
Integrative analysis of ChIP-chip
datasets in Saccharomyces cerevisiae

Mark Bennett
Cancer and Genetics Institute

Cardiff University School of Medicine
Cardiff University

A thesis submitted to Cardiff University
for the degree of

Doctor of Philosophy

2012

This work was funded by
a University of Wales

Lord Merthyr Research Scholarship

Acknowledgments

The work contained in the following pages would not have been possible
without a large number of people, to all of whom I owe a debt of gratitude.
Firstly I must thank my principle supervisor, Dr. Simon Reed, both for
giving me the opportunity to undertake this PhD and for providing support
and guidance along the way. Your passion, knowledge and seemingly limitless
capacity to recall every detail of papers published decades ago is inspirational.
I would also like to thank my second supervisor, Dr. Peter Giles, for all of
your help and for doing your best to answer my obscure, technical queries,
and Prof. Ray Waters, for providing invaluable feedback in lab meetings and
elsewhere.

Dr. Shirong Yu, Dr. Yumin Teng, Dr. Matthew Leadbitter, Dr. James
Powell, Dr. Richard Webster, Yenbo Deng, Rachel Pearson, Mark Robinson
and, especially, Dr. Katie Evans, who started her PhD journey at the same
time as me and has made it so much more enjoyable and productive: I
thank you all for the hours you spent in the lab to produce the data that I
have analysed here, especially so for those assays carried out at my request,
without which I would not have been able to present this work. I also thank
you for all the feedback, suggestions and error finding that has lead to the
production of the software presented here. In addition, I would like to thank
everyone else in the lab, both past and present, that have helped make things
go by that little bit more smoothly, including Trish, Amy, Craig, Patrick,
Neil, Becky, Yach, Huayan and Zheng. It has been great to work and play
with such a fantastic team of people.

I must also thank my family, especially my Mum and Dad, for their
support over the last 27-and-a-bit years. I hope the next 300-odd pages
will clarify for you what it is that I have been doing for the most recent
chunk of that time. Finally I must thank Maria, who over the course of this
PhD has gone from my girlfriend to fiancée to wife, for your daily support
and encouragement, for your tolerance during the times I spent glued to a
computer barely able to acknowledge your presence, and for the time you
spent proof reading my final draft.

Summary

ChIP-chip is a technology originally developed to determine the binding sites
of proteins in chromatin on a genome wide scale. Its uses have since been
expanded to analyse other genome features, such as epigenetic modifications
and, in our laboratory, DNA damage. Datasets comprise many thousands of
data points and therefore require bioinformatic tools for their analysis. Cur-
rently available tools are limited in their applications and lack the ability to
normalise data so as to allow relative comparisons between different datasets.
This has limited the analyses of multiple ChIP-chip datasets from different
experimental conditions.

The first part of the study presented here is bioinformatic, presenting a
selection of tools written in R for ChIP-chip data analysis, including a novel
normalisation procedure which allows datasets from different conditions to be
analysed together, permitting comparisons of values between different exper-
iments and opening up a new dimension of analysis of these datasets. A novel
enrichment detection procedure is presented, suited to many formats of data,
including protein binding (which forms peaks) and epigenetic modifications
(which can form extended regions of enrichment). Graphical tools are also
presented, to facilitate the analysis of these large datasets. A method of pre-
dicting the output of a ChIP-chip dataset is presented, which has been used
to show that ChIP-chip is capable of detecting sequence dependent damage
events. All functions work together, using a common data format, and are
efficient and easy to use.

The second part of this study applies these bioinformatic tools in a bi-
ological context. An analysis of Abf1 protein binding datasets has been
undertaken, revealing many more binding sites than had previously been
identified. Analysis of the sequences at these binding sites identified the pre-
viously determined consensus binding motif in only a subset, with no novel
motif identifiable in the remainder, suggesting binding may be influenced by
factors other than sequence.

Contents

List of Figures xii

List of Tables xv

List of R Scripts xvi

List of Abbreviations xviii

1 Introduction 1
1.1 Microarrays . 1

1.1.1 Hypothesis generation 2
1.1.2 Types of microarray 4

1.1.2.1 RNA detection 5
1.1.2.2 DNA detection 7
1.1.2.3 Protein detection 11
1.1.2.4 Other applications 11

1.1.3 Normalisation . 11
1.1.3.1 Gene expression 14
1.1.3.2 ChIP-chip . 20

1.1.4 ChIP-chip data processing 25
1.1.4.1 Peak detection 26
1.1.4.2 Making comparisons between datasets 27

1.2 DNA damage . 30
1.2.1 DNA . 30

1.2.1.1 Structure . 31
1.2.1.2 Chromatin 32
1.2.1.3 Replication 32

1.2.2 DNA damage and repair 33
1.2.2.1 Base modifications 34
1.2.2.2 Structural alterations 36
1.2.2.3 Strand breakages 39

vii

1.2.3 Consequences of defective DNA repair 41
1.2.3.1 Congenital diseases 41
1.2.3.2 Acquired diseases 43

1.3 Measuring DNA damage . 46
1.3.1 Low resolution techniques 47
1.3.2 High resolution techniques 51

1.4 CPDs and NER: a paradigm 52
1.4.1 Ultra violet radiation 52

1.4.1.1 Cyclobutane pyrimidine dimers 53
1.4.2 Saccharomyces cerevisiae as a model organism 53
1.4.3 Nucleotide excision repair 55

1.4.3.1 Lesion recognition 56
1.4.3.2 Lesion repair 58

1.4.4 The Abf1 protein . 59
1.4.4.1 Role in NER 62

1.5 This study . 65

2 Technical Overview 67
2.1 Microarrays . 67
2.2 Chromatin immunoprecipitation 69
2.3 Amplification . 70
2.4 Fluorescent labelling and hybridisation 71
2.5 Microarray processing . 72
2.6 Feature extraction . 72
2.7 Data analysis . 73

3 Creation of a collection of R scripts to process and interrogate
ChIP-chip data 75
3.1 Introduction . 75
3.2 The scripts . 76

3.2.1 Loading data . 79
3.2.1.1 Utilising limma 79
3.2.1.2 The arrayData class 80
3.2.1.3 Creating new arrayData objects 81
3.2.1.4 Writing arrayData to external files 92
3.2.1.5 The genomeAnnotation class 94

3.2.2 Quality assessment . 97
3.2.3 Accessing data . 102
3.2.4 Manipulation of arrayData objects 104
3.2.5 Displaying data . 109
3.2.6 Plotting data . 112

viii

3.2.6.1 Genome plots 112
3.2.6.2 Histograms, density and Q-Q plots 124
3.2.6.3 Profile plots 130
3.2.6.4 Rainbow plots 139

3.2.7 Annotating data . 142
3.2.7.1 Positions plot 146
3.2.7.2 Venn diagrams 149
3.2.7.3 Extracting sequence information 153

3.3 Discussion . 154

4 Development of a novel normalisation method 158
4.1 Introduction . 158
4.2 Algorithm . 160

4.2.1 Expectations of the data 160
4.2.2 Overview . 162
4.2.3 Preprocessing . 164

4.2.3.1 Removing irrelevant probe values 164
4.2.3.2 Removing absent values 169

4.2.4 Full processing . 170
4.2.4.1 Quantile normalisation 170
4.2.4.2 Pseudo-modal shift and background scaling . 175

4.3 Application . 182
4.3.1 Validation . 194

4.4 Alternative process . 195
4.4.1 DNA spikes . 195

4.5 Discussion . 203

5 Development of a novel enrichment detection method 207
5.1 Introduction . 207

5.1.1 Existing methods . 208
5.1.2 Motivation for creating a new method 214

5.2 Algorithm . 215
5.2.1 Window determination 224

5.2.1.1 Cutoff calculation 233
5.2.2 Enrichment detection 235
5.2.3 Peak detection . 236

5.3 Testing the performance of the algorithm 241
5.3.1 Data . 244

5.3.1.1 Creating simulated ChIP-chip data 244
5.3.1.2 Using spike datasets 245

5.3.2 Optimisation of the algorithm 246

ix

5.3.2.1 Optimising the window size selection 253

5.3.2.2 Optimising the FDRE value selection 258

5.3.2.3 Optimising the scale value selection 260

5.3.2.4 Summary . 267

5.3.3 Comparison with other methods 269

5.4 Discussion . 271

6 Development of a method to predict sequence specific dam-
age events 275

6.1 Introduction . 275

6.2 Motivation . 276

6.3 Methodology . 276

6.4 Algorithm . 280

6.5 Alternative algorithm . 280

6.6 Application . 284

6.6.1 Comparisons . 287

6.6.2 Uses . 290

6.7 Discussion . 294

7 Genome wide analysis of the binding site locations of the
Abf1 protein 295

7.1 Introduction . 295

7.2 Methods . 296

7.2.1 Generation of data . 296

7.2.2 Data validation . 296

7.2.3 Data normalisation . 297

7.2.4 Peak detection . 297

7.2.5 Hypergeometric distribution 297

7.2.6 Sequence extraction . 298

7.2.7 Sequence analysis . 298

7.2.8 Motif logo creation . 298

7.2.9 Ganapathi data . 299

7.3 Results . 300

7.3.1 Data validation . 300

7.3.2 Consequences of normalisation 302

7.3.3 Peak detection . 308

7.3.4 Genomic binding site locations 315

7.3.5 Comparison with other datasets 316

7.3.6 Sequences at binding sites 323

7.4 Discussion . 334

x

8 Conclusions and future work 337

Bibliography 343

A Electronic Appendix Structure 367

xi

List of Figures

1.1 Gene expression microarray data representation 15
1.2 Total intensity normalisation representation 18
1.3 Lowess normalisation representation 19
1.4 ChIP-chip microarray data representation 23
1.5 The cyclobutane pyrimidine dimer 54
1.6 Kinked DNA molecule . 54
1.7 Abf1 and GG-NER . 64

2.1 Agilent 4 x 44k microarray format 68
2.2 The importance of IP and input samples 74
2.3 Feature extraction file format 74

3.1 Overview of the functions presented 78
3.2 Tab-delimited file format . 83
3.3 Output of the checkData function 103
3.4 Output of arrayData show method 111
3.5 Output of arrayData summary method 113
3.6 Output of arrayData plot method 125
3.7 Output of arrayData statistical graphics 131
3.8 Output of profilePlot function 140
3.9 ORF position examples . 145
3.10 Output of positionsPlot function 148

4.1 Examples of data distributions 161
4.2 Mitochondrial probe binding values 167
4.3 Probe GC contents . 167
4.4 The effect of quantile normalisation on data 173
4.5 Example data Q-Q plots . 174
4.6 Representation of the pseudo-modal shift 177
4.7 Representation of the background scaling 181
4.8 Density plots of H3Ac data undergoing normalisation 183
4.9 Density plots of Gcn5p data undergoing normalisation 184

xii

4.10 Profiles of replicate H3Ac data undergoing normalisation . . . 186
4.11 Profiles of averaged H3Ac data undergoing normalisation . . . 187
4.12 Profiles of replicate Gcn5 binding data undergoing normalisation188
4.13 Profiles of averaged Gcn5 data undergoing normalisation . . . 189
4.14 Q-Q plots of H3Ac data undergoing normalisation 192
4.15 Q-Q plots of Gcn5p data pre- and post-normalisation 193
4.16 Probes chosen for Q-PCR analysis 196
4.17 Bar charts of data from probes chosen for Q-PCR 197
4.18 Bar charts of microarray and Q-PCR data 198
4.19 Microarray and Q-PCR values correlation 200

5.1 Representation of the formation of a peak shape 226
5.2 How different window sizes affect enrichment detection 227
5.3 Examples of sliding windows 229
5.4 Representation of window determination 229
5.5 Window determination and enrichment detection process flow

chart . 231
5.6 Representation of window determination and enrichment de-

tection . 232
5.7 Enrichment detection representation 237
5.8 Peak detection process flow chart 239
5.9 Representation of peak determination 240
5.10 Calculating the PBR with consistent peaks 242
5.11 Calculating the PBR with inconsistent peaks 243
5.12 Johnson et. al.’s data correlations 248
5.13 ROC plot properties . 252
5.14 Labelling of consecutive enriched regions 254
5.15 ROC curves from window size variations 257
5.16 ROC curves from FDRE variations 261
5.17 ROC curves from simulated data 263
5.18 ROC curves from averaged spiked data 265
5.19 ROC curves from combined spiked data 266
5.20 Example analysis of peak detection results 270
5.21 ROC-like curves created by Johnson et al. (2008) 272

6.1 CPD dataset density plots . 277
6.2 CPD damage profile . 285
6.3 CPD damage scatter plot . 286
6.4 Histogram of predicted and actual differences 291
6.5 Q-Q plot of predicted and actual differences 292
6.6 Q-Q plot of predicted and actual non-outlier differences 293

xiii

7.1 Abf1 checkData output . 301
7.2 Raw Abf1 data density plots 304
7.3 Normalised Abf1 data density plots 305
7.4 Raw Abf1 data profile . 306
7.5 Normalised Abf1 data profile 306
7.6 Effect of normalisation on averaged Abf1 data 307
7.7 Abf1 data correlations . 309
7.8 Venn diagram of Abf1 peaks 310
7.9 Venn diagram of overlapping Abf1 peaks 310
7.10 Rainbow plot of Abf1 peak changes 312
7.11 Scatter plots of Abf1 peak changes 313
7.12 Abf1 peaks profile plot . 314
7.13 Abf1 binding site locations . 317
7.14 Filtered Abf1 binding site locations 318
7.15 Previously published Abf1 comparisons 320
7.16 Ganapathi et. al.’s data . 322
7.17 Sequence logos from PBRs containing the consensus 326
7.18 Sequence logos from all PBRs 326
7.19 Sequence logos from filtered PBRs 328
7.20 Sequence logos from PBRs without the consensus 329
7.21 Sequence logos with variable gap regions from PBRs without

the consensus . 329
7.22 Sequence logos from filtered PBRs without the consensus . . . 330
7.23 Sequence logos with variable gap regions from filtered PBRs

without the consensus . 330
7.24 Abf1 peak heights and numbers of motifs 332
7.25 Gaps between Abf1 peaks and motifs 333

xiv

List of Tables

4.1 Quantile normalisation example data 171
4.2 Quantile normalisation example processing 171
4.3 Quantile normalisation example result 174
4.4 Normalisaed microarray and Q-PCR comparison P-values . . . 199
4.5 Raw microarray and Q-PCR comparison P-values 199
4.6 Spike probes summary . 202

5.1 Peak detection methods . 209
5.2 Johnson et al. (2008) spike datasets 247
5.3 Window sizes for testing simulated data 254
5.4 Window sizes for testing spike data 255
5.5 FDRE values for testing simulated data 259

7.1 Abf1 ChIP-chip datasets . 296
7.2 Numbers of Abf1 binding peaks detected 309
7.3 Abf1 binding sites found in previous studies 320
7.4 Abf1 PBR lengths . 324
7.5 Abf1 PBR motif counts . 324
7.6 Filtered Abf1 PBR motif counts 328

xv

List of R Scripts

3.1 loadArray . 84
3.2 splitCoords . 89
3.3 arrayDataValidity . 91
3.4 writeArrayData . 93
3.5 loadAnnotation . 95
3.6 genomeAnnotation . 96
3.7 checkData . 98
3.8 arrayData extraction . 104
3.9 Mathematical operators . 105
3.10 arrayData rowMeans . 107
3.11 arrayData cbind . 108
3.12 arrayData display . 109
3.13 plot arrayData . 115
3.14 plot genomeAnnotation . 121
3.15 arrayData histogram . 124
3.16 arrayData density plot . 127
3.17 arrayData Q-Q plot . 129
3.18 profilePlot . 134
3.19 rainbowPlot . 141
3.20 getProbeInfo . 143
3.21 positionsPlot . 146
3.22 venn . 150
3.23 overlap . 152
3.24 getSequences . 153

4.1 normalise . 163
4.2 rmRegions . 165
4.3 rmNAs . 169
4.4 quantileNormalise . 175
4.5 shiftByMode . 179
4.6 stNormScale . 180

xvi

5.1 peakDetection . 216
5.2 consecutive . 222
5.3 peakList . 223

6.1 predictProfile . 282

xvii

List of Abbreviations

A Adenine
Abf1 ARS binding factor 1
ARS Autonomously replicating sequence
BER Base excision repair
bp Base pair(s)
C Cytosine
cDNA Complementary DNA
ChIP Chromatin immunoprecipitation
ChIP-chip ChIP on a microarray chip
CNV Copy number variation
CPD Cyclobutane pyrimidine dimer
DE Differentially expressed
DNA Deoxyribonucleic acid
DSB Double strand break
dsDNA Double stranded DNA
FDRE False discovery rate equivalent
FN False negative
FP False positive
G Guanine
GG-NER Global genome nucleotide excision repair
GRF General regulatory factor
H3Ac Histone H3 acetylation
HAT Histone acetyl transferase
HEJ Homologous end joining
HMM Hidden Markov model
IP Immunoprecipitated
LOH Loss of heterozygosity
Mb Megabase(s)
min Minute(s)
miRNA MicroRNA
mRNA Messenger RNA

xviii

MS Mass spectrometry
NDE Non-differentially expressed
NER Nucleotide excision repair
NHEJ Non-homologous end joining
nm Nanometre(s)
ORF Open reading frame
PARP Poly(ADP-ribose) polymerase
PBR Potential binding region
PCR Polymerase chain reaction
PIC Pre-incision complex
Q-PCR Quantitative polymerase chain reaction
Q-Q Quantile-quantile
RNA Ribonucleic acid
RNAPII RNA polymerase II
RPA Replication protein A
sec Second(s)
SNP Single nucleotide polymorphism
SSB Single strand break
ssDNA Single stranded DNA
SWI/SNF Switch/ sucrose non-fermentable
T Thymine
TC-NER Transcription coupled nucleotide excision repair
TLS Translesion synthesis
TN True negative
TP True positive
U Uracil
UV Ultra violet

xix

Chapter 1

Introduction

Investigations into the induction of, cellular responses to, and the repair of

DNA damage have been crucial to understanding the mechanisms that have

developed within cells to deal with this damage and the implications this

can have on many diseases. Multiple assays have been developed to analyse

different aspects of these in the laboratory. Here, DNA microarrays have

been used to measure some of these end points. Ultra violet (UV) light has

been used to induce DNA damage in cells, which is itself measured with a

novel microarray technology, along with the measurements of various cellular

responses. This study focuses on bioinformatic analyses of data produced

from these investigations and the development of new bioinformatic tools

to facilitate these analyses. It is therefore split into two broad sections:

microarray technology and its associated bioinformatic processing, and the

(nucleotide excision) repair of damaged DNA.

1.1 Microarrays

A microarray, in the molecular biological context, is an array of spots each

containing a sample of DNA for use in genetic testing (OED, 2011). Simply

put, it is a small, rectangular, solid surface containing a regular pattern

of spots of multiple copies of single stranded DNA molecules bound to the

surface at one end. A pool of DNA applied to this surface and allowed to

hybridise to any complementary probes can be detected by means of the

1

CHAPTER 1 SECTION 1.1

attachment of fluorescent molecules to the pooled DNA. The sequences of

DNA probes at the features on the microarray are known, and so the presence

of fluorescence at any given location can be associated with that sequence.

The microarrays available today contain tens of thousands to millions of

features each, which can result in the production of vast quantities of data.

There is some variation in terminology in the microarray field. For pur-

poses of clarity, the following definitions will be used throughout this thesis:

Probe An individual strand of DNA of known sequence, bound to the sur-

face of a microarray.

Feature A collection of a number of probes, all of the same sequence, in

an area of defined size and shape and at a known location on the

microarray.

Microarray A collection of a quantity of different features arranged in a

regular pattern of known, defined properties.

Slide The physical object upon which one or more microarrays reside.

This section outlines the different microarray applications currently avail-

able and the in silico procedures used to transform the signals these produce

into biologically meaningful results.

1.1.1 Hypothesis generation

The basic principle of a scientific experiment is to measure a factor of interest

under different conditions so as to prove or disprove a hypothesis relating to

the response of the factor to the different conditions. For example, one may,

based on prior knowledge and observations, formulate the hypothesis that

a protein binds to DNA following a particular treatment. To test this one

could measure the amount of the protein bound to DNA before and after the

treatment. The hypothesis would be proved if the protein was seen bound

to the DNA only after the treatment. This result would then become prior

knowledge and used to formulate and test further hypotheses. This ‘classical’

approach to science, using the accumulation of knowledge to generate and

2

SECTION 1.1 CHAPTER 1

test new ideas, has been used for centuries and continues to be a valuable

tool in scientific progression. A famous example is Edward Jenner’s testing

of the hypothesis that cowpox infection conferred smallpox immunity, by

inoculating James Phipps with cowpox and subsequently attempting to infect

him with smallpox, which failed. In addition, many scientific discoveries have

occurred by serendipity, that is, a result was not obtained via the testing of

a hypothesis but by the product of coincidental events. A famous example

is the discovery of penicillin by Alexander Flemming: he did not set out to

test whether or not penicillin was an antibiotic, rather he found the product

of a mould growing on some discarded culture plates of Staphylococci caused

the surrounding cells to undergo lysis.

The advent of the ‘genomics era’ has allowed the development of technolo-

gies that allow new results to be found ‘by chance’, rather than by conduct-

ing specific hypothesis testing investigations. These experiments are termed

‘hypothesis generating’ and facilitate the discovery of results that may not

otherwise have been specifically looked for. This is achieved by the testing

of a large number of individual biological conditions at once, such as the

expression levels of thousands of genes, or the properties of thousands of ge-

nomic regions with respect to some condition, such as protein binding. This

is equivalent to performing thousands of individual assays by conventional

methods, which is not practical, which is why only those designed to test

specific hypotheses are ever carried out. Removing this limitation means

that data can be generated that otherwise would not be and so new and

unexpected phenomena may be found, leading to the generation of new hy-

potheses. Microarray investigations are often carried out with the intention

of being hypothesis generating. The results of an investigation or investi-

gations can be used to construct a hypothesis that may or may not have

otherwise been conceived. That is to say, new or unusual phenomena may be

seen that would never have been specifically looked for and so would remain

unknown unless found by chance.

Genome wide technologies, such as microarrays, generally have too low a

signal-to-noise ratio to prove a hypothesis outright, meaning results need to

be corroborated by alternative, more sensitive technologies. The microarray

3

CHAPTER 1 SECTION 1.1

results may lead to the generation of a hypothesis relating to a small number

of factors, all of which can be investigated with more sensitive tests, such as

differential expression in a small number of genes. This can completely prove

or disprove the hypothesis. It may also produce a hypothesis relating to a

large number of factors, such as a protein binding at multiple sites throughout

a genome. In this situation more sensitive tests can be carried out with a

subset of representative data. If these microarray results are shown to be

correct it is reasonable to assume that the data are consistent across the

rest of the microarray. The hypothesis therefore remains valid, but is not

completely proven. A set of results, once generated, has the potential to

be used to generate many more hypotheses, possibly far removed from the

reason the original assay was carried out. This can greatly accelerate the

rate of scientific discovery.

Much of the bioinformatic work presented in this thesis aims to facilitate

the discovery of new results and the generation of new hypotheses. The

graphical display tools (Chapter 3) allow potential patterns in the data to

be discerned; the normalisation procedure (Chapter 4) allows datasets to

be compared, revealing potential novel responses to changes in conditions;

and the enrichment detection procedure (Chapter 5) allows potential novel

binding regions to be identified.

1.1.2 Types of microarray

The first microarray paper was published in 1995 (Schena et al., 1995), where

cellular DNA amounts were measured to gain information on gene expression

levels in the plant Arabidopsis thaliana. This microarray contained only a

fraction of the number of features available on today’s arrays, at 48. The

advances in microarray technology over the 17 years since this publication

have meant microarray use has expanded into several applications. Hoheisel

(2006) provides a summary of these which, although outdated in some cases,

provides a good indication of the range of potential applications. The main

applications available today are summarised in the following sections, along

with their non-microarray alternatives.

4

SECTION 1.1 CHAPTER 1

1.1.2.1 RNA detection

Measurement of messenger RNA (mRNA) levels allows the gathering of in-

formation relating to gene expression and the regulation thereof. RNA is

purified from the cell and amplified as complementary DNA (cDNA) which

is applied to the microarray.

Gene expression profiling

Gene expression profiling is the measurement of the level of expression of

genes, indicative of the level of protein production. This can provide im-

portant information about how, when and where genes are expressed or re-

pressed and how this changes in response to particular conditions or between

different cell types, genetic mutants, individuals or disease states. Several

methods have been developed to achieve this, such as creating reporter gene

constructs, where a level of fluorescence or enzymatic activity represents the

level of gene expression, or Northern blots, where the mRNA amount pro-

duced from a gene is visualised by autoradiography using electrophoretic gels

and nitrocellulose paper (Alberts et al., 2002). These technologies are time

consuming and allow the analysis of only small numbers of genes at a time.

Microarrays can overcome this limitation by allowing measurements of the

expression levels of thousands of genes in a single assay.

Profiling of 45 A. thaliana cDNAs was the use of the first microarray

(Schena et al., 1995). This remains the most popular microarray use today

(NIH Entrez search results; data not shown), with microarrays available con-

taining gene sequences from many organisms. Expression profiling allows

the expression levels of genes to be determined by measuring the amounts

of mRNA produced from gene expression. These microarrays contain probes

corresponding to mRNA sequences, or parts thereof. There are two sources

of these sequences, the most common of which is cDNA molecules (Schena,

2003), originally used by Schena et al. (1995). These cDNAs are produced

from mRNAs by the reverse transcriptase enzyme, which uses RNA tem-

plates to produce DNA sequences, and applied to the slide surface. As the

sequences are produced directly from the mRNAs they are intended to mea-

5

CHAPTER 1 SECTION 1.1

sure they can be long in length (typically 500-2500 bases) and produce good

hybridisation signals (Schena, 2003). The alternative method is to produce

oligonucleotides by chemical synthesis, first used on microarrays by Lock-

hart et al. (1996). These may be synthesised directly on the slide surface,

base-by-base, or elsewhere and applied as a single strand in the same way

as a cDNA (Schulze and Downward, 2001). These technologies have been

reviewed and compared extensively over the course of their development (for

example, Schulze and Downward, 2001; Li et al., 2002; Tan et al., 2003).

Alternative splicing analysis

Alternative splicing is another method by which protein production can be

regulated by the (eukaryotic) cell (Alberts et al., 2002). Genes are divided

into expressed sequences (exons) and intervening sequences (introns). Ini-

tially all exon and intron sequences are transcribed into a pre-RNA, and

then the intron sequences are removed by RNA splicing on the way to pro-

ducing the final mRNA. Alternative splicing is a process by which different

exons are incorporated into the final mRNA, which go on to produce dif-

ferent proteins, meaning single genes can produce multiple products. Gene

transcription microarrays can be extended to examine alternative splicing

by incorporating probes representing all exons (for example, Johnson et al.,

2003). This allows not only the expression of genes to be measured, but the

identification of which exons are present in the final mRNAs.

MicroRNAs

MicroRNAs (miRNAs) are short (typically 21–22 nt) RNA molecules de-

rived from non-protein coding genes (Watson et al., 2003). These molecules

play important regulatory roles in animals and plants by targeting mRNAs

with sequence homology for cleavage or translational repression, thereby reg-

ulating protein production levels (reviewed in Bartel, 2004). A microarray

containing probes corresponding to known miRNA sequences allows the de-

tection and identification of those present in a given sample (Liu et al., 2004).

6

SECTION 1.1 CHAPTER 1

1.1.2.2 DNA detection

Measurement of DNA levels allows the gathering of information relating to

events which occur directly on or in DNA. DNA is purified from the cell,

amplified and applied to the microarray.

Comparative genome hybridisations

Copy number variation (CNV) is a change in the numbers of copies of regions

of DNA arising from deletions, insertions and duplications of DNA segments.

These can range in size from kilobases to megabases and the frequencies of

these variations themselves vary between populations (Redon et al., 2006).

CNVs can alter gene expression and phenotypic variation, cause diseases and

confer risk to complex disease traits. They are common in cancers and their

investigation can provide markers of prediction of disease outcome, treat-

ment responses and identification of genes to target for therapy (reviewed in

Albertson et al., 2003).

Comparative genome hybridisation (CGH) is a method of analysing whole

genomes for CNVs. The original technology used metaphase chromosomes

as a representation of a genome, to which differentially labelled total ge-

nomic test and reference DNA was allowed to hybridise. Visualisation of the

chromosome allowed the physical locations of CNVs to be mapped (Pinkel

and Albertson, 2005). This method limits the detection of events involv-

ing regions of less than 20 Mb, a problem which can be overcome by using

microarrays in place of the reference metaphase chromosome (Solinas-Toldo

et al., 1997; Pinkel et al., 1998), termed array-CGH.

Array-CGH microarrays contain probes corresponding to regions of a

genome. Fragmented, labelled genomic DNA is allowed to hybridise to these

probes, providing an indication of the amount present at each location. Vari-

ations in copy number show up as increased or decreased signal intensities.

Depending on the probe density and length of the CNV region, this may

occur at a single probe or over multiple, consecutive probes. This type of

microarray therefore allows regions of CNV between samples to be found at

a resolution theoretically limited only by the probes used.

7

CHAPTER 1 SECTION 1.1

Chromatin immunoprecipitation on microarray chips

DNA-protein interactions play important roles in genome regulation. Tran-

scription factors, for example, regulate the expression of genes, nucleosomes

play structural roles and repair enzymes process sites of DNA damage. Deter-

mining where proteins bind in a genome is therefore crucial to investigating

both their function(s) and their site(s) of action. Methods to achieve this

at particular sites include DNAse footprinting (Galas and Schmitz, 1978),

which uses radioactive end-labelling of a DNA fragment of interest and the

protective effect of the protein against enzymatic degradation of the DNA

to identify binding sites as ‘footprints’ with gel electrophoresis, and the elec-

trophoretic mobility shift assay (EMSA) (Garner and Revzin, 1981), which

uses gel electrophoresis to identify protein-bound DNA by the associated

shift in band position on the gel, which can be combined with an antibody

against the protein to create a ‘super-shift’.

Chromatin immunoprecipitation (ChIP) is another method that can be

used to identify protein binding sites. It uses an antibody to the protein

of interest to extract, or immunoprecipitate, it and any DNA it is bound

to, from the pool of total genomic DNA. PCR primers designed at a region

of interest are then used to determine if that region is present in the im-

munoprecipitated pool. All of these assays allow the identification of protein

binding at individual, pre-determined sites of interest only.

ChIP combined with microarray chips (ChIP-chip) is a technology de-

veloped to determine the genome wide binding sites of proteins (Ren et al.,

2000), hence its alternative name of genome wide location analysis. It works

on a similar principle to array-CGH, in that a whole genome (or a genome

section of interest) is represented by the features on a microarray. ChIP is

carried out, using an antibody to the protein of interest to separate chro-

matin fragments bound to the protein from the rest of the genome (history

and protocol information available in Carey et al., 2009). These separated

fragments are then purified, amplified, fluorescently labelled and applied to

the microarray. The amount of bound material at any given location allows

an estimate of the binding site of the protein to be made, at a resolution

8

SECTION 1.1 CHAPTER 1

limited by the probes and DNA fragment lengths applied.

Since its first use the technology has been developed to allow the analysis

of other features of chromatin, such as histone modifications (Kurdistani et al.

(2004), for example), DNA methylation (Weber et al. (2005), for example)

and DNA damage (Teng et al., 2011). The technology has also advanced to

allow binding site locations to be determined at high resolution, to within

several base pairs (Lee et al. (2007), for example).

DNA immunoprecipitation on microarray chips

The DNA sequences at which proteins bind can be used to determine bind-

ing sequence specificity and predict sites in the genome at which proteins

may bind. These can be derived from in vivo protein-DNA interaction as-

says, such as those described in the previous section, or by specific in vitro

techniques. For example, SELEX (Systematic Evolution of Ligands by Ex-

ponential Enrichment; Tuerk and Gold, 1990) uses randomly generated DNA

sequences to iteratively determine protein binding sites. Such in vitro tech-

niques are free of the cooperative and/or competitive effects of other proteins

in the cell, meaning the protein can bind to any and all potential sites.

DNA immunoprecipitation (DIP) on microarray chips (DIP-chip) is an

alternative in vitro method to ChIP-chip to determine the genome wide iden-

tification of protein binding sites (Liu et al., 2005; Gossett and Lieb, 2010).

A sample of purified protein of interest is incubated with naked, sheared

genomic DNA and allowed to hybridise. These bound fragments are sepa-

rated by immunoprecipitation or affinity purification and purified, amplified,

fluorescently labelled and applied to a genome wide microarray as used in

ChIP-chip. The advantage of this method is any amount of protein can be

added to the mix, so it can be performed with proteins whose cellular ex-

pression levels may be too low for effective ChIP-chip. The disadvantage is

that, as it is an in vitro technique, the result is not necessarily representa-

tive of what happens in a cell. There may be potential binding sites of a

protein that are never actually bound by the protein in vivo, and so are not

biologically relevant, but this technique will still show them. Similarly, there

9

CHAPTER 1 SECTION 1.1

may be sites that are only bound in vivo under certain conditions, but this

technique will not be able to distinguish between them.

Genotyping

Single nucleotide polymorphisms (SNPs) are single base pair differences de-

tected in the genomes of individuals at a frequency more than 1% in a popu-

lation. These represent approximately 90% of the genetic variation between

humans (reviewed by Brookes, 1999). They have important implications

in many diseases, including cancers, as certain SNPs are associated with a

greater risk of developing the disease. They can be detected with a variety

of methods, such as PCR, where primers are designed over the SNP site such

that a fragment will only be amplified with one version of the polymorphism,

or the use of restriction enzymes, which are able to cut at one version of the

polymorphism and not the other. Gel assays are then used to resolve both

of these. Microarrays can be used to determine the presence of known SNPs

by using probes covering the regions of sequence variation (Gunderson et al.,

1998). Presence of DNA on a feature containing probes representing a SNP

shows that that SNP is present in the genome being examined.

Mutations introducing alterations in the form of SNPs can lead to loss

of heterozygosity (LOH). This is the loss of two functional copies of a gene,

which with respect to cancer usually refers to a tumour suppressor gene

or similar. A mutation in one copy of the gene on one chromosome leaves a

second functional copy on the second chromosome and so often no phenotypic

effect is seen, that is, the individual remains healthy. LOH follows a mutation

in the remaining functional copy of the gene leading to a loss of functionality.

Microarrays can be used to specifically analyse these LOH-associated SNPs.

DNA resequencing is the sequencing of known DNA regions to detect

unknown mutations (Sram et al., 2008). This can be achieved using microar-

rays with probes containing sequences that vary from the known sequence

being investigated, by incorporating a single base change in the sequence.

Presence of DNA bound to such a fragment, over the unmodified sequence,

indicates the presence of the mutation. This was first applied to the human

10

SECTION 1.1 CHAPTER 1

mitochondrial genome (Chee et al., 1996).

1.1.2.3 Protein detection

Microarrays have also been used to investigate protein-DNA binding in vitro

by applying epitope-tagged proteins directly to a microarray containing dou-

ble stranded DNA probes (Mukherjee et al., 2004). The probes these pro-

teins bind to can be detected with a labelled antibody against the epitope

tag. Binding sequence motifs can then be determined based on all of the

bound probes.

1.1.2.4 Other applications

As well as these general, whole genome approaches, microarrays can be used

for more specific, targeted investigations. For example, in the field of geno-

toxicity testing both gene expression and SNP arrays can be used to in-

vestigate the effects of compounds on cells. Gene expression arrays can be

used to screen for changes in expression levels linked to particular genotoxic

responses and may enable the distinction of different classes of genotoxic

compounds that operate via different modes of action (Newton et al. (2004),

for example).

1.1.3 Normalisation

Microarrays can produce large amounts of data: one or two intensity values

per feature (from one or two colour format microarrays respectively) mean

each microarray can produce upwards of two million separate values. These

data are produced by a scanner, which records the intensity of light emitted

from each feature on the slide. The more labelled DNA that has hybridised to

a feature, the brighter the fluorescence. The dyes used to label the DNA have

specific excitation and emission frequencies. A laser of the correct frequency

is used to excite the dye and the resulting fluorescence at the excitation

frequency is recorded. The features on two colour microarrays are excited

and recorded at the two relevant frequencies. An image of the microarray

is created from all the excitation values, recording the regions surrounding

11

CHAPTER 1 SECTION 1.1

features as well as the features themselves. Software is then used to convert

the features in the image into numerical values, which may also take account

of the fluorescence in the background regions. These values are stored along

with probe specific information. Full details of this procedure are given in

Chapter 2.

Microarray investigations are not generally carried out individually but,

as with many other experimental procedures, are performed in replicate. Cer-

tain types of investigation, such as gene expression profiling, examine mul-

tiple conditions, with replicate assays carried out for each condition. The

intention with these investigation is to compare the results relative to each

different experimental condition, to determine changes between them. This

differs to other uses, such as genotyping, which produce binary results, where

the presence or absence of DNA on each feature is the final result, showing,

for example, the presence or absence of a given SNP. ChIP-chip is gener-

ally currently used as in the latter example, but the data have the potential

to generate results as in the former, as demonstrated later in this thesis,

greatly expanding the use of the technology. Microarray analysis is reliant

on a robust normalisation procedure, as outlined in the following section.

Multiple assays are performed because of random ‘noise’ in datasets, caused

by inherent variations in the microarray technology. Readings representing

genuine biological phenomena, or ‘signal’, can only be reliably differentiated

from this noise by their consistency across different datasets, whereas anoma-

lous, high, chance readings caused by the noise occur randomly across the

datasets. Therefore the more variation between datasets, the more difficult

it is to distinguish biologically relevant signals from this background noise.

Some of the noise can be minimised by good working practices when prepar-

ing the microarrays, but much of it is always present due to factors beyond

the control of the operator (Johnson et al., 2008). This needs to be removed

by the application of a normalisation procedure to the data. Gentleman

(2005) summarises this problem:

“In an ideal experiment, no normalisation would be necessary,

as the technical variations would have been avoided in the first

place. In a real experiment, a certain amount of technical varia-

12

SECTION 1.1 CHAPTER 1

tion cannot be avoided, and can be accounted for and corrected

in the subsequent analysis through a normalisation procedure.

However, if the technical variations become too large, they turn

into a quality problem.”

Normalisation in this context refers to the processing of multiple datasets

so as to make them comparable with each other by removing any variation

not caused by the biological factor under investigation. It is therefore essen-

tial and as such has been extensively discussed and different methods com-

pared, initially with reference to gene expression microarray investigations

(see Butte, 2002; Quackenbush et al., 2002; Bolstad et al., 2003; Shedden

et al., 2005; Do et al., 2006; Fujita et al., 2006, for examples) and more re-

cently ChIP-chip investigations (see Buck and Lieb, 2004; Peng et al., 2007;

Johnson et al., 2008; Adriaens et al., 2012, for examples). Gentleman (2005)

summarises the concept:

“The purpose of normalisation is to identify and remove sys-

tematic technical variation while retaining the biological signal.

Among the sources of technical variation are different labelling ef-

ficiencies and scanning properties of the Cy3 and Cy5 dyes [and]

different scanning parameters. . . Normalisation procedures aim

to ensure that the observed differences in intensity indeed reflect

the differential gene expression and not artificial biases due to

such technical factors.”

Although written with reference to gene expression microarrays, the principle

of this quote is equally applicable to other types of microarray experiments

and the words “gene expression” can be substituted for “DNA amounts” to

reflect the same problem faced with ChIP-chip data.

Normalisation can be broadly divided into two categories, intra- and inter-

dataset, which, depending on the method of normalisation chosen, are carried

out separately or as one process. For replicate (biological or technical) assays

measuring a single condition, such as biological repeats of gene expression

assays to determine mRNA levels, this means removing any variations arising

in the carrying out of separate assays, termed intra-dataset normalisation.

13

CHAPTER 1 SECTION 1.1

Theoretically these datasets should be exactly the same, as the same variable

is being measured. This is not actually the case, because of the noise in the

data. Intra-dataset normalisation aims to remove as much of this variation

as possible. For experiments with two or more conditions, such as those per-

formed over a period of time or subject to different treatments, in addition to

performing intra-dataset normalisation on the replicate assays, inter-dataset

normalisation also needs to be performed. This aims to remove the same

variation as intra-dataset normalisation, but leave any of the biologically rel-

evant variation caused by the deliberate changing of experimental conditions,

thus allowing a comparison of the effect of the experiment to be made. Some

normalisation methods combine both of these principles.

1.1.3.1 Gene expression

Several normalisation methods have been developed for gene expression mi-

croarray data, which aim to allow comparisons of gene expression levels be-

tween different conditions. These methods work on the assumption that the

majority of gene expression levels do not change under any given change in

conditions, and of those that do change there will be approximately equal

numbers of up- and down-regulated genes, resulting in an approximately

symmetrical distribution of probe values (Figure 1.1). These unchanging

‘background’ levels act as internal controls against which the changed levels

can be measured. The unchanged values can be easily identified as they rep-

resent the bulk of the data. The normalisation methods aim to make these

background probes consistent across all datasets, altering the changed probes

as they do so, with the result that the changed probes can be compared across

all datasets relative to the background values. In gene expression investiga-

tions these comparisons show increases or decreases in gene expression levels

in response to the change in experimental conditions.

A simple normalisation was applied to the first microarray datasets (Schena

et al., 1995) to correct for differences in the two fluorescent dyes being used.

A DNA sample of known concentration (1:1,000 dilution) was added to both

pools of DNA and labelled with the respective dye. The values from the two

14

SECTION 1.1 CHAPTER 1

Representation of
the bulk of the gene
expression levels

Dataset 2

D
at

as
et

 1

Representations
of down-
regulated genes

Representations of
up-regulated genes

Log2 Dataset 1/Dataset 2 Ratio values

D
en

si
ty

Approximately
symmetrical
distribution

Figure 1.1: Gene expression microarray data representation: One set of gene
expression microarray values are represented plotted against another (top
panel). The oval represents the region containing the majority of the data,
with darker greys representing more data, where the values are the same
in both datasets. A small number of genes are up- or down-regulated in
one dataset relative to the other, indicated with grey crosses. The ratios of
the two datasets creates an approximately symmetrical distribution (bottom
panel). Red arrows show the regions of data in the top panel which form the
parts of the distribution in the bottom panel.

15

CHAPTER 1 SECTION 1.1

pools were adjusted by ‘matching’ the signals from the added DNA. As the

sensitivity and numbers of features on gene expression microarrays has in-

creased, so normalisation methods have been adapted to provide robust and

reliable results. More recently, normalisation methods have been adapted

and developed for use with other types of microarray, such as ChIP-chip and

array-CGH (reviewed by Lai et al. (2005)).

The following sections give brief descriptions of some of the more com-

monly applied gene expression microarray normalisation methods.

Total intensity normalisation

Total intensity normalisation normalises the signals from two channels based

on their total intensities (summarised from Quackenbush et al. (2002)). It

relies on several assumptions about the assay, the first of which is that equal

amounts of material for the two samples are applied to the microarray. As

there are millions of individual molecules in each sample, it follows that the

average mass of each molecule is the same and consequently the same num-

ber of molecules are present in each sample. The probes on the microarray

are assumed to randomly interrogate the two samples, meaning the probes

must represent a random sample of genes. Approximately the same numbers

of molecules from each sample should hybridise to each microarray, because

it is assumed that equal numbers of genes will be up- and down-regulated in

the two samples. Therefore it is assumed that the total signal intensities of

the two channels should be the same. A normalisation factor is calculated

based on the actual total signal intensities, which is used to calculate the

normalised intensities. There are several ways in which this can be applied,

such as adjusting both channels to a defined mean or median ratio. These

methods are generally considered to be too simplistic as they do not take

into account systematic biases which may occur in the data. In theory, plot-

ting one set of signal intensities against the other should show data centred

around a straight line. This is based on the same assumptions as above, that

a random sample of genes is represented with equal numbers of up- and down-

regulated genes (implicit in this is the assumption that most genes are not

16

SECTION 1.1 CHAPTER 1

disregulated between the two samples). However, intensity dependent effects

may mean that values are higher or lower than expected at different points

across the spread of data, creating a non-linear relationship. If not corrected

for this may produce spurious results in the analysis as the higher (lower) val-

ues may be incorrectly interpreted as up-regulated (down-regulated) genes.

Figure 1.2 represents this procedure with two datasets that have a non-linear

relationship, showing the adjustment cannot take account of this. The fol-

lowing methods attempt to take account of non-linear relationships between

data.

Lowess

Locally weighted linear regression (lowess) (Cleveland, 1979) is a method of

smoothing a scatter plot via a polynomial fit to the data, using weighted

least squares. This allows a non-linear fit to be calculated between the two

sets of signal intensities. Lowess applies a locally weighted linear regression

through the data, which emphasises the contributions of data close to other

points, thus minimising the effects of disregulated genes. Each data point

is adjusted based on the fit, creating data centred around an approximately

straight line. Figure 1.3 represents this procedure with two datasets that

have a non-linear relationship, showing the adjustment takes account of this

to bring the whole bulk of the data to lie on the line y = x. This may be

applied globally, to all the data at once, or locally, to subsets at a time.

In the event that there is a linear intensity dependent relationship between

datasets, linear regression can be applied to perform a correction.

VSN

A variance stabilisation normalisation (VSN) was created to take account of

the fact that the variance of intensity values can increase with their means

(Huber et al., 2002). This means values that differ by the same factor can

produce varying significance levels depending on their intensity values, which

has important implications in gene expression monitoring. A lowly expressed

gene whose transcription level doubles is as biologically significant as a highly

17

CHAPTER 1 SECTION 1.1

Line y = x

Dataset 2

D
at

as
et

 1

Representation
of cloud of data

Representations
of data x and y
mean values

The data are shifted to
make the x and y mean
values the same

Figure 1.2: Total intensity normalisation representation: The grey shape rep-
resents the bulk of the data when two datasets are plotted together, showing
a non-linear relationship. The mean for each dataset is shown with a dashed
black line. The procedure adjusts the data to make these means lie on the
same value, bringing them to lie on the line y = x, represented with dashed
grey lines. This shows that the procedure cannot bring all of the data to lie
on this line.

18

SECTION 1.1 CHAPTER 1

Line y = x Representation
of cloud of data

Non-linear Lowess
regression line fitted
through data

The data are adjusted
by varying amounts...

Dataset 2

D
at

as
et

 1

...to bring them to
centre on the line y = x

Figure 1.3: Lowess normalisation representation: The grey shape represents
the bulk of the data when two datasets are plotted together, showing a
non-linear relationship. The Lowess polynomial fit through these data is
represented with a dashed black line. The procedure adjusts the data to
make this line lie on the line y = x, represented with dashed grey lines. This
shows that the procedure brings all of the data to centre on this line.

19

CHAPTER 1 SECTION 1.1

expressed gene with the same increase, but intensity-dependent variance vari-

ations may mean this is not borne out statistically. This is corrected for by

applying a variance stabilising transformation to the data. This replaces the

log-ratios with a difference statistic which displays approximately constant

variance independent of the spot intensity (Huber et al., 2002).

Quantile

Quantile normalisation aims to make the distributions of probe intensities

across a set of microarrays the same (Bolstad et al., 2003). This is achieved

by sorting the values in each set of data, replacing all the values of each

row with the mean of the sorted data in the row, and rearranging the values

back to their original order. This comes from the fact that quantile-quantile

(Q-Q) plots display identical distributions as data points aligned along the

line y = x, which also applies in n-dimensional space with n datasets. The

quantile normalisation procedure adjusts the data such that all datasets lie

on this line in n dimensional space, or any two lie on the line y = x in a

standard Q-Q plot. This has the effect of adjusting all distributions to the

same ‘average’ distribution. The procedure is described in more detail in

Section 4.2.4.1.

1.1.3.2 ChIP-chip

ChIP-chip was originally developed to determine the in vivo binding posi-

tions of chromatin associated proteins (Ren et al., 2000). Here 6,361 DNA

fragments, each representing one intergenic region of the yeast genome, on

a microarray were used to analyse the binding sites of the Gal4 and Ste12

transcription factors. Since this first use the technology has been developed

to allow the analysis of other features of chromatin, such as histone mod-

ifications (Kurdistani et al., 2004, for example), and DNA damage (Teng

et al., 2011). The technology has also advanced to allow locations to be de-

termined to within several base pairs (Lee et al. (2007), for example). All

of these methods required normalisation of some sort to remove the varia-

tions inherent in the technologies. Because the technology has generally been

20

SECTION 1.1 CHAPTER 1

used to determine the binding positions of factors of interest, normalisation

has been focussed on removing variation between replicate datasets so as to

enhance downstream analysis. This allows locations to be assigned binary

values representing whether or not they are deemed binding sites. Within

these replicate datasets the values can be analysed to determine relative dif-

ferences in their levels at the different sites identified. These indicate relative

differences in the levels of occupancy of the factor under investigation. This is

akin to the analyses that are performed with array-CGH data, which identify

changes in binding levels with the same datasets to find regions of genome

duplications. This has been used to show, for example, relative differences

in the levels of histone occupancy across the yeast genome (Lee et al., 2007).

The current limitation with ChIP-chip normalisation lies in the lack of a nor-

malisation method that allows comparisons of this type to be made between

different datasets from different experimental conditions. This is exemplified

by analyses such as those carried out by Schlecht et al. (2008), where three

datasets of Abf1 binding were created from three different experimental con-

ditions, but comparisons between them were limited to identifying sites of

shared or different occupancy.

The format of data generated by ChIP-chip microarrays is different to

that described for gene expression microarrays in the previous section. All

of these methods rely on the assumptions that the bulk of the data points do

not vary between experiments and that the data form roughly symmetrical

distributions. The next stages of processing go on to identify the relatively

small number of values that change significantly between datasets, repre-

senting differentially expressed genes. These same assumptions do not hold

for ChIP-chip data. The distribution of ChIP-chip data is asymmetrical be-

cause as immunoprecipitated material binds to the probes of the microarray

the resulting intensity values can only be larger than the background, never

smaller, which gives the distribution a positive skew (this has been pointed

out several times, for example, by Buck and Lieb, 2004, . Figure 1.4 shows a

representation of this type of data) Additionally, a large proportion of probe

values may change between different conditions because a large proportion of

the genome may be immunoprecipitated. These features of the data violate

21

CHAPTER 1 SECTION 1.1

the assumptions of the normalisation procedures. Therefore their applica-

tion to ChIP-chip data can have the effect of removing biological variations

from datasets of different experimental conditions. For example, where large

sections of a genome show an increase in the factor of interest between two ex-

perimental conditions, the distributions of the two datasets will be markedly

different. Specifically, the modal points of the distributions will be different,

from the low end in the first dataset (where the bulk of the data represent un-

enriched regions of the genome) to the high end in the second dataset (where

the bulk of the data now represent enriched regions of the genome), which is

an important biological variation which should be maintained between the

two datasets. However, normalisation methods for gene expression data will

seek to remove this difference, under the assumption that the bulk of the data

should not change between conditions. Quantile normalisation, for example,

would take the two different data distributions and produce a third, ‘aver-

aged’ distribution, thereby removing all biologically relevant information in

the two datasets and producing a third, unrepresentative dataset.

These differences in the properties of the data, meaning that methods

developed for gene expression data are not necessarily suitable for application

to ChIP-chip data, is an important fact which has been pointed out previously

by Ponzielli et al. (2008):

“Experimental design parameters for mRNA expression arrays

have been extensively evaluated by a number of groups over the

last decade. As a result, the key factors are well understood and

the assays have been optimised. It is possible, for example, to

estimate the number of biological repeats required to sufficiently

power a specific hypothesis-testing question. Despite this clear

evidence that parameter optimisation can greatly improve the

quantity and quality of information retrieved from an array anal-

ysis, ChIP-chip design parameters have not yet been thoroughly

and systematically investigated, and it cannot be assumed that

parameters and processes would be the same for both mRNA and

ChIP-chip arrays”.

22

SECTION 1.1 CHAPTER 1

Dataset 2

D
at

as
et

 1

D
en

si
ty

Log2 Dataset 1/Dataset 2 Ratio values

Representation
of unbound
regions

Representation of
bound regions

Positively
skewed
distribution

Figure 1.4: ChIP-chip microarray data representation: One set of ChIP-chip
microarray values are represented plotted against another (top panel). The
grey shape represents the region containing the majority of the data, where
a large proportion of values are higher in one dataset. The darker greys
represent more data. The ratios of the two datasets creates a positively
skewed distribution (bottom panel). Red arrows show the regions of data in
the top panel which form the parts of the distribution in the bottom panel.

23

CHAPTER 1 SECTION 1.1

ChIP-chip data normalisation has generally focused on the task of peak

detection, that is, on methods of data manipulation that aid the finding

of sites of enrichment across multiple datasets in order to identify protein

binding sites. Buck and Lieb (2004) discuss the following two methods.

Median percentile ranks

Median percentile ranks converts all data to ranks, thus removing any biases

in the data and removing the need for further processing. This is therefore

not strictly a normalisation procedure, but in allowing multiple datasets to

be analysed together it performs a similar function and therefore warrants

discussion. The ranks are used to identify regions of enrichment across mul-

tiple datasets. The median percentile rank for data point x is calculated as

the proportion of the data less than x. In this way the ranks run from 0 to 1.

If several replicate datasets consist only of random noise, the rankings of the

datasets will be random. Therefore the medians of the ranks of each data

point will form a normal distribution. If a subset of data points are enriched

they will lie at the upper end of their respective rankings and will therefore

produce high median values. With enough replicates and high enough lev-

els of enrichment these high median values can be distinguished from the

rest of data as a second distribution, alongside the normal distribution of

background values. A cutoff value can be determined and used to identify

enriched regions. Proteins with small amounts of enrichment may not be

detectable via this method. In converting to ranks all binding data is lost

which may limit further analyses.

Single array error model

The single array error model was used in early microarray investigations (Ren

et al., 2000; Roberts et al., 2000) which tended to contain few probes, with

single probes representing sites of enrichment. It allows replicate experiments

to be averaged with suitable weightings to take account of differences in

variance between different datasets (Buck and Lieb, 2004), thus improving

the ability to detect sites of genuine enrichment.

24

SECTION 1.1 CHAPTER 1

Peng’s method

Peng et al. (2007) present a novel normalisation method specifically designed

for ChIP-chip data, without the potential problems associated with gene

transcription microarray normalisation methods. This is focused on removing

the need to carry out mock controls in experiments. These are assays carried

out with no antibody, or an antibody against a target not present in the

sample, with the aim of gauging any biases which may occur. This data can

then be subtracted from the data created with the antibody, to leave only

enrichment resulting from the antibody. It uses the first order differences

of probe values to create a symmetrical distribution of values. A straight

line fitted through this data provides a means of rotating it to lie on the

line y = 0. The same rotation factor can be applied to the original data to

cause the background portion to lie on the line y = 0. Lowess normalisation

can then be used to correct for any non-linear artifacts in this data. A

horizontal line can then be used to represent the cutoff between background

and enriched data points. This method doesn’t allow for multiple datasets

to be normalised together.

A recent evaluation by Adriaens et al. (2012) compared six of the above

mentioned normalisation methods commonly used with ChIP-chip and DNA

methylation investigations: VSN; lowess; quantile; T-quantile; Tukey’s bi-

weight scaling; and the method of Peng et al. (2007). They determined

T-quantile normalisation to be the best, which is quantile normalisation ap-

plied separately to different datasets in batches, as it conserved enriched and

un-enriched signals, allowed identification of regions known to be enriched

and improved comparability between datasets.

1.1.4 ChIP-chip data processing

Johnson et al. (2008) carried out an investigation to evaluate variability in

ChIP-chip experiments using predefined DNA targets. These targets con-

sisted of 100 samples of cloned genomic DNA sequences added at levels

ranging from 1.25- to 196-fold above the background level (a commercial

human genomic DNA preparation). Known quantities of DNA sequences

25

CHAPTER 1 SECTION 1.1

such as these are termed ‘spike ins’, or simply ‘spikes’, and adding them

in this manner is termed ‘spiking in’. The overall aim of this investigation

was to test the performance of the various microarray platforms and analysis

methods. They found that the microarray platform used was not the primary

determinant of overall performance and attribute the variations in results to

variations in performance between labs, protocols and algorithms.

Ponzielli et al. (2008) carried out an assessment of a range of ChIP-chip

experimental design parameters including antibody selection, array batches,

dye effects, scanner calibrations, environmental conditions, handling, ampli-

fication methods and hybridisation controls. They found that all the aspects

tested had an influence on the final results, which is not unexpected given

that each of the aspects is known to have some inherent variation of its own.

One surprising result from the study was that the day on which hybridisa-

tion was performed had a greater influence than the array batch used or dye

swaps. There is no explanation for this and it goes to demonstrate that, even

if it were possible to eliminate all variations of known origin, there would still

be some variation between experiments caused by as yet unidentified factors.

It is this range of influences on the final results that necessitates the need for

robust normalisation methods.

1.1.4.1 Peak detection

ChIP-chip analyses often require the application of an algorithm to detect

regions of enrichment or peaks. These algorithms attempt to separate sec-

tions of genuine enrichment from background noise or non-specific binding.

Several algorithms have been developed for this purpose, which are discussed

in Chapter 5. They allow the large amounts of data generated by ChIP-chip

experiments to be reduced to a list of sites of enrichment. These sites can be

used in further investigations, such as confirmation of the presence of the fac-

tor of interest by other methods, and sequence analysis, to identify common

sequences in the binding regions.

26

SECTION 1.1 CHAPTER 1

1.1.4.2 Making comparisons between datasets

Conspicuous by its near absence in all of the ChIP-chip data normalisation

literature is discussion of making robust comparisons between datasets gen-

erated under different biological conditions. This is standard practice with

other types of microarray investigations. Gene expression microarrays, for

example, are used to determine which genes are disregulated by certain ex-

perimental conditions. Array-CGH, as stated in the name, compares the

hybridisations of different genomes. For the most part ChIP-chip has been

used to investigate only one factor of interest at a time, such as determining

where in the genome a protein binds. Little work has been done to normalise

datasets from different conditions to allow comparisons of binding levels to

be made between them, which is one aspect of the work presented in this

thesis.

Some early ChIP-chip investigations do make limited comparisons be-

tween different datasets, such as Pokholok et al. (2005), who compare hi-

stone H3 and H4 profiles over an average gene. This is done graphically,

and no mention is made of any normalisation carried out to specifically

allow the comparison of data between different datasets. No conclusions

are drawn from this comparison. Penterman et al. (2007) compare ChIP-

chip DNA methylation profiles by a simple subtraction of mutant from wild

type datasets. This allowed regions of different methylation levels to be

determined between the two. These were analysed statistically to identify

difference values greater than those expected by chance. Farthing et al.

(2008) compare DNA methylation profiles in mouse promoters with, “al-

gorithms. . . developed to assess differences in promoter methylation between

the different cell types.” This uses “a 500 bp sliding window to identify areas

where the methylation state consistently and significantly changed between

the two tissues being compared.” No mention of a normalisation procedure

prior to the application of these procedures is made in either investigation.

With datasets such as these, where the factor being investigated occurs over

large stretches of the genome, it is relatively easy to determine whether or

not those regions correspond in different datasets. It is not possible, without

27

CHAPTER 1 SECTION 1.1

proper normalisation, to infer any numerical information from the compar-

isons, which these investigations do not attempt.

A package for the analysis of ChIP-chip data, CARPET (Cesaroni et al.,

2008), includes a method to compare different datasets. It is stated that

“. . . cross-comparison of [ChIP-chip] experiments is a significant problem that

needs to be addressed.” However, the method presented provides only a lim-

ited solution to this problem, by extracting common or unique regions from

two datasets analysed with their peak detection algorithm. No normalisation

method is provided to ensure that the results of peak detection on the two

datasets are comparable. As mentioned above, if the peak detection method

is robust, simply defining regions sharing enrichment is valid, provided no

numerical information is inferred, that is, no comparisons of peak heights are

made.

Several methods of analysing datasets of the same type but created by

different methods or on different platforms have emerged. These allow more

than one dataset to be combined to enhance the detection of the factor of

interest. Choi et al. (2009) propose a hierarchical hidden Markov model

(HMM) to allow the joint analysis of ChIP-chip and ChIP-seq data of the

same condition to enhance the detection of binding sites. It is limited to one

ChIP-chip and one ChIP-seq dataset only. Another package for the analysis

of ChIP-chip data, JAMIE (joint analysis of multiple ChIP-chip experiments;

Wu and Ji, 2010) allows multiple experiments to be analysed together. This

is achieved through a hierarchical mixture model which analyses multiple

datasets from different experiments and platforms to “capture correlations”

between them. This allows improved peak detection over analysing each of

the datasets individually, which may allow more potential binding sites to be

identified and therefore increases the amount of potential information that

can be extracted from datasets. Chen et al. (2011) present MM-ChIP, a

model-based meta-analysis software to integrate results from different inves-

tigations to improve the sensitivity and specificity of detection of enriched

regions. This uses a two-step process which first fits the data to a platform-

specific model to increase the signal-to-noise ratio and calculates a score to

quantify signal enrichment via a sliding window, then calculates Z-scores for

28

SECTION 1.1 CHAPTER 1

each region, which are combined for all datasets. The statistical properties of

these scores are used to determine enriched regions across all datasets. None

of these methods contain any normalisation procedures and so comparisons

cannot be made between the binding levels in different datasets.

Johannes et al. (2010) acknowledge the problem with respect to the com-

parison of chromatin profiles with ChIP-chip and ChIP-seq data. They say,

“with ChIP samples collected from different tissue types and/or individuals,

we can now begin to characterize stochastic or systematic changes in epige-

netic patterns. . . this requires statistical methods that permit a simultane-

ous comparison of multiple ChIP samples on a global as well as locus-specific

scale.” However, it is computationally limited to a small number of datasets

and is recommended as a “first-pass algorithm” to identify candidate regions,

which should be followed with another, unspecified, algorithm to fine tune

the results. As it is intended for use with ChIP-chip and ChIP-seq data

together it will not necessarily work with ChIP-chip alone.

To date, the only publication which addresses the problem with a specific

normalisation method is by Landfors et al. (2011), which is aimed at nor-

malising any skewed data sets, not specifically ChIP-chip data. Here data is

first normalised by a “standard normalisation technique of the user’s choos-

ing,” then a method of determining whether or not the distribution of the

dataset is skewed (detection of skewed experiments, DSE) is combined with

a hidden Markov model-assisted normalisation method. Non-skewed data

is deemed to not require further normalisation. The HMM-assisted normal-

isation procedure aims to identify regions that are unaltered between the

different datasets. These regions are used to estimate a normalisation func-

tion which is used to normalise the whole dataset. The HMM algorithm

identifies the unaltered regions on which to perform the next normalisation

procedure by analysing the ratios of the averaged two datasets. Those closest

to zero are classified as unaltered.

None of these methods specifically address the problem of the lack of a

robust normalisation procedure to allow comparisons to be made between

ChIP-chip datasets produced from more than one different biological condi-

tions. A novel normalisation method which aims to achieve this is presented

29

CHAPTER 1 SECTION 1.2

in Chapter 4 and applied to real ChIP-chip data in Chapters 5 and 7.

1.2 DNA damage

The work presented in this thesis is all linked to DNA damage, either directly,

in the case of its measurement, or indirectly, in the case of measuring other

cellular responses to damage induction. All of the datasets used in this thesis

were produced for analyses related to the repair of DNA damage. This section

gives an overview of the DNA molecule, the damage it can acquire and the

processes that exist to repair it.

1.2.1 DNA

Deoxyribonucleic acid — DNA — is the fundamental building block of life.

It encodes everything crucial for the correct functioning of cells and is the

molecule of genetic inheritance. Its stability is therefore critical to it being

able to correctly perform its functions. It has posed life on Earth a problem

that this molecule is not chemically inert, but faces constant challenges to its

stability. Water, for example, can hydrolyse bonds in DNA, free radicals can

oxidise bonds, ultra violet (UV) radiation can fuse adjacent bases together

and ionising radiation can break the double stranded backbone. Organisms

of all known types have developed a range of mechanisms to deal with these

various genetic insults. Incorrect repair of DNA damage can result in various

outcomes, from no phenotypic change if, for example, a silent mutation is

created, to cell death if, for example, the damage is so great the cell cannot

deal with it or functional mutations are created in critical regions of the

genome. Somewhere between these two extremes lies a region where cells

survive the damage event but do so in a way that they become rogue; beyond

the normal cellular controls in such a way that they will eventually, without

intervention, lead to the death of the organism, as is the case in cancer.

30

SECTION 1.2 CHAPTER 1

1.2.1.1 Structure

The structure of DNA was famously elucidated in 1953 by Watson and Crick,

using x-ray crystallography images generated by Rosalind Franklin (Crick

and Watson, 1953). It was immediately obvious to these researchers that the

structure of DNA lends itself to copying, stating, “if the sequence of bases

on one chain is given, then the sequence on the other chain is automatically

determined.” This has indeed shown itself to be true, and it is the duplication

of this sequence that is required for the continued proliferation of life.

DNA comprises two polynucleotide chains twisted around each other to

form a double helix. Nucleotides, the building blocks of DNA, consist of

a phosphate molecule joined to a sugar molecule joined to a base. The

orientation of a nucleotide strand is described by the free carbon molecules

of the sugar at either end of the chain: 3′ and 5′. This polarity enables the

differentiation of the two strand ends.

The ‘backbone’ of DNA is formed by repeating sugar–phosphate groups,

and so these are constant in all nucleotides. The variation comes about

by different base structures. There are two classes of base: purines and

pyrimidines. The purines are named adenine (A) and guanine (G) which are

derived from double ring structures. The pyrimidines are named thymine

(T) and cytosine (C) which are derived from single ring structures. The two

strands of the double helix are held together by hydrogen bonds between

these nucleotides and the variations in the four structures are such that

pairings can only form between specific pairs: A always pairs with T and G

always pairs with C. Two hydrogen bonds form between A and T, while three

form between G and C, making this second pairing slightly stronger. This

bonding means that the nucleotides are positioned inside the helix, with the

sugar-phosphate backbone on the outside. The two strands run antiparallel

to each other, that is, one runs 5′ to 3′ and its complement runs 3′ to 5′.

There are multiple forms DNA can take: in cells it is usually a right-

handed helix in the ‘B’ form. This has each base pair (bp) displaced by

approximately 36°, resulting in there being approximately 10 bp per complete

revolution of the helix. DNA is a reasonably flexible molecule and even allows

31

CHAPTER 1 SECTION 1.2

bases to ‘flip out’ or protrude from the helix. This flexibility has important

implications in DNA repair.

The order of DNA’s nucleotides encodes its information, in a way that

can be thought of as a four-letter alphabet. Genes, or open reading frames

(ORFs), encode proteins. These sequences are transcribed to mRNA strands

which are then processed by ribosomes to produce proteins. Sequences of

triplicate nucleotides, named codons, represent amino acids. The sequence

is read by the ribosome which adds the correct amino acid to an extending

polypeptide chain. Much information is also contained in the sequences sur-

rounding ORFs, which do not encode proteins but carry important regulatory

information to control how cellular processes act upon the DNA.

1.2.1.2 Chromatin

In eukaryotic cells DNA does not exist in the naked state of the double helix

described above. Instead it is packaged into a supercoiled, complex, highly

condensed DNA-protein structure named chromatin. This is a hierarchical

structure, summarised as follows (adapted from Watson et al., 2003). The

first level is the nucleosome, which consists of a 160–165 bp segment of DNA

wrapped around a core of 8 histone proteins, comprising 2 copies each of

histones H2A, H2B, H3 and H4. The N-termini of these proteins protrude

from the nucleosome. A segment of 13–18 bp of linker DNA between each

nucleosome gives the structure a ‘beads-on-a-string’ appearance under the

electron microscope. Histone H1 binds this linker region, stabilising the

structure, creating a more defined angle between the nucleosomes. The next

level of structure is the 30 nm fibre: an assembly of nucleosomes 30 nm in

diameter. This is further condensed by looping the fibre around a protein

core. This creates a structure around 10,000 times more condensed than

naked DNA.

1.2.1.3 Replication

The two complementary strands of DNA make it possible to copy information

into new cells, enabling the inheritance of the genetic code. When a cell

32

SECTION 1.2 CHAPTER 1

reproduces, each of the strands serves as a template for the creation of a new,

complementary, strand. This results in two identical copies of the original

molecule which are distributed to the two daughter cells.

DNA replication requires a DNA polymerase: an enzyme which reads the

existing DNA sequence and inserts the appropriate complementary base into

the synthesising sequence. There are various types of DNA polymerase, each

with different functions and characteristics, but all perform this same basic

task. The enzymes have a single active site, which catalyses the addition of

any of the four bases, arranged as a pocket around the DNA molecule. When

the correct complementary base enters this pocket the molecular arrangement

is such that the reaction to join it to the new DNA molecule is catalysed.

DNA polymerases are capable of adding up to 1,000 nucleotides a second to

a synthesising DNA strand as they move along the template strand (Watson

et al., 2003).

Specific exonucleases proof read newly synthesised DNA to correct erro-

neously added nucleotides. Approximately 1 in 105 nucleotides are incorrectly

incorporated by the DNA polymerase during replication. Exonucleases de-

grade DNA from its ends and so the proof reading exonuclease can remove

an incorrect nucleotide at the end of the newly synthesised DNA strand,

allowing the polymerase another opportunity to add the correct nucleotide.

This increases the accuracy of DNA replication to approximately 1 incorrect

insertion per 107 nucleotides.

1.2.2 DNA damage and repair

The DNA molecule is susceptible to many types of damaging agents. These

damages can occur spontaneously, as a result of normal cellular conditions,

or from extra-cellular sources. Endogenous DNA damage events arise as a

result of reactions with substances present in cells for normal functionality.

These spontaneous lesions can occur at high rates because of the constant

contact with the damaging chemicals. Exogenous DNA damages arise outside

of the cell and as such generally occur at lower frequencies than endogenous

damages. They may be caused by chemical or physical insults. Several repair

33

CHAPTER 1 SECTION 1.2

pathways have evolved in cells to process the various types of damage that

they are constantly subject to. This section briefly outlines the main types of

damage and the repair pathways that deal with them, split into three sections:

events which modify single bases, events which alter the DNA structure and

events which cause the breakage of DNA strands. Information is taken from

Alberts et al. (2002), Watson et al. (2003) and Friedberg et al. (2006).

1.2.2.1 Base modifications

Base modification events occur at single bases, causing deviation from the

intended DNA sequence. They can cause bases to become unrecognisable by

the replication and transcription machinery, inhibiting or disrupting these

processes, or substitute incorrect bases into the sequence, causing the po-

tential proliferation of mutations. Transitions are interchanges of the same

class of base, that is, a purine for a purine or a pyrimidine for a pyrimidine.

Transversions are interchanges of different classes of base, that is, a purine

for a pyrimidine or vice versa.

Deamination

Deamination is the removal of an amine group from a nucleotide, which

occurs via a hydrolysis reaction. Cytosine is the most frequently deaminated

base, at a rate of ∼100–500 per diploid human cell per day. This produces

uracil (U), a base not naturally present in DNA. Uracil is a pyrimidine which

pairs with adenine, so leads to the incorporation of an adenine, rather than

guanine, into the opposite strand during replication, inducing a C:G to T:A

mutation.

Adenine and guanine can also be deaminated to hypoxanthine and xan-

thine respectively, both of which pair with cytosine, but at a much lower rate

than cytosine. Adenine deamination therefore induces an A:T to G:C muta-

tion, while xanthine forms only two of the usual three hydrogen bonds with

cytosine and so may result in the arrest of DNA synthesis. The abnormal

bases created by these deamination reactions can be recognised by the cell

and repaired. However, 5-methyl cytosine (a cytosine modified by a methyl

34

SECTION 1.2 CHAPTER 1

transferase enzyme for regulatory purposes) can be deaminated to thymine,

inducing a C:G to T:A mutation. As this will not be recognised by the cell as

an abnormal base the mutation can become fixed, and methylated cytosines

are known mutation hot spots (Denissenko et al., 1997, for example).

Depurination

Depurination is the removal of a purine base from the deoxyribose sugar.

Like deamination, it is a spontaneous hydrolysis reaction. Depurination of

adenine and guanine can produce an abasic site, that is, a deoxyribose lacking

a base. This occurs at a rate of ∼18,000 per diploid human cell per day. The

genetic information can be recovered from the complementary strand if this

occurs in double stranded DNA, but may be mutagenic in single stranded

DNA.

Depyrimidination

Depyrimidination occurs by the same mechanism as depurination. Pyrimi-

dine nucleosides are more stable than purine nucleosides, and so the rate of

depyrimidination is less, at ∼600 per diploid human cell per day.

Oxidation

Oxidation can occur at all four DNA bases, but is most common at guanine

due to it having the highest oxidation potential. Reactive oxygen species are

generated as by-products of oxygen metabolism and as such oxidative stress

is an unavoidable consequence of life in an oxygen-rich atmosphere. It can

produce over 80 types of base damage. 7,8-dihydro-8-oxoguanine (commonly

shortened to 8-oxoG) is among the most common, occurring at a rate of

∼1,000-2,000 per diploid human cell per day. This can pair with adenine as

well as cytosine and thereby induce G:C to T:A mutations. Ring saturated

pyrimidines, such as thymine glycol, and lipid peroxidation products arise at

a rate of ∼2,000 and ∼1,000 per diploid human cell per day respectively.

35

CHAPTER 1 SECTION 1.2

Alkylation

Alkylation is the transfer of an alkyl group to bases or the phosphates of the

DNA backbone. One of the most vulnerable sites is the oxygen of carbon

atom 6 of guanine. This produces O6-methylguanine which often mispairs

with thymine, inducing a G:C to A:T mutation. There is a variety of a en-

dogenous and exogenous alkylating agents.

All of the above types of damage are repaired via the base excision repair

(BER) pathway. DNA glycosylase enzymes recognise and remove specific

damage types, leaving an apurinic or apyrimidinic (AP) site. In the case of

spontaneous depurination and depyrimidination this glycosylase step is not

required. The sites are cleaved by an AP endonuclease enzyme, of which there

are four classes. All cleave at the phosphate groups 3′ and 5′ to the baseless

site, but leave either 3′-OH and 5′-phosphate or 3′-phosphate and 5′-OH

termini. Some glycosylases are bi-functional, that is, they also perform the

cleavage step and therefore do not require the action of an AP endonuclease.

The resulting single strand break is repaired by either short- or long-patch

BER. Short-patch repair replaces the single removed nucleotide while long-

patch repair replaces a stretch of 2-10 nucleotides.

Incorrect base incorporation

Incorrect bases can be incorporated through the simple insertion of the wrong

base by a DNA polymerase during DNA synthesis, resulting in mismatches.

Additionally, free bases may be damaged before being incorporated into

DNA.

1.2.2.2 Structural alterations

Structural alterations may occur at single or multiple bases, or within the

backbone of the double helix. They may arise from reactions within the

DNA structure or with outside molecules. They alter the structure of the

helix such that it becomes distorted, that is, it deviates from the normal

36

SECTION 1.2 CHAPTER 1

structure previously discussed. These distortions can block replication and

transcription.

Base substitution

Molecules of sufficiently similar structure — base analogues — can be incor-

porated into DNA in the place of true bases. Although similar enough to be

processed by the cell as a real base, they do not behave as such once incorpo-

rated into the DNA and so can lead to mistakes during replication. One of

the most mutagenic base analogues is 5-bromouracil. This is an analogue of

thymine but can mispair with guanine in double stranded DNA. Tautomers

of the bases also exist, where the protons occupy different positions in the

molecule. These can theoretically cause mispairings between bases, but no

evidence has been found that they do so in cells (Pray, 2008).

Intercalation

Flat, polycyclic ring-containing molecules can slip between bases within the

DNA double helix. This can cause the deletion or addition of bases during

replication, creating frame shift mutations. This can have severe effects on

proteins if arising within coding genes.

Inter- and intra-strand cross links

Chemical bonds can be created between nucleotides on the two strands of the

double helix (inter), or between nucleotides on the same strand of the helix

(intra). These can block the DNA polymerase, thereby causing cell death.

Bulky adducts

Large, bulky molecules can be chemically bonded to DNA, distorting its

shape. An example that can cause multiple types of damage is the platinat-

ing class of chemotherapeutic drugs (cisplatin, oxaliplatin and carboplatin).

These can create crosslinks between guanine bases on the same strand, ad-

jacent to each other or separated by one base, and on opposite strands,

37

CHAPTER 1 SECTION 1.2

separated by one base. They can also form adducts on individual guanine

bases. The absorption of UV radiation can cause the covalent bonding of ad-

jacent pyrimidine bases (see Section 1.4.1.1), creating a DNA adduct without

it interacting with another chemical.

These types of damage are repaired in part via the nucleotide excision

repair (NER) pathway. The first stage of this pathway, the recognition of a

lesion, is split into two sub-pathways. Lesions arising in genes that are being

actively transcribed cause the arrest of the RNA polymerase, recruiting the

rest of the NER machinery to the site. This is transcription coupled NER

(TC-NER). All lesions, including those in genes being actively transcribed,

but primarily those in non-coding regions, genes not being transcribed and

the non-coding strand of genes being transcribed, can be recognised by spe-

cific proteins, including the human DDB and XPC-Rad23B complexes, which

recruit the NER machinery to the site. This is global genome NER (GG-

NER). Thus there is faster repair of adducts in genes being actively tran-

scribed than the rest of the genome because they are able to be detected by

both sub-pathways. After the initial recognition of damage sites the path-

ways converge. The DNA is unwound at the site of damage by two helicase

enzymes, XPB and XPD, and two incisions are made in the strand contain-

ing the damage, one either side, by two endonuclease enzymes, XPG and

XPF. This creates a strand 25-30 nucleotides long which is removed from

the helix. A DNA polymerase then fills this gap, reading from the remaining

strand, and DNA ligase seals the nicks. GG-NER is discussed in more detail

in Section 1.4.3.

Some types of DNA damage can be directly reversed by enzymes. One

such example is photoreactivation, where the energy from light is harnessed

by the photolyase enzyme to break apart the covalent bonds between two

bases in a cyclobutane pyrimidine dimer (CPD), restoring the original con-

figuration. This enzyme is not present in humans. This type of reaction acts

directly on the damaged bases, converting them back to their original forms,

and as such does not require a DNA template or the incorporation of new

nucleotides.

38

SECTION 1.2 CHAPTER 1

In some cases DNA synthesis will continue across a damage site, which

may be preferable to the cell rather than aborting the synthesis to repair the

lesion. This is achieved via the translesion synthesis (TLS) pathway. This

requires the use of specialised polymerases to synthesise across the damage.

In general, these polymerases have low fidelity, that is, they often incorporate

the wrong base with an undamaged DNA template. However, they are much

more efficient at incorporating the correct base at damage sites than normal

polymerases. They often have larger active sites to allow the adduct to fit.

At sites of damage the PCNA protein is ubiquitinated, which signals the

polymerase switching.

1.2.2.3 Strand breakages

Strand breakages are the introduction of nicks into the phosphodiester back-

bone of DNA. They may arise in one or both strands.

Single strand breaks

Single strand breaks (SSBs) are the breakage of the backbone of one strand of

the double helix which can be induced by certain wavelengths of radiation and

as a result of other cellular repair processes. They leave the DNA molecule

intact by virtue of the remaining second strand. Two single strand breaks

close together on opposite strands however can lead to a more severe dou-

ble strand break (DSB), as can an approaching replication fork. Cells have

therefore developed efficient systems to detect and repair these breaks to pre-

vent them becoming more severe. Poly(ADP-ribose) polymerase (PARP) is

one such sensor, which binds to SSBs with high affinity and acts as a signal

for repair. One important protein in the repair process, which interacts with

PARP, is XRCC1. This has multiple roles in SSB repair and is thought to

act as an important scaffold protein in interacting with several other pro-

teins with roles in the repair pathway, including end processing, gap filling

and ligation.

39

CHAPTER 1 SECTION 1.2

Double strand breaks

DSBs form when the backbones of both strands of the double helix are severed

in close proximity, creating two separate DNA molecules, which can lead to

chromosomal rearrangements. There are two main mechanisms for the repair

of these breaks: directly rejoining the free ends of the two molecules (non-

homologous end joining; NHEJ), which does not necessarily join the correct

two free ends, or utilising regions of similar or identical sequence to the free

ends elsewhere in the genome to aid the joining of the free ends to what is

likely to be the correct sequence (homologous end joining; HEJ).

HEJ uses a short section of a sister chromosome with sequence homology

to the free DNA ends to rejoin the ends together without loss of information.

The MRN-complex recognises DSBs and locates to their sites, and medi-

ates the processes required for HEJ to take place. The 5′ ends of the DNA

strands are resected, leaving 3′ overhangs. An overhang can then invade

the region of the sister chromosome with sequence homology, base pairing

with the homologous sequence and displacing the complementary strand. A

DNA polymerase can then extend the 3′ ends based on the complementary

sequences of the invaded chromosome. This forms two Holliday junctions,

the resolution of which produces either cross-over or non-crossover products.

This utilisation of identical sequences means that repair by this method is

error free.

NHEJ occurs when a sister chromosome is not present, that is, before

DNA replication has taken place and therefore represents the major DSB re-

pair pathway in humans. Two free ends are simply ligated together, mediated

by Ku proteins. Small regions of homology present on single stranded DNA

(ssDNA) at the ends of the strands, which can be as little as one nucleotide in

length (serendipitous microhomologies) are utilised for this process. This is

therefore an error prone repair process but as so little of the human genome

is coding it seems that this small loss of information is generally tolerated.

However, there is no way of knowing that the two free ends being joined

by this process are correct, that is, were originally joined together before

the break, so this type of repair can induce chromosomal rearrangements, a

40

SECTION 1.2 CHAPTER 1

hallmark of cancer.

1.2.3 Consequences of defective DNA repair

Repair of DNA damage is vital for cellular proliferation and organism sur-

vival. Organisms with serious DNA repair defects often do not survive be-

yond the very early stages of life. There are many congenital diseases of repair

pathways in humans which confer increased risk of cancers or/and reduced

lifespans. Additionally, acquired diseases can arise following the incorrect

repair of a damage event in an otherwise healthy individual.

1.2.3.1 Congenital diseases

Over 20 diseases are associated with mutations in around 50 genes involved

in DNA repair (reviewed by Lehmann and O’Driscoll, 2010). The following

information is taken from this review.

Three main diseases are associated with defects in the NER pathway:

xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodys-

trophy (TTD). XP arises from mutations in any one of the seven XP genes,

designated A to G (see Section 1.4.3), and is characterised by sensitivity

to sunlight, skin pigmentation changes and multiple skin cancers on areas

exposed to sunlight. It is also associated with neurological abnormalities

in some cases. CS is associated with mutations in the CSA and CSB genes.

The proteins encoded by these genes are required to displace the stalled poly-

merase at damage sites in genes being actively transcribed and as such this

disease is specifically related to TC-NER. The symptoms include dwarfism,

severe physical and mental retardation, neurological and retinal degenera-

tion, ataxic gait, deafness and sun sensitivity. Notably, there is no skin

pigmentation or increased risk of skin cancer. It is thought the symptoms of

the disease are related to the accumulation of oxidative damage, the removal

of which CSA and CSB are also involved with. TTD arises from mutations

in the XPB and XPD genes and is characterised by sulphur-deficient, brittle

hair, ichthyotic skin, beta thalassaemia trait, physical and mental retardation

and sun sensitivity, but again no skin pigmentation or increased skin cancer

41

CHAPTER 1 SECTION 1.2

risk. It is thought these symptoms are related to defects in transcription, in

which XPB and XPD also play a role in initiation, whereas in XP they are

related to defects in repair.

Defects in the TLS pathway can also cause an XP variant, XP-V, with

20% of patients having normal NER but mutations in polymerase η. This

polymerase is able to carry out TLS past UV-induced and other DNA adducts.

Without its activity cells cannot effectively repicate across damage when nec-

essary.

Patients with clinical symptoms related to defects in HEJ and NHEJ

are rare. The BRCA1 and BRCA2 genes, mutations in which are linked

to familial breast cancer, play roles in HEJ. Several diseases are linked to

defects in the signal transduction cascade activated by DNA breaks. The

ATM and ATR kinases coordinate these downstream events, activated by

DSBs and ssDNA respectively. Ataxia-telangiectasia, ataxia telangiectasia-

like disorder and Nijmegen breakage syndrome are linked to defects in ATM,

with symptoms including increased cancer predisposition. Seckel syndrome

is associated with ATR mutations.

Mutations in three of the five RECQ genes, involved in homologous re-

combination and suppression of illegitimate recombination, result in several

disorders. Bloom syndrome (BLM) is characterised by a reduced stature, re-

duced fertility, chromosome abnormalities and high cancer incidence. These

cells have a very high incidence of sister chromosome exchanges. Werner

syndrome (WRN) is characterised by features of premature aging and an in-

creased incidence of soft tissue carcinomas. These cells show a high frequency

of illegitimate recombination. Rothmund-Thompson syndrome is linked with

abnormalities of the skin and skeleton and an increase in cancer incidence.

Fanconi anaemia patients suffer from defects in interstrand cross link re-

pair. It results from mutations in any one of 13 FANC genes. Cells are hyper-

sensitive to cross linking agents and slightly sensitive to ionising radiation.

Clinical symptoms are progressive aplastic anaemia, skeletal abnormalities

and lymphoid malignancy.

Defects in mismatch repair cause the autosomal dominant condition hered-

itary nonpolyposis colon carcinoma (HNPCC). The majority of cases arise

42

SECTION 1.2 CHAPTER 1

from mutations in the genes MSH2 — involved in mismatch recognition —

and MLH1 — recruited to mismatches once recognised. The reason for tu-

mours arising only in the colon when mismatch repair is vital in all cells is

currently unclear, but is thought to be related to the high replicative turnover

in the gut layer.

Various diseases are associated with defects in the various parts of BER.

Spinocerebellar ataxia with axonal neuropathy (SCAN1), a disease associ-

ated with neurodegeneration, results from mutations in the TDP1 gene.

This is involved in removing topoisomerase I enzymes from DNA, the in-

hibition of which results in a reduced ability to repair single strand breaks.

Ataxia-oculomotor apraxia type 1 (AOA1), a disease associated with cere-

bellar atrophy and sensorimotor neuropathy, results from mutations in the

APTX gene. This is involved in the removal of intermediates in the repair of

DNA breaks, inhibition of which it is thought causes the build up of breaks

in cerebellar DNA.

Other diseases include cerebro-oculo-facio-skeletal (COFS) syndrome, re-

sulting from mutations in the CSB gene and PIBIDS — named after the

features of Photosensitivity, Ichthyosis, Brittle hair, Intellectual impairment,

Decreased fertility and Short stature — which is considered to by synony-

mous with the photosensitive form of TTD (Friedberg et al., 2006). Because

these diseases are so rare it can be difficult to categorise and compartmen-

talise them, and there is likely a spectrum of diseases with overlapping clinical

features (Friedberg et al., 2006).

1.2.3.2 Acquired diseases

Cancers can arise in any person. Certain DNA repair defects can cause

increased incidence or risk of cancers, as outlined in the previous section, but

DNA repair errors in otherwise healthy individuals can also lead to cancer

formation. There are a number of unusual properties a cell must gain in

order to make the transition from normal to cancerous. These changes take

the cells beyond the normal controls and allow them to proliferate in the

uncontrollable manner associated with cancers. Multiple functions exists in

43

CHAPTER 1 SECTION 1.2

cells to prevent them acquiring these properties, but occasionally these can

fail. These properties have been reviewed in two papers by Hanahan and

Weinberg (2000, 2011) and are outlined below.

Self sufficiency in growth signals

Normal cells require extracellular growth signals to make them actively pro-

liferate. Without these signals the cells remain quiescent. This homeostatic

mechanism ensures the proper behaviour of the various cell types within a tis-

sue. Various mutations have been identified in cancerous cells which enables

them to evade this control. These include the cell abnormally synthesising

growth factors to which it itself responds or altering the cellular circuitry such

that the response to growth signals is activated even without the presence of

the growth signals. This allows the cells to be in a continuous proliferative

state.

Insensitivity to antigrowth signals

Anti-growth factors also exist, with the reverse function of growth factors,

that is, they signal cell quiescence. Different types of anti-growth factors can

induce temporary or permanent quiescent states. Cells avoid these signals by

downregulating or displaying dysfunctional cell surface receptors or altering

the cellular circuitry such that no response to anti-growth signals is made.

This allows cells to ignore growth-inhibiting signals from surrounding cells.

Apoptosis evasion

Apoptosis is programmed cell death, an essential process by which cells ‘dis-

mantle’ themselves in precisely choreographed steps and their components

are taken up by surrounding cells. Various events can signal apoptosis in-

cluding DNA damage and hypoxia, as well as controls to maintain tissues in

the correct configuration. The p53 tumour suppressor is heavily involved in

the apoptotic pathway and its inactivation is seen in over half of human can-

cers (Harris, 1996). This evasion allows the cells to persist even in situations

44

SECTION 1.2 CHAPTER 1

where they would normally be signalled to destroy themselves (reviewed by

Fulda, 2010).

Limitless replicative potential

Even with the three capabilities listed above cells cannot replicate forever.

Cells have a finite replicative potential, after which they enter senescence.

Circumventing this allows cells to replicate for a further period until they

enter crisis, which is characterised by cell death. This limit is imposed by

telomeres, short sections of which are lost with every cell cycle (reviewed by

Stewart and Weinberg, 2002). This progressive erosion means that the whole

telomere will eventually be lost, causing end-to-end chromosomal fusions and

the death of the cell. Unlimited replicative potential can be acquired by

modifying telomeres in a way that means they never become lost. Nearly all

cancer cells show such telomere maintenance (Shay and Bacchetti, 1997).

Sustained angiogenesis

Angiogenesis is the production of new blood vessels. In order for a tumour to

grow it must have the ability to create new blood vessels to carry oxygen and

nutrients to all cells within it. Initially the cells do not have this ability. Var-

ious mechanisms are acquired in order to stimulate angiogenesis, including

the production of angiogenesis-initiating signals (reviewed by Kerbel, 2000).

Tissue invasion and metastasis

Once cancerous cells become free of the normal growth constraints and be-

come immortal, they may become limited in the space available for them to

physically grow into. Overcoming this involves producing cells that can move

away from the original tumour and form new tumours elsewhere (metastasis)

and developing the ability to grow into and through surrounding tissues (in-

vasion), traits not associated with normal cells. The majority — as much as

90% — of human cancer deaths are due to metastases (reviewed by Chaffer

and Weinberg, 2011). These traits are acquired by modifying proteins in-

volved in tethering cells to their surroundings, which have various regulatory

45

CHAPTER 1 SECTION 1.3

functions, and upregulating extracellular proteases, which can degrade and

disrupt surrounding cells.

Reprogramming energy metabolism

In order for cancer cells to proliferate at the faster rate allowed by the above

modifications, they must also change the way they produce energy. Most can-

cer cells limit their metabolism to glycolysis, even in the presence of oxygen,

creating a state referred to as “aerobic glycolysis” (reviewed by Hsu and Saba-

tini, 2008). This process produces less energy than conventional metabolism

and so is commonly accompanied by upregulation of glucose transporters.

The reason for this is unclear but may allow glycolysis intermediates to be

diverted into other biosynthetic pathways, including nucleosides and amino

acids, aiding the production of new cells.

Evading immune detection

The immune system is highly effective at removing malignant cells. It is

thought that the majority of cancerous cells are detected and eliminated by

the immune system and therefore that cancerous cells that survive this pro-

cess do so by somehow evading the immune system (recent evidence discussed

by Bindea et al., 2010). There is some evidence to show that the immune

system plays an important role in cancer removal in mice.

1.3 Measuring DNA damage

In order to investigate DNA damage and its subsequent repair, methods of

measuring the amount of DNA damage present in a cell or cells are required.

Repair is estimated by measuring damage at time points after exposure to a

particular damaging agent. Any decrease in the level of damage over time can

be indicative of repair having taken place. Repair assays can be divided into

two broad categories: high and low resolution. This refers to the ability to

resolve the sites at which damage occurs. Low resolution techniques provide

a very limited, if any, way of determining where in the genome damage

46

SECTION 1.3 CHAPTER 1

occurs. Many of the assays allow total damage to be measured, that is,

they show damage throughout entire genomes, but the sites at which the

damage is located within the genome cannot be determined. Conversely,

high resolution techniques allow the locations of damage to be determined to

within a number of base pairs. Typically, these techniques allow only a small

section of a genome to be investigated at a time, and so do not enable genome

wide damage to be investigated. The following sections outline the techniques

that have been used to measure DNA damage, with specific reference to their

use in measuring CPD incidence where appropriate.

1.3.1 Low resolution techniques

Early investigations of DNA damage were low resolution and whole genome.

The first used radioactive labels to indirectly measure the presence of dam-

age. For example, an alkaline sucrose gradient method developed by Mc-

Grath and Williams (1966), used to separate long strands of (radioactively

labelled) genomic DNA by length, thus producing a distribution of fragments

by molecular weight, has been used to measure the repair of such things as

Escherichia coli DNA exposed to x-ray radiation (McGrath and Williams,

1966) and lymphoma cells treated with alkylating agents (Peterson et al.,

1973). Here the presence of damage is indicated by the amounts of differing

length DNA fragments. Radioactive labelling can also be used to investigate

the removal of CPDs in E. coli (Setlow and Carrier, 1964), for example, by

damaging cells containing labelled thymine and monitoring its replacement,

as it is repaired, with unlabelled thymine.

The first assay to demonstrate NER in mammalian cells in culture used a

radiolabelled DNA precursor (Rasmussen and Painter, 1964). Only during S

phase would this normally be expected to be incorporated into the genome.

Dipping slides containing cells into a photographic emulsion for autoradiog-

raphy highlights areas of radiolabelling by the accumulation of silver grains

in the nucleus. Cells in S phase show this labelling, while those in other

phases do not. Following UV irradiation all cells show labelling, indicative

of DNA synthesis as a result of NER.

47

CHAPTER 1 SECTION 1.3

Pulsed field gel electrophoresis (PFGE) can be used to monitor double

strand breaks (first used by Contopoulou et al., 1987). This technique allows

individual chromosomes to be resolved as individual bands on the gel, allow-

ing their repair to be monitored separately. This technique has an increased

resolution from whole genome to whole chromosome, but is still considered

low resolution as the sites of damage cannot be resolved. The FAR (fraction

of activity released) assay (Rydberg et al., 1994) provides another measure

of double strand breaks using PFGE, by measuring the amount of DNA that

enters the gel from a plug containing a cell sample.

A very simple gel based assay allows for double stranded breaks to be

visualised by separation by electrophoresis. The more breaks present the

more short fragments present, which travel further on the gel creating a

‘smear.’ With no or few breaks only long fragments are present which do not

travel very far on the gel and so no, or only a small, smear is created.

The alkaline unwinding assay can be used to monitor single strand breaks

in DNA (first used by Elkind and Chang-Liu, 1972). Here chemical condi-

tions are made such that the DNA helix can unwind from sites of single

strand breakages, causing the two strands to separate. The amount of single

stranded DNA present is then indicative of the number of breaks present.

This technique can also be used to monitor NER (Erixon and Ahnström,

1979), by measuring the short fragments of excised DNA. During the NER

process short fragments of DNA containing damage are excised, following

the introduction of nicks either side of the damage. Monitoring these short,

single stranded fragments shows the amount of NER activity. An alternative

method, alkaline filter elution (developed by Kohn and Grimek-Ewig, 1973),

is based on the same principle, but without the centrifugation required by

the previous two assays. Instead filters are used to separate the DNA frag-

ments in a more reproducible manner. This technique has also been used to

monitor NER (Fornace et al., 1976).

Cadet et al. (1983) discuss some other methods of analysing NER (avail-

able at the time) which either indirectly measure repair, such as a method

which separates DNA containing radioactive nucleotides removed through

repair in isopycnic gradients (Pettijohn and Hanawalt (1964) cited in Cadet

48

SECTION 1.3 CHAPTER 1

et al., 1983), or directly analysing sites of damage with endonucleases that

cut at damage sites, such as with alkaline elution (Fornace Jr (1982) cited

in Cadet et al., 1983). They address the problem that these techniques do

not allow identification of the types of lesions present by applying HPLC

(high performance liquid chromatography) to the detection of damage which

is able to detect the different dimers produced at the four dipyrimidine sites

(TT, TC, CT and CC) following UV radiation.

The comet assay, first described in 1990 (Olive et al., 1990), is a popular

method still used today and has been reviewed extensively (see, for example,

Collins, 2004). It is a single cell assay which uses an electrophoretic gel to

separate damaged (short) DNA fragments from undamaged (long) genomic

DNA. As well as detecting single and double strand breaks, other damages

such as cross links and base damage can be detected (Speit and Hartmann,

2006). The shape of the resulting DNA resembles a comet, with the undam-

aged DNA in the body and the damaged DNA forming the tail, the length

and shape of which can be used to describe the damage. Software is avail-

able to automate this process (discussed, along with the rest of the protocol,

in Olive and Banáth, 2006). More recent adaptations of the technology use

microwell arrays, where a single comet can be produced in each of 24 or 96

wells (Wood et al., 2010). This is amenable to high throughput screening,

enhancing the generation of results. The comet assay can be used to mon-

itor NER (Myllyperkiö et al., 2000, for example) by measuring the single

stranded excised DNA fragments.

An alternative to the comet assay for some types of DNA damage is the

halo assay (Sestili et al., 2006). Whereas the comet assay uses an electric field

to ‘pull’ DNA out of cells, the halo assay relies on the diffusion of fragments

out of the cell. Like the comet assay, it is named after the shape produced

as the damaged DNA migrates out of the cell, which surrounds each cell in

a ring as it is not attracted in any one direction. This assay can also be

adapted to high throughput screening (Qiao et al., 2011).

The TUNEL assay (terminal deoxynucleotidyl transferase-mediated dUTP-

biotin nick end labelling, developed by Gavrieli et al., 1992) can be used to

visualise DNA breaks with a microscope by the attachment of a fluorescent

49

CHAPTER 1 SECTION 1.3

molecule to the free ends.

Various formats of mass spectrometry (MS), such as gas chromatography

(GC, first used by Dizdaroglu, 1984, to investigate radiation induced damage)

and HPLC-electrospray (first used by Wolf and Vouros, 1994, to investigate

deoxynucleoside adducts) have been used to detect particular types of DNA

damage. It has been used to detect CPDs (for example, by Douki et al.,

2000, to analyse the formation of different thymine dimers). Although very

sensitive and specific, MS assays can be limited in the amount of material that

can be tested and the damages that can be detected. Cost and availability

can be prohibitive in widespread use.

Electrochemical methods, which use biosensors, have been used to de-

tect radiation- (Wang et al., 1997) and chemical-induced (Zhou and Rusling,

2001) DNA damage. These methods are specific, and therefore limited, to

the damage they are developed to detect. A different sensor would be re-

quired to analyse each different type of damage, which limits their widespread

application.

Immunological assays use antibodies against antigens of interest, in this

case DNA damages, to examine the presence of the damage. Immuno-slot

blots are a common sensitive and specific assay. They are a simple alternative

to the western, northern and Southern blots, omitting the separation stage

of these techniques. An antibody against the damage of interest is used to

identify its presence in a sample, which is simply transferred or ‘dotted’ onto

a membrane. The lack of a separation stage means products of different sizes

cannot be distinguished, which does not represent a problem if the aim of the

assay is to determine the total amount of damage present. The technique has

been applied to investigating UV damage (for example, Perdiz et al., 2000,

analysed the formation of the different types of UV-induced lesions).

Other types of immunological assay, including the RIA (radio immunoas-

say) and ELISA (enzyme linked immunosorbent assay) can also be used

quantify total damage amounts. The multi-well format of ELISAs makes

them useful for high throughput analyses. A RIA, for example, was used

to show that 6-4 photoproducts are removed from DNA faster than CPDS

(Mitchell et al., 1985).

50

SECTION 1.3 CHAPTER 1

1.3.2 High resolution techniques

More recent DNA damage measurement techniques have allowed analyses

focussed on particular genome regions to be carried out. The PCR reaction

can be used to quantify damage amounts, by taking advantage of the fact

that the polymerase cannot replicate across sites of damage. This was first

demonstrated by Moore and Strauss (1979) and first used as a quantitative

PCR assay to detect CPDs by Govan III et al. (1990). Using primers to a

particular region of interest allows the presence of damage in the region to be

determined. The reduction in reaction yield compared to undamaged DNA is

indicative of the amount of damage present in the region. Although not able

to identify the locations of damage events, this type of assay allows damage

in specific regions to be investigated and is therefore higher resolution than

the previously discussed assays.

Another assay uses enzymes that cut at sites of damage, with true high

resolution results. With respect to CPDs, a CPD specific nuclease can be

used to cut at CPD sites. A method developed by Teng et al. (1997) uses

phage T4 endonuclease to cut at damage sites and probes specific to two ends

of a region of interest to separate the two DNA strands of the region from the

rest of the genomic DNA. The lengths of the separated fragments thus vary in

length, depending on whether and where they are cut by the endonuclease.

Undamaged fragments will be full length, whereas the lengths of shorter

fragments represent the position of the closest cut damage site to the probe.

These different lengths of fragment can be radiolabelled and resolved on a

gel. A sequence ladder run on the same gel allows precise identification of the

sequence at which damage has been detected. Running several samples from

different time points allows repair to be visualised, as the number of short

fragments decreases. The separation of the two strands allows repair rates

of these to be analysed separately, which allows, for example, the different

repair rates of TC-NER and GG-NER to be visualised, with the strand being

analysed containing a gene (or section thereof) being actively transcribed,

and its complement strand, which is not transcribed.

A novel use of microarray technology developed in our laboratory (Teng

51

CHAPTER 1 SECTION 1.4

et al., 2011) allows high resolution, genome wide measurements of DNA

damage. This overcomes the problem of the above techniques, which are

limited to short (several hundreds of base pairs) regions of a genome due

to the limiting size of the gels. In the same way that ChIP-chip can be

used to identify the binding locations of proteins with an antibody raised

against them, an antibody against damage, CPDs in this case, is used to

immunoprecipitate DNA containing damage. Applying this material to an

appropriate microarray covering a whole genome, or section thereof, allows

the relative amount of damage in a given region to be determined. This is

discussed in more detail in Chapter 6.

1.4 CPDs and NER: a paradigm

UV radiation is used in our laboratory as a way of generating DNA damage,

namely CPDs, which is measured over time to investigate its repair by NER.

This section outlines this paradigm.

1.4.1 Ultra violet radiation

UV radiation is a well studied, relevant DNA damaging agent, as many

organisms, including humans, are exposed to it on a regular basis in solar

radiation, and have been for millennia. The UV spectrum is divided into

three segments based on wavelength: UV-A (320–400 nm); UV-B (295–320

nm); and UV-C (100–295 nm). The ozone layer absorbs UV at wavelengths

up to around 300 nm, meaning little UV-C radiation reaches the Earth’s

surface. The UV absorption peak of DNA is 260 nm, so the most DNA-

damaging wavelengths are filtered out by the atmosphere.

In the laboratory, UV lamps provide a convenient and readily available

method of inducing DNA damage in cells in order to investigate repair. This

is often done with wavelengths in the UV-C region of the spectrum which,

although not strictly environmentally relevant, induces the same damages as

UV-A and UV-B, but at a higher efficiency. All UV-induced damage referred

to in this thesis was produced with 254 nm radiation at a rate of 100 J/m2.

52

SECTION 1.4 CHAPTER 1

This produces, on average, 1 damage event per 1,000 bp (Courcelle et al.,

2006).

1.4.1.1 Cyclobutane pyrimidine dimers

The absorption of UV radiation by DNA causes alterations to its structure,

called photoproducts. These include pyrimidine-pyrimidone (6-4) adducts

((6,4)PPs), spore photoproducts, purine-containing lesions, pyrimidine hy-

drates, thymine glycol and CPDs. These are the most frequently formed

photoproducts and are used in our laboratory to investigate damage and

repair.

CPDs are formed by covalent linkages between adjacent pyrimidines,

forming a 4-membered ring structure resulting from saturation of the pyrim-

idine 5,6 double bonds (Figure 1.5). The two pyrimidines are unable to form

correct pairing with their complementary bases. This lesion causes a distor-

tion in the shape of the DNA helix of approximately 30° (Park et al., 2002,

Figure 1.6). This distortion inhibits DNA replication and transcription and

thus is lethal to cells if left unrepaired. It is this distortion, specifically the

resulting reduced base stacking, that is thought to be recognised by repair

enzymes (Yang, 2007).

CPDs form between two adjacent pyrimidines on the same DNA strand,

but the frequency of formation between different dipyrimidine combinations

varies. The ratio of formation of dimers at TT:TC:CT:CC sites in plasmid

DNA with UV-C radiation is 68:16:13:3 (Mitchell et al., 1992).

1.4.2 Saccharomyces cerevisiae as a model organism

A model organism is an organism used in place of humans to investigate

and gain insights into human diseases. Several such organisms are used in

biomedical research. The budding yeast Saccharomyces cerevisiae has been

used as a model organism for many years due to it being easy to grow and

manipulate in the laboratory, particularly with respect to genetic analyses.

The yeast genome is approximately 13 Mbp, 270 times smaller than the

human genome, and codes for around 6,000 genes. With respect to NER,

53

CHAPTER 1 SECTION 1.4

3' DNA

NH

N

O

O
-

O

P

O

O

N

NH

O

O

5' DNA O

O

O

3' DNA

NH

N

O

O
-

O

P

O

O

N

NH

O

O

5' DNA O

O

O

Figure 1.5: The cyclobutane pyrimidine dimer: Molecular structure of two
adjacent thymine nucleotides (left) and a cyclobutane pyrimidine dimer
(right) formed from saturation of the pyrimidine 5,6 double bonds.

Figure 1.6: Kinked DNA molecule: Side (left) and top (right) view of the
kink induced in the DNA molecule by the presence of a CPD (Park et al.,
2002). Damaged DNA (red) bends approximately 30° relative to undamaged
DNA (green).

54

SECTION 1.4 CHAPTER 1

the great majority of the proteins identified in yeast cells have homologous

partners in human cells.

1.4.3 Nucleotide excision repair

NER is the pathway by which CPDs and a variety of other DNA lesions are

removed. The speed of removal varies with different types of lesion. (6-4)PPs,

for example, which distort the DNA to a greater extent than CPDS, are

repaired 5–10 times faster than CPDs (Friedberg et al., 2006). The position

of incisions relative to the lesion and the length of the excised fragment

also varies slightly depending on the type of lesion being repaired (Friedberg

et al., 2006). GG-NER occurs throughout a genome, with no specificity for

any particular region(s). It is complemented by TC-NER which occurs only

within genes that are being actively transcribed, when the polymerase stalls

at the site of a lesion. The repair process in the two pathways is identical;

they differ only in this initial recognition step.

The whole NER process has been elucidated for prokaryotic cells (re-

viewed by Truglio et al., 2006), which requires only three proteins: UvrA,

UvraB and UvrC. UvrA and UvrB are involved in damage detection and

verification. UvrB and UvrC perform the damage removal. A trimer of two

UvrA and a UvrB molecules detects DNA damage via the UvrA dimer. The

trimer then binds the damage via UvrB, whereupon the UvrA dimer leaves

the complex. A UvrC molecule then forms a dimer with the UvrB molecule

bound to the damage and performs the incisions at both the 5′ and 3′ sides.

UvrD (DNA helicase II) then removes the incised fragment, allowing DNA

polymerase I to remove the bound UvrB molecule and fill the gap. Finally

DNA ligase seals the newly synthesised DNA ends. NER in eukaryotic cells

follows the same sequence of events but requires upwards of 30 different pro-

teins, reflecting the more complex environment of the eukaryotic cell in which

they have to function.

The actual repair of lesions by eukaryotic NER on naked DNA is also

reasonably well understood, and an in vitro system of purified yeast proteins

able to fully repair damage on naked DNA has been available for a number

55

CHAPTER 1 SECTION 1.4

of years (Prakash and Prakash, 2000). The repair process itself, which occurs

once the GG-NER and TC-NER pathways converge, is briefly described in

Section 1.4.3.2. It is how the lesion is recognised and accessed in the complex

context of chromatin in the GG-NER pathway that is the current focus of

research in this area, which is outlined in the following section.

1.4.3.1 Lesion recognition

In TC-NER, RNA polymerase II (RNAPII) stalls at sites of lesions on the

strand of DNA being transcribed (Donahue et al., 1994). Genes being tran-

scribed by RNA polymerase I and III are not subject to TC-NER (Tornaletti

and Hanawalt, 1999, and references therein). Several other obstacles can

cause the temporary stalling of RNAPII, such as secondary DNA structures,

which is overcome by transcription elongation factor SII (TFIIS), but this

factor still does not allow transcription across a CPD (Friedberg et al., 2006,

and references therein). It is this permanent stalling that directs the rest

of the NER machinery to the site, initiating TC-NER, although the exact

mechanism of this remains unclear in both yeast and humans (Reed, 2011).

In human cells, three other proteins are required for TC-NER: CSA, CSB,

and XAB2 (Nakatsu et al., 2000). In yeast, Rad26, the homologue of human

CSB, and Rpb9, a subunit of RNAPII, are required for TC-NER (van Gool

et al., 1994; Li and Smerdon, 2002). Rad28, the closest homologue of human

CSA, is not required for strand specific repair (Bhatia et al., 1996).

Lesions in all regions of the genome, including those on strands being

actively transcribed, are repaired via the GG-NER pathway. In yeast this

requires the Rad16, Rad7 and Abf1 proteins (Verhage et al., 1994; Reed et al.,

1999) although the mechanism of recognition has yet to be elucidated. These

proteins form a complex and are required to generate superhelical torsion in

DNA, which is required for NER (Yu et al., 2004). This requires Abf1’s

ability to bind to specific binding sites throughout the genome (Yu et al.,

2009). A Rad7/Rad16 complex specifically binds UV damaged DNA in an

ATP dependent manner (Guzder et al., 1997). Rad7 and Rad16 mutants

show reduced, but not eliminated, repair following UV irradiation (Miller

56

SECTION 1.4 CHAPTER 1

et al., 1982; Prakash, 1977), because repair by TC-NER can still take place

in their absence.

Rad16 is a member of the SWI/SNF (switch/ sucrose non-fermentable)

superfamily of proteins (Bang et al., 1992). This family of proteins have the

ability to remodel chromatin through their DNA translocase activity (see,

for example, Wilson and Roberts, 2011). Rad16’s DNA translocase activity

allows the complex to create superhelicity in DNA, which is required for the

excision of the damage-containing fragment (Yu et al., 2004), but it does not

have the ability to slide nucleosomes (Yu et al., 2009), which is a property of

some other SWI/SNF proteins. This is suggested not to permit unregulated

gene transcription upon repair of repressed regions of the genome (Yu et al.,

2009).

UV irradiation leads to histone H3 hyperacetylation (H3Ac) and chro-

matin remodelling in yeast (Yu et al., 2005). (Histone acetylation has long

been known to be required for efficient repair, first shown in human cells, for

example, Smerdon et al. (1982); Ramanathan and Smerdon (1989)). This hy-

peracetylation requires Rad16 and Rad7 (Teng et al., 2007; Yu et al., 2011).

Regions of hyperacetylation induced in the absence of Rad16 and Rad7 ex-

hibit Rad7- and Rad16-independent repair (Teng et al., 2007), showing that

histone hyperacetylation is an important first step in the repair process.

Rad7 and Rad16 control the H3Ac level by controlling the accessibility

to chromatin of the histone acetyl transferase (HAT) Gcn5 (Yu et al., 2011).

Gcn5 has the ability to acetylate N-terminal lysines on histones H2B and H3

(Grant et al., 1997) and is involved in transcriptional regulation (reviewed

in Lee and Young, 2000). The ATPase and RING domains of Rad16 play an

important role in this (Yu et al., 2011). Mutations introduced into each do-

main individually result in intermediate UV survival, while a double mutant

is as sensitive as a Rad16 deletion. The two single mutants do not display

very different phenotypes to the wild type with respect to UV-induced H3Ac

change and Gcn5 occupancy. Conversely, the H3Ac and Gcn5 occupancy in-

creases seen in the wild type are abolished in the double mutant. In keeping

with these results, repair of CPDs in the two single mutants is of an inter-

mediate level, while in the double mutant it is reduced to the level seen in

57

CHAPTER 1 SECTION 1.4

the Rad16 delete strain.

Investigation of the Abf1 member of this protein complex is the main

biological avenue of investigation in this thesis. It is hypothesised to function

to sequester the GG-NER complex at points throughout the genome, ready

for repair to take place where necessary (Reed et al., 1999; Yu et al., 2009).

Abf1 is described in more detail in Section 1.4.4.

No human homologues of Rad7, Rad16 or Abf1 have been identified, but

the human proteins DDB1 and DDB2 share several functional similarities to

yeast’s Rad7 and Rad16 (Reed, 2011).

1.4.3.2 Lesion repair

The repair of lesions by NER can be broadly split into five steps: damage

recognition, incision either side of the damage site, excision of the resulting

damage containing fragment, the filling of the resulting gap and ligation of the

newly synthesised strand. The first step requires the assembly of a number

of proteins at the damage site, termed the pre-incision complex (PIC). An

essential component of this is Rad14, which binds specifically to UV-damaged

DNA (Guzder et al., 1993). The human homologue, XPA, also preferentially

binds UV-damaged DNA (Jones and Wood, 1993). Although not required

for the initial damage recognition, this protein is essential for repair, with

Rad14 delete yeast and human XP-A patients having no functional NER

(Guzder et al., 1993; Tanaka et al., 1990).

A second essential component of the PIC is Replication protein A (RPA),

a 3-subunit complex able to bind ssDNA, composed of RFA1, RFA2 and

RFA3. Human RPA contains the proteins RPA1, RPA2 and RPA3. This

complex is involved in processes which have ssDNA intermediates, such as

replication and transcription, as well as playing an essential role in NER

(Huang et al., 1998; Coverley et al., 1991), in which it has a role in positioning

the nucleases which perform the incisions (De Laat et al., 1998). It has a

preference for binding DNA damaged by a variety of agents (Friedberg et al.,

2006, and references therein).

TFIIH is the final essential component of the PIC. It is a complex made

58

SECTION 1.4 CHAPTER 1

up of nine proteins in two units and has dual roles in transcription initiation

and DNA repair (Takagi et al., 2003). Several of the proteins are essential

for efficient NER but only as part of the complex (Feaver et al., 2000).

Rad4 and Rad23 (human XPC and HR23B) form a complex which binds

damaged DNA with a much higher preference than undamaged DNA in vitro

(Guzder et al., 1998; Masutani et al., 1994). Rad23 contains a ubiquitin-

like domain at its amino terminus (Watkins et al., 1993) which allows it to

interact with the 26S proteasome (Schauber et al., 1998). Mutations in the

proteasome can reduce cell survival following UV irradiation but blocking its

protein degradation activity does not affect NER in vitro or in vivo, showing

independent functions of the proteasome in the two processes (Russell et al.,

1999).

Following the assembly of the PIC, the DNA section containing the dam-

age fragment can be cut. The two incisions are made by two different proteins

or protein complexes, one each for the 5′ and 3′ sides of the lesion. The Rad1-

Rad10 (human XPF-ERCC1) complex cuts at the 5′ side (Bardwell et al.,

1994; Park et al., 1995) and Rad2 (human XPG) at the 3′ side (Harrington

and Lieber, 1994; O’Donovan et al., 1994).

Rad1 and Rad10 are DNA binding proteins with a preference for ssDNA

but not damaged DNA (Sung et al., 1993, 1992). The complex binds to

Rad14 suggesting that this is the means by which it is directed to sites of

damage (Guzder et al., 1996).

The Rad2 protein forms a complex with TFIIH (Habraken et al., 1996).

It has ssDNA endonuclease activity but no specificity for damaged DNA

(Habraken et al., 1993). TFIIH is required to recruit XPG to the PIC (Zotter

et al., 2006).

1.4.4 The Abf1 protein

The autonomously replicating sequence (ARS) binding factor 1 (Abf1) pro-

tein is an abundant, multifunctional S. cerevisiae protein which binds at

many locations throughout the genome. It was first characterised in the late

1980s as a protein with a regulatory role of the silencing of the HML and

59

CHAPTER 1 SECTION 1.4

HMR mating type loci, by binding to specific sequences at the E and I ele-

ments (Shore et al., 1987; Buchman et al., 1988). It has since been shown to

have a number of additional roles and as such has been classed as a general

regulatory factor (GRF) (Chasman et al., 1990). GRFs are characterised as

being abundant, essential and multifunctional, acting as obligate synergisers

with many binding sites throughout the genome (Fourel et al., 2002).

Abf1 is essential for the viability of yeast cells (Rhode et al., 1989) and

is often associated with the binding of the Rap1 protein, another GRF (see

Yarragudi et al., 2007, for example). It has roles in DNA replication, pos-

itive and negative regulation of transcription, chromatin silencing and re-

modelling, NER, genome partitioning and telomere maintenance (Buchman

et al., 1988; Fourel et al., 2002; Lascaris et al., 2000; Loo et al., 1995; Miyake

et al., 2002; Reed et al., 1999; Rhode et al., 1992).

Abf1’s role in replication is context dependent. Early investigations

showed that plasmids with Abf1 binding sites at their replication origins

showed reduced stability when these binding sites were mutated, showing

Abf1 stimulates the efficiency of replication but is not essential for it (Walker

et al., 1989, 1990). Cells expressing the temperature sensitive DNA binding

mutant abf1-1 also showed reduced stability of such plasmids at the restric-

tive temperature (Rhode et al., 1992). The Abf1 binding site of ARS1 can

be functionally replaced by the binding sites of the GRFs Rap1 and Gal4

(Marahrens and Stillman, 1992). Furthermore, adding an Abf1 binding site

to certain ARSs without one can reduce replication efficiency (Kohzaki et al.,

1999). The precise nature of the role played by Abf1 in these different con-

texts has not yet been elucidated.

Abf1 alone is a weak transcription factor, and strong transcriptional acti-

vation is only achieved in conjunction with other transcription factors (Buch-

man and Kornberg, 1990). It also plays a negative role in transcription in

some cases, with the removal of an Abf1 binding site increasing the level of

transcription of some genes (Einerhand et al., 1995, for example).

Abf1 has been shown to be important for maintaining chromatin structure

at many locations in the genome, where mutation of a binding site causes

a loss in the positioning of nucleosomes (Lascaris et al., 2000). It is also

60

SECTION 1.4 CHAPTER 1

associated with nucleosome depleted regions (Badis et al., 2008), which may

function to allow other transcription factors to bind to their intended sites.

It also has been shown to be important in maintaining barriers between

different chromatin states (Fourel et al., 2002).

A multitude of Abf1 binding sites have been identified since its first char-

acterisation and it is now recognised as having a function at hundreds of

promoters and other sites throughout the yeast genome (Ganapathi et al.,

2011). It has been shown to bind at the well characterised consensus DNA

binding motif 5′-RTCRYNNNNNACG-3′, which is present at numerous sites

throughout the yeast genome including promoter elements, mating-type si-

lencers and ARSs (Rhode et al., 1992). Initially this consensus sequence came

from investigations of selected binding sites of interest (Buchman et al., 1988;

Rhode et al., 1992; Della Seta et al., 1990). Following this, many more indi-

vidual sites of interest were identified as Abf1 binding sites with techniques

such as electrophoretic mobility shift assays (EMSAs). Latterly, global tech-

niques such as transcription microarrays (Yarragudi et al., 2007) and ChIP-

chip (Lee et al., 2002; Harbison et al., 2004; Schlecht et al., 2008) have been

used to identify Abf1 binding sites throughout the yeast genome in vivo.

Lee et al. (2002) and Harbison et al. (2004) analysed the binding sites of

106 and 203 DNA binding proteins respectively, by the use of Myc epitope

tagging. These identified 462 and 458 Abf1 binding sites respectively, but

the analyses were limited to a subset of intergenic regions only. Schlecht

et al. (2008) analysed binding during fermentation, sporulation and respira-

tion, using an antibody for Abf1, identifying 1,689 potential binding sites,

of which 1,169 occurred in all three conditions. Additionally, a SELEX ap-

proach (Beinoravičiūtė-Kellner et al., 2005) and protein binding microarrays

(PBMs) (Mukherjee et al., 2004) have been used to identify Abf1 binding

sites in vitro.

These genome wide investigations consistently identified the consensus

sequence at Abf1 binding sites, but there were many instances where Abf1

binding was observed without this sequence, and no other consensus sequence

could be identified. Suggestions for why this may be include Abf1 having a

non-specific DNA binding affinity (Schlecht et al., 2008) and overlapping

61

CHAPTER 1 SECTION 1.4

binding sequences precluding the identification of a single motif (Ganapathi

et al., 2011). The positive element distal (PED) region in the promoter

region of the Spt15 gene binds strongly to Abf1 but does not contain the

consensus motif (Schroeder and Weil, 1998). Instead it contains the sequence

RTARYNNNNNACG, with an adenine replacing the cytosine at the third

position. This suggests that Abf1 has the ability to bind to sequences similar

to, but not exactly matching, the consensus motif.

Structurally, Abf1 comprises two main components: a C-terminal acti-

vation domain and an N-terminal DNA binding domain. The C-terminal

domain is not required for DNA binding alone, but its loss confers loss of

full functionality (Rhode et al., 1992; Cho et al., 1995; Li et al., 1998). It

consists of two regions: C-terminal sequence 1 (CS1) is required for proper

nuclear localisation of Abf1 and may be involved in negative transcriptional

regulation; CS2 is required for activating DNA replication, chromatin remod-

elling and transcriptional activation (Miyake et al., 2002; Loch et al., 2004).

The N-terminal domain contains a bipartite DNA binding domain consist-

ing of a zinc finger motif (Rhode et al., 1989) and a novel DNA binding

domain (Cho et al., 1995). Mutations in both DNA binding domains result

in reduced or eliminated DNA binding (Cho et al., 1995). A temperature

sensitive binding mutant with a point mutation in the zinc finger binding

domain, abf1-1, exhibits normal functionality at the permissive temperature

but looses its binding ability at the semi-permissive temperature (Rhode

et al., 1992). This mutant has been used to investigate various functions

of Abf1 including transcriptional regulation (Miyake et al., 2004) and NER

(Reed et al., 1999).

1.4.4.1 Role in NER

Abf1 was initially implicated in NER when it was observed to copurify with

the Rad7 and Rad16 proteins (Reed et al., 1999). Reducing the cellular level

of the Abf1 protein, via the addition of a temperature-dependent degrada-

tion signal, resulted in a severe NER deficiency at the restrictive temperature

compared to the permissive temperature. Additionally, the temperature sen-

62

SECTION 1.4 CHAPTER 1

sitive DNA binding mutant abf1-1 was shown to be deficient at the removal

of photoproducts from damaged DNA at the restrictive but not the semiper-

missive temperature.

This Rad/Rad16/Abf1 complex was subsequently shown to generate su-

perhelical torsion in DNA, via the Rad16 protein, which is required for NER

(Yu et al., 2004). This superhelical torsion is required for the excision of the

damage-containing fragment of DNA, following the introduction of the two

incisions either side of the damage. The binding of Abf1 to DNA is required

for efficient NER in a region adjacent to the binding site (Yu et al., 2009).

The mutation of an Abf1 binding site in the HMLα promoter caused a region

of reduced repair efficiency over a region of ∼400 bp in one direction from the

Abf1 binding site. Reversing the direction of the non-mutated Abf1 bind-

ing site creates the same domain of reduced repair, showing the orientation

of the binding of Abf1 to the site significantly affects its function in NER.

It has been hypothesised that Abf1 functions to position the Rad7/Rad16

complex to chromatin in the absence of damage, which can then facilitate

histone acetylation by allowing access to the HAT (Yu et al., 2011, shown in

Figure 1.7).

The Rad7 and Rad16 proteins are required for the UV-induced histone

H3 acetylation required for efficient repair, by controlling the occupancy of

the histone acetyl transferase Gcn5 on chromatin (Yu et al., 2011). It may

be that Abf1 provides a means of positioning the Rad7 and Rad16 proteins

throughout the chromatin, which enables the promotion of super helical tor-

sion, histone acetylation and subsequent repair upon the detection of damage.

This may be achieved locally to the Abf1 binding site, or by the Rad7/Rad16

complex translocating a longer distance along the DNA. The previously iden-

tified directionality of the complex may determine the direction in which the

superhelical torsion or acetylation is initiated.

An investigation by Dr. Matthew Leadbitter showed that Abf1 preferen-

tially binds at promoters, with the majority of inter-genic regions showing

some level of binding (Leadbitter, 2011). The binding of the Rad16 protein

was also investigated by ChIP-chip and this was shown to colocalise with

Abf1 at many sites, which associated with UV-induced H3Ac at the sites.

63

CHAPTER 1 SECTION 1.4

Figure 1.7: Abf1 and GG-NER: Hypothesised model for UV-induced chro-
matin remodelling, taken from Yu et al. (2011). The Abf1/Rad7/Rad16
complex is present on the DNA in the absence of damage (top panel) but
access by the HAT is inhibited. Following UV irradiation (bottom panel) the
DNA translocase (1) and E3 ligase (2) activities of Rad16 promote accessi-
bility by the HAT (3) and acetylation (4), leading to a more open chromatin
structure (5). Transcription remains inhibited during the process (6) while
allowing repair of damage (7).

64

SECTION 1.5 CHAPTER 1

Several Abf1 binding sites showed reduced levels of binding following UV

irradiation and preliminary data from this study suggest that there may be

UV induced changes in the DNA binding kinetics of Abf1.

1.5 This study

This study can be divided into two overlapping parts. The first is mainly

bioinformatic, in which ChIP-chip data from various investigations have been

used to develop bioinformatic tools which can be applied to analyse other

ChIP-chip datasets. This includes normalisation and peak detection algo-

rithms. The second is mainly biological, in which Abf1 binding ChIP-chip

datasets have been analysed to increase understanding of the protein’s bind-

ing behaviour. The two overlap in the development of a method to predict

damage profiles throughout genomes and the development of bioinformatic

tools to display and interogate ChIP-chip data, which have been applied to a

selection of real ChIP-chip datasets to produce biologically significant results.

The first three results chapters present a collection of R scripts of tools

for the analyses of ChIP-chip data using novel normalisation and enrichment

detection algorithms. The aim when developing these tools was to allow the

processing of ChIP-chip data from its raw state, through quality assessment,

to its loading into R, where normalisation and enrichment detection can be

applied and graphical outputs showing features of interest produced. The

objective of the novel normalisation procedure is to process data from mul-

tiple ChIP-chip datasets so as to allow relative comparisons between them.

The objective of the novel enrichment detection procedure is to identify ei-

ther regions of enrichment or peaks indicative of binding sites across datasets

in a way that does not require the application of a multiple testing correc-

tion, by dynamically adjusting the threshold of detection based on the probe

density of the region being analysed. The tools were developed with the

objective that the data should be easily accessible and well described such

that separate, possibly more advanced, analyses can be carried out by users

if required. Thus all code is shown, annotated and described and a separate

condensed, instruction document is provided for users.

65

CHAPTER 1 SECTION 1.5

Chapter 6 presents a method of predicting the output of a DIP-chip assay

measuring UV induced CPDs in the yeast genome, based on the genome se-

quence and known frequencies of occurrence of the different possible dipyrim-

idine combinations. The objective of this work was to determine the capa-

bility of the DIP-chip assay to detect these CPDs, which was shown to be

the case. A comparison of the two datasets was undertaken with the aim of

determining whether or not there were any genome regions with higher or

lower damage levels than those predicted based on the sequence alone. Here

the null hypothesis tested was that there would be no significant differences

between the two, which is shown to be the case.

Chapter 7 presents an application of the bioinformatic tools, using them

to analyse Abf1 protein binding. The objective of this work was both to

show the practical applications of the bioinformatic tools with real ChIP-

chip datasets, analyse the binding sites in their own right and compare the

binding sites identified with those of previously published genome wide in-

vestigations. Sequences at the binding sites were analysed which showed

that many Abf1 binding sites do not contain the previously identified con-

sensus binding motif and no further consensus sequences could be identified.

A much larger number of binding sites were identified in this investigation

than had been previously, the locations of which were analysed under the

null hypothesis of no significant overlaps with previously identified genome

wide binding locations, which is shown not to be the case.

66

Chapter 2

Technical Overview

ChIP-chip, and modified versions thereof, is the main technology used to

produce the results analysed in this thesis. This chapter describes the ‘wet’

laboratory processes leading up to the generation of the data, the ‘dry’ labo-

ratory processing of which is described in later chapters. Only the dry labo-

ratory analyses of the data have been carried out in this thesis. The following

sections describe the techniques, employed by colleagues in the laboratory,

used to generate the data for these analyses. Much of this work has been

carried out by Evans (2011) and Leadbitter (2011). Some of the information

presented in this chapter is adapted from, and further information can be

found in, these works.

2.1 Microarrays

The microarray is the component of the ChIP-chip technology that allows

the generation of genome-wide data (described in Section 1.1). All microar-

ray data produced in our laboratory analysed in this investigation are from

microarrays manufactured by Agilent Technologies Inc. These microarrays

contain probes of average length 60 nt, ‘printed’ onto the slide surface, one

base at a time, to build up each sequence, (Agilent Technologies Inc., 2003).

The yeast slides used (product number G4493A) contain 4 microarrays each

(Figure 2.1), each of which contains 45,219 features. Of these, 41,775 con-

tain probes against the yeast genome. The remainder are various technical

67

CHAPTER 2 SECTION 2.1

Figure 2.1: Agilent 4 x 44k microarray format: Layout and dimensions of
Agilent 4 x 44k microarrays (Agilent Technologies Inc., 2007), of which the
G4493A is used here.

68

SECTION 2.2 CHAPTER 2

probes, including positive and negative controls and special patterns to allow

correct alignment to the grid by the Feature Extraction software, described

in Section 2.6. This means four sets of results are generated from each slide

of this type.

2.2 Chromatin immunoprecipitation

The first stage of the procedure, ChIP, is a useful tool in its own right for

identifying sites in chromatin, genome wide, to which proteins of interest

are bound. The following description is adapted from that in Alberts et al.

(2002) with specific details taken from Evans (2011). The standard DNA

purification procedures include a protein digestion stage and so are not suit-

able for immunoprecipitation of proteins in chromatin, as this would mean

no proteins would be available for antibodies to bind. Therefore a chromatin

purification procedure is employed. Proteins are covalently cross-linked to

DNA in living cells by treatment with formaldehyde. Following this, glycine

is added to stop the crosslinking. Cells are then collected and washed over

three centrifugation steps before being lysed using glass beads and vortexing.

The cell lysate is separated from the glass beads and any non-crosslinked solu-

able proteins with a further three centrifugation/wash steps. The remaining

pellet of chromatin is resuspended and subject to sonication with a Bioruptor

for 6 cycles of 20 sec on/40 sec off. This produces high frequency sound waves

which shear the chromatin into fragments of average length 600 nt. After two

further centrifugation/wash steps the fragmented chromatin supernatant is

snap frozen with liquid nitrogen and stored at -80◦C.

Antibodies raised against a protein of interest can be used to separate

fragments of DNA bound to that protein from the purified chromatin. Al-

ternatively, proteins may be separated by means of an exogenous epitope

tag, to which antibodies are available, fused to the protein. These antibodies

bind to the epitope on the protein, facilitating the immunoprecipitation pro-

cess. This also captures the DNA fragment to which the protein is covalently

bound. An antibody titration experiment is first carried out to determine

the optimal amount of antibody to use. The antibodies are incubated with,

69

CHAPTER 2 SECTION 2.3

and allowed to bind to, magnetic Dynabeads. These are then collected with

a magnet, washed, resuspended and added to the sonicated chromatin. The

bead-DNA-protein mix is then separated from the rest of the genomic DNA

by the use of a magnet, and washed several times. Collected DNA is eluted

off of the beads.

An input sample is also prepared, which does not undergo this immuno-

precipitation procedure and therefore contains all fragmented genomic DNA.

Two DNA samples are applied to the Agilent microarrays, comprising the

immunoprecipitated material, henceforth referred to as the IP sample, and

purified total genomic DNA taken before the immunoprecipitation process,

referred to as the input sample. All samples are incubated with RNase and

purified with a Quiagen PCR purification kit.

Used as a stand-alone technique, at this point DNA primers of a region

of interest can be used to determine whether or not the protein of interest

is bound at that region, by PCR amplification. If the region is bound to the

protein, the immunoprecipitated material will contain DNA fragments to

which the primers will anneal and it will therefore be amplified by PCR, the

product of which can be detected by a variety of methods. If the protein is

not bound, no amplification will take place. Quantitative-PCR (Q-PCR) can

be employed to determine quantitative protein binding levels at the selected

genomic region.

2.3 Amplification

Combining ChIP with microarrays in ChIP-chip removes the need to carry

out individual assays for each region of interest, as multiple locations are

represented on the microarray. These locations may cover a whole genome

or represent specific genomic regions of interest. The detection of DNA is

achieved through the measurement of fluorescence from fluorescently labelled

hybridised DNA. The amount of DNA generated by ChIP is not sufficient

to apply directly to a microarray and so it is amplified by ligation mediated

(LM) PCR. T4 DNA polymerase (an endonuclease) is used to blunt end the

DNA fragments which then undergo a phenol/chloroform extraction, cold

70

SECTION 2.4 CHAPTER 2

ethanol precipitation, centrifugation and resuspension in purified water. This

is then incubated with a ligation mixture, which ligates a section of linker

DNA to the blunt-ended fragments. These linkers are used to amplify the

DNA by PCR, using a single set of primers to the linker sequences. Two sets

of PCR reactions are carried out to ensure a sufficient quantity of DNA.

2.4 Fluorescent labelling and hybridisation

The Agilent microarrays used to generate the data in this investigation are

two colour. This means two DNA samples are represented on each microar-

ray, here the IP and input samples, each distinguished by labelling with a

different coloured fluorescent dye. This is in contrast to other platforms,

such as Affymetrix, which are one colour systems where each microarray

represents a single sample. The input sample acts as an internal control

on the microarray, removing the effects of differential hybridisation, due to

factors such as sequence variations, at different points in the genome. This

is achieved by calculating the log2 IP:input sample signal ratio as the final

data. This enables genuine regions of binding to be identified (where the IP

sample is present at a larger amount than the input sample) over regions

where other factors cause high levels of binding to the microarray (where the

IP and input samples are present at the same, albeit large, amounts). This is

demonstrated in real ChIP-chip data with Abf1 binding IP and input signals

over a section of chromosome 1 in Figure 2.2.

The two DNA samples are differentially labelled with the dyes Cy3 and

Cy5. Cy3 produces a green fluorescence (555/565 nm excitation/emission

respectively) and Cy5 a red fluorescence (650/670 nm excitation/emission

respectively). Dye bias arises when one fluor produces a higher signal in-

tensity than the other. Several microarrays produced in our lab have been

analysed for dye bias, including the Abf1 binding data presented in Chap-

ter 7 (Leadbitter, 2011), where it was shown that this did not have an effect

on the data, and so there was no need to apply any correction for this effect

on the datasets analysed here. The labelling reaction is achieved via an am-

plification step which incorporates nucleotides labelled with the dye, along

71

CHAPTER 2 SECTION 2.5

with unlabelled nucleotides, into a newly synthesised DNA fragment. Two

pools of labelled DNA are thus created, which are applied to the microar-

ray together and allowed to hybridise. A cover slip containing rubber gaskets

prevents the samples leaking and keeps those applied to each microarray sep-

arate. This process takes place overnight in a rotating oven at 65◦C, which

allows the pool of labelled DNA fragments to cover the whole microarray and

bind to any corresponding probes. The slides are then washed to remove any

unbound material. The concentration of DNA applied to the microarrays is

the same level for all experiments, regardless of the initial IP and input sam-

ple concentrations, so as to ensure optimal performance of the microarray in

the following stages.

2.5 Microarray processing

Following hybridisation, the microarrays are scanned using an Agilent mi-

croarray scanner (model G2505B) to produce a TIFF image, from which the

signal intensities can be extracted. The scanner uses two lasers at 532 and

633 nm. These scan across the slide surface, exciting the fluors of the la-

belled DNA as they do so. Fluorescence is detected and an image produced

at a resolution of 5 microns. The brighter the fluorescence of a feature the

more DNA is bound to it. There is not however a linear relationship between

fluorescence and DNA amount (Schena, 2003) so when analysing results one

can only infer relative, rather than absolute, DNA amounts.

2.6 Feature extraction

The TIFF image produced by the microarray scanner is loaded into Agilent’s

Feature Extraction software (Agilent Technologies Inc., 2010b, current ver-

sion 10.10.1.1). This aligns a grid to the image, determining the positions of

all features, and analyses the red and green colouration of each. This con-

verts the fluorescence intensities into numerical values. The software contains

information about the genomic region each feature represents which is linked

72

SECTION 2.7 CHAPTER 2

together with the intensity values. This is written to a tab delimited text file

containing over 40 columns of data, including information such as scanner

settings and a range of diagnostics. The layout of this file is represented in

Figure 2.3.

All analyses presented in this thesis use background subtracted data.

This is data from which the intensity values surrounding the features are

subtracted from the intensity values of the features themselves. This ensures

that the intensity values analysed are due to the specific hybridisation of

labelled DNA to the probes and not the general fluorescence of the slide.

2.7 Data analysis

All data were loaded into R (current version 2.14.2) for processing and anal-

ysis. A PC with a 3.20 GHz Intel i7 processor and 24 GB of RAM, running

64 bit Microsoft Windows 7, was used for the extraction and analysis of data

and the creation and testing of all R scripts. These R scripts were then used

in our laboratory on several different computers running various versions of

Microsoft Windows and Mac OS X.

73

CHAPTER 2 SECTION 2.7

● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ●●● ● ● ●● ● ● ● ●●●● ● ● ● ● ● ●●● ● ●● ● ● ● ●●● ●●● ● ● ●● ●● ●● ● ● ●● ● ●● ● ●
YAL065C

TDA8
YAL063C−A

FLO9
YAL059C−A

YAL056C−A

YAL066W

YAL064W−B

YAL064W

GDH3
BDH2

BDH1
ECM1

CNE1
GPB2

Chr. 1

lo
g2

 B
in

di
ng

50
00

0
15

00
00

10000 15000 20000 25000 30000 35000 40000

Figure 2.2: The importance of IP and input samples: A short section of
chromosome 1 showing Abf1 binding IP (red) and input (green) sample data.
There are peaks in the IP data at ∼12,500 and ∼25,000, which are matched
by the input data, in contrast to the peaks at ∼30,000, ∼33,000, and ∼35,000.
This shows that only the last three are likely to be representative of binding.
Without the input sample the first two may also be incorrectly considered to
be binding sites.

Line Contents

1 Data type

2 Data name Parameters → 152 columns

3 Data values

4 [Blank line]

5 Data type

6 Data name Statistics → 147 columns

7 Data values

8 [Blank line]

9 Data type

10 Data name Features → 112 columns

 ↓
 p rows 11 Data Values

Figure 2.3: Feature extraction file format: The contents and layout of the
tab delimited text file produced by Agilent’s Feature Extraction software are
represented. Parameters and statistics run for three lines each. Features run
for p rows, where p is the number of probes on the microarray. For each
column the data type, its name and a value are provided.

74

Chapter 3

Creation of a collection of R

scripts to process and
interrogate ChIP-chip data

3.1 Introduction

The primary objective of the work presented in this thesis was to analyse

ChIP-chip datasets produced in our laboratory. To achieve this, the major

issues in current ChIP-chip data analysis methodologies have been investi-

gated and new tools developed to fill some of the existing gaps. Two of the

main aspects of this work, the development of novel normalisation and peak

detection methods, are presented in the following two chapters. This chapter

details how these and several other aspects have been brought together into

a collection of R scripts for use by researchers wishing to analyse their own

data, both in our laboratory and beyond.

To date the only R package dedicated to the analysis of ChIP-chip data

is RINGO (Toedling et al., 2007). This package contains several facilities for

analysing ChIP-chip data, including data import, quality assessment, nor-

malisation, visualisation and enrichment detection, developed for the anal-

ysis of Nimblegen data. It uses aspects of other Bioconductor packages for

some of these functions, such as loading data in the limma package’s RGList

format (Smyth, 2005). The normalisation consists of applying a choice of

existing normalisation procedures to the data, from the packages VSN (Huber

75

CHAPTER 3 SECTION 3.2

et al., 2002) and limma and the Tukey-biweight scaling. The package there-

fore is only suitable for analysing technical replicates of a single experimental

condition, for the reasons outlined in Section 1.1.3.2 and Chapter 4.

ChIPMonk, a Java application (Andrews, 2007), contains a similar set of

tools to RINGO, and at the time of publication was limited to only being

able to analyse Nimblegen data. The methods are basic and as with RINGO

do not facilitate the simultaneous analysis of different types of data.

Tilescope (Zhang et al., 2007) also provides similar tools, such as normali-

sation and peak detection, as web server, with data uploaded as tab-delimited

text files. The publication does not list Agilent data as a format that can be

uploaded and at the time of writing the website was unavailable for testing.

A short report by Toedling and Huber (2008) outlines more methods for

the analysis of ChIP-chip data in R, none of which allow the comparative

analysis of datasets from different experimental conditions. Here several

different methods and packages are used to load data, assess its quality, load

genome annotations, process, plot and analyse the data, showing that no

single package is capable of performing all of these tasks. Although this

may not pose a problem for someone adept at data analysis and familiar

with the R interface, the aim of the functions created here was to enable

researchers with little or no bioinformatic experience to quickly use the tools

described in the coming chapters to extract meaningful results from their

data, while maintaining scope for more detailed analyses should these be

required. The objective of the work presented in this chapter was therefore

to produce a collection of annotated, documented, integrated tools, using

the R programming language, able to process ChIP-chip data from its raw

state through to the generation of meaningful biological results, in such a

way that basic analyses can be conducted easily and efficiently, while the

scope for more advanced analyses is maintained.

3.2 The scripts

All of the analyses presented in this thesis have been carried out in R (R

Development Core Team, 2011) using Bioconductor (Gentleman et al., 2004).

76

SECTION 3.2 CHAPTER 3

A collection of functions and classes was created to perform these analyses.

This section describes these different functions and shows the corresponding

scripts. Scripts are described with reference to specific line numbers denoted

by an ‘L’ in brackets. All scripts are also available in the “R scripts” folder of

the electronic appendix (see Page 367). A condensed version of this chapter,

in the form of a user guide, has been produced (“instructions.pdf” file in

the electronic appendix; see Page 367). This is available alongside the full

set of scripts and is intended to provide users with instructions for running

the functions and interpreting the outputs, along with overviews of the more

complex functions.

Figure 3.1 shows a diagram of all of the different components created

here and how they relate to each other. All objects are shown, indicating the

functions used to create them and the functions which act upon them. All

functions are shown, indicating which objects they act upon or in which other

functions they are used. External Bioconductor packages are also shown,

indicating the function in which they are used.

Functions and objects, and their associated descriptions, have been split

into the following eight broad categories, which form the basis of this and

subsequent chapters.

• How data is loaded into and organised within R (Section 3.2.1).

• Data quality assessment (Section 3.2.2).

• Accessing data-containing objects (Section 3.2.3).

• Manipulated data-containing objects (Section 3.2.4).

• Textual display of data and results (Section 3.2.5).

• Graphical display of data and results (Section 3.2.6).

• Data normalisation (Chapter 4).

• Enrichment detection (Chapter 5).

77

CHAPTER 3 SECTION 3.2

arrayData

genomeData

splitCoords

Raw Data

File

Genome

Database

limma

consecutive

biomaRt

Tab

Delimited

File

show

[(extraction)*

dim*

overlap

profilePlot*

rainbowPlot*

+, -, ×, ÷ *

dim*

cbind*

rowMeans*

getProbeInfo*

density*

summary*

plot*

show

[(extraction)*

arrayDataValidity

writeArrayData*

peakList

preprocessCore

rmRegion

rmNAs

shiftByMode

quantileNormalise

Creates
Uses
Acts on Function

Object (R) Object (other)

R package

KEY

R Output

Graphic

Text

checkData*

loadArray*

plot

normalisation*

mirror

dim*

[(extraction)*

show

Text

Graphic

True/False

Graphic

maths

peakDetection*

venn*

stNormScale

QQ-plots*

positionsPlot*

getSequences*

BSgenome

Biostrings

loadAnnotation*

hist*

Figure 3.1: Overview of the functions presented: Diagram showing the vari-
ous functions and objects and how they relate to each other. R objects and
functions are those newly written or created for this work. Other objects are
files or databases outside of R. R packages are those already available on Bio-
conductor. Coloured arrows indicate functions that create or act on objects
and use other functions. For clarity coloured boxes highlight some functions
an arrow relates to. The direction of the arrows shows the relationship be-
tween two items. For example, the loadArray function “uses” splitCoords,
“acts on” raw data and tab delimited files and “creates” arrayData objects.
Asterisks denote functions intended to be called by users while the rest are
called within other functions.

78

SECTION 3.2 CHAPTER 3

3.2.1 Loading data

The production and format of raw microarray data are described in Chap-

ter 2. This section details the methods used to load this data into R and the

format this takes. It also describes the loading of other other data relevant

to the analyses.

3.2.1.1 Utilising limma

The limma package was developed to analyse transcription array datasets

(Smyth, 2005). This has a function, read.maimages, to read microarray

data files into R in the form of an RGList object. These contain the following

components.

R Red signal intensity values.

G Green signal intensity values.

Row Probe microarray row number.

Col Probe microarray column number.

ProbeUID Unique probe ID.

ProbeName Probe name.

GeneName Corresponding gene name.

SystematicName Genome position details.

Description Probe position relative to gene.

Originally, the limma package was used here to load data into R as

RGLists, and the functions were written to act on the data in this format. Be-

cause limma is intended for transcription microarray data analysis its RGList

does not include readily accessible data on probes’ genomic positions. This

data therefore had to be extracted from the “Systematic Name” column of

79

CHAPTER 3 SECTION 3.2

the Agilent Feature Extraction file, split into its component parts (chromo-

some number and start and end coordinates) and added to the RGList as

new columns.

These modified RGLists were used as the basis of early analyses and

all new functions were written to extract relevant data from them. This

initially proved satisfactory but became limiting when more advanced scripts

were being written. The structure of the RGLists — dataframes contained

within a list — meant that some analyses, especially those requiring repeated

looping, were slow. It is generally the case with the analysis of transcription

microarrays that the data is processed relatively quickly, in a small number of

steps, to produce a final set of results consisting of information on the genes

determined to be differentially expressed. There is then generally no further

use for the original microarray data and so it can be disregarded. Depending

on the type of data generated and the analyses being undertaken, this is

not necessarily the case with ChIP-chip data, as all features can be equally

informative in a number of different applications. It is therefore useful to

have all data in a format that can be quickly and easily processed in multiple

ways, which the RGList format is not best suited to. To overcome this a new

data format was created, containing similar information to the RGList but in

a format better suited to ChIP-chip data and the analyses to be performed

on it. This new class was named arrayData and replaced the RGList for

ChIP-chip data storage in R. All existing functions were adapted, and all

new functions written, to work with this new format. The following sections

detail this arrayData format and its creation upon loading data into R.

3.2.1.2 The arrayData class

The minimum information required to perform analyses on ChIP-chip data

is each probe’s fluorescence intensity values and the genomic position it rep-

resents. This information allows the fluorescence values to be linked to the

relevant sections of the genome. A unique reference is also an important com-

ponent, which allows each probe to be identified individually. The arrayData

class was written to contain all of this data, along with any other data speci-

80

SECTION 3.2 CHAPTER 3

fied by the user and information relevant to the processing of the data. This

section describes the format of an arrayData object; how data is loaded into

this object is detailed in the next section. Each arrayData object takes the

format of a list containing the following five components.

coordinates A three-column matrix containing the chromosome number,

start position and end position of each probe as a separate row.

annotations A matrix consisting of at least one column, but can have any

number containing user specified information. The first column must

contain a unique identifier for each probe.

ratios A matrix containing one column of log2 red:green ratios for each

dataset. Column names show the file name from which the data were

taken and are edited by some functions to show processes that they

have undergone.

grid name A character vector containing only the name of the microarray

grid the data have come from. This is used to ensure data of different

types are not accidentally mixed.

status A list containing information on the normalisation procedures car-

ried out on each dataset. This starts out as “raw” when data is initially

loaded and is updated by the various normalisation functions to show

the processing that has taken place. It is checked by other functions to

ensure that datasets have been processed in the ways that they require.

3.2.1.3 Creating new arrayData objects

The loadArray function (Script 3.1) is the most crucial, as it is the only

one able to take data from an external source, load it into R and convert

it to the required format for an arrayData object. It would be possible to

do this manually, but via a number of stages and so would take longer and

require more work. The function can load data from two file types: the text

file created by the Agilent Feature Extraction software, which is of a specific

format, or a tab-delimited file, which can be created containing data from

81

CHAPTER 3 SECTION 3.2

any source. The feature extraction file is of a fixed format (Section 2.6 and

Figure 2.3) and the majority of the data are not needed for analyses. There-

fore, in order to allow efficient processing of the data, the function scans the

file for the required regions and only these are loaded into R. This data is

represented in four ‘Features’ columns of the file: one contains probe chro-

mosome numbers, start coordinates and end coordinates as a single string,

one each contain the red and green intensity values and one contains unique

IDs in the form of probe names.

