmetries were preserved (λ1,

RD, MD), while the asymmetry for MMPF become significant even after multiple-

comparison correction. Furthermore, a significant rightward distribution was found

for the tissue-volume fraction (Vf ) (T(20) = 4.0, p = 0.0021).

Table 5.1: Statistical results for each tract and index: Kolmogorov-Smirnov test,
pairwise t-test between left/right tracts and one-sample t-test for lateralization in-
dex (LI). (Superscripts ’u’ and ’c’ indicate the data are uncorrected or corrected
for CSF-contamination by FWE approach, respectively). FA(fractional anisotropy),
MD(mean diffusivity), λ1 (longitudinal diffusivity), RD (radial diffusivity), ? ? ? (p
<0.001) ?? (p <0.01), ? (p <0.05), + (p <0.05 - does not pass FDR multiple com-
parisons).

Tract Index K-S test [LS,RS] LS-RS t-test LI t-test
AF FAu [0.65,0.65]??? 0.76 0.76

FAc [0.66,0.66]??? 0.19 0.86
λ1

u [0.50,0.50]??? -2.93? -2.95?

λ1
c [0.50,0.50]??? -2.52? -2.54?

MDu [0.50,0.50]??? -5.04??? -4.91???

MDc [0.50,0.50]??? -5.80??? -5.69???

RDu [0.50,0.50]??? -3.20?? -3.16?

Continued on next page
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Table 5.1 – continued from previous page
Tract Index K-S test [LS,RS] LS-RS t-test LI t-test

RDc [0.50,0.50]??? -2.90? -2.89?

MMPFu [0.54,0.54]??? -2.14+ -2.16+

MMPFc [0.54,0.54]??? -2.72? -2.76?

MWFu [0.58,0.58]??? -8.47??? -7.10???

MWFc [0.58,0.58] ??? -7.11??? -8.46???

Vf [0.82,0.82]??? 3.95?? 3.98??

Ci FAu [0.63,0.64]??? -5.30??? -5.49???

FAc [0.64,0.65]??? -5.50??? -5.69???

λ1
u [0.50,0.50]??? -6.53??? -6.57???

λ1
c [0.50,0.50]??? -7.03??? -7.13???

MDu [0.50,0.50]??? -1.68 -1.69
MDc [0.50,0.50]??? -2.43? -2.41?

RDu [0.50,0.50]??? 2.46? 2.53?

RDc [0.50,0.50]??? 4.38??? 4.31???

MMPFu [0.53,0.53]??? -3.27?? -3.30??

MMPFc [0.54,0.54]??? -3.39?? -3.48??

MWFu [0.56,0.57]??? -5.78??? -5.29???

MWFc [0.57,0.57]??? -5.51??? -5.58???

Vf [0.81,0.81]??? 0.89 0.89
IFO FAu [0.66,0.66]??? -1.31 -1.34

FAc [0.67,0.67]??? -1.76 -1.77
λ1

u [0.50,0.50]??? -2.03 -2.04
λ1

c [0.50,0.50]??? -2.76+ -2.75+

MDu [0.50,0.50]??? -0.73 -0.81
MDc [0.50,0.50]??? -0.995 -1.04
RDu [0.50,0.50]??? 0.29 0.17
RDc [0.50,0.50]??? 0.83 0.75

MMPFu [0.54,0.54]??? -1.75 -1.74
MMPFc [0.54,0.54]??? -2.34+ -2.24+

MWF u [0.57,0.57]??? -3.29? -2.85+

MWFc [0.57,0.57]??? -2.80+ -3.24+

Vf [0.80,0.81]??? 0.87 0.83
ILF FAu [0.65,0.64]??? 1.15 1.16

FAc [0.65,0.64]??? 0.81 0.82
λ1

u [0.50,0.50]??? -3.02? -3.06?

λ1
c [0.50,0.50]??? -2.42+ -2.47?

MDu [0.50,0.50]??? -4.92??? -5.03???

MDc [0.50,0.50]??? -5.40??? -5.48???

RDu [0.50,0.50]??? -2.97? -3.04?

RDc [0.50,0.50]??? -2.21+ -2.22+

Continued on next page

118



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

Table 5.1 – continued from previous page
Tract Index K-S test [LS,RS] LS-RS t-test LI t-test

MMPFu [0.54,0.53]??? 0.94 1.14
MMPFc [0.55,0.54]??? 0.51 0.72
MWFu [0.55,0.54]??? 0.29 0.89
MWFc [0.57,0.55]??? 0.76 0.47
Vf [0.81,0.81]]??? 4.56??? 4.5]???

UNC FAu [0.65,0.63]??? 0.64 0.58
FAc [0.66,0.64]??? 1.11 1.05
λ1

u [0.50,0.50]??? 3.95?? 2.28+

λ1
c [0.50,0.50]??? 3.92?? 2.71+

MDu [0.50,0.50]??? 2.65? 1.69
MDc [0.50,0.50]??? 4.02?? 2.17+

RDu [0.50,0.50]??? 0.94 0.75
RDc [0.50,0.50]??? 0.61 0.49

MMPFu [0.53,0.53]??? -0.14 -0.06
MMPFc [0.53,0.53]??? 0.30 0.17
MWFu [0.55,0.55]??? -2.51? -1.44
MWFc [0.55,0.55]??? -2.86? -1.29
Vf

u [0.80,0.80]??? -2.84? -1.70
OpR FAu [0.67,0.67]??? 0.040 -0.03

FAc [0.68,0.68]??? -0.512 -0.60
λ1

u [0.50,0.50]??? -4.64??? -4.68???

λ1
c [0.50,0.50]??? -4.70??? -4.78???

MDu [0.50,0.50]??? -4.21?? -4.29??

MDc [0.50,0.50]??? -4.80??? -4.89???

RDu [0.50,0.50]??? -2.65? -2.73?

RDc [0.50,0.50]??? -1.98 -2.03
MMPFu [0.54,0.54]??? -0.40 -0.51
MMPFc [0.54,0.54]??? -1.11 -1.19
MWFu [0.57,0.58]??? 0.14 0.16
MWFc [0.57,0.58]??? -0.95 -0.91
Vf [0.81,0.80]??? 2.99? 2.98 ?

A statistically significant leftward asymmetry was found within the cingulum for

the following white matter metrics: FA, λ1, MWF and MMPF, while, a significant

rightward distribution was found for RD (Figure 5.1 B and Table 5.1). After cor-

rection for CSF-contamination and differences in tissue-volume fraction, some asym-
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Figure 5.1: Lateralization index for fractional anisotropy (FA), principal eigen-
value (λ1/L1), mean diffusivity (MD), radial diffusivity (RD), myelin water fraction
(MWF), macromolecular proton fraction (MMPF) and tissue volume Vf for the fol-
lowing pathways: (A) Arcuate (B) Cingulum (C) Inferior fronto-occipital (D) Inferior
longitudinal (E) Uncinate (F) Optic radiation. Where 4 for corrected indices and
• for uncorrected indices and ? represents significant (p <0.05) t-test results after
correction for multiple comparisons.
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metries were preserved (FA, λ1, RD, MMPF, MWF), while a significant leftward

asymmetry for MD appeared (p = 0.029). Furthermore, there was no significant

lateralization found within the volume tissue fraction for the cingulum (Table 5.1).

For the inferior-fronto occipital fasciculus, most metrics failed to show asymmetry

either before or after CSF-contamination (Figure 5.1C and Table 5.1), with the excep-

tion of CSF-contamination-corrected MWF, which showed a leftward lateralization.

(Asymmetry in MWFu was insufficiently significant to survive multiple-comparison

correction).

In the inferior-longitudinal fasciculus (ILF), a significant left lateralized asymme-

try was found for λ1, MD and RD (Figure 5.1D and Table 5.1). After correction for

CSF-contamination, the MD asymmetry was preserved, while the asymmetry within

both λ1 and RD disappeared since they did not survive multiple comparison correc-

tion. Asymmetry was not found within MMPF and MWF either with or without

CSF-contamination correction. Furthermore, a significant rightward distribution was

found for the tissue-volume fraction (Vf) (T(20) = 4.6, p = 0.0008).

The uncinate fasciculus (UNC) showed differences between the two hemispheres

at varying degrees of lateralization. Significant rightward lateralization was found

for λ1 and MD white matter microstructure measurements (Figure 5.1E and Table

5.1). Conversely, a significant leftward lateralization was found for MWF (T(20) =

−2.5, p = 0.039). After correction for CSF-contamination and differences in tissue-

volume fraction, all asymmetries were preserved (λ1, MD and MWF). Furthermore, a

significant leftward distribution was found for the tissue-volume fraction (Vf) (T(20) =

−2.84, p = 0.0026).