Tab-delimited files must contain all the same essential data in a certain

format for the function to create a correct arrayData object from it. The

layout is outlined in Figure 3.2. The first line (“Data types”) details the

type of data in the column and may be one of “coords”, “anno” or “ratios”.

The second line (“Data names”) contains the column names. Coordinates

must contain “probeChr”, ‘probeStart” and “probeEnd”. Annotations must

contain “probeID” and any other optional columns. Ratios must contain

data names. All values follow for p rows, where p is the number of probes.

A grid name and statuses may also be provided. In this case the first line

(“Extra data names”) contains “grid name” and the data names. The second

(“Extra data values”) contains the grid name and each status. The rest of

the file then starts on line three. The function looks for the text “grid name”

in the first position; if this is not present it assumes the probe data starts on

the first line. The order of the status file names are compared to the order of

the data file names and the correct status assigned to each set of data. The

function has the following arguments:

fileName Names of .txt or .tab files to load (no default).

essentialColumns A list of the names of the columns in the Feature Ex-

traction text file containing essential information. Red and green in-

tensity values are taken from the “rBGSubSignal” and “gBGSubSig-

nal” columns respectively, coordinates from “SystematicName”, probe

names from “ProbeName” and control types from “ControlType” by

default and do not need to be modified under normal circumstances.

otherColumns A list of other columns specified by the user (no default).

82

SECTION 3.2 CHAPTER 3

Line Contents

1 Extra data names

2 Extra data values

3 (1) Data types

4 (2) Data names

5 (3) Data values

 ↓

 p rows

Figure 3.2: Tab-delimited file format: Representation of the contents of the
tab-delimited text file for loading into R by the loadArray function. The first
two lines (grey) are optional and specify the grid name and normalisation sta-
tuses. Lines 3–5 (1–3 if the optional data is not included) show data types (co-
ordinates/annotations/ratios), data names (chrNum/chrStart/. . . etc) and
the corresponding data values. These run for a minimum of five columns
but can contain multiple annotation and ratio columns. Values run for p
rows, where p is the number of probes.

83

CHAPTER 3 SECTION 3.2

processCoords The name of the function required to split the coordinates

into their component parts (default “splitCoords”; Script 3.2).

spikes Specifies whether or not spike in probes are present on the microarray,

the processing of which is different to genomic probes (default FALSE).

Script 3.1: loadArray: loads data from Agilent Feature Extraction files or
tab delimited files with correct column headings into a new arrayData object

1 ## loadArray function ##

2 ## arguments: fileName (file(s) to load), essentialColumns (list of

essential columns to load from FE file), otherColumns (list of other

columns to load from FE file), processCoords (function to process

systematicName data), spikes (whether the dataset contains spikes)

3 loadArray <-function(fileName , essentialColumns=list(red="rBGSubSignal",

green="gBGSubSignal", coords="SystematicName", probe="ProbeName"),

otherColumns=list(), processCoords=splitCoords ,spikes=FALSE) { #define

function

4 if (length(essentialColumns$red) == 0 | length(essentialColumns$green) ==

0 | length(essentialColumns$coords) == 0 | length(essentialColumns$
probe) == 0) stop("Essential columns missing", call.=F) #check all

essential columns (red , green , coords , probe) are defined

5 if (missing(fileName)) { #if file names are not provided

6 fileName.txt <-list.files(pattern=".txt$") #get all .txt files in working

directory

7 fileName.tab <-list.files(pattern=".tab$") #get all .tab files in working

directory

8 }else{ #file names are provided

9 ext <-character(length = length(fileName)) #initialise vector to store

file types

10 fileName.txt <-fileName.tab <-character () #initialise vectors to store

file names

11 for (n in 1: length(fileName)) { #loop through file names

12 if (substring(fileName[n],nchar(fileName[n]) -3,nchar(fileName[n])) ==

".txt") ext[n]<-"A" #search for .txt files

13 if (substring(fileName[n],nchar(fileName[n]) -3,nchar(fileName[n])) ==

".tab") ext[n]<-"D" #search for .tab files

14 } #exit loop

15 fileName.txt <-fileName[ext == "A"] #get all .txt file names provided

16 fileName.tab <-fileName[ext == "D"] #get all .tab file names provided

17 }

18 if (length(fileName.txt) > 0 & length(fileName.tab) > 0) stop("Mixtures of

file types cannot be loaded together", call.=F) #stop with message if

files of both types are present

19 if (length(fileName.txt)== 0 & length(fileName.tab) == 0) stop("No files

to load", call.=F) #stop with message if no files are present

20 if (length(fileName.txt) > 0) { #if .txt files are provided/present

21 fileName <-fileName.txt #store them

22 txt <-TRUE #set txt to TRUE

23 }else{ #.tab files are provided/present

24 fileName <-fileName.tab #store them

25 txt <-FALSE #set txt to FALSE ie tab is true

26 }

27 for (n in 1: length(fileName)) { #loop through files

28 if (txt) { #a .txt file is to be loaded

29 message (paste("Loading:",fileName[n])) #print the name of the file

being loaded

84

SECTION 3.2 CHAPTER 3

30 columnNames <-scan(fileName[n],skip=1,nlines=1,what="",quiet=T) #get

column names from row 2 of the file

31 totalColumns <-length(columnNames) #get total numer of columns of file

32 columnRead <-rep("NULL",totalColumns) #set all columns to NULL (so they

are not read)

33 columnRead[columnNames == "Grid_Name"]<-NA #set grid name column to NA

(in order to be read)

34 grid_name <-as.character(as.matrix(read.table(fileName[n],colClasses=

columnRead ,skip=2,fill=T,sep="\t",nrows =1))) #load the grid name

35 grid_name <-strsplit(grid_name ,"_")[[1]][1] #split the grid name and

store the first part

36 if (length(grid_name) == 0) warning("No grid name found", call.=F) #

warn if no grid name is found

37 columnNames <-scan(fileName[n],skip=9,nlines=1,what="",quiet=T) #get

column names from row 10 of the file

38 if (length(grep(essentialColumns$red ,columnNames)) != 1 | length(grep(

essentialColumns$green ,columnNames)) != 1 | length(grep(

essentialColumns$coords ,columnNames)) != 1 | length(grep(

essentialColumns$probe ,columnNames)) != 1) stop("Essential columns

not present", call.=F) #stop with message if not all essential

columns present in file

39 totalColumns <-length(columnNames) #get total numer of columns of data

40 columnRead <-rep("NULL",totalColumns) #set all columns to NULL (so they

are not read)

41 columnsF <-which(columnNames %in% c(essentialColumns ,otherColumns)) #

get columns specified

42 columnRead[columnsF]<-NA #set listed columns with NA (to be read)

43 arrayFile <-as.matrix(read.table(fileName[n],colClasses=columnRead ,skip

=9,header=T,fill=T,sep="\t",quote="")) #read data into R

44 if (spikes) {

45 spikeData <-arrayFile[grep(">",arrayFile[,which(colnames(arrayFile)

== "SystematicName")]) ,]

46 }

47 arrayFile <-arrayFile[grep("chr",arrayFile[,which(colnames(arrayFile)

== "SystematicName")]) ,] #get data representing non -control probes

48 coords <-processCoords(arrayFile[,which(colnames(arrayFile) ==

essentialColumns$coords)]) #split coordinates with defined

function

49 chromosomes <-sort(unique(coords [,1])) #get ordered , unique chromosome

numbers

50 startWarn <-as.numeric(options("warn")); on.exit(options(warn=startWarn

)) #get current warning state and maintain on exit

51 options(warn=-1);chromosomes.numeric <-as.numeric(chromosomes);options(

warn=startWarn) #make chromosomes numeric (without warnings for

non -numeric values)

52 chromosomesNonNumeric <-which(is.na(chromosomes.numeric)) #identify non

-numeric chromosomes

53 if (length(chromosomesNonNumeric) > 0) { #if there are non -numeric

chromosomes

54 for (cnn in 1: length(chromosomesNonNumeric)) { #loop through non -

numeric chromosomes

55 coords[coords [,1] == chromosomes[chromosomesNonNumeric[cnn]],1] <-(

max(chromosomes.numeric ,na.rm=T)+cnn) #assign non -numeric

entries with the next available numeric value

56 }

57 }

58 coords <-matrix(as.numeric(coords),ncol =3) #convert coordinates to

matrix

59 options(warn=-1);ratios <-matrix(log2(as.numeric(arrayFile[,colnames(

arrayFile) == essentialColumns$red])/as.numeric(arrayFile[,
colnames(arrayFile) == essentialColumns$green])),ncol =1);options(
warn=startWarn) #calculate log2 ratios from red and green values (

85

CHAPTER 3 SECTION 3.2

without warnings for negative values)

60 annotations <-matrix(arrayFile[,colnames(arrayFile) == essentialColumns

$probe]) #get essential annotations

61 otherAnnotations <-matrix(arrayFile[,colnames(arrayFile) ==

otherColumns]) #get other (user define) annotations

62 if (length(otherAnnotations) > 0) annotations <-cbind(annotations ,

otherAnnotations) #join annotations if more than one set are

loaded

63 annoNames <-c("probeID",otherColumns) #set column names for annotation

matrix

64 status <-as.list("raw") #set status of data to "raw"

65 ratioNames <-fileName[n] #set column names for ratio matrix

66 }else{ #tab delimited file is to be loaded

67 message (paste("Loading:",fileName[n])) #print the name of the file

being loaded

68 columnNames <-scan(fileName[n],skip=0,nlines=1,what="",quiet=T) #get

column names from row 1

69 if (columnNames [1] == "grid_name") { #extra data is provided

70 values <-scan(fileName[n],skip=1,nlines=1,what="",quiet=T) #get

values from row 2

71 grid_name <-values [1] #get grid name (first position)

72 statusFileNames <-as.matrix(columnNames [2: length(columnNames)][!is.na

(columnNames [2: length(columnNames)])]) #get file names for

statuses

73 statuses <-as.matrix(values [2: length(values)][!is.na(values [2: length(

values)])]) #get statuses

74 columnTypes <-scan(fileName[n],skip=2,nlines=1,what="",quiet=T) #get

column types from row 3

75 columnNames <-scan(fileName[n],skip=3,nlines=1,what="",quiet=T) #get

column names from row 4

76 arrayFile <-as.matrix(read.table(fileName[n],header=F,sep="\t",quote=

"",skip =4)) #load remainder of tab delimited file

77 dataFileNames <-as.matrix(columnNames[columnTypes =="ratios"]) #get

data file names

78 status <-as.list(statuses[apply(dataFileNames ,1,function(x){which(

statusFileNames == x)})]) #reorder statuses

79 }else{ #no extra data is provided

80 columnTypes <-scan(fileName[n],skip=0,nlines=1,what="",quiet=T) #get

all row 1 column names

81 columnNames <-scan(fileName[n],skip=1,nlines=1,what="",quiet=T) #get

all row 1 column names

82 arrayFile <-as.matrix(read.table(fileName ,header=F,sep="\t",quote="",

skip =2)) #load tab delimited file

83 grid_name <-"unspecified" #set grid name to "unspecified"

84 status <-as.list(rep("raw",length(which(columnTypes =="ratios")))) #

set status to "raw"

85 }

86 coordTypes <-which(columnTypes =="coords") #get columns containing

coordinates

87 coordColumns <-c(coordTypes[which(columnNames[coordTypes] == "probeChr"

)],coordTypes[which(columnNames[coordTypes] == "probeStart")],

coordTypes[which(columnNames[coordTypes] == "probeEnd")]) #get

coordinate columns with specified column names

88 if (length(coordColumns) != 3) stop("Incorrect column names present",

call.=F) #stop with message if the wrong number of coordinate

columns are provided

89 annoTypes <-which(columnTypes =="anno") #get columns containing

annotations

90 annoColumns <-c(annoTypes[which(columnNames[annoTypes] == "probeID")],

annoTypes[!columnNames[annoTypes] == "probeID"]) #get annotation

columns with specified and unspecified (user defined) names

91 if (length(annoColumns) < 1) stop("Incorrect column names present",

86

SECTION 3.2 CHAPTER 3

call.=F) #stop with message if no annotation columns are provided

92 ratioColumns <-which(columnTypes =="ratios") #get columns containing

ratios

93 coords <-matrix(as.numeric(arrayFile[,coordColumns]),ncol =3)#get

coordinates as numeric

94 ratios <-matrix(as.numeric(arrayFile[,ratioColumns]),ncol=length(

ratioColumns)) #get ratios as numeric

95 annotations <-matrix(nrow=nrow(coords),arrayFile[,annoColumns]) #get

annotations

96 annoNames <-c("probeID",columnNames[annoTypes][!columnNames[annoTypes]

== "probeID"]) #get column names for annotation matrix

97 ratioNames <-columnNames[columnTypes =="ratios"] #get ratio names for

ratio matrix

98 }

99 if (length(which(duplicated(annotations [,1]))) > 0) stop("Non -unique IDs

present", call.=F) #check all IDs are unique; stop message if not

100 arrayFile <-new("arrayData",list(coordinates=coords ,annotations=

annotations ,ratios=ratios ,grid_name=grid_name ,status=status)) #

create new arrayData object with loaded data

101 arrayFile <-arrayFile[order(arrayFile$coordinates [,1], arrayFile$
coordinates [,2]) ,] #order data by coordinates

102 colnames(arrayFile$coordinates)<-c("probeChr","probeStart","probeEnd") #

set coordinates matrix column names

103 colnames(arrayFile$annotations)<-annoNames #set annotations matrix

column names

104 colnames(arrayFile$ratios)<-ratioNames #set ratios matrix column names

105 if (n > 1) { #if loading beyond the first file

106 allArrayFiles <-cbind(allArrayFiles ,arrayFile) #cbind arrayData objects

107 }else{ #loading the first file

108 allArrayFiles <-arrayFile #store arrayData object

109 }

110 }

111 return(allArrayFiles) #return data

112 }

The function first checks that a column name is provided for each of the

items in the “essentialColumns” list and is stopped with the warning message

“Essential columns missing” if not (L4).

The file names to load are determined from the “fileName” argument

or R working directory (L5–26). If file names are not provided the working

directory is scanned for all files with ‘.tab’ and ‘.txt’ extensions (L6–7). All

file names, either user specified or from the working directory, are examined

for .txt and .tab extensions (L9–16). If both are present the function stops

with the error message “Mixtures of file types cannot be loaded together”

(L18). This prevents files of different formats being loaded together. If

neither are present the function stops with the error message “No files to

load” (L19). If only .txt files are provided the “txt” object is set to TRUE,

or if only .tab files are provided it is set to FALSE (L20–26). This is used to

determine the processing of the data as it is loaded.

87

CHAPTER 3 SECTION 3.2

A loop is initiated to load each file individually (L27). For ‘.txt’ files the

processing is based on the Agilent Feature Extraction file format (L28–67).

The name of each file is printed as it is loaded (L29). The second line of

the file, containing the parameter names, is scanned and the column con-

taining the text “Grid Name” specified to load (L30–33). The corresponding

position in the third line, containing the grid name, is loaded (L34). This

contains extra text separated by a ‘ ’, which is removed (L35). If no grid

name is found the warning message “No grid name found” is displayed (L36).

The tenth line of the file containing the feature names is red (L37). If the

column names from the “essentialColumns” argument are not all present the

function stops with the warning “Essential columns not present” (L38), oth-

erwise the corresponding features values are set to load from the eleventh line

(L39–43). Spike probe data are separated (L44–46) and control probe values

removed (L47). The function specified in the “processCoords” argument is

used to split the coordinates into their component parts (L48). Non-numeric

chromosome numbers are converted to the next available number and the

coordinates stored in a new matrix (L48–58). Ratio values are calculated as

the log2 ratio of red:green values and stored in a new matrix (L59). Warning

messages are disabled while there is the potential for non-numeric values to

be treated as numeric, during the processing of chromosome numbers and

ratios. Annotations — essential and user specified — are stored in a new

matrix and the column names saved (L60–63). The status is set to “raw”

(L64) and the ratios column names saved (L65).

For .tab files (L67–98) the processing is based on the file format shown in

Figure 3.2. The name of each file is printed as it is loaded (L67). The first

line is read (L68) and if the text of the first position is “grid name” (L69)

the first two lines are known to contain extra data. These values are loaded

(L70) and the grid name, statuses and status file names saved (L71–73). The

data types, names and values are read from lines 3, 4 and 5 onwards (L74–

76). Statuses are reordered according to the order of the data file names

(L77–78). If no extra data is provided the values are read from the first line

(L80–82). The grid name is stored as ‘unspecified” (L83) and the statuses

as “raw” (L84). Coordinate columns are sought (L86–87) and the function

88

SECTION 3.2 CHAPTER 3

stopped with an error message if these are not all present (L88). The same

is done for annotation data (L89–91). Coordinates, annotations and ratios

are stored as new matrices and column names saved (L92–97).

Following the loading and processing of data, annotations are checked for

unique entries (L99). A new arrayFile is created with the data (L100),

ordered by coordinate values (L101), and column names are set (L102–104).

If the arrayData object is not the first to be loaded it is joined with the others

with the cbind method, otherwise it is left on its own (L105–109). The final

arrayData object is returned when all files have been loaded (L111).

The splitCoords function

The splitCoords function (Script 3.2) runs within the loadArray func-

tion to process the probe coordinate data in the Agilent Feature Extrac-

tion file. This is in one column of the file, named “SystematicName”, and

contains genomic probe data in the format “chr” [chromosome num-

ber] [colon] [start coordinate] [hyphen] [end coordinate], for exam-

ple, chr1:100-160 for a probe on chromosome 1 that runs from position

100 to 160. Probe names are listed for non-genomic probes, such as con-

trols. The loadArray function passes all SystematicNames that begin with

“chr” to this function, which splits them into their component parts, that

is, a chromosome number and start and end coordinate. These are put into

a three-column matrix and returned to the loadArray function. This pro-

cessing allows each probe to be associated with a genomic location in the

arrayData object. The function has one argument:

x A character vector containing the coordinates to be split (no default).

Script 3.2: splitCoords: script to split the “systematicName” column of
the Agilent Feature Extraction file into its component parts, namely the
chromosome number and probe start and end coordinates.

1 ## splitCoords function ##

2 ## arguments: x (SystematicName column data to split)

3 splitCoords <-function(x) { #define function

4 split1A <-strsplit(x,"-") #split by "-"

5 doubles <-as.numeric(summary(split1A)[,1]) == 2 #identify doubles ie those

split into two

89

CHAPTER 3 SECTION 3.2

6 split1 <-matrix(unlist(split1A[doubles]),ncol=2,byrow=T) #get doubles

7 split2 <-matrix(unlist(strsplit(split1[,1],":")),ncol=2,byrow=T) #split

first half by ":"

8 split3 <-matrix(unlist(strsplit(split2[,1],"chr")),ncol=2,byrow=T)[,2] #

remove "chr" text from first half

9 coords <-matrix(ncol=3,nrow=length(x)) #initialise matrix to store

coordinates

10 coords[doubles]<-matrix(cbind(split3 ,split2[,2],split1 [,2]),ncol=3,byrow=F

) #recombine coordinates

11 return(coords) #return data

12 }

The function first breaks strings at the “-” location (L4) and the positions

of those split into two are stored (L5). The first component of the strings

split in two is split at the “:” location (L6–7) and the “chr” text removed

from the beginning (L8). All coordinates are recombined in a new matrix

and returned to the loadArray function (L9–11).

Validating arrayData

The arrayDataValidity function (Script 3.3) performs a series of checks

on arrayData objects to ensure that they are in the correct format, as de-

scribed in Section 3.2.1.2 and below, and is specified as the validity function

when setting the arrayData class. Validity functions are run automatically

in R every time a new object is created, to ensure that the object being

specified matches the expected format. Functions in this package that mod-

ify arrayData objects return new objects, and so this checking is performed

every time they are run. Its main purpose therefore is to check that the mod-

ification of the object has been carried out correctly. Users do not have any

need to directly modify the contents of an arrayData object, but if they do

so in such a way that they change the format of the object, this will create an

error when another function attempts to modify it. The arrayDataValidity

function can be called directly by a user if required, but there is no need for

this to be done as a matter of routine. Other functions that use, but do

not modify, arrayData objects do not perform this validity checking. The

following details are checked:

• The object contains five slots (for coordinates, annotations, ratios, grid

name and status).

90

SECTION 3.2 CHAPTER 3

• The first three slots contain matrices.

• The last slot contains a list.

• The names of the objects in the slots are correct (“coordinates”, “an-

notations”, “ratios”, “grid name” and “status” respectively).

• The number of columns of the matrices are correct (3, 1+ and 1+).

• The number of statuses equals the number of datasets.

• The coordinates and ratios are numeric.

• The first column of annotations contains only unique values.

• The three matrices have the same number of rows.

• A single grid name is present.

The function has the following argument:

object The arrayData object to be validated (no default).

Script 3.3: arrayDataValidity: script to check presented arrayData objects
are in the correct format. Called by functions about to use an arrayData
object. Returns TRUE if the format is correct, in which case the function
carries on using the object, or an error message if not.

1 ## arrayDataValidity function ##

2 ## arguments: object (an arrayData object)

3 arrayDataValidity <-function(object) { #define function

4 if (length(object) == 5) { #length of arrayData is equal to 5

5 if (is.matrix(object [[1]]) & is.matrix(object [[2]]) & is.matrix(object

[[3]]) & is.character(object [[4]]) & is.list(object [[5]])) { #first

three slots contain matrices , fourth contains a chacacter vector and

fifth contains a list

6 if (names(object)[1] == "coordinates" & names(object)[2] == "

annotations" & names(object)[3] == "ratios" & names(object)[4] ==

"grid_name" & names(object)[5] == "status") { #slots contain items

of the correct names

7 if (ncol(object [[1]]) == 3 & ncol(object [[2]]) >= 1 & ncol(object

[[3]]) >= 1 & length(object [[4]]) == 1 & length(object [[5]]) ==

ncol(object [[3]])) { #slots contain items of the correct

dimensions

8 if (nrow(object [[1]]) > 0) if (is.numeric(object [[1]][1 ,1]) & is.

numeric(object [[3]][1 ,1])) { #coordinates and ratios are

numeric

91

CHAPTER 3 SECTION 3.2

9 if(nrow(object [[1]]) > 0) if (length(which(duplicated(object

[[2]][,1]))) == 0) { #no probe names are duplicated

10 if (nrow(object [[1]]) == nrow(object [[2]]) & nrow(object [[1]])

== nrow(object [[3]])) { #all matrices are of the same

number of rows

11 if (nchar(object [[4]]) >= 1) { #a grid name is present

12 TRUE #all criteria have been met; return TRUE

13 } else print("Grid name is absent") #a grid name is not

present; print message

14 } else print("Unequal matrix lengths") #matrices are of

differing numbers of rows; print message

15 } else print("Non -unique IDs present in annotations") #some

probe names are duplicated; print message

16 } else paste("Non -numeric entries found which should be numeric")

#non -numeric coordinates/ratios found; print message

17 } else print("Items of incorrect length") #slots contain items of

incorrect dimensions; print message

18 } else print("Slot names incorrect") #slots contain items of incorrect

names; print message

19 } else print("Slots contain incorrect objects") #slots do not contain

the expected objects; print message

20 }else print("Incorrect number of slots") #length of arrayData is not equal

to 5; print message

21 }

22

23 ## Define arrayData class ##

24 setClass("arrayData",representation("list"),validity=arrayDataValidity) #set

class with validity

The function checks the components in a specific order, each check relying

on the last to be correct. That the length of the object is 5 is checked first

(L4) allowing the formats (L5), names (L6) and dimensions (L7) of these 5

components to be checked. Coordinates and ratios are checked to be numeric

(L8) and probe IDs are checked to be unique (L9). Components are checked

to contain the same number of probes (L10). The grid name is checked to

contain one entry (L11). If all of these checks are passed the function returns

TRUE (L12), otherwise an error message corresponding to the failed check is

returned (L13–20). This function is set as the validity check of the arrayData

class (L24).

3.2.1.4 Writing arrayData to external files

There may be occasions where a user wishes to use data from an arrayData

object in a different program, or for some other reason save their data outside

of R. The function writeArrayData allows this by writing the data to a tab-

delimited text file. The format of the text file is that shown in Figure 3.2,

and as such the files written with this function can be loaded back into R

92

SECTION 3.2 CHAPTER 3

as an arrayData object with the loadArray function. The function has the

following arguments:

object The arrayData object to be written to the file (no default).

fileName The name of the file to create (no default). The ‘.tab’ extension

is added if not present so the file will be correctly recognised by the

loadArray function.

Script 3.4: writeArrayData: script to write an arrayData object to a tab-
delimited text file. All information in the object is written in a format that
can be read back in as an arrayData object by the loadArray function

1 ## writeArrayData function ##

2 ## arguments: object (an arrayData object), fileName (the name of the file

to be created)

3 writeArrayData <-function(object ,fileName) { #define function

4 validObject(object ,test=T) #check arrayData object is correct

5 data <-matrix(ncol =3+ ncol(object$annotations)+ncol(object),nrow=nrow(object
)) #initialise matrix to store data

6 data [,1:3] <-matrix(object$coordinates ,ncol =3) #put coordinates in first 3

columns

7 data [,4:(3+ ncol(object$annotations))]<-matrix(object$annotations ,ncol=ncol
(object$annotations)) #put annotations in next columns

8 data [,(4+ ncol(object$annotations)):(3+ ncol(object$annotations)+ncol(object
))]<-matrix(object$ratios ,ncol=ncol(object)) #put ratios in last

columns

9 top <-matrix(ncol=ncol(data),nrow =2) #initialise matrix to store extra info

10 top[,1]<-c("grid_name",object$grid_name) #store grid name

11 for (n in 1:ncol(object)) top[,(n+1)]<-c(colnames(object$ratios)[n],paste(
object$status [[n]],collapse=",")) #store each data name

12 data <-rbind(top ,c(rep("coords",ncol(object$coordinates)),rep("anno",ncol(
object$annotations)),rep("ratios",ncol(object$ratios))),c(colnames(
object$coordinates),colnames(object$annotations),colnames(object$
ratios)),data) #combine all together into final format

13 if(missing(fileName)) fileName <-deparse(substitute(object))

14 if(substr(fileName ,nchar(fileName) -3,nchar(fileName)) != ".tab") substr(

fileName ,nchar(fileName)-3,nchar(fileName))<-".tab" #change file

extension to ".tab" if not already

15 write.table(data ,fileName ,quote=F,sep="\t",row.names=F,col.names=F) #write

to tab delimited file

16 message(paste("arrayData object \"",deparse(substitute(object)),"\"

written to ",fileName ,sep="")) #print message

17 }

The function first confirms the validity of the arrayData object (L4), to

ensure that all the data is in the required format to write to the file. A new

matrix is created and the coordinate, annotation and ratio data added to it

(L5–8). Another matrix is created for the extra data and the grid name, file

names and statuses added to it (L9–11). Both matrices are combined (L12).

93

CHAPTER 3 SECTION 3.2

If no file name is provided it is set to be the object name (L13) and a ‘.tab’

extension added to the end if required (L14). The object is then written

(L15) and a confirmatory message displayed (L16).

3.2.1.5 The genomeAnnotation class

In addition to loading microarray data, the biomaRt (Durinck et al., 2005)

package has been used to load complementary genome annotation data. This

is used to determine the positions of probes relative to ORFs, which is used

in several plotting functions and to assign location-specific information to

probes. This information is loaded into a genomeAnnotation object which

is of a similar format to the arrayData object, in that it is a list structure

containing several matrices, in the following format.

coordinates A three column matrix containing the chromosome number,

start position and end position of each ORF.

annotations A three column matrix containing the name, chromosome name

and strand of each ORF. The chromosome number is always numeric,

and is based on the chromosome name in the database. If this is nu-

meric both will be the same, otherwise the next available number is

assigned. These values are stored in the “coordinates” matrix while

the original names are stored in the “annotations” matrix.

dataset The name of the biomaRt dataset used to load the data.

The biomaRt package links to databases of genome annotations for sev-

eral organisms, including S. serevisiae and humans. The loadAnnotation

function (Script 3.6) was written to extract information from these. The

function contains the following arguments:

mart A character vector specifying the database to use (default “ensembl”,

which should not need to be changed.)

dataset A character vector specifying the name of the dataset to be accessed

(default “scerevisiae gene ensembl”).

attributes A vector containing the names of the attributes in the database

to be loaded (defaults “external gene id” (gene name), “chromosome name”

94

SECTION 3.2 CHAPTER 3

(chromosome name or number), “start position” (ORF start coordi-

nate), “end position” (ORF end coordinate), and “strand” (ORF strand),

which should be consistent between different datasets and therefore

should not need to be changed).

chromosomes A vector containing the names of the chromosomes to be

loaded (default Roman numerals from 1 to 16 for S. serevisiae; for

humans they should be listed as the numbers 1 to 22 plus “X” and

“Y”).

Script 3.5: loadAnnotation: script to load genome annotation data using
the biomaRt package. Gene names, coordinates and strands along with the
dataset name are stored as the newly defined genomeAnnotation class.

1 ## loadAnnotation function ##

2 ## arguments: mart (biomaRt mart to use), dataset (biomaRt dataset to use),

attributes (data to load from database), chromosomes (the organisms

chromosoms names as they appear in the database)

3 loadAnnotation <-function(mart="ensembl",dataset="scerevisiae_gene_ensembl",

attributes=c("external_gene_id","chromosome_name","start_position","end_

position","strand"),chromosomes=as.roman (1:16)) { #define function

4 require(biomaRt) #load biomaRt package if not already done so

5 annotation <-as.matrix(getBM(mart=useMart(mart , dataset = dataset),

attributes=attributes)) #download data (gene name , chromosome name ,

gene start , gene end , strand) from mart/dataset

6 chromosomes <-as.character(chromosomes) #set chromosomes as characters

7 annotation <-annotation[which(as.character(annotation [,2]) %in% chromosomes

),] #get data matching defined chromosomes

8 annotation <-cbind(annotation ,matrix(ncol=1,nrow=nrow(annotation))) #add

new column to data

9 for (n in 1: length(chromosomes)) { #loop through chromosomes

10 annotation[which(annotation [,2] == chromosomes[n]) ,6]<-n #set numerical

value for each chromosome

11 }

12 coords <-matrix(as.numeric(annotation[,c(6,3,4)]),ncol =3) #get coordinates

13 annotations <-matrix(annotation[,c(1,2,5)],ncol =3) #get annotations

14 anno <-new("genomeAnnotation",list(coordinates=coords ,annotations=

annotations ,dataset=dataset)) #put data in new genomeAnnotation object

15 anno <-anno[order(anno$coordinates [,1],anno$coordinates [,2])] #order

genomeAnnotation object

16 return(anno) #return genomeAnnotation object

17 }

The function first ensures the biomaRt package is loaded (L4) and uses it to

load the specified annotations (L5). Provided chromosomes are converted to

characters (L6) and used to get the required data from the loaded annotations

(L7). A new column is added to this data (L8) and used to store numeric

chromosome values based on the order they are provided (L9–11). Data

95

CHAPTER 3 SECTION 3.2

is split into coordinates (L12) and annotations (L13) and added to a new

genomeAnnotation object (L14). This is ordered by coordinate values (L15)

and returned to the user (L16). Messages are generated by biomaRt if errors

occur.

Manipulation of genomeAnnotation objects

The genomeAnnotation objects are not intended to be called directly by users

or modified by functions other than loadArray and so has few methods for its

manipulation (Script 3.6). The “dim” method has been defined to show the

number of ORFs present, and square brackets to extract details for particular

positions. To prevent the object being displayed in full and filling up the R

console the show method has been defined to give a message showing the

number of ORFs in the object and the dataset from which they came.

Script 3.6: genomeAnnotation: scripts to process genomeAnnotation ob-
jects. The class is first defined. The show method displays a single line
of information, the dim method returns the dimensions of the coordinates
matrix and the extraction method allows particular genes to be extracted.

1 ## define genomeAnnotation class ##

2 setClass("genomeAnnotation",representation("list"))

3

4 ## genomeAnnotation show function ##

5 ## arguments: object (a genomeAnnotation object)

6 setMethod("show", "genomeAnnotation", function(object) { #define function

7 message(paste("genomeAnnotation object of length",nrow(object),"from",

object$dataset)) #print message

8 }

9)

10 ## genomeAnnotation extract function ##

11 ## arguments: object (a genomeAnnotation object), i (rows)

12 setMethod("[", "genomeAnnotation", function(x,i ,...) { #define function

13 if (nargs() != 2) stop("One subscript required", call. = FALSE) #check

only one subscript (for rows)

14 return(new("genomeAnnotation",list(coordinates=matrix(x[[1]][i,],ncol=ncol

(x[[1]])),annotations=matrix(x[[2]][i,],ncol=ncol(x[[2]])),dataset=x$
dataset))) #return new genomeAnnotation object

15 }

16)

17 ## genomeAnnotation dim function

18 ## arguments: x (a enomeAnnotation object)

19 setMethod("dim", "genomeAnnotation", function(x) { #define function

20 return(dim(x[[1]]))

21 }

22)

96

SECTION 3.2 CHAPTER 3

The “show” method (L6) prints the length of the object (the number of

ORFs it contains) and the name of the dataset it was downloaded from (the

organism name) (L7). The extraction method (L12) accepts one argument

(L13) and returns all information relating to the specified positions (L14).

The “dim” method (L19) prints the number of genes in the object.

3.2.2 Quality assessment

It is prudent to assess the quality of data produced by a microarray before any

analyses are undertaken, as there are several stages at which problems can

be introduced into the ChIP-chip procedure which can render the final data

unreliable. The checkData function (Script 3.7) loads Agilent Feature Ex-

traction files and produces a set of graphics which can aid in this assessment.

This helps any faults or irregularities in the data or on the microarray to be

identified and a decision made as to whether or not to go on to load the data

for analysis. The limma imageplot function is used to create pseudo-images

of the arrays. This is achieved by loading the coordinates of the physical lo-

cations of the probes on the array and representing the corresponding probe

intensities at those positions in the image. One image is created for each

of the two channels. These allow artifacts on the microarray surface, such

as scratches, or regions of poor hybridisation to be visualised. At this point

a user may decide to reject a dataset from further analyses if there is an

obvious defect on the microarray which will likely make some, if not all, of

the data unreliable.

The intensity values of the two channels are shown as box plots, which

allows a visual estimation of the range of values, which can be compared

between different datasets to identify any with unusual features. Additional

box plots can be displayed for microarrays containing custom spike in probes

(see Section 4.4.1), allowing the signal intensities of the spike probes to be

compared to the rest of the probes. This can be useful to see whether or not

the spike in values are in the correct range, which would be expected to be

similar to the range of the genomic probe values if spike ins are included, or

lower than the genomic values if they are not. Density plots of the genomic

97

CHAPTER 3 SECTION 3.2

probes are also created, which can show unusual patterns in the distribu-

tions, such as skewness or unevenness, which may suggest that the data are

unreliable. A density plot of the red:green log2 ratios is also created, showing

the pattern of the final results.

A scatter plot of the red and green values allows the relationship between

the two channels to be visualised. The function smoothScatter is used

to create this plot, which displays more dense areas of points with darker

colours. This allows the data to be better visualised than a standard scatter

plot. The function has the following arguments:

fileName A character vector specifying the names of the files to load (no

default).

essentialColumns A list of the names of the columns in the Feature Ex-

traction text file containing essential information. Red and green inten-

sity values are taken from the “rBGSubSignal” and “gBGSubSignal”

columns respectively, probe row and column positions from “Row” and

“Col” respectively and coordinates from “SystematicName” by default

and do not need to be modified under normal circumstances.

spikes A logical value specifying whether or not spike probes are included

on the microarrays (default FALSE).

spikeStart A character vector specifying text used to identify spike probes

(default “>”).

Script 3.7: checkData: script to load Agilent Feature Extraction text files
and create a series of graphics in order to assess the quality of the microarray
and the data it has produced.

1 ## checkData function ##

2 ## arguments: fileName (name of Agilent FE file), essentialColumns (required

columns from the feature extraction file), spikes (whether or not the

array contains spikes , spikeStart (character defining spike probes)

3 checkData <-function(fileName , essentialColumns=list(red="rBGSubSignal",

green="gBGSubSignal", row="Row", col="Col", coords="SystematicName"),

spikes=F,spikeStart=">") { #define the function

4 if (length(essentialColumns$red) == 0 | length(essentialColumns$green) ==

0 | length(essentialColumns$row) == 0 | length(essentialColumns$col)
== 0 | length(essentialColumns$coords) == 0) stop("Essential columns

missing", call.=F) #check all essential columns are defined

5 require(limma) #ensure limma package is loaded

6 if (missing(fileName)) fileName <-list.files(pattern=".txt$") #search for

all .txt file if no filename is provided

98

SECTION 3.2 CHAPTER 3

7 for (n in 1: length(fileName)) { #loop through files

8 message(paste("Loading:",fileName[n])) #print the name of the file being

loaded

9 columnNames <-scan(fileName[n],skip=9,nlines=1,what="",quiet=T) #get

column names from row 10 of the file

10 if (length(grep(essentialColumns$red ,columnNames)) != 1 | length(grep(

essentialColumns$green ,columnNames)) != 1 | length(grep(

essentialColumns$row ,columnNames)) != 1 | length(grep(

essentialColumns$col ,columnNames)) != 1 | length(grep(

essentialColumns$coords ,columnNames)) != 1) stop("Essential columns

not present", call.=F) #stop with message if not all essential

columns present in file

11 totalColumns <-length(columnNames) #get total numer of columns of data

12 columnRead <-rep("NULL",totalColumns) #set all columns to NULL (so they

are not read)

13 columnRead[which(columnNames %in% essentialColumns)]<-NA #set listed

columns with NA (in order to be read)

14 arrayFile <-as.matrix(read.table(fileName[n],colClasses=columnRead ,skip

=9,header=T,fill=T,sep="\t",quote="")) #read data into R

15 red <-as.numeric(arrayFile[,which(colnames(arrayFile) == essentialColumns

$red)]) #get red channel values

16 green <-as.numeric(arrayFile[,which(colnames(arrayFile) ==

essentialColumns$green)]) #get green channel values

17 rows <-as.numeric(arrayFile[,which(colnames(arrayFile) ==

essentialColumns$row)]) #get row coordinates

18 cols <-as.numeric(arrayFile[,which(colnames(arrayFile) ==

essentialColumns$col)]) #get column coordinates

19 maxR <-max(rows) #get maximum row value

20 maxC <-max(cols) #get maximum column value

21 full <-paste(sort(rep(1:maxR ,maxC)),rep(1:maxC ,maxR),sep="-") #get all (

full) potential positions

22 actual <-paste(rows ,cols ,sep="-") #get actual array positions

23 same <-full %in% actual #get full positions actually present

24 redNew <-greenNew <-numeric () #initialise vectors

25 redNew[same]<-red #get red values in position

26 greenNew[same]<-green #get green values in position

27 red <-redNew #redefine red

28 green <-greenNew #redefine green

29 par(bty="n") #don ’t plot boxes around plots

30 layout(matrix(c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2,

2, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8),

byrow=T,ncol =8),height=c(2,5,5,10,10)) #define layout

31 if(spikes) layout(matrix(c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3,

3, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9,

9, 9),byrow=T,ncol =8),height=c(2,5,5,10,10)) #define layout with

spikes

32 par(mar=c(0,0,3,0)) #set margins

33 plot(0,1,type="n",bty="n",xaxt="n",yaxt="n",main=fileName[n],xlab="",

ylab="") #print file name

34 plot(0,1,type="n",bty="n",xaxt="n",yaxt="n",main="",xlab="",ylab="",xlim

=c(0,1),ylim=c(0,6)) #initialise plot to print text:

35 text(0,1,"Cy3 (Green):",pos =4)

36 text(0,2,"Cy5 (Red):",pos=4)

37 text(0,3,"Organism & Strain:",pos=4)

38 text(0,4,"Date:",pos=4)

39 text(0,5,"Name:",pos=4)

40 text(0,6,"Description:",pos =4)

41 imageplot(c(red ,rep(0,((max(cols)*max(rows))-length(red)))),list(ngrid.r

=1,ngrid.c=1,nspot.r=max(rows),nspot.c=max(cols)),low = "white",

high = "red", zlim = c(0, mean(red ,na.rm=T) + 3*mad(red ,na.rm=T)),

legend=F,mar=c(0.1 ,3 ,0.1 ,3),xlab="",ylab="") #create red pseudoimage

using limma ’s imageplot

99

CHAPTER 3 SECTION 3.2

42 imageplot(c(green ,rep(0,((max(cols)*max(rows))-length(red)))),list(ngrid

.r=1,ngrid.c=1,nspot.r=max(rows),nspot.c=max(cols)),low = "white",

high = "green", zlim = c(0, mean(green ,na.rm=T) + 3*mad(green ,na.rm

=T)),legend=F,mar=c(0.1 ,3 ,0.1 ,3),xlab="",ylab="") #create green

pseudoimage using limma ’s imageplot

43 if(spikes) { #if spikes are present

44 spikeData <-arrayFile[grep(spikeStart ,arrayFile[,which(colnames(

arrayFile) == essentialColumns$coords)]) ,] #get spike data

45 }

46 arrayFile <-arrayFile[grep("chr",arrayFile[,which(colnames(arrayFile) ==

essentialColumns$coords)]) ,] #get only probes with chromosomal

coordinates

47 red <-as.numeric(arrayFile[,which(colnames(arrayFile) == essentialColumns

$red)]) #get red channel values

48 green <-as.numeric(arrayFile[,which(colnames(arrayFile) ==

essentialColumns$green)]) #get green channel values

49 startWarn <-as.numeric(options("warn")); on.exit(options(warn=startWarn))

#maintain warning state on exit

50 options(warn=-1); ratios <-log2(red/green) #calculate log2 ratios without

warnings

51 red <-log2(red) #log2 red values

52 green <-log2(green) #log2 green values

53 rS<-gS<-NA #set red and green spike values to NA

54 if(spikes) { #if spikes are present

55 rS<-log2(as.numeric(spikeData[,which(colnames(spikeData) == "

rBGSubSignal")])) #get red spike values

56 gS<-log2(as.numeric(spikeData[,which(colnames(spikeData) == "

rBGSubSignal")])) #get green spike values

57 }

58 options(warn=startWarn) #reset warning state

59 par(mar=c(5, 4, 1.5, 1)) #set margins

60 boxplot(list(red ,green),col=c(2,3),names=c("Red","Green"),main="Signal

Intensities",ylab="Log2 Signal",ylim=c(range(c(red ,green),na.rm=T)))

#plot signal intensities as boxplot

61 if(spikes) boxplot(list(rS,gS),col=c(2,3),names=c("Red","Green"),main="

Spikes",ylab="Log2 Signal",ylim=c(range(c(red ,green),na.rm=T))) #

plot signal intensities as boxplot

62 par(xaxt="s") #set x-axis type

63 smoothScatter(green ,red ,main="Red v Green",xlab="Log2 Green Signal",ylab

="Log2 Red Signal",pch =20) #red v green plot

64 abline(0,1,col="blue") #add line y=x

65 r<-density(red ,na.rm=T) #calcualte red density

66 g<-density(green ,na.rm=T) #calculate green density

67 plot(r,col="red",lwd=2,xlab="Log2 Signal",main="Signal Intensities",xlim

=range(c(rx,gx)),ylim=range(c(ry,gy))) #plot red density

68 lines(g,col="green",lwd=2) #add green density

69 plot(density(ratios ,na.rm=T),lwd=2,main="Red/Green Ratios",xlab="Log2

Ratio") #plot log2 ratio densities

70 }

71 }

The function first checks that the names of the required columns have been

specified (L4) and loads the limma package if required (L5). File names with

the ‘.txt’ extension are taken from the working directory if not provided in the

“fileName” argument (L6). A loop is initiated to load each file individually

(L7). The name of each file is is printed as it is loaded (L8). The tenth

100

SECTION 3.2 CHAPTER 3

line of the file is scanned for the required column names (L9) and an error

message displayed if they are not all present (L10). The data values from

the specified columns are then read from the eleventh line of the file onwards

(L11–14).

Red, green, row and column values are extracted (L15–18). Row and

column numbers are used to determine the probe positions within the grid

(L19–23) and these positions used to reassign the red and green values to

correspond to their correct positions (L24–28). The plotting parameters and

layouts are defined (L29–32) and a series of text labels printed in the first

plot region (L33–40). Pseudo-images of the red and green values are created

(L41–42). Spike data are extracted if required (L43–45) and genomic probes

stored (L46). Red and green values are again extracted (L47–48) and used

to calculated log2 red and green values as well as their ratios, with warning

messages disabled (L49–58). Parameters are adjusted (L59) for box plot

plotting (L60–61) and again (L62) for scatter plotting (L63–64). Red and

green intensity value densities are plotted (L65–67) followed by their log2

ratios (L69).

An example of the output of this function is shown in Figure 3.3, created

from an Abf1 binding dataset (see Chapter 7). The pseudo-images do not

show any obvious abnormalities on the microarray surface. The box plots

show the bulk of the intensity values are in the expected range and the

density curves show smooth distributions, indicating that both the red and

green channels have produced good quality results. The scatter plot shows a

good relationship between the two channels, with some probes higher in the

red (IP sample) channel than the green (input sample), as expected. This

is also shown in the density plot, with the tail on the right hand side as a

result of the enriched regions.

The application of a statistical test could also be used to determine the

similarity or otherwise of replicate datasets. A test such as Spearman’s

rank correlation coefficient may be used to test the relationship between

two datasets in a non-parametric manner, allowing comparisons to be made

between all replicate datasets. This would allow the objective identification

of any datasets that do not follow the same properties of their replicates at

101

CHAPTER 3 SECTION 3.2

a defined P-value cutoff (under the hypothesis that the rho value is equal to

zero; after the application of a multiple testing correction where appropri-

ate). This can then be used in conjunction with the quality control graphics

to determine whether or not to use datasets for further analyses.

3.2.3 Accessing data

Extracting specific probe data from an arrayData object is important both

for users and functions working with them. In R this is achieved with a square

bracket notation to define the required part(s) of an object. This notation

is specific to the object type being used, and each has a method associated

with it which defines how data is extracted from it. A method has been

defined for the arrayData object to allow probe data to be extracted from it

(Script 3.8). With regard to 2-dimensional objects, row and column numbers

are specified. For example, matrixName[2,3] returns data from the third

column of the second row of the named matrix. This same format is used to

access probe data from an arrayData object, with row numbers relating to

probes and column numbers relating to datasets. In addition, probe names

may be specified as the rows argument, in which case the relevant rows are

determined from the unique probe names in the annotations matrix. A new

arrayData object is created with ratio data from the specified probe(s) and

dataset(s), coordinate and annotation data for the probe(s), status data for

the dataset(s) and the grid name for the object. This method can also be

used to split arrayData objects into multiple different objects. This may be

required if, for example, multiple datasets that represent different conditions

have been loaded at the same time. These may be subject to different down-

stream processing and so it is useful to store them, and therefore process

them, separately. The dollar ($) notation can be used to directly access any

of the components of an arrayData object, for which no specific methods

need be defined.

102

SECTION 3.2 CHAPTER 3

Abf1_0_1.txt

Cy3 (Green):

Cy5 (Red):

Organism & Strain:

Date:

Name:

Description:

●
●●
●

●

●●●
●●
●●
●

●

●
●
●●
●
●

●●

●

●●●●

●

●

●

●

●

●
●●

●

●●
●

●

●

●●

●

●●●●

●

●
●

●

●

●●●
●
●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●
●
●●●

●

●●

●

●

●

●

●

●
●
●
●
●
●

●

●
●

●●
●●●●

●
●

●●●
●

●●

●●

●

●

●

●●

●●

●

●
●

●
●

●

●
●●

●

●

●

●●●

●

●
●
●
●
●

●

●●●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●●

●

●●
●
●

●
●

●

●

●

●

●

●

●
●

●

●
●●●

●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●
●
●
●
●
●

●

●

●

●●●●●●
●
●

●●●●

●

●

●

●●

●

●
●
●

●●

●

●

●

●

●

●●
●

●

●●●●

●

●●

●

●

●●●
●
●
●
●

●
●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●
●

●
●

●●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●●●
●
●

●

●●●
●

●

●

●
●
●
●

●

●

●
●

●
●

●

●
●
●
●●●●●●●

●

●

●

●●
●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●●●

●

●
●●●
●

●

●

●●
●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●●

●●

●

●

●

●●
●●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●●
●

●
●
●
●●

●

●●

●

●

●

●

●

●

●
●
●

●
●●
●

●

●●●●

●

●●●

●

●

●●●

●
●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●●
●
●
●●

●●

●

●

●

●

●●
●●

●●
●
●●
●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●
●●●

●

●●

●

●

●●●

●

●●

●

●
●●●

●
●

●

●●

●

●

●
●
●
●

●

●
●●●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●
●●●●●

●
●

●
●●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●●

●
●●

●

●

●

●●

●

●
●

●

●

●

●●
●
●
●●●

●●

●
●●

●
●
●●●

●

●
●●●

●

●
●
●●

●●

●

●

●●

●

●

●
●●
●
●●
●
●
●
●●●
●
●
●●

●

●●
●

●

●

●

●●

●

●

●

●

●●
●●●
●●

●

●
●
●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●●●
●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●●
●●●
●

●
●

●●●
●
●

●

●

●
●
●●

●

●
●●●

●●

●

●

●
●●

●

●
●

●

●

●

●

●
●●●●
●

●

●

●

●

●

●●

●

●

●●●

●

●
●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●●
●●●●

●

●●

●
●

●

●
●●●
●

●

●
●
●

●

●
●●
●●●

●

●

●●
●

●

●

●
●
●

●

●
●●●●
●
●
●●

●

●●

●

●

●●●
●

●

●

●

●

●

●
●●●

●●●●●
●
●
●●●

●

●

●
●●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●●●
●
●
●

●

●
●

●

●●●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●
●●
●
●

●

●●
●

●

●

●

●

●

●

●
●●●

●
●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●
●●

●

●

●
●
●●
●
●

●

●
●

●

●
●●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●●●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●
●

●●

●
●
●
●●●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●●
●●

●

●

●
●

●

●

●●

●

●
●●

●

●
●
●●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●●
●
●●

●

●

●

●

●

●●

●

●

●●●

●

●

●●
●
●
●
●
●
●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●
●●

●

●

●
●

●

●
●●●
●
●

●●

●

●●

●

●●●

●

●
●
●

●
●
●

●●

●

●
●●
●

●

●●

●

●

●
●

●

●●
●

●●

●

●

●

●●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●
●●●
●
●
●●●●

●

●
●

●●●

●

●●●
●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●
●●●●

●

●

●●

●

●

●
●

●
●
●●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●
●

●

●●

●

●

●●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●●
●●
●●

●

●
●

●

●
●

●

●●
●●

●

●

●

●
●●
●
●

●

●
●●

●●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●●●

●

●●

●●

●
●
●

●
●
●
●

●

●

●
●
●●

●

●

●●

●

●

●●

●

●

●

●●
●

●
●●
●●●

●

●
●●
●

●

●
●

●

●

●

●

●

●
●
●

●

●●●
●●●

●

●●
●

●

●

●
●
●●●

●

●

●●●

●

●
●●
●
●

●
●

●

●●
●
●●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●●●●●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●●●●●

●

●
●

●

●
●●
●

●

●●●●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●
●●
●
●

●

●

●

●

●

●

●●

●

●

●●●
●
●
●

●

●

●

●
●
●●
●●
●
●●

●

●●●●
●
●

●
●

●

●
●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●
●●●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●
●●

●

●

●
●
●

●

●

●

●●

●

●●●●●

●

●

●

●

●●●
●
●

●

●

●
●●
●●
●

●

●

●●

●
●●●

●

●
●
●
●

●

●

●

●●●
●
●●●

●

●●
●
●

●

●

●
●

●
●
●
●
●●

●

●

●

●

●

●
●

●●●
●●

●

●

●

●●

●

●

●
●●

●

●●

●

●
●

●
●●
●●●●●
●

●

●

●
●
●

●

●

●

●

●

●

●
●
●
●

●

●
●●
●
●●●
●●●●

●

●

●

●

●

●●
●
●●●

●

●●
●
●

●

●●

●

●
●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●
●
●●

●

●
●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●
●●●
●
●

●

●●●●

●
●
●

●

●

●
●●
●
●●●
●

●

●
●
●

●

●
●

●

●●
●

●

●

●●●●●●
●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●
●

●

●

●●
●●●

●

●

●

●
●
●●

●

●

●

●
●
●

●

●●
●

●

●
●

●

●

●

●

●
●●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●●●
●

●

●●●●

●

●●

●

●
●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●

●
●●

●
●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●●

●

●

●

●●
●
●●
●
●●

●
●

●

●

●

●

●
●

●

●

●

●●●●
●

●

●

●●

●
●●

●

●●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●●●
●

●

●

●●

●

●

●

●●●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●●

●●

●

●

●

●●

●

●●

●●
●
●●
●

●

●

●
●

●

●

●

●
●

●

●●●●
●

●

●
●●●

●

●
●

●

●

●●●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●●

●

●

●

●●

●

●

●●●●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●●●

●

●

●
●
●
●

●
●

●

●
●

●●
●
●

●

●

●●●●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●●●
●●●●
●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●●
●●●●
●

●●

●
●

●●

●

●

●
●

●

●
●●
●

●

●

●

●

●
●
●●●●

●

●●●

●

●●

●

●

●

●

●

●
●●

●

●

●●
●●●
●
●●

●

●●●
●

●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●●●●●
●●●●
●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●●
●
●
●

●

●

●

●
●

●

●
●●●

●●

●●●
●
●

●

●
●
●

●●●●●●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●
●●●●●

●

●
●

●

●●●●
●●
●●
●●●
●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●
●●●●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●
●
●
●●
●

●

●

●

●

●●●●●●

●

●
●●
●
●
●

●

●
●

●

●

●

Red Green

0
5

10
15

Signal Intensities

Lo
g2

 S
ig

na
l

0 5 10 15

0
5

10
15

Red v Green

Log2 Green Signal

Lo
g2

 R
ed

 S
ig

na
l

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

Signal Intensities

Log2 Signal

D
en

si
ty

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

Red/Green Ratios

Log2 Ratio

D
en

si
ty

Figure 3.3: Output of the checkData function: The name of the file is printed
at the top of the page with space for details of the microarray to be written.
Pseudo images (top right) can show artifacts on the slide surface. Box plots
and density curves of red and green signal intensities show the distributions
of the values. A scatter plot shows the relationship between the two channels
and a density curve shows the distribution of the log2 ratio values.

103

CHAPTER 3 SECTION 3.2

Script 3.8: arrayData extraction: extracts data from the given positions into
a new arrayData object.

1 ## [(extract) function ##

2 ## arguments: x (an arrayData object), i (required row number(s)), j (

required column number(s))

3 setMethod("[", "arrayData", function(x,i,j) { #define function

4 if (nargs() != 3) stop("Two values required", call. = FALSE) #ensure

correct dimensions are specified

5 if (missing(i)) i<-1:nrow(x$ratios) #if no colums specified get all

6 if (missing(j)) j<-1:ncol(x$ratios) #if no rows specified get all

7 if (is.character(i)) { #if IDs are provided

8 for (n in 1: length(i)) { #loop through IDs

9 probe <-which(x$annotations [,1] == i[n]) #search for ID

10 if (length(probe) > 0) { #if ID is found

11 i[n]<-probe #get row number

12 }else{ #ID is not found

13 i[n]<-0 #don ’t get a row

14 }

15 }

16 i<-as.numeric(i) #ensure numeric

17 }

18 newArrayData <-new("arrayData",list(coordinates=matrix(x$coordinates[i,],
ncol=ncol(x$coordinates),dimnames=list(NULL ,colnames(x$coordinates))),
annotations=matrix(x$annotations[i,],ncol=ncol(x$annotations),dimnames
=list(NULL ,colnames(x$annotations))),ratios=matrix(x$ratios[i,j],ncol=
ifelse(j[1]>0, length(j),(ncol(x)-length(j))),dimnames=list(NULL ,

colnames(x$ratios)[j])),grid_name=x$grid_name ,status=x$status[j])) #

create new arrayData object from extrated data

19 return(newArrayData) #return desired data

20 }

21)

The function checks the number of arguments is correct (L4) and assigns

full row and column ranges if they are not provided (L5–6). If characters

are specified for rows the first “annotations” column is used to identify the

corresponding row number (L7–17). A new (arrayData) object is created

containing the specified probes and datasets (L18) and returned (L19).

3.2.4 Manipulation of arrayData objects

Mathematical manipulation of the ratio values of arrayData objects forms a

crucial part of their processing, most importantly here as part of the normal-

isation procedure. Users may also need to perform these operations directly,

either to create further data to analyse, such as calculating the differences be-

tween two datasets, or to temporarily adjust data, such as to display different

datasets on a similar scale on the same graph. The standard mathematical

operator methods (+, -, * and /) have been defined to apply the operations

to the ratio values of arrayData objects (Script 3.9). Processing common to

104

SECTION 3.2 CHAPTER 3

all procedures is carried out by the maths function. Two arguments must be

specified, the first of which must be an arrayData object. The second can

be another arrayData object, or a single number. A single number is used to

create a new arrayData object, the ratio values of which are filled with that

number. Probes common to both are maintained and any others removed,

with a warning message. If different numbers of datasets are provided the

extras are removed with a warning message. These processed objects are

returned to the individual functions, which perform the mathematical oper-

ations on the ratio values of these objects. The results of the calculations are

returned as the ratios of a new arrayData object.

Script 3.9: Mathematical operators: Scripts to manipulate arrayData objects
by the standard mathematical operators +, -, * and /. The maths function
performs processing common to all operations. The individual methods apply
the operator and return a new arrayData object.

1 ## mathematical operator functions

2 ## arguments: e1 (first arrayData object), e2 (second arrayData object or

single number)

3 ## processing common to all operations:

4 maths <-function(e1,e2) { #define function

5 if(length(e2) == 1 & is.numeric(e2)) { #if a single number is provided in

e2

6 number <-e2 #store the number

7 e2<-e1 #set e2 as arrayData object from e1

8 e2$ratios <-matrix(ncol=ncol(e2),nrow=nrow(e2),number) #fill ratios with

number

9 colnames(e2$ratios)<-rep(number ,ncol(e2)) #set column names

10 }

11 if (ncol(e1) != ncol(e2)) {

12 if (ncol(e1) > ncol(e2)) e1<-e1[,1:ncol(e2)] else e2<-e2[,1:ncol(e1)]

13 warning("Differing numbers of datasets: extras removed", call.=F)

14 }

15 matchingProbes1 <-which(e1$annotations [,1] %in% e2$annotations [,1]) #find

matching probes in e1

16 matchingProbes2 <-which(e2$annotations [,1] %in% e1$annotations[
matchingProbes1 ,1]) #find matching probes in e2

17 object <-e1[matchingProbes1 ,] #get arrayData containing matching probes

18 if(length(matchingProbes1) != nrow(e1) | length(matchingProbes2) != nrow(

e2)) warning("Differing arrayData lengths: non -matching probes removed

", call. = FALSE) #warn if not all probes match

19 e2<-e2[matchingProbes2 ,]

20 object$status <-as.list(rep("Processed",ncol(object))) #set status of

datasets to "processed"

21 return(list(e2=e2 ,object=object)) #return all arrayData objects

22 }

23 ##Add datasets

24 setMethod ("+","arrayData", function(e1,e2) { #define function

25 processed <-maths(e1 ,e2) #get processed arrayData objects

26 e1<-processed$object #get new object

27 e2<-processed$e2 #get new e2

105

CHAPTER 3 SECTION 3.2

28 e1$ratios <-e1$ratios+e2$ratios #add ratios

29 colnames(e1$ratios)<-paste(colnames(e1$ratios),"+",colnames(e2$ratios),sep
="") #adjust column names

30 return(new("arrayData",e1)) #return arrayData object

31 }

32)

33 ##Subtract datasets

34 setMethod ("-","arrayData", function(e1,e2) { #define function

35 processed <-maths(e1 ,e2) #get processed arrayData objects

36 e1<-processed$object #get new object

37 e2<-processed$e2 #get new e2

38 e1$ratios <-e1$ratios -e2$ratios #subtract ratios

39 colnames(e1$ratios)<-paste(colnames(e1$ratios),"-",colnames(e2$ratios),sep
="") #adjust column names

40 return(new("arrayData",e1)) #return arrayData object

41 }

42)

43 ##Multiply datasets

44 setMethod ("*","arrayData", function(e1,e2) { #define function

45 processed <-maths(e1 ,e2) #get processed arrayData objects

46 e1<-processed$object #get new object

47 e2<-processed$e2 #get new e2

48 e1$ratios <-e1$ratios*e2$ratios #multiply ratios

49 colnames(e1$ratios)<-paste(colnames(e1$ratios),"*",colnames(e2$ratios),sep
="") #adjust column names

50 return(new("arrayData",e1)) #return arrayData object

51 }

52)

53 ##Divide datasets

54 setMethod ("/","arrayData", function(e1,e2) { #define function

55 processed <-maths(e1 ,e2) #get processed arrayData objects

56 e1<-processed$object #get new object

57 e2<-processed$e2 #get new e2

58 e1$ratios <-e1$ratios/e2$ratios #divide ratios

59 colnames(e1$ratios)<-paste(colnames(e1$ratios),"/",colnames(e2$ratios),sep
="") #adjust column names

60 return(new("arrayData",e1)) #return arrayData object

61 }

62)

The maths function examines the second argument to see if it is a num-

ber (L5). In this case a new arrayData object is created and a single set

of ratio values filled with this number (L6–10). If two arrayData objects

containing different numbers of datasets are provided the longer is reduced

to the length of the shorter and a warning message displayed (L11–14). If

two arrayData objects containing different numbers of probes are provided,

those common to both are maintained and a warning message displayed if

required (L15–19). The status of the first object is changed (L20) and both

adjusted objects returned to the original function (L21). These adjusted

datasets are processed, the dataset names updated, and the results returned

as a new arrayData object for the addition (L24–32), subtraction (L34–42),

106

SECTION 3.2 CHAPTER 3

multiplication (L44–52) and division (L54–62) functions.

rowMeans

The rowMeans method has been defined to calculate average ratio values from

multiple datasets. This can be used to reduce replicate datasets to a single

averaged dataset.

Script 3.10: arrayData rowMeans: Script to calculate ratio row means using
the rowMeans method. A new arrayData object is returned containing a
single set of averaged ratios.

1 ## rowMeans function ##

2 ## arguments: x (an arrayData object)

3 setMethod("rowMeans", "arrayData", function(x) { #define the function

4 averaged <-x[,1] #initialise new object to store means

5 averaged$ratios <-as.matrix(ncol=1,rowMeans(x$ratios)) #calculate ratio row

means

6 colnames(averaged$ratios)<-paste("rowMeans of: ",paste(colnames(x$ratios),
collapse=","),sep="") #set new data name

7 averaged$status <-x$status [1] #set status of first object

8 return(new("arrayData",averaged)) #return mean data

9 }

10)

A new arrayData object is created with a single dataset to store the averaged

values (L4). The rowMeans function is applied to the “ratios” matrix and

the results stored (L5). The dataset name is set to show all its component

datasets (L6), the status modified (L7) and the resulting object returned

(L8).

cbind

Many of the functions written here accept only one arrayData object for

processing. There may be instances where multiple arrayData objects are

present, either because they have been loaded separately or processed to

create separate results, which a user requires to pass together to another

function. The cbind method allows multiple columns of data to be combined

together. The method has been defined for arrayData objects (Script 3.11),

which joins multiple columns of ratio values together. This allows multiple

sets of ratios to be joined and associated with a single set of coordinate and

107

CHAPTER 3 SECTION 3.2

annotation data. The function will only join objects with the same grid

name, preventing different data formats coming together in the same object.

If differing numbers of probes are provided for the same grid name, only those

appearing in all datasets are maintained and a warning message is displayed.

A new arrayData object containing the combined ratios is returned.

Script 3.11: arrayData cbind: Script to combine data from multiple array-
Data objects using the cbind method. The ratio values are combined for
probes common to all datasets and a new arrayData object returned.

1 ## cbind function ##

2 ## arguments: ... (any number of arrayData objects)

3 cbind.arrayData <-function (..., deparse.level) {

4 objects <-list (...) #get arrayData objects

5 gridName <-objects [[1]]$grid_name #get first grid name

6 cbinded <-objects [[1]] #initialise new arrayData object to store results

7 warn <-FALSE #set warn to FALSE

8 if (length(objects) > 1) { #if there are more than 1 arrayData objects

9 for (n in 2: length(objects)) { #loop through arrayData objects

10 if(cbinded$grid_name != objects [[n]]$grid_name) warning("Differing

grid names", call.=F) #stop if grid names are different

11 matchingProbes1 <-which(cbinded$annotations [,1] %in% objects [[n]]$
annotations [,1]) #find matching probes

12 matchingProbes2 <-which(objects [[n]]$annotations [,1] %in% cbinded$
annotations[matchingProbes1 ,1]) #find matching probes

13 if(length(matchingProbes1) != nrow(cbinded) | length(matchingProbes2)

!= nrow(objects [[n]])) warn <-TRUE #set warn to TRUE if differing

numbers of probes

14 cbinded <-cbinded[matchingProbes1 ,] #get matching probes

15 cbinded$ratios <-as.matrix(cbind(cbinded$ratios ,objects [[n]][
matchingProbes2 ,]$ratios)) #join ratios with identical IDs

16 cbinded$status <-c(cbinded$status ,objects [[n]]$status) #join statuses

17 }

18 }

19 if(warn) warning("Differing arrayData lengths: non -matching probes removed

", call. = FALSE) #warning message if probes have been removed

20 return(new("arrayData",cbinded)) #return data

21 }

The function first stores all separate arrayData objects in a list (L4), gets

the grid name from the first object (L5) and initialises a new object to store

the results (L6). The warning state is set to FALSE (L7). A loop is initiated

starting at the second object if more than one is provided (L8–9). Grid names

are compared to the first object and the function stopped with a message if

they do not match (L10). Probes common to both objects are maintained

and the warning state set to TRUE if any are removed (L11–14). The ratio

values and statuses are then combined (L15–16). A warning is printed if the

warning state is TRUE (L19) and the processed object returned (L20).

108

SECTION 3.2 CHAPTER 3

3.2.5 Displaying data

The arrayData object format provides a method of storing ChIP-chip data,

but is not well suited to displaying this in a meaningful way. Therefore the

dim, show and summary methods have been defined for this object, to enable

useful information to be quickly accessed without any processing required by

the user (Script 3.12). The dim method returns dimensions of an object, that

is, numbers of rows and columns. Dimensions of an arrayData object are

taken from the ratios matrix. Therefore an object containing 5 datasets of

1,000 probes will be deemed to have 1,000 rows and 5 columns.

Script 3.12: Displaying arrayData objects: 1. Script to calculate the di-
mensions of an arrayData object, taken from the ratios slot. Therefore the
number of rows is the number of probes and the number of columns is the
number of datasets. 2. Script to print details of an arrayData object to the R
console using the show method. Displays data names, normalisation statuses
and the number of probes. 3. Script to print a summary of an arrayData
object to the R console using the summary method. Displays grid name,
probe and dataset counts, annotation names, file names and probe statistics.

1 ## arrayData dim function ##

2 ## arguments: x (an arrayData object)

3 setMethod("dim", "arrayData", function(x) { #define function

4 return(dim(x$ratios)) #dimensions relate to ratios

5 }

6)

7 ## arrayData show function ##

8 ## arguments: object (an arrayData object)

9 setMethod("show", "arrayData", function(object) { #define function

10 message("An arrayData object containing:") #print message

11 for (n in 1: length(colnames(object$ratios))) { #loop through datasets

12 message(paste("\t",colnames(object$ratios)[n])) #print data name

13 message(c("\t\tNormalisation procedures: ",paste(object$status [[n]],
collapse="->"))) #print data status

14 }

15 message("Number of probes:") #print message

16 message(paste("\t",nrow(object))) #print the number of probes

17 }

18)

19 ## arrayData summary function ##

20 ## arguments: object (an arrayData object)

21 setMethod("summary", "arrayData", function(object) { #define the method

22 message("Summary of arrayData object") #print message

23 arraySummary <-data.frame (1) #initialise data frame

24 arraySummary [1,1] <-object [[4]] #get grid name

25 arraySummary [2,1] <-nrow(object) #get number of probes

26 arraySummary [3,1] <-ncol(object) #get number of datasets

27 rownames(arraySummary)<-c("Grid","Probes","Datasets") #name rows

28 colnames(arraySummary)<-"" #blank column names

29 annos <-matrix(colnames(object$annotations),nrow =1) #get annotations

109

CHAPTER 3 SECTION 3.2

30 rownames(annos)<-"" #blank row names

31 colnames(annos)<-1: length(colnames(object$annotations)) #name columns

32 chrSummary <-matrix(ncol=7,nrow=length(unique(object [[1]][,1]))) #

initialise matrix

33 colnames(chrSummary)<-c("Chromosome","Number of probes","Lowest coordinate

","Highest coordinate","Lowest ratio","Highest ratio","NA values") #

name columns

34 chrSummary [,1]<-sort((unique(object [[1]][,1]))) #get chromosomes

35 rownames(chrSummary)<-chrSummary [,1] #name rows

36 files <-matrix(colnames(object$ratios),nrow =1) #get data names

37 rownames(files)<-"" #blank row names

38 colnames(files)<-1: length(colnames(object$ratios)) #name columns

39 for (n in 1: length(chrSummary [,1])) { #loop through chromosomes

40 data <-which(object [[1]][,1] == chrSummary[n,1]) #get chromosome data

41 chrSummary[n,2] <-length(data) #number of probes

42 chrSummary[n,3] <-min(object [[1]][data ,2]) #min coordinate

43 chrSummary[n,4] <-max(object [[1]][data ,3]) #max coordinate

44 chrSummary[n,5] <-min(object [[3]][data ,],na.rm=T) #min ratio

45 chrSummary[n,6] <-max(object [[3]][data ,],na.rm=T) #max ratio

46 chrSummary[n,7] <-length(which(is.na(object [[3]][data ,]))) #NA count

47 }

48 summaryList <-list(Summary=arraySummary ,Annotations=annos ,Files=files ,

Chromosomes=chrSummary [,-1]) #create list

49 return(summaryList) #return summary data

50 }

51)

The dim method returns the dimensions of the ratio component of an arrayData

object (L4). The show method (L9) prints a series of messages showing the

names of datasets (L12), the normaliation procedures applied (L13) and the

number of probes (L16). The summary method (L21) compiles a series of

information. A data frame is created (L23) containing the grid name (L24),

number of probes (L25) and number of datasets (L26). A matrix is created

(L29) to store the names of the annotation columns (L31). A second matrix

is created (L32–38) to store chromosomes. Statistics for each chromosome

are calculated (L39-47), all information combined in a list (L48) and returned

to the user (L49).

The show method is used to print an object to the R console (an example

is shown in Figure 3.4). Unspecified, the whole object would be printed,

which is not useful for the large arrayData objects. Therefore the show

method was adapted to print a series of useful information about the object.

For each dataset the name and normalisation status is shown along with the

total number of probes in the dataset. All of the data within the object can

still be accessed by a user if required, using the dollar ($) notation.

110

SECTION 3.2 CHAPTER 3

Figure 3.4: Output of arrayData show method: Exemplified with Abf1 bind-
ing datasets (see Chapter 7). The names of the datafiles, their normalisation
states and the total number of probes in the dataset are shown.

111

CHAPTER 3 SECTION 3.2

The summary method provides a summary of the data in an object (an

example is shown in Figure 3.5). This returns more information than the

show command. Four sets of information are gathered into a list. By default

this is printed to the R console, but can be manipulated to access the data

within it. The first slot contains a summary of the object, showing the grid

name and the number of probes and datasets. The second shows the names of

the annotations, which will show if any additional columns are present. The

third shows the names of all of the data files in the object. The last shows

statistics on the probe coordinates and ratios, showing, for each chromosome,

a count of the number of probes, the coordinate range, the ratio range and

the number of NA values present.

3.2.6 Plotting data

As well as displaying data on the R console, several functions have been

written to plot arrayData object ratios in various ways. This allows patterns

or other aspects of data to be visualised and identified, which may not be

possible from viewing the data alone.

3.2.6.1 Genome plots

Genome plots allow arrayData object ratios to be plotted against their re-

spective genomic positions (Script 3.13). This creates a graph with genome

position on the x axis and ratio values on the y axis. This plots either data

over a specified range or the whole dataset, which automatically creates a

new PDF file to store the plots.

Plots are produced as several sub-plots across rows on a page. The num-

ber of rows per page and the length of the region in each of these can be set

by the user. The default shows the first chromosome over four rows. Multiple

sets of arrayData ratios can be plotted on the same page as individual sub-

plots, allowing data from different regions or different datasets to be plotted

together. The function has the following arguments:

object An arrayData object to be plotted (no default). Each dataset is

plotted as a separate line.

112

SECTION 3.2 CHAPTER 3

Figure 3.5: Output of arrayData summary method: Exemplified with Abf1
binding datasets (see Chapter 7). The first part (Summary) show the grid
name, number of probes and number of datasets. The second part (Anno-
tations) show the names of annotation data. The third part (Files) shows
the names of the datasets. The fourth part (Chromosomes) shows probe and
log2 ratio information for each chromosome.

113

CHAPTER 3 SECTION 3.2

annotationData A genomeAnnotation object used to plot annotations along

the genome (no default).

chr A numeric vector specifying the chromosome number of data to plot

when the whole genome is not being plotted (default 1).

from A numeric vector specifying the position to start plotting when the

whole genome is not being plotted (defaults to the minimum value of

the chromosome, rounded down to the nearest thousand).

to A numeric vector specifying the position to stop plotting when the whole

genome is not being plotted (defaults to the maximum value of the

specified chromosome, rounded upwards to the nearest thousand).

rows A numeric vector specifying the number of sub-plots to create on each

page (default 4).

size A numeric vector specifying the length of the region to plot in each sub-

plot (default 100,000; changes to the total plot region (“to” coordinate

minus “from” coordinate) divided by the number of rows to plot when

the whole genome is not being plotted).

ylab A character vector specifying the y-axis label (default “log2 binding”).

wholeGenome A logical value indicating whether or not to plot the whole

genome (default FALSE).

fileName Character vector specifying the name of the PDF file to create

when “wholeGenome” is set to TRUE (default “plot.pdf”).

paper Character vector specifying the page size of the PDF file to create

when “wholeGenome” is set to TRUE (default “a4”).

width Numeric vector specifying the plot width of the PDF file to create

when “wholeGenome” is set to TRUE (default 7).

height Numeric vector specifying the plot height of the PDF file to create

when “wholeGenome” is set to TRUE (default 15).

constantMinMax A logical value indicating whether or not to maintain

the same y-axis limits on all subplots (default TRUE).

ylim A numeric vector specifying the limits of the y-axis (defaults to the

overall range of the data if “constantMinMax” is TRUE, otherwise is

calculated from the values of each subplot).

geneColour A character or numeric vector specifying the colour to fill boxes

114

SECTION 3.2 CHAPTER 3

representing ORFs, passed to the genomeAnnotation plot function (de-

fault “yellow”).

geneBorder A character or numeric vector specifying the colour of the bor-

der of boxes representing ORFs, passed to the genomeAnnotation plot

function (default “orange”).

cols Character or numeric vector specifying the colours to plot each line for

each dataset (defaults to standard R colours).

alpha A numeric vector specifying the alpha (transparency) value for each

line (no default).

highlightProbes A matrix containing the names of probes to highlight,

passed to the genomeAnnotation plot function (no default).

highlightRegions A matrix containing coordinates of regions to highlight,

passed to the genomeAnnotation plot function (no default).

geneNames A logical value indicating whether to print gene names on the

plots, passed to the genomeAnnotation plot function (default TRUE).

muti A 5 column matrix specifying the details for plotting multiple datasets

or regions on different rows of the same graph (no default). Con-

tains chromosome numbers, start and end coordinates and arrayData

dataset number ranges. All datasets to be plotted are specified as the

“object” argument and the matrix specifies the data for each plot.

geneNameCutoff A numeric vector specifying the length of a gene name

over which the name is printed in a smaller font size (default 1).

lab.adjust A numeric vector to adjust the position of plot labels when using

“multi” (no default).

type A character vector specifying the plot type to create (default “l”).

Script 3.13: plot arrayData: script to plot arrayData object ratios values
against their coordinates. Each set of ratios is displayed as a separate line.

1 ## plot (arrayData) function ##

2 ## arguments: object (an arrayData object), annotationData (a genomeData

object), chr (chromosome to plot), from (coordinate to plot from), to (

coordinate to plot to), size (length of each plot region), rows (number

of rows per page), ylab (y acis label), wholeGenome (TRUE/FALSE),

constantMinMax (TRUE/FALSE), ylim (y axis limits), geneColour (colour of

gene boxes), geneBorder (colour of gene box borders), cols (colours of

lines), geneValues (values to plot), fileName (name of PDF file), paper

(PDF paper size), width (PDF plot width), height (PDF plot height),

115

CHAPTER 3 SECTION 3.2

alpha (colour transparency), highlightProbes (probes to highlight),

highlightRegions (coordinates of regions to highlight), geneNames (names

of genes to highlight), multi (matrix specifying multiple data to plot)

, geneNameCutoff (small font limit), lab.adjust , type (type of plot)

3 plot.arrayData <-function(object ,annotationData ,chr=1,from=0,to=240000 , size

=60000 , rows=4,ylab="log2 Binding",wholeGenome=F,constantMinMax=T,ylim ,

geneColour="yellow",geneBorder="grey",cols ,geneValues ,filename="plot.pdf

",paper="a4r",width=15, height=7,alpha ,highlightProbes ,highlightRegions ,

geneNames=TRUE ,multi ,geneNameCutoff =1,lab.adjust =10,type="l" ,...) { #

define function

4 on.exit(layout (1)) #reset plot layout on exit

5 if(!missing(multi)) { #multi is provided

6 if(!is.matrix(multi)) stop("multi must be a matrix",call.=F) #check

format

7 rows <-nrow(multi) #set row value as number in multi

8 wholeGenome <-FALSE #set not to plot whole genome

9 }else{

10 if(!missing(from) & !missing(to)) if (from > to) stop("\’from\’ must be

greater than \’to\’") #check provided coordinates

11 }

12 maxYValue <-minYValue <-F #set FALSE max and min Y values

13 if(missing(alpha)) alpha <-255 #define alpha value

14 if (missing(cols)) { #no colours provided

15 cols <-1:nrow(object) #define colours

16 }

17 if (!missing(geneValues)) { #gene values provided

18 if (constantMinMax) { #constant min/max values required

19 geneValues <-rbind(c(NA,max(as.numeric(geneValues [,2]),na.rm=T)),

geneValues) #find maximum gene value

20 geneValues [2: nrow(geneValues) ,2]<-(as.numeric(geneValues [2: nrow(

geneValues) ,2])/max(as.numeric(geneValues [2: nrow(geneValues) ,2]),

na.rm=T))*geneValues [1,2] #scale gene values to log2 ratios

21 }

22 }

23 if(!missing(highlightRegions)) highlightRegions <-matrix(ncol=3,as.numeric(

highlightRegions)) #format highlightRegions

24 if(wholeGenome) { #the whole genome is to be plotted

25 plot.all <-object #get all data

26 on.exit(dev.off()) #shut down graphics when function exits

27 pdf(filename ,paper=paper ,width=width ,height=height) #create PDF to store

whole geneome plot

28 }else{ #the whole genome is not to be plotted

29 op<-par(no.readonly = TRUE) #get current par

30 on.exit(par(op)) #reset par on exit

31 if(!missing(multi)) { #multi is provided

32 plot.all <-object #get all data

33 }else{ #multi is not provided

34 if(missing(from)) {

35 from <-floor(object$coordinates[object$coordinates [,1] == chr ,2][1]/

1000)*1000 #calculate lower plot boundary

36 to<-ceiling(object$coordinates[object$coordinates [,1] == chr ,3][

length(which(object$coordinates [,1] == chr))]/1000)*1000 #

calculate upper plot boundary

37 }

38 if(missing(size)) size <-ceiling (((to-from)/rows)/1000)*1000 #calculate

size

39 region <-which(object$coordinates [,1] == chr & object$coordinates [,2]
>= from & object$coordinates [,3] <= to) #find data to plot

40 if(length(region) == 0) stop("No data to plot", call.=F) #stop if no

data in range

41 r1<-min(region) #get lowest data point

42 r2<-max(region) #get highest data point

116

SECTION 3.2 CHAPTER 3

43 if(r1 > 1) if(object$coordinates[r1 ,1] == object$coordinates [(r1 -1)
,1]) r1<-(r1 -1) #reduce lowest data point if same chromosome

44 if(r2 < nrow(object)) if(object$coordinates[r2 ,1] == object$
coordinates [(r2+1) ,1]) r2<-(r2+1) #increase highest data point if

same chromosome

45 plot.all <-object[r1:r2 ,] #get data to plot

46 }

47 if(nrow(plot.all) == 0) stop("No data to plot", call.=F) #stop if no

data in range

48 }

49 plan <-matrix(ncol=3,nrow =0) #create matrix to store plot details

50 allChrs <-unique(plot.all$coordinates [,1]) #get unique chromosomes

51 if (length(allChrs) == 0) allChrs <-chr #get chromosome number

52 for (currentChr in allChrs) { #loop through chomosomes

53 min.value <-max.value <-1

54 if (wholeGenome) { #the whole genome is to be plotted

55 from <-0 #set start point

56 to<-max(plot.all$coordinates[which(plot.all$coordinates [,1] ==

currentChr) ,3]) #set end point

57 }

58 if(!missing(multi)) { #multi provided

59 plan <-multi #get plan from multi

60 }else{ #multi not provided

61 plan.froms <-seq(from ,to,size) #get all from points for plot

62 plan.froms <-plan.froms[!plan.froms==to] #remove from = to point

63 plan.tos <-plan.froms+size #get all to points for plot

64 plan.chrs <-rep(currentChr ,length(plan.froms)) #get chromosome numbers

65 plan.chr <-cbind(plan.chrs ,plan.froms ,plan.tos) #join all together

66 plan <-rbind(plan ,plan.chr) #add to plan

67 }

68 }

69 if (constantMinMax) { #constant min/max required

70 minYValue <-min(plot.all$ratios ,na.rm=T) #get min ratio

71 maxYValue <-max(plot.all$ratios ,na.rm=T) #get max ratio

72 }

73 if (!missing(ylim)) { #ylim is defined

74 minYValue <-ylim [1] #set min value

75 maxYValue <-ylim [2] #set max value

76 }

77 mat <-matrix(ncol=3,nrow=rows) #initialise matrix for layout

78 column <-1 #set column to 1

79 for (m in c(1,2,1)) { #loop to create layout

80 mat[,column]<-seq(m,by=2,length.out=rows) #get layout values

81 column <-column +1 #increase column by 1

82 }

83 mat <-matrix(t(mat),ncol=1,byrow=F) #transpose mat

84 layout(mat ,height=c(rep(c(0 ,0.75 ,0.25),rows))) #define layout

85 for (p in 1:nrow(plan)) { #loop through rows of plan

86 if(!missing(multi)) { #multi provided

87 size <-multi[p,3]-multi[p,2] #calculate size based on multi

88 }

89 whichData <-which(plot.all$coordinates [,1] == plan[p,1] & plot.all$
coordinates [,2] >= plan[p,2] & plot.all$coordinates [,3] <= plan[p

,3]) #get data

90 if (!missing(annotationData)) currentAnnotationData <-annotationData[

which(annotationData$coordinates [,1] == plan[p,1] & annotationData$
coordinates [,3] >= plan[p,2] & annotationData$coordinates [,2] <=

plan[p,3])] else currentAnnotationData <-new("genomeAnnotation",list(

coordinates=matrix(nrow=0,ncol =1),annotations="",dataset="")) #get

annotation data for region or set as empty

91 if(length(whichData) <= 1) { #no/one probes in region

92 less <-plot.all[plot.all$coordinates [,1] == plan[p,1] & plot.all$

117

CHAPTER 3 SECTION 3.2

coordinates [,3] <= plan[p,3],] #find probes below plot region

93 greater <-plot.all[plot.all$coordinates [,1] == plan[p,1] & plot.all$
coordinates [,2] >= plan[p,2],] #find probes above plot region

94 if (nrow(less) == 0) less <-plot.all[1,] #set lowest point if not found

95 if (nrow(greater) == 0) greater <-plot.all[nrow(plot.all) ,] #set

highest point if not found

96 whichData <-c(which(plot.all$annotations [,1] == less$annotations[which.
min(plan[p,2] - less$coordinates [,3]) ,1]),which(plot.all$
annotations [,1] == greater$annotations[which.min(greater$
coordinates [,2] - plan[p,3]) ,1])) #define which data

97 }

98 min.value <-min(whichData) #get min probe

99 max.value <-max(whichData) #get max probe

100 if (min.value > 1) { #first probe is above 1

101 if (plot.all$coordinates[min.value -1,1] == plot.all$coordinates[min.
value ,1]) { #previous probe on same chromosome

102 min.value <-min.value -1 #include previous value

103 }

104 }

105 if (max.value < nrow(plot.all)) { #last probe is before the end probe

106 if (plot.all$coordinates[max.value +1,1] == plot.all$coordinates[max.
value ,1]) { #next probe on same chromosome

107 max.value <-max.value+1 #include next probe

108 }

109 }

110 if(!missing(multi)) { #multi is provided

111 plot.current <-plot.all[plot.all$coordinates [,1] == multi[p,1] & plot

.all$coordinates [,2] >= multi[p,2] & plot.all$coordinates [,3] <=

multi[p,3],multi[p,4]: multi[p,5]] #get data to plot based on

multi

112 }else{ #multi is not provided

113 plot.current <-plot.all[min.value:max.value ,] #arrayData taken from

plan

114 }

115 if(length(whichData) > 0) probePositions <-rowMeans(matrix(ncol=2,plot.

current$coordinates [,2:3])) #get probe middles

116 if (!missing(highlightProbes)) { #probes are to be highlighted

117 highlightProbes.current <-which(highlightProbes %in% plot.current$
annotations [,1]) #find probes to be highlighted

118 if(length(highlightProbes.current) > 0) { #probes are to be

highlighted in the current plot

119 highlightProbes.current <-rowMeans(matrix(plot.current[

highlightProbes[highlightProbes.current],]$coordinates [,2:3],
ncol =2)) #get positions of probes to highlight

120 }else{ #probes are not to be highlighted in the current plot

121 highlightProbes.current <-NULL #set as NULL

122 }

123 }else{ #no probes to be highlighted

124 highlightProbes.current <-NULL #set as NULL

125 }

126 if (!missing(highlightRegions)) { #ranges to be highlighted

127 highlightRegions.current <-matrix(highlightRegions[which(

highlightRegions [,1] == plan[p,1] & highlightRegions [,2] >= plan

[p,2] & highlightRegions [,3] <= plan[p,3]) ,],ncol =3) #get ranges

to be highlighted

128 }else{ #no ranges to be highlighted

129 highlightRegions.current <-NULL #set as NULL

130 }

131 if (!constantMinMax) { #not constant min/max values

132 minYValue <-min(plot.current$ratios ,na.rm=T) #get min ratio value

133 maxYValue <-max(plot.current$ratios ,na.rm=T) #get max ratio value

134 }else{ #constant min/max values

118

SECTION 3.2 CHAPTER 3

135 minYValue <-min(plot.all$ratios ,na.rm=T) #get min ratio value

136 maxYValue <-max(plot.all$ratios ,na.rm=T) #get max ratio value

137 }

138 if (!missing(ylim)) { #ylim is defined

139 minYValue <-ylim [1] #set min value

140 maxYValue <-ylim [2] #set max value

141 }

142 par(mar=c(1,5,1,2),bty="n") #set plot for annotation

143 plot(currentAnnotationData ,plan[p,1],plan[p,2],plan[p,3], probePositions ,

geneColour ,geneBorder ,constantMinMax ,geneValues ,highlightProbes.

current ,highlightRegions.current ,geneNames ,geneNameCutoff=

geneNameCutoff) #plot annotation data

144 par(mar=c(1,5,2,2),bty="n",mgp=c(1.75 ,1 ,0)) #set plot for ratios

145 plot(1,1,type="n",xlim=c(plan[p,2],plan[p,3]),ylim=c(minYValue ,maxYValue

),xaxs="i",yaxs="i",xlab="",ylab=ylab ,xaxt="n",yaxt="n") #initialise

plot

146 abline(h=0,lty=2,col="lightgrey") #add zero line

147 for (a in 1:ncol(plot.current)) { #loop through datasets

148 startWarn <-as.numeric(options("warn")); on.exit(options(warn=startWarn

)) #get current warning state and maintain on exit

149 options(warn=-1) #don ’t warn about NA values

150 if (!is.na(cols[a]) & !is.null(plot.current)) { #data is to be plotted

151 if (length(whichData) > 1) { #there is data to plot in the range

152 points(approx(rowMeans(matrix(plot.current$coordinates [,2:3],ncol
=2)),plot.current$ratios[,a],xout=rowMeans(matrix(plot.current
$coordinates [,2:3],ncol =2))),col=rgb(matrix(ncol=3,col2rgb(
cols[a])),max=255, alpha=alpha),type=type ,...) #plot data

153 }else{ #there is no data to plot in the range

154 points(sum(matrix(plot.current$coordinates [,2:3], ncol =2))/2,plot.
current$ratios[,a],col=rgb(matrix(ncol=3,col2rgb(cols[a])),max
=255, alpha=alpha),pch=19,cex =0.5) #plot extended probes

155 }

156 }

157 options(warn =0) #reset warnings

158 }

159 if(!missing(multi)) { #multi is provided

160 mtext(LETTERS[p],side=3,at=plan[p,2]-(size/lab.adjust),las =1.75 ,cex

=1.5) #print letters if multiple plots

161 }

162 axis(2,tcl=-0.3,padj =0.8) #format axis

163 axis(3,tcl=-0.3,padj=1,line =0.5) #format axis

164 }

165 }

The function first ensures the plot is reset when it exits (L4). Then checks

are performed and a series of parameters set and configured, based on the

arguments provided, in order to correctly plot the data (L5–23). If the whole

genome is not to be plotted the specified subset is extracted, extending the

data by one upwards and downwards if on the same chromosome (L43–44),

otherwise all data is kept and a PDF initiated (L24–48). A “plan” is created,

detailing the data to plot on each row of the display (L49–68). y-axis limits

are set (L69–76) and the plot layout defined (L77–84). A loop for each row

of the plan is initiated (L85). The plot size is created dynamically with

119

CHAPTER 3 SECTION 3.2

“multi” (L86–88). Data for the current region is identified (L89) along with

the annotation data, if required (L90). If no or one probes are present in the

range to be plotted (L91), this is redefined to include the previous and next

probes (L92–97).

The data range is then found (L98–99). Data extending out from the

plot region are specified (L100–109) which allows the plots to extend to

the edges of their regions. The data to be plotted is extracted (L110–114)

and probe positions calculated (L115). Probes (L116–125) and ranges to be

highlighted (L126–130) are identified. Plot y-axis limits are defined (L131–

141). Plot margins are defined (L142) and the genomeAnnotation data plot

is created (L143), showing ORF information where provided. Plot margins

are defined (L144) and the arrayData plot is initialised (L145–146). Data

for each dataset is plotted in a loop (L147–158) with warnings for NA values

disabled. Letters are printed at the edge of “multi” plots (L159–161). Finally,

axes are added to the plots (L162–163).

A genomeAnnotation object can also be specified, which adds extra in-

formation to the plots. This is carried out by the genomeAnnotation plot

method (Script 3.14). This plots a line representing the genome, showing all

ORFs over the given region as boxes indicating the direction of transcription.

Gene names, taken from the gene name column of the genomeAnnotation

annotations matrix, can optionally be displayed over each ORF. Addition-

ally, this function indicates the position of each probe in the genome with a

grey dot. Particular probes can be highlighted, with the addition of a red

cross. Regions can also be highlighted, with the addition of a coloured box

covering the region of the genome. The function has the following arguments,

all of which are specified by the arrayData plot function and so none have

defaults.

object The genomeAnnotation object to be plotted.

chr A numeric vector specifying the current chromosome number.

from A numeric vector specifying the current start coordinate.

to A numeric vector specifying the current end coordinate.

arrayProbes A numeric vector specifying the positions of probes to plot.

120

SECTION 3.2 CHAPTER 3

geneColour A character or numeric vector specifying the colour to fill boxes

representing ORFs.

geneBorder A character or numeric vector specifying the colour of the bor-

der of boxes representing ORFs.

constantMinMax A logical value indicating whether or not to maintain

the same y-axis limits on all subplots.

highlightProbes A matrix containing the names of probes to highlight on

the plots.

highlightRanges A matrix containing coordinates of regions to highlight

on the plots.

geneNames A logical value indicating whether or not to print gene names

on the plots.

geneNameCutoff A numeric vector specifying the length of a gene name

over which the name not printed.

Script 3.14: plot genomeAnnotation: script to plot genomeAnnotation object
annotations within the arrayData plot function. ORFs and probe positions
are plotted.

1 ## plot (genomeAnnotation) function ##

2 ## arguments: object (a genomeAnnotation object), chr (chromosome number),

from (from coordinate), to (to coordinate), arrayProbes (probe positions

), geneColour (colour of gene boxes), geneBorder (colour of gene box

borders), constantMinMax (whether or not constantMinMax), geneValues (

values to plot gene bars), highlightProbes (probes to highlight),

highlightRanges (ranges to highlight), geneNames (names of genes),

geneNameCutoff (gene name length cutoff)

3 plot.genomeAnnotation <-function(object ,chr ,from ,to,arrayProbes ,geneColour="

yellow",geneBorder="orange",constantMinMax ,geneValues ,highlightProbes ,

highlightRanges ,geneNames=TRUE ,geneNameCutoff =0) { #define function

4 plot(1,1,type="n",xlim=c(from ,to),ylim=c(-1,8),xlab="",ylab="",xaxt="n",

yaxt="n",xaxs="i") #initialise plot

5 grid(nx=NULL ,ny=0,lty=2) #add grid

6 if(nrow(object) > 0) { #if genomeAnnotation is provided

7 square <-((to -from)/100) #calculate size of arrow section

8 y<-c(0.53 ,0.28 ,0.03 ,0.03 ,0.53) #set y values for polygons

9 textCentre <-0.2 #set the centre point for gene names

10 genes.U.labels <-genes.L.labels <-matrix(ncol=4,nrow =0) #initialise

matrices to store labels for upper and lower strands

11 genes.U<-object[which(object [[2]][,3] == " 1")] #get upper strand genes

in range

12 genes.L<-object[which(object [[2]][,3] == "-1")] #get lower strand genes

in range

13 if (nrow(genes.U) > 0) { #if genes are present on the upper strand

14 genes.U.labels <-matrix(ncol=3,nrow=nrow(genes.U)) #initialise matrix to

store labels

15 for (n in 1:nrow(genes.U)) { #loop through genes

121

CHAPTER 3 SECTION 3.2

16 left <-genes.U[[1]][n,2] #get left hand (start) value

17 right <-genes.U[[1]][n,3]- square #get box end value

18 point <-genes.U[[1]][n,3] #get right hand (end) value

19 if (right <left) {right <-left} #set box end as start if it goes

beyond the start

20 x<-c(right ,point ,right ,left ,left) #set x values for polygon

21 polygon(x,y,col=geneColour ,bor=geneBorder) #plot the current gene

22 genes.U.labels[n,1] <-(left+point)/2 #get the middle of the gene

23 genes.U.labels[n,2] <-0.6 #set the font size

24 if (nchar(genes.U[[2]][n,1]) > 6) genes.U.labels[n,2] <-0.4 #reduce

the font size for long gene names

25 if(point - left > geneNameCutoff) genes.U.labels[n,3] <-genes.U[[2]][

n,1] #set the gene name

26 }

27 }

28 if (nrow(genes.L) > 0) { #if genes are present on the lower strand

29 genes.L.labels <-matrix(ncol=3,nrow=nrow(genes.L)) #initialise matrix

to store labels

30 for (n in 1:nrow(genes.L)) { #loop through genes

31 right <-genes.L[[1]][n,3] #get right hand (start) value

32 left <-genes.L[[1]][n,2]+ square #get box end value

33 point <-genes.L[[1]][n,2] #get left hand (end) value

34 if (right <left) {left <-right} #set box end as start if it goes

beyond the start

35 x<-c(left ,point ,left ,right ,right) #set x values for polygon

36 polygon(x,-y,col=geneColour ,bor=geneBorder) #plot the current gene

37 genes.L.labels[n,1] <-(right+point)/2 #get the middle of the gene

38 genes.L.labels[n,2] <-0.6 #set the font size

39 if (nchar(genes.L[[2]][n,1]) > 6) genes.L.labels[n,2] <-0.4 #reduce

the font size for long gene names

40 if(right - point > geneNameCutoff) genes.L.labels[n,3] <-genes.L

[[2]][n,1] #set the gene name

41 }

42 }

43 if(geneNames) { #show gene names

44 if (nrow(genes.L.labels) > 0) { #if there are genes on the lower

strand to be labelled

45 text(as.numeric(genes.L.labels [,1]) ,-0.2,labels=genes.L.labels[,3],

cex=as.numeric(genes.L.labels [,2]),srt=-30,pos=4,offset =0) #add

the gene name text

46 }

47 if (nrow(genes.U.labels) > 0) { #if there are genes in the upper

strand to be labelled

48 text(as.numeric(genes.U.labels [,1]) ,0.2,labels=genes.U.labels[,3],

cex=as.numeric(genes.U.labels [,2]),srt=-30,pos=2,offset =0) #add

the gene name text

49 }

50 }

51 if (!missing(geneValues)) { #geneValues are provided

52 labels <-at<-pretty (0:as.numeric(geneValues [1 ,2])) #define labels

53 axis(4,tcl=-0.3,padj=-0.8, labels=labels ,at=labels*(8/as.numeric(

geneValues [1,2]))) #add axis

54 mtext("Gene Value", side=4, line=2,cex =0.7) #label axis

55 currentGeneValues <-matrix(geneValues[which(geneValues [,1] %in% object

[[2]][,1]) ,],ncol =2) #get gene values

56 if (!constantMinMax) { #not constant min max

57 currentGeneValues <-rbind(c(NA,max(as.numeric(currentGeneValues [,2]),

na.rm=T)),currentGeneValues) #get values

58 currentGeneValues [2: nrow(currentGeneValues) ,2]<-(as.numeric(

currentGeneValues [2: nrow(currentGeneValues) ,2])/max(as.numeric(

currentGeneValues [2: nrow(currentGeneValues) ,2]),na.rm=T))*8

59 currentGeneValues <-currentGeneValues [2: nrow(currentGeneValues),]

122

SECTION 3.2 CHAPTER 3

60 }

61 if(length(currentGeneValues != 0)) { #some values are present

62 for (g in 1:nrow(currentGeneValues)) { #loop through values

63 rect(object [[1]][which(object [[2]][,1] == currentGeneValues[g,1])

,2],0,object [[1]][which(object [[2]][,1] == currentGeneValues[g

,1]) ,3],as.numeric(currentGeneValues[g,2]),col=rgb

(0.3 ,0.3 ,0.3 , alpha =0.5) ,bor=NA) #add rectangles

64 }

65 }

66 }

67 }

68 if (!is.null(highlightRanges)) rect(highlightRanges [,2],rep(-0.25,nrow(

highlightRanges)),highlightRanges [,3],rep(0.25 , nrow(highlightRanges)),

bor=0,col=rgb (255 ,192 ,203 , max=255, alpha =200)) #highlight ranges

69 abline(h=0,col="grey") #add a horizintal grey line at h=0

70 if (!missing(arrayProbes)) points(arrayProbes ,rep(0,length(arrayProbes)),

pch=19,col="darkgrey",cex =0.5) #add a dot at each probe position

71 if (!is.null(highlightProbes)) points(highlightProbes ,rep(0,length(

highlightProbes)),pch=4,col="red") #add a dot at each highlighted

probe position

72 mtext(paste("Chr.",chr),side=2,las=1,line =1.75,at=0,cex =0.7) #label the

chromosome number

73 }

The arrayData plot function determines the genomeAnnotation data for

the region being plotted and passes it to this function. A plot of the correct

size is first initialised (L4) and a grid added (L5). If genome annotation

data is provided (L6) Parameters for the ORF polygons are determined (L7–

9) and matrices to store their labels created (L10). ORFs on the upper

and lower strands are separated (L11–12). For ORFs on the upper strand

(L13) the labels are extracted (L14). A loop is initialised for each (L15)

where the polygon parameters are determined (L16–20), the polygon plotted

(L21), and the gene name text parameters determined (L22–25). The same

procedure is repeated for ORFs on the lower strand (L28–42). Gene names

are added if required (L43–50). Gene values are used to add bar plots if

required (L51–66). Ranges to be highlighted are drawn (L68), a central

line added (L49) and probes drawn (L70) and highlighted (L71) if required.

Finally the chromosome name is printed (L72).

Figure 3.6 shows an example of the output of the two plot functions,

showing data plotted along a short section of chromosome 1 with examples

of the additional information that can be plotted. The arrayData plot

function creates the plot of the the data specified in the arrayData object

along with the two sets of axises. The genomeAnnotation plot creates the

representations of ORF and probe positions, highlights specified probes and

123

CHAPTER 3 SECTION 3.2

regions

The functions are used to generate more plots shown in the following

chapters.

3.2.6.2 Histograms, density and Q-Q plots

Histograms are graphical representations of the distribution of continuous

data. They consist of a series of bars, the areas of which represent the

frequencies of data points falling into a set of discrete bins. They are useful

for visualising the distribution of a set of data and can be used to estimate an

underlying probability density function. The existing R histogram method

was adapted to produce histograms from arrayData ratios (Script 3.15),

using the following argument:

x An arrayData object to create the histogram from (no default). Multiple

histograms are not easy to distinguish on the same graph and so only

values from the first dataset are used.

Script 3.15: arrayData histogram: script to plot a histogram of ratios from
an arrayData object.

1 ## hist (arrayDat) function ##

2 ## arguments: x (an arrayData object)

3 setMethod("hist", "arrayData", function(x,...) { #define function

4 hist(x$ratios [,1],...)
5 }

6)

The function plots a standard histogram from the first column of the arrayData

ratios (L4).

An example histogram is shown in Figure 3.7, created from a normalised

Abf1 binding dataset, showing the skew of the data as a result of the protein

binding.

An alternative to the histogram is the kernel density plot. This uses

kernel density estimation to estimate the probability density function of a

set of data. Various kernels can be used to create this estimation. Rather

than binning data and displaying bars, as in a histogram, kernel density

124

SECTION 3.2 CHAPTER 3

●● ● ● ● ●●● ●●●●●●● ● ●● ●●●●● ●●●● ● ●●●●●●●●●● ● ● ● ● ●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ●●● ● ● ●●PAU8
SEO1

YAL065C

TDA8
YAL063C−A

FLO9

YAL069W

YAL068W−A

YAL067W−A

YAL066W

YAL064W−B

YAL064W

Chr. 1

lo
g2

 B
in

di
ng

−
1

0
1

2
3

4

0 5000 10000 15000 20000 25000 30000

Figure 3.6: Output of arrayData plot method: Exemplified with three Abf1
binding datasets (see Chapter 7) plotted over a short section of chromosome
1. The genome coordinates are plotted along the top of the graph and the
dataset units on the left. Genome annotations are shown at the bottom
with the chromosome number printed to the left hand side. Each of the
three datasets is shown as a separate line, in this case using the default
different colours. Genes are represented with yellow shapes, with the arrow
representing the direction of transcription. Gene names are printed, those
with longer names in a smaller font size. Probe positions are represented
with grey circles and some have been highlighted, shown with red crosses. A
region has also been highlighted, shown with a pink box.

125

CHAPTER 3 SECTION 3.2

estimation produces a curve representing the distribution of the data. This

is described further in Section 4.2.4.2.

The existing R density and plot methods were adapted to produce density

plots from arrayData ratios (Script 3.16). The density function produces the

kernel density estimate as a density class, and the plot method for this class

produces a graph showing the curve. The function plots each dataset in the

provided arrayData object as a separate line on the same graph. All kernel

density estimates are first calculated, in order to determine the x and y-axis

ranges for all data. This plot is then initialised, and each line plotted. By

default each line is given a different colour, which can be manually overridden.

The function also has the option to mirror values about zero to display a

representation of the estimated background region (see Section 4.2.4.2). The

density of all negative values, along with the positive equivalents, is added

to the plot as a red dashed line. This shows a mirror image of the section of

the density plot below zero. To this is added a standard normal curve, with

a mean of zero and standard deviation of one, as a blue dotted line. This

provides a method of visually comparing the background estimation to the

normal distribution. In this case only the first arrayData object dataset is

plotted. The function has the following arguments:

x An arrayData object to create the density plots from (no default).

cols Character or numeric vector specifying the colours to plot each line for

each dataset (defaults to standard R colours).

mirror Logical vector indicating whether or not to display mirrored esti-

mated background values and the standard normal distribution for the

first dataset (default FALSE).

126

SECTION 3.2 CHAPTER 3

Script 3.16: arrayData density plot: script to plot a density plot of ratios from
an arrayData object. Each set of ratios is plotted as a separate line and the
axes are scaled accordingly. The densities of negative data mirrored about
zero and the standard normal distribution can also be plotted to visualise
the estimated background population.

1 ## density function ##

2 ## arguments: x (an arrayData object), cols (colours to plot lines), mirror

(whether or not to show mirror information)

3 setMethod("density", "arrayData", function(x,cols ,mirror=F,xlim ,ylim ,...) {

#define function

4 if (missing(cols)) cols <-1:ncol(x) #define colours if missing

5 if (mirror) cols <-rep(1,ncol(x)) #redefine colours if mirroring

6 xs<-ys<-list() #initialise lists to store values

7 for (n in 1:ncol(x)) { #loop through datasets

8 d<-density(x$ratios[,n],na.rm=T) #get kernel densities

9 xs<-c(xs,list(d$x)) #get x values

10 ys<-c(ys,list(d$y)) #get y values

11 }

12 if(missing(xlim)) xlim <-range(xs)

13 if(missing(ylim)) ylim <-range(ys)

14 plot(1,1,type="n",xlim=xlim ,ylim=ylim ,...) #initialise plot

15 for (n in 1:ncol(x)) { #loop through datasets

16 points(xs[[n]],ys[[n]],type="l",col=cols[n],...) #add points

17 if (mirror) { #data is to be mirrored

18 points(c(xs[[n]][xs[[n]]<=0],abs(xs[[n]][xs[[n]] <=0][length(which(xs[[

n]] <=0)):1])),c(ys[[n]][xs[[n]]<=0],ys[[n]][xs[[n]] <=0][length(

which(xs[[n]] <=0)):1]),type="l",lty=2,col="red" ,...) #add mirrored

points

19 norm <-dnorm(c(xs[[n]][xs[[n]]<=0],abs(xs[[n]][xs[[n]] <=0][length(which

(xs[[n]] <=0)):1]))) #get normal distribution

20 norm <-norm * max(ys[[n]][xs[[n]] <=0])/max(norm) #scale norm

21 points(c(xs[[n]][xs[[n]]<=0],abs(xs[[n]][xs[[n]] <=0][length(which(xs[[

n]] <=0)):1])),norm ,col="blue",type="l",lty =3) #plot normal curve

22 }

23 }

24 }

25)

The function first defines the plot colours if not specified (L4) or the data

is to be mirrored (L5). Lists are created to store the x and y density values

(L6) and a loop through datasets initialised (L7) where the kernel densities

are calculated (L8–10). Axis limits are set if required (L12–13). A plot is

initialised with limits based on the density values (L14). A second loop of

datasets is initialised (L15) and the density lines plotted (L16). If data are

to be mirrored the mirror and standard normal representation line are added

(L17–22).

An example density curve is shown in Figure 3.7, created from a nor-

malised Abf1 binding dataset, showing the skew of the data as a result of the

protein binding.

127

CHAPTER 3 SECTION 3.2

Quantile-quantile (Q-Q) plots are a means of graphically comparing two

distributions. Quantiles of the two distributions are calculated and displayed

as points, each representing one quantile from the first distribution (on the

y axis) and the same quantile in the second distribution (on the x axis). A

QQ-line can be added to the plot to represent equal distributions. If the

points fall on this line the two distributions are equal. The R qqnorm and

qqplot methods were adapted to display arrayData object ratio quantiles

against normal distribution quantiles or another set of arrayData ratios

respectively (Script 3.17). The qqline method was adapted to show the

line representing identical distributions. This plots only the first dataset in

the provided arrayData object(s).

The same mirror option as the density function is also included in the

qqnorm and qqline functions, providing another method of comparing the

estimated background distribution to the normal distribution.

The functions have the following arguments:

y An arrayData object specifying the first set of values to create the Q-Q

norm, Q-Q plot or Q-Q line from (no default).

mirror Logical vector indicating whether or not to display mirrored esti-

mated background value Q-Q norm or Q-Q line (default FALSE).

x An arrayData object specifying the second set of values to create the Q-Q

plot or Q-Q line from (no default; optional for Q-Q line, if left blank

uses standard normal values).

128

SECTION 3.2 CHAPTER 3

Script 3.17: arrayData Q-Q plot: scripts to create Q-Q plots with arrayData

objects. Q-Q norm plots ratios against a normal distribution, Q-Q plot plots
two sets of ratios against each other and Q-Q line adds a Q-Q line to the plot.
The quantiles of negative data mirrored about zero can also be plotted with
Q-Q norm and Q-Q line to visualise the estimated background population.

1 ## qqnorm function ##

2 ## arguments: y (an arrayData object), mirror (whether or not to show mirror

information)

3 setMethod("qqnorm", "arrayData", function(y,mirror=F ,...) { #define function

4 if (!mirror) { #plot all data

5 qqnorm(y$ratios [,1],...) #create QQ plot

6 }else{ #plot mirrored data

7 qqnorm(c(y$ratios[y$ratios [,1]<0,1],abs(y$ratios[y$ratios [,1]<0,1]))
,...) #create mirrored data QQ plot

8 }

9 }

10)

11 ## qqplot function ##

12 ## Arguments: x, y (both arrayData objects)

13 setMethod("qqplot", "arrayData", function(x,y,...) { #define function

14 qqplot(x$ratios[,1],y$ratios [,1],...) #create QQ plot

15 }

16)

17 ## qqline function ##

18 ## Arguments: y (an arrayData object), mirror (whether or not to show mirror

information)

19 setMethod("qqline", "arrayData", function(y,x,mirror=F,...) { #define

function

20 if (missing(x)) { #single dataset

21 if (!mirror) { #plot all data

22 qqline(y$ratios [,1],...) #add QQ line

23 }else{ #plot mirrored data

24 qqline(c(y$ratios[y$ratios [,1]<0,1],abs(y$ratios[y$ratios [,1]<0,1]))
,...) #add mirrored data QQ line

25 }

26 }else{ #two datasets

27 qqline(x$ratios[,1],y$ratios [,1],...) #add QQ line

28 }

29 }

30)

The qqnorm method (L3) plots either a Q-Q plot of the whole first column of

arrayData ratios (L5) or only those values less than zero (L7), if “mirror” is

TRUE, against normal quantiles. The qqplot method (L13) plots a Q-Q plot

of the first columns of two arrayData objects (L14). The qqline method

(L19) adds a Q-Q line with a single arrayData object (L20) against normal

quantiles using the first set of ratios (L22) or only those less than zero (L24)

if “mirror” is TRUE, or using two arrayData objects (L27).

An example normal Q-Q plot is shown in Figure 3.7, created from a

normalised Abf1 binding dataset, showing the data do not follow a normal

distribution. A mirrored Q-Q plot is also shown, with a mirrored Q-Q line

129

CHAPTER 3 SECTION 3.2

in red, showing these data do approximate a normal distribution.

3.2.6.3 Profile plots

“Profile plot” is the name given to a type of plot which overlays several

sections of ChIP-chip data on the same graph, which gives an overview of a

particular feature. The format is similar to that of the arrayData genome

plots, except that rather than continuing the plotted data as a single line

over a long distance, the data are split into defined sections and multiple lines

representing these are ‘piled up’ on top of each other over a short distance. A

trend line can be added to these to show any overall pattern in the data. The

profilePlot function (Script 3.18) allows three types of plot to be created,

plotting data over genic, intergenic and peak regions. The genic plot shows

ORFs with sections of their upstream (promoter) and downstream regions,

aligned so all run left-to-right across the plot. The intergenic plot shows the

inverse of the genic, that is, whole intergenic regions with sections of the

flanking ORFs at either side. The peak plots are centred on probes found

by the peakDetection function (Chapter 5) and show the regions flanking

these. Gene data is taken from a genomeData object and peak data from a

peakList object, created by the peakDetection function.

Plotting a single dataset has the option to plot all individual lines of data

and/or the trend line. Only trend lines are plotted when more than one

dataset is provided. Trend lines are calculated from a number of averaged

points, the number of which can be specified. The ends of trend lines can

sometimes become distorted if there are few data points from which to cal-

culate the average. These ends can be clipped, by specifying a cutoff based

on the fraction of data present at each point to be averaged. Standard er-

rors of the trend lines can be shown as coloured shapes. The standard error

increases with standard deviation and as fewer points are used to calculate

it, and so thicker shapes may indicate less reliable regions.

The data to be plotted can be specified in various ways, such as providing

names or size ranges of genes to plot. ORF start/end boundaries are always

aligned at the same points in genic and intergenic plots, as indicated by the

130

SECTION 3.2 CHAPTER 3

Histogram

Log2 Ratios

F
re

qu
en

cy

−5 0 5 10 15 20 25

0
40

00
10

00
0

−5 0 5 10 15 20 25

0.
00

0.
10

0.
20

Density Curve

Log2 Ratios

D
en

si
ty

−4 −2 0 2 4

0
5

10
20

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−4 −2 0 2 4

−
2

0
2

Mirrored Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3.7: Output of arrayData statistical graphics: Examples of a his-
togram, density curve, normal Q-Q plot and a mirrored Q-Q plot showing a
mirrored Q-Q line using one set of normalised Abf1 binding data.

131

CHAPTER 3 SECTION 3.2

label on the y-axis. This can be achieved by either scaling or splitting the

data. Scaling can be done relative to the largest or smallest region being

plotted, maintaining the shortest line and scaling all longer lines down to

fit, or maintaining the longest line and scaling all shorter lines up to fit.

Scaling all lines down to the shortest ensures that no regions go beyond the

boundaries of the plot region. However, it can be useful to plot data in

this way in certain circumstances. Splitting allows data to be split at the

centres of ORFs. Each of the two resulting lines is aligned at the respective

boundary. In this way all lines are shown at the same scale. The function

has the following arguments:

object An arrayData object to be plotted (no default). Each dataset can

be plotted as a separate trend line or the first dataset is used to plot

all individual lines.

plotType A character vector specifying the type of plot to create; either

“genic”, “intergenic” or “peaks” (default “genic”).

annotation A genomeAnnotation object, used to specify ORF positions

when creating genic or intergenic plots (no default).

peakList A peakList object, used to specify peak positions when creating

peak plots.

showAllLines A logical vector indicating whether or not to plot all indi-

vidual lines from a single dataset (default TRUE; when more than one

dataset is provided is set to FALSE).

allLines.col A character vector specifying the colour of the (non-trend line)

lines (default rgb(0,0,0,alpha=0.5)).

showTrendLine A logical vector indicating whether or not to plot trend

lines from all provided datasets (default TRUE; when more than one

dataset is provided is reset to TRUE).

col A character or numeric vector specifying the trend line colour (defaults

to standard R colours).

lty A character or numeric vector specifying the trend line type (default 1

(solid line)).

lwd A numeric vector specifying the trend line width (default 1).

averagePoints A numeric vector specifying the number of points at which

132

SECTION 3.2 CHAPTER 3

to calculate the trend line averages (default 50).

tidy A numeric vector specifying the minimum fraction of data points to be

present to plot a trend line point (default 0).

showSEs A logical vector indicating whether or not to show standard errors

as coloured shapes around trend lines (default FALSE).

range A numeric vector specifying the size range of genes or intergenic re-

gions to include in plots (defaults 1000 and “Inf”).

geneList A character vector specifying genes (from the genomeAnnotation

object) to include in genic and intergenic plots (no default). Overrides

the “range” argument.

extend A numeric vector specifying the size of the regions to plot extending

from the gene/intergene ends or the probes at the centres of peaks

(default 1000).

keepSmallest A logical vector specifying whether to scale data relative to

the smallest or largest gene being plotted (default TRUE).

split A logical vector specifying whether to split or scale data (default

FALSE).

ylim A numeric vector specifying the y-axis limits (defaults to the data

range).

ylab A character vector specifying the y-axis label (default “Binding Value”).

main A character vector specifying the plot title (defaults to the graph type

created and the number of lines plotted or used to calculate the trend

line).

labels A character vector specifying the labels for the x-axis (defaults vary

depending on the plot type).

add A logical vector specifying whether to add the plotted lines to an exist-

ing plot or create a new plot (default FALSE).

133

CHAPTER 3 SECTION 3.2

Script 3.18: profilePlot: script to display profiles of arrayData object data
showing genic or intergenic regions, defined by an annotationData object
properties or list of genes, or peak regions, defined with a list of probes.

1 ## profilePlot function ##

2 ## arguments: object (an arrayData object), plotType (type of plot to create

), annotation(a genomeAnnotation object), peakList (a list of probes),

geneList (a list of genes), range (range of gene sizes to plot), extend

(value to extend), showAllLines (whether to show all lines),

showTrendLine (whether to show trend lines), showSEs (whether to show

standard errors), averagePoints (number of trend line points), tidy (

tidy value), ylim (y axis limits), ylab (y axis label), main (title),

keepSmallest (whether to scale to the smallest gene), alLines.col (

colour of all lines), col (colour of trend line), lty (trend line type),

lwd (trend line width), add (whether to add to an existing plot),

labels (x axis labels), split (whether to split the data)

3 profilePlot <-function(object , plotType="genic", annotation , peakList ,

geneList , range=c(1000 ,Inf), extend =1000 , showAllLines=TRUE ,

showTrendLine=TRUE , showSEs=FALSE , averagePoints =50, tidy=0, ylim , ylab ,

main ,keepSmallest=TRUE ,allLines.col=rgb(0,0,0,alpha =0.5),col=2,lty ,lwd

,add=FALSE ,labels ,split=F) { #define function

4 if(missing(plotType)) plotType <-"genic" #plot genes if region not

specified

5 if (ncol(object) > 1) { #more than one dataset to plot

6 showAllLines <-FALSE #do not show all lines

7 showTrendLine <-TRUE #do show trend line

8 }

9 if(missing(ylab)) ylab <-"Height" #specify ylab if missing

10 if(missing(col)) col <-2:(1+ ncol(object)) #specify colours if missing

11 if(missing(lty)) lty <-rep(1,ncol(object)) #specify trend line types if

missing

12 if(missing(lwd)) lwd <-rep(2,ncol(object)) #specify trend line widths if

missing

13 if(length(col) != ncol(object)) col <-2:(1+ ncol(object)) #specify colours

if wrong number

14 if(length(lty) != ncol(object)) lty <-rep(1,ncol(object)) #specify trend

line types if wrong number

15 if(length(lwd) != ncol(object)) lwd <-rep(2,ncol(object)) #specify trend

line widths if wrong number

16 if (showSEs) lty <-lty <-rep(2,ncol(object)) #set line type if showing SEs

17 if (showSEs) tidy <-0 #set tidy value if showing SEs

18 p<-0 #set probe count to zero

19 objectChr <-object [0,] #get empty arrayData object

20 probesList <-list() #initialse list to store probes

21 allRegions <-matrix(ncol=4,nrow =0) #initialise matrix to store coordinates

22 orientations <-regionSizes <-numeric () #initialse vectors to store

orientations and gene sizes

23 for (chr in unique(annotation$coordinates [,1])) { #loop through

chromosomes

24 p<-p+nrow(objectChr) #increase probe count

25 annotationChr <-annotation[annotation$coordinates [,1] == chr] #get

current annotation

26 objectChr <-object[object$coordinates [,1] == chr ,] #get current arrayData

27 if (nrow(objectChr) == 0) next() #skip chr if no data

28 coordinates <-objectChr$coordinates #get coordinates

29 chrMax <-max(coordinates[nrow(objectChr) ,3], annotationChr$coordinates[
nrow(annotationChr) ,3]) #get max chr value

30 if (plotType == "genic") { #genic plot

31 if(missing(labels)) labels <-c(paste("-",extend ,sep=""),"Promoter","ORF

start","Inside","ORF end","Downstream",paste("+",extend ,sep=""))

#set labels if missing

134

SECTION 3.2 CHAPTER 3

32 regions <-cbind(c(1, annotationChr$coordinates [1:(nrow(annotationChr) -1)
,3]),annotationChr$coordinates [,2:3],c(annotationChr$coordinates
[2: nrow(annotationChr) ,2],chrMax)) #get regions

33 }else if (plotType == "intergenic") { #intergenic plot

34 if(missing(labels)) labels <-c(paste("-",extend ,sep=""),"ORF","ORF

boundary","Intergenic","ORF boundary","ORF",paste("+",extend ,sep="

")) #set labels if missing

35 regions <-cbind(c(1, annotationChr$coordinates [,2]),c(1, annotationChr$
coordinates [,3]),c(annotationChr$coordinates [,2],chrMax),c(
annotationChr$coordinates [,3],chrMax)) #get regions

36 }else if (plotType == "peak") { #peaks plot

37 if(missing(labels)) labels <-c(paste("-",extend ,sep=""),"Peak Centres",

paste("+",extend ,sep="")) #set labels if missing

38 get <-which(objectChr$annotations [,1] %in% peakList) #peak probes

39 centres <-rowMeans(matrix(ncol=2, coordinates[get ,2:3])) #peak centres

40 regions <-cbind(c(1,centres [1:(length(centres) -1)]),centres ,centres ,c(

centres [2: length(centres)],chrMax)) #get regions

41 }else{ #another plotType provided

42 stop("Incorrect plotType", call.=F) #stop with error message

43 }

44 regions [,1]<-ifelse ((regions[,2]-regions [,1]) > (2*extend),regions[,2]-

extend ,(regions [,1]+ regions [,2])/2) #modify regions downwards

45 regions [,4]<-ifelse ((regions[,4]-regions [,3]) > (2*extend),regions [,3]+

extend ,(regions [,3]+ regions [,4])/2) #modify regions upwards

46 if (plotType != "peak") { #genic/intergenic plot

47 regionSize <-apply(regions [,2:3],1,diff ,na.rm=T) #calculate region

sizes

48 if(missing(geneList)) keep <-(regionSize >= range [1] & regionSize <=

range [2]) else keep <-which(annotationChr$annotations [,1] %in%

geneList) #find required regions

49 if(length(keep) == 0) next() #move onto next chr if no probes

extracted

50 regions <-matrix(ncol=4,regions[keep ,]) #get regions to keep

51 regionSize <-regionSize[keep] #get region sizes to keep

52 }

53 if (plotType =="genic") orientation <-as.numeric(annotationChr$annotations
[keep ,3]) else orientation <-rep(1,nrow(regions)) #get/set

orientation values

54 probesListChr <-vector("list", nrow(regions)) #initialise list to store

probes

55 if (nrow(regions) > 0) { #regions are found

56 for (n in 1:nrow(regions)) { #loop through regions

57 probesListChr [[n]]<-which(rowMeans(matrix(ncol=2, coordinates [,2:3]))

>= regions[n,1] & rowMeans(matrix(ncol=2, coordinates [,2:3])) <=

regions[n,4])+p #get probe numbers

58 }

59 }

60 probesList <-c(probesList ,probesListChr) #save probes together

61 allRegions <-rbind(allRegions ,regions) #save regions together

62 orientations <-c(orientations ,orientation) #save orientations together

63 if (plotType != "peak") regionSizes <-c(regionSizes ,regionSize) else

regionSizes <-c(0,1)#save region sizes together

64 }

65 if(!missing(geneList)) range <-range(regionSizes) #redefne range if a

genelist is provided

66 if(split) keepSmallest <-F #if spitting data set keepsmallest to TRUE

67 if(range [2] == Inf) range [2] <-max(regionSizes) #set max range value

68 if(range [1] == -Inf) range [1] <-min(regionSizes) #set min range value

69 if(missing(main)) main <-paste("Profile plot of ",plotType ," regions\n(n =

",length(probesList),")",sep="") #set main if missing

70 In<-ifelse(keepSmallest ,range[1], range [2]) #set inside length

71 if (!add) { #create new plot

135

CHAPTER 3 SECTION 3.2

72 if(showAllLines) { #showing all lines

73 if (plotType != "peak") { #genic/intergenic plot

74 if(missing(ylim)) ylim <-range(object[unique(unlist(probesList)),]$
ratios ,na.rm=T) #define ylim if missing

75 plot(1,1,type="n",bty="n",xaxt="n",xlab="",ylab=ylab ,xlim=c(-extend ,

In+extend),ylim=ylim ,main=main) #initialise plot

76 axis(1,c(-extend ,In+extend),c("",""),lwd.ticks=0,line =0) #add axis

77 axis(1,c(-extend ,0,In ,In+extend),c(labels [1], labels [3], labels [5],

labels [7]),line=0,tck =0.02) #add axis

78 axis(1,c(-(extend/2) ,(In/2),In+(extend/2)),c(labels [2], labels [4],

labels [6]),tick=F,line=-1) #add axis

79 }else{ #peaks plot

80 if(missing(ylim)) ylim <-range(object[unique(unlist(probesList)),]$
ratios ,na.rm=T) #define ylim if missing

81 plot(1,1,type="n",bty="n",xaxt="n",xlab="",ylab=ylab ,xlim=c(-extend ,

extend),ylim=ylim ,main=main) #initialise plot

82 axis(1,c(-extend ,extend),c("",""),lwd.ticks=0,line =0) #add axis

83 axis(1,c(-extend ,0,extend),labels ,line =0) #add axis

84 }

85 }

86 }

87 if (keepSmallest) scale <-range [1]/regionSizes else scale <-range [2]/

regionSizes #calculate scales

88 if (plotType =="peak") scale <-rep(1,length(probesList)) #remove scales if

peaks

89 if (plotType != "peak") trendLinePoints <-seq(-extend ,In+extend ,length.out=

averagePoints) else trendLinePoints <-seq(-extend ,extend ,length.out=

averagePoints)#define points at which to calculate trend line

90 coordinates <-object$coordinates #get coordinates

91 approxLines <-approxLinesSEs <-matrix(ncol=averagePoints ,nrow=ncol(object))

#initialse matrix to store approx values

92 for (r in 1:ncol(object)) { #loop through datasets

93 ratios <-object$ratios[,r] #get ratios

94 approxLine <-matrix(ncol=averagePoints ,nrow=length(probesList)) #

initialse matrix to store approx values

95 for (n in 1: length(probesList)) { #loop through probes list

96 if (length(probesList [[n]]) > 0) { #if probes are present

97 y<-ratios[probesList [[n]]] #get y-axis values

98 x<-rowMeans(matrix(ncol=2, coordinates[probesList [[n]] ,2:3])) #get x-

axis values

99 if (!split) { #data not to be split

100 if (orientations[n] == 1) { #watson strand

101 x<-(x-allRegions[n,2])*scale[n] #shift and scale x-axis values

102 }else{ #crick strand

103 x<-(((max(x)-x)+min(x))-(max(x)-allRegions[n,3]+ min(x)))*scale[n]

#flip , shift and scale x-axis values

104 }

105 }else{ #data to be split

106 halfway <-(allRegions[n,2]+ allRegions[n,3])/2 #get gene halfway

values

107 if (orientations[n] == 1) { #watson strand

108 y<-c(y[x <= halfway],NA ,y[x > halfway]) #add NA to middle of y

values

109 x<-c(x[x <= halfway]-allRegions[n,2],NA ,(x[x > halfway]-allRegions

[n,3])+In) #split x values

110 }else{ #crick strand

111 y<-c(y[x >= halfway],NA ,y[x < halfway]) #add NA to middle of y

values

112 x<-c(((max(x)-x[x >= halfway])+min(x)) -((max(x)-allRegions[n,3])+

min(x)),NA ,((max(x)-x[x < halfway])+min(x)) -((max(x)-

allRegions[n,2])+min(x))+In) #split x values

113 }

136

SECTION 3.2 CHAPTER 3

114 }

115 if (showAllLines) points(x,y,type="l",col=allLines.col) #plot all

lines

116 if (showTrendLine) if (length(which(!is.na(y))) > 1) approxLine[n,]<-

approx(x,y,xout=trendLinePoints)$y #calculate approx line

117 }

118 }

119 counts <-100*apply(approxLine ,2,function(x) {return(length(which(!is.na(x

))))})/nrow(approxLine) #get counts

120 approxLines[r,]<-colMeans(approxLine ,na.rm=T) #calculate trend line

121 approxLinesSEs[r,]<-apply(approxLine ,2,sd ,na.rm=T)/sqrt(apply(approxLine

,2,function(x) {return(length(which(!is.na(x))))})) #calculate

standard error

122 approxLines[r,counts < tidy]<-NA #’tidy ’ data

123 }

124 if (!add) { #create a new plot

125 if (!showAllLines) { #not showing all lines

126 if (plotType != "peak") { #genic/intergenic plot

127 if(missing(ylim)) { #no y limits provided

128 if (showSEs) ylim <-range(c(approxLines+approxLinesSEs ,approxLines -

approxLinesSEs),na.rm=T) else ylim <-range(approxLines ,na.rm=T)

#get ylim

129 }

130 plot(1,1,type="n",bty="n",xaxt="n",xlab="",ylab=ylab ,xlim=c(-extend ,

In+extend),ylim=ylim ,main=main) #initialise plot

131 axis(1,c(-extend ,In+extend),c("",""),lwd.ticks=0,line =0) #add axis

132 axis(1,c(-extend ,0,In ,In+extend),c(labels [1], labels [3], labels [5],

labels [7]),line=0,tck =0.02) #add axis

133 axis(1,c(-(extend/2) ,(In/2),In+(extend/2)),c(labels [2], labels [4],

labels [6]),tick=F,line=-1) #add axis

134 }else{ #peaks plot

135 if(missing(ylim)) { #y limits not provided

136 if (showSEs) ylim <-range(c(approxLines+approxLinesSEs ,approxLines -

approxLinesSEs),na.rm=T) else ylim <-range(approxLines ,na.rm=T)

#get ylim

137 }

138 plot(1,1,type="n",bty="n",xaxt="n",xlab="",ylab=ylab ,xlim=c(-extend ,

extend),ylim=ylim ,main=main) #initialise plot

139 axis(1,c(-extend ,extend),c("",""),lwd.ticks=0,line =0) #add axis

140 axis(1,c(-extend ,0,extend),labels ,line =0) #add axis

141 }

142 }

143 }

144 if (showTrendLine) { #trend line to be plotted

145 for (r in 1:ncol(object)) { #loop through datasets

146 points(trendLinePoints ,approxLines[r,],col=col[r],lty=lty[r],lwd=lwd[r

],type="l") #add trendline

147 if (showSEs) { #standard errors to be shown

148 SDinclude <-!is.na(approxLines[r,]) & !is.na(approxLinesSEs[r,]) #

remove NA values

149 polygon(c(trendLinePoints[SDinclude],trendLinePoints[SDinclude][

length(trendLinePoints[SDinclude]):1]),c((approxLines[r,

SDinclude]+ approxLinesSEs[r,SDinclude]) ,(approxLines[r,SDinclude

][length(trendLinePoints[SDinclude]):1]- approxLinesSEs[r,

SDinclude][length(trendLinePoints[SDinclude]):1])),col=rgb(

matrix(ncol=3,col2rgb(col[r])),max=255, alpha =100),lty=0) #add SE

polygon

150 }

151 }

152 }

153 }

137

CHAPTER 3 SECTION 3.2

The function sets the plot type to “genic” if not provided (L4) and adjusts

the lines to plot depending on the number of datasets provided (L5–8). The

y axis label is set if not provided (L9). Colours and line types are set if

those provided are not suitable (L10–15). Adjustments are made if standard

errors are to be shown (L16–17). A count, arrayData object, list, matrix

and vector are initialised to store data (L18–22) and a loop through chromo-

somes initiated (L23). The count is increased by the number of probes on the

previous chromosome (L24) and arrayData and annotationData from the

current chromosome extracted (L25-26). The loop moves to the next chro-

mosome if no data is found for the current chromosome (L27). Coordinate

data are extracted (L28) and the maximum chromosome coordinate deter-

mined (L29). Labels and regions to plot are determined for genic, intergenic

or peak plots (L30–41). The function stops with a message if one of these

types is not specified (L42). Plot regions are extended in both directions

based on the “extend” value and adjacent plot region positions (L44-45).

For genic and intergenic plots, regions are extracted based on region sizes or

the “geneList” (L47–51). ORF orientations are stored (L53). Probes for each

region are stored in a list (L54–59). Probes, regions, orientations and sizes

for all chromosomes are stored together (L60–63). Parameters for plots are

defined based on the identified probes (L65–70). If a new plot is required, and

all lines are to be shown, this is created based on the extracted probe values

and required plot type (L71–86). A scale factor is determined (L87-88) and

the points at which to define the trend line defined (L89). Coordinates are

extracted (L90) and matrices initiated to store trend line and SE values for

each dataset (L91). A loop through datasets is initiated (L92). Ratio values

are extracted (L93) and a matrix initiated to store the values from which

to calculate the trend line and SEs (L94). A loop in initiated through each

region with probes to be plotted (L95–96) and the line’s x and y values deter-

mined (L97–98). These are shifted, scaled, flipped and/or split as determined

by the region’s scale factor, orientation and the plot type (L99–114). This

line is plotted if required (L115) and the trend line points calculated (L116).

Counts are calculated for the “tidy” argument (L119), the trend line and

SEs calculated from all regions (L120–121) and the “tidy” argument applied

138

SECTION 3.2 CHAPTER 3

(L122). A new plot is created if all lines are not being shown, based on the

trend line and SE values and plot type, and the trend lines/SEs calculated

(L124–143). The trend lines/SEs are then added to the current plot, which

either contain all other lines or just trend lines (L144–152). The process is

largely vectorised for efficiency.

Examples of the types of plots this function can create are shown in Fig-

ure 3.8. The genic plot (top panel) is demonstrated with normalised Abf1

binding data over ORFs of defined size with regions of defined size upstream

and downstream of the ORFs. All data lines are shown in grey, taken from

each of the ORFs and overlayed and scaled to align the start and end posi-

tions together. The trend line, shown in red, is calculated from these data.

The intergenic plot (middle panel) is demonstrated with a single trend line

showing standard errors as a coloured shape around the line. The peak plot

is demonstrated with peaks from the peakDetection function (Chapter 5),

showing three trend lines from three replicate datasets.

3.2.6.4 Rainbow plots

The normalisation procedure presented here (Chapter 4) allows for compar-

isons to be made between datasets. The “rainbowPlot” function, so named

because of the multi-coloured lines it produces, allows these changed to be vi-

sualised at a subset of probes. The values for each probe across the datasets

are plotted as a single line, which shows the variations between datasets.

Data are ordered by the first set of ratios and colours defined by the rainbow

function. This produces the relevant number of different colours. The order

of plotting is calculated from the total differences in probes values between

datasets. In this way the largest differences are plotted last, making them

more visible on the plot. The clarity of the plot can be further increased by

plotting only data where the total difference between values is over a defined

amount. The function has the following arguments:

object An arrayData object containing more than one dataset to be plotted

(no default).

probes A character vector specifying the probes to display data for (no

139

CHAPTER 3 SECTION 3.2

0
5

10
15

20

Profile plot of genic regions
(n = 3608)

H
ei

gh
t

−1000 ORF start ORF end +1000
Promoter Inside Downstream

−
2

0
1

2
3

4
5

Profile plot of intergenic regions
(n = 641)

H
ei

gh
t

−1000 ORF boundary ORF boundary +1000
ORF Intergenic ORF

−
2

0
2

4
6

8

Profile plot of peak regions
(n = 3932)

H
ei

gh
t

−2000 Binding Site +2000

Figure 3.8: Output of profilePlot function: Examples of the three types
of plot that can be created by the profilePlot function using a normalised
Abf1 binding dataset. The genic plot (top panel) shows lines for the data
across 3,608 ORFs meeting the default criteria (grey), along with a trend line
(red). The intergenic plot (middle panel) shows the trend line, with standard
errors shown, created from 641 intergenic regions meeting the default criteria.
The peak plot (bottom panel) shows the data with three trend lines over 3,932
detected peaks, extending the plot region to ±2000 bp.

140

SECTION 3.2 CHAPTER 3

default).

dataNames A character vector specifying the names of data to show on the

graph (default numeric).

cutoff a numeric vector specifying the difference cutoff (default 0).

ylab A character vector specifying the y-axis label (default “Binding Value

(log2)”).

Script 3.19: rainbowPlot: script to display the relationship between the same
probes of different arrayData objects. Coloured lines show changes in values
between datasets.

1 ## rainbowPlot function ##

2 ## arguments: object (an arrayData object), probes(a list of probes),

datanames (for data labels), cutoff (differences value cutoff), ylab (y

axis label)

3 rainbowPlot <-function(object ,probes ,dataNames ,cutoff=0,ylab="Binding Value (

log2)" ,...) { #define function

4 if(ncol(object) < 2) stop("Too few datasets to plot",call.=F) #stop with

error if not enough data

5 data <-object[probes ,]$ratios #get data for relevant peaks

6 data <-data[order(data [,1]) ,] #sort data by values of first column

7 plot(1,1,type="n",xlim=c(0.8, ncol(data)+0.2),ylim=range(data),bty="n",xaxt

="n",xlab="",ylab=ylab ,...) #initlaise plot

8 if(missing(dataNames)) dataNames <-1:ncol(object) #set names if missing

9 axis (1,1: ncol(data),dataNames ,tick=F,line=-1) #draw axis

10 diffs <-apply(abs(diff(data)) ,1,sum) #calculate total differences

11 data <-data[diffs > cutoff ,] #get data above defined differences cutoff

12 plotOrder <-order(diffs[diffs > cutoff]) #set plot order by differences

13 col <-rainbow(nrow(data),start=0,end =0.9) #set colours

14 for(n in plotOrder) { #loop through data

15 points (1: ncol(data),data[n,],type="l",col=col[n]) #add data line

16 }

17 grid(nx=0,ny=NULL) #add grid

18 }

The function first checks enough datasets are provided and stops with a

message if not (L4). The ratios to be plotted are then extracted (L5) and

ordered (L6). A new plot is created based on the ratio values and number of

datasets (L7). Data names are specified if required (L8) and the x-axis drawn

(L9). Total differences across all datasets for each probe are calculated (L10)

and those above the “cutoff” extracted (L11). The plot order is determined

by the difference values, from smallest to largest (L12). Rainbow colours are

calculated (L13) and each set of lines added in the correct order with the

relevant colour (L14–16). Finally horizontal lines of a grid are added (L17).

A rainbow plot has been used to analyse Abf1 binding data in Figure 7.10.

141

CHAPTER 3 SECTION 3.2

3.2.7 Annotating data

Each probe in an arrayData object is associated with its genomic location,

but this does not give any context to that location, specifically how it re-

lates to ORFs. It is useful to be able to determine this information as it

adds another layer of depth to analyses that can be performed. The func-

tion getProbeInfo (Script 3.20) was written to perform this task. For each

probe, the nearest ORF is found, based on the data of a genomeAnnotation

object, and its name and the probe’s distance to its start coordinate stored.

Whether or not the probe is in that ORF is determined, and a labelling

process initiated accordingly. Probes in ORFs are labelled as “Inside”. In-

tergenic probes are labelled depending on their distance from their nearest

ORF, the orientation of that ORF and the “distance” value. This specifies

a cutoff value used when annotating probes in intergenic regions, with dis-

tances over this cutoff being labelled “Intergenic”, rather than “Promoter” or

“Downstream”. The adjacent ORF is also examined and a “Divergent” label

applied if the ORF is in the opposite orientation to the closest ORF. This

may result in a divergent promoter region, where two ORFs point away from

each other, or a divergent downstream region, where two ORFs point towards

each other (Figure 3.9). The process is largely vectorised for efficiency. The

function has the following arguments:

object An arrayData object specifying the probe(s) to be processed (no

default).

annotation A genomeAnnotation object from which to take annotation

information (no default).

distance A numerical vector specifying the distance cutoff (default Inf).

append A logical vector specifying whether or not to append the resulting

data to the arrayData object as extra annotation columns, or return

it as a new matrix (default FALSE).

142

SECTION 3.2 CHAPTER 3

Script 3.20: getProbeInfo: script to associate probes with their nearest ORFs
and provide information on their positions relative to these.

1 ## getProbeInfo function ##

2 ## arguments: object (an arrayData object), annotation (a genomeAnnotation

object), distance (distance to consider promoter/downstream), append (

whether to add the results to the arrayData object)

3 getProbeInfo <-function(object ,annotation ,distance=Inf ,append=FALSE) { #

define function

4 results <-matrix(ncol=4,nrow=nrow(object)) #initialise matrix to store

results

5 colnames(results)<-c("ClosestGene","Distance","Association","Divergent") #

set result column names

6 x<-1 #start count at 1

7 for (chr in unique(object$coordinates [,1])) { #loop through chromosomes

8 annoChr <-annotation[annotation$coordinates [,1] == chr] #get annotation

for current chromosome

9 objectChr <-object[object$coordinates [,1] == chr ,] #get arrayData for

current chromosome

10 if (nrow(annoChr) == 0) { #if no annotation for current chromosome

11 results[x:(x+nrow(objectChr) -1) ,]<-NA #store NA values

12 x<-x+nrow(objectChr) #increase count

13 }else{ #annotation present for current chromosome

14 result <-matrix(ncol=4,nrow=nrow(objectChr))

15 afterGene <-inGene <-matrix(ncol=1,nrow=nrow(objectChr))

16 mids <-rowMeans(matrix(ncol=2,objectChr$coordinates [,2:3])) #get mid

points

17 for (n in 1:nrow(objectChr)) { #loop through probes

18 A<-annoChr$coordinates [,3] >= mids[n] #find genes greater than mid

19 B<-annoChr$coordinates [,2] <= mids[n] #find genes less than mid

20 ingene <-which(A+B > 1) #find if probe is in a gene

21 if (length(ingene) > 0) { #probe is in a gene

22 if (length(ingene) > 1) ingene <-ingene[which.max(apply(annoChr$
coordinates[ingene ,2:3],1, diff))] #get longest gene if more

than one

23 inGene[n]<-ingene #set ORFs probes are in

24 }else{ #probe is not in a gene

25 afterGene[n]<-which(c(A,1)+c(1,B) > 1) -1 #find ORFs probes are

after

26 }

27 }

28 present <-which(!is.na(inGene)) #probes in a gene

29 result[present ,]<-cbind(annoChr$annotations[inGene[present],1],ifelse(
as.numeric(annoChr$annotations[inGene[present],3]) == 1,mids[

present]-annoChr$coordinates[inGene[present],2],annoChr$
coordinates[inGene[present],3]-mids[present]),rep("Inside",length(

present)),rep(FALSE ,length(present))) #get info for probes in

genes

30 mids <-mids[!is.na(afterGene)] #get mids for intergenic probes

31 afterGene <-afterGene[!is.na(afterGene)] #get non -na aftergenes

32 intergenic <-matrix(ncol=7,nrow=length(afterGene)) #create matrix to

store data

33 intergenic [,4]<-mids #insert mids

34 intergenic [,1]<-afterGene #insert LHS positions

35 intergenic [(intergenic [,1] == 0) ,1]<-NA #remove 0 values

36 intergenic [,5]<-afterGene +1 #insert RHS positions

37 intergenic [(intergenic [,5] > nrow(annoChr)) ,5]<-NA #remove values too

large

38 intergenic [,2]<-ifelse(as.numeric(annoChr$annotations[intergenic
[,1],3]) == 1,1,0) #define if lhs gene is watson

39 intergenic [,3]<-mids -annoChr$coordinates[intergenic [,1],3] #calculate

distances

143

CHAPTER 3 SECTION 3.2

40 intergenic [,6]<-ifelse(as.numeric(annoChr$annotations[intergenic
[,5],3]) == 1,1,0) #define if rhs gene is watson

41 intergenic [,7]<-annoChr$coordinates[intergenic [,5],2]-mids #calculate

distances

42 present <-which(is.na(inGene)) #intergenic positions

43 closer <-intergenic [,3] < intergenic [,7] #LHS closer than RHS

44 result[present ,1] <-ifelse(closer ,annoChr$annotations[intergenic
[,1],1], annoChr$annotations[intergenic [,5],1]) #get closest gene

names

45 result[present ,2] <-ifelse(closer ,intergenic [,3], intergenic [,7]) #get

closest gene ditances

46 result[present ,3] <-ifelse(closer ,ifelse(intergenic [,2] == 1,"

Downstream","Promoter"),ifelse(intergenic [,6] == 1,"Promoter","

Downstream")) #define promoter/downstream

47 result[present ,4] <-intergenic [,2] != intergenic [,6] #define divergent

48 present <-which(is.na(inGene))[is.na(intergenic [,1])] #probes before

first gene

49 result[present ,]<-cbind(annoChr$annotations[intergenic[is.na(
intergenic [,1]) ,5],1], intergenic[is.na(intergenic [,1]) ,7],ifelse(

intergenic[is.na(intergenic [,1]) ,6] == 1,"Promoter","Downstream"),

rep(FALSE ,length(present))) #info for probes before first gene

50 present <-which(is.na(inGene))[is.na(intergenic [,7])] #probes after

last gene

51 result[present ,]<-cbind(annoChr$annotations[intergenic[is.na(
intergenic [,7]) ,1],1], intergenic[is.na(intergenic [,7]) ,3],ifelse(

intergenic[is.na(intergenic [,7]) ,2] == 1,"Downstream","Inside"),

rep(FALSE ,length(present))) #info for probes after last gene

52 results[x:(x+nrow(objectChr) -1) ,]<-result #store all results

53 x<-x+nrow(objectChr) #increase count

54 }

55 }

56 results[as.numeric(results [,2]) > distance & results [,3] != "Inside" ,3]<-"

Intergenic" #set intergenic by distance value

57 if(append) { #data is to be appended to arrayData

58 object$annotations <-cbind(object$annotations ,results) #add results to

annotations

59 return(new("arrayData",object)) #return arrayData

60 }else{ #data is not to be appended

61 return(results) #return matrix

62 }

63 }

The function creates a matrix to store the results (L4–5), creates a count (L6)

and initiates a loop through chromosome numbers (L7). The arrayData

and genomeAnnotation for each chromosome are extracted (L8–9). If no

annotation is available for the current chromosome, NA values are set for all

probes on that chromosome and the count incremented (L10–12). Otherwise

three matrices are created (L14–15), the probe mid-points calculated (L16)

and a loop through probes initialised (L17). ORF end points above, and

start points below, the mid-points are identified (L18–19). These are used to

determine whether the probe is in an ORF (L20). If it is (L21), the longest

gene is taken in the case of overlapping genes (L22) and the values stored

144

SECTION 3.2 CHAPTER 3

Inside

PromoterPromoter

DownstreamDownstream

(divergent)(not divergent)

(divergent)(not divergent)

Figure 3.9: ORF position examples: the labels that may be assigned to
probes in different positions relative to their nearest ORF. Yellow boxes
represent ORFs with the arrow indicating the direction of transcription.

145

CHAPTER 3 SECTION 3.2

(L23). Otherwise the preceding gene is identified (L25). For probes in ORFs

(L28) the results are compiled (L29). For intergenic probes the mid-points

(L30) and numbers are extracted (L31). Details of ORFs to the left- and

right-hand-sides are gathered (L32–41). These are used to determine the

association details for internal (L42–47) and external ORFs (L48–51). The

results are stored (L52) and the count increased (L53). Intergenic probes

are identified, based on the “distance” value (L56). If the results are to be

appended to the arrayData object this is carried out and the new object

returned (L57–59), otherwise the matrix of results is returned (L61).

3.2.7.1 Positions plot

The positions of peak positions relative to ORFs can be important to know,

especially for proteins that bind throughout a genome. The getProbeInfo

function can be used to find this information for each probe at the top of a

potential binding region (PBR). The positionsPlot function (Script 3.21)

uses this information to create three graphics. The function has the following

arguments:

peakList The peakList object to be plotted (no default).

probeInfo The matrix of results of the getProbeInfo function for the

peakList being plotted (no default).

Script 3.21: positionsPlot: script to display positional information from a
peakList object.

1 ## positionsPlot function ##

2 ## arguments: probeInfo (result of getProbeInfo), peakList (a peakList

object)

3 positionsPlot <-function(probeInfo ,peakList) {

4 op<-par(no.readonly = TRUE); on.exit(par(op)) #reset current par on exit

5 Pr<-In<-Do<-0 #initialise vectors to store max values

6 if(length(which(probeInfo [,3] == "Promoter")) > 0) Pr<-max(as.numeric(

probeInfo[probeInfo [,3] == "Promoter" ,2]),na.rm=T) #max promoter value

7 if(length(which(probeInfo [,3] == "Inside")) > 0) In<-max(as.numeric(

probeInfo[probeInfo [,3] == "Inside" ,2]),na.rm=T) #max inside value

8 if(length(which(probeInfo [,3] == "Downstream")) > 0) Do<-max(as.numeric(

probeInfo[probeInfo [,3] == "Downstream" ,2]),na.rm=T) #max downstream

value

9 if(Pr < In/2) Pr<-In/2 #scale promoter if required

10 if(Do < In/2) Do<-In/2 #scale downstream if required

11 layout(matrix(c(1,2,3) ,3,1),heights=c(0.3 ,0.7 ,0.3)) #set layout

146

SECTION 3.2 CHAPTER 3

12 par(mar=c(0,4,2,2)) #set par

13 plot(density(c(Pr -as.numeric(probeInfo[probeInfo [,3]=="Promoter" ,2]),Pr+as

.numeric(probeInfo[probeInfo [,3]=="Inside" ,2]),Pr+In+as.numeric(

probeInfo[probeInfo [,3]=="Downstream" ,2])),na.rm=T),main="",bty="n",

xaxt="n",yaxt="n",xlab="",ylab="Density",mar=c(1,2,2,2),xlim=c(0,Pr+In

+Do),lwd=2) #plot density

14 abline(v=c(Pr ,Pr+In),col = "lightgray", lty = "dotted") #add vertical

lines

15 axis(2,labels=F,lwd.tick =0) #add axis

16 par(mar=c(2,4,0,2)) #set par

17 plot(1,1,type="n",bty="n",xaxt="n",xlab="Genome Position",ylab="Peak

Height",xlim=c(0,Pr+In+Do),ylim=range(c(0,peakList$stats [,2]))) #

initialise plot

18 axis(1,c(0,Pr+In+Do),c("",""),lwd.ticks=0,line =0) #add axis

19 axis(1,c(0,Pr,Pr+In,Pr+In+Do),c(-Pr ,0,In ,paste("+",Do ,sep="")),line =0) #

add axis

20 axis(1,c(Pr/2,Pr+(In/2),Pr+In+(Do/2)),c("Promoter","Inside","Downstream"),

tick=F,line=-1) #add axis

21 par(pch=16,cex=0.6,col=rgb(0,0,0,alpha =0.5)) #set par

22 points(Pr-as.numeric(probeInfo[probeInfo [,3]=="Promoter" ,2]),as.numeric(

peakList$stats[probeInfo [,3]=="Promoter" ,2])) #plot promoter points

23 points(Pr+as.numeric(probeInfo[probeInfo [,3]=="Inside" ,2]),as.numeric(

peakList$stats[probeInfo [,3]=="Inside" ,2])) #plot inside points

24 points(Pr+In+as.numeric(probeInfo[probeInfo [,3]=="Downstream" ,2]),as.

numeric(peakList$stats[probeInfo [,3]=="Downstream" ,2])) #plot

downstream points

25 abline(v=c(Pr ,Pr+In),col = "lightgray", lty = "dotted") #add verital lines

26 grid(nx=0,ny=NULL) #add grid

27 par(mar=c(4,8,2,8),las =1) #set par

28 barplot(matrix(c(100*(length(which(probeInfo [,3]=="Downstream" & probeInfo

[,4]=="FALSE"))/nrow(peakList)) ,100*(length(which(probeInfo [,3]=="

Downstream" & probeInfo [,4]=="TRUE"))/nrow(peakList)) ,100*(length(

which(probeInfo [,3]=="Inside"))/nrow(peakList)) ,0,100*(length(which(

probeInfo [,3]=="Promoter" & probeInfo [,4]=="FALSE"))/nrow(peakList))

,100*(length(which(probeInfo [,3]=="Promoter" & probeInfo [,4]=="TRUE"))

/nrow(peakList))),ncol=3,byrow=F),horiz=T,beside=FALSE ,xlab="

Percentage",names.arg=c("Downstream","Inside","Promoter")) #plot

barplot

29 }

The function gets the current par settings to be reset when exiting (L4)

and creates vectors for the storage of x-axis values (L5). The maximum

promoter, inside and downstream values are extracted (L6–8) and scaled if

required (L9–10). These define the values along the x-axis and the positions

of the promoter/inside and inside/downstream boundaries. The plot layout

and parameters are set (L11–12) and the density plot created (L13). Lines

indicating the boundaries (L14) and a y-axis (L15) are added. The plot

margins are adjusted (L16) and a plot initialised for the probes (L17). The

x-axis showing the ORF positions is added (L18–20) and the point parame-

ters set (L21). Points are plotted for the promoter (L22), inside (L23) and

downstream (L24) regions. Lines indicating the boundaries (L25) and log2

147

CHAPTER 3 SECTION 3.2

D
en

si
ty

0
5

10
15

20

Genome Position

P
ea

k
H

ei
gh

t

−6555.25 0 13110.5 +6555.25
Promoter Inside Downstream

Downstream

Inside

Promoter

Percentage

0 10 20 30 40

Figure 3.10: Output of positionsPlot function: Example of the graph-
ics created, using results from peak detection performed on Abf1 binding
datasets. The middle panel shows probe positions plotted against their
heights with the top panel showing a density plot of this data. The bottom
panel shows the percentage of probes in different categories, with intergenic
regions shown in lighter grey.

148

SECTION 3.2 CHAPTER 3

ratios (L26) are added. The margins for the final plot are set (L27) and the

bar plot created (L28).

An example of the positionsPlot output is shown in Figure 3.10. The

centre of the graphic shows a plot of peak heights relative to their nearest

ORF. A promoter, inside and downstream region are displayed along the

x-axis, with log2 ratios on the y-axis. The range of the x-axis is determined

by the largest value in the probe information. Each probe is shown with

a dot, relating its genome position to its height. Above this is a density

plot, representing the numbers of probes along the promoter/ORF/down-

stream region. Overlapping dots, in regions with lots of probes, obscure each

other and therefore prevent an accurate estimation of the relative numbers

of probes. The density plot overcomes this by indicating the numbers of

probes at a given location, allowing the region(s) with the most probes to

be identified. The bottom of the graphic shows the percentage of probes in

promoter, inside and downstream regions as a bar graph, indicating those

from divergent regions with lighter shades of grey.

3.2.7.2 Venn diagrams

Venn diagrams are a method of representing similarity between different

groups of items, with item counts displayed in shapes created by overlap-

ping circles. The function venn (Script 3.22) has been written to create

Venn diagrams to show similarity between two or three peakList objects.

The function provides two methods for displaying this data. The first creates

a standard Venn diagram, where the numbers represent counts of identical

probes between different lists. The second employs the overlap function

(Script 3.23), which identifies PBRs from different peakList objects which

overlap, potentially representing the same binding site but which may have

different probes at their peaks and therefore would not be identified by the

standard Venn diagram format. The function has the following arguments:

peakList1 The first peakList object (no default).

peakList2 The second peakList object (no default).

peakList3 The third peakList object (optional; no default).

149

CHAPTER 3 SECTION 3.2

overlap A logical vector specifying whether or not to employ the overlap

function (default FALSE).

arrayData An arrayData object containing probe coordinates (required by

the overlap function; no default).

windowSize A numeric vector specifying the window size to use when cal-

culating overlaps (no default).

cex A numeric vector defining the size of the plotted circles (default 40).

Script 3.22: venn: script to create a Venn diagram showing the relationship
between the contents of two or three peakList objects.

1 ## venn function ##

2 ## arguments: peakList1 (first peakList), peakList2 (second peakList),

peakList3 (third optional peakList), overlap (whether to use overlap),

arrayData (an arrayData object for overlap), windowSize (window size

value for overlap), cex (cirle size adjustment).

3 venn <-function(peakList1 ,peakList2 ,peakList3 ,overlap=F,arrayData ,windowSize ,

cex =40) { #define function

4 if (peakList1$grid_name != peakList2$grid_name) stop("peakList grid names

do not match",call.=F)

5 if(!overlap) { #no overlap required

6 a<-matrix(peakList1$IDs[,1]) #get first probe IDs

7 b<-matrix(peakList2$IDs[,1]) #get second probe IDs

8 ab<-matrix(intersect(a,b)) #a b intersect

9 if(!missing(peakList3)) { #a third list is povided

10 if (peakList1$grid_name != peakList3$grid_name) stop("peakList grid

names do not match",call.=F) #stop if grid names don ’t match

11 c<-matrix(peakList3$IDs[,1]) #get third probe IDs

12 bc<-matrix(intersect(b,c)) #b c intersect

13 ac<-matrix(intersect(a,c)) #a c intersect

14 abbc <-matrix(intersect(ab,bc)) #ab bc intersect

15 abac <-matrix(intersect(ab,ac)) #ab ac intersect

16 bcac <-matrix(intersect(bc,ac)) #bc ac intersect

17 }

18 }else{ #overlap required

19 if (arrayData$grid_name != peakList1$grid_name) stop("arrayData and

peakList grid names do not match",call.=F) #grid names don ’t match

20 a<-peakList1 #get first peak list

21 b<-peakList2 #get second peak list

22 ab<-overlap(a,b,arrayData ,windowSize) #a b overlap

23 if(!missing(peakList3)) { #a third list is provided

24 if (peakList1$grid_name != peakList3$grid_name) stop("peakList grid

names do not match",call.=F) #stop if grid names don ’t match

25 c<-peakList3 #get thrid peak list

26 bc<-overlap(b,c,arrayData ,windowSize) #b c overlap

27 ac<-overlap(a,c,arrayData ,windowSize) #a c overlap

28 abbc <-overlap(ab ,bc,arrayData ,windowSize) #ab bc overlap

29 abac <-overlap(ab ,ac,arrayData ,windowSize) #ab ac overlap

30 bcac <-overlap(bc ,ac,arrayData ,windowSize) #bc ac overlap

31 }

32 }

33 par(bty="n",xaxt="n",yaxt="n") #set par

34 plot(c(1 ,1.835),c(1,1),cex=cex ,xlim=c(0,3),ylim=c(-1,2),xlab="",ylab="",

pch=16,col=c(rgb(1,0,0,0.3),rgb(0,1,0,0.3))) #initialise plot

150

SECTION 3.2 CHAPTER 3

35 if(!missing(peakList3)) { #third list is present

36 points (1.42 ,0.19 , cex=cex ,pch=16,col=rgb(0,0,1,0.3)) #third circle

37 text (0.62 ,1.22 , nrow(a)-nrow(ab)-nrow(ac)+nrow(abac)) #show numbers

38 text (2.2 ,1.22 , nrow(b)-nrow(ab)-nrow(bc)+nrow(abac)) #show numbers

39 text (1.42 ,-0.26 , nrow(c)-nrow(ac)-nrow(bc)+nrow(abac)) #show numbers

40 text (1.42 ,1.45 , nrow(ab)-nrow(abac)) #show numbers

41 text (2,0.35, nrow(bc)-nrow(abac)) #show numbers

42 text (0.84 ,0.35 , nrow(ac)-nrow(abac)) #show numbers

43 text (1.42 ,0.72 , nrow(abac)) #show numbers

44 }else{

45 text (0.62,1, nrow(a)-nrow(ab)) #show numbers

46 text(2.2,1,nrow(b)-nrow(ab)) #show numbers

47 text (1.42,1, nrow(ab)) #show numbers

48 }

49 }

The function first checks that the grid names of the first and second peakList

objects match (L4). If the overlap function is not to be used (L5) the

peakList IDs are extracted (L6-7) and those identical identified (L8). If a

third peakList is provided (L9) its grid name is checked (L10) and its IDs

extracted (L11). Identical IDs are identified between all possible combina-

tions (L12–16). Where the overlap function is to be used (L18) the grid

name of the arrayData object is checked against that of the first peakList

(L19). The overlap function is applied to the first two peakLists (L20-

22). If a third peakList is provided (L23) its grid name is checked (L24)

and overlap applied to all possible combinations (L25–30). The parameters

of the plot are set (L33) and a plot created containing the first two circles

(L34). If a third peakList is provided (L35) a third circle is drawn (L36) and

all calculated counts printed at the relevant positions (L37–43). Otherwise

calculated counts for the first two peakLists are printed (L44–47) at the

relevant positions.

The overlap function determines overlapping PBRs using coordinates

from a provided arrayData object and the defined window size value. Probes

in one dataset which occur within the window size distance away from adja-

cent probes in the second dataset are deemed to be overlapping. In this way

PBRs containing at their peaks adjacent probes within the window size dis-

tance of each other, called as peaks in different peakLists, will be deemed to

be overlapping and therefore created by the same binding site, whereas those

separated by one or more probes are considered to be created by separate

binding sites. The function is vectorised making it efficient at comparing

151

CHAPTER 3 SECTION 3.2

between lists of hundreds or thousands of PBRs. It is called by the venn

function, providing the two peakList objects to be analysed (“peakList1”

and ““peakList2””), the arrayData object (“arrayData”) and the window

size (“windowSize”).

Script 3.23: overlap: script to determine overlapping PBRs from peakList

objects.
1 ## overlap function ##

2 ## arguments: peakList1 , peakList2 , arrayData , windowSize

3 overlap <-function(peakList1 ,peakList2 ,arrayData ,windowSize) {

4 probes <-arrayData$annotations [,1] #get probe names

5 positions <-rowMeans(arrayData$coordinates [,2:3]) #get probe mid points

6 chrs <-arrayData$coordinates [,1] #get coordinates

7 match1 <-which(peakList1$IDs[,1] %in% peakList2$IDs[,1]) #get matching

positions

8 arrayDataPositions <-which(probes %in% peakList2$IDs[,1]) #probes in

peakList2

9 arrayDataPositions.d<-arrayDataPositions[arrayDataPositions > 1] #probes

to look down

10 arrayDataPositions.u<-arrayDataPositions[arrayDataPositions < nrow(

arrayData)] #probes to look up

11 match2 <-which(peakList1$IDs[,1] %in% probes[ifelse(chrs[arrayDataPositions

.d] == chrs[arrayDataPositions.d-1] & (positions[arrayDataPositions.d]

- positions[arrayDataPositions.d-1]) < windowSize ,arrayDataPositions.

d-1, arrayDataPositions.d)]) #overlap down

12 match3 <-which(peakList1$IDs[,1] %in% probes[ifelse(chrs[arrayDataPositions

.u] == chrs[arrayDataPositions.u+1] & (positions[arrayDataPositions.u]

- positions[arrayDataPositions.u+1]) < windowSize ,arrayDataPositions.

u+1, arrayDataPositions.u)]) #overlap up

13 return(peakList1[unique(c(match1 ,match2 ,match3))]) #return overlapping

probes

14 }

The function extracts probe names (L4), mid-points (L5) and chromosome

numbers (L6) from the arrayData object. Matching probes from both of the

peakList objects are identified (L7). arrayData positions of probes in the

second peakList are identified (L8). Those suitable for looking downwards

and upwards from, that is, those not at the start or end of the genome,

are identified (L9–10). Probe names of “peakList1” are compared to probe

names downstream of each “peakList2” probe name, within the window size

and on the same chromosome (L11). This is repeated for upstream probes

(L12). A peakList containing these identified PBRs is returned (L13). The

coordinate component of this peakList will vary depending on the order

the two peakLists are provided to the function, and so these are not useful

for downstream analyses, but the numbers of peaks returned and the IDs

152

SECTION 3.2 CHAPTER 3

component will always be the same, making it suitable for use by the venn

function and use in further overlap analyses.

3.2.7.3 Extracting sequence information

In addition to displaying information about detected peaks, analysis of the

DNA sequences of PBRs can reveal important information about binding

sites. Identification of a binding motif is one potential use of these se-

quences. The function getSequences was written to extract these sequences

from peakList PBRs using the BSgenome package (Pages, 2012b). This

package downloads entire genome sequences and, among its features, allows

portions of these to be extracted. The getSequences function uses this fea-

ture to extract sequences based on the coordinates of the PBRs stored in the

peakList. The resulting sequences can be analysed in R, with packages such

as Biostrings (H et al.), or written as FASTA files to be loaded into and

processed in other programs. The function has the following arguments:

peakList The peakList object to get sequences for (no default).

genome A (previously downloaded) BSgenome genome from which to get

sequences (no default).

unmask A logical vector specifying whether to apply the unmasked function

to masked sequences (default FALSE).

Script 3.24: getSequences: script to get sequence information from PBRs of
a peakList using the BSgenome package.

1 ## getSequences function ##

2 ## arguments: peakList (a peakListObject), genome (a previously downloaded

genome), unmask (whether to unmask the genome)

3 getSequences <-function(peakList ,genome ,unmask=FALSE) { #define function

4 require(BSgenome) #load package

5 results <-matrix(ncol=1,nrow=nrow(peakList)) #initialse matrix to store

results

6 x<-1 #set x = 1

7 for (chr in unique(peakList$coordinates [,1])) { #loop through chromosomes

8 if(unmask) genomeChr <-unmasked(genome [[chr]]) else genomeChr <-genome [[

chr]] #get chromosome sequence

9 peakListChr <-peakList[peakList$coordinates [,1] == chr] #get chromosome

peak list

10 coordinates <-round(peakListChr$coordinates [,2:3],0)
11 coordinates[coordinates < 1]<-1 #correct coordinates less than 1

12 coordinates[coordinates > length(genomeChr)]<-length(genomeChr) #correct

coordinates greater than the chromosome length

153

CHAPTER 3 SECTION 3.3

13 if (nrow(peakListChr) > 0) { #if a peak is on the chromosome

14 for (n in 1:nrow(peakListChr)) { #loop through peaks

15 results[x]<-as.character(genomeChr[coordinates[n,1]: coordinates[n

,2]]) #get sequence in PBR

16 x<-x+1 #increment x

17 }

18 }

19 }

20 rownames(results)<-peakList$IDs[,1]
21 return(results) #return sequences

22 }

23

24 #source ("http://bioconductor.org/biocLite.R")

25 #biocLite (" BSgenome.Scerevisiae.UCSC.sacCer3 ")

26 #require(BSgenome.Scerevisiae.UCSC.sacCer3)

27 #yeastGenome <-get(" Scerevisiae ","package:BSgenome.Scerevisiae.UCSC.sacCer3 ")

The function first loads the BSgenome package if required (L4), creates a

matrix to store the extracted sequences (L5) and starts a count (L6). A

loop through chromosomes is initiated (L7) and the chromosome sequence

set (L8). PBR coordinates for the current chromosome are extracted (L9–10)

and adjusted if they go beyond the chromosome sequence (L11–12). Where

peaks are present on the chromosome (L13) a loop for peaks is initiated

(L14), the sequence over each PBR stored (L15) and the count incremented

(L16). Probes IDs from the peakList are added as row names (L20) and the

sequences returned (L21). An example of loading the yeast genome sequence

for use in the function is shown (L24–27).

3.3 Discussion

These tools provide methods for easily processing ChIP-chip data of any

format in R. A new format for the storage of this data is created in the form of

the arrayData object, which all other functions presented use. Importantly,

the novel normalisation and enrichment detection procedures, presented in

the following two chapters, also work with data in this format. All functions

presented are therefore compatible with each other, with the results of one

able to be used by another.

Previously, the analysis of ChIP-chip data was generally limited to simply

determining the locations of the presence of the factor under investigation,

such as protein binding sites or the locations of epigenetic modifications (such

154

SECTION 3.3 CHAPTER 3

as the investigation of Abf1 binding under different conditions by Schlecht

et al., 2008). Such analyses require a method of determining sites of enrich-

ment (discussed in Chapter 5), the results of which reduce the data to a list

of locations. The format of the complete data is not therefore very impor-

tant, because it would only be used in this single process. Available tools

for additional analyses are limited and disparate, meaning a simple workflow

from raw data to the type of results generated here did not exist (software

packages include those developed by Toedling et al., 2007; Andrews, 2007;

Zhang et al., 2007; Toedling and Huber, 2008). This was a particular prob-

lem for biological researchers with limited or no bioinformatic experience,

for whom analysing ChIP-chip data using these separate tools could prove

difficult. The tools presented here have been created with these people in

mind, so as to provide fast and simple ways of generating results from raw

data and plotting these graphically where relevant. The instruction docu-

ment (“instructions.pdf” in the electronic appendix; see Page 367) shows

these processes. This does not however limit the tools, as the power of the

R software allows people with the ability to use it to more advanced levels

to perform their own, customised analyses on the data in addition to those

presented here. The data can also be written to a text file during any stage

of its processing, which can be used in other programs if required. This data

may then be read back into R, if required, for further analysis or to plot the

results of this external processing.

The work here has opened up a new level of analysis of ChIP-chip data,

outlined further in the following chapters, expanding the potential of the tech-

nology and along with it the results that can be gleaned from a dataset. The

tools presented here allows this to be achieved through the new arrayData

format, which has been created to contain all of the relevant data in an easily

accessible format. Previously, most microarray data were loaded into R in a

format designed for gene expression analysis, such as the RGList object from

limma (for example, Toedling et al., 2007). While these may have been ade-

quate for basic ChIP-chip analyses, they do not have the flexibility required

to manipulate ChIP-chip data in the ways described here. The arrayData

format is simple and fully described, allowing users to access specific data

155

CHAPTER 3 SECTION 3.3

where required, which may be used by other R functions or to create graphics

for which specific functions have not been written.

Not all of the tools presented in this chapter are completely unique, nor

are they intended to replace their existing counterparts. The plotting of

data along the genome, for example, can be achieved through a number of

other programs, such as the UCSC genome browser (Kent et al., 2002). The

other graphical functions are relatively simple and similar plots have been

created previously, although the programs used to do this have not been

published (see, for example, Pokholok et al., 2005). The functions presented

here are instead intended to bring all of the tools relevant to the ChIP-chip

analysis and processing together, within a single program, using a common

data format. This simplifies the analysis process, with data being able to

be loaded in its raw state, normalised, enrichment detection performed and

a series of graphics created in a matter of minutes. More complex analyses,

such as within the context of genome data in the genomeAnnotation object or

sequence data extracted from a downloaded genome, can then be performed

repeatedly to ask varying questions of the data. Other Bioconductor packages

can also be used to analyse the results, depending on the investigation.

A number of the functions presented in this chapter produce graphical

outputs of some sort. While these can be used as a way of demonstrating

a final result, they are primarily intended to facilitate the discovery of re-

sults, extending the hypothesis generating status of ChIP-chip by indicating

patterns or features in data that may warrant further investigation. These

patterns may not be identifiable in the data as a whole, but become appar-

ent through these methods of plotting. Mathematical processing of the data,

such as calculating the differences between the values of one dataset and an-

other, can also be plotted using these functions, expanding the potential for

the generation of new hypotheses. These can then be confirmed and demon-

strated by other methods, such as the use of other technologies or applying

statistical tests to subsets of the data.

As previously stated, it can be extremely difficult, if not impossible, to

corroborate the entire results of a ChIP-chip dataset. Confirming results for

a representative subset of data with a different technology is as close as it

156

SECTION 3.3 CHAPTER 3

may be possible to get. The tools presented here can facilitate this in two

ways. Firstly, they can be used to determine appropriate points in the data

to test with other technologies. For example, in the enrichment detection

chapter (Chapter 5) a selection of data points are validated with Q-PCR.

To choose these points, the arrayData plot function was used to plot all of

the datasets. From this a selection of probes representing different aspects

of the data, such as different binding values, were chosen. Primers designed

around these probe locations were then used to perform Q-PCRs to validate

the results. Secondly, they can be used to display likely genuine results on

the basis of this subset of tested results. For example, if a subset of detected

peaks from a dataset are shown by another technology to be genuine binding

sites, it is reasonable to assume that all peaks represent genuine binding sites.

These peaks can then be analysed or plotted together, in various ways, to

expand the confirmed results to results that span the whole genome.

157

Chapter 4

Development of a novel
normalisation method

4.1 Introduction

Normalisation, in the context of microarray data, is the processing of different

datasets so as to reduce technical variations between them. Normalisation of

replicate datasets of the same condition (intra-dataset normalisation) aims

to reduce technical variations within these while maintaining the underlying

biological signal. Normalisation of datasets of different conditions (inter-

dataset normalisation) aims to perform the same function as intra-dataset

normalisation whilst maintaining any biologically important differences be-

tween the biological signals from the different conditions. Several normalisa-

tion methods have been developed to achieve these two objectives for gene ex-

pression microarrays, which allows comparisons to be made between mRNA

levels from different experimental conditions. No such procedure exists for

the inter-dataset normalisation of ChIP-chip data, meaning the levels from

from different experimental conditions cannot be reliably compared with each

other. The importance of normalisation to enable comparisons is summarised

by Gentleman (2005):

“Observed intensities need to be adjusted to give accurate mea-

surements of specific hybridisation. Without proper normalisa-

tion, it is impossible to compare measurements from different ar-

ray hybridisations due to many obscuring sources of variation.”

158

SECTION 4.1 CHAPTER 4

Most ChIP-chip investigations to date have been into a single condition,

or comparisons between different conditions have been very limited. In these

investigations datasets are treated in isolation and the properties of the fac-

tor under investigation are determined independently of any other factor.

Therefore the results of the investigations are generally lists of chromosomal

locations at which the factor under investigation is present, as determined

by a suitable enrichment detection method. This restricts the analysis of

the results, as each different experimental condition can only be compared in

a binary fashion, such as the Abf1 binding analysis carried out by Schlecht

et al. (2008). That is to say, only the presence or absence of the factor un-

der investigation at the same site in the datasets can be compared, not the

relative binding amounts between the datasets. This means that when com-

paring a given location between different experimental conditions the gain or

loss of the factor at the site can be identified, if it is detected in one dataset

and not the other, but a change in the level of binding between the two, if

present in both, cannot be determined, because there is no suitable method

of normalising them to allow these comparisons to be made. Comparisons

of binding levels can be made between different locations within the same

dataset, but these cannot be reliably compared to other datasets.

This inability to reliably compare relative binding levels between different

ChIP-chip datasets severely limits the potential of the technology and has

been highlighted previously (Cesaroni et al., 2008, for example). Much more

information than the simple presence or absence of a binding site is present in

datasets, but this information cannot be utilised without a suitable normali-

sation procedure. To address this problem, a novel normalisation method has

been developed here which allows any number of ChIP-chip datasets from

the same experiment to be normalised together to allow comparisons to be

made between them, in a manner similar to existing approaches for transcrip-

tion array datasets. This chapter describes this procedure, which is based on

the quantile normalisation procedure (Bolstad et al., 2003). This chapter is

written with specific reference to the Agilent yeast G4493A microarray, but

is equally applicable to data from any ChIP-chip microarray, and has also

been used with data from other platforms.

159

CHAPTER 4 SECTION 4.2

4.2 Algorithm

The normalisation process has been written as several different functions,

described in this section, which work with certain assumptions of the data

being analysed.

4.2.1 Expectations of the data

This normalisation process, and the peak detection process described in the

next chapter, is based on certain assumptions about the data being analysed,

in order to determine which probes have values representing enrichment and

which have values representing background noise. These assumptions are

that the data are split into two subpopulations and that the estimated back-

ground region of the data forms a normal distribution distinct from the dis-

tribution of the enriched region. This is the ‘perfect’ scenario, but in many

cases data may not exactly conform to these assumptions. In these situations

the normalisation and peak detection may not perform well, or may not be

able to be applied at all. Figure 4.1 shows representations of some different

possible ChIP-chip data distributions. The skewed distribution (A) is the

most commonly described ChIP-chip distribution, which has the majority of

the data points in the background sub-population, with a small proportion of

enriched values which create a tail on the right hand side of the distribution

of the background population. This is most often seen with protein binding

datasets, where a relatively small proportion of probes is enriched. The Abf1

binding datasets presented in Chapter 7 provide examples of these types of

distributions (Figure 7.2). Bimodal distributions may be created when the

enriched sub-population is larger, where this enriched sub-population may

have a lower (B) or higher density (C) than the background sub-population.

This is often seen with datasets measuring epigenetic modifications that oc-

cur throughout a genome. The histone acetylation datasets presented later

in this chapter provide examples of this type of distribution (Figure 4.8).

The background sub-population cannot be distinguished from the enriched

sub-population if all, or the vast majority, of the data points represent the en-

riched sub-population (D). The CPD datasets presented in Chapter 6 provide

160

SECTION 4.2 CHAPTER 4

Centre of
background

sub-population

Centre of
enriched
sub-population

A

B

C

D

Figure 4.1: Examples of data distributions: ChIP-chip data may form skewed
(A), bimodal (B and C) and symmetrical (D) distributions as a result of
varying proportions of probes falling into the background and enriched sub-
populations.

161

CHAPTER 4 SECTION 4.2

examples of this type of distribution (Figure 6.1). In this case the normal-

isation procedure described in this chapter cannot be applied. A potential

alternative is outlined in Section 4.4.

4.2.2 Overview

The normalisation procedure is performed on data in an arrayData object

in the following stages:

1. Remove irrelevant probe values.

2. Remove absent probe values.

3. Quantile normalise replicate datasets.

4. Shift all datasets’ pseudo-modal points to zero (the pseudo-modal shift).

5. Scale all datasets’ estimated background regions to the standard normal

distribution (the background scaling).

Each is written in a separate function, meaning procedures are always carried

out in the correct order and can be omitted if required. All are called by the

normalise function (Script 4.1), which has the following arguments:

object The arrayData object to be normalised (no default).

batches A list specifying replicate datasets to be normalised together (no

default). All datasets are treated as replicates if not specified.

reorder A logical vector specifying whether or not to reorder data according

to the order in the “batches” argument, which ensures replicate datasets

are together (default TRUE).

rmRegions A logical vector specifying whether or not to call the function

to remove irrelevant probe values (default TRUE).

regions A three-column matrix specifying regions from which to remove

probe values (no default).

rmNAValues A logical vector specifying whether or not to call the function

to remove absent probe values (default TRUE).

quantile A logical vector specifying whether or not to call the function to

perform the quantile normalisation procedure (default TRUE).

162

SECTION 4.2 CHAPTER 4

shift A logical vector specifying whether or not to call the function to per-

form the pseudo-modal shift (default TRUE).

customShift A numerical vector specifying the centres of the estimated

background regions if these are not the pseudo-modes (no default).

scale A logical vector specifying whether or not to call the function to per-

form the background scaling (default TRUE).

rowMeans A logical vector specifying whether or not to perform normali-

sation on averaged datasets (default FALSE).

Script 4.1: normalise: script containing the normalisation functions.
1 ## normalise function ##

2 ## arguments: object (an arrayData object), batches (list of groups of

datasets to process together), regions (regions to be deleted: passed to

rmRegions function), customShift (custom shift values: passed to

shiftByMode function), rmRegions (apply the rmRegions function),

rmNAValues (apply the rmNAValues function), quantile (apply the

quantileNormalise function), shift (apply the shiftByMode function),

scale (apply the stNormScale function), reorder (reorder resulting

datasets to match the order of batches)

3 normalise <-function(object ,batches ,regions ,customShift ,rmRegions=T,

rmNAValues=T,quantile=T,rowMeans=F,shift=T,scale=T,reorder=T) { #define

the function

4 if (missing(batches)) batches <-list (1: ncol(object)) #if no batches are

provided define 1 batch

5 if (missing(customShift)) customShift <-rep(NA ,length(batches)) #if no

custom shifts provided define no custom shifts

6 if (!is.list(batches)) stop("Batches must be a list", call.=F) #check

batches is a list , stop with message if not

7 if(rmRegions & missing(regions)) warning("\"regions\" missing: unable to

rmRegions", call.=F) #warning message if no regions are provided for

the rmRegions function

8 if (rmRegions & !missing(regions)) object <-rmRegions(object ,regions) #if

regions are to be removed run the rmRegions function

9 if (rmNAValues) object <-rmNAs(object) #if NA values are to be removed run

the rmNAs function

10 count <-0 #set count to 1

11 object.n<-object #create arrayData object to store normalised data

12 for (o in 1: length(batches)) { #loop through batches

13 temp <-object[,batches [[o]]] #get data in current batch

14 if(quantile) temp <-quantileNormalise(temp) #if quantile normalisation is

to be performed run the quantileNormalise function

15 if(rowMeans) temp <-rowMean(temp)

16 if (shift) temp <-shiftByMode(temp ,custom=customShift [[o]]) #if a pseudo -

modal shift is to be performed run the shiftByMode function

17 if (scale) temp <-stNormScale(temp) #if a background scale is to be

performed run the stNormScale function

18 object.n$status[batches [[o]]] <-temp$status #get updated statuses

19 object.n$ratios[,batches [[o]]] <-temp$ratios #store normalised data

20 }

21 if(reorder) object.n<-object.n[,unlist(batches)] #reorder datasets

22 return(new("arrayData",object.n)) #return normalised data

23 }

163

CHAPTER 4 SECTION 4.2

The function adds all datasets to the same batch (L4) and sets all custom

shift values to NA (L5) if they are not user defined. If “batches” is not a

list the function stops with a message (L6). If rmRegions is set to run but

no “regions” argument is provided, rmRegions is set not to run and a warn-

ing message printed (L7). If set to run, rmRegions (L8) and rmNAValues

(L9) are performed on all datasets. A count is defined (L10) and a new

arrayData object created (L11) before a loop through the batches is initi-

ated (L12). The data for the current batch is extracted (L13) and provided

to quantileNormalise (L14). Data are averaged at this point if required

(L15). shiftByMode (L16), with the corresponding “customShift” values)

and stNormScale (L17) are run when required. Data are reordered if re-

quired (L21) and finally returned (L22).

4.2.3 Preprocessing

Before the data can be normalised it must be prepared for the process. Pre-

processing is a generic term given to the small changes made to datasets to

prepare them for the main processing to take place. The phrase ‘garbage in,

garbage out’ is commonly used in computing as a way of highlighting the fact

that a computer will only return correct results if correct data is first input.

This initial pre-processing step is required to ensure that only the correct

data is passed on to the next processing stage and therefore that the results

produced in the subsequent analyses are correct. There are three stages to

the preprocessing of the G4493A microarray datasets, all of which remove

irrelevant data points so as to ‘tidy’ the datasets.

4.2.3.1 Removing irrelevant probe values

The first stage is to remove all probes corresponding to irrelevant data. On

the G4493A microarray these are probes for the mitochondrial genome and

a selection of genes deleted in the yeast strain BY4742. This is performed

by the rmRegions function (Script 4.2) which has the following arguments:

164

SECTION 4.2 CHAPTER 4

object The arrayData object to be processed (no default).

deleteRegions The three-column matrix supplied by the “regions” argu-

ment of the normalise function, containing the chromosome number

and coordinates of the region(s) to be removed.

Script 4.2: rmRegions: script to remove specified regions from an arrayData

object.
1 ## rmRegions function ##

2 ##arguments: object (an arrayData object), deleteRegions (a matrix of

coordinates of regions to remove)

3 rmRegions <-function(object ,deleteRegions) { #define function

4 remove <-numeric () #initialse vector to store probes to remove

5 for (n in 1:nrow(deleteRegions)) { #loop through coordinates of regions to

be removed

6 remove <-c(remove ,which(object$coordinates [,1] == deleteRegions[n,1] &

object$coordinates [,2] <= max(deleteRegions[n ,2:3]) & object$
coordinates [,3] >= min(deleteRegions[n ,2:3]))) #get positions of

probes to be deleted

7 }

8 for (n in 1:ncol(object)) { #loop through datasets

9 object$status [[n]]<-c(object$status [[n]],"rmRegions") #add ’rmRegions ’

to arrayData status

10 object$status [[n]]<-object$status [[n]][!object$status [[n]] == "raw"] #

remove ’raw ’ from status

11 }

12 if (length(remove) > 0) { #if some probes are to be deleted

13 return(new("arrayData",object[-remove ,])) #remove the probes

14 }else{ #no probes are to be deleted

15 return(new("arrayData",object)) #return the original object

16 }

17 }

18

19 regions <-matrix(ncol=3,nrow =5) #regions to delete on the yeast 4x44k array:

20 regions [1,]<-c(2 ,473920 ,469742)

21 regions [2,]<-c(14 ,721947 ,722609)

22 regions [3,]<-c(3 ,91324 ,92418)

23 regions [4,]<-c(5 ,116167 ,116970)

24 regions [5,]<-c(17,0,Inf)

The function creates a vector to store the probe numbers to be removed (L4)

and initialises a loop for each defined region to be deleted (L5), where all

probes falling in the region are identified (L6). The status is updated for

each dataset (L8–11) and, where probes are identified to be removed, they

are taken from the returned dataset (L12–16). The matrix used to remove

regions from the yeast microarray is shown (L19–24).

165

CHAPTER 4 SECTION 4.2

Removing probe values for the mitochondrial genome

The G4493A microarray contains 295 probes for the yeast mitochondrial

genome. These probes do not hybridise to mitochondrial DNA as well as

the genomic probes do to genomic DNA, shown with box plots of the IP

sample (red) and input sample (green) genomic and mitochondrial probes

from microarrays measuring CPDs (Figure 4.2, see Chapter 6 for further

information on the data). The average binding levels of the mitochondrial

probes are several orders of magnitude less than the genomic probes. There

is also a greater range of data values: the average standard deviation values

of the 0 hr genomic, 0 hr mitochondrial, 2 hr genomic and 2 hr mitochondrial

log2 ratios are 0.2, 1.5, 0.1 and 3.4 respectively. There is also more variation

in the range of standard deviation values for the mitochondrial probes than

the genomic. This suggests greater variability in the binding of mitochondrial

DNA to their probes than genomic DNA, making the values unreliable.

The reason for this inconsistency is not known, but is most likely due

to the GC content of the mitochondrial genome which is, at an average of

17.2%, much lower than the genomic DNA, at an average of 37.9% (Fig-

ure 4.3). This low GC content has two important implications in the context

of the microarray assays. Firstly, it can affect the two PCR amplification

steps carried out during the DNA preparation stage, as well as the labelling

reaction, which is eqivalent to a single PCR cycle. It is known that PCR

efficiency is affected by GC content, due to this causing variations in the

melting temperature of the dsDNA (Marmur and Doty, 1962). It is possi-

ble to modify the PCR reaction to better suit this low GC content DNA

(Kramer and Coen, 2001, for example), but at the expense of the genomic

DNA and so full amplification of all DNA together is not possible. Secondly,

the low GC content of the probes and complementary DNA sequences means

that they will not hybridise as efficiently to the microarrays. The bonding

between G and C nucleotides is via three hydrogen bonds whereas there are

two between A and T nucleotides. The bond between A and T is therefore

weaker than that between G and C. The abundance of A and T nucleotides

means that the binding of mitochondrial DNA to the corresponding probes

166

SECTION 4.2 CHAPTER 4

0

5

1
0

1

5

2
0

B
in

d
in

g
 L

e
v
e

l
(l
o

g
2

)

Repeat 1 Repeat 2 Repeat 1 Repeat 2 Repeat 1 Repeat 2 Repeat 1 Repeat 2

Genomic Mitochondrial Genomic Mitochondrial

0 hr 2 hr

Figure 4.2: Mitochondrial probe binding values: Box plots showing the range
of fluorescence values of genomic and mitochondrial probes from 4 microar-
rays measuring CPD incidence. Red shows IP sample values, green input
sample. The mitochondrial probes show lower, more varied binding values
than the genomic probes.

1
0

2

0

3
0

4

0

5
0

6

0

P
ro

b
e

 G
C

 c
o

n
te

n
t
(%

)

Genomic Mitochondrial

Figure 4.3: Probe GC contents: Box plots showing the range of GC content
(%) of yeast genomic and mitochondrial probes. The mitochondrial probes
show lower values than the genomic probes, reflecting the overall content.

167

CHAPTER 4 SECTION 4.2

will not be as strong as the genomic DNA, potentially resulting in a smaller

amount of bound DNA, which will give a lower fluorescence signal, which is

known to be the case with oligonucleotide micorarrays (Heller, 2002).

The high AT content — as a result of the low GC content — means there

exists a greater potential for the formation of CPDs, as there will be a high

number of TT dinucleotide sequences. This in turn should mean that the

immunoprecipitated binding values from the mitochondria should be higher

than the rest of the genome. In addition, there are multiple mitochondria

per cell, meaning there are many more copies of mitochondrial than genomic

DNA. This increased copy number should give higher signals to the mito-

chondrial probes than the rest of the genome. This is not the case, shown in

Figure 4.2, which further suggests the mitochondrial probes do not provide

an accurate representation of UV damage in these datasets.

This idea was confirmed by predicting the binding levels from the genome

sequence, as has been done for genomic DNA (Chapter 6). This showed a

good correlation between predicted and actual values with a Spearman’s

rank correlation coefficient of 0.77, indicating the microarray results are a

genuine representation of what is occurring in the cell. The same procedure

applied to the mitochondrial genome sequence shows no correlation between

the predicted and actual values with a Spearman’s rank correlation coefficient

of -0.01. Taking only the coding regions of the genome, which have a higher

GC content than the non-coding regions, does not improve the correlation,

with a Spearman’s rank correlation coefficient of 0.03.

Taken together these results suggest that the probes for the mitochondrial

genome do not provide reliable data for the datasets produced here and

therefore these probe values have been removed from all datasets analysed.

Removing probe values for deleted genes

The G4493A microarrays contain probes covering the whole yeast genome.

However, many laboratory strains have some genes deleted, the correspond-

ing probes for which need to be removed from analyses. The BY4742 yeast

strain most commonly used in our laboratory has four deleted genes: Lys2;

168

SECTION 4.2 CHAPTER 4

His3; Leu2; and Ura3, together covering 6,741 bp. There are 26 probes on

the G4493A microarray complementary to sites within these regions.

4.2.3.2 Removing absent values

The data analysed from the microarrays is calculated as the logarithm (base

2) of the red:green signal intensity ratios. This conversion to logarithmic

space can create absent values if either the red or green signal is negative, as

the logarithm of a negative number is not possible. This can arise after the

background subtraction has taken place, if the background intensity is greater

than the probe intensity. All data for probes across a set of datasets where

at least one has such a missing value are removed, so that all probes have a

full complement of replicates. Any statistics applied to the arrays later on

can therefore be interpreted at the same level. This should not remove more

than a small number of probes from the datasets and so will not adversely

affect the remaining analyses. The removal of many probes may suggest a

problem with one or more datasets which would require further investigation

before proceeding with the rest of the normalisation procedure. The rmNAs

script (Script 4.3) performs this function, which has the following argument:

object The arrayData object to be processed (no default).

Script 4.3: rmNAs: script to remove absent values across arrayData datasets.
1 ## rmNAs function ##

2 ## arguments: object (an arrayData object)

3 rmNAs <-function(object) {#define function

4 NAs <-numeric () #initialise vector to store probes

5 for (n in 1:ncol(object)) { #loop through datasets

6 NAs <-c(NAs ,which(is.na(object$ratios[,n]))) #get probes with NA values

7 }

8 NAs <-unique(NAs) #get unique probes

9 if(length(NAs) > 0) object$ratios[NAs ,]<-NA #replace all NA probe values

with NAs

10 message(paste(length(NAs),"NA probes")) #print the number of probes

removed

11 for (n in 1:ncol(object)) { #loop through datasets

12 object$status [[n]]<-c(object$status [[n]],"rmNAs") #add ’rmNAs ’ to

arrayData status

13 object$status [[n]]<-object$status [[n]][!object$status [[n]] == "raw"] #

remove raw from status

14 }

15 return(new("arrayData",object)) #return data

16 }

169

CHAPTER 4 SECTION 4.2

The function creates a vector to store probes identified as containing NA

values (L4) and loops through each dataset to find these probes (L5–7).

Identified probes have all ratio values set as NA (L9) and a message is printed

showing the number of these probes found (L10). The status of all datasets

is updated (L11–14) and the new object returned (L15).

4.2.4 Full processing

The full normalisation procedure begins once the pre-processing has been

completed. Pre-processing is applied to all datasets irrespective of their

nature (inter-dataset normalisation). For the reasons discussed previously

the full normalisation procedure cannot be applied in this way and so the

following functions are applied to groups of replicate datasets separately, as

defined by the “batches” argument of the normalise function (intra-dataset

normalisation).

4.2.4.1 Quantile normalisation

Quantile normalisation is performed by the quantileNormalise function

(Script 4.4), using the preprocessCore package which implements the method

described by Bolstad et al. (2003). Briefly, the quantile normalisation pro-

cedure aims “to make the distribution of probe intensities for each array in

a set of arrays the same” (Bolstad et al., 2003). This means that all nor-

malised datasets are transformed to follow the same distribution, which can

be thought of as the average distribution of all the datasets. The procedure

is demonstrated with some randomly generated example data consisting of 3

replicates and 10 points (Table 4.1, plotted in Figure 4.4.).

Each column of the raw data is sorted from largest to smallest values and

the mean of each of these new rows is calculated (Table 4.2).

The values of each position in the row are replaced with the new mean

value and each column is reordered to its original order in the raw data

(Table 4.3).

This procedure has the effect of bringing the replicate values closer to-

gether, thus reducing the variation between datasets (Figure 4.4A, compare

170

SECTION 4.2 CHAPTER 4

Position Replicate 1 Replicate 2 Replicate 3
1 1.66 1.88 3.36
2 1.44 1.01 4.56
3 2.80 2.22 4.25
4 2.21 2.26 5.95
5 3.14 3.83 5.24
6 3.70 3.37 5.97
7 3.12 3.41 4.43
8 2.54 2.82 4.38
9 1.73 2.54 3.45
10 1.92 1.64 3.12

Table 4.1: Quantile normalisation example data: Three replicate sets of ten
randomly generated values, representing values from a microarray containing
ten probes. Plotted in Figure 4.4A and B.

Replicate 1 Replicate 2 Replicate 3 Mean
2 1.44 2 1.01 10 3.12 1.86
1 1.66 10 1.64 1 3.36 2.22
9 1.73 1 1.88 9 3.45 2.35

10 1.92 3 2.22 3 4.25 2.80
4 2.21 4 2.26 8 4.38 2.95
8 2.54 9 2.54 7 4.43 3.17
3 2.80 8 2.82 2 4.56 3.39
7 3.12 6 3.37 5 5.24 3.91
5 3.14 7 3.41 4 5.95 4.17
6 3.70 5 3.83 6 5.97 4.50

Table 4.2: Quantile normalisation example processing: Each replicate sorted
from smallest to largest, with its original position from Table 4.1 shown in
red and the mean for each row shown in bold.

171

CHAPTER 4 SECTION 4.2

black and red lines). One of the example datasets was deliberately given

larger values to demonstrate this point. It follows that this procedure also

reduces the standard deviation of replicates that are not initially similar (Fig-

ure 4.4B, compare black and red lines). It also gives each dataset the same

statistical properties, including the same distribution. This has the effect of

giving the replicate datasets the same density profile (Figure 4.4C, compare

black and red lines).

In performing these numerical manipulations the quantile normalisation

procedure removes a large proportion of any variations between replicate

datasets. This is demonstrated by the reduction in the size of the error

bars in Figure 4.4B. The example data generated for this demonstration

consists of 3 replicates, one of which is deliberately different from the others

(Table 4.1 and Figure 4.4A) to demonstrate the ability of the normalisation

procedure to remove this difference. This is representative of real ChIP-chip

data, which are rarely similar before normalisation, hence the need to apply

a normalisation procedure. Figure 4.4B shows that the means of the datasets

are not greatly changed by the procedure.

Figure 4.5 shows Q-Q plots of the raw and quantile normalised data. As

expected, all normalised data follow the same distribution, evidenced by all

their points lying on the line y = x.

Quantile normalisation is applied to each set of replicate datasets (intra-

dataset normalisation) to remove variations between theoretically identical

datasets. Figure 4.4C demonstrates why this procedure cannot be applied

to datasets from different biological conditions. If, for example, the third

example dataset (which is deliberately shown with larger values than the

other two datasets to demonstrate the normalisation procedure) was from a

different experimental condition and as a result had higher values due to a

change in biology, a normalisation method should not seek to remove this,

but maintain these differences between the two. Quantile normalisation does

remove these differences, by creating a new distribution somewhere between

the initial distributions. This not only reduces the larger values but increases

the smaller values, which is detrimental to both sets of results and removes

the biological relevance. This is why groups of replicate datasets are provided

172

SECTION 4.2 CHAPTER 4

●
●

●

●

●

●

●

●

●
●

2 4 6 8 10

0
1

2
3

4
5

6

Position

V
al

ue

●

●

● ●

●

● ●

●
●

●

●

●
●

●

●

●

● ●

●
●

A

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●
●

2 4 6 8 10

0
1

2
3

4
5

6

Position

V
al

ue

● ●

●
●

● ●

●

●

●
●

B

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

Value

D
en

si
ty

C

Figure 4.4: The effect of quantile normalisation on data: A: The example
data from Table 4.1 (black) and the quantile normalised data from Table 4.3
(red). B: Means of the example data from Table 4.1 (black) and the quantile
normalised data from Table 4.3 (red). Error bars represent ±1 standard de-
viation. C: Density profiles of the example data from Table 4.1 (black) and
the quantile normalised data from Table 4.3 (red). The quantile normali-
sation procedure makes all datasets follow the same distribution, hence the
appearance of a single red line.

173

CHAPTER 4 SECTION 4.2

Position Replicate 1 Replicate 2 Replicate 3
1 2.22 2.35 2.22
2 1.86 1.86 3.39
3 3.39 2.80 2.80
4 2.95 2.95 4.17
5 4.17 4.50 3.91
6 4.50 3.91 4.50
7 3.91 4.17 3.17
8 3.17 3.39 2.95
9 2.35 3.17 2.35
10 2.80 2.22 1.86

Table 4.3: Quantile normalisation example result: The original data replaced
with the mean values from Table 4.2 and reordered to the original order in
Table 4.1 to create quantile normalised data. Plotted in Figure 4.4A and B.

●

●
●

● ●
●

●

●●

●

1.5 2.5 3.5

1.
0

2.
5

Raw data 1

R
aw

 d
at

a
2

A1

●
●●

● ● ● ●

●

● ●

1.5 2.5 3.5

3.
5

5.
0

Raw data 1

R
aw

 d
at

a
3

A2

●
● ●

●●
● ●

●

● ●

1.0 2.0 3.0

3.
5

5.
0

Raw data 2

R
aw

 d
at

a
3

A3

●

●
●

●
●

●
●

●
●

●

2.0 3.0 4.0

2.
0

3.
0

4.
0

Raw data 1

R
aw

 d
at

a
2

B1

●

●
●

●
●

●
●

●
●

●

2.0 3.0 4.0

2.
0

3.
0

4.
0

Raw data 1

R
aw

 d
at

a
3

B2

●

●
●

●
●

●
●

●
●

●

2.0 3.0 4.0

2.
0

3.
0

4.
0

Raw data 2

R
aw

 d
at

a
3

B3

Figure 4.5: Example data quantile-quantile plots: A: Raw data do not follow
the same quantiles. B: quantile normalised data follow the same quantiles.
Lines show y = x.

174

SECTION 4.2 CHAPTER 4

separately. The function has the following arguments:

object The arrayData object to be processed (no default).

Script 4.4: quantileNormalise: script to apply the preprocessCore

normalise.quantiles function to an arrayData object.
1 ## quantileNormalise function ##

2 ## arguments: object (an arrayData object)

3 quantileNormalise <-function(object) { #define function

4 require(preprocessCore) #load package containing qualtile normalisation

function

5 object$ratios <-normalize.quantiles(object$ratios) #perform quantile

normalisation

6 for (n in 1:ncol(object)) { #loop through datasets

7 object$status [[n]]<-c(object$status [[n]],"quantileNormalise") #add ’

quantileNormalise ’ to status

8 object$status [[n]]<-object$status [[n]][!object$status [[n]] == "raw"] #

remove ’raw ’ from status

9 }

10 return(new("arrayData",object)) #return quantile normalised data

11 }

The function loads the preprocessCore package if not already present (L4)

and performs the quantile normalisation on the arrayData ratio values (L5).

The status of all datasets is updated (L6–9) and the new object returned

(L10).

The intra-replicate quantile normalisation process is followed by a novel

inter-replicate normalisation procedure which normalises them together, whilst

seeking to maintain any biologically relevant differences, allowing relative

comparisons to be made between them.

4.2.4.2 Pseudo-modal shift and background scaling

The extended normalisation procedure aims to mimic the quantile normal-

isation procedure on only a subset of data. The subset used is an estimate

of the background population of probes, that is, probes that do not repre-

sent enriched sections of the genome. This background population should

therefore be a list of zero values, but the inherent variation of noise in the

assay means it approximates a normal distribution. This distribution should

be centred around zero, but variations in the assay mean it may not be. In

an assay performed where no material is enriched, all of the probes would

175

CHAPTER 4 SECTION 4.2

fall within this approximately normal background distribution. If two such

assays were performed and were to be compared, they could be quantile

normalised together to form a third normal distribution, because a priori

knowledge states that they are theoretically identical and therefore quantile

normalisation is applicable. An equivalent procedure would be to shift and

scale one or both distributions such that they follow the same distribution,

that is, have the same mean and standard deviation. If both were exactly

normally distributed they would both exactly follow the new distribution,

as achieved with quantile normalisation. If they both approximate normal

distributions, as they would in real data, they would approximately follow

the same distribution following the shift and scale. Therefore taking two

sets of background values and shifting them to centre on the same point and

scaling them to have the same standard deviation makes them comparable,

in the same way they would be if they were quantile normalised. This is the

basis of the novel normalisation procedure presented here, where the overall

distribution of values is used to estimate the background values, which are

shifted to centre on 0 and scaled to a standard deviation of 1 (creating the

standard normal distribution).

Real ChIP-chip data consist of two sub-populations: enriched and non-

enriched probes. These two sub-populations overlap to create the previ-

ously described skewed distribution, the skew as a result of the enriched

sub-population consisting of larger values than the background. The fact

that most ChIP-chip datasets have this background subpopulation as well as

the enriched subpopulation means that it can be used as a constant between

different datasets. Shifting and scaling each background population to follow

the same distribution makes them comparable, as described above. Shifting

and scaling the enriched population along with them means that these also

become comparable between the different datasets.

As the two subpopulations of data are not distinct, an estimate of the

background subpopulation is made by calculating kernel density estimates of

the data via the density command in R and shifting the data to centre the

highest point on zero (Figure 4.6). This is equivalent to aligning the data

by their modal points, but the nature of the data is such that each value is

176

SECTION 4.2 CHAPTER 4

0

Figure 4.6: Representation of the pseudo-modal shift: Grey lines represent
datasets, with their pseudo-modal points indicated with a dashed red line.
The datasets are shifted, upwards or downwards, so that this point lies on
zero. The black line represents a dataset following the pseudo-modal shift.

177

CHAPTER 4 SECTION 4.2

rarely replicated and so this pseudo-mode has to be calculated. This is based

on the assumption that this point represents the centre of the background

subpopulation. This is true if the background subpopulation consists of more

than half of the probes. If more than half are enriched the highest point

of the distribution represents the enriched subpopulation, but the peak of

the background subpopulation can still be estimated if the distribution is

bimodal. If a large proportion of probes are enriched and the peak of the

background subpopulation cannot be estimated then this method cannot be

applied.

A Gaussian smoothing kernel is used to create the density plot from which

the pseudo-mode is predicted. Kernel density estimation is non-parametric,

that is, it does not assume any underlying distribution in the data. This is

important as there can be a lot of variation in the distributions of different

datasets and the distribution of any given dataset is not known. A histogram

is a simple form of non-parametric density estimation, which uses counts of

data in a number of bins of set width throughout the dataset. The smoothing

estimate uses a mathematical formula to create the density, which is com-

posed of a number of kernels, one at each data point. In the case of Gaussian

smoothing, each follows a Gaussian distribution. The overall density is the

total of these kernels. R provides 6 other smoothing methods: epanech-

nikov; rectangular; triangular; biweight; cosine; and optcosine, which use

varying distributions as the kernels. All of these methods provide similar

or identical pseudo-modes to the Gaussian method for the H3Ac and Gcn5p

binding datasets (“Kernel density estimates.pdf” file in electronic appendix;

see Page 367). Where there are variations between the different pseudo-

modes, the Gaussian method always produces the most common result for

these datasets, showing it is the most appropriate method to use. However,

the variations between the different methods are so small that the impact on

the final result would be negligible alongside the other sources of variation.

The shifting of the data is achieved via the shiftByMode function (Script 4.5),

which has the following arguments:

object The arrayData object to be processed.

custom A value from the distribution to be centred over 0, where the

178

SECTION 4.2 CHAPTER 4

pseudo-mode is not the centre of the estimated background popula-

tion.

Script 4.5: shiftByMode: script to shift an arrayData object to centre its
pseudo-modal value on zero.

1 ## shiftByMode function ##

2 ## arguments: object (an arrayData object), custom (a value to shift to zero

if not the psedo -mode)

3 shiftByMode <-function(object ,custom=NA) { #define function

4 if (missing(custom)) custom <-NA #check for custom shift

5 for (m in 1:ncol(object)) { #loop through datasets

6 if (is.na(custom)) { #if no custom value specified

7 shift <-density(object$ratios[,m],na.rm=T)$x[which.max(density(object$
ratios[,m],na.rm=T)$y)] #find pseudo -mode

8 }else{ #custom value specified

9 shift <-custom #get custom shift value

10 }

11 object$ratios[,m]<-object$ratios[,m]-shift #shift dataset by appropriate

amount

12 }

13 for (n in 1:ncol(object)) { #loop through datasets

14 object$status [[n]]<-c(object$status [[n]],"shiftByMode") #add ’

shiftByMode ’ to status

15 object$status [[n]]<-object$status [[n]][!object$status [[n]] == "raw"] #

remove ’raw ’ from status

16 }

17 return(new("arrayData",object)) #return pseudo -modal shifted data

18 }

The function sets the custom shift value to NA if none is provided (L4) and

initiates a loop through the datasets (L5). Where no custom shift is defined

the density function is used to identify the pseudo-mode of the dataset

which defines the value to shift the data by, otherwise the custom value is

used (L6–10). The dataset is then shifted by this amount (L11). The status

of all datasets is updated (L13–16) and the new object returned (L17).

The pseudo-modal shift takes account of additive differences between dif-

ferent datasets. For example, if one dataset has all intensity values a number

of units greater than those of another dataset, the shift would correct this by

bringing both datasets to the same background level such that the differences

in intensity values are removed. It cannot however remove multiplicative

(scale) differences which occur at increasing or decreasing levels throughout

a dataset. Smyth and Speed (2003) point out the need to take account of

these potential scale differences,

“Sometimes there are substantial scale differences between mi-

179

CHAPTER 4 SECTION 4.2

croarrays, because of changes in the photomultiplier tube settings

of the scanner or for other reasons. In these circumstances it is

useful to scale-normalize between arrays.”

This is the function of the background scaling part of the normalisation

process, performed by the stNormScale function (Script 4.6). Mirroring

the left had side of the background population (all of the negative values

following the shift to zero) onto the right hand side (Figure 4.7 inset) allows

an estimate of the standard deviation to be calculated. A scale factor is then

calculated as 1 ÷ the standard deviation of this mirrored data. The whole

dataset is multiplied by this factor to scale it to the required distribution

(Figure 4.7). The background subpopulation then approximates the same

(standard normal) distribution for all datasets and comparisons of enriched

values can be made relative to this constant. The function has the following

argument:

object The arrayData object to be processed.

Script 4.6: stNormScale: script to scale the mirrored background distribution
to approximate the standard normal distribution.

1 ## stNormScale function ##

2 ## arguments: object (an arrayData object)

3 stNormScale <-function(object) { #define function

4 for (n in 1:ncol(object)) { #loop through datasets

5 if ("shiftByMode" %in% object$status [[n]]) { #if dataset has been

shifted by its mode

6 ratios <-object$ratios[,n] #get ratios

7 ratios.low <-ratios[which(ratios < 0)] #get ratio values below mode

8 SD<-sd(c(ratios.low ,abs(ratios.low))) #calculate standard deviation of

mirrored data

9 object$ratios[,n]<-object$ratios[,n]*(1/SD) #multiply dataset by factor

to make background standard deviation 1

10 object$status [[n]]<-c(object$status [[n]],"stNormScale") #add ’

stNormScale ’ to status

11 object$status [[n]]<-object$status [[n]][!object$status [[n]] == "raw"] #

remove ’raw ’ from status

12 }else{

13 warning(paste("shiftByMode has not been applied to dataset ",colnames(

object$ratios)[n],": stNormScale not applied"), call.=F) #warning

message if dataset has not been shifted by its mode

14 }

15 }

16 return(new("arrayData",object)) #return background scaled data

17 }

180

SECTION 4.2 CHAPTER 4

0

Figure 4.7: Representation of the background scaling: Grey lines represent
datasets to be scaled, with arrows indicating whether they should be made
larger or smaller. The black line represents the datasets following scaling,
where the estimated background values follow the standard normal distribu-
tion. Inset: the standard normal distribution (red dashed line) approximates
the background values of the shifted and scaled data (black line).

181

CHAPTER 4 SECTION 4.3

The function initiates a loop through the datasets (L4) and checks that each

one has had the shiftByMode function applied (L5). If so, the ratio values

are extracted (L6) and those below zero taken (L7) and mirrored to find

the standard deviation (L8). The whole dataset is then multiplied by the

reciprocal of this value (L9). The status of the dataset is updated (L10–

11). If the dataset has not had the shiftByMode function applied a warning

message is printed and the scale is not applied (L12–13). The new object is

returned (L16).

4.3 Application

The full normalisation procedure was applied to two sets of ChIP-chip data:

10 histone H3 acetylation (H3Ac) datasets under two conditions: no UV

treatment (0, 5 replicates) and 60 minutes after UV treatment (60, 5 repli-

cates); and 11 datasets of Gcn5p binding (Gcn5p) under four conditions: no

UV treatment (U, 3 replicates), immediately after UV treatment (0, 3 repli-

cates), 15 minutes after UV treatment (15, 2 replicates) and 60 minutes after

UV treatment (60, 3 replicates). These datasets were generated by Dr. Katie

Evans and Dr. Richard Webster and their full analysis is presented in Evans

(2011). All data files are available in the electronic appendix (see Page 367).

The effect of the normalisation procedure from one stage to the next for

this data is shown as density curves for all datasets (Figures 4.8 and 4.9) and

genome plots with the sets of untreated replicates (Figures 4.10 and 4.12)

and averaged datasets from all different conditions (Figures 4.11 and 4.13).

The density plots show data from each normalisation stage (dashed red lines)

with the data from the previous stage (solid black lines). The genome plots

show profiles of the data at each normalisation stage across a section of

chromosome 5.

The preprocessing of the data has little effect on the overall shape of the

distributions of the data: the red lines, showing the preprocessed data den-

sities, follow the same pattern as the black lines, showing raw data densities

(parts A of Figures 4.8 and 4.9). This is because the majority of the data re-

main unaltered by the process, with only a relatively small number of probes

182

SECTION 4.3 CHAPTER 4

Untreated 60 min

R
aw

−6 −2 0 2 4 6

0.
0

0.
3

0.
6

Log2 Ratios

D
en

si
ty

A1

−6 −2 0 2 4 6

0.
0

0.
3

0.
6

Log2 Ratios

D
en

si
ty

A2

Q
ua

nt
ile

d

−6 −2 0 2 4 6

0.
0

0.
3

0.
6

Log2 Ratios

D
en

si
ty

B1

−6 −2 0 2 4 6

0.
0

0.
3

0.
6

Log2 Ratios

D
en

si
ty

B2

S
hi

fte
d

−6 −2 0 2 4 6

0.
0

0.
3

0.
6

Log2 Ratios

D
en

si
ty

C1

−6 −2 0 2 4 6

0.
0

0.
3

0.
6

Log2 Ratios

D
en

si
ty

C2

S
ca

le
d

−6 −2 0 2 4 6

0.
0

0.
3

0.
6

Log2 Ratios

D
en

si
ty

D1

−6 −2 0 2 4 6

0.
0

0.
3

0.
6

Log2 Ratios

D
en

si
ty

D2

Figure 4.8: Density plots of H3Ac data undergoing normalisation: The appli-
cation of preprocessing (A), quantile normalisation (B), pseudo-modal shift-
ing (C) and background scaling (D) of no UV treatment (1) and 60 min after
UV treatment (2) datasets. Black lines show data pre- and dashed red lines
post-application of each step.

183

CHAPTER 4 SECTION 4.3

Untreated 0 min

R
aw

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

A1

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

A2

Q
ua

nt
ile

d

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

B1

−5 0 5
0.

0
0.

6
1.

2

Log2 Ratios

D
en

si
ty

B2

S
hi

fte
d

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

C1

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

C2

S
ca

le
d

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

D1

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

D2

Figure 4.9: Density plots of Gcn5p data undergoing normalisation: The
application of preprocessing (A), quantile normalisation (B), pseudo-modal
shifting (C) and background scaling (D) of no UV treatment (1), 0 min
after UV treatment (2), 15 min after UV treatment (3) and 60 min after
UV treatment (4) datasets. Black lines show data pre- and dashed red lines
post-application of each step. Continued on next page. . .

184

SECTION 4.3 CHAPTER 4

15 min 60 min

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

A3

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios
D

en
si

ty

A4

R
aw

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

B3

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

B4

Q
ua

nt
ile

d

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

C3

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

C4

S
hi

fte
d

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

D3

−5 0 5

0.
0

0.
6

1.
2

Log2 Ratios

D
en

si
ty

D4

S
ca

le
d

Figure 4.9: Continued from previous page.

185

CHAPTER 4 SECTION 4.3

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

H
3A

c
le

ve
l

(lo
g2

)

A
−

1
1

3
10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

H
3A

c
le

ve
l

(lo
g2

)

B

0
1

2
3

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

H
3A

c
le

ve
l

(lo
g2

)

C

−
1

1
2

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

H
3A

c
le

ve
l

(lo
g2

)

D

−
2

0
2

4

10000 15000 20000 25000 30000 35000 40000

Figure 4.10: Profiles of replicate H3Ac data undergoing normalisation: Pre-
processed (A), quantile normalised (B), pseudo-modal shifted (C) and back-
ground scaled (D) replicate no UV treatment data over a section of chromo-
some 5. Note the changes of y-axis scales between the different plots.

186

SECTION 4.3 CHAPTER 4

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

H
3A

c
le

ve
l

(lo
g2

)

A

−
1

1
2

3

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

H
3A

c
le

ve
l

(lo
g2

)

B

−
1

1
2

3

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

H
3A

c
le

ve
l

(lo
g2

)

C

−
1

1
2

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

H
3A

c
le

ve
l

(lo
g2

)

D

−
2

2
4

10000 15000 20000 25000 30000 35000 40000

Figure 4.11: Profiles of averaged H3Ac data undergoing normalisation: Pre-
processed (A), quantile normalised (B), pseudo-modal shifted (C) and back-
ground scaled (D) averaged no UV treatment (black) and 60 min post-UV
treatment (red) data over a section of chromosome 5. Note the changes of
y-axis scales between the different plots.

187

CHAPTER 4 SECTION 4.3

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

G
cn

5
bi

nd
in

g
le

ve
l (

lo
g2

)

A
−

1
1

3
5

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

G
cn

5
bi

nd
in

g
le

ve
l (

lo
g2

)

B

0
2

4

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

G
cn

5
bi

nd
in

g
le

ve
l (

lo
g2

)

C

−
1

1
3

5

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

G
cn

5
bi

nd
in

g
le

ve
l (

lo
g2

)

D

−
2

2
6

10

10000 15000 20000 25000 30000 35000 40000

Figure 4.12: Profiles of replicate Gcn5 binding data undergoing normalisa-
tion: Preprocessed (A), quantile normalised (B), pseudo-modal shifted (C)
and background scaled (D) replicate no UV treatment data over a section of
chromosome 5. Note the changes of y-axis scales between the different plots.

188

SECTION 4.3 CHAPTER 4

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

G
cn

5
bi

nd
in

g
le

ve
l(l

og
2)

A

0
2

4

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

G
cn

5
bi

nd
in

g
le

ve
l(l

og
2)

B

0
2

4

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

G
cn

5
bi

nd
in

g
le

ve
l(l

og
2)

C

0
2

4

10000 15000 20000 25000 30000 35000 40000

●●● ● ● ●● ●● ● ●●● ● ●● ● ● ●● ●● ● ● ● ●●●● ●● ● ●●● ●● ●● ● ● ●● ● ●●● ● ●● ●●●●●● ●●●●●● ●●●●● ●● ● ●● ● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ● ● ●● ●●● ● ●● ● ●Chr. 5

G
cn

5
bi

nd
in

g
le

ve
l(l

og
2)

D

0
5

10

10000 15000 20000 25000 30000 35000 40000

Figure 4.13: Profiles of averaged Gcn5 data undergoing normalisation: Pre-
processed (A), quantile normalised (B), pseudo-modal shifted (C) and back-
ground scaled (D) averaged no UV treatment (black), 0 min post -UV treat-
ment (red), 15 min post-UV treatment (green) and 60 min post UV treatment
(blue) data over a section of chromosome 5. Note the changes of y-axis scales
between the different plots.

189

CHAPTER 4 SECTION 4.3

being removed from the datasets. The range of the datasets decreases follow-

ing preprocessing (the limits of the red lines are less than the black) because

the quality of the probes removed is poor, meaning that they generally have

outlying values at the extremes of the distributions.

The quantile normalisation has a slightly larger effect on the data, bring-

ing all of the replicate datasets to the same distribution: all densities overlap

as seen by the single red line on the plots (parts B of Figures 4.8 and 4.9).

This does not however bring them all to the same profile (Figures 4.11 and 4.13),

as the process is independent of genomic position. That is, although the

points at any given point in the distribution are equal, these are not neces-

sarily at identical points on the genome. Therefore while each dataset has,

for example, identical maximum and minimum values, meaning the distri-

butions start and end at the same points, these maxima and minima can

(and do) appear at different probes. The process does however reduce the

variation between the probes of the different datasets, shown by the pro-

files of the quantile normalised datasets being more similar than those of the

raw data. This process does not take any variation between datasets from

different experimental conditions into account.

The pseudo-modal shift can have a small or large effect on the datasets

(parts C of Figures 4.8 and 4.9), depending on the original position of the

pseudo-mode. Datasets with the pseudo-mode already centred at or near zero

are shifted on the horizontal axis a small amount (Figure 4.9 C1, for example,

where the red line is almost on top of the black line), thereby having a small

effect on the dataset. The further the pseudo-mode is from zero, the greater

the effect on the dataset, as a greater shift is required (Figure 4.9 C3, for

example, where the red line is further to the left of the black line). These

can be seen in the genome plots as shifts on the vertical axis. Replicate

datasets are shifted by the same amount (Parts C of Figures 4.10 and 4.12),

maintaining the same profile, while different datasets are shifted by different

amounts (Parts C of Figures 4.11 and 4.13), changing the relative positions

of the datasets.

As with the pseudo-modal shift, the effect of the background scaling is

dependent on the original distribution of the background sub-population,

190

SECTION 4.3 CHAPTER 4

with the further the sub-population distribution from the standard normal

distribution the greater the effect on the dataset as a greater scaling is re-

quired. Unlike the pseudo-modal shift, which influences all values equally,

the background scaling has a larger effect on probes with higher values, as it

is multiplicative. Therefore even a small scaling can potentially have a large

effect on a dataset that contains large values in the enriched sub-population.

The density plots (parts D of Figures 4.8 and 4.9) show this scale extends

the limits of the datasets, reducing the density accordingly. This change can

be seen more clearly in the the y-axis scale of the genome plots of replicate

datasets (Parts D of Figures 4.10 and 4.12). As with the pseudo-modal shift,

the scaling is different with each different set of replicate datasets, which

can be seen as further relative changes between the datasets (Parts D of

Figures 4.11 and 4.13).

As previously discussed, the aim of the normalisation procedure is to

make the distributions of estimated background regions of different datasets

the same, so as to enable comparisons to be made between the enriched

regions. This objective was investigated by creating QQ-plots of the different

datasets. Figure 4.14 shows pre-and post-UV treatment H3Ac data after

preprocessing (A), quantile normalisation (B), the pseudo-modal shift (C)

and background scaling (D). The grey box shows values less than zero, that

is, the estimated background region. Alignment of the data points on the

line y = x in this region shows equal background distributions, while data

points lying around this line show similar distributions. The distributions of

the fully normalised data in these background regions are similar (shown in

parts D) having the bulk of their data points lying on or around this line.

As discussed previously, the estimated background regions of the datasets

do not need to follow exactly the same distribution for the normalisation to

be effective, they need only approximate the same distributions. This makes

the enriched regions comparable. Similar QQ-plots are shown for the Gcn5p

datasets at the three time points following UV irradiation plotted against

the untreated, showing results pre- and post-normalisation (Figure 4.15).

These plots also show the approximate alignment of the background regions

following the normalisation procedure.

191

CHAPTER 4 SECTION 4.3

−3 −1 1 2 3 4

−
3

−
1

1
2

3
4

H3Ac pre−UV

H
3A

c
60

 m
in

 p
os

t−
U

V

A

−3 −1 1 2 3 4
−

3
−

1
1

2
3

4
H3Ac pre−UV

H
3A

c
60

 m
in

 p
os

t−
U

V

B

−3 −1 1 2 3 4

−
3

−
1

1
2

3
4

H3Ac pre−UV

H
3A

c
60

 m
in

 p
os

t−
U

V

C

−6 −2 2 4 6

−
6

−
2

2
4

6

H3Ac pre−UV

H
3A

c
60

 m
in

 p
os

t−
U

V

D

Figure 4.14: Q-Q plots of H3Ac data undergoing normalisation: Pre- and
post-UV datasets following preprocessing (A), quantile normalisation (B),
the pseudo-modal shift (C) and background scaling (D). The grey region
shows values less than zero, that is, the estimated background region. The
black line shows y = x, that is, equality between the two datasets. Note that
part D is shown at a different scale.

192

SECTION 4.3 CHAPTER 4

0 2 4 6

0
2

4
6

Gcn5 biding pre−UV

G
cn

5
bi

nd
in

g
0

m
in

 p
os

t−
U

V A1

0 5 10 15 20

0
5

10
15

20

Gcn5 biding pre−UV
G

cn
5

bi
nd

in
g

0
m

in
 p

os
t−

U
V A2

0 2 4 6

0
2

4
6

Gcn5 biding pre−UV

G
cn

5
bi

nd
in

g
15

 m
in

 p
os

t−
U

V B1

0 5 10 15 20

0
5

10
15

20

Gcn5 biding pre−UV

G
cn

5
bi

nd
in

g
15

 m
in

 p
os

t−
U

V B2

0 2 4 6

0
2

4
6

Gcn5 biding pre−UV

G
cn

5
bi

nd
in

g
30

 m
in

 p
os

t−
U

V C1

0 5 10 15 20

0
5

10
15

20

Gcn5 biding pre−UV

G
cn

5
bi

nd
in

g
30

 m
in

 p
os

t−
U

V C2

Figure 4.15: Q-Q plots of Gcn5p data pre- and post-normalisation: Pre-UV
datasets plotted against the three post-UV datasets(0 min (A), 15 min (B)
and 60 min (C)) before (1) and after (2) normalisation. The grey region
shows values less than zero, that is, the estimated background region. The
black line shows y = x, that is, equality between the two datasets. Note the
changes of scales between the pre- and post-normalisation data plots.

193

CHAPTER 4 SECTION 4.3

4.3.1 Validation

A method independent of hybridisation to microarrays was used to validate

the results of the normalisation procedure, namely Q-PCR. The fully nor-

malised datasets were used to choose regions of the genome to test by this

method. Six probes were chosen (details in “Q-PCR probes.pdf” in the elec-

tronic appendix; see Page 367) showing a range of different values in both

the treated and untreated datasets. The chosen regions are shown in Fig-

ure 4.16, with black lines showing averaged untreated and red lines showing

averaged UV treated. Two probes show similar low values both before and

after treatment (A), two show high enrichment before and after treatment (B

and E) and two show low enrichment before treatment and high afterwards

(C and D). PCR primers were designed around these probes and Q-PCR

reactions performed by Dr. Katie Evans.

The values for these probes throughout the normalisation process are

shown as bar charts in Figure 4.17, showing the values from preprocessed (A),

quantile normalised (B), pseudo-modal shifted (C) and background scaled

(D) data. This shows that the values at the end of the procedure are differ-

ent from those at the start, with the whole process required to bring out the

differences between the values from the different conditions. These values are

shown (out of log scale for comparison to the Q-PCR data) in Figure 4.18A

along with the Q-PCR results in Figure 4.18B. Untreated values shown as

dark grey and treated values as light grey. These values are shown together

in Figure 4.18C, with microarray values scaled relative to the untreated Q-

PCR values. Shaded bars show Q-PCR results against the corresponding

unshaded bars of the microarray results. It is clear that there is a strong

relationship between all Q-PCR and microarray data. T-tests performed on

these values show that the microarray values are not significantly different

to the Q-PCR values following the normalisation procedure (raw and FDR

corrected P-values are shown in Table 4.4). This is in contrast to the com-

parison of raw values, the results of which produce smaller P-values, with

one statistically significantly different set of values at the 95% significance

level (raw and FDR corrected P values are shown in Table 4.5). Corre-

194

SECTION 4.4 CHAPTER 4

lating the two sets of values (Figure 4.19) shows a similar result: the raw

microarray data (black points) show no correlation with their corresponding

Q-PCR values, with a Spearman’s Rank Correlation Coefficient rho value of

0.314, while the normalised data (red points) show a high correlation, with

a rho value of 0.943. This shows that the normalisation procedure is re-

quired to convert the microarray data to a scale that accurately reflects the

true biological state. Together this shows that the normalisation procedure

works as expected and transforms the data into a format that allows relative

comparisons to be made between different datasets, here untreated and UV

treated H3Ac levels. Similar validation work is currently being performed at

a number of sites from the Gcn5 binding datasets.

4.4 Alternative process

In situations where this normalisation process cannot be applied, such as

where a background population is absent (if a whole genome is enriched),

or indistinct (if there are too few probes in the background to form a clear

subset), artificial DNA may be added to fulfill a similar function.

4.4.1 DNA spikes

Spikes are fragments of genetic material of known, varying concentrations

added to the genetic material being assayed with a microarray, which have

unique corresponding probes on the microarray. There are several examples

of experimental techniques where spiked in DNA have been used. Several

of these investigations have been into gene expression microarray normalisa-

tion techniques, where the addition of DNA of known concentrations allows

various normalisation processes to be compared against a set of constant ref-

erence values. Chua et al. (2006) for example compare five normalisation

methods with spike ins representing 200 differentially expressed (DE) genes.

Similarly, Rydén et al. (2006) compare 252 normalisation methods with 8 DE

genes and 12 non-differentially expressed (NDE) genes at varying concentra-

tions, each represented 480 times on the microarray. McCall and Irizarry

195

CHAPTER 4 SECTION 4.4

● ●YAL018C

PSK1Chr. 1
lo

g2
 B

in
di

ng

A

−
6

0
4

119000 121000 123000

● ● ● ● ● ● ● ●

PTI1Chr. 7

lo
g2

 B
in

di
ng

B
−

6
0

4
800500 801000 801500 802000

● ● ● ● ●POL30

YBR089W

Chr. 2

lo
g2

 B
in

di
ng

C

−
6

0
4

425000 425400 425800

● ● ● ● ● ● ● ● ● ●

SLX4Chr. 12

lo
g2

 B
in

di
ng

D

−
6

0
4

413000 414000 415000

● ● ● ● ●NTG1
Chr. 1

lo
g2

 B
in

di
ng

E

−
6

0
4

126800 127200 127600 128000

Figure 4.16: Probes chosen for Q-PCR analysis: Six probes showing a range
of H3Ac values were selected from five regions. Probe positions are high-
lighted with red crosses. Black lines show averaged untreated data, red lines
show averaged 60 min post-UV treatment data.

196

SECTION 4.4 CHAPTER 4

1 2 3 4 5 6

0.
0

1.
0

2.
0

3.
0

A

1 2 3 4 5 6

0.
0

1.
0

2.
0

3.
0

B

1 2 3 4 5 6

0.
0

1.
0

2.
0

C

1 2 3 4 5 6

0
1

2
3

4
5

D

Figure 4.17: Bar charts of data from probes chosen for Q-PCR: Prepro-
cessed (A), quantile normalised (B), pseudo-modal shifted (C) and back-
ground scaled (D) data for the six probes chosen for Q-PCR. Error bars
show standard errors.

197

CHAPTER 4 SECTION 4.4

1 2 3 4 5 6

0
10

20
30

40
50

A

1 2 3 4 5 6
0

1
2

3
4

B

1 2 3 4 5 6

0
10

20
30

40
50

C

Figure 4.18: Bar charts of microarray and Q-PCR data: Untreated (dark
grey) and treated (light grey) values from the microarrays (A) and Q-PCRs
(B) for the six tested probes. Microarray values have been taken out of
log scale to enable comparisons with Q-PCR values. Combined data (C)
shows microarray (unshaded) and Q-PCR (shaded) values are very similar
across all values tested. In C the Q-PCR values are scaled so as to bring the
untreated values to the respective microarray untreated value. Error bars
show standard errors.

198

SECTION 4.4 CHAPTER 4

Site P-value FDR value

1 0.653 0.813
2 0.769 0.813
3 0.643 0.813
4 0.813 0.813
5 0.510 0.813
6 0.410 0.813

Table 4.4: Normalised microarray and Q-PCR comparison P-values: Raw
and FDR corrected P-values from t-tests comparing normalised microarray
and Q-PCR results for the six tested values.

Site P-value FDR value

1 0.789 0.789
2 0.729 0.789
3 0.276 0.413
4 0.074 0.164
5 0.082 0.164
6 0.005 0.032

Table 4.5: Raw microarray and Q-PCR comparison P-values: Raw and FDR
corrected P-values from t-tests comparing raw microarray and Q-PCR results
for the six tested values.

199

CHAPTER 4 SECTION 4.4

1 2

3

4

5

6

0 1 2 3 4 5

0
1

2
3

4
5

Microarray values

Q
−

P
C

R
 v

al
ue

s

1 2

3

4

5

6

Figure 4.19: Microarray and Q-PCR values correlation: Raw (black) and
normalised (red) microarray data plotted against their corresponding Q-PCR
values for the six tested values. Each point shows the number of the tested
site.

200

SECTION 4.4 CHAPTER 4

(2008) use spike ins to compare gene expression results from Affymetrix, Ag-

ilent and Illumina microarrays. These methods may have provided useful

information about different normalisation procedures, and demonstrated the

usefulness of spike in DNA, but were not designed to be used alongside real

data as a full normalisation procedure.

Fardin et al. (2007) addressed this problem by suggesting using spiked

in DNA to normalise low density gene transcription microarrays. These are

microarrays containing only a selection of genes of interest to a particular

investigation. As such they do not have the large population of NDE genes

used in global normalisation and so require a different normalisation method.

They used 8 RNA spikes to normalise 178 genes using the composite loess

method. This constructs a curve through the spike in values and normalises

all values based on this curve (Smyth and Speed, 2003).

Johnson et al. (2008) used DNA spikes to test various microarray plat-

forms and normalisation methods with ChIP-chip data. A total of 100 se-

quences at varying concentrations were spiked into reference DNA and sent

to 7 different laboratories for analysis. This shows that spiked in DNA is

detectable and useful in ChIP-chip as well as gene expression microarray

investigations.

To the best of my knowledge, there have been no attempts to normalise

ChIP-chip data using spiked material. We attempted to develop a method to

normalise any ChIP-chip datasets that are not suited to the novel procedure

presented above because they do not have a distinct background region. DNA

damage is one such example, which can occur at sufficiently high a level

throughout a genome that no background region sub-population exists to

be used for normalisation. Therefore the comparison of damage levels at

different time points is not possible without the addition of artificial constants

in the form of spikes.

The Escherichia coli genome was chosen as a source to design spike DNA

probes from. This would reduce the likelihood of significant sequence similar-

ity to the yeast and human genomes used experimentally in our laboratory,

and any other eukaryotic genome that may be analysed the future. The first

∼700,000 nt of the E. coli genome was split into 60 nt sequences (the length

201

CHAPTER 4 SECTION 4.4

of the probes on the Agilent microarrays). These ∼12,000 sequences were up-

loaded to Agilent’s eArray program (https://earray.chem.agilent.com/

earray/) and analysed using this software to assign a score to each probe.

Full information on how these scores are calculated is not provided, but

factors such as melting temperature, GC content, hairpin ∆G formation,

sequence complexity and homology to the reference genome are taken into

account (Agilent Technologies Inc., 2010a). The scores range from 0 to 1,

with higher scores representing a greater “likelihood that a probe will pro-

duce a good log ratio response.”

All probes with scores greater than 0.95 (1020 total) were analysed for

sequence similarity to the yeast and human genomes with BLAST searches

(Altschul et al., 1990). The blastn program was used, which accommodates

short sequences, and the “Automatically adjust parameters for short input

sequences” box checked to ensure that accurate results were generated with

the short sequences being tested. The 100 probes with the least similarity to

both genomes were taken and used as the initial set of spikes. The statistics

for these probes are summarised in Table 4.6 and shown in full in “Spike

probe information.pdf” in the electronic appendix (see Page 367).

Statistic Human Yeast

No similarity 73 27
Longest similar stretch 30 31
Overall mean similarity 6.3 15.1
Mean similarity with some match 23.2 20.7

Table 4.6: Spike probes summary: Lengths of continuous sequence matches
between the spike probes and the human and yeast genomes.

These probes were added to two custom microarray designs, one each

for yeast and human. The yeast design is the same as that on the G4493

microarrays, with all probes for the mitochondria removed. The human

design contains 39,517 probes over a 5,000,000 region of chromosome 17,

from positions 10,000,000 to 15,000,000, giving an average resolution of one

probe every 126.5 nt.

202

https://earray.chem.agilent.com/earray/
https://earray.chem.agilent.com/earray/

SECTION 4.5 CHAPTER 4

Work to use these spike probes as part of a full normalisation procedure

is ongoing in our laboratory.

4.5 Discussion

The novel normalisation procedure presented here allows for the comparison

of data from different microarray experiments to facilitate the discovery of

biologically relevant results beyond the currently detectable large, wholesale

changes, greatly expanding the use of ChIP-chip datasets. Changes in levels

of protein binding, histone modifications or other biological factors can now

be detected and compared under a variety of experimental conditions, where

previously only the presence or absence of binding could be reliably inferred.

This has been demonstrated with H3Ac data from ten microarrays under two

different experimental conditions, revealing genome wide variations in levels

between the different conditions.

Previously, the primary motivation for creating ChIP-chip datasets was

to determine where in the genome a particular feature of interest is present,

be that a protein, epigenetic modification, or other factor that can be iden-

tified by immunoprecipitation. Once this had been determined, by use of

some enrichment or peak detection algorithm, the dataset becomes largely

redundant, being replaced by a list of locations or regions identified as con-

taining the feature of interest. For example, Schlecht et al. (2008) perform an

analysis of Abf1 binding under three different conditions (fermentation, respi-

ration, and sporulation) in this way, determining sites of changed occupancy

between the three conditions. The data from the probes at these locations

may be analysed further, to examine relative binding levels within the same

dataset, or the list may be left as it is, reducing the data to a simple boolean

representation of the genome, showing whether binding is present (TRUE)

or absent (FALSE) at each probe of the microarray. Comparisons between

different datasets was limited by this treatment of the data, and could only

determine whether or not the presence of the factor of interest appeared,

disappeared or stayed the same at a given location. If it stayed the same, the

relative binding level between the two conditions could not be determined

203

CHAPTER 4 SECTION 4.5

because of the lack of a normalisation procedure that could be applied to the

different datasets to allow comparisons to be made between them. The novel

normalisation procedure presented here overcomes this problem, revealing an

extra dimension of analysis of ChIP-chip data by giving new meaning to the

binding values of the datasets.

This is not a new concept in the microarray field, with gene expression

microarrays — the most popular use of microarray technology — allowing

comparisons to be made between the levels of mRNAs present in cells from

different conditions. This is possible due to the normalisation of the different

datasets, of which there are many methods. These methods are not applicable

to ChIP-chip data, and no alternative existed, constraining the application of

the technology. The method presented here removes this constraint, opening

ChIP-chip technology up to a wealth of possible new applications. Rather

than reducing the datasets to lists of positions, more robust comparisons can

be performed to determine relative increases or decreases of binding between

the different datasets, coupled with appropriate statistical tests.

While a useful tool for researchers wishing to compare microarrays from

different conditions, there are a number of inherent caveats which should

be taken into account. The method relies on the previously noted expec-

tation that the background sub-populations of data approximately follow a

normal distribution. If this assumption is not met then the scaling part of

the normalisation method may fail, as it will be unable to create the stan-

dard normal distribution from non-normally distributed data. In practice,

small deviations from the normal distribution will not have a large effect on

the results of the normalisation procedure as it will still enable this portion

of the data to approximate the standard normal distribution. In our labo-

ratory we have not seen any examples of datasets that have a background

sub-population that does not approximate a normal distribution. Situations

where the background sub-population is very different to the normal distri-

bution are likely to represent poor quality across the whole dataset and so it

may not be suitable for inclusion in further analyses.

The method requires a clear maximum in the sub-population of back-

ground data at which to assign the pseudo-mode to centre on zero. If this is

204

SECTION 4.5 CHAPTER 4

not present then this shift cannot be applied. It is worth noting that while

in most assays this is usually the maximum of the whole population, and

this is what the algorithm automatically searches for, it is not a requirement

that this is the case. If the enriched portion of the data is larger than the

background, this will have the largest peak in the distribution. However,

provided there is still a discernible peak in the background sub-population

this can be manually identified and specified to the algorithm. This allows

for accurate normalisation even when more than 50% of the probes repre-

sent enrichment. The method cannot be applied when all or the majority of

probes are enriched as no estimate of the background will be possible, such

as the case with CPD damage (see Chapter 6). In this scenario, data from

spike probes may be used in place of the background. This methodology is

currently being developed in our laboratory.

This shifting method may introduce small errors, as it is based on an

estimated pseudo-mode. However, there are many other sources of variation

in microarray experiments which limit the accuracy of results and so any

further small variations will not adversely affect the conclusions that can be

drawn. Any introduced variation should be borne in mind along with the

other sources of variation and taken into account when performing analy-

ses. Microarray data should not be treated as a definitive results, rather a

platform from which to generate hypotheses which can be tested by more

sensitive techniques.

The method has been developed to allow comparisons of differences in a

single factor due to changes in experimental conditions. It cannot reliably

compare between data with other sources of variation as these will introduce

undetectable variations. For example, datasets generated with different anti-

bodies used in the immunoprecipitation stage will potentially have variations

due to differing efficiencies of the antibodies. Therefore when comparing be-

tween them, even after normalisation, it will be impossible to say whether

any changes are due to genuine differences in binding levels or differences in

immunoprecipitation efficiencies.

The nature of the normalisation method means that all assays to be

compared do not have to be normalised at the same time. Because each

205

CHAPTER 4 SECTION 4.5

background sub-population is scaled to the standard normal distribution,

which is unvarying, each set of replicates can be normalised independently of

the others and therefore the assays do not all have to be carried out at the

same time. However, in the interests of minimising all sources of variation it

is recommended that as many assays as possible are carried out together.

The computational process is very fast, allowing full normalisation of

multiple datasets in a matter of seconds.

206

Chapter 5

Development of a novel
enrichment detection method

5.1 Introduction

ChIP-chip is a technique that has been used primarily for investigating the

binding locations of proteins on a genome wide scale (Buck and Lieb, 2004).

This has necessitated the development of computational tools to identify

those binding sites. ChIP-chip data can range from thousands to millions of

individual values and so automated methods of peak detection are essential.

Various methods have been developed to perform this function, which are

shown in Table 5.1. Not all are applicable to the data analysed in this

investigation because some have been designed to work only on data from

different microarray formats. The earlier methods have been shown to be

outperformed by the newer methods, which means only those towards the

bottom of the list are currently relevant. Several of these are no longer

publicly available and so the currently available tools for accurate enrichment

detection of any format of ChIP-chip data are limited, potentially limiting the

processing of data. The objective of the work presented in this chapter was to

develop a new enrichment detection procedure to fill this gap, that could work

with any format of ChIP-chip microarray data and detect peaks or extended

regions of enrichment as required. The method developed is able to utilise

multiple replicate datasets to increase the power of detection of enrichment

over analysing the datasets individually. It does this in such a way that

207

CHAPTER 5 SECTION 5.1

the detection threshold is dynamically adjusted throughout the procedure

to maintain the same overall probability level, meaning that the application

of a multiple testing correction is not required on the final results, thereby

removing any biases that this may introduce. The performance is indicated

to be more powerful that the previously published methods, without having

those methods available to test.

5.1.1 Existing methods

The first application of what is now referred to as ChIP-chip used a single

array error model to identify enriched probes (Ren et al., 2000; Roberts

et al., 2000). This early microarray had single probes in regions of interest,

predominantly promoters. The error model gives a significance value to each

probe based on the signal intensities of the two channels, uncertainties due

to background subtraction and other non-uniformities such as hybridisation

efficiency variations, taking into account values from replicate arrays.

MDScan (Liu et al., 2002) attempts to find DNA binding sites by iden-

tifying common sequence motifs in enriched areas. This method analyses

sequences of highly enriched regions and uses these results to find additional

sequences from regions of lower enrichment. It is therefore more applicable

to consensus motif identification than peak finding. The final result is reliant

upon there being a consensus motif present.

Median percentile ranking is suggested as an analysis method by Buck

and Lieb (2004). This is a simple statistical procedure reliant on a number of

repeats for each experiment. The probe values are converted to ranks, scaled

to between 0 and 1 and the medians of these for each probe are analysed. If

all binding values are random the medians will fall into a normal distribution

centered on 0.5 and bounded by 0 and 1. If a sub-population of probes are

consistently enriched their ranks will be consistently high and so their median

values will fall at the top end of the range, creating a bimodal distribution.

The trough of this distribution can then be used as a cutoff to define enriched

probes. The advantage of this method is values are converted to ranks, so

the original values become irrelevant and normalisation is not required. It

208

SECTION 5.1 CHAPTER 5

Name Citation Program
readily
available

Works with
any data
format

SAEM Ren et al. (2000) No Yes
MDScan Liu et al. (2002) No -
Median percentile rank Buck and Lieb (2004) No Yes
Peakfinder Glynn et al. (2004) Yes Yes
No name Cawley et al. (2004) No No
Chipotle Buck et al. (2005) Yes Yes
HMM Li et al. (2005) No -
Chipper Gibbons et al. (2005) Yes Yes
No name Kim et al. (2005) No -
TileMap Ji and Wong (2005) No -
JBD Qi et al. (2006) No -
TAMALPAIS Bieda et al. (2006) Yes No
MAT Johnson et al. (2006) Yes No
Permuta Lucas et al. (2007) No -
MA2C Song et al. (2007) Yes No
Mpeak Zheng et al. (2007) No -
Tilescope Zhang et al. (2007) No -
Poisson approximation Zhang (2008) No Yes
Splitter Johnson et al. (2008) No -
JAMIE Wu and Ji (2010) No -
DECODE Barrett et al. (2011) No -
Wavelet Karpikov et al. (2011) No -

Table 5.1: Peak detection methods: names and publications of ChIP-chip
data analysis programs, whether or not they are currently readily available
for use (as a downloadable program or web server) and whether or not they
are able to process data from any microarray format (where information is
available).

209

CHAPTER 5 SECTION 5.1

does however require enough repeats to allow the bimodal distribution to be

perceived, which may be a large number if only a small number of sites are

enriched.

Peakfinder (Glynn et al., 2004) smooths data and identifies peaks from

the resulting first derivative. The data is smoothed to remove spurious peaks

caused by noise but keep peaks caused by genuine enrichment. Peaks are then

identified as regions where the first derivative is zero.

Cawley et al. (2004) present a method based on the Wilcoxon Rank Sum

test, comparing treated and untreated datasets to identify differences, which

are taken to be regions of enrichment. Datasets are quantile normalised

within groups and then all scaled to have a median feature intensity of 1000.

Probes within sliding windows of ± 500 bp are tested against the null hy-

pothesis of equality between the datasets. A p-value cutoff of 10-5 is used to

define enriched regions. This method has the disadvantage that a number of

untreated control datasets have to be produced, at extra time and cost.

ChIPotle (Buck et al., 2005) uses a sliding window (default 1 kb in length

with 0.25 kb steps). At each step the average of all points is calculated

which smooths the data, aiming to remove spurious peaks and retain genuine

peaks. A p-value is calculated from the standard error function for each

window under the null hypothesis that the observed ratios are independent,

identically distributed random variables having a Gaussian distribution with

a mean of zero. These p-values are then corrected by the Bonferroni method.

Li et al. (2005) present a hidden Markov model (HMM) approach as an

alternative to the method used by Cawley et al. (2004). This has two hidden

states: ChIP-enriched and non-enriched. The method analyses probes to

determine which of these two states all probes are in, calculating probabilities

based on an estimate of the total number of binding sites and the total

number of probes.

Chipper (Gibbons et al., 2005) uses variance stabilisation to identify pro-

tein binding sites. Data are transformed using vsn (see Chapter 4) and these

scores used to determine p-values based on the null hypothesis of no binding.

Kim et al. (2005) use a two stage approach to identify binding sites in their

datasets. Firstly, microarrays of ∼14.5 million probes at ∼100 bp resolution

210

SECTION 5.1 CHAPTER 5

were used to identify potential binding locations. The resulting data was

smoothed by median filtering with a window size of 3 probes. Enriched areas

were then defined as regions with a minimum of 4 probes separated by a

maximum of 500 bp with values greater than 2.5 standard deviations from

the mean. These regions were used to design a second microarray containing

∼400,000 probes covering ∼10,000 regions at 100 bp resolution. This was

used to more precisely define binding sites. A double regression model is

used to fit neighbouring log ratio signals to asymmetric triangles centred

on candidate binding sites using a sliding window approach. Local residual

minima are defined as peaks. This method requires a minimum separation

of 500 bp between peaks. As well as this inability to find peaks closer than

500 bp, the main drawback to this technique is that two microarrays need to

be used, with a design stage between the two, increasing the time and cost

of any experiments.

TileMap (Ji and Wong, 2005) applies a two stage approach. Firstly a

Bayes model is used to calculate a test statistic for each probe. These

statistics are then used to to infer peaks. Neighbouring probes are anal-

ysed through a moving average or hidden Markov model. This approach

allows multiple datasets to be analysed at the same time by calculating the

test statistics from the multiple probes.

Joint binding deconvolution (JBD; Qi et al., 2006) reconstructs binding

events from ChIP-chip at a higher spacial resolution than the underlying

microarray probe spacing. This is achieved by deconvolving the predicted

probe intensity peak shape from the observed peak shape to infer the genuine

binding event location. This allows pairs of nearby events to be distinguished

as multiple binding locations. This is linked to sequence information to

further refine the predicted binding sites by consensus motif analysis.

TAMALPAIS (Bieda et al., 2006) uses a similar methodology to that

described by Kim et al. (2005). Rather than requiring a single user defined

threshold value for an array, the 95th and 98th percentiles of the ratio values

are used. This ‘normalises’ the threshold values for each array to reflect the

amplitude and distribution of the signal. The run size is determined by the

number of probes having a p-value < 0.0001. This corresponds to 6 and 8

211

CHAPTER 5 SECTION 5.1

consecutive points above the 98th and 95th percentiles respectively.

Model based analysis of tiling-arrays for ChIP-chip (MAT; Johnson et al.,

2006) is a method created for the analysis of Affymetrix microarray data,

which takes into account the sequence of each probe to apply a correction,

before estimating

Lucas et al. (2007) present a sliding window approach based on window

size, ratio cutoff and the percentage of probes in the window over the cutoff.

A false positive rate was estimated for each window. Peaks were called in

windows with 40–100% of the probes above the defined cutoff and a false

positive rate ≤ 10% in at least 3 of the 4 datasets. The false positive rate

was estimated by 20 repetitions of randomising the data and estimating the

number of peaks found by chance at each cutoff value.

MA2C (Song et al., 2007) is a normalisation method which takes into ac-

count GC content, also containing a peak detection method based on MAT

(Johnson et al., 2006). A sliding window of defined length is centred on each

probe and a score assigned based on the median, pseudo-median, median pol-

ish or trimmed mean of the probes in the window. The median and trimmed

mean values are calculated from all replicate datasets, where present. P-

values are assigned to the windows and a cutoff based on p-values or FDR is

applied.

Mpeak (Zheng et al., 2007) uses a model based method to recognise peak

shapes in data. It looks for the truncated triangle shape of peaks by fitting

a multiple regression model to a window around a central probe. All local

maxima are first found, defined as the largest value in a 200 bp region. These

are ordered from largest to smallest and, working down this list, the method

fits the model to the window around the probe to find the point with the

smallest residual variance. This is repeated for neighbouring probes with the

lowest value indicating the estimated binding site.

Tilescope (Zhang et al., 2007) is a set of programs to analyse ChIP-chip

data. Three peak detection methods are included, one based on the method of

Cawley et al. (2004), one on HMM (Li et al., 2005) and one developed by the

authors. This identifies local signal peaks in an iterative fashion by finding

points that correspond to peaks and meet a predefined p-value threshold.

212

SECTION 5.1 CHAPTER 5

All points within a predefined distance are removed so as to prevent the

detection of secondary peaks from the same feature. This is repeated until

the signal being analysed is below the cutoff threshold.

Zhang (2008) propose a Poisson approximation approach which aims to

accurately approximate the statistical significance of peaks in a manner bet-

ter than calculating significance values and applying multiple testing correc-

tions. This uses Poisson clumping on suitably modified data to calculate

p-values, taking into account multiple datasets.

Splitter (Johnson et al., 2008) is available as a web server which also con-

tains basic normalisation and averaging functions. The algorithm dynam-

ically defines the cutoff values for peak detection. This cutoff is increased

over a defined number of steps and the number of hits before and after the

increment are compared. If this ratio is smaller than a defined ‘break ratio’

all of the hits are reported.

JAMIE (joint analysis of multiple ChIP-chip experiments) (Wu and Ji,

2010) is an algorithm which aims to ‘borrow’ information from related datasets

to improve peak detection. Correlations between datasets are found using a

hierarchical mixture model. A sliding window approach is used to determine

binding sites in each dataset based on a defined threshold. These results are

then compared across the related datasets to improve the determination of

binding sites.

DECODE (Barrett et al., 2011) identifies potential binding regions as

those at least 400 bp in length with a value greater than 1, after setting the

histogram maxima to 1. The signal in these regions is then smoothed and

these values analysed further. The first three derivatives of these values are

used to identify local maxima. These maxima are then analysed to estimate

peaks by two methods; minimising the differences between the transformed

and original enrichment signals and maximising the entropy of the probes.

P-values are then assigned to the peaks and a FDR applied to remove false

results.

Wavelet (Karpikov et al., 2011) applies a wavelet transformation to data,

whose fundamental aim is to separate data based on its scale. The method

therefore attempts to separate binding signals from background noise. The

213

CHAPTER 5 SECTION 5.1

transformation is applied to both the red and green signals and the log ratio

of these values is analysed. Thresholding allows peaks of varying sizes to be

detected at the same confidence level and a FDR applied to the final results.

Methods produced by the microarray manufacturers for use on their own

datasets also exist (Johnson et al. (2006) for Affymetrix and Scacheri et al.

(2006) for Nimblegen).

5.1.2 Motivation for creating a new method

The majority of the above methods are either not available for use or cannot

be applied to all types of ChIP-chip data, including that analysed here, as

shown in Table 5.1. All of the most recent methods, shown to outperform ear-

lier methods, cannot be applied to the data analysed here. Most of the other

methods are intended to be applied to single datasets, and those that can be

applied to multiple datasets do not do so to increase the power of detection of

peaks, causing the loss of much valuable data from repeated experiments. In

addition, several methods only seek to find defined peaks, which is of no value

when analysing data such as histone acetylation, which occurs over extended

regions. It is widely agreed that ChIP-chip experiments should be carried out

in replicate to reduce the likelihood of spurious results being deemed genuine

binding sites. Generally, these replicate datasets are analysed separately and

peaks found in several or all of these datasets are reported as genuine peaks.

This methodology means that smaller binding peaks may be missed because

the power of detection in each individual dataset is not great enough to find

them. Combining all datasets increases the power of detection and increases

the chances of these peaks being identified.

A new enrichment detection method has been developed here to overcome

these problems. The method is able to work with data from any microarray

format, being able to work with data loaded from simple tab-delimited text

files (Section 3.2.1.3) as well as the Agilent Feature Extraction file format. It

analyses all replicate datasets simultaneously to achieve an increased power

of detection, thereby allowing more binding sites to be identified. It also

dynamically adjusts the detection cutoff level to maintain a p-value that seeks

214

SECTION 5.2 CHAPTER 5

to find no false positive results. This eliminates the need for any multiple

testing correction to be applied to the final results, as all potential false

results are removed at the point of detection. This means that the final

results are more likely to all represent genuine peaks in the data than other

methods, where the multiple testing correction method that is applied may

be over- or under-sensitive. This new method is later shown to outperform

existing methods at detecting enrichment in datasets containing artificially

enriched spike regions.

5.2 Algorithm

The peakDetection function performs the enrichment and peak detection

processes (Script 5.1) using the following arguments:

object An arrayData object to be processed (no default).

annotation A genomeAnnotation object for the current genome to be used

in calculating the chromosome end points (no default).

windowSize A numeric vector specifying the window size to be used in

determining enrichment (default 600).

fdre A numeric vector specifying the false peaks to ‘find’, used in determin-

ing the statistical significance levels (default 0.9).

scale A numeric vector specifying the factor to scale the dataset by, im-

proving the detection of peaks in datasets which do not fully meet the

expectations of the data.

findPeaks A logical vector indicating whether or not to perform peak de-

tection and return a peakList or return regions of enrichment, as a

TRUE or FALSE value for each probe (default TRUE).

shearSize A numeric vector specifying the average chromatin shear size of

the material hybridised to the microarray (default 600).

215

CHAPTER 5 SECTION 5.2

Script 5.1: peakDetection: script to perform the enrichment and peak detec-
tion of an arrayData object.

1 ## peakDetection function ##

2 ## arguments: object (an arrayData object), annotation (a genomeAnnotation

object) , windowSize (size of windows to use), fdre (statistical value),

findPeaks (perform peak detection), scale (dataset scale factor),

shearSize (average chromatin shear size)

3 peakDetection <-function(object ,annotation ,windowSize =600, fdre =0.9, findPeaks=

TRUE ,shearSize =600, scale =1) { #define function

4 for (n in 1:ncol(object)) { #loop through datasets

5 if("shiftByMode" %in% object$status [[n]] & "stNormScale" %in% object$
status [[n]] & "rmNAs" %in% object$status [[n]]) { #dataset has been

shifted and scaled

6 }else{ #stNorm and shiftByMode not applied

7 warning(paste(colnames(object$ratios)[n]," has not been fully

normalised",sep=""), call.=F) #warn if correct normalisation has

not been applied

8 }

9 }

10 peaks.keep <-!is.na(object$ratios [,1]) #define non -missing ratios in

dataset 1

11 object.full <-object #copy data

12 object <-object[peaks.keep ,] *scale #remove ratios missing in dataset 1 and

scale all data

13 windows.all <-list() #initialise list to store windows

14 peaks <-rep(F,nrow(object)) #initialise vectors to store peaks

15 peaks.full <-rep(F,nrow(object.full))

16 cutoffs <-matrix(ncol=1,qnorm(1-(fdre/nrow(object))^(1/1:10000))) #

calculate cut off values

17 cutoffs[cutoffs < 0]<-0

18 multFactor <-ncol(object) #define multiplication factor = the number of

datasets

19 previous <-0 #set previous to zero

20 for (chr in unique(object$coordinates [,1])) { #loop through chromosomes

21 chrEnd <-max(c(annotation$coordinates[annotation$coordinates [,1] == chr

,2:3], object$coordinates[object$coordinates [,1] == chr ,2:3]) ,na.rm=T

) #get the maximum chromosome value

22 objectChr <-object[object$coordinates [,1] == chr ,] #get data on current

chromosome

23 coordinates <-ceiling(rowMeans(objectChr$coordinates [,2:3])) #get probe

coordinate mid points

24 ratios <-objectChr$ratios #get dataset ratios

25 probes <-objectChr$annotations [,1] #get probe IDs

26 nRows <-nrow(objectChr) #get number of probes

27 for (n in 1:nRows) { #loop through probes

28 gap <-0 #set gap to zero

29 d<-n #set down value (d) to probe number (n)

30 if (coordinates[n] > windowSize) { #if probe coordinate is greater

than the windowsize

31 while (gap < windowSize) { #loop while gap value is less than the

windowsize

32 d<-d-1 #decrease d by 1

33 if (d > 0) gap <-coordinates[n] - coordinates[d] else gap <-

windowSize +1 #calculate the gap between the current and

downward probes if the downward value is greater than zero ,

other wise set gap to greater than the windowsize

34 } #gap greater than windowsize = window found + 1 probe

35 d<-d+1 #add 1 to d to reenter the window

36 if (min(ratios[d:n,],na.rm=T) > cutoffs [(n-d+1)*multFactor]) peaks[(

d+previous):(n+previous)]<-T #if probe is to be included , if all

ratios in the window are greather than the cutoff , set probes

216

SECTION 5.2 CHAPTER 5

in window to TRUE

37 gap <-0 #set gap to zero

38 d<-d+1 #add 1 to d

39 while (gap < windowSize) { #loop while gap value is less than the

windowsize

40 d<-d-1 #decrease d by 1

41 if (d > 0) gap <-(coordinates[n]-1) - coordinates[d] else gap <-

windowSize +1 #calculate the gap between the current - 1 and

downward probes if the downward value is greater than zero ,

other wise set gap to greater than the windowsize

42 } #gap greater than windowsize = window found + 1 probe

43 d<-d+1 #add 1 to d

44 if (d < n) if (min(ratios[d:(n-1) ,],na.rm=T) > cutoffs [((n-1)-d+1)*

multFactor]) peaks[(d+previous):(n-1+ previous)]<-T #if downward

probe is less than the current probe , if probe is to be included

, if all ratios in the window are greather than the cutoff , set

probes in window to TRUE

45 }

46 if (coordinates[n] < (chrEnd - windowSize)) {#probe coordinate is not

in the last windowsize of the chromosome

47 gap <-0 #set gap to zero

48 u<-n #set up value (u) to probe number (n)

49 while (gap < windowSize) { #loop while gap value is less than the

windowsize

50 u<-u+1 #add 1 to u

51 if(u < nRows) gap <-coordinates[u] - coordinates[n] else gap <-

windowSize +1 #calculate the gap between the current and upward

probes if the upward value is less than the number of probes ,

other wise set gap to greater than the windowsize

52 } #gap greater than windowsize = window found + 1 probe

53 u<-u-1 #subtract 1 from u to reenter the window

54 if (min(ratios[n:u,],na.rm=T) > cutoffs [(u-n+1)*multFactor]) peaks[(

n+previous):(u+previous)]<-T #if probe is to be included , if all

ratios in the window are greather than the cutoff , set probes

in window to TRUE

55 gap <-0 #set gap to zero

56 u<-u-1 #subtract 1 from u

57 while (gap < windowSize) { #loop while gap value is less than the

windowsize

58 u<-u+1 #add 1 to u

59 if (coordinates[n] > (chrEnd - windowSize)) inc <-F #set probe

include to FALSE if probe coordinate is in the last windowsize

of the chromosome

60 if(u < nRows) gap <-coordinates[u] - (coordinates[n]+1) else gap <-

windowSize +1 #calculate the gap between the current + 1 and

upward probes if the upward value is less than the number of

probes , other wise set gap to greater than the windowsize

61 } #gap greater than windowsize = window found + 1 probe

62 u<-u-1 #subtract 1 from u to reenter the window

63 if (u > n) if (min(ratios [(n+1):u,],na.rm=T) > cutoffs [(u-(n+1)+1)*

multFactor]) peaks[(n+1+ previous):(u+previous)]<-T #if upward

probe is less than the current probe , if probe is to be included

, if all ratios in the window are greather than the cutoff , set

probes in window to TRUE

64 }

65 } #finished searching all probes

66 previous <-previous+nRows #add number of probes to previous

67 } #finished all chromosomes

68 peaks.full[peaks.keep]<-peaks #store peaks in appropriate locations

69 if(!findPeaks) return(peaks.full) #return enriched regions if required ,

otherwise peak detection:

70 if(length(which(peaks.full)) < 1) { #no enrichment is found

217

CHAPTER 5 SECTION 5.2

71 message("No peaks found") #print message

72 return(NULL) #return NULL

73 }#some enrichment is found

74 con <-consecutive(cbind(which(peaks.full),object.full$coordinates[peaks.
full ,1])) #get consecutive enriched probes

75 ratios <-object.full$ratios #get all ratios

76 peaks.found <-peaks.found.to<-peaks.found.from <-scores.found <-numeric () #

initalise vectors to store results

77 for (n in 1:nrow(con)) { #loop through consecutive regions

78 if (con[n,2]-con[n,1] > 0) { #region is longer than a single probe

79 peaks.i<-matrix(ncol=multFactor ,nrow=(con[n,2]-con[n,1]) +1,0) #

initialise matrix

80 ratios.all <-matrix(ncol=multFactor ,ratios[con[n,1]: con[n,2],]) #get

ratios in region

81 for (m in 1: multFactor) { #loop through datasets

82 ratios.current <-ratios.all[,m] #get ratios of dataset

83 ratios.current <-cbind(ratios.current ,c(min(ratios.current),ratios.

current [1:(length(ratios.current) -1)]),c(ratios.current [2: length

(ratios.current)],min(ratios.current))) #align ratios with

previous + next for vectorised maxima searching

84 peaks.i[ratios.current [,2] < ratios.current [,1] & ratios.current [,3]

< ratios.current[,1],m]<-1 #assign maxima 1

85 }

86 ratios.means <-rowMeans(ratios.all) #get mean ratios

87 ratios.means <-cbind(ratios.means ,c(min(ratios.means),ratios.means [1:(

length(ratios.means) -1)]),c(ratios.means [2: length(ratios.means)],

min(ratios.means))) #align means with previous + next for

vectorised maxima searching

88 peaks.a<-ratios.means [,2] < ratios.means[,1] & ratios.means[,3] <

ratios.means[,1] #identify maxima

89 peaks.found <-c(peaks.found ,matrix(con[n,1]: con[n,2])[peaks.a]) #store

found probe positions

90 scores.found <-c(scores.found ,rowMeans(peaks.i)[peaks.a]) #store maxima

scores

91 peaks.i<-consecutive(which(rowMeans(peaks.i) > 0))+con[n,1]-1 #get

consecutive replicates maxima probes

92 for (p in (which(peaks.a)+con[n,1]-1)) { #loop through maxima

93 if (p %in% peaks.i) { #mean maxima in replicate maxima

94 for (r in 1:nrow(peaks.i)) { #loop through maxima

95 if(p %in% peaks.i[r,1]: peaks.i[r,2]) { #find replicate maxima

matching mean maxima

96 peaks.found.from <-c(peaks.found.from ,peaks.i[r,1]) #store

lower boundary

97 peaks.found.to<-c(peaks.found.to,peaks.i[r,2]) #store upper

boundary

98 break() #exit from loop

99 }

100 }

101 }else{ #mean maxima not in replicate maxima

102 closestPeaks <-abs(peaks.i-p) #get replicate peaks

103 near <-unique(peaks.i[closestPeaks == min(closestPeaks)]) #get

replicate peaks closest to average peak

104 near[abs(mean(object.full$coordinates[p ,2:3]) -rowMeans(matrix(ncol
=2,object.full$coordinates[near ,2:3]))) > 200] <-p

105 peaks.found.from <-c(peaks.found.from ,min(c(p,near))) #store from

106 peaks.found.to<-c(peaks.found.to,max(c(p,near))) #store to

107 }

108 }

109 }else{ #region is a singe probe

110 peaks.found <-c(peaks.found ,con[n,1]) #store single probe

111 scores.found <-c(scores.found ,1) #store score as 1

112 peaks.found.from <-c(peaks.found.from ,con[n,1]) #store lower boundary

218

SECTION 5.2 CHAPTER 5

113 peaks.found.to<-c(peaks.found.to,con[n,2]) #store upper boundary

114 }

115 }

116 coordinates <-matrix(ncol=3,nrow=length(peaks.found)) #create matrix for

coordinates

117 IDs <-matrix(ncol=2,nrow=length(peaks.found)) #create matrix for IDs

118 stats <-matrix(ncol=2,nrow=length(peaks.found)) #create matrix for stats

119 colnames(coordinates)<-c("PBRchr","PBRstart","PBRend") #set column names

for coordinates

120 colnames(IDs)<-c("ID","Position") #set column names for IDs

121 colnames(stats)<-c("Score","Height") #set column names for stats

122 coordinates [,1]<-object.full$coordinates[peaks.found ,1] #add peak

chromosomes

123 stats[,2]<-rowMeans(object.full[peaks.found ,])$ratios #add peak mean

ratios

124 stats[,1]<-scores.found #add peak scores

125 coords <-matrix(object.full$coordinates[peaks.found.from ,],ncol =3) #store

lower boundary coords in matrix

126 adjustAddValues <-adjustSubValues <-FALSE #initialise adjustors

127 subValues <-peaks.found.from -1 #get lower boundary - 1 probes

128 if(min(subValues) < 1) { #lowest probe is less than 1

129 subValues[subValues < 1]<-1 #set lowest probe to 1

130 adjustSubValues <-T #set subtracted values to be adjusted

131 }

132 coordsDown <-matrix(ncol=3,object.full$coordinates[subValues ,]) #get lower

boundary - 1 probes

133 if(adjustSubValues) coordsDown [1 ,2:3] <-rep(-Inf ,2) #set first coordDown as

-Inf if to be adjusted

134 sameChrDown <-coords [,1]== coordsDown [,1] #identify adjacent peaks on the

same chromosome

135 coordinates[which(sameChrDown) ,2]<-ifelse(rowMeans(matrix(ncol=2,coords[

sameChrDown ,2:3])) - rowMeans(matrix(ncol=2, coordsDown[sameChrDown

,2:3])) < 2*shearSize ,(rowMeans(matrix(ncol=2,coords[sameChrDown ,2:3])

) + rowMeans(matrix(ncol=2, coordsDown[sameChrDown ,2:3])))/2,rowMeans(

matrix(ncol=2,coords[sameChrDown ,2:3])) - shearSize) #calculate

downward coordinate boundaries

136 coords <-matrix(object.full$coordinates[peaks.found.to ,],ncol =3) #store

upper boundary coords in matrix

137 addValues <-peaks.found.to+1 #get upper boundary + 1 probes

138 if(max(addValues) > nrow(object)) { #highest probe is greater than the

number of probes

139 addValues[addValues > nrow(object)]<-nrow(object) #set highest probe to

the number of probes

140 adjustAddValues <-T #set added values to be adjusted

141 }

142 coordsUp <-matrix(ncol=3,object.full$coordinates[addValues ,]) #get lower

boundary - 1 probes

143 if(adjustAddValues) coordsUp[nrow(coordsUp) ,2:3] <-rep(Inf ,2) #set last

coordUp as Inf if to be adjusted

144 sameChrUp <-coords [,1]== coordsUp [,1] #identify adjacent peaks on the same

chromosome

145 coordinates[which(sameChrUp) ,3]<-ifelse(rowMeans(matrix(ncol=2,coordsUp[

sameChrUp ,2:3])) - rowMeans(matrix(ncol=2,coords[sameChrUp ,2:3])) < 2*

shearSize ,(rowMeans(matrix(ncol=2,coords[sameChrUp ,2:3])) + rowMeans(

matrix(ncol=2,coordsUp[sameChrUp ,2:3])))/2,rowMeans(matrix(ncol=2,

coords[sameChrUp ,2:3])) + shearSize) #calculate upward coordinate

boundaries

146 coordinates[which(!sameChrDown) ,2]<-ifelse(rowMeans(matrix(ncol=2,coords[!

sameChrDown ,2:3])) > shearSize ,rowMeans(matrix(ncol=2,coords[!

sameChrDown ,2:3])) - shearSize ,0) #calculate downward coordinate

boundaries at starts at starts of chromosomes

219

CHAPTER 5 SECTION 5.2

147 coordinates[which(!sameChrUp) ,3]<-rowMeans(matrix(coords[!sameChrUp ,2:3] ,

ncol =2)) + shearSize #calculate downward coordinate boundaries at

starts at ends of chromosomes

148 IDs[,1]<-object.full$annotations[peaks.found ,1] #store probe IDs

149 IDs[,2]<-peaks.found #store probe numbers

150 peakList <-new("peakList",list(coordinates=coordinates ,IDs=IDs ,stats=stats ,

from=colnames(object$ratios),windowSize=windowSize ,fdre=fdre ,grid_name
=object$grid_name))

151 return(peakList) #return detected peaks matrix

152 }

The function first checks that all provided datasets have undergone the

rmNAs, shiftByMode and stNormScale normalisation procedures, which are

required for the enrichment detection to work correctly, and gives a warning

message if any have not (L4–9). Ratios in the first dataset with NA val-

ues (and therefore all datasets following the rmNAs function) are identified

(L10) for exclusion. A copy of the full data is made (L11) and a new scaled

arrayData object created without the NA values for analysis (L12). A list

and two vectors are created to store windows and peaks (L13–15). Cutoff

values are calculated for up to 10,000 probes, far more than would occur in

actual data sets (L16). Cutoff values less than zero are set to zero (L17). The

number of datasets is set as a multiplication factor (L18) and a count started

(L19). A loop through chromosomes is initiated (L120). The maximum

chromosome coordinate is found (L21), the arrayData (L22), coordinates

(L23), ratios (L24) and probe IDs (L25) for the chromosome extracted and

the number of probes on the chromosome stored (L26). A loop through the

chromosome probes is initiated (L27), where the windows will be determined.

The gap size is initiated at zero (L28) and a value defining the probes to in-

clude ‘downwards’ is set as the current probe, that is, no probes downwards

(L29). If the current probe is within the window size of the start of the chro-

mosome the downwards window is not included (L30). While the gap size is

less than the defined window size (L31) the ‘downwards’ value is decreased

by one (L32). If the downwards value remains above zero (that is, on the

chromosome) a new gap value is calculated to the downwards probe, other-

wise the gap value is set to be bigger than the window size (L33). In this way

the next downward probe will be sought if the current downwards probe is

above zero and its gap value is less than the window size. Once the gap size

has increased beyond the window size (L34) the downward probe number is

220

SECTION 5.2 CHAPTER 5

increased by one to bring it back to the last probe within the window size

(L35). The minimum ratio value in the window is compared to the window

cutoff value (based on the number of probes in the window) and the probes

set to TRUE, representing enriched, if it is greater (L36). This finds probes

within a window that includes the current probe. The process is repeated,

starting with the last determined downwards probe, this time analysing win-

dows downwards from but not including the current probe (L37–45). The

same search processes are carried out analysing probes upwards of the current

probe (L46–65). The count of probes is increased (L66). When all enriched

probes have been identified (L67) enrichment statuses are combined with

those probes not examined (L68). If enrichment states are required by the

user these are returned here (L69) and the function ends, otherwise the peak

detection part of the function begins. If no enrichment is found (L70) the

function returns NULL with a message (L71–72). If enrichment is found (L73)

the consecutive function is run with the enriched data (L74). Ratio values

are extracted (L75) and vectors created for the peak detection process (L76).

A loop through the consecutive regions is initiated (L77). For regions longer

than one probe (L78) a matrix is created to store maxima and minima (L77)

and the ratios of the region extracted (L78). A loop through the dataset is

initiated (L81) and the ratios of the dataset extracted (L82) along with the

two bordering ratios (L83). Maxima are located and indicated in the matrix

(L84). Means of the ratios of the region are calculated (L86) along with the

two bordering means (L87) and the maxima located (L88). These maxima

are treated as peaks and stored (L89). A score is calculated based on the

individual dataset maxima at those positions (L90). Consecutive replicate

maxima probes are identified (L91). A loop through mean maxima probes

is initiated (L92) and replicate maxima containing them identified (L93). A

loop through these replicate maxima ranges is initialised (L94) and the first

mean maxima in these ranges is identified and the range stored (L95–98).

If the replicate maxima do not contain a mean maxima, the nearest to the

mean peak are stored (L101–106). Single probe regions are stored without

searches (L109–114). Matrices are created to store the results to put into

the peakList (L116–121) and filled with identified peak coordinates (L122),

221

CHAPTER 5 SECTION 5.2

ratios (L123), scores (L124) and lower peak boundaries (L125). Vectors defin-

ing adjustments are created (L126). The lower boundaries are reduced by

1 (L127) and any less than 1 (L128) are increased to 1 (L129) and the ad-

justment set to TRUE (L130). Reduced lower boundary coordinates are ex-

tracted (L132) and the first one adjusted to -Inf if required (L133). Matching

chromosome numbers are identified (L134) and lower boundaries calculated

as the smaller of halfway to the previous probe or the window size (L135).

The process is repeated to get upper boundaries (L136–144). Corrections are

made for the starts and ends of chromosomes (L145–147). Probe IDs and

numbers are stored (L148–149) and a new (peakList) containing the results

returned (L150–151).

The peakDetection function requires the consecutive function (Script 5.2)

which identifies consecutive regions of enrichment and reduces the list of

TRUE/FALSE enrichment values to a matrix of numerical values defining

‘from’ and ‘to’ enriched probe regions. The process is vectorised for efficiency.

It has the following argument:

object A list of logical values indicating probe enrichment.

Script 5.2: consecutive: script to condense consecutive numbers into a range.
Used within the peakDetection function to find extended regions of enrich-
ment.

1 ## consecutive function ##

2 ##arguments: object (vector or matrix of values)

3 consecutive <-function(object) { #define function

4 if(is.vector(object)) object <-cbind(object ,rep(1,length(object))) #add

second column if missing

5 con <-matrix(ncol=2,nrow =0) #initialise matrix to store results

6 for (chr in unique(object [,2])) { #loop through chromosomes

7 values <-object[object [,2] == chr ,1] #get current chromosome values

8 diffs <-abs(diff(values)) #calculate consecutive differences

9 diffs <-diffs != 1 #convert differences to TRUE/FALSE

10 con <-rbind(con ,cbind(values[which(c(T,diffs))],values[which(c(diffs ,T))

])) #find and store boundaries

11 }

12 return(con) #return result

13 }

The function adds a second column of ‘1’s if a vector is provided, simulating

all values coming from the same chromosome (L4). A matrix is created to

store results (L5) and a loop of chromosome numbers initialised (L6). Values

222

SECTION 5.2 CHAPTER 5

on the current chromosome are extracted (L7) and the differences between

adjacent values calculated (L8). These differences are converted to TRUE

and FALSE values, TRUE representing differences other than 1, that is, non-

consecutive values (L9). Boundaries of consecutive values, representing their

ranges, are stored (L10) and the results returned (L12).

The peakList object created by the peakDetection function contains

coordinates of PBRs, IDs of probes at the top of peaks, statistics of the peaks,

the file names the peak detection was performed on, and the windowSize and

FDRE values used. It has a set of methods associated with it (Script 5.3).

The show method displays the dataset names used to create the list, the

number of peaks found and the windowSize and FDRE values. The summary

method shows the number of peaks found and summaries of the peak scores

and heights. The dim method shows the number of peaks detected.

Script 5.3: peakList: methods to show, calculate the dimensions of, produce
a summary and extract data from a peakList object.

1 ## set peakList class##

2 setClass("peakList",representation("list"))

3

4 ## peakList show method ##

5 setMethod("show", "peakList", function(object) { #define function

6 message("A \"peakList\" object created from:") #print message

7 for(n in 1: length(object$from)) message(paste("\t",object$from[n])) #print

dataset names

8 message("Number of peaks:") #print message

9 message(paste("\t",nrow(object$IDs))) #print number of peaks

10 message("\nwindowSize:") #print message

11 message(paste("\t",object$windowSize)) #print windiowSize value

12 message("fdre:") #print message

13 message(paste("\t",object$fdre)) #print fdre value

14 }

15)

16

17 ## peakList dim method ##

18 setMethod("dim", "peakList", function(x) { #define function

19 return(dim(as.matrix(ncol=1,x$IDs))) #dimensions relate to IDs

20 }

21)

22

23 ##peakList summary method ##

24 setMethod("summary", "peakList", function(object) { #define function

25 message("Summary of peakList object") #print message

26 message("Number of peaks:") #print message

27 message(paste("\t",nrow(object$IDs))) #print number of peaks

28 message("Peak score statistics: ") #print message

29 scores <-as.matrix(table(object$stats [,1])) #get scores table

30 rownames(scores)<-round(as.numeric(rownames(scores)) ,2) #rename rows

31 colnames(scores)<-"Count" #rename column

223

CHAPTER 5 SECTION 5.2

32 print(scores) #print scores table

33 message("Peak height statistics: ") #print message

34 heights <-as.matrix(summary(object$stats [,2])) #get peak heights summary

35 colnames(heights)<-"Value" #rename column

36 print(heights) #print peak heights summary

37 }

38)

39

40 ## peakList extract method ##

41 setMethod("[", "peakList", function(x,i,...) { #define function

42 if (nargs() != 2) stop("One subscript required", call. = FALSE) #check

only one subscript (for rows)

43 return(new("peakList",list(coordinates=matrix(x$coordinates[i,],ncol =3),
IDs=matrix(x$IDs[i,],ncol =2),stats=matrix(x$stats[i,],ncol=ncol(x$
stats)),from=x$from ,windowSize=x$windowSize ,fdre=x$fdre ,add=x$add ,grid
_name=x$grid_name))) #return new genomeAnnotation object

44 }

45)

The peakList class is defined (L2). The show method (L5) prints dataset

names (L6), the number of peaks (L9) and the “windowSize” (L11) and

“FDRE” (L13) values used. The dim method (L18) returns dimensions of

the “IDs” slot (L19), with the number of columns always 1. The summary

method (L24) prints the number of peaks (L27), a matrix containing peak

score counts (L29–32) and a matrix containing a peak height summary (L34–

36). The extract method (L41) checks one argument is provided (L42) and

returns data for the specified peaks (rows) (L43).

5.2.1 Window determination

To examine a dataset for enrichment it must first be divided into a number

of subsets of probes, termed windows. Each window contains one or more

probes, depending on the probe resolution, and represents a genome region

likely to show the effect of enrichment in its vicinity. This is due to there

being multiple probes to which the chromatin fragments from a region can

bind, resulting in all probes covering the region showing enrichment. This is

demonstrated in Figure 5.1. All fragmented, immunoprecipitated chromatin

fragments will contain the binding site, represented by the blue dot, but

fewer fragments will cover regions at greater distances from the binding site.

Therefore the greatest distance from a binding site that can be covered by

a fragment is equal to the fragment length, and so the region of enrichment

is equal to twice the fragment length. A window size equal to this length

224

SECTION 5.2 CHAPTER 5

should therefore be capable of containing only enriched probes when centred

over an enriched region. As the fragmentation process is random, an average

chromatin shear size is used to determine this length. In this way, anomalous

peaks occurring at single probes can often be disregarded as the surrounding

probes in the window will not show enrichment. Probe values in each window

are analysed and called as positive if determined to represent enrichment.

Smaller window sizes encompass few probes and are therefore not very

stringent: it is possible for a spurious high probe to be the only value in a

window and so out of the context of the surrounding low values may be called

as positive. This results in a low specificity. Larger window sizes encompass

many probes and can therefore be too stringent: it is possible for high values

as a result of real enrichment to be masked by the surrounding low values

on either side. This results in a low sensitivity. The optimum window size

will allow regions of genuine enrichment to fill the window while keeping

anomalous high values in the context of their surrounding values. This is

illustrated in Figure 5.2.

The peak detection method presented here employs a sliding window ap-

proach, whereby a window of defined length is ‘slid’ along the data in silico.

At defined points processing of the data in the window is carried out. In

other sliding window methods these points are termed the ‘step size’ and

determine the distance the window is moved between sets of calculations

(Chipotle, Buck et al., 2005, for example). Figure 5.3 shows a representation

of these steps to create different windows, using the smallest possible step

size of one (black lines) and, as is more commonly used in peak detection

methods, an appropriate larger value (red lines). Sliding the window by a

defined length like this has two significant disadvantages. Firstly, as the

arrangement of probes is not uniform, some probe combinations may be by-

passed by the window as it takes a step beyond the particular configuration.

For example, in Figure 5.3 there are 6 possible unique probe combinations

with the step size applied (15 nt), but the sliding window with a step size of

5 does not find all of these. Conversely, the step size may not bring about

a new combination of probes and so the same window is ‘found’ multiple

times, wasting computational resources. Additionally, at regions with no

225

CHAPTER 5 SECTION 5.2

Position

B
in

d
in

g
 L

e
v
e

l
Genomic chromatin

Fragmented,

immunoprecipitated

chromatin

Hybridisation of

labelled DNA to

microarray features

Scanned array image

Graphical display

Bound protein of interest

Figure 5.1: Representation of the formation of a peak shape: Overlapping
chromatin fragments binding to several probes creating a peak shape in plot-
ted data. Chromatin is shown as a DNA helix for clarity. Fluorescent la-
belling of the input(green) and immunoprecipitated (red) samples is repre-
sented by coloured molecules. An immunoprecipitated protein of interest
(blue circle) can be present on a series of chromatin fragments. Following
random binding to the microarray the probe closest to the protein binding
site will have the most intense red signal because more immunoprecipitated
fragments cover this region, with those further away having reduced red sig-
nals because fewer immunoprecipitated fragments cover the regions. Plotting
the red/green ratios gives a peak shape centring on the protein binding site
with a base approximately equal to twice the sheared chromatin length.

226

SECTION 5.2 CHAPTER 5

Figure 5.2: How different window sizes affect enrichment detection: Too
small a window size (red) will allow anomalous high probe values in data
to be detected, by taking them out of the context of their surrounding low-
value probes. Too large a window size (orange) will prevent genuine regions
of enrichment from being detected by extending beyond peaks to include low-
valued probes. The correct window size (green) will overcome these problems,
allowing only genuine peaks to be detected.

227

CHAPTER 5 SECTION 5.2

probe coverage the window will continue to search for probes where none

will be found, again wasting resources. The first problem can be eliminated

by setting a small step size but this greatly exacerbates the second. This is

shown in Figure 5.3 where all possible windows and probe combinations are

generated with the step size of one, with the creation of many unnecessary

windows in the process.

To eliminate these problems the windows used by this algorithm do not

follow a defined step size, but are instead calculated to analyse every possible

unique window probe combination. This is equivalent to using a step size of

1, in the sense that all probe combinations will be found and analysed, but

is much more computationally efficient than creating every possible window.

This is achieved by creating windows only in the regions surrounding probes

(Figure 5.4). All windows can be found by taking 4 windows at each probe:

upwards from the probe coordinate; upwards from one above the probe co-

ordinate; downwards from the probe coordinate and downwards from one

below the probe coordinate. This creates two windows containing the probe

and two not. This allows all unique probe combinations for any given win-

dow size to be found without the need to search through the whole genome.

To test this, a script was written to determine every possible probe combi-

nation on the G4493A microarray with a window size of 600 bp by using

a step size of 1 through the whole yeast genome. This brute force method

took approximately 8,500 s to run (on a desktop PC with a 3.20 GHz Intel

i7 processor and 24 GB of RAM) and found 82,465 unique windows. The

script presented here, which finds windows in the way described above in a

vectorised manner, takes less than 4 s, over 2,000 times faster, and finds the

same 82,465 windows. These windows form the basis of the rest of the peak

detection procedure.

For the purposes of peak detection the coordinate of each probe is calcu-

lated as the average of the start and end coordinates, that is, the mid-point

of the probe. This means that during analyses a region is deemed to contain

a probe if it contains this mid-point coordinate. In practice this means that

at least half of a probe must overlap region for it to be considered ‘in’ the

region. There are various ways a probe could be defined as in a region, such

228

SECTION 5.2 CHAPTER 5

All possible windows:

Windows with a defined step size:

Windows generated by this algorithm:
Figure 5.3: Examples of sliding windows: Representation of the windows
that could be generated in the search for enriched probes. The thick black
line shows a section of genome with each nucleotide position marked by a
dash. Probe positions are shown with grey crosses. For clarity probes are
shown at a much higher resolution than on the microarrays and a window
size of 10 nucleotides is used, creating 6 unique windows. Probe positions
are highlighted with vertical dashed lines. All possible window combinations
(36 windows) find all unique windows with a lot of redundancy. A sliding
window with a step size of 5 (8 windows) does not find all unique windows.
Shading of windows highlights those with the same combinations of probes.

Figure 5.4: Representation of window determination: For each probe (rep-
resented by a cross) four windows are created: one upwards including the
probe, one upwards adjacent to but not including the probe, one downwards
including the probe and one downwards adjacent to but not including the
probe.

229

CHAPTER 5 SECTION 5.2

as requiring the whole probe or at least a section to be within the region.

In real data the effect of binding to a probe will gradually diminish with

distance from it and so it is impossible to define a definitive cutoff point for

these calculations. The mid-point was chosen as an average of these two ex-

tremes and for computational efficiency as only a single coordinate is needed

to define the probe, not the two coordinates of the extremes.

The speed of the script has been increased by improving the efficiency

of the determination of which probes to include in each window. The most

simple way of achieving this in R is with the which function in the form

which (probeCoordinates >= windowStart & probeCoordinates <=

windowEnd). This performs a search of all probe coordinates and returns

those that match the criteria, in this case those that are in the specified

window. Although this which command is efficient, repeating it four times

for every probe on a microarray to get all windows slows the function down

considerably. This process was therefore replaced with a series of loops which

limit the search process to the region around each probe, rather than the

whole chromosome. The loop starts at the coordinate of the probe being

examined to find the window starting at and including the probe. The gap

between this and the coordinate of the next probe is calculated and compared

to the window size. If it is less, the gap to the next probe is calculated, and so

this loop continues. When the gap is greater than the window size the loop

stops and the binding values from the range of the probe being examined

to the probe preceding that with a gap greater than the window size is

analysed. This is then extended a further step to get the window starting

immediately adjacent to the probe being examined. The same process is

repeated in the opposite direction to get windows upstream and downstream

of the probe being examined. The ratios in each window are analysed to

determine whether or not they represent an enriched region, based on the

cutoff value for the window, as described in the following sections. When all

four windows have been analysed the probe being examined is incremented

and the process repeated. This computational process is shown as a flow

chart in Figure 5.5 and represented graphically in Figure 5.6.

230

SECTION 5.2 CHAPTER 5

Analyse ratios from
the last window of

the correct size

Get corresponding
down value and
reset gap to zero

Set gap to
zero

Set down value to
current probe

number

Is the probe greater than the
window size away from the
start of the chromosome?

Calculate gap
size between

this and current
probe

Set gap to be
greater than the

window size

Is the gap less
than the

window size?

Decrease down
value by one

Is down value
greater than

zero?

Calculate gap
size between

this and current
probe

Set gap to be
greater than the

window size

Is the down
value greater

than zero?

Decrease down
value by one

Is the gap less
than the

window size?

Analyse ratios from
the last window of

the correct size

Analyse ratios from
the last window of

the correct size

Get corresponding
up value and reset

gap to zero

Reset gap to
zero

Set up value to
current probe

number

Is the probe greater than the
window size away from the
end of the chromosome?

Calculate gap
size between

this and current
probe

Set gap to be
greater than the

window size

Is the gap less
than the

window size?

Increase up
value by one

Is up value less
than last on the
chromosome?

Calculate gap
size between

this and current
probe

Set gap to be
greater than the

window size

Is up value less
than last on the
chromosome?

Increase up
value by one

Is the gap less
than the

window size?

Analyse ratios from
the last window of

the correct size

Start

End

Y N

Y N

Y

N

Y

N

Y N

Y N

Y N

Y

N

Y

N

Y N

Figure 5.5: Window determination and enrichment detection process flow
chart: The computational processes of the enrichment detection process,
including the window determination and ratio cutoff analysis.

231

CHAPTER 5 SECTION 5.2

Decrease
Decrease
Decrease
Decrease

Return
Analyse (2,3,4,5)

Decrease
Decrease

Return
Analyse (1,2,3,4)

Increase
Increase
Increase
Increase
Return

Analyse (5,6,7,8)
Increase
Return

Analyse (6,7,8)

<
<
<
<
>

NA
<
<
>

NA
<
<
<
<
>

NA
<
>

NA

5
6
7
8
9
8
8
9
8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1 3 5 2 4 6 7 8 9
Step Action

5
4
3
2
1
2
2
1
0
1

d u gap

Figure 5.6: Representation of window determination and enrichment detec-
tion: The grid on the left represents the values and actions of the algorithm,
displayed in the graphic on the right. ‘d’ is the probe number being tested
downwards from the current probe. ‘u’ is the probe number being tested
upward from the current probe. ‘gap’ shows if the gap between the probes
is greater or less than the window size. ‘Action’ shows the step taken by the
algorithm. The ‘d’ value is initially set to the current probe value (demon-
strated here with probe 5), shown with a green cross. In step 1 the gap is
less than the window size and so the action is to decrease the ‘d’ value. This
is repeated for steps 2 to 4 with the window being tested shown with a green
line. In step 5 the ‘d’ value gives a gap larger than the window size, indicated
by a red line, and so the action is to return to the previous ‘d’ value. The
values of all probes in this range are then analysed (step 6). The ‘d’ value is
then decreased again in step 7, this time to calculate the gap to the point im-
mediately preceding the current probe. The process is repeated, analysing a
new window in step 10. Once both downward windows have been determine,
the process is repeated in the upward direction, starting with a ‘u’ value at
the current probe (step 11).

232

SECTION 5.2 CHAPTER 5

5.2.1.1 Cutoff calculation

The algorithm requires a user defined false discovery rate equivalent (FDRE)

value of the number of false peaks to ‘find’. Setting this value at less than

one means that the cutoff values are maintained at a level that, statistically,

no false peaks should be found. The default value for this argument is there-

fore 0.9. In theory, there will be a limit to the genuine peaks that can be

detected in a dataset, due to its properties, including the sizes of the genuine

peaks and the level of noise in the background. The default FDRE value

of 0.9 is intended to find the maximum number of detectable genuine peaks

without detecting any false peaks. Smaller values will result in fewer genuine

peaks being detected, reducing the sensitivity, without affecting the speci-

ficity. Larger values will result in more false peaks being detected, reducing

the specificity, without affecting the sensitivity. This process works in the

reverse manner to traditional multiple testing corrections, where a series of

tests produce a series of probability values to which a multiple testing correc-

tion is applied. The aim of this correction is to remove any significant results

caused by chance alone, maintaining only those that occur due to genuine bi-

ological factors. Different corrections have varying levels of conservation and

so remove varying numbers of results. This means that, even after applying

the correction, some of the remaining results may still be false positives and

some true positives may be removed. Adjusting the cutoff value for each win-

dow removes the need to apply any correction to the final results, meaning

they can be treated with greater confidence.

The defined number of false peaks it is statistically acceptable to find

is adjusted to take into account the total number of probes in the dataset,

such that the overall level stays at the specified level regardless of how many

probes are being analysed. For example, in a dataset of a single probe, that

probe must have a value over -1.281552 to be called a peak at the level of

significance which seeks to find 0.9 false peaks. In a dataset of 44,000 probes,

a single probe in a window containing only that probe must have a value over

4.102284 to meet the same statistical requirements. This larger value reflects

the fact that, statistically, more false peaks will be found in 44,000 probes

233

CHAPTER 5 SECTION 5.2

than 1 probe. The higher cutoff counteracts this as fewer probes will be over

the higher value, so all the peaks found from the 44,000 probes should be

statistically genuine.

As the number of probes in a window increases, the cutoff value is reduced

while maintaining the same probability level, because the individual levels

are multiplied together to give the overall probability. In the single-probe

window from 44,000 probes example above, the probability level is 2.045452×
10−5, that is, the probability that the value is from the normal background

population is 2.045452 × 10−5, so it is actually very unlikely to have come

from that population and is more likely to have come from the population of

genuine peaks. If the window contained two probes, the cutoff value would

reduce to 2.610336 which has a probability of 4.522667 × 10−3. 4.522667 ×
10−3 × 4.522667 × 10−3 = 2.045452 × 10−5, that is, the overall probability

level of the cutoff value of the window containing two probes is the same as

the window containing a single probe.

Replicates can also contribute to this. For example, a window containing

3 probes, each of which has 3 replicates is treated as containing a total of

9 probes. The cutoff value for this is 0.52071 which has a probability of

0.3012844. 0.30128449 = 2.045452 × 10−5, that is, the same overall proba-

bility as before. So the more probes in a window (from probe dense regions

or/and replicates) the lower the cutoff value can be to achieve the same

probability level, thus increasing the detection sensitivity. In doing this the

overall probability of finding a false peak is maintained at the level originally

specified and so no correction needs to be applied to the final results. The

results presented later show that this may not be beneficial in all datasets.

Cutoff values are calculated at the beginning of the algorithm so as to

save computational time by not having to perform the calculation for every

window. Cutoff values less than zero are set to zero, so only positive values

can be found as enriched.

234

SECTION 5.2 CHAPTER 5

5.2.2 Enrichment detection

Enrichment detection takes place by examining the probe ratios in each win-

dow and recording which windows, if any, contain probes over the cutoff.

It is likely that many probes will appear in more than one window. These

probes need only be in one window with all values over the cutoff to be

recorded as enriched. All probes in the window are required to be over the

cutoff to avoid the detection of spurious high values caused by events other

than enrichment (see Figure 5.7). At sites of genuine enrichment, a region

approximately double the average chromatin shear size will be immunopre-

cipitated and the resulting peak will have a base approximately the same

width (assuming a high probe coverage, otherwise the peak is theoretical).

There will therefore be a region of values higher than background over this

region. However, the smaller values at the two extremes of this region may

be indistinguishable from the background. The window size is therefore set

to the average chromatin shear size so that it can cover the central portion

of the peak and analyse only these larger values, without the influence of the

smaller values. Therefore windows over the centres of genuine peaks should

contain values which are all above the cutoff value and be recorded as en-

riched. It may also be the case that windows covering the regions either side

of the centre of the peak will contain values over the cutoff and so these too

will be recorded as enriched, resulting in the detection of a larger enriched

region. High values due to other factors are likely to affect single probes only,

possibly extending to multiple probes in rare circumstances. It is unlikely

that these will fill a whole window with values over the cutoff and so these

will not be recorded as enriched by this method. It is also very unlikely that

these spurious high values will occur at the same points in multiple datasets

and so combining all data in the same analysis provides another method by

which these regions are not detected as enriched. Figure 5.7 demonstrates

this process over a short section of data, showing four windows detecting four

probes as enriched. The final probe is not detected as enriched, even though

it has a higher value that some of the other detected probes, because there

are fewer probes in the window and so the cutoff is higher.

235

CHAPTER 5 SECTION 5.2

Following this stage of the algorithm every probe is assigned a TRUE or

FALSE status representing whether or not it has been detected as enriched. If

only enrichment detection is required by the user these statuses are returned,

indicating all probes which the algorithm has determined to be showing en-

richment. This is useful for conditions which do not exhibit distinct binding

sites and therefore do not contain a series of peaks, such as histone modifi-

cations. These modifications may span regions of hundreds or thousands of

nucleotides and so reducing this information to the location of a single peak

is not biologically informative. Rather, the whole modified region is required

which can then be analysed further by the user, depending on the aims of

their investigation.

Because this method requires all of the values in a window to be above

the cutoff it is only suited to good quality data with consistent replicates.

Only a single probe need be less than the cutoff for the window not to be

found, so a peak present in some datasets but not others will not be found by

this method. This can be overcome by analysing the means of the datasets,

which should create peaks above the cutoff value in area where enrichment is

present in some of the datasets. This will result in a reduced ability to detect

small peaks, as fewer probes will be analysed and so larger cutoff values will

be calculated. However, it is unlikely that any such peaks could be reliably

determined in poor quality data and so this averaging should not reduce the

overall ability to detect regions of enrichment.

For investigations requiring peak detection the next stage of the algorithm

can be invoked.

5.2.3 Peak detection

The peak detection stage of the algorithm is used to identify likely binding

sites of immunoprecipitated molecules that bind at distinct sites, including

proteins. All regions detected as enriched are analysed and a series of binding

region coordinates are produced. The coordinates are based on the probe

coordinates at the peak.

The enriched probes are first broken down into regions, each one repre-

236

SECTION 5.2 CHAPTER 5

a b c

d e f

g h i

a
b
c
d
e
f
g
h
i

1
2
2
3
2
3
2
2
1

1
1
3
3
4
2
2
2
4

4.1
2.6
2.6
1.9
2.6
1.9
2.6
2.6
4.1

N
N
Y
Y
Y
Y
N
N
N

Figure 5.7: Enrichment detection representation: A short section of example
data showing 9 possible windows. For each window the number of probes,
its lowest value and the calculated cutoff is shown. From these the enriched
windows (those with their lowest values above the window cutoff) are found,
which are highlighted as red.

237

CHAPTER 5 SECTION 5.2

senting each run of enriched probes. These may therefore range in length

from one to scores of probes. Each of these regions is analysed in turn for

binding peaks. The algorithm analyses all individual datasets as well as the

means of these datasets when determining peak positions. Peak calling is

based on the average values of the region, where every probe at a peak, that

is, a probe with a value higher than its two adjacent probes, is recorded as

a potential binding probe. This is based on the assumption that a genuine

binding peak will occur in all replicate datasets and also therefore in the

average of the datasets. Spurious, small peaks occurring in a small number

of datasets are unlikely to also occur in the averaged dataset, depending on

the number of replicates, and so these regions will not be detected as peaks.