Finally, a significant leftward asymmetry was found in the optic radiation for

the following white matter metrics: λ1, MD and RD (Figure 5.1F and Table 5.1).

After correction for CSF-contamination, some asymmetries were preserved (λ1 and
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MD), while the asymmetry for RD disappeared. Furthermore, a significant rightward

distribution was found for the tissue-volume fraction (Vf ) (T(20) = 3.0, p = 0.0019).

Overall for all the tracts in this study we found no significant differences between

lateralization measurements between tracts corrected and uncorrected for CSF con-

tamination, using a paired t-test. Within each participant, the typical coefficient of

variation in any diffusion-MR-based metric (FA, λ1, RD and MD) along any of the

tracts studied was in the range of 1-8%. For MMPF and MWF, the range was slightly

larger (7-15%).

5.3.2 Asymmetry: Whole brain Tract Based Spatial Statistics

Results from whole brain voxel-wise (TBSS) asymmetry assessments clearly demon-

strate a significant (p < 0.05, threshold-free cluster enhancement (TFCE) corrected,

see Figure 5.2) left lateralization in all metrics along many of the white matter tracts

studied earlier, while both FA and Vf also demonstrate a significant amount of right

lateralization. Comparing voxel-wise to tracts based measures of pathways such as,

AF, Ci, IFO and OpR, demonstrates that both provide evidence for a significant

leftward asymmetry. However, for other tracts such as, UNC and ILF there is little

evidence of asymmetry found within voxel-based measures. Notably, Vf demonstrated

a significant leftward lateralization within frontal and temporal lobe white matter ar-

eas and a significant rightward lateralization within parietal and occipital lobe white

matter. Thus, the data suggest that partial volume contamination due to free water

is significantly different in frontal and posterior areas of the white matter when com-

paring hemispheres using this technique, and may therefore confound assessments of

tracts, particularly of asymmetry in these regions. Treating the voxels showing a

leftward asymmetry in tissue volume fraction, Vf , as ’waypoints’ to filter whole brain

tractography results, led to three major association pathways being reconstructed:

122



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

the uncinate fasciculus (UNC), the inferior fronto-occipital (IFO) fasciculus and the

inferior longitudinal fasciculus (ILF) (Figure 5.3). This has implications when study-

ing these particular tracts, particularly when studying asymmetry or when using the

values in the contralateral hemisphere as a control.
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Figure 5.2: Significant voxel-wise asymmetries in diffusion metrics across the whole
brain (Radiological convention): Results are thresholded at p <0.05, TFCE corrected.
Asymmetries in all white matter metrics are shown: FA, MD, RD, λ1/L1, MWF
and MMPF, along with the asymmetry within the tissue volume fraction (Vf). For
interpretive purposes, the statistical maps are overlaid on the T1-weighted structural
scan in MNI space.
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Figure 5.3: Significant voxel-wise asymmetry (left greater than right) within the tissue
volume fraction (Vf) map (p <0.05) (left) and reconstructed white matter pathways
when a waypoint is drawn around the significant FWC voxels.

5.4 Discussion

In this study we used tract-specific measures and voxel-based tract-based spa-

tial statistics to study interhemispheric asymmetry in white-matter microstructure.

Three main findings resulted from our research. First, white matter pathways such as

the AF, Ci, ILF, OpR and UNC have more than one index that is left lateralized. Sec-

ondly, the non-diffusion metric MWF demonstrated a rightward lateralization within

the UNC, opposite from RD (FA no lateralization was found). That is as myelination

increases there will be an increase in hindrance to diffusion perpendicular to the main

direction, so RD will go down. Finally, the tissue volume fraction was found to be se-

lectively left lateralized in frontal and temporal areas and selectively right lateralized

in parietal and occipital areas using voxel-wise analysis. Consistent with previous

diffusion-MRI based neuroimaging studies (Büchel et al. 2004; Nucifora et al. 2005;

Hagmann et al. 2006; Powell et al. 2006) a left lateralization was observed in our

sample group of twenty-one healthy female adults.
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The association between structural and functional lateralization are reflectant on

differences in language and visuo-spatial processing and handedness. The most widely

investigated tract, in terms of asymmetry, is the arcuate fasiculus (AF) (Ellmore

et al. 2010), which connects cortical regions in the frontal, temporal and parietal

lobes (Catani et al. 2007; Dronkers et al. 2007; Catani and Mesulam 2008). The hor-

izontal portion of the AF runs in close proximity to parts of the superior longitudinal

fasciculus (SLF) (Dejerine 1895), SLF II and III (Kaplan et al. 2010). With current

diffusion-weighted in vivo techniques/methodology one cannot disentangle the three

bundles within this area, thus most AF tracts will include some of the SLF II and

III fibres. The AF is associated with language and asymmetric distribution of white

matter microstructure may indicate increased ’connectivity’ between the frontal and

temporal lobes within the dominant hemisphere to support fluent language processes

(Catani et al. 2007; Dronkers et al. 2007; Rodrigo et al. 2007; Catani and Mesulam

2008). Using a diffusion-based assessment of the AF/SLF in combination with fMRI

(Powell et al. 2006; Vernooij et al. 2007) or cognitive assessment (Lebel and Beaulieu

2009) others have found a relationship between its leftward structural FA asymmetry

and language lateralization. An increase in FA lateralization within the AF/SLF has

been seen during development (Schmithorst et al. 2002; Barnea-Goraly et al. 2005;

Lebel et al. 2008) and the adult population (Lebel and Beaulieu 2009), similarly this

lateralization was seen in white matter density measures using T1-weighted images

(Paus et al. 1999). A leftward asymmetry was seen in many of our white matter met-

rics in the long segment of AF in agreement with previous in vivo DTI-tractography

experiments using either fractional anisotropy or number of streamlines to measure

lateralization (Nucifora et al. 2005; Hagmann et al. 2006; Eluvathingal et al. 2007;

Lebel and Beaulieu 2009) and voxel-based analysis of T1-images (Good et al. 2001).

Notably, in our study we did not find evidence for asymmetry in FA. We note, how-

ever, that we studied a female population and our findings are completely in keeping
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with those of Catani et al.(2007) who reported in their sample that asymmetry was

only found in males.

The cinglulum (Ci) lies above the corpus callosum for a portion of its length

connecting different areas that are part of the limbic system and is associated with

the ability to process information, memory and executive function (Yu et al. 2008).

Our results of a leftward lateralization from tractography of the anterior section of

the cingulum are consistent with other studies that demonstrated lateralization in

FA measurements using tractography (Park et al. 2004; Gong et al. 2005) and voxel-

based statistics (Park et al. 2004). All microstructural metrics was significantly left

lateralized (FA, λ1, MD, MWF and MMPF) but one, with RD being right lateralized.

On the other hand, a previous study demonstrated using the mean FA value along

the entire Ci bundle, that FA appears to be symmetrically distributed (Thiebaut de

Schotten et al. 2011) revealing potential functional differences between the anterior

and posterior sections of the cingulum, in keeping with recent findings of Jones et al.

(2012).

The uncinate fasciculus (UNC) links the anterior temporal lobe to the medial and

lateral orbitofrontal lobe and may be associated with the ability to convey information

about memory and semantic language (Lu et al. 2002; Rodrigo et al. 2007; Govin-

dan et al. 2008). Primate electrophysiological and invasive tract tracing experiments

suggest that the UNC is part of the ventral language pathway (network) (Romanski

et al. 1999). Using DTI a study found that increased mean diffusivity (MD) within

the left UNC relates to verbal memory deficits (McDonald et al. 2008). Furthermore,

using histology the UNC was found to have a rightward asymmetry in size and num-

ber of axons (Highley et al. 2002). We found the tissue volume fraction (Vf ) and

MWF measured here to be significantly leftward lateralized, possibly being a simple

reflection of the fact that Vf and MWF are not direct probes of axon morphology.
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Other techniques, such as AxCaliber and CHARMED (Assaf and Basser 2005; Assaf

et al. 2008), should represent or correlate better to axon measures in vivo.

Through cerebral cortex lesion studies, spatial processing has been shown to be

functionally lateralized on the right (Vallar and Perani 1986). Furthermore, lesions

within parietal lobe lead to neglect, which is the inability to process visual sensory

information in one hemisphere and is more common when lesions occur in the right

hemisphere. A number of tracts have been associated with visuo-spatial processing

and neglect-related disorders, such as the SLF II, ILF and IFO. Visual-spatial per-

formance has been shown to correlate with the degree of right-ward asymmetry of

volume in the SLF II (Thiebaut de Schotten et al. 2011). The ILF has been shown

to be associated with the ability to convey information about objects, faces and writ-

ten words from neuroimaging studies (Mandonnet et al. 2007; Catani and Mesulam

2008; Epelbaum et al. 2008). Structural asymmetric measurements in controls found

that a greater number of tracts reconstructed along the IFO are measured in the

right hemisphere (Thiebaut de Schotten et al. 2011), which may portray a corre-

lation between anatomical asymmetry and hemispheric dominance for visuo-spatial

processing. However, here like in the previous study by de Schotten et al(2011) no

significant lateralization was found within FA or other diffusion metrics for the IFO.