Following this initial process all individual datasets are analysed at the

detected sites to determine whether or not they also contain peaks at or near

to the same probe. Peaks that occur at the same probe in the averaged

and all individual datasets are given a score of 1, representing the fact that

this is very likely to represent a probe near a genuine binding site. The

process is outlined as a flow chart in Figure 5.8 and represented graphically

in Figure 5.9.

It is possible, due to the resolution of the technology, that a genuine bind-

ing site will manifest as peaks at close, adjacent probes in different datasets.

This fact is taken into account in situations where not all replicate datasets

contain a peak at the same site as the averaged dataset. Here, probes within

the average chromatin shear size of the probe detected from the averaged

dataset are also analysed for peaks. If peaks are present in these regions the

probe detected in the averaged dataset is recored as a peak. The score is

calculated as a fraction of the number of individual datasets also present at

the same site. For example, if two out of three replicates contain a peak at

the same probe the score is 2/3 = 0.6̇.

As well as detecting and scoring peaks, the algorithm calculates a range

over which the genuine binding site is likely to be located based on probe co-

ordinates and the average chromatin shear size, termed the potential binding

region (PBR). For peaks with a score of 1 this is calculated as the smaller

of the average chromatin shear size or half the distance to the previous/next

238

SECTION 5.2 CHAPTER 5

Is there more
than one probe in

the region?
Start

Identify maxima
in each individual

dataset

Identify maxima
in averaged data

(the peaks)

Calculate scores
for these peaks

Is averaged maxima in
individual maxima?

Identify regions of
consecutive maxima
containing each peak

End

N

Y

Find closest individual
maxima within window

size (one or two)

For Each Average Maxima:

Calculate
up/down

coordinates

Store peak probe
number

Assign score of 1

For Each Set of Consecutive Enriched Probes:

Y

N

Get (range of
consecutive) individual

maxima probes

Figure 5.8: Peak detection process flow chart: The computational processes
of the peak detection process, which takes the results from the enrichment
detection to find potential binding regions.

239

CHAPTER 5 SECTION 5.2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

2.5
5.5
9.5
4.5
3.0
3.5
7.0
8.5

10.0
8.0
5.0
3.5
4.0
5.5
7.0

10.0
8.5
6.5
3.5
2.5

(2.5)
2.5
5.5
9.5
4.5
3.0
3.5
7.0
8.5

10.0
8.0
5.0
3.5
4.0
5.5
7.0

10.0
8.5
6.5
3.5

5.5
9.5
4.5
3.0
3.5
7.0
8.5

10.0
8.0
5.0
3.5
4.0
5.5
7.0

10.0
8.5
6.5
3.5
2.5

(2.5)

0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0

0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0

0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0

0
0
1
0
0
0
0

0.5
0.5
0
0
0
0
0
0

0.5
0

0.5
0
0

•Consecutive probe maxima in individual
datasets: 3:3, 8:9, 16:16 and 18:18

•Probe maxima in averaged dataset: 3, 9
and 17

•Analysing these peaks:
1. Probe 3, in individual maxima probe

range 3:3 = PBR range 3:3, score 1
2. Probe 9, in individual maxima probe

range 8:9 = PBR range 8:9, score 0.5
3. Probe 17, not in any individual

maxima probe ranges, closest to
maxima at 16 and 18 (both within
window size) = PBR range 16:18,
score 0.

Figure 5.9: Representation of peak determination: The top graphic shows a
genome section with probe positions indicated by crosses. Black and red lines
indicate two datasets with their mean shown in green. The columns of values
represent the computational process of finding peaks or peak regions. The
first ‘Ratios’ column shows the values of the black data line. The next two
show the same values offset by one position in both directions, with the values
in brackets being the resulting gaps filled with the original value. These three
columns are analysed for maxima, occurring where a value in the first column
is larger than the equivalent value in the next two columns. These sites are
indicated with values of 1 in the black ‘Maxima’ column. The red ‘Maxima’
column shows the same results for the red data. Values in the ‘Scores’ column
are calculated as the mean of these values. Peak sites are determined by the
positions of maxima in the averaged data, shown in the green ‘Maxima’
column and highlighted in the ‘Scores’ column. Consecutive probe maxima
in individual and averaged datasets are calculated and each averaged dataset
maximum is analysed in the context of the individual dataset maxima to
determine the potential binding region which is stored with the score, as
shown in the text.

240

SECTION 5.3 CHAPTER 5

probe (Figure 5.10). This is based on two assumptions. The first is that

the genuine binding site must lie within one average chromatin shear size

length of the peak probe as beyond this range the probe will not detect the

enrichment. This is relevant in situations where the distance between probes

is greater than the average chromatin shear size and this lack of resolution is

reflected in the large potential binding region. The second assumption is rel-

evant where the distance between probes is less than the average chromatin

shear size and is that the genuine binding site must lie closer to the peak

probe than its adjacent probes. If this were not the case the adjacent probe

would be at the top of the peak.

For peaks with a score less than 1, the same procedure is applied in cal-

culating the likely binding region taking into account all of the probes from

all replicate datasets that are considered to make up the peak (Figure 5.11).

This extends the region, reflecting the fact that the peaks in differing posi-

tions reduce the certainty in determining the likely binding region.

The final result of this peak detection process is a six column matrix con-

taining the chromosome, start and end coordinates of the potential binding

region, the unique probe ID and log2 binding value of the probe at the top

of the peak (taken from the averaged dataset).

5.3 Testing the performance of the algorithm

Testing the performance of enrichment detection algorithms, and comparing

the results of different algorithms, poses a problem. The nature of ChIP-chip

datasets means that many, if not all, of the genuine biological binding sites

are not known. Therefore there is no way of comparing the performance of

one algorithm with another, because it is not possible to know which results

from the two are correct or incorrect. The accuracy of different methods is

therefore difficult to assess. Although a subset of microarray results should

always be validated by other techniques, it is impractical to validate every

single result, both positive and negative, and so it cannot be known with

absolute certainty which results are correct or incorrect.

241

CHAPTER 5 SECTION 5.3

Potential

binding region

Potential

binding region

A B

Figure 5.10: Calculating the PBR with consistent peaks: Crosses represent
probes, the probe at the peak is highlighted; coloured lines represent in-
dividual datasets. A - Where adjacent probes are closer than the average
chromatin shear size the distance is set as half the distance to the adjacent
probe. B - Where adjacent probes are further than the average chromatin
shear size the distance is limited to the average chromatin shear size.

242

SECTION 5.3 CHAPTER 5

A B

Potential

binding region

Potential

binding region

Figure 5.11: Calculating the PBR with inconsistent peaks: Crosses represent
probes, the probes at the peaks are highlighted; green and red lines represent
individual datasets. The region is calculated as in Figure 5.10 from the probes
at the two extremes of the range of peaks. A - peaks occurring at adjacent
probes form a potential binding region spanning those probes. B - peaks
occurring at non adjacent probes are identified by a peak in the averaged
data (blue line) and the potential binding region spans several probes.

243

CHAPTER 5 SECTION 5.3

5.3.1 Data

Two sets of data have been used here in an attempt to overcome the above

problem and assess the performance of this algorithm compared to other

published algorithms. The first is the creation of artificial datasets, designed

to mimic the expected output of a microarray by simulating binding sites at

known locations. The second is the use of a series of spike datasets produced

by various labs, presented by Johnson et al. (2008), where a number of known

locations have been artificially enriched to varying degrees. These datasets

were created to evaluate variability in ChIP-chip experiments and peak de-

tection algorithms. As locations of genuine enrichment (both simulated and

real) are known for these datasets, the performance of the enrichment de-

tection algorithm can be assessed. Comparing the regions detected by the

algorithm with the genuine regions of enrichment allows the numbers of true

and false positive and negative results to be calculated. These values can be

used to determine the sensitivity and specificity of the algorithm (outlined

later), giving a measure of its accuracy. They are then compared to the re-

sults created by other algorithms analysing the same datasets, to compare

their performances.

5.3.1.1 Creating simulated ChIP-chip data

Simulated ChIP-chip data were created to test the performance of the en-

richment detection process, based on the probe arrangement of the G4493A

microarray. From this layout, 2000 probes were randomly selected to repre-

sent ‘peaks’. The predictProfile function (Chapter 6) was used to generate

a dataset based on these positions, with randomly generated values repre-

senting peak heights. A window size of 600 was used. Properties of the Abf1

datasets (no UV treatment; see Chapter 7 for details) were used to make

the simulated data represent a set of real ChIP-chip data as accurately as

possible. The largest value in these raw datasets is around 6.8, so this was

used as an estimate of the maximum peak height to simulate. Four sets of

height values were generated: small (0.5 to 2.5), medium (2.5 to 4.5), large

(4.5 to 6.5) and a combination of all of these (0.5 to 6.5). Noise, in the form

244

SECTION 5.3 CHAPTER 5

of randomly generated normally distributed values, was added to the data,

to simulate the noise associated with real data. The standard deviation of

the estimated background data from the Abf1 datasets was calculated and a

normal distribution with a mean of zero and standard deviation of this value,

0.31, applied.

For each set of randomly generated peaks, five different sets of random

normally distributed values were applied. This was intended to simulate five

replicate datasets, which all have the peaks present at the same positions but

are subject to different random noise. As the noise is applied to peaks as well

as the background, the heights and shapes of the peaks will be different in

each dataset, depending on the random values applied to them. In addition,

for each dataset 500 randomly generated probes had their values increased

by a randomly generated value between 0 and 3, to simulate small, spurious

peaks which may occur in data. This allowed the performance of the peak

detection to be assessed with single and multiple datasets. Peak positions,

heights and noise were applied blind, so as not to introduce any user bias in

the analyses. The full normalisation procedure was applied to each dataset

before peak detection was applied, to replicate the same procedure real ChIP-

chip data is subject to. Peak detection was set to find peaks, resulting in a

list of probes determined to be closest to the binding region.

5.3.1.2 Using spike datasets

Spike datasets, produced as a means to test the performance of different

microarray platforms and peak detection methods, is presented by John-

son et al. (2008). These microarrays contain probes covering regions se-

lected by the ENCODE consortium, covering 1% of the human genome.

The spikes consist of 100 samples of cloned genomic DNA sequences of av-

erage length 497 bp, added at concentrations ranging from 1.25- to 196-

fold above the background — a commercial human genomic DNA prepara-

tion. Datasets were downloaded from the Gene Expression Omnibus (http:

//www.ncbi.nlm.nih.gov/geo) under accession number GSE10114. In to-

tal, 7 individual Agilent datasets were produced: 3 produced by Myers et al.

245

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo

CHAPTER 5 SECTION 5.3

containing undiluted spikes and 4 produced by McCuire et al., 2 containing

undiluted spikes and 2 containing diluted spikes which went through a PCR

amplification procedure prior to their application to the microarray. These

datasets were analysed individually and in various combinations, shown in

Table 5.2 along with the amplification status of each.

The consistency of the datasets was investigated by creating scatter plots

of all replicates, shown in Figure 5.12 along with Spearman’s rank corre-

lation values. These show that there is very little correlation between any

two datasets, with the best correlation value being 0.5. While the bulk of

the data points should not show any correlation, under the assumption that

these are from the background sub-population, there should be a small but

significant subset of probes from the enriched sub-population which do show

a correlation. While this is partially apparent in some comparisons, all plots

also show higher values in one dataset which are not present in the other.

Compared to the Abf1 datasets (see Figure 7.7), which have good correla-

tions between replicates in their enriched sub-population regions, the plots

created here suggest that the spike datasets may not be well suited to the re-

quirements of this algorithm, as outlined in Section 5.2.2. Averaged datasets

were therefore analysed along with combined datasets. As previously dis-

cussed, this can increase the ability of the algorithm to detect the larger

peaks, possibly at the expense of smaller ones.

5.3.2 Optimisation of the algorithm

The algorithm was applied to the simulated and spike datasets with a number

of different settings, to test its performance under different conditions and

determine the optimal values for the different arguments. There are three

user-modifiable arguments that can influence the results of the algorithm:

the window size, FDRE value and scale factor. The algorithm was run with

a range values for each of these, centred around the value expected to give the

optimal results, and extending to values thought likely to give poor results.

This range of results allowed ROC plots to be created and an estimate of the

value producing the best results to be made, be this the expected optimum

246

SECTION 5.3 CHAPTER 5

Number Dataset(s) Amplified

1 Myers 1 No
2 Myers 2 No
3 Myers 3 No
4 Myers 1 & 2 No
5 Myers 2 & 3 No
6 Myers 1 & 3 No
7 Myers 1, 2 & 3 No
8 McCuire 1 No
9 McCuire 2 No
10 McCuire 1 & 2 No
11 McCuire 3 Yes
12 McCuire 4 Yes
13 McCuire 3 & 4 Yes
14 Myers 1, 2 & 3 and McCuire 1 & 2 No

Table 5.2: Johnson et al. (2008) spike datasets: Combinations of Agilent
spike datasets presented by Johnson et al. (2008), showing the group that
created the data and the amplification status. Colours are as used in later
plots of the data and indicate single (grey), pairs (black, Myers only), full
(red) and combined (blue) datasets.

247

CHAPTER 5 SECTION 5.3

Cor. = 0.445

Myers 1

M
ye

rs
 2

Cor. = −0.126

Myers 1
M

ye
rs

 3

Cor. = −0.142

Myers 1

M
cC

ui
re

 1

Cor. = −0.183

Myers 1

M
cC

ui
re

 2

Cor. = −0.216

Myers 2

M
ye

rs
 3

Cor. = −0.112

Myers 2

M
cC

ui
re

 1
Cor. = 0.445

Myers 2

M
cC

ui
re

 2

Cor. = 0.079

Myers 3

M
cC

ui
re

 1

Cor. = 0.274

Myers 3

M
cC

ui
re

 2

Cor. = 0.503

McCuire 1

M
cC

ui
re

 2

Figure 5.12: Johnson et al. (2008) data correlations: The darker the blue
colour the more points occur in the region. Individual points outside of
the central region are shown with dots. The black line shows y = x. The
Spearman rank correlation value is shown above each plot.

248

SECTION 5.3 CHAPTER 5

or not.

The algorithm was first applied with a range of different window sizes,

centred on the expected optimal values for the two sets of data: 600 for

the simulated and 150 for the spike datasets. As previously outlined (Sec-

tion 5.2.1), windows that are too small or too large are likely to have a

detrimental impact on the ability of the algorithm to resolve sites of genuine

enrichment. The optimal values found from these tests were used to test

the algorithm’s performance with different FDRE values, centred around the

expected optimum of 0.9. As previously outlined, values that are too small

or too large will create unsuitable cutoff values, limiting the ability of the

algorithm to correctly extract values representing genuine enrichment. The

optimal values found from these two runs were finally used to test the effect

of a range of scale values on the algorithm’s performance. If the properties

of the estimated background sub-population vary from those of the assumed

normal distribution, genuine enriched regions may be thought to represent

background regions, or genuine background regions may be thought to repre-

sent enriched regions. The “scale” argument allows the properties of the data

to be modified, by scaling the whole dataset by the given factor, to improve

the ability of the algorithm to correctly identify enriched and background

regions.

The function was applied to the simulated data with the following set-

tings:

object arrayData objects containing normalised simulated dataset in the

combinations outlined in Section 5.3.1.1.

annotation The genomeAnnotation object for the yeast genome.

windowSize A range of values, shown in Table 5.3

FDRE A range of values, shown in Table 5.5.

findPeaks TRUE, in order to identify probes at the tops of peaks.

The function was applied to the spike data with the following settings:

object arrayData objects containing normalised spike dataset in the com-

binations shown in Table 5.2.

249

CHAPTER 5 SECTION 5.3

annotation The genomeAnnotation object for the human genome.

windowSize A range of values, shown in Table 5.4.

FDRE A range of values, shown in Table 5.5.

findPeaks FALSE, in order to identify regions of enrichment.

Peak detection was applied to the simulated data, returning a list of

probes deemed to be at the tops of peaks. These were compared to the 2,000

randomly selected probes at the tops of the genuine, simulated peak sites.

Only enrichment detection was applied to the spiked datasets, without peak

detection, because of the nature of the data. A protein immunoprecipitation

procedure creates a triangular region of enrichment, because more DNA is

present from the site of the protein than the surrounding regions (Figure 5.1),

the top of which the peak detection aims to identify. The spike probes are

present at a consistent level across their length, creating rectangular regions

of enrichment (these can be seen in the “Enriched regions (combined).pdf”

file in the electronic appendix; see Page 367). The probes in this region

can be identified by the enrichment detection procedure, but as there is no

actual peak the peak detection procedure will not provide useful additional

information. Probes detected as enriched were compared to probes in the

regions containing spikes.

Receiver operating characteristic (ROC) curves are a method of display-

ing the performance of signal detection methods, used here to display the

performance of the peak detection method. The curves show the relation-

ship between sensitivity — the ability to correctly detect genuine results —

and specificity — the ability to correctly ignore false results. In other words,

sensitivity measures the proportion of true positives identified as positive,

that is, detected, and specificity measures the proportion of true negatives

identified as negative, that is, not detected. Therefore a detection method

with high sensitivity is able to correctly identify a high proportion of true

positives, and a method with high specificity is able to correctly ignore a

high proportion of true negatives. Both of these characteristics are required

in a reliable and informative detection method. A ROC curve shows how

the sensitivity and specificity change as a given parameter of the method is

altered, in this case the window size, FDRE and scale values. Sensitivity is

250

SECTION 5.3 CHAPTER 5

shown on the y axis and 1-specificity on the x axis, so that the top left hand

corner of the plot represents the ‘perfect’ scenario: maximum sensitivity and

specificity. The format of a ROC plot, the relationships between sensitivity

and specificity and example curves are shown in Figure 5.13.

The sensitivity and specificity values for a ROC curve are calculated from

the numbers of true positives (detected known positives; TP), false positives

(detected known negatives; FP), true negatives (undetected known nega-

tives; TN) and false negatives (undetected known positives; FN), using the

following Equations 5.1 and 5.2.

sensitivity =
TP

TP + FN
(5.1)

specificity =
TN

FP + TN
(5.2)

Johnson et al. (2008) use a variation on this format to create ROC-like

plots from the results of their peak detections. Because most probes on these

microarrays are are true negatives (over 99%), large numbers of detected

false positives can be masked. This can create apparently good ROC curves

even with large numbers of incorrectly called positive results. Therefore

they calculate results based on the number of spikes; a much smaller value

than the number of true negatives. This methodology was applied to the

simulated data with a variation applied to the spike data, as this did not

have peak detection process applied. For this variation, detected probes were

split into consecutive regions and each of these compared with the genuine

enriched regions. Those overlapping were deemed to be true positives. This

principle is demonstrated in Figure 5.14. This format also reduces misleading

results that can be produced when probes around, but not including, enriched

regions are called as positive, or some, but not all, probes in enriched regions

are called as positive. This can cause probes to be called as FP when they

are immediately adjacent to enriched regions, and probes to be called as FN

when they occur in enriched regions where a number of probes have been

correctly called as TP. These modified sensitivity and specificity values were

calculated using the following Equations 5.3 and 5.4.

251

CHAPTER 5 SECTION 5.3

Se
n

si
ti

vi
ty

1 - Specificity

High sensitivity and high
specificity:
Many positive results are
correctly identified with few
negative results incorrectly
identified. Most results
therefore represent true
positives and the method
is reliable.

Low sensitivity and high
specificity:
Few positive results are
correctly identified with few
negative results incorrectly
identified. Few results are
therefore generated and most
true positives are missed, so
the method is unreliable.

High sensitivity and low
specificity:
Many positive results are
correctly identified with many
negative results incorrectly
identified. Many results are
therefore generated with no
differentiation between true
and false positives, so the
method is unreliable.

Curves around the line y = x
indicate unreliable detection
methods.

Curves passing further from the line
y = x indicate improving reliability.

Curves passing close to the top left-
hand corner represent good results.

0 1
0

1

Figure 5.13: ROC plot properties: Examples of poor (red), intermediate
(orange) and good (green) curves are shown.

252

SECTION 5.3 CHAPTER 5

Modified sensitivity =
Number of correct sites found

Total number of sites
(5.3)

Modified specificity =
Number of incorrect sites found

Total number of sites
(5.4)

5.3.2.1 Optimising the window size selection

The window size used by the algorithm can potentially have a large effect

on the results generated. Too large or too small a window can reduce the

sensitivity or specificity of the algorithm, reducing the reliability of the re-

sults (Figure 5.2). Optimal results should be generated when the window

size is large enough to include enough probes to mask the effects of single,

anomalous values and small enough to be entirely filled by regions of genuine

enrichment. The average chromatin shear size was therefore expected to be

the best value to use, as it meets these two criteria and is easily determined

for each assay in the laboratory. The simulated datasets were created with

a simulated chromatin fragment size of 600. A range of window sizes, based

on this expected optimum, were tested (shown in Table 5.4). No information

about the lengths of fragments produced by the sonication procedure for the

spiked datasets is provided in the publication or supplementary information

from Johnson et al. (2008). The average spike in length is around 500, sug-

gesting the optimal window size to be 250. A range of window sizes, centred

on this expected optimum were tested (shown in Table 5.3). All of these were

carried out with the expected optimal FDRE value of 0.9.

The results of these tests are shown in Figure 5.15, with the first column

showing ROC curves and the second ROC-like curves. The first row shows

results from the simulated datasets. Green crosses indicate the results from

the expected optimal value of 600. Single datasets are shown with grey lines,

triplicates with black and all five with blue. The curves for the combined

datasets (black and blue) are an unexpected shape, revealing an unusual

result. They show that while the expected optimal window size produces

the best sensitivity values, the specificity can be improved by reducing the

window size to the smallest value tested (1). This is due to the fact that

253

CHAPTER 5 SECTION 5.3

TN TN TN TN TN FN FN FP FP TP TP TP TP TP

Enriched region Probe called positive Probe called negative

Single consecutive region

called positive

Figure 5.14: Labelling of consecutive enriched regions: Probes are indicated
by crosses, with those called positive shown in red. The real enriched region
is indicated with a pink box. Statuses, under each probe, show how indi-
vidual probes are labelled as for use by Equations 5.1 and 5.2. Converting
results to consecutive regions and comparing these positions to regions of
real enrichment means this single region of consecutive probes is called as
positive for use by Equations 5.3 and 5.4.

Number Window Size

1 1
2 100
3 200
4 300
5 400
6 500
7 600
8 700
9 800
10 900
11 1,000

Table 5.3: Window sizes for testing simulated data: Window sizes used by
the enrichment detection procedure with the simulated datasets to generate
results used to create ROC and ROC-like curves. The expected optimal value
is shown in bold.

254

SECTION 5.3 CHAPTER 5

Number Window Size

1 1
2 50
3 100
4 150
5 200
6 250
7 300
8 350
9 400
10 450
11 500

Table 5.4: Window sizes for testing spike data: Window sizes used by the
enrichment detection procedure on the spike datasets to generate results used
to create ROC and ROC-like curves. The expected optimal value is shown
in bold.

255

CHAPTER 5 SECTION 5.3

combined datasets are being analysed, which on its own is enough to remove

the effects of any spurious results occurring in single datasets, without the

need for the added sensitivity gained by combining probes in larger windows.

Using smaller window sizes does not improve the sensitivity, meaning all the

peaks that can be detected are detected with the expected optimal window

size, but it does improve the specificity, meaning fewer incorrect peaks are de-

tected. This means that the lower cutoff values — produced when analysing

multiple probes in a window — are detrimental in this situation, allowing

more regions to be incorrectly called as enriched. The curves for the single

datasets (grey) are a more usual shape, with the window size of 600 produc-

ing the best combination of sensitivity and specificity. The curves show that

values around this also produce good combinations of sensitivity and speci-

ficity and so the value does not have to be determined with a high degree of

accuracy in the laboratory. With single datasets, the extra sensitivity gained

by analysing combinations of probes in windows is still beneficial. Therefore

in all further analyses of these datasets a window size of 600 was used for

single datasets and 1 for combined datasets.

The results of the spiked datasets are shown in the next two rows, with

combined datasets in B and averaged datasets in C. Single datasets are shown

with grey lines, triplicates with black, total datasets with red and com-

bined (Myers and McCuire) blue. These also produce some unusually shaped

curves, but the green crosses, highlighting the expected optimal value of 250,

show that this generally produces the best combination of sensitivity and

specificity across all datasets. Unlike the simulated datasets, a window size

of 1 does not improve the results from the combined datasets. This is likely

due to the different format of this data, which lacks true peak shapes, and

the resulting different analysis method, which analyses single probes called

as enriched, rather than probes at the tops of peaks. All further analyses of

these datasets use a window size of 250. Comparing the combined and aver-

aged dataset curves shows mixed results. Generally, better sensitivity values

are produced with averaged data, but better specificity values are produced

with combined data.

These results show that in most cases the best balance of sensitivity

256

SECTION 5.3 CHAPTER 5

0.000 0.010 0.020

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity
A1

ROC Curves
S

im
ul

at
ed

 D
at

a

0.00 0.10 0.20

0.
6

0.
8

1.
0

Specificity
S

en
si

tiv
ity

A2

ROC−like Curves

0.0000 0.0010 0.0020

0.
0

0.
4

0.
8

1 − Specificity

S
en

si
tiv

ity

B1

S
pi

ke
 D

at
a

(c
om

bi
ne

d)

0.0 1.0 2.0

0.
0

0.
4

0.
8

Specificity

S
en

si
tiv

ity

B2

0.00 0.04 0.08

0.
0

0.
4

0.
8

1 − Specificity

S
en

si
tiv

ity

C1

S
pi

ke
 D

at
a

(a
ve

ra
ge

d)

0.0 1.0 2.0

0.
0

0.
4

0.
8

Specificity

S
en

si
tiv

ity

C2

Figure 5.15: ROC curves from window size variations: Results produced by
varying the window size used by the enrichment detection algorithm. The
left hand column shows ROC curves created using Equations 5.1 and 5.2 and
the right hand column shown ROC-like curves created with Equations 5.3
and 5.4. The first row shows results from the simulated datasets, with green
crosses showing the expected optimal window size of 600. The second and
third rows show results from the combined and averaged spiked datasets
respectively, with green crosses showing the expected optimal value of 250.
Note the differences in axis scales.

257

CHAPTER 5 SECTION 5.3

and specificity are at the expected window sizes, with the exception of the

combined simulated datasets. There is scope to vary the value used with-

out adversely affecting the results, depending on the nature of the datasets.

Those with little background variation will produce good results even with

a smaller window size, whereas those with increased levels of background

variation may not. When performing peak detection on the results of the

enrichment, only the probe at the centre of the peak need be found for the

peak to be called. Therefore, changing the window size, resulting in a change

in the probes called as enriched, will only affect the final result if this changes

whether or not the probe at the centre of the peak is called as enriched. The

average chromatin shear size can readily be determined in the laboratory,

and these results show that this value is appropriate to use in the algorithm.

They also show that this value does not need to be determined with a high

level of accuracy, as small deviations from the optimal value do not have a

large effect on the final results.

5.3.2.2 Optimising the FDRE value selection

The FDRE value used by the algorithm determines the cutoffs for each win-

dow and so can influence the performance of detection. Too small a value

will give high cutoff values, enabling the detection only of enriched probes

with large values and reducing the sensitivity. Too large a value will give

low cutoff values, enabling the detection of probes with small values which

may not be due to genuine enrichment, reducing the specificity. Optimal re-

sults should be generated with an FDRE value of around 0.9. The algorithm

was applied, with the window sizes determined in the previous section, using

a range of FDRE values based on this expected optimum value, shown in

Table 5.5.

The results of these tests are shown in Figure 5.16, with the first column

showing ROC curves and the second ROC-like curves. Green crosses indicate

the results from the expected optimal value of 0.9. The first row (A) shows

results from the simulated datasets. These plots confirm that sensitivity and

specificity generally increase as the enrichment detection is performed on

258

SECTION 5.3 CHAPTER 5

FDRE Value

1 0.1
2 0.2
3 0.3
4 0.4
5 0.5
6 0.6
7 0.7
8 0.8
9 0.9
10 1.0
11 1.1
12 1.2

Table 5.5: FDRE values for testing simulated data: FDRE values used by
the enrichment detection procedures on the simulated and spike datasets to
generate results used to create ROC and ROC-like curves. The expected
optimal value is shown in bold.

259

CHAPTER 5 SECTION 5.3

more datasets, with the grey lines of single datasets being lower and further

to the right than the coloured lines of combined datasets. The results of the

spiked datasets are shown in the next two rows, with combined datasets in B

and averaged datasets in C. Single datasets are shown with grey lines, tripli-

cates with black, total datasets with red and combined (Myers and McCuire)

blue. There is a general trend for improved sensitivity and specificity with

the analysis of more datasets, but this is not as clear cut as the simulated

data. For example, the first plot (B1) shows a grey line, representing a sin-

gle dataset, to have a higher sensitivity than the combined datasets at lower

specificity levels. The curves show that generally the best balance of sensitiv-

ity and specificity for each curve is at the expected, highlighted points. Some

improvement is possible with some curves, but good results are achieved with

all. This shows that under the conditions of normal ChIP-chip assays, where

genuine results are not known, this value would be able to provide reliable

results for a range of datasets, confirming the expectation that this value is

the best to use in the algorithm. Using lower values generates fewer correct

results, with little change in the number of incorrect results, so does not have

any additional benefit. Using higher values generates more incorrect results

with little change in the number of correct results, reducing the usefulness

of those results. Therefore this value of 0.9 was used for all further analyses.

5.3.2.3 Optimising the scale value selection

The results in the previous sections have been generated from datasets as-

sumed to fully meet the expectations for enrichment detection (see Sec-

tion 4.2.1). Although the expected optimal values are generally at the op-

timal points on the curves, some of the sensitivity and specificity values

are poor, showing that there is still scope for improvement in the detection

method. The performance of the algorithm was therefore assessed by varying

the scale values, using the optimal window size and FDRE values.

The results of the peak detection using these values on the simulated

datasets are shown in Figure 5.17. Each row shows the results of datasets

with the small, medium, large and combined peak heights. The results show

260

SECTION 5.3 CHAPTER 5

0.000 0.010 0.020

0.
80

0.
90

1.
00

1 − Specificity

S
en

si
tiv

ity

A1

ROC Curves
S

im
ul

at
ed

 D
at

a

0.0 0.4 0.8

0.
80

0.
90

1.
00

Specificity
S

en
si

tiv
ity

A2

ROC−like Curves

0.0 0.2 0.4

0.
0

0.
4

0.
8

1 − Specificity

S
en

si
tiv

ity

B1

S
pi

ke
 D

at
a

(c
om

bi
ne

d)

0.0 0.4 0.8

0.
0

0.
4

0.
8

Specificity

S
en

si
tiv

ity

B2

0.000 0.010 0.020

0.
0

0.
4

0.
8

1 − Specificity

S
en

si
tiv

ity

C1

S
pi

ke
 D

at
a

(a
ve

ra
ge

d)

0.0 0.4 0.8

0.
0

0.
4

0.
8

Specificity

S
en

si
tiv

ity

C2

Figure 5.16: ROC curves from FDRE variations: Results produced by vary-
ing the FDRE value used by the enrichment detection algorithm. The
left hand column shows ROC curves created using Equations 5.1 and 5.2
and the right hand column shown ROC-like curves created with Equa-
tions 5.3 and 5.4. The first row shows results from the simulated datasets,
the second and third show results from the combined and averaged spiked
datasets respectively. Green crosses show the expected optimal FDRE value
of 0.9. Note the differences in axis scales.

261

CHAPTER 5 SECTION 5.3

the method generally has a good sensitivity and specificity.

The first row (A) shows good results to be generated from the datasets

with small peaks. The optimum result corresponds to around 80% of the total

peaks being found, with 50–100 incorrect peaks. This result shows that the

detection method produces reliable results even with low levels of enrichment,

suggesting it is suitable for use on genuine ChIP-chip data containing only

low levels of enrichment. The second (B) and third (C) rows, showing the

results from the medium and large peaks, give near perfect results, especially

with the combined datasets, with the correct peaks found approaching 100%

with the number of incorrect peaks approaching zero. However, as these lack

any small peaks, they may not be representative of genuine ChIP-chip data.

The fourth row (D), showing results of datasets with a range of combined

peak heights, is likley to most accurately represent genuine ChIP-chip data.

The optimal results here corresponds to around 90–95% of the total peaks

being found, with around 50 incorrect peaks.

The sensitivity and specificity values are markedly improved by analysing

combined datasets compared to analysing datasets individually. The best re-

sults come from the combination of all five datasets, shown with red lines.

Many biological experiments are carried out in triplicate, represented with

black lines, which still give a large improvement in sensitivity and speci-

ficity over the individual datasets, shown with grey lines. The analyses of

individual datasets are reasonably robust, with the ROC-like curves of com-

bined peak height datasets (Figure 5.17D2) showing around 85% of the

total genuine peaks are found, along with around 200 incorrect peaks (a

specificity value of 0.1). This shows the method is reliable even when only

single datasets have been created, although it is clearly preferable to have

multiple datasets to analyse together.

Green crosses mark the results from the datasets with no scaling applied.

These generally occur at the point on the curve closest to the top left hand

corner, indicating the optimal result. Many are on the ‘bend’ of the curves,

that is, the point at which the increase in sensitivity slows down while the

decrease in specificity speeds up. Results before this point tend to show large

increases in sensitivity with small decreases in specificity, meaning the quality

262

SECTION 5.3 CHAPTER 5

0.000 0.002 0.004

1 − Specificity

S
en

si
tiv

ity

0.
0

1.
0

A1

ROC Curves
S

m
al

l P
ea

ks

0.000 0.002 0.004

1 − Specificity

S
en

si
tiv

ity

0.
96

1.
00

B1

M
ed

iu
m

 P
ea

ks

0.000 0.002 0.004

1 − Specificity

S
en

si
tiv

ity

0.
99

90
1.

00
00

C1

La
rg

e
P

ea
ks

0.000 0.002 0.004

1 − Specificity

S
en

si
tiv

ity

0.
70

1.
00

D1

C
om

bi
ne

d
P

ea
ks

0.00 0.10 0.20

Specificity

S
en

si
tiv

ity

0.
0

1.
0

A2

ROC−like Curves

0.00 0.10 0.20

Specificity

S
en

si
tiv

ity

0.
96

1.
00

B2

0.00 0.10 0.20

Specificity

S
en

si
tiv

ity

0.
99

90
1.

00
00

C2

0.00 0.10 0.20

Specificity

S
en

si
tiv

ity

0.
70

1.
00

D2

Figure 5.17: ROC curves from simulated data: Results produced by varying
the scale value used by the enrichment detection algorithm on the simulated
datasets. The left hand column shows ROC curves created using Equa-
tions 5.1 and 5.2 and the right hand column shown ROC-like curves created
with Equations 5.3 and 5.4. The first row show results from small peak
heights, the second medium, the third large and the fourth all combined.
Grey lines show results from individual datasets, black groups of three and
blue all five. Green crosses show the expected optimal scale value of 1, that
is, no scaling. Note the differences in axis scales.

263

CHAPTER 5 SECTION 5.3

of the results is increasing. Results beyond this point tend not to show large

increases in sensitivity but do have large decreases in specificity, meaning the

quality of the results is decreasing. The results of the medium and large peak

datasets (B and C) show that some reduction in scale can improve results,

but this is not the case with the small and combined datasets (A and D),

most likely to represent real ChIP-chip data. As these data are known to

have a normally distributed background, no scaling would be expected to be

required and so these results confirm the assumptions of the algorithm.

The results of the peak detection using the scale values on the combined

and averaged spiked datasets are shown in Figures 5.19 and 5.18 respectively.

For each the first row shows results from the unamplified datasets, showing

the Myers (black), McCuire (red) and combined (blue) data, and the second

the amplified (McCuire only) datasets. The left hand column shows ROC

curves and the right hand column shown ROC-like curves. These curves show

that the performance of the algorithm is poor with unscaled datasets, the

results of which are highlighted with green crosses (some crosses are beyond

the scale of the plots and are therefore not visible). This is as a result of

the properties of the background distributions of the datasets not meeting

the assumptions of the algorithm, that is, they do not form normal distri-

butions. This means that the algorithm interprets some probes as enriched

when they are in fact part of the background distribution, resulting in poor

specificity values. Scaling the data down means these regions become cor-

rectly interpreted as background, while the genuine regions of enrichment are

still detected, thus improving the sensitivity and specificity.

Curves created with results from averaged data (Figure 5.18) show a

better performance of the algorithm than the combined individual datasets

(Figure 5.19), evidenced by the fact that they pass closer to the top left hand

corner of the plot regions. The reasons for this are outlined in Section 5.2.1.1,

and stem from the fact that the datasets are not very consistent between

repeats. The point closest to the top left hand corner of the plot regions,

showing the best balance between sensitivity and specificity, was created by

a scale factor of 0.6.

264

SECTION 5.3 CHAPTER 5

0.00 0.04 0.08

0.
0

0.
4

0.
8

1 − Specificity

S
en

si
tiv

ity

A1

ROC Curves

N
on

−
am

pl
ifi

ed
 d

at
as

et
s

0.0 0.4 0.8

0.
0

0.
4

0.
8

Specificity

S
en

si
tiv

ity

A2

ROC−like Curves

0.00 0.04 0.08

0.
0

0.
4

0.
8

1 − Specificity

S
en

si
tiv

ity

B1

A
m

pl
ifi

ed
 d

at
as

et
s

0.0 0.4 0.8

0.
0

0.
4

0.
8

Specificity

S
en

si
tiv

ity

B2

Figure 5.18: ROC curves from averaged spiked data: Results produced by
varying the scale value used by the enrichment detection algorithm on the
averaged spiked datasets. The left hand column shows ROC curves created
using Equations 5.1 and 5.2 and the right hand column shown ROC-like
curves created with Equations 5.3 and 5.4. The first row show results from
enriched datasets (Myers (black), McCuire (red) and combined (blue)) and
the second non-enriched datasets (McCuire only). Green crosses show the
expected optimal scale value of 1, that is, no scaling.

265

CHAPTER 5 SECTION 5.3

0.00 0.04 0.08

0.
0

0.
4

0.
8

1 − Specificity

S
en

si
tiv

ity

A1

ROC Curves

N
on

−
am

pl
ifi

ed
 d

at
as

et
s

0.0 0.4 0.8

0.
0

0.
4

0.
8

Specificity

S
en

si
tiv

ity

A2

ROC−like Curves

0.00 0.04 0.08

0.
0

0.
4

0.
8

1 − Specificity

S
en

si
tiv

ity

B1

A
m

pl
ifi

ed
 d

at
as

et
s

0.0 0.4 0.8

0.
0

0.
4

0.
8

Specificity

S
en

si
tiv

ity

B2

Figure 5.19: ROC curves from combined spiked data: Results produced by
varying the scale value used by the enrichment detection algorithm on the
combined spiked datasets. The left hand column shows ROC curves created
using Equations 5.1 and 5.2 and the right hand column shown ROC-like
curves created with Equations 5.3 and 5.4. The first row show results from
enriched datasets (Myers (black), McCuire (red) and combined (blue)) and
the second non-enriched datasets (McCuire only). Green crosses show the
expected optimal scale value of 1, that is, no scaling.

266

SECTION 5.3 CHAPTER 5

5.3.2.4 Summary

Plots were created of every region detected as enriched, along with the regions

of genuine enrichment (“Enriched regions (averaged).pdf” and “Enriched re-

gions (combined).pdf” files in the electronic appendix; see Page 367). Of

the non-enriched regions that were detected by the algorithm as enriched, all

appear to be reasonably large peaks containing several probes, so ordinarily

there would be no way of distinguishing between them and genuine peaks

from the data alone. There could be several explanations for the formation

of these peaks. They occur in all datasets and so their formation is unlikely

to be due to chance events in a single experimental run. They may be gen-

uine peaks, that is, caused by genuine enrichment, either because of increased

material over the regions in the commercial human genomic DNA prepara-

tion or the spike in probes used being able to hybridise to other regions of

the genome. Alternatively, they may not be due to genuine increased en-

richment but inconsistencies with the probes on the microarray causing high

signals to be produced from small amounts of bound DNA. There is no way

of distinguishing between these and genuine peaks, and so there is no way

of improving further on the specificity of the algorithm without finding the

reasons for these spurious peaks.

The plots show that the scale value can have a large effect on the results

of the algorithm and so it is important to provide the correct value. Unlike

the expected optimal values for the window size and FDRE parameters, there

is no way to estimate what the scale value should be for a given dataset. The

lowest value of the datasets, used in estimating the background population,

may provide a method of estimating the optimal scale value. The lowest

value of a standard normal distribution is around 4. The lowest value of

the spiked datasets is -7.3. The ratio of these numbers is around 0.6, that

is, the optimal scale value for the datasets. This may be coincidental, or

may represent a way of estimating the scale factor to use in the enrichment

detection. Without more spiked datasets with known enrichments it is not

possible to say with certainty that this provides a method of determining

this value.

267

CHAPTER 5 SECTION 5.3

These results show that the expected optimum FDRE value of 0.9 has

proved to produce the best results, meaning there is generally no need for

users to modify this. The optimum window size was at the expected level for

single datasets, but smaller values were shown to produce better results with

combined datasets when detecting peaks. Cutoff values may be applied to

the sensitivity and specificity values of these results, above which all values

may be considered optimal. However, the way the algorithm presented here

works means the theoretical optimal values for the FDRE and window size

are known before hand, and these have been shown in this analysis to provide

optimal results, and so reporting a range of values in this way provides no

additional useful information. The expected optimal values of 0.9 for the

FDRE and the average chromatin shear size (estimated from a gel) for the

window size should be used under normal circumstances. The scale value can

have a large effect on the performance of the algorithm when the data do not

fully meet the expectations of the algorithm. This value is dataset dependent,

specifically relating to the distribution of each dataset, which influences the

estimation of the background region by the algorithm. Therefore the optimal

value will vary for real datasets which do not meet the expectations of the

algorithm, in a manner that cannot currently be predicted. The setting of

the optimum value for this argument therefore needs more investigation.

The fact that the enrichment detection procedure classifies probes as be-

ing from the enriched or background sub-populations means that these can be

compared to the overall and estimated background distributions. How well

the density of the detected background sub-population matches the density

of the estimated background sub-population may provide a way of estimat-

ing the accuracy of the results of the procedure with real ChIP-chip datasets,

for which the correct results are not known a priori. If the densities closely

match then it would be reasonable to assume that the detected enriched

sub-population is accurate and therefore the procedure has performed well.

This may provide a method of ‘fine tuning’ the algorithm to determine the

best parameters to use for each dataset being analysed. An example plot

is shown in Figure 5.20, created from the simulated data, showing how the

densities of the results of the procedure compare to the estimated back-

268

SECTION 5.3 CHAPTER 5

ground region. The detected background region (red line) closely follows

the estimated background region (dashed black line). The detected enriched

sub-population (green line) follows the line expected in the enriched region

of the overall dataset density (dashed grey line). There is a discrepancy be-

tween the estimated and detected background sub-populations towards the

high end of the densities, which may be able to be corrected with further

adjustments of the parameters.

5.3.3 Comparison with other methods

As previously stated, the availability of reliable enrichment detection software

for ChIP-chip data is limited. Of the most recent publications that can be

applied to Agilent data, the DECODE and JAMIE software packages are

no longer available, Wavelets is not provided as software and SPLITTER is

available but not functional.

SPLITTER is available as a web server (zlab.bu.edu/yf/anchor/web/

splitter.cgi?step=0), where data to be analysed is uploaded in the form

of tab delimited text files. To compare this algorithm with the one presented

here, the simulated datasets were uploaded for analysis. Default settings

and settings applied by Johnson et al. (2008) were used, but the algorithm

was not able to return any results. A range of additional settings were also

tried, adjusting all available parameters, but no results could be generated.

The Abf1 binding dataset was then uploaded to test the algorithm with

genuine ChIP-chip data, as opposed to the artificial nature of the previous

two datasets, but it was not possible to generate any results from this data

either. All data were uploaded correctly, as verified by histograms shown in

the SPLITTER output. As this algorithm is available only as a web server,

it is difficult to determine the reason for the lack of result generation. The

performance of this algorithm could not therefore be accurately compared.

In addition, the MA2C package was downloaded, which is written to

process only Nimblegen data files. Although the help forum for this program

includes references to converting Agilent data to the required format, the

programs required to achieve this are not publicly available.

269

zlab.bu.edu/yf/anchor/web/splitter.cgi?step=0
zlab.bu.edu/yf/anchor/web/splitter.cgi?step=0

CHAPTER 5 SECTION 5.3

−5 0 5 10 15 20

log2 Ratios

D
en

si
ty

Figure 5.20: Example analysis of peak detection results: The green and
red lines show the density of the detected enriched and background sub-
populations respectively. The dashed grey line shows the overall data density
and the dashed black line the estimated background sub-population.

270

SECTION 5.4 CHAPTER 5

Therefore the only way of assessing the performance of this algorithm

relative to those previously published is by the visual comparison of published

ROC and ROC-like curves. ROC-like curves created by Johnson et al. (2008)

for the spiked datasets are shown in Figure 5.21. Here the x-axis value of 0.05

has been used to determine sensitivity values, the Agilent values of which

can be seen to be around 0.5 for the amplified and unamplified datasets.

Comparing these to the equivalent values in Figure 5.18 shows higher values

created from the algorithm presented here, with the combined dataset (blue

curve) reaching a sensitivity value of around 0.8 at this point.

The limited availability and applicability of many of these peak detection

programs highlights the difficulties that users can face when attempting to

analyse their own data. This is why the algorithm created here has been

written in such a way that it can be used on any type of data, provided the

values can be written to a tab delimited text file. The accompanying help

files provide basic instructions on how to run the process from the very start,

as well as more detailed information for more advanced users. It is hoped

that, when published, this will allow a range of people to easily analyse their

data in a way that suits their needs.

5.4 Discussion

Like the normalisation method, the peak detection method presented here

relies on the background sub-population approximately following a normal

distribution. Some other methods of peak detection also rely on this assump-

tion (Buck et al., 2005, for example), which is generally held for ChIP-chip

datasets. Unlike many other methods, it has the advantage of being able to

return estimated binding sites (for example, for protein binding datasets) or

regions of enrichment (for example, for histone modification datasets). This

distinction allows relevant data to be analysed for any given dataset. It also

has the advantage of utilising replicate datasets and overlapping probes to in-

crease the power of detection. Therefore with several repeats of a dataset be-

ing analysed together, smaller binding peaks can detected than by analysing

all the datasets separately and combining the results. Similarly, smaller peaks

271

CHAPTER 5 SECTION 5.4

Figure 5.21: ROC-like curves created by Johnson et al. (2008): The combined
results of enrichment detection procedures applied to the three microarray
formats are shown. Adapted from Johnson et al. (2008).

272

SECTION 5.4 CHAPTER 5

can be detected in regions with higher probe coverage. Therefore on high

resolution microarrays with multiple repeats it should be possible to detect

the smallest of binding sites.

Users can define several variables, but the defaults for the window size

and FDRE value have been shown here to work well, and so little time need

be spent adjusting these to get the optimal results. The scale value has been

shown to have a large effect on some data and so more time may need to be

spent optimising this. More work needs to be done to determine if there is

any link between a dataset and the optimal scale value, which would provide

an easy way of setting this parameter. The algorithm is incorporated into

the package of functions detailed in Chapter 3 and takes only a matter of

seconds to run, meaning users can easily load data and obtain results from

this algorithm in very little time.

The results of enrichment detection on publicly available spiked datasets

(Johnson et al., 2008) suggest that the algorithm is able to outperform these

published methods. Sensitivity and specificity values were calculated from a

range of window size, FDRE and scale values, the results of which are shown

in ROC and ROC-like curves. Visual comparison of these to published curves

show that this algorithm produces higher sensitivity values at a given speci-

ficity value. The existing algorithms are not available for testing and so this

visual comparison is the only way of gauging their performances relative to

the algorithm presented here. The algorithms themselves would be required

to perform an objective comparison of results and this could be carried out

as a follow up study should they become publicly available in the future.

In addition to this, detection methods that can be applied to any format

of ChIP-chip data are not readily available and so this algorithm is well

placed to fill this gap.

Comparisons of peaks or enriched areas from different arrays can be made

by statistical methods, such as T-tests, or graphical methods, using the tools

provided in Chapter 3. Changes in the shapes of profiles may not be detected

statistically, while being clear to the eye. These may still represent interesting

biological results and so statistics should not be relied upon as the only

definitive result.

273

CHAPTER 5 SECTION 5.4

This new enrichment detection method was created to overcome the limi-

tations of some current algorithms, in the type of data that they can analyse,

the type of detection that they can perform, their ability to analyse multiple

datasets and their current availability for use (outlined in Table 5.1). The

method presented here can analyse data from any platform (by converting

data to the defined tab-delimited file format where necessary), can be set

to find regions of enrichment or peaks (depending on the type of data being

analysed) and is able to utilise multiple replicate datasets to increase the

power of detection over analysing datasets individually.

274

Chapter 6

Development of a method to
predict sequence specific
damage events

6.1 Introduction

Many DNA damaging agents induce damage at specific nucleotide sequences.

There are many examples in the literature of particular chemicals being

shown to induce damage at particular sequences, such as reactive oxygen

species (Oikawa, 2005), reducing sugars (Morita et al., 1985), lipid perox-

idation products (Ueda et al., 1985) and ozone (Ito et al., 2005). In our

laboratory we investigate primarily UV damage, which occurs with known

frequency at the four possible dipyrimidine sequences. UV radiation, specifi-

cally at or near to 254 nm, is close to the maximum absorption wavelength of

DNA. This can generate many lesions, mainly at adjacent pyrimidine sites.

Two adjacent pyrimidines in the same polynucleotide chain can absorb UV

energy to form a four-membered ring structure, a CPD, resulting from satu-

ration of the C=C double bonds (Figure 1.5). CPDs form solely at adjacent

pyrimidine sites, and as such their position is determined by DNA sequence.

The quantitative ratio of CPD formation after UV irradiation at TT, TC,

CT and CC sites is 68:16:13:3 as determined by measuring these lesions in

plasmid DNA (Mitchell et al., 1992) and DNA from human cells (Tornaletti

et al., 1993).

275

CHAPTER 6 SECTION 6.2

When developing assays to measure these damages throughout an entire

genome it is useful to be able to generate a predicted profile of DNA damage

expected immediately after a treatment. This offers an important quality

control function in confirming that the assays are performing as expected.

This gives greater confidence in analysing datasets generated at later time

points, from which repair rates can be calculated.

It also has the potential to enable the identification of ‘hot’ and ‘cold’

spots of damage, by identifying regions of consistently lower or higher damage

than the prediction suggests. The ability to detect and identify these outliers

from the predicted pattern is especially useful for certain types of analysis

(see Section 6.6.1).

6.2 Motivation

The technology developed in our laboratory to measure DNA damage genome

wide (Teng et al., 2011) required a way of testing whether or not the signals

from the microarrays represent genuine UV induced damage or general back-

ground noise (see Section 1.1.3). Damage occurs across the whole genome

and so the data cannot be split into background and enriched subpopula-

tions (shown in Figure 6.1 and described previously in Section 4.2.1): every

probe represents some amount of damage and so the data consists of a single

enriched population. Without this comparison between background and en-

riched subpopulations it is not possible to tell if the data show a signal result-

ing from enrichment following immunoprecipitation of damage or background

noise as a result of non-specific immunoprecipitation and/or hybridisation.

Comparing the microarray data to a predicted profile allows their accu-

racy level to be estimated.

6.3 Methodology

As previously described (see Figure 5.1), a peak is centred on a binding site

with a base width approximately twice the average chromatin shear size.

276

SECTION 6.3 CHAPTER 6

−4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Log2 Ratios

D
en

si
ty

Figure 6.1: CPD dataset density plots: CPDs occur throughout the genome
and so the density plots of the two replicates show a distribution of enrich-
ment values without a distribution of background values.

277

CHAPTER 6 SECTION 6.3

The height of the peak is determined by the fluorescence signal, which is

determined by the amount of material bound to the probe. Knowing these

properties allows a peak shape to be predicted, given the average chromatin

shear size. The fluorescence signal, or amount of material bound, does not

need to be known in order to predict a peak shape, as the height can be

treated as being in arbitrary units. The value of these units does not affect

the peak shape as all points forming the peak will always have the same

relationship to each other, regardless of their actual values. In the formula

presented here the predicted values range from 0 to 1.

Theoretically, the value at any point of the peak is directly linked to its

distance from the binding site. The point at the centre of the peak will have

the largest predicted value, decreasing linearly as the distance away from the

centre extends to the window size, at which point the predicted binding value

becomes zero. In practice, the peak shape is more likely to form a Gaussian

distribution due to the varying lengths of the sheared chromatin fragments.

These will cause variations in the maximum extent of binding at a given site,

influencing the width of the base of the peak. However, this effect is likely to

be relatively small, with triangular peaks capturing much of the information

of a binding site. Therefore for computational efficiency this peak shape is

used in this prediction method. To calculate a predicted binding value at any

given point one needs to know the location of the actual binding site, the

location of the point at which the prediction is being made (or its distance

from the actual binding site, as whether it is up- or downstream of this does

not affect the binding value) and the window size. The predicted binding

value can then be calculated as the difference between the fragment length

and distance from the actual binding site divided by the fragment length. In

this way if the site being predicted is at the actual binding site the distance

between the two is zero. The calculation is therefore the window size minus

0 (equals the window size) divided by the window size, which equals 1. If the

site being predicted is the distance of the window size away from the actual

binding site, the distance between the two is the window size. The calculation

is therefore the window size minus the window size (equals 0) divided by the

window size, which equals 0. At all other points the predicted value will lie

278

SECTION 6.3 CHAPTER 6

between these two extremes. These predicted values at each probe can be

calculated with the following Equation 6.1, with a single binding site. Here

w is the window size and |d| is the positive distance between the binding site

and the point being calculated.

w − |d|
w

(6.1)

This same formula can be used to calculate the binding value from a

damage event, where the term binding site can be replaced by damage site.

In reality there are likely to be multiple damage sites surrounding each probe

on the array, all contributing to their binding values. The equation can

therefore be extended to take all these sites into account, by adding together

their various values, shown in the following Equation 6.2. Here s represents

each of n damage sites, the calculations for all of which are added together.

n∑
s=0

w − |d|s
w

(6.2)

In the event that different damages occur at different frequencies, such

as CPDs, the probability value of any site can be incorporated to reflect the

likelihood of it contributing to the overall value. This reduces the maximum

predictable value from 1 to the probability value of the particular damage.

This is shown in the following Equation 6.3. Here p is the probability value

of binding site s.

n∑
s=0

ps
w − |d|s

w
(6.3)

This equation is applied to the region the size of the window size up-

and downstream of every point in the genome at which a predicted value

is required. It has been published and used to produce a predicted CPD

damage profile for yeast by calculating a value at each of the probes on the

G4493A microarrays (Teng et al., 2011).

279

CHAPTER 6 SECTION 6.4

6.4 Algorithm

The equation described here was used as the basis of a script to allow pre-

dictions to be made throughout whole genomes. This was originally written

in Perl, as referred to in Teng et al. (2011), and was subsequently rewritten

in R. The reason for this transition was the ease of access to any genome

sequence in R via the BSgenome (Pages, 2012a) package. The alternative

Perl version required each genome to be manually downloaded in the correct

format and loaded into Perl.

Before running the prediction script, the relevant genome must first be

loaded into R. This is then passed to the predictProfile function along

with coordinates of the points to be predicted, the window size, damage

site sequences and damage site sequence probabilities. The sequence around

each site is taken and the Biostrings (Pages et al., 2009) package used to

determine the locations of all sequences being investigated. The distance

of these sites to the site being scored is calculated and the predicted score

calculated as Equation 6.3. This is repeated for each damage sequence and

all the predicted scores for the site are added together.

6.5 Alternative algorithm

This published method is computationally intensive, having as it does to

perform calculations at every dipyrimidine site in the genome. It became

apparent during investigations of the Kernel density estimate for the nor-

malisation procedure (Chapter 4) that this may also be used to perform

damage predictions. The profile of any ChIP-chip assay can be considered

to be a representation of the density of the number of immunoprecipitation

events along the genome. The density function also has the advantage of

being able to calculate densities from different underlying distributions, po-

tentially enabling a closer match to that in ChIP-chip. Using the triangular

Kernel is essentially identical to the published method, and so this can be

used to make a comparison between the two approaches. Using the Gaussian

Kernel may provide a method of increasing the accuracy of the method, by

280

SECTION 6.5 CHAPTER 6

more closely representing the underlying peak distributions, without any loss

of computational efficiency. It was therefore investigated whether this com-

putationally efficient algorithm could be used to replace the existing CPD

prediction algorithm.

The major advantage of using the density function is that looping of

each dipyrimidine site to calculate individual profiles which are then added

together is not necessary. Instead, the function calculates a density from all

dipyrimidine sites on a chromosome at once. The arguments of the function

are modified to increase the resolution of the density to a level similar to

the arrays, as the default values smooth the data too much to be of any use.

Changing these parameters will influence the final prediction as they perform

a similar role to the window size (w) in the equations in Section 6.3.

The locations of each combination of dipyrimidine sites are calculated

with the Biostrings package as previously, which the density function

uses to calculate the density. By default this is done at 512 points, which

is too few across a chromosome consisting of tens or hundreds of thousands

of nucleotides. Therefore one tenth of the number of nucleotides is specified,

which is rounded up to the next power of two in the calculations. There is no

real advantage to using a higher resolution, which is more computationally

expensive for little gain in resolution. The values calculated by the density

function are dependent on the number of points being analysed, which is

different for each dipyrimidine sequence and chromosome. To remove this

discrepancy the results are adjusted to make the maximum density value for

all calculations 1, before being multiplied by the relevant probability value.

The density values are calculated at the specified number of regular intervals

across each chromosome, rather than at probe sites as with the equations

in Section 6.3. The approx function is therefore utilised, which interpolates

the density values at the sites of probes, based on the surrounding density

values.

The results of this procedure provide near identical results to using the

equations in Section 6.3, in a much shorter time. This method is therefore

used in place of that described in Teng et al. (2011). The predictProfile

function (Script 6.1) performs this procedure. In addition to using sequence

281

CHAPTER 6 SECTION 6.5

information, the function can create predictions based on coordinates. This

can be useful to predict, for example, the binding profile from the immuno-

precipitation of proteins, where the coordinates of expected binding sites are

known. The function has the following arguments:

arrayData An arrayData object containing the probe positions from which

to create the predicted profile (no default).

seqs A character vector specifying sequences to calculate predictions from

(defaults dipyrimidine sites).

probs A numeric vector specifying probability values for each of the se-

quences provided in “seqs” (defaults for dipyrimidine sites).

genome A previously downloaded BSgenome genome sequence to analyse

(no default).

coordinates A three column matrix containing the chromosome number,

position and probability value for each site to predict (no default).

windowSize A numeric vector specifying the window size to use when cal-

culating predictions from the “coordinates” matrix.

masked A logical vector indicating whether or not the “genome” object is

masked.

In addition, the width argument should be specified as the window size,

which is passed to the density function and used in its calculations.

Script 6.1: predictProfile: script to predict the profile of ChIP-chip data
based on immunoprecipitation events at defined sites or sequences.

1 ## profilePlot function ##

2 ## arguments: object (an arrayData object), seqs (sequences at which to

predict enrichment), probs (probability values to apply to sequences),

genome (a BSgenome sequence), coordinates (coordinates of sites to

predict binding), windowSize (windowsize to predict sites of binding),

masked (whether the genome is masked)

3 predictProfile <-function(object ,seqs=c("TT","AA","TC","GA","CT","AG","CC","

GG"),probs=c(0.68 ,0.68 ,0.16 ,0.16 ,0.13 ,0.13 ,0.03 ,0.03),genome ,coordinates

,windowSize ,masked=T ,...) {

4 require(Biostrings) #load package if required

5 require(BSgenome) #load package if required

6 probeValues <-rep(0,nrow(object)) #set all values to 0

7 if(!missing(seqs)) if(length(seqs) != length(probs)) stops("Different

numbers of sequences and probabilities",call.=F) #check lengths

8 for (chr in unique(object$coordinates [,1])) { #loop through chromosomes

9 current <-object$coordinates [,1] == chr #get current object data

10 probes <-round(rowMeans(object$coordinates[current ,2:3]) ,0) #probe

middles

282

SECTION 6.5 CHAPTER 6

11 if(missing(coordinates)) { #coordinates not provided

12 if(masked) currentSequence <-unmasked(genome [[chr]])[min(probes):max(

probes)] else currentSequence <-genome [[chr]][min(probes):max(

probes)] #get chromosome sequence

13 for (s in 1: length(seqs)) { #loop through sequences

14 pos <-as.matrix(matchPattern(seqs[s],currentSequence ,fixed=F))[,1] #

find sequences

15 x<-density(pos ,n=(max(probes)-min(probes))/10 ,...) #kernel densities

16 x$y<-x$y-min(x$y) #scale to max=1

17 x$y<-x$y/max(x$y) #scale to max=1

18 x$x<-x$x+min(probes) #correct for genome position

19 probeValues[current]<-probeValues[current]+(approx(xx,xy,probes)$y
* probs[s]) #interpolate probe values

20 }

21 }else{ #coordinates are provided

22 if(!is.matrix(coordinates)) stop("Coordinates must be matrix",call.=F)

#check coordinates

23 if(ncol(coordinates) != 3) stop("Coordinates must contain three

columns",call.=F) #check coordinates

24 pos <-coordinates[coordinates [,1] == chr ,2] #get current coordinates

25 if(length(pos) > 1) { #if positions to predict

26 x<-density(pos ,n=(max(object$coordinates[current ,3])-min(object$
coordinates[current ,2]))/10 ,...) #calculate kernel density

27 x$y<-x$y-min(x$y) #scale to max=1

28 x$y<-x$y/max(x$y) #scale to max=1

29 x$x<-x$x+min(probes) #correct for genome position

30 probeValues[current]<-probeValues[current]+(approx(xx,xy,probes)$y
) #interpolate probe values

31 probs <-coordinates[coordinates [,1] == chr ,3] #get probabilities

32 for (n in 1: length(pos)) { #loop through positions

33 probeValues[current][probes > (pos[n]-windowSize) & probes < (pos[

n]+ windowSize)]<-probeValues[current][probes > (pos[n]-

windowSize) & probes < (pos[n]+ windowSize)]*probs[n] #scale

34 }

35 }

36 }

37 }

38 probeValues[is.na(probeValues)]<-0 #set NAs to 0

39 prediction <-object [,1] #create arrayData object

40 prediction$ratios <-matrix(ncol=1, probeValues) #put in predicted values

41 colnames(prediction$ratios)<-"Prediction" #set column name

42 prediction$status <-list("Prediction") #set status

43 return(new("arrayData",prediction)) #return prediction

44 }

The function loads the required packages if not already done so (L4–5) and

assigns a vector to store the predicted probe values (L6). Where provided,

that the sequences have corresponding probability values is checked (L7).

A loop through the chromosomes is initiated (L8) and the corresponding

probe data extracted (L9–10). If coordinate values are not provided (L11)

the sequence for the current chromosome is extracted, unmasking it where

required (L12), and a loop through the provided sequences initiated (L13).

The positions of the occurrences of the sequences are found (L14) and used to

calculate the density values (L15). These density values are scaled to have a

283

CHAPTER 6 SECTION 6.6

maximum value of 1 (L16–17) and adjusted to have the correct chromosomal

coordinates (L18). Values at probe positions are calculated, multiplied by the

relevant probability value and added to the probe score (L19). If coordinates

are provided (L21) their format is checked (L22–23) and the positions for the

current chromosome extracted (L24). If positions for the current chromosome

are present (L25) the density is calculated (L26) and adjusted and stored as

for sequences (L27–30). Probability values are extracted (L31) and used to

adjust each of the predicted peaks (L32–33). Any probes containing NA

values are assigned a zero value (L38) and the values stored in an arrayData

object (L39–40). The column names and status are updated (L41–43) and

the results returned (L43).

6.6 Application

The script was used to predict the CPD induction profile of the yeast genome

at the probe locations of the G4493A microarray. As the predicted values

are arbitrary, the predicted data is adjusted to make it comparable to the

microarray data. This is achieved by calculating the equation of the line of

best fit (y = mx + c) through the two datasets and adjusting the predicted

data to make this the line y = x. The values m and c of the equation of the

line of best fit are found from the function lm in R. The c value is subtracted

from the predicted values, which are then divided by the m value. This does

not affect the correlation between the two sets of data and so does not skew

any further analyses of the data.

A short section of chromosome 1 is shown in Figure 6.2 (the whole genome

is shown in “CPD predicted and actual profile.pdf” in the electronic ap-

pendix; see Page 367), showing the profile of the predicted and detected

levels of DNA damage induction are in good agreement. Throughout the

whole genome the Spearman’s correlation coefficient is 0.77 (Figure 6.3), in-

dicating that the data from the whole microarray are a good reflection of the

damage induction throughout the genome. This confirms the efficacy of the

microarrays in detecting genome wide damage events.

284

SECTION 6.6 CHAPTER 6

● ●● ● ● ● ●● ● ● ●●● ● ● ●● ● ● ● ●●●● ● ● ● ● ● ●●● ● ●● ● ● ● ●●● ●●● ● ● ●● ●● ●● ● ● ●● ● ●● ● ●●● ● ● ● ● ● ●●●●● ●●● ● ●● ● ● ●●● ● ● ● ●● ● ● ● ●●● ● ●● ● ● ● ●●
YAL063C−A

FLO9
YAL059C−A

YAL056C−A

ACS1

YAL064W

GDH3
BDH2

BDH1
ECM1

CNE1
GPB2

PEX22
FLC2

OAF1
Chr. 1

lo
g2

 B
in

di
ng

−
1

1
2

3
4

5

20000 25000 30000 35000 40000 45000 50000

Figure 6.2: CPD damage profile: A section of chromosome 1 showing the
predicted (red) and actual (black) microarray CPD values. Probe positions
are shown with grey circles. ORFs are shown as yellow boxes with the arrow
indicating the direction of transcription.

285

CHAPTER 6 SECTION 6.6

−2 −1 0 1 2 3 4 5

−
6

−
4

−
2

0
2

4
6

Microarray Data (log2)

P
re

di
ct

ed
 D

at
a

Figure 6.3: CPD damage scatter plot: The relationship between the predicted
and actual microarray CPD values for each of the probes on the G4493A
microarray. The darker the blue colour the more points occur in the region.
Individual points outside of the central region are shown with dots. The
black line shows y = x.

286

SECTION 6.6 CHAPTER 6

6.6.1 Comparisons

There are several possible reasons the correlation value is not higher than

0.77. One is that there are genuine biological differences between the actual

and predicted values. Another is that the level of inherent variation in the mi-

croarrays is such that even if the true biological values are exactly predicted

by the algorithm, they may not be shown as such on the microarrays. In

this case, taking the average of several normalised datasets will improve the

correlation as some of the variation will be cancelled out. This only provides

a limited solution with the two currently available datasets. Another reason

may be the inverse of this; that the microarray data are accurate but the

prediction is not, due to factors such as variations in the ratio of induction of

DNA damage at the different dipyrimidine sites. These scenarios are not mu-

tually exclusive and so both could be contributing. These ideas were tested

by examining the variation between the actual and predicted values. Work-

ing under the assumption that the prediction is fully accurate throughout

the whole genome and the microarray data vary, these variations will cause

approximately equal numbers of predicted values to be lower and higher than

the true biological values, thereby reducing the observed correlation coeffi-

cient. The same would be true under the assumptions that the microarray

data are fully accurate and the prediction varies, or that both have some level

of variation, as the variations would occur randomly throughout the datasets.

Alternatively, it is possible that there are some regions of the genome which,

for various biological reasons, have higher or lower levels of in vivo damage

induction. These will therefore deviate from the predicted values, reducing

the observed correlation coefficient. In this case the differences are unlikely

to all be random, with some focussed in regions representative of hot or cold

spots of damage.

To identify any such regions, the differences between the predicted and

actual damage values were calculated. If the differences between the two

sets of values are due to random variations as a result of inherent variations

in the microarray technology, random variations in the locations of damage

throughout the genome, and inaccuracies in the prediction method, it is

287

CHAPTER 6 SECTION 6.6

reasonable to assume these will follow a normal distribution. Specific regions

of increased or decreased damage are likely to fall outside of this normal

distribution and so can be found by standard outlier detection methodologies.

The differences are shown as a histogram in Figure 6.4. The normal

distribution curve added to this histogram with the mean and standard de-

viation calculated from the differences (0 and 0.7 respectively) shows that

the majority of the difference values approximate the normal distribution.

This suggests that the majority of damage events throughout the genome

occur at the expected rate and are not in areas of specifically increased or

decreased damage.

Plotting the differences as a Q-Q plot shows that some difference values

at the ends of the range deviate from a normal distribution (Figure 6.5). This

suggests that there are probes with variations in the levels of damage beyond

that which would be expected if the variations arose entirely at random. The

plot shows that most of these probes have higher values, representing more

damage, than the prediction.

Outlier detection was used to identify the probes that deviate away from

the expected normal distribution. The “extremevalues” package (van der

Loo, 2010) was used to determine these values, which estimates the under-

lying distribution of the values and uses the properties of this to determine

outliers. A Q-Q plot highlighting these detected outliers (Figure 6.6, pro-

duced using the extremeValues package) shows that the the remainder closely

follow the expected normal distribution. The outlier detection identified 115

probes (0.28% of the total). Visual analysis of the positions of these probes

showed that the majority occur at the beginnings and ends of chromosome

probe regions, where the prediction is consistently low, suggesting that it is

not acurate in these regions (all detected outlying probes are highlighed with

red crosses in the plot of predicted and actual CPD values in “CPD predicted

and actual profile.pdf” in the electronic appendix; see Page 367). It is also

possible that the probe quality is lower in these regions because telomeres

contain repetative sequences, potentially reducing the reliability of some of

the probe values. Other deviating probes tend to occur individually or in

short consecutive regions, which appear to cluster together. Chromosomes

288

SECTION 6.6 CHAPTER 6

1 and 6, for example, have several such sites, whereas those betwen have

none. It is possible that the deviation from the prediction at these points is

due to genuine biological changes in the induction of damage at these sites.

However, more testing would be required to gain further evidence for this.

A similar analysis was undertaken with 2 replicate cisplatin induced DNA

damage microarray datasets, produced by James Powell (PhD thesis in pro-

duction). This is a chemotherapeutic drug which produces adducts at a

number of sequence specific sites, of which an antibody against GG adducts

was employed. The prediction was run for GG sites accordingly, which gave

a Spearman’s rank correlation value of 0.55. A total of 57 outlying differ-

ence values were found for these data. As with the CPD data, many out-

lying differences were found at the ends of chromosomes, further suggesting

the prediction and/or the microarrays are unreliable in these regions. The

remainder are isolated sites of small numbers of probes, different to those

identified in the CPD data. Once again, these may be indicative of regions

at which the damage induction rate is different to the rest of the genome, but

more evidence is required. The whole genome plot of predicted and actual

damage, highlighting probes detected as outliers, is provided in “Cisplatin

predicted and actual profile.pdf” in the electronic appendix (see Page 367).

These findings suggest that generally CPD and cisplatin DNA damage in-

duction occurs at a uniform level throughout the genome (taking into account

sequence variations), and that any potential hot or cold spots of damage are

at a level below the detection threshold of the microarrays. Many of the out-

lying differences between the predicted and actual microarray values appear

to be as a result of inconsistencies in the prediction, the microarray probe

values, or a combination of the two. A higher resolution microarray may

enable a more sensitive analysis, as would some additional biological repli-

cate datasets (work which is currently being undertaken in our laboratory).

These data may be combined with a more stringent outlier detection method

to provide a more robust analysis. It may also be possible to use the mi-

croarray data to refine the ratios of damage induction used in the prediction

to improve its accuracy.

Aside from the outlying difference values, which requires more data for

289

CHAPTER 6 SECTION 6.6

further investigation, it is evident that the prediction method developed here

is able to generate accurate representations of genome wide DNA damage

induction. It is also clear that this novel use of microarrays is able to de-

tect varying damage induction throughout whole genomes and therefore has

the potential to be able to detect variations in damage levels from a set of

predicted values, which may have important biological implications.

6.6.2 Uses

The primary application for this type of assay is to measure DNA damage

levels and analyse repair rates throughout whole genomes. There are many

additional potential uses for the technology. In pharmacology, analysing

how DNA and chromatin binding drugs localise, interact and perform in

response to damaging agents in the human genome could indicate how they

operate, whether or not they reach their intended targets, or if there is any

non-specific or off-target binding, all in the context of local DNA repair

rates. In pharmacogenomics, analysing drug target sites and the relationship

with repair in individual genomes could show whether or not a given drug

is suitable for a particular person (stratified medicine). In drug discovery,

analysing the effects of novel compounds on repair rates could reveal new

therapeutic agents to be used in the fight against cancer. Analysing where

different proteins bind, or are prevented from binding, and how this affects

DNA repair rates in cancer genomes may provide useful prognostic tools,

cancer biomarkers and the determination of the response to the drug.

Analysing repair rates alone could also help to identify coding and other

important regions of the human genome. Currently the total number of genes

and their respective positions in the genome are not known. Additionally,

there may be important regulatory or other non-coding regions yet to be

identified. Regions of fast repair identified by this technology may be in-

dicative of these regions, either due to TC-NER operating in undiscovered

transcribed regions or as the cell prioritises repair by some other mechanism

in important non-coding regions.

290

SECTION 6.6 CHAPTER 6

Difference

D
en

si
ty

−4 −2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 6.4: Histogram of predicted and actual differences: The frequencies of
difference values between the predicted and actual CPD microarray values.
The red line shows the normal distribution calculated from the mean and
standard deviation of the difference values.

291

CHAPTER 6 SECTION 6.6

−4 −2 0 2 4

−
4

−
2

0
2

4
6

8

Theoretical Quantiles

D
iff

er
en

ce
 Q

ua
nt

ile
s

Figure 6.5: Q-Q plot of predicted and actual differences: The difference quan-
tiles and theoretical normal distribution quantiles are shown with dots. The
red line represents normally distributed data. The majority of the difference
values follow this line, with a small deviation at the low end and a large
deviation at the high end.

292

SECTION 6.6 CHAPTER 6

●

●

●

●
●

●

●●●

● ●●●●●●●●●
●

●
●●

●●●
●

●●●●● ●
●●●●●

●
●

●
●

●●
●

●

●

●
●

●●

●

●
●

●
●

●●●

●

●

●

●
●

●

●
●

●
●

●
●

●●●●●

●●

●

●●
●●

●

●●
●●

●
● ●

●
●●

●●●

●
●●

●
●●

●●

●●

●●●
●

●
●●

●●
●

●

●●
●

● ● ●
●

●
●

●●

●
●●●

●
●

●●

●
●●●

●
●●●

●
●

●
●●

●
●●

●●●

● ●
●●

●
●

●●
●●

●●●
●● ●●

●●
●

●●●●●●
●

● ●

●

●

●
●

●●
●

●●●
●

●●●
●

●●
●

●●
●

●
●●

●
●

●

●
●

●

●

●

●●
●

●●
●

● ●

●●●●

●
●

●
●●

●
●

●
●●

●
●

●
●●● ●●

●

●

●
●

●
●

●

●

●
●●

●
●

●
●

●●

●
●

●

●

●●●

●

●

●●

●

●
●

●

●
●

●
●

●

●
●●

●●●
●

●
●

●
●

●
●

●
●

●

●●
●

●
●

●●

●
●

●

●

●

●●●

●●
●●●

●
●

●

●

●

●

●●●

●
●

●●●●

●

●●
●

●
●

●●

●●●

●
●

●●

●

●

●
●● ●

●

●
●

●●● ●●
●

●●●●●●
●●

●
●●

●
●

●●●●
●●

●●●
●●●

●

●●●●●

●
●

●●
●

●
●●

●●●●●

●
●

●
●●

●
● ●

●●
●

●●●●●
●●●

●●●
●

●

●
●

●

●
●

●●
●

●
●●●

●

●
●

● ●●●
●●

●
●●

●

●

●
●●●●●

●

●

●
●●●●
●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●●
●●●

●●

●●
●●

●●
●

●●●●●●●

●●

●

●

●
●

●●
●

●●

●

●●
●

●
●●●●●●●●

●
●

●●

●●●

●

●●●
●

●

●

●

●

●

●
●

●

●

●●

●

●●●
●

●
●●

●
●

●●

●

●●●
●

●
●●●

●●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●●
●●

●
●

●
●

●
●

●
●

●
●●
●

●●
●

●●
●

●
●●

● ●●

●●

●
●

●

●
●●

●
●●●

●
●

●
●

●
●

●

●●

●
●

●

●

●
●●

●●
●

●●●
●

●●●
●●

●●

●
●●●
●●

●●●●

●
●

● ●
●

●●

●●●
●●●●

●
●

●

●

●●
●●●

●

● ●

●

●●
●●

●●
●●

●
●

●

●
●●

●●●
●

●●●
●

●

●●

●●
●

●●

●

●●

●
●●

●●●

●●
●●

●
●

●

●

●

●
●

●

●●
●

●●

●●●●●●●●●●

●●
●

●●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●●●●

●

●
●●

●●●●

●●
●

●●●

●●
●

●●● ●
●

●

●● ●
●

●●● ●
●

●●
●

●●●
●●●

●

●

●

●
●

●

●●
●●

●
●

●●
●

●
●

●●
●

●●
●●

●● ● ●
●

●●●

●

● ●
●

●●●●
●

●
●

●

●●
●

●
●●●●●●●

●●●●
●

●
●

●●
● ●

●
●

●
●

●

●●

●●

●
●

●
●

●

●
●

●
●

●
● ●●

●

●
●● ●

●●●●

●●●

●●

●●
●

●●●●●●
●●

●
● ●

●
●

●●
●

●

●●
●

●

●
●

●●●●
●●

●●

●●
●

●●
●

●●
●

●●●●

●●
●

●
●●

●●

●●

●

●

●

●
●

●●
●

●
●

●

●●●●

●●

●●
●●

●

●
●●

●
●

● ●
●●

●●

●
●

●●●
●

●
●

●

●
●

●
●

●●
● ●

●●●
●

●

●

●
●●

● ●

●
●

●

●●●
●●

●●●
●●●●

●
●

●

●●●●●

●●

●

●

●
●

● ●

●●

●
●●●●

●
●

●

●
●

●

●●

●●
●

●
●

●●

●●

●●

●●●●
● ●●

●

●

●

●
●●●
●

●●
●

● ●
●

●●
●●●

●
●●

●
●●

●
●

●

●
●

●
●

●
●

●

●
●●

●
●●●

●●

● ●

●
●

●●●
●

●

●●●
●●●●●●●

● ●

●
● ●

●
●

●

●
●

●
●

●●●
●

●
●●

●

●
●

●
●

●●●●
●●

●
●●

●
●

●
●●

●●
●●●

●●

●●
●

●
●

●
●

●
●●

●
●

●

●●

● ●
●

●

●
●

●●
●●

●●●●
●

●●

●

●
●

●

●
●

●

●

●●●●●

●●

●●
●

●

●

●
●

●●
●

●●● ●

●

●
●

●
●

●
●●●

●

●●●●●●● ●
●●

●●

●●
●●

●

●●

●
●

●

●

●

●

●
●

●
●●●

●

●
●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●●●
●

●
●

●●
●

● ●

●
●

●●●●●
●

●
●

●
●●

●

●●
●

●

●

●
●●●●●

●●●

●
●●

● ●●

●●
●●

●●

●●

●●●●

●●●

●

●

●
●

●
● ●●

●

●

●
●●

●

●

●●
●

●

●●
●●

●
●

●●
●●

●
●●

●

●

●●

●
●

●

●

●●● ●●●

●●

●
●

●●●●●●●●●

●●●●

●
●

●
●●●●

●
●

●●
●●

●

●
●●

●●
●

●
●

●

●
●●●●●

●
●●

●●

●
● ●●

●
●●

●
●●●●●●

●
●●

●●

●
●●

●

●●

●
●

●

●
●

●

●

●● ●

●

●
●●

●
●

●

●

●

●
● ●

●●
●

●
●

●●
●

●
●

●
●●

●●
●

●
●

●
●

●
●

●
●●

●

●●
●

● ●●●●●●
●

●
●

● ●●
●

●
●●

●

●●

●

●●

●●
●

●

●
●

●●●●

●

●

●
●

●

●
●

● ●●
●

●●
●

●●

●

●

●●●
●●

●●
●●

●

●

●
●●

●

●●●

●

●
●

●●
●●

● ●●
●

●

●
●

●

●
●

●
●●

●●●
●

●
●

●●
●

●
●●

●●
●● ●

●
●● ●

●●●
●

●●

●
●

●●
●

●

●
●

●●●
●●

●
●●●

● ●
●●

●
●

●
●

●
●

●
●●●

●

●●●●
●

●●●●● ● ●

●
●

●

●

●

●

●

●● ● ●●
●

●●
●●

●
●

●
●

●
●● ●

●

●
●

●
●●

●●●
●

●
●

●
●

●
●●●
●

●
●

●●
●

●

●● ● ●

●
●

●●●●●
●

●
●

●

●●●
●●●

●●●●●●
●

●●
●●●●

●
●

●●●
●

●●●
●

●

●
●

●●
●●●

●●
●

●
●●●

●●

●●
●

●
●

●
●

●
●●●●●●

●●
●

●●●●
●

●
●

●●
●

●● ●

●
●

●●●●

●●●

●
●

●

●●
●

●

●
●

●●
●●

●●●●
●

●

●

●

●
●●

●
●

●
●

●

●●●
●

●●●●●●
●

●

●●

●●

●
●

●

●

●

● ●●
●

●

●

●●●●
● ●●●●●

●
●

●
●

●
●

●
●

●●

●
●

●
●●

●

●●
●

●
●

● ●
●

●

●●
●●●●●●●
●●●●
●

●

●

●●

● ●
●

●
●

●
●

●●

● ●●

●
●●●●

●
●●●

●
●

●
●

●

●
●

●
●

●●●●

● ●●
●

●

●
●●●

●
●

●●
●

●

●●
●

●
●

●●

●●
● ●

●
●

●
●●●●

●
●

●

●●
●●

●●●
●●

●
●

●●
●

●●●
●

●
●

●

●
●●

●
●●

●

●

●●●●●
●

●●

●
●

●

●
●

●●
●

●
●

●●

●

●
●

●
●●

●
●●

●●
●

● ● ●●

●
●

●
●

●

●

●

●
●

●
●

●

●●

●●●
●●●

●
●

●●●
●

●
●

●

●●●●

●
●

●

●
●

●

●●

●●●●●●●
●

●

●

●

●
●

●
●

●
● ●

●

●●

●
●

●

●●
●

●●●●
●●

●

●

●●●
●

●

●

●●
●●●

●●
●

●
●

●
●

●
●●●

●●●●
●●

●
●●●●

●●
●

●
●

●
●●

●

●●●●●●●●●

●
●●

●●

●●
●●

●

●
●●

●●
●●●●●

●●
●

●

●
●

●●

●●●
●●●●

●

●

●●
●●

●●
●

●

● ●
●

●●

●●
●

●
●

●

●

●

●
●

●●

●●●●●
●

●
●

●
●

●
●●

●
●

●

●● ●
●

●●
●●●●

●●●

●
●●

●

●
●

●

●●
●

●

●

●

●●
●●●

●●

●
●●

●
●

●
●●●●

●

●●
●

●●

●●●●

●●

●●
●●

●
●

●●
●

●
●

●
●●●●●

●
●

●

●

●
●

●
●

●
●●

●●
●

●●
●

●●
●

●●●
●

●●

●
●

●

●●●

●
●

●
●

●●

●
●

●●

●

●
●●●●

●

●
●●

●
●

●●

●●
● ● ●●●
●●●●

●
●●●

●●●●

●●

●
●●●

●

●
●

●
●

●●
●

●●
●

●

● ●●●●
●

●
●

●●
●●

●

●
●

●
●

●
●

●●
●

●

●
●●

●●
●●

●●
●

●
●

●● ●●
● ●●

●
●●

●
●

●●

●
●

●
●

●

●
●

●
●

●●
●●●

●
●

●●● ●
●

●

●

●●●
●

●●
●●●

●●
●

●●
●

●●
●●●●

●●

●
●●●●

●
●

●

●
●

●●
●●●

●

●
●

●
●

●●

●
●●

●●

●
●

●
●

●●

●●
●

●
●

●
●

●
●●

●
●

●
●

●●●●
●

●

●
●

●
●●

●●
● ●

●●●●●
●

●●●●●●●
●●

●

●
●

●
●●

●

●
●

●
●

●

●
●

●●●●

●●

●
●●

●
●●

●

●
●

●

●

●
●

●●
●

●
● ●

●●

●
●

●
● ●

●●●

●●●●
●

●●●

●

●

●
● ●

●

●●
●

●●●●
●●

●●

●
●

●●

●

●
●

●

●●●●
●

●●
●●

●

●

●

●
●●●

●
●

●●
●

●
●●●

●
●●

●●

●
●

● ●●●

●
●

●

●
●●

●
●

●●
●

●●
●

●

●●●

●●● ●

●
●●●

● ●
●

●●

●●

●

●●
●●

●
●●

●● ●●

●
●

●
●

●●

●

●
●

●●

●

●●

●●●●
●

●●

●●●
●

●●

●●●
●●●●

●

●●●
●

●

●
●

●
●●

●●●

●
●

●
●

●●

● ●●●●

●●

●
●

●
●

●
●●●

●

●●

●●●

●

●●
●

●
●●

●
●●●

●● ●
●●

●

●●●

●
●●

●●

●●
●●●

●
●●

●
●

●
●

●

●
●●●●

●●
●●

●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●
●●

●●
●

●●

●

●

●

●

●
●

●

●

●

●● ●●
●●

●●●

●●
●

●

●●
●●●●

● ●●●
●

●●

●
●

●
●

●
●

●
●●●●

●

●●

●

●

●

●●●

●
●

●●
●

●●
●●

● ●

●●

●●
●●

●

● ●
●

●●●
●

●●●
●●

●
●●

●●●
●●

●

●●
●

●●

●●
●

●
●

●● ●●
●

●●●

●

●
●

●
●

●●
●

●

●

●● ●
●●

●●

●●

●●

● ●●

●
●●●

●

●
●● ●

●

●

●
●

●
●

●●
●●

●● ●●

●●

●●
●●

●
●

●● ●

●●
●●

●

●
● ●

●●
●●●

●

●

●●

●
●●●

●
●

●
● ●

●
●●●

●●●●
●

●
●●

●

●
●

●

●
●●●

●●●●●

●● ●
●

●

●

●

●

●●●
●

●
●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●●

●
●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

●●●●●
●

●

●●
●●●

●●
●●

●●
●●

●

●

●●
●

●●
●●●

●● ●
●

●●●●

●
●

●
● ●

●
●●●

●●
●

●●

●
●

●
●

●

●●
●

●
●●

●
●●

● ●●
●●

●●
●

●●●●●
●●●

●●
●●

● ●●●●●
●

●●
●

●

●
●

●●●
●

●
●

●●●

●
●● ●

●●
●

●
●

●●●
●

●
●

●

●
●● ● ●●●
●●●

● ●●
●

●
●

●
●

●●

●●●

●●
●●

●
●

●●
●

●
●

●
●

●●
●●

●
●●

●
● ●

● ●
●

●
●● ●

●

●●●

● ●
●

●
●

●

●●

●

●
●

●
●●

● ●
●

●
●

● ●
●

●●
●

●
●

●

●●●
●

●●●

●

●

●
●

●
●

●
●

●
●

● ●

●
●

●

●
●

●
●

●
●

●
●

●
●●●●

●●

●

●●

●

●
●●●

●
●

●

●●

●

●● ●●●
●●

●

●
●

●●
●

●●●
●

●
●

●●
●

●

●●

●

●

●●●●
●

●
●

●

●
●

●

●

●

●

●●
● ●

●
●

●

●
●

●●

●
●

●

●
●●

●●

●●

●
●

●
●

●

●

●

●●
●●

●
●●

●

●

●

●●

●●

●●

●
●●

●●●●●●

●●

●

● ●
●

●●
●●●

●

●●

●
●

●
●

●●

●

●

●●
●

●
●

●

●

●

●

●●
●

●

●●

●●●
●

●

●
●

●
●

●●
●

●
●

●●●
●

●
●●

●

●

●
●

●●
●●

●
●

●●●
●

●●

●

●●●●

●
●●

●
●

●

●●
●

●

●
●

●
●

●

●
● ●●●

●●
●

●
●

●●
●

●●
●

●
● ●

●●●●

●●●
●

●

●

●

●

●

●
●

●
●●

●●

●●
●

●●●●
●

●●
●

●

●●
● ●●●●

●●
●●

●●

●●●
●●

●
●

●
●

●
●●

●●●●
●●

●●

●●●●●

●●●●●

●●●
●

●

●
●●

●
●

●●

●

●●●

●●●● ●
●

●
●

●●
●

●
●

●
●●

●
●

●

●

●
●●

●

●●

●●●
●

● ●

●●●
●

●●
●

●● ●
●

●
●

●
●

●●
●●●

●●●
●

●●

●●
●●

●●

●
●

●
●

●

●●
●●

●
●

●

●

●
● ●

●

●

●●●

●
●●

●
●●

●
●

●

●●

●●●
●

●
●

●

●
●

●

●
●

●
●

●

●●●●●●●
●

●
●●

●
●

●

●● ●●
●

● ●
●

●

●
●

●
●

●●●
●

●

●

●
●●

●● ●●●
●

●

●●
●

●

●

●
●

●

●

●
●

●●
●

●●
●

●●

●

●
●

●●●
●●●

●

●
●

●
● ●●

●
●

●
●●

●
●●

●

●●
●●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●●●
●

●
●

●●
●

●

●
●

●

●
●

●●

●
●●

●
●●

●
●●●

●
●●●

●
●

●●
●

●
●●●●

●
●

●
●●
●●

●●
●

●●
●

●●●

●
●

●

●
●

●
●

●

●
●

●●
●

●●
●

● ●

●

●

●

●

●

●
●

●

●

● ●

●●●●
●●

●
●●

●
●●●●●●

●

●
●

●
●

●
●

●●●● ●
●

●
●●

●
●●

●
●●

●

●
●

●
●●●●●●

●
●●

●●
●

● ●
●

●

●●
●

●●

●
●

●●
●

●

●
●●

●
●●●

●
●

●

●
●

●●
●

●
●

●●●●
●

●●

●●
●

●
● ●●

●●
●●●

●
●●

●

●●

●●
●

●●●

●●
●

● ●●●

●

●
●●●

●
● ●

●●
●●

● ●

●
●●

●

●
●●

●●
●

●●●●
●

●
●

●
●

●●

●
●

●
●● ●

●●

●
●

●
●

●
●

●
●●

●

●●●●
●

●●

●

●
●●●●

●●●●● ●

●
●●●

●

●●
●

●●●

●
●●●

●●●●

●
●

●●
●

●

●●●

●
●

●

●
●

●
●●

●●●●
●●●

●

●
●●●

●
●

●●●
●

●
●●

●●

●●
●●

●●
●●●

●

●

●

● ●
●

●

●
●●

●●
●●

●●

●●
●

●

●
●

●●

●●
●

●●●
●●
●

●
●

●●
●●●

●
●●

●
●●●

●●

●●
●

●
●●

●●
●●

●

●
●

●●

●●
●

●●
●

●
●

●

●●

●
●

●

●
●

●
●

●
●

●●
●

● ●
●●

●
●●

●●

●

●●

●

●
●

●
●●●

●●

●●
●●

● ● ●
●

●
●

●
●

●

●
●

●

●●●●●●

●
●●

●
●

●●

●●●

●
●

●

● ●

● ●●
●

●

●
●

●
●

●

●
●

●
●●

●
●

●
●● ●●

●

●

●
●

●
●

●
●●

●

●
●

●
●

●●
●●

●
●

●●
●

●
●●

●●
●

●●
●●

●●●
●●

●●
●

●

●

●●
●●

●●
●●

●●
●●●

●

●
●

●●
●

●
●●

●

●●
●

●●

●●●

●●

●

●

●

●
●

●●
●

●

●●
●●

●

●●●●●●●●

●●
●●● ●●●

●
●●

●

●

●
●

●

●
●

●●

●●●
●

●
●●

●●●
●●

●

●●

●

●

●
●

● ●
● ●

●
●●●

●

●
●●

●
●

●
●

● ●

●
●

●
●

●

●
●

●

●●
●

●

●
●

●
●

●
● ●●

●

●
●

●

●

●●●● ●●
● ●●●

●
●

●
●

●●
●●

●
●

●
●●

●●●
●●

●

●

●●

●
●●

●●●●●

●
●

●

●
●

●
●

●
●

●

● ●

●

●

●
●

●

●●

●●
●

●

●●
●●●●

●
●

●
●

●

●●
●

●

●●

●

●

●●●
●

●●
●

●

●

●●
●

●
●

●

●
●●

●

●
●

●

●
●●

● ●
●

●●
●●

●●●
●

●
●

●
●●

●
●

●●

●
●●

●
●●●

●
●

●
●

●

●
●●

●
●●

●●
●

● ● ●
●

●
●

●●
●

●

●●
●●

●
●●

●
● ●

●● ●

●

●

●
●

●

● ●●●
●

●
●

●
●●●

●●●●
●●

●
●

●●
●

●
●

●
●

●
●

●

● ●

●●
●●

●

●●●

●●

●
●

●●
●

●

●●●●● ●

●
●●

●●
● ●● ●

●

●

●

●
●●● ●

●●
●●

●●●●●
●

●●●●●

●
●

●
●

●●
●

●

●
●

●●
●●

●●

●●
●●●

●●

●

●
●●● ●●

●
●

●
●

●●
●

●

●●●

●

●● ●
●●●

●●

●●●

●
●●

●

●●●●
●

●
●

●

●

●

●
●

●

●
●

●●●●
●

●●
●●●●●●
●●●

●
●

●

●
●

●

●●
●

●

●
●

●●

●

●●●
●

●
●

●●
●

●
●●

●●
●●

●

●
●

●

●
●●●●●●●

●

●
●

●

●
●

●
●●

●●

●
●●

●●

●
●●
●●●

●
●

●●

● ●
●●

● ●

●
●

●●

●●

●
●

●

● ● ●●

●●
●● ●●

●
●

●●●

●
●●

●
●

●

●
●●

●●●●
●

●●
●●

●
●

●●●
● ●

●●
●

●

●

●
●

●●
●

●

●●

●
●

●
●

● ●●
●

●

●
●

●
●

● ●●●●●
●●

●

●
●

●
●

●●
●●●

●● ● ●●

●
●●

●●●
●

●
●

●
●●●●●●●

●● ●

●●
●

●
●

●
●●●

●

●
●

●
●

●
●●

● ●
●

●
●

●●
●

●

●●

●
●

●●●●

●

●

●●●
●

●●●
●

●
●

●●
●

●●
●●

●●

●
●●●●

●
●●

●

●
●

●●

●

●

●
●●

●
● ●
●

●
●●●

●

●● ●
●●

●

●●
●

●
●

●

●●
●

●●●●●
●●

●
●

●

●●
●●

●●
●

● ●●●●●●●

●

●

●●
●

●
●

●
●

●●

●
●

●
●

●●

●

●
●

●

●

●●
●●

●
●

●

●

●

●

●
●●●●●

● ●
●● ●

●●●●
●

●●

●
●●

●
●●●

●

●

●

●●●
●

●●
●

●
●

●

●● ●
●●

●
●

●●

●●
●

●● ●●
●

●
●●

●●● ●
●●

●
●●

●
●●●

●
●

●
● ●●

●
●

● ●●●
●●

●

●●●

●
●●

●●●●
●●

●
●●
●

●

●●●●
●●

●
● ●

●

●
●

● ●

●
●

●

●

●

●
●●

●
●

●
●

●

●●●●●

●
●●●

●

●

●●●
●●

●
●

●●●●
●

●●

●●●
●●

●●●

●

●●
●

●●●
●●●●

●●

● ●

●
●

●
●●●

●
●

●
●

●●●●●●●

●

●●
●●

●

●
●

●
●

● ●●
●

●
●

●
●

●
●●

●
●●

●●
●●●

●

●
●●●

● ●
● ●●●●● ● ●
●

●
●

●
●

●

●
●●

●
●●●

●
●

●●●●
●

●
●●

●● ●●●
●

●

●

●

●
●

●
●

●●●

●●

●
●●●●●●●

●

●
●

●●

●
●

●●
● ●

●
●●

●
●●

●●
●●

●

●●

●
●●

●
●●

●

●●

●●●●

●
●

●
●●

●

●●●
●●

●
●

●●●●
●

●●

●

●●
● ●

●
●

●

●

●
●

●

●
●●

●
●

●

●
●●

●
●

●

●
●

●
●●●●●●

● ●
●

●●
●

●
●

●
●

●

●●
●●●

●
●●●●

●●
●●

●
●●●●●●

●● ●
●

●●

●●
●●

●

●●
●●●

●

●●
●●●●●

●●

●●
●

●
●

●

●

●
●● ●●

●
●

●
●

●●

●

●

●●
●●●

●
●

● ●●

●●

●
●

●

●●●

●●
●

● ●●
●

●
●

●●

●

●
●●

●

●

●●●
●

●●

●
●●

●
●

●
●●

●●
●●

●●●
●

●

●
●

●●
●

●

●●
●●

●
●

●●

●

●

●●●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●
●

●●

●●

●●

●●●●
●

●
●

●

●

●●●●
●●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●
●

●
●

●
●●●

●●

●
●

●
●●

●
●

●●●
●●

●

●
●●●

●
●

●●●
●

●●

●

●

● ●●●
●●

●●●●
●●●●●●●●●●

●●
●

●

●

●
●

●●●
●

●
●

●

●●
●

●

●●
●

●●
●

●●
●

●
●

●
●

●●
●●●

●●
●●●●

●●●●●
●

●

●

●

●
●●●●

●
●

●
●

●

●
●●

●

●
●

●●
●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●

●

●
●

●
●●

●
●

●

●
●

●

●
●●

●

●
●

●

●●
●

●
●●●●

●
●

●
●

●●
●

●●●●
●●

●

●
●

●

●
●●●●●

●●●●
●

●
●●

●●
●

●
●

●
●

●●

●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●●

●
●

●●
●●

●
● ●

●
●●●●

●
● ●●●

●

●●
●

●●

●

●●

●●

●●●
●

●●

●
●●

●

●

●

●

●

●●●

●
●

●
●

●
●●

●

●
●

●
●

●
●

●

●

●
●

●●●
●

●

●●●
●

●●
●

●

● ●●●

● ●
●●●

●●●
●

●
●

●●●●
●●●

●
●

●

●●

●
●

●
●

●●

●●●
●

●●

●
●

●●
●●

●
●

●● ●
●●

●

●
●

●●

●●
●

●
●

●

●
●

●
●

●●●
●

●
●●

● ●
●●

●

●

●
●●

●
●

●
●

●

●

●
●●●

●

●
●

●
●

●●●●●
● ●

●
●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●●● ●
●

●
●●●

●
●

●

●
●

●●●●

●
●

●
●

●●●●●
●

●●
●●

●

●
●

● ●●

●

●

●

●
●●●

●
●

●●●

●
●

●

●
●

● ●

●

●

●
● ●

●
●

●●
● ●

●●
●

●
●●●

●●

● ●
●●● ●

●
● ●●●●●

●

●●
●●

●●

●●
●

●●
●

●

●

●●

●
●●

●

●●●
●

●

●

●

●●
●●●

●

●●●
●

●
●●●

●
●

● ●●

●
●●

●

●

●

●
●

●●
●

●●
● ●

●
●

●
●

● ●●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

● ●
●

●
●

●

●
●●

●●●●●

●
●

●

●
●●●

●● ●
●

●
●●

●

●

●
●

●●●

●
●

●●

●
●

● ●

●●
●●

●●

●
●

●●
●●●

●
●

●

●
●

●● ●
●

●

●

●●

●

●●
●

●

●
●

●
●

●
●●

●●●● ●●

●
●●

●
●

●●●
● ●

●

●
●●

●●
●

●
●●

●
●●●

●

●

●
●●●

●
● ●
●

●

●

●

●●●●
●●

●●

●●
●

●
● ●

●●●●
●

●

●●
●●

●

●●
●

●
●

●
●●

●

● ●●
●

●

●●● ●●
●

●●●●
●

●
●●●

●● ●

●●●
●

●
●

●●●●●●

●●
●●

●

●

●

●

●●
●●

●

●
●

●

●

●

●
●

●

●●●●
●● ●

●

● ● ●
●

●
●

●●●●

●

●●

●

●

●●●

●

●

●

●

●●

● ●
●●●●

●
●

●●

●
● ●

●●
●

●

●●●
●

●

●
●

●●

●●
●

●●
●

●●●●
●

●

●
●

●●
●●●

● ●
●●●

●
●

●

●
●

●
●

●
●

●●●●●●
● ●

●
●

●

●
●

●

●●
●

●
●●●●●

●
●

●●

●●●
●●

●
●●

●

●

●

●
●●

●
●

●●●●
●

●
●

● ●
●

●●

●●●
●

●●
●

●

●●

●

●

●
●●●

●
●

●●

●

●●

●

●
●

●●
●●

●●●●●●
●

●
●●

●
●● ●●

●
● ●●●

●
●

●
●

●
●●

●
●

●

●
●

●
●●●●

●
●

●
●●●●

●
●

●
●

●●
●

●●
●

●
●

●●
●●●●

●

●
●

●● ●●
●●●

●

●

●
●●

●
●

●●

●

●

●
●

● ●
●●

●

●
●●

●●●

● ●

●
●

● ● ●●●
●●

●●
●

●●
●●●

● ●

●●●●

●●

● ●
●

●
●●●●

●
●

●
●

●

●●

●●●●
●● ●

●●
●

●
●●

●

●
●●●●●

●
●●

●

●●

●

● ●●
●

●

●
●

●
●●●

●
●

●
●

●
●

● ●
●

●
●

●
●●

●●

●

●

●

●
●

●●●
●

●
●●

●●●

●
●

●

●●

●
●

●●
●

●

●
●

●
●●

● ●
●

●● ●

●

●●
●●

● ●●●●

●●●●
●●●

●●
●

●
●

●
●

●
●

●●
●

●

●●
●

●
●

●

●●

●
●

●

●●
●

●
●

●
●●

●●
●

●
●

●

●

●
●

●
●●●●

●
●● ●

●

●●
●●●●●

●
●

●●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
● ●

●

●

●
● ●

●●
●●●●

●
●

●

●●
●●

●●

●
●●●●

●
●

●
●●●

●●●
●

●
●●

●

●
●●●

●

●

● ●
●

●●

●

●
●●●

●
●●

●●●
●

●
●

●
●

●
●●

●●

●

●

●

●●
●●

●
●

●●●

●
●

●
●

●

●●
●

● ●●

●
●

●
●

●●●
●

●

●

● ●
●●

●
●

●

●
●

●●

●
●

●● ● ● ●
●

●
●●●●●

●
●

●
●

●●
●

●
●●

●●
●●

●

●

●
●

●
●

●
●● ●

●

●●●
●

●●
●

●
●

●
●

●●

●
●●●●●

●●

●●
●

●

●
●●●

●●

●

●

●●

●
●

● ●●●●
●

●
●

●

● ●●
●●

●●
●●●

●●

●
●

●●●

●●

●●
●●

●
●

●
●

●●

●
●

●● ●●

●

●
●● ●● ●

● ●
●●

●●
●●
● ●

●
● ●

●●
●●●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●
●●●

●●●●
●

●
●●

●

●

●

●

●
●●

●

●

●

●
●

●●
●●●

●
●●

●●
●●

●●●

●

●
●●

●
●●

●

●
●

●
●

●

●

●●●●

●●●
●●●●●

●●●
●●

●
●●

●●

●
●

●
●●

●●
●

●●
●

●
●●

● ●●
● ●●●●

●
●

●●
●●

●●
●●

●
●●

●

●

●●

●
●

●
●

●
●● ●●●

●●
●

●●

●
●

●●
●

●
●

●
●

●

●●●
●

●

●
●

●
●

●●●
●●

●
●

●●●

●
●●●

●
●●●

●●●●●
●●●

●
●

●

●
●

●

●

●●

● ●●
●

●
●●●●●

●●
●

●●
●●

● ●
●●

●

● ● ●
●

●●
●

●

●●
●●

●●●
●

●●

●
●

●

●●●●

● ●

●●
●

●● ●

●●
●

●●

●●●
●

●●
●

●

●
●●

●
●

●●●
●

●
●

●
●●

●
●

●
●

●●●
●

●

●
●

●

●

●●●

●
●

●
●

●
●●

●
●●

●●●
●

●
●●

●●
●

●

●
●

●

●
●

●

●

●●●
●

●
●

●

●●

●
●

●
●●

●
●

●
●

●●
●

●
●

●

●
●●●

●
●

●●

●
●

●
●

●
●

●

●

●

●

●

●
●●● ●

●

●
●

●

●

●

●

●
●

●

●

●
● ●●

●
●

●
●

●

●●●●
●

●●
●

●
●●●●

●

●●●
●

●●

●●
●

●
●●

●
●

●
●

●
●

●

●

●

●
●

●●
●

●
●

●
●●●

●●●

●
●●●●●●●

●●
●●

●

●

●
●

●●

● ●●
●●

●
●●

●

●

●

●
●

●●
●

●

●

●

●● ●
●

●●●
●

●●
●

●

●
●

●

● ●●

●
●

●
●

●
●

●●●●
●

●●
●●●●

●
●

●

●●●
●●

●

●
●

●
●

●
●

●●
●●●

●
●

●

●
●

●●●●

●

●
● ●

●●
●

●

●

●
●

●
●●●●

●
●

●
●

●

●
●

●
●●●●

●
●● ●●

●●

●
●

●

●●●

●●●●●

●●
●

●

●

●
●●

●
●

●
●

●

●●

●
● ● ●●

●
●

●

●
●

●

●
●

●

●●

●

●●●●
●●

●●
●

●●
●●●●●

●
●

●
●

● ●●

●

●
●● ●●● ●●●

●●●●●
●

●●
●

●●●●

●
●

●
●

●
●

●

●
●

● ●
●

●

●
●

●
●●

●●
●

●●
●

●

●

●●

●●
●

●
●

●
●●
●

●

● ● ●●●●●●●●●●

●

●
●

●

●● ●
● ●●

●●
●

●

●

●
●●●●
●

●
●

●

●
●●●●●

●

●
●

●●
● ●

●

●●

●

●●

●●
●

●
●

●● ●
●●

●
●

●
●●

●
●●

●
●●

●●

●● ●●
●

●●

●

●
●●

●

●

●
●

●
●

●

●
●●

●

●●

●

●

●
●

●●●●●●●
●●

●● ●
●●

●●
●

●●●●
●●●

●
●

●●
●

●

●

●
●

●
●

●●
●

●●
●

●
●

●
●

●●●
●

●

●
●

●
●

●

●
●

●
●●

●
●●●●

●●

●●
● ●

●
●

●
●●

●●

● ●

●
●●

●●
●●●●

●
●●

●
●●●

●●

●●

●●

●
●

●●
●●

●
●

●
●●●

●

●●
●●

●●●
●

● ●●
●●●●

●●●
●●
●

●
●

●
●●●●●

●
●●

●

●
●

●

●
●

●●●
●●

●
●

●●●
●

●

●
●

●

●●

●

●●●
●●

●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●
●●●

●

●
●

●●
● ●●

● ●
●

●
●●

●
●●●

●

● ●

●

●
●

●
●●●●●●●

●

●●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●

●●
●

● ●

●
●

●●

●

●●
●

● ●●
●

●

●
●●●●

●●

●●
●

●
●

●

●

●
●

●
●●

●● ●

●●
●

●
●●●

● ● ●
●

●● ●

●
●

● ●
●

●

●

●
●

●

●●●

●●
●

●

●

●●

●

●

●

●
●

●

●

●●

●
●●

●●
●

●

●
●

●●

●●
●

●

●●
●

●
●

●

●●●
●●

●
●

●●
●●
●

●

●

●
●

●

●

●●
● ●

●●
●

●
●●●

●
●

●

●
●●

●

●●●
●●●

●

●●
●

●
●

● ●
●

●
●

●
●

●

●●

●
●●

●

●
●

●●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●●

●●
●

●●
●●

●
●

●

●●

●

●●
●●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●●
● ●

●●●●●

●●

●●
●●

●●●

●
●

●

●●
●●

●●

●●
●● ●

●●●●
●●●●●

●
●

●
●●

●
● ●

●
●●

●
●

●
●

●●

●●●●
●

●●●●
●

●●

●
●●●●

●●
●

●
● ●●●

●
●

●●
●

●●

●●●●
●

●

●●

●●
●

●

●

●
●

●
●

●
●●●

●
●

●●●
●

●●●●●
●

●
●●●●

●●●
●

●
●

●●●
●●●●●

●

●

●

●
●●

●
●

●
●

●●
● ●●

●

●●
●

●
●●

●●
●●●

●
●●●

●●●
●●

●
●●

●●

●

●
●

●

●●

●●

●
●

●

●
●●●

●
●

●
●

●
●●●

●●

●
●●

●●

●●
● ●
●●

●●●●
●●

●●●

●●●
●

●●
●●

●

●●
●

●
●●

●● ●●
●●●●

●●
●●● ●●

●

●

●

●●●●

●
●●

●●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●
●●

● ●●
●●

●
●●●●

●
●

●

●●
●

●
●●●

●●
●

● ●
●

●●●
● ●

● ●
●●

●●
●

●
●

●
●

●
●

●
●●●

●
●

●
●●

●
●

●
●

●●
●

●●

●●
● ●

● ●

●

●
●

●

●
●

●●

●

●
●●

●●

●●

●

●

●●

●●

●
●●

●
●

●
●●

●●●

● ●●

●●
●●

●
●

●

●● ●

●●●
●

● ●

●
●●

●●
●●●

●
●

●●
●●

● ● ●
●

●●
●

●

●

●●
●●

●●●

●
●

●
●

●

●●
●●

●

●

●
●

●●●●●●
●

●

●●

●
●

●

●●
●● ●

●
●

●
●

●

●●

●

●●●
●

●
●

●

●●● ●

●
●●●

●●

●
●●

●●
●

●
●

●

●●●●●●
●

●
●●●

●
●● ●

●

●
●

●
●●

●

●
●

●
●

●
●

●● ●
●

●
●

●
●●

●●●
●

●

●●

●

●●
●

●●
●

●
●

●
●●●

●● ●●

● ●
●

●●●
●

●

●●●

●

●
●●●● ●●

●
●

●●●

●
●●

●

●

●
●

●●

●

●

●

●

●●
●

●
●●

●
●

●
●●

●●
●●

●●
●

●
●

●
●●●●

●

●

●
●●●

●
●●●

●
●

●●●

●

●
●

●
●●

●●

●●
●●

●
●●

●● ●
●●●

●
●

●
●●

●●
●●●●

● ●●●
●

●● ●
●●●●● ●

●●
●

●
●

●●
●

●

●
●

●●●●●

●

●●●●

●
●●●●●

●
●

●
●

●

●
●

●
●

●●
●

● ●●
●

●

●

●
●●

●●

●●
●

● ●
●

●●
●●

●

●●●

●
●

●

●

●
●

●

●●

●
● ●

●
●

●●
●

●
●

●
●

●
●

● ●
●●

●●

●

●●
●

●●
●

●
●●

●

●●
●●●● ●

●●
●

●
●

●●●

●
●●

●●●●●

●●

●

●

●

●●●

●●
●

●●
●

● ●
●

●

●
●

●

●
●

●●

●
●

●

●●

●

●●●
●

●
●

●●

●
●

●
●

●

●●●
●

●
●●●

●●●●●

●

●●
●

●●
●

●

●
●

●●●●●
●

●●
●●

●
●

●
●

●●
●

●
●

●
●●

●
●

●

●●

●●●
●

●●●

●

●●

●
●●●

●
●●●

●●
●●

●●●● ● ●●●●

●●
●

●
●●●●

●
●

●
●

●●

●●

● ●●
●

●

●
●

●

●●
●

●

●
●●

●●
●

●

●●●
●●

●●
●

●●●●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●●

●
●

●
●

●●●
●

●●
●

●
●●●

●●
●● ●●●

● ●● ●

●● ●

●

●
●

●
●●

●●●●
●

●

●
●

●●

●

●
●●

●●●

●
●

●
●●

●●
● ●

●●●●

●●
●●

●●●●
●●

●●●●●●
●

●
●●●

●

●
●

●●

●
●●

●
●

●

●●●
●●●

●
●

●

●

●●

●

●
●●

●●●
● ●●

●
●●

●
●●●●

●
●

●●
●

●●

●

●●●
●

●●
●●●

●●

●

●●●●
●

●

●
●

●
●●

●

●●

●
●

●
●

●●● ●
●

●

●
●●

●●
●●

●
●

●

●
●●

●
●

●

●

●

●
●

●

●●
●

●
●●●
●●●

●
●

●

●
●

●
●

●●
●

●●
●

●●●

●

●
●

●

●●●
●●

●●
●●

●
●

●
●

●
●

●

●
●

●

●
●

●

●●
●●

●●●●
●

●●
●

●

●
●

●
●●

●
●●

●

●

●

●

●●●

●

●
●

●

●

●

●
●●

●
●

●
●●●

●●

●
●

●●
●

●
●

●
●

●

●●
●●

●
●●●●

●
●

●
●

●
●

●
●

●●

●
●

●●●

●
●

●

●

●●
●

●●

●
●

●
●

●●
●

●

●
●●

●
●●●●

●

●

●
●

●●●
●●●●● ●●●

●

● ● ●●●

●
●

●

●

●●

●

●●

●

●●
●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

●
●

● ● ● ●

●●●

●●

●●

●

● ●
●

●
●

●

●

●

●

●
●●●

●●

●●●

●

●
●

●
●

●
●

●●
●

●

●
● ●

●●
●

●
●●

●

●

●

●●

●
●

●●
●

●

●●●
●●

●

●

●

●●

●●●●

●

●

●
●

●●
●

●●
●

●●
●●●●

●
●

●
●

●
●●●

●●
●

●
●●●

●
●

●●●

●

●●

●

●

●
●●●

●
●

●
●

●●
●

●●

●
●

●●

●●
●●● ●●

●●
●

●●
●●

●●
●

●
●●● ●●●

●
●●

●●

●

●
●●●

●●●●
●

●

●
●●

●●

●
●●

●

●●●●
●

●
●

●
●

●
●● ●

●●

●
●

●
●

●

●

●
●●●

●
●

●

●
●

●
● ●●

●

●
●

●

●●
●●

●
●

●●●●●
●●

●

●
●

●●●●

●●●●

●
●

● ●

●●
●

●
●

●

●●
●

●
●

●

●●●●●
●●

●
●

●●● ●●●

●●●

●●

●●

●

●
●●

●
●

●●

●
●

●
●

●
●

●
●●

●

●●

●
●

●●●

●

●
●●

●

●●

●
●●● ●

●
●

●
●

●

●
●

●●
●

●

●●
●●●●

●●●●
●

●
●●

●
●

●●●
●●

●

●
●●●

●

●
●●

●●●
●●

●

●

●
●

●●● ●

●

●

●

●●
●

●●

●
●●

●●●●
● ●

●●

● ●●

●

●●●●

●●

●

●

●●

●
●

●
●

●

●

●●

●

●

●●
●

●●●
●

●
●

●

●

●●
●

●●●
●

●

●

●
●●

●
●

●

●●

●

● ●
●

●●
●

●●
●

●
●●

●
●

●

●

●
●

●
●●

●
●

●
●●

●

●●
●●●●
●●●

●
●

●
●

●
●

●●●
●●

●
●

●●●

●●

●

●
●

●●
●●

●●

●
●●●

●●
●

●
●

●
●●

●●●
●

●●●●
●

●

● ●●

●●

●●

●●
●

●

●
●

●
●

●

●
●

●●

●●●
●

●
●

●●●

●●●
●

●●
●●

●●●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●●
●●

●
●

●

●●

●

● ●
●

●●

●

●

●

●

●
●

●
●●●

●●
●●●

●

●
● ●

●
●

●●
● ●●

●● ● ●
●●

●

●

●

●

●●●●
●

●

●● ●

●●
●●

●●●
●

●

●●●

●
●

●●
●

●

●●

●

●●
●

●●
● ●●

●
●

●
●

●
●

●

●

●
●●

●
●●

●●●

●

●

●

●●

●

●

●●
●●
●

●
●

●

●

●●

● ●

●●
●

●●
●●

●●●
●●

●
●

●

●●

●●
●

●

●●

●
●

●
●

●
●●

●

●

●
●

●

●●
●

●● ●●
● ●

●
●●

●

●

●

●

●
●

●●●
●

●

●

●

●●●
●

●

●●

●
●●

●●●

●

●●

●
●

●●
●●●

●
●

●

●

●●
●

●

●●●●●
●●

●
●

●
●

●
●

●●●
● ●

●

●

●●
●●●●

●●

●
●●

● ●●
●

●

●

●●

●●

●
●●
●●

●
●

●
●●
●

●●

●

●
●

●

●
●

●●●
●●●

●

●●

●

●●
●●●

●
●

●●
●

●
●

●●
●

●●
●●●

●
●●

●
●

●●
●

●●

●

●●●

●●●
●●●●

●
●●

●
●

●●●

●

●
●●

●

●●
●

●
●●

●●
●

●
●

●
●●●

●
●●●

●
●

●
●●

●

●●
●

●
●●●

●●

●●
●

●

●

●

●
●

●
●

●●●●● ●●●

●●●

●
●

●

●

●●●●
●●

●●
●●

●●

●

●
●

●●●●
●

●

●
●

●
●

●
●●

●●
●

●
●

●

●●

●
●

●
●

●

●●

●
●● ●●

●
●

●●●

●

●●

●●
●●

●
●

●●●
●●

●●●
●

●

●

● ●
●

●●●●

●●

●●
●

●

●

●
●

●
●●

●●
●

●
●

●●
●●●

●●
●

●●●

●

●
●

●
●

●
●

●●●●
●

● ●
●

●

● ●●

●●
●

●●
●

●

●
●

●

●

●
●

●

●
●

●●
●

●

●
●●

●
●

●

●●

●●
●

●●
●

●● ●

●
●●

●
●

●

●
●

●

●●●
● ●●

●

●●

●●●● ●●
●●●●●

●●
●

● ●
●

●●

●
●

●

●
●

●

●
●

● ●

●
●

●

●

●
●●

●
●●●

●

●

●
●

●

●
●

●●●

●

●●●●
●●

●
●

●
●

●●
●

●
●

●
●

●

●

●
●

●●
●

●●
●

●
●

●
●●

●
●

●●

●
●

●

●
●

●●

●
●

● ●
●

●●
●●

●●

●

●
●●

●
●●

●
●

●

●

●

●●●

●

●
●

●
●●●●

●

●

●

●●
●

●●

●
●

●

●
●

●
●

●

●●
●

●
●●

●

●
●

●●●●●●●
●

●●

●●
●●

●●
●

●●●●●●●●●●
●●●

●
●

●●
●●

●

●

●●

●●

●
●

●●●

●
●●●

●
●

●●
●

●
●

●

●
●●

●
●

●●
●●

●●
●

●

●
●

●

●●

●

●●●

●●

●
●

●●●●
●●

●

●

●
●

●●●●

●
●

●●
●●

●●

●
●

●●
●

●

●
●

●
●

●●

●●●
●

●
●

●●●
●

●●
●

●

●
●

●●
●●

●
●

●
● ●

●
●●

●●
●

● ●
●

●●●●●●

●
●●● ●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●●

●●

●●
●

●
●

●
●●

●
●

●
●●●

●
●●●

●
●

●
●

●
●●

●●
●

●

●
●

●●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●●●

●●●

●

●

●

●

●

●

●
●

●

●
●

●●

●●
●

●●●●
●●

●
●

●●
●

●

●
●

●

●●
●

●
●

●
●●

●●

●
●●

●
●

●●
●

●●

●
●●●●

●●●●
●●

●
●

●
●●

●

●●

●

●

●●

●●

●
●●

●●
●

●●
●●●●

●●●
●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●
●

●●●
●

●
●

●●
●

●
●●●

●

●●
●●●

●
●●

●●●

●

●●

●

●

●
●●●

●

●
●

●●
●

●
●

●●
●

●●

●

●

●

●

●
●

●

●

●●

●
●●●●●

●●

●●

●
●

●
●

●●●●●●
●●

●
●●●●

●
●

●●

●●
●●●

●

●●●●
●

●●
●

●
●

●

●

●●●

●
●

●

●
●●

●
●

●●

●●

●
●

●

●

●
●●

●●

●
●

●
●

●
●

●

●
●

●●

●●
●

●
●

●
●

●

●
●

●

●
●

●
●●●

●
●

●
●●●

●
●

●●
●

●●

●
●

●

●

●●

●

●●
●●

●

●
●●

●●
●

●
●

●●

●
●●

●

●

●
●

●

●●
●●

●
●

●
●

●●

●
●

●●

●

●
●

●●

●

●

●
●

●

●

●●●
●

●
●

●
●

●

●
●●●●●

●

●

●●
●

●●●
●●
●●

●

●

●
●●

●
●

●●●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●●●

●●

●●

●●

●

●●●
●

●●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●●

●
●

●
●

●●●
●

●●●

●●●
●

●

●

●
●●●●

●●●
●

●●

●

●
●

●
●

●

●

●●

●●●

●●

●

●●

●●
●

●●

●
●

●●

●
●

●

●
●

●
●●●

●

●
●

●●
●

●●
●

●
●●

●

●
●

●

●
●●

●●
●

●

●
●

●●●

●●●●
●●

●

●

●

●●●●
●●

●●

●●

●●●
●

●●

●●●
●●
●

●●
●

●
●●●●●

●
●

●
●

●●

●●●

●
●

●

●

●
●

●
●

●●

●●

●

●●●
●●

●
●

● ●●
●●●●

●

●●
●●

●

●
●

●

●●
●

●
●

●

●●●●

●

●
●

●

●●

●●

●

●●

●

●

●
●

●
●

●
●

●
●

●●

●
●●

●

●
●

●●

●●●
●

●
●

●

●●

●
●●

●●

●●●●
●●

● ●●

●
●

●
●

●●
●●

●
●

●

●

●
●

●●

●●
●●

●
●

●

●
●●

●
●●

●
●

●●●●

●
●

●
●

●●

●

●●
●

●●

●●
●●

●●
●

●
●

●●

●●
●

●
●●●

●●●
●

●●

●

●
●

●●

●●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●●
●●
●

●

●
●

●
●

●

●

●

●
●

●●
●

●●
●

●

●●●●●
●

●●
●

●

●

●
●

●●

●●
●

●

●
●●

●●●
●

●
●

●●

●
●●

●

●●
●●

●
●

●

●●

●

●
●●●●●●

●
●

●●●●
●

●

●
●●●● ●

●
●

●

●
●

●
●●

●●

●
●●●●

●
●

●
●

●

●●

●●
●

●

●

●
●

●●
●

●●●●

●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●●●●
●●

●●●
●

●
●

●

●

●

●

●●
●●●

●
●

●
●

●

●
●

●●
●●

●●●

●

●

●
●●

●
●

●

●

●
●●●

●

●●

●
●

●●

●●
●

●
●●

●
● ●

●

●
●

●
●

●
●●

●

●

●
●

●● ●●
●●

●

●

●●

●

●

●

●
●●

●●
●

●●
●

●

●●

●
●●

●
●

●
●

●●●●
●

●●
●

● ●
●

●
●●

●
●

●
●●●

●

●●

●●●●●
● ●

●

●
●

●
●●●●●

●
●●●●

●
●

●
●

●
●●●●

●
●●

●
●●

●

●
●

●
●●●●

●
●

●●●●●

●

● ●

●●●

● ●

●

●●
●

●
●

●●
●●

●
●●●

●
● ●●
●

●
●●

●
●

●
●

●●● ●●●
●

●●●

●

●
●

●

●● ●●
●

●●

●
●

●
●

●

●
●●●

●
●

●
●

●
●

●●
●

●●●
●●

●●
●

●●

●

●●●●
●

●

●

●
●

●

●
●

●
●●

●
●●

●
●●

●
●

●

●
●

●●●
●

●

●

●
●●

●

●

●●

●

●
●

●●●
●●

●●

●

●
●●

●
●

●●
● ●

●●●

●●●●
●

●

●

●●

● ●●●
●●

●
●

●
●●

●
●

●
●

●
●

●
●●

●
●

●
●

●●

●

●
●

●●●●●

●●
●●

●
●

●●●●
●

●
●

●
●●

●●
●

●●

●●●
●●

●
●

●
●●●●

●

●

●

●

●

●●

●●
●

●

●●
●

●●●●

● ●●
●●

●●

●●
●

● ●●●●●●●●●

●
●

●●
●

●
●

●
●

●

●
●

●●●

●
●

● ●●

●●●●●
●

●

●●
●

●

●
●

●●●
●●

●
●●

●

●

●

●

●
●

●
●

●
● ●

●

●●

●●
●

●

●
●●

●

●
●

●
●

●●
●

●

●●●
●

●●
●

●
●

●

●
●

●
●

●
●

●
●

●
●●●

●
●

●
●

●●
●

●●●
●●●

●●●
●●

●●
●

●●
● ●

●

●

●●●●

●●

●
●

●
●●

●●

●●●

●●

●

●
●

●
●●

●
●●●●

●

●
●

●

●
●

●●

●
●● ●

●
●

●
●●

●

●

●

●●
●

●

●
●

●●●

● ●

●●
●

●
●

●

●
●

●
●●●

● ●●

●
●

●●●●

● ●●
●

● ●●

●
●

●

●
●

●●

●●

●●

●

●●●●

●

●

●

●

●●
●

●
●

●

●●
●

●●
●

●●●● ●

●●●
●

●
●●●

●
●

●●
●

●

●●
●

●

●
●

●●
●

●

●
●

●●●●●●
●

●
●

● ●
●●

●

●●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●●
●

●●
●●

● ●

●●
●

●●●

●

●
●

●
●

●
●

●
●

●
●

●●●
●

●
●●●●

●●

●
● ●

●●●●
●● ●

●
●

●●
●

●●
●

●

●

●●

●●
● ●

●
●●

●
●

● ●●

●

●
●●

●

●●●●●

●●

●●
●

●
●

● ●
●

●

●●●

●
● ●●
●

●●●
●

●●

●●

●

●

●
●

●
●

●
●

●●●●
●

●
●●

●●
●●●

●●
●

● ●●●

●●
●

●
●

●
●

●●
●

●
●●

●
●

●
●

● ●

●
●

●●●
●●

● ●

●
●

●
●

●●●

●

●
●●

●
●

●

●
●

●
● ●

●
●●

●
●●● ●

●●●●
●

●
●

●
●

●
●

●●
●●

●
●

●●
●

●
●

●●
●

●
●

●

●●●
●

●
●

●

●
●

●●
●

●

●

●●
●

●

●●
● ●

●●●
●●●

●
●●●●●

●●

●●
●

●
●

●
●●●●

●●●
●

●

● ●●
●

●

●●
●

●

●●
●

●
●●●

●
●●●

●
●

●●
●

●●
●

●●
●

●

●●●●

●●

●

●
●

●●

● ●●
●● ●

●●●
●

●

●●
●●

●●●

●
●

●
●●

●

●

●
●●

●●●
●●

●

●
●

●● ● ●

●
●

●●
●

●●●●

●

●●●
●

●●
●

● ●
●

● ● ●
●●●

●
●

●
●

●

●

●
●

●
●

●

●●
●●

●

●

●
●

●
●

●
●

●
●

●

●●
●●●

●

●

●

●
●●

●
●

●
●●●

●●●
●●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●●

●●●●
●

●
●

●
●

●

●●

●
●

● ●●
●●●●

●
●

●

●
●●●

●
●

●
●●

●
●●

●●
●

●
●● ●

●●●
●●

●
●

●●

●●●
●

●●●●
●●●

● ●
●●●

●
●

●
●

●●
● ●●●

●●●●
●

●
● ● ●●

●
●●●●●

●●
●

●●●

●

●●●
●

●
●

●●●

●
●

●●
●

● ●●
●●● ●

●●
●

●●●

●

●
●

●
●

●●
●

●●
●

●

● ●

●
●●●●

●
●

●
●

●●
●

●●
●●●●●●●

●
●

●●●

● ●
●●

●●●
●

●
●●●● ●

●
●●

●

●
●

●●

●● ●●
●

●●●●●●●
●

●
●

●

●●
●●

●
●

●
●

●● ●●●●●
●

●
●●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●

●●

●

●
●

●
●●

●

●
●●

●
●

●

●
●

●
● ●

●●

●
●●●

●●
●●

●

●

●
●

●●

●
●

● ●●●●
●●

●
●●

●

●
●

●

● ●

●

●

●
●●

●
●

●
●

●
●

●
●●

●●
●

●●
●

●

●

●●
●

● ●

●●●
●●

●●
●

●
●

●

●
●

●●

●

●

●●

●
●

●●●●

●●

●
●

●●●

●

●●●●
●

●
●

●●●
● ●●

●
●

●●●
●

●● ●

●

●

●

●
●

●

●
●●●

●

●
●

●
●

●
●●

● ●

●

●

●
●●

●●
●

●
●

●●●●

●●●

●
●●

●
●●

●

●
●●

●
●●

●

●●
●●●

●
●●

●
●●●●●

●
●

●●
●●

●●
●

●
●●

●
●

●
●

● ●●
●●●

●
●

●
●

●●●●●

●●
●

●
●●

●
●●●●●●

●
●●●●

●●

●●● ●●
●

●
● ●●

●

●

●●
●●

●
●●●

●
●

●
●

●●●
●●●●●

●●

●●

●●●
●

●

●●
●

●●

●

●
●●●●●●●●●●

●

●

●

●

●

●
●●

●

●●
●

●
●●

●
●

●●
●●

●
●

●●●●
●

●
●

●
●

●●

●

●
●

● ●

●

●●
●

●●
●●

●
●

●
●

●●●

● ●●●

●●●●

●●●●

●

●
●

●
●

●
●●●

●
●

●
●●

●●

●●

●

●

●●
●

●
●●

●
●●

●

●
●

●
●

●

●●
●

●
●

●●
●

●

●
●

●

●
●●

●

●●
● ●

●●●
●●●●●●●●●

●
● ●

●
●●

●

●
●

● ●

●

●●●
●

● ● ●

●

●●●●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●●●

●●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

●●
●

●
●●●●●●●

●●

●
●

●●●●

●

●●

●

●
●

●
●●

●●
●

●●
●●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●
●

●

●
●

●

●
●●●

●

●●

●
●●

●
●

●●
●

●

●●●

●

●

●●
●

●
●●

●●●●

●

●

●
●

●●
●

●●●●●●●● ●
●

●
●●●

●●
●

●
●

●
●

●●
●●

●
●●●

●●
●●

●
●●

●

●
●

●●●

●

●

●
●

●●●●●
●

●●
●●

●
●

●
●

●
●

●
●

●

●

●●●●

●●

●● ●
●

●●

●
●

●

●
●●

●
●

●●
●●

●
●●●●

●
●

●●●
●●

●
●

●●●●
●●

●
●

●●●
●

●
●

●
●●

●

●
●●

●
●

●
●

●
●

●
●

●●●

●●

●
●●

●
●●

●

●
●

●●●

●
●●●

●
●●●

● ●●
●

●●●●●●●● ●
●

●
●

●●
●

●●

●●● ●
●●

●

●

●

●
●

●
●

●●
●●● ●

●●
●

●
●

●● ●

●
●●

●
●

●●

●
●●

● ●●●
●●

●●

●●
●

●
●

●●

●

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●●
●●●

●
●

●

●
●

●
●

●●
●

●●●●

●
●

●
● ●●

●
●

●●

●

●
●

●
●

●●
●

●
●

●●

●
●

●
●

●

●
●

●●
●

●
●

●●
●●●

●
●●
●

● ●
●●

●●●●●●

●
●

●
●●●

●

●
●

● ●●●●●
●●

●

●
●

●
●

●●●
●●●

●
●

●

●●

●

●
●●●●●

●●

●

●

●

●

●

●
●●

●
●

●

●
●●

●● ●●

●

●●

●
●

●

●

●●●●
●

●
●●●

●

●
●

●●●
●●

●●
●●●● ●● ●●●

●
●

●● ●
●●

●
●

●
●

●

●●
●●

●
●●●●

●
●

●●
●

●●●●

●
●●

● ●●
●

●
●

●●●●

●

●
●

●
●

●

●
●●●●●●

●
●

●
●

●
●

●

●
●●

●●
●

●●●
●

●●

●
●

●●

●
●

● ●
●●●

●
●●●

●

●
●

●●
●

●
●

●

●
●

●●
●

●

●
●

●●

●

●
●●

●●
●

●
●●

●

●●
● ●

●
●

●

●
●●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●●

●

●

● ●

●
●

●
●

●

●

● ●
●

●●●

● ●
●●●

●

●
●●●

●●

●

●●●●

●

●●

●●

●
●

●

●
●●

●

●

●
●

●
●●

●
●●

●

●●●●
●

●●
●

●

●

●●●●

●
●

●
●

●●
●

●●
●●

●●

● ● ●

●
●

●●
●●●
●●

●●●●
●

●
●●

●
●

●

●

●
●●●

●
●

●●
●

●
●

●

●
●

● ●
●

●

●●●

●●
●

●● ●
●●●

●●●
●●

●

●

●

●●●●●
●●

●
● ●

●●

●

●●

●

●●
●●

●
●

●
●

●
●

●

●

●●●

●●
●

●●
●

●
●●

●●

●

●

●

●
●

● ●

●

●
●

●

●

●

●●
●●●●

●
●

●●
●●

●
●●●

●●●
●

●
●●

●
●

● ●●

●
●●

●

●

●

●
● ●

●● ●●
●●

●

●
●●

●●

●●

●

●

●
●

●
●

●●

●●
●●

●

●●●
●●

●●
●●

●●

●
●

●●●

●
●

●●

●●

●●
●

●●
●

●

●●
●

●
●

●●

●
●●●

●

●
●

●● ●
●

●●
●

●●
●●●

●●●

●
●

●

●
●

●
●

●●
●

●
●●●

●

●●
● ●●

●●●

●
●

●

●

●
●●

●

●●

●

●

●

●●●
●

●●

●●

●

●

●

●

●

●

●
●

●●●
●

●
●●

●●●
●●●

●●

●

● ●●

●

●●●
●

●
●

●

●

●●
●

●●●●

●
●

●●

●●●●
●

●

●
●●

●
●

● ●
●●

●
●●

●
●

●●
●●

●
●●

●
●

●
●

●
●

●●

●

●

●

●

●●

●

●●

●●

●
●

●

●
●

●●●

●●

●
●●●●

●

●●
●

●
●●●

●●
●

●●●
●

●

●●
●

●
●●

●●
●

●●
●

●●●

●

●
● ●

●

● ●

●●
●●

●

●

●●●
●

●●●
●

●
●●●

●
●● ●

●●

●

●●●

●

●●
●●●●●●●●

●● ●
●●

●●
●●

●

●

●
●

●●
●●

● ●●●●
●

●●
●●

●●●
●●

●

●●

●
●●

●
●●

●
●

●●

●

●
●●

●
● ●

●
●

●
●

●
●●

●
●●●●●●

●
●●

●●
●

●●

●
●

●

●●●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●●
●●●

●

●●
●

●
●●

●●
●●

●
●

●
●●●

●

●●
●

●
●

●
●●

●● ●●●●●●

●

● ●

●● ●
●●

●
●

●

●
●●●●●●

●
●

●

●

●● ●●●●
●

●
●

●●
●

●
●

●

●● ●
●

●
●●●●●●

●
●

●
●●●●

●●
●

●●

●

●●

●
●

●●●●
●

●
● ●

●

●

●
●●

●●

●

●

●
●

●
●●●

●●

●

●●
●

●

●

●
● ●● ●

●
●

●
●●●

●

●
●●

●●
●

●
●

●
●

●
● ● ●

●

●
●

●
●

●●
●

●●
●

●

●●●
●

●
●

● ●

●
●●

●
●

●●
● ● ●●
●

●
●

●●

●●
●●

●●●●
●

●

●

●

●

●

●
●

●●
●●●●

●
●

● ●

●●●

●

●●●
●

●
●

●
●●●

●
●●

●

●●

●

●●

●
●

●●●

●
●●

●
●

●●●

●

●
●●

●
●●

●
●

●
●

●●
●●●●

●
●

●●
●●●●

●

●

●

●

●●●
●

●
●●

●
●●

●●●●●●

●●

●
●●●

●
● ●●

●●
●●

●● ●●

●
●

●

●●

● ●
●●

●●
●

●
●●●

●
●

●

●
●●●

●●
●●

●●

●
●

●
●●●

●

●●●

●

●●
●●

●●●
●●

●
●●

●
●

●
●

●●

●

●
●●

●

●

●●
●

●

● ●●●●●
●

●●

●

●

●
●

●●
●

●
●● ● ●●●

●●●●

●
●●

●●
●

●

●●●
●

●

●●
●

●
●

●
●

● ●●
●●

●

●●●
●●●●●●

●
●

●●●●

●

●

●
●●●

●

●
●

●
●

●
●●

●

●

●●●●●●●

●●
●

●
●

●●
● ●●●●●●●●

●●●
●●●●

●
●

● ● ●
●●

●
●●

●●
●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●
●

●
● ●●

●
●

●●
●

●

●●●
●

●●
●

●

●●
●

●
●

●

●
●

●●
●●●●●

●
●

●
●●

●

● ●

●●
●

●●
● ●

●
●

●●

●●●● ●

●●●●●●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
● ●●

●● ●●
●

●

●

●

●●
●

●
●●●

●

●
●●

●●●●

●

●
●

●

●●●●●●
●●

●

●

●
●

●●

●●
●●●

●
●

●●
●●●●●

●● ●

●
●

●
●

●

●●●

●

●

●●●●

●●
● ●

●
●

●

●

●
●

●●
●

●
●●

●●
●

●●

●

●
●●

●
●●

●

●

●
●

●●●●
●

●●
● ●●

●●●
●

●●

●

●
●

●

●
●

● ●
●●

●
●●●●

●●●

●

●
●●

●●●●
●

●

●●●
●

●●

●

●
●●●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●
●

●●
●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●●

●
●

●

●● ●
●

●

●

●
●●●

●●●
●●●

●
●

●
●

●●●

●

●
●

●
●

●

●

●

●

●●
●●

●●
●●

●●
●

●
●

●
●

●

●●
● ●●

●

●

●
●●●

●

● ●

●

●
●

●
●

●●● ●●
●●

●●●●

●
●

●●

●●

●
●

●●
●●

●●
●

●
●

●
●

●

●
●

●

●
●

● ●
●

●
●

●
●●●
●

●
●●

●
●

●●

●

●●
●

●●●●●

●●●
●

●
●

●●
●●●●

●

●● ●

●
●

●
●

●
●●●●●

● ●
●

●

●
●●

●
●●

●

●
●

●
●

●●
●

●

●
●

●
●

●
●

●●
●●

●

●●

●●
●

●

●
●●

●
●●

●

●
●

●●
●●

●
●

●●
●

●●●

●●

●
●

●

●
●

●

● ●

●
●●●●

●●

●

●
●

●●

●●

●
●●●●●

●●●

●

●
●

●
●

●●
●●●

●●●
●●●●●

●
●●●

●
●

●
●●●●

●●

●●●●
●●●
●●●

● ●

●●●●●●
●

●

●

●

●
●●

●●
●

●●
●●

●
● ● ●

●

●
●●

●

●
●●

●
●

●●
●

●

●●●

●
●

●

●

●●

●●●
●

●
●

●●
●

●

●

●
●●●
●●

●
●

●●

● ●
●●●

●●●
●

●●●
●

●●
● ●

●
●

●

●
●

●
●

●
●●

●
●

●●●●

●

●
●

●
●●

●●

● ●
●●

●●
●

●

●
●

●

●
●

●

●
●

●
●●

●
●

●
●

●
●●●●●

●● ●●
●

●●
●●●

●●

●●
●

●●●●

●●●
●

●●

●
●

●●
●

●
●

●●●

● ●●
●

●
●

●

●●
●●

●
●

●●
●

●●
●

●●

●
●

●
● ●

●
●●

●
●

●●
●

●
●

●

●
●

●
●

●●●

●

●●
●

●●
●

●●●
●

●

●

●●●
●

●

●
●●●●●

●
●●●●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●●

● ●
●●●

●
●●●

●●

●●
●

●●
●●●●●

●● ●
●●●●

●
●●

●●●

●● ●●●
●

●●
●●

●
●●

●
●

●

●
●

●●
●●

●●●●
●

●

●●
●

●
●

●●●
●

●
●●

●
●●

●●
●●●

●
●●

●
●

●
●

●●

●
●

●

●
●

●
●

●●

●●
●●

● ●●

●
●●

●

●

●

●●
●

●
●

●
●

●●

●
●

●●●
●

●●●
●

●
●

●
●●●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●●●
●●●

●●●
●●●●

●●
●

●

●●

●

●
●●

●● ●
●

●●
●●

●

●●

●
●

●
●●

●●
●● ● ●●●●

●●

●
●

●

●

●●
●●

●
●

●●

●
●

●
●

●

●
●

●●
●●

●

●●
●●

●●

●
●

●

● ●
●●

●
●

●

●●
●

●

●
●

●
●●

●
● ●

●
●●

●●
●

●●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●
●●

●●
●

●
●

●●●

●
●

●
●●

●●●●●
●●●

●●
●●

●●●
●

●
●

●

●
●●●●●●

●●

●
● ●

● ●
●

●

●●
● ●

●
●●●

●
●

●
●

●
●

●
●●

●●
●●

●
●

●
●●●

●
●

●

● ●

●●

●●●
●

●●●●●
●●

●

●
●

●

●

●

●
●

●
●

●●●●●
●●

●
●

●

●
●

●

●
●●

●
●

●

●●
●

●●
●

●

●

●●
●

●
●

●
●

●
●

●●
●

●●

●
●

●●

●●
●

●

●
●

●

●

●● ●
●

●●
●●●

●●
●

●

●

●
●

●

●

●●●●●●●

●●
●

●●
●

●
● ●

●
●●●●

●

●●
●

●●
●

●●●
●●

●
●

●

●
●●

●
●

●
●

●

●●●
●

●

●●

●
●●

●
●●●●

●

●●

●

●
●

●
●

●●●
●●

●

●●

●●●●

●
●●

●

●

●

●
●

●
●

●●
●

●
●

●●●
●

●●
●●

●
●●

●

●
●

●

●
●●

●

●

●
●● ●

●
●●

●

●
●●

●

●

●

●

●

●

●

●●●
●●

●●●

●

●
●●

●

●
●

●●

●
● ●●●

●
●●

●●●
●●

●

●●
●●

●
●

●●

●

●

●●

●
●●

●

●
●

●
●

●●●
●●

●

●

●
●●●●●● ●●

●●

●
●

●
●

●

●●●
●●●●

●
●

●

●

●●
●

●
●

●

●●

●●●
●

●

●
● ●●

●●
●●

●●
●

●
●●

●
●●

●●

●●
●●● ●

●

●

●●

●

● ●
●●●

●
●●

●●●●
●

●
●●

●●●
●

●

●
●

●

●●

●●●
● ●●

●

●●
●

●
●

●●●

●
● ●●●

●
●●

●
●●●●

●●●●
●

●●

●

●●
●

●●●
●●●

●
● ●

●
●

●

●●

●

●
●●

●
●●

●

●

●
●

●

●
●

●

●
● ●●●●●●

●
● ●●●●●●

●

●●
●●●

●

●

●

●

●● ●
●●

●●●

●
●●

●●

●●

●
●●

●●●
●●

●
●

●

●
●●

●●
●

●●
●

●
●

●●

● ●●
●

●

●●
●

●
●●●●

●
● ●

●
●●●●

●

●
●

● ●●●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●

●●●

●●●

●
●

●●●
●

●●
●

●

●
●

● ●
●

●
●

●●
●

●
●

●
●●

●●●●
●

●

● ●●
●●●

●

●
●●

●●
● ●●●●

●

●
●●

●
●●

●
●●

●
●

●

●●
●●●●●

●
●

●
●

●●●●●●

●●
●

●●●
●

●●●

●
●●

●

●●
●

●
●●●

●
●●●●

●●● ●
●●●●● ● ●●●

●
●●

●
●●

●

●●
●

●●●
●

●

●

●

●●

●●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●
●

●
●

●

● ●
●

●●

●●
●

●
●

●

●

●
●●

●

●
●●●
●

●
●●

●
●●

●

●

●
●

●●

●

●●

●●●●
●

●●●●
●

●●

●●
●●

●●
●●

●
●

●
●

●
●

●●●
●

●●

●

●●

●●
●●●

●

●●●

●●●
●

● ●●
●

●
●

●●●

●

●●●●
●

●

●●
●

●

●
●

●
●

●

●

●
●

●●●
●

●
●●

●

● ●
●●

●

●

●

●

● ●

●●

●
●

●

●
●

●●●
●●●●●●●

●

●
●●

●
●

●

●●

●

●

●
●●●

●●●

●

●

●

●●●

●●

●
●

●●
●●●●

●
●

●

●●●●
●●●●

●

●●
●●●●

●

●
●

● ●●●●

●

●
●

●

●●
●

●
●

●
●

●●

●
●

●●

●

●

●

●
●

●

●
●

●●

●
●

●●
●

●
●

●
●

●
●

●
●●●

●
●

●
●

●

● ●
●

●
●●

●
●

●
●●

●

●●●

●

●
●

●

●

●●
●

●

●

●●
●

●

●

●●

●●●●●●●

●
●

●●●
●●

●●

●
●●

●●
●

●

●●

●
●●

●
●

●
●

● ● ●
●

●

●●

●
●

●
●●●

●

●

●

●
●

●

●

●
●

●

●●●

●
●

●

●
●●●●

●
●

● ●

●

●

●

●●●

●
●●

●●●
●

●●
●

●●●

●
●

●●●●
●

●
●

●

●
●

●●●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●
●●

●
●

●●

●
●●

●

●

●●
●

●

●
●

●
●●

●
●●

●
●

●●

●

●
●●●

●
●●●

●
●

●●
●

●
●

●
●

●●

●
●●

●●
●

●
●

●
●●

●

●●
●●

●
●

●●

●

●●

●
●●

●

●
●

●

● ●●● ●●
●●

●
●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●

●
●

●●
●

●●●

●
●

●
●●

●
●

●
●

●

●
●●

●

●
●

●

●

●

●●

●● ●●●
●

●
●●●●●●

●
●

●

●
●●

●●●

●

● ●
●●

●●● ●

●

● ●

●
●

●
●

●
●●

●● ●
●●●

●● ●●●●
● ●●●

●
●●

●●●●
● ●

●

●●

●

●
●●

●●●
●●

●
●

●
●

●
●

●●● ●

●●●

●
●●

●
●

●

●●

●

●

●

●●
●

●
●●

●●
●●

●
●●●●●●

●
●●

●

●●
●●●●

●●

●
●

●

●
●

●

●
●●● ●●●

●●

●●
●●●

●
●

● ●●
●

●●
●●

●
●

●●●●
●

●

●●

●

●
●

●
●

●
●● ●●●●

●●
●

●
●

●●●●
● ●

●●
●● ●

●
●

●
●

●
● ●

●
●

●●
●

●●●
●

●

●●
●●●

●●
●

●

●

●
●●

●●

●●●●

●

●

●

●

●
●●●●

● ●●●●
●●

●
●●

●●●
●

●●

●

●

●

●
●●

●
●

●●

● ●

●●●

●
●

●
●

●

● ●●
●●

●

●●

●●●

●●●●

●●
●

●●

●
●

●
● ●

● ●●●● ● ●
●●

●
●

●●●●●

●●●

●●
●●

●

●
● ●

●●

●

●●
●

●

●●

●
●

●●
●

●
●●

●
●

●

●
●●

●
●

●●
● ●

●

●
●●

●●●

●●

●●●
●

●●

●●●
●

●

●●●
●

●
●●

●

●
●

●●
●

●

●
●

●
●●●●●● ●

●●

●
●

●

●

●

●●●
●●● ●●

●●
●

●
●

● ●

●

●

●
●

●
●

●

●●●
●

●
●●

●

●
●

●
●

●

● ●

●

●
●

●●

●

●●●
●

●●
●

●●

●

●

●
●●

●
●

●
●

●

●●

●

●

●

● ●
●

●

●●
●

●●●

●●
●●

●

●

●●

●● ●●●●
●●

●
●

●

●
●

●
●

●

●
●●●

●●

●
●

●●●●●

●
●

●
●

●

●
●●

●●●

●
●

●●
●●●

●●
●●

●
●●

●

●
●●

●
●●●

●
● ●

●

●

●
●●●

●
●●

●

●●●●●

●

●
●

●●

●●● ●●

●
●●●

●●

●●
●

●
●●●

●●
●

●●●●●
●

●
●

●●

●●
●

●●●
●

●

●●
●

●
●

●
●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●●

●
●

●

●
●●

●
●

●●
●●

●
●

●●
●

●
●●

●
●

●●

●●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●●

●●

●●

●
●

●
●

●●
●●●

●
●

● ●
●●

●

●●●

●

●

●●● ●●
●●

●●

●●

●

●
●

● ●
●

●
●

●

●●
●

●
●

●

●●●●●●
●

●
●

●●●
●

●
●

●●●

●

●
●●

●
●

●

●

●

●●
●

●
●

●

● ●
● ●●●
●

●
●

●

●
●

●●● ●●
●

●
●

●

●
●●●

●
●

●●●
●

●●
●

●

●
●●

●

●●●

●
●

●
●

●●● ●
●●

●

●
●●●
●

●●
●●●●

●

●
●●

●●

●●●
● ●●●●●
●●●

●

●

●
●

●●●
● ●●●●

●
●●

●
●

●●
●●

●
●

●

●

●●●

●
●●

● ●
●

●

● ●

●
●

●
●

●
●

●

●
●

●●●●●
●

●● ●
●

●

●

●
●

●

●
●

●

●●●●●●
●

●●●●

●

●
●

●●
●

●
●

●
●

●

●
●●●

●
●

●
●

● ●● ●●
●●

●●
●

●●

●
●

● ● ● ●

●
●

●
●●●

●

●
● ●

●●
●●

●
●

●●●●
●

●●●●
●

●
●●●● ●

●● ●

●

●●●●●●
●

●
●

●

●

●●

●●●

●
●

●●●

●
●

● ●
●

●
●●●●●

●
●●●●

●
●

●

●
●

●
●●

●

●

●
●

●
●●

●
● ●

●●
●

●

●●●
●●

●

●●
●

●●

●

●

●

●
●●

●●
●●

●●
●

●

●
●

●
●

●
●●

● ●●

●
●●

●
●

●
●

●
●

●

●●

●
●●●

●●

●
●

●
●●●

●●●●●
●

●
●●

●
●

●
●●

●

●
●

●

●●●
●

●●
●●

●
●●●

● ●

●
●●●

●
●

●

●●

●●
●

●●

●●
●

●

●

●
●

●
● ● ● ●●

●
●●●

●
●

●

●●
●●
●

●
●

●●
●●

●
●

●●

● ●
● ●

●
●

●●

●
●

●
●

●
●

●●

●●
●●

●●●
●●●

●
●●

●●●
● ●

●

●
●

●
● ●●●

●

●●
●

●●
●

●
●●

●
●

●
●

●●
●

●●●
● ●

●
●

●
●

●

●
●

●
●

●

●
●

●●
●●●

●

●●●●●
●●●●

●●●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●● ●

●
●

●

●●

●

●●

●●
●●

●●

●
●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●●●
●

●
●

●●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●●
●

●
●●●

●
●●

●

●
●

●

●●

●
●

●
●

●
●●

●
●

●

●●
●●

●●

●●
●

●

●

●

●

●
●●●

●

●●
●●●

●

●●

●

●

●
●

●
●

●
● ●●
●

●

●

●●
●

●

●●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●●

●
●●●

●
●

●●

●

●

●

●

●

●●
●

●

●
●

●
●●●

● ●
●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●●●●●●

●

●

●

●
● ●●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●●●●

●●

●
●

●●●
●

●●

●●
●

●

●
●

●
●

●

●●

●●

●

●

●

●
●

●●

●

●

●
●

●●●
●●

●●●
●

●●

●
●

●

●

●
●●

●

●●
●

●
●

●
●

●

●
●

●

●●●

● ●
●

● ●

●
●

●●

●●
●

● ●

●

●

●

●

●●

●

●●●
●

●
●

●
●

●

●

●●●

●●●
●

●●

●

●● ●●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●●●●

●
●

●

●

●

●
●

●

●
●●

●●
●●●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●
●

●●
●●●

●●●●
●

●●●●●

●
●

●
●●

●
●

●
●●

●●●
●●

●
●

● ●●
●●

●●

●●
●

●

●
●

●●●
●

●

●

●

●

●

●
●●

●

●

●●
● ●

●●

●
●

●
●

●●
●●

●
●

●

●●●
●●

●
●

●

●●
●

●
●

●
●● ●

●●
●

●

●
●

●

●
●

●●

●
●

●
●

●
●

●
●●

●●●

●

●

●

●

●

●

●

●●
●●

●●●
●

●
●

●
●

●

●

●

●

●

●●●●

●
●

●
●

●●●

●

●● ●●●
●

●
●

●
●

●●●
●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●●

●●

●
●

●●

● ●●

●

●
●●

●
●●

●●

●
●●

●●
●●

●
●●

●

●

●
●

●●

●
●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●●●

●●

●●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●●

●●
●●

●●

●●
● ●

●
●

●

●

●

●●

●

●

●
●

●●

●
●

●

●●●●

●

●
●

●

●

●

●
●●

●
●

●

●●

●

●●●
●

●

●

●
●

●

●●
●

●
●●

●●●
●●

●●●

●
●●

●●

●●

●
●●

●

●
●

●

●
●

●
●

●●
●●●

●
●

●
●

●●

●●

●

●
●

●

●
●●

●

●● ●
●

●

●●●
●●

●
●

●

●

●

●
●

●●●

●
●

●

●●●

●
●

●●
●

●

●
●

●●
●●

●

●
●

●

●

●●

●

●
●

●

● ●●●

●●

●

●
●

●

●

●
●

●
●

●

● ●●
●

●

●

●

●●

●●
●

●
●

●

●
●

●
●

●●

●
●

●
●

●

●

●

●

●
●

●●

●●

●●

●
●

●

●●

●
●

●

●●

●
●

●●

●

●
●

●
●

●

● ●

●● ●● ●

●
●

●
●

●
●

●
●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●●

●
●●

●●
●

● ●

●
●

●●

●●

●

●

●●
●

●

●
●●

●●

●
●

●
●●

●
●

●
●

●

●
●●●●

●

●
●●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

●●
●

●●●●
●●

●

●
●

●
●●

●
●

●
●

●●
●

●●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●●

●●
●●●●

●
●

●
●●●

●

●
●●

●●
●

●

●

●●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●●

●

●

●
●

● ●●

●●
●

●

●●
●

●
●

●

●
●

●●

●

●
●

●●

●
●

●

●

●●

●●
●

●

●
●

●●
●

●
●

●●

●

●
●

●●
●

●
●

●
●●

●
●

●

●

●

●

●●●
●

●

●

●

●●

●

●●
●

●●
●● ●

●

●

●

●●
●

●●●●
●

●

●●
●

●

●
●

●●
●

●●

●
● ●

●
●

●

●

●

●

●

●
●

●
●●

●
●●

●●

●

●
●

●●

●
●

●

●

●●
●

●
●

●●●

●
●

●
●●

●

●●
●

●●

●

●
●●

●●
● ●

●
●

●
●●

●
●●

●

●

●

●●
●

●●
●

●●

●

●
●

●
●

●
● ●

●

●

●

●

●●

●

●●
●

●
●●

●

●

●
●

●

●

● ●

●

●
●

●●

●

●

●●●

●

●●

●
●

●●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●●

●●●
●

●

●●
●

●
●

●

●
●

●

●
●●

●

●●

●

●●● ●●
●

●
●

●
● ● ●

●

●
●

●

●

●●

●●
●

●●

●

●

●

●

●

●
●

●

●●

●●●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●●
● ●●
●●●

●
● ● ●

●●
●

●

●
●

●

●

●

●●

●
●●

● ●
●

●●●
●

●

●●
●●

●

●

●
●●●

●

●

●●
●

●

●
●

● ●
●●

●

●●
●

●

●
●●

●●● ●

●
●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●
●●

●
●●

●●●
●

●
● ●

●

●
●

●

●
●

●●
●

●

●
●●

●
●●

●

●

●
●

●

●
●●

●

●
●

●
●●

●
●

●
●

●

●●
●

●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●●●
●

●●●
●●

●

●●

●●
●●●●

●●

●
●

●

●
●

●
●

●
●

●

●●●●
●

●
●

●●
●

● ●

●

●●
●●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●●
●

●●

●
●

●●●

●●
●

●
●

●●●
●

●●
●●

●●

●

●

●

●

●

●
●

●
●●

●

●● ●

●

●●
●

●●

●
●

●●
●

● ●
●

●
●

●●

●

● ●
●

●●●

●●

●

●

●
●

●

●

●

●●●
●

●●●
●

●

●●
●

●

●

●●
●

●
●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●●●

●
●

● ●
●

●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●●

●●

●
●

●
●

●

●
●

●

●
●

●
●

●
●●●

●

●

●
●

●●
●

●

●
●

●●
●

●●
●●

●●

●
●

●

●
●

●●●
●●●●●

●

●
●

●
●

●

●

●

●

●
●●

● ●

●

●
●

●

●●

●
●

●●
●●

●●

●
●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●●●

●●

●

●
●

●●
●

●
●

●
● ●

●●

●

●●

●

●●

●
●

●
●●

●

●

●
●●

●

●
●

●
●●

●
●

●●●

●●
●

●●●

●

●

●●●

●

●●●●

●
●

●

●

●
●

●

●●

●●

●
●●●

● ●
●

●

●

●
●

●

●●
●●

●
●

●●

●●

●
●

●
●●

●

●
●

●
●

●●

●●

●●

●

●●

● ●●●
●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●●
●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●●

●
●

●

●●
●

●●

●
●

●

●

●
●

●

●

●
●

●●
●

●

● ●●●●
●

●●●
● ●

●
●

●

●

●
●●

●
●

●●
●

●

●
●●

●●

●●●
●

●
●●

●●
●

●●
●

●●

●●●●●
●●●●

● ●
●●

●
● ●

●

●

●

●

●●

●●●
●●

●●

●
●●

●

●

●

●●●

●●●
●

●
●●●●

●
●●

●
●●

●●

●
●

●
●●

●●●
●

●●● ●
●

●●
●

●●●●●●●
●

●●●
●

●●
●●●

●
●

●
●●●

●
●

●●

●●●●

● ●●
●

●
●

●
●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●●●

●
●

●
●

●

●
●

●●

●●
●

●

●
●

●●
●

●
●

●

●

●

●●

● ●

●

●
●

●
●

●●●●
●

●●●

●

●●●
●●●

●

●●

●●

●
●

●
●●● ●●

●
●● ●●

●

●
●

●

●
●●

●
●

●
●

●

●
●

● ●●● ●●●

●●

●
●

●
●●

●●●

●
●

●
●●

●

●
●

●
●

●●

●●● ● ●●
●●

●● ●

●
●

●

●●

●
●

● ●●
●

●
●●

●●●
●●●●●
●

●

●
●

●●●
●●

●●●
●

●●●●
●● ●●

●●

●
●

●
●

●
●●●

●

●
●

●●

●
●

●
●

●●●
●●

●●●●
●

●
●

●●●
●

●
●

●●
●●●

●
●●

●●
●

●
●●●

●

●

●

●

●
●

●

●●
●

●●●

●
●

●●●

●
●●

●●

●
●

●●●●●●●●
●

●
●●●

●

●●
●

●●●
●

●

●●●●●●●
●●

●
●

●
●

●
● ●

●
●●●

●
●

●●
●

●●●●●●●
● ●

●
●

● ●●●

●●●
●●

●

●
●

●
●

●

●●●●
●●●

●●

●●

●
●

●

●

●
●●

●
●

●

●
●●

●●●

●●●●

●
●

●

●●●
●●●

●
●●●●

●
●

●●

●

●
●

●●●
●●●

●

●
●

●
●

●
●●●●

●
●

●●
●●●●

●●
●

●

●
●

●

●

●
●

●

●●

●

●
●●●●

●

●

●
●

●●
●

●

●

●
●

●●
●●

●

●●
●●

●●●

●
●● ●

●

● ●
●

●

●

●●●
●

●●
●

●
●

●
●

●

●
●●

●

●
●

●
●●

●●●●

●

●
●

●

●
●

●
●

●
●

●

●●
●●●

●
●●

●
●

●●●
●●

●●

●
●●●

● ●
●●

●
●

●
●

●●
●

●●●
●●

●

●
●●●●

●●
●

●●●
●

●

●

●

●
●

●
●●●

●
●

●
●

●●●
●

●
●

●

●

●

●●

●
●

●

●

●●●
●

●●

●●

●

●
●

●
●

●

●●

●

●●

●
●

●
●

●
●●

●

●
●●

●●
●●●

●

●

●
●

●●

●●●

●

●

●●

●

●

●
●

●●

●

●

●●●

●
●

●

●
●●

●
●●

●

●

● ●

●

●
●

●●

●
●

●●
●

●

●
●●●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●●

●

●
●●

●●●
●●●

●

●●

●

●●

●

●●
●

●

●●

●●

●●

●

●●

●
●

●
●

●

●●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●●
●

●
●

●
●

●●●●

●

●
●

●
●●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●●

● ●

●●●

●
●

●
●●

●●
●●

●
●●

●●

●
●

● ●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●●

●

●

●

●●

●●

●

●
●

●

●●

●
●●

●
●

●●

●
●

●

●

●

●●
●

●

●

●●
●

●
●●

●

●
●

●
●

●●● ●
●

●●

●●

●●

●

●

●

●
●

●●

●

●

●
●

●●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●●●

●

●
●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

● ●●

●

●

●
●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●
● ●

●

●
●

●
●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●
● ●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●
●

●●●
●●●

●
●

●

●

●

●●

●●

●
●

●

●
●

●
●

●

●●●
●●

●●

●●
●

●

●●

●
●

●

●

●
●

●
●

●

● ●
●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●●

●
●

●
●

● ●●
●

●
●●

●
●

●
●●

●
●●

●

●

● ●●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●●●●

●

●●
●

●●●

●

●
●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●●

●

●
●

●
●

●

●
●●

●

●
●●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●●●

●
● ●● ●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

● ●
●

●●

●●

●

●

● ● ●

●●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●●

●
●●

●●

●

●

● ●

●

●
●

●
●●

●
●

●

● ●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●●●

●●

●●
●●

●
●

●●
●

●●
●●●●

●●●●●

●●

●

●●

●
●

●

●

●

●●

●●
●

●
●●

●

●

●
●

●

●●

●

●
●

●

●●
●

●

●●

●

●

●●

●

●

●●

●
●

●
●

●
●●

●
●

●
●

●
●

●●
●

●
●●

●

●●
●

●
● ●

●●

●

●

●

●

●
●

●
●

●
●

●●
●●

●●●
●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●●

●
●

●

●●

● ●●●●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●●
●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●
●●

●
●

●●

●
●

●

●

●
●

●●
●

●

●

●●

●●

●

● ●●

● ●
●

●
●

●

●

●

●
●

●

●●

●
●

●● ●

●

●

●

●

●
●

●●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●●
●

●

●

● ●

●
● ●

●●
●●

●●●
●

●

●

●

●●
● ●

● ●

●●

●●

●
●

●

●

●●
●●

●●

●●

●
●●

●
●●

●●
●

●
●

●
●●●

●
●●●

●
●

●
●

●
●

●
●●

●
●

●
●

●●

●●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●●
●

●
●●●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●
●

●
●

●●
● ●

●

●●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●
● ●●

●

●
●

●
●

●●

● ●

●

● ●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●

●● ●

●
●

●●
●

●
●

●

●

●

●

●●●

●
●

●●
●●● ●●

●

●

● ●●●
●

●

●
●

●●●

●●

● ●

●
●

●

●
●

●
● ●
●

● ●

●

●

●
●

●

●
●

●

●
●

●●

●
●

●

●

● ●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●●●

●
●

●

●●

●
●

●
●●

●

●
●

●

●

●
●

●
●●●●

●●

●

●
●

●
●

●

●

●

●● ● ●

●
●

●

●
●●

●

●●

●
●

● ●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●●
●

●

●

●

●●●
●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●●
●

●
●●

●
●

●

●

●

●●

●●

●
●●

●

●
●

●

●

●

●
●

●

●

●●

●

●●
●●

●●

●

●
●●

●

●●
●

●
●●

●
●●●●

●

●
●

●
●●●

●
●●●

●
●●●

●
●●●●
●●●●

●
●

●
●

●●
●

●●
●

●●
●

●

●

●

●

●
●● ●

●●●

●

●
●

●

●●●●

●

●

●
●

●
● ●

●●●
●

●
●

●●

●●
●

●
●

●

●
●

●●

●●●●
●

●
●

●
●

●
●●

●
●● ●

●

●
●

●●
●●●●●

●●
●

●●

●
●

●

●
●●

●

●
●

●●

●

●●●●
●

●

●

●
●

●●●
●●●●

●
●

● ●●

●●
●●

●●●
●●●●●●●●●

●●●

●

●

●
●●●●

●●
●●●●●

●●●
●

●●
●

●
●●

●
●

●
●

●
●●●●●

●●
●

●●●
●

●

●
●

●●

●
●

●

●
●●●●●
●

●
●

●●●●●●●● ●

●

●●
●

●●

● ●
●

●
●

●
●

●●
●

●●

●
● ●

●
●

●
●●

●●

●●
●●

● ●●
●

●
●

●●

●
●●

●

●
●

●●
●

●
●

●

● ●●

●

●●

●
●

●

●

●●

●●●●●
●●

●●
●●

●
●

●
●●●●

●●
●●

●

●●
●

●
● ●

●●●●●
●

●

●●
●

●

●●●●
●

●

●●●
●

●●
●●

●●●●●
●●

●
●●

●
●●● ●●●

●
●

●

●

●

●●● ●
●

●

●

●●
●●

●●
●

●●●●●
●

●●
●

●●
●

●●●

●●
●

●

●

●
●

●
●●

●
●●

●

●
●●

● ●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●

●●
●

●

●●
●

●
●

●
●

●●●●
●

●
●

●●

●●

●
●

●

●

●●
●

●●

●
●

●
●

●● ● ●●●
●

●
●●

●

●

●
●●

●
●

●
●●

●●●
●

●
●

●●●●
●

●
●●

●
●

●
●

●

●●●●
●

●
●

●●
●●

●

●●
●

●
●

●●●

●●

●
●

● ●●
●●

●
●

●●

●

●
●●

●●

●●
●

●
●

●
●●

●
● ●●●

●
●

●
●

●

●
●

●●●●●
●

●●●●
●●

●
●

●●
●

●●
●

●
●

●
●

●●
●

●
●

●
●

●●●●●
●

●●
●

●

●●

●
●●●

●●
●

●●●

●
●

●●
●

●
●

●●●●●

●
●

●

●
●●●●●

●●
● ●

●
●

●
●

●
●

● ●
●

●
●

●
●●

●
●

●●
●

●

●

●

●
●

●
●

●●
●●

●●
●

●

●
●

●

●
●●

●●
●

●●●

●
●

●
●

●
●

●
●●

●
●● ●

●●●

●

●

●

●
●

●
●

●
●

●●
● ●

●●
●

●
●●

●

●

●
●

●

●

●

●

●●●●●
●●

●

●
●●●●

●●
●●

●
●

●
●

●
●

●
●●

●●
●●●

●●

●
●

● ●●
●

●●●●

●
●

●
●

●●●●●
●●

●
●

●●

●
●●●

●
●●●

●

●
●

●
●

●

●●
●●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●●

●●
●

●

●
●

●
●

●●
●

●

●
●

●
●

●
●

●

●●
●

●

●
●

●
●●

●
●

●

●● ●●
●●

●●

●●●●

● ●
●

●
●

●
●●

●

●
●

●●●
●

●●
●

●●

●●

●
●●

●

●

●

●
●●

●

●
●

●
●●●

●●
●

●

●●
●

●●●
●●

●
●

●
●

●

●
●

●

●

●●
●

●●
●●

●
●

●
●

●

●

●●
●●
●●●

●
●

●
●

●●
●

● ●●
●●

●●●

●●

●

●

●

●
●

●
●

●

●●●
●●

●

●●
●●●

●
●

●
●

●●
●

●●

●
●●●

●●

●
●

●

●
● ●●●●●
● ●
●●

●
●

●●
●

●
●●

●

●
●

●
●

●
●

●

●●

●●●●●

●

●●
●

●●
●●●

●

●●●

●
●

●

●
●

●

●

●●
●

●
●

●

●
●

●
●

●
●

●
●

●
●●●●●

●
●●

●
●

●
● ●

●

●●
●

●
●

●
●

●●
●

●●●●
●

●

●●

●
●

●
●●

●●
●●●●

●
●●●

●
●

●
●

●●
●

●

●● ●●●
● ●

●
●●

●

●●

●●
●

●●
●●

●
●●

●

●
●

●

●
●

●

●
● ●

●

●●●●●

●

●
●

●
●

●●●
●● ●

●
●●●

●

●

●
● ●●

●●●

●●●

●
●

●

●
●●

●

●
●●

●●
●

●●●

●

●

●
● ●

●●

● ●●
●

●●
●

●●
●●●

●●

●●●●
●●● ●●

●
● ●

●●
●

●

●●●
● ●

●
●●

●●
●●●

● ●
●●
●

●
●

●
●●

●
●

●
●

●●●●
●

●●

●
●

●

●

●

●
●

●●
● ●●●

●●●●

●
●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●●

●●●
●

●

●●

●

●●●

●
●●

●
●●

●●

●●●

●
●

●●●●
●

● ●
●

●●

●●

●
●

●

●●
●● ●

●
●

●
●

●
●

●●
●

●
●

●●●●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●●●

●
●

●
●●

●●
●●

●●●

●
●

●
●

●
●

●

●●●●●
●

●●
●●

●●
●●●●●

●
●

●
● ●

●
●

●
●

●
●

●
●●

●
●●

●

●●●
●

●●
●●

●

●●
●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●

●●
●

●●
●

●●
●

●
●

●
●●● ●

●
●

●●●

●

●

●●

●

●

●
●

●
●●

●●
●

●
●

●

●●

●●●

●●

●
●●

●
●

●●●
●

●
●● ● ●

●

●

●●
●

●
●

●
●●

●

●
●●

●●
●

●●
● ●

●●●

●

●
●●●

●
●

●

●●

●

● ●●
●

●●

● ●

●

●

●
●

●
●●

●
●

●
●●

●
●

●

●

●●
●●

●
● ●

●●

●●●

●

●●

●
●

●
●●●●

●●●
●●●

●
●●

●

●
●

●
●●

●

●

● ●●

●
●

●●●
●

●
●

●
●

●
●●●

●●
●

●●●●●
●●●

●
●

●●●●
●●●●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●●

●
●

●●● ●●

●
●

●
●●

●

●●

●
● ●

●●●●●
●

●

●
●

●
●●

●

●

●●●

●
●

●
●

●
●

●

●

●
●

●

●
●●●

●●●
●

●
●

●

●●

●
●

●
●●
●

●
●

●

●
●

●●
●

●● ●●
●

●
●

●●
●

●
●

●

●
●●●●●

●

●
●

●●

●
●

●●

●●

●

●

●

●●

●

●
●

●
●

●●
●

●
●●

●●

●
●

●●
●

●
●

●

●
●●

●

●●
●

●●

●
●●

●
●

●

●

●●
●

●

●
●

●
●

●●●
● ●●●

●●
●●●●

●

●
●

●
●

●
●

●●

●●

● ●●
●●●●

●
●●●
●

●●●
●

●●

●
●

●
●

●●
●

●●●
●

●

●
●●●

●
●●

●
●

●●
●

●●

●
●●●

● ●
●

●●
●

●●●●

●●●
●●

●●
● ●●

●
●●

● ●
●●●● ●●

●
●●

●

●●
●

●
●

●

●
●

● ●
●

●●
●

●●
●●●●●●●●
●

● ●● ●

●●
●●

●

●
●

●●●● ●
●●

●
●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●
●

●
●

●●●●
●●

●●●●●
●●

●
●

●●
●

●●

●

●

●

●
●

●
●

●

●● ●●● ●●
●●

●●●

●
●●●

●●
●

●●

●
●●●

●
●

●
●●

●
●

●
●

●

●

●●●●
●

●●

●
●●● ●●●●
●●

●●●●

●●
●●

●●●●

●
●

●
●

●

●●

●

●

●●● ●●

●
●●

●
●●
●

●●
●

●●
●●

●
●

●
●

●●●●●

●

●●

●
●●●●

●
●●●

●
●

●●

●
●●

●●●
● ●●

●
●

●
●

●

●●
●●

●
●

●
●●

●

●
●

●
●●

●●
●

●
●

●●●

●
●

●
●

●

●
●

●

●
●

●●

●
●

●●
● ●

●
●●●

●
●

●
●

●●
●

●
●●

●
●

●●
●

●
●

● ● ●●
●

●●

●

●●●●
●

●●

● ●
●

●●
●

●
●

●

●

●

●

●●
●

●

●
●●

●

●
●●

●
●

●●
●

●●●●
●

●●●
●●●

● ●●
●●

●
●●

●●

●●●●

●
●●

●●●●●
●

●●
●

●
●

●●

●●

●

● ●●

●●
●

●
●

●
●

●●●
●

●
●

●●
●

●
●

●●

●

●
●●

●

●●
●

●
●●

●

●
●

●

●●●
●●●●

●●

●

●●
●

●

●●
●

● ●
●

●

●●
●

●●

●

●●●
●

●●
● ●●

●●
●● ●●

●
●

●●

●●●●●

●
●

●
●

●

●
●

●
●●

●
●

●●

●●●

●

●

●
●●

●
●

●
●

●

●●

●
●●●

●

●
●●●

●
●●

●
●

●●

●●●●
●

●

●

●●
●

●
●

●

●●
●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●●
●●

●
●

●●

●●●
●

●
●●

●●●
●●

●

●

●●

●
●

●
●

●
●

●●
●●●

●
●

●
●●

●
●

●●●●
●

●

●

● ●

●
●

●

●●●
●●

●●●
●

●●●

●

●●●
●

●●
●●

●
●●

●

●●
●●●

●

●
●

●
●

●

●

●

●
●

●●
●

●
●

●
●

●
●

●

●

●
●

●
●

● ●●
●

●
●●

●
●

●

●●●●

●
●●

●
●

●
●

●
●●

●
● ●

●
●●●●

●

●●
●● ●

● ●
●●

●

●●●
●

●
●●

●

● ●●●
●●

●●
●

●
●

●

●●

●
●●

●
●●● ●

●

●

●

●

●●

●●
●

●

●
●●●

●●● ●●
●●

●
●

●
●

●

●
●●

● ●

●
●●

●

●

●

●

●●
●

●

●

●
●●● ●

● ●

●

●

●
●●

●
●

●
●

●

●●●

●

●

●
●

●

●

●
● ●

●
●

●

●●
●

●
●

●●●
●

●
●●

●
●●

●●●
●●

●

●●

●●
●

●

●●

●

●
●●

●
●

●●
●

●●●● ●

●

●
●

●
●

●●

●

●

●

●●
●●

●
●

●
●

●
●●

●

●●
●

●●
●●

●

●
●

●

●●●●● ●
●●

●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●●
●

●
●

●●
●●

●●

●

● ●
●●

●● ●

●
●

●●●

●
●

●●
●

●●
●●

●●●●
●●●

●
●

●●
●●

●
●●

●
●●

●
●

●
●

●
●

●

●●●
●

●
●

●
●

●●
●●

●
●●●●●
●●●●●●

●●
●●

●
●

●●

●
●

●
●

●●
●

●
●●

●
●●●

● ● ●
●●

●●●
●● ●●

●
●

●
●●

●●●● ●
●●●●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●

●
●

●
●

●

●

●●●●●●●●
●

●
●

●●●●
●●●

●●
●

●
●●●

●●
● ●

●

●

●
●

●●
●

●
●

●
●

●
●

●

●

●●●
●

●

●●●
●●●●

●●

●

●

●
●

●●
●

●
●●
●

●●●●●

●
●

●●
●●

●●
●

●● ●
●●

●●

●
●●●●

●
●

●●●●
●●●●

●
●●

●●

●
●

●

● ●●
●●●●●

●
●

●●●
●●●

● ●

●
●

●
● ●

● ●

● ●

●●
●●●●● ●●●●

●
●

●
●

●●

●
●

●

●
●

● ●
●

●
●●●

●●●
●●●

● ●
●●●●●

●●
●●●●

●●● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●●
●

●● ●
●

●●

●●
●●

●●
●●●●

●
●●

●●●
●

●
●●

● ●
●●

●
●

●●
●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●●
●

●
●

●
●

●●
● ●●

●●
●

●●
●

●
●

●

●●●●
●

●

●●
●●

●

●●
●

●●

●

●
●

●●●●●●
●●●●●

●●
●

●
●

●
●

●
●

●
●

●
●●●

●
●

●●
●●

●
●

●

●
●

●

●
●●

●
●●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●●●●
●●●●

●●

●
●

●●
●●●

●

●
●

●●
●●●

●
●

●
●

●●●

●●
●●●

●
●●●

●
●●

●
●

●

●
●●●

● ●
●

●
● ●

●

●
●

●
●

●
●

●
●●

●●

●
●

●
●

●

●●
●

●

●

●

●●
● ●

●●

●●

●

●
●●

●
●

●
●●●●

●
●

●●

●●●●●●●
●

●
●●

●

●

●●●
●●

●●●

●

●

●

●●
●

● ●

●
●●

●●●

●

●●
●

●

●●●
●

●
●

●●
●

●●●

●

●
●●●

●
●

●

●●

●●●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●
●

●●
●

●
●

●●●
●

●

●

●
●

●●
●

●

●●●

● ●

●
●●

●●
●

●●
●

●●
●

●
● ●

●●
●

●
●

●●
●●

●
●

●●●
●●

●

●

●

● ●
●●

●●●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●
●●

●
●●

●●●
●

●
●

●●
●●

●
●

●

●

●

●
●

●

●

●

●
●

●●●

●
●

●●
●

●
●

●●●
●

●

●

●

●

●
●

●
●

●
●●

●
●

●●

●
●●●

●●●
●

● ●●
●

●●●
●

●

●

●●

●●
●●

●
●●●

●
●

●

● ●

●

●

●●●●
●

●
●

●
●

●●

●
●

●●●●
●●●●●●

●

●
●

●

●

●●●●
●

●● ●●
●

●●
●

●●
●

●

●

●●
●●●

●

●●

●●●●●●●

●●●●●
●

●

●
●●

●

●
●

●

●●●
●●

● ●
●

●●●●
●

●
●

●
●

●
●

●
●

●●
●

●●
●

●

●
●

●

●
●

●
●

●●●
●●

●●●
●●

●●●
●

●●
● ●●

●

●
●

●
●

●
●●●

●

●

●●

●
●

●
●●●●

●●●
●

●●●●●●
●

●●●●
●

●●
●

●
●

●
● ●●
●

●

●
●●

●
●

●
●

●
●

●

●
●●

●

●

●

●

●
●●●

●● ●
●●●●

●
●

●
●●

●
●●

●●
●

●
●

●
●

●
●

●●●●●
●

●●
●

●
●

●

●
●

●

●

●
●●●

●
●

●
●●●

●●
●●●

●

●

●
●

●

●●

●
●●

●●
●●

●● ●●●●
●

●
●●●

●●

●

●
●

●

● ●

●●●●●
●

●
●●

●

●
●

●
●

●
●●

●

●●●
●●

●
●

●
●

●
●●●●●

●

●
●

●
●

●

●
●

●●
●

●

●
●

●
●

●●
●●

●

●
●

●

●●
●

●
●

●
●●

●

●●
●●

●
●●●

●

●

●
●

●●●●

●●

●●
●

●●●●
●

●

●
●●●●●●●

●
●

●
●

●●●●
●

●

●●
●

●
●

● ●

●●●
●

●●●●●
●

●

●

●

●●
●●

●
●

●

●
●

●
●●● ●

●●●
●

●
●

●

●●
●●

●
●

●●
●

●
●

●
●

●●●
●●

●
●

●
●●●●

●
●

●
●●●

●

●●●●

●

●

●
●

●●

●
●●●●

●
●

●

●

●
●

●
● ●

●●●
●●

●

●
●

●●

●●

●

●●●●●●
●●

●
●●●●

●
●

●

●
●●

●
●

●

●
●

●●●●
●

●●●●●
●

●
●●●

●

●●

●

●

●

●

●
●

●

●

●
●●●

●

●●●
●

●

●●
●●

●
●

●
●●●●

●
●

● ●●
●

●
●

●●●
●

●
●

●●●
● ●

●●
●●● ●

●

●
●

●●

●
●●

●

●●

●
●●

●

●
●

●●●
●

●●

●
● ●

●

●●
●●

●
●●●

●

●
●

●●

●
●●

●
●

●

●●●

●

●●●●
●

●
●●

●

●

●

●
●●●●

●

●
●●

●

●●●●

●

●●●●

●
●

●●
●

●

●●●

●●

●
●

●

●
●●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●●

●

●
●

●
●

● ●
●

●
●

●

●●
●●●

●
● ●

●● ●●

●
●●

●
●

● ●

●
●

●
●●

●
●●

●
●

●
●●●

●

●

●●

●

●

●●

●
●

●
●

●

●●●●

●
●

●
●

●
●

●

●●
●

●
●

●●

●●
●

●
●●

●
●●●

●●
●

●
●●●

●

●
●

●

● ●
●●●

●●
●

●

●

●
●

●●●●

●
●●

●●
●

●

●●●
●

●●●

●
●

●
●●

●●
● ●

●

●
●

●
●

●●
●

●●

●
●

●
●

●
●●●

●
●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●
●●

●
●●

●●
●●●●

●

●
●

●
●

●●
●

●●●
●

●
●

●
●

●
●●

●
●

●●
●

●●
●

●

●●
●●● ●●

● ●
●

●●●
● ●●

●
●●

●
●●

●●●●●●
●●●●

●
●

●

●

●

●●
●

●●
●●

●●●
●

●●●
●

●

●
●●

●●●
●

●

●●
●

●

●

●●

●
●

●

●
●● ●

●●
●

●
●

●
●

●
●

●

●●

●

●
●●

●

●
●

●
●

●
●

●●

●●
●

●
●

●

●

●●

●●
●●

●●●●●
●●●●

●●
●

●

●
●

●

● ●

●●
●●●●

●● ●●●

●
●

●●●
●

●

●●●

●

●●

●

●●●●●

●●●

●●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●●

●

●
●

●
●●

●
●●

●

●
●

●●●

●
●

●●●
●

●●●●●●●
●

●

●
●

●●
●

●

●●●
●●●●

●
●

●

●
●

●
●

●●

●

●

●●
●

●
●●●
●

●
●

●●
●

●●●
● ●

●●

●●
●

●●

●
●

●

●
●●

●●
●●

●
●

●●

●

●

●
●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●●●

●●●●●●
●

●
●

●●●
●●

●●● ●

●

●
●

●

●●●
●●

●●
●●●

●●
●● ●●●●

●●●

●
●

●
●●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●● ●●●
●

●●

●

●
●

●
●

●
●●●

●●

●

●
●●●

●
●

●
●

●
●●●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●●● ●

●
●

●

●●
●●●

●●
●

●

●●

●
●

●●●●●
●

●

●

●●

●
●●

●
●●●●●
● ●

●

●●●
●

●
●

●
●

●

●
●

●●●
●●●

●
●

●

●
●●

●
●

●●●
●

●

●
●

●●●

●

●
●

●●
●

●●●

●●
●

●●
●●

●●
●

●

●

●
●

●

●
●●●

●

●●

●
●

●●

●
●●●●●●

●
●

●
●

●●

●

●

●

●
●●●

●

●●
●

●
●●●●

●
●

●

●

●
●

●●
●●●●

●●
●●

●
●

●
●●

●
●●

●●●
●

●●
●

●
●●

●
●●

●

●

●
●

●

●●●●● ●
●●

●

●●

●

●

●●
●

●●

● ●
●

● ●●

●
●

●

●●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
●●

●

●

●
●

●●●● ●●

●
●

●● ●
●

●●

●●

●●
●

●

●
●

●●
●

●
●

●

●
●

●
●

●
●●

●

●
●

●
●

●

●

●
●

●●●
●

●

●
●

●

●

●
●

●
●

●●●
●

●
●

●
●

●●
●●●

●
●

●●

●
●

●●●●

●
●

●

●
●

●
●●● ●●●●●

●
●

●
●●

●

●●

●

●

●
●

●
●●

●●
●

●●
●

●

●●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●●

●●
●

● ●
● ●●●

●●●
●

●

●

●●
●

●●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●
●

●
●● ●●

●
●●●●●

●
●

●●
●

●

●

●
●

●

●

●
●●

●●

●
●●

●●

●●
●●●●

●

●
●

●●●● ●
●

●●

●
●

●
●

●
●●●●●

●●●

●

●

●●
●

●
●

●
●●●

●

●●
●

●
●●●

●
●

●
●

●●
●

●●
●●●

●●

●●
●●

●●
●

●●●
●

●

●

●●
●

●

● ●
●

●
●●●

●
●●●●

●
●

●
●

●
●●

●

●●●●
●

●
●●●

●
●

●●●

●

●

●

●●

●
●

●
●

●
●●

●●●

●

●

●●

●

●●●
●●●

●
●

●

●

●●
●

●
●

●
●

●
●

●
●●

●●●●
●

●

●

●●
●

●●

●●●

●●●
●

●

●
●●

●
● ●

●●●

● ●
●●

●
●

●

●

● ●
●

●
●

●●●

●●

● ●●
●

●

●●

●
●

●
●

●
●

●
●

●
●● ●●

●
●

●

●
●●

●

●
●

●●
●

●●●

●

●●
●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●●●

●
●

●

●

●
●

●

●
●

●
●

●
●

●●

●

●

●●

●●●
●

●
●

●●●

●
● ●

●
●●

●●

●

●●●
●

●●

●

●●●●●●
●

●●
● ●

●

●
●

●
●

●

●●●●●
●●

●●

●
●

●
●● ●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●●
●

●

●● ●● ●●

●●●
●●●●●●●

●●●

●●
●

●
●●

●
●

●
●●

●
●

●

●
●●

●

●●
●

●●●

●
●

●
●

●●
●

●

●●●●●
●

●

●

●
● ●● ●

●
●

●●
●

●●●
●

●

●

●●

●

●
●

●●
●

●●●

●
● ●●●

●
●

●●
●●●

●●
●

●
●●●

●
●●

●
●●● ●●

●●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●●

●
●

●
● ●●

●
●●●●●

●●

●
●●●● ●

●
●

●
●

●●●●

●●
●

●

●

●
●

●●

●
●

●

●
●

●
●●

● ●

●

●●
●●

●
●●●

●

●
●

●
●

●●●

●

●
●

●

●●
●●● ● ●

●

●
●●

●●
●

●
●●●●

●
●

●

●
●●

●
●●

●
●

●

●
●

●
●●

●● ●
●

●
●

●
●●

●
● ●

●●

●●
●

●
●

●●
●

●●
●

●
●

●
●●

●●●●●●
●

●

●

●

●●
●●●

●
●●

●

●●
●

●
●

●
●

●
●●

●●●
●●

●●●
●●

●
●

●●
●

●

●●

●●
●●

●●

●
●●●

●

●●●
●

●

● ●

●●
●●●●●

●
●●

●

●
●

●●●
●

●●●

●
●

●●●●●●● ●●

●

●

●●●

●●
●●

●●●
●

●●
●

●

●

●●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●
●

●●● ●

●●
●

●

●

● ●●
●●

●●●

●
●●

●

●●
●●

●

●

●
●●●

●●

●●
●

●
●●●●

●
● ●

●

●
●

●
●

●
●●

●

●●

●

●
●

●

●

●
●

●●
●●

● ●
●●

●●
● ●

●
● ● ●

●●

●

● ●
●

●
●

● ●●
●●●

●
●

●
●

● ●
●●●

●●
●

●●●● ●●●●●
●

● ●●

●

●● ●

●
●

●●●
●

●●●
●●●

●

●●
●

●
●●●●

●●
●

●●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●●●●
● ●

●
●

●
●

●
● ●●

●

●●●●●
●

●●●
●

●
●

●
●●

●
●

●●●
●●●

●

●● ●
●●●

●
●

●

●
●

●●
●

●
●

● ●
●

● ●●
●

●
●

●
●

●
●●● ●
●

●

●

●
●●●

●

●●

●
●● ●

●
● ●

●

●

●
●●

●
●

●
●●

● ●

●●
●

●●
●

●●
●

●

●

●●
●

●●
●

●
●

●●

●
●●

●

●●

●●
●●

●●●
●

●●●
●

●
●

●●
●

●
●●

●
●●●

●
●

●

● ●●
●

●

●●

●

●●●
●

●
●●

●
●●

●●

●●

●
●

●

●●

●

●
●

●●
●

●●
●

●

●●●●●
●

●●
●●

●●

●●
●

●●
●

●

●
●

●

● ●
●

●
●●

● ●
●

● ●●●
●

●

●
●

●●●●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●●

●
●

●
●

●

●
●

●●
●

●
●●

●●

●

●

●

●

●
●

●
●●●

●
●

●
●

●
●●●

●●
●

●
●

●
●

●
●●

●

●

●●●
●●●●

●
●

●●●●
●

●●●
●●

●
●

●
●●●

● ●
●

●
●

●
●

●
●●●●

●
●●

●
●●

●
●

●●

●●●

●●

●
● ●

●●●
●

●
●

●
●

●

●●
●

●●●

●●● ●

●
●●●

●●
●

●●
●●●

●
●

●●

●

●

●
●

●

●

●●
●●

●●●●

●●
●

●
●

●
●

●●●●
●

●●
●●

●
●

●●
●●●

●
●●

●
●

●
●●●●

●●●

●
●●●

●

●
●

●●

●

●●

●
●

●
●

●
●

●●
●

● ●●

●
●

●
●

●
● ●

●
●●●

●

●●●
●

●●
●●

●
●●●

●●
●●●

●●
●●● ●

●
●

●●
●

● ●
●●●

●

●●●●●
●●

●●
● ●

●
●

●
●●

●

●
●

●●

● ●
● ●

●
●

●●
●●

●

●
●●●

●●

●

●
●

●
●

● ●
●

●
●● ●

●

●●

●

●
●

●
●

●
●●●

●

●

●

●

●●
●●

●

●
●

●●
●●●●●●

● ●
●

●●●
● ●

●●
●

●●
●

●●●

●
●●●

●●

●
●

●

●
●

●
●

●
●●

●●●●
●

●
●

●

●
●

●●●
●

●
●●●●

●●
●

●
●●●

●

●
●

●
●

●●

●●

● ●●●

●

●●
●

●
●

●
●●

●●●●
●●

●

●
●●

●●
●

●●
●●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●
●●●●●

●

●
●

●

●

●●

●
●●●●●

●
●●

●
●

●●● ●
●●

●

●●●
●

●
●●

●

●●

●
●●

●

●●

●

●
●

●

●
●

●●
●

●
●

●●●
●

●●●●●●
●●

●
●●

●
●

●
●

●●
●

●●●
●●
●

●

●
●

●

●
●●●

●

●
●

●●
●

●●●
●

●
●

●●
●

●

●
●●●●

●●
●

●
●●●

●●●

●
●

●

●
●●●

●●
●

●●
●●

●
●

●
●

●

●●●●●●
●

●
●

●
●

●●●
●

●
●●●

●
●●

●
●

●●
●

●

●●●●●●
●

●
●

●●●
●

●●●
●

●
●●

●●●●●●
●●

●
●●

●●●
● ●●●

●●
●●

●●●
●●

●●
●

●●
●

●●
●

●●●
●

●
●

●●●●

●

●●
●●●●●

●
●●●

●
●

●
●

●●●●
●

●
●

●

●●●
●●

●
●

●●

●

●
●

●
●

●
●●●●●●●

●
●

●

● ● ●
●●●

●●
●●

●●

●
●●

●

●

●
●

●●●
●●

●●
●

●●●●●
●

●

●●●
●

●
●●

●
●●

●
●

●

●

●

●●

●●

●●●●

●●●

●
●● ●

●●
●●

●●● ● ●●
●●

●●●

●●
●

●●
●

●●●●●

●●

●●
●●●

●

●●
●

●●

●●
●● ●●

●●●●●

●●

●●
●

●

●●●
●

●
●

●
●

●●
●

●●●

●

●

●
●●

●
●

●●
●

●●
●

●
●

● ●
●

●

●
●●

●
●●

●
●

●

●●

●
●

●

●

●

●
●

●●●●●
●●

●
●●

●●
●

●●●●
●●●

●●●●●●●

●●●●

●

●●●

●●●●

●
●●●

● ●
●●● ●●

●

●●●
●●●●●

●●
●

●
● ●

●
●●

●
●●

●
●

●
●

●

●●●

●

●
●

●
●

●
●

●
● ●

●●
●

●
●

●
●●

●● ●
●●

●●

●●●
●●●

● ●●●

● ●
●

●

●●●●
●●●

●

●
●●●●● ●●

●
● ●

●
●

●●
●

●

●●

●●
●

●●
●

●
●

●●

●

●
●

●
● ●

●
●

●
●

●●●

●
●●

●
●●

●
●

●●

●●

●●

●●●
●

●
●

●
●●

●
●

●●●
●

●
●

●● ●
●●

●
●

● ●

●
●

●●●● ●●
●

●●●
●

●
●●

●

●●●

●●
●

●●●
●

●
●

●
●

●●
●● ●●

●
● ●

●

●
●

●
●●

●●
●

● ●
●●●

●●
●●

●
●

●●●

●

●●●●
●

● ●●
●●

●

●●

● ●

●●
●● ●●●

●
● ●

●

●
●●

●
●

●

●●

● ● ●
●●

●

●●

●

●●

●

●●

●

●●

●
●

●
●

●
●

●●
●

●●
●●●●●●

●●●
●

●
●●

●

●●
●

●●●
●●

●
●

●●●
●●●●●

●●

●
●

●

●

●

●
● ●

●

● ●
●

●●
●

●
●●

●
●

●
●

●●
●

●●
●

●
●

●

●●

●
●●●●

●●
●

●
●

●●● ●
●

●

●

●

●
●●

●
●

●

● ●
●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●●

●●

●
●

●
●●

●

● ●

●● ●
●

●●●

●

●

●

●

●
●●

●●
●●●

●●●

●
●

●

●
●

●●
●●

●
● ●

●
●

●●●

●
●●

●●
●

●

●
●

●
●

●

●

●

●
●

●●
●

●●●●●
●

● ●

●●●●●
●

●●
●

●●
●

●●
●

●

●
●●

●
●●

●
●●

●●

●
●

●
●

●●
●●

●

●● ●
●●

●●
●

●●
●

●●
●

●
●●

●●
●● ●● ●

●
●●

●●

●●

●

●

●●
●●●●

●
●

●●
●

●●

●
●●●

●●●
●● ●●

●●●●●●●
●

●●●
●●

●●
●

●●
●

●●

●●
● ●

●
● ●

● ●

●●
●●●

●

●
●●●●

●
●

●
●

●●●
●

●
●

●●

●

●

●

●●
●

●●●
●

●●

●
●

●●

●●

●

●●●
●●●

●●
●●●

●●
●

●● ●● ● ●
●

●
●

●

●●
●●●

●●●●●

●
●

●●

●
●

●●
●

●

●●
● ●●

●●
●●●

●
●

●
●● ●

●●●●

●
●

●●
●●

●
●●

●
●

●

●●

●●

●●●●

●

●
●●

●
●

●
●

●

●●●
●

●●
●

●

● ●
●

●
●

●
●

●
●●●●

●
●

●●
●

●●

●
●●

●

●

●
●●●●●

●●●●

●
●

●

●
● ●

●

●●
●●

●

●

●
●

●

●●
●

●●

●
●

●●●

●●●
●

● ●
●●

●●
●●●

●
●

●
●

●●
●

●●
●●

●

●
●

●●
●

●●●

●●●
●

●
●

●
●●●

●●
●

●●

●
●

●●
●

●●●●●
●●

●
●●

●
●●

●●●●
●●●●●

●
●

●●
●

●●

● ●

●

●●

●
●●

●
●

●●●
●

●
●

●●
●

●

●
●

●
●

●
●

●
●●●

●●●●● ●
●

●●●●
●●●●●

●●
●

●
●●

●

●
●

●●
●●

●●
●●

●●
●●●●

●●

●●●
●

●

● ●
●●

●●●

●
●

●

●
●

●
●

●

●●

●●

●●
●●

●●
●

● ●
●●●

●
● ●

●

●
●

●●
●

●
●●●

●
●

● ●●
●●

●●●

●
●

●

●
●

●

●●●●

●●●● ●

●

●
●

●●●

●●
●

●●●●● ●●●
●

●●●
●●●

●
●

●

●●
●●

●●

●●●●●

●
●●

●●
●

●
●

●
●

●
●

●

●
●

●●
●

● ●●

●

●●
●●●

●

●●●
●

●

●

●●
●●

●● ●
●

●
●

●●●

●●
●

●●
●

●●●

●●

●●●

●●●

●

●●

●

●
●

●●
●●

●
●

●

●

●●
●● ●●

●
●●

●●●●
●●● ●

●●●●
●

●●●●
●

●
●

●
●

●●●●

●●●
●

●

●

●●

●
●

●
●

●
●●●

●
●● ●

●●●
● ●●

●●

●
●

●
●

●●
●

●●
●

●
●

●

●●
●

●●●
●●●

●
●

●
●

●
●

●
●

●●●

●

●

●●●
●●

●●
●

●

●●
●

● ●
●

●
●

●●●

●

●

●●
●

●●●●●
●

●
●●

●

●
●

●●●

●●
●

●
● ●

●
●

●●
●

●
●●●

●●●
●●

● ●
●●

●●

●

●●

●
●●

●

●

●●
●●●

●●
●

●
●●●

●
●

●●

● ● ●

●
●

●●●●●●●

●

●
●●

●
●

●
●

●●
●

●
●

●●●● ●●
●

●●●

●●
●

●

●●
●

●●●●
●●

●

●

●

●
●

●●
●

●

●●●● ●●●●

●
● ●●●

●●

●

●

●

●
●

● ●●●

●
●

●

●
●

●●●●
●

●
●

●●
●●●●●

●
●●●

●

●●●●●●

●●

●●
●

●
●

●●●●

●●

●●
●

●
●●

●

●
●●

●
●●

●
●●●

●
●●●

●●

● ●

●●

● ●
●

●

●●

●
●●

●
●●

●
●●●● ●●●●

●●
●

●
●

●
●

●●

●
●

●

●●●

●
●

●

●
●●●
●

●●
●●

●●
●

●●
●

●
●●

●●

●
●

●●

●
●

●
●

●
●●●

●●
●●●

●
●

●
●●

●●
●●● ●
●

●●●
●

●

●

●
●●

●●
●●

●●●

● ● ●●

●

●
●

●●●
●●●

●

●●●

●●
●●●●●

●

●
●

●●●●
●

●●
●

●
● ●●

●
●

●
●

●●

●
●●

●●

●●●

●
●●

●●
●

●
●

●
●

●
● ●●

●

●
●●

●

●●
●

●●●
●

●
●

●

●●
●●●

●
●●

●

●

●●●●●

●●
●●

●
●

●●

●●●

●● ●
●

●

●

●
●

●● ●

●
●

●

●
●

●●●● ●
● ●

●
●

●●●●
●

●●●●
●

●
●●●

●

●

● ●

●●
●

●
●●

●

●
●●

●

●

●

●

●
●●

●

●●●●●●

●●
●

●
●

●

●●●
●

● ●●

●
●

●●
●●●

●●●
●

●
●

●
●

● ●
●

●
●●●●

●
●

●
●● ●●

●●●●
●

● ●●●

●●
●

●

●
●●

●
●

●●

●●● ●
●●●

● ●
●●

●●
●

●

●●

●●

●
●

●
●

●
●●●

●
●

●
●

●●
●

●
●

●
●

●
●●

●●
●

●
●●

●

●

●

●●

●●●●●

●
●

●

●●
●

●
●●

● ●
●●

●
●

●

●●

●

●
●

●●
●●●●

●●

●
●

●

●

●
●

●

●
●

●
●●

●

●
●

●●
●

●
●

●
●

●●●

●

●

●

●

●●
●●

●

●
●

●
●●

●●

●
●

●
●

●
●

●
●●●●●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●●●
●●

●●

●

●
●●●

●
●●

●
●●●

●

●●●
●●

●●

●●
●

●

●
●

●

●
● ● ●●●

●

●
●

●
● ●●

●
● ●

●
●

●●
●

●●●
●

●

●●
●●

●●●
●

●●●●
●●

●●
●●

●●
●●●●

●● ● ●●●●
●

●
●

●●
● ●

●●●
●

●
●

●

●

●
●

●●

●●
●

● ●●●●
●●

●

●

●
●

●
●●

●
● ●●

●
●

●

●
●

●
●●

●●●

●●●●
●●

●

●
●●

●
●●

●●●●●
●

●

●

●●
●

●

●
●

●
●

●●
●

●
● ●

●●●●

●

●
●

●
●● ●●●

●

●

●●
●●

●●
●

●●

●●
●

● ●

●
●

●
●

●●
●

●

●

●
●

●

●
●●

●●●
●

●
●

●

●●
●

●●
●

●
●

●●●●

●
●

●

●●

●●●●●●●
●●●●

●
●●

●

●●●
● ●●

●

●

●

●
●

●
●

●●●●
●●

●

●

●
●

● ●
●

●

●

●

●

●●
●●●

●

●

●

●

●

●●

●
●

●

●
●

●●
●

●

●●
●

●

●●

●
●

●

●
●

●●
●●

●
●

● ●●

●

●● ●

●●
●

●
●

●
●●

●
●●

●●
●

●●
●

●●●

● ●●

●
●

●
●

●

●
●

●●●●●
●

●
●

●●●

●

●
●

●
●

●
●

●
●●

●

●
●

●

●●
● ●●●●

●
●●

●●

●
●

●
●

●●

●
● ●

●●
●●●● ●

●●●
●

●●

●
●

●
●

●
●

●●
●

●

●

●
●

●

●

●
●●●●

●

●
●●

●
●●●

● ●

●

●
●

●

●

●

●
●

●
●●

●
●●

●●
●●

●
●●●●

●
●

●
●●●

●
●●

●●
●●●●

●●●●
●

●
●●●●●

●●

●●
●

●

●

●●
●●●

●
● ●

●●●
●●

●

●

●

●●
●

●

●
●

●
●

●

●

● ●
●●

●●
●

●
●

●
●

●●●●●●●●

●

●●●●●●●

●

●●
● ●

●
●●

●

●●●
●

●●
●●●●

●

●●

●●●●
●

●●

●

●

●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●
●●●

●●●
●

●●

●
●

●
●

●●●

●
●

●

●●
●●●

●

● ●●●●

●
●

●●●
●

●
●

●●
●

●
●

●

●
●●

●

●

●
●●

●
●●●

●
●

●
●

● ●
●●

●●
● ●●●

●
●

●
●●

●
●●

●●●
●

●

●
●

●

●●
●

● ●
●●

●
●

●

●

●
●

●

●
●

●
●

●
●

●●
●

●● ●●
●●●●

●●●
●●●●

● ●
●●

●●
●

●
●

●●
●

●
●

●
●

●
● ● ●

●

●●
●

●●

●
●●

●●
●

● ● ●
●● ●●●

●

●●●●●
●●●

●
●●

●●
●●●

●●
●

●●

●●

●
●●

●●

●

●●● ●
● ●

●

●●●●
●

●

●● ●
●●

●●
●

●
●●

●

●

●● ●
●●●

● ●●

●

●
●

●
●

●

●
●

●
●

●●●●
●

●

●

●

●
●●

●
●

●

●

●
●

●●●●
●

●●
●

●●
●●

● ●
●●●●

●
●

●●
●

●●
●● ●

●●●
●

●●●
●●●

●●
●

●

●
●

●
●

●●

●●

●
●

●
●

●●●
●

●

●

●
●

●●
●

●
●●

●

●●

●

●●
●

●

●
●

●
●

●
●●●

●

●
●

●
●

●●
●

●

●
●

● ●●●
●●

●●●
●

●

●●
●●

●●
●

●
●

●
●

●
● ●●

●●

●
●

●
●●●●

●
●●

●
●

●

●
●

●●
●

●
●●

●
●●

●
●

●

●
●●

●●●●
●

●
●

●
● ●

●●

● ●●●●
●●●

●

●●
●

●
●●●●

● ●●●●●●●
●

●
●

●
●

●●
●

●
●

●

●
●

●
●

●
●

●●●
●●

●
●●●

●
●

● ●●●●

●●
●●

●

●
●

●
●

●
●

●

●●
●

●
●●●●●●

●
●

●
●●

●

●●●
●

●●●
●

●●
●●●

●●

●

●
●

●
●

●
●

●●

●
●

●●
●●●●

●●
● ●●● ●

●●
●●

● ●●
●

●
●●●

●●

●●●●
●

●●●
●

●
●

●
●

●●
●

●
●

●●
●●●
●●●●●●

●●●
●

●
●●

●●
●

●●● ●●
●

●
●●

●
●

●
●

●
●

●●

●

●
●

●●

●

●
●●●

●●●
●●

●

●
●●

●
●

●
●●

●●
●

●
●●●

●●
●

●●●●●
●

●

●

●●
●

●
●●

●●
● ●●● ●

●
●●●

●●●
●●

●

●●●
●●

●
●●

●

●
●

●
●

●

●
●

●
●

●●●●
●

●

●
●

●
●

●●

● ●

●●●
●

●●
●

●
●

●
●●

●●●●
●

●●
●

●

●

●

●
●

●
●●

●●●●● ●
●

●
●

●●
●

● ●

●
●

●●
●

●
●●

●
●

●●
● ●

●
●

●●
●●

●
●

●
●

●
●

●
●●

●
●

●

●●
●●

●

●●

●●●
●

●●
●

●●
● ●

●

●
●

●
●

●●●●
●

● ●

●
●

●●●
●

●
●●●

●

●

●
●

●
● ●●

●
●●●

●
●●

●●

●
●●

●
●

●
●●●

●●
●●

●
● ●●●

●
●

●

●●
● ●

●

● ●

●

●●
●

●
●●

●
●

●●●●
●

●●●● ●●
●●

●
●

●

●
●

●●●●

●
●

●
●

●

●●
●

●
●

●
●●

●
●

●●●

●
●

●

●
●

●●●

●●

●

●
●●

●●

●

●
●

●
●●

●

●●● ●
●

●

●

●

●

●●●●

●
●

●●
●●●

●●

●●●
●●●

●●

●
●

●●●●●

●

●●

●●●●
●●

●
●

●●

●

●●

●

●

●
●

●
● ●

●

●●
●●

●●

●
●●

●

●●
●

●
●

●

●
●●

●

●●
●

●
●

●●
●●

●●
● ●

●● ●●●●

●●

●
●●●●

●
●

●●
●

●
●

●

●

●●

●●
●●●●

●●

●
●

●

●
●

●●

●●
●

●●

●
●

●●

●

●
●●

●●

●
●●

●
●

●
●

●
●

●
●

●●●●●

●
●

●
● ●

●●●●
●

●
●●

●●

●
●

●●●●
● ●

●
●●

●●●
●●

●
●

●●
●

●●

●

●
●

●
●●

●

●

●
●●

●

●●
●●

●●●●

●
●●●●

●
● ●

●
●

●
●

● ●
●

●
●

●
●●

●●
●●

●
●

●

●●
●●

●
●●

●
●●●●

●
●

●
●

●●● ● ●

●
●

●
●

●●
●

●
●

●
●

●●●
●

●
●

●●
● ●

●
●

●
●

●●●
●

● ●
●

●●●

●
●●

●
●●

●
●●

●
●●

●●●● ●

● ●
●●

●
● ●●

●

●

●●

●

●
●●●

●
●

●●●
●

●

●
●

●

●●●●●
●

●●
●

●●
●

● ●
●●

●
●

●
●

●
●●
●

●●
●●●

●

●

●
●

●

●●
●●●

●●

● ● ●
●

●●
●

●
●

●
●●●●

●

●●

●●
●

●●
●

●
●

●

●
●●●

●
●●

●
●

● ●

●
●

●●
●

●

●
●

●●●

●

●
●

●

●●●

●
●

●

●

●●
●

●
●

●
●

●●●●
●

●
●●●●
●

● ●
●

●

●
●●●

●●●
●

●●
●● ●

●
●

●● ● ●
●

●

● ●

●●

●●

●●

●●
●

● ●●
●●●●●●●●●

●●●
●

●●●

●
●

●●
●●●

●

●
●●

●●●
●

●
●

●●● ●●

●
●

●
●●

●
●

●
●

●

●●●
●

●
●

●

●●
●

●●
● ●●●●●●●

●

●●
●●

●
●

●
●

●●
●

●
●●●

●
●

●

●

●
●

●

●
● ●

●

●
●

●●
●

●

●
●

●
●

●
●●

●● ●

●●

●

●●
●●

●

●
●

●
●

●
●

●●

●●●
●

●●●
●

●
●

●

●●

●
●

●●

●● ●●●

●

●●

●
●

●
●

●●
●

●
●●●

●
●

●
●

●

●●

●●

●

●●
●●

●●
●●

●●●

●
●

●
●

●●●●

●●
●●

●●●
●

●

●

●●●

●
●●

●
● ●●

●
●

●●
●

●
●●●

●●●
●●●

●

●
●

●
●●

●
●

●●
●

●●●
●

●
●●

●

●
●

●●
●●

●
●●

●
●

●
●

●●
●

●
●

●

●

●
●
●

●

● ●

●
●

●
●

●●●
●●●●

●

●●●
● ●●

●●

●●

●
●●

●●
●

●

●
●

●●●●
●●

●
●●

●●
●

●

●●
●●

● ●●
●●

●

●●
●

●
●

●●

●

●

●●●●●

●

●
●

●
●

●●●●●
●●●

●

●
●●

●
●

●●

●
●●●

●●●●●

● ●
●

●
●

●
●

●

●
●

●
●

●●
●

●●

●
●

●
●

●
●

●

●

●●●●● ●
●

●
●

●
●●●

●
●●

●●

●

●

●

●
●●●●

●●● ●
●

●●
●

●

●●

●●

●

●
●

●
●

●
●

●●●●●
●

●●
● ●●

●
● ●

●
●

●

●
●

●●

●●●
●

●●●●

●●

●
●●

●
●●●●

●
●

●● ●
●●

●
●

●

●●
●

●●
●●●●●

●

●

●

●●

●●●●
●

●●●

●●

●●●●
●●●

●

●●
●

●●●●●● ●●●

●
●

●

●●

●
●●● ● ●●

●●
●●

●●●
●●●●

● ●

●●●●●●●●

●●●●

●

●

●

●●

●
●

●●●
●●●

●
●

●

●

●●

●
●

●
●

●●
●●
●

●

●

●
●

●
●

●●
●●●

●
●

●●●

●●

●

●
●●

● ●
●

●
●●●

●●
●●●●
●

●
●

●●●●●●●●
●

●●
●●●

●
●

●
●

●● ●

●
● ●●●

●●

●

●

●
●●●●●

●

●

●
●

●
●

●●

●●
●●

●
● ●

●

●●

●●

●
●●●

●
●●●

●●●
●●

●

●
●

●
●

●
●●●●

●

●●

●

●

●●●● ●
●●

●

●
●

●

●

●
●

●
●●

●●
●●●●●● ●●

●
●

●●
●

●●
●

●
●●●●●

●●●
●

●
●

●

●

●
●●

●●
●

●
●●

●
●

●
●●●

●
●●●

●

●

●●●

●●

●

●

●
●

●

●

●●

●●

●
●

●
●

●

●●

●●
● ●

●
●

●

●●●
●●

●
●●● ●

●●

●●

●●
●●

●
●●

●●
●

●
●● ●

●
●

●
●

●
●

●● ●
●●

●
●●●●●

●
●

●●

●
●

●

●
●

●●
●

●●●
●

●
●

● ●
●●

●●●

●●
●

●

●

●●
●●●

●●
●

●●

●●

●

●●●

●
●

●
●

●

●

●
●●●●●

●

●
●

●●
●

●●
●

●

●●
● ●●

●●● ●
●●

●

●
●

●
●● ●

●
●

●

●●

● ●
●●

●● ●
●●

●●●
●

●
●●

●

●
●●

●
●●

●●●●
●●●

●●
●●●●

●

●
●

●

●
●●●

●
●

●
●●●●●●●

●
●

●

●●
●●

●●
●●●

●
●●

●
●

●
●

●●
●

●
●

●●
●

●
●

●
●

●● ●

●●●

●●
●

●
●

●
●●

●●

●
●●

●

●●

●
●

●
●

●●
●

●
●●

●●●●
●●●●

●
●

●

●●
●●● ●●

●●
●●●

●●

●
● ●●

●

●

● ●●
●

●
●

●
●

●●●●
●

●
●

●●
●

●●
●

●
●●

●
●

●

●
●

●●

●●

●●
● ●●

●
●●

●

●

●●

●
●●

●

●●●
●

●

●

●
●●

●●
●●●●●●●

●
●

●
●

●

●

●

●

●
●

●●
●

●●
●

●●

●
● ●●

●
●

●

●

●●

●
●

●●●
●●●

●
●

●

●
●

●
●●

●

●
●●

●
●●

●

●●●
●

●
●

●●
●●●●

●●

●●
●

●●●●

●
●

●●
●

●●

●
●

●

●●
●

●
●●

●

●

●●
●●

● ●

●
●

●

●●●●

●●
●●

●●
●

●●●●
●●●

●●

●
●

●

●

●●●●
●

●●
●

●
● ●

●
●

●●

●●

●●
●

●

●●●
●

●

●
●●●●

●●
●

●
●

●
●●

●
●

●●
●

●

●●●
●●

●
●● ●

●

●●●● ●

●

●
●

● ●●●

●
●

●
●●●●

●●●●

●
●

●●●
●

●
●

●●
●●

●
●●

●

●
●● ●●●

●
●

●

●●
●

●
●

●

●
●●●●●
●●

●
●

●
●

●
●●

●
● ●●

●

●
●

●

●

●●

●●
●●●●●●●●
●

●
● ●●

●●
●

●
●

●
●

●

●● ●

●

●
●

●●●●●●●

●
●

●●●
● ●

● ●

●●
●

●
●

●
●

●

●
● ●

●●
●

●●●
●

●

●
●●

●●●●●
●

●●

●●
●●●

●
●

●●

●
● ●

●
●

●
●

●

●
●●●

●●
●

●
●●

●
●

●● ●
●

●●

●●
●

●
●

●●●

●
●●

●●
●●

●
●

●
●●

●●
●

●
●●

●

● ●

●

●

●●

●

●●
●

●●

●

●●
●

●●●●●
●

●●
●●

●●

● ●●

●●
●

●●
●

●●●●
●

●
●

●
●

●●●
●

●●
●●●
●

●
●

●●●●

●●●●

●●
●●

●●

●●●●●

●●

●●
●●●●

●●

●
●●●●●

●●● ●

●
●

●●●
●

●

●●●
● ●

●●

●
●

●●●●
●● ●●●●

●

●
●

●●

●●
●

●

●●●
●●

●
●●●●

●

●
●●

●

●●●
●●

●●●●●

●●
●

●●●
●

●
●●

●
●

●
●

●
●

●
●

●

●
●

●
●●●●●

●

●
●

●

●●

●

●
●●●

●

●●
●●●

●●

●
●

●●●●●●
●

●
●

●
●

●
●●●

●
● ● ●●

●●
●

●

●●

●
●

●
●●

●
●●

●

●●
●

●

●

●
● ●●

●

●● ●●●●●

●

●
●

●
●

●
●●●

●
●

●

●

●

●
●●

●●●●
●

●●
●

●●

● ●●
●

●●●

●●

●●● ●
●●●

●
●

●
●●

●
●●●

●
●

●
●

●
●

●●
●

●

●●

●●
●

●●
●●

●●

●●

●●

●

●●

●●
●●

●
●●

●

●

●

●●●

●●

●

● ●●●

●●
●

●●●
●

●
●

●

●●
●●

●
●

●

●
●

●●●
●●●●

●

●

●●
●

●●

●●
●

●
●●

●

●●
●

●●
●●

●

●
●●

●
●

●
●

● ●

●

●●● ●●

●

●●●●●●●
●●

●
●

●●
●●●

●

●

●
●

●●
●●●

●

● ●●

●

●

●●● ●●
●

●

●● ●
●

●●
●

●●●
●

●
●●●

●
●

●

●
●●●●●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●●
●●●●● ●

●
●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●●

●
●●

●

●
●

●

●●

●
●

●●

●

●
●

●

●
●

●●●

●
●

●●

●
●● ●●

●

●●

●
●●●●●●

●

●●

●
●

●
●

●
● ●

●
●

●

●

●●
●

●

●

●
●

●●

●●●

●

●●
●

●
●

●
●●●

●

●●

●

●
●

●
●

●

●●

●●●
●

●
●

●

●
●●

●
●●

●

●
●

●●●
●●

●

●

●

●

●
●●

●●
●

●

●
●

●

●●●● ●
●

●
●

●
●

●●

●●●
●

●●
●●●●

●●

●
●

●●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●●
●

●●●
●●

●●●●●
●

●●
●●

●●●●●●●
●●

●
●

●●
●●

●
●●●

●●
●

●
●

● ●
●

●●
●

●
●●●

●

●
●●

●●●
●●

●
●●
●●

●
●●

●●

●
●

●

●

●
●●●

●
●●

●● ●
●

●
●

●
●●●

●

●
●

●

●
●

● ●
●

● ●
●●●

●

●

●
●

●

●
●● ●

●●●
●

●
●

●
●

●●
●●●

●

●

●
● ●●● ●

●
●

●
●

●
●●

●

●
●

●
●●

●
●

●●●

●●

●
●●●

●
●

●
●●

●

●
●

●●
●

●
●

●
●

●
●●

●●●
●

●

●
●

●

●
● ●

● ●●
● ●

●●
●

●

●●
●● ●

●●

●

●
●●

●

●
●

●
●●

●
●●

●

●●●●
●

●

●●
●

●
●

●
●

●
●●●

●

●
●

●●

●

●●

●
●

●

●●
●●

● ●

●
●

●

●●●●
●

●●●
●●

●
●

●
●

● ●
●

●

●

●●

●

●●

●
●●

●
●● ●●

●
●●●●●

●
●

●●●●
●●●
●●●

●●
●●

●

●
●

●

●

●

●
●●●

●●

●
●●●

●
●

●
●●●
●

●

●
●

●●
●

●
●

●●●●

●
●

●●●● ●●
●●

●
●

●●●

●
●

●●

●
●

●
●●

●
●

●
●●●●

●●●

●●●●●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●
●●

●●
●

●
●

●●
●

●
●●●

●

●●●●●
●

●●●●

●●●

● ●

●

●

●●
●

●

●
●

●●●●
●

●●

●

●
●

●●
●●

● ●●

●

●
●●

●●●
●

●

●●
●●

● ●●
●●

●
●

●
●

●●
●

●●●●●●
●

● ●
●

●●
●

●

●●●● ●●
●

●

●●●
●

●
●●

●●●
●

●
●

●

●●

●

●

●
●●

●

●

●
●

●●

●

●●
●

●
●●

●
●●●

●
●

●●
●

●

●●

●
●

●●
●

●
●

●
●●

●
●●

●
●

●

●
●●●●

●

●●

●
●●●

●●
●●

●●●
●●●●
●

●●●●
●

●

●●
●●●

●
●

●
●

●

●

●

●●
●

●●

●
●

●

●●

●●
●

●●
●

●
●

●●●

●
●

●●
●

●●
●

●
●

●

●●●
●

●

●
●

●

●●●●●●●
●●

●
●

●

●
●

●

●● ●

●●
●

●
●

●
●●

●●

●●
● ●

●
●●

●
●

●
●

●●
●

●●
●●●●●

●●
● ●

●
●

●
●

●
●

●

●●
●●

●
●

●●

●

●

●
●

●
●●

●●

●
●●●

●

●

●

●
●●

●●
● ●●●

●
●

●●●

●

●
●

●
●

●●

●
●●

●●
●●

●
●

●●●●
●

●
●●●

●
●

●

●

●
●●

●
●● ●●

●●●
●

●
●

●

●
●

●
●

●
●

●●

●
●●

●●

●●●●●

●●

●
●

●
●

●

●
●

●
●

●

●

● ●
●●

●
●

●
●

●
●

●
●●

●
● ●

● ●● ●

●●
●●

●●●●●

●

●

●●●

●

●

●●

●

●●

●●●

●

●●
● ●

●

●
●

●●●
●

●●
●●●●

●
●

●●

●●

●

●

●●
●●

●

●

●●●
●●

●
●

●●
●

●

●
●

●
●●

●

●
●●
●●

●

●●

●

●●

●

●
●

●
●

●●
●●

●

●●●
● ●●●●●●

●●

●●

●
●●● ●

●
●

●
●

●
●

●
●

●●
●

●●●●
●●

●●
●

●●
●●

●
●

●● ●●
●

●

●

●

●●
●●●

●●

●

●

●●
●

●●

●
●

●

●
●

●●●●
●

●

●

●

●
●

●
●

●
● ●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●●
●

●

●

●●●●
● ●

●
●●

●
●

●
●●

●●●
●

●

●●

●
●●●

●●
●

●
●

●
●

●

●
●

●

●
●

●●
●

●●
●

●●●

●
●●

●
●●

●

●

●
●

●
● ● ●●

●
●

●●●●
●

●●

●●
●●

●
●

●●
●

●
● ●

●
●

●

●
●

●●●
●

●●
●

●

●●●●

●●
●

●●●●
●●

●●
● ●●●

●●
●

●

●●
●●●

●
●●

●
●●

●

●
●

●
●

●●
●

●
●

●

●
●●

●●
●

● ●
● ●

●

●

●●●
●

●●
●

●
●

●● ●
●

●●● ●●

●●
●

●●●
●

●
●

●
●

●●●

●
●●●

●●●●
●

●

●
●

●

●

●

●
●●●
●●

●

●

●

●

●

●
●

●
●●●●
● ●●

●
●

●
●

●
●

●

●
●●●

●●
●

●●
●

●
● ●

●

●
●

●●●
●

●

●

●

●
●

●●

●●
●

●
●● ●

●
●

●●●●●

●

●

●●
●●●

●

● ●
●●●●

●●
●

●
● ●

●●

●
●●

●

●
●● ●

●●●●
●

●
●

●
●

●●●
●

●

●
●

●

●
●

●
●●

●●

●

●●●
●●

●

●
●●●

●
●

●
●● ●●

●
●●

●●
●

●●●
●●

●
●●

●
●

●●● ●
●

●

●
●

●●
●●

●
●●

●
●

●●●●
●

●
●

●

●

●

●●●
●

●●
●●

●

●●
● ● ●

●

●
●

●

●●
●●

●
●●●

●●

●●●●
●

●●
●●●

●●

●
●

●

●

●
●●

●
●

●●●

●●
●●

●

●

●

●

●●● ●

●
●

●●●●
● ●

●
● ●●

●
●●●●●● ●●

●

●●
●

●
●

●

●●
●

●
●

●

●
●

●
●

●

●● ●●
●

●
●● ●

●
●

●

●

●
●

● ●
●

●
●

●
●

●
●

●

●

●●

●
● ● ●
●

●●
●

●

●
●

●

●
●

●
● ●

●●●
●● ●

●
●

●

● ●
●●●

●●

●
●

●●
●

●

●

●
●

●

●
● ●

●
●

● ●●

●●

●●●

●
●●

●●●●
●

●
●● ●

●
●●

●
●

●
●

●●
●●●

●
●●

●
●

●●
●

●
●

●
●●

●
●●

●●
●

●●
●

●
●

●●●
●

●
●●●●●

●

●

●

●

●

●
●●

●●●●
● ●

●●

●
●

●● ● ●

●●
●

● ●
●● ●

●

●
●●●●

●
●

●
●

●●

●
●●

●

●
●

●

●
●●●

●

●

●●

●●●●● ●
●

●●●
●

●●
●

●●

●●
●

●
●

●

●
●

●
●

●

●●
●

●
●

●●

●

●

●

●●
●

●●
●

●
●●

●●●
●●

●●●
●

●
●●

●●●
●

●●

●●
●●

●
●●

●
●

●
●●●●
● ●●

●

●●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●●

●●●
●

●

●

●

●

●
●

●●●●●●●
●

●

●●
● ●●

●

●●
●●

●
●

●●

●
●

●●
●

●●
●

●

●
●●

●
●

●
●

● ●

●●

●
●

●●
●●●

●●●
●

●

●
●●

●
●● ●

●
●

●●●

●●

●
●

●
●●

●
●

●

●

●

●●●●
●

●

●

●
●

●●●
●●

●●
●●

●
●●●

●●

●

●

●

●

● ●●
●

●●
● ●●●

●
●

●

●

●●● ●
●●

●
●

●

●

●

●

●
●

●●

●

●●●
●●

●

●
●●●●●●●

●
●●

●●

●●
●

●
● ●

●

●●
●

●

●●

●●
● ● ●

●●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●

●
●

●
●●●

●●

●●●●
● ●

●
●

●●
●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●
●

●
●

●
●●

●●●●

●

●
●●

●

●
●

●

●

●●
●●

●

●

●

●

●● ●●

●
●

● ●●●
●●

●
●

●

●
●

●
●●

●

●●
●

●

●●
●

●●
●

●
●

●●
●

●●●●
●●●●●●

●
●

●
●●

●●
●

●
●

●
●

●
●

●

●
●

●
●

● ●●●
●●

●

●

●●●
●●

●
●

●●
●●●●

●

●

●●●●

●●
●

●●

●

●

●

●
●

●
●●

●●●●

●
●

●

●●
●●●

●
●

●
●

●●
●

●

●
●

●●●
●●●●●

●
●●

●●

●

●
●

●

●●●

●
●●

●

●

●

●
●

●●
●

●

●●

●
●●

●●●
● ●●●

●
●

●
●●

●
● ●●●●●●

●●

●
●●

●
●●

●●●

●
●

●●●
●●●●

● ●
●●

●●●●●
●

●
●

●
●

●
●

●
●

●

●

●

●
●●●

●●●●●●

●
●●

●
●

●
●

●
●

●

●

●
●

●

●●●
●

●

●
●

●
●

●●
●

●
●●

●●
●

●●
●

●
●●

●
●

●

●

●

●
●

●●●●

●
●●

●
●

●
●

●
●

●
●

●●

●

●●
●●●

●●●

●

●

●●
●●

●
●●

●

● ●
●●

●
●

●●

●

●●

●●●●●
●

●●
●

●
●

●
●

●
●●

● ●●
●

●● ●●
●●●●●

●
●

●●
●

●

●
●

●●
●●●●

●

●
●

●

●●
●

●

●

●
●●

●

●
●

●●
●

●
●

●●

●
●

●●

●●
●

●
●

●
●

●
●

●

●

● ●

●●
●●

●

● ●●●●●

●●

●

● ●

●
●●

●●
●

●●
●

●●
●● ●

●
●

●●●●

●
●

●
●

●
●

●
●

●●

●

●●●

●

●

−2 0 2

−
5

0
5

10

Theoretical Quantiles

D
iff

er
en

ce
 Q

ua
nt

ile
s

●

●
●

●

●●●

● ●●●●●●●●●
●

●
●●

●●●
●

●●●●● ●
●●●●●

●
●

●
●

●●
●

●

●

●
●

●●

●

●
●

●
●

●●●

●

●

●

●
●

●

●
●

●
●

●
●

●●●●●

●●

●

●●
●●

●

●●
●●

●
● ●

●
●●

●●●

●
●●

●
●●

●●

●●

●●●
●

●
●●

●●
●

●

●●
●

● ● ●
●

●
●

●●

●
●●●

●
●

●●

●
●●●

●
●●●

●
●

●
●●

●
●●

●●●

● ●
●●

●
●

●●
●●

●●●
●● ●●

●●
●

●●●●●●
●

● ●

●

●

●
●

●●
●

●●●
●

●●●
●

●●
●

●●
●

●
●●

●
●

●

●
●

●

●

●

●●
●

●●
●

● ●

●●●●

●
●

●
●●

●
●

●
●●

●
●

●
●●● ●●

●

●

●
●

●
●

●
●

●●

●
●

●
●

●●

●
●

●

●

●●●

●

●

●●

●

●
●

●

●
●

●
●

●
●●

●●●
●

●
●

●
●

●
●

●
●

●

●●
●

●
●

●●

●
●

●

●

●

●●●

●●
●●●

●
●

●

●

●

●

●●●

●
●

●●●●

●

●●
●

●
●

●●

●●●

●
●

●●

●

●

●
●● ●

●

●
●

●●● ●●
●

●●●●●●
●●

●
●●

●
●

●●●●
●●

●●●
●●●

●

●●●●●

●
●

●●
●

●
●●

●●●●●

●
●

●
●●

●
● ●

●●
●

●●●●●
●●●

●●●
●

●

●
●

●

●
●

●●
●

●
●●●

●

●
●

● ●●●
●●

●
●●

●

●

●
●●●●●

●

●

●
●●●●
●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●●
●●●

●●

●●
●●

●●
●

●●●●●●●

●●

●

●

●
●

●●
●

●●

●

●●
●

●
●●●●●●●●

●
●

●●

●●●

●

●●●
●

●●

●

●

●
●

●

●

●●

●

●●●
●

●
●●

●
●

●●

●

●●●
●

●
●●●

●●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●●
●●

●
●

●
●

●
●

●
●

●
●●
●

●●
●

●●
●

●
●●

● ●●

●●

●
●

●

●
●●

●
●●●

●
●

●
●

●
●

●

●●

●
●

●

●

●
●●

●●
●

●●●
●

●●●
●●

●●

●
●●●
●●

●●●●

●
●

● ●
●

●●

●●●
●●●●

●
●

●

●

●●
●●●

●

● ●

●

●●
●●

●●
●●

●
●

●

●
●●

●●●
●

●●●
●

●

●●

●●
●

●●

●

●●

●
●●

●●●

●●
●●

●
●

●

●

●

●

●●
●

●●

●●●●●●●●●●

●●
●

●●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●●●●

●

●
●●

●●●●

●●
●

●●●

●●
●

●●● ●
●

●

●● ●
●

●●● ●
●

●●
●

●●●
●●●

●

●

●

●
●

●

●●
●●

●
●

●●
●

●
●

●●
●

●●
●●

●● ● ●
●

●●●

●

● ●
●

●●●●
●

●
●

●

●●
●

●
●●●●●●●

●●●●
●

●
●

●●
● ●

●
●

●
●

●

●●

●●

●
●

●
●

●

●
●

●
●

●
● ●●

●

●
●● ●

●●●●

●●●

●●

●●
●

●●●●●●
●●

●
● ●

●
●

●●
●

●

●●
●

●

●
●

●●●●
●●

●●

●●
●

●●
●

●●
●

●●●●

●●
●

●
●●

●●

●●

●

●

●

●
●

●●
●

●
●

●

●●●●

●●

●●
●●

●

●
●●

●
●

● ●
●●

●●

●
●

●●●
●

●
●

●

●
●

●
●

●●
● ●

●●●
●

●

●

●
●●

● ●

●
●

●

●●●
●●

●●●
●●●●

●
●

●

●●●●●

●●

●

●

●
●

● ●

●●

●
●●●●

●
●

●

●
●

●

●●

●●
●

●
●

●●

●●

●●

●●●●
● ●●

●

●

●

●
●●●
●

●●
●

● ●
●

●●
●●●

●
●●

●
●●

●
●

●

●
●

●
●

●
●

●

●
●●

●
●●●

●●

● ●

●
●

●●●
●

●

●●●
●●●●●●●

● ●

●
● ●

●
●

●

●
●

●
●

●●●
●

●
●●

●

●
●

●
●

●●●●
●●

●
●●

●
●

●
●●

●●
●●●

●●

●●
●

●
●

●
●

●
●●

●
●

●

●●

● ●
●

●

●
●

●●
●●

●●●●
●

●●

●

●
●

●

●
●

●

●

●●●●●

●●

●●
●

●

●

●
●

●●
●

●●● ●

●

●
●

●
●

●
●●●

●

●●●●●●● ●
●●

●●

●●
●●

●

●●

●
●

●

●

●

●

●
●

●
●●●

●

●
●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●●●
●

●
●

●●
●

● ●

●
●

●●●●●
●

●
●

●
●●

●

●●
●

●

●

●
●●●●●

●●●

●
●●

● ●●

●●
●●

●●

●●

●●●●

●●●

●

●

●
●

●
● ●●

●

●

●
●●

●

●

●●
●

●

●●
●●

●
●

●●
●●

●
●●

●

●

●●

●
●

●

●

●●● ●●●

●●

●
●

●●●●●●●●●

●●●●

●
●

●
●●●●

●
●

●●
●●

●

●
●●

●●
●

●
●

●

●
●●●●●

●
●●

●●

●
● ●●

●
●●

●
●●●●●●

●
●●

●●

●
●●

●

●●

●
●

●

●
●

●

●

●● ●

●

●
●●

●
●

●

●

●

●
● ●

●●
●

●
●

●●
●

●
●

●
●●

●●
●

●
●

●
●

●
●

●
●●

●

●●
●

● ●●●●●●
●

●
●

● ●●
●

●
●●

●

●●

●

●●

●●
●

●

●
●

●●●●

●

●

●
●

●

●
●

● ●●
●

●●
●

●●

●

●

●●●
●●

●●
●●

●

●

●
●●

●

●●●

●

●
●

●●
●●

● ●●
●

●

●
●

●

●
●

●
●●

●●●
●

●
●

●●
●

●
●●

●●
●● ●

●
●● ●

●●●
●

●●

●
●

●●
●

●

●
●

●●●
●●

●
●●●

● ●
●●

●
●

●
●

●
●

●
●●●

●

●●●●
●

●●●●● ● ●

●
●

●

●

●

●

●

●● ● ●●
●

●●
●●

●
●

●
●

●
●● ●

●

●
●

●
●●

●●●
●

●
●

●
●

●
●●●
●

●
●

●●
●

●

●● ● ●

●
●

●●●●●
●

●
●

●

●●●
●●●

●●●●●●
●

●●
●●●●

●
●

●●●
●

●●●
●

●

●
●

●●
●●●

●●
●

●
●●●

●●

●●
●

●
●

●
●

●
●●●●●●

●●
●

●●●●
●

●
●

●●
●

●● ●

●
●

●●●●

●●●

●
●

●

●●
●

●

●
●

●●
●●

●●●●
●

●

●

●

●
●●

●
●

●
●

●

●●●
●

●●●●●●
●

●

●●

●●

●
●

●

●

●

● ●●
●

●

●

●●●●
● ●●●●●

●
●

●
●

●
●

●
●

●●

●
●

●
●●

●

●●
●

●
●

● ●
●

●

●●
●●●●●●●
●●●●
●

●

●

●●

● ●
●

●
●

●
●

●●

● ●●

●
●●●●

●
●●●

●
●

●
●

●

●
●

●
●

●●●●

● ●●
●

●

●
●●●

●
●

●●
●

●

●●
●

●
●

●●

●●
● ●

●
●

●
●●●●

●
●

●

●●
●●

●●●
●●

●
●

●●
●

●●●
●

●
●

●

●
●●

●
●●

●

●

●●●●●
●

●●

●
●

●

●
●

●●
●

●
●

●●

●

●
●

●
●●

●
●●

●●
●

● ● ●●

●
●

●
●

●

●

●

●
●

●
●

●

●●

●●●
●●●

●
●

●●●
●

●
●

●

●●●●

●
●

●

●
●

●

●●

●●●●●●●
●

●

●

●

●
●

●
●

●
● ●

●

●●

●
●

●

●●
●

●●●●
●●

●

●

●●●
●

●

●

●●
●●●

●●
●

●
●

●
●

●
●●●

●●●●
●●

●
●●●●

●●
●

●
●

●
●●

●

●●●●●●●●●

●
●●

●●

●●
●●

●

●
●●

●●
●●●●●

●●
●

●

●
●

●●

●●●
●●●●

●

●

●●
●●

●●
●

●

● ●
●

●●

●●
●

●
●

●

●

●

●
●

●●

●●●●●
●

●
●

●
●

●
●●

●
●

●

●● ●
●

●●
●●●●

●●●

●
●●

●

●
●

●

●●
●

●

●

●

●●
●●●

●●

●
●●

●
●

●
●●●●

●

●●
●

●●

●●●●

●●

●●
●●

●
●

●●
●

●
●

●
●●●●●

●
●

●

●

●
●

●
●

●
●●

●●
●

●●
●

●●
●

●●●
●

●●

●
●

●

●●●

●
●

●
●

●●

●
●

●●

●

●
●●●●

●

●
●●

●
●

●●

●●
● ● ●●●
●●●●

●
●●●

●●●●

●●

●
●●●

●

●
●

●
●

●●
●

●●
●

●

● ●●●●
●

●
●

●●
●●

●

●
●

●
●

●
●

●●
●

●

●
●●

●●
●●

●●
●

●
●

●● ●●
● ●●

●
●●

●
●

●●

●
●

●
●

●

●
●

●
●

●●
●●●

●
●

●●● ●
●

●

●

●●●
●

●●
●●●

●●
●

●●
●

●●
●●●●

●●

●
●●●●

●
●

●

●
●

●●
●●●

●

●
●

●
●

●●

●
●●

●●

●
●

●
●

●●

●●
●

●
●

●
●

●
●●

●
●

●
●

●●●●
●

●

●
●

●
●●

●●
● ●

●●●●●
●

●●●●●●●
●●

●

●
●

●
●●

●

●
●

●
●

●

●
●

●●●●

●●

●
●●

●
●●

●

●
●

●

●

●
●

●●
●

●
● ●

●●

●
●

●
● ●

●●●

●●●●
●

●●●

●

●

●
● ●

●

●●
●

●●●●
●●

●●

●
●

●●

●

●
●

●

●●●●
●

●●
●●

●

●

●

●
●●●

●
●

●●
●

●
●●●

●
●●

●●

●
●

● ●●●

●
●

●

●
●●

●
●

●●
●

●●
●

●

●●●

●●● ●

●
●●●

● ●
●

●●

●●

●

●●
●●

●
●●

●● ●●

●
●

●
●

●●

●

●
●

●●

●

●●

●●●●
●

●●

●●●
●

●●

●●●
●●●●

●

●●●
●

●

●
●

●
●●

●●●

●
●

●
●

●●

● ●●●●

●●

●
●

●
●

●
●●●

●

●●

●●●

●

●●
●

●
●●

●
●●●

●● ●
●●

●

●●●

●
●●

●●

●●
●●●

●
●●

●
●

●
●

●

●
●●●●

●●
●●

●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●
●●

●●
●

●●

●

●

●

●

●
●

●

●

●

●● ●●
●●

●●●

●●
●

●

●●
●●●●

● ●●●
●

●●

●
●

●
●

●
●

●
●●●●

●

●●

●

●

●

●●●

●
●

●●
●

●●
●●

● ●

●●

●●
●●

●

● ●
●

●●●
●

●●●
●●

●
●●

●●●
●●

●

●●
●

●●

●●
●

●
●

●● ●●
●

●●●

●

●
●

●
●

●●
●

●

●

●● ●
●●

●●

●●

●●

● ●●

●
●●●

●

●
●● ●

●

●

●
●

●
●

●●
●●

●● ●●

●●

●●
●●

●
●

●● ●

●●
●●

●

●
● ●

●●
●●●

●

●

●●

●
●●●

●
●

●
● ●

●
●●●

●●●●
●

●
●●

●

●
●

●

●
●●●

●●●●●

●● ●
●

●

●

●

●

●●●
●

●
●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●●

●
●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

●●●●●
●

●

●●
●●●

●●
●●

●●
●●

●

●

●●
●

●●
●●●

●● ●
●

●●●●

●
●

●
● ●

●
●●●

●●
●

●●

●
●

●
●

●

●●
●

●
●●

●
●●

● ●●
●●

●●
●

●●●●●
●●●

●●
●●

● ●●●●●
●

●●
●

●

●
●

●●●
●

●
●

●●●

●
●● ●

●●
●

●
●

●●●
●

●
●

●

●
●● ● ●●●
●●●

● ●●
●

●
●

●
●

●●

●●●

●●
●●

●
●

●●
●

●
●

●
●

●●
●●

●
●●

●
● ●

● ●
●

●
●● ●

●

●●●

● ●
●

●
●

●

●●

●

●
●

●
●●

● ●
●

●
●

● ●
●

●●
●

●
●

●

●●●
●

●●●

●

●

●
●

●
●

●
●

●
●

● ●

●
●

●

●
●

●
●

●
●

●
●

●
●●●●

●●

●

●●

●

●
●●●

●
●

●

●●

●

●● ●●●
●●

●

●
●

●●
●

●●●
●

●
●

●●
●

●

●●

●

●

●●●●
●

●
●

●

●
●

●

●

●●
● ●

●
●

●

●
●

●●

●
●

●

●
●●

●●

●●

●
●

●
●

●

●

●

●●
●●

●
●●

●

●

●

●●

●●

●●

●
●●

●●●●●●

●●

●

● ●
●

●●
●●●

●

●●

●
●

●
●

●●

●

●

●●
●

●
●

●

●

●

●

●●
●

●

●●

●●●
●

●

●
●

●
●

●●
●

●
●

●●●
●

●
●●

●

●

●
●

●●
●●

●
●

●●●
●

●●

●

●●●●

●
●●

●
●

●

●●
●

●

●
●

●
●

●

●
● ●●●

●●
●

●
●

●●
●

●●
●

●
● ●

●●●●

●●●
●

●

●

●

●

●
●

●
●●

●●

●●
●

●●●●
●

●●
●

●

●●
● ●●●●

●●
●●

●●

●●●
●●

●
●

●
●

●
●●

●●●●
●●

●●

●●●●●

●●●●●

●●●
●

●

●
●●

●
●

●●

●

●●●

●●●● ●
●

●
●

●●
●

●
●

●
●●

●
●

●

●

●
●●

●

●●

●●●
●

● ●

●●●
●

●●
●

●● ●
●

●
●

●
●

●●
●●●

●●●
●

●●

●●
●●

●●

●
●

●
●

●

●●
●●

●
●

●

●

●
● ●

●

●

●●●

●
●●

●
●●

●
●

●

●●

●●●
●

●
●

●

●
●

●

●
●

●
●

●

●●●●●●●
●

●
●●

●
●

●

●● ●●
●

● ●
●

●

●
●

●
●

●●●
●

●

●

●
●●

●● ●●●
●

●

●●
●

●

●

●
●

●

●

●
●

●●
●

●●
●

●●

●

●
●

●●●
●●●

●

●
●

●
● ●●

●
●

●
●●

●
●●

●

●●
●●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●●●
●

●
●

●●
●

●

●
●

●

●
●

●●

●
●●

●
●●

●
●●●

●
●●●

●
●

●●
●

●
●●●●

●
●

●
●●
●●

●●
●

●●
●

●●●

●
●

●

●
●

●
●

●

●
●

●●
●

●●
●

● ●

●

●

●

●

●

●
●

●

●

● ●

●●●●
●●

●
●●

●
●●●●●●

●

●
●

●
●

●
●

●●●● ●
●

●
●●

●
●●

●
●●

●

●
●

●
●●●●●●

●
●●

●●
●

● ●
●

●

●●
●

●●

●
●

●●
●

●

●
●●

●
●●●

●
●

●

●
●

●●
●

●
●

●●●●
●

●●

●●
●

●
● ●●

●●
●●●

●
●●

●

●●

●●
●

●●●

●●
●

● ●●●

●

●
●●●

●
● ●

●●
●●

● ●

●
●●

●

●
●●

●●
●

●●●●
●

●
●

●
●

●●

●
●

●
●● ●

●●

●
●

●
●

●
●

●
●●

●

●●●●
●

●●

●

●
●●●●

●●●●● ●

●
●●●

●

●●
●

●●●

●
●●●

●●●●

●
●

●●
●

●

●●●

●
●

●

●
●

●
●●

●●●●
●●●

●

●
●●●

●
●

●●●
●

●
●●

●●

●●
●●

●●
●●●

●

●

●

● ●
●

●

●
●●

●●
●●

●●

●●
●

●

●
●

●●

●●
●

●●●
●●
●

●
●

●●
●●●

●
●●

●
●●●

●●

●●
●

●
●●

●●
●●

●

●
●

●●

●●
●

●●
●

●
●

●

●●

●
●

●

●
●

●
●

●
●

●●
●

● ●
●●

●
●●

●●

●

●●

●

●
●

●
●●●

●●

●●
●●

● ● ●
●

●
●

●
●

●

●
●

●

●●●●●●

●
●●

●
●

●●

●●●

●
●

●

● ●

● ●●
●

●

●
●

●
●

●

●
●

●
●●

●
●

●
●● ●●

●

●

●
●

●
●

●
●●

●

●
●

●
●

●●
●●

●
●

●●
●

●
●●

●●
●

●●
●●

●●●
●●

●●
●

●

●

●●
●●

●●
●●

●●
●●●

●

●
●

●●
●

●
●●

●

●●
●

●●

●●●

●●
●

●
●

●●
●

●

●●
●●

●

●●●●●●●●

●●
●●● ●●●

●
●●

●

●

●
●

●

●
●

●●

●●●
●

●
●●

●●●
●●

●

●●

●

●

●
●

● ●
● ●

●
●●●

●

●
●●

●
●

●
●

● ●

●
●

●
●

●

●
●

●

●●
●

●

●
●

●
●

●
● ●●

●

●
●

●

●

●●●● ●●
● ●●●

●
●

●
●

●●
●●

●
●

●
●●

●●●
●●

●

●

●●

●
●●

●●●●●

●
●

●

●
●

●
●

●
●

●

● ●

●

●

●
●

●

●●

●●
●

●

●●
●●●●

●
●

●
●

●

●●
●

●

●●

●

●

●●●
●

●●
●

●

●

●●
●

●
●

●

●
●●

●

●
●

●

●
●●

● ●
●

●●
●●

●●●
●

●
●

●
●●

●
●

●●

●
●●

●
●●●

●
●

●
●

●

●
●●

●
●●

●●
●

● ● ●
●

●
●

●●
●

●

●●
●●

●
●●

●
● ●

●● ●

●

●

●
●

●

● ●●●
●

●
●

●
●●●

●●●●
●●

●
●

●●
●

●
●

●
●

●
●

●

● ●

●●
●●

●

●●●

●●

●
●

●●
●

●

●●●●● ●

●
●●

●●
● ●● ●

●

●

●

●
●●● ●

●●
●●

●●●●●
●

●●●●●

●
●

●
●

●●
●

●

●
●

●●
●●

●●

●●
●●●

●●

●

●
●●● ●●

●
●

●
●

●●
●

●

●●●

●

●● ●
●●●

●●

●●●

●
●●

●

●●●●
●

●
●

●

●

●

●
●

●

●
●

●●●●
●

●●
●●●●●●
●●●

●
●

●

●
●

●

●●
●

●

●
●

●●

●

●●●
●

●
●

●●
●

●
●●

●●
●●

●

●
●

●

●
●●●●●●●

●

●
●

●

●
●

●
●●

●●

●
●●

●●

●
●●
●●●

●
●

●●

● ●
●●

● ●

●
●

●●

●●

●
●

●

● ● ●●

●●
●● ●●

●
●

●●●

●
●●

●
●

●

●
●●

●●●●
●

●●
●●

●
●

●●●
● ●

●●
●

●

●

●
●

●●
●

●

●●

●
●

●
●

● ●●
●

●

●
●

●
●

● ●●●●●
●●

●

●
●

●
●

●●
●●●

●● ● ●●

●
●●

●●●
●

●
●

●
●●●●●●●

●● ●

●●
●

●
●

●
●●●

●

●
●

●
●

●
●●

● ●
●

●
●

●●
●

●

●●

●
●

●●●●

●

●

●●●
●

●●●
●

●
●

●●
●

●●
●●

●●

●
●●●●

●
●●

●

●
●

●●

●

●

●
●●

●
● ●
●

●
●●●

●

●● ●
●●

●

●●
●

●
●

●

●●
●

●●●●●
●●

●
●

●

●●
●●

●●
●

● ●●●●●●●

●

●

●●
●

●
●

●
●

●●

●
●

●
●

●●

●

●
●

●

●

●●
●●

●
●

●

●

●

●

●
●●●●●

● ●
●● ●

●●●●
●

●●

●
●●

●
●●●

●

●

●

●●●
●

●●
●

●
●

●

●● ●
●●

●
●

●●

●●
●

●● ●●
●

●
●●

●●● ●
●●

●
●●

●
●●●

●
●

●
● ●●

●
●

● ●●●
●●

●

●●●

●
●●

●●●●
●●

●
●●
●

●

●●●●
●●

●
● ●

●

●
●

● ●

●
●

●

●

●

●
●●

●
●

●
●

●

●●●●●

●
●●●

●

●

●●●
●●

●
●

●●●●
●

●●

●●●
●●

●●●

●

●●
●

●●●
●●●●

●●

● ●

●
●

●
●●●

●
●

●
●

●●●●●●●

●

●●
●●

●

●
●

●
●

● ●●
●

●
●

●
●

●
●●

●
●●

●●
●●●

●

●
●●●

● ●
● ●●●●● ● ●
●

●
●

●
●

●

●
●●

●
●●●

●
●

●●●●
●

●
●●

●● ●●●
●

●

●

●

●
●

●
●

●●●

●●

●
●●●●●●●

●

●
●

●●

●
●

●●
● ●

●
●●

●
●●

●●
●●

●

●●

●
●●

●
●●

●

●●

●●●●

●
●

●
●●

●

●●●
●●

●
●

●●●●
●

●●

●

●●
● ●

●
●

●

●

●
●

●

●
●●

●
●

●

●
●●

●
●

●

●
●

●
●●●●●●

● ●
●

●●
●

●
●

●
●

●

●●
●●●

●
●●●●

●●
●●

●
●●●●●●

●● ●
●

●●

●●
●●

●

●●
●●●

●

●●
●●●●●

●●

●●
●

●
●

●

●

●
●● ●●

●
●

●
●

●●

●

●

●●
●●●

●
●

● ●●

●●

●
●

●

●●●

●●
●

● ●●
●

●
●

●●

●

●
●●

●

●

●●●
●

●●

●
●●

●
●

●
●●

●●
●●

●●●
●

●

●
●

●●
●

●

●●
●●

●
●

●●

●

●

●●●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●
●

●●

●●

●●

●●●●
●

●
●

●

●

●●●●
●●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●
●

●
●

●
●●●

●●

●
●

●
●●

●
●

●●●
●●

●

●
●●●

●
●

●●●
●

●●

●

●

● ●●●
●●

●●●●
●●●●●●●●●●

●●
●

●

●

●
●

●●●
●

●
●

●

●●
●

●

●●
●

●●
●

●●
●

●
●

●
●

●●
●●●

●●
●●●●

●●●●●
●

●

●

●

●
●●●●

●
●

●
●

●

●
●●

●

●
●

●●
●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●

●

●
●

●
●●

●
●

●

●
●

●

●
●●

●

●
●

●

●●
●

●
●●●●

●
●

●
●

●●
●

●●●●
●●

●

●
●

●

●
●●●●●

●●●●
●

●
●●

●●
●

●
●

●
●

●●

●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●●

●
●

●●
●●

●
● ●

●
●●●●

●
● ●●●

●

●●
●

●●

●

●●

●●

●●●
●

●●

●
●●

●

●

●

●

●

●●●

●
●

●
●

●
●●

●

●
●

●
●

●
●

●

●

●
●

●●●
●

●

●●●
●

●●
●

●

● ●●●

● ●
●●●

●●●
●

●
●

●●●●
●●●

●
●

●

●●

●
●

●
●

●●

●●●
●

●●

●
●

●●
●●

●
●

●● ●
●●

●

●
●

●●

●●
●

●
●

●

●
●

●
●

●●●
●

●
●●

● ●
●●

●

●

●
●●

●
●

●
●

●

●

●
●●●

●

●
●

●
●

●●●●●
● ●

●
●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●●● ●
●

●
●●●

●
●

●

●
●

●●●●

●
●

●
●

●●●●●
●

●●
●●

●

●
●

● ●●

●

●

●

●
●●●

●
●

●●●

●
●

●

●
●

● ●

●

●

●
● ●

●
●

●●
● ●

●●
●

●
●●●

●●

● ●
●●● ●

●
● ●●●●●

●

●●
●●

●●

●●
●

●●
●

●

●

●●

●
●●

●

●●●
●

●

●

●

●●
●●●

●

●●●
●

●
●●●

●
●

● ●●

●
●●

●

●

●

●
●

●●
●

●●
● ●

●
●

●
●

● ●●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

● ●
●

●
●

●

●
●●

●●●●●

●
●

●

●
●●●

●● ●
●

●
●●

●

●

●
●

●●●

●
●

●●

●
●

● ●

●●
●●

●●

●
●

●●
●●●

●
●

●

●
●

●● ●
●

●

●

●●

●

●●
●

●

●
●

●
●

●
●●

●●●● ●●

●
●●

●
●

●●●
● ●

●

●
●●

●●
●

●
●●

●
●●●

●

●

●
●●●

●
● ●
●

●

●

●

●●●●
●●

●●

●●
●

●
● ●

●●●●
●

●

●●
●●

●

●●
●

●
●

●
●●

●

● ●●
●

●

●●● ●●
●

●●●●
●

●
●●●

●● ●

●●●
●

●
●

●●●●●●

●●
●●

●

●

●

●

●●
●●

●

●
●

●

●

●

●
●

●

●●●●
●● ●

●

● ● ●
●

●
●

●●●●

●

●●

●

●

●●●

●

●

●

●

●●

● ●
●●●●

●
●

●●

●
● ●

●●
●

●

●●●
●

●

●
●

●●

●●
●

●●
●

●●●●
●

●

●
●

●●
●●●

● ●
●●●

●
●

●

●
●

●
●

●
●

●●●●●●
● ●

●
●

●

●
●

●

●●
●

●
●●●●●

●
●

●●

●●●
●●

●
●●

●

●

●

●
●●

●
●

●●●●
●

●
●

● ●
●

●●

●●●
●

●●
●

●

●●

●

●

●
●●●

●
●

●●

●

●●

●

●
●

●●
●●

●●●●●●
●

●
●●

●
●● ●●

●
● ●●●

●
●

●
●

●
●●

●
●

●

●
●

●
●●●●

●
●

●
●●●●

●
●

●
●

●●
●

●●
●

●
●

●●
●●●●

●

●
●

●● ●●
●●●

●

●

●
●●

●
●

●●

●

●

●
●

● ●
●●

●

●
●●

●●●

● ●

●
●

● ● ●●●
●●

●●
●

●●
●●●

● ●

●●●●

●●

● ●
●

●
●●●●

●
●

●
●

●

●●

●●●●
●● ●

●●
●

●
●●

●

●
●●●●●

●
●●

●

●●

●

● ●●
●

●

●
●

●
●●●

●
●

●
●

●
●

● ●
●

●
●

●
●●

●●

●

●

●

●
●

●●●
●

●
●●

●●●

●
●

●

●●

●
●

●●
●

●

●
●

●
●●

● ●
●

●● ●

●

●●
●●

● ●●●●

●●●●
●●●

●●
●

●
●

●
●

●
●

●●
●

●

●●
●

●
●

●

●●

●
●

●

●●
●

●
●

●
●●

●●
●

●
●

●

●

●
●

●
●●●●

●
●● ●

●

●●
●●●●●

●
●

●●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
● ●

●

●

●
● ●

●●
●●●●

●
●

●

●●
●●

●●

●
●●●●

●
●

●
●●●

●●●
●

●
●●

●

●
●●●

●

●

● ●
●

●●

●

●
●●●

●
●●

●●●
●

●
●

●
●

●
●●

●●

●

●

●

●●
●●

●
●

●●●

●
●

●
●

●

●●
●

● ●●

●
●

●
●

●●●
●

●

●

● ●
●●

●
●

●

●
●

●●

●
●

●● ● ● ●
●

●
●●●●●

●
●

●
●

●●
●

●
●●

●●
●●

●

●

●
●

●
●

●
●● ●

●

●●●
●

●●
●

●
●

●
●

●●

●
●●●●●

●●

●●
●

●

●
●●●

●●

●

●

●●

●
●

● ●●●●
●

●
●

●

● ●●
●●

●●
●●●

●●

●
●

●●●

●●

●●
●●

●
●

●
●

●●

●
●

●● ●●

●

●
●● ●● ●

● ●
●●

●●
●●
● ●

●
● ●

●●
●●●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●
●●●

●●●●
●

●
●●

●

●

●

●

●
●●

●

●

●

●
●

●●
●●●

●
●●

●●
●●

●●●

●

●
●●

●
●●

●

●
●

●
●

●

●

●●●●

●●●
●●●●●

●●●
●●

●
●●

●●

●
●

●
●●

●●
●

●●
●

●
●●

● ●●
● ●●●●

●
●

●●
●●

●●
●●

●
●●

●

●

●●

●
●

●
●

●
●● ●●●

●●
●

●●

●
●

●●
●

●
●

●
●

●

●●●
●

●

●
●

●
●

●●●
●●

●
●

●●●

●
●●●

●
●●●

●●●●●
●●●

●
●

●

●
●

●

●

●●

● ●●
●

●
●●●●●

●●
●

●●
●●

● ●
●●

●

● ● ●
●

●●
●

●

●●
●●

●●●
●

●●

●
●

●

●●●●

● ●

●●
●

●● ●

●●
●

●●

●●●
●

●●
●

●

●
●●

●
●

●●●
●

●
●

●
●●

●
●

●
●

●●●
●

●

●
●

●

●

●●●

●
●

●
●

●
●●

●
●●

●●●
●

●
●●

●●
●

●

●
●

●

●
●

●

●

●●●
●

●
●

●

●●

●
●

●
●●

●
●

●
●

●●
●

●
●

●

●
●●●

●
●

●●

●
●

●
●

●
●

●

●

●

●

●

●
●●● ●

●

●
●

●

●

●

●

●
●

●

●

●
● ●●

●
●

●
●

●

●●●●
●

●●
●

●
●●●●

●

●●●
●

●●

●●
●

●
●●

●
●

●
●

●
●

●

●

●

●
●

●●
●

●
●

●
●●●

●●●

●
●●●●●●●

●●
●●

●

●

●
●

●●

● ●●
●●

●
●●

●

●

●

●
●

●●
●

●

●

●

●● ●
●

●●●
●

●●
●

●

●
●

●

● ●●

●
●

●
●

●
●

●●●●
●

●●
●●●●

●
●

●

●●●
●●

●

●
●

●
●

●
●

●●
●●●

●
●

●

●
●

●●●●

●

●
● ●

●●
●

●

●

●
●

●
●●●●

●
●

●
●

●

●
●

●
●●●●

●
●● ●●

●●

●
●

●

●●●

●●●●●

●●
●

●

●

●
●●

●
●

●
●

●

●●

●
● ● ●●

●
●

●

●
●

●

●
●

●

●●

●

●●●●
●●

●●
●

●●
●●●●●

●
●

●
●

● ●●

●

●
●● ●●● ●●●

●●●●●
●

●●
●

●●●●

●
●

●
●

●
●

●

●
●

● ●
●

●

●
●

●
●●

●●
●

●●
●

●

●

●●

●●
●

●
●

●
●●
●

●

● ● ●●●●●●●●●●

●

●
●

●

●● ●
● ●●

●●
●

●

●

●
●●●●
●

●
●

●

●
●●●●●

●

●
●

●●
● ●

●

●●

●

●●

●●
●

●
●

●● ●
●●

●
●

●
●●

●
●●

●
●●

●●

●● ●●
●

●●

●

●
●●

●

●

●
●

●
●

●

●
●●

●

●●

●

●

●
●

●●●●●●●
●●

●● ●
●●

●●
●

●●●●
●●●

●
●

●●
●

●

●

●
●

●
●

●●
●

●●
●

●
●

●
●

●●●
●

●

●
●

●
●

●

●
●

●
●●

●
●●●●

●●

●●
● ●

●
●

●
●●

●●

● ●

●
●●

●●
●●●●

●
●●

●
●●●

●●

●●

●●

●
●

●●
●●

●
●

●
●●●

●

●●
●●

●●●
●

● ●●
●●●●

●●●
●●
●

●
●

●
●●●●●

●
●●

●

●
●

●

●
●

●●●
●●

●
●

●●●
●

●

●
●

●

●●

●

●●●
●●

●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●
●●●

●

●
●

●●
● ●●

● ●
●

●
●●

●
●●●

●

● ●

●

●
●

●
●●●●●●●

●

●●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●

●●
●

● ●

●
●

●●

●

●●
●

● ●●
●

●

●
●●●●

●●

●●
●

●
●

●

●

●
●

●
●●

●● ●

●●
●

●
●●●

● ● ●
●

●● ●

●
●

● ●
●

●

●

●
●

●

●●●

●●
●

●

●

●●

●

●

●

●
●

●

●

●●

●
●●

●●
●

●

●
●

●●

●●
●

●

●●
●

●
●

●

●●●
●●

●
●

●●
●●
●

●

●

●
●

●

●

●●
● ●

●●
●

●
●●●

●
●

●

●
●●

●

●●●
●●●

●

●●
●

●
●

● ●
●

●
●

●
●

●

●●

●
●●

●

●
●

●●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●●

●●
●

●●
●●

●
●

●

●●

●

●●
●●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●●
● ●

●●●●●

●●

●●
●●

●●●

●
●

●

●●
●●

●●

●●
●● ●

●●●●
●●●●●

●
●

●
●●

●
● ●

●
●●

●
●

●
●

●●

●●●●
●

●●●●
●

●●

●
●●●●

●●
●

●
● ●●●

●
●

●●
●

●●

●●●●
●

●

●●

●●
●

●

●

●
●

●
●

●
●●●

●
●

●●●
●

●●●●●
●

●
●●●●

●●●
●

●
●

●●●
●●●●●

●

●

●

●
●●

●
●

●
●

●●
● ●●

●

●●
●

●
●●

●●
●●●

●
●●●

●●●
●●

●
●●

●●

●

●
●

●

●●

●●

●
●

●

●
●●●

●
●

●
●

●
●●●

●●

●
●●

●●

●●
● ●
●●

●●●●
●●

●●●

●●●
●

●●
●●

●

●●
●

●
●●

●● ●●
●●●●

●●
●●● ●●

●

●

●

●●●●

●
●●

●●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●
●●

● ●●
●●

●
●●●●

●
●

●

●●
●

●
●●●

●●
●

● ●
●

●●●
● ●

● ●
●●

●●
●

●
●

●
●

●
●

●
●●●

●
●

●
●●

●
●

●
●

●●
●

●●

●●
● ●

● ●

●

●
●

●

●
●

●●

●

●
●●

●●

●●

●

●

●●

●●

●
●●

●
●

●
●●

●●●

● ●●

●●
●●

●
●

●

●● ●

●●●
●

● ●

●
●●

●●
●●●

●
●

●●
●●

● ● ●
●

●●
●

●

●

●●
●●

●●●

●
●

●
●

●

●●
●●

●

●

●
●

●●●●●●
●

●

●●

●
●

●

●●
●● ●

●
●

●
●

●

●●

●

●●●
●

●
●

●

●●● ●

●
●●●

●●

●
●●

●●
●

●
●

●

●●●●●●
●

●
●●●

●
●● ●

●

●
●

●
●●

●

●
●

●
●

●
●

●● ●
●

●
●

●
●●

●●●
●

●

●●

●

●●
●

●●
●

●
●

●
●●●

●● ●●

● ●
●

●●●
●

●

●●●

●

●
●●●● ●●

●
●

●●●

●
●●

●

●

●
●

●●

●

●

●

●

●●
●

●
●●

●
●

●
●●

●●
●●

●●
●

●
●

●
●●●●

●

●

●
●●●

●
●●●

●
●

●●●

●

●
●

●
●●

●●

●●
●●

●
●●

●● ●
●●●

●
●

●
●●

●●
●●●●

● ●●●
●

●● ●
●●●●● ●

●●
●

●
●

●●
●

●

●
●

●●●●●

●

●●●●

●
●●●●●

●
●

●
●

●

●
●

●
●

●●
●

● ●●
●

●

●

●
●●

●●

●●
●

● ●
●

●●
●●

●

●●●

●
●

●

●

●
●

●

●●

●
● ●

●
●

●●
●

●
●

●
●

●
●

● ●
●●

●●

●

●●
●

●●
●

●
●●

●

●●
●●●● ●

●●
●

●
●

●●●

●
●●

●●●●●

●●

●

●

●

●●●

●●
●

●●
●

● ●
●

●

●
●

●

●
●

●●

●
●

●

●●

●

●●●
●

●
●

●●

●
●

●
●

●

●●●
●

●
●●●

●●●●●

●

●●
●

●●
●

●

●
●

●●●●●
●

●●
●●

●
●

●
●

●●
●

●
●

●
●●

●
●

●

●●

●●●
●

●●●

●

●●

●
●●●

●
●●●

●●
●●

●●●● ● ●●●●

●●
●

●
●●●●

●
●

●
●

●●

●●

● ●●
●

●

●
●

●

●●
●

●

●
●●

●●
●

●

●●●
●●

●●
●

●●●●

●
●

●

●

●

●●

●
●

●
●

●
●

●●

●
●

●
●

●●●
●

●●
●

●
●●●

●●
●● ●●●

● ●● ●

●● ●

●

●
●

●
●●

●●●●
●

●

●
●

●●

●

●
●●

●●●

●
●

●
●●

●●
● ●

●●●●

●●
●●

●●●●
●●

●●●●●●
●

●
●●●

●

●
●

●●

●
●●

●
●

●

●●●
●●●

●
●

●

●

●●

●

●
●●

●●●
● ●●

●
●●

●
●●●●

●
●

●●
●

●●

●

●●●
●

●●
●●●

●●

●

●●●●
●

●

●
●

●
●●

●

●●

●
●

●
●

●●● ●
●

●

●
●●

●●
●●

●
●

●

●
●●

●
●

●

●

●

●
●

●

●●
●

●
●●●
●●●

●
●

●

●
●

●
●

●●
●

●●
●

●●●

●

●
●

●

●●●
●●

●●
●●

●
●

●
●

●
●

●

●
●

●

●
●

●

●●
●●

●●●●
●

●●
●

●

●
●

●
●●

●
●●

●

●

●

●

●●●

●

●
●

●

●

●

●
●●

●
●

●
●●●

●●

●
●

●●
●

●
●

●
●

●

●●
●●

●
●●●●

●
●

●
●

●
●

●
●

●●

●
●

●●●

●
●

●

●

●●
●

●●

●
●

●
●

●●
●

●

●
●●

●
●●●●

●

●

●
●

●●●
●●●●● ●●●

●

● ● ●●●

●
●

●

●

●●

●

●●

●

●●
●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

●
●

● ● ● ●

●●●

●●

●●

●

● ●
●

●
●

●

●

●

●

●
●●●

●●

●●●

●

●
●

●
●

●
●

●●
●

●

●
● ●

●●
●

●
●●

●

●

●

●●

●
●

●●
●

●

●●●
●●

●

●

●

●●

●●●●

●

●

●
●

●●
●

●●
●

●●
●●●●

●
●

●
●

●
●●●

●●
●

●
●●●

●
●

●●●

●

●●

●

●

●
●●●

●
●

●
●

●●
●

●●

●
●

●●

●●
●●● ●●

●●
●

●●
●●

●●
●

●
●●● ●●●

●
●●

●●

●

●
●●●

●●●●
●

●

●
●●

●●

●
●●

●

●●●●
●

●
●

●
●

●
●● ●

●●

●
●

●
●

●

●

●
●●●

●
●

●

●
●

●
● ●●

●

●
●

●

●●
●●

●
●

●●●●●
●●

●

●
●

●●●●

●●●●

●
●

● ●

●●
●

●
●

●

●●
●

●
●

●

●●●●●
●●

●
●

●●● ●●●

●●●

●●

●●

●

●
●●

●
●

●●

●
●

●
●

●
●

●
●●

●

●●

●
●

●●●

●

●
●●

●

●●

●
●●● ●

●
●

●
●

●

●
●

●●
●

●

●●
●●●●

●●●●
●

●
●●

●
●

●●●
●●

●

●
●●●

●

●
●●

●●●
●●

●

●

●
●

●●● ●

●

●

●

●●
●

●●

●
●●

●●●●
● ●

●●

● ●●

●

●●●●

●●

●

●

●●

●
●

●
●

●

●

●●

●

●

●●
●

●●●
●

●
●

●

●

●●
●

●●●
●

●

●

●
●●

●
●

●

●●

●

● ●
●

●●
●

●●
●

●
●●

●
●

●

●

●
●

●
●●

●
●

●
●●

●

●●
●●●●
●●●

●
●

●
●

●
●

●●●
●●

●
●

●●●

●●

●

●
●

●●
●●

●●

●
●●●

●●
●

●
●

●
●●

●●●
●

●●●●
●

●

● ●●

●●

●●

●●
●

●

●
●

●
●

●

●
●

●●

●●●
●

●
●

●●●

●●●
●

●●
●●

●●●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●●
●●

●
●

●

●●

●

● ●
●

●●

●

●

●

●

●
●

●
●●●

●●
●●●

●

●
● ●

●
●

●●
● ●●

●● ● ●
●●

●

●

●

●

●●●●
●

●

●● ●

●●
●●

●●●
●

●

●●●

●
●

●●
●

●

●●

●

●●
●

●●
● ●●

●
●

●
●

●
●

●

●

●
●●

●
●●

●●●

●

●

●

●●

●

●

●●
●●
●

●
●

●

●

●●

● ●

●●
●

●●
●●

●●●
●●

●
●

●

●●

●●
●

●

●●

●
●

●
●

●
●●

●

●

●
●

●

●●
●

●● ●●
● ●

●
●●

●

●

●

●

●
●

●●●
●

●

●

●

●●●
●

●

●●

●
●●

●●●

●

●●

●
●

●●
●●●

●
●

●

●

●●
●

●

●●●●●
●●

●
●

●
●

●
●

●●●
● ●

●

●

●●
●●●●

●●

●
●●

● ●●
●

●

●

●●

●●

●
●●
●●

●
●

●
●●
●

●●

●

●
●

●

●
●

●●●
●●●

●

●●

●

●●
●●●

●
●

●●
●

●
●

●●
●

●●
●●●

●
●●

●
●

●●
●

●●

●

●●●

●●●
●●●●

●
●●

●
●

●●●

●

●
●●

●

●●
●

●
●●

●●
●

●
●

●
●●●

●
●●●

●
●

●
●●

●

●●
●

●
●●●

●●

●●
●

●

●

●

●
●

●
●

●●●●● ●●●

●●●

●
●

●

●

●●●●
●●

●●
●●

●●

●

●
●

●●●●
●

●

●
●

●
●

●
●●

●●
●

●
●

●

●●

●
●

●
●

●

●●

●
●● ●●

●
●

●●●

●

●●

●●
●●

●
●

●●●
●●

●●●
●

●

●

● ●
●

●●●●

●●

●●
●

●

●

●
●

●
●●

●●
●

●
●

●●
●●●

●●
●

●●●

●

●
●

●
●

●
●

●●●●
●

● ●
●

●

● ●●

●●
●

●●
●

●

●
●

●

●

●
●

●

●
●

●●
●

●

●
●●

●
●

●

●●

●●
●

●●
●

●● ●

●
●●

●
●

●

●
●

●

●●●
● ●●

●

●●

●●●● ●●
●●●●●

●●
●

● ●
●

●●

●
●

●

●
●

●

●
●

● ●

●
●

●

●

●
●●

●
●●●

●

●

●
●

●

●
●

●●●

●

●●●●
●●

●
●

●
●

●●
●

●
●

●
●

●

●

●
●

●●
●

●●
●

●
●

●
●●

●
●

●●

●
●

●

●
●

●●

●
●

● ●
●

●●
●●

●●

●

●
●●

●
●●

●
●

●

●

●

●●●

●

●
●

●
●●●●

●

●

●

●●
●

●●

●
●

●

●
●

●
●

●

●●
●

●
●●

●

●
●

●●●●●●●
●

●●

●●
●●

●●
●

●●●●●●●●●●
●●●

●
●

●●
●●

●

●

●●

●●

●
●

●●●

●
●●●

●
●

●●
●

●
●

●

●
●●

●
●

●●
●●

●●
●

●

●
●

●

●●

●

●●●

●●

●
●

●●●●
●●

●

●

●
●

●●●●

●
●

●●
●●

●●

●
●

●●
●

●

●
●

●
●

●●

●●●
●

●
●

●●●
●

●●
●

●

●
●

●●
●●

●
●

●
● ●

●
●●

●●
●

● ●
●

●●●●●●

●
●●● ●

●●
●

●
●

●
●

●●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●●

●●

●●
●

●
●

●
●●

●
●

●
●●●

●
●●●

●
●

●
●

●
●●

●●
●

●

●
●

●●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●●●

●●●

●

●
●

●
●

●

●
●

●●

●●
●

●●●●
●●

●●●
●

●
●

●

●●
●

●
●

●
●●

●●

●
●●

●
●

●●
●

●●

●
●●●●

●●●●
●●

●
●

●
●●

●

●●

●

●

●●

●
●●

●●
●

●●
●●●●

●●●
●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●
●

●●●
●

●
●

●●
●

●

●

●●
●●●

●
●●

●●●

●

●●

●

●

●
●●●

●

●
●

●●
●

●
●

●●
●

●●

●

●●

●
●

●

●

●●

●
●●●●●

●●

●●

●
●

●●●●●●
●●

●
●●●●

●
●

●●

●●
●●●

●

●●●●
●

●●
●

●
●

●

●

●●●

●
●

●

●
●●

●
●

●●

●●

●
●

●

●

●
●●

●●

●
●

●
●

●

●
●

●●

●●
●

●
●

●
●

●

●
●

●

●
●

●
●●●

●
●

●
●●●

●
●

●●
●

●●

●
●

●

●
●

●●
●●

●

●●●
●

●
●

●●

●●

●

●
●

●

●●
●●

●
●

●
●

●●

●
●

●●

●

●
●

●●

●

●

●
●

●

●

●●●
●

●

●
●

●

●
●●●●●●

●●
●

●●●
●●
●●

●

●

●
●●

●
●

●●●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●●

●●

●

●●●
●

●●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●●

●
●

●
●

●●●
●●●

●●●
●

●

●
●●●●

●●●
●

●●

●

●
●

●
●

●

●

●●

●●●

●●

●

●●

●●
●●

●●●
●

●
●●●

●

●
●

●●
●

●●
●

●
●●

●

●
●

●
●●

●●
●

●

●
●

●●●

●●●●
●●

●

●

●

●●●●
●●

●●

●●

●●●
●●●●
●●
●

●●
●

●
●●●●●

●
●

●
●

●●

●●●

●
●

●

●

●
●

●
●

●●

●●

●

●●●
●●

●
●●●●●

●

●●
●●

●

●
●

●

●●
●

●
●

●

●●●●

●

●
●

●

●●

●●

●

●●

●

●
●

●
●

●
●

●
●

●●

●
●●

●

●
●

●●

●●●
●

●
●

●

●●

●
●●

●●

●●●●
●●

● ●●

●
●

●●
●●

●
●

●

●

●
●

●●

●●
●●

●
●

●

●
●●

●
●●

●
●

●●●●

●
●

●
●

●●

●

●●
●

●●

●●
●●

●●
●

●
●

●●
●

●
●●●

●●●
●

●●

●
●

●●

●●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●●
●●
●

●

●
●

●
●

●

●

●
●

●●
●

●●●

●●●●●
●

●●
●

●

●

●
●

●●

●●
●

●

●
●●

●●●
●

●
●

●●

●
●●

●

●●
●●

●
●

●

●●

●

●
●●●●●●

●
●

●●●●
●

●

●
●●●● ●

●
●

●

●
●

●
●●

●●

●
●●●●

●●

●

●●

●●
●

●

●

●
●

●●
●

●●●●

●●

●
●

●
●

●●

●

●●

●
●

●

●

●
●

●

●●●●
●●

●●●
●

●
●

●

●

●●
●●●

●
●

●
●

●

●
●

●●
●●

●●●

●

●

●
●●

●
●

●

●

●
●●●

●

●●

●
●

●●

●●
●

●
●●

●
● ●

●

●
●

●
●

●
●●

●

●

●
●

●● ●●
●●

●

●

●●

●

●

●

●
●●

●●
●

●●
●

●

●●

●
●●

●
●

●
●

●●●●
●

●●
●

● ●
●

●
●●

●
●

●
●●●

●

●●

●●●●●
● ●

●

●
●

●
●●●●●

●
●●●●

●
●

●
●

●
●●●●

●
●●

●
●●

●

●
●

●
●●●●

●
●

●●●●●

●

● ●

●●●

● ●

●

●●
●

●
●

●●
●●

●
●●●

●
● ●●
●

●
●●

●
●

●
●

●●● ●●●
●

●●●

●

●
●

●

●● ●●
●

●●

●
●

●
●

●

●
●●●

●
●

●
●

●
●

●●
●

●●●
●●

●●
●

●●

●

●●●●
●

●

●

●
●

●

●
●

●
●●

●
●●

●
●●

●
●

●

●
●

●●●
●

●

●

●
●●

●

●

●●

●

●
●

●●●
●●

●●

●

●
●●

●
●

●●
● ●

●●●

●●●●
●

●

●●

● ●●●
●●

●
●

●
●●

●
●

●
●

●
●

●
●●

●
●

●
●

●●

●

●
●

●●●●●

●●
●●

●
●

●●●●
●

●
●

●
●●

●●
●

●●

●●●
●●

●
●

●
●●●●

●

●

●

●

●

●●

●●
●

●

●●
●

●●●●

● ●●
●●

●●

●●
●

● ●●●●●●●●●

●
●

●●
●

●
●

●
●

●

●
●

●●●

●
●

● ●●

●●●●●
●

●

●●
●

●

●
●

●●●
●●

●
●●

●

●

●

●

●
●

●
●

●
● ●

●

●●

●●
●

●

●
●●

●

●
●

●
●

●●
●

●

●●●
●

●●
●

●
●

●

●
●

●
●

●
●

●
●

●
●●●

●
●

●
●

●●
●

●●●
●●●

●●●
●●

●●
●

●●
● ●

●

●

●●●●

●●

●
●

●
●●

●●

●●●

●●

●

●
●

●
●●

●
●●●●

●

●
●

●

●
●

●●

●
●● ●

●
●

●
●●

●

●

●

●●
●

●

●
●

●●●

● ●

●●
●

●
●

●

●
●

●
●●●

● ●●

●
●

●●●●

● ●●
●

● ●●

●
●

●

●
●

●●

●●

●●

●

●●●●

●

●

●

●

●●
●

●
●

●

●●
●

●●
●

●●●● ●

●●●
●

●
●●●

●
●

●●
●

●

●●
●

●

●
●

●●
●

●

●
●

●●●●●●
●

●
●

● ●
●●

●

●●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●●
●

●●
●●

● ●

●●
●

●●●

●

●
●

●
●

●
●

●
●

●
●

●●●
●

●
●●●●

●●

●
● ●

●●●●
●● ●

●
●

●●
●

●●
●

●

●

●●

●●
● ●

●
●●

●
●

● ●●

●

●
●●

●

●●●●●

●●

●●
●

●
●

● ●
●

●

●●●

●
● ●●
●

●●●
●

●●

●●

●

●

●
●

●
●

●
●

●●●●
●

●
●●

●●
●●●

●●
●

● ●●●

●●
●

●
●

●
●

●●
●

●
●●

●
●

●
●

● ●

●
●

●●●
●●

● ●

●
●

●
●

●●●

●

●
●●

●
●

●

●
●

●
● ●

●
●●

●
●●● ●

●●●●
●

●
●

●
●

●
●

●●
●●

●
●

●●
●

●
●

●●
●

●
●

●

●●●
●

●
●

●

●
●

●●
●

●

●

●●
●

●

●●
● ●

●●●
●●●

●
●●●●●

●●

●●
●

●
●

●
●●●●

●●●
●

●

● ●●
●

●

●●
●

●

●●
●

●
●●●

●
●●●

●
●

●●
●

●●
●

●●
●

●

●●●●

●●

●

●
●

●●

● ●●
●● ●

●●●
●

●

●●
●●

●●●

●
●

●
●●

●

●

●
●●

●●●
●●

●

●
●

●● ● ●

●
●

●●
●

●●●●

●

●●●
●

●●
●

● ●
●

● ● ●
●●●

●
●

●
●

●

●

●
●

●
●

●

●●
●●

●

●

●
●

●
●

●
●

●
●

●

●●
●●●

●

●

●

●
●●

●
●

●
●●●

●●●
●●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●●

●●●●
●

●
●

●
●

●

●●

●
●

● ●●
●●●●

●
●

●

●
●●●

●
●

●
●●

●
●●

●●
●

●
●● ●

●●●
●●

●
●

●●

●●●
●

●●●●
●●●

● ●
●●●

●
●

●
●

●●
● ●●●

●●●●
●

●
● ● ●●

●
●●●●●

●●
●

●●●

●

●●●
●

●
●

●●●

●
●

●●
●

● ●●
●●● ●

●●
●

●●●

●

●
●

●
●

●●
●

●●
●

●

● ●

●
●●●●

●
●

●
●

●●
●

●●
●●●●●●●

●
●

●●●

● ●
●●

●●●
●

●
●●●● ●

●
●●

●

●
●

●●

●● ●●
●

●●●●●●●
●

●
●

●

●●
●●

●
●

●
●

●● ●●●●●
●

●
●●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●

●●

●

●
●

●
●●

●

●
●●

●
●

●

●
●

●
● ●

●●

●
●●●

●●
●●

●

●

●
●

●●

●
●

● ●●●●
●●

●
●●

●

●
●

●

● ●

●

●

●
●●

●
●

●
●

●
●

●
●●

●●
●

●●
●

●

●

●●
●

● ●

●●●
●●

●●
●

●
●

●

●
●

●●

●

●

●●

●
●

●●●●

●●

●
●

●●●

●

●●●●
●

●
●

●●●
● ●●

●
●

●●●
●

●● ●

●

●

●

●
●

●

●
●●●

●

●
●

●
●

●
●●

● ●

●

●

●
●●

●●
●

●
●

●●●●

●●●

●
●●

●
●●

●

●
●●

●
●●

●

●●
●●●

●
●●

●
●●●●●

●
●

●●
●●

●●
●

●
●●

●
●

●
●

● ●●
●●●

●
●

●
●

●●●●●

●●
●

●
●●

●
●●●●●●

●
●●●●

●●

●●● ●●
●

●
● ●●

●

●

●●
●●

●
●●●

●
●

●
●

●●●
●●●●●

●●

●●

●●●
●

●

●●
●

●●

●

●
●●●●●●●●●●

●

●

●

●

●

●
●●

●

●●
●

●
●●

●
●

●●
●●

●
●

●●●●
●

●
●

●
●

●●

●

●
●

● ●

●

●●
●

●●
●●

●
●

●
●

●●●

● ●●●

●●●●

●●●●

●

●
●

●
●

●
●●●

●
●

●
●●

●●

●●

●

●

●●
●

●
●●

●
●●

●

●
●

●
●

●

●●
●

●
●

●●
●

●

●
●

●

●
●●

●

●●
● ●

●●●
●●●●●●●●●

●
● ●

●
●●

●

●
●

● ●

●

●●●
●

● ● ●

●

●●●●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●●●

●●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

●●
●

●
●●●●●●●

●●

●
●

●●●●

●

●●

●

●
●

●
●●

●●
●

●●
●●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●
●

●

●
●

●

●
●●●

●

●●

●
●●

●
●

●●
●

●

●●●

●

●

●●
●

●
●●

●●●●

●

●

●
●

●●
●

●●●●●●●● ●
●

●
●●●

●●
●

●
●

●
●

●●
●●

●
●●●

●●
●●

●
●●

●

●
●

●●●

●

●

●
●

●●●●●
●

●●
●●

●
●

●
●

●
●

●
●

●

●

●●●●

●●

●● ●
●

●●

●
●

●

●
●●

●
●

●●
●●

●
●●●●

●
●

●●●
●●

●
●

●●●●
●●

●
●

●●●
●

●
●

●
●●

●

●
●●

●
●

●
●

●
●

●
●

●●●

●●

●
●●

●
●●

●

●
●

●●●

●
●●●

●
●●●

● ●●
●

●●●●●●●● ●
●

●
●

●●
●

●●

●●● ●
●●

●

●

●

●
●

●
●

●●
●●● ●

●●
●

●
●

●● ●

●
●●

●
●

●●

●
●●

● ●●●
●●

●●

●●
●

●
●

●●

●

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●●
●●●

●
●

●

●
●

●
●

●●
●

●●●●

●
●

●
● ●●

●
●

●●

●

●
●

●
●

●●
●

●
●

●●

●
●

●
●

●

●
●

●●
●

●
●

●●
●●●

●
●●
●

● ●
●●

●●●●●●

●
●

●
●●●

●

●
●

● ●●●●●
●●

●

●
●

●
●

●●●
●●●

●
●

●

●●

●

●
●●●●●

●●

●

●

●

●

●

●
●●

●
●

●

●
●●

●● ●●

●

●●

●
●

●

●

●●●●
●

●
●●●

●

●
●

●●●
●●

●●
●●●● ●● ●●●

●
●

●● ●
●●

●
●

●
●

●

●●
●●

●
●●●●

●
●

●●
●

●●●●

●
●●

● ●●
●

●
●

●●●●

●

●
●

●
●

●

●
●●●●●●

●
●

●
●

●
●

●

●
●●

●●
●

●●●
●

●●

●
●

●●

●
●

● ●
●●●

●
●●●

●

●
●

●●
●

●
●

●

●
●

●●
●

●

●
●

●●

●

●
●●

●●
●

●
●●

●

●●
● ●

●
●

●

●
●●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●●

●

●

● ●

●
●

●
●

●

●

● ●
●

●●●

● ●
●●●

●

●
●●●

●●

●

●●●●

●

●●

●●

●
●

●

●
●●

●

●

●
●

●
●●

●
●●

●

●●●●
●

●●
●

●

●

●●●●

●
●

●
●

●●
●

●●
●●

●●

● ● ●

●
●

●●
●●●
●●

●●●●
●

●
●●

●
●

●

●

●
●●●

●
●

●●
●

●
●

●

●
●

● ●
●

●

●●●

●●
●

●● ●
●●●

●●●
●●

●

●

●

●●●●●
●●

●
● ●

●●

●

●●

●

●●
●●

●
●

●
●

●
●

●

●

●●●

●●
●

●●
●

●
●●

●●

●

●

●

●
●

● ●

●

●
●

●

●

●

●●
●●●●

●
●

●●
●●

●
●●●

●●●
●

●
●●

●
●

● ●●

●
●●

●

●

●

●
● ●

●● ●●
●●

●

●
●●

●●

●●

●

●

●
●

●
●

●●

●●
●●

●

●●●
●●

●●
●●

●●

●
●

●●●

●
●

●●

●●

●●
●

●●
●

●

●●
●

●
●

●●

●
●●●

●

●
●

●● ●
●

●●
●

●●
●●●

●●●

●
●

●

●
●

●
●

●●
●

●
●●●

●

●●
● ●●

●●●

●
●

●

●

●
●●

●

●●

●

●

●

●●●
●

●●

●●

●

●

●

●

●

●

●
●

●●●
●

●
●●

●●●
●●●

●●

●

● ●●

●

●●●
●

●
●

●

●

●●
●

●●●●

●
●

●●

●●●●
●

●

●
●●

●
●

● ●
●●

●
●●

●
●

●●
●●

●
●●

●
●

●
●

●
●

●●

●

●

●

●

●●

●

●●

●●

●
●

●

●
●

●●●

●●

●
●●●●

●

●●
●

●
●●●

●●
●

●●●
●

●

●●
●

●
●●

●●
●

●●
●

●●●

●

●
● ●

●

● ●

●●
●●

●

●

●●●
●

●●●
●

●
●●●

●
●● ●

●●

●

●●●

●

●●
●●●●●●●●

●● ●
●●

●●
●●

●

●

●
●

●●
●●

● ●●●●
●

●●
●●

●●●
●●

●

●●

●
●●

●
●●

●
●

●●

●

●
●●

●
● ●

●
●

●
●

●
●●

●
●●●●●●

●
●●

●●
●

●●

●
●

●

●●●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●●
●●●

●

●●
●

●
●●

●●
●●

●
●

●
●●●

●

●●
●

●
●

●
●●

●● ●●●●●●

●

● ●

●● ●
●●

●
●

●

●
●●●●●●

●
●

●

●

●● ●●●●
●

●
●

●●
●

●
●

●

●● ●
●

●
●●●●●●

●
●

●
●●●●

●●
●

●●

●

●●

●
●

●●●●
●

●
● ●

●

●

●
●●

●●

●

●

●
●

●
●●●

●●

●

●●
●

●

●

●
● ●● ●

●
●

●
●●●

●

●
●●

●●
●

●
●

●
●

●
● ● ●

●

●
●

●
●

●●
●

●●
●

●

●●●
●

●
●

● ●

●
●●

●
●

●●
● ● ●●
●

●
●

●●

●●
●●

●●●●
●

●

●

●

●

●

●
●

●●
●●●●

●
●

● ●

●●●

●

●●●
●

●
●

●
●●●

●
●●

●

●●

●

●●

●
●

●●●

●
●●

●
●

●●●

●

●
●●

●
●●

●
●

●
●

●●
●●●●

●
●

●●
●●●●

●

●

●

●

●●●
●

●
●●

●
●●

●●●●●●

●●

●
●●●

●
● ●●

●●
●●

●● ●●

●
●

●

●●

● ●
●●

●●
●

●
●●●

●
●

●

●
●●●

●●
●●

●●

●
●

●
●●●

●

●●●

●

●●
●●

●●●
●●

●
●●

●
●

●
●

●●

●

●
●●

●

●

●●
●

●

● ●●●●●
●

●●

●

●

●
●

●●
●

●
●● ● ●●●

●●●●

●
●●

●●
●

●

●●●
●

●

●●
●

●
●

●
●

● ●●
●●

●

●●●
●●●●●●

●
●

●●●●

●

●

●
●●●

●

●
●

●
●

●
●●

●

●

●●●●●●●

●●
●

●
●

●●
● ●●●●●●●●

●●●
●●●●

●
●

● ● ●
●●

●
●●

●●
●

●
●

●
●

●
●●

●
●

●

●●

●

●
●●

●

●

●

●

●
●

● ●

●
●

●
● ●●

●
●

●●
●

●

●●●
●

●●
●

●

●●
●

●
●

●

●
●

●●
●●●●●

●
●

●
●●

●

● ●

●●
●

●●
● ●

●
●

●●

●●●● ●

●●●●●●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
● ●●

●● ●●
●

●

●

●

●●
●

●
●●●

●

●
●●

●●●●

●

●
●

●

●●●●●●
●●

●

●

●
●

●●

●●
●●●

●
●

●●
●●●●●

●● ●

●
●

●
●

●

●●●

●

●

●●●●

●●
● ●

●
●

●

●

●
●

●●
●

●
●●

●●
●

●●

●

●
●●

●
●●

●

●

●
●

●●●●
●

●●
● ●●

●●●
●

●●

●

●
●

●

●
●

● ●
●●

●
●●●●

●●●

●

●
●●

●●●●
●

●

●●●
●

●●

●

●
●●●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●
●

●●
●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●●

●
●

●

●● ●
●

●

●

●
●●●

●●●
●●●

●
●

●
●

●●●

●

●
●

●
●

●

●

●

●

●●
●●

●●
●●

●●
●

●
●

●
●

●

●●
● ●●

●

●

●
●●●

●

● ●

●

●
●

●
●

●●● ●●
●●

●●●●

●
●

●●

●●

●
●

●●
●●

●●
●

●
●

●
●

●

●
●

●

●
●

● ●
●

●
●

●
●●●
●

●
●●

●
●

●●

●

●●
●

●●●●●

●●●
●

●
●

●●
●●●●

●

●● ●

●
●

●
●

●
●●●●●

● ●
●

●

●
●●

●
●●

●

●
●

●
●

●●
●

●

●
●

●
●

●
●

●●
●●

●

●●

●●
●

●

●
●●

●
●●

●

●
●

●●
●●

●
●

●●
●

●●●

●●

●
●

●

●
●

●

● ●

●
●●●●

●●

●

●
●

●●

●●

●
●●●●●

●●●

●

●
●

●
●

●●
●●●

●●●
●●●●●

●
●●●

●
●

●
●●●●

●●

●●●●
●●●
●●●

● ●

●●●●●●
●

●

●

●

●
●●

●●
●

●●
●●

●
● ● ●

●

●
●●

●

●
●●

●
●

●●
●

●

●●●

●
●

●

●

●●

●●●
●

●
●

●●
●

●

●

●
●●●
●●

●
●

●●

● ●
●●●

●●●
●

●●●
●

●●
● ●

●
●

●

●
●

●
●

●
●●

●
●

●●●●

●

●
●

●
●●

●●

● ●
●●

●●
●

●

●
●

●

●
●

●

●
●

●
●●

●
●

●
●

●
●●●●●

●● ●●
●

●●
●●●

●●

●●
●

●●●●

●●●
●

●●

●
●

●●
●

●
●

●●●

● ●●
●

●
●

●

●●
●●

●
●

●●
●

●●
●

●●

●
●

●
● ●

●
●●

●
●

●●
●

●
●

●

●
●

●
●

●●●

●

●●
●

●●
●

●●●
●

●

●

●●●
●

●

●
●●●●●

●
●●●●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●●

● ●
●●●

●
●●●

●●

●●
●

●●
●●●●●

●● ●
●●●●

●
●●

●●●

●● ●●●
●

●●
●●

●
●●

●
●

●

●
●

●●
●●

●●●●
●

●

●●
●

●
●

●●●
●

●
●●

●
●●

●●
●●●

●
●●

●
●

●
●

●●

●
●

●

●
●

●
●

●●

●●
●●

● ●●

●
●●

●

●

●

●●
●

●
●

●
●

●●

●
●

●●●
●

●●●
●

●
●

●
●●●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●●●
●●●

●●●
●●●●

●●
●

●

●●

●

●
●●

●● ●
●

●●
●●

●

●●

●
●

●
●●

●●
●● ● ●●●●

●●

●
●

●

●

●●
●●

●
●

●●

●
●

●
●

●

●
●

●●
●●

●

●●
●●

●●

●
●

●

● ●
●●

●
●

●

●●
●

●

●
●

●
●●

●
● ●

●
●●

●●
●

●●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●
●●

●●
●

●
●

●●●

●
●

●
●●

●●●●●
●●●

●●
●●

●●●
●

●
●

●

●
●●●●●●

●●

●
● ●

● ●
●

●

●●
● ●

●
●●●

●
●

●
●

●
●

●
●●

●●
●●

●
●

●
●●●

●
●

●

● ●

●●

●●●
●

●●●●●
●●

●

●
●

●

●

●

●
●

●
●

●●●●●
●●

●
●

●

●
●

●

●
●●

●
●

●

●●
●

●●
●

●

●

●●
●

●
●

●
●

●
●

●●
●

●●

●
●

●●

●●
●

●

●
●

●

●

●● ●
●

●●
●●●

●●
●

●

●

●
●

●

●

●●●●●●●

●●
●

●●
●

●
● ●

●
●●●●

●

●●
●

●●
●

●●●
●●

●
●

●

●
●●

●
●

●
●

●

●●●
●

●

●●

●
●●

●
●●●●

●

●●

●

●
●

●
●

●●●
●●

●

●●

●●●●

●
●●

●

●

●

●
●

●
●

●●
●

●
●

●●●
●

●●
●●

●
●●

●

●
●

●

●
●●

●

●

●
●● ●

●
●●

●

●
●●

●

●

●

●

●

●

●

●●●
●●

●●●

●

●
●●

●

●
●

●●

●
● ●●●

●
●●

●●●
●●

●

●●
●●

●
●

●●

●

●

●●

●
●●

●

●
●

●
●

●●●
●●

●

●

●
●●●●●● ●●

●●

●
●

●
●

●

●●●
●●●●

●
●

●

●

●●
●

●
●

●

●●

●●●
●

●

●
● ●●

●●
●●

●●
●

●
●●

●
●●

●●

●●
●●● ●

●

●

●●

●

● ●
●●●

●
●●

●●●●
●

●
●●

●●●
●

●

●
●

●

●●

●●●
● ●●

●

●●
●

●
●

●●●

●
● ●●●

●
●●

●
●●●●

●●●●
●

●●

●

●●
●

●●●
●●●

●
● ●

●
●

●

●●

●

●
●●

●
●●

●

●

●
●

●

●
●

●

●
● ●●●●●●

●
● ●●●●●●

●

●●
●●●

●

●

●

●

●● ●
●●

●●●

●
●●

●●

●●

●
●●

●●●
●●

●
●

●

●
●●

●●
●

●●
●

●
●

●●

● ●●
●

●

●●
●

●
●●●●

●
● ●

●
●●●●

●

●
●

● ●●●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●

●●●

●●●

●
●

●●●
●

●●
●

●

●
●

● ●
●

●
●

●●
●

●
●

●
●●

●●●●
●

●

● ●●
●●●

●

●
●●

●●
● ●●●●

●

●
●●

●
●●

●
●●

●
●

●

●●
●●●●●

●
●

●
●

●●●●●●

●●
●

●●●
●

●●●

●
●●

●

●●
●

●
●●●

●
●●●●

●●● ●
●●●●● ● ●●●

●
●●

●
●●

●

●●
●

●●●
●

●

●

●

●●

●●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●●
●

●

●●

●

●
●

●
●

●

● ●
●

●●

●●
●

●
●

●

●

●
●●

●

●
●●●
●

●
●●

●
●●

●

●

●
●

●●

●

●●

●●●●
●

●●●●
●

●●

●●
●●

●●
●●

●
●

●
●

●
●

●●●
●

●●

●

●●

●●
●●●

●

●●●

●●●
●

● ●●
●

●
●

●●●

●

●●●●
●

●

●●
●

●

●
●

●
●

●

●

●
●

●●●
●

●
●●

●

● ●
●●

●

●

●

●

● ●

●●

●
●

●

●
●

●●●
●●●●●●●

●

●
●●

●
●

●

●●

●

●

●
●●●

●●●

●

●

●

●●●

●●

●
●

●●
●●●●

●
●

●

●●●●
●●●●

●

●●
●●●●

●

●
●

● ●●●●

●

●
●

●

●●
●

●
●

●
●

●●

●
●

●●

●

●

●

●
●

●

●
●

●●

●
●

●●
●

●
●

●
●

●
●

●
●●●

●
●

●
●

●

● ●
●

●
●●

●
●

●
●●

●

●●●

●

●
●

●

●

●●
●

●

●

●●
●

●

●

●●

●●●●●●●

●
●

●●●
●●

●●

●
●●

●●
●

●

●●

●
●●

●
●

●
●

● ● ●
●

●

●●

●
●

●
●●●

●

●

●

●
●

●

●

●
●

●

●●●

●
●

●

●
●●●●

●
●

● ●

●

●

●

●●●

●
●●

●●●
●

●●
●

●●●

●
●

●●●●
●

●
●

●

●
●

●●●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●
●●

●
●

●●

●
●●

●

●

●●
●

●

●
●

●
●●

●
●●

●
●

●●

●

●
●●●

●
●●●

●
●

●●
●

●
●

●
●

●●

●
●●

●●
●

●
●

●
●●

●

●●
●●

●
●

●●

●

●●

●
●●

●

●
●

●

● ●●● ●●
●●

●
●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●

●
●

●●
●

●●●

●
●

●
●●

●
●

●
●

●

●
●●

●

●
●

●

●

●

●●

●● ●●●
●

●
●●●●●●

●
●

●

●
●●

●●●

●

● ●
●●

●●● ●

●

● ●

●
●

●
●

●
●●

●● ●
●●●

●● ●●●●
● ●●●

●
●●

●●●●
● ●

●

●●

●

●
●●

●●●
●●

●
●

●
●

●
●

●●● ●

●●●

●
●●

●
●

●

●●

●

●

●

●●
●

●
●●

●●
●●

●
●●●●●●

●
●●

●

●●
●●●●

●●

●
●

●

●
●

●

●
●●● ●●●

●●

●●
●●●

●
●

● ●●
●

●●
●●

●
●

●●●●
●

●

●●

●

●
●

●
●

●
●● ●●●●

●●
●

●
●

●●●●
● ●

●●
●● ●

●
●

●
●

●
● ●

●
●

●●
●

●●●
●

●

●●
●●●

●●
●

●

●

●
●●

●●

●●●●

●

●

●

●

●
●●●●

● ●●●●
●●

●
●●

●●●
●

●●

●

●

●

●
●●

●
●

●●

● ●

●●●

●
●

●
●

●

● ●●
●●

●

●●

●●●

●●●●

●●
●

●●

●
●

●
● ●

● ●●●● ● ●
●●

●
●

●●●●●

●●●

●●
●●

●

●
● ●

●●

●

●●
●

●

●●

●
●

●●
●

●
●●

●
●

●

●
●●

●
●

●●
● ●

●

●
●●

●●●

●●

●●●
●

●●

●●●
●

●

●●●
●

●
●●

●

●
●

●●
●

●

●
●

●
●●●●●● ●

●●

●
●

●

●

●

●●●
●●● ●●

●●
●

●
●

● ●

●

●

●
●

●
●

●

●●●
●

●
●●

●

●
●

●
●

●

● ●

●

●
●

●●

●

●●●
●

●●
●

●●

●

●

●
●●

●
●

●
●

●

●●

●

●

●

● ●
●

●

●●
●

●●●

●●
●●

●

●

●●

●● ●●●●
●●

●
●

●

●
●

●
●

●

●
●●●

●●

●
●

●●●●●

●
●

●
●

●

●
●●

●●●

●
●

●●
●●●

●●
●●

●
●●

●

●
●●

●
●●●

●
● ●

●

●

●
●●●

●
●●

●

●●●●●

●

●
●

●●

●●● ●●

●
●●●

●●

●●
●

●
●●●

●●
●

●●●●●
●

●
●

●●

●●
●

●●●
●

●

●●
●

●
●

●
●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●●

●
●

●

●
●●

●
●

●●
●●

●
●

●●
●

●
●●

●
●

●●

●●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●●

●●

●●

●
●

●
●

●●
●●●

●
●

● ●
●●

●

●●●

●

●

●●● ●●
●●

●●

●●

●

●
●

● ●
●

●
●

●

●●
●

●
●

●

●●●●●●
●

●
●

●●●
●

●
●

●●●

●

●
●●

●
●

●

●

●

●●
●

●
●

●

● ●
● ●●●
●

●
●

●

●
●

●●● ●●
●

●
●

●

●
●●●

●
●

●●●
●

●●
●

●

●
●●

●

●●●

●
●

●
●

●●● ●
●●

●

●
●●●
●

●●
●●●●

●

●
●●

●●

●●●
● ●●●●●
●●●

●

●

●
●

●●●
● ●●●●

●
●●

●
●

●●
●●

●
●

●

●

●●●

●
●●

● ●
●

●

● ●

●
●

●
●

●
●

●

●
●

●●●●●
●

●● ●
●

●

●

●
●

●

●
●

●

●●●●●●
●

●●●●

●
●●

●
●

●
●

●
●

●
●●●

●
●

●
●

● ●● ●●
●●

●●
●

●●

●
●

● ● ● ●

●
●

●
●●●

●

●
● ●

●●
●●

●
●

●●●●
●

●●●●
●

●
●●●● ●

●● ●

●

●●●●●●
●

●
●

●

●

●●

●●●

●
●

●●●

●
●

● ●
●

●
●●●●●

●
●●●●

●
●

●

●
●

●
●●

●

●

●
●

●
●●

●
● ●

●●
●

●

●●●
●●

●

●●
●

●●

●

●

●

●
●●

●●
●●

●●
●

●

●
●

●
●

●
●●

● ●●

●
●●

●
●

●
●

●
●

●

●●

●
●●●

●●

●
●

●
●●●

●●●●●
●

●
●●

●
●

●
●●

●

●
●

●

●●●
●

●●
●●

●
●●●

● ●

●
●●●

●
●

●

●●

●●
●

●●

●●
●

●

●

●
●

●
● ● ● ●●

●
●●●

●
●

●

●●
●●
●

●
●

●●
●●

●
●

●●

● ●
● ●

●
●

●●

●
●

●
●

●
●

●●

●●
●●

●●●
●●●

●
●●

●●●
● ●

●

●
●

●
● ●●●

●

●●
●

●●
●

●
●●

●
●

●
●

●●
●

●●●
● ●

●
●

●
●

●

●
●

●
●

●

●
●

●●
●●●

●

●●●●●
●●●●

●●●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●● ●

●
●

●

●●

●

●●

●●
●●

●●

●
●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●●●
●

●
●

●●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●●
●

●
●●●

●
●●

●

●
●

●

●●

●
●

●
●

●
●●

●
●

●

●●
●●

●●

●●
●

●

●

●

●

●
●●●

●

●●
●●●

●

●●

●

●

●
●

●
●

●
● ●●
●

●

●

●●
●

●

●●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●●

●
●●●

●
●

●●

●

●

●

●

●

●●
●

●

●
●

●
●●●

● ●
●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●●●●●●

●

●

●

●
● ●●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●●●●

●●

●
●

●●●
●

●●

●●
●

●

●
●

●
●

●

●●

●●

●

●

●

●
●

●●

●

●

●
●

●●●
●●

●●●
●

●●

●
●

●

●

●
●●

●

●●
●

●
●

●
●

●

●
●

●

●●●

● ●
●

● ●

●
●

●●

●●
●

● ●

●

●

●

●

●●

●

●●●
●

●
●

●
●

●

●

●●●

●●●
●

●●

●

●● ●●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●●●●

●
●

●

●

●

●
●

●

●
●●

●●
●●●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●
●

●●
●●●

●●●●
●

●●●●●

●
●

●
●●

●
●

●
●●

●●●
●●

●
●

● ●●
●●

●●

●●
●

●

●
●

●●●
●

●

●

●

●

●

●
●●

●

●

●●
● ●

●●

●
●

●
●

●●
●●

●
●

●

●●●
●●

●
●

●

●●
●

●
●

●
●● ●

●●
●

●

●
●

●

●
●

●●

●
●

●
●

●
●

●
●●

●●●

●

●

●

●

●

●

●

●●
●●

●●●
●

●
●

●
●

●

●

●

●

●

●●●●

●
●

●
●

●●●

●

●● ●●●
●

●
●

●
●

●●●
●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●●

●●

●
●

●●

● ●●

●

●
●●

●
●●

●●

●
●●

●●
●●

●
●●

●

●

●
●

●●

●
●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●●●

●●

●●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●●

●●
●●

●●

●●
● ●

●
●

●

●

●

●●

●

●

●
●

●●

●
●

●

●●●●

●

●
●

●

●

●

●
●●

●
●

●

●●

●

●●●
●

●

●

●
●

●

●●
●

●
●●

●●●
●●

●●●

●
●●

●●

●●

●
●●

●

●
●

●

●
●

●
●

●●
●●●

●
●

●
●

●●

●●

●

●
●

●

●
●●

●

●● ●
●

●

●●●
●●

●
●

●

●

●

●
●

●●●

●
●

●

●●●

●
●

●●
●

●

●
●

●●
●●

●

●
●

●

●

●●

●

●
●

●

● ●●●

●●

●

●
●

●

●

●
●

●
●

●

● ●●
●

●

●

●

●●

●●
●

●
●

●

●
●

●
●

●●

●
●

●
●

●

●

●

●

●
●

●●

●●

●●

●
●

●

●●

●
●

●

●●

●
●

●●

●

●
●

●
●

●

● ●

●● ●● ●

●
●

●
●

●
●

●
●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●●

●
●●

●●
●

● ●

●
●

●●

●●

●

●

●●
●

●

●
●●

●●

●
●

●●

●
●

●
●

●

●
●●●●

●

●
●●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●
●

●●
●

●●●●
●●

●

●
●

●
●●

●
●

●
●

●●
●

●●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●●

●●
●●●●

●
●

●
●●●

●

●
●●

●●
●

●

●

●●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●●

●

●

●
●

● ●●

●●
●

●

●●
●

●
●

●

●
●

●●

●

●
●

●●

●
●

●

●

●●

●●
●

●

●
●

●●
●

●
●

●●

●

●
●

●●
●

●
●

●
●●

●
●

●

●

●

●

●●●
●

●

●

●

●●

●

●●
●

●●
●● ●

●

●

●

●●
●

●●●●
●

●

●●
●

●

●
●

●●
●

●●

●
● ●

●
●

●

●

●

●

●

●
●

●
●●

●
●●

●●

●

●
●

●●

●
●

●

●

●●
●

●
●

●●●

●
●

●
●●

●

●●
●

●●

●

●
●●

●●
● ●

●
●

●
●●

●
●●

●

●

●

●●
●

●●
●

●●

●

●
●

●
●

●
● ●

●

●

●

●

●●

●

●●
●

●
●●

●

●

●
●

●

●

● ●

●

●
●

●●

●

●

●●●

●

●●

●
●

●●

●●
●

●

●

●

●●

●

● ●

●
●

●

●

●

●
●●●

●●●
●

●

●●
●

●
●

●

●
●

●

●
●●

●

●●

●

●●● ●●
●

●
●

●
● ● ●

●

●
●

●

●

●●

●●
●

●●

●

●

●

●

●

●
●

●

●●

●●●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●●
● ●●
●●●

●
● ● ●

●●
●

●

●
●

●

●

●

●●

●
●●

● ●
●

●●●
●

●

●●
●●

●

●

●
●●●

●

●

●●
●

●

●
●

● ●
●●

●

●●
●

●

●
●●

●●● ●

●
●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●
●●

●
●●

●●●
●

●
● ●

●

●
●

●

●
●

●●
●

●

●
●●

●
●●

●

●

●
●

●

●
●●

●

●
●

●
●●

●
●

●
●

●

●●
●

●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●●●
●

●●●
●●

●

●●

●●
●●●●

●●

●
●

●

●
●

●
●

●
●

●

●●●●
●

●
●

●●
●

● ●

●

●●
●●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●●
●

●●

●
●

●●●

●●
●

●
●

●●●
●

●●
●●

●●

●

●

●

●

●

●
●

●
●●

●

●● ●

●

●●
●

●●

●
●

●●
●

● ●
●

●
●

●●

●

● ●
●

●●●

●●

●

●

●
●

●

●

●

●●●
●

●●●
●

●

●●
●

●

●

●●
●

●
●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●●●

●
●

● ●
●

●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●●

●●

●
●

●
●

●

●
●

●

●
●

●
●

●
●●●

●

●

●
●

●●
●

●

●
●

●●
●

●●
●●

●●

●
●

●

●
●

●●●
●●●●●

●

●
●

●
●

●

●

●

●

●
●●

● ●

●

●
●

●

●●

●
●

●●
●●

●●

●
●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●●●

●●

●

●
●

●●
●

●
●

●
● ●

●●

●

●●

●

●●

●
●

●
●●

●

●

●
●●

●

●
●

●
●●

●
●

●●●

●●
●

●●●

●

●

●●●

●

●●●●

●
●

●

●

●
●

●

●●

●●

●
●●●

● ●
●

●

●

●
●

●

●●
●●

●
●

●●

●●

●
●

●
●●

●

●
●

●
●

●●

●●

●●

●

●●

● ●●●
●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●●●●
●

●

●●

●

●●●
●

●

●

●

●

●

●●

●
●

●

●●
●

●●

●
●

●

●

●
●

●

●

●
●

●●
●

●

● ●●●●
●

●●●
● ●

●
●

●
●●

●
●

●●
●

●

●
●●

●●

●●●
●

●
●●

●●
●

●●
●

●●

●●●●●
●●●●

● ●
●●

●
● ●

●

●

●

●

●●

●●●
●●

●●

●
●●

●

●

●

●●●

●●●
●

●
●●●●

●
●●

●
●●

●●

●
●

●
●●

●●●
●

●●● ●
●

●●
●

●●●●●●●
●

●●●
●

●●
●●●

●
●

●
●●●

●
●

●●

●●●●

● ●●
●

●
●

●
●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●●●

●
●

●
●

●

●
●

●●

●●
●

●

●
●

●●
●

●
●

●

●

●

●●

● ●

●

●
●

●
●

●●●●
●

●●●

●

●●●
●●●

●

●●

●●

●
●

●
●●● ●●

●
●● ●●

●

●
●

●

●
●●

●
●

●
●

●

●
●

● ●●● ●●●

●●

●
●

●
●●

●●●

●
●

●
●●

●

●
●

●
●

●●

●●● ● ●●
●●

●● ●

●
●

●

●●

●
●

● ●●
●

●
●●

●●●
●●●●●
●

●

●
●

●●●
●●

●●●
●

●●●●
●● ●●

●●

●
●

●
●

●
●●●

●

●
●

●●

●
●

●
●

●●●
●●

●●●●
●

●
●

●●●
●

●
●

●●
●●●

●
●●

●●
●

●
●●●

●

●

●

●

●
●

●

●●
●

●●●

●
●

●●●

●
●●

●●

●
●

●●●●●●●●
●

●
●●●

●

●●
●

●●●
●

●

●●●●●●●
●●

●
●

●
●

●
● ●

●
●●●

●
●

●●
●

●●●●●●●
● ●

●
●

● ●●●

●●●
●●

●

●
●

●
●

●

●●●●
●●●

●●

●●

●
●

●

●

●
●●

●
●

●

●
●●

●●●

●●●●

●
●

●

●●●
●●●

●
●●●●

●
●

●●

●

●
●

●●●
●●●

●

●
●

●
●

●
●●●●

●
●

●●
●●●●

●●
●

●

●
●

●

●

●
●

●

●●

●

●
●●●●

●

●

●
●

●●
●

●

●

●
●

●●
●●

●

●●
●●

●●●

●
●● ●

●

● ●
●

●

●

●●●
●

●●
●

●
●

●
●

●

●
●●

●

●
●

●
●●

●●●●

●

●
●

●

●
●

●
●

●
●

●

●●
●●●

●
●●

●
●

●●●
●●

●●

●
●●●

● ●
●●

●
●

●
●

●●
●

●●●
●●

●

●
●●●●

●●
●

●●●
●

●

●

●

●
●

●
●●●

●
●

●
●

●●●
●

●
●

●

●

●

●●

●
●

●

●

●●●
●

●●

●●

●

●
●

●
●

●

●●

●

●●

●
●

●
●

●
●●

●

●
●●

●●
●●●

●

●

●
●

●●

●●●

●

●

●●

●

●

●
●

●●

●

●

●●●

●
●

●

●
●●

●
●●

●

●

● ●

●

●
●

●●

●
●

●●
●

●

●
●●●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●●

●

●
●●

●●●
●●●

●

●●

●

●●

●

●●
●

●

●●

●●

●●

●

●●

●
●

●
●

●

●●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●●
●

●
●

●
●

●●●●

●

●
●

●
●●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●●

● ●

●●●

●
●

●
●●

●●
●●

●
●●

●●

●
●

● ●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●●

●

●

●

●●

●●

●

●
●

●

●●

●
●●

●
●

●●

●
●

●

●

●

●●
●

●

●

●●
●

●
●●

●

●
●

●
●

●●● ●
●

●●

●●

●●

●

●

●

●
●

●●

●

●

●
●

●●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●●●

●

●
●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

● ●●

●

●

●
●

●●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●
● ●

●

●
●

●
●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●
● ●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●
●