For the ILF, it has been shown that FA within controls is left lateralized (Thiebaut de

Schotten et al. 2011). In our study, however, for the ILF no significant lateralization

within FA was found and left lateralization was only found in λ1, RD and MD. Both

of these results suggest that right-hemispheric asymmetry along the IFO and ILF is

weak or small, unlike the dominance of left-hemispheric language-related processing

(Corballis 1997).

The transfer of visual information to the visual cortex occurs along the optic

radiation (OpR) and structural asymmetry measures from T1-weighted images of

tract volume show a leftward asymmetry within a right-handed females and males
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(Bürgel et al. 1999), while diffusion-weighted measures demonstrated a leftward

asymmetry within tract volume and a right-lateralization within FA measurements -

with no statistical difference between the two genders (Thiebaut de Schotten et al.

2011). Here, using CSD to determine the orientation distribution function (fODF) for

deterministic-tracking instead of tensor-based tracking we did not find a significant

lateralization in FA, MWF or MMPF suggesting that tissue microstructure, in fact,

is symmetrically represented in the visual system in females.

In this study, our voxel-based analyses demonstrated a leftward asymmetry in all

white matter metrics as previously demonstrated in DTI measures (Gong et al. 2005;

Thiebaut de Schotten et al. 2011). Overall, similar results were found between tract

specific and voxel-based asymmetry. In both measurements a leftward asymmetry was

found in the cingulum and arcuate fasciculus, while the other tracts studied (IFO,

ILF, UNC) were not significantly lateralized along the entire tract within voxel-wise

analysis. Using voxel-based analysis, Büchel et al. (2004) demonstrated that FA

was higher within the AF of the hemisphere contralateral to the dominant hand (i.e.

higher on the left for right handers) (Jahanshad et al. 2010). Similar to earlier studies

we found a leftward asymmetry within FA measurements in the AF using voxel-based

statistics (Büchel et al. 2004; Catani et al. 2007).

Interestingly, we demonstrate lateralization within volume fraction (Vf) suggesting

that when comparing diffusion measurements for asymmetry, correction for CSF-

contamination should be applied prior to measurements. We only calculated such an

effect in a young control population and it is expected that this will be an exaggerated

confound in an older population due to atrophy or in diseased populations (Metzler-

Baddeley et al. 2012). To explore which white matter tracts can be affected by

the leftward lateralization seen in frontal areas, waypoint ROIs were placed around

significant leftward-asymmetric regions seen in the tissue volume fraction (Vf ) map

to reconstruct tracts. Three tracts, UNC, IFO and ILF, were reconstructed from
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these ROIs (Figure 5.3). The same leftward asymmetry result was seen within our

tract-specific measures of Vf along the UNC, however our tract-specific measure for

Vf along ILF demonstrated a rightward asymmetry. This discrepancy may be due

to the fact that it was only the anterior portion of the ILF that was more leftward

asymmetric and the posterior portion of the ILF would be more rightward asymmetric

(Figure 5.3).

In addition to our findings based on diffusion-derived metrics, we report, for the

first time, asymmetry measurements within MWF and MMPF. These findings have

high relevance for studies for multiple sclerosis that often compare, say, MWF between

tissue affected by MS lesions and homologous regions in the contralateral hemisphere

(Laule et al. 2004; MacKay et al. 2006). Importantly, if MWF is asymmetric and

one uses two ROIs within separate hemispheres to interpret the difference between

normal-appearing MWF and contralateral healthy tissue there is increased risk of

misinterpretation. The estimated effect size for measuring the differences between a

lesion and its contralateral healthy tissue is high (∼ 0.98) (Laule et al. 2004), while

the effect size for measuring differences between hemispheres is (∼ 0.4) (estimated

from Pearsons correlation r, where r >0.3 is considered to be a medium effect size ac-

cording to (Cohen 1988)). Although the effect size is therefore larger when comparing

differences between a lesion and its contraleral side its comparison should still take

into account the influence of hemispheric differences. The full extent of the influence

of asymmetry ROI based multi-hemispheric measurements on such studies should be

further investigated.

Diffusion MRI tractography is currently the only MRI technique that allows the

identification of large white matter pathways non-invasively. Nonetheless, it is im-

portant to note that diffusion measures are sensitive to differences in multiple tissue

compartments and only an indirect index of tissue properties, and therefore not a

specific measure of tissues biology (e.g.,myelination or axon diameter). Similar asym-
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metric patterns among all white matter pathways and metrics under investigation

were found. Pathways serving functions that are known to be lateralized, such as

the arcuate fasciculus demonstrated a leftward structural lateralization. Interestingly

we found a lateralization with the relative tissue volume fraction measured from

diffusion-weighted images and in myelin water fraction. For tissue volume fraction

maps a rightward lateralization was found in frontal white matter areas and a leftward

lateralization was found in posterior white matter areas. This spatial heterogeneity

of partial volume effects can potentially lead to implications in studies where con-

tralateral hemispheres are used as an internal control regions of interest by either

exacerbate the tissue difference or possibly negating it.
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Chapter 6

Reproducibility in Tract-based Statistics

6.1 Introduction

Studies of non-invasive assessment of tissue microstructure, and how it impacts on

function are becoming increasingly prevalent in the neuroimaging literature (Johansen-

Berg and Rushworth 2009). White matter pathways form connections between corti-

cal regions to form distributed networks. The ability to characterize the microstruc-

ture of these pathways, therefore gaining potential insights into brain connectivity, is

the main focus of diffusion MR research (Jones 2008a; Jones 2010).

The principle underpinning diffusion tensor MRI is that axons within the white

matter (and its subcomponents) create coherent obstacles to diffusion and therefore

an orientational dependency of the apparent diffusion coefficient (Moseley et al. 1990).

Most commonly, this orientational dependence is modeled by a second-rank tensor

assuming a uni-modal Gaussian displacement profile, and a diffusion tensor is fit to

the signals in each voxel (Basser et al. 1994b; Basser and Pierpaoli 1996). In turn,

scalar indices are derived from the tensor (such as the mean diffusivity and fractional

anisotropy (FA) a normalized index of the standard deviation of the eigenvalues that

has a range of 0 - 1 (Basser and Pierpaoli 1996).

Given the fact that diffusion tensor imaging is sensitive to various white matter

structures it has been developed as a tool to investigate white matter pathways. Dif-

fusion properties such as FA and the radial diffusivity (given by the average between
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the two smallest eigenvalues of the tensor,
1

2
(λ2 + λ3)) have been used in a num-

ber of clinical, neuroscience and neurodevelopmental studies (Johansen-Berg et al.

2007). Furthermore, derived white matter pathways from diffusion imaging poten-

tially provide information on the connections between cortical regions or physical

brain connectivity (Mangin et al. 2002; Shimony et al. 2004; Mori and Zhang 2006;

Assaf and Pasternak 2008; Jones 2008a; Bernal and Ardila 2009; Johansen-Berg and

Rushworth 2009; Jones 2010; Li et al. 2011; Zalesky et al. 2012).

A number of group analysis methods have been used, such as region of interest

(ROI)-based approaches, to explore prior hypotheses, and have taken two paths (Cer-

cignani 2010). In one approach, the ROI is drawn manually on a parametric map

and the mean diffusion metric derived from within it. Alternatively, the diffusion

metric of interest is sampled along a white matter pathway reconstructed using trac-

tography (Kanaan et al. 2006; Jones et al. 2005). However, in many neuroscience

studies the researcher does not have a clear prior hypothesis involving specific areas,

or may wish to rule out of the possibility of there being differences in unhypothesized

regions. In such circumstances, a global and exhaustive search of the brain is nec-

essary. This search most frequently takes the form of searching on a voxel-by-voxel

basis, in a family of approaches that we refer to here as voxel-based analysis (VBA).

VBA was originally developed to detect differences in volume / density within white

and grey matter using a T1-weighted scan, when it is called voxel based morphometry

(Ashburner and Friston 2000). In principle, VBA approaches are less susceptible to

operator bias than ROI-based approaches since every voxel in the data set is effec-

tively treated the same.