●●●
●●●

●
●

●

●

●

●●

●●

●
●

●

●
●

●
●

●

●●●
●●

●●

●●
●

●

●●

●
●

●

●

●
●

●
●

●

● ●
●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●●

●
●

●
●

● ●●
●

●
●●

●
●

●
●●

●
●●

●

●

● ●●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●●●●

●

●●
●

●●●

●

●
●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●●

●

●
●

●
●

●

●
●●

●

●
●●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●●●

●
● ●● ●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

● ●
●

●●

●●

●

●

● ● ●

●●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●●

●
●●

●●

●

●

● ●

●

●
●

●
●●

●
●

●

● ●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●●●

●●

●●
●●

●
●

●●
●

●●
●●●●

●●●●●

●●

●

●●

●
●

●

●

●

●●

●●
●

●
●●

●

●

●
●

●●

●

●
●

●

●●
●

●

●●

●

●

●●

●

●

●●

●
●

●
●

●
●●

●
●

●
●

●
●

●●
●

●
●●

●

●●
●

●
● ●

●●

●

●

●

●

●
●

●
●

●
●

●●
●●

●●●
●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●●

●
●

●

●●

● ●●●●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●●
●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●
●●

●
●

●●

●
●

●

●

●
●

●●
●

●

●

●●

●●

●

● ●●

● ●
●

●
●

●

●

●

●
●

●

●●

●
●

●● ●

●

●

●

●

●
●

●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●●
●

●

●

● ●

●
● ●

●●
●●

●●●
●

●

●

●

●●
● ●

● ●

●●

●●

●
●

●

●

●●
●●

●●

●●

●
●●

●
●●

●●
●

●
●

●
●●●

●
●●●

●
●

●
●

●
●

●
●●

●
●

●
●

●●

●●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●●
●

●
●●●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●
●

●
●

●●
● ●

●

●●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●
● ●●

●

●
●

●
●

●●

● ●

●

● ●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●

●● ●

●
●

●●
●

●
●

●

●

●

●

●●●

●
●

●●
●●● ●●

●

●

● ●●●
●

●

●
●

●●●

●●

● ●

●
●

●

●
●

●
● ●
●

● ●

●

●

●
●

●

●
●

●

●
●

●●

●
●

●

●

● ●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●●●

●
●

●

●●

●
●

●
●●

●

●
●

●

●

●
●

●
●●●●

●●

●

●
●

●
●

●

●

●

●● ● ●

●
●

●

●
●●

●

●●

●
●

● ●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●●
●

●

●

●

●●●
●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●●
●

●
●●

●
●

●

●

●

●●

●●

●
●●

●

●
●

●

●

●

●
●

●

●

●●

●

●●
●●

●
●●

●

●●
●

●
●●

●
●●●●

●

●
●

●
●●●

●
●●●

●
●●●

●
●●●●
●●●●

●
●

●
●

●●
●

●●
●

●●
●

●

●

●

●

●
●● ●

●●●

●

●
●

●

●●●●

●

●

●
●

●
● ●

●●●
●

●
●

●●

●●
●

●
●

●

●
●

●●

●●●●
●

●
●

●
●

●
●●

●
●● ●

●

●
●

●●
●●●●●

●●
●

●●

●
●

●

●
●●

●

●
●

●●

●

●●●●
●

●

●

●
●

●●●
●●●●

●
●

● ●●

●●
●●

●●●
●●●●●●●●●

●●●

●

●

●
●●●●

●●
●●●●●

●●●
●

●●
●

●
●●

●
●

●
●

●
●●●●●

●●
●

●●●
●

●

●
●

●●

●
●

●

●
●●●●●
●

●
●

●●●●●●●● ●

●

●●
●

●●

● ●
●

●
●

●
●

●●
●

●●

●
● ●

●
●

●
●●

●●

●●
●●

● ●●
●

●
●

●●

●
●●

●

●
●

●●
●

●
●

●

● ●●

●

●●

●
●

●

●

●●

●●●●●
●●

●●
●●

●
●

●
●●●●

●●
●●

●

●●
●

●
● ●

●●●●●
●

●

●●
●

●

●●●●
●

●

●●●
●

●●
●●

●●●●●
●●

●
●●

●
●●● ●●●

●
●

●

●

●

●●● ●
●

●

●

●●
●●

●●
●

●●●●●
●

●●
●

●●
●

●●●

●●
●

●

●

●
●

●
●●

●
●●

●

●
●●

● ●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●

●●
●

●

●●
●

●
●

●
●

●●●●
●

●
●

●●

●●

●
●

●

●

●●
●

●●

●
●

●
●

●● ● ●●●
●

●
●●

●

●

●
●●

●
●

●
●●

●●●
●

●
●

●●●●
●

●
●●

●
●

●
●

●

●●●●
●

●
●

●●
●●

●

●●
●

●
●

●●●

●●

●
●

● ●●
●●

●
●

●●

●

●
●●

●●

●●
●

●
●

●
●●

●
● ●●●

●
●

●
●

●

●
●

●●●●●
●

●●●●
●●

●
●

●●
●

●●
●

●
●

●
●

●●
●

●
●

●
●

●●●●●
●

●●
●

●

●●

●
●●●

●●
●

●●●

●
●

●●
●

●
●

●●●●●

●
●

●

●
●●●●●

●●
● ●

●
●

●
●

●
●

● ●
●

●
●

●
●●

●
●

●●
●

●

●

●

●
●

●
●

●●
●●

●●
●

●

●
●

●

●
●●

●●
●

●●●

●
●

●
●

●
●

●
●●

●
●● ●

●●●

●

●

●

●
●

●
●

●
●

●●
● ●

●●
●

●
●●

●

●

●
●

●

●

●

●

●●●●●
●●

●

●
●●●●

●●
●●

●
●

●
●

●
●

●
●●

●●
●●●

●●

●
●

● ●●
●

●●●●

●
●

●
●

●●●●●
●●

●
●

●●

●
●●●

●
●●●

●

●
●

●
●

●

●●
●●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●●

●●
●

●

●
●

●
●

●●
●

●

●
●

●
●

●
●

●

●●
●

●

●
●

●
●●

●
●

●

●● ●●
●●

●●

●●●●

● ●
●

●
●

●
●●

●

●
●

●●●
●

●●
●

●●

●●

●
●●

●

●

●

●
●●

●

●
●

●
●●●

●●
●

●

●●
●

●●●
●●

●
●

●
●

●

●
●

●

●

●●
●

●●
●●

●
●

●
●

●

●

●●
●●
●●●

●
●

●
●

●●
●

● ●●
●●

●●●

●●

●

●

●

●
●

●
●

●

●●●
●●

●

●●
●●●

●
●

●
●

●●
●

●●

●
●●●

●●

●
●

●

●
● ●●●●●
● ●
●●

●
●

●●
●

●
●●

●

●
●

●
●

●
●

●

●●

●●●●●

●

●●
●

●●
●●●

●

●●●

●
●

●

●
●

●

●

●●
●

●
●

●

●
●

●
●

●
●

●
●

●
●●●●●

●
●●

●
●

●
● ●

●

●●
●

●
●

●
●

●●
●

●●●●
●

●

●●

●
●

●
●●

●●
●●●●

●
●●●

●
●

●
●

●●
●

●

●● ●●●
● ●

●
●●

●

●●

●●
●

●●
●●

●
●●

●

●
●

●

●
●

●

●
● ●

●

●●●●●

●

●
●

●
●

●●●
●● ●

●
●●●

●

●

●
● ●●

●●●

●●●

●
●

●

●
●●

●

●
●●

●●
●

●●●

●

●

●
● ●

●●

● ●●
●

●●
●

●●
●●●

●●

●●●●
●●● ●●

●
● ●

●●
●

●

●●●
● ●

●
●●

●●
●●●

● ●
●●
●

●
●

●
●●

●
●

●
●

●●●●
●

●●

●
●

●

●

●

●
●

●●
● ●●●

●●●●

●
●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●●

●●●
●

●

●●

●

●●●

●
●●

●
●●

●●

●●●

●
●

●●●●
●

● ●
●

●●

●●

●
●

●

●●
●● ●

●
●

●
●

●
●

●●
●

●
●

●●●●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●●●

●
●

●
●●

●●
●●

●●●

●
●

●
●

●
●

●

●●●●●
●

●●
●●

●●
●●●●●

●
●

●
● ●

●
●

●
●

●
●

●
●●

●
●●

●

●●●
●

●●
●●

●

●●
●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●

●●
●

●●
●

●●
●

●
●

●
●●● ●

●
●

●●●

●

●

●●

●

●

●
●

●
●●

●●
●

●
●

●

●●

●●●

●●

●
●●

●
●

●●●
●

●
●● ● ●

●

●

●●
●

●
●

●
●●

●

●
●●

●●
●

●●
● ●

●●●

●

●
●●●

●
●

●

●●

●

● ●●
●

●●

● ●

●

●

●
●

●
●●

●
●

●
●●

●
●

●

●

●●
●●

●
● ●

●●

●●●

●

●●

●
●

●
●●●●

●●●
●●●

●
●●

●

●
●

●
●●

●

●

● ●●

●
●

●●●
●

●
●

●
●

●
●●●

●●
●

●●●●●
●●●

●
●

●●●●
●●●●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●●

●
●

●●● ●●

●
●

●
●●

●

●●

●
● ●

●●●●●
●

●

●
●

●
●●

●

●

●●●

●
●

●
●

●
●

●

●

●
●

●

●
●●●

●●●
●

●
●

●

●●

●
●

●
●●
●

●
●

●

●
●

●●
●

●● ●●
●

●
●

●●
●

●
●

●

●
●●●●●

●

●
●

●●

●
●

●●

●●

●

●

●

●●

●

●
●

●
●

●●
●

●
●●

●●

●
●

●●
●

●
●

●

●
●●

●

●●
●

●●

●
●●

●
●

●

●

●●
●

●

●
●

●
●

●●●
● ●●●

●●
●●●●

●

●
●

●
●

●
●

●●

●●

● ●●
●●●●

●
●●●
●

●●●
●

●●

●
●

●
●

●●
●

●●●
●

●

●
●●●

●
●●

●
●

●●
●

●●

●
●●●

● ●
●

●●
●

●●●●

●●●
●●

●●
● ●●

●
●●

● ●
●●●● ●●

●
●●

●

●●
●

●
●

●

●
●

● ●
●

●●
●

●●
●●●●●●●●
●

● ●● ●

●●
●●

●

●
●

●●●● ●
●●

●
●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●
●

●
●

●●●●
●●

●●●●●
●●

●
●

●●
●

●●

●

●

●

●
●

●
●

●

●● ●●● ●●
●●

●●●

●
●●●

●●
●

●●

●
●●●

●
●

●
●●

●
●

●
●

●

●

●●●●
●

●●

●
●●● ●●●●
●●

●●●●

●●
●●

●●●●

●
●

●
●

●

●●

●

●

●●● ●●

●
●●

●
●●
●

●●
●

●●
●●

●
●

●
●

●●●●●

●

●●

●
●●●●

●
●●●

●
●

●●

●
●●

●●●
● ●●

●
●

●
●

●

●●
●●

●
●

●
●●

●

●
●

●
●●

●●
●

●
●

●●●

●
●

●
●

●

●
●

●

●
●

●●

●
●

●●
● ●

●
●●●

●
●

●
●

●●
●

●
●●

●
●

●●
●

●
●

● ● ●●
●

●●

●

●●●●
●

●●

● ●
●

●●
●

●
●

●

●

●

●

●●
●

●

●
●●

●

●
●●

●
●

●●
●

●●●●
●

●●●
●●●

● ●●
●●

●
●●

●●

●●●●

●
●●

●●●●●
●

●●
●

●
●

●●

●●

●

● ●●

●●
●

●
●

●
●

●●●
●

●
●

●●
●

●
●

●●

●

●
●●

●

●●
●

●
●●

●

●
●

●

●●●
●●●●

●●

●

●●
●

●

●●
●

● ●
●

●

●●
●

●●

●

●●●
●

●●
● ●●

●●
●● ●●

●
●

●●

●●●●●

●
●

●
●

●

●
●

●
●●

●
●

●●

●●●

●

●

●
●●

●
●

●
●

●

●●

●
●●●

●

●
●●●

●
●●

●
●

●●

●●●●
●

●

●

●●
●

●
●

●

●●
●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●●
●●

●
●

●●

●●●
●

●
●●

●●●
●●

●

●

●●

●
●

●
●

●
●

●●
●●●

●
●

●
●●

●
●

●●●●
●

●

●

● ●

●
●

●

●●●
●●

●●●
●

●●●

●

●●●
●

●●
●●

●
●●

●

●●
●●●

●

●
●

●
●

●

●

●

●
●

●●
●

●
●

●
●

●
●

●

●

●
●

●
●

● ●●
●

●
●●

●
●

●

●●●●

●
●●

●
●

●
●

●
●●

●
● ●

●
●●●●

●

●●
●● ●

● ●
●●

●

●●●
●

●
●●

●

● ●●●
●●

●●
●

●
●

●

●●

●
●●

●
●●● ●

●

●

●

●

●●

●●
●

●

●
●●●

●●● ●●
●●

●
●

●
●

●

●
●●

● ●

●
●●

●

●

●

●

●●
●

●

●

●
●●● ●

● ●

●

●

●
●●

●
●

●
●

●

●●●

●

●

●
●

●

●

●
● ●

●
●

●

●●
●

●
●

●●●
●

●
●●

●
●●

●●●
●●

●

●●

●●
●

●

●●

●

●
●●

●
●

●●
●

●●●● ●

●

●
●

●
●

●●

●

●

●

●●
●●

●
●

●
●

●
●●

●

●●
●

●●
●●

●

●
●

●

●●●●● ●
●●

●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●●
●

●
●

●●
●●

●●

●

● ●
●●

●● ●

●
●

●●●

●
●

●●
●

●●
●●

●●●●
●●●

●
●

●●
●●

●
●●

●
●●

●
●

●
●

●
●

●

●●●
●

●
●

●
●

●●
●●

●
●●●●●
●●●●●●

●●
●●

●
●

●●

●
●

●
●

●●
●

●
●●

●
●●●

● ● ●
●●

●●●
●● ●●

●
●

●
●●

●●●● ●
●●●●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●

●
●

●
●

●

●

●●●●●●●●
●

●
●

●●●●
●●●

●●
●

●
●●●

●●
● ●

●

●

●
●

●●
●

●
●

●
●

●
●

●

●

●●●
●

●

●●●
●●●●

●●

●

●

●
●

●●
●

●
●●
●

●●●●●

●
●

●●
●●

●●
●

●● ●
●●

●●

●
●●●●

●
●

●●●●
●●●●

●
●●

●●

●
●

●

● ●●
●●●●●

●
●

●●●
●●●

● ●

●
●

●
● ●

● ●

● ●

●●
●●●●● ●●●●

●
●

●
●

●●

●
●

●

●
●

● ●
●

●
●●●

●●●
●●●

● ●
●●●●●

●●
●●●●

●●● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●●
●

●● ●
●

●●

●●
●●

●●
●●●●

●
●●

●●●
●

●
●●

● ●
●●

●
●

●●
●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●●
●

●
●

●
●

●●
● ●●

●●
●

●●
●

●
●

●

●●●●
●

●

●●
●●

●

●●
●

●●

●

●
●

●●●●●●
●●●●●

●●
●

●
●

●
●

●
●

●
●

●
●●●

●
●

●●
●●

●
●

●

●
●

●

●
●●

●
●●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●●●●
●●●●

●●

●
●

●●
●●●

●

●
●

●●
●●●

●
●

●
●

●●●

●●
●●●

●
●●●

●
●●

●
●

●

●
●●●

● ●
●

●
● ●

●

●
●

●
●

●
●

●
●●

●●

●
●

●
●

●

●●
●

●

●

●

●●
● ●

●●

●●

●

●
●●

●
●

●
●●●●

●
●

●●

●●●●●●●
●

●
●●

●

●

●●●
●●

●●●

●

●

●

●●
●

● ●

●
●●

●●●

●

●●
●

●

●●●
●

●
●

●●
●

●●●

●

●
●●●

●
●

●

●●

●●●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●
●

●●
●

●
●

●●●
●

●

●

●
●

●●
●

●

●●●

● ●

●
●●

●●
●

●●
●

●●
●

●
● ●

●●
●

●
●

●●
●●

●
●

●●●
●●

●

●

●

● ●
●●

●●●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●
●●

●
●●

●●●
●

●
●

●●
●●

●
●

●

●

●

●

●
●

●●●

●
●

●●
●

●
●

●●●
●

●

●

●

●

●
●

●
●

●
●●

●
●

●●

●
●●●

●●●
●

● ●●
●

●●●
●

●

●

●●

●●
●●

●
●●●

●
●

●

● ●

●

●

●●●●
●

●
●

●
●

●●

●
●

●●●●
●●●●●●

●

●
●

●

●

●●●●
●

●● ●●
●

●●
●

●●
●

●

●

●●
●●●

●

●●

●●●●●●●

●●●●●
●

●

●
●●

●

●
●

●

●●●
●●

● ●
●

●●●●
●

●
●

●
●

●
●

●
●

●●
●

●●
●

●

●
●

●

●
●

●
●

●●●
●●

●●●
●●

●●●
●

●●
● ●●

●

●
●

●
●

●
●●●

●

●

●●

●
●

●
●●●●

●●●
●

●●●●●●
●

●●●●
●

●●
●

●
●

●
● ●●
●

●

●
●●

●
●

●
●

●
●

●

●
●●

●

●

●

●

●
●●●

●● ●
●●●●

●
●

●
●●

●
●●

●●
●

●
●

●
●

●
●

●●●●●
●

●●
●

●
●

●

●
●

●

●

●
●●●

●
●

●
●●●

●●
●●●

●

●

●
●

●

●●

●
●●

●●
●●

●● ●●●●
●

●
●●●

●●

●

●
●

●

● ●

●●●●●
●

●
●●

●

●
●

●
●

●
●●

●

●●●
●●

●
●

●
●

●
●●●●●

●

●
●

●
●

●

●
●

●●
●

●

●
●

●
●

●●
●●

●

●
●

●

●●
●

●
●

●
●●

●

●●
●●

●
●●●

●

●

●
●

●●●●

●●

●●
●

●●●●
●

●

●
●●●●●●●

●
●

●
●

●●●●
●

●

●●
●

●
●

● ●

●●●
●

●●●●●
●

●

●

●

●●
●●

●
●

●

●
●

●
●●● ●

●●●
●

●
●

●

●●
●●

●
●

●●
●

●
●

●
●

●●●
●●

●
●

●
●●●●

●
●

●
●●●

●

●●●●

●

●

●
●

●●

●
●●●●

●
●

●

●

●
●

●
● ●

●●●
●●

●

●
●

●●

●●

●

●●●●●●
●●

●
●●●●

●
●

●

●
●●

●
●

●

●
●

●●●●
●

●●●●●
●

●
●●●

●

●●

●

●

●

●

●
●

●

●

●
●●●

●

●●●
●

●

●●
●●

●
●

●
●●●●

●
●

● ●●
●

●
●

●●●
●

●
●

●●●
● ●

●●
●●● ●

●

●
●

●●

●
●●

●

●●

●
●●

●

●
●

●●●
●

●●

●
● ●

●

●●
●●

●
●●●

●

●
●

●●

●
●●

●
●

●

●●●

●

●●●●
●

●
●●

●

●

●

●
●●●●

●

●
●●

●

●●●●

●

●●●●

●
●

●●
●

●

●●●

●●

●
●

●

●
●●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●●

●

●
●

●
●

● ●
●

●
●

●

●●
●●●

●
● ●

●● ●●

●
●●

●
●

● ●

●
●

●
●●

●
●●

●
●

●
●●●

●

●

●●

●

●

●●

●
●

●
●

●

●●●●

●
●

●
●

●
●

●

●●
●

●
●

●●

●●
●

●
●●

●
●●●

●●
●

●
●●●

●

●
●

●

● ●
●●●

●●
●

●

●

●
●

●●●●

●
●●

●●
●

●

●●●
●

●●●

●
●

●
●●

●●
● ●

●

●
●

●
●

●●
●

●●

●
●

●
●

●
●●●

●
●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●
●●

●
●●

●●
●●●●

●

●
●

●
●

●●
●

●●●
●

●
●

●
●

●
●●

●
●

●●
●

●●
●

●

●●
●●● ●●

● ●
●

●●●
● ●●

●
●●

●
●●

●●●●●●
●●●●

●
●

●

●

●

●●
●

●●
●●

●●●
●

●●●
●

●

●
●●

●●●
●

●

●●
●

●

●

●●

●
●

●

●
●● ●

●●
●

●
●

●
●

●
●

●

●●

●

●
●●

●

●
●

●
●

●
●

●●

●●
●

●
●

●

●

●●

●●
●●

●●●●●
●●●●

●●
●

●

●
●

●

● ●

●●
●●●●

●● ●●●

●
●

●●●
●

●

●●●

●

●●

●

●●●●●

●●●

●●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●●

●

●
●

●
●●

●
●●

●

●
●

●●●

●
●

●●●
●

●●●●●●●
●

●

●
●

●●
●

●

●●●
●●●●

●
●

●

●
●

●
●

●●

●

●

●●
●

●
●●●
●

●
●

●●
●

●●●
● ●

●●

●●
●

●●

●
●

●

●
●●

●●
●●

●
●

●●

●

●

●
●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●●●

●●●●●●
●

●
●

●●●
●●

●●● ●

●

●
●

●

●●●
●●

●●
●●●

●●
●● ●●●●

●●●

●
●

●
●●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●● ●●●
●

●●

●

●
●

●
●

●
●●●

●●

●

●
●●●

●
●

●
●

●
●●●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●●● ●

●
●

●

●●
●●●

●●
●

●

●●

●
●

●●●●●
●

●

●

●●

●
●●

●
●●●●●
● ●

●

●●●
●

●
●

●
●

●

●
●

●●●
●●●

●
●

●

●
●●

●
●

●●●
●

●

●
●

●●●

●

●
●

●●
●

●●●

●●
●

●●
●●

●●
●

●

●

●
●

●

●
●●●

●

●●

●
●

●●

●
●●●●●●

●
●

●
●

●●

●

●

●

●
●●●

●

●●
●

●
●●●●

●
●

●

●

●
●

●●
●●●●

●●
●●

●
●

●
●●

●
●●

●●●
●

●●
●

●
●●

●
●●

●

●

●
●

●

●●●●● ●
●●

●

●●

●

●

●●
●

●●

● ●
●

● ●●

●
●

●

●●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
●●

●

●

●
●

●●●● ●●

●
●

●● ●
●

●●

●●

●●
●

●

●
●

●●
●

●
●

●

●
●

●
●

●
●●

●

●
●

●
●

●

●

●
●

●●●
●

●

●
●

●

●

●
●

●
●

●●●
●

●
●

●
●

●●
●●●

●
●

●●

●
●

●●●●

●
●

●

●
●

●
●●● ●●●●●

●
●

●
●●

●

●●

●

●

●
●

●
●●

●●
●

●●
●

●

●●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●●

●●
●

● ●
● ●●●

●●●
●

●

●

●●
●

●●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●
●

●
●● ●●

●
●●●●●

●
●

●●
●

●

●

●
●

●

●

●
●●

●●

●
●●

●●

●●
●●●●

●

●
●

●●●● ●
●

●●

●
●

●
●

●
●●●●●

●●●

●

●

●●
●

●
●

●
●●●

●

●●
●

●
●●●

●
●

●
●

●●
●

●●
●●●

●●

●●
●●

●●
●

●●●
●

●

●

●●
●

●

● ●
●

●
●●●

●
●●●●

●
●

●
●

●
●●

●

●●●●
●

●
●●●

●
●

●●●

●

●

●

●●

●
●

●
●

●
●●

●●●

●

●

●●

●

●●●
●●●

●
●

●

●

●●
●

●
●

●
●

●
●

●
●●

●●●●
●

●

●

●●
●

●●

●●●

●●●
●

●

●
●●

●
● ●

●●●

● ●
●●

●
●

●

●

● ●
●

●
●

●●●

●●

● ●●
●

●

●●

●
●

●
●

●
●

●
●

●
●● ●●

●
●

●

●
●●

●

●
●

●●
●

●●●

●

●●
●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●●●

●
●

●

●

●
●

●

●
●

●
●

●
●

●●

●

●

●●

●●●
●

●
●

●●●

●
● ●

●
●●

●●

●

●●●
●

●●

●

●●●●●●
●

●●
● ●

●

●
●

●
●

●

●●●●●
●●

●●

●
●

●
●● ●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●●
●

●

●● ●● ●●

●●●
●●●●●●●

●●●

●●
●

●
●●

●
●

●
●●

●
●

●

●
●●

●

●●
●

●●●

●
●

●
●

●●
●

●

●●●●●
●

●

●

●
● ●● ●

●
●

●●
●

●●●
●

●

●

●●

●

●
●

●●
●

●●●

●
● ●●●

●
●

●●
●●●

●●
●

●
●●●

●
●●

●
●●● ●●

●●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●●

●
●

●
● ●●

●
●●●●●

●●

●
●●●● ●

●
●

●
●

●●●●

●●
●

●

●

●
●

●●

●
●

●

●
●

●
●●

● ●

●

●●
●●

●
●●●

●

●
●

●
●

●●●

●

●
●

●

●●
●●● ● ●

●

●
●●

●●
●

●
●●●●

●
●

●

●
●●

●
●●

●
●

●

●
●

●
●●

●● ●
●

●
●

●
●●

●
● ●

●●

●●
●

●
●

●●
●

●●
●

●
●

●
●●

●●●●●●
●

●

●

●

●●
●●●

●
●●

●

●●
●

●
●

●
●

●
●●

●●●
●●

●●●
●●

●
●

●●
●

●

●●

●●
●●

●●

●
●●●

●

●●●
●

●

● ●

●●
●●●●●

●
●●

●

●
●

●●●
●

●●●

●
●

●●●●●●● ●●

●

●

●●●

●●
●●

●●●
●

●●
●

●

●

●●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●
●

●●● ●

●●
●

●

●

● ●●
●●

●●●

●
●●

●

●●
●●

●

●

●
●●●

●●

●●
●

●
●●●●

●
● ●

●

●
●

●
●

●
●●

●

●●

●

●
●

●

●

●
●

●●
●●

● ●
●●

●●
● ●

●
● ● ●

●●

●

● ●
●

●
●

● ●●
●●●

●
●

●
●

● ●
●●●

●●
●

●●●● ●●●●●
●

● ●●

●

●● ●

●
●

●●●
●

●●●
●●●

●

●●
●

●
●●●●

●●
●

●●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●●●●
● ●

●
●

●
●

●
● ●●

●

●●●●●
●

●●●
●

●
●

●
●●

●
●

●●●
●●●

●

●● ●
●●●

●
●

●

●
●

●●
●

●
●

● ●
●

● ●●
●

●
●

●
●

●
●●● ●
●

●

●

●
●●●

●

●●

●
●● ●

●
● ●

●

●

●
●●

●
●

●
●●

● ●

●●
●

●●
●

●●
●

●

●

●●
●

●●
●

●
●

●●

●
●●

●

●●

●●
●●

●●●
●

●●●
●

●
●

●●
●

●
●●

●
●●●

●
●

●

● ●●
●

●

●●

●

●●●
●

●
●●

●
●●

●●

●●

●
●

●

●●

●

●
●

●●
●

●●
●

●

●●●●●
●

●●
●●

●●

●●
●

●●
●

●

●
●

●

● ●
●

●
●●

● ●
●

● ●●●
●

●

●
●

●●●●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●●

●
●

●
●

●

●
●

●●
●

●
●●

●●

●

●

●

●

●
●

●
●●●

●
●

●
●

●
●●●

●●
●

●
●

●
●

●
●●

●

●

●●●
●●●●

●
●

●●●●
●

●●●
●●

●
●

●
●●●

● ●
●

●
●

●
●

●
●●●●

●
●●

●
●●

●
●

●●

●●●

●●

●
● ●

●●●
●

●
●

●
●

●

●●
●

●●●

●●● ●

●
●●●

●●
●

●●
●●●

●
●

●●

●

●
●

●●
●●

●●●●

●●
●

●
●

●
●

●●●●
●

●●
●●

●
●

●●
●●●

●
●●

●
●

●
●●●●

●●●

●
●●●

●

●
●

●●

●

●●

●
●

●
●

●
●

●●
●

● ●●

●
●

●
●

●
● ●

●
●●●

●

●●●
●

●●
●●

●
●●●

●●
●●●

●●
●●● ●

●
●

●●
●

● ●
●●●

●

●●●●●
●●

●●
● ●

●
●

●
●●

●

●
●

●●

● ●
● ●

●
●

●●
●●

●

●
●●●

●●

●

●
●

●
●

● ●
●

●
●● ●

●

●●

●

●
●

●
●

●
●●●

●

●

●

●

●●
●●

●

●
●

●●
●●●●●●

● ●
●

●●●
● ●

●●
●

●●
●

●●●

●
●●●

●●

●
●

●

●
●

●
●

●
●●

●●●●
●

●
●

●

●
●

●●●
●

●
●●●●

●●
●

●
●●●

●

●
●

●
●

●●

●●

● ●●●

●

●●
●

●
●

●
●●

●●●●
●●

●

●
●●

●●
●

●●
●●

●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●●●●●

●

●
●

●

●

●●

●
●●●●●

●
●●

●
●

●●● ●
●●

●

●●●
●

●
●●

●

●●

●
●●

●

●●

●

●
●

●

●
●

●●
●

●
●

●●●
●

●●●●●●
●●

●
●●

●
●

●
●

●●
●

●●●
●●
●

●

●
●

●

●
●●●

●

●
●

●●
●

●●●
●

●
●

●●
●

●

●
●●●●

●●
●

●
●●●

●●●

●
●

●

●
●●●

●●
●

●●
●●

●
●

●
●

●

●●●●●●
●

●
●

●
●

●●●
●

●
●●●

●
●●

●
●

●●
●

●

●●●●●●
●

●
●

●●●
●

●●●
●

●
●●

●●●●●●
●●

●
●●

●●●
● ●●●

●●
●●

●●●
●●

●●
●

●●
●

●●
●

●●●
●

●
●

●●●●

●

●●
●●●●●

●
●●●

●
●

●
●

●●●●
●

●
●

●

●●●
●●

●
●

●●

●

●
●

●
●

●
●●●●●●●

●
●

●

● ● ●
●●●

●●
●●

●●

●
●●

●

●

●
●

●●●
●●

●●
●

●●●●●
●

●

●●●
●

●
●●

●
●●

●
●

●

●

●

●●

●●

●●●●

●●●

●
●● ●

●●
●●

●●● ● ●●
●●

●●●

●●
●

●●
●

●●●●●

●●

●●
●●●

●

●●
●

●●

●●
●● ●●

●●●●●

●●

●●
●

●

●●●
●

●
●

●
●

●●
●

●●●

●

●

●
●●

●
●

●●
●

●●
●

●
●

● ●
●

●

●
●●

●
●●

●
●

●

●●

●
●

●

●

●

●
●

●●●●●
●●

●
●●

●●
●

●●●●
●●●

●●●●●●●

●●●●

●

●●●

●●●●

●
●●●

● ●
●●● ●●

●

●●●
●●●●●

●●
●

●
● ●

●
●●

●
●●

●
●

●
●

●

●●●

●

●
●

●
●

●
●

●
● ●

●●
●

●
●

●
●●

●● ●
●●

●●

●●●
●●●

● ●●●

● ●
●

●

●●●●
●●●

●

●
●●●●● ●●

●
● ●

●
●

●●
●

●

●●

●●
●

●●
●

●
●

●●

●

●
●

●
● ●

●
●

●
●

●●●

●
●●

●
●●

●
●

●●

●●

●●

●●●
●

●
●

●
●●

●
●

●●●
●

●
●

●● ●
●●

●
●

● ●

●
●

●●●● ●●
●

●●●
●

●
●●

●

●●●

●●
●

●●●
●

●
●

●
●

●●
●● ●●

●
● ●

●

●
●

●
●●

●●
●

● ●
●●●

●●
●●

●
●

●●●

●

●●●●
●

● ●●
●●

●

●●

● ●

●●
●● ●●●

●
● ●

●

●
●●

●
●

●

●●

● ● ●
●●

●

●●

●

●●

●

●●

●

●●

●
●

●
●

●
●

●●
●

●●
●●●●●●

●●●
●

●
●●

●

●●
●

●●●
●●

●
●

●●●
●●●●●

●●

●
●

●

●

●

●
● ●

●

● ●
●

●●
●

●
●●

●
●

●
●

●●
●

●●
●

●
●

●

●●

●
●●●●

●●
●

●
●

●●● ●
●

●

●

●

●
●●

●
●

●

● ●
●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●●

●●

●
●

●
●●

●

● ●

●● ●
●

●●●

●

●

●

●

●
●●

●●
●●●

●●●

●
●

●

●
●

●●
●●

●
● ●

●
●

●●●

●
●●

●●
●

●

●
●

●
●

●

●

●

●
●

●●
●

●●●●●
●

● ●

●●●●●
●

●●
●

●●
●

●●
●

●

●
●●

●
●●

●
●●

●●

●
●

●
●

●●
●●

●

●● ●
●●

●●
●

●●
●

●●
●

●
●●

●●
●● ●● ●

●
●●

●●

●●

●

●

●●
●●●●

●
●

●●
●

●●

●
●●●

●●●
●● ●●

●●●●●●●
●

●●●
●●

●●
●

●●
●

●●

●●
● ●

●
● ●

● ●

●●
●●●

●

●
●●●●

●
●

●
●

●●●
●

●
●

●●

●

●

●

●●
●

●●●
●

●●

●
●

●●

●●

●

●●●
●●●

●●
●●●

●●
●

●● ●● ● ●
●

●
●

●

●●
●●●

●●●●●

●
●

●●

●
●

●●
●

●

●●
● ●●

●●
●●●

●
●

●
●● ●

●●●●

●
●

●●
●●

●
●●

●
●

●

●●

●●

●●●●

●

●
●●

●
●

●
●

●

●●●
●

●●
●

●

● ●
●

●
●

●
●

●
●●●●

●
●

●●
●

●●

●
●●

●

●

●
●●●●●

●●●●

●
●

●

●
● ●

●

●●
●●

●

●

●
●

●

●●
●

●●

●
●

●●●

●●●
●

● ●
●●

●●
●●●

●
●

●
●

●●
●

●●
●●

●

●
●

●●
●

●●●

●●●
●

●
●

●
●●●

●●
●

●●

●
●

●●
●

●●●●●
●●

●
●●

●
●●

●●●●
●●●●●

●
●

●●
●

●●

● ●

●

●●

●
●●

●
●

●●●
●

●
●

●●
●

●

●
●

●
●

●
●

●
●●●

●●●●● ●
●

●●●●
●●●●●

●●
●

●
●●

●

●
●

●●
●●

●●
●●

●●
●●●●

●●

●●●
●

●

● ●
●●

●●●

●
●

●

●
●

●
●

●

●●

●●

●●
●●

●●
●

● ●
●●●

●
● ●

●

●
●

●●
●

●
●●●

●
●

● ●●
●●

●●●

●
●

●

●
●

●

●●●●

●●●● ●

●

●
●

●●●

●●
●

●●●●● ●●●
●

●●●
●●●

●
●

●

●●
●●

●●

●●●●●

●
●●

●●
●

●
●

●
●

●
●

●

●
●

●●
●

● ●●

●

●●
●●●

●

●●●
●

●

●

●●
●●

●● ●
●

●
●

●●●

●●
●

●●
●

●●●

●●

●●●

●●●

●

●●

●

●
●

●●
●●

●
●

●

●

●●
●● ●●

●
●●

●●●●
●●● ●

●●●●
●

●●●●
●

●
●

●
●

●●●●

●●●
●

●

●

●●

●
●

●
●

●
●●●

●
●● ●

●●●
● ●●

●●

●
●

●
●

●●
●

●●
●

●
●

●

●●
●

●●●
●●●

●
●

●
●

●
●

●
●

●●●

●

●

●●●
●●

●●
●

●

●●
●

● ●
●

●
●

●●●

●

●

●●
●

●●●●●
●

●
●●

●

●
●

●●●

●●
●

●
● ●

●
●

●●
●

●
●●●

●●●
●●

● ●
●●

●●

●

●●

●
●●

●

●

●●
●●●

●●
●

●
●●●

●
●

●●

● ● ●

●
●

●●●●●●●

●

●
●●

●
●

●
●

●●
●

●
●

●●●● ●●
●

●●●

●●
●

●

●●
●

●●●●
●●

●

●

●

●
●

●●
●

●

●●●● ●●●●

●
● ●●●

●●

●

●

●

●
●

● ●●●

●
●

●

●
●

●●●●
●

●
●

●●
●●●●●

●
●●●

●

●●●●●●

●●

●●
●

●
●

●●●●

●●

●●
●

●
●●

●

●
●●

●
●●

●
●●●

●
●●●

●●

● ●

●●

● ●
●

●

●●

●
●●

●
●●

●
●●●● ●●●●

●●
●

●
●

●
●

●●

●
●

●

●●●

●
●

●

●
●●●
●

●●
●●

●●
●

●●
●

●
●●

●●

●
●

●●

●
●

●
●

●
●●●

●●
●●●

●
●

●
●●

●●
●●● ●
●

●●●
●

●

●

●
●●

●●
●●

●●●

● ● ●●

●

●
●

●●●
●●●

●

●●●

●●
●●●●●

●

●
●

●●●●
●

●●
●

●
● ●●

●
●

●
●

●●

●
●●

●●

●●●

●
●●

●●
●

●
●

●
●

●
● ●●

●

●
●●

●

●●
●

●●●
●

●
●

●

●●
●●●

●
●●

●

●

●●●●●

●●
●●

●
●

●●

●●●

●● ●
●

●

●

●
●

●● ●

●
●

●

●
●

●●●● ●
● ●

●
●

●●●●
●

●●●●
●

●
●●●

●

●

● ●

●●
●

●
●●

●

●
●●

●

●

●

●

●
●●

●

●●●●●●

●●
●

●
●

●

●●●
●

● ●●

●
●

●●
●●●

●●●
●

●
●

●
●

● ●
●

●
●●●●

●
●

●
●● ●●

●●●●
●

● ●●●

●●
●

●

●
●●

●
●

●●

●●● ●
●●●

● ●
●●

●●
●

●

●●

●●

●
●

●
●

●
●●●

●
●

●
●

●●
●

●
●

●
●

●
●●

●●
●

●
●●

●

●

●●●●●

●
●

●

●●
●

●
●●

● ●
●●

●
●

●

●●

●

●
●

●●
●●●●

●●

●
●

●

●

●
●

●

●
●

●
●●

●

●
●

●●
●

●
●

●
●

●●●

●

●

●

●

●●
●●

●

●
●

●
●●

●●

●
●

●
●

●
●

●
●●●●●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●●●
●●

●●

●

●
●●●

●
●●

●
●●●

●

●●●
●●

●●

●●
●

●

●
●

●

●
● ● ●●●

●

●
●

●
● ●●

●
● ●

●
●

●●
●

●●●
●

●

●●
●●

●●●
●

●●●●
●●

●●
●●

●●
●●●●

●● ● ●●●●
●

●
●

●●
● ●

●●●
●

●
●

●

●

●
●

●●

●●
●

● ●●●●
●●

●

●

●
●

●
●●

●
● ●●

●
●

●

●
●

●
●●

●●●

●●●●
●●

●

●
●●

●
●●

●●●●●
●

●

●

●●
●

●

●
●

●
●

●●
●

●
● ●

●●●●

●

●
●

●
●● ●●●

●

●

●●
●●

●●
●

●●

●●
●

● ●

●
●

●
●

●●
●

●

●

●
●

●

●
●●

●●●
●

●
●

●

●●
●

●●
●

●
●

●●●●

●
●

●

●●

●●●●●●●
●●●●

●
●●

●

●●●
● ●●

●

●

●

●
●

●
●

●●●●
●●

●

●

●
●

● ●
●

●

●

●

●

●●
●●●

●

●

●

●

●

●●

●
●

●

●
●

●●
●

●

●●
●

●

●●

●
●

●

●
●

●●
●●

●
●

● ●●

●

●● ●

●●
●

●
●

●
●●

●
●●

●●
●

●●
●

●●●

● ●●

●
●

●
●

●

●
●

●●●●●
●

●
●

●●●

●

●
●

●
●

●
●

●
●●

●

●
●

●

●●
● ●●●●

●
●●

●●

●
●

●
●

●●

●
● ●

●●
●●●● ●

●●●
●

●●

●
●

●
●

●
●

●●
●

●

●

●
●

●

●

●
●●●●

●

●
●●

●
●●●

● ●

●

●
●

●

●

●

●
●

●
●●

●
●●

●●
●●

●
●●●●

●
●

●
●●●

●
●●

●●
●●●●

●●●●
●

●
●●●●●

●●

●●
●

●

●

●●
●●●

●
● ●

●●●
●●

●

●

●

●●
●

●

●
●

●
●

●

●

● ●
●●

●●
●

●
●

●
●

●●●●●●●●

●

●●●●●●●

●

●●
● ●

●
●●

●

●●●
●

●●
●●●●

●

●●

●●●●
●

●●

●

●

●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●
●●●

●●●
●

●●

●
●

●
●

●●●

●
●

●

●●
●●●

●

● ●●●●

●
●

●●●
●

●
●

●●
●

●
●

●

●
●●

●

●

●
●●

●
●●●

●
●

●
●

● ●
●●

●●
● ●●●

●
●

●
●●

●
●●

●●●
●

●

●
●

●

●●
●

● ●
●●

●
●

●

●

●
●

●

●
●

●
●

●
●

●●
●

●● ●●
●●●●

●●●
●●●●

● ●
●●

●●
●

●
●

●●
●

●
●

●
●

●
● ● ●

●

●●
●

●●

●
●●

●●
●

● ● ●
●● ●●●

●

●●●●●
●●●

●
●●

●●
●●●

●●
●

●●

●●

●
●●

●●

●

●●● ●
● ●

●

●●●●
●

●

●● ●
●●

●●
●

●
●●

●

●

●● ●
●●●

● ●●

●

●
●

●
●

●

●
●

●
●

●●●●
●

●

●

●

●
●●

●
●

●

●

●
●

●●●●
●

●●
●

●●
●●

● ●
●●●●

●
●

●●
●

●●
●● ●

●●●
●

●●●
●●●

●●
●

●

●
●

●
●

●●

●●

●
●

●
●

●●●
●

●

●

●
●

●●
●

●
●●

●

●●

●

●●
●

●

●
●

●
●

●
●●●

●

●
●

●
●

●●
●

●

●
●

● ●●●
●●

●●●
●

●

●●
●●

●●
●

●
●

●
●

●
● ●●

●●

●
●

●
●●●●

●
●●

●
●

●

●
●

●●
●

●
●●

●
●●

●
●

●

●
●●

●●●●
●

●
●

●
● ●

●●

● ●●●●
●●●

●

●●
●

●
●●●●

● ●●●●●●●
●

●
●

●
●

●●
●

●
●

●

●
●

●
●

●
●

●●●
●●

●
●●●

●
●

● ●●●●

●●
●●

●

●
●

●
●

●
●

●

●●
●

●
●●●●●●

●
●

●
●●

●

●●●
●

●●●
●

●●
●●●

●●

●

●
●

●
●

●
●

●●

●
●

●●
●●●●

●●
● ●●● ●

●●
●●

● ●●
●

●
●●●

●●

●●●●
●

●●●
●

●
●

●
●

●●
●

●
●

●●
●●●
●●●●●●

●●●
●

●
●●

●●
●

●●● ●●
●

●
●●

●
●

●
●

●
●

●●

●

●
●

●●

●

●
●●●

●●●
●●

●

●
●●

●
●

●
●●

●●
●

●
●●●

●●
●

●●●●●
●

●

●

●●
●

●
●●

●●
● ●●● ●

●
●●●

●●●
●●

●

●●●
●●

●
●●

●

●
●

●
●

●

●
●

●
●

●●●●
●

●

●
●

●
●

●●

● ●

●●●
●

●●
●

●
●

●
●●

●●●●
●

●●
●

●

●

●

●
●

●
●●

●●●●● ●
●

●
●

●●
●

● ●

●
●

●●
●

●
●●

●
●

●●
● ●

●
●

●●
●●

●
●

●
●

●
●

●
●●

●
●

●

●●
●●

●

●●

●●●
●

●●
●

●●
● ●

●

●
●

●
●

●●●●
●

● ●

●
●

●●●
●

●
●●●

●

●

●
●

●
● ●●

●
●●●

●
●●

●●

●
●●

●
●

●
●●●

●●
●●

●
● ●●●

●
●

●

●●
● ●

●

● ●

●

●●
●

●
●●

●
●

●●●●
●

●●●● ●●
●●

●
●

●

●
●

●●●●

●
●

●
●

●

●●
●

●
●

●
●●

●
●

●●●

●
●

●

●
●

●●●

●●

●

●
●●

●●

●

●
●

●
●●

●

●●● ●
●

●

●

●

●

●●●●

●
●

●●
●●●

●●

●●●
●●●

●●

●
●

●●●●●

●

●●

●●●●
●●

●
●

●●

●

●●

●

●

●
●

●
● ●

●

●●
●●

●●

●
●●

●

●●
●

●
●

●

●
●●

●

●●
●

●
●

●●
●●

●●
● ●

●● ●●●●

●●

●
●●●●

●
●

●●
●

●
●

●

●

●●

●●
●●●●

●●

●
●

●

●
●

●●

●●
●

●●

●
●

●●

●

●
●●

●●

●
●●

●
●

●
●

●
●

●
●

●●●●●

●
●

●
● ●

●●●●
●

●
●●

●●

●
●

●●●●
● ●

●
●●

●●●
●●

●
●

●●
●

●●

●

●
●

●
●●

●

●

●
●●

●

●●
●●

●●●●

●
●●●●

●
● ●

●
●

●
●

● ●
●

●
●

●
●●

●●
●●

●
●

●

●●
●●

●
●●

●
●●●●

●
●

●
●

●●● ● ●

●
●

●
●

●●
●

●
●

●
●

●●●
●

●
●

●●
● ●

●
●

●
●

●●●
●

● ●
●

●●●

●
●●

●
●●

●
●●

●
●●

●●●● ●

● ●
●●

●
● ●●

●

●

●●

●

●
●●●

●
●

●●●
●

●

●
●

●

●●●●●
●

●●
●

●●
●

● ●
●●

●
●

●
●

●
●●
●

●●
●●●

●

●

●
●

●

●●
●●●

●●

● ● ●
●

●●
●

●
●

●
●●●●

●

●●

●●
●

●●
●

●
●

●

●
●●●

●
●●

●
●

● ●

●
●

●●
●

●

●
●

●●●

●

●
●

●

●●●

●
●

●

●

●●
●

●
●

●
●

●●●●
●

●
●●●●
●

● ●
●

●

●
●●●

●●●
●

●●
●● ●

●
●

●● ● ●
●

●

● ●

●●

●●

●●

●●
●

● ●●
●●●●●●●●●

●●●
●

●●●

●
●

●●
●●●

●

●
●●

●●●
●

●
●

●●● ●●

●
●

●
●●

●
●

●
●

●

●●●
●

●
●

●

●●
●

●●
● ●●●●●●●

●

●●
●●

●
●

●
●

●●
●

●
●●●

●
●

●

●

●
●

●

●
● ●

●

●
●

●●
●

●

●
●

●
●

●
●●

●● ●

●●

●

●●
●●

●

●
●

●
●

●
●

●●

●●●
●

●●●
●

●
●

●

●●

●
●

●●

●● ●●●

●

●●

●
●

●
●

●●
●

●
●●●

●
●

●
●

●

●●

●●

●

●●
●●

●●
●●

●●●

●
●

●
●

●●●●

●●
●●

●●●
●

●

●

●●●

●
●●

●
● ●●

●
●

●●
●

●
●●●

●●●
●●●

●

●
●

●
●●

●
●

●●
●

●●●
●

●
●●

●

●
●

●●
●●

●
●●

●
●

●
●

●●
●

●
●

●

●

●
●

●

● ●

●
●

●
●

●●●
●●●●

●

●●●
● ●●

●●

●●

●
●●

●●
●

●

●
●

●●●●
●●

●
●●

●●
●

●

●●
●●

● ●●
●●

●

●●
●

●
●

●●

●

●

●●●●●

●

●
●

●
●

●●●●●
●●●

●

●
●●

●
●

●●

●
●●●

●●●●●

● ●
●

●
●

●
●

●

●
●

●
●

●●
●

●●

●
●

●
●

●
●

●

●

●●●●● ●
●

●
●

●
●●●

●
●●

●●

●

●

●

●
●●●●

●●● ●
●

●●
●

●

●●

●●

●

●
●

●
●

●
●

●●●●●
●

●●
● ●●

●
● ●

●
●

●

●
●

●●

●●●
●

●●●●

●●

●
●●

●
●●●●

●
●

●● ●
●●

●
●

●

●●
●

●●
●●●●●

●

●

●

●●

●●●●
●

●●●

●●

●●●●
●●●

●

●●
●

●●●●●● ●●●

●
●

●

●●

●
●●● ● ●●

●●
●●

●●●
●●●●

● ●

●●●●●●●●

●●●●

●

●

●

●●

●
●

●●●
●●●

●
●

●

●

●●

●
●

●
●

●●
●●
●

●

●

●
●

●
●

●●
●●●

●
●

●●●

●●

●

●
●●

● ●
●

●
●●●

●●
●●●●
●

●
●

●●●●●●●●
●

●●
●●●

●
●

●
●

●● ●

●
● ●●●

●●

●

●

●
●●●●●

●

●

●
●

●
●

●●

●●
●●

●
● ●

●

●●

●●

●
●●●

●
●●●

●●●
●●

●

●
●

●
●

●
●●●●

●

●●

●

●

●●●● ●
●●

●

●
●

●

●

●
●

●
●●

●●
●●●●●● ●●

●
●

●●
●

●●
●

●
●●●●●

●●●
●

●
●

●

●

●
●●

●●
●

●
●●

●
●

●
●●●

●
●●●

●

●

●●●

●●

●

●

●
●

●

●

●●

●●

●
●

●
●

●

●●

●●
● ●

●
●

●

●●●
●●

●
●●● ●

●●

●●

●●
●●

●
●●

●●
●

●
●● ●

●
●

●
●

●
●

●● ●
●●

●
●●●●●

●
●

●●

●
●

●

●
●

●●
●

●●●
●

●
●

● ●
●●

●●●

●●
●

●

●

●●
●●●

●●
●

●●

●●

●

●●●

●
●

●
●

●

●

●
●●●●●

●

●
●

●●
●

●●
●

●

●●
● ●●

●●● ●
●●

●

●
●

●
●● ●

●
●

●

●●

● ●
●●

●● ●
●●

●●●
●

●
●●

●

●
●●

●
●●

●●●●
●●●

●●
●●●●

●

●
●

●

●
●●●

●
●

●
●●●●●●●

●
●

●

●●
●●

●●
●●●

●
●●

●
●

●
●

●●
●

●
●

●●
●

●
●

●
●

●● ●

●●●

●●
●

●
●

●
●●

●●

●
●●

●

●●

●
●

●
●

●●
●

●
●●

●●●●
●●●●

●
●

●

●●
●●● ●●

●●
●●●

●●

●
● ●●

●

●

● ●●
●

●
●

●
●

●●●●
●

●
●

●●
●

●●
●

●
●●

●
●

●

●
●

●●

●●

●●
● ●●

●
●●

●

●

●●

●
●●

●

●●●
●

●

●

●
●●

●●
●●●●●●●

●
●

●
●

●

●

●

●

●
●

●●
●

●●
●

●●

●
● ●●

●
●

●

●

●●

●
●

●●●
●●●

●
●

●

●
●

●
●●

●

●
●●

●
●●

●

●●●
●

●
●

●●
●●●●

●●

●●
●

●●●●

●
●

●●
●

●●

●
●

●

●●
●

●
●●

●

●

●●
●●

● ●

●
●

●

●●●●

●●
●●

●●
●

●●●●
●●●

●●

●
●

●

●

●●●●
●

●●
●

●
● ●

●
●

●●

●●

●●
●

●

●●●
●

●

●
●●●●

●●
●

●
●

●
●●

●
●

●●
●

●

●●●
●●

●
●● ●

●

●●●● ●

●

●
●

● ●●●

●
●

●
●●●●

●●●●

●
●

●●●
●

●
●

●●
●●

●
●●

●

●
●● ●●●

●
●

●

●●
●

●
●

●

●
●●●●●
●●

●
●

●
●

●
●●

●
● ●●

●

●
●

●

●

●●

●●
●●●●●●●●
●

●
● ●●

●●
●

●
●

●
●

●

●● ●

●

●
●

●●●●●●●

●
●

●●●
● ●

● ●

●●
●

●
●

●
●

●

●
● ●

●●
●

●●●
●

●

●
●●

●●●●●
●

●●

●●
●●●

●
●

●●

●
● ●

●
●

●
●

●

●
●●●

●●
●

●
●●

●
●

●● ●
●

●●

●●
●

●
●

●●●

●
●●

●●
●●

●
●

●
●●

●●
●

●
●●

●

● ●●●

●

●●
●

●●

●

●●
●

●●●●●
●

●●
●●

●●

● ●●

●●
●

●●
●

●●●●
●

●
●

●
●

●●●
●

●●
●●●
●

●
●

●●●●

●●●●

●●
●●

●●

●●●●●

●●

●●
●●●●

●●

●
●●●●●

●●● ●

●
●

●●●
●

●

●●●
● ●

●●

●
●

●●●●
●● ●●●●

●

●
●

●●

●●
●

●

●●●
●●

●
●●●●

●

●
●●

●

●●●
●●

●●●●●

●●
●

●●●
●

●
●●

●
●

●
●

●
●

●
●

●

●
●

●
●●●●●

●

●
●

●

●●

●

●
●●●

●

●●
●●●

●●

●
●

●●●●●●
●

●
●

●
●

●
●●●

●
● ● ●●

●●
●

●

●●

●
●

●
●●

●
●●

●

●●
●

●

●

●
● ●●

●

●● ●●●●●

●

●
●

●
●

●
●●●

●
●

●

●

●

●
●●

●●●●
●

●●
●

●●

● ●●
●

●●●

●●

●●● ●
●●●

●
●

●
●●

●
●●●

●
●

●
●

●
●

●●
●

●

●●

●●
●

●●
●●

●●

●●

●●

●

●●

●●
●●

●
●●

●

●

●

●●●

●●

●

● ●●●

●●
●

●●●
●

●
●

●

●●
●●

●
●

●

●
●

●●●
●●●●

●

●

●●
●

●●

●●
●

●
●●

●

●●
●

●●
●●

●

●
●●

●
●

●
●

● ●

●

●●● ●●

●

●●●●●●●
●●

●
●

●●
●●●

●

●

●
●

●●
●●●

●

● ●●

●

●

●●● ●●
●

●

●● ●
●

●●
●

●●●
●

●
●●●

●
●

●

●
●●●●●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●●
●●●●● ●

●
●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●●

●
●●

●

●
●

●

●●

●
●

●●

●

●
●

●

●
●

●●●

●
●

●●

●
●● ●●

●

●●

●
●●●●●●

●

●●

●
●

●
●

●
● ●

●
●

●

●

●●
●

●

●

●
●

●●

●●●

●

●●
●

●
●

●
●●●

●

●●

●

●
●

●
●

●

●●

●●●
●

●
●

●

●
●●

●
●●

●

●
●

●●●
●●

●

●

●

●

●
●●

●●
●

●

●
●

●

●●●● ●
●

●
●

●
●

●●

●●●
●

●●
●●●●

●●

●
●

●●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●●
●

●●●
●●

●●●●●
●

●●
●●

●●●●●●●
●●

●
●

●●
●●

●
●●●

●●
●

●
●

● ●
●

●●
●

●
●●●

●

●
●●

●●●
●●

●
●●
●●

●
●●

●●

●
●

●

●

●
●●●

●
●●

●● ●
●

●
●

●
●●●

●

●
●

●

●
●

● ●
●

● ●
●●●

●

●

●
●

●

●
●● ●

●●●
●

●
●

●
●

●●
●●●

●

●

●
● ●●● ●

●
●

●
●

●
●●

●

●
●

●
●●

●
●

●●●

●●

●
●●●

●
●

●
●●

●

●
●

●●
●

●
●

●
●

●
●●

●●●
●

●

●
●

●

●
● ●

● ●●
● ●

●●
●

●

●●
●● ●

●●

●

●
●●

●

●
●

●
●●

●
●●

●

●●●●
●

●

●●
●

●
●

●
●

●
●●●

●

●
●

●●

●

●●

●
●

●

●●
●●

● ●

●
●

●

●●●●
●

●●●
●●

●
●

●
●

● ●
●

●

●

●●

●

●●

●
●●

●
●● ●●

●
●●●●●

●
●

●●●●
●●●
●●●

●●
●●

●

●
●

●

●

●

●
●●●

●●

●
●●●

●
●

●
●●●
●

●

●
●

●●
●

●
●

●●●●

●
●

●●●● ●●
●●

●
●

●●●

●
●

●●

●
●

●
●●

●
●

●
●●●●

●●●

●●●●●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●
●●

●●
●

●
●

●●
●

●
●●●

●

●●●●●
●

●●●●

●●●

● ●

●

●

●●
●

●

●
●

●●●●
●

●●

●

●
●

●●
●●

● ●●

●

●
●●

●●●
●

●

●●
●●

● ●●
●●

●
●

●
●

●●
●

●●●●●●
●

● ●
●

●●
●

●

●●●● ●●
●

●

●●●
●

●
●●

●●●
●

●
●

●

●●

●

●

●
●●

●

●

●
●

●●

●

●●
●

●
●●

●
●●●

●
●

●●
●

●

●●

●
●

●●
●

●
●

●
●●

●
●●

●
●

●

●
●●●●

●

●●

●
●●●

●●
●●

●●●
●●●●
●

●●●●
●

●

●●
●●●

●
●

●
●

●

●

●

●●
●

●●

●
●

●

●●

●●
●

●●
●

●
●

●●●

●
●

●●
●

●●
●

●
●

●

●●●
●

●

●
●

●

●●●●●●●
●●

●
●

●

●
●

●

●● ●

●●
●

●
●

●
●●

●●

●●
● ●

●
●●

●
●

●
●

●●
●

●●
●●●●●

●●
● ●

●
●

●
●

●
●

●

●●
●●

●
●

●●

●

●

●
●

●
●●

●●

●
●●●

●

●

●

●
●●

●●
● ●●●

●
●

●●●

●

●
●

●
●

●●

●
●●

●●
●●

●
●

●●●●
●

●
●●●

●
●

●

●

●
●●

●
●● ●●

●●●
●

●
●

●

●
●

●
●

●
●

●●

●
●●

●●

●●●●●

●●

●
●

●
●

●

●
●

●
●

●

●

● ●
●●

●
●

●
●

●
●

●
●●

●
● ●

● ●● ●

●●
●●

●●●●●

●

●

●●●

●

●

●●

●

●●

●●●

●

●●
● ●

●

●
●

●●●
●

●●
●●●●

●
●

●●

●●

●

●

●●
●●

●

●

●●●
●●

●
●

●●
●

●

●
●

●
●●

●

●
●●
●●

●

●●

●

●●

●

●
●

●
●

●●
●●

●

●●●
● ●●●●●●

●●

●●

●
●●● ●

●
●

●
●

●
●

●
●

●●
●

●●●●
●●

●●
●

●●
●●

●
●

●● ●●
●

●

●

●

●●
●●●

●●

●

●

●●
●

●●

●
●

●

●
●

●●●●
●

●

●

●

●
●

●
●

●
● ●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●●
●

●

●

●●●●
● ●

●
●●

●
●

●
●●

●●●
●

●

●●

●
●●●

●●
●

●
●

●
●

●

●
●

●

●
●

●●
●

●●
●

●●●

●
●●

●
●●

●

●

●
●

●
● ● ●●

●
●

●●●●
●

●●

●●
●●

●
●

●●
●

●
● ●

●
●

●

●
●

●●●
●

●●
●

●

●●●●

●●
●

●●●●
●●

●●
● ●●●

●●
●

●

●●
●●●

●
●●

●
●●

●

●
●

●
●

●●
●

●
●

●

●
●●

●●
●

● ●
● ●

●

●

●●●
●

●●
●

●
●

●● ●
●

●●● ●●

●●
●

●●●
●

●
●

●
●

●●●

●
●●●

●●●●
●

●

●
●

●

●

●

●
●●●
●●

●

●

●

●

●

●
●

●
●●●●
● ●●

●
●

●
●

●
●

●

●
●●●

●●
●

●●
●

●
● ●

●

●
●

●●●
●

●

●

●

●
●

●●

●●
●

●
●● ●

●
●

●●●●●

●

●

●●
●●●

●

● ●
●●●●

●●
●

●
● ●

●●

●
●●

●

●
●● ●

●●●●
●

●
●

●
●

●●●
●

●

●
●

●

●
●

●
●●

●●

●

●●●
●●

●

●
●●●

●
●

●
●● ●●

●
●●

●●
●

●●●
●●

●
●●

●
●

●●● ●
●

●

●
●

●●
●●

●
●●

●
●

●●●●
●

●
●

●

●

●

●●●
●

●●
●●

●

●●
● ● ●

●

●
●

●

●●
●●

●
●●●

●●

●●●●
●

●●
●●●

●●

●
●

●

●

●
●●

●
●

●●●

●●
●●

●

●

●

●

●●● ●

●
●

●●●●
● ●

●
● ●●

●
●●●●●● ●●

●

●●
●

●
●

●

●●
●

●
●

●

●
●

●
●

●

●● ●●
●

●
●● ●

●
●

●

●

●
●

● ●
●

●
●

●
●

●
●

●

●

●●

●
● ● ●
●

●●
●

●

●
●

●

●
●

●
● ●

●●●
●● ●

●
●

●

● ●
●●●

●●

●
●

●●
●

●

●

●
●

●

●
● ●

●
●

● ●●

●●

●●●

●
●●

●●●●
●

●
●● ●

●
●●

●
●

●
●

●●
●●●

●
●●

●
●

●●
●

●
●

●
●●

●
●●

●●
●

●●
●

●
●

●●●
●

●
●●●●●

●

●

●

●

●

●
●●

●●●●
● ●

●●

●
●

●● ● ●

●●
●

● ●
●● ●

●

●
●●●●

●
●

●
●

●●

●
●●

●

●
●

●

●
●●●

●

●

●●

●●●●● ●
●

●●●
●

●●
●

●●

●●
●

●
●

●

●
●

●
●

●

●●
●

●
●

●●

●

●

●

●●
●

●●
●

●
●●

●●●
●●

●●●
●

●
●●

●●●
●

●●

●●
●●

●
●●

●
●

●
●●●●
● ●●

●

●●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●●

●●●
●

●

●

●

●

●
●

●●●●●●●
●

●

●●
● ●●

●

●●
●●

●
●

●●

●
●

●●
●

●●
●

●

●
●●

●
●

●
●

● ●

●●

●
●

●●
●●●

●●●
●

●

●
●●

●
●● ●

●
●

●●●

●●

●
●

●
●●

●
●

●

●

●

●●●●
●

●

●

●
●

●●●
●●

●●
●●

●
●●●

●●

●

●

●

●

● ●●
●

●●
● ●●●

●
●

●

●

●●● ●
●●

●
●

●

●

●

●

●
●

●●

●

●●●
●●

●

●
●●●●●●●

●
●●

●●

●●
●

●
● ●

●

●●
●

●

●●

●●
● ● ●

●●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●

●
●

●
●●●

●●

●●●●
● ●

●
●

●●
●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●
●

●
●

●
●●

●●●●

●

●
●●

●

●
●

●

●

●●
●●

●

●

●

●

●● ●●

●
●

● ●●●
●●

●
●

●

●
●

●
●●

●

●●
●

●

●●
●

●●
●

●
●

●●
●

●●●●
●●●●●●

●
●

●
●●

●●
●

●
●

●
●

●
●

●

●
●

●
●

● ●●●
●●

●

●

●●●
●●

●
●

●●
●●●●

●

●

●●●●

●●
●

●●

●

●

●

●
●

●
●●

●●●●

●
●

●

●●
●●●

●
●

●
●

●●
●

●

●
●

●●●
●●●●●

●
●●

●●

●

●
●

●

●●●

●
●●

●

●

●

●
●

●●
●

●

●●

●
●●

●●●
● ●●●

●
●

●
●●

●
● ●●●●●●

●●

●
●●

●
●●

●●●

●
●

●●●
●●●●

● ●
●●

●●●●●
●

●
●

●
●

●
●

●
●

●

●

●

●
●●●

●●●●●●

●
●●

●
●

●
●

●
●

●

●

●
●

●

●●●
●

●

●
●

●
●

●●
●

●
●●

●●
●

●●
●

●
●●

●
●

●

●

●

●
●

●●●●

●
●●

●
●

●
●

●
●

●
●

●●

●

●●
●●●

●●●

●

●

●●
●●

●
●●

●

● ●
●●

●
●

●●

●

●●

●●●●●
●

●●
●

●
●

●
●

●
●●

● ●●
●

●● ●●
●●●●●

●
●

●●
●

●

●
●

●●
●●●●

●

●
●

●

●●
●

●

●

●
●●

●

●
●

●●
●

●
●

●●

●
●

●●

●●
●

●
●

●
●

●
●

●

●

● ●

●●
●●

●

● ●●●●●

●●

●

● ●

●
●●

●●
●

●●
●

●●
●● ●

●
●

●●●●

●
●

●
●

●
●

●
●

●●

●

●●●

Figure 6.6: Q-Q plot of predicted and actual non-outlier differences: The
difference quantiles and theoretical normal distribution quantiles. The black
points represent normally distributed data while the red points show detected
outliers. The black line represents normally distributed data. The majority
of the difference values follow this line showing they approximate a normal
distribution.

293

CHAPTER 6 SECTION 6.7

6.7 Discussion

The formula and its application to predict the profile of damage created by

a sequence specific damaging agent presented here has enabled the confir-

mation that microarrays can detect genome wide damage levels. This has

been shown for CPDs (Teng et al., 2011) and is also currently being used

to investigate damage induced by chemotherapeutic platinating agents, with

similar results. This validation of microarray technology for DNA damage

detection is important in the field of DNA damage research as it allows a new

way to analyse damage events at a high resolution throughout a genome.

Comparisons between the predicted CPD levels following UV irradiation

and the actual values from the microarrays allowed an estimation of signif-

icant differences between the two to be determined. This was based on the

assumption that random differences between the two, due to noise in the

microarray data, inaccuracies in the prediction, or a combination of the two,

would follow a normal distribution. Non-random, and therefore potentially

biologically relevant, differences may have indicated regions of damage above

or below the expected level. Outlier detection was used to identify any such

regions, which found only a relatively small number of probes, which were

not linked to biologically significant variations. The same conclusions were

drawn from a similar analysis of cisplatin induced DNA damage data. These

analyses need to be repeated with more replicate datasets to confirm the

findings.

294

Chapter 7

Genome wide analysis of the
binding site locations of the
Abf1 protein

7.1 Introduction

Abf1 is an essential yeast general regulatory factor (GRF) with multiple roles

in the cell (Buchman et al., 1988; Fourel et al., 2002; Lascaris et al., 2000;

Loo et al., 1995; Miyake et al., 2002; Rhode et al., 1992), including GG-NER

(Reed et al., 1999). Genome wide binding site investigations have been un-

dertaken previously (Lee et al., 2002; Harbison et al., 2004; Schlecht et al.,

2008) which have revealed around 1,500 sites. The microarrays employed in

these investigations were of a lower resolution than the Agilent G4493A mi-

croarrays, and so these have been used here to to conduce a higher resolution

analysis than previously undertaken. Genome wide Abf1 binding ChIP-chip

datasets from before and after UV-irradiation were created and investigated

by Dr. Matthew Leadbitter (Leadbitter, 2011). Those same datasets have

been reanalysed here with a focus on the unirradiated datasets. The in-

vestigation here uses the previously described bioinformatic tools to analyse

Abf1 binding. The objective of this analysis was to demonstrate the tools’

applications to real ChIP-chip data, to analyse these results to identify any

novel information about the genome wide binding properties of Abf1 and to

compare these results to those of previously published investigations.

295

CHAPTER 7 SECTION 7.2

7.2 Methods

7.2.1 Generation of data

All ChIP-chip microarrays analysed in this chapter were created by Dr.

Matthew Leadbitter. This process is detailed in Leadbitter (2011) and out-

lined in Chapter 2. Briefly, an antibody against the Abf1 protein was used in

the immunoprecipitation procedure, which was carried out on yeast BY4742

cells with no UV treatment (U), immediately following UV treatment (0)

and 30 min following UV treatment (30). Three biological replicates were

carried out for each time point, generating nine datasets. The file names of

these are shown in Table 7.1 and the raw data files are provided in the “Abf1

microarray datasets” folder in the electronic appendix (see Page 367).

File name Description

Abf1 U 1.txt No UV treatment replicate 1
Abf1 U 2.txt No UV treatment replicate 2
Abf1 U 3.txt No UV treatment replicate 3
Abf1 0 1.txt 0 minutes after UV treatment replicate 1
Abf1 0 2.txt 0 minutes after UV treatment replicate 2
Abf1 0 3.txt 0 minutes after UV treatment replicate 3
Abf1 30 1.txt 30 minutes after UV treatment replicate 1
Abf1 30 2.txt 30 minutes after UV treatment replicate 2
Abf1 30 3.txt 30 minutes after UV treatment replicate 3

Table 7.1: Abf1 ChIP-chip datasets: dataset file names used in this investi-
gation and available in the accompanying electronic appendix (see Page 367).

7.2.2 Data validation

The checkData function was used to check the quality of the microarray

datasets. The results of this are provided in “check.pdf” in the electronic

appendix (see Page 367) and show that the data are of good quality, with no

suggestions of any reasons not to use any of the datasets. All nine files were

therefore loaded into R and used throughout the remainder of this analysis.

296

SECTION 7.2 CHAPTER 7

7.2.3 Data normalisation

All data were normalised using the procedure described in Chapter 4. This

process removes probe values known to be irrelevant, namely from the mito-

chondrial genome and deleted genes, quantile normalises replicate datasets,

shifts the new distributions’ pseudo-modes to zero and scales the distribu-

tions to make the negative part of the distribution approximate the equivalent

part of the normal distribution.

7.2.4 Peak detection

Peak detection was carried out with each set of normalised replicate datasets

using the enrichment detected method described in Chapter 5 to determine

potential sites of Abf1 binding. All datasets for each condition were analysed

together using the optimal settings determined in Chapter 5: a window size of

1 (shown to produce the best peak detection results with multiple datasets),

an FDRE value of 0.9 (the optimal balance of sensitivity and specificity) and

no scaling (unnecessary because the data appear to meet the expectations

of the enrichment detection algorithm). The function was set to find peaks

and therefore the results were returned as three new peakList objects; one

for each of the three experimental conditions investigated.

7.2.5 Hypergeometric distribution

The hypergeometric probability function phyper in R was used to calculate

the significance of overlaps between different groups of genes, based on the

total number of ORFs loaded by the loadAnnotation function, which is

7,071. The four arguments of the function (q, m, n, and k) were provided

as the number of overlapping gene names between this and the published

investigation being compared, the total number of genes in the published

investigation, 7,071 - the total number of genes in the published investigation

(such that m + n = 7,071) and the number of gene names found in this

investigation, respectively. The result was subtracted from 1 to get the p-

value.

297

CHAPTER 7 SECTION 7.2

7.2.6 Sequence extraction

The enrichment detection function, when set to detect peaks, provides an

estimate of the PBR — the region likely to contain the genuine binding site

leading to the creation of the peak. These estimates (chromosome numbers

and start and end coordinates) were used to extract sequences for each PBR

with the getSequences function. The UCSC sacCer3 (April 2011) genome

release was used for this, downloaded using tools from the BSgenome package.

7.2.7 Sequence analysis

Extracted sequences were written to files in the FASTA format and analysed

with BioProspector (Liu et al., 2001). All sequences are provided in “Se-

quences at detected PBRs.fasta” in the electronic appendix (see Page 367).

For each FASTA file, the program was run twice, varying the setting to search

for motifs present in all sequences. Running the program under the condi-

tion that the motif does not have to be present in every sequence allows the

strongest motif results to be found, which may or may not be present in all

of the sequences in the file. Running the program under the condition that

the motif must be present in every sequence allows the motif represented

the most in all sequences to be determined, which may be different from

the strongest motif. Searches for a single, continuous sequence were carried

out with a width of 15, 2 positions greater than the length of the current

consensus. Searches carried out for two discrete sequences were carried out

using two widths of 6 and a gap between them ranging from 3 to 7, making

the maximum analysed sequence length 19. All other settings were left as

defaults, each search returning the top 5 motif results.

7.2.8 Motif logo creation

Binding motifs discovered during the sequence analysis were converted to

graphical forms for display using WebLogo version 3.3 (http://weblogo.

threeplusone.com; Crooks et al., 2004), setting the sequence type to ‘DNA’,

base composition to ‘S. cerevisiae’, colour scheme to ‘classic’, and using all

298

http://weblogo.threeplusone.com
http://weblogo.threeplusone.com

SECTION 7.2 CHAPTER 7

other default settings. This allows the prevalence of the different bases at

each site to be visualised. Each position shows a stack of bases, displayed in

different colours, the heights of which represent the frequency of occurrence of

each base at each position. The overall height at each position corresponds to

the bit score (y axis), representing the sequence conservation at the position.

Therefore if all bases appear randomly at a site the height of the stack will

be at or close to zero, representing no sequence conservation at the site. If

the same base(s) frequently occur(s) at a site the height of the stack will

increase and the most frequent base(s) will be indicated in the stack in the

proportion in which they are found. This enables more information about

a binding site sequence to be visualised than a consensus sequence alone.

Motifs are assigned a score, as described by Liu et al. (2001), with higher

values representing more robust results.

7.2.9 Ganapathi data

The downloaded microarray data from Ganapathi et al. (2011) is provided in

BAR file format. This is an Affymetrix file format (details available at http:

//www.affymetrix.com/support/developer/powertools/changelog/gcos-

agcc/bar.html) which cannot be read by standard programs. They were

therefore converted to tab-delimited text files using a tool available in the

CisGenome package (Ji et al., 2008). This was downloaded as a ZIP file and

extracted to a known location. The Windows command line editor was used

to navigate to the ‘bin’ folder in this location. From here the affy bar2txt

program was run with each of the BAR files, converting them to text files.

These text files contain three columns: the chromosome number, a single

coordinate for the probe and the probe value. The data from these text files

were used for all analyses.

The microarrays used in this investigation were a much higher resolution

that those used to create the Abf1 binding data analysed here (3,115,004

probes compared to 41,775). In order to make comparisons between the

two, the Affymetrix data was reduced to the locations of the probes one the

Agilent G4493A microarrays. This was achieved with the approx function

299

http://www.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/bar.html
http://www.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/bar.html
http://www.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/bar.html

CHAPTER 7 SECTION 7.3

in R, which interpolates values from a dataset at a given set of positions. In

this way values from the Affymetrix data were approximated at the locations

of the Agilent probes, allowing the two datasets to be compared optimally.

As the resolution of the Affymetrix microarray is so much higher than the

Agilent, the majority of these interpolated values should map very closely to

actual probe values.

The two sets of Abf1 binding sites determined in this investigation and

by Ganapathi et al. (2011) are presented as coordinates. These were used

to compare the two sets of results. The Ganapathi et al. (2011) regions are

much shorter than the PBRs determined in this investigation (median length

of 65 compared to 307), as a result of the higher array resolution. Therefore

any two sets of coordinates sharing any overlap were deemed to represent the

same region and therefore the same Abf1 binding site.

7.3 Results

7.3.1 Data validation

The output of the checkData function for the first untreated dataset is shown

in Figure 7.1 and are provided in “check.pdf” in the electronic appendix (see

Page 367). All were visually examined and found to be within reasonable

limits, as described in Section 3.2.2. The pseudo-images of the red and green

channels do not show any signs indicative of artifacts on or damage to the

microarray surface. The final dataset (Abf1 u 3.txt) shows a small area of

reduced hybridisation in both channels in the lower left-hand corner, but not

at a level that gives cause for concern. As both channels look to have the

same pattern of reduced hybridisation the ratio between the two should not

be adversely affected.

The box plots show the bulk of the signal intensity values to be within the

expected range, around a log2 signal intensity of 15, which is consistent with

all microarray datasets produced in our laboratory. There are no large differ-

ences between the red and green intensity values for each dataset, suggesting

the labellings and hybridisations were equally effective in both channels. The

300

SECTION 7.3 CHAPTER 7

Abf1_u_1.txt

Cy3 (Green):

Cy5 (Red):

Organism & Strain:

Date:

Name:

Description:

●●

●
●●

●

●●●
●●
●

●

●

●
●
●
●
●●
●
●

●●
●●●●
●

●

●

●

●

●●
●●
●●
●

●

●

●

●

●
●
●
●

●

●●

●

●●
●

●

●●
●

●

●

●●

●

●
●
●
●

●

●
●●●

●

●

●●●

●●
●

●
●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●●

●
●
●●
●
●●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●●
●●●●●
●
●

●
●
●●●

●

●
●●

●

●

●

●

●
●●

●

●

●●●
●
●

●

●
●●●
●

●

●
●●
●

●
●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●●

●

●

●

●

●

●
●
●

●

●
●
●●

●

●

●

●

●
●●
●

●

●

●
●

●

●
●

●

●●●●

●
●

●

●

●

●
●●●

●

●
●
●

●

●

●●
●●
●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●

●

●●
●

●●●●

●

●●●

●

●●●●●●●
●
●
●●

●
●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●●
●
●

●
●

●

●

●

●

●

●
●●●

●

●

●

●●●
●
●

●
●

●

●●
●
●●●

●

●

●

●

●●

●●

●

●●

●●

●
●

●

●
●

●

●
●
●
●
●●●●●●
●
●

●

●

●

●
●
●
●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●●●
●
●

●

●

●

●

●
●

●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●●

●●

●●

●

●

●
●●

●

●
●

●

●
●●●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●
●
●
●
●

●

●

●

●

●

●
●●
●

●●
●

●

●
●●●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●●

●

●●

●●

●

●

●●●

●●

●●
●
●●
●●

●●
●

●

●

●
●
●
●
●●●●
●●
●

●

●

●

●

●
●
●

●

●

●

●●●
●

●
●●
●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●●

●
●
●
●

●

●●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●
●

●

●●●
●●

●●●
●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●
●
●●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●
●

●
●●●

●

●●●●
●
●●

●

●
●
●
●

●

●
●
●●

●●

●
●
●

●

●●●

●

●
●
●
●

●●

●●●
●●
●●●
●●●
●
●
●
●
●
●

●

●
●
●●●

●

●

●

●

●

●

●●
●●

●
●

●●

●

●●
●

●
●●

●

●

●

●

●
●
●●●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●●

●

●
●●
●

●

●●●

●

●●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●●
●
●

●

●

●

●●●

●

●

●

●●

●●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●
●●
●●●●
●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●
●●
●●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●●●●
●

●

●

●●

●

●●

●
●
●●
●●

●
●

●

●

●

●
●

●●
●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●
●●●
●

●

●
●

●

●
●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●
●
●●●
●
●

●

●●
●

●

●

●●●

●
●
●
●
●

●●
●

●
●

●●

●

●●
●
●

●

●●●●●●●

●
●
●
●

●

●

●

●

●●
●●
●

●

●

●

●
●

●

●

●
●●●

●●●●●●
●
●●

●

●●

●

●

●
●
●

●

●
●

●

●●●

●

●●
●

●

●

●
●

●

●

●●●
●

●

●

●
●

●

●
●
●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●
●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●
●●
●

●

●

●●
●●
●
●
●
●
●
●

●

●
●●

●

●

●

●
●●

●

●

●

●

●●

●

●●
●
●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●●

●

●
●
●
●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●
●

●
●
●

●

●

●●
●●
●●●

●

●

●

●

●

●●

●

●

●

●
●●
●

●

●
●
●●
●
●
●

●

●
●

●

●●

●
●
●

●

●
●●
●
●
●
●
●●

●

●

●

●

●

●●

●

●

●●●

●

●
●●

●

●
●
●

●

●●●●

●

●

●

●
●●
●
●
●

●

●
●
●●

●

●

●

●●
●●●
●●●
●

●

●●●

●

●

●●

●

●●
●

●

●

●

●
●
●

●

●

●●●

●

●

●●
●●

●

●

●

●

●

●

●
●●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●●
●
●

●●●

●

●

●

●●
●●●●●●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●
●

●

●●●●
●
●●●●

●

●

●

●

●

●

●
●
●●●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●
●●●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●
●
●
●
●●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●
●●

●

●

●

●

●
●
●

●
●

●●●●●

●

●

●
●
●

●

●●

●

●●

●●●●●
●
●●●

●

●

●

●
●

●●
●●

●

●

●
●●
●

●●

●
●

●

●

●●
●●
●●●
●●
●
●
●
●

●

●
●●

●

●

●

●

●

●●●

●

●
●

●

●●●●●
●●

●
●

●●

●

●●

●

●

●

●

●
●●

●

●●●●
●●
●

●
●●
●●●
●●●

●

●

●

●

●

●
●
●

●

●

●
●
●
●
●

●

●

●
●

●●

●

●

●

●

●

●
●●●

●

●
●

●
●
●●●
●

●

●●

●

●

●

●

●

●●●●●●
●
●

●

●

●●

●

●

●
●

●

●●●●●●
●

●

●

●●●

●

●
●
●

●

●●●
●●
●

●

●

●
●
●
●●●●

●

●
●●●●●●

●

●●●●●
●
●●●●●●●
●

●
●

●

●

●●

●

●

●
●
●●
●●●●
●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●
●●●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●●
●
●●●

●●

●
●
●●
●

●

●●
●
●●●

●

●
●●
●
●●
●

●

●

●
●

●

●

●

●

●
●
●
●
●●

●

●

●

●●●

●

●●

●
●●●
●
●
●●●

●

●

●●
●
●

●

●
●●●●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●●●●●

●
●

●

●
●●●

●

●

●

●

●
●●
●
●

●

●
●
●

●

●

●

●●
●
●●
●

●

●

●

●
●●
●
●●

●

●●
●
●

●

●
●●●●
●●●

●

●●

●

●

●

●●●

●
●●

●

●

●●●

●

●●●●

●

●

●●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●●

●

●●

●

●●

●

●●●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●●
●●●

●

●●
●
●
●
●

●●
●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●●
●●
●

●

●●
●

●

●
●

●

●●
●

●

●

●

●

●
●
●
●
●●●

●

●●
●●

●

●●
●

●

●●
●●●
●●●

●

●●

●

●

●

●

●●●●●●

●

●
●

●

●

●

●

●●●
●
●
●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●●●●

●

●●●
●
●

●

●

●

●●●●
●

●
●●
●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●
●
●

●

●

●●
●●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●

●

●

●●

●
●

●●
●
●
●
●
●
●●

●

●●●

●

●

●

●

●

●●●
●

●

●

●●
●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●
●●●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●●

●

●

●●●
●●

●●

●●●
●

●

●

●●●●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●●
●

●

●
●

●
●●●
●
●
●●

●

●

●●

●

●

●

●

●

●
●
●
●●●●●

●

●

●
●
●
●

●

●●●

●

●●●
●●●

●

●

●
●
●
●
●●●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●●

●
●

●
●

●

●●
●
●●
●
●●●●

●

●●●
●

●

●

●

●

●●
●●●

●

●

●
●

●

●

●●

●

●
●
●●
●

●

●

●
●
●●
●

●●

●●●
●

●

●

●

●

●●

●

●●

●●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●
●
●●●●●

●

●

●
●

●
●

●
●

●

●

●●●●

●

●●●●●
●

●

●●
●
●
●
●●●●
●
●
●●●●●
●

●

●
●●

●

●●
●●

●
●●

●

●

●

●
●
●●
●●
●

●

●
●

●

●●
●
●
●●
●●●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●
●●●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●
●

●

●
●●
●
●
●●●●●

●

●●

●

●

●●
●●
●

●

●

Red Green

0
5

10
15

Signal Intensities

Lo
g2

 S
ig

na
l

4 6 8 10 12 14 16

0
5

10
15

Red v Green

Log2 Green Signal

Lo
g2

 R
ed

 S
ig

na
l

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

Signal Intensities

Log2 Signal

D
en

si
ty

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8 Red/Green Ratios

Log2 Ratio

D
en

si
ty

Figure 7.1: Abf1 checkData output: quality control plots for the first Abf1
dataset, showing the data to be of good quality suitable for further analysis.
All plots are provided in the electronic appendix (see Page 367).

301

CHAPTER 7 SECTION 7.3

small number of outlying values, mostly at the lower end of the scale, are

likely due to probes known to be unreliable, such as those for the mitochon-

drial genome, which will be removed as part of the normalisation process.

The scatter plots show consistent one-to-one relationships between the

data from the two channels, with the bulk of the data around the log2 signal

intensity value of 15, as before. This confirms the data from the box plots

and suggests that there is not a large amount of dye bias present between

the two samples. The region extending from the bulk of the data towards

the red signal region of the graph represents binding sites of Abf1, where the

red signal intensities are higher that the green. This area is present in all

datasets and confirms the presence of a large number of binding regions, as

would be expected.

The shapes of the distributions of the signal intensities are smooth, indi-

cating no unusual effects. Once again, the medians are centred around the

expected region of a signal intensity of 15. The input sample (green) distri-

butions are uniform, as is expected for the total genomic DNA, while the IP

sample (red) distributions are skewed to the right, as is expected because a

subset of the genetic material is present in increased amounts.

The distributions of log2 ratios are all similar and of the expected shape,

with no major distortions. The left hand skew is due to the higher sig-

nal intensities of immunoprecipitated material seen in the distribution of

red signal intensities. Many datasets have the median centred around zero,

which is to be expected as this region should represent the background, non-

immunoprecipitated, regions. It does not pose a problem however that some

are not centred around this region, as this is one of the factors corrected for

in the normalisation procedure (see Chapter 4). On the basis of these QC

checks it was decided that all nine datasets were suitable for loading into R

for analysis.

7.3.2 Consequences of normalisation

The effect of the normalisation procedure on the shape of the density plots

of all datasets can be seen by comparing the density distributions of the

302

SECTION 7.3 CHAPTER 7

raw and fully normalised datasets (Figures 7.2 and 7.3), where each set of

replicates is shown as a different colour. The nine raw datasets are not

all aligned together, with several pseudo-modes lying away from zero. The

fully normalised data shows all pseudo-modes align at zero. The replicate

datasets appear as single lines as the quantile normalisation procedure has

caused them to follow the same distributions. The left hand side of the

distributions, below zero, align closely together as a result of their being

scaled to follow the standard normal distribution over this region. As there

is only a small amount of variation between the raw datasets, the main effect

of the procedure has been to increase the binding values as a result of the

background scaling procedure.

Plots along a 30 kb section of chromosome 1 (Figures 7.4 and 7.5) show the

effects on a small section of data in the context of the genome. In this instance

the normalisation procedure has not caused large changes in the data, that is

to say, they were close to the optimal state that the normalisation attempts

to achieve before the process was applied.

The raw data points for each replicate dataset were plotted against their

normalised values to visualise the changes caused by the normalisation (Fig-

ure 7.6 A-C). Values removed by the normalisation procedure are not plotted.

All datasets produced similar, reasonably straight lines in these plots, show-

ing them to follow similar distributions which the normalisation procedure

did not change. They all deviate markedly from the line y = x as a result

of the scaling procedure. These results match with the expected result of

the normalisation, given that the distributions of the raw datasets were very

similar.

Plotting the averages of the three replicates of each dataset (Figure 7.6

D) shows the relationships between the different conditions before and after

normalisation. Again, this shows little difference between the datasets, es-

pecially towards the upper half of the data. The red line (0 min after UV

treatment) deviates from the other two in the lower half of the raw data,

which is corrected for in the normalised data.

Plotting the three untreated datasets against each other (Figure 7.7)

shows that the three replicates are very consistent. The Spearman’s cor-

303

CHAPTER 7 SECTION 7.3

−10 −5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Log2 ratios

D
en

si
ty

Figure 7.2: Raw Abf1 data density plots: The three biological repeats are
shown for each of the no UV treatment (black), immediately following UV
treatment (red) and 30 min following UV treatment (green) Abf1 binding
datasets.

304

SECTION 7.3 CHAPTER 7

−5 0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Log2 ratios

D
en

si
ty

Figure 7.3: Normalised Abf1 data density plots: The three biological repeats
are shown for each of the no UV treatment (red) and 30 min following UV
treatment (green) Abf1 binding datasets. As quantile normalisation makes
datasets follow the same distribution, the three lines for each dataset overlap
each other and appear as a single line.

305

CHAPTER 7 SECTION 7.3

● ●● ● ● ● ●● ● ● ●●● ● ● ●● ● ● ● ●●●● ● ● ● ● ● ●●● ● ●● ● ● ● ●●● ●●● ● ● ●● ●● ●● ● ● ●● ● ●● ● ●●● ● ● ● ● ● ●●●●● ●●● ● ●● ● ● ●●● ● ● ● ●● ● ● ● ●●● ● ●● ● ● ● ●●Chr. 1

lo
g2

 B
in

di
ng

−
1

1
2

3
4

5
20000 25000 30000 35000 40000 45000 50000

Figure 7.4: Raw Abf1 data profile: A section of chromosome 1 showing each
of the no UV treatment (black), immediately following UV treatment (red)
and 30 min following UV treatment (green) Abf1 binding datasets.

● ●● ● ● ● ●● ● ● ●●● ● ● ●● ● ● ● ●●●● ● ● ● ● ● ●●● ● ●● ● ● ● ●●● ●●● ● ● ●● ●● ●● ● ● ●● ● ●● ● ●●● ● ● ● ● ● ●●●●● ●●● ● ●● ● ● ●●● ● ● ● ●● ● ● ● ●●● ● ●● ● ● ● ●●Chr. 1

lo
g2

 B
in

di
ng

0
5

10
15

20

20000 25000 30000 35000 40000 45000 50000

Figure 7.5: Normalised Abf1 data profile: A section of chromosome 1 showing
each of the no UV treatment (black), immediately following UV treatment
(red) and 30 min following UV treatment (green) Abf1 binding datasets. The
normalisation procedure has reduced the variation in the background regions
(coordinates ∼40,000 to ∼43,000 for example) and altered the order datasets
appear at the top of some of the peaks. The scaling of the datasets has
increased the binding values of the peaks by around 4 times.

306

SECTION 7.3 CHAPTER 7

−2 0 1 2 3 4 5

0
5

10
20

Raw Data

N
or

m
al

is
ed

 D
at

a

A

0 2 4 6
−

5
0

5
10

20

Raw Data

N
or

m
al

is
ed

 D
at

a

B

0 2 4 6

−
5

5
15

25

Raw Data

N
or

m
al

is
ed

 D
at

a

C

−2 0 2 4

0
5

10
15

20

Raw Data

N
or

m
al

is
ed

 D
at

a

D

Figure 7.6: Effect of normalisation on averaged Abf1 data: Scatter plots of
the three replicates each (black, red and green points) of no UV treatment
(A), 0 min after UV treatment (B) and 30 min after UV treatment (C)
datasets, and the averages of the no UV treatment (black), 0 min after UV
treatment (red) and 30 min after UV treatment (green) dataset (D) before
and after normalisation. The grey line shows y = x. The relatively straight
lines of data indicate that the normalisation procedure has not had a large
effect on the shape of most of the data, with only a small number of points
deviating from this trend.

307

CHAPTER 7 SECTION 7.3

relation values show good reproducibility, suggesting the data are well suited

to the enrichment detection procedure.

7.3.3 Peak detection

Peak detection was carried out for each set of replicates. The numbers of

peaks found for each condition are shown in Table 7.2.

Venn diagrams were created to display the relationships between these

datasets (Figures 7.8 and 7.9) with the venn function, which provides two

methods for creating Venn diagrams from the results of the enrichment de-

tection algorithm (Section 3.2.7.2). Briefly, the first method uses only the

probes determined to be at the tops of the averaged peaks, created by av-

eraging all replicate datasets. The numbers therefore represent the numbers

of probes falling into each of the categories. The second method uses the

PBRs of each peak, which may extend beyond the probe at the centre of the

average peak. The numbers therefore represent regions falling into each of

the categories, where an overlap between two regions, as well as a complete

match, counts as a peak occurring in both datasets. The relative pros and

cons of each method are discussed in Section 3.2.7.2. It is felt that for the

purposes of this investigation the overlapping diagram is more informative as

it is likely that peaks differing by a single probe will be caused by the same

Abf1 binding site and therefore should be counted once.

Both diagrams show that the majority of peaks do not change between

the different conditions. This matches a previous analysis of these datasets

(Leadbitter, 2011) which concluded that there were no significant UV-induced

changes in Abf1 binding sites. The peaks that are not common to all datasets

were determined to be either present in all datasets, but at a level slightly

below the detection threshold in one or more, or present in all datasets but at

adjacent probes so that they appear as separate peaks but are likely caused

by the same binding site. A full analysis and explanation is available in

Leadbitter (2011) and these analyses will not be repeated here. The data

are included to show the consistency of Abf1 binding across nine biological

repeat datasets under three different experimental conditions. This suggests

308

SECTION 7.3 CHAPTER 7

0 5 10 15 20

0
5

10
20

Cor. = 0.913

Replicate 1

R
ep

lic
at

e
2

0 5 10 15 20

0
5

10
20

Cor. = 0.876

Replicate 1

R
ep

lic
at

e
3

0 5 10 15 20

0
5

10
20

Cor. = 0.874

Replicate 2

R
ep

lic
at

e
3

Figure 7.7: Abf1 data correlations: The darker the blue colour the more
points occur in the region. Individual points outside of the central region
are shown with dots. The black line shows y = x. The Spearman’s rank
correlation value is shown above each plot.

Condition Number of peaks detected

No UV treatment 4369
0 minutes after UV treatment 4261
30 minutes after UV treatment 3489

Table 7.2: Numbers of Abf1 binding peaks detected

309

CHAPTER 7 SECTION 7.3

528 417

299

824

173170

2847

Figure 7.8: Venn diagram of Abf1 peaks: The relationship between the no
UV treatment (red) 0 min after UV treatment (green) and 30 min after UV
treatment (blue) Abf1 binding datasets based on the probes at the centres
of the peaks as determined by the enrichment detection algorithm.

301 206

104

740

5770

3258

Figure 7.9: Venn diagram of overlapping Abf1 peaks: The relationship be-
tween the no UV treatment (red) 0 min after UV treatment (green) and
30 min after UV treatment (blue) Abf1 binding datasets based on overlaps
between potential binding regions determined by the enrichment detection
algorithm.

310

SECTION 7.3 CHAPTER 7

that Abf1 binding is targeted to certain points in the genome, the majority

of which do not then vary under these different conditions.

Visualisation of the changes in peak heights, rather than positions, was

achieved with a rainbow plot (Figure 7.10). Here each peak in the untreated

dataset is represented by a line, which tracks the peak height across the

next two time points. The no UV and 0 min after UV treatment data are

very similar, visible by the colour transition being similar in both columns.

Many peaks show a deviation 30 min after UV treatment, both up and down,

visible by the expanded range of binding values in the final column. These

results are confirmed with scatter plots which show that the no UV and 0

min samples are similar (Figure 7.11A), while there is more variation between

these and the 30 min sample (Figures 7.11B and C). The general trend is for

lower values in the 30 min sample.

To confirm that the peak detection process had worked correctly the

profilePlot function was used to create a plot of all 4,369 detected regions

(Figure 7.12A). A second profile plot of 4,369 randomly generated probes was

also created for comparison (Figure 7.12B). Each individual line is shown

in black and it can be seen that the detected regions show a clear peak

shape centred around the probes determined to be at the tops of the peaks.

The trend line, calculated from all lines and shown in red, follows the same

pattern. This shows that the average peak has a height of a log2 binding

value of ∼7 and a width at the base of ∼2000 nt. Beyond this, towards

the extremes of the plot region, all values are centered around zero with no

visible peaks. This shows that these are background, unbound regions. The

plots of randomly generated sites do not show any pattern, with all black

lines falling randomly across the width of the graph. The red trend line is

flat across the width of the graph, showing no pattern is present. Taken

together, these results show that the peak detection process has found only

regions of genuine peaks.

The number of potential binding sites detected in this investigation is

far greater than those identified in previous investigations, which prompted

the analysis of the sequences around the binding sites to determine whether

or not they contained the consensus binding sequence previously identified

311

CHAPTER 7 SECTION 7.3

0
5

10
15

20
25

B
in

di
ng

 V
al

ue
 (

lo
g2

)

No UV 0 min 30 min

Figure 7.10: Rainbow plot of Abf1 peak changes: Representation of the
changes in the peak heights between the untreated, 0 min after UV and 30
min after UV datasets. Each line represents one peak found in the untreated
dataset and shows how it varies after 0 and 30 min. It can be seen that the 30
min dataset is very similar to the untreated dataset. There is some variation
in the 0 min dataset, with many peak values increasing and decreasing by
reasonably large amounts.

312

SECTION 7.3 CHAPTER 7

●

●

●

●

●

●
●
●●

●
●●●●●●●●●

●●
●

●
●

●
●

●
●●●

●●●

●

●

●
●
●

●●●
●

●●
●●

●●

●●

●

●

●

●
● ●

●

●
●●

●
●

●●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●

●●

●

●●
●●
●

●●

●

●
●
● ●●●

●
●

●

●●●
●●

●

●
●

●

●●
●

●

●

●

●●

●

●
●●

● ●
●

●

●

●
●

●
●

●

●
●●
●

●●●●
●

●●●●●●●

●
●●●●
●

●
●

●

●
●

●
●
●

●●●

●

●●
●

●

●
●

●

●
●
●

●●
●

●

●
●

●

●●
●

●

●●

●

●

●

●●●●
●

●●

●

●
●

●

●
●●●●

●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●●●
●●

●●

●
●●

●

●

●●

●

●
●

●

●

●●
●

●

●
●

●●●●●

●

●

●
●

●

●

●

●●
●

●●

●●●
●

●
●

●
●

●
●

●●

●●●

●

●●
●

●

●●●
●

● ●

●●

●●●●

●

●●●
●●

●

●
●●

●

●
●

●

●
●

●
●
●

●●

●
●●●●●

●
●

●
●

●●

●● ●
●

●

●

●
●

●

●●●
●

●

●
●●

●
●●●
●●
●

●

●●
●

●●●●
● ●

●
●

●

●

●

●

●

●
●●

●
●

●

●●●
●

●
●

●

●
●●

●●●

●●

●

●

●
●

●

●●●●●●●

●

●

●

●●
●●●

●

●●
● ●

●●
●
●●

●
●

●●

●
●●●●●

●
●

●
●●

●

●

●

●

●

●

●
●●

●
●●

●●

●●

●

●●

●

●
●

●

●

●●

●

●●

●●

●

●●

●

●

●
●

●●

●●
●
●

●
●

●
●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●
●●
●

●

●

●

●

●

●
●●
●

●

●
●●● ●
●●

●
●

●
●

●

●

●
●

●●
●

●

●
● ●●

●

●

●

●

●●

●
●●
●

●

●

●
●

●
●

●
●

●

●

●

●
●
●●

●●

●

●
●

●
●●

●
●
●●

●

●

●●
●
●●●●●

●●

●
●

●

●
●●●

●●

●
●●

●●●●
● ●

●

●●
●●
●

●

●●

●

●● ●●

●
●●●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●●
●

●

●
●
●

●●●

●

● ●

●
●

●
●●

●

●

●

●

●

●

●●
●●●●●●
●●

●●●●●●●●●●●
●

●

●●●

●

●

●

●
●

●
●

●
●

●

●

●

●
●●

●●

●

●
●

●

●

●

●●

●

●●

●
●
●●

●
●

●

●

●
●

●
●

●

●
●

●

●
●●●
●●

●

●●
●

●●
●●

●
●

●●

●
●

●
●●●

●
● ●●
●●

●●●

●

●
●

●
●●

●●
●

●
●

●

●

●

●
●

●

●●●● ●

●

●

●

●
●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●●
●

●
●

●

●

●
●
●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●●●
●

●
●●●

●

●

●

●

●

●
●●●●

●●
●
●●●●
● ●

●●
●

●●

●

●
●
●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●●

●●●
●

●
●

●

●

●

●

●●
●

●
●

●
●
●

●

●●
●●

●
●●
●
●
●●●

●
●
●●

●

●●

●

●
●●●●

●

●

●

●

●
●

●
●

●●
●●

●●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●●

●
●●

●●
●

●
●

●

●

●
●●●
●●

●

●
●

●●
●
●

●●
●●

●
●
●●

●

●

●

●

●●

●

●

●

●
●

●
●● ●

●
●●

●●●
●

●●

●●
●●●●●

●

●

●

●

●

●●●●●

●●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●
●●
●

●
●

●●
●●●

●
●●●

●
●
●

●

●●

●

●●
●

●

●●

●●
●

●

●

●

●

●●

●●●

●●

●

●
●

●●●●●●
●

●

●
●

●
●●●

●
●
●●

●

●

●

●

●

●

●

● ●
●
●

●

●●

●●●
●●

●

●

●

●

●

●

●

●
●

●●●
●

●●●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●●
●●
●

●

●

●

●

●●
●●●

●

●

●

●
●

●●

●●

●

●●●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●
●

●

●

●
●
●
●

●
●

●
●

●●
●

●●

●

●●
●

●
●

●

●●

●
●●

●
●●●
●

●

●●

●●

●●
●●
●
●

●●
●●

●

●

●

●

●

●

●

●●●●
●

●●●

●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●
●
●

●●●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●●●●

●

●

●
●

●

●

●●●
●●

●
●

●

●

●
●

●
●

●●

●
●

●●
●●●●

●
●●

●
●

●●
●●

●

●

●

●
●●

●

●●●●●
●●●●

●●

●

●

●

●

●

●●●●

●
●

●●●

●

●●
●
●

●
●

●

●
●

●

●
●
●●●

●

●

●

●
●

●

●
●●

●

●●●
●

●
●

●
●
●●●●

●
●●

●

●

●

● ●

●

●
●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●
●
●●

●

●

●

●●
●

●

●
●

●
●●

●
●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●●
●●●

●●
●●●●

●
●

●
●

●●

●●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●●

● ●
●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●
●

●

●

●

●
● ●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●

●
●●

●

●
●

●●

●

● ●

●

●

●

●
●
●

●●●●
●●

●

●●●

●●● ●●

●

●●

●

●

●

●●●
●

●

●

●
●

●●●●
●

●

●

●
●●

●●●

●

●

●
●●

●
●

●

●●

●

●

●

● ●●●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●●

●
●

●●
●

●

●
●

●

●●

●

●●

●●
●

●

●●

●

●

●

●

●

●

●●●
●

●●●●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●
●

●

●
●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●●●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●●
●

●
●●

●

●
●

●

●

●

●
●●

●

●
●
●●●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●
●

●●●●●●
●
●

●

●

●

● ●●
●●

●
●

●
●

●●

●

●
●

●●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●●●●●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●●
●

●

●
●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●●

●
●

●●
●

●
●●●

●

●
●

●
●

●
●●

●●●

●
●

●

●
●

●●

●

●●

●
●●●●

●

●

●

●
●

●

●
●

●
●

●
●●

●●

●

●
●

●

●●
●

●

●

●

●

●
●
●

●●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●● ●● ●

●●
●

●
●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●●
●

●●

●
●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●●●
●●
●●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●
●●

●

●
●

●●
●

●●

●

●

●●
●
●

●

●

●

●

●
●

●

● ●●●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●
●

●●●●
●
● ●

●

●
●
●

●
●

●

●

●

●
●

●
●

●
●●

●

●●

●

●

●

●

●

●
●

●
●
●

●
●●

●●
● ●●●●

●
●●
●

●

●

●

●
●●

●

●●
●

●●

●

●

●

●

●

●

●
●●

●
●●

●
●●●

●
●

●●●●●

●●
●●●

●●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●
●●●

●
●

●
●
●

●●●
●
●

●●●
●

●
●●●

●

●

●

●

● ●

●

●
●

●●●

●
●

●
●

●
●

●

●●
●

●

●

●

●●

●

●
●●

●

●

●

●●●
●●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●
●●●

●
●●●
●

●● ●

●

●●●●●

●●
●

●

●
●

●
●

●

●

●●

●●
●
●

●
●

●
●●

●●

●●
●

●

●
●

●
●

●
●

●

●

●●

●●
●●●●

●
●●
● ●

●

●

●

●

●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●●

●● ●
●●●

●●
●

●

●

●

●
●

●

●

●

●

●●●

●
●●

●●●
●

●

●

● ●

●

●
●

●●●

●

●

●

●

●
●●

●

●
●●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●
●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●
●●●●●

●
●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●
●●

●●

●

●

●
●

●

●

●

●
●●●

●●
●

●

●

●

●
●●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●●

●
●

●●

●

●

●
●

●

●
●●

●
●
●

●
●●●●

● ●●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●●
●

●●
●●●

●
●

●
●●
●●

●
●●

●●
●

●

● ●●●
●
●●

●●

●
●●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●●●

●

●

●

●●

●

●●

●
●

●

●
●

●

●●●●

●
●●●

●
●●●

●
●

●●●
●
● ●
●

●
● ●●

●

●●●

●

●

●

●

●
●

●

● ●

●●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●
● ●

●●●
●

●
●

●
●

●

●●
●

●●

●

●

●

●●
●

●●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●
●

●
●
●

●
●

●
●

●
●

●●●
●

●
●

●
●

●●
●●●●●●●

●● ●
●

●

●

●

●
●●●

●●
●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●
●

●●

●
●

●
●

●
● ●●
●●

●

●
●●

●
●●

●
●●

●●
●

●
●●●

●●
●

●

●●●
●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

● ●●
●●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●●●
●

●●

●

●●

●

●
●
●

●

●

●
●

●

●
●

●

●●
●●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●●●

●
●●●
●

●
●

●●●

●

●●●●●

●

●●
●●
●

●●
●●

●
●

●●

●

●
●●●

●
●

●
● ●●

●●

●

●●●

●●
●
●

●●●●●
●●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●
●●●

●

●

●
●

●
●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●●●

●

●

●●●
●●

●
●●

●

●●

●●
●
●●

●

●

●

●

●

●
●

●●
●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●●●●

●●

●●

●●

●

●

●
●

●

●

●

●
●●

●

●●
●●

●

●
●

●●●●●●

●

●

●

●

●

●
●

●

●

● ●
●

●●
●●
●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●●
●●

●

●●
●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
● ●

●●
●●
●

●●
●

●

●
●●

●● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●●
●

●
●

●●●
●

●

●

●

●

●
●
●●

●●
●

●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●●●
●

●

●

●

●

●
●●

●

●
●

●

●●
●●●
●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●
●

●

●

●

●

●●

●●●

●

●● ●
●

●

●
●

●
●

●
●

●

●●●
● ●●

●

●

●
●

●

●●●

●

●

●●
●

●
●

●

●

●

●●
●

●
●●

●●

●

●

●

●

●

●●●
●

●●●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●
●
●●●●

●
●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●
●●
●

●

●

●●

●

●

●

●

●
●

●●
●

●
●●

●
●

●●●

●
●
●●●●●

●
●●
●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●●
●●

●
●

●

●

●
●

●

●

● ●

●

●

●●
●

●
●●

●

●

●

●

●

●●
●●

●
●

●●

●●

●

●

●

●

●
●●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●
●

●●●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●
●

●

●

●

●

●●

●

●

●

●
●●●●

●

●
●

●

●●

●
●●●

●
●

●

●●

●

●

●

●
●
●

●

●
●

●
●●

●
●

●
●

●●

●

●●
●

●

●
●

●●

●
●

●

●

●●
●●

●

●

● ●●
●
●

●●
●

●
●

●

●

●

●
●●●●●

●

● ●

●

●
●

●●

●●●

●

●

●

●

●

●
●●●●●

●

●
●

●
●

●
●

●

●
●

●

●●
●

●
●
●●●

●
●

●

●

●●●●

●
●

●
●

●
●

●

●

●
●

●

●●
● ●

● ●

●

●

●

●

●
●

●
●

●
●
●●●●

●
●

● ●●
●●
●●

●

●

●

●

●

●

●●●●
●●

●

●

●
●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●●
●●
●●●●

●

●
●

●
●●●●

●

●

●
●●

●

●●
●●●●

●●
●

●●

●●
●●●

●
●

●
●●●

●●
●

●
●

●

●

●●●
●

● ●●

●
●

●●●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

●● ●●

●
●

● ●
●

●●
●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●●
●

●

●

●

●

●
●●●
●

●
●

●●

●●●

●

●
●

●

●

●●
●

●

●●
●

●

●

●
●

●

●
●●

●

●

●

●
●

●●

●

●

●

●●●●
●●

●
●

●●●●
●

●●
●●

●

●

●

●

●
●●

●
●

●●

●●

●

●
●●

●

●

●

●
●

●
●●

●

●

●

●
●

●●●
●

●●●

●
●●●● ●●

●●●
●

●

●

●

●

●

●
● ●

●

●●

● ●
●

●

●

●

●

●

●●

●
●●●

●

●
●

●

●●
● ●

●

●

●

●

●●●●● ●
●
●●●●
●
●

●

●

●

●●
●
●

●
●●

●

●

●
●

●
●●
● ●

●●

●●
●●

●●● ●
●

●

●

●

●

●

●

●
●●●●

●●

●
●

●

●
●
●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●
●●

●

●

●●

●

●

● ●
●

●

●
●

●

●

●

●●
●

●

●
●

●●
●●

●

●

●
●

●

●

●
●
●

●●●
●
●
●

●●

●●

● ●

●●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●●●●
●●●●

●●

●

●

●

●

●
●

●

●
●

●
●
●●

●

●

●●
●●
●●

●
●

●

●●●
●●

●
●

●

●

●

●

●
●
●●

●
●

●●
●

●
●●●

●●
●

●

●●●
●

●

●

●●

●●
●

●●●

●

●
●

●

●
●●

●●●●●●
●●

●

●

●
●

●
●

●

●●●●
●
●●

●●
●●●

●

●

●

●●●

●
●

●●●
●

●●
●

●●●
●

●
●●

●

●

●

●●●●

●

●

●

●●●

●● ●
●

●●
●

●●

●

●

●

●
●

●

●●●●●
●●
●

●

●

●
●●

●

●

●●

●

●●

●

●
●●

●

●
●

●

●
●
●

●
●
●

●●

●
●

●

●

●

●

●
●

●

●●

●
●●
●

●●●●

●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

●

●●●●

●
●●●

●
●

●

●

●
●

●
●

● ●
●

●

●●

●

● ●
●

●●●
●

●
●

●

●

●●

●

●

●●
●

●
●

●
●

●

●
●
●●
●

●●
●
●

●●●

●

●

●
● ●●

●
●●●

●

●●●
●

●
●

●
●

●●
●

●●●
●

●

●●
●●

●●
●

●
●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●●●
●●●●● ●

●
●●

●●

●
●

●●●
●●●

●

●●
●

●

●

●●●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●

●●●

●

●

●

●

●

●
●

●●●●●

●●

● ●

●

●

●

●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●
●● ●

●

●

●
●

●

●

●
●

●●
●

●

●

●●

●

●●

●
●●

●●
●●
●

●
●●

●

●●

●

●
●

●

● ●

●

●

●●●

●
●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●●

●

●

●

●

●●●
●

●

●

●

● ●

●

●

●

●
●
●●●

●
●

●

●●
●●

●

●

●

●
●

●
●

●
●●●

●●●

●

●

●

●

●
●

●
●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●●
●●●
●

●
●

●●
●

●●

●

●

●

●

●

●●

●●

●
●●

●
●

●
●

●●●●

●

●

●●

●
●●●

●●
●

●

●

●

●

●

●

●

●●
●● ●

●
●
●●●
●

●
●

●●
●●

●●
●●●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●
●

●
●

●
●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●●●
●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●
●

●
●

●●●
●

●

●●

●
●

●
●

●●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●●●●●

●
●

●
●

●
●

●

●
●

●
●●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●●●
●

●●
●●

●
●●

●
●

●
●●●

●●●●●

●
●

●●

●
●

●

●
●

●
●

●

●●

●● ●
●
●

●

●
●

●●

●

●●

●
●●●
●

●●
●

●

●

●

●

●

●
●

●●
●●

●

●

●●
●

●●
●
●

●
●●
●

●●
●●●
●

●
●

●

●
●

●
●●

●●
●

●
●●

●

●

●
●●

●
●

●
●

●

●●

●●●●

●

●●
●

●
●

●
●
●●

●
●
●

●

●●

●
●

●

●
● ●

●
●

●
●

●●
●

●

●

●

●
●●

●

●
●●

●●
●

●

●

●

●

●
●●

●●

●

●

●
●

●
●
●

●

●
●

●

●●

●

●

●
●

●●

●
●●

●●●
●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●●

●

●

●
●

●

●
●●●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●●
●●

●

●

●

●

●

●●
●●

●
●●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●●●

●

●

●

●
●

●

●

●

●●
●●

●
●

●
●

●

●

●

●

●

●

●
●●

●
●●

●

●
●

●
●●

●
●

●

●
●

●

●

●●
●
●●
●●

●●●●●●

●

●

●●

●●

●●●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●
●

●●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●●

●
●
●●●

●

●
●

●●
●

●

●

●

●

●●●●●
●

●

●●
●

●
●●

●
●

●

●●●●●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●
●

●

●●
●

●

●

●
●

●

●●

●

●●
●

●
●

●●
●●●

●

●●●

●●
●●●
●

●
●●
●

●

●

●●

●

●

●●

●●●

●
●●

●

●

●

●

●

●

●

●●●
● ●

●●●

●
●

●
●

●●
●

●
●●

●

●
●

●●
●●●●

●

●

●

●

●

●

●

●

●
●

● ●

●
●●●●●●

●●

●
●●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●●●●

●
●

●
●

●

●
●

●●

●●●
●

●

●

●●

●

●

●

●
●

●
●

●●
●
●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●●

●

●
●

●

●
●●
●
●
●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●
●●

●

●●

●●

●

●

●

●
●

●

●●
●

●

●

● ●
●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●●
●

●

●
●

●
●

●

●
●
●

●
●

●
●

●

●

●

●●

●

●
●

●●●
●

●
●●

●
●

●●
●●● ●

●

●

●

●

●
●●

●
●

●●●
●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●●

●
● ●

●

●

●

●

●

●

●

●

●●●●
●

●
●

●

●●
●●●
●

●

●

●

●

●

●

●
●

●●●●
●●

●

●

●

●

●

●●●
●

●

●

● ●●

●

●

●●

●●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●
●
●
●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

● ●

●

●
●●
●●

●
●

●
●

●
●

●

●

●●●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●●●
●

●●●
●●

●●
●

●

●

●

●

●

●

●

●

●●● ●●
●●

●●●●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●●●
●●

●

●●●

●●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●●

●

●●●●●

●
●●

●

●

●

●

●●
●

●
●
●●
●●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●●
●
●

●●
●

●
●

●

●●

●
●

●
●

●
●●●

●

●

●

●

●●
●

●

●●

●

●●●
●●●●

●
●

●

●

●

●●

●

●

●

●

● ●
●●

●

●

●
●

●●

●
●

●

●

●●

●

●
●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●
●●

●
●

●
●

●

●
●●

●

●
●●

●
●● ●●●

●

●

●
●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●
●

●

●●

●●

●
●●

●

●
●

●

●

●
●

●●

●●
●

●
●

●

●●

●

●
●●

●
●●

●
●
●●

●

●

●

●
●

●

●●
●●●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●● ●●●
●●

●
●

●

●●
●

●

●

●

●

●

●●●

●
●

●●
●●
●

●

● ●
●●
●●
●

●

●

●

●

●
●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●
●●●

●●
●

●●●
●●●

●

●

●

●

●

●
●

●●
●●

●●●

●
●●●

●

●

●

●

●

●
●

●
●●●

●

●

●●

●
●●

●●

●

●●

●
●
●●●●●

●

●

●
●

●
●

●

●
●

●
●●●●
●

●
●

●

●

●●

●

●

●

●
●●

●
●●●●

●●●

●

●
●

●

●

● ●
●
●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●●
●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●●●●●
●

●

●

●●
●●
●

●
●●●
●

●●
●
●●

●

●
●

●

●●
●

●

●
●

●
●●●

●●
●

●
●
●

●

●
●

●

●

●
●●

●●●
●

●

●

●

●

●

●

●
●

●
●●●●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●
●●
●●●●●
●

●

●
●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●
●●
●●

●●
●●

●

●●
●

●
●

●

●
●

●●●
●

●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●●●●●●

●

●●
●●

●

●

●

●

●

●

●

●
●
●●

●●●
●●

●
●

●

●

●

●

●
●●
●●●

●
●●

●

●

●

●

●

●

●
●

●●●

●
●

●
●●●

●

●

●
●●

●
●●●

●

●

●

●

●

●
●

●●●
●

● ●

●●
●

●

●

●

●

●

●●●
●

●

●

●
●●
●●
●

●

●●
●
●●●

●
●

●
●

●

●●●
●

●●●

●●
●●

●●
●

●

●

●

●

●

●
●
●●●
●
●

●

●

●

●

●
●●

●●
●

●

●
●

●

● ●●●
●

●

●●

●

●

●

●●
●

●

● ●
●●

●

●

●

●●

●
●

●●●

●
●
●

●
●

●●●
●
●
●●

●
●

●
●●●

●

●●
●
●

●
●

●

●

●

●●

●

●●●

●

● ●

●

●

●

●●
●●

●

●

●●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●●

●

●● ●●
● ●●●

●

●

●

●

●
●●

●●●

●

●

●
●

●

●●
●●

●●
●
●

●●

●

●

●

●
●●

●
●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●●●
●
●●

●

●

●
●

●

●

●
●

●
●

●●
●

●

●

●●
●

●

●

●

●
●●

●
●

●

●●●●●
●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●
●

●●●

●

●
●

●
●●
●

●
●●

●●●
●
●

●

●
●●

●

●

●

●●●●●

●
●

●
●

●

●

●

●

●
●●●

●

●
●

●

●
●●

●
●

●
●

●●●

●

●
●

●

● ●

●
●
●

●

●

●

●

●

●●
● ●●●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●
●

●

●●

●

●●●

●

●

●

●

●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●●

●●
●

●

●●
●

●●●
●
●

●
●

●●●●●
●

●●●●●
●●●●

●

●

●

●

●

●
●

●●●●●

●
●

●

●● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●
●●●●
●

●

●

●
●

●●●

●

●
●

●
●
●

●
●

●
●

●
●

●●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●●
●

●
●

●

●●

●
●●●

●
●●

●

●

●

●

●
●

●●●●●●●
●
●●

●
●

●

●

●

●●
●

●

●

●

●●

●
●

●
●

● ●

●
●

●●

●

●●●
●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●●●
●

●

●●
●

●
●

●
●●
●

●

●

●

●

●

●●
●●●●
●

●
●

●

●

●

●●

●

●

●

●
●●●

●

● ●●

●
●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●
●

● ●

●●

●

●●

●

●

●●●●●
●

●●●●

●●
●

●

●

●

●

●

●●

●

●
●●●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●
●

●
●

●●

●
●●● ●

●●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●●●

●●

●
●

●

●

●
●
●

●
●

●●●
●●●

●
●●

●
●● ●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●
●●
●

●
●
●
●
●●

●
●

●
●●

●●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●
●

●

●
●

●

●

●

●

●
●

●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●
●●●●

●

●●
●

●●●

●
●

●
●

●

●

●

●

●
●

●
●●

●
●●●

●●
●

●

●

●

●

●
●

●●●
●●●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●

●
●●
●

●

●

●

●

●
●

●

●
●

●● ●●
●
●

●

●
●

●●
●

●

●

●
●

●
●

●

●
●
●●

●●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●
●●●
●

●

●●

●●
●

●
●

●
●

●

●

●
● ●

●

●
●

●

●

●
●

●
●●●

●●
●

●●
●

●●
●

●

●

●●

●

●
●●

●
●

●

●

●
●●

●●●

●●
●

●

●

●

●

●

●●
●
●

●●●●●●
●●

●
●

●

●

●

●

●
●

●●
● ●●●●

●
●
●●●●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●●
●●

●
●

●●●●
●●●●●

●

●
●●

●
●

●

●

●

●

●

●
●●●●●●●●●
●
●

●
●●

●

●

●

●●
● ●●
●

●●
●●
●●

●
●

●
●

●

●

●

●
● ●●

●●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●
●

●

●●
●
●●

●●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●●
●●
●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●
●

●

●

●

●

●

●

●●
●

●●
●

●

●●
●●

●

●●
●

●

●

●

●

●●●

●●
●●

●
●●

●
●●

●

●

●

●

●
●●

●

●

●

●●
●●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●
●

●●
●●

●

●

●

●

●
●
●

●
●

●

●●

●
●●

●

●

●

●

●

●●●●

●
●

●
●

●
●

●
●

●
●●

●●
●●●●
●

●
●●

●

●

●
●●

●

●
●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●●
●●
●

●

●

●

●●

●●

●

●
●

●
●●

●

●●●
●

●
●

●●

●

●
●

●●●

●

●
●

●

●
●●●●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●
●

●●●●●●

●
●●

●●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●●●
●

●
●

●●
●

●
●

●●

●

●
●●

●
●

●
●

●●

● ●

●

●

●

●●
●●
●

●
●

●●
●●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●●●

●
●●

●●●
●

●●●

●●
●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●●● ●●●
●●●

●
●

●
●
●

●●
●●●
● ●

●●

●

●

●
●

●

●
●

●

●

●

●
●●

●●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●●

●●
●●●●
●

●●
●●

● ●

●

●

●

●

●

●●

●●

●●
●

●
● ●

●
●
●

●

●
●
●●●

●●●●● ●

●

●
●

●

●●
●●

●●

●

●

●

●●

●

●
●●●

●●
●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●
●

●●●
●●
●●
●

●
●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●●●

●

●

●●

●
●

●
●

●●
●

●
●●

●

●●

●

●

●

●

●

●
●

●●

●

●

●●
●●●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●
●
●●●
●●●

●●
●
●

●

●
●

●

●●
●● ●

●

●

●

● ●
●

●

●●

●
●

● ●

●
●

●
● ●

●
●●

●
●

●●

●

●

●

●
● ●

●●●

●

●
●

●

●

●

●●
●●●

●
● ●

●
●
●

●

●

●

●

●

●

●

●●●
●
●

●●
●●

●●●

●
●
●●
●●●
●●

●
●

●
●
●●
●

●
●

●
●

●●
●

●●●
●

●

●●●●
●●

●

●

●
●

●●●

●●

●
●

● ●●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●
●

●●●
●●●

●●
●●●
●●

●
●●

●

●

●
●

●
●

●

●●

●●●

●
●

●●

●

●

●
●

●
●

● ●

●

●●

●●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●●

●●
●
●

●

●●●

●

●

●

●
●●

●●

●
●●● ●

●

●

●

●

●

●

●

●●●

●●

●

●
●●

●
●

●

●

●

●●●
●

●●

●

●●●

●

●
●

●

●
●

●
●

●

●
●

●●

●

●

●

●●●

●
●

●

●●

●

●●

●

●

●

●

●
●

●
●
●●●

●
●

●
●●

●●●●●
●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●●
●
●

●●

●
●●●

●●

●

●
●

●

●

●
●

●●
●

●

●
●

●
●●●

●

●

●

●●●●●
●●

●
●●

●
●

●
●●

●

●

●

●

●

●
●●●
●

●
●

●

●
●

●●
●●●●

●
●

●●●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●●●

●

●
●

●●
●●
●●

●●

●●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●
●
●●●●

●
●

●

●●●
●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●
●●
●

●

●
●● ●

●

●

●

●

●
●

●●

●
●●

●
●●

●

●
●

● ●
●●●

●

●●

●

●

●
●
●●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●●●● ●

●
●

●

●

●

●

●
●

●●

●

●
●●

●●

●

●

●

●
●

●●
●●

●

●
●●

●

●

●
●

●
●

● ●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●●
●

●

●

●●
●
●

●●

●

●

●

●

●

●

●●●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●●

●●
●●

●●

●
●●

●
●

●
●

●

●

●
●

●
●●●●
●

●
●●

●●
●

●
●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●●
●●

●
●

●
●

●
●

●●
●●

●

●
●

●

●●
●

●

●●●
●

●
●

●
●●

●

●

●

●

●

●

●
●●

●

●
●

●
●
●

●
●●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●●●
●

●

●
●

●

●●

●
●●

●

●
●●

●

●

●●
●

●

●

●●

●●

●
●
●●

●●
●●●

●
●
●

●●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●●●●●

●
●

●

●●

●●●
●●

●

●●

●●●
●

●

●●

●●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●
●

● ●●●●

●●

●

●

●

●

●

●●
●●

●●●
●
●

●●●

●

●●●

● ●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
●●●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●●●
●●

●●

●

●●
●

●
●●●●●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●●●●●●
●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●

●●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●●

●

●
●●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●●

●

●

●●

●

●

●●
●

●●
● ●●

●●
●

●●

●

●●

●

●

●

●●

●

●

●
●●● ●
●

●

●

●

●●●
●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●
●●

●

●

●
●

●
●●●

●

●

●

●

●●
●●●

●●●●●
●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●●

●

●●

●
●●

●●

●●

●
●●●●

●
●●

●

●
●●
●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●●
●●

●

● ●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
● ●

●●
●

●
●
●●
●●

●●●

●

●

●

●

●●

●

●

●

●●
●

●
●

●●
●●

●●
●

●

●●
●

●
●
●

● ●

●

●●
●●

●●
●

●
●

●●
●

●

●
●

●
●

●●
●
●

●

●

●●
●
●

●●●
●●●

●

●
●●

●●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●
●

●

● ●

●
●

●

●
●

●

●
● ●●● ●

●●

●●● ●
●

●

●

●

●

●
●

●

●●
●●

●

●
●

●

●

●●
●●

●●●
●

●●

●

●
●

●
●●

●

●
●

●
●●
●
●●

●
●

●
●

●
●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●●
●

●
●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●
●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●●

●

●
●

●

●●
●

●
●

●
●

●
●

● ●

●

●

●

●

●
●

●●●●

●

●●
●
●●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●
●
●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●●
●

●

●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●●

●
●

●●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●●
●●●

●

●

●

●

●

●
●

●●
●

●

●●
●●

●
●

●●
●

●
●

●

●

●
●

●●
●

●●●

●
●
●

●

●●

●●

●
●●●

●
●

●
●

●●

●●

●

●●
●

●●
●●

●●● ●

●

●

●
●●●●●

●●
●

●●

● ●

●●
●

●

●

●

●●●
●●

● ●

●

●

●
●●●

●

●

●

●●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●
●

●

●●●●●
●●●●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●

●●

●

●
●

●
●

●

●

●

●
●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●●●
●●
●
●

●

●

●
● ●●●

●●
●●

●
●

●
●

●●
●

●
●
●●●

●●

●●
●

●
●

●

●●●
●
●●●●●●

●

●

●●

●

●

●

●●●●

●

●
●

●

●●●
●●●●●

●
●

●
●

●
●

●

●●
●●

●●

●
●

●
●

●

●

●

●
●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●
●●●

●●●●●
●

●

●

●

●

●

●

●●

●
●

●

●

●●
●●

●

●
●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●
●

●
●

●
●
● ●

●
●

●●●
●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●●

●
●

●

●

●

●

●●● ●●●
●
●

●●

●

●

●

●●

●
●

●
●

●

●
●

●

●●

●

●●●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●
●●

●
●

●

●
●

●

●●
●●●

●

●
●
●

●●●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●●

●●
●

●

●

●
●

●

●

●●●
●

●
●

●●●
●

●

●
●

●
●

●
●●

●●

●●
●

●

●

●●●●●●

●

●●
●●●

●

●
●

●
● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●

●

●●
●●

●●
●

●

●

●
●

●

●

●

●
●●

●

●
●●

●

●

●

●
●

●
●●●●

●

●

●

●●
●●
●

●
●

●

●
●

●●
●

●
●
●

●

●
●

●

●

●

●

●
●●

●
●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●●●●
●●●

●
●

●

●
●

●
●

●
●●

●●
●
●

●
●

●●●
● ●●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●
●
●●●
●

●

●
●
●

●●
●

●
●

●

●●●●

●●

●●● ●●
●

●
●

●

●

●

●

●

●●●
●

●

●●
●

●

●●●●

●

●
●

●●
●

●
●●●●

●

●

●●●●
●●●
●

●

●●
●

●●●
●●

●

●

●●
●

●
●

●
●●

●

●
●●●

●
●

●
●●●

●●

●
●
●

●●
●
●

●
●

●●●

●●

●
●●

●

●
●●

●
●
●

●

●

●
●

●
●●

●

●

●

● ●

●

●

●
●
●

●●
●

●

●
●●

●
●

●
●

●
●

●●●●

●

●

●

●

●

●

●●
●●

●
●
●

●

●
●●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●
●

●
●

●
●

●●

●
●

●●
●

●

●

●●●●
●
●●

●●
●●

●

●

●
●

●
●

●
●

●
●

●

●●

●

●

●●●
●

●●●
●

●
●

●
●●

●

●

●

●
●

●

●

●

●● ●

●
●●

●

●●●
●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●●

●

●

●●●
●●

●

●
●

●
●●

●

●

●

●

●
●

●●
●

●●

●
●● ●

●
●

●
●

●

●
●

●●●●●
●

●●

●

●

●
●●

●

●

●

●
● ●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●

●●

●
●●

● ●

●
●

●●
●●
●

●
●●

●

●●

●

●
●

●

●

●
●●●
●
●

●

●

●
● ●

●●
●●
●●

●●
●

●
●

●

●●●●
●●●

●
●

●

●

●

●

●●
●
●

●●

●
●

●
●

●
●

●
●

●

●●
●

●●

●

●

●

●

●

●

●●
●

●
●●
●

●

●●

●
●
●●● ●

●
●●

●

●

●

●

●

●●

●

●

●
●●
● ●●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●●●

●

●
●

●●

●

●
●

●

●

●

●
●

●●
●

●
●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●●
●

●●●
●

●

●

●

●

●

●●

●
●●●●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●
●

● ●●●

●

●

●●●●●
●
●

●
●

●
●●●

●●●
●●●
●

●

●

●
●

●

●

●
●

●●

●●
●●
●●●

●●●

●

●

●
●

●
●
●

●

●

●

●

●
●●●

●

●●●

●●●

●

●● ●
●
●

●

●

●●

●

●

●

●

●
●
●●●●●

●
●

●●

●

●●

●●

●●
●
●

●

●

●

●

●
●
●

●

●●

●●

●

●

●

● ●●

●
●
●

●
●

●

●
●

●

●●●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●
●●
●
●●● ●

●
●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●●
●

●●●

●
●

●●
● ●

●
●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●
●●

●
●●
●●
●

●

●

●●●
●

●

●
●●●

●

●●
●

●

●
●

●●

●

●
●

●
●●

●●
●

●

●

●
●●

●
●●●

●
●

●

●●

●

●

●

●●
●

●

●●
●●

●
●

●

●
●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●● ●

●
●
●●

●
●

●

●
●

●●

●
●

●

●

●

● ●●

●
●

●

●●
●●
●●

●
●●

●
●

●

● ●

●

●

●●●●
●●

●

●

●
●

●
●●●
●

●
●●

●●
●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●●

●●●

●
●

●● ●
●●
●

●

●●

●

●●●●

●●

●

●

●
●

●●●
●

●

●●●

●
●

●●
●●

●

●

●●

●

●●

●

●
●●
●

●
●●●●

●
●

●

●

●●

●

●●●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●
●●●

●

●
●

●

●●

●
●●

●●●●●

●

●

●

●
●●
● ●

●
●

●●
●

●

●

●
● ●

●
●

●

●
●

●

●

●●●
● ●

●

●
●

●●
●

●

●

●●● ●

●
●

●

●

●
●
●
●

●●

●

●

●
●

●

●

●
●●

●

●
●

●

●●●
●

●

●

●

●
●

●●

●
●

●● ●
●

●

●

●

●●

●

●

●
●

●●
●●

●
●

●

●

●

●
●

●
●

●
●●

●
●●●

●
●●●●●
●

●●●

●

●
●
●
●●●
●●

●

●●●●

●

●

●

●

●

●

●●
●

●
●

●
●●

●
●

●●●
●

●●●●
●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●
●

●

●

●●
●

● ●●

●●

●
●

●●●●

●●

●
●●●
●
●

●●
●
●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●●
●

●
●

●

●●

●
●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●

●
●
●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●●●●●

●

●

●
●●

●
●
●

●
● ●

●
●●

●
●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

● ●
●

●●

●

●

●

●●

●

●
●

●
●●●
●
●
● ●

●
●
●●
●

●●
●

●

●
●

●

●
●

●

●●
● ●●

●
●

●

●

●
●

●

●

●
●
●●

●

●●
●●

●

●●●

●

●

●

●

●●●

●

●●●

●
●●●
●

●●
●●

●

●
●

●

●

●

●

●

●
●●
●●●

●●●●●●●

●●●
●●
●

●

●

●

●

●

●

●
●●●●●●

●

●
●●
●

●
●

●
●●

●●
●●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●
●

●●
●

●
●●

●

●
●

●
●●

●

●
●

●

●
●

●
●

●●

●
●

●
●

●
●

●●
●

●●
●

●

●

●

●●

●
●

●
●

●

●●

●

●●●●●●
●

●

●
●●

●
●

●●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●
●

●

●●
●

●
●
●

●●
●

●

●
●

●●
●

●● ●●●
● ●●

●●
●● ●●●
●

●●

●

●

●
●

●

●

●

●

●

●
●●

●●

●
●●

●

●

●

●

●

●

●●
●
●
●●●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●●

●

●
●
●●●●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●●

●
●
● ●●●

●
●

●
●● ●

●●
●

●

●
●●

●

●

●

●●
●

●
●●

●
●

●
●●

●
●

●
●●

●

●

●

●
●

●

●

●
●●

●●

●●

●

●
●

●●●
●

●

●●●●●●●

●

●

●

●
●

●●●●

●●

●

●●●●
●●●

●

●

●

●

●
●

●

●
●
●●

●

●

●
●

●

●

●
●

●
●

●●

●

●●
●●● ●●

●●
●
●

●

●
●
●

●

●
●

●

●

●●

●

●● ●

●●●
●

●
●

●

● ●
●

●●

●
●

●
●

●

●
●●

●●
●●

●

●

●
●●●

●

●

●

●

●

●●
●

●
●●
●

● ●●●
●

●

●

●
●●

●●●
●●
●

●
●●

●

●●
●

●●

●

●

●
●●

● ●●●
●●●

●●●

●

●●●●
●
●

● ●
●

●

●

●●●
●

●
●

●●●●

●
●
●●

●
●●

●

●●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●●●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●● ●●
●