Prior to a global search, the images need to be registered to a common reference

space to the extent that, post-registration, one assumes that a voxel at a specific

grid location corresponds to the same anatomical structure in all participants. A

challenge for VBA is that imperfect co-registration of participants means that small
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misalignments might cause apparent changes in tissue volume / thickness at a given

location that are not genuinely related to volume / density differences (Ashburner and

Friston 2001; Bookstein 2001; Davatzikos 2004). Nevertheless, carefully designing and

validating the VBA procedure has been shown to provide reasonable results (Watkins

et al. 2002). In contrast to the T1-weighted scans that are used for VBA, which

lack contrast within a particular tissue type (white matter, grey matter) - largely

on account of small differences in the inherent relaxation time constants, parametric

maps derived from diffusion tensor MRI, such as FA, are extremely heterogeneous with

many boundaries in the image (Basser and Pierpaoli 1996). Small misalignments will

therefore have a larger effect on VBA results with FA data than with T1-weighted data.

The standard VBA pipeline incorporates the use of smoothing kernels, introduced (in

part) to ameliorate the impact of imperfect registration. However, due to the Matched

Filter Theorem (Rosenfeld and Kak 1982), the width of the smoothing kernel can

dramatically change the VBA results, not just the spatial extent of group differences

but also their spatial location (Jones et al. 2005). Furthermore, if the inter-subject

variance in the parameter of interest is non-uniform across the image, the effect of

smoothing is to shift the true location of any between-group difference towards the

region of lower variance - and this shift increases with the size of the smoothing kernel

(Jones and Cercignani 2010). To overcome these concerns over smoothing ’skeleton-

projection’ was introduced for voxel based analysis of diffusion MRI parametric maps

(Smith et al. 2006; Smith et al. 2007), which requires no smoothing step.

Tract based spatial statistics (TBSS) (Smith et al. 2006) combines the ’skeleton-

projection’ method with non-parametric statistical inference based on threshold-free

cluster enhancement (TFCE, (Smith and Nichols 2009)) and has rapidly become the

most widely used voxel-based technique for analyzing diffusion MRI data. More than

a hundred papers have been published using TBSS (search term=’TBSS’ in PubMed),

which has been designed for easy use for the end-user with an automated pipeline,
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and no need to choose a smoothing kernel (Smith et al. 2006). Briefly, the pipeline

starts by registering the images to a common reference space using a high-dimensional

non-linear warp. Any residual misalignment is catered for by the skeleton-projection

approach. First, the average map (averaged across the population) is eroded so only

peak FA values one or two voxels thick produce a skeleton. To populate the skeleton,

the algorithm searches perpendicularly for the voxel with the highest anisotropy -

which is assumed to represent the centre of the tract - and this value is projected

on to the skeleton. This step obviates the need for a smoothing kernel to correct for

any residual misalignments. Once the skeleton is populated, statistical inferences are

made at the cluster level using non-parametric testing (Smith et al. 2006).

There has been a growing number of voxel-based analysis studies of the relation-

ship between white matter microstructure and task performance in behavioural tasks

(Johansen-Berg et al. 2004; Madden et al. 2004; Bengtsson et al. 2005; Deutsch et al.

2005; Schulte et al. 2005; Tuch et al. 2005; Wolbers et al. 2006; Johansen-Berg et al.

2007; Flöel et al. 2009) or age-related changes in task performance (Kennedy and Raz

2009; Johansen-Berg 2010). In this work we investigate the stability (reproducibility)

of inferences drawn from skeleton-projection based analyses of task-performance ver-

sus tissue microstructure correlations and also of the assessment of inter-hemispheric

asymmetry of DTI metrics. Specifically, we examine the sensitivity of the result to

the exact membership of the group of healthy participants drawn randomly from the

same population.

To study the stability of inferences drawn from microstructure-task performance

correlations, three behavioural tasks that have previously been shown to correlate

with white matter were used:

1. Choice Reaction Time (CRT): Reaction time varies among individuals due to

differences in information processing speed. Tuch et al. (2005) previously
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showed that CRT within twelve participants (4 Male; mean 23.2y) positively

correlates with FA in projection and association pathways, concluding that in-

dividual differences in CRT can be explained by individual differences in white

matter microstructure within the visuospatial attention network.

2. Mental Rotation (MR): This task looks at the ability to image spatial trans-

formations and differences within the visual-spatial pathway. It is therefore

reasonable to hypothesize that tissue microstructure in the visual spatial path-

way would correlate with task performance. Wolbers et al. (2006) used this

task with sixteen healthy male volunteers (19-29 years) and found a positive

correlation between FA and task performance in the white matter underlying

the anterior part of the intraparietal sulcus that is known to be important for

visuospatial processing.

3. Intelligence quotient (IQ): The intelligence quotient is commonly used in many

developmental (Schmithorst et al. 2005; Clayden et al. 2012), clinical (Yu

et al. 2008) and more recently genetic (Chiang et al. 2009; Chiang et al.

2011) performance-microstructure correlation studies. Positive correlation has

previously been found between FA and task performance within the frontal and

occipito-parietal areas ( (Schmithorst et al. 2005) N=47) and the right uncinate

fasciculus (Yu et al. 2008).

Having studied the reproducibility of TBSS results when correlating microstruc-

tural indices with task-performance on the three tasks highlighted above, we then

study the reproducibility of results when using TBSS to assess inter-hemispheric

asymmetry of microstructural indices.
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6.2 Material and Methods

6.2.1 Participants

Across twenty-six TBSS-based studies of microstructure-task performance corre-

lations published in the literature, the median participant-sample size is 21 (range

12-93), which dictated the sample size used in the present study. A total of twenty-

four healthy right-handed female participants (age= 31.1± 6.7) were included in this

study. Informed consent was obtained prior to scanning and the study was performed

with ethics approval from the ethics review board at our institution.

6.2.2 MR Imaging acquisition

MRI data were acquired on a 3 T General Electric HDx MRI system (GE Medical

Systems, Milwaukee, WI) with an eight channel receive coil (Medical Devices) using a

peripherally gated twice-refocused spin-echo EPI diffusion-weighted acquisition. The

diffusion-weighted protocol consisted of: sixty axial slices, with effective TR = 20/15

R-R intervals; effective TE = 87ms; acquisition matrix = 96x96; slice thickness =

2.4 mm; FOV of 230 mm; b-value = 1200 s/mm2 along 60 isotropically distributed

gradient directions (Jones et al. 1999); six non-diffusion weighted images; ASSET

factor = 2 (Jones and Leemans 2011); total acquisition time = 30 minutes.

6.2.3 Diffusion Data Pre-Processing

Diffusion-weighed images were corrected for participant motion and global geo-

metric distortions using an affine (12 degrees of freedom) coregistration technique

using mutual information as the cost-function to normalize the diffusion-weighted

images to the first non-diffusion weighted volume. This was followed by appropri-
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ate re-orientation of the diffusion encoding vectors (Jones and Leemans 2011) and

modulation of the signal intensity by the determinant of the Jacobian of the trans-

formation (Jones and Cercignani 2010) in ExploreDTI (Leemans et al. 2009). The

diffusion-weighted data were modeled with a single tensor (Basser et al. 1994b) using

a non-linear least squares estimation to obtain quantitative scalar indices including

fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ1) and radial

diffusivity (RD).

6.2.4 Behavioural Data Acquisition

Each of the three behavioral tests: choice reaction time (CRT), mental rotation

(MR) and IQ were performed on each participant prior to their MR session in a quiet

room with a trained psychologist and are described in more detail below:

CRT Paradigm

The CRT paradigm used within this experiment was based on Tuch’s CRT experiment

(Tuch et al. 2005). Briefly, four white horizontally arranged squares were presented

on a black background and the participant responded to one of the squares, which

changed colour, by pressing the corresponding button with the dominant hand on a

response pad, as quickly and accurately as possible for a total of six blocks of 72 trials

(total 432 trials). The average reaction time for each participant was recorded.

Mental Rotation Paradigm

Mental rotation ability was evaluated via the paradigm used by Peters et al. (1995),

which sets a time limit for responses. Briefly, participants must correctly identify

which two of four stimuli are rotations of the target for a subset of twelve targets

during a three-minute period. Following a four-minute break, the test is repeated
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for another set of twelve targets. A score of ”1” for each target is given when both

choices are correct, yielding a maximum possible score of 24.

IQ Paradigm

IQ measurements were based on the Cattell Culture-Fair III Test of Nonverbal In-

telligence (Scale 2, form A) (Cattell 1973), which was based on fluid and crystallized

intelligence factors (Cattell 1963). The test consists of four timed problem sets (series

completions, odd-one outs, matrices, topological relations). Each of the four subcom-

ponents were run consecutively with no breaks with progressing difficulty each running

three, four, three and two-and-half minutes, respectively.