●●

●●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●●●●
●

●

●●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●●

●
●●
●●

●
●

●

●●●●
●

●●
●●●

●
●

●
●
● ●
●●

●

●●

●

●

●
●

●

●●●
●
●

●●
●
●●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●
●
●

●
●

●

●

●
●

●

●●
●

●●
●

●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●
●

●

●

●

●
●●●

●●

●
●●

●

●

●●

●

●
●

●●

●
●

●●
●●

●
●●

●●
●

●

●

●
●●●

●●
●

●
● ●
●●●●
●

●●
●●

●●●

●

●

●

●

●●

●

●● ●●

●●●●

●●

●●

●●●
●●

●●
●

●

●●
●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

● ●

●
●●

●
●

●
●●

●●
●●●

●
●

● ●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●

●●
●

●

●●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●
●

●●

●
●

●

●
●

●●

●

●

●

●

● ●

●

●
●

●●

●
●

●
●

●

●●●
●

●●
●●
●

●●●●●

●

●

●
●

●●●
●●

●
●
●

●
●●

●
●

●
●
●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●●
●●●
●

●
●

●

●●

●

●●
●

●

●
●

●

●
●

●

●

●
●

●●
●●

●●

●
●●●

●

●

●

●

●

●● ●
●● ●

●

●

●

●●

●
●

●●●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●●

●
●

●●

●
●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●●●

●
●
●

●

●

●

●

●

●●

●●

●
●
●

●

●

●
●●●

●
●

●

●●

●●
●●●●

●

●●
●

●

●

●

●

●●
●● ●

●

●

●

●

●●●●
●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●●●
●

●

●

●●●
●●●●

●
●
●
●

●

●

● ●

●

●●

●

● ●●
●●
●●

●●
●

●

●
●●●
●●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●●
●●●●
●

●

●
●

●

●●●●●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●●

● ●
●

● ●●

●

●

●

● ●

●
●●●

●
●

●
●

●

●

● ●
●
●●

●

●

●

●
● ●●

●
●●

●
●
●

●
●
●

●
●●
●●●

●
●

●●

●
●

●

●●
●

●

●

●

●

●
●●

●

●

●

●
●●

●
●●

●
●
●●
●

●
●●

●●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●●

●●●
●

●●●●

●●
●

●
●

●● ●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
● ●

●●

●
●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●●
●
●

●
●●

●●

●

●●●
●●

●

●
●●
●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●●●
●

●

●

●

●●
●
●

●

●
●

●

●

●

●
●●

●
●

●

●

●●

●

●
●

●●●●●
●

●
●

●
●

●
●

●●

●

●

● ●

●

●●●

●

●

●

●

●

●

●
●

●
●●●

●
●

●
●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●●
●

●

●

●

●●

●

●

●●
●

●

●●●
●●

●

●
●

●

●
●

●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●●●
●

●●
●●●●

●

●
●

●
●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●●

●●●●●●

●

●

●
●

●

●
●
● ●

●

●●

●

●

●●●●●●
●
●

●●
●

●●●
●
●

●●●●●
●●

●
●●

●

●

●

●

●
●●●●

●

●●

●

●
●●●

●

●

●

●

● ●●●
●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●
●

●

●●

●
●

●
●

●●
●
●

●

●

●

●
●

●●
●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●
●●●

●●
●●●●

●
●

●

●

●●●

●

●

●

●●
●●

●

●●
●

●●●
●

●
●

●●

●

●

●

●●

●

●

●● ●
●

●

●

●●

●●

●●
●

●●

●

●

●●
●
●●

●
●●

●●●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●
●●
●●●

●●

●

●
●
●

●
●

● ●
●

●

●●

●

●

●
●

●

●
●

●
●

●●●
●●●

●●
●●
●

●
●
●

●

●
●●

●●●●

●●

●

●

●
●

●

●
●

●
●

●
●

●●●
●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●●
●

●
●●

●

●
●

●

●

●
●

●

●

●
●●

●

●●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●
●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●●

●
●●●

●
●
●

●

●

●

●

●

●

●●

●●●

●

●●
●

●

●
●●●●●

●

●

●
●●

●
●

●
●

●

●

●●

●
●

●●
●

●

●
●

●●
●

●

●

●
●
●

●
●

●
●

●
●

●

●
●

●●●●
●

●

●

●

●
●

●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●
●

●
●

●

●●●
●

●

●●

●

●

●

●

●

●
●● ●

●

●
●
●

●

●

●●

●

●
●●●●●●●

●●
●

●
●
●

●
●

●

●

●

●

●

●
●

●
●

●●●
●

●
●●●

●

●

●

●●

●

●

●
●

●

●
●●

●●●●
●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●●
●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●●●●
●

●

●

●

●

●●●●
●

●
●

●●●●

●

●

●●
●●●

●

●
●
●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●●
●●

●
●

●
●

●●

●

●
●

●

●
●

●●

●
●

●
●

●

●●

●
●

●●

●
●

●●
●

●●●● ●
●

●

●

●
●

●●●
●
●●

●
●

●

●●
●

●

●
●●●● ●
●

●

●

●

●

●●●●

●

●

●

● ●●

●●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●●
●

●
●
●

●●●
●

●●
●

●

●

●

●●

●

●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●
●

●
● ●●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●●
●

●●●
●

●

●

●
●

●
●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●
●●

●

●
●

●

●

●
●
●●●
●

●

●
●●●

●

●

●

●●

●●
●

●
●

●
●

● ●●
●
●
●

●●

●●

●●

● ●
●●●

●
●

●●
●

●
●

●

●●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●●●

●●

●

●

●

●

●

●●

●●●
●

●

●●

●

●

●

●●●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●●
●

●

●

●
●

●●

●
●

●

●

●●
●

●
●●●

●

●●●●●
●●

●
●●●

●●
●

●

●●●
●

●●
●

●●●

●

●

●

●

●●
●

●
●

●●
●

●
●

●
●
●

●

●●

●●

●
●

●●

●

●

●

●
●

●

●

●
●

●●●

●
●

●●●

●●

●●
●

●
●

●
●

●●
●●

●
●

●●●●

●●
●●
●

●●
●
●●●

●
●

●
●

●●●●

●

●
●

●

●●●

●●●
●

●●

●

●●

●

●

●●

●
●

●

●
●

●

●
●●●
●
●

●

●

●
●

●

●
●

●●
●
●

●
●
●

●

●

●
●
●

●●
●●●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●●

●

●●

● ●

●●●●
●●

●

●

●●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●●

●

●

● ●

●

●●●●

●
●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●●●●

●●●
●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●●

●

●

●

●
●●●

●
●
●

●

●

●●
●●
●

●

●

●
● ●●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●●
●

●●

●

●

●

●

●
●

●

●

●

●●
●

●
●●
●

●
●

●

●

●

●

●
●
●● ●●

●●●●●●●●●
●

●●
●

●●●●
●

●

●

●
●●●●●

●

●
●●

● ●●●●
●

●
●●

●●

●●
●

●

●●●●
●

●
●●

●●
●

●
●

●●

●●

●

●

●

●
●●

●

●
●●

●●●

●

●
●

●
●

●
●
●●●

●●
● ●
●●
●

●

●

●

●●
●

●●

●

●●

●
●
●

●

●

●

● ●

●

●

●●

●●
●

●

●

●
●●
●

●●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●●

●●●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●
●

●●●●
●

●

●
●

●

●

●

●●
●

●
●●

●

●

●

●●●●

●●●●

●●
●

●

●

● ●

●

●
●
●

●●
●
●●●

●

●

●
●

●

●

●●
●

●
●

●
●●

●
●

●
●

●

●

●●

●

●●

●
●

●●●●

●

●
●

●
●
●

●●
●
●
●●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●●
●

●●
●●

●
●
●●●

●
●

●●

●

●

●

●●
●
●
●● ●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●●

●●● ●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●●

●
●●

●●
●
●●

●●
●

●●●●●

●

●

●
●●

●
●●

●
●

●
●
●

●

●●
●

●

●●

●
●

●

●●
●
●

●
●

●
●●
●

●

●

●●●
●

●●
●

●
●

●●

●●

●

●

●
●●

●

●
●

●
●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●● ●
●

●

●

●

●

●●

●

●

●

●

●●●●
●●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●
●●

●
●●

●

●

●

●
●

●●
●

●●

●

●
●

●●●
●

●
●●●

●

●●
●

●

●●
●●●

●
●●

●
●

●
●

●

●

●
●

●
●

●

●●
●
●●●●

●

●
●

●
●●●
●●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●
●●

●●●

●

●

●

●●●●

●●
●

●

●

●

●

● ●

●
●

●
●

●
●●●●
●●

●
●

●
●
●

●●●●●
●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●●
●

●

●
●

●
●

●

●
●●

●

●●

●

●●
●
●

●

●

●●
●

●

●

●
●

●

●●● ●●●
●●
●
●
●

●●
●

●●●

●

●●●
●

●●

●●
●

●

●●
●
●●
●

●
●●●●●

●
●●

●

●

●

●

●

●

●
●

●
●●●

●
●●

●
●

●
●●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●
●● ●

●

●
●●

●

●
●●
●

●

●
●

●

●●

●●

●●
●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●●
●●●

●

●

●●
●

●
●

●

●●●●
●

●
● ●

●
●●

●●
●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●
●●●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●●
● ●

●

●●

●

●●

●●●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●
●●

●
●●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●●● ●●

●

●

●

●
●

●

●

●●●●●
●●●
●

●

●

●

●

●
●
●

●●

●
●

●
●

●

●
●

●
●●●●

●●
● ●●●

●
●●

●

●●
●

●

●
●●

●

●

●
●

●

●

●●●
●

● ●

●●

●●
●●●●

●
●

●

●

●

●
●

●

●

●

●

●●

●●●

●●●●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●
●●●

●
●●

●

●●

●
●

●

●

●
●

●
●

●●

●●

●●
● ●

●
●
●

●

●

●

●
●

●●●
●●

●●

●

●●●

●

●

●

●

●
●●

●

●
●

● ●●

●

●●

●
●

●

●●

●

●

●●
●●●●

●●●●
●

●

●●
●
●

●

●
●●●

●

●
●

●

●

●

●
●●●●●

●
●

●

●

●

●

●●
●

●●
●

●

●●

●
●●●

●

●

●

●

●

●

●●
●

●●
●
●●●

●
●●●

●
●

●

●
●●●●

●●
●● ●

●●
●●●●

●●
●●

●●

●●

●

●

●

●
●●

●

●

●
●

●

●
●

●●
●● ●●

●
●●

●

●●●

●

●
●●●

●
●

●●
●

●

●
●
●

●
●

●

●
●●

●
●

●●
●

●
●

●

●

●

●

●

●●
●

●●
●●●

●●
●

●

●
●

●
●

●

●
●

●
●
●

●

●●

●●
●●●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●●

● ●●
●●●

●
●●

●

●
●

●
●

●●●●

●

●

●

●

●
●

●●
●●

●●
●

●

●
●●

●●

●

●

●
●

●

●●●

●

●

●● ●●●
●

●

●

●●

●●

●

●

●

●

●● ●
●●

●

●

●●

●

●●

●
●
●
●
●

●●●
●

●

●

●
●

●

●● ●
●

●●

●

●
●●

●

●●
●●

●●

●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●

●

●●

●
●

●
●

●

●
●●●

●

●●

●●
●

●●

●

●

●

●●

●● ●

●

●●
●

●●

●●

●●

●

●

●

●

●

●
●

●●●● ●
●

●

●

●

●●

●

●●●
●

●

●●
●

●●●

●● ●●

●

●●

●

●

●

●

●

●●●

●

●●
●●

●
●

●
●

●

●

●

●●
●

●
●
●

●
●

●
●●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●●

●●

●●●
●

●

●

●

●

●

●

●

●
●

●●●
●●●

●
●● ●

●

●

●

●●●●

●
●

●
●●

●●

●●●

●●
●
●
●

●●

●●●
●

●
●●

●
●●

●
●●●●

●●

●

●

●

●

●

●

●●●

● ●

●

●●
●

●●●

●
●●

●

●
●

●
●
●
●

●
●

●●
●●
●

●●
●

●
●●

●●

●
●●●

●

●

●

●
●

●

●●
●●

●

●
●●

●

●

●●●
●

●
●

●

●

●●
●

●

●
●●

●

●
●

●

●
●
●●●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●●●●
●
●●

●

●●

●●

●

●

●

●
●

●●
●

●

●

●
●●

●
●●

●

●

●

●

●
●

●
●

●●
●● ●

●

●

●

●
●

●
●

●

●

●

●

●●

●●●
●●
●●

●●

●
●
●

●

●
●●

●
●

●

●

● ●

●●

●●

●

●
●
●

●

●

●

●●●

●
●

●

●●●
●

●

●
●

●
●

●●●●●●
●●

●●
●

●●
●

●

●

●

●

●

●●●
●

●●

●● ●

●
●

●
●

●
●
●

●

●
●

●●

●

●

●

●

●

●●

●●
●●●
●

●
●●
●●

●●●●
●

●

●

●
●

●

●●

●

●

●●
●

●
●

●
●●
●●●

●

●
●

●
●

●

●
●●

●
●

●

●
●●●●

●

●

●
●

●

●

●

●

●
●

●●
●

●●

●●●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●●●●●
●

●

●

●

●

●●

●●
●●
●

●
●

●

●

●●
●

●

●
●
●

●

●
●

●

●

●●●

●

●
●

●
●●

●●

●

●●
●

●
●
●●●

●

●
●

●
●●

●
●●

●

●●

●

●
●

●
●●
●●

●
●

●
●●

●●

●

●

●
●

●
●

●

●
●

●
●

●

● ●●

●

●●●
●

●●
● ●

●●
●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●

●
●
●

●

●

●

●

●

●●●● ●
●●●●
●

●
●

●
●●

●
●

●

●●●●
●●

●●

●

●
●

●
●●●

●●●
●
●●
●

●●

●

●

●

●
●

●●●

●●
●

●
●

●

●
●

●

●

●
●

●

●
●●

●
●

●

●
●●●

●●
●●
●

●●

●

●

●

●●

●

●

●

●

●
●●

●●

●
●●●
●

●

●
●

●

●

●

●

●

●

●
●●●

●●

●
●●●
●

●

●
● ●
●●
●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●●●

●
● ●

●

●●

●●
●

●●
● ●

●
●●

●

●

●●
●●

●●

●

●
●●

●●● ●
●●

●
●●●

●

●

●

●
●

●

●

●

●●

●

●●●●●
● ●

●

●

●●

●
●

●●
●

●
●

●●●●
●

●●
●

●

●

●

●

●
●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●●
● ●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●●●
●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●
●●●
●●

●●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●●●●●
●●

●

●●

●

●

●●●
●●●

●●●
●

●●●●●

●

●

●

●

●

●

●
●

●

●●●●●●
●

●
●●

●

●
●

●
●

●

●

●

●

●●●

●●●
●

●
●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●●●

●
●

●

●

●
●

●
●
●

●●●●
●●
●

●
●

●● ●
●

●

●

●●

●
●

●
●

● ●

●
●

● ●

●

●

●

●
●

●

●

●

●
●●
●●●

●●●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●
●
●

●

●

● ●
●

●

●● ●
●

●●

●
●

●
●●

●

●●●●
●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●●

●
●● ●

●
●●

●

●

●

●

●
●●

●
●●●●●●

●●●

●

●

●
●

●

●

●
●

●●

●

●

●

●●●●●
●●●

●

●
●
●

●

●●

●

●

●

●
●

●●
●● ●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●●

●
●●●●●
●

●
●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●●
●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●
●●●●●●
●●

●

●
●
●●

●
●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

● ●●
●●

●
●

●
●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●●●●
●● ●

●●
●

●
●

●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●
●●●●●●
●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●
●●

●
●●●●

●
●●

●
●●

●

●●●
●●●

●

●
●

●
●

●

●

●●

●●●●
●
●
●

●
●

●

●

●
●

●
●●●●
●●●

●

●

●

●

●

●

●

●

●●●
●

●
●

●
●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●●●

●
●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●

●●
●

●●
●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●
●

●●

●

●

●

●
●
●

●
●

●

●

●●
●●●●

●

●

●

●
●●●

●

●

●●

●
●
●

●●● ●
●
● ●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●
●

●
●

●

●

●●

●●●

●
●

●
●
●

●●
●

●
●

●
●

●

●

●●

●
●●

●●●

●

●

●

●●

●

●

●

●

●

●
●●●
●

●●●●

●

●
●●●

●

●●

●

●
●● ●
●

●●

●

●●

●
●

●

●●

●●●

●
●

●

●●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

●●

●
●

●

●●
●

●●

●●

● ●
●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●●
●●●●●

●●●●●
●

●●
●
●

●
●●●●●●

●
●

●●
●●

●
●●●

●●
●

●
●
●

●

●
●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●●
●

●
●●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

● ●

●

●
●

●

●●

●
●
●

●

●●

●
●●

●

●

●

●●●●
●

●

●●●

●● ●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●●
●●●

●
●●

●

●

●

●
●

●
●

●
●

●
●
● ●●●●●●

●
●

●

●

●●

●

● ●
●●

●●●●
●●

●●

●

●●
●

●

●
●

●

●

● ●●●
●●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●●●●
●

●●
●●

●
●
●

●●●

●
●

●

●

●
●

●
●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●
●●●●

●
●

●●
●● ●

●
●●

●

●

●

●
●

●
●

●

●●●

●
●

●

●
●

●
● ●●●

●
●
●

●●●
●
●

●

●
●

●

●

●

●

●●
●

●
●

●
●●

●●
●●

●

●

●●

●
●

●●●
●

●
●●

●

●
●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●●●
●●●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●●●●●

●
●

●●
●●●

●
●
●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●●
●

●

●
●●

●
●

●

●
●●

●●
●

●●●
●

●●

●●
●

●●
●

●●●

●
●

●

●

●

●●

●

●●

●

●

●●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●

●
●●

●

●●●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●●
●●●

●●
●

●

●

●

●

●●
●●

●●●

●

●

●
●

●
●

●●

●●●●
● ●

●
●●●
●●

●
●

●
●●●

●

●

●

●

●

●

●

●●● ●●●
●

●
●●

●

●

●●
●●

●

●

●●
●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●

●●
●●

●
●

●

●
●

●
●●●

●

●
●

●●

●

●

●
●

●

●

●
●●

●●
●

●

●
●●

●

●●●

●

●

●●

●

●

●
●

●●
●

●
●●●●
●●●●●

●
●●

●

●
●
●

●●
●

●
●

●
●●
●
●

●
●

●●
●
●●●

●●

●
●●

●●

●

●
●

●
●●●

●

●●

●

●

●

●

●
●

●●
●

●●
●●●

●

●
●

●
●●

●

●
●

● ●

●

●

●

● ●

●

●
● ●●●
●●

●

●

●
●●

●

●
●

●

●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●
●●●●●

●

●

●

●

●

●●

●

●
●

●●●●
●
●

●

●

●

●

●

●

●

●
●●●

●●
●●

●
●

●●
●

●●

●●●
●●
● ●●

●●
●●

●

●●●

●

●

●
●

●●●

●

●●

●
●●

●

●
●

●

●
●

●●

●

●
●●

●
●

●
●

●

●

●

●
●●

●●

●●
●

●
●

●
●●

●

●●

●

●
●●●●

●

●

●●

●

●
●●●●
●

● ●

●

●

●●

●●●●●

●

●

●

●
●●●

●●●●
●●

●
●

●

●●

●
●

●
●

●●●
●●
●

●
●

●
●

●
●

●

●

●
●

●

●

●●●
●●

●●●
●●
●

●●
●●●

●

●
●

●

●

●
● ●

●●
●●●

●

●

●

●

●

●●
●●

●

●

●

●

●●●●
●●●

●

●
●

● ●

●
●●

●

●

●

●

●●

●

●

●●
●●

●
●

●●●

●

●

●

●

●

●
●●●●

●
●●●●● ●

●●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●●●

●●●●●
●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●●● ●●●
●

●
●

●

●

●
●

●
●

●●
●●●

●●

●
●

●

●
●

●

●

●

●
●●●●

●
●●

●
●

●●●
●

●

●
●

●●
●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●
● ●
●

●●

●

●
●

●

●

●
●

●●●

●●●●

●

●
●
●●

●

●●●●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●●

●
●●●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●
●

●●
●

●

●

●

●

●●●●

●
●

●●
●●

●

●
●

●

●
●

●●
●●

●
●●●●●

●
●

●●

●
●

●●
●

●

●
●

●●

●

●
●●●●

●

●
●●

●●●
●●
●

●
●

●

●

●

●●

●

●

●●
●●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●●●

●
●

●●
●●

●●
●●

●●
●

●●

●
●

●●●

●
●

● ●

●●
●

●
●

●
●

●
●

●●
●●

●
●●●

●

●

●

●●

●
●●

●

● ●

●
●●

●

●

●

●●

●●●●
●

●

●

●

●
●●

●

●●
●
●

●

●

●

●●
●
●●
●●
●

●

●●

●

●

●

●●

●

●

●●●

●●
●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●●
●

●

●

●

●

●

●

●●●

●
●●●●

●

●
●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

● ●
●

●●●
●●●●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●● ●

●

●
●●●●

●
●

●

●

●
●●

●●
●

●

●

●

●
●●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●
●

●

●●

●●
●

●
●

●

●●

●

●

●●
●

●

●

●

●
●●

●

●●

●
●

●●
●●●●

●
●

●

●

●●
●●

●
●

●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●
●

●

●

●
●●

●

●
●

●
●
●

●

●

●

●
●●●●●

●●
●

●

●●

●

●

●
●●
●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●●
●●●
●

●●●●
●

● ●●

●
●
●

●
●

●●●●●
●●

●●●●
●●●

●

●
●

●●
●

●●●
●

●

●●●●●●●●●●●
●●

●

●●

●

●
●

●
●
●

●

●
●

●●
●

●

●

●
●●●●

●●
●●

●●
●●●

●

●●
●●

●

●

●●

●

●
●
●

●●●●

●●

●
●●

●●

●●

●
●
●

●

●●●●
●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●
●●●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●●●

●

●
●

●

●
●●●

●

●
●

●
●
●

●
●

●

●●

●
●
●
●

●

●

●●

●

●

●●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●
●

●●

●

●

●

●●●

●

●

●

●

●●
●●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●●
●

●
●

●

●

●

●●
●●●●
●
●●

●
●

●●●
●

●●●

●

●
●
●●
●●

●
●
●

●

●

●
●
●●
●●

●●

●

●●
●

●

●

●●

●
●

●

●●
●

●
●

●
●

●

●●
●

●

●●

●

●
●

●
●

●

●

●

●

●●●

●●
●

●
●●●

●

●●

●

●

●
●
●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●●

●●●
●
●●●
●

●
●
●

●●
●●
●

●

●

●
●● ●●●●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●●
●

●

●

●

●
●

●●
●
●

●

●●
●●●●

●●●●●

●

●

●●●●
●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●●

● ●
●

●●

●
●

●

●

●●

●

●
●

●

●
●●●

●●
●●

●

●

●

●
●

●●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●●
●●
●●

●
●

●
●

●

●

●

●

●●●●

●●
●●●●

●

●

●●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●●●●●
●
●
●

●
●●●●

●

●

●

●

●

●●

●

●

●●
●●

●
●

●●

●

●
●

●

●

●

●
●●●

●
●

●
●●●

●

●

●●

●
●●

●
●●

●●● ●

●●

●

●●

●

●

●

●

●

●

●●●●
●

●

●

●
●

●
●●

●●●
●●

●●

●

●

●

●
●

●

●

●

●●

●●
●●●●

●
●
●

●●●

●

●
●

●

●

●
●

●
●

●
●
●

●

●

●

●
●●

●
●

●

●●●

●
●●

●

●

●

●

●

●

●

●
●●

●
●

●●
●
●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●
●● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●●
●●●

●●●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●●●
● ●●

●
●

●

●●

●

●

●

●

●
● ●

●

●●

●

●●
●●

●●
●●
●●

●

●

●●

●
●
●

●
●●

●

●

●

●

●
●

●

●
●●
●●●●●

●
●
●
●●
●

●
●

●

●
●●●

●
●●●

●

●
●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●●
●●●●●●

●
●

●●

●●
●●

●●●
●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●
●●●

● ●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●●●●
●●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●
●●

●●
●

●

●

●●

●

●
●

●

●
●

●
●

●
●

●●●●
●

●●
●
●

●
●

●
●
●

●
●●●●
●

●●●

●
●

●●
●

●●

●
●

●

●

●

●●
●

●

●●
●

●
●

●

●

●

●

●
●

●
●●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●●
●

●●● ●
●
●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●●●●●●●
●

●●●
●

●

●

●
●●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●●
●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●●
●●●●●
●●●●●

●●●●
●●

●●

●

●

●

●

●
●

●
●

●●●●
●

●

●

●

●

●
●●

●

●

●
●

●

●
●●●●

●
●

●

●

●
●

●

●

●●●●
●●

●

●●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●●
●

●●●
●

●● ●

●

●

●

●●

●

●
●

●

●●
●

●

●●
●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●
●

●

●
●●
●

●

●

●

●
●

●●
●●

●
●

●●

●

●
●

●

●
●

●
●●

●●

●●●

●●●

●

●
●●

●●
●●●

●

●

●

●

●

● ●

●●

●●

● ●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●

●

●●●●●
●●

●

●

●

●
●

●

●●●

●

●●

●

●

●●
●

●

●

●●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●●

●
●

● ●●
●●

●●●●
●●

●
●

●
●●●● ●
●

●

●

●
●

●

●●
●

●
●●

●●
●
●

●
●●

●

●
●

●●
●●

●

●

●
●

●

●●

●●

●
●●

●
●

●●●
●

●
●

●
●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●●●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●●
●

●

●●

●

●

●

●
●

●●
●
●●●
●

●

●

●

●

●●●
●
●

●●●
●

●

●
●

●●●●●●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●
●●

●●●
●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●●●
●

●

●

●

●

●●

●
●●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●●

●

●
●●●

●

●
●

●
●●●

●

●
●

●

●

●●
● ●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●●
●

●●
●●●

●●
●●●

●●●

●
●●

●

●●

●

●

●

●

●

●
●
●● ●●

●

●

●●

●

●
●●

●
●

● ●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●
●
●

●
●

●
●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●
●

●●
●

●●

●
●

●

●
●

●

●
●

●●
●●

●

●●●
●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●●●●
●

●
●●

●

●
●●

●
●
●● ●●●●●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●
●●●●

●●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●
●●●●
●

●

●

●

●

●

●

●

●

●●●●●

●●●

●●

●

●
●

●

●

●●

●●●

●
●

●

●
●

●

●

●●

●

●
●

●●●
●

●
●

●
●

●

●●
●●

●
●

●

●
●

●

●
●
●
●
●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●●

●
● ●

●●
●

●●●●●

●
●

●●

●

●
●

●

●

●
●

●●
●

●

●

●

●
●

●●●

●●
●●
●

●
●

●●
●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●●●

●
●

●

●
●

●
●

●
●

●●

●●

●

●
●●●● ●

●
●

●

●

●
●

●

●

●●

●
●
●

●●●●
●●●

●

●

●

●

●

●

●●
●●●●

●

●●●●●●
●●

●

●

●

●

●

●
●
●●

●
●
●

●●
●●

●●●●
●●●●●
●
●●

●●

●

●
●

●

●

●

●

●

●
●

●●●●

●
●

●

●

●

●●●

●

●
●●●●

●
●●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●
●●

●●
●●

●
●●

●●
● ●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●
●

●

●

●●

●

●●
●

●●

●

●

●
●●

●

●

●●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●
●●
●●
●●

●

●

●

●●
●●

●

●

●

●

●
●●

●

●●●

●

●

●
●

●

●●
●●●

●●
●

●
●●

●●
●

●●
●

●
●●●●

●●
●

●
●

●
●

●

●

●
●●

● ●●

●●●

●●
●

●
●●●●

● ●

●

●

●

●●
●

●
●●

●●

●●
●
●
●●●●

●●

●

●

●

●

●

●

●

●

●

●●● ●●
● ●●●●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●●●

●
●●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●
●

●
●●
●

●

●

●

●

●●●

●●●
●● ●●●

●

●●
●●●

●●
●

●●

●
●

●
●●

●

●
●●

●●
●

●●●

●

●

●●

●

●

●●

●
●●●

●

●
●

●●
●

●●●●●●●●
●●

●●●●●●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●
●

●
●

●
●

●

● ●●

●
●

●●●
●●

●
●

●
●●

●
●●

● ●●●●

●

●
●●

●

●

●●
● ●

●
●●

●

●

●

●

●

●

●

●
●●●

●
●

●

●●
●

●●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

● ●

●●
●

●
●●
●●

●●
●

●

●

●

●

●

●●●
●

●

●

●●

●

●
●●

●●
●
●

●
●●●●

●

●

●●
●
●●

●

●
●

●

●

●

●●
●

●●
●●● ●●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●
●●
●

●
●

●

●
●

●

●

●

●
●
●
●

●
●

●●●
●

●

●
●

●●

●

●●
●●
●●
●●●●

●●●●
●

●● ●
●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●
●●
●

●

●

●

●
●

●●● ●
●

●●

●

●
●●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●●●
●

●●●
●● ●●

●●

●●
●

●
●
●
●

●

●
●

●
●●●
●●●

●
●●
●●●
●

●

●●●
●

●
●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●●
●

●

●●
●

●
●

●

●●●

●
●

●

●
●

●
●

●
●●

●

●

●

●●
●
●

●●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●
●

●

●

●
●
●●

●
●

●

● ●

●
●●

●
●

●
●●

●

●
●●

●
●

●

●●

●

●
●●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●●●
●●●●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●●
●

●
●

●
●●

●

●

●

●

●

●
●

●●●
●●●●●

●

●

●

●●
● ●●

●
●●●

●
●
●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●
●●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●●

●
●

●

●
●
●●●●●●●

●
●

●

●●
●

●

●
●

●

●

● ●●

●

●

●

●

●
●●

●●●●

●

●

●

●

●

●
●●●
●

●

●

●

●

●●●

●

●●

●
●●● ●

●
●

●
●

●●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●●

●
●
●
●●● ● ●
●●

●●●
●●

●

●

●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●●●

●
●

● ●

●

●

●

●

●

●

●

●●

●●●
●
●

●●●●●●●
●

●
●

●
●

●●

●

●
●

●

●●●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●●
●

●●
●●●
●

●

●
●●●
●●
●

●

●

●
●

●

●
●●

●
●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●●
●●●
●

●●●●

●
●

●

●

●

●

●●

●
●

●●

● ●●●

●●●
●●●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●●●●
●
●

●
●●

●

●

●

●

●●

●

●

●

●
●

●●
●●●

●

●

●
●

●

●
●

●
●●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●●

●

●

●●
●●
●

●
●●
●

●●●

●
●

●

●●
●

●

●

●

●

●

●
●●●

●●
●●●

●

●

●

●●

●
●

●
●●

●● ●●●
●

●

●

●
●

●

●

●

●●●● ●●
●

●
●●●

●
●●
●●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●
●
●
●

●
●

●●
●●●
●
●

●
●

●

●

●

●
●

●
●

●

●●

●
●

●

●
●
●

● ●

●

●

●

●
●●

●●●

●
●

●

●

●●●
●

●

●

●●●

●

●
●
●

●

●

●

●
●●●●

●●●●
●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●
●●
●
●

●

●●

●
●
●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●●

●

●

●
●●

●●
●
●●
●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●●●●●

●
●
●●

●

●●
●●
●●

●

●

●

●

●

●

●

●

●

●
●● ●
●

●

●
●

●

●●

●
●

●●
●

●●
●●●

●

●●

●

●

●
●

●

●●

●
●●●●

●
●●

●

●

●

●●●

●

●
●
●
●●

●●

●
●

●●●
● ●●

●●●
●●
●●

●

●

●

●

●●●
●●

●

●

●

●

●●
●

●
●●

●
●

●

●●●● ●

●●●

●●

●
●●

●

●
●

●●●
●

●

●

●

●●

●
●

●

●

●●●●

●

●

●●

●

●

●
●●

●●
●●

●

●●
●

●

●●

●

●●●●
●
●●

●

●

●●●

●

●

●
●●

● ●●
●

●

●

●

●

●

●
●

●
●

●●
●

●
●
●

●
●●

●●
●

●

●

●●
●

●
●

●●
●●●

●
●●●
●

●
●●

●

●

●●

●

●

●
●
●

●●
●

●●
●

●
●

● ●

●●
●
●

●

●
●
●
●

●

●
●

●●

●

●●

●
●

●

●
●●

●●

●●

●

●

●

●
●●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●●
●●
●

●

●●
●
●
●

●

●

●

●

●
●●●●●●

●
●
●

●

●

●

●

●

●
●●

●●
●

●●

●●●

●●
●●●

●
●●

●●●●●
● ●

●
●

●

●
●●●

●●

●
●●●●
●

●
●

●●
●●
●

●●
●●●●

●
●

●●●

●●
●

●●
●

●●
●●

●
●●●●●●
●●
●●
●●●

●● ●

●
●

●●

●●
●

●

●

●●

●

●

●●●●

●

●

●●

●

●
●

●●

●

●
●

●

●●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●
●

●●

●

●●
●

●●●●●●
●

●

●

●

●

●

●

●

●
●

●
●●
●

●
● ●●●

●

●

●

●

●

●●●●

●

●●

●

●●●

●●●
●

●

●
●●
●

●

●
●

●

●

●

●●●●
●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●
●

●●
●

●
●●

●

●
●●●●

●●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●●
●
●

●
● ●●

●
●

●

●

●●
●

●
●

●

●

●●●

●
●

●

●●

●●

●●

●
●●●●●● ●

●●
●

●
●●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●●

●
●●●

●

●
●

●
●

●●●
●
● ●

●

●
●

●

●
●

●

●

●

●

●●
●

●●
●●
●●

●
●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●
● ●

●
●

●
●

●
●●

●

●

●●●
●

●
●

●

●
● ●●

●

●

●

●● ●

●●
●

●
●●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●
● ●

●

●

●
●

●

●●●

●●●●

●
●

●
●

●●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●●● ●●

●
●

●

●●●
●

●●

●

●
●

●

●

●●
●
●

●
●

●●
●

●
●

●
●

●

●

●

●
●
●

●

●●

●●
●
●

●●

●
●

●●

●
●●
●

●●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●●●
●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●● ●●

●

●●

●

●
●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●
●

●

●●
●

●

●

●

●

●

●

●●●●
●

●
●●
●●

●
●
●
●

●
●

●●
●

●

●

●
●

●

●

●
●●

●

●●

●

●

●
●●●●

●

●

●●
●
●●

●
●
●

●
● ●

●

●

●
●

●
●

●●●●
●

●●●●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●●●
●●

●

●

●

●

●

●
●

●
●●●

●●●
●

●
●●

●

●●●

●

●

●

●
●
●

●
●

●
●●●

●●●●
●●

●

●

●

●

●

●

●
●

●●●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●

●●
●●

●●

●

●

●

●

●●

●●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●
●●●

●●

●

●

●

●
●

●

●●
●

●●

●●●

●●

●
●

●
●

●
●●●
●●●●

●●●

●
●

●

●
●

●
●

●
●●●
● ●●

●

●

●

●
●

●●

●
●
●●
●●

●
●●

●●

●

●

●
●●

●
●●

●●

●
●
●●

●

●●
●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●
●

●
●

●

●

●●

●●

●
●

●●
●
●
●

●

●

●

●●

●

●

●

●●●●●●●

●
●

●
●

●
●●

●

●

●●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●
●

●●
●●

●

●●

●
●

●

●
●

●

●

●

●
●

●
●●
●

●●●●

●
●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●●●
●

●

●●

●

●

●
●

●●

●

●

●
●

●

●●●●●
●●

●●●

●●

●
●

●

●

●

●

●●

●●

●●
●●

●

●

●
●●

●
●●

●
●●

●

●

●

● ●●
●

●

●
●

●●
●

●
●

●
●

●●●
●

●●

●
●

●●
●
●●

●
●●

●●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●

●●
●

●
●●

●

●

●

●

●

●

●
●

●
●
●●

●

●
●●● ●

●●

●
●

●

● ●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●
●●
●
●

●
●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●●●
●
●

●

●

●

●

●

●●●●●
●●
●●●

●

●●
●

●
● ●

●
●

●
●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
● ●●
●
●●

●
●●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●●
● ●●

●●

●

●

●

●

●

●

●
●

●
●

●●

●●

●
●●●●●

●

●
● ●

●●●
●●
●

●●
●●

●●
●●●●●

●

●

●

●●

●●●
●●

●●●●

●
●

●●

●

●
●

●

●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●●● ●●
●

●
●●

●
●●

●●●

●
●●

●

●

●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●●●

●
●●
●

●●●

●●
●

●
●

●

●

●●
●●

●
●

●

●

●

●●

●

●●

●

●●
●

●
●

●
●

●●

●

●

●
●●●

●●

●●●
●
●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●●●

●

●

●

●

●

●
●

●●
●

●●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●
●●●

●
●

●●
●

●
●

●
●●

●
●

●●●

●●
●

●

●

●●
●●

●●●

●●
●●●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●●
●

●

●●
●●●●

●●

●●●●

●

●

●
●●
●

●

●

●
●

●●●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●●
●

●
●

●

●
●●●●

●●●

●

●

●●
●●● ●●●

●

●●

●

●
●

●●●●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●
●●

● ●●
●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●
●

●
●●●●●

●
●
●

●

●

●
●

●
●

●
●

●

●

●

●●

●
●●●

●

●

●
●

●●

●●
●●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●
●●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●
●●

●

●
●

●
●

●●●●
●●

●●
●

●
●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●●● ●

●

●

●
●

●
● ●

●
●

●

●●●●
●

●
●

●●

●

●
●

●
●

●
●

●
●

●
●

●

●●
●
●●

●

●
●

●●●●
●

●●

●

●
●
●●

●
●●

●

●

●●

●

●
●
●●●●

●

●
●

●
●●
●

●●●

●●

●

●

●

●●●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●●
●

●●

●

●
●●●

●●
● ●

●
●

●

●

●

●

●●

●●●●

●

●
●

● ●
●

●

●

●●●●●●●●
●

●
●

●

●

●

●
●
●●●●

●●●● ●

●

●
●●

●●●
●

●●●

●
●

●

●

●
●

●

●
●

●●

●
●●

●
●●●

●

●

●

●

●
●●

●●
●●●

●●

●

●

●●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
● ●●

●

●●
●

●

●
●

●
●

●

●
●●

●
●

●●
● ●

●

●●

●
●

●

●●
●

●●

●

●●
●●●

●●
●●

●●

●

●

●

●
●

●●
●

●

●
●

●
●

●
●

●

●

●

●●●●●

●
●●

●
●●

●

●

●●●

●●

●●

●
●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●
● ●

● ●
●

●

●●
●●●
●

●●●
●

●
●

●

●●
●

●

●

●

●●●
●

●
● ●

●

●

●

●●

●

● ●●●
●● ●

● ●

●
●

●
●

●

●●

●

●

●
●●●
●

●

●

●

●
●●

●
●●●

●

●
●

●

●

●

●
●

●●

●
●●●
●●

●

●●

●

●●●
●
●

●●●
●●

●

●●

●
●●●

●
●●●

●●

●

●

●●
●

● ●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●
●
●●

●
●●●

●

●

●

●
●

●
●

●

●
●

●●●●

●

●

●

●

●
●
●
●

●

●●

●●

●
●●

●

●

●●
●●

●
●●

●●

●●
●

●
●

●

●

●

●

●

●
●●●

●
●●

●

●

●●
●

●
●

●

●●●●●
●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●● ●●●●

●●

● ●
●●

●

●●
●●

●●●
●

●

●●●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●
●
●●

●

●

●

●●

●●

●

●

●●

●●●
●

●

●

●

●

●
● ●

●
●●

●
●

●

●●
●

●
●●●

●
●●

●

●

● ●

●

●

●●

●

●
●●

●●
●

●
●

●

●

●

●●
●

●
●●

●●

●●
●

●●

●

●●●
●

●

●●

●

●●●
●

●
●

●

●

●

●

●

●

●

●●
●

●● ●

●
●●
●●●

●
●●

●
●●

●

●
●

●
●

●

●
●●●●

●●●●●

●
●

●

●
●

●

●
●

●
●●

●

●●

●

●

●
●

●●

●●

●

●

●
●

●
●

●
●

●
●

●
●●

●
●

●

●

●

●
●

●●
●●

●
●
●

●

●

●

●●●
●

●
●●
●●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●
●●●●●●●

●

●
●●●
●●
●

●

●
●
●

●

●
●●
●
●●●

●
●

● ●

●

●
●

●●

●●

●●
●●●

●●

●

●

●●●●●●●●
●

●●

●●●
●●●●

●●●●●
●●●●
●●

●

●
●
●

●

●

●
●●
●

●
●

●
●●

●●
● ●

●
●

●
●

●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●●

●

●

●

●
●

●
●

●
●

●●

●

●●
●
●●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●●●●

●●

●

●

●

●●
●●

●
●●
●

●

●●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●
●●
●
●●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●●

●
●●
●
● ●

●

●

●

●
●

●

●

●●
●

●●●●●

●●●

●●
●

●

●

●●

●

●
●

●
●●
●

●
●
●●

●

●

●●●
●

●
●●

●●●
●●

●

●
●

●●
●

●●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●
●●

●
●

●

●

●
●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●●
●
●

●

●

●
●

●

●

●

●●●
●

●●
●

●
●
●

●

●

●

●
●

●●
●●

●●●

●

●

●

●

●

●
●

●

●

●
●●

●●●●
●●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●●●
●●●●●

●

●●

●

●

●

●
●●

●
●

● ●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●
●●

●

●

●
●●
●

●
●

●

●

●

●●
●

●
●

●

●●

●

●●

●
●

●●

●
●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●● ●
●●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●●
●●●●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●●
●●●

●
●

●
●

●●●

●
●●
●
●●

●●

●
●●●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●●

●
●

●
●

●
●

●●
●●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●
●●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●
●●

●●
●

●●●

●●
●●

●
●

●
●

●●
●

●
●●

●●
●●●
●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●
●

●●
●

●●

●
●
●

●
●

●
●
●●

●
●●
●

●●

● ●

●

●
●

●

●
●

●
● ●●

●
●

●

●●

●

●
●

●

●

●

●●
●●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●
●

●●
●●

●

●

●

●

●

●
●●●

●
●

●
●●

●

●

●

●●●●
●

●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●●
●

●
●●
●●

●
●

●
●

●●

●
●

●
●●●

●●
● ●●●●●
●

●

●

●

●
●●●

●
●

●●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●
●●

●●●
●●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●●●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●●
●●●
●

●
●

●
●

●●
●●●

●

●

●

●

●●

●

●

●●
●

●
●

●●
●

●

●

●

●

●
●

●●
●
●●

●

●
●●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●●

●
●●
●

●
●
●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●
●

●

●

●●

●
●

●

●

●●●
●
●
●

●●

●

●
● ●●

●

●

●

●●

●

●●
●

●

●

●●
●

●
●

● ●

●

●●

●

●
●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●
●●

●●
●

●

●

●●
● ●

●●
●

●● ●●

●

●

●

●

●

●

●●
●

●
●●

●
●

●
●

●

●
●

●●●

●
● ●

●
●●●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●

●
●●●

●
●

●

●

●●

●●
●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●●

●
●●●

●●●
●●

●

●

●

●

●

●

●

●
●● ●
●

●●

●

●
●

●

●●●

●

●

●

●●●●● ●
●

●●●
●

●

●

●●

●

●

●
●
●● ●
●●●

●

●

●

●

●

●

●
●

●
●

●●
●●●

●
●

●
●

●

●●●
●

●●
●

●
●
●

●
●
●

●

●

●
●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●
●
●

●
● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●●●●

●

●

●

●

●

●

●●

●

●
●●

●●
●●

●
●

●
●

●

●

●
●

●

●
●

●
●●●

●

●●●
●●
●

●●

●
●

●
●●●
●●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●
●●●

●●

●
●

●
●
●
●

●

●

●

●

●

●●

●
●●

●
●●●

●●●●
●

●●

●

●
●●
●

●

●

●●●

●●
●

●●
●

●

●
●

●
●
●

●●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●
●●

●
●
●

●●
●

●
●
●●

●

●

●

●
●●●

●

●

●

●
●●●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●●
●

●

●●
●●

●
●

●

●●
●

●

●●

●

●●●
●

●
●

●

●●

●●

●

●

●
●

●

●

●●
●

●

●

●
●

●●●●

●

●

●
●●

●
●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●●●

●

●
●
●●

●●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●●

●
●

●●

●

●
●●

●●

●
●●

●●●●
●

●
●

●
●

●
●
●
●●

●
●●

●●
●

●
●

●
●●

●●
●●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●●

●

●●
●

●
●

●

●
●

●

●●

●

●

● ●
●

●●

●

●●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●
●

●
●
●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●●
●

●
●

●

●

●
●●

●
●

●●
●

●
●●

●

●

●

●

●

●

●●●●●
●●

●

●

●

●
●●●

●●●●●●
●

●
●

●●●
●

●

●

●
●

●
●

●●
●

●●●

●

●

●●
●

●
●

● ●

●●
●● ●●
●

●

●

●

●

●●
●

●●●●●

●
●

●
●

●●●
●
●

●

●

●

●

●
●

●
●●●●
●●

●
●●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●●

●●
●
●

●
●

●●
●●

●

●

●

●●●●

● ●

●

●

●

●

●

●

●
●

●

●●●●●
●●●●●

●
●

●●
●●●●

●●
●

●●●

●
●

●●
●
●
●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●
●
●●●

●
●●

●

●

●

●

● ●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●●●●
●

●●●
●

●
●

●

●

●●

●
●●●●

●●
●●

●
●

●

●

●

●

●●

● ●
●

●

●

●
●

●

●
●
●

●

●●
●●

●
●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●●●

●
●

●●●●●
●●

●

●
●●
●
●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●
●
●

●

●

●
●
●

●●

●
●
●

●●

●

●

●

●●●
●

●
●

●
●●
●●
●●

●
●●

●●
●●
●●●

●
●

●●●●
●

●

●
●●

●

●

●

●●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●
●● ●

●●
●
●

●

●
●

●

●
●

●

●
●

●●
●

●●

●
●●

●●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
●● ●●

●

●

●

●
●

●

●
●

●
●●●

●●●●
●●

●
●

●●●●

●

●

●
●

●

●

●
●●
●

●

●●●●
●

●●

●●●
●

●
●

●
●

●

●●

●●

●
●

●● ●●
●●

●

●

●

●

●
●

●●
●
●●●

●●●●
●

●●●●●

●
●

●

●
●

●
●

●
●

●
●

●
● ●●●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●
●

●●
● ●

●●

●
●●●●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●
●

●●
●

●●●
●

●●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●●●

● ●
●●●
●
●

●

●
●

●

●
●

●●
●●●●

●

●● ●
●

●

●

●

●

●

●

●

●●

●
●

●

●●
●●●

●
●

● ●●

●
●

●
●

●

●

●●

●

●

●●●
●

●
●●

●

●
●

●
●●

●
●●

●

●

●
●

●

●

●

●●●
●●

●●
●●●

●
●●●●●●

●
●

●

●

●
●●● ●●

●

●

●

● ●

●
●

●
●

●●
●

●
●

●
●

●●●
●

●
●●

●

●

●

●●

●

●

●●●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●●●
●●●
●

●
●

●

●

●●

●

●
●

● ●●

●●

●

●
●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●●

●●

●
●●●●●

●
●

●

●●
●●●

●●●
●●
●●

●

●
●

●

●

●

●
●

●●
●●

●

●

●
●●

●
●

●
●

●
●

●

●
●●●

●

●

●●●
●

●
●●

●

●

●
●●●

●
●

●

●

●

●

●

●

●●
● ●

●

● ●
●

●

●

●●
●

●

●
●

●

●●

●●

●●

●

●

●●●

●
●

●

●
●

●
● ●

●
●

●●
●

●
●

● ●

●

●

●

●

●

●●

●●
●●●

●

●

●

●
●●

●

●

●●
●

●● ●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●● ●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●
●

●
●

●
●
● ●●

●

● ●

●
●

●
●

●

●

●
●

●
●●

●
●

●

●

●●

●

●

●●
●●●
●

●●
●●●

●

●

●

●●
●●
●●●● ●

●

●

●●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●●

●●

●

●

●●

●

●
●
●

●
●

●

●

●

●
●

●●
●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●●
●●

●

●●●
●●

●

●

●
●●

●

●●

●

●

●
●●●

●●
●●

●

●●●
●

●

●●

●

●
●
●●●●
●

●

●
●

●●●
●

●●
●

●
●
●

●
●

●

●

●

●

●●
●●

●●
●

●
●
●
●●●

●
●

●●
●●●

●●●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●●●●

●
●

● ●●●

●
●

●

●
●

●●

●

●

●●●

●●

●
●●

●●●●
●●
●●●

●

●●●●
●●●●●

●
●

●●
●

●●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●●●●

●●●
●

●
●●

●
●

●●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●
●

●
● ●●●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●●

●●●●

●●
●

●●

●

●

●

●
●

●

●

●
●

●

●
●●
●
●

●

●
●●

● ●

●

●

●

●

●

●
●

●
●
●

●
●

●●
●
●

● ●
●

●
●●●●

● ●●●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●
●

●
●●
●

●
●
●

●
●●

●

●●
●

●

●
●●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●
●

●
●

●●●
●●

●

●

●●●●
●

● ●

●
●

●●

●●
●

●

●

●

●

●
●

●

●

●

●●
●●●
●

●●●
●

●

●
●

●

●●●●
●

●
●

●●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●
●
● ●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●●

●●

●●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●●

●
●

●

●

●

●
●

●
●●
●

●
●

●
●●
●

●
●●

●

●

●●

●

●

●

●

●

●●●
●●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●
●●●

● ●●
●

●

●
●

●

●

●

●

●
●●

●
●

●●

●
●

●●
● ● ●

●
●●

●
●●●

●
●

●●●
●●

●

●
●

●

●

●

●

●

●
●

●
●●
●
●

● ●

●
●

●
●●

●
●

●
●

●

●

●
●
●●●●●●●

●
●

●●●
●
●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●●

●
●●
●

●●
●

●

●

●
●
●●●

●
●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●●●●●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●●●

●
●

●
●●

●

●

●

●

●

●●
●●

●

●
●●
●●
●
●

●

● ●
●

●
●

●
●

●

●

●

●

●
●●

●●
●

●●●
●●
●

● ●

●

●

●

●

●●

●
●●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●
●●

●

●
●●●

●

●

●
●

●
●

●

●●●●●
●

●
●

●●●

●
●
●●

●

●

●●

●

●●

●

●●

●

●
●●

●

●●
●
●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●●

●●
● ●

●●●

●
●

●

●
●
●●●●

●

●

●

●

●

●

●
●●

●●
●

●● ●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●
●●

●
●●
●●
●

●

●

●

●

●

●
●

●
●

●

●

●●
●
●

●
●
●
●
●

●

●

● ●

●●

●
●

●

●

●

●
● ●

●
●

●

●

●● ●●●

●●
●●

●● ●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●
●●●

●●
●

●

●

●●●
●
●●●

●●
●
●

●

●

●

●

●●
●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●
●

●●●

●

●
●

●

●

● ●●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●●
●
●●

●●●
●

●

●

●

●

●
●

●●
●

●

●
●●

●

●

●

●●
●●

●●
●●

●
●

●●
●

●
●●

●
●

●

●

●

●

●

●●●●
●●
●
●● ●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●●
●
● ●

●

●

●

●
●

●●●

●

●

●

●

●

●●●
●

●

●

●

●●●
●

●

●●
●

●●

●
●●
●

●

●

●

●

● ●
●●

●
●

●

● ●

●●
●
●●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●●

●
●●●

●●
●
●

●

●

●

●

●

●

●●

●

●●●

●

●
●
●
●●

●●

●●●
●●
●

●

●

●
●

●

●●●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●
●● ●

●
●

●●
●●

●
●●

●●

●●

●

●

●

●●
●
●

●
●

●
●

●

●
●●

●●
●
●

●

●
●●●

●

●

●

●
●●●

●●●
●●●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●
●
●
●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●
●●●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●
●● ●

●●

●
●
●

● ●

●
●●
●

●
●

●
●

●

●
●

●

●
●●

●

●
●

●●
●
●
●

●

●

●
●

●
●

●●●
●

●
●

●
●● ●

●●
●

●

●
●
●

●
●

●
●

●●

●

●
●●

●
●●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●

●●●●●
●●

●●
●

●

●
●

●
●

●
●

●●
● ●
●● ●

●

●●●
●

●

●●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●●
●●●

●

●
●

●
●

●●●

●●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●
●

●
●

●●

●●

●
●

●
●

●
●

●●
●

●

●

●
●

●
●

●
●

●
●●
●●●● ●

●

●

●

●
●
●

●
●●
●

●

●●

●

●

●

● ●

●

●

●

●
●●●●

●

●

●

●

●●
●

●
●●●●●
●●
●
●

●
●

●
●

●
●

●
●
●
●
●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●
●

●
●●
●

●●
●●●
●

●
●●

●
●

●●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●
●

●
●

●
●●

●●●

●

●
●

●●● ●●●
●
●

●
●●●●●

●

●

●
●

●
● ●

●

●

●

●

●

●●
●

●

●●
●

●
●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●
●●

●

● ●
●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●●●

●●

●
●

●
●

●

●

●

●

● ●

●

●

●●

●
●
●●●

●

●

●●

●

●●

●●

●

●

●

●●●

●

●
●

●

●

●
●

●●
● ● ●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●
●●●

●●

●●

●●

●
●

●●

●
●

●

●●

●

●
●●

●●●

●

●●

●
●

●

●●●

●
●

●

●●

●

●●●●●●
●

●

●
●

●

●● ●●

●●
●

●

●●●
●

●●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●●●●●
●

●

●●●
●

●

●
●

●●
●

●

●●
●●●

●
● ●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●●●●
●●

●
●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●
●

●
●

●●
●●

●

●
●●●●

●●
●

●
●

●● ●●
●

●
●

●●
●●

●
●

●

●

●

●

●●

●
●●●

●

●

●●●●●●
●

●●
●

●●

●

●

●
●

●●●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●●

●●

●

●

●
●●●

●

●

●
●●

●
●

●●

●
●

●●
●
●●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●●●●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●●●●
●●

●
●

●
●

●

●

●●

●

●

● ●
●●

●●
●●●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●●
●

●
●

●

●●
●●●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●●●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●●
●●●●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●●●

●

●

●

●

●●

●

●

●

●
●
●

●●●
●●●

●
●

●
●

●

●

●

●

●

●

●

●
●●●●

●●●●●
●

●
●
●●
●
●●
●

●●
●

●

●

●

●●
●●●

●

●
●
●●

●

●●●
● ●

●

●
●

●
●
●

●

●

●

●

●
●

●
●●●

●

●
●●

●●●
●●●●
●

●
●●

●
●

●
●●

●
●
●

●
●

●
●
●

●

●

●

●
●

●●●

●
●● ●

●●
●●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●
●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●●
●●

●●

●

●●

●
●●
●

●
●●●

●

●

●●
●

●
●

●

●
●●●

●

●

●

●
●

●●
●●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●●●
●

●●
●●●

●
●

●●

●

●
●

●
●
●●

●

●●
●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●●

●
●
●●
●
●

●
●

●●●●●●
●

●●
●●

●

●

●

●

●

●●

●
●

●
●

●●

●
●

●

●
●

●●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●
●

●●

●●
●

●
●

●
●

●
●

●●
●

●●
●

●
●

●

●
●

●
●

●●●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●●
●

●

●

●
●●●
●●

●
●

●●
●●●

●
●
●

●
●

●
●

●●●●
●●

●●●
●

●

●●
●●

●
●

●●●●●
●

●●

●●
●●●
●

●

●

●

●
●

●●

●

●●
●●

●

●

●

●●●●
●●

●
●● ●

●

●

●

●

●

●

●

●
●●●●

●●
●

●
●

●
●

●●

●
●

●

●
●●●
●

●

● ●

●

●

●

●●

●
●

●●

●

●
●●

●

●
●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●●●
●
●

●●
●

●
●●●

●
●

●●

●
●

●
●●●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●

●●

●

●●
●

●
●

●

●

●

●

●

●
●●

●
●

●●

●

●
●

●

●
●

●

●

●

●●●●
●

●

●

●
●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●●

●

●

●
●

●
●

●
●●

●●

●

●

●

●
●●●
●

●

●

●

●

●
●

●

●
●●●●

●

●●

●

●
●
●
●●
●●
●

●

●

●

●

●

● ●
●

●

●

●
● ●

●
●●

●

●● ●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●●
●●●

●

●
●●

●●

●
●

●

●●

●●●
●

●

●

●

●

●
●

●

●

●●●

●
●●●

●

●
●

●

●

●

●

●●

●

●●●
●

●

●●

●●●●
●

●

●
●●

●

●●
●

● ●
●

●

●
●●●

●

●● ●
●

●●●

●

●
●
●

●
●

●

●

●●
●

●
●●

●

●
●

●

●
●

●
●●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●●●

●

●●
●

● ●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●●

●

●●
●●

●

●

●

●
●

●●

●

●

●

●
●●

●

●
●●

●
●

●
● ●

●●

●

●

●

●

●

●
●

● ●
●●●●●

●

●

●

●
●●●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●
●●●●●●

●●
●●
●

●●
●

●
●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●●
●

●

●
●

●

●●●● ●

●●

●
●

●●

●

●
●

●

●
●●●●

●
●

●●
●●

●●
●●●

●●

●

●

●

●

●
●●

●
●

●
●●

●
●

●
●

●
●●
●

●●

● ●●●

●

●

●

●

●
●

●●●

●●
●●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●
●●

●●

●

●
●

●

●●
●

●

●

●

●●●
●

● ●
●
●

●
●● ●●

●

●

●

●

●●
●●●
●●●

●

●
●●

●

●

●
●

●●●
●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●●

●

●●

●

●

●

●
●
●●

●● ●●

●●

●

● ●

●

●

●

●●

●
●

●
●

●●
●

●●

●●
●●●

●●●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●● ●●
●●●
●

●
●

●

●

●

●

●●●
●

●

●●●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●
●●●

●

●

●
●

●●●●●●●
●
●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●●●

●●
●

●
●
●

●
●●

●●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●
●●

●
●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●● ●

●
●●

●
●

●
●●

●●

●
●

●●●
●●

●
●

●●

●●

●●

●●

●

●●

●●

●

●
●

● ●

●●●●
●

●●
● ●

●

●●

●

●
●

●
●

●

●●
●●●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●●●

●

●

●

●
●●
●●

●●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●
●●●

●

●

●

●
●

●

●

●

●●
●

●

●

●●●

●
●

●●
●●

●●

●

●

●

●
●

●●●
●●

●

●

●

●
●

●

●
●

●

● ●●

●

●

●

●

●
●

●
●
●

●
●

●

●

●●

●

●

●

●●●
●

●
●

●
●

●

●●
●

●

●

●

●
●

●● ●
●
●
●●●●

●

●

●

●●

●●
●

●

●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●●
●
●

●

●

●

●

●

●●
●

●

●

●

●●

●
●●

●

●

●

●

●●●

●●●●

●●
●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●●
●●

●
●
●●●

●●●
●●●●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●
●●●●

●●

●●●
●

●●

●

●

●●
●● ●

●●
●

●●

●

●●

●

●
●

●
●

●●
●●

●
●

●

●
●

●

●

●
●● ●

●●

●
● ●●

●
●●●

●

●

●

●● ●

●

●

●

●●

●
●

●
●●●

●●
●

●

●●

●

●

●

●

●

●

●
●

●●
●

●●
●●

●
●●●

●

●

●
●

●

●
●

●
●●
●●●
●

●●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●
●●●

●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●
●●

●●●
●

●
●

●●●
●

●●
●

●●

●

●

●●
●●

●
●

●

●

●

●●
●

●
●

●

●●
● ●●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●●
●

●

●

●●
●●

●●●●
●

●
●●

●
●

●●●
●●

●
●●

●

●
●

●

●●
●
●

●

●

●

●

●

●
●●

●●●
●

●
●●

●

●
●●

●
●●

●●
●

●
●
●

●

●

●

●

●

●
●●●●●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●●●
●

●
●

●
●●

●●
●●

●
●●

●●
●●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●
●●

●●
●

●

●●
●●●●●● ●

●●

●

●

● ●

●

●

●

●

●
●●

●●●●●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●●
●
●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●●

●
●
●

●
●

●
●

●●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●●●●
●
●

●
●

●
● ●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●●●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●●

●
●●

●●

●
●

●

●●
●
●

●

●

●

●●

●

●
●●●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●
● ●●
●●

●
●

●

●●●

●●
●

●●
●●
●
●●

●

●

●

●

●●
●

●●
●

●

●
●

●

●

●●●●●
●

●●●●
●

●

●●
●

●●

●
●

●

●●●

●●

●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●●●●●
●

●●

●
●

●●

●
●

●●

●

●

●
●

●●

●

●●●●

●

●●
●

●

●
●

●

●

●
●●

●

●●
●●●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●●●

●●
●

●●

●

●

●●
●

●●

●

●

●
●

●
●●

●

●
●●

●

●
●

●
●

●

●

●

●

●●●●

●●
●●●●

●
●

●●
●

●

●●

●

●

●
●

●●● ●●●●
●

●●●
●●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●●
●
●●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●
●●

●
●
●

●

●●
●

●

●●●●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●●
●●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●
●●

●

●

●

●●

●
●

●

●●●
●

●
●

●●

●

●●

●●

●

●

●
●

●

●

●

●
●●

●

●●
●●
●●

●

●

●

●

●

●●
●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●●

●●
●

●
●

●

●

●

●

●●
●●●

●●

●●
●●
●

●●
●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●
●●●
●

●
●

●

●

●

●

●●●●●
● ●●●●
●

●●
●●
●

●

●

●

●

●●●
●●

●●
●

●
●●●

●

●●

● ●
●●●

●

●

●

●

●

●
●

●
●●●●●
●●●

●

●
●

●
●●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●
●

●
●

●
●

●●●●●●

●

●●●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●● ●
●●
●●●
●●

●●●

●

●

●

●

●
●●●●

●●

●●
●●

●
●●

●
●

● ●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●
●

●●●●

●
●

●
●●●●
●

●
●

●
●

●

●
●

●
● ●

●

●●

●

●

●

●●

●

●●
●
●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●
●●
●●●

●

●●

●
●

●

●●●
●

● ●

●

●●●
●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●
●

●
●

●●
●

●

●
●●
●

●

●

●

●
●

●
●

●

●●
●

●

●●
●

●

●
●

●
●●

●
●

●

●
●

●

●
●

●
●●

●
●

●

●

●●

●

●

●

●
●

●
●

●●
●●
●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●

●
●●

●

●●
●

●

●
●
●

●

●●●
●●●●

●
●●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●●●
●
●●

●
●●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●●

●

●

●●
●

●

●
●

●●●●

●

●

●

●●●
●●

●

●

●

●
●

●

●
●

●●
●

●
●
●

●●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●
●●
●●

●

●

●

●

●

●●

●

●
●

●●
●

●
●

●

●
●●●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●

●

●

●●●●
●

●●
●

●
●

●●
●
●●

●●

●

●

●

●

●●

●

●●●
●●

●

●
●

●

●●●
●

●●
●

●

●
●●

●
●

●

●

●
●

●
●

●

●

●
●●●
● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●
●●

●
●●

●●

●●

●

●●

●

●

●
●

●

●

●
●●●

●●●●

●

●

●

●

●
●
●

●● ●●● ●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●●
●
●
●
●
●
●●●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
● ●

● ●

●
●●

● ●●●

●
●●●●●

●
●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●
●

●●
●

●●
●
●●
●
●●●●●

●●
●●●

●●
●
●●
●●●

●●●
●●
●●

●
●

●●
●
●

●

●
●

●
●

●

●

●
●●●●●

●
●●

●

●
●

●●
●●●

●●

●

●●
●

●
●

●
●●●

●
●●●

●

●
●●

●
●

●

●
●

●●●
●

●

●

●

●
●

●

●●

●●
●●

●

●

●

●

●●●●

●
●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●●

●
●

●

●

●

●

●●●
●

●●

●
●
●

●
●

●

●

●

●

●● ●●

●

●●
●

● ●

●
●

●

●
●●

●
●●●●●

●

●

●
●
●

●●
●

●●●
●

●

●●●●
●

●

●●

●

●
●

●
●●

●
●

●●

●

● ●

●

●●

●

●●
●
●

●

●

●
●●
●

●

●●●

●

●

●

●

●

●●●

●●●

●
●

●●
●●

●
●

●

●

●

●
●●

●
●

●

●
●

●●
● ●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●
●●●
●

●●
●

●
●

●●
●●●●
●●● ●●

●

●

●
●

●

●
●

●

●
●

●●●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●●●●●
●

●

●

●

●
●
●

●●●●●
●

●
●●●

●
●●●
●●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●●●●
●

●

●

●

●

●

●
●
●

●● ●
●

●●● ●
●
●
●●

●

●

●

●

●
●
●
●

●
●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●
●●●

●

●●

●
●

●
● ●
●●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●●●
●
●
●●● ●

●

●
●●

●
●●●

●

●
●

●●●

●

●●

●●
●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●●●

●●●●
●●●

●

●●

●
●

●
●

●
●●●●

●

●

●
●● ●

●

●
● ●

●

●●●

●●●●
●

● ●●●
●

●

●

●

●

●

●

●
●

●●

●
●●

●●●

●●

●
●●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●●

●

●●●

●
●

●

●

●
●

●

●●
●

●

●●●●
●

●

●

●

●●●●
●

●

●●
●

●
●
●●●

●
●●●●

●

●

●
●

●

●
●

●
●

●
●

●●●
●

●

●
●

●
●
● ●●

●●

●

●●●

●
●

●
●

●
●

●

●

●●●●
●

●
●●

●

●

●

●●

●●
●●

●
●●●
●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●●●●
●

●
●

●
●

●

●●
●

●

●

●
●

●
●

●●

●●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●
●●

● ●●
●

●

●

●
●
● ●●●

●
●

●

●
●●

●●

●
●

●

●● ●
●●

●
●

●
●

●
●

●

●

●

●

●●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●
●●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●●●

●●
●●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●●●

●●
●

●●
●●
●●●●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●

●●●●

●

●
●
●

●

●
●●

●
●●●

●

●

●

●

●

●●
●●

●

●

● ●●

●●
●

●
●

●
●

●
●

● ●●
●●

●●●
●●

●

●●

●

● ●
●●

●
●●●
●●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●●

●●

●
●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●● ●●●●●●
●●●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●●●

●

●

●

●
●
●

●
●

●

●

●

●●

●
●

●

●●●●
●●●●

●
●●

●
●●●

●
●● ●●

●

●●

●
●

●

●●●●

●

●
●

●

●

●

●

●

●
●

●
●

●●●
●
●

●
●●●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●●
●
●●●

●

●

●

●
●

●

●

●

●

●

●●●●●
●

●●

●

●

●

●

●
●

●●

●

●●

●●

●
●●●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●● ●

●

●
●

●
●

●

●

●

●●
●
●

●●●
●

●
●

●
●●

●
●●●●
●

●●

●

●
●

●

●

●
●

●

●●

●
●●

●●
●●

●

●
●●

●●

●
●●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●● ●●●●●

●
●
●●

●

●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●
●●

●●
●●●

●●
●●
●●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●●
●

●●
●

●●

●

●●
●●

●

●●
●

●

●

●

●

●
●

●

●
●

●
●●

●●●
●

●
●

●●

●
●

●

●

●

●
● ●●

●●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●●

●

●●
●●●

●

●

●

●

●
●●

●

●●●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●●
●

●
●

●
●

●●●●
●●

●

●

●

●
●●

●

●
●●

●

●
●●

●

●
●●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●
●●●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●●

●

●
●

●
●●●

●●
●

●●
●●●

●●
●●

●●
●

●
●
●●

●●
●●●

●●
●

●

●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●●
●●
●

●

●

●
●

●

●

●●●
●●

●●●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●●●
●
●●

●●

●
●

●
●

●

●
●●

●
●
●

●

●●●●
●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●
● ●●

●

●●
●●●●

●●●
●●

●
●●

●
●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●●●

●

●

●

●

●

●

●●●●●●●●
●

●
●
●●

●

●
●

●●
●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●●
●●●

●
●●
●

● ●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●●
●
●●●●●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●
●●

●●
●

●
●
●

●
●

●

●●
●● ●

●●
●●●●

●
● ●

●

●
●

●
●

●
●

●

●

●●●●●

●
●

●

●
●●●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●
●●

●●
● ●

●●

●
●

●

●

●
●

●
●●

●
●●●●

●

●●●●●

●●

●

●
●

●

●

●
●

●

●

●●●
●
●●

●

●●

●

●
●

●

●●

●●
●
●

●

●

●●●
●

●
●●●
●

●
●●

●●
●

●●
● ●

●

●
●

●
●

●●●
●●

●●●

●

●

●

●

●●
●

●●
●

●

●

●

●
●●

●●

●

●●
●●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●
●

●

●

●
●

●
●

●

●
●
●
●

●

●

●●
●●●

●

●
●●●

●

●

●●

●

●

●

●

●●●
●

●●
●●

●●

●

●

●

●●
●

●●
●●

●

●
●●●
●

●

●

●●●
●

●

●

●●
●●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●
●

●●
●●●●●●

●●
●

●

●

●

●

●

●

●

●
●

●●
●●●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●●

●

●●

●
●●

●●●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●
●

●
●

●
●

●

●●

●●
●

●
●
●

●●

●
●

●

●●

●

●

●●●
●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●●●
●●

●●

●

●
●●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●
●

●

●

●
● ●

●

●●
●

●

●

●
●

●

●●
●

●

●●
●●

●●
●
●●
●

●

●

●

●
●

●

●●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●
●

●●
●●

●
●

●

●

●
●

●

●●
●
●
●

●●

●
●

●

●
●●

●

●
●

●
●

●
●

●
●

●

●

●●

●●●
●●

●
●

●●
●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●
●

●●●
●●

●

●●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●●●
●●

●●●●
●
●●●

●

●
●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●●
●

●●●
●

●

●

●
●

●
●●●●
●●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●●
●

●

●
●

●
●

●●●
●●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●
●

●

●●
●

●
●
●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●●
●
●
●●●●

●
●●

●

●

●

●
●

●
●●
●●

●
●
●●●●●

●●

●●

●

●

●

●

0 5 10 15 20

0
5

10
15

20

0 min after UV

N
o

U
V

A

●

●

●

●

●

●
●●
●●●

●●●●
●

●●
● ●●

●●
●●

●
●●●
●●●

●
●

●

●●
●

●

●
●●

●
●

●●
●●●

●

●

●

●
●●

●

●

●
●●●

●●●●

●

●

●
●●

● ●

●
●●

●

●

●

●

●

●
●● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●
●

●●
●●

●
●●

●●●

●●
●●

●●
●●●●●
●●●●
●

●●
● ●

●
●●
●

●

●

●

●●

●

●
●●● ●

●●

●
●●

●
●●

●

●●●

●●
●

●●
●

●●●●
●

●●
●
●●
●●

●
●

●

●●

●
●●

●●●
●

●●
●●

●
●

●

●

●

●●
●

●

●

●
●

●

●●
●

●

●●

●

●

●●●●
●●●

● ●

●

●
●●●●●●●●

●

●

●
●

●

●

●
●● ●

●
●

●

●

●

●

●●

●

●

●●

●
●

●
●●
●

●●
●●

●●
●

●

●

●●

●

●
●

●

●
●●

● ●●
●

●
●

●●●

●

●

●
●

●

●

●
●●

●

●
●

●●●
●●
●

●
●

●
●

●
●

●●●●

●●
●

●

●●●
●● ●

●●
●●●

●
●

●●●
●

● ●

●
●
●

●

●●

●

●
●

●●
●

●●●
●

●
●
●●●●●●

●●

●
● ●

●

● ●

●

●

●
●

●
●●
●
●●●
●●●●●

●●
●

●
●●●

●
●●●

●●

●
●

●

●

●

●

●

●
●

●

●●
●●●
●

●●

●

●●
●
●●●

●●
●

●

●●

●
●●

●●
●●●

●
●

●●
●●

●● ●
●●●
●●●●

●●●
●

●
●●
●●●

●●●●●
●●

●

●

●

●

●
●

●
●
● ● ●●●●

●
●

●
●●

●
●

●
●

●

●
●

●
●●

●●

●

●●

●

●
●

●
●

●●●
●●●●

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●●

●●●
●

●

●

●

● ●

●
●●
●

●
●●●●

●●●●●
●●

●

●
●●

●
●
●

●

●
●

●●

●

●

●

●

●
●

●
●●
●

●

●
●

●●
●●●

●

●

●

●
●●

●

●
●

●

●
●

●
●●

●●●●
●

●

●
●

●●●●
●●●

●

●
●

●●
●●●

●
●

● ●
● ●●●●● ●

●●●
●●
●

●
●●

●
●● ●●

●●
●
●

●

●

●

●
●

●

●

●

●

● ●
●

●●

●

●

●●●●●●

● ●
●●

●●●

●

●
●

●
●

●

●●●

●
●

●

●

●

●
●

●●●●●
●●

●●●
●●●●

●●●●●●

●

●
●

●
●

●

●
●●●

●

●
●

●

●

●
●

●
●

●●

●
●

●
●

●●

●
●

●

●

●

●
●●

●
● ●

●

●

●●

●

●

●

●●
●

●
●●

●
●

●
●

●
●

●●●
●

●

●
●

●● ●●
●●
●

●●●
●

●●●
●●●

● ●
●

●
●
●

●●
●

●●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●●●
●

●●
●

●
●●●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●
●●●●
●

●●

●

●

●●●
●

●●

●

●
●

●●

●
●

●
●

●

●

●

●
● ●

●●

●
●

●
●

●●●
●
●

●●

●

●

●

●
●●●●

●
●●●●●●●●

●
●●

●
●●

●
●●● ●

●

●

●

●

●

●●●

●
●

●
●

●

●
●●

●●●●
●

●

●

●

●

●
●
●●●●

●●

●
●

●●●
●

●
●
●●●●

●●
●●●●

●

●
●

●
●

●●●●

●
●

●
●

●●
●

●

●
●●●●●

●●
●●

●
●
●

●●

●

●

●

●

●

●
●●

●

●

●●

● ●

●
●

●

● ●●

●

● ●●

●●

●
●

●

●
●●

●●
●

●

●●●●●●●

● ●
●

●
●
●●

●●●● ●●●

●
●

●

●

●●

●

●

●

●●
●

●●

●
●

●
●

●●●●
●●

●●
●

●●●
●

●

●

●

●

●
●●

●●
●

●●

●

●

●●●

●

●
●

●

●
●

●

●
●

●
● ●

●

●●
●
●

●

●●

●
●

●●
●●

●
●●

●
●

●

●●●●

●●
●

●
●

●

●
●

●●

●

●●

●
● ●

●

●

●

●
●●

●●
●

●●

●

●
●

●●●●
●

●●
●

●●

●●
●●

●
●●●

●
●

●

●

●

●

●

● ● ●
●

●

●
●

●●●
●●

●

●

●

●

●

●

●
●

●
●●

●
●

●●●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●●
●●●

●
●

●
●●

●

●

●

●

●●
●●●

●

●

●
●

●

●
●

●●
●

●
●
●●●●●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●
●●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●
● ●

●

●

●
●●●

●
● ● ●

●●
●

●●

●

●●●
●●

●
●

●
●

●
●

●
●

●●●●
●

●
●

●

●●
●
●●●

●●
●
●●

●
●

●

●

●

●●●●●●

●
●●

●

●
●

●
●

●
●●●

●

●

●●

●

●●

●

●

●
●●

●

●
●

●●

●

●

● ●

●

●●
●

●
●●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●●
●

●
●●●

●

●●

●

●
●●●
●
●●●

●

●

●●

●

●
●● ●

●●
● ●

●●
●

●

●
●●

●●●●●

●

●

●

●
●

●

●
●●●●

●●
●

●●

●●
●

●

●

●
●

●
●

●
●

●●

●●●
●

●
● ●

●
●●●

●

●

●●●
●

●●
●

●

●

●●

●

●●
●●

●●●
●

●
●●

●
●●
●● ●
●

●

●

●

●

●
●

●

●●
●

●●
●

●●

●●
●

●
●

● ●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●●
●●
●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●● ●●●●
●●●

● ●

●

●●
●●

●●
●
●

●

●
●●

●
●

●
●

●●
●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●●
●●

●●●●●

●
●

●●

● ●

●●

●
●

●

●

●

●●
●
●●

●
●

●

●

●

●●●●

●

●

●

●
●

●
●
●

●

●
●●
●●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●●●

●●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●
●

●●

●

●

●

●●

●
●●

●

● ●

●●

●

●
●

●

●

●
●●
●●●
●
●●●

●
●●
●

●●●

●●

●●
●

●

●

●

●
●●

●

●
●

●
●

●
●●
●

● ●●●
●●

●●●

●
●

●
●●

● ●

●

●●

●

●

●

●

●
●●

●●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●
●●●

●

● ●
●

●

●

●

●●
●

●
●●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●
●●

●
●● ●

●

●
●

●

●●

●

●●
●
●●●

●
●

●

●

●

●

●

●

●●●

●●●
●●
●●●●

●

●

●

●

●

●

●
●

●

●

●●●
●

●●

●

●

●●●

●● ●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●● ●

●●
●

●
●

● ●

●●

●

●
●
●

●
●

●

●

●

●

●●●

●

●
●
●●
●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●
●
●●

●●●●●

●
●

●
●

●●●
●●
●

● ●
●●

●
●●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●●●

●●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●●●●●
●

●

●
●

●

●●

●

●●● ●

●

●

●●●

●

●

●●
●

●●

●

●

●●
●

●

●
●
●

●
●
●

●●
●

●●
●●
●

●
●

●

●●

●

●

●

●●
●
●

●
●●●

●
●

●
●

●
●●

●

●
●

●

●

●●

●

● ●

●
●●●●

●

●

●
●●●

●●

●

●●
●●

●
●

●

●●

●

●

●

●

●●●●
●●

●
●● ●● ●

●
●●

●
●

●

●
●

●
●●

●●
●
●●

●

●

●

●

●

●
●●●

●
●

●●

●

●

●

●●

●●

●●
●

●
●●

●
●

●

●

●

●

●

●●

●
●●

●
●

●●●
●

●●●
●●●

●

●

●

●

●

●

●

●

●●●●
● ●

●

●
●●●

●

●●

●●●
●●

●

●

●
●

●●

●

●
●

●

●●

●

●
●●●●

●●
●

●●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●
● ●●

●●●
●

● ●

●

●

●

●

●

●

●●●
● ●●●●

●
●

●●

●●●
●

●

●
●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●●●●●

●
●

●
●

●●
●

●
●

●

●
●●●●

●● ●
●
●

●

●

●

●

●●
●●●

●●●

●●●●

●●
●●●

●●
●●●●

●

●●

●
●

●
●

●●
● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●●
●

●●●●

●

●● ●●
●●●●

●

●●●

●
●

●

●
●●●

●

●

●
●

●

●
●

●●●●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●
●

●

●
●

●

●●
●

●

●

●●

●

●

●●

●

●●●●
●

●
●●

●
●●●

●

●

●●●●●
●●

●
●

●

●
●●

●

●

●
●

●●

●
●●

●
●●●

●●

●●
●

●

●

●

●
●

●●

●
●

●
●

●● ●
●●●●

●
●● ●●
●

●

●

●

●

●

●
●

● ●
●●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●●
●●

●●
●●●

●
●
●●

●

●

●●
●

●

●

●

●
●●●

●●●●●
●

●

●

●

● ●
●

●
●●
●●

●

●
●

●
●

●●

●

●
●●

●
●●

●
●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●●●
●

●●
●●●

●●

●
●

●●

●

●

●

●

●

●●
●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●●●●

●

●
●

●

●

●

●
●●

●
●●

●
●

●●
●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●● ●

●

●●

●

●●
●

●
●●

●
●

●
●●

● ●
●

●

●

●
●

●●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●●
●

●

●
●

●
●●
●

●●
●●
●

●
●

●●●
●
●●

●
●

●●
●

●

● ●●
●●

●●
●

●
●

●●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●●●●

●
●

●

●●

●

●●

●●

●

●
●

●

●●
●●

●●

●

●
●

●●
●

●

●

●●●●●
●

●●●
●●
●

●
●

●

●

●

●

●
●●

●
●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●
●

●
●●

● ●

●

●

●●

●
●

●
●

●●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●
●
●●
●

●●
●

●●●
●
●●

●●
●

●●●●●●●
●●
●●

● ●●

●

●

●

●●
●
●●

● ●●
●

●

●

●

●

●●
●●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●●

●
●●

●
●

●●
●
●

●
●

●●

●
●●

●
●●●●
●●●
●●●

●

●●●
●

●●
●●

●●
●●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●
●●

● ●

●

●

●

●
●

● ●

●

●

●
●
●

●●
●

●
●

●●●●

●

●

●
●

●●

●
●

●
●

●●

●

●●
●

●●●
●

●
●

●

●●

●
●

●●

●

●

●
●

●

●
●

●●●●●
●

●

●

●

●
●

●
●

●●●

●

●

●●
●
●

●
●●●
●

●
●

●●●
●

●●
●●●

●●● ●●●●
●
●

●

●
●

●●●

●

●●●
●

●●
● ●●

●●
●

●●●

●
●●

●

●
●●●●

●●●
● ●

●

●

●

●

●

●●●

●

●●
● ●

●

●
●

●●●
●

●

●●

●
●

●●

●
●●●

●
●

●

●

●●

●

●

●

●●●● ●

●

● ●
●

●●
●●
●

●

●
●●
●●●

●●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●
●●●●

●
●

●●
●
● ●

●

●●

●●
●

●
●

●

●
●●

●●

●
●

●

●
●●●●●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●●●●

●

●
●

●●
●

●

●

●
●

●
●

●●
●●●

● ●●●
●●

● ●

●

●

●●●

●

●

●
●

●

●

●●
●●

●

●
●

●

●
●

●

●●
●●●●●●

●

●

●
●● ●● ●●

●

●

●●

●

●

●
● ●
●

●
●

●●
●●●
●●●●

●
●

●

●

●●
●●

●
●

●

●●●

●
●●●●

●

●
●

●

●

●

●

●
●●

●
●

●●
●●

●

●
●

●

●●●

●

●

●

●

●●
●●

●
●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
● ●●

●
●
●

●

●

●

●

●
●

●●
●

●

●● ● ●

●

●
●

●

●
●

●

●

●●●●
●

●

●

●

●

●

●

●●●

●

●

●●

●
●●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●
●
●
●●●

●
●

●
●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●
●

●●●
●

●

●
●

●
●

●
●●
●●

●
●

●
●●

●
●

●

●

●●●●●

●

●

●

●

●

●
●●

●
● ●●

●●

●

●

●

●
●

●
●●

●

● ●●

●●
●●●
●●●
●
●●●

●
●

●
●●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●
●

●●
●

●
●

●
●

●
●

●●

●

●

●
●

●

●

●●
● ●●

●

●

●

●

●
●●

●
●●

●
●

●●●●

●

●

●

●

●●

●●●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●
●●

●

●

●

●
●

●
●●●● ●●●

●

●

●
●

●
●

●

●
●
●

● ●

●●
●

●
●●

●

●

●

●

●●

●

●

●

●
●●
●

●

●●●
●

●●

●●●●
●● ●

●
●

●●●
●

●●
●

●

● ●●●
●●
●
●

●
●

●
●●

●

●

●
●●

●
● ●

●

●

●●●●

●

●
● ●●

●●

●●
●

●

●

●

●

●

●
●

●●

●●

●

● ●

●
●

●●
●

●●●

●

●

●

●

●

●
●
●●●●●

●
●

●

●

● ●

●

●

●

●

●
●

●●
●
●

●●●
●

● ●

●●●
●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●●

●
●●●●●●

●
●

●
●

●●
●●●●

●

●

●

●

●

●
●●●

●●●●
●

●
●

●
●

●

●●●●
●

●

●

●

●

●

●

●

●
●

●●●●●●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●●●●●
●

●● ●●
● ●

●
●●

●
●●

●●
●

●
●●●

●
●

●

●

●
●●●

●
●●

●
●

●●

●

● ●

●●

●

● ●

●

●

●

●

●

●

●

● ●●●
●

●

●
●

● ●

●

●
●●

●
●●
● ●

●

●
● ●

●

● ●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●
●

●
●
●●

●●

●
●

●
●●

●

●
●

●

●
●

●●
●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●

●

●

●●●● ●●●●
●
●●●●

●●
●●

●

●

●

●

●
●●●
●

●●
●
●

●
●●●

●

●

●

●
●

●
●●

●

●

●
●●

●
●●●
●●

●
●

●●●● ●
●

●●
●●

●

●

●

●

●

●

● ●

●
●
●

●
●
●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●
●
●

●
●

●

●

●

●

●●●●● ●
●
●●●●●●

●
●

●●●

●●

●

●
●

●

●

●●
●

●●
● ●
●●

●●

●●●●●
●● ●

●

●

●

●

●

●●●
●●

●●
●

●

●
●
●●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●
●

● ●
●

●

●

●●
●●

●

●
●●

●

●

● ●●

●
●

●

●
●

●

●●●
●

●
●

●●
●●

●

●
● ●

●

●
●
●
●

●
●●●●

●

●
●

●
●

● ●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●●●●

●●
●●

●●

●

●

●

●
●
●

●

● ●

●●●
●

● ●

●●
●●●●

●●

●●●●
●●

●
●●

●
●

●
●

●

●●

●
●

●●●●
●●●●●
●

●

●●●●

●

●
●●●●
●

●
●
●

●

●●

●

●
●
●

●●
●●●●
●● ●

●

●
●●

●

●
●●●●●●●

●
●●
●●

●

●

●

●●
●

●
●

●●●
●

●
●

●

●●●●
●●●●
●●

●●●
●

●

●

●

●●●
●●

●
●●●

●●●
●

●

●

●
●●

●●●●●
●●●●

●

●●
●

●

●

●
●

●

●●

●
●
●●

●

●
●

●

●●●●
●
●

●●

●
●

●

●

●

●

●●
● ●

●
●
●●
●●●

●
●

●

●

●

●

●
●

●

●
●

●●●
●●

●

●

●

●●
●●

●
●

●
●

●
●

●
●

●●
●●● ●
●

●

●

●

●

● ●
●●●●

●

●
●

●

●

●●

●

●

●●●
●

● ●
●

●

●

●●●
● ●

●
●●●

●●

●●

●● ●●
●

●
●●

●

●●●●

●
●

●
●●

●

●
●
●●

●

●

●
●

●
●

●● ●
●●

●
●●

●

●

●

●

●
●

●●
●

●

●

●

●

●●●
●●●●

●
●

●●
●

●
●

●
●●●●

●
●●●

●● ●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●●

●
●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●●

●

●

●

●

●

●●●●
●●●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●
● ●

●

●

●●

●

●

●●
●●

●
●

●

●●
●

●●

●●●
●●
●

●
●●

●●
●

●●

●

●● ●
● ●

●

●
●●●

●●
●

●

●

●

●●

●●
●●

●●●
●

●

●
● ●●

●

●

●

●

●●
●● ● ●

●

● ●●

●

●
●

●●●
●

●●

●

●●
●●

●

●

●

●
●

●
●●

●
●●●●●

●

●

●

●

●
●

●●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●●
●●●●●

●
●

●●●●
●●

●

●

●

●

●

●
●

●●

●
●●

●●

●●
●●●
●

●

●

●
●

●
●
●●

●●●
●

●

●

●

●

●

●

●
●●●

●

●●●
●●●●

●●●
●

●
●●

●●●●
●●●

●

●

●

●●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●● ●●

●●
●

●

●●●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●●

●

●
●

●●
●

●

●●

●

●

●●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●●

●
●●

●●● ●● ●
●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●●
●

●

●

●

●
●●●

●
●●

●●●●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●●●

●

●

●

●
●●●●
●

●
●

●
●

●
●

●

●
●
●

●
●

●
●

●

●

●●
●●

●
●

●

●

●

●

●●

●
●

●●
●

●

●
●

●

●

●

●
●●

●

●●●●●

●●

●
●

●●●
●

●
●

●●●

●
●

●●
●●

●

● ●●
●

●

●●
●●
●●
●

●

●
●

●●

●
●●

●
●
●●

●

●●
●

●

●

●

●

●

●●
●●●●●

●
●●

●

●●
●●

●
●

●●
●●●●●● ●

●

●

●
●

●●●

●●
●

●●
●

●

●

●
●

●
●●●

●

●

●●

●●●●
●

●
●●

●
●

●●●
●●●●

●

●●

●●

●
●●
●

●●
●

●
●●

●

● ●

●
●
●●

●

●
●●

●●●
●

●

●

●

●
●

●
●●

●
●

●
●

●

●● ●
●●

●

●●

●

●
●●

●
●

●
●

●●
●●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●● ●

●

●
●

●
●●

●

●

●
●

●
●
●●●

●
●

●
●●

●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●
●●●

●
●●

●●

●

●

●

●●
●●

●
●●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●
●
●

●

●
●

●●●
●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●
●●

●
●●

●
●●

●
●●●

●

●

●
●

●

●

●
●●

●
●

●●
●●●●●

●

●
●

●●

●●

●●●●
●

●
●

● ●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●●
●

●

●●

●

●

●● ●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●

●● ●
●● ●

●●
●●
●

●●

●

●
●

●
●●●

●
●

●
●●●

●
●●
●

●● ●

●
●●

●
●

●
●●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●●●●
●
●

●

●

●

●

●
●●

●

●●
●

●
●

●

●

●●●
●● ●● ●●

●
●

●●
●

●
●●●●
● ●●

●●●

●

●●

●

●

●●
●●●●

●
●

●

●

●

●

●

●

●

●●●
● ●

●●
●

●●

●
●

●●●
●

●●
●●

●

●●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●
●●
●

●●

●●●
●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●

●●
●

●

●
●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●●●

●●

●●
●
●

●

●

●●

●

●

●
●

●

●● ●●
●

●
●

●

●
●

●

●
●●●

●

●

●●

●

●

●

●

●

● ●
●
●●

●●
●●●

●

●
●

●
●

●●
●●●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●●
●●

●●●

●●●
●●

●

●

●

●
●

●
●●
●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●●
●

● ●

●●
●

●●

●
●●

●●

●
●

●

●

●

●
●

●
● ●

●

●
●

●

●
●● ●
●●●

●●

●
●

●

●
●

●

●
●

●
●
●

●
●●
●● ●

●

●

●

●●●

●●
●

●●
●

●

●

●

●

●

●

● ●●
●

●

●

●●

●

●

●
●●●

● ●

●
●

●

●

●

●

●
●

●●
●

●
●

●●●

●●

●●●
●

●

●

●

●

●

●
●

●●
●

●●
●

●

●

●

●
●

●

●●●
●

●
●

●
●●

●

●

●

●

●●

●

●●
●

●●

●

●●●
●●

●

●

●●●
●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●●

●● ●●

●●

●

●

●
●

●
●

●●
●●

●

●

●●

●

●●

●

●
●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●●●

●

● ●●●
●●

●
●

●
●

●

●
● ●

●

●

●
●

●

●

●
●

●●● ●●●●

●●
●●

●

●

●

●●●●

●●

●

●

●

●

●

●

●
●●●
●
●

●●●
● ●●

●

●
●

●

●

●

●

●
●●
●●●

●
●

●
●

●
●

●●
●●

●
●

●

●

●

●

●

●
●

●
●●●

●●●
●

● ●●
●

●

●

●
●
●

●●
●

●

●

●●●●●
●
●

●●

●

●●

●

●

●
●

●

●
●●●

●

●

●
●●●●●●

● ●
●

●
●●

●

●● ●●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●●

●●●
●

●●

●

●●●
●

●

●●
● ● ●

●●

●

●

●

●

●

●

●
●●●
●●●●

●
●

●

●●

●●

●●
●●●

●●● ●●●
●

●

●
●

●
●
●●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●●

●

●●

●●
●

●●

●

●

●

●●●
●

●

●

●
●
●

●

●
●

●●

●

●●
●

●
●●●

●●
●

●

●
●

●

●

●

●●
●●●

●
●

●

●●

●

●

●

●
●

●●

●

●●
●

●●●
●

●
●

●●

●●
●

●

●

●

●

●

●●●

●
●

●
●

●●●●

● ●
●●●●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●●●●●●●

●
●●

●●
●

●
●

●

●

●
●
●

●● ●
●

●●●
●

●●●
●

●
●

●

●
●

●

●
●●
●

●
●

●●
●

●●

●●

●
●● ●

●
●●●●
●

●

●

●●

●
●

●
●

●

●●●●●●
●●

●

●

●

●

●

●

●

●●
●

● ●
●
●●●●

●

●
●●

●
●

●
●

●
●
●

●
●

●●

●●
●

● ●

●

●

●

●

●●
●

●

●

●
●

●
●

●
●●●
●●
●

●
●

●
●

●

●

●● ●

●

●
●

●●
●

●
●

●
●●●●

●

●

●
●

●

●●

●●●●
●

●●
●●●
●
●

●●
●

●
●●

●
●

●
●
●●●●●●●● ●

●●
●

●
●

●●
●●●●

●
●

●
●

●

●

●
●

●

●●●●●●

●
●

●●

●
●

●

●

●

●

●

●●
●

●
●●
●●
●
●
●

●●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●
●●●●
●

●●

●
●

●●●●

●
●

●

●
●

●
●●
●

●●●
●●

●

●
●●● ●●

●

●

●●●●●●●

●

●●
●●

●

●

●

●

●

●

●

●●
●

●●●
●

●●
●●

●

●

●

●
●●●
●●●

●●
●

●
●

●

●

●
●

●●●●●
●●
●

●
●

● ●

●

●●●
●●●
●

●

●

●

●

●
●

●
●●●●

● ●

●
●

●

●

●

●

●

●
●●

●●

●

●
●

●
● ●

●●
●

●
●●●●●

●
●●

●
●

●●●
●

●●
●

●
●

●
●
●

●

●
●

●
●

●

●

●
●●●

● ●●

●

●

●

●

●
●
● ●●

●

●

●
●

●

● ●●●●
●

●●

●

●

●●●●

●

●
●
●●

●

●

●

●●

●●
●●●

●

●● ●●
●
●●●
●●
●

●●●●●●●
●●

●
●●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●
●●

●
●

●

●
●●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●●
●

●

●

● ●

●
● ●
●

●●● ●●
● ●●●

●

●
●

●

●●
●

●
●
●

● ●

●

●

●

●●
●●

●●
●●

●
●

●

●●
●●●

●●
● ●

●
●

●
●●●

●

●

●

●

●
●

●

● ●●
●

●●
●●●

●

●

●
●

●

●

●
● ●

●●●
●

●●
●●

●

●

●
●

●
●● ●

●

●

●
●●●●

●
●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●
●

●●●
●

●
●

●
●●●●

●
●

●
●
● ●

●

●

●●
●

●

●

●●●●
●
●

●
●

●●

●
●

●
●

●
●●●

●

●
●

●

●●●
●●

●
●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●●
●

●
●

●

●●

●
●

●
●

●

●
●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●● ●●●
●● ●
●

●
●●

●●
●●

●
●

●
●●●●●●

●●
●●●

●●●

●

● ●
●

●

●
●●●●●●

●

●

●

●

●● ●

●

●

●

●

●

●●
●●

●
●

●
●

●●

●

●

●
●

●●●

●●

●

●

●
●

●

●

●

●

● ●
●

●●●

●●

●
●●●●
●

●●●
●

●
●●

●
●

●

●●●
●
●

●
●

●●
●●

●

●

●

●
● ●

●●●

●

●

●

●

●

●●
●

●
●

●
●●

●

●
●●● ●

●

●

●

●

●
●

● ●●●●
●●●
●
●●●
●

●
●

●
●●

●●
● ●

●●

●
●●

●
●

●●●

●

●

●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●
●

●

●

●●●
●

●
●

●

●●

●
●

●●● ●
●

●

●
●●

●●●
●●

● ●
●

●
●

●

●

●●

●

●

●
●●●●

●

●
●●

●●

●

● ●
●

●

●

●●●●
●

●

●

●
●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●
●● ●

●●

●

●●

●

●
●

●●●● ●
●●

●●●●

●
●

●
●

●

●

●●

●

●●●
●

●
●

●●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●●●●●●●
● ●●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●
●

●●●

●
●●

●

●

●●

●

●

●●●

●

●

●
●

●
●

●●●●●
●●●
●
●

●●
●●

●
●●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●●

●
●

●

●

●

●
●

●
●

●

●
●

●●
●

●●
●●
●●

●
●
●
●●●●
●

●●
●●●

●●
●●

●
●●

●
●●

●
●

●
●●
●

●

●●
●

●

●
●

●

●

●

●

●●

●
●

●
●●

●
●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●●
●●
●

●

●●
●

●●●

●●

●
●

●

●

●

●

●●

●

●●
●

●●
●●●● ●

●

●

●

●
●

●

●●●●●● ●●
●

●
●

●

●
●

●●●

●

●●

●●
●●

●
●

●

●

●
●

●

●●
●● ●●

●●
●●

●●● ●
●

●

●

●

●
●

●
●●●●●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●●

●
●

●
●

●

●

●●
●

●●●

●

●
●

●●
●

●

●
●

●

●

●
●

●●

●● ●
●●

●
●●

●●
●

●

●

●●

●

●●
●

●

●

●

●

●
●●●●●

●●●

●

●

●

●

●
●●

●●
●

●●
●●●

●
●●
●

●

●

●

●
●●

●●
●

●
●●●

●●●
●●

●● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●
●

●●●

●
●

●
●

●●●
●

●

●●●●
●

●
●●

● ●

● ●

●
●

●

●●●●●●●●●●
●●

●
●

●

●

●

●
●
●

●
●●

●
●●

●●
●●

● ●●
●

●

●

●

●●

●
●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●●●

● ●

●

●
●

●

●

●

●

●
●

●

●
●●●
●

●●
●●

●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●●●

●

●

●

●●●●●

●●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●●●●
●

●

●
●

●●

●●
●

●●●
● ●●

●
●

●
●●

●
●

●

●

●

●●●
●●

●
●

●

●●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●●

●●
●

●

●●●

●

●

●

●

●

●

●

● ●
●

●

●●

●●

●

●

●

●●
●●

●
●

●

●

●

●

●●●
●

●

●●
●

●

●
●

●

●

●

●

●

●●●
●

●●
●
●

●

●

●
●●●●

●
●

●
●●
●

●

●●
●●

●●
●●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

● ●
●

●

●●●● ●

●
●

●

●

●

●●

●
●●●

●●
●

●●●●
●

●

●

●

●

●
●●

●
●

●

●
●

●
●
●

●●●●

●

●

●●
●●

●

●
●

●

●●

●

●●

●

●

●
●

●●
●●●●

●
●

●●●●

● ●●
●●●

●
●

●
●

●

●●

●●
●
●● ●

●

●●
●

●
●

●
●

●●

●
●

●
●

●

●
●●

●
● ●

●

●
●
● ●

●

●

●

●●●●●●
●

●●
●
●●●●●
●

●

●

●

●

●

●

●

●
● ●

●●
●

●

●

●
●

●

●

●
●●●

●
●

●●
●●●

●●●
●●

●

●

●

●
●

●
●

●

●
●
● ●

●
●

●

●●●

●●

●

●
●●

●

●
●

●●
●

●
●

●●●●●
●●●● ●

●●
●

●

●
●

●

●●

●

●

●
●●●●●●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●
●●

●●
●●
●

●●
●●

●
●● ●

●

●
●

●
●●●

●
●

●●●

●
● ●

●●
●

●
●

●●●●
●●

●●●
●

●

●
●

●
●
●

●●

●

●

●

●

●

●●●

●
●●●

●●
●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●
●●

●

●●●

●
●●●●●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●●●
●●

●
●

●

●
●

●●●●
● ●●●

●

●●

●

●
●

●

● ●●
●

●
●●

●●●●●●
●●●●

● ●

●

●

●

●●

●

●

●

●●
●●●●
●●

●
●●

●●
●

●

●●●●●● ●

●

●
●

●

●●
●

●
●

●● ●
●

●●
●●

●

●
●
●
●

●

●●

● ●

●

●
●

●
●●●

●

●●

●

●

●

●
●●●

●●● ●
●

●●

●

●

●

●

●

●

●

●
●●●●
●

●
●●

●
●●

●
●
●●
●●●●●

●
●

●
●●●
●

●●

●●
●●

●
●●

●●

●

●●●●
●
●●

● ●●
●●

●

●●

●●
● ●●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●

●
●●●●●●

●●

●●●
●●

●●
●

●
●●● ● ●●●●
●●
●

● ●

●
●

●

●

●
●●

●

● ●

●
●●

●●
●

●

●

●

●
●●

●

●

●

●
●

●

●●
● ●

●
●

●
●●

●●●
●●●

● ●

●●

●

●

●

●

●

●

●

●●
●

●●●●●
●●●

●
●

●

●
●

●

●

●●

●●

●
●
●● ●

●

●

●

●

●

●

●

●●●

●
●

●

●●●
●

●
●

●

●
●

●●
●●

●
●

●●●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●●
●

●

●
●

●

●●

●
●

●

●

●●●
●
●●●●
●

●
●

●

●●
●●●●●●

●
●

●
●

●
●

●●
●

●
●

●●●

●●
●●

●●●
●

●●
●

●●

●●

●

●

●●
●

●

●●

●
●●●

●
●

●●●
●

●●
●

●●
●●

●

●
●●
●

●
●

●
●

●
●●●

●●

●
●

●

●
●

●
●

●●●

●●●●●● ●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●
●

●
●●
●●
●●

●
●

●●●
●●
●●
●●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●●●

●●
●
●
●

●

●

●●●
●●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●●

● ●

●
●

●
●

●
●

●
●● ●

●

●

●

●
●
●

●

●

●
●●●

●●

●
●

●
● ●●●●

●

●●

●

●
●●●●

●

●
●

●

●● ●
●●

●

●

●

●

●

●●●
● ●

●●

●

●

●

●

●
●

●●

●

●●●
●
●

●

● ●

●
●

●●●●

●
●●●
●

●
●●

●
●

●
●

●●●
●

●

●

●

●

●
●●

● ●
● ●

●

●

●

●

●

●

●

●

●

●●●●

●●
●

●
●●

●
●●●●

●●

●

●

●
●

●

●

●●
●

●

●●
● ●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●●●
●●●

●
●●●●●●

●●●

●
●

●
●

●

●

●●
●

●
●●●

●

●●●●
●

●
●●

●●

●

●

●

●
●

●

●
●
● ●

●

●

●

●

●

●

●
●
●●

●
●

●●

●
●

●
●

●●●
● ●

●

●●
●

●

●●●●
●

●
●

●●
●

●

●
●

●

●

●●
●

●

●●

●●●

●
●●
●● ●

●

●

●

●

●

●
●

●

●●

●

●
●●●
●

●
●

●●●
●●

● ●

●

●●●

●

●●● ●

●●
●

●●

●
●●
●

●●●●● ●●
●

●●●

●

●
●●

●
●●

●

●

●

●
●●

●
●

●●
●

●
● ●

●
●

●

●●●●
●●

●
●

●●
● ●

●

●
●

●●● ●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●
●

● ●●●●
●●

●

●

●

●

●

●
●●●
●

●●●●●
●
●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●
●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●
● ●●●●

●
●●

●
●

●
●

●●

●
●

●

●

●

●
●●

●
●

●●●●
●●

●
●

●
●

●●

●
●●

●●●●●
●

●
●

●
●

●

●

●
●

●

●

●

●●●
●
●●

●
●●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●●
●●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●

●
●

●●

●●

●

●

●
●●●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●●
●

●●

●

●

●●

●

●
●
●●●●● ●

● ●●●●
●

●

●●

●●

●
●
●

●

●
●●●●
●

●

●
●

●
●

●
●●

●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●●●
●

●

● ●●●●

●

●

●
●

●

●
●

●●●●
●●●●●●

●

●

● ●
●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●●

●
●●

●●
●●

● ●●
●● ●

●●

●

●
●●●

●

●
●●●

●●
●

●

●

●
●

●
●●

●
●●●

●

●
●
●
●
●
●●

●

●

●

●

●

●●
●

●
●

●

●

●●

● ●

●

●

●●
●

● ●
●

●
●●●●

●●●
●

●

●

●

●

●

●
●

●

●

●●●●
●
●

●
●●●●●

● ●
●●

●
●

●
●

●

●

●

●●
●
●

●●
●

●

●●●

●

●

● ●
●●

●

●
●●

●
●

●●
●●

●
●● ●●●

●

●●
●

●●
●●● ●
●●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●
●
●

●● ●
●

● ●
●

●●

●

●

●

●

●
●

●
●

●
●

●
●

●●●
●● ●

●

●

●

●
●●

●●
●
●

●

●
●

●

●

●

●
●●

●
●

●●
●●

●

●
●

●●

●

●

●
●

●
●●
●●

●

●●
●

●
●

●

●

●
●
●

●
●

●●

●
●

●

●

●

●

●●

●
●●

●●
●

●
● ●●

●
●

●●●
●
●●●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●
●●

●
●

●
●
●

●

●

●
●

●
●
●●●

●
●●

●

●
●

● ●

●

●

●

●●

●

●●

●

●●● ●
●●

●
●

●
●

●

●

●

●●
●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●
●●

●●
●

●

●

●

●

●

●

●●●●
● ●

●
●

●

●

●

●●
●●

●
●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●●●●●

●

●

●

●

●

●
●

●
●

●● ●●

●
●

●
●

●●
●

●●

●

●

●
●

●●
●●●● ●

●●●
●●

●●

●
●●●

●●

● ●

●●

●
●

●
●● ●

●●

●●
●●● ●

●
●

●
●

●●●●

●
●●

●●

●
●

●
●

●

●

●

●
●●●

●
●●

●

●
●

●
●

●
● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●●●
●●●●

●

●

●

●

●
●

●

●

●●●
●

●●
●
●●

●●

●

●

●

●●
●●

●

●

●

●

●●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●
●●●●●●●

●
● ●●

●
●

●
● ●●●

●●●
●

●
●

●
●

●●

●

●

●
●

●
●●● ●●●● ●

●

●
●●●
●

●●
●

●●●
●

●●

●

●
●

●
●●
●

●

●

●
●

●●●●●●
●●

● ●

●●

●●

●
●● ●

●●●●
●

●
●

●

●

●

●●

●●
●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●
●●

●
●

●

●●
●

●
●

●●
●●●

●
● ●

●

●

●

●
●●●

●●

●
●

●
●
●●●

●

●●
●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●●●

●

●

●●

●●

●
●
● ●●

●
●●●●●

●

●

●

●

●

●

●

●●●●
●●

●

●
●●

●

●
●●

●
●

●● ●
●●

●
●

●
●●●

●●●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

● ●

●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●
●●

●

●●
●●●

●

●

●●

●

●●

●

●

●
●

●●
●

●●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●●●●
●

●

●

●
●

●●●●

●●
●●

●

●
●

●●●
●●●

●

●●
●
●
● ●

●●●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●●

●

●●
●●

●
●●

●

●
●

●
●

●

●

●
●●

●
●●●

●

●

●●●

●
●●

●●

●●

●

●●
●

●
● ●
●

●
●●

●●●
● ●●

●

●●
●

●

●

●

●●
●
●

●

●

●

●

●●
●●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●●

●●●
●

●

●●●

●●

●
●

●

●

●
●
● ●

●
●●●● ●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●
●
●●
●

●
●●●●

● ●

●
●

●

●
●●●

●●
●●● ●●

●
●
●

●

●

●

●
●

●
●●●
● ●●

●

●

●
●●●

●

●●●
●

●
●●●●●

●

●

●●●
●

●
●

●
●

● ●●
●

●●●
●

●
●

●

●●
●

●
●●●

●
●●●●●

●
●●

●

●

●

●
●

●●●
●●
●●● ●

●
●

●

●
●

●●●

●

●
●

●
●

●
●

●

●

●●

●●●●
●

●

● ●

●●

●●●●
●

●

●●
●●

● ●
●

●

●●●
●●

●

●

●

●

●

●●

●
● ●●

●●
●

●

●●●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●●●

●
●

●●

●●

●●

●● ● ●

●●●●
●●●●

●●
●

●

●
●

● ●
●

●

●
●
●

●●

●●

●
●

●
●

●
●

●●●

●●
●

●●
●

●

●

●

●
●

●

●

●

●
● ●
●●

●

●
●●

●●

●

●

●

●

●
●

●
●●●●

●

●

●

●

●●

●

●

●●●
●●

●

●●

●
●●

●

●

●

●

●
●●●

●

●
●

●
●● ●

●●
●●●

●
●

●
●●●●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●●
●●

●
●

●●

●

●●
●●

●
●

●
●●

●
●

●

●●

●
●

●●●●●●
●●

●●
●●●

●
●●

● ●
●

●●●
●

●●●●●●●
●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●
●

●
●

●

●●
●

●●
●

●
●

●

●

●●●●
●●

●
●

●●
●

●
●
●●

●
● ●●●●

●

●
●

●

●●

●

●

●●●
●

●

●
●

●●
●

●

●

●

●

●

●

●●

●●●
●

●●
●

●

●
●

●●●

●
●●

●●

●●
●●●

● ●

●●

●

●

●●
●

●
●

●
●

●

●

●
● ● ●

●

●●
●

●

●

●

●

●●
●

●
●

●

●●
●●●

●
●

●
●

●●

●

●●

●●
●
●
●
●

●●

●

●

●

●

●
●●

●●
●●
●●●● ●●●

●

●

●●●
●
●
●●

●
●

●●●●
●●●●●●●

●

●●●

●

●
●

●

●
●

●
●
●●●

●●
●

●●

●

●

●●●
●
●

●

●

●

●

●
●

●●
●

●●●

●●●

●

●●
●

●●

●

●

●●

●

●

●
●

●●●●●
●
●
●●

●
● ●

●●

●●
●

●

●●

●

●

●

●
●
●●

●

●●

●

●

●

●
●

● ●●●
●● ●

●

●●
●

●
●●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●
●

●
●

●

●

●

●

●
●●
●●●●

●●●
●

●

●●●
●

●
●

●●
● ●●

●

●

●

●

●
●

●●
●

●●●

●
●

●●
● ●

●
●

●

●

●
●

●●● ●

●

●

●

●

●
●

●

●
●

●
●

●●
●●

●
● ●●

●●●●●●
●

●
●●●

●

●●●
●

●
●

●●●
● ●

●●
●●●

●●
●

●
●

●

●●
●● ●

●

●
●

●●●
●●●

●
●

●

●●

●
●

●●●
●

●
●

●

●
●

●●
●

●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●●
●

●
●

●● ●●

●

●

●●
●

●●
●

●

● ●

●
●

●●

●

●

●

●
●●● ●

●

●
●
●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●● ●●●
●●

●●
●

●
●●

●
●

●

●
●

●

●●●●●
●●

●
●
●

●
●●●

●●●
●●

●●●

●●
●

●

●
●
●

●

●

●●
●

● ●

●●

●

●●
●●●
●

●

●●
●

●
●●●

●●
●

●●
●●

●●

●
●

●
●●
●●
● ●

●●
●

●
●

●
●●
●

●

●
●●

●

●●
●

●●●●
●●●

●●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●
●

●

●

●
●

●
●●
●

●
●●

●

●

●

●
●

●

●
●● ●

●

●

●●●
●●●●●●●● ●

●

●

●●
●
● ●

●
●●●
●

●

●

●
●

●●
●

●

●●

●

●

●●
●●

●●●●

●
●

● ●

●

●

●● ●●●●
●

●●●●

●●

●

●

●
●

●

●

●●
●

●
●●

●

●●●●

●

●

●

●●
●
●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●
●●●

●●●

●

●

●●

●
●

●

●●
●●

●●●
● ●●
●
●●

●
●
●●

●

●
●●
●●●●
●

●●●●
●

●

●
●

●

●

●●●●● ●
●●●●●

●
●●●

●
●●

●

●
●

●
●
●

●
●

●

●
●

●

●

●
●

●
●

●
● ●●

●

●●

●

●
●

●●● ●●
●●

●● ●●
●● ●

●

● ●●●
●●

●●●●

●●●●
●

●
●●

●
●

●

●

●
●

●

●
●●● ● ●
●●

●
●●●

●
●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●●

●
●

●
●●

●

●

●

●

●

●

●

●●●
●●
●

●● ●●●●
●

●

●

●
●●●●●

●● ● ●
●
●

●●
●

●

●●●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●●
●●

●

●

●

●●
●●●

●●
●●

●
●●

●
●

●●
●
●

●
●

●

●

●
●

●
●

●
●●●

●
●

●
●
●

●

●

●
●

●

●

●●
●
● ●

●

●
●●

●

●
●
● ● ● ●

●

●●●

●
●
●

●

●
●●●●●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●●

●●●●
●●
●

●●
●
●●
●

●

●

●

●

●
●

●●●●
●

●●
●

●
●
●●●●
●

●
●

●●
●●●

●
●

●

●●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●
●

●

●●

●
●●●

●●

● ●
●●

●●
●●●
●

●

●●

●
●

●
●

●●

●

●

●

●
●●

●●●●
●

●

●●●

●
●

●
●

●●●

●

●●

●●

●

●

●

●

●

●
●●● ●●

●●
●

●
●

●
●●

●
●

●●
●

●
●
●

●
●

●●●

●

●
●

●●
●

●●
●

●
●

●
●●●● ●

●

●

●

●
●

●
●

●
●

●
●
●●●●

●
●●

●
●

●

●

●

●

●●●●●●●
●

●

●

●
●

●

●
●●

●●
●●

● ●
●●

●
●

●●
●●●

●
●●

●

●●

●●

●

●
●

●

●
●●●

●
●

●● ●●
●

●●●●●
●

●
●

●

●

●
●●

● ●

●

●●

●●
●●

●●
●
●●

●●
●

●●

●
●

●

●
●●

●
●

●●●●

●●

●

●●

●
●
● ●

●

●●
●●●●●

●
●

●

●
●

●●●●
●●

●

●●●●●●●●
●

●
●

●●
●

●
●
●
●●

●
●●

●

●
●

●

●

●

●●

●

●●●●●
●
●

●●

●
●

●
●●
●

●

●
●

●
●

●
●

●
●● ●

●●
●●●

●●
●

●●●

●

●●

●

●

●
●●●

●●
●●

●

●
●
●

●
●

●

●

●

●

●●●

●●

●●
●

● ●
●

●
●

●

●

●
●
●
●●●

●●
●

●●●
●

●●
●

●●
●
●

●
●

●● ●●
●

●●●
●●●

●

●●●●●●

● ●●

● ●

●
●

●
● ●●●●
●

●
●

●●●
●●●

●●●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●●
●

●●●●●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●
●

●
●●

●

●
●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●●●
●

●
●

●
●●

●

●

●

●

●
●●●

●

●

●

●
●
●

●●●●

●
●●●

●

●● ●

●●●●
●

●
●●

●●
●●

●●
● ●●

●●
●●

●

●

●
●

●

●
●●●

●●●
●●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●●

●
●●●

●

●
●

●●

●

●●

●
●●

●

●●●

●

●
●
●●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●●●

●●●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●

●●

●
●●●●

●●
●

●
●●●●●
●

● ●

●●

●●●
●

●●

●
●● ●

●●
●
●●●● ●

●●●●
●

●

●

●

●●

●

●●
●

●●●
●●

●●
●

●
●●●

●●
●●●

●

●●●●
●

●
●
●●

●

●

●

●

●
●

●

●●

●

●
●

●●●

●●●●●
●●●●●●●

●

●
●

●

●●

●
●

●

●●

●●

●

●●

●●

●

●
●

● ●●●● ●
●

●
●

●
●

●

●

● ●

●

●●●
●

●
●

●

●
●

●●

●

●

●

●

●●●
●

●
●
●

●

●

●
●●

●●●
●

●
●

●
●
●

●

●

●

●

●
●

●

●

●
●
●

●
●● ●● ●●

●
●●

●●●
●

●●
●

●
●

●

●

●●
●●●●

●
●
●●

●●

●

●●

●●
●●

●

●

●

●

●

●

●
●●●
●

●

●

●

●●

●

●

●●
●

●●●
●●

●

●
●

●
●●●●

●●
●

●●

●
●

● ●●● ●
●

●●

●
●

●

●

●●

●

●

●
●● ●

●
● ●

●
●

●

●●

●●

●
●

●
●

●
●● ●

●

●●

●
●

●

●

●

●

●

●

●

●
●●
● ●

●
●

●
●

●●●

●

●

●

● ●
●●

●
●

●

●
●

●
●

●●

●
●●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●
●●

●

●● ●
●

●

●

●

●●
●●
●

●●

●

●●●●
●●

●
●

●●

●
●

●
●●

●
●

●
●

●

●
●

●

●

●●●●
●●

●

●

●●●●
●●●
●

●
●

●
●●●

●

●

●

●●
●

●
●●

●

●

●●●●
●●●●

●●●
●

●

●

●
●

●

●●

●
● ●●

●
●●

●

●
●●

●

●●●●
●● ●

●
●

●

●●●
●

●
●

●

●

●

●

●

●
●●●●●●●

●
●

●●

●
●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●●

●●

● ●●
●

●●

●●

●

● ●
●
●●●

●●
●
●

●
●

● ●
●●●

●

●

●
●

●
●

●

●●
●

●

●
●

●●●●●
● ●●

●

●
●●
●

●
●●

●●
● ●

●

●

●

●
●●

●

●

●

●●●●●
●

●
●
●●
●

●
●●

●●

●●

●

●

●
●

●
●

●
●●

●

●

●

●

●●●●
●●●

●●
●●●

●●●●●
●

● ●
●

●

●

●

●●
●

●
●

●●

●●

●
●

● ●

●

●
●

●

●

●
●

● ●

●
●

● ●

●●

●

●

●
● ●

●
●

●

●●
● ●

●

●●●
●

●
●

●
●

●

●●

●●
●

●

●

●
●

●●

●

●

●

●

●
●
●
●●

●●●

●●●

●●●●●●
●
●

●
●
●

● ●
●

●

●

●●

●

●

●

●

●●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
● ●

●

●
●

●
●

●
●●

●●

●

●

●

●●
●●

●
●
●

●

●

●

●●
●

●
●

●

●

●●

●

●●
●●

●●●

●●●
●●

●●
●●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●
●

●
●●●●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●
●

●

●
●

●

●

●●
●

●●●●●●

● ●●

●

●

●

●

●

●
●●●●

●●

●
●

●

●

●

●

●
●

● ●
●

●

●
●

●●
●

●
●

●●●●
●

●

●

●
●●●●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●
●●

●
●●

●
●●

●

●

●
●

●

●●● ●

●

●●

●

●
●●
●●

●●
●●●●

●

●●●
●
●●●●●●
●

●●
●●

●●

●

●
●●
●●

●●

●
●

●

●
●●

●

● ●

●

●

●
●●
●●

●

●
●

●

●

●

●

●

●
●●●●●●

●

●

●●

●
●●

●

●●

●
●●●●
●

●

●
●

●

●●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●●●
●●
●●●●●

●

●

●
●●●

●

●

●

●●
●●

●

●
●●●

●●
●

●●
●●

●

●

●

●●
●

●

●●
●●●

●
●●

●
●

●●●

●●

●

●

●
●

●
●●●

●● ●●
●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●●
●●

●●
●●

●

●●
●

●
●

●
●●

●

●●

●●

●●

●
●

● ●
●●●●●

●●
●
●

●●●
● ●●

●
●●●

●
●

●●
●
●

●

●
●

●

●

●
●

●

●
●●

●
●●

●●
●●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●
●●

●

●

●

●

●

●

●●
●

●
●
●●

●

●

●

●
●

●●

●

●
●

●

●
●

●
●●

●
●

●

●

●

●

●

●● ●
●

●
●● ●●●●

●

●
●

●●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●●●

●
●

●

●●●●
●

●

●

●

●

●

●●

●
●●

●
●●●

●

●
●

●●
●● ●

●

●

●●

●

●

●●
●

●
●●

●
●

●●
●

●

●

●

●
●

●
●

●●●●
●

●
●

●

●
●

●

●
●●

●●
●

●

●

●
●

●●

●
●

●

●
●
●●●●

●

●

●

●

●●

●

●
●

● ●●

●●
●●

●

●●
●

●●
●

●●●●
●● ●

● ●

●

●

●
●

●●

●
●

●

●
●● ●

●
●●●

●
●●●
●

●●● ●
●
●

●
●●

●
●

●

●

●

●

●

●
●●●

●●●

●●
●●●

●

●

●

●
●

●

●

● ●

●

●
●●

●
●

●●
●

●

●

●

●
●●● ●
●

●
●

●

●
● ●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●
●●

●

●
●

● ●

●●●

●●●

●

●

●

●

●●
●
●

●
●●

●●●
●

●

●

●●●●●

●●●●●●

●

●

●●

●●

●
●

●

●

●

●

●

●

●●●●●
●

●

●
●

●●●●

●

●
●

●

●

●

●●
●
●

●
●

●

●

●

●●

●●
●●

●
●●

●●
●●

●● ●
●●●

●●●
●●

●●
●

● ●
●

●

●

●

●●●
●

●●

● ●

●

●

●
●●●

●

●●

● ●●
●●

●

●

●
●

●
●

●

●●
●

●
●

●
●

●

●
●

●
●
●
●

●●● ●●
●●

●

●
●●●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●

●
●●●●●

●

●●●

● ●
●

●●

●●

●

●

●

●

●

●
●

●
●

●
●●

●
●●

●
●

●

●

●

●

●

●●

●

●●●●
●

●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●

●
●

●

●

●
●

●

●●●
●●●

●
●●

●

●
●

●

●

●
●●●●●●●
●●●

●
●

●

●
●

●●
●

●

●

●●
●

●●
●
●
●

●●

●
●

●
●

● ●●●
●●●

●
●

●

●●

●

●●
●

●
●● ●

●

●

●

●

●
●

●

●

●
●

●
●●●●●●

●

●●

●

●
●●

●●●
●

●
●
●

●

●
●

●●
●

●
●

●

●
●●

●
●

●●

●●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●●
●

●

●
●
●●●●●●●●

●
●

●
●

●●●●●
●
●
●

●●

●

●

●

●
●

●●●●●
●●● ●●

●
●●

● ●●

●●

●
●

●●

●

●

●

●
●

●

●

●
●

●●●

●
●

●●●
●●

●●
●

●●

●●

●●

●●

●
●

●●
●●

●
●●

●

●
●●
●●

●●

●
● ●

●

●●●
●

●

●

●

●

●

●●
●●●●

●●
●

●●

●
●

●●

●●

●

●
●

●

●●●●●●
●

●

●
●●

●●

●●●
●

●●
●

●

●
●●

●●●●
●●

●

●

●

●
●●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●
●●

●

●

●●

●

●
●

● ●

●●●
●

●
● ●

●

●●●●●

●

●

●

●

●
●

●●

●

●●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●
●

●
●

●●
●

●
●

●

●

●
●●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●
●

●
●

●
● ●

●

●

●

●

●●
●

●●●

●

●

●

●●

●
●

●

●
●

●

●

●
●●

●

●
●

●●

●

●

●
●

●
●●●●

●●
●

●●
●●
●

●

●

●
● ●

●●
●●●

●
●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●
● ●

●
●

●
●

●
●

●

●●
●●●

●●
●●
●●
●
●●●

●
●

●●●
●
●●●

●

●
●●

●●
●
●●
●

●
●

●
●

●●
●

●
●

● ●●●●

●●

●

●
●●

●●
●●
●●

●
●● ●

●

●●
●

●

●

●

●

●●●

●

●
●
●

●●●

●

●

●●
●

●
●
●●●●●

● ●●●
●

●

●

●

●
●

●
●

●
●

●●
●

●●

●

●

●
● ●

●

●

●●

●●●

●

●
●

●
●
● ●●

●
●

●●

●

●●
●

●●
●
●●

●

●

●

●●
●

●
●

●●●● ●

●

●●

● ●

●
●●

●

●

●

●

●

●

●

●●●
●

●

●●
●
●●●
●

●

●●

●

●
● ●●

●
●

●●

●

●

●
●●●

●

●
●
●
●

●
●●

●

●

●
●

●

●

●●
●●

●
●●●

●

●

●
●

●

●

●●●
●

●

●●●
●●

●●
●

●
●●

●
●
●

●●
●

●●
●

●
●●

● ●●

●
●●

●●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●
●●●●●

●

●

●●
●

●●
●●●●
●●●

●
●

●●

●
●

●
●● ●●●●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●
●
●

●●● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●
●

●●

●●
●
●
● ●●●●●●●●
●

●

●
●● ●
●

●●●●●

●

●

●
●
●

● ●●

●●
●

●
●

●
●

●
●

●●● ●
●

●

●
●●●

●●●

●
●

●

●

●●

●

●

●
●● ●

●

●●
● ●

●

●

●

●●●
●●●

●
●

●

●
●

●

●
●
●

●
●

●

●●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●●
●

●●
●

●

●

●

●
●

●●
●

●●●

●●●●
●

●
●

●●●

●
●●

●
●

●●
●
●●

● ●
●

●●
●

●

●

●

● ●

●●

●●
●●

●
●●●●●●

●

●
●● ●●

●

●

●

●

●

●

●

●
● ●

●

●●●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●●
●

●
●
●

●
●
●

●

●
●

●●●
●

●●
●

●

●
●

●
●

●

●
●●

●
●

●
●●

●●●
●●●●
●●●●●

●
●●●

●
●

●

●●

●

●

●

●

●

●

●
●●●●●

●

●

●●●

●

●●●
●

●

●

●

●●●●
●

●

●
●
●

●

●
●

●
● ●●

● ●●●●
●

●●●●●
●

●
●●●

●
●
●●

●●

●●●
●

●●●●●
●

●●
●●
●●

●
●●

●

●

●

●

●

●

●●
● ●●●●

●
●

●

●
●●

●
●

●

●

●
●

●

●●●● ●
●

●

●

●
●

● ●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●●●●●

●

●
●

●

●

●

●
●●●

●

●

●●●
●

●
●●●

●
●
●

●

●●

●
●

●●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●●
●●

●● ●●●

●

●●
●

●●
●●●●

● ●
●●●
●●●

●

●

●
●●

●
●●●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●●

●●
●
●●● ●

●

●
●

●

●●●●●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●●
●

●
●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●● ●●

●

●

●

●
●

●

●

●
●●

●
●●●●●

●

●

●

●

●●●●●
●●

●

●
●●●●●●●●

●
●● ●●

●
●●

●
●●●
●

●

●
●●

●

●

●

●

●

●

●
●●●

●
●

●●

●●

●
●
●

●

●

●
● ●

●

●●

●
●

●

●●●

●●●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●●
●

●●●●
●

●●

●

●

●

●
●

●

●

●
●●

●●● ●●●●● ●
● ●

●●
●

●
●●

●
●
●

●●●●

●
●●●

●

●

●
●

●
●●

●

●
●

●

●●

●

●●

●●

●

●●●
●

●●●●●●

●●●●
●●

●
●●●

●
●

●
●●

●

●●

●

●

●

●
●
●
●●●●●

●

●

●

●

●●
●

●

●●

●●●●●●
●

●

●

●

●
●●

●●
●

●●
●●●●

●
●●
●

●
●

●

●

●●●

●●●
●

●
●●●●●●●●●

●● ●●
●

●

●
●

●

●●● ●

●
● ●

●

●
●●●●● ●●●●●

●

●
●
●

●

●●●●
●●●●

●

●

●

●●

●●
●

●
●●●
●

●●
●

●●
●●

●

●

●●●●

●
● ●●

●●●
●

●
●

●

●

●
●

●
●

●
●●

●

●
●

●
●●●●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●
●

●
●●●

●●
●

●

●
●

●

●
●●●●

●

●
●●●

●
●●

●
●

●● ●

●

●●●

●
●

●

●

●
●

●

●●●
●

●

●● ●
●
●

●

●
●

●●

●

●

●

●

●

●

●●
●

●●

●
●

●●

●
●

●

●
●●●

●

●●
●● ● ●

●
●

●

●
● ●●

●
●

●

●
●●

●

●
●

●●
●
●

●

●

●

●

●●

●

●
●

●
●

●●
● ●

●
●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●●

● ●
●

●

●
●● ●

●

●●
●

●
●

●●
●
●

●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●●
●● ● ●

●
●

●
●
●

●●

●●

●

●

●
●

●

●
●●●●

●

●●

●

●

●

●
●

●

●●●

●

●
●●

●
●●

●
●
● ●●

●
●●

●●

●
●

●

●●●

●
●
● ●

●
●

●●
●

● ●

● ●●
●

●●
●

●●

●
●
●

●●
●

●

●

●

●

●

●

●●

●
●●

●●
●
●●●●●

●

●

●

●

●

●

●

●
●

●●
●

●
●●

●●●
●

●

●

●

●●
●●

●

●
●●
●

●●●
●●

●●●●
●

●●
●●●

●
●
●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●●●

●
●●

●

●●

●
●
●
●

●●
●●

●●
●

●
●●

●●●

●
●

●
●●●●

●

●

●
●

●

●●●
●
●

●
●

●

●

●

●●●
●

●

●

●

●
●

●
●●

●
●
●

●

●●

●

●●
●●●

●

●

●

●

●

●

●●
●●

●

●
● ●

●
●

●
●●

●

●

●

●●

●

●

●●
●● ●

●
●●

●●
●
●

●

●

●

●● ●●
●

●
●

● ●● ●
●●

●

●

●

●

●●
●

●
●●●
● ●

●

●

●

●
●●

● ●
●

●

●
●●

●●●
●●
●●

●●

●
●●

●

●●
●

●
● ●

●

● ●

●●

●

●

●
●

●●●
●

●
●●
●

●

●

●

●●●
●

●
●●

●
●

●●●●●●●
●●●●

●●
●

●

●

●

●

●

●●●●
●
●

●● ●
●
●

●
●

●●●
●

●
●

●
●

●
●

● ●

●

●●

●●
●●

●
●

●
●

●●
●

●●●●●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●
●●
●●

●●

●●
●●

●
●●● ●

●●
●

●

●●●

●

●

●
●

●

●

●

●
●

●
●
●

●
●●

●●
●

●
●●

●

●
●●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●
●●●●●●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●
● ●

●●●
● ●

●
●●●

●●●
●

●
●

●●●●
●

●
●
● ●

●●●●●

●●●●
●

●●
●●

●

●
●

●

●
●●
●●●●●

●
●

●
●

●
●

●
●

●●

●
●

●
●
●

●
●●

● ●●

●
●

●
●

●●●● ●●●

●●

● ●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●
●●●●●

●●●●
●

●

●
●

●
●●
●

● ●●●●●
●

●
●●●●●

●
●

●●
●●●●

●

●
●

●

●
●●●●●●

● ●●●
●

●
●

●

●

●

●

●
●●●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●

● ●
●
●●

●
●●

●●●

●

●

●

●

●
●● ●

●
●

●

●
●●●

●

●●
●● ●

●
●

●

●

●

●

●

●

●
●

●●
●

●●
●
●●

●
●

●
●

●
●●●

●

●

●

●

●

●

●
●

●
●

●

●●
●●

● ●

●
●

●●●●●
●

●●

●●

●●
●

●
●

●
●●

●

●●

●

●●

●●●●

●
●●●

●●● ●
●
●

●●●●

●

●

●

●

●

●

●

●

●●

●●●●●●

● ●
●

●
●●

●●
●●

●●●●●●●
●●

●
●

●
●

●
●

●
●
●

●
●
●

● ●
●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●●
●

●

●

●

●

●●

● ●
●

●

●●

●

●
●

●●

● ●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●●●●●●

●
●
●

● ●●

●

●

●
●

●

●

●

●●

●

●

●●
●

●
●

●●●●
●●

●

●
●

●
●

●
●

●
●
●
●●●●●

●
●

●●●
●

●

●

●

●

●

●●●

●●●●●●
●

●●
●

●
●●

●
●

●

●

●

●

●●
●

●●●

●

●
●

●

●

●

●
●

● ●
●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●●●

●●

●

●
●

●
●

●
●

●●●
●

●
●
●

●●

●
●

●

●

●
●

●●
●

●●
●●

●●●
● ●

●

●

●

●
●

●

●
●

●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●●●

●
●

● ●
●

●
●

●

●
●

●
●

●
●

●●●
●

●●
●●●
●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●
●

●
●

●

●
●●

●
●

●

●

●●●
●

●●●●
●

●●●●
●

●●
●

●

●
●●

●●
●

●

●

●●●●●
●●● ●

●

●●

●

●
●

●

●

●

●

●
●●●

● ●●● ●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●
●

●●

●

●

●
●

●

●●
●

●●●●
●
●

●
●

●

● ●

●

●

●●●
●

●

●●●
●

●

●

●

●

●

●

●
●
●●
●●

●
●

●

●●

●●

●

●

●

● ●

●
●

●

●●●●●●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●●
●●

●●
●

●
● ●
●●
●●●
●

●
●

●
●

●●

●

●

●

●

●

●

● ●
●

●

●
●

● ●●●●
●●

● ●

●

●●●●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●●●
●
●●
●

●
● ●●●

●

●

●
●●
●

●

●
●

●●
●

●
● ●

●

●

●

●

●

●
●●

●
●●
●
●●●

●●

●
●

●

●
●●

●● ●

●

●

●

●●
●

●●
●

●●
●
●●●●

●
●
●●

●●●
●
●●●
●

●
●
●

●

●

●
●

●
●●●

●●●●
●

●●

●●

●
●●●● ●●●

●

●

●

●

●
●

●

●

●●● ●
●

●

●
●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●●

●●
●●

●●●

●

●
●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●

● ●

●
●

●●●
●●●●●

●●

●
●

●●●

●

●
●

●

●●●
●●●

●

●
●

●●
●

●

●
●

●

●
●

●●
●

●
●

●

●

●●●●●●

●

●

●

●●
●●

●
●

●●

●
●●

●●●
●

●● ●●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●●
●●●● ●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●●
●

●

●

●
●

●

●●●
●

●
●●●

●
●

●

●
●

●●

●●
●

●
●●●

●●
●

●
●

●●

●

●

●

●

●
●

●
●●
●●

●●●

●
●●●
●

●

●●

●

●
●● ●●

●
●●

●●

●
●

●

●●

●
●●

●●

●

●●

●

● ●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●●

●
●

●●
●

●●
●

●●
●
●● ●●

● ●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●●●●●●
●

●
●

●
●
●

●
●
●

●●●
●●●●●
●
●

●

●
●●

●
●

●●●●
●
●

●●
●

●

●
●●

●

●

●●

●●●
●

●

●

●
●

●

●

●
●
●●
●

●●●●●
●

● ●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

● ●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●
●

●
●

●

●
●●●●

●

●

●

●●●●
●

●
●●
●
●●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●●

●

●●●●

●
●●

●

●

●
●

●
●
●

●●
●●

● ●●●
●●

●

●
●

●

●

●●

●

●
●
●●

●
●
●●

●

●
●●

●

●
●

●

●

●●●

●
●

●●●●●

●

● ●

●

●

●

●

●●●●●
●

●●●●
●

●

●●●●●●● ●●●
●

●
●

●

●
●

●●
●

●
●

●●●●
●●

●

●

●

●

●

●

●

●

●●
●

●
●●●●
●●●●

●

●

●● ●
●

●●●
●

●
●●●●

●
●

●

●
●●● ●

●●●
●
● ●●●●

●
●

●
●

●

●

●

●●●
●●●

●
●●

●
●

●
●●

●

●
●

●

●

●
●●●

●
●
●

●

●●

●●●
●●

●●
●

●

●

●●

●●

●

●●●
●
●
●
●

●

●

●

●●●

●

●

●

●
●

●●

●
●●
●●
●

●

●
●

●● ●
●

●
●●●

●

●
●

●

●●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●●

●
●

●●●
●

●

●
●●

●●
●●●
●
●

●

●●

●●●●
●●

●●
●

●
●

●

●

●

●●

●

●
●

●

●
●●

●●●●● ●

●

●●
●

●
●

●
●

●●
●●

●
●●

●●

●●
●
●●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●
●●●●

●
●●●

●

●

●
●

●●●
●

●●●
● ●

●
●

●
●

●●

●
●
●●

●
●

●
●
●●
●●

● ●

●
●●
●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●●
●

●

●
● ●●●

●

●●●

●
●

●●●

●

●

●
●

●

●

●

●

●●
●●
●●

●
●

●●
●
●

●●
●

●

●

●
●●● ●

●●
●

●
●

●

●

●
●

●

●●
●

●
●

●

● ●
●

●
●

●●●

●

●

●

●

●

●
●●

●
●

●

●
●●●
●●
●●●●

●
●●

●●●
●

●●●
●●●

●
●●

●
●

●●●●
●●
●●●

● ●●

●●

●

●●

●●●
●●
●●

●

●

●

●

●
●

●
●●●●

●●
●

●

●
●

●
●

●

●

●

● ● ●

●

●
●

●
●

●
●

●
●●

● ●●●

●
●

●●

●

●
●

●

●
●

●●

●

●

●●

●

●
● ●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●●
●●●●

●

●
●

●

●

●●

●

●● ●

●●
●●●

●

●

●

●

●

●

●●

●●●
●●●●

●●
●●●

●●
●●
●

●
●●

●●●●
●

●
●

●
●●

●
●

●
●●●●

●

●●
●

●
●

●

●
●

●

●
●

●●

●

● ●
● ●●

●●

●

●

●
●

●
●

●●
●●

●●●
●

●
●

●

●
●

●
●

●●●●
●

●

●●

●

●●●
●

● ●
●

●
●●

●●

●●
●●●

●

●

●
●

●●●
●●●●

●●
●

●

●

●
●

●●●
●

●●
●

●●●
●

●
●
●

●
●

●●●

● ●

●
●●●

●
●

●●●●●
●

●●●●
●

●

●●

●

●

●
●

●●
●

●
●● ● ●

●
●

●

●●●●
●

●

●

●
●

●●●
●●
●

●

●
●

●
●

●
●
● ●

●
●

●

●●

●

●

●●●
●

●●
●●●
●

●

●

●

●

●●
●

●●●●●●
●● ●●●
● ●

●●

●

●●

●

●

●
●

●
●●

●

●
●

●●●
●

●
●●

●

●

●●●●●●●●●
●●

●
●● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●●●●● ●●

●
●

●
●

●

●

●●
●

●
●●

●
●
●

●●
●●

●
●

●

●

●

●
●●●●●

●●●
●

●●●●
●●

● ●

●

●●
●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●

●●
●

●

●

●
●

●

●

●●

●●
●

●

●●●
●

●●
●●

●

●●
●●
●

●● ●

●
●

●

●

●

●●●
●

●

●●

●

●●
●●
●●●●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●●
●

●●●

●

●

●

●
●●●

●

●●
●●

●●
●

●
●

●

●
●

●
●

●
●● ●●●●

●●●●● ●
●

●●

●●

●
●

●

●

●●●●●●
●

● ●
●

●
●●●

●

● ●●

●

●
●

●
●

●

●
●●●● ●●●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●●●

●

●
●●
●●●

●●●●
●●
●●

●●

●
●

● ●
●

●●●
● ●

●

●

●
●●

●
●●

●
●

●
●
●

●
●●

●●
●

●

●

●

●
●

●●
●

●

●
●

●●
●

●
●

●

●
●

●●●●

●

●

●
●

●●●
●

●●●●

●

●

●
●●
●
●●●

●●

● ●
●

●

●

●

●
●

●

●●●
●●●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●●●

●
●
●●●

●

●●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●●
●●
●●●

●●
●●●● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●●●●●

●
●

●

●

●●
●●●

●
●

●
●

●
●
●●

●
●●

●

●
●

●●●

●
●

●

●

●

●●

●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●
●

●
●

●
●

●●

●
●

●

●

●

●

●
●●

●
●

●
●

●●
●●●

●

●●

●
●

●●
●

●

●

●

●●●

● ●●

●●

●●
●●

●
● ●

●

●

●

●
●

●●

●
●● ●

●

●

●
●●

●●
●

●
●

●
●

●

●● ●

●●
●

●
●●●

●●
●

●

●●

●

●

●

●
●

●
●

● ●
●
●

●

●

●

●
●
●
●
●●
●●

●

●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●●●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●
●●

●●●●●●
●●

● ●●

●●
●
●

●
●●●●

●
●●●●●

●●●●

●

●
●

●●●

●●
●

●
●

●
●●●●●●
●●●●●●●

●●

●

●●
● ●

●

●

●
●

●●
●

●

●

●●●●
●●●
●
●

●●●
●●

●

●
●●●

●

●

●●

●

●

●●
●●●●

●●

●●●

●●

●● ●

●●

●
●●
●●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●●
●

●●
●

●

●

●

●●

●
●

●●
●

●

●

●●
●

●

●●●
●

●

●
●

●

●
●

●●●

●
●

●●● ●●

●

●
●

●
●
●●

●
●

●
●

●

●

●
● ●

●

●

●

●
●●

●
●

●

●

●

●

●●●●
●●

●
●

●
●●
●

● ●
●

●

●●
●●

●

●●
●

●
●

●

●

●
●

●

●

●
●

●
●

●●●
●●

●●
●

●
●

●

●
●
●

●●
●●

●●●

●
●

●●
●

●●●●

● ●
●
●●
●●

● ●●

●

●

●●●
●●●
●

●

●

●
●
●

●
●

●●

●
●

●

●
●

●●
●

●
●

●

●●
●

●

●●

●

●●● ●

●

●

●

●

●●●

●
● ●

●●●●
●

●●

●

●

●●●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●●

●
●

●●

●●●
●●●●●
●

●●●

●●●●

●●●
●
●●

●● ●

●

●

●
●

●

●●

●

●

●

●●●
●
●

●●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●●
●

●
●

●
●

●
●

●
●

●
●●●●●●
●

●●●●

●
●

●●
●●
●

●●

●

●
●

●●
●●

●
●

●

●

●

●

●

●

●
●●●●

●

●

●
●

●
● ●
●

●

●
●

●
●●●●●●●●●

●●

●

●

●

●●
●

●
●●●●

●●
●

●
●

●

●
●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●●

●
●

●
●

●
●

●
●

●

●

●
●
●

●

●
●●●●●

●

●●
●

●

●

●

●

●

●●●●

●●●
●●●

●●

●●
●

●

●

●

●

●

●
●● ●●

● ●
●

●

●●
●●●
●●●●

●●●
●

●

●

●

●

●

●

●

●●

●
●●● ●●●

●

●

●
●

●
●

●

●

●●●

●
●●●●●

●
●

●
●●●●●

●
●●●●
●

●
●

●

●

●

●

●

●

●

●
●

●●●●
●

●

●
●

●●●●●●
●●●●●

●

●

●

●
●

●

●

●

●●

●
●

●●●●●
●●

●●●

●

●
●

●

●

●

●

●●
●●●

●

●

●

●●●●
● ●

●
●
●●

●●●

●

●

●

●

●

●

●
●●●●

●●●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●●
●
●●

●●

●

●
●

●

●

●

●

●

●●
●●

●●
●●

●
●

●●
●

●

●

●

●

●●

●

●
●●●

●
●

●
●

●●●
●
● ●●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●●●
●

●●
●●
●
●

●

●

●

●

●●●

●
●
●

●

●
●

●

●●

●
●●●

●
●
●●●●

●●
●●
●

●
●●

●●
●●

●
●●

●

●

●●
●●

●

●
●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●●
●●●●
●●

●●
●

●

●
●

●●●●
●●

●
●

●

●

●●

●
●●●● ●

●

●●●●●
●

● ●
●

●

●

●

●

●

●

●●●
●

●
●

●

●

●●●

●●●
●●●

●

●

●
●●●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●●
●
●

●
●●

●

●

●

●●
●

●
●

●

●●
●

●
●

●
●
●●

●●

●
●●

●

●
●

●
●●●

●●●●●●●●●

●

●●

●
●●

● ●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●●
●●●●●
●

●
●●

●

●

●

●

●

●

●

●

● ●●●●
●

● ●●
●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●●●

●
●
●●

●●●●●
●●

●●
● ●

●

●

●●
●●●
●

●

●

●

●●

●
●● ●

●

●
●

●

●

●

● ●●
●
●●

●

●
●●●
● ●

●

●

●

●

●

●

●

●
●●●
●

●●
●●
●
●●●●●
●

●●●●●●●●
●●

●
●

●
●

●
●

● ●

●
●●●

●●
●

●

●

●

●
●

●
● ●

●

●
●

●

●
●

●
●●●

●
●

●

● ●
●

●
●●●●
●●

●
●●

●●

●●

●●●
●●

● ●

●

●

●

●

●

●

●

●

●
●●

●●

● ●

● ●

●

●

●
●
●●
●●●●

●●

●

●

●

●

●●
●

●●

●

●●
●

●●●●●●

●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●●
● ●

●
●

●

●
●

●

●●
●
●●

●
●
●

●●

●

●●

●

●
●

●

●●

●●
●●●●●● ●

●
●

●

●
● ●
●

●●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●
●●

●

●

●

●●
●

●●
●

●●●
●

●
●●

●

●

●

●
●

●

●●●
●

●

●

●
●

●●
●

●

●

●●

●

●

●

●●

●●●

●
●

●●

●
●

●●
●

● ●

●●
●
●

●●●●
●●

● ●
●

●
●●●

●
●

●

●

●

●

●

●●●
●●●●●

●●
●●

●

●

●

●

●●
●● ●

●

●●
●

●
●

●
●

●

●●
●
●

●●● ●

●
●

● ●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●●●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●
●●●