6.2.5 Behavioural Data Pre-processing and Statistical Analysis

Behavioural measurements were inspected for outliers initially using a boxplot.

The relationship between behavioural scores and DTI metrics was assessed on the

skeletonised data by linear regression analysis using TBSS.

6.2.6 Assessment of the stability of TBSS Results

Stability was assessed using a bootstrap / jackknife technique where a ’leave 4

out’ procedure was used for the 24 participants. For each of 100 iterations, a unique

set of 4 participants was randomly eliminated from the total of 24, and the TBSS

analysis run on the remaining 20 participants.

For performance correlation analysis three separate procedures were carried out,

each containing 100 iterations. In first, labeled A, the ’traditional’ or most com-

mon study-specific skeletonisation-projection procedure was performed for all diffu-

sion metrics on the subsample of 20 participants for all 100 iterations. The second,

labeled B, was carried out to eliminate any variance caused by the skeletonisation
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itself, whereby the skeletonisation procedure was performed only once by deriving

the mean FA from all 24 participants to acquire a single, and common study-specific

skeleton to use on separate iterations. The third, labeled C, was carried out on a pre-

defined ’FMRIB58 FA’ mean FA and skeleton for all iterations. For all 3 pipelines,

the following standard steps in the TBSS pipeline were carried out: (1) the mean

FA map was thresholded to FA > 0.2 to exclude the peripheral pathways which have

higher inter-participant variability (2) for each participant their ”centre” of a tract

was projected onto the skeleton (3) Voxel-wise statistics for behaviour-microstructure

correlations were obtained through permutation-based non-parametric inference using

randomize (Nichols and Holmes 2002) (1000 permutations) with threshold free clus-

ter enhancement (TFCE) (Smith and Nichols 2009) for each index. Correlations were

considered significant if the p-value < 0.05 after correction for multiple comparisons.

Voxel-wise statistics for inter-hemispheric asymmetry were computed using a one-

sample t-test on the symmetric-skeletonised mean. The following steps were carried

out: (1) the average mean FA is reflected about the midline to produce a sym-

metrised mean-FA (2) this map is then skeletonised (3) the skeleton is masked from a

dilated version of the skeleton produced in the original full-brain skeletonisation (4)

steps (1)-(3) are repeated, flipping and masking the non-flipped version, followed by

thresholding to creating the final thresholded symmetrised skeleton.

The final results yielded 100 TBSS results for both behaviour-microstructure cor-

relations and interhemispheric asymmetry analysis.

6.2.7 Cross Correlation

To assist in visualization of the similarity / heterogeneity of results, the skele-

tonised and threshold t-statistic maps for a given slice location were binarized and

collapsed into a single vector comprising zeros (not significant) or ones (significant be-
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havioural correlation / asymmetry). For each DTI metric, and for each TBSS analysis

performed, for a given slice location, a cross-correlation (CC) matrix for vectors con-

taining at least one significant voxel was computed. (Note, the resulting CC-matrices

had different sizes for different metrics /different tasks, dependent on the number

of significant voxels within each of the 100 vectors). Each resulting CC-matrix was

then re-ordered using the Fiedler vector of the normalized Laplacian formed from this

CC-matrix (Barnard et al. 1993) (See Figure 6.1 for an example). This step was per-

formed to assist in finding similarities (adjacent entries in the re-ordered CC-matrix)

and dissimilarities (entries that are far apart in the re-ordered CC-matrix) within the

TBSS results.

Figure 6.1: An example of a CC-matrix before (left) and after (right) being re-
ordered using the Fiedler vector of the normalized Laplacian. This step was performed
to assist in finding similarities (adjacent entries in the re-ordered CC-matrix) and
dissimilarities (entries that are far apart in the re-ordered CC-matrix) within the
TBSS results.

6.2.8 Plotting Frequency and Confidence Intervals

To visualize the reproducibility of the TBSS result, we map the frequency with

which a given voxel reaches significance (p < 0.05 after correction for multiple com-

parisons) over the 100 iterations. However, while this provides a picture of how likely
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the two variables under investigation are actually correlated in the general popula-

tion, it does not tell us how strong that correlation is. Confidence intervals indicate

the range of possible effect sizes compatible with the acquired data. Furthermore, the

greater the variance within the dataset the larger the confidence interval and hence

less precise estimates of the parameter. Confidence intervals of 95% were estimated

and mapped from the 2.5th and 97.5th quantiles derived from the t-statistic calculated

for the 100 bootstraps. To provide a rough indication of the effect size of the corre-

lation under investigation the width of the confidence interval and the lower bound

of the confidence interval is mapped. To aid in visualization, voxels in which the

confidence interval overlapped zero were set to zero

6.3 Results

6.3.1 Behavioural Measures

Figure 6.2 shows the boxplots for all three behavioural measures: CRT, IQ and

MR. These results suggest that there is large inter-individual variability in the behav-

ioral measures, where IQ appears to have the largest variability and CRT is skewed

towards smaller reaction times. From the box-plot, it appears that three participants

are outliers within the CRT experiment.

6.3.2 Performance-Microstructure Stability Measures

The bootstrapping procedure reveals a large variability of results when correlating

task-performance with diffusion metrics and this is despite the fact that the group

of 20 participants in each iteration was drawn from the same pool of 24 participants

(Figures 6.5, 6.7 and 6.9). Regardless of the skeleton-projection procedure taken for
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Figure 6.2: Boxplots showing the behavioural values for A) CRT B) IQ C) MR.
The red line indicates the median value, the box the interquartile range (3 percentile
values: 25,50,75) and the whiskers the extreme values. Red crosses indicate extreme
values.

correlation analysis, the large variability between iterations is still present (Figures

6.5, 6.7 and 6.9). Thus, potential variance from differences in the skeleton used has

minimal impact on the variability between iterations. Figure 6.3 shows the differ-

ences between skeletons among iterations for all three pipelines. Each of the three

behavioural-microstructure correlations is described in more detail below.

�

���

��
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Figure 6.3: Percent overlap or similiarity between mean-skeletons across the 100 itera-
tions. A) Pipeline A: traditional subject-specific skeletonisation-projection procedure
applied to all iterations B) Pipeline B: using the same registration and skeletonisa-
tion for all iterations within a subject-specific skeletonisation-projection procedure
C) Pipeline C: using a predefined-skeleton for skeletonisation-projection procedure.

6.3.3 Choice Reaction Time-Architecture Stability Measures
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Figure 6.4: For a given slice, the frequency (f) of significant FA-CRT,λ1/L1-CRT,
MD-CRT and RD-CRT correlations in a voxel, where +/- represent if the correlation
was positively or negatively correlated. To visualise the effect size the width of the
confidence intervals (wCi) for FA-CRT, L1-CRT, RD-CRT and RD-CRT correlations
for a given slice location are shown.

Figure 6.4 shows, in each voxel, the frequency with which a significant correlation

between CRT and microstructure was found for a given slice, and shows that the

results are highly variable. In the majority of the white matter skeleton voxels, there

was a significant correlation for MD-CRT or RD-CRT on at least one of the 100

iterations. However, in these voxels, the exact number of times that a significant

correlation was found to vary between 1 and 85% of the time. Similarly, in voxels

where at least one iteration yielded a significant FA-CRT and/or λ1-CRT correlation,

the frequency of a significant correlation varied between 1 and 30%. Importantly, in

the majority of voxels where a significant correlation between FA and CRT or λ1 and

CRT was found at least once, the total number of times a significant result was found

in that voxel was less than 50% (i.e., less than chance). In contrast, in voxels yielding

at least one significant correlation between MD and CRT and between RD and CRT,

the majority (especially within the main white matter pathways) were significant on

more than 50% of the iterations. FA was positively correlated with CRT, while λ1,

MD and RD were all negatively correlated with CRT. It is worthy of note that for
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FA, MD and RD, the structures in which correlations are found most frequently are

the optic radiations, which is in keeping with the result of (Tuch et al. 2005). Those

areas that do not overlap with Tuch et al.’s findings (e.g. in the frontal white matter)

are observed with far lower frequency.
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Figure 6.5: For a given slice the CRT-RD cross-correlations for each pipeline (A)
subject-specific skeletonisation-projection procedure applied to all iterations (first
row) (B) using the same registration and skeletonisation for all iterations within
a subject-specific skeletonisation projection procedure (second row) (C) using a
predefined-skeleton for the skeletonisation-projection procedure (third row). The
cross-correlation matrices for CRT-RD correlations of the vectorized voxels from each
iteration, where non-significant iterations were set to zero, were re-ordered for the
slice location shown (left). From the re-oredered CC-matrix iterations were selected
where borders appear to demonstrate disparate results (right).

Figure 6.5 shows an example of the wide array of results obtained when correlating

CRT with RD. The cross-correlation of the results from the 100 iterations reveals a
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large heterogeneity in the results, and selecting iterations from the first and last

few rows from the sorted CC-matrix shows just how different the results can be.

Again, using CRT-RD correlations as an example, the effect size for this correlation

is visualized in Figure 6.4 (where the width of the confidence interval and the lower

bound are mapped), for a given slice location. Clearly, looking at the CRT-RD

correlations one can see as the frequency of getting a significant result increases

(Figure 6.4, from p-values) the more confident we are that a relationship exists (Figure

6.4, from confidence intervals).

6.3.4 Mental Rotation-Architecture Stability Measures
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Figure 6.6: For a given slice, the frequency (f) of significant FA-MR, 1/L1-MR,
MD-MR and RD-MR correlations in a voxel, where +/- represent if the correlation
was positively or negatively correlated.To visualise the effect size the width of the
confidence intervals (wCi) for FA-MR, L1-MR, RD-MR and RD-MR correlations for
a given slice location are shown.

Figures 6.6 and 6.7 demonstrate the wide array of results obtained from MR-

microstructure correlations. For the majority of the white matter skeleton voxels at

least one iteration yield a significant correlation for MD-MR or RD-MR among the

100 iterations. Nevertheless, the exact number of times that a significant correlation

145



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

was found varied between 1-70% (Figure 6.6) and was very heterogeneous across the

skeleton. Likewise, where at least one iteration yielded a significant FA-MR and λ1-

MR correlation was found to vary between 1 and 30%. Furthermore, the confidence

interval (Figure 6.6) indicates there is a large variance within the parameters across

the skeleton, thus a large range of effect sizes and a low confidence that a relationship

actually exits. FA was negatively correlated with MR, while λ1, MD and RD were

positively correlated with MR. Figure 6.7 shows an example of the wide array of

results obtained when correlating MR with FA and RD. The cross-correlation of the

results from the 100 iterations reveals a large heterogeneity in the results.

6.3.5 IQ-Architecture Stability Measures

Figure 6.8 and 6.9 shows the stability of IQ-RD correlations. For voxels in the

white matter skeleton in which at least one iteration yield a significant correlation,

the frequency with a significant FA-IQ, λ1-IQ, MD-IQ and RD-IQ ranged from 1-

30% (Figure 6.8). FA was negatively correlated with IQ, while λ1, MD and RD were

positively correlated with IQ. Furthermore, no major differences between pipelines

A, B and C can be seen and the variability among white matter structures was fairly

consistent between the three pipelines (Figure 6.9). Using IQ-RD correlation as an

example, effect size can be visualized in Figure 6.8, for a given slice.

6.3.6 Stability of Microstructural-Asymmetry Measures

The results from inter-hemispheric asymmetry analysis were found to be far more

stable (in terms of sensitivity to group membership), than assessment of structure-

performance correlations. Figure 6.10A shows results for FA, and even when selecting

iterations from the top, mid or bottom of the sorted cross-correlation matrix, the re-

sults are largely consistent, with little variation along the skeleton. Similar results
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Figure 6.7: For a given slice the MR-FA (left) and MR-RD (right) cross-correlations
for each pipeline (A) subject-specific skeletonisation-projection procedure applied to
all iterations (first row) (B) using the same registration and skeletonisation for all
iterations within a subject-specific skeletonisation projection procedure (second row)
(C) using a predifined-skeleton for skeletonisation-projection procedure (third row).
The cross-correlation matrices of the vectorized voxels from each iteration, where
non-significant iterations were set to zero, were re-ordered for the slice location shown
(left). From the re-ordered CC-matrix iterations were selected where borders appear
to demonstrate disparate results (right).
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Figure 6.8: For a given slice, the frequency (f) of significant FA-IQ, λ1/L1-IQ, MD-IQ
and RD-IQ correlations in a voxel, where +/- represent if the correlation was posi-
tively or negatively correlated.To visualise the effect size the width of the confidence
intervals (wCi) for FA-IQ, L1-IQ, RD-IQ and RD-IQ correlations for a given slice
location are shown.

can be seen for the comparison of asymmetry in λ1, MD and RD, where the same

voxels showing significant asymmetry are found in most of the 100 iterations (Figure

6.10 B, C and D). For voxels showing a significant asymmetry effect in at least one

iteration, the frequency with which an asymmetry effect was found ranges between 1

and 100% (Figure 6.11). The findings tend to be more consistent along major white

matter pathways, but become less homogenous towards the brain periphery. Impor-

tantly, looking at the inter-hemispheric asymmetric results one can see its increased

stability and as the frequency of getting a significant result increases (Figure 6.11,

p-values) the confidence of the relationship existing also increases (Figure 6.12, from

confidence intervals).
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Figure 6.9: For a given slice the IQ-RD cross-correlations for each pipeline (A)
subject-specific skeletonisation-projection procedure applied to all iterations (first
row) (B) using the same registration and skeletonisation for all iterations within
a subject-specific skeletonisation projection procedure (second row) (C) using a
predifined-skeleton for skeletonisation-projection procedure (third row). The cross-
correlation matrices for IQ-RD correlations of the vectorized voxels from each iter-
ation, where non-significant iterations were set to zero, were re-ordered for the slice
location shown (left). From the re-oredered CC-matrix iterations were selected where
borders appear to demonstrate disparate results (right).
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Figure 6.10: For a given slice location the cross-correlations across the 100 interations
for symmetric measurements (A) FA (B) L1 (C) MD (D) RD. The re-ordered cross-
correlation matrices for SYM correlations of the vectorized voxels from each iteration,
where non-significant iterations were set to zero, were re-ordered for the slice location
are shown (left). From the re-oredered CC-matrix three iterations were selected where
borders appear to homologous results (right).
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Figure 6.11: For a given slice, the frequency (f) of significant FA-SYM, λ1/L1-SYM,
MD-SYM and RD-SYM correlations in a voxel.

150



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

�

�� �� �� ��

���

	

�
�

��
�

�

	

�
�

Figure 6.12: To visualise the effect size for the interhemispheric asymmetries the width
of the confidence intervals (wCi) and the lower bound of the confidence interval (CiL)
for SYM-FA, SYM-L1, SYM-RD and SYM-RD correlations for a given slice location,
where confidence intervals that cross zero were set to zero.

6.4 Discussion

This study makes two main observations:

1. Despite the use of randomization testing procedures, TBSS results can be rather

unstable when performing structure-performance correlation studies, showing a

high sensitivity to the exact sample of participants used in the test.

2. Assessment of asymmetry using TBSS seems to be much less susceptible to this

effect.

The boxplot of CRT emphasizes the variance within this measure. A number

of factors can contribute to this variance (e.g. inattentiveness) while others are as-

sumed to be negligible (i.e. fatigue or sequential effects (Thornton and Gilden 2005)).

However, any extreme values should be further investigated before being labeled as

outliers, as they often contain valuable information about the biological process un-

der investigation or the data-gathering process. If such values are due to a biological

process they can change the meaning of results if eliminated, especially if differences

151



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

in scores from individual may be explained by their white matter microstructure.

Correlation results from Tuch et al. (2005) demonstrated that individual differences

in CRT are related to individual differences in tissue microstructure (FA measures).

Here, our ’extreme’ values within the CRT paradigm are actually within the same

range as the previously published data (Tuch et al. 2005). Thus, eliminating these

values may not be justified and may have profound effects on interpretation. The

main difference between the study of Tuch et al. (2005) and the present study is that

majority of our participants had lower CRT measures (median CRT in our study=

399.8±65.7 ms, median CRT in Tuchs study 447±62.7 ms). A positive skew in reac-

tion time distribution is a well-known phenomenon since there is a lower biophysical

limit to how fast participants can respond, but not an upper one (Luce 1986). Im-

portantly, skewed reaction time data cannot be tested using parametric tests without

transforming the data, thus in such cases the non-parametric TBSS procedure is ideal.

The choice reaction time task is known to evoke visual attention network and

has been shown the correlate with diffusion indices (Tuch et al. 2005). Here, using

TBSS the frequency with which a significant CRT-RD correlation was found to vary

significantly across anatomical locations depending on the iteration you are looking at

(Figure 6.5). For example, correlations between CRT-RD one can see that from the

reordered graph some iterations demonstrate a wide range of significant voxels and

others only show the left or right occipital lobe. Importantly, if the results can vary

to this degree by only changing a few participants it can have profound implications

on the generalization of such correlations to the wider population. For this reason

maps, such as frequency or confidence intervals, are useful in interpreting how large

the effect is and how much confidence can be placed in a correlation actually existing.

The mental rotation task is also known to involve a number of different cortical

structures, such as those within the posterior parietal subdivision. Through both

human and monkey experiments (Andersen et al. 1997; Grefkes and Fink 2005)
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these areas are known to process external objects and imagined motion in two or

three-dimensional space. Variations between participants’ ability to perceive spatial

transformation of an object is due to differences within the ability to transfer infor-

mation between necessary brain structures and it is reasonable to hypothesize that

task performance might depend on the white matter pathways that connect these

areas. Wolbers et al. (2006) found that FA within the intraparietal sulcus correlated

positively with the ability to mentally rotate objects. Furthermore, in a recent review

it was noted that white matter pathways that connect the parietal and frontal lobes

are important in spatial attention (Doricchi et al. 2008). It is important to note from

Figure 6.7 that the anatomical location where a significant correlation appears varies

quite a bit across different iterations. For example, correlations between MR-RD one

can see that from the reordered graph that the first volume has significance only in

the frontal cortex and the last volume from the reordered matrix shows significance

only in the occipital lobe.

The frequency with which a significant IQ-RD correlation was found was quite

low (Figure 6.8), with only 19% of the bootstrapped iterations producing a signifi-

cant correlation in any voxel, and the voxels showing significant correlations being

heterogeneously distributed across the iterations. For example, some iterations only

have significant voxels within the frontal cortex while others only have significant vox-

els in the occipital lobe. There has been a number of studies correlating intelligence

quotient and total brain volumes, finding a positive correlation (e.g. Andreasen et al.

(1993), who studied 67 participants, and Witelson et al. (2006) who studied 100

participants postmortem). In addition, VBM studies find correlations between IQ

and structural measures in various brain regions: within grey matter correlations in

frontal, parietal, temporal and occipital cortex (Haier et al. 2004; Colom et al. 2006)

and white matter correlations in parietal fibre tracts (Haier et al. 2004). Thus, there

is converging evidence that IQ is dependent on a number of higher cognitive brain
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areas involved in language, memory and attention, which highlights how essential the

connections between different brain structures are. Looking into the connections or

the white matter pathways between these areas may help us understand individual

differences in IQ within the healthy adult population. Another study using voxel-

wise correlations of FA with IQ (using statistical parametric mapping (Friston 1995))

found a positive correlation between FA and IQ in frontal and occipito-parietal white-

matter areas within a healthy pediatric population ((Schmithorst et al. 2005) N=47).

However, within our own TBSS analysis we found negative correlations between FA

and IQ, while the other DTI indices were positively correlated.

Our study revealed other unexpected correlations, such as the positive correlation

seen between CRT and FA (i.e., the higher the anisotropy, the longer the reaction

time) which replicates the earlier finding of Tuch et al. (2005). This is, perhaps,

counter-intuitive and one might predict that higher FA means better task perfor-

mance. However, this is only the case if there is a single fibre population in the voxel.

In cases where there are multiple fibre populations, one may find increased FA in

disease (e.g. (Douaud et al. 2011)).

These apparently anomalous findings may simply reflect the fact that we do not

really understand exactly what FA is sensitive to, or rather, what substructure in the

white matter is most responsible for differences in performance on a given task. DTI

metrics such as FA, are very non-specific, and can change in response to differences in

axon morphology (diameter, packing, orientational dispersion), the degree of myeli-

nation, and the intravoxel orientational coherence of the constituent microstructure

(Beaulieu and Allen 1994b). If we were to assume that correlation between be-

havioural measures and task performance was due to differences in myelin thickness,

one may expect or predict a negative correlation between reaction times from the

CRT experiment and FA, meaning that an increase in myelin thickness increases FA

and in turn increases the conduction velocity along the relevant pathways resulting

154



Ph.D. Thesis ––––––––––––– Sonya Bells ––––––––––––– Cardiff University - Psychology ––––––––––––– 2012

in faster reaction times. Contradictorily, the CRT-FA correlations within this exper-

iment were, however, found to be positive, which was also reported by Tuch et al.

(2005). This result might be explained by differences in intravoxel orientational dis-

persion, or in axon diameter distribution, axon packing, or some other factor, the

point being that FA cannot distinguish between them. Here, measures of microstruc-

ture that are more selectively specific to white matter sub-components such as myelin

or axon diameter, for example, may provide a better measure to correlate microstruc-

ture to performance.

The complete network of white matter pathways involved in the specific be-

havioural tasks used in this study is unknown, as is the case for almost any function of

the brain. Thus the desire for a robust global- voxel-based search for correlation be-

tween performance-microstructure correlations is understandable. The introduction

of skeleton-based projection based methods, as in TBSS, is most certainly an improve-

ment on the original voxel-based analysis methods that were developed primarily for

the analysis of T1-weighted structural image data. However, the effective power or

the number of participants needed to robustly identify a correlation between tissue

microstructure and task performance is unknown. Recently, it was demonstrated that

the power to detect group differences in a white matter structure using TBSS is de-

pendent on the location and orientation of that tract (Edden and Jones 2011). It was

also found that the inter-subject variance in FA across the skeleton was extremely

heterogeneous. Moreover, the orientation of skeletonised white matter in relation to

the imaging matrix alters the thickness of the skeleton, thus impacting the number

of voxels in the local neighbourhood that can contribute to the evidence of a cluster

in cluster-based statistical inference (Edden and Jones 2011). This can have a ma-

jor affect on detection differences between different white matter pathways and their

correlation with behavioural measurements in tract-based statistics analysis.
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In this study, we illustrate an additional concern within TBSS analysis: the low

stability of performance-microstructure correlations as seen in all three of our be-

havioural tasks. Specifically we found low reproducibility of results among 100 re-

samples of 20 participants (total 24 participants, leave out four). We are confident

that this variability or low stability is attributed to the analysis of the correlation

data since the variability among task performance and micro-structure correlations

were very similar between the three pipelines (A,B and C): one where registration

was performed for each iteration, the second registration and skeletonisation was per-

formed once for all 24 participants and the third a predefined skeleton was used.

In addition: (1) among most voxel-based studies in the literature the median num-

ber of participants is 21 (average = 25, std 17); (2) most studies do not report on

the confidence intervals or effect size of these performance-microstructure correla-

tions. It is well known through fMRI behavioural group analysis that significant

results will vary depending on your sample pool especially within small sample sizes

(Murphy and Garavan 2004). Here, instead of removing a specific participant to im-

prove homogeneity we randomly did a leave out 4 approach to assess the reliability

of performance-microstructure correlations by producing frequency or confidence in-

terval maps. However, to reduce the vulnerability to inhomogeneites even more it

is suggested to do a leave out 1 approach, particularity in small group sizes (<20)

(Wilke 2012). That being said the number of participants or initial group member-

ship needed to produce a stable result needs to be further explored (See Murphy and

Garavan (2004) for work in fMRI).

The variability in the correlations found over the 100 bootstraps iterations clearly

demonstrates the need to report confidence intervals or the frequency of a significant

result. Others that have gone beyond just reporting p-values from correlations have

done so in fMRI (Friston and Penny 2003). Recently, Wilke (2012) used a resampling

technique to produce a group percent overlap map for fMRI group analysis similar to
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our frequency maps. Until our study most performance-microstructure correlations

have not reported confidence intervals or frequency plots, most likely because re-

sampling techniques are heavily computer intensive. That being said, the likelihood

of getting a significant result could be overestimated and not reporting confidence

intervals, which indicates the size of the effect, can lead to misinterpretations. Im-

portantly, not reporting confidence intervals in under-powered studies, such as small

sample sizes, when the magnitude of the effect is less than 20% of the standard de-

viation of the noise or when number of comparisons are large as in voxel based MRI

analysis, will lead to overestimating effect size due to larger confidence intervals (Gel-

man and Weakllem 2009; Vul et al. 2009; Cohen 1988). Naturally, for under-powered

studies most effects are not detected and sometimes one is fortunate to measure a

significant effect, which is most likely to be much larger than the true effect. Although

it is possible to observe a significant correlation between FA and MR in a few of the

bootstrap iterations, examination of the confidence interval maps suggest that the

effect size is too small to be able to generalize to the population. On the other hand,

both CRT and IQ demonstrate that the measured effect size is large enough, in the

slice studied, to conclude that there is a relationship between CRT-RD and IQ-RD

that can be generalized to the population. Conversely, interhemispheric asymmetry

measures demonstrate small/narrow confidence interval widths and thus a small range

of effect sizes across all microstructural measures and our results demonstrate that a

higher confidence can be placed in finding a real asymmetry within the generalized

population.

With the increased use of push-button operation software, that provides a cor-

rection for multiple comparisons, many users will regard the result of a significant

correlation as a reliable result that can be extended to the general population. Our

findings that such results are not generalizable and are, in fact, very sensitive to

the exact group membership, is extremely worrying. Importantly, we showed using a
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resampling method that for three different behavioural measures the stability for a lit-

erature median number of participants (N=21) was low. Thus, based on these finding,

adoption of TBSS for microstructure-performance correlation may be premature until

such time as robust analysis of the number of participants needed for reliable results

has been conducted. Although we have no gold standard against which to validate

the accuracy of asymmetry measures, it appears that TBSS provides far more repro-

ducible (i.e., precise) estimates of interhemispheric asymmetries than of performance-

microstructure correlations. Furthermore, if our recommended approach of present-

ing confidence interval maps alongside the usual results is adopted, the reporting

of results in such studies would be more cautious, and perhaps even unimportant /

ungeneralizable results would not be reported. Continued efforts in estimating the ex-

act number of participants to produce stable results with performance-microstructure

correlations through the establishment of confidence interval maps, together with the

adoption of more specific white matter markers (as myelin and axon specific indices),

will help us to understand more about the apparently anomalous relationships seen

here, such as that positive correlation between FA and CRT and give better under-

standing in general of the relationship between task performance and white matter

microstructure.
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Summary of Contributions and Future
Work

This thesis has combined novel imaging methods in a unique multi-modal approach

called Tractometry. Tractometry permits simultaneous quantitative assessment of different

microstructural attributes, such as metrics of quantitative mangetisation transfer (qMT),

multi-component relaxometry and advanced models of diffusion (CHARMED) along specific

pathways. The major contributions of this work are summarized below along with directions

for future research.

Short synopsis and Contributions/Implications

The relationship between structure and function is a recurring theme throughout neu-

roscience. Functional connections within the brain grey matter depend on physical con-

nections formed by the white matter. The white matter is formed from tubular-axons, of

varying diameter, wrapped in a fatty insulating layer of myelin. The axons form distinct

bundles, or tracts, that connect different brain regions. The axon diameter and myelin

thickness are optimised for efficient information transfer, and individual differences in these

parameters (due to development, genetic, and/or pathological influences) may explain dif-

ferences in brain function, behaviour or disease symptomatology.

To date nearly all imaging studies of white matter microstructure have used diffu-

sion tensor MRI (DT-MRI). Fractional anisotropy (FA) mapping from DT-MRI has been

routinely used, and changes in FA are often interpreted as a change in integrity and/or

connectivity. There are many studies that correlate behavioural/cognitive tests with FA

(e.g. Johansen-Berg et al. 2004; Madden et al. 2004; Bengtsson et al. 2005; Deutsch

et al. 2005; Schulte et al. 2005; Tuch et al. 2005; Wolbers et al. 2006; Johansen-Berg

et al. 2007; Flöel et al. 2009) and show that FA changes over years/months (Bengtsson

et al. 2005; Scholz et al. 2009), sometimes being interpreted as showing changes in myeli-

nation. However, many of these studies have observed counter-intuitive results such as

increased reaction time associated with an increase in FA (Tuch et al. 2005 and Chapter

6). As outlined elsewhere (Beaulieu and Allen 1994b; Beaulieu 2002) DT-MRI is sensitive
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to both interesting properties of white matter (axon density, axon diameter, myelination),

and less interesting properties (dispersion of axon orientation within the voxel). However,

it is impossible to disentangle which property or properties of white matter are changing

from the DT-MRI signal. Moreover, DT-MRI has differential sensitivities to these different

properties. Furthermore, it has been shown that cerebrospinal fluid (CSF) contamination

if not corrected for results in errors within diffusion parameters (Alexander et al. 2001;

Metzler-Baddeley et al. 2012; Vos et al. 2011). Interestingly, in Chapter 5 we found a

lateralization with the relative tissue volume fraction measured from diffusion-weighted im-

ages and in myelin water fraction. This spatial heterogeneity of partial volume effects can

potentially confound interpretation of results in studies where contralateral hemispheres are

used as internal control regions of interest by either exacerbating real tissue differences or

possibly even negating them. It is important to stress that this effect was found in a young

healthy control population and it is expected that this will be an exaggerated confound in

an older population due to atrophy, and would be even more marked in diseased popula-

tions (Metzler-Baddeley et al. 2012). The full extent of the influence of this asymmetry in

partial volume effects on ROI-based measurements within such studies should be further

investigated.

To understand the role of white matter microstructure in mediating functional connec-

tions, it is important to access the electrical properties of a white matter pathway which are,

in turn, mediated by myelination and axon diameter / density. An increased understanding

of how these sub-components vary within white matter will allow us to understanding differ-

ences in functional connections, (such as differences in delay times arising from differences

in conduction velocity).

Such knowledge could then be meaningfully integrated into models of functional/effective

connectivity. Very little progress has been made in incorporating microstructural white mat-

ter metrics into functional connectivity models, the exception being limited to a few studies

using DT-MRI based metrics. Thus, tractometry is an important step forward in increas-
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ing our understanding of the role that different white matter sub-components has on the

functional communication between grey matter regions (introduced in Chapter 4).

The results of this thesis showing only weak correlation between proxy indices of myeli-

nation and axonal morphology, suggests that additional complementary WM microstruc-

tural information is obtained with tractometry. Before translation to clinical applications,

it would be prudent to compare these imaging metrics (from in vivo animal experiments)

with histology, to really understand what drives differences in the signal contrast and the

specificity to changes in a particular sub-component of the tissue microstructure. Moreover,

before translation to the clinic, it would be important to assess further how these metrics

are affected by changes in free water partial volume contamination within a voxel, such as

may occur in inflammation.

In terms of ongoing work, there are a number of studies being carried out in Cardiff Uni-

versity that are exploiting our tractometry pipeline to probe differences within white matter

structure across different patient sub-groups in a wide range of neurological and develop-

mental disorders (autism, ADHD, epilepsy and multiple sclerosis), psychiatric disorders

(depression, schizophrenia and psychosis), structural asymmetry of white matter metrics

(Chapter 5), and explaining individual differences in cognitive performance in terms of

microstructural differences.

With increasing popularity of conducting studies and determining differences between

structure and function on a voxel-by-voxel basis using such methods like Tract Based Spatial

Statistics (TBSS) (Smith et al. 2006) we conducted preliminary work on the reproducibility

of such analyses in Chapter 6. Reproducibility of significant results was assessed using a

bootstrapping approach (100 bootstraps with N=24-4 approach) and found the pattern of

results highly variable and very sensitive to the exact membership to the cohort tested.

Although, this variability was much less marked when assessing inter-hemispheric asymme-

try in microstructural indices, the unstable results from structure-function correlations is

a cause for concern. Thus, based on these findings, current application of this approach

may be premature until a more robust analysis method is introduced. Or, alternatively, as
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we suggest in Chapter 6, correlations should be reported alongside additional maps such as

the frequency with which a given voxel contains a significant result or confidence interval

for a given voxel. In addition, continued efforts are needed to estimate the exact number

of participants required to produce stable results with performance-microstructure correla-

tions. Based on our findings here, we encourage the adoption of more specific white matter

markers (i.e. myelin or axon indices) as in tractometry, in such voxel-based studies, as it

should help us understand more about some apparently anomalous relationships seen here,

such as a positive correlation between FA and reaction time (Chapter 6).

A clear application for tractometry is to try to explain differences in functional connec-

tivity, as assessed using fMRI, MEG or EEG, in terms of differences in specific properties

of white matter microstructure. The integration of microstructural and functional MR

imaging has been previously reported using Dynamic Causal Modelling (DCM) and proba-

bilistic fibre tracking data (Stephan et al. 2009). While the finding that a high probabilistic

tracking connectivity relates to a high functional connectivity is promising, this study has a

few limitations: (1) tractography is not tractometry, by which we mean that tractography

(probabilistic and deterministic) typical only uses the orientational information present in

the diffusion-weighted signal, and does not utilize information about tissue microstructure;

and (2) fMRI is a less direct measure of the brains electrical activity than techniques such as

MEG and EEG, being coupled through the vasculature. Moreover, the temporal resolution

of fMRI is far inferior due to the haemodynamic delay. We believe that greater insights

into the relationship between functional connectivity and tissue microstructure will be had

by combining more direct measures of brain function than fMRI, and more direct measures

of microstructure than probabilistic tractography and DT-MRI. We will be combining trac-

tometry with MEG and trying to address the question as to which microstructural mea-

surement(s) best explain(s) differences in functional connectivity, as a natural extension of

the work conducted in this thesis.
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