●●

●

●
●

●

●

●

●
●

●
●

●●●●
● ●

●

●

●
●

●●
●●

●●●

●
●

●●

●

●●●●●●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●●
●

●

●

●

●
●

●

●

●●
●●●

●
●

●

●
●

●
●●●

●

●

●

●

●

●
●

●●
●●

●●

●●
●
●

●●
●

●
●

●
●

●

●

●

●
●●

●
●
●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●
● ●

●
●
●
●

●
●

●
●
●

●●
●

●●
●●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

● ●
●

●
●

●

●
●

●

●

●

●

●
●●

●●●
●

●
●

●

●

●

●●●●●
●

●
●

●
●●

●
●
●

●
●

●

●

●

●
●●●

●●●

●

●●

●

●●
●

●●

●
●

●

●
●

●

●
●●

●
●

●●
●●

●

●

●

●●
●

●●
●

●

●

●
●

●●
●

●
●

●●

●

●

●

●

●●

●

●
●

●● ●●
●

●

●

●

●●● ●
●

●
● ●●●

●●●●
●

●

●

●

●
●

●●
●

●
●

●
●

●●●●
●
●●

●● ●

●

●●

●
●●●

●●●
●●●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●
●
●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●●
●

●
●

●●

●

●
●●

●●
●

●●●

●
●

●
●●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●●
●●

●●●●
●●
●
●

●

●

●

●
●

●

●
●

●●●
●

●
●●

●

●
●

●

●●

●

●

●●

●
●
●

●●
●

●
●

●

●

●
●

●
●

●

●
●

●
●●●

●●

●

●●●●●

●

●

●
●

●
●

●●
●
●

●●
●

● ●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●● ●● ●

●
●

●
●

●●●

●
● ●●●●

●●●●

●

●

●

●● ●

●●

●

●
●

●●● ●

●

●

●

●
●

●
●

●●●●●
●

●
●

●●
●

● ●

●●●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●
●●●●●

●
●

●
●

● ●
●●

●●

●

●

●
●●●●●

●●●

●

●

●
●

●

●

●●●
●
●

●
●●●●●

●

●

●

●

●

●

●

●●●●●●

●●●●●
●●●●

●

●

●
●

●

●
●●●

●●●●●●●●●●
●
●●●●

●

●●
●

●●

●

●
●

●

●

●

●

●

●●
●●●

●

●
●

●

●

●
●
●

●
●

● ●●●●
●

●
● ●●
●●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●●

●
●●

●
●●●●●

● ●

●

●●
●

●

●
●●
●●

●●
●

●

●●●● ●

●●
●

●
●

●
●

●●
●

●
●

●

●●
●

●

●●
●

●

●

●

●
●

●
●

●●●●
●
● ● ●

●

●●
●●
●

●

●
●

●●
●

●

●
●

●●
●●
●●

●
●

●
●

●●
●

●
●●

●
●

●

●

●
●●

●

●

●
●

●

●● ●●●

●

●

●

●

●

●

●● ●
●●●

●

●●

●

●
●

●●●●
●

●
●

●

●●●
●

●●●

●
●

●●
●

●
●

●●
●●●●

●●
●●●

●
●●●

●●
●●●

●●
●

● ●

● ●

●

●

●●
●
● ●● ●●

●●
●●

●
●●
●

●
● ●

●
●

●

●●
●

●●●

●●

●●●●●

●
●●

●
●

●

●

●

●

●

●

●

●
●●●●

●●

●

●●
●●●

●
●

● ●

●

●

●

●

●

●
●●●●

●
●
●●●

●

●●
●● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●
●●●●

●●
●

●
●●
●●

●

●

●

●
●

●●

●●●
●●

●●●
●

●●
●●●

●
●

●

●●
●

●

●
●

●

●

●
●●●

● ●●●
●

●

●

●●

●

●
●●

●
●●

●
●

●
●

●
●

●
●●●●●●●●
●●●●

●
●●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●●●●●

●

●

●

●

●
●● ●

●

●
●

● ●
●

●

●
●

●
●●
●●●

●

●●●

●

●●

● ●
●●

●

●

●

●●
●●

●●
●

●

●●●

●

●

●

●

●

●

●

●
●●
●

●
●●

●●
●●
●

●● ●●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●●●

●
●●
●

●●●
●

●●
●●

●
●

●●

●

●

●
●

●●●●

●

●

●●

●

●
●

●●●●●●
●●●●

●

●

●
●●

●
●

●

●
● ●

●

●
●●●
●●●●● ●●
●●

●

●

●

●

●

●●
●

●
●

●●

●
●

●
●

●

●

●
●●●

●●●
●

●
●

●
●
●
●

●
●

●
●

●

●

●

●

●●●
●●●●●

●
●

●

●
●

●●

●●
●
●●●

●
●●
●

●●●●●
●

●● ●●
●

●
●

●

●

●●
●

●

●●

●

●

●

●
●

●
●

●●●

●

●

●

●
●
●●

●

●

●
●●●
●

●

●

●

●●
●

●
●

●

●

●●
●

●●

●
●

●●
●

●
●●● ●●

●

●●●
● ●●

●

● ●

●
●

●
●

●●
●●●●●
●●●●●●●
●●●

●●

●

●
●●●●●
●●

●
●●●
●●●

●

●●
●

●

●●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●●

●●

●

●

●

●
●

●

●

●●

●●
●●

●
● ●

●●

●
●●

●

●
● ●

●●
●●

●
●●

●

●

●

●●
●
●

●●

●
●

●

●

●
●

●●
●

●
●●

●
●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●●●●

●

●
●

●
●

●
●●●
●

●

●●

●

●
●

●

●
●●
●

●●

●
●

●

●

●
●

●
●●

●
●

●
●●●

●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●● ●

●
●●
●

●●

●
● ●

●

●

●●●●●
●●●
●

●
● ●●●● ●

●●●●● ●
●●

●●
●
●●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●
● ●●●

●
●

●
●

●
●

●

●●●●
●●●

●

●

●

●

●

●

●

●

●

●
●
●●

●●●

●
●

●●
●●●
●
●

●
●●

●●

●
●●●

●

●

●

●

●

● ●●

●

●

●

●

●●
●

●
●
●●

●

●

●

●●

●●
●●

●

● ●

●

●
●●
●

●

●●

●
●●●

●

●
●

●
●

●●●
●

●

● ●

●

●

●

●

●

●●●

●

●

●

●
● ●

●

●●●
●●● ●

●
●

●
●

●●
●●

●

●

●

●●

●

●

●

●
●

●●●
●

●●

●

●

●

●●●

●●
● ●

●

●

●

●

●
●

● ●
●●

●●●●
●

●●●●●●●
●●

●
●

●
●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●●●●

●●●
●
●

●

●
●

●
●●●● ●

●

●●

●
●●●●
●

●●

●

●

●●
● ●●

●●
●
●

●

●

●

●
●●●●●
●●

●●●
●

●● ●

●

●

●●●
●

●
●
●

● ●
●

●
●

●●
●

●●
●

●● ●
●

●

●

●

●
●●

●

●
●●

●●●
●

●
●●

●
●●

●

●

●

●

●
● ●

●
●

●●●●●●
●

●
●

●
●

●

●●●
●
●

●
●●●●

●●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●
●

●
●

●
●
●

●
●

●●●●
●

●●●
●

●●● ●●

●

●
●
●

●

●

●

●

●
●

●●
●

●●
●●
●

●

●

●

●●
●

●●
●●

●●
●●●
●

●

●

●
●

●

●

●
●●●●

●●
●

●
●●●

●●●
●●

●

●

●

●●

●
●

●

●

●

● ●

●

●
●

●

●

●●●

●

●

●
●

●

●
●

●●
●●
●

● ●
●

●●

●

●

●
●

●

●

●●●●
●

●

●
●●●●
●●

●●

●●

●
●●

●●

●
●
●●●●
●●

● ●
●

●
●

●
●

●●
●

●
●

●

●●

●

●
●●
●

●
●

●●
●

● ●
●●

●

●

●
●
●●●

●

●
●

●●
●

●

●

●

●

● ●

●

●

●
●●

●●

●
● ●

●
●

●●
●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●●
●●●

●

●
●

●

●
●

●
●

●

●
●●● ●●

●

●

● ●

●

●

●
●

●

●

●●

●●

●

●

●●
●

●
●

●
●●
●

●●
●●

●
●

●

●

●

●

●

●

●●

●

●

●●●●●●
●
●●

●●●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●●

●●
●●●●

●
●●●

●

●●

●

●

●
●

●

●●

●●
●●●
●

●●

●

●

●
●

●●

●
●●●●●●●

● ●

●●
●●

●●●●● ●
●
●

●
●

●
●

●

●●
●●

●

● ●

● ●

●●

●

●●
●

●●
●

●●●●
●●●●

●●

●
●●

●
●

●
●
●●

●

●

●

●

●●
● ●

●

●

●●●
●

●

●

●●

●●
●●●

●●
●●

●

●●
● ●

●
●

●
●●●
●

●●
● ●

●

●
●
●

● ●
●

●●
●

●●
●

●

●

●
●●

●●
●
●

●
●●
●●●
●

●
●

●●●●●

●●
●

●
●●●●●●

●
●●●
●

●
●

● ●

●

●●

●

●●●
●●●●

●
●

●
●
●

● ●
●●

●●
●

●●●●
●

●●

●
●

●
●

●
●● ●

●
●●

●●
●
●

●

●

●
●

●
●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●
●●●●

●●
●●
●

●
●

●
●

●

●●
●
●●●

●
●●

●

●

●

●

●
●

●●
●
●●

●●
●
●●

●●●●●

●
●●

●●●●
●●

●

●
●

●

●
●●●

●●

●●●●●● ●
●●

●
●
●

●●●●
●●●●●●●

●
●
●
●

●●
●

●●●
●
●

●●
●
●●●●●●●●●●

●●
●

●●

●●

●●●
●

●

●●

●
●

●●●●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●●

●●●

●●

●●

●

●●
●

●●●
●●
●●

●

●

●

●

●

●

●

●
●

●

●●●●● ●
●●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●●

●●●
●

●

●●●●
●

●●

●
●

●

●
●●●

●●
●●●

●

●

●●

●

●

●
●

●

●

●
●

●●●
●

●●● ●
●●

● ●●

●

●
●●●●

●
●●

●

●

●●

●

●

●●

●
●●

●
●

●

●
●●

●

●
●●●●

●
●

●
●●●

●
●

●●
●

●● ●

●
●
●●

●●●

●●
●●

●●
●

●●
●●●● ● ●

●●●
●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●●
● ●●

●
●

●
●

●●

● ●
●

●●
●●●●
● ●●

●

●

●
●

●

●

●

●
●

●●
●

●
●●●●●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●
●

●

●
●●●

●

●
●
●

●

●
● ●

●● ●●

●

●

●
●

●
●

●●●

●

●●●●●

●●
● ●

●

●
●

●
●●

●
●

●
●

●●
●

●

●

●

●

●●

●

●
●

● ●

●●
●

●●
●●● ●●

●
●

●

●
●●●

●●●●

●

●●●
●●●

●

●●●

●

●

●

●

●●

●

●
●●

●

●

●

●●
● ●●

●●●

●●
●

●
●
●

●
●

●
●

●
●●●

●

●●
●●

●

●
●

●
●

●

●

●

●
●●●

●●●● ●
●

●●●● ●●

●●
●●

●●
●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●●
●●

●●●
●●

●

●

●

●●●●●

●
●

●
●

●●●
●

●

●

●●

●

●●●●
● ● ●

●

●

●

●●

●
●

●
●

●
●●

●●
●

●●
●

●

●

●

●
●

●
● ●

●

●

●●●●

●●

●

●●●
●

●

●

●

●

●

●●●●●
●

●●
●

●
●

●●●

●●
●

●●
●

●
●

●

●

●

●

●●

●

●
●●

●

●●●●● ●

●

●●●●
●●
●●●

●
●

●
●

●●

●●
●●●

●
●

●●●
●●
●

●

●●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●●●●
●
●

●
●

●

●

●

●
●● ●●

●

●
●●●●

●●●

●●
●

●

●

●

●●●
●

●
●●●●

●●●
●

●●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●
●

●

●

●
●●●

●
●●●

●

●

●
●

●

●

●●● ●
●●
●

●

●

●

●

●●

●●
● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●
●●●

●●

●

●

●

● ●
●

●●●

●
●

●
●

●

●
●

● ●

●
●

●
●

●
●●●●●●●

● ●
●

●
●
●●●

●●
●●

● ●
●

●

●

●

●
●●●

●

●

●

●●●●●
●●●

●

●
●●●●
●●●

●
●●●

●●●●
●

●

●
●

●●●
●●●●

●

●

●

●

●

●

●

●●

●●

●

●●
●

●

●●

●
●

●●
●●

●●
●
●
●●
●

●

●

●

●●

●

●

●●●●●●●
●

● ●●●

●●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●●
●
●
●

●

●

●
●●

●

●
●

●

●

●

●
●●●

●●
●●
●●

●●

●

●●

●

●●●

●
●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●

●
●●●

●
●

●

●

●

●

●●
●

●● ●
●●●

●
●

●●●
●

●

●

●
●

●

●●
●

●
●●●

●●●

●
●

●
●●

●

●●
●

●●●
●●●

●

●
●

●●●

● ●
●●

●●●

●

●●
●

●
●

●

●
●

●
●

●

●●
●●

●●
●●
●●

●

●

●●●●
● ●●

●
●●
●●●

●●

●

●

●●

●

●
●

●

●

●
●

●
●

●
●●

●●●

●●●
●●

●

●

●

●

●●

●

●
●

●●●
●

●

●
●●● ●●

●
●●

●

● ●

●
●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●
●●

●
●

●● ●

●

●

●

●
●
●●●●

●●

●●

●

●

●

●● ●●
●

●
●

●
●

●● ●●●●
●●

●
●

●

●
●

●●●●
●

●●●
●
●●

●●
●●

● ●
●●

●●
●

●

●

●

●
●

●●
●

●
●

●

●●

●
●

●
●

●●●●●●
●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●●

●●
●

●●

●●
●

●

●

●

●

●

●
●

●
●

●●

●●

●●
●●●●

●
●

●
●●●●●●●

●
●
●

●

●●
●●●●●

●

●

●
●

●

●

●●
●●●●●●

● ●

●●
●

●●
●

●●●●● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●
●●
●

●
●

●
●●●●

●
●●

●
●●

●●●

●

●

●

●

●

●

●●●
●

●●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●
●

●
●
●●●

●

●
●
●

●●●●

●

●

●
●●

●
● ●

●

●

● ●

●
●

●

●

●
●

●●●
●

●
●●

●●

●
●

●

●●
●

●
●●
●●
●●

●

●

●●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●●●
●

●
●●

●

●

●
●

●
●

●
●

●

●
●

●●●

●

●●
● ●

●

●

● ●

●

●

●
●

●

●

●

●
●

●●●●●
●●●●

●
●

●

●
●●

●

●●●

●

●●
●

●
●●●●

●●●●●
●●●●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●●
●

●

●
●●●●●●

●

●

●

●

●

●

●

●
●●●

●●●●●
●●●

●
●●●

●

●

●●●●

●

●

●
●

●●●
●

●●

●

●
●

●

●●●
●

●

●

●

●

●●

●

●●

●

●
●

●
●

●
● ●

●

●
●

●

●

●

●●

●●

●

●●●●●●●●

●

●
●●●●● ●●

●

●

●
●

●

●●●●●● ●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●●

●
●

●
●

●

●●●●
●

●
●
●● ●

●

●
●

●

●

●

●

●
●

●

●●●●
●

●●
● ●●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●
●

●●●●●●●●

●
●

●

●●●
●

●
●

●

●

●

●●

●●●●

●

●
●●
●

●

●●

●●●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●●●

●● ●

●●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●

●
●

●
●

●
●●

● ●●●●●
●●●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●
● ●

●
● ● ●●●

●●
●
●

●
●●

●●
●● ●

●
●

●
●
●

●
●

●

●●●

●

●

●
●●

●●
●

●●

●

●
●
●

●
●

●
●

●
●

●
●

●

●
●●

●
●

●

●●●●
●●●●●●●●

●

●●●●
● ●
●
●

●●

●

●
●

●

●

●

●

●●
●●●●●

●
●●●●

●
●

●
●●

●
●

●

●

●
●●

●●●●
●

●●

● ●●

●

●

●●●●
●

●●●
●
● ●

●

●●●
●
●●●●●●●● ●

●

●●
●

●●●
●●●

●

●●

●

●

●
●●

●●
●
●
●●

●
●●●●

●

●

●
●● ●●

●
●●●●●● ●

●●
●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●

●

●

●●

●

●
●

●●

●

●
●●

●
●

●●
● ●

●

●

●●●

●
●●

●

●●

●

●●
●●●

●
●

●●

●
●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●●
●
●

●
●●●

●
●●

●

●
●

●●
●
●●●

● ●
●

●
●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●●●●

●

●● ●
●

●●

●
●●● ●
●●

●●●
●●

●●
● ●

●
●

●
●● ●

●●
●

●

●
●

●●

●

●
●●●●● ●

●
●

●

●

●● ●

●●

● ●

● ●
●

● ●

●
●

●

●●●

●
●●

●
●

●●

●
●

●
●

●

●
●

●
●●●
●
●●

●

●

●●●●●●

●●
●●●

●

●
●

●
●●●

●●●●
●●

●
●

●●
●

●
●

●
●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●●
●●●

●

●●●

●

●

●
●
● ●

●●

●●
●●●●

●

●

●

●
●●●●

●
●●
●
● ● ●●

●

●
●
●

●●
● ●

●
●●

●●
●

●

●

●

●

●

●

●
●

●
●
●●
●

●

●

●
●
●

●

●
●

●

●
●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●●
●

●
●

● ●
●
●

●

●●
●

●●
●●●

●

●●
●

●

●

●●

●●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●●●
●
●

● ●

●

●

●●●
● ●

●
●
●

●

●

●
● ●●●

●
●

●

●●

●
●

●

●

●
●

●●●
●●

●
●

●

●
● ●

●

●

●

●
●

●

●●

●

●

●●

●
●●●

●

● ●
●●

●

●●●
●

●●
●●

●
●●

●

●

●
●●

●●
●●

●●

●
●
●

●
●

●

●
●

●●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●●
●● ●

●●● ●●●
●

●●
●●●

●
●
●

●
●

●

●
●
●●●

●
●

●●●

●

●

●

●
●

●
●●
●●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
● ●

●
●

●
●

●
●●

●
●

● ●

●

●
●

●●

●●
●●

●

●

●●

●
●●

●

● ●●●●●
●

●

●
●●

●

●

●

●

●●●●
●

●
●●●●

●

●
●

●

●
●●●●● ●

●

●●●●
●
●●●●●
●● ●
● ●

●

●●

●
●

●
●

●●
●
●●

●● ●

●
●

●●●
●●●
●●

●●

●
●●●●●●●
●●●

●●
●●●●

●

●

●●
●

●

●
●

●●
●

●●
●

●●
●●●

●
●
●

●
●

●
●●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

● ●●
●

●
●

●

●

●

●
●

●
●

●●

●●
●

●●
●
●

●
●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●●●
●

●
●

●

●
●

●
●

●●
●●

●

●

●

●●
●●

●
●
●●

●

●●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

● ●

●●

●●●●
●

● ●

●

●

●

●
●
●●
●●●●
●

●

●
●

●

●
●

●
●●

●

● ●

●

●●
●

●

●●
●
● ●●

●

●

●

●

●

●
●●●●●●●●

●●●
●●
●

●

●

●
●

●

●
●

●●●
●

●●●
●

●

●

●●●
●

●
●●

●
●●●●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●
●

●●
●

●
●

●
●

●●
●
●

●●
●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●●
●

● ●

●●

●
●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●●
●

●
●●● ●

●●

●

●

●

●●●●

●●
● ●●

●
●

●

●

●
●●●
●●

●●
●

●

●

●

●

●

●●

●

●

●●●

●
●●

●
●●

●●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●● ●

●

●

●

●
●●
●●●●●● ●

●●

●

●

●

●●●●
●

●
●

●

●

●
●

●

●

●
●●

●
●●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●
●

●●●
●

●
●●

●
●●

●
●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●
●

●

●
●

●

●● ●●●●
●

●

●

●
●

●

●
●

●
●●

●

●
●

●
●

●●

●

●●

●

●

●

●

●●●●
●●●●

●

●
●● ● ●

●
●
●

●
●●

●
●●

●

●●

●
●

●●
●●

●●
●●

●

●
●●

●
●

●
●

●

●

●

●

●●●
●

●

●
●●

● ●
●

●
●●

●● ●

●
●
●●

●
●
●●

●●

●
●

●●●●
●
●

●

●

●

●

●

●

●●● ● ●
●

●●

●

● ●

●

●●

●
●●●●

●
●●

●●
●

●●●
●

●
● ●
●●●

●
●

●●

●
●

●
●

●

●●
●

●

●
●

●●
●

●

●

●

●●

●●●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●●●●●

●
●●●

●●●●
●

●
●

●
●
●

●●

●●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●●
●●
●
●

●
●

●● ●

●
●

●
●●

●●
●
●
●●●

●
● ●

●●

●
●

●

●
●

●

●●
●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●●●●●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●●●

●
●●

●

●

●

●

●
●

●
●
●
●●●●●

●

●

●
●●●●

●●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●●●
● ●●

●
●

●
●●

●

●●

●
●

●●●●

●●●
●●

●●
●●●

●
●●

●
●

● ●
●

●●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●

●●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●●
● ●●●

●
●●
●

●●
●

●

●

●

●

●

●●●●●
●

● ●

●

●

●
●

●
●
●
●
●

●

●

●

●

●●
●

●

●●●
●●

●
●●

●

●

● ●

●
●●●

●
●●●

●

●●●
●●

●

●

●

●

●

●

●●●

●

●●
●
●

●

●

●
●●
●●
●●●●

●●●
●

●●
●

● ●

●

●

●

●

●

●

●

●●●●
●●

●●
●●

●

●
●

●● ●
●

●●
●●●
●●●

●

●
●

●
●

●

●
●

●● ●
●●●●

●
●●
●●●

●
●

●
●●

●●●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●●

●●
●

●

●

●●● ●●● ●
●●
●
● ●

●

●

●

●

●

●●

●

●
●●●●

●●
●

●
●

●●●

●● ●

●●●●
●●

●
●

●

●

●

●

●

●●
●●

●●

●●

●
●
●

●

●
●

●
●

●●

●●●●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●●

●

●●●
●●●

●
●

●

●

●

●

●

●

●

●
●
● ●

●

●●
●

●
●●

●
●

●

●

●

●

●●●
●
● ●

●
●

●●
●

●

●

●
●

●

●

●
●●

●
●●●●●

●

●

●

●

●

●
●

●●●●

●
●●●●

●●●

●●●●
●●
●

●
●
●●

●●
●

●

●

●

●

●

●
●●

●
●●

●●

●●

●

●

●

●

●●

●

●
●

●
● ●

●

●
●●

●

●
●● ●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●●●●●●

●

●

●

●

●

●

●●

●

●
●●

●
●

●
●

●

●
●

●●

●

●●
●

●
●

●●●●
●●●●●●●

●●

●
●

●
●●●●●

●
●

● ●●

●
●

●●● ● ●●
●

●

●

●●

●● ●

●●
●

●●●
●

●
●

●

●

●

●●

●
●●

●●●●
●

●
●●●●●●
●
●●
●

●

●
●●

●
●●
●●●

●

●

●

●●
●●

●●●
●

● ●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●●

●●
●
●●

●
● ●●

●●
●●
●

●

●

●

●●●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●● ●●
●●●●

●

●●●●
●

●●
●●●

●
●

●

●
●

●●
●

●
●

●

●●

●
●

●

●

●
●

●

●

●●

●
●

●
●●

●●●●

●

●●
●
●

●
●
●

●
●

●

●
●

●

●

●
●

● ●
●

●

●
●

●●

●
●

●
●

●
●

●
●

●●●●●

●●●
●

●
●●

●

●

●

●
●

●

●

●

●
●

●●●
●

●●
●

●

●●
●●
●

●●
●

●●
●

●
●●●●● ●

●
●

●●
●

●●●

●
●

●●
●●●

●
●●●

●

●●
●
●

●

●

●

●

●●

●●

●
●

●●

●

●●●

●●

●
●

●

●

●

●
●
● ●

●
●

●
●●

●●
●

●●
●

●●

●

●
●

●●

●●
●

●●

●

●

●

●
●

●●
●

●

●
●●

●

●

●

●

●●
●●●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●
●●

●
●●

●●
●●●

●
●

●●●

●
●

●

●

●

●
●

●

●●
●●●●●

●
●

●

●

●●●●
●
●

●●●
●

●●●●
●●●
●

●

●●
●●

●●

●
●●●

●

●●
●

●
●●

●
●●

●●
●

●
●●

●

●

●

●
●●

●

●
●●●●●●

●●

●●●●●
●

●

●

●

●

●
●
●●●●●●

●
●●

●

●
●

●●

●●●● ●

●
●●●●●

●●●
●

●
●

●●

●
●

●

●

●

●

●●●

● ●
●

●

●

●

●

●

●●
●

●●●●●●●●
●

●●●

●
● ●●●

●

●●●●●
● ●●●●

●●
●

●●
●

●
●

●

●

●

●
●

●●

●●

●
●●●

●
●●
●

●●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●
●

●●●●

●●
●●

●
●

●

●

●
●

●
●●●

●
●●

●●
●
●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●●
●

●

●●●●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●●
●●

●

●

●
●

●
●●● ●

●
●●
●

●●●●

●
●

●●●●
● ●

●

●

●

●
●●

●●

●

●

●
●

●
●●●

●

●

●
●●

●
●

●
●
●

●●

●
●

●
●●●●●●● ●●

●
●
●●

●●
●

●●●●
●●

●

●
●●

●●
●●●
●

●●

●

●

●

●
●

●
● ●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●●●●

●

●

●

●

●
●●
●●

●
●●

●

●
●

●

●●

●
●

●
●●

●
●●

●

●
●●●

●
●●

●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●
●
●● ●

●
●●

●

●
●

●

●●

●

●●

●●●
●

●
●

●

●●

●
●●

●

● ●

●●

●●
●

●●
●

●

●●●
●●

●
●●●●

●
●

●
●●●

●●
●●

●●
●

●

●
●●●

●

●

●
●

●

●

●●
●
●
●

●●●●

●

●●
●●

●●

●
●

●

●●

●
●

●
●

● ●●
●

●
●●

●

●

●

●
●

●
●●

●●●●

●

●
●

●

●●
●

●
●

●

●●

●●

●
●●

●
●●

● ●●●●

●

●

●

●
●●

●
●

●
●

●
●●

●
●

●

●●
●

●
●● ●

●●

●

●●

●

●
●

●

●

●

●
●

●
●● ●

●
●

●●●
●

●●●●
●●

●

●
●

●

●●
●

●
●●●
●

●

●●
●

●●
●

●

●

●

●

●
●●

●●

●

●● ●●●●●
● ●●

●●
●●

●

●

●●

●
●

●●
●●

●

●●
●●●

●
●
●

●
●
●

● ●
●

●

●
●●

●
●●
●●

●●●●●
●●●●●●●

● ●

●

●

●
●
●●

●
●

●
●

●

●
●

●
●

●
●

●●●
●

●

●
● ●

●●●●
●●

●

●

●

●

●
●

●

●●●●

●

●●

●

●●

●

●

●
●

●

●●
●●●●●●●●

●

●●
●

●
●

●

●●
●

●●
●

●

●

●
●
●

●
●●

●
●● ●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●●●●

●●
●

●●
●●●●●

●●
●

●
●

●

●
●

●

●

●

●● ●●
●●

● ●
●

●●
●●

●●

●
●

●
● ●●●

●
●

●
●●

●

●
●●●

●
● ●

●●●●

●

●

●

●

●

●

●
●● ●

●
● ●

● ●
●

●●

●
●●

●
●

●●
●●

●
●

●

●●●●

●
●

● ●
●●● ●●●●●●

●
●

● ●

●

●

●

●
●

●●
●● ●

●
●
●

●
●

●
●●

●
●

●
●

●

●●
●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●
●

●●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●●

●

●

●●
●

●

●●

●●
●

●●
●●

●
●●

● ●●●● ●
●

●●
●

●●
●

●

●
●

●

●
●

●

●

●
●●

●●●
●

●
●

●●

●

●

●●
●

●●●●●●
●

●

●

●●●

●
●

●
●
●

●
●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●
●

●

●

●
●●●

●●●●
●

●●●

●
●

●
●

●

●
●●

●

●

●

●

●

●●

●●●

●
●

●

●
●

●●

●
●●

●●

●
●

●

●

●
●

●●●

●●

●

●

●

●●
●
●

● ●●●
●●

●

●

●
●●

●

●●● ●
●

●●●●
●
●●

●

●
●
●●

●

●
●

●

●●●
●

●●
●●

●
●

●●●

●
●●●
●

●●

●

● ●

●●

●

●●
●●

●●●
●
●●
●
●●

●
●

●●●●●

●●●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●●●●●●
●

●

●
●

●●●

●
●

●

●●
●●

●
●

●
●●

●●

●

●
●●●●

●●●●●●

●

●
●●● ●●●●
● ●

●●●
● ●
●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●
●●
●●●● ●

●●

●

●
●

●●

●

● ●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●●●
●

●●
●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●
●

●
●
●

●
●●
●
●

●

●
●

●
●

●
●

●
● ●

●●●●●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●●●

●●
●
●
●

● ●
●

●●●
●●

●
●
●●

●●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●
●●
● ●

●

●●
●●●●

●●●
●

●●

●
●

●
●

●

●●●
●

●

●
●

●

●
●

●

●

●

●●
●●

●●●
●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●●
●

●●
●●

●
●●

●
●

●
●

●●●●
●

●
●

●
●

●●●●●
●

●

●

●

●
●

●

●

●

●
●

●●●
●●●●●

●

● ●

●

●
●●●●●

●
●●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●●● ●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●●●●
●●

●
●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●

●
● ●

●
●

●

●

●

●

●

●●
●

●●●●
●●
●

● ●

●
●

●

●●
●●●
● ●●●●●●

●●●
●

●

●●

●

●

●
●

●
●●
●
●

●

●
●●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●●

●
●

●
● ●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●●
●

●
●●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●
●●

●

●
●

●

●●
●

●

● ●●●
●

●●● ● ●

●●
●
●●●●

●●

●
●●●●

●
●●

●

●

●

●●

●●
●●

●●

●

● ●

●
●

●●●●●●●
●

●●●●●●●●●● ●
●

●●●

●●
●

●

●
●

●●
●

● ●
●●
●

●

●

●

●● ●●●
●

●●
●

●

●●●●●●
●

●
●

●●
●●

●

●

●
●

●

●

●

●

●●
●●●●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●●
●●

●
●

●●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●

●

●

●

● ●●
●
●●

●●

●
●●

●

●

●

●

●

●
●●
●

●

●●●
●●
●●

● ● ●
●

●●
●●●

●

●

●

●
●
●●●

●
●●

●●●
●

● ●
●

●
●

●

●●

●
●●
●
● ●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●
●
●●

●

●

●●

●
●

●

●
●●●

●●
●●

●●●
●●

●
●

●
●

●
●

●
●●

●

●●

●

●

●●

●●●
●
●

●●●
● ●

●

●
●●

●

●
●

●

●

●

●

●

●
●

● ●

●

●●●
●●

●
●

●●●
●

●
●

●
●●●●●

●

●

●

●

●

●

●

●
●

●
●●

●
● ●

●●●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●
●

●

●
●
●●●

●
●

●

●

●

●

●
●

●
●

●

●

●●
●
●●

●
●●●

●●

● ●

●●
●

●

●

●

●

●● ●

●
●

●
●

●● ●●●
●●●

●
●● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●●
●●

●
●●

●

●

●

●●
●

●●●●
●●

●●
●

●
●

●●
●●

●
●

●●
●●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

● ●

●

●
●

●●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●●

●●●
●●●

●● ●

●●
●

●

●
●●

●
●●●

●

●

●
●

●●●●
●

●●

●
●●●●

●●●●
●

●

●

●
●

●

●
●●●●●
●●

●
●

●
●●

●●

●

●

●
●●

●

●

●

●

● ●
●

●●●●●
●

●

●

●

●●

●
●

●
●

●

●
●

●
●
●●

●

●

●

●

●
●●●

●
●●

●

●●

●
●
●
● ●

●

●

●

●
●

●
●

●●●

● ●
●●

●●●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●●

●
●

●●●
●

●

●
●

●

●

●

●

●

●
●●

●●●●

●
●

●●

●

●

●

●

●

●

●●

●●●● ●●
●
●
●●

●●
●●●

●●
●

●

●

●
●

●

●
●●
●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●●
●●
●●●

●●
●●

●●●

●
●

●●
●

●

●
●

●●●

●●
●

●
●

●
●●

●●●●
●

●
●●●●

●

●

●●●
●

●●●
●●●
●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

● ●
●●●

●● ●

●
●

●●●

● ●

●●
●●

● ●

●

●

●

●

●

●

●

●●
●

●
●●●●

●
●
●●

●

●

●

●●● ●●

●

●

●

●●

●

●● ●

●●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●●
●

●

●

●

●●●
●●

●
●
●●

●
●

●
●
●●●●●●

●
●

●

●●●
●

●
●●

●
●●●

●●

●

●
●

●
●

●●●●
●●

●●● ●
●
●

●

●

●

●●

●●

●●
●●

●

●
●●

●●●
●

●●
●

●
●●

●
●

●

●

●

●

●

●

●
●
●

●
●

●
●●

●

●
● ●●●●●●●●●
●●

●●●

●

●●

●
●

●

●
●

●
●

●
●●

●
●

●●●●●

●●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●●●

●●
●

●

●
●

●●

●●●
●

●●●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●
●

●●●
●

●●
● ●

●●●●
●

●

●

●
●

●

●
●●

●●●
●●
●
●

●

●

●
●

●●●
●●●●
●

●
●

●
●

●

●
●

●

●

●

● ●
●●●

●

●

●
●

●●

●
●

●●●●●
●●●●

●
● ●
●●●●●
●●
●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●

●
●●●●●●●●

●●

●
●●●

● ●●

●

●
●
●

● ●
●

●●
● ●

●

●
●

●
●

●●●
●●

●

●

●●●
●● ●●
●
●
●

●
●●●

●
●●

●

●
●

●● ●

●

●

●

●

●
●●●

●

●
●●

●
●●●● ●

●
●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●●●
●

● ●
●
●

●

●
●● ●

●

●

●
●

●
●

●

●

●
●●●●

●
●

●
●

●

●

●

●

●

● ●

●

●
●●●●●●●
●

●

●●

●

●
●●
●

●
●

●●
●●

●

●

●
● ●

●●
●
●

●
●

●
●●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●●●

●●
●●

●
●

● ●●●
●
●

●

●●

●

●
●●

●●●
●

●●

●●
●

●●
● ●

●

●

●
●

●

●●
●●●
●●

●

●

●

●

●●
●●

●●●●
●●

●●
●●

●
●

●
●

●

●●●
●

● ●

●

●

●

●●●
●

●●
●

●

●●

●

●
●
●●

●
●

●●
●

●

●

●
●

●●●

●
●●

●●●
●

● ●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●●●

●
●●

●
●

●

●

●

●
●

●●
●

●

●
●●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●●●
●

● ●

●

●

●●●●●●●●

●●

●

●

●●●
●●●

●●●

●●
●●

●
●●●●
●●

●
●

●

●

●

●

●

●●●
●

●

●

●
●●●●

●
●●

●●

●

●●

●

●

●

●

●
●●

●●●
●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●●
●●

●

●

●

●
●●

●

●

●●●

●
●

●
●

●●●●●
●

●

●

●●

●
● ●

● ●

●

●

●
●

●●
●

●
●

●

●●

●
●

●
●

●●
●

●

●

●●●
●

●
●

●
●

●

●
●

●

●

●
●

●
●
●

●
●●●●

●

●

●
●●

●

●

●

●

●

●

●
●●●
●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●●
●●

●●
●●●●

●

●

●
●

●

●
● ●

●●
●
●●
●●●●●

●

●
●

●

●

●

●
●

●

●

●
●

●●●
●●

●

●
●

●
●●●●●●

●

●

●

●
●

●

●
●●

●●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●●

●●●●
●●

●
●

●
●

●

● ●●●
● ●

●●

●
●

●
●●

● ●

●

●

●

●

●●

●●

●
●●

● ●●

●●

●●

●●
●●●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●●● ●
●

●
●

●

●

●
●

●
●●●
●●●

●

●

●

●

●

●
●

●
●

●●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●
● ●●
●●●●

●
●

●

● ●

●

●

●

●

●

●●
●

●●●
●●●●

●
●

●●
●●
●●●
●

●●●

●

●

●

●
●●●●

●

●●●●

●

●
●

●
●

●

●

●
●

●●●
●

●

●

●
●●
●

●●
●

●
●●●●

●●●●●
●

●●
●●

●
●

●
●
●

●●
●

●●

●
●
●

●
●

●

●

●
●●●●●●
●
●

●●●● ●

●

●

●

●
●●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●

●
●

● ●
●

●

●●

●

●
●●

●

●
●

●●

●●

●

●

●
●

●

●●
●

●

●●●

●
●

●●
●

●

●
●●●

●
●●●●●

●
● ●

●●●

●

●
●

●
●

●●
●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●
●
●

●
●●

●●
●

●
●

●●
● ●●●

●
●●●

●
●●

●

●

●

●
●●

●
●●●

●●

●●●
●

●●
●

●

●
●

●

●

●
●

●

●

●
●●

●

●●

●

●●
●

●
●
●●

●● ●

●●
●●●●●

●
●●

●●
●

●

●

●

●
●●

●
●

●●
●

●

●
●

●

●
●

●●
●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●
●

●●

●
●●●

●
●●

●

●
●●

●●
●

●

●
●

●

●
●

●●

●●●

●

●●

●

●●
● ●●●

●●
●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●●●

●
●

●●
●
●

●
●

●
●●●
●●

●
●

●●●●●

●
●
●

●
●

●●●●●●●●

●●
●● ●●●
●
●●●

●●●●●
●

●●

●●
●

●
●●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●●●●●●●
●● ●

●

●

●

●

●

●

●●●

●
●● ●●●

●
●

●●●●

●●
●

●●
●

●
●

●

●
●

●

●

●

●
●

●
●

●●
●

●
●
●

●
●

●●● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●
●●●

●
●●●
●

● ●●
●

●●

●●

●
●

●●●● ●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●
●

●

●●
●●

● ●●●

●

● ●●

●●

●

●

●●●
●●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●●●
●

●
●●●

●●

●

●
●●
●

● ●●●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●●
●●●
●

●

●●

●
●●●●● ●●

●

●

●

●●
●

●
●

●
●

●

●
●

●
●

●●
●

●
● ●

●●●●
●

●

●

●

● ●

●

●●

●

●
●●

●●

●

●
●

●

●

●

●

●

●●●

●●●
●

●
●●

●

●●●
●●

●●
●

●●

●●● ●
●

●

●

●

●
●

●

●

●●
●

●

●
●●

●
●●●

●

●

●

●
●

●
●
●●●

●

●●●●
●

●
●

●

●

●

●
●

●●
●

●
●

●
●

●
●●●

●
●●

●
●

●

●●
●

●●●

●●
●
●

●●
●

●
●●

●

●
●

● ●
●●●●

●●
●

●
●

● ●
●

●

●

● ●

●●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●●●● ●

●
●

●
● ●●

●
●

●●

●●
●
●

●●●

●

●●

●

●●● ●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●●
●

●
●

●●

●●

●

●

●
●

●
●

●

●

●

●

●
●●
●

●
●●●●

●

●

●

●●●●
●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●●●

●●
●●●●

●●●●
●●
●

●●
●●●●
●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●

●
●●● ●●

●●
●

●

●

●

●

●
●●● ● ●●●

●
●●

●
●●●

●
●●●●

●

●

●●
●●

●
●

●
●

●
●●

●

●
●

●

●●●

●●

●●●●
●

●

●●
●●●

●●

●
●●●

●

●

●

●

●

●

●●●

●
●
●●

●

●
●

●●

●

●

●

●

●●
●●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●● ●●
●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●●●

●

●

●
●●●●

● ●
●●

●

●
●

●●

●

●

●

●

●●●●
●●

●
●

●

●●
●

●
●

●●●
●
●●●●

●

●

●

●

●

●

●
●

●●
●

●

●●●

●●

●

●

●●
●

●
●●

●

●
● ●

●

●

●
●●●●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●●
●

●
●

●●

●●●
●●

●●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●●●●
●●●●●
●

●●

●

●

●

●

●
●

●●
●

●●●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●
●●●●

●

●

●
●

●

●●●●●●
●●●●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●●●

●●
●

●
●●●●●
●●

●

●

●

●
●

●

●●
●●

●
● ●●

●
●

●

●
●●
●●
●

●
●

●●●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●
●●

●●●
●●

●
●

●●

●●

● ●
●

●
●

●●

●●
●●

●●●

●●

●● ●
●

●

●
●●●●●●

●
●

●

●

●
●
●

●

●

●

●
●

●
●●
●●
●●
●

●
●

●

●

●●

●●

●

●

●

●
●●●

●

●

●
●●●●

●
●
●

●
●●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●●

●

●

●

●
●●

●●●
●

●●
●

●

●

●

●●
●

●

●

●
●●

●

●
●●

●
●

●●
●

●
●

●
●

●●●
●●

●

●

●

●

●

●
●●

●

● ●●
●

●

●

●

●
●

●
●
●●
●

● ●

●●

● ●

●
●●●

●

●●
●●

●

●●
●

●

●
●

●
●

●●
●●●●

●●●

●
●

●

●●

●
● ●

●
●

●
●

●

●
●●

●●●●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●
●

●
●

●

●

●
●●

●
●●
●

●
●●

●

●●

●
●

●
●

●
●●

●

●

●●

●

●

●●

●

●●
●●●

●

●

●●●●●
●

●
●●

●
●●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●●●●
●●

●●●
●

●●

●

●
●

●
●● ●

●●
●

●
●

●

●●

●

●
●

●●

●●●
●

●
●

●

●
●

●

●

●

●
● ●
●●

●●
●●●●
●●

●

●
●●

● ●

●

●

●

●●

●
●●●

●●●●

●

●

●●

●

●

●

●

●

●●

●
●●● ●●●●●

●●● ●

●

●

●

●

●
●

●
●●●●● ●

●●

●●● ●

●

●●

●

●
●
●

●●

●

●

●

●
●●●

●

●●●

●

●●●●

●

●

●
●

●
●
●

●

●
●

●
●●

●

●●●●●
●

●● ●
●●

●●
●

●
●
●

●

●
●

●

●
●●●●

●
●

● ●

●

●
●●

● ●●

●●

● ●●
●

●
●

●
●

●

●

●

●●●
●

●

●●

●

●

●●●
●

●

●

●●●
●

●
●●●

●●
●●●

●
●●●

●●

●
●●

●

●●

●
●● ●●

●

●

●

●

●●
●

●●●
●

●●●
●

●
●●●

●●●

●● ●●●
●

●

●

●

●
●

●

●●
●●

●● ●
●

●

●●●●

●
●

●
●

●

●

●

●

●
●

●●
●

●●
●

● ●●●●●●●●●●

●●●●
●

●

●

●

●●●

●

●

●

●●

● ●

●

●

●

●
●●●●●

●
●

●

●

●

●

●
●●

●●
●●

●●
●●●●●●

●●●

●

●

●
●

●

●

●
●

●●● ●●●
●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●●

●●

●

●●●●
●

●

●

●

●

●●

●

●

●

●●
●●

●
●●● ●●●
●
●●●●
●

●
●●
●

●●
●

●

● ●

●

●

●

●

●
●

●●●
●

●

●
●●

●

●
● ● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●●
●
●●●

●
●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●
●●

●
●
●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●●

●

●

●
●

●● ●

●●

●
●

●●●

●●
●

●
●

●

●●

●
●●●

● ●

●

●●

●

●
●●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

● ●●●●

●
●

●

●●●

●
●●

●
●●●
●●●

●

●
●

●
●●●●●●

●

●●

●
●

●●
●●●

●

●●●●
● ●●

●●

●
●

●

●

●
●

●
●

●●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●● ●

●●●●●
●

●●

●●

●

●●
●

●●

●

●

●●
●
●

●

●●●●

●

●
●

●

●

●
●

●
●

●
●●●

●●

●●
●●

●●
●

●

●
●

●

●
●

●
●

●●
●
●

●
●

●

●
●

●

●●●

●●
●

●
●

●
●●

● ●

●

●

●

●

●
●

●
●● ●●
●● ●

●
●

●●

●

●

●●
●●

●●
●●
●

●●●

●

●
●● ●

●

●●

●

●

●●

●
●

● ●●●●

●

●●
●●●

●

●

●●

●

●

●

●

●
●●

●

●
●

●●●
●●●

●

● ●

●

●

●

●

●

●

●
●●

●●

●●
●

●

●
●●
●

●

●

●●●●●
●

●

●
●●

●

●

●

●

●

●●
●

●

●
●

●
●
●●● ●●●

●
●

●
●

●

●
●

●●●● ●●●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●●

●

●●●
●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●●●

●●

● ●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●
●

●
● ●

●

●
●●

●
●

●

●
●

●
●

●
● ●●

●
●

●
●

●●●
● ●

●●●

●

●

●

●

●

●

●

●
●
●

●
●●
●●
●●

●

●
●

●

●●
●

●
●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●●
●●

●
●●●●

●

●
●

●●●
●
●●

●
●
●

●
●

●●

●●
●

●

● ●●
●

●●
●

●
●

●

●

●

●

●

●●●●●

●●●●●●●●
●

●●

●

●

●

●●●●●
●

●
●
●●●

●●
●

●●

●

●

●

●
●●
●●
●

●●●
●

●●●

●
●

●
●

●
●●●

●

●

●
●

●
●●

●
●●●
●●●●●

●●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●●
●

●
●

●

●
●●●●●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●●●

●
●●●●●●

●
●●● ●

●

●

●

●

●●
●

●

●
●

●●●●●●●

●●

● ●●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●●●
●

●

●

●
●

●
●

●
●●

●

●

●

●

● ●

●

●
●

●

●
●

●●
●●

●
●

●
●●
●●
●

●
●

●
●

●

●●

●● ●
●

●
●

●

●

●

●
●

●
●●●●

●●●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●●●
●●●

●
●●

●●●
●
●●● ●

●

●

●
●
●

●●

●

●

●

●

●●
●
●●

●

●

●

●

●

●●

●
● ●

●
●

●●
●

●

●
●

●●

●
●

●

●
●● ●

●
●●
● ●

●●
● ●●●

●
●
●

●
●●

●

●
●

●
●

●
●●

●
●

●
● ●●

●

●

●

●
●

●
●

●
●●
●●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●●
●
●●

●
●●

●
●

●●
●

●

●●
●●

●●●●●●
●

●●●

●

●
●

●

●
●●

●

●
●●

●●

●

●

●

● ●●
●

●

●●

●
●

●●●●●●

●●●

●

●●
●

●

●

●
●

●

●● ●
●

●●
●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●●
●

●

●

●

●●
●
●●

●

●

●
●●

●●●

●●
●●

●●●●●
●

●

●

●

●

●

●

●
●●

● ●
●●

●
●

●

●

●

●

●●●●●
●

●

●

●

●
●●

●

●

●

●●●

●●
● ●●

●
●

●

●

●

●

●

●●●
●

● ●●

●

●
●

●

●

●

●●●
●

●●
●

● ●

●●●
●
●
●

●●

●

●

●

●

●●

●

●
●

●
●●

●

●●
●

●●
●●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●●●
● ●

●

●●
●●

●
●

● ●

●
●

●

●
●

●
●

●●
●●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●
●●

●●●●●

●

●

●

●
●

●
●

●●
●●

●
●

●
●

●

●

●

●
●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●●

●●●
●●●●●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●●
●

●
●●● ●
●●●●●
●●●

●
●●●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●●

●
●●

●●
●

●
●●
●●
●
●
●●●●●●●

●
●

●●
●
●●●●●●●● ●●●
●

● ●
●
●●

●
●

●
●●

●

●

●

●●●●●●

●
●●●

●
●

●
●
●●
●

●●

●
●● ●

●●
●●

●
●●

●●●●

●●● ●
●●

●
●●●●

●
●

●

●
●
●

●
●●

●●●●
●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●
●

●●

●

●●

●
●●

●●

●
● ●

●

●
●

●●
●
●

●●
●

●●
●

●
●

●

●

●

●●
●

● ●
●●

●● ●

●●

●

●●
●

●●●
●●●

●

●

●
●
●

●●
●

●●●
●

●

●●
●

●●

●

●●

●

●
●

●
●●

● ●

●●

●● ●

●

●●

●

●
●●●

●

●

●
●●
●

●●
●●

●

●

●

●

●

●
●●

●●●
●●

●●●●

● ●

●

●

●

●

●●●●
●

●●

●●●
●

●

●
●

●●
● ●

●

●

●●

●

●

●

●
●●●
●●●

●●
●●●

●●●●
●●●

●
●●●●●

●

●●
●●●

●●●
●

●

●

●

●●
●

●

●

●

●●●

●

●

●●
●●●●

●

●

●

●
●●●
●●

●●
●

●●●
●

●

●●●●●
●

●

●

●

●

●
●●●● ●●

●●●●
●

●

●

●

●

●●

●

●

●
●

● ●
●●●●

●
● ●

●

●

●

●

●●
●

●●

●
●

●●● ●
●

●●●

●
●

●

●

●●
●
●●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●

●●

●
●

●
●

●●●

●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●
●●

●
●●●

●
●

●
●

●

●

●
●●●

●
●
●

●

●
●●●● ●

●
●

●●●●●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●
●

●●●
●

●●

●
●●

●
●

●
●

●●●●
●

●

●
●●

● ●
●

●● ●●

●●
●

●●●●
●

●
●

●●●
●

●

●

●

●

●

● ●
●●

●
●●

●●●

●●

●●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●●
●

●
●

●

●●●●
●●

●●●
●

●

●
●

●●
●
●●

●●

●
●

●●●●

●
●●●

●●

●

●
●

●

●●

●

●
●

●

●●●

●
●

●

●●
●●

●●

●●

●
●●●

●
●

●●

●

●

●

●
●●●●

● ●
●●

●

●
●
●●

●

●
●

●

●
●

●●●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●

●

●●
●
●

●
●

●
●

●
●●
●

●

●
●●

●●

●●
●

●●
●

●

●
●●● ●

●

●

●●●

●

●

●

●
●

●

●●
●
●●

●

●

●

●

●

●

●

●

●●●●●●
●

●

●
●●

●
●●●

●

●●
●
● ●●●

●
●

●
●●

●
●●

●●
●

●● ●
●● ●

●
●

●

●●
●

●
●

●

●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●●
●

●
● ●●

●●
●●
●

●

●
●

●

●

●●

●

●

●
●

●

●
●●●
●●●●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●
●●●

●●
●●●

●●
●

●
●

●

●

●

●●

●
●
●●●
●

●
●●

●●
●●●●●

●
●

●●
●

●●
●

●
●●●

●●

●●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●●
●

● ●

●
●●

●

●
●●

●●●●

●

●

●

●

●

●●
●●●

●
● ●●

●
●●

●●●● ●
●●

●
●

●●
●●●

●● ●●
●

●● ●●●
●

●
●●

●
●●

●

●

●
●

●

●●
●

●
●

●●
●

●●
●

●
●

●

●
●●

●●

●

●

●

●

●●●
●

●●
●

●
●●

●

●
●

●
●

●
●

●●

●

●

●●
● ●

●● ●
●●●●●

●●
●
●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

● ●

●

●

●

●

●
●●

●
● ●●

●●

●

●

●

●●
●

●
●

●
●

●

●●

●
●

●
●

●●●●●●
●

●
●
●

●
●●●

●●● ●
●

●

●
●

●
●

●●●●●
●

●
●●

●

●
●

●
●

●
● ●

●
●●●

●●●●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●
●
●●

●
●

●

●
●

●
●

● ●

●

●●●●●
●

●
●

●

●

●

●

●●

●●

●

●●
●
●

●
●
●
●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●● ●

●

●
●

●
●●●

●

●●
●
●●●●

●
●●

●●●
●

●●●●●
●●●

●
●

●
●

●●
●

●●●●●
●

●

●●

●

●●●
●●

●
●
●

●

●

●●

●●
●

●●

●●
●

●

●

●

●

●

●●

●●
●

●●●●
●●●●
●●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●
●●

●
●●

●●●●
●●

●●

●

●

●

●
●
●

●
●

●

●●●●

●

●

●
●

●

●

●

●
●

●●●
●

●
●

● ●●●●

●●●
●

●

●

●

●
●●

●

●
●●
●●

●●●●

●●
●
●

●●
●

●

●●●
●●

●
●

●
●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●●

●●

●
●●●

●

●

●

●

●
●●

●

●●● ●

●●
●●

●●
● ●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●
●●

●

●●●●

●●

●●

●●
●●●●

●
●

●

●●●

●

●●
●

●
● ●

●●●
●●●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●●●
●●●

●
●●

●●

●
●

●
● ●

●

●
●

●●●●●●●
●●

●
●

●

●

●●
●

●● ●
●●

●●●
●

●
●

●●●● ●

●

●

●
●

●

●

●●●
●●●●●●

●
●
●●
●

●

●
●

●

●
●

●●
●

● ●
●

●
●

●
●

●●
●●●●●

●●
●●

●

●

●●
●●

● ●●
●

●
●

●●●
●●●

● ●

●

●

●

●

● ●

●

●

●
●

●
●●

●●
●●●

●
●●

●●
●

●●●

●●
●

●
●●

●

●

●●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●
●●
●

●

●

●

●

●

●

●
●●●
●●

●●
●

● ●
●

●
●

●
●

●
●
●●●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●●●
●●
●●
●●
●

●
●●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●●
●
●●●●

●

●●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●●●

●
●●

●

●
●

●●●●
●

●●
●●
●●

●
●

●
●

●

●

●
●

●●
●

●
●
●●●

●

●
●

●
●●●
● ●

●

●●

●

●

●●
●

●

●●

●

●

●

●

●●

●
●●

●

●

●

●
●●●
●
●

●

●●
●

●
●

●●
●

●
●

●●●●

●●●●●

●

●
●●●●

●
●

●
●●

●
●

● ●
●

●
●●●

●
●●

●

●
●

●

●
●

●
●
●

●
●

●●

●

●

●
●

●●●
●●●
● ●
●

●
●

●●
●●

● ● ●
●●●●

●●
●

●●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●●
●●

●

●
●

●
●●●●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●●
●●

●

●

●

●

●
●●

●
●

●

●
●●

●
●

●●
●

●
●

●
●

●
●

●

●●●●

●
●

●●●
●

● ●
● ●

●
●

●

●

●●
●

●

●

●

●●
●

●
●●●● ●
●

●
●

●

●●●
●
●

●●● ●●●●
●

●

●

●
●
●

●

●

●

●●●●

●
●

●

●
●●●●

●
●●

●

●

●

●

●

●
●

● ●

●

●●

●
●

●●

●●●●●●●●
●●

● ●
●

●

●

●

●
●

●
●

●
●

●
●●

●
●

●

●●●

●

●
●●

●

●

●
●

●
●

●

●

●●

●●●
●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●●

●
●

●
●

●

●●

●●

●
●
●
●●●

●
●

●

●●

●

●
●

●●●●
●

●
●

●

●●
●

●

●
●

●●

●

●

● ●
●

●
●●

●
●●

●

●
●●

●
●

●
●●

●

●●

●●

●
●

●
●

●

●●

●

●●
●
●●

●
●

●

●

●

● ● ●●
●●

●

●

●
●

●

●

●
● ●

●
●●

●

●
●●

●● ●

●

●

●

●

●

●●

●
●

●
●

●●
●●

●
●

●●
●

●

●

●●

●

●●
●
● ●
●

●●●

●
●

●●

● ●

●

●

●

●
●●

●
●
●

●

●
●

●

●

●

●

●
●

●

●●
●
●●●

● ●

●
●

●
●●

●●●

●
●

●
●

●

●●●
●

●
●●

●
● ●

●
●

●

●

●

●

●●●●●
●
●●●
●

●

●

●

●

●

●

●●
●●

●●

●

●●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●●

●●
●

●
●●
●

●●
●●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●

●
●●●

●
●●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●
●●●

●
●●●●

●
●

●
●●

●●
●

●
●

●

●
●●

●

●
●

●

●
●

●

●
●

●●

●
● ●

●
●●

●
●

●●●
●●●●

●

●

●

●

●

●

●

●
●●●●

●
●

● ●

●
●

●
●

●
●●●

●●●
●●●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●●

●
●●

●
●

●●
●●

● ●
●

●

●

●

●
●

●●●●●●●
●●●●
●

●●
●
●

●

●

●

●

0 5 10 15 20

0
5

10
20

No UV

30
 m

in
 a

fte
r

U
V

15

B

●

●

●

●

●

●
●●●●●

●●●●●●●
● ●●

● ●
●●
●

●●
●
●●●

●
●

●

●●
●

●

●
●●

●
●

●●
●●●

●

●

●

●
●●

●

●

●
●●●
●●● ●

●

●

●
●●

● ●

●
●●

●

●

●

●

●

●
●● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●
●

●●
●●

●
●●

●●●

●●
●●

●●●●● ●
●

● ●●●
●
● ●

●●
●

●●
●

●

●

●

●●

●

●
●●●●

● ●

●
●●

●
●●

●

●●●

●●
●
●●

●
●●

●●
●

●●
●

●●
●●

●
●

●

●●

●
● ●

●●●
●

●●
●●

●
●

●

●

●

● ●
●

●

●

●
●

●

●●
●

●

●●

●

●

●●●●●●●
● ●

●

●
●●●

●●●●●

●

●

●
●

●

●

●
●●●

●
●

●

●

●

●

●●

●

●

●●

●
●

●
●●

●
●●

●●
●●

●

●

●

●●

●

●
●

●

●
●●

●● ●
●

●
●
●●●

●

●

●
●

●

●

●
●●

●

●
●

●●●
●●
●

●
●

●
●

●
●

●●●
●

●●
●

●

●●●
●●●

●●
●●●

●
●

●●●
●
●●

●
●

●

●

●●

●

●
●

●●
●

●●●
●
●
●
●●●●● ●

●●

●
●●

●

● ●

●

●

●
●

●
●●
●

●●
●

●●●●●
●●
●

●
●●●

●
●●●

●●

●
●

●

●

●

●

●

●
●

●

●●
●●●

●
●●

●

●●
●

●●●
●●

●

●

● ●

●
●●●●
●●●

●
●

●●
●●
●●●

●●●
●●●●

●●●
●

●
● ●

●●●
●●●●●

●●
●

●

●

●

●
●

●
●
●● ●●●●

●
●

●
●●

●
●

●
●

●

●
●

●
●●

●●

●

●●

●

●
●

●
●
● ●●

●●
● ●

●●●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●●

●●●
●

●

●

●

● ●

●
●●

●
●

●●●●
●●●●●

● ●
●

●
●●

●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●●

●
●

●
●

●●
●● ●

●

●

●

●
●●

●

●
●

●

●
●

●
●●

●●
●●

●
●

●
●

●●●●●
●●
●

●
●

●●
●●●

●
●

●●
●●●●●●●

●●●
●●

●

●
●●

●
●●●●

●●
●
●

●

●

●

●
●

●

●

●

●

● ●
●

● ●

●

●

●●●●●●

● ●
●●

●●●

●

●
●

●
●

●

●●●

●
●

●

●

●

●
●

●●●●●
●●

●●
●
●●●●●●●●●●

●

●
●

●
●

●

●
●● ●

●

●
●

●

●

●
●

●
●

●●

●
●

●
●

●●

●
●

●

●

●

●
●●

●
●●

●

●

●●

●

●

●

●●
●

●
●●

●
●

●
●

●
●

●●●
●
●

●
●

●● ●●
●●

●
●●●
●
●●●
●●●

● ●
●

●
●
●

●●
●

●●
●

●

●

●

●

●

●●
●

●●

●

●

●

●●●
●

●●
●

●
●●● ●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●
●●●

●
●

●●

●

●

●●●
●

●●

●

●
●

●●

●
●

●
●

●

●

●

●
● ●
●●

●
●

●
●

● ●●
●
●
● ●

●

●

●

●
●●●●

●
●●● ●●●● ●
●

●●
●

●●

●
●●● ●

●

●

●

●

●

●●●

●
●

●
●

●

●
●●

●●●●
●

●

●

●

●

●
●
●● ●●

●●

●
●

●● ●
●

●
●
●●●●

●●
●●●●

●

●
●

●
●

●●●●

●
●

●
●

●●
●

●

●
●●●●●

●●
●●

●
●

●

● ●

●

●

●

●

●

●
●●

●

●

●●

● ●

●
●

●

● ●●

●

●●●

●●

●
●
●

●
●●

●●
●

●

●●●● ●●●

●●
●
●

●
●●

●●●●●●●

●
●

●

●

●●

●

●

●

●●
●

●●

●
●

●
●

●●●●
●●

●●
●
●●●
●

●

●

●

●

●
●●
●●

●

●●

●

●

●●●

●

●
●

●

●
●

●

●
●

●
● ●

●

●●
●
●

●

●●

●
●

●●
●●
●

●●
●
●

●

●●●●

●●●

●
●

●

●
●

●●

●

●●

●
● ●

●

●

●

●
●●

●●
●

●●

●

●
●

●●●●
●
●●

●

●●

●●
●●

●
●●●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●●●
●●

●

●

●

●

●

●

●
●

●
●●

●
●

●●●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●●
●●●

●
●

●
● ●

●

●

●

●

●●
●●●

●

●

●
●

●

●
●

●●
●

●
●
●●●●●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●
● ●

●

●

●
●●●

●
● ● ●

●●
●

●●

●

●●●
●●

●
●
●

●
●
●

●
●
●●●●

●
●

●
●

●●
●
● ●
●

●●
●
● ●

●
●

●

●

●

●●●●●●

●
●●

●

●
●

●
●

●
●●●

●

●

●●

●

●●

●

●

●
●●

●

●
●

●●

●

●

● ●

●

●●
●

●
●●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●●
●

●
●●●

●

●●

●

●
●●●

●
●●

●

●

●

●●

●

●
●● ●

●●
● ●

●●
●

●

●
●●

●●● ●●

●

●

●

●
●

●

●
●●●●
●●
●
●●

●●
●

●

●

●
●

●
●

●
●

●●

●●●
●

●
●●

●
●●●

●

●

●●●
●

●●
●

●

●

●●

●

●●
● ●

●●●
●

●
●●

●
●●

●● ●
●
●

●

●

●

●
●

●

●●
●

●●
●

●●

●●
●

●
●

● ●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●●
●●
●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●●●●●●

● ●

●

●●
●●

●●
●

●
●

●
●●

●
●

●
●

●●
●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●●
●●

●●● ●●

●
●

●●

●●

●●

●
●

●

●

●

●●
●
●●

●
●

●

●

●

●●●●

●

●

●

●
●

●
●
●

●

●
●●
●●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●●●

●●

●

●

●

●
●
●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●●

●
●●

●

● ●

●●

●

●
●

●

●

●
●●
●●●

●
●●●

●
●●
●

●●●

●●

● ●
●

●

●

●

●
●●

●

●
●

●
●

●
●●
●

●●●●
●●

●●●

●
●

●
●●

●●

●

●●

●

●

●

●

●
●●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

● ●●

●

●
●●●

●

● ●
●

●

●

●

●●
●

●
●●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●
●●

●
●● ●

●

●
●

●

●●

●

●●
●
●●

●

●
●

●

●

●

●

●

●

●●●

●●●
●●

●●●●

●

●

●

●

●

●

●
●

●

●

●●●
●

●●

●

●

●●●

●● ●

●

●

●
●

●

●

●

●

●

●
●
●

●●
●●

●

●

●

●

●

●

●

●● ●

●●
●

●
●

● ●

●●

●

●
●

●
●

●
●

●

●

●

● ●●

●

●
●
●●
●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●
●
●●

●●●●●

●
●

●
●
●●●
●●
●

●●
●●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●●●
●●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●●●●●
●

●

●
●

●

●●

●

●●●●

●

●

●● ●

●

●

●●
●

●●

●

●

●●
●

●

●
●
●

●
●
●

●●
●

●●
●●
●

●
●

●

● ●

●

●

●

●●
●
●
●

●●●

●
●

●
●

●
●●

●

●
●

●

●

●●

●

●●

●
●●●●

●

●

●
●●●

●●

●

●●
●●

●
●

●

●●

●

●

●

●

●●● ●
●●

●
●●●●●

●
●●

●
●

●

●
●

●
●●

●●
●

●●

●

●

●

●

●

●
●●●

●
●

●●

●

●

●

●●

●●

● ●
●
●

●●
●

●

●

●

●

●

●

●●

●
● ●

●
●

●●
●
●

●●●
●●●

●

●

●

●

●

●

●

●

●●●●
● ●
●

●
● ●●

●

●●

●●●
●●

●

●

●
●

●●

●

●
●

●

●●

●

●
●●●●

●●
●

●●
●

●
●

●

●

●

●
●

●

●●
●
●

●

●

●
● ●●

●●●
●

● ●

●

●

●

●

●

●

●●●
● ●●●●

●
●
●●

●●●
●

●

●
●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●●
●●
●
●
●
●

●●
●

●
●

●

●
●●

●●
●●
●

●
●

●

●

●

●

●●
●●●●●●

● ●●●

●●
●●●

●●
●●●●

●

●●

●
●

●
●

●●
● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●●
●
●●●●

●

●●●●
●●●●
●

●●●

●
●

●

●
●● ●

●

●

●
●

●

●
●

●●●●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●
●

●

●
●

●

●●
●

●

●

●●

●

●

●●

●

●●●●
●

●
●●
●

● ●●
●

●

●●●●●
●●

●
●

●

●
●● ●

●

●
●

●●

●
●●

●
●●●

●●

●●
●

●

●

●

●
●

●●

●
●

●
●

●● ●
●●●●

●
●●●●

●

●

●

●

●

●

●
●

●●
●●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●
●●
●●
●●●●

●
●●

●

●

●●
●

●

●

●

●
●●●

●●●●●
●

●

●

●

●●
●

●
●●

●●

●

●
●

●
●

●●

●

●
●●

●
●●

●
●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●●●
●
●●

●●●
● ●

●
●

●●

●

●

●

●

●

●●
●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●●
●●

●

●
●

●

●

●

●
●●

●
●●

●
●

●●
●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●● ●

●

●●

●

●●
●

●
● ●

●
●

●
●●

●●
●

●

●

●
●

●●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●●
●

●

●
●

●
●●

●
●●

●●
●

●
●

●●●
●

●●

●
●

●●
●

●

●●●
●●
●●

●
●

●
●●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●●●●

●
●

●

●●

●

●●

● ●

●

●
●

●

●●●●

●●

●

●
●

●●
●

●

●

●●●●●
●

● ●●
●●

●
●
●
●

●

●

●

●
●●

●
●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●
●

●
●●
●●

●

●

●●

●
●

●
●

● ●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●
●

●●
●

●●
●

●●●
●
● ●

●●
●

●●●
●●●●

●●
●●
●●

●

●

●

●

●●
●
●●

●●●
●

●

●

●

●

●●
●●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●●

●
●●

●
●

●●
●

●
●
●
●●

●
●●

●
●●●●

●●
●

●●●
●

●●●
●

●●
●●

●●
●●
●●●

●

●
●

●
●

●

●

●

●

●

●

●
●
● ●

● ●

●

●

●

●
●

● ●

●

●

●
●
●

●●
●

●
●
●●●●

●

●

●
●

●●

●
●

●
●

●●

●

●●
●

●●
●

●
●

●

●

●●

●
●

●●

●

●

●
●

●

●
●

●●●●●
●

●

●

●

●
●

●
●

●●●

●

●

●●
●
●

●
●●●

●
●

●
●●●

●
●●●●●

●●● ●●●●
●

●
●

●
●

●●●

●

●●●
●

●●
●●●

●●
●

●●●

●
●●

●

●
●●●

●
●●●

●●

●

●

●

●

●

●●●

●

●●
●●

●

●
●

●●●
●

●

●●

●
●

●●

●
●●
●

●
●

●

●

●●

●

●

●

●●●● ●

●

● ●
●

●●
●●
●

●

●
●●
●●●

● ●
●

●

●
●

●

●
●
●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●
●●
●●
●

●

●●
●
● ●

●

●●

●●
●

●
●
●

●
●●

●●

●
●

●

●
●●●●●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●●●●

●

●
●

●●
●

●

●

●
●

●
●

●●
●●●

● ●●●
●●

●●

●

●

●●
●

●

●

●
●

●

●

●●
●●

●

●
●

●

●
●

●

●●
●●●●●●

●

●

●
●● ●●● ●

●

●

●●

●

●

●
● ●

●

●
●

●●●●●
●●●●

●
●

●

●

●●
●●

●
●

●

●●●

●
●●●●

●

●
●

●

●

●

●

●
●●

●
●

●●
●●

●

●
●

●

●●●

●

●

●

●

●●
●●

●
●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●
●

●●
●

●

●●●●

●

●
●

●

●
●

●

●

●●●●
●
●

●

●

●

●

●

●●●

●

●

●●

●
●●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●
●
●
●●●

●
●

●
●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●
●

●●●
●

●

●
●

●
●

●
●●

●●
●

●
●

●●
●

●

●

●

●●●●●

●

●

●

●

●

●
●●

●
●● ●

●●

●

●

●

●
●

●
●●

●

●●●

● ●
●●●

●●●
●

●●●

●
●
●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●
●

●●●
●
●

●
●

●
●

●●

●

●

●
●

●

●

●●
●●●

●

●

●

●

●
●●

●
●●

●
●

●●●●

●

●

●

●

●●

●●●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●●
● ●

●

●

●

●
●

●
●●●● ●●●
●

●

●
●

●
●

●

●
●
●

● ●

●●
●

●
●●

●

●

●

●

●●

●

●

●

●
●●
●
●

●●●
●

●●

●●●●
●● ●

●
●

● ●●
●

●●
●

●

●●●●
● ●
●

●

●
●

●
●●

●

●

●
●●

●
● ●

●

●

●●●●

●

●
●●●

●●

●●
●

●

●

●

●

●

●
●
●●

●●

●

●●

●
●

●●
●

●●●

●

●

●

●

●

●
●
●●●●●

●
●

●

●

● ●

●

●

●

●

●
●

●●
●
●
●●●

●

● ●

●●●
●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●●

●
●●●●●●

●
●

●
●
●●
●●●●

●

●

●

●

●

●
●●
●
●●● ●

●
●

●
●

●
●

●●● ●
●

●

●

●

●

●

●

●

●
●

●●●●●●

●

●
●

●
●

●
●
●

●

●

●

●●

●

●●●●●
●

●●●●
● ●

●
●●
●

●●

●●
●

●
●●●

●
●

●

●

●
●●●

●
●●

●
●

●●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●● ●●
●

●

●
●

●●

●

●
●●

●
●●
● ●

●

●
●●

●

● ●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●●

●
●

●
●●

●

●
●

●

●
●
●●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●

●

●

●●●● ●●●●
●
●●●●

●●
●●

●

●

●

●

●
●●●
●

●●
●
●

●
●●●

●

●

●

●
●

●
●●

●

●

●
●●

●
●●●

●●
●

●
●●●●●●

●●
●●

●

●

●

●

●

●

●●

●
●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●
●

●
●

●

●

●

●

●●●
●●●

●
●●●●●●

●
●

●●●

●●

●

●
●

●

●

●●
●

●●
●●●●

●●

●●●●●
● ●●

●

●

●

●

●

●●●
●●

●●
●

●

●
●

●●
●

●

●

●●

●

●●

●
●

●

●

●
●

●

●
●
● ●

●

●

●

●●
●●

●

●
●●

●

●

●● ●

●
●

●

●
●

●

●●●
●

●
●

●●
●●

●

●
●●

●

●
●

●
●

●
●●● ●●

●
●

●
●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●●●●
●●
●●

●●

●

●

●

●
●

●

●

● ●

●●●●

● ●

●●
●●●●

●●

●●●●
●●

●
● ●

●
●

●
●

●

●●

●
●

●●● ●
●●●●●

●
●

●●●●

●

●
●●●●
●

●
●
●

●

●●

●

●
●
●

●●
●●●●
●●●

●

●
●●

●

●
●●●●●●●

●
●●

●●
●

●

●

●●
●

●
●

●●●
●

●
●

●

●●●●
●●●●

●●

●●●●
●

●

●

●●
●

●●

●
●●●
●●●

●

●

●

●
●●

●●●●●●●●●

●

●●
●

●

●

●
●

●

●●

●
●

●●

●

●
●

●

●●●●
●

●
●●

●
●

●

●

●

●

●●
● ●

●
●
●●
●●●
●
●

●

●

●

●

●
●

●

●
●

●●●
●●

●

●

●

●●
●●

●
●
●

●
●
●

●
●

●●
●●●●●

●

●

●

●

●●
●●●●
●

●
●

●

●

●●

●

●

●●●
●

●●
●

●

●

●●
●
●●

●
●●●
●●

●●

●●●●
●

●
●●

●

●●●●

●
●

●
●●

●

●
●
●●

●

●

●
●

●
●

●●●
●●

●
●●

●

●

●

●

●
●
●●

●
●

●

●

●

●●●
●●●●

●
●

● ●
●

●
●

●
●●●●

●
●●●

●●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●●

●
●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●●

●

●

●

●

●

●● ●●
●●●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●
●●

●

●

●●

●

●

●●
●●

●
●

●

●●
●

●●

●●●
●●

●
●

●●
●● ●

●●

●

●●●
●●

●

●
●●●

●●
●

●

●

●

●●

●●
●●

●●●
●

●

●
● ●●

●

●

●

●

●●
●●● ●

●

●●●

●

●
●

●●●●

●●

●

●●
●●

●

●

●

●
●

●
●●

●
●●●●●

●

●

●

●

●
●

●●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●●
●●●●●●
●

●●●●
●●

●

●

●

●

●

●
●

●●

●
●●

●●

●●
●●●
●

●

●

●
●

●
●
●●

●● ●
●

●

●

●

●

●

●

●
●●●

●

●●●
●●●●

●●●
●

●
●●

●●●
●

●●●
●

●

●

●●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●● ●●

●●
●

●

●●●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

● ●

●

●
●

●●
●

●

●●

●

●

●●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●●

●
●●

●●
●●●●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●●
●

●

●

●

●
●●●

●
●●

●●●●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

●●●

●

●

●

●
●●●●

●
●

●

●
●

●
●

●

●
●

●
●
●

●
●

●

●

●●
●●

●
●

●

●

●

●

●●

●
●

●●
●

●

●
●

●

●

●

●
●●

●

●●●●●

●●

●
●

●●●
●

●
●
●●●

●
●

●●
● ●

●

● ●●
●

●

●●●●
●●

●
●

●
●

●●

●
●●

●
●
●●

●

●●
●

●

●

●

●

●

●●
●●●● ●

●
●●

●

●●
●●

●
●
● ●

●●●●●● ●
●

●

●
●

●●●

●●
●

●●
●

●

●

●
●

●
●●●

●

●

●●

●●●●
●

●
●●

●
●

●●●
●● ●●

●

●●

●●

●
●●
●

●●
●

●
●●

●

● ●

●
●

●●
●

●
●●

●●●
●

●

●

●

●
●
●

●●
●

●

●
●

●

●● ●
●●

●

●●

●

●
●●

●
●

●
●
●●

●●
●●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●● ●

●

●
●

●
●●

●

●

●
●

●
●

●●●
●

●
●

●●
●

●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●
●●●

●
●●

● ●

●

●

●

●●
●●●
●●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●
●
●

●

●
●

●●●
●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●
●●

●
●●

●
●●

●
●●●

●

●

●
●

●

●

●
●●
●
●

●●
●●●●●
●

●
●

●●

●●

●●●●
●
●

●
● ●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●●
●

●

●●

●

●

●● ●

●
●

●

●

● ●
●

●
●

●

●

●

●

●
●

●● ●
●● ●

●●
●●●
●●

●

●
●

●
●●●

●
●

●
●●●

●
●●
●

●●●

●
●●

●
●

●
●●
●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

● ●
●●●●

●
●

●

●

●

●

●
●●

●

●●
●

●
●
●

●

●●●
●● ●●●●

●
●

●●
●

●
●●●●
● ●●
●● ●

●

●●

●

●

●●
●●●●

●
●

●

●

●

●

●

●

●

●●●
●●

●●
●

● ●

●
●

●●●
●

●●
●●

●

●●
●

●
●●

●

●

●

●

●

●

●

●
●
●

●
●

●
●
●●

●●
●

●●

●●●
●

●

●

●●

●

●

●

●
●

●
●●
●

●

●

●

●

●●
●

●

●
●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●
●●●
●

●

●
●

●

● ●●

●●

●●
●

●
●

●

●●

●

●

●
●

●

●● ●●
●

●
●

●

●
●

●

●
●●●

●

●

●●

●

●

●

●

●

● ●
●
●●

●●
●●●
●

●
●

●
●

●●
●●●
●
●●

●

●

●

●

●

●
● ●

●

●

●

●●
●●
●●●

● ●●
●●

●

●

●

●
●

●
●●
● ●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●●
●

● ●

●●
●

●●

●
●●

●●

●
●

●

●

●

●
●

●
● ●

●

●
●

●

●
●●●
●●●

●●

●
●

●

●
●

●

●
●
●

●
●

●
●●

●● ●

●

●

●

●●●

●●
●

●●
●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●
●●●

●●

●
●

●

●

●

●

●
●

●●
●

●
●

●●●

●●

●●●
●

●

●

●

●

●

●
●

●●
●
●●

●
●

●

●

●
●

●

●●●
●

●
●

●
●●

●

●

●

●

●●

●

●●
●

●●

●

●●●
●●

●

●

●●●●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●●

●● ●●

●●

●

●

●
●

●
●

●●
●●

●

●

●●

●

●●

●

●
●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●●●

●

● ●●●
●●

●
●

●
●
●

●
● ●

●

●

●
●

●

●

●
●

●●●●
●●●

●●
●●

●

●

●

●●●●

●●

●

●

●

●

●

●

●
●●●
●

●
●●●

● ●●

●

●
●

●

●

●

●

●
●●●●●

●
●

●
●

●
●

●●●●
●

●
●

●

●

●

●

●
●

●
●●●

●●●
●

●●●
●

●

●

●
●
●

●●
●

●

●

●●●●●
●

●

●●

●

●●

●

●

●
●

●

●
●● ●

●

●

●
●●●●●●

● ●
●

●
●●

●

●● ● ●
●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●●

● ●●
●

●●

●

●●●
●

●

●●
● ● ●

●●

●

●

●

●

●

●

●
●●●
●●●●

●
●

●

● ●

●●

● ●
●●●

●●●●●●
●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●●

●

●●

●●
●

●●

●

●

●

●●●
●

●

●

●
●

●
●

●
●

●●

●

●●
●

●
●●●

●●
●

●

●
●

●

●

●

●●
●●●

●
●

●

●●

●

●

●

●
●

●●

●

●●
●
●●●

●
●

●
●●

●●
●

●

●

●

●

●

●●●

●
●

●
●

●●●●

●●
●●●●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●●●

●●● ●
●
●●

●●
●

●
●

●

●

●
●

●

●● ●
●

●●●
●

●●●
●

●
●

●

●
●

●

●
●●
●

●
●

●●
●
●●

●●

●
●● ●

●
●●●●
●

●

●

●●

●
●

●
●

●

●●●●●●
●●

●

●

●

●

●

●

●

●●
●

●●
●
●●●●

●

●
●●

●
●

●
●

●
●
●

●
●

●●

●●
●

● ●

●

●

●

●

●●
●

●

●

●
●

●
●

●
●●

●
●●

●

●
●

●
●

●

●

●●
●

●

●
●

●●
●

●
●

●
●●●●

●

●

●
●

●

●●

●●●●
●

●●
●●●

●
●

●●
●

●
●●

●
●

●
●
●● ●●●●●● ●

●●
●

●
●

●●
●●●●

●
●

●
●

●

●

●
●

●

●●●●
●●

●
●

●●

●
●

●

●

●

●

●

●●
●

●
●●

●●
●
●
●
●●●

●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●

●
●

●●●
●
●

●●

●
●
●●●●

●
●

●

●
●

●
●●
●

●●●
●●

●

●
●●●●●

●

●

●●●●●●●

●

●●
●●

●

●

●

●

●

●

●

●●
●

●●●
●

●●
●●

●

●

●

●
●●●
●●
●

●●
●

●
●

●

●

●
●

●●●●●
●●
●

●
●
●●

●

●●●
●●●
●

●

●

●

●

●
●

●
●●●●

●●

●
●

●

●

●

●

●

●
●●

●●

●

●
●

●
●●
●●

●

●
●●●●●

●
●●

●
●

●●●
●

●●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●●●●● ●

●

●

●

●

●
●
● ●●

●

●

●
●

●

●●
●●●

●

●●

●

●

●●●●

●

●
●

●●
●

●

●

●●

●●
●●●

●

● ●●●
●
●●●
●●
●

● ●
●●●●●

●●
●

●●

●

●

●

●

●●

●

●●●

●

●
●

●

●

●
●●

●
●

●

●
●●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●●
●

●

●

● ●

●
●●
●

●●●●
●

●●●●
●

●
●

●

●●
●

●
●
●

● ●

●

●

●

●●
●●

●●
●●

●
●

●

●●
●●●
●●

●●
●

●

●
●●●

●

●

●

●

●
●

●

●●●
●
●●

● ●●
●

●

●
●

●

●

●
●●
●●●

●

●●
●●

●

●

●
●

●
●●●

●

●

●
●●●●

●
●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●
●

●●●
●

●
●

●
●●●

●
●
●

●
●
●●

●

●

●●
●

●

●

●●●●
●
●

●
●

●●

●
●

●
●

●
●●●

●

●
●

●

●●●
●●

●
●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●●
●

●
●

●

●●

●
●
●
●

●

●
●

●

●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●● ●
●

●
● ●

●●
●●

●
●

●
●●●●

●●
●●
●●●

●●●

●

● ●
●

●

●
●●●●●●

●

●

●

●

●●●

●

●

●

●

●

●●
●●

●
●

●
●

●●

●

●

●
●

●●●

●●

●

●

●
●

●

●

●

●

● ●
●

●●●

●●

●
●●●●
●

●●●
●

●
●●

●
●

●

●●
●

●
●

●
●

●●
●●

●

●

●

●
●●

●●●

●

●

●

●

●

●●
●

●
●

●
●●●

●
●●●●

●

●

●

●

●
●

●●●●●
●●●
●

●●●
●

●
●

●
●●

●●
● ●

●●

●
●●

●
●

● ●●

●

●

●

●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●
●

●

●

●●●
●

●
●

●

●●

●
●

●●● ●
●

●

●
●●

●●
●
●●

● ●
●

●
●

●

●

●●

●

●

●
●●●●

●

●
●●

●●

●

● ●
●

●

●

●●●●
●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●●●

●●

●

●●

●

●
●
●●●●●

●●
●●●●

●
●

●
●

●

●

●●

●

●●●
●

●
●

●●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
● ●
● ●●●●

● ●●
●
●

●
●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●
●●

●
●

●

●

●

●

●
●

●●●

●
●●

●

●

●●

●

●

●●●

●

●

●
●

●
●

●●●●●
●●●

●
●
●●
●●

●
●●
●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●●

●
●

●

●

●

●
●

●
●

●

●
●

●●
●

●●
●●

●●
●

●
●

●●● ●
●

●●●●●
●●

● ●
●

● ●

●
●●

●
●

●
●●
●

●

●●
●

●

●
●

●

●

●

●

●●

●
●

●
●●

●
●●●

● ●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●
●

●

●●
●●
●

●

●●
●

●●●

●●

●
●

●

●

●

●

●●

●

●●
●

●●
●●●● ●

●

●

●

●
●

●

●● ●●●●●●
●

●
●

●

●
●

●●●

●

●●

●●
●●

●
●

●

●

●
●

●

●●
●●●●

●●
●●

●●●●
●

●

●

●

●
●

●
●● ●●●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●●

●
●

●
●

●

●

●●
●

●●
●

●

●
●

●●
●

●

●
●

●

●

●
●

●●

●●
●
●●

●
●●

●●●

●

●

●●

●

●●
●

●

●

●

●

●
●●●●●

●●●

●

●

●

●

●
●●

●● ●
●●
●●●

●
●●
●

●

●

●

●
●●

●●
●

●
●●

●
●●●

●●
●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●
●

●●●

●
●

●
●

●●●
●

●

●●●●
●

●
●●

● ●

● ●

●
●

●

● ●●●●●●●●●
● ●

●
●

●

●

●

●
●
●

●
●●

●
●●

●●
●●

●●●
●

●

●

●

●●

●
●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●●●

● ●

●

●
●

●

●

●

●

●
●

●

●
●●●

●
●●

●●
●

● ●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●● ●

●

●

●

●●●●●

●●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●●●●
●

●

●
●

●●

●●
●

●●●
● ●●

●
●

●
●●

●
●

●

●

●

●●●
●●

●
●

●

●●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●●

●●
●

●

●●●

●

●

●

●

●

●

●

● ●
●

●

●●

●●

●

●

●

●● ●●
●
●

●

●

●

●

●●●
●

●

●●
●

●

●
●

●

●

●

●

●

●●●
●

●●
●

●

●

●

●
●●●●

●
●

●
●●
●

●

●●
●●

● ●
●●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

● ●
●

●

●●●● ●

●
●

●

●

●

●●

●
●●●

●●
●

●●● ●
●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●
●●●●

●

●

●●
●●

●

●
●

●

●●

●

●●

●

●

●
●

●●
●●●●

●
●
●●●●

●●●
●●●

●
●

●
●

●

●●

●●
●
●● ●

●

●●
●

●
●
●

●
●●

●
●

●
●

●

●
●●

●
●●

●

●
●

●●

●

●

●

●●●●●●
●

●●
●

●●●●●
●

●

●

●

●

●

●

●

●
● ●

●●
●

●

●

●
●

●

●

●
●●●

●
●
● ●

●●●
●●●

●●
●

●

●

●
●

●
●

●

●
●
●●

●
●

●

●●●

●●

●

●
●●
●

●
●

●●
●

●
●

●●● ●●
●●● ●●

●●
●

●

●
●

●

●●

●

●

●
●●

● ●●●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●
●●

●● ●●
●
●●

●●
●

●●●

●

●
●

●
●●●

●
●

●●●

●
●●

●●
●

●
●

●●●●
●●
●●●

●
●

●
●

●
●
●

●●

●

●

●

●

●

●●●

●
●●●

●●
●●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●●

● ●
●

●● ●

●
●●●●●
●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●●
● ●

●
●

●

●
●

●●●●
●●●

●

●

●●

●

●
●

●

● ●●
●
●

●●
●●●●●●

●●●●

● ●

●

●

●

●●

●

●

●

●●
●●●●

●●
●

●●
●●

●
●

●●●●●●●

●

●
●

●

●●
●

●
●

●● ●
●

●●
●●

●

●
●
●

●
●

●●

● ●

●

●
●

●
●●●

●

●●

●

●

●

●
●●●

●●●●
●

●●

●

●

●

●

●

●

●

●
●●●●

●
●

●●
●
●●

●
●

●●
●●● ●●

●
●

●
●●●
●

●●

● ●
●●

●
●●
● ●

●

●●●●
●
●●

● ●●
●●

●

●●

●●
●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●
●●

●●●●
●●

●●●
●●

●●
●

●
●● ● ●●●●●
●●

●

●●

●
●

●

●

●
●●

●

●●

●
●●

●●
●

●

●

●

●
●●

●

●

●

●
●

●

●●
● ●

●
●

●
●●

●●●
● ●●

● ●

●●

●

●

●

●

●

●

●

●●
●

●●● ●●
●●●

●
●
●

●
●

●

●

●●

●●

●
●
●●●

●

●

●

●

●

●

●

●●●

●
●

●

●●●
●

●
●

●

●
●
●●

●●
●

●
●●●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

● ●
●

●

●
●

●

●●

●
●

●

●

●●●
●

●●●●
●

●
●

●

●●
●●●●●●

●
●

●
●

●
●

●●
●

●
●

●●●

● ●
●●

●●●
●

●●
●

●●

●●

●

●

●●
●

●

●●

●
●●●

●
●

●●●
●
●●
●
●●
●●

●

●
●●

●

●
●

●
●

●
●●●

●●

●
●

●

●
●

●
●

●●●

●●●●●●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●
●

●
●●

●●
●●

●
●

●●●
●●
● ●

●●
● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●●●

●●●
●

●
●

●

●●●
● ●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●●

● ●

●
●

●
●

●
●

●
●●●

●

●

●

●
●

●

●

●

●
●●●

●●

●
●

●
●●●●●

●

●●

●

●
●●●●

●

●
●

●

●●●
●●

●

●

●

●

●

●●●
●●

●●

●

●

●

●

●
●

●●

●

●●●
●
●

●

● ●

●
●

●●
●●

●
●●●
●

●
●●

●
●

●
●

●●●
●

●

●

●

●

●
●●

●●
● ●

●

●

●

●

●

●

●

●

●

●●●●

●●
●
●

●●

●
●●●●

●●

●

●

●
●

●

●

●●
●

●

●●●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

● ● ●
●●●

●
●●●●

●●
●●●

●
●

●
●

●

●

●●
●

●
●●●

●

●●●●
●

●
●●

●●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●
●

●●
●

●

●●

●
●

●
●

●●●
●●

●

●●
●

●

●●●●
●

●
●

●●
●

●

●
●

●

●

●●
●

●

●●

●●●

●
●●

●●●

●

●

●

●

●

●
●

●

●●

●

●
●●●

●
●

●
●●●

●●

●●

●

●●●

●

●●● ●

●●●
●●

●
●●

●
●●●●● ●●
●

●●●

●

●
●●●

●●

●

●

●

●
●●

●
●

●●
●
●

● ●

●
●
●

●●●●
●●

●
●

●●
●●

●

●
●

●●●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●
●

●●
●●
●

●●

●

●

●

●

●

●
●●●
●
●●●●●

●
●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●●●●

●
●●

●
●

●
●

● ●

●
●

●

●

●

●
●●

●
●

●●●●
●●

●
●

●
●

●●

●
●●
●●● ●●

●

●
●

●
●

●

●

●
●

●

●

●

●●●
●
●●

●
●●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●●
●●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●

●
●

●●

●●

●

●

●
●●●
●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●●
●

●●

●

●

●●

●

●
●
●●

●●●●
● ●●

●
●

●

●

●●

●●

●
●
●

●

●
●●●●
●

●

●
●

●
●

●
●●

●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●● ●

●
●

● ●●●
●

●

●

●
●

●

●
●

●●●●
●●●●

●●

●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

● ●

●
●

●

●●

●
●●

●●
●●

●●●●● ●
●●

●

●
●●●

●

●
●●●

●●
●

●

●

●
●

●
●●

●
●●●

●

●
●

●
●
●

●●
●

●

●

●

●

● ●
●

●
●

●

●

●●

●●

●

●

●●
●
●●

●
●

●●●
●

●●●
●
●

●

●

●

●

●
●

●

●

●●●●
●

●
●

●●●●●

● ●
●●

●
●

●
●

●

●

●

●●
●

●
●●

●
●

●●●

●

●

●●
●●
●

●
●●

●
●

●●
●●

●
●●●●●

●

●●
●

●●
●●● ●

●●
●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●
●
●

●●●
●

● ●
●

●●

●

●

●

●

●
●
●
●
●
●

●
●

●●●
● ● ●

●

●

●

●
● ●

●●
●
●

●

●
●

●

●

●

●
●●

●
●

●●
●●

●

●
●

●●

●

●

●
●

●
●●

●●
●

●●
●

●
●

●

●

●
●
●

●
●

●●

●
●

●

●

●

●

● ●

●
●●

●●
●

●
● ●●

●
●

● ● ●
●

●● ●
●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●
●●

●
●

●
●

●
●

●

●
●

●
●
●●●

●
●●

●

●
●

●●

●

●

●

●●

●

●●

●

●●● ●
●●

●
●

●
●

●

●

●

●●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●
●●

●●
●

●

●

●

●

●

●

●●●●
● ●

●
●

●

●

●

●●
●●●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●●●●●

●

●

●

●

●

●
●

●
●

●● ●●

●
●

●
●
●●

●

●●

●

●

●
●

●●
●●●●

●
●●●

●●

●●

●
●●●

●●

●●

●●

●
●

●
●●●

●●

●●
●●●●

●
●

●
●
●●●●

●
● ●

●●

●
●

●
●

●

●

●

●
●●●

●
● ●

●

●
●

●
●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●
●●
●●●●●

●

●

●

●

●
●

●

●

●●●
●
●●

●
●●

●●

●

●

●

●●
●●

●

●

●

●

●●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●
●●

●
●●●●

●
● ● ●

●
●

●
●●
●●

●●●
●

●
●

●
●

●●

●

●

●
●
●

●●● ●●● ●●

●

●
●●
●

●
●●
●
●●●

●

●●

●

●
●

●
●●●

●

●

●
●

●●●●●●
●●

● ●

●●

●●

●
●●●

●●●●
●

●
●

●

●

●

●●

●●
●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●
● ●

●
●

●

●●
●

●
●
●●
●●●

●
●●

●

●

●

●
●●●

●●

●
●

●
●

●●●
●

● ●
●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●●●

●

●

●●

●●

●
●

●●●
●

●●●●●

●

●

●

●

●

●

●

●●●●
● ●

●

●
●●

●

●
●●

●
●
●●●●●

●
●

●
●● ●

●●●

● ●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●
●●
●

●●
●●●

●

●

●●

●

●●

●

●

●
●

●●
●

●●

●

●

●

●

●

●
●● ●

●

●●●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●
●
●●

●●●●
●

●

●

●
●

●●●●

●●
●●

●

●
●

●●●
●●●

●

●●
●
●

● ●
●●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●●●

●

●●
●●●

●●

●

●
●

●
●

●

●

●
●●

●
●●●

●

●

●●●

●
●●
●●

● ●

●

●●●
●

● ●
●

●
●●

●●●
●● ●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●●
● ●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●●

●●●
●

●

●●●

●●

●
●
●

●

●
●

●●
●

●●● ●●●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●
●●
●

●
●●●●

● ●

●
●

●

●
●●●

●●
●●●●●

●
●

●

●

●

●

●
●

●
●●●

● ●●
●

●

●
●●●

●

●●●
●

●
●●●●●

●

●

●●●
●

●
●
●

●
● ●●
●

●●●
●
●

●

●

●●
●

●
●●●
●

●●●●●
●

●●
●

●

●

●
●

●●●
●●

● ●●●
●
●

●

●
●

●●●

●

●
●

●
●

●
●

●

●

●●

●●●
●

●
●

●●

●●

●●●●
●

●

●●
●●

●●
●

●

●●●
●●

●

●

●

●

●

●●

●
● ●●

●●
●

●

●●● ●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●●●

●
●

●●

●●

●●

●●● ●

●●●●
●●●●

●●
●

●

●
●

●●
●

●

●
●

●
● ●

●●

●
●

●
●

●
●

●●●

●●
●

●●
●

●

●

●

●
●

●

●

●

●
●●

●●
●

●
●●
●●

●

●

●

●

●
●

●
●●●●

●

●

●

●

●●

●

●

●●●
●●

●

●●

●
●●

●

●

●

●

●
●●●

●

●
●

●
●●●

●●
●●●

●
●

●
●●●●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●
●

●●
●●
●

●
● ●

●

●●
●●

●
●

●
●●

●
●

●

●●

●
●

●●●●● ●
●●

●●
● ●●
●
●●

●●
●

●●●
●

●●●●●●●
●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●
●

●
●

●

●●
●

●●
●

●
●

●

●

●●●●
●●

●
●

●●
●

●
●

●●
●
● ●●●●

●

●
●

●

●●

●

●

●●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●●

●●●
●

●●
●

●

●
●

●● ●

●
●●

●●

●●
●●●

●●

●●

●

●

●●
●

●
●

●
●

●

●

●
● ● ●

●

●●
●

●

●

●

●

●●
●

●
●

●

●●
●●●

●
●

●
●

●●

●

●●

●●
●
●

●
●

●●

●

●

●

●

●
●●

●●
●●

●●● ●●●●

●

●

●●●
●
●
●●

●
●

● ●●●
●●●●●●●

●

●●●

●

●
●

●

●
●

●
●
●●●

●●
●

●●

●

●

●●●
●

●

●

●

●

●

●
●
●●
●

●●●

●●●

●

●●
●

●●

●

●

●●

●

●

●
●

●● ●●●
●

●
●●

●
● ●

●●

●●
●

●

●●

●

●

●

●
●

●●
●

●●

●

●

●

●
●

●●●
●

●● ●

●

● ●
●

●
●●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●
●

●
●

●

●

●

●

●
●●

● ●●●
●●●
●
●

●●●
●

●
●

●●
● ●●

●

●

●

●

●
●

●●
●

●●●

●
●

●●
●●

●
●

●

●

●
●

●●●
●

●

●

●

●

●
●

●

●
●

●
●

● ●
● ●
●

●●●
●●●●●●

●
●
●● ●

●

●●●
●

●
●

●●
●

● ●
●●

●●●
●●

●

●
●

●

●●
●● ●

●

●
●

●●●
●●●

●
●

●

●●

●
●

●●●
●

●
●

●

●
●

●●
●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●●
●

●
●

●● ● ●

●

●

●●
●

●●
●

●

● ●

●
●

●●

●

●

●

●
●●●●

●

●
●
●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

● ●● ●●
●●

●●
●

●
●●

●
●

●

●
●

●

●●●●●
●●

●
●

●
●

●●●
●● ●
●●

●● ●

●●
●

●

●
●

●
●

●

●●
●

● ●

● ●

●

●●
●●●

●

●

●●
●

●
●●●

●●
●

●●
●●

●●

●
●

●
●●

●●
● ●

●●
●

●
●

●
●●
●

●

●
●●

●

●●
●

●●●●
●●●●●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●
●

●

●
●

●
●●
●

●
●●

●

●

●

●
●

●

●
●● ●

●

●

●●●
●●●●●●●● ●

●

●

●●
●

●●
●

●●●
●

●

●

●
●
●●

●

●

●●

●

●

●●
●●

● ●● ●

●
●

● ●

●

●

●●● ●●●
●

●●
●●

●●

●

●

●
●

●

●

●●
●

●
●●

●

●●
● ●

●

●

●

●●
●
●

●
●

●
●
●

●

●

●

●

●●

●

●
●

●
●●●
●●●

●

●

●●

●
●

●

●●●
●

●●●
●●●

●
●●
●

●
●●

●

●
●●●●●●
●

●●●●
●

●

●
●

●

●

●●●● ●●
● ●●●●

●
●●●

●
●●

●

●
●

●
●
●

●
●

●

●
●

●

●

●
●

●
●

●
●●●

●

●●

●

●
●

●●●●●
●●

●●●●
●● ●

●

●●●●
●● ●●●●

● ●●●
●

●
● ●

●
●

●

●

●
●

●

●
●●● ●●

●●

●
●●●

●
●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●●

●
●

●
●●

●

●

●

●

●

●

●

●●●
●●

●

●●●●●●
●

●

●

●
●●●●●

● ●●●
●
●

●●
●

●

●●●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●●
●●

●

●

●

●●
●●●

●●
●●

●
●●

●
●

●●
●
●

●
●

●

●

●
●

●
●

●
● ●●

●
●
●

●
●

●

●

●
●

●

●

●●
●

●●

●

●
●●

●

●
●
● ● ● ●

●

●●●

●
●
●

●

●
●●●●●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●●

●●●●
●●
●

●●
●
●●

●

●

●

●

●

●
●

●●●
●
●
●●

●
●
●

● ●●●
●

●
●

●●
●●●
●

●
●

●●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●●
●

●

●
●

●

●●

●
●●●

●●

●●
●●

●●
●●●

●

●

●●

●
●

●
●

●●

●

●

●

●
●●
●●●●

●

●

●●●

●
●

●
●

●●●

●

●●

●●

●

●

●

●

●

●
●●●●●

●●
●

●
●

●
●●

●
●

●●
●
●
●

●

●
●

●●●

●

●
●
●●

●
●●

●
●

●
●
●●●● ●

●

●

●

●
●

●
●

●
●

●
●

●●●●
●

●●
●

●

●

●

●

●

●●
●●●●●

●
●

●

●
●

●

●
●●

●●
●●

● ●
●●

●
●

●●
●●●

●
●●

●

●●

●●

●

●
●

●

●
●●●

●
●

●●●
●
●

● ●●●●
●

●
●
●

●

●
●●

● ●

●

●●

● ●
●●

●●
●

●●
● ●

●
●●

●
●

●

●
●●

●
●

●●●●

●●

●

●●

●
●
● ●
●

●●
●●●●●

●
●

●

●
●

●●●●
●●

●

●●●●●●●●
●

●
●

●●
●

●
●

●
● ●

●
●●

●

●
●

●

●

●

●●

●

●●●●●
●

●
●●

●
●

●
●●
●

●

●
●

●
●

●
●

●
●●●

●●
●●●

●●
●
●● ●

●

●●

●

●

●
●●●

●●
●●

●

●
●

●
●
●

●

●

●

●

●●●

●●

●●
●

●●
●
●

●

●

●

●
●
●

●●
●

●●
●

●●●
●

●●●

●●
●

●
●

●
●●●
●
●

●●
●

●●●

●

●●●●●●

●●
●

● ●

●
●

●
●●●●●

●
●

●
●●●

●●●

● ●●
●
●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●●
●

●●●●●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●
●

●
●●

●

●
●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●●●●
●

●
●

●
●●

●

●

●

●

●
●● ●

●

●

●

●
●

●
●●●●

●
●●●

●

●● ●

●●●●
●

●
●●

●●
● ●

●●
●●●

●●
●●

●

●

●
●

●

●
●●●
●●●

●●●
●

●

●
●

●

●

●

●

●
●

●●

●
●●

●
●● ●

●

●
●

●●

●

●●

●
●●

●

● ●●

●

●
●

●●●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●●●

●●●

●

●

●

●

●●

●
●

●
●

●
●
●

●
●

●●

●
●●●●

● ●
●
●

●●●●●
●
● ●

●●

●●●
●

●●

●
●●●

●●
●
●●●● ●

●●●●
●

●

●

●

●●

●

●●
●

●●●
●●●●
●
●

●●●

●●
●●●

●

●●●●
●

●
●
●●

●

●

●

●

●
●

●

●●

●

●
●

●●●

●●●●●
●●●●●●●
●

●
●

●

●●

●
●

●

●●

●●

●

●●

●●

●

●
●

● ●●●● ●
●

●
●

●
●

●

●

● ●

●

●●●
●

●
●
●

●
●

●●

●

●

●

●

●●●
●
●

●
●

●

●

●
●●

●●●
●

●
●

●
●
●

●

●

●

●

●
●

●

●

●
●
●

●
●●●● ●●

●
●●

●●●●

●●
●

●
●

●

●

●●
●●●●●

●
●●

●●

●

●●

●●
●●

●

●

●

●

●

●

●
●●●

●
●

●

●

●●

●

●

●●
●
●●●
●●

●

●
●

●
●●●

●
●●

●
●●

●
●

● ●●● ●
●

●●

●
●
●

●

● ●

●

●

●
●●●

●
●●

●
●

●

●●

●●

●
●
●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●●

● ●
●

●

●
●

●● ●

●

●

●

●●
●●

●
●

●

●
●

●
●

●●

●
●●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●
●●

●

●● ●
●

●

●

●

●●
●●

●
●●

●

●●●●
●●

●
●

●●

●
●

●
●●
●

●
●
●

●

●
●

●

●

●●●●
●●

●

●

●●●●
● ● ●

●
●

●

●
●●●

●

●

●

●●
●

●
●●

●

●

●●●●
●●●●

●●●
●

●

●

●
●

●

●●

●
●●●

●
●●
●

●
●●

●

●●●●
●● ●

●
●

●

●●●
●

●
●

●

●

●

●

●

●
●●●●●●●

●
●

● ●

●
●
●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●●

●●

●●●
●

●●

● ●

●

●●
●

●●●
●●

●
●

●
●

●●
● ●

●

●

●

●
●

●
●
●

●●
●

●

●
●

●●●●●
●●●

●

●
●●

●

●
●●

●●
● ●

●

●

●

●
●●

●

●

●

●●●● ●
●

●
●

●●
●

●
●●

●●

●●

●

●

●
●

●
●

●
● ●

●

●

●

●

●●●●●●●
●●

●●●

●●●●●
●

●●
●

●

●

●

●●
●

●
●

●●

●●

●
●

● ●

●

●
●

●

●

●
●

●●

●
●

●●

●●

●

●

●
● ●

●
●

●

●●
● ●

●

●●●
●

●
●

●
●
●

●●

●●
●

●

●

●
●

●●

●

●

●

●

●
●

●
●●

●●●

●●●

●●●●●●
●

●
●

●
●

●●
●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
● ●

●

●
●

●
●

●
●●
● ●

●

●

●

●●
●●●

●
●

●

●

●

●●●
●

●
●

●

●●

●

●●
●●
●●●

●●●
●●

●●
●●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●
●

●
●●●●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●
●

●

●
●

●

●

●●
●

●●●● ●●

● ●●

●

●

●

●

●

●
●●●●

●●

●
●

●

●

●

●

●
●

● ●
●

●

●
●

●●
●

●
●

●●●●
●

●

●

●
●●●●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●●

●
●●

●
●●

●

●

●
●

●

●●●●

●

●●

●

●
●●
●●

●●
●● ●●

●

●●●
●

●●●●●●
●
●●
●●

● ●

●

●
●●

●●
● ●

●
●

●

●
●●

●

● ●

●

●

●
●●
●●

●

●
●

●

●

●

●

●

●
●●●●●●

●

●

●●

●
●●

●

● ●

●
●●●●

●
●

●
●

●

●●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●●●
●●
●●●●●

●

●

●
●●●

●

●

●

●●
●●

●

●
●●

●
●●

●
●●
●●

●

●

●

●●
●

●

●●
● ●●

●
●●

●
●

●●●

●●

●

●

●
●
●

●●●
●●●●●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●●
●●
●●

●●

●

● ●
●

●
●

●
● ●

●

●●

●●

●●

●
●

● ●
●●●●●

●●
●
●

●● ●
● ●●

●
●●●
●
●

●●
●
●

●

●
●

●

●

●
●

●

●
● ●

●
●●

● ●
● ●
●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●
●

●

●

●●
●

●
●●
●

●

●

●

●

●

●●
●

●
●

●●
●

●

●

●
●

●●

●

●
●

●

●
●

●
● ●

●
●

●

●

●

●

●

●● ●
●

●
●● ●●●●

●

●
●

●●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●
●
●

●●●●
●

●

●

●

●

●

●●

●
●●

●
●●●

●

●
●
●●

●● ●
●

●

●●

●

●

●●
●

●
●●

●
●

●●
●

●

●

●

●
●

●
●

●●●●
●

●
●

●

●
●

●

●
● ●

●●
●

●

●

●
●

●●

●
●

●

●
●

●●●●

●

●

●

●

●●

●

●
●

● ●●

●●
●●

●

●●
●

●●
●

●●●●
●● ●

● ●

●

●

●
●

● ●

●
●

●

●
●●●

●
●●●

●
●●●

●
●●● ●

●
●

●
●●

●
●

●

●

●

●

●

●
●●●

●●●

●●
●●●

●

●

●

●
●

●

●

● ●

●

●
●●

●
●

●●●

●

●

●

●
●●● ●

●

●
●

●

●
● ●

●

●

●
●
●
●

●
●

●
●●

●

●

●

●

●

●

●
● ●

●

●
●

●●

●●●

●●●

●

●

●

●

●●
●
●

●
● ●●●●

●

●

●

●●●●●

● ●●●●●

●

●

●●

●●

●
●

●

●

●

●

●

●

●●●●●
●

●

●
●

●●●●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●●

●●
●●

●
● ●
●●

●●

●● ●
●●●

●●●
●●

●●
●

● ●
●

●

●

●

●●●
●
●●

● ●

●

●

●
●●●

●

●●

●●●
●●

●

●

●
●

●
●

●

●●
●
●

●

●
●

●

●
●

●
●

●
●

●●●●●
● ●

●

●
●●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●

●
●● ●●

●

●

●●
●

● ●
●

●●

●●

●

●

●

●

●

●
●

●
●

●
●●

●
●●

●
●

●

●

●

●

●

●●

●

●●●●
●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●

●
●

●

●

●
●

●

●●●
●●●

●
●●

●

●
●

●

●

●
●●●●●●●

●●●
●

●

●

●
●

●●
●

●

●

●●
●
●●

●
●

●

●●

●
●

●
●

●●●●●●●
●
●

●

●●

●

●●
●

●
●● ●

●

●

●

●

●
●

●

●

●
●

●
●●●●●●

●

●●

●

●
●●

●●●
●

●
●
●

●

●
●

●●
●

●
●

●

●
●●

●
●

●●

●●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●●
●

●

●
●
●●●●●●●●

●
●
●

●
● ●●●●

●
●

●

●●

●

●

●

●
●

●●●●●
●●●●●

●
●●
● ●●

●●

●
●

●●

●

●

●

●
●

●

●

●
●

●●●

●
●

●●●●●
●●

●
●●

●●

●●

●●

●
●

●●
●●

●
●●

●

●
●●●●
●●

●
● ●

●

●●
●●

●

●

●

●

●

●●
●●●●

●●
●

●●

●
●

●●

●●

●

●
●

●

●●●●●●
●

●

●
●●

●●

●●●
●

● ●
●

●

●
●●

● ●● ●
●●

●

●

●

●
●●

●●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●●

●

●
●

●●

●●●
●
●
● ●

●

●●● ●●

●

●

●

●

●
●

●●

●

●●●

●

●

●
●
●

●
●
●

●

●

●
●

●

●

●●
●

●
●
●●

●
●

●

●

●

●
●●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●●
●
●

●
●●

●

●

●

●

●●
●

●●●

●

●

●

●●

●
●

●

●
●

●

●

●
●●

●

●
●

●●

●

●

●
●

●
●●●●
●●

●

●●
●●●

●

●

●
●●●●

●●●
●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●
●
●

●●
●

●
●

●

●
●

●

●●
●●●
●●

●●
●●

●
●●●

●
●

●●●
●
●●
●

●

●
●●

●●
●
●●

●

●
●
●

●
●●
●
●
●

● ●●●●

●●

●

●
●●
●●

●●
●●

●
●● ●

●

●●
●

●

●

●

●

●●●

●

●
●
●

●●●

●

●

●●
●

●
●
●●●●●

●●●●
●

●

●

●

●
●

●
●

●
●

●●
●

● ●

●

●

●
●●

●

●

●●

●●●

●

●
●

●
●

●●●

●
●

●●

●

●●
●

●●
●

● ●
●

●

●

●●
●

●
●

●●
●

● ●

●

●●

● ●

●
●●

●

●

●

●

●

●

●

●●●
●

●

●●
●
●●●

●

●

●●

●

●
● ●●

●
●

●●

●

●

●
●●●

●

●
●
●

●

●
●●

●

●

●
●

●

●

●●
●●

●
●●●

●

●

●
●

●

●

●●●
●

●

●●●
●●

●●
●

●
●●

●
●
●

●●
●

●●
●

●
●●

●●●

●
●●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●●●● ●

●

●

●●
●

●●
●●● ●

●●●

●
●

●●

●
●

●
●● ●●
●●
●●

●
●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●
●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●
●
●●

●●
●

●
● ●●●●●●●●
●

●

●
●● ●

●

●●● ●●

●

●

●
●

●
● ●●

●●
●

●
●

●
●

●
●

●●●●
●

●

●
●●●

●●●

●
●

●

●

●●

●

●

●
●● ●

●

●●
● ●

●

●

●

●●●
●●●
●

●

●

●
●

●

●
●
●

●
●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●●
●

●●
●

●

●

●

●
●

●●
●

●●●

●●●●
●

●
●

●●●

●
●●

●
●

●●
●

●●

● ●
●

●●
●

●

●

●

●●

●●

●●
●●
●

●●● ●
●●

●

●
●●●●

●

●

●

●

●

●

●

●
●●

●

●●●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●●
●

●
●
●

●
●
●

●

●
●

●●●
●

●●
●

●

●
●

●
●
●

●
●●

●
●

●
●●
●●●

●●●●
●●●●●

●
●●●

●
●

●

●●

●

●

●

●

●

●

●
●●●●●

●

●

●●●

●

●●●
●

●

●

●

●●●●
●

●

●
●

●

●

●
●

●
● ●●

●●●●●
●

●●●●●
●

●
●● ●
●

●
●●

●●

●●●
●

●●●●●
●

●●●●
●●

●
●●

●

●

●

●

●

●

●●
●●●●●

●
●

●

●
●●

●
●

●

●

●
●

●

● ●●● ●
●

●

●

●
●

●●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●●●●●

●

●
●

●

●

●

●
●●●

●

●

●●●
●

●
●●●
●

●
●

●

●●

●
●

●●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●●
●●
●● ●●●

●

●●
●

●●
●●●●

●●
●●●

●●●
●

●

●
●●

●
●●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●●●

● ●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●●

●●
●

●●●●

●

●
●

●

●●●●●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●●
●

●
●

●●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●
●●●●

●

●

●

●
●

●

●

●
●●
●

●●●●●

●

●

●

●

●●●●●
●●

●

●
●●●●●●●●

●
●●●●●
●●

●
●●●

●

●

●
●●

●

●

●

●

●

●

●
●● ●

●
●

●●

●●

●
●

●
●

●

●
● ●

●

●●

●
●

●

●●●

●●●

●
●
●●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●●●●
●

●●

●

●

●

●
●

●

●

●
●●

● ●● ●●
●●●●●●

●●
●

●
●●

●
●
●

●●
●●

●
●●●

●

●

●
●

●
●●

●

●
●

●

●●

●

●●

●●

●

●● ●
●

●●●●●●

●●●●
●●

●
●●●

●
●

●
●●

●

● ●

●

●

●

●
●
●
●●●● ●

●

●

●

●

●●
●

●

●●

●●● ●
●●
●

●

●

●

●
●●

●●●
●●

●●●●

●
●●
●

●
●

●

●

●●●

●●●
●

●
●●●●●●● ●●

●●●●
●
●

●
●

●

●●● ●

●
●●

●

●
●●●●●●●●●●

●

●
●
●

●

●●●●
●●●●

●

●

●

●●

●●
●

●
●●●

●

●●
●

●●
● ●

●

●

●●●●

●
● ●●

●●●
●

●
●

●

●

●
●

●
●

●
●●

●

●
●

●
●●●●

●

●

●

●

●

●

●●
●
● ●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●
●
●

●●●

●●
●

●

●
●

●

●
●●●●

●

●
●●●

●
●●

●
●

●● ●

●

●●●

●
●

●

●

●
●

●

●●●
●

●

●●●
●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●●

●
●

●●

●
●
●

●
●●●

●

●●
● ●● ●

●
●

●

●
●●●

●
●

●

●
●●

●

●
●

●●
●
●

●

●

●

●

●●

●

●
●

●
●

●●
● ●

●
●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●●

● ●
●

●

●
●● ●

●

●●
●

●
●

●●
●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●●
●●●

●

●
●

●
●
●

●●

●●

●

●

●
●

●

●
●●●●

●

●●

●

●

●

●
●

●

●●●

●

●
●●

●
●●

●
●
●●●

●
●●

●●

●
●

●

●●●

●
●
●●

●
●

●●
●

● ●

● ●●
●

●●
●

●●

●
●
●

●●
●

●

●

●

●

●

●

●●

●
●●

●●
●
● ●●●●

●

●

●

●

●

●

●

●
●

●●
●

●
●●

●●●
●

●

●

●

●●
●●

●

●
●●
●

●●●
●●

●●●●
●

●●
●●●

●
●

●●
●●●●●●●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●●●

●
●●

●

●●

●
●

●
●

●●
●●

●●
●

●
●●

● ●●

●
●

●
●●● ●

●

●

●
●

●

●●●
●

●

●
●

●

●

●

●●●
●

●

●

●

●
●
●

●●

●
●

●
●

●●

●

●●
●●●

●

●

●

●

●

●

●●●●

●

●
● ●

●
●

●
●●

●

●

●

●●

●

●

●●
●●●

●
● ●

●●
●
●

●

●

●

●●●●
●

●
●

●●● ●
●●

●

●

●

●

●●
●

●
●●●●●

●

●

●

●
●●

● ●
●

●

●
●●

●●●
●●
●●

●●

●
●●

●

●●
●

●
● ●

●

●●

●●

●

●

●
●

●●●
●

●
●●
●

●

●

●

●●●
●

●
●●

●
●

●●●●
●●●

●●●●

●●
●

●

●

●

●

●

●●●●
●
●

●●●●
●

●
●

●●●
●

●
●

●
●

●
●

● ●

●

●●

●●
●●

●
●

●
●

●●
●

●●●●
●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●
●●
●●

●●

●●
●●

●
●●● ●

●●
●

●

●●●

●

●

●
●

●

●

●

●
●

●
●
●

●
●●

●●
●

●
●●

●

●
●●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●
●●●●●●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●
●●

●●●
●●

●
●●●

●●●
●

●
●

●●●
●
●

●
●
●●

●●●●●

● ●●●
●

●●
●●

●

●
●

●

●
●●
●●●
●●
●

●
●
●

●
●

●
●

●●

●
●

●
●

●

●
●●

●●●

●
●
●
●

●●●●● ●●

●●

● ●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●●●●●●
● ●●●

●

●

●
●

●
●●

●
●●●●●●

●

●
●●●●●

●
●

●●
●●●●

●

●
●

●

●
●●●●●●

● ●●●
●

●
●

●

●

●

●

●
●●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●

● ●
●

●●
●
●●

●● ●

●

●

●

●

●
●● ●

●
●

●

●
●●●

●

●●
●● ●

●
●

●

●

●

●

●

●

●
●

●●
●

●●
●

●●
●

●
●

●
●
●●●

●

●

●

●

●

●

●
●

●
●

●

●●
●●

● ●

●
●

●●●●●
●
●●

●●

●●
●

●
●

●
●●
●

●●

●

●●

●●●●

●
●●●
●●●●

●
●

●●●●

●

●

●

●

●

●

●

●

●●

●●●●●●

●●
●

●
●●

●●
●●

●●● ●●●●● ●
●

●

●
●

●
●

●
●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●●
●

●

●

●

●

●●

● ●
●

●

●●

●

●
●

●●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●●● ●●●

●
●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●●
●

●
●

●●●●
●●

●

●
●

●
●

●
●
●

●
●
● ●●●●

●
●
●●●

●

●

●

●

●

●

●●●

●●●●●●
●

●●●
●

●●

●
●

●

●

●

●

●●
●

●●●

●

●
●

●

●

●

●
●

●●
●
●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●●

●●

●

●
●

●
●

●
●

●●●
●

●
●

●
●●

●
●
●

●

●
●

●●
●

●●
●●

●●●
●●

●

●

●

●
●

●

●
●

●
●●●
●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●●●

●
●

●●
●

●
●

●

●
●
●
●

●
●

● ●●
●

●●
●●●
●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●
●

●
●
●

●
●●

●
●

●

●

●●●
●

●●●●●
●●●●
●

● ●
●

●

●
●●

●●
●

●

●

●●●●●
●●● ●

●

●●

●

●
●

●

●

●

●

●
●●●

●●●●●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●
●

●●

●

●

●
●

●

●●
●

●●●●
●

●

●
●

●

●●

●

●

●●●
●

●

●●●
●

●

●

●

●

●

●

●
●

●●
●●●●

●

●●

●●

●

●

●

● ●

●
●

●

●●●●●●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●
●●
●●

●
●

● ●
●●●●●

●
●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●

●
●

●●●●●
●●

●●

●

●●●●●
●

●

●

●

●
●

●

●
●

●

●

●●

●●●●
●●

●

●
●●●●

●

●

●
●●

●
●

●
●

●●
●

●
● ●

●

●

●

●

●

●
●●
●

●●
●

●●
●

●●

●
●

●

●
● ●

●●●

●

●

●

●●
●

●●
●

●●
●
● ●●●

●
●
●●

●●●
●
●●●
●

●
●

●

●

●

●
●

●
●●●

●●●
●

●
● ●

●●

●
●●●●●●●

●

●

●

●

●
●

●

●

●●●●
●

●

●
●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●●

●●
●●

●●●

●

●
●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●

●

● ●

●
●

●●●
●●●●●

●●

●
●

●●●

●

●
●

●

●●●
●●●

●

●
●

●●
●

●

●
●

●

●
●

●●
●

●
●

●

●

●●●●
●●

●

●

●

●●
●●

●
●

●●

●
●●

●●●
●

●●●●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●●
●●●● ●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●●
●

●

●

●
●

●

●●●
●

●
●●

●
●

●
●

●
●

●●

●●
●

●
●●●

●●
●

●
●

●●

●

●

●

●

●
●

●
●●● ●

●●●

●
●●●

●

●

●●

●

●
●●●●

●
● ●

●●

●
●

●

●●

●
●●

● ●

●

●●

●

● ●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●●

●
●

●●
●

●●
●

●●
●

● ●●●

● ●●

●
●●
●

●

●

●

●

●
●

●

●

●

●
●

●●●●●●●
●
●

●
●
●

●
●
●
●● ●
●●●●●

●
●

●

●
●●

●
●
●●●●

●
●

●●
●

●

●
●●

●

●

●●

●●●
●

●

●

●
●

●

●

●
●

●●
●

●●●●●
●

● ●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

● ●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●
●

●
●

●

●
● ●●●

●

●

●

●●●●
●

●
●●
●

●●
●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●●

●

●●●●

●
●●

●

●

●
●

●
●

●
●●
●●

●●●●
●●
●

●
●

●

●

●●

●

●
●

●●

●
●

●●
●

●
●●

●

●
●

●

●

●●●

●
●
●●●●●

●

●●

●

●

●

●

●● ●●●
●

●●
●●
●

●

●● ●
●●●● ●●●

●
●

●

●

●
●

●●
●

●
●

●●●● ● ●

●

●

●

●

●

●

●

●

●●
●
●
●●●●

●●●●
●

●

●● ●
●

●●●
●

●
●●●●

●
●

●

●
●●●●

●●●
●

● ●●●●
●

●
●

●

●

●

●

●●●
● ●●

●
●●

●
●

●
●●
●

●
●

●

●

●
●●●

●
●
●

●

● ●

●●●
●●

●●
●

●

●

●●

●●

●

●●
●

●
●

●
●

●

●

●

●●●

●

●

●

●
●

●●

●
●●
●●
●
●

●
●

●●●
●
●

●●●
●

●
●

●

●●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●●

●
●

● ●●
●

●

●
●●

●●
●●●
●
●

●

●●

●●●●
●●

●●
●

●
●

●

●

●

●●

●

●
●

●

●
●●
●●●●● ●

●

●●
●

●
●

●
●

●●
●●

●
●●

●●

●●
●

●●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●
●●●●

●
●●●

●

●

●
●

●●●
●

●●●
● ●

●
●

●
●

●●

●
●
●●

●
●

●
●

●●
●●

● ●

●
●●
●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●●
●

●

●
●●● ●

●

●●●

●
●
●●●

●

●

●
●

●

●

●

●

●●
●●

●●
●
●

●●
●
●

●●
●

●

●

●
●●● ●

●●
●

●
●

●

●

●
●

●

●●
●

●
●

●

● ●
●

●
●

●●●

●

●

●

●

●

●
●●

●
●

●

●
●●●

●●
●●●●

●
●●

●●●
●

●●●
●●●

●
●●
●

●
●●●●

●●
● ●●

●●●

●●

●

●●

●●●
●●

●●

●

●

●

●

●
●

●
●●●●

●●
●

●

●
●

●
●
●

●

●

●●●

●

●
●

●
●

●
●

●
●●

●●●●

●
●

●●

●

●
●

●

●
●

●●

●

●

●●

●

●
● ●

●

●

●

●
●●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●●
●●●●

●

●
●

●

●

●●

●

●●●

●●
●●●

●

●

●

●

●

●

●●

●●
●

●● ●●
●●

●●●
●●

●●
●

●
●●
●●●●

●
●

●

●
●●

●
●

●
● ●●●

●

●●
●

●
●

●

●
●

●

●
●

●●

●

● ●
● ●●

●●

●

●

●
●

●
●

●●
●●

●●●
●

●
●

●

●
●

●
●

●●●●
●

●

●●

●

●●●
●

●●
●
●

●●

●●

●●
●●●

●

●

●
●
●●●

●●●●
●●

●

●

●

●
●

●●●
●

●●
●

●●●
●

●
●

●
●

●

● ●●

● ●

●
●●●

●
●

●●●●●
●

●●●●
●

●

●●

●

●

●
●
●●

●

●
●● ● ●

●
●

●

●●●●
●

●

●

●
●
●●●

●●
●

●

●
●

●
●

●
●
●●

●
●

●

●●

●

●

●●●
●

●●
●●●

●

●

●

●

●

●●
●

●●●●●●
●●●

●●
● ●

●●

●

●●

●

●

●
●

●
●●

●

●
●

●●●
●

●
●●

●

●

●●●●●●●●●
●●

●
●●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●●●●●●●

●
●

●
●

●

●

●●
●

●
●●

●
●
●
●●

●●

●
●

●

●

●

●
●●●●●

●●●
●

●●●●
●●

●●

●

●●
●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●
●●
●
●

●

●
●

●

●

●●

●●
●

●

●●●
●

●●
●●
●

●●
●●
●

●●●

●
●

●

●

●

●●●
●

●

●●

●

●●
●●
●●●●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●●●

●

●

●

●
●●●
●

●●
●●

●●
●

●
●

●

●
●

●
●

●
●●●●●●

●●●●● ●
●

●●

●●

●
●

●

●

●●●●●●
●

● ●
●

●
●●●

●

●●●

●

●
●

●
●

●

●
●●●● ●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●● ●

●

●
●●
●●●
●●●●
●●
●●

●●

●
●

● ●
●

●●●
●●

●

●

●
●●

●
●●

●
●

●
●
●

●
●●

●●
●

●

●

●

●
●

●●
●

●

●
●

●●
●

●
●

●

●
●

●●●
●

●

●

●
●

●●●
●

●●●●

●

●

●
●●
●

●●●●●

● ●
●

●

●

●

●
●

●

●●●
● ●●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●●●

●
●
●●●

●

●●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●
●●

●●●
●●
●●●●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●●●●●

●
●

●

●

●●
●●●

●
●

●
●

●
●
● ●

●
● ●

●

●
●

●●●

●
●

●

●

●

●●

●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●
●

●
●

●
●

●●

●
●

●

●

●

●

●
●●

●
●

●
●

●●
●●●

●

●●

●
●

●●
●

●

●

●

●●●

● ●●

●●

●●
●●●

● ●
●

●

●

●
●

●●

●
●● ●

●

●

●
●●

●●
●

●
●

●
●

●

● ● ●

●●
●

●
●●●

●●
●

●

●●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●
●
●

●
●●

●●●

●

●●●

●

●
●
●

●
●

●
●

●

●

●

●

●●●●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●
●●
●●●●●●

●●

●●●

●●
●

●
●

●●●●
●

●●●●●
●●●●

●

●
●

●●●

●●
●

●
●

●
●●●●●●

●●●●
●
● ●

●●

●

●●
●●

●

●

●
●

●●
●

●

●

●●●●
●●●
●
●

●●●
●●

●

●
● ●●

●

●

●●

●

●

●●
●●●●

●●

●●●

●●

●● ●

●●

●
●●
●●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●●

●
●

●●
●

●

●

●●
●

●

●●●
●

●

●
●

●

●
●
●● ●

●
●

●●● ●●

●

●
●

●
●

●●

●
●

●
●

●

●

●
● ●

●

●

●

●
●●
●
●

●

●

●

●

●●●●
●●

●
●

●
●●●

● ●
●

●

●●
●●

●

●●
●

●
●

●

●

●
●

●

●

●
●

●
●

●●●
●●
●●

●
●

●

●

●
●
●

●●
●●
●●●

●
●

●●
●

●●●●

● ●
●

●●●●
● ● ●

●

●

●●●
●●●
●

●

●

●
●

●

●
●

●●

●
●

●

●
●

●●
●

●
●

●

●●
●

●

●●

●

●●
●●

●

●

●

●

●●●

●
●●

●●●●
●

●●

●

●

●●●●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●●●

●
●●

●●●
● ●●●●
●
●● ●

●●●●

●●●
●
●●

●●●

●

●

●
●

●

●●

●

●

●

●●●
●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●●
●

●
●

●
●

●
●

●
●

●
●●●●●●●
●●●●

●
●

●●
●●

●
●●

●

●
●

●●
● ●

●
●

●

●

●

●

●

●

●
●●●●

●

●

●
●
●

●●
●

●

●
●

●
●● ●●●●●●●

●●

●

●

●

●●
●
●

●●●●● ●
●

●
●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●●

●
●
●

●
●
●

●
●

●

●

●
●

●

●

●
●●●●●
●

●●
●

●

●

●

●

●

●●●●

●●●
●●●

● ●

●●
●

●

●

●

●

●

●
●● ●●

● ●
●

●

●●
●●●

●●●
●
●●●
●

●

●

●

●

●

●

●

●●

●
●●●

●●●
●

●

●
●

●
●

●

●

●●●

●
●●●●●

●
●

●
● ●●●●

●
● ●●●

●
●
●

●

●

●

●

●

●

●

●
●

●●●●
●

●

●
●

●●●● ●●
●●● ●●

●

●

●

●
●

●

●

●

●●

●
●

●●●●
●

●●
●●●

●

●
●

●

●

●

●

●●
●●●

●

●

●

●●●●
● ●

●
●
●●

●●●

●

●

●

●

●

●

●
●●●●

●●●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●●
●●

●

●
●

●

●

●

●

●

●●
●●

●●
●●
●

●
●●

●

●

●

●

●

●●

●

●
●●●

●
●

●
●

●●●
●

●●●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●●●
●

●●
●●
●
●

●

●

●

●

●●●

●
●

●

●

●
●

●

●●

●
●●
●

●
●
●●●●

●●
●●

●
●

●●

●●
●●●
●●●

●

●●
●●

●

●
● ●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●●
●●●●

●●
● ●

●
●

●
●

●●●●
●●

●
●

●

●

●●

●
●●
●● ●
●

●●●●●
●

●●
●

●

●

●

●

●

●

●●●
●

●
●

●

●

● ●●

●●●
●●●

●

●

●
●●●

●●

●

●

●
●

●

●

●

●

●● ●

●

●

●●
●

●
●

●●
●

●

●

●●
●

●
●

●

●●
●

●
●

●
●
●●

●●

●
●●●

●
●

●
●●●

●●●●●●●● ●

●

●●

●
●●

●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●●
●●● ●●
●

●
●●

●

●

●

●

●

●

●

●

●●●●●
●

●●●
●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●●●

●
●

●●
●●●●●●●

●●
●●

●

●

●●
●●●
●

●

●

●

●●

●
●● ●

●

●
●

●

●

●

● ●●
●
●●

●

●
●●●

● ●
●

●

●

●

●

●

●

●
●●●●

●●
●●●

●●●
●●

●
●●●●
●●●●
●●

●
●

●
●

●
●

● ●

●
●●●

●●
●

●

●

●

●
●

●
●●

●

●
●

●

●
●
●
●●●

●
●

●

● ●
●

●
●●●●
●●

●
●●
● ●

●●

●●●
●●

● ●

●

●

●

●

●

●

●

●

●
●●

●●

● ●

● ●

●

●

●
●

●●
●●
●●

●●

●

●

●

●

●●
●

●●

●

●●
●

●●●
●●●

●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●●
● ●

●
●

●

●
●

●

●●
●

●●
●

●
●

●●

●

●●

●

●
●

●

●●

●●
●●●●●● ●

●
●

●

●
●●
●

●●
●

●

●

●
●

●

●
●

●

●
●
●

●

●●
●

●
●●

●

●

●

●●
●

●●
●

●●●
●
●

●●

●

●

●

●
●

●

●●●
●

●

●

●
●

●●
●

●

●

●●

●

●

●

● ●

●●●

●
●

●●

●
●

●●
●

●●

●●
●
●

●●●●
●●

●●
●

●
●●●

●
●

●

●

●

●

●

●●●
●●

●●●

● ●
●●

●

●

●

●

●●
●●

●

●

●●
●

●
●

●
●

●

●●
●
●

●●● ●

●
●

● ●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●●●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●
●●●

● ●

●

●
●

●

●

●

●
●

●
●

●●●●
●●

●

●

●
●

●●
● ●

●●●

●
●

●●

●

●●●●●●

●

●
●●

●

●
●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●●
●

●

●

●

●
●

●

●

●●
●●●

●
●

●

●
●

●
●●●

●

●

●

●

●

●
●
●●

●●

●●

●●
●

●

●●
●

●
●

●
●

●

●

●

●
●●

●
●
●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●
● ●
●

●
●

●
●

●
●

●
●

●●
●

●●
●●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

● ●
●

●
●

●

●
●

●

●

●

●

●
●●

●●●●
●
●

●

●

●

●●●●●
●
●
●

●
●●

●
●
●

●
●

●

●

●

●
●●●

●● ●

●

●●

●

●●
●

●●

●
●

●

●
●

●

●
●●

●
●

●●
●●

●

●

●

●●
●

●●
●

●

●

●
●

●●
●

●
●

●●

●

●

●

●

●●

●

●
●

●●●●●

●

●

●

●●● ●
●
●
● ●●●

●●●●
●

●

●

●

●
●

●●
●

●
●

●
●

●●●●
●

●●
●● ●

●

●●

●
●●
●
●●●

●●●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●
●
●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●●
●

●
●

●●

●

●
●●
●●

●

●●●

●
●

●
●●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

● ●
●●

●●
●●

●●
●

●
●

●

●

●
●

●

●
●

●●●
●
●

●●
●

●
●

●

●●

●

●

●●

●
●
●

●●
●

●
●

●

●

●
●

●
●

●

●
●
●

●●●
● ●

●

●●●●●

●

●

●
●

●
●

●●
●

●
●●

●
● ●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●●●● ●

●
●

●
●

●●●

●
●●●●●
●●●●

●

●

●

●● ●

●●

●

●
●

●●●●

●

●

●

●
●

●
●
● ●●●●
●
●

●

●●
●

●●

●●●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●
●●●●●

●
●

●
●

● ●
● ●
●●

●

●

●
● ●●●●

● ●●

●

●

●
●

●

●

●●●
●
●

●
●●●●●
●

●

●

●

●

●

●

●●●●●●

●●●
●●

●● ●●
●

●

●
●

●

●
●●●

●● ●●●●●●●●
●

●●●●
●

● ●
●

●●

●

●
●

●

●

●

●

●

●●
●●●

●

●
●

●

●

●
●
●
●

●
●●●●●

●

●
● ●●

●●
●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●●

●
●●

●
●●●●●
●●

●

●●
●

●

●
●●

●●

●●
●

●

●●● ● ●

●●
●

●
●

●
●

●●
●

●
●

●

●●
●

●

●●
●

●

●

●

●
●

●
●

●●●●
●
● ●●

●

●●
●●
●

●

●
●

●●
●

●

●
●

●●
●●

●●
●

●

●
●

●●
●

●
● ●

●
●

●

●

●
●●

●

●

●
●

●

●● ●●●

●

●

●

●

●

●

●● ●
●●●

●

●●

●

●
●

●●●●
●

●
●

●

●●●
●

●●●

●
●

●●
●

●
●

●●
●●

●●
●●●●●

●
●●●

●●
●●●

●●
●

●●

● ●

●

●

●●
●

●●● ●●
●●

●●

●
●●

●
●

●●

●
●

●

●●
●

●●●

●●

●●●●●

●
●●

●
●

●

●

●

●

●

●

●

●
●●●●

●●

●

●●
●●●

●
●

● ●

●

●

●

●

●

●
● ●●●

●
●

●●●
●

●●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●
●●●●

●●
●

●
● ●

●●

●

●

●

●
●
●●

●●●
●●
●●●

●

●●
●●●●

●
●

●●
●

●

●
●

●

●

●
●●●

●●●●●
●

●

●●

●

●
●●

●
●●
●

●
●

●
●
●

●
●●●●●●●●

●●●●
●
●●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●●●●
●

●

●

●

●

●
●●●

●

●
●

● ●
●

●

●
●

●
●●●● ●

●

●●●

●

●●

●●
●●
●

●

●

●●
●●

●●●

●

●●●

●

●

●

●

●

●

●

●
●●
●

●
●●

●●
●●

●
●●●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●●●

●
●●

●

●●●
●

●●
●●
●
●

● ●

●

●

●
●

●●●●

●

●

●●

●

●
●

●●●●●
●

●●●●
●

●

●
●●

●
●

●

●
● ●

●

●
●●●

●●●●●●●
●●

●

●

●

●

●

●● ●
●

●
●●

●
●

●
●

●

●

●
●●●

●●●
●

●
●

●
●
●

●

●
●

●
●
●

●

●

●

●●●●● ●●●●
●

●

●
●

●●

●●
●

●●●
●

●●
●
●●●●

●●
●●●●

●
●

●

●

●

●●
●

●

●●

●

●

●

●
●

●
●

●●●

●

●

●

●
●

●●
●

●

●
●●●
●

●

●

●

●●
●
●

●

●

●

●●
●
●●

●
●

●●
●

●
●●● ●●

●

●●●
● ●● ●

●●

●
●

●
●
●●

●●●●●
●●●●●●●

●●●
●●

●

●
●●●● ●●●

●
●●●●●●

●

●●
●

●

●●●

●

●

●

●●
●
●

●

●

●

●
●

●
●

●
●●

●●

●

●

●

●
●

●

●

●●

●●
● ●

●
●●

●●

●
●●

●

●
● ●

●●
●●

●
●●

●

●

●

●●
●

●
●●

●
●

●

●

●
●

●●
●

●
●●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

● ●●●

●

●
●

●
●

●
●●●●

●

●●

●

●
●
●

●
●●

●

●●

●
●

●

●

●
●

●
●●

●
●

●
●●●

●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●●●

●
●●

●
●●

●
● ●

●

●

●●●● ●●
●
●
●

●
● ●●●●●●●●●●
●

●●
●●
●

●●
●●

●

●

●

●

●
●

●

●

●

●

●●
●

●
● ●●●

●
●

●
●
●

●

●

●●●
●
●●●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●
●

●●
● ●●

●
●
●
●●

●●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●
●

●●

●

●

●

●●

●●
●●

●

● ●

●

●
●●
●

●

●●

●
●●●
●

●
●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●● ●
●●●●
●

●
●

●

●●
●●

●

●

●

●●

●

●

●

●
●

●●●
●
●●

●

●

●

●●●

●●
●●

●

●

●

●

●
●

● ●
●●

●●●●
●

●●●●
●●●
●●

●
●

●
●

●
●
●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●●●●

●●●
●

●
●

●
●

●
●●●●●

●

●●

●
●●●●

●
●●

●

●

●●
● ●●

●●
●
●

●

●

●

●
●●
●●●

●●
●●●
●

●● ●

●

●

●●●
●

●
●
●

●●●
●

●
●●

●

●●
●

●● ●
●

●

●

●

●
●●

●

●
●●

●●●
●
●

●●
●

●●
●

●

●

●

●
● ●

●
●

●●●●●●
●

●
●

●
●

●

●●●
●
●

●
●●●●

●●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●
●

●
●

●
●

●

●
●

●●●
●

●
●●●

●
●●● ●●

●

●
●

●

●

●

●

●

●
●

●●
●

●●
●●
●

●

●

●

●●
●

●●
●●

●●
●●●

●

●

●

●
●

●

●

●
●●●●
●●

●
●

●●●
●●●

●●
●

●

●

●●

●
●

●

●

●

● ●

●

●
●

●

●

●●●

●

●

●
●

●

●
●

●●●●
●

● ●
●

●●

●

●

●
●

●

●

●●●●
●

●

●
●●●●

● ●
●●

● ●

●
●●

●●

●
●

● ●● ●
●●

● ●
●

●
●

●
●

●●
●

●
●

●

●●

●

●
●●
●

●
●

●●
●

● ●
●●

●

●

●
●

●●●●

●
●

●●
●

●

●

●

●

● ●

●

●

●
●●

●●

●
● ●

●
●

●●
●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●●
●●●

●

●
●

●

●
●

●
●

●

●
●●● ●●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●

●●
●

●
●

●
●●

●
●●

●●
●
●

●

●

●

●

●

●

●●

●

●

●●●●●●
●

●●
●●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●●

●●
●●●●

●
●●●

●

●●

●

●

●
●

●

●●

●●
●●●
●

●●

●

●

●
●
●●

●
●●● ●●●●

●●

●●
●●

●●●●●●
●

●
●

●

●
●

●

●●
●●
●

● ●

● ●

●●

●

●●
●
●●
●

●●
●●
● ●●●

●●

●
●●

●
●

●
●
●●
●

●

●

●

●●
● ●

●

●

●●●
●

●

●

●●

●●
●●●

●●
●●

●

●●
● ●

●
●

●
●●●

●
●●

● ●

●

●
●
●

● ●
●

●●●
●●

●
●

●

●
●●

●●
●

●
●
●●

●●●
●

●
●

●●● ● ●

●●
●

●
● ●●●●●

●
●●●

●
●

●
● ●

●

●●

●

●●●
●●●●

●
●

●
●

●
●●

●●
●●

●

●●●●
●

●●

●
●

●
●
●

●● ●
●

●●
●●

●
●

●

●

●
●

●
●

● ●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●
●●●●

●●
●●
●

●
●

●
●

●

●●
●
●●●

●
●●

●

●

●

●

●
●

●●
●
●●

●●
●
●●

●●●●●

●
●●

●●●●●●

●

●
●

●

●
●●●

●●

●●●●●●●
●●

●
●
●

●●●●
●●●●●●●

●
●
●

●
●●
●

●●●●
●

●●
●
●●●●●●●●●●
●●

●

●●

●●

●●●
●

●

●●

●
●

●●●●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●●

●●●

●●

●●

●

●●
●

●●●
●●

●●

●

●

●

●

●

●

●

●
●

●

●● ● ●●●
●●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●●

●●
●●

●

●●●●
●

●●

●
●

●

●
●●●

●●●●●

●

●

●●

●

●

●
●

●

●

●
●

●●●
●

●●● ●
●●

● ●●

●

●
●●●●
●
●●

●

●

●●

●

●

● ●

●
●●

●
●

●

●
●●

●

●
●● ●●

●
●
●
● ●●

●
●

●●
●

●●
●

●
●
●●

●●●

●●
●●

●●
●

●●
●●●●●

●
●●●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●
●

●
●
●●

● ●
●

●●
●●●●

●●●

●

●

●
●

●

●

●

●
●

●●
●

●
●●●●●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●
●

●

●
●●●

●

●
●
●

●

●
●●

●●●●

●

●

●
●

●
●

●●●

●

●●●●●

●●
● ●

●

●
●

●
●●

●
●

●
●

●●
●

●

●

●

●

●●

●

●
●

● ●

●●
●

●●
●●●● ●

●
●

●

●
●●●

●●
●●

●

●● ●
●●●

●

●●●

●

●

●

●

●●

●

●
● ●

●

●

●

●●
●●●

●●●

●●
●

●
●
●

●
●

●
●

●
●●●

●

●●
●●

●

●
●

●
●

●

●

●

●
●●●

●●
●●●

●
●●●●●●

●●
●●

●●
●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●●
●●
●●●
●●

●

●

●

●●●●●

●
●

●
●

●●●
●
●

●

●●

●

●●●●
●● ●

●

●

●

●●

●
●

●
●

●
●●
●●

●

●●
●

●

●

●

●
●

●
● ●

●

●

●●●●

●●

●

●●●
●

●

●

●

●

●

●●●●●
●

●●
●

●
●

● ●●

●●
●

● ●
●

●
●

●

●

●

●

●●

●

●
●●

●

●●●●● ●

●

●●●●
●●

●●●
●
●

●
●

●●

●●
●●●

●
●

●●●
● ●
●

●

●●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●●●●
●

●
●

●
●

●

●

●
●● ●●

●

●
●●●●

●●●

●●
●

●

●

●

●●●
●

●
●●
●●

●●●
●

●●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●
●

●

●

●
●● ●

●
●●●

●

●

●
●

●

●

●●●●
●●

●

●

●

●

●

●●

●●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●
●●●

●●

●

●

●

●●
●

●●●

●
●

●
●

●

●
●

●●

●
●

●
●
●

●●●●●●●
● ●

●

●
●
●●●

●●
●●

●●●

●

●

●

●
●●●

●

●

●

● ●●●●
●●●

●

●
●●●●

●●●
●

●●●
●● ●●

●

●

●
●

●●●
●●● ●

●

●

●

●

●

●

●

●●

●●

●

●●
●

●

●●

●
●

●●
●●

●●
●
●

●●
●

●

●

●

●●

●

●

●●●●●●●
●

●●● ●

● ●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●●●

● ●
●●
●●

● ●

●

●●

●

●●●

●
●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●

●
● ●●

●
●

●

●

●

●

●●
●
●● ●

●●●
●

●
●●●

●
●

●

●
●

●

●●
●
●
●●●

●●●

●
●

●
●●

●

●●
●
●●●

●●●
●

●
●

●●●

●●
●●

●●●

●

●●
●
●
●

●

●
●

●
●

●

●●
●●

●●
●●
●●

●

●

●●●●
● ●●

●
●●

●●●
●●

●

●

●●

●

●
●

●

●

●
●

●
●

●
●●

●●●

●●●
●●

●

●

●

●

●●

●

●
●

●●●
●

●

●
●●●●●
●

●●

●

●●

●
●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●
●●

●
●

● ●●

●

●

●

●
●

●●●●

●●

●●

●

●

●

●● ●●
●

●
●

●
●

●● ●●●●
●●

●
●

●

●
●

●●●
●●●●●
●
●●

●●
●●

●●
●●

●●
●

●

●

●

●
●

●●
●
●

●
●

●●

●
●
●

●
● ●●●●●

●●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●●

●●
●
●●

●●
●

●

●

●

●

●

●
●

●
●

●●

●●

●●
●●●●

●
●

●
●●●

●●●●
●
●

●
●

●●
●●●●●

●

●

●
●
●

●

●●
●●●●●●

●●

●●
●

●●
●

●●●●
●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●
●●
●
●
●
●

●● ●●
●

●●

●
●●

●●●

●

●

●

●

●

●

●●●
●
●●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●
●
●
●

●●●●

●
●
●

●●●●

●

●

●
●●

●
●●

●

●

● ●

●
●

●

●

●
●

●●
●

●
●

●●

●●

●
●

●

●●
●
●
●●

●●
●●

●

●

●●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●●●
●

●
●●

●

●

●
●

●
●

●
●

●

●
●

●● ●

●

●●
● ●
●

●

● ●

●

●

●
●

●

●

●

●
●

●● ●●●
●●●●
●

●

●

●
●●

●

●●●

●

●●
●

●
●●●●

●●●●●
●●●●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●●
●

●

●
●●●●●●

●

●

●

●

●

●

●

●
●●●

●●●●●
●●●

●
●●●

●

●

●●●●

●

●

●
●

●●●
●

● ●

●

●
●

●

●●●
●

●

●

●

●

●●

●

●●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●●

●●

●

●●
●●●
●●●

●

●
●●●●●●●

●

●

●
●

●

●●●●●●● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●●

●
●

●
●

●

●●●●
●

●
●
●● ●

●

●
●

●

●

●

●

●
●

●

●●●●
●

●●
●●●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●
●

●●●●●●●●

●
●

●

●●●
●

●
●

●

●

●

●●

●●●●

●

●
●●

●
●

●●

●●●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●●●

● ●●

●●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●

●
●

●
●

●
●●
●●●●●●
●●●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●
●●

●
● ● ●●●

● ●
●

●

●
●●

●●
●● ●

●
●

●
●

●

●
●
●

● ●●

●

●

●
●●
●●
●

●●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●●

●
●

●

● ●●●
●●●●●● ●●

●

●●●●
● ●

●
●

● ●

●

●
●

●

●

●

●

●●
●●●●●

●
●●●●

●
●

●
● ●

●
●

●

●

●
●●

●●●●
●

●●

●●
●

●

●

●●●●
●

●●●
●

●●

●

●●●
●

●●●●●●●●●

●

●●
●
●●●

●●●

●

●●

●

●

●
●●

●●
●
●

●●
●

●●●●

●

●

●
●● ●●

●
●●●●●● ●

●●
●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●●
●

●
●
●●

●

●

●●

●

●
●

●●

●

●
●●

●
●

●●
●●●

●

●●●

●
●●

●

●●

●

●●
●●●●●

●●

●
●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●●
●
●
●

● ●●

●
●●

●

●
●

●●
●
● ●●

● ●
●

●
●

●
●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●● ●●●●

●

●●●●
● ●

●
●●●●

●●
●●●
●●

●●
●●

●
●

●
●● ●

●●
●

●

●
●

●●

●

●
●●●●●●

●
●

●

●

●● ●

●●

● ●

● ●
●

●●

●
●

●

●●●

●
●●
●

●

●●

●
●

●
●

●

●
●

●
●●●

●
●●

●

●

●●●●●●

●●
●●●

●

●
●

●
●●●

●●●●
●●

●
●

●●
●

●
●

●
●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●●
●●●

●

●●●

●

●

●
●

● ●
●●

●●
●●●●

●

●

●

●
● ●●●

●
●●

●
● ● ●●
●

●
●
●

●●
●●

●
●●

●●
●

●

●

●

●

●

●

●
●

●
●
●●
●
●

●

●
●
●

●

●
●

●

●
●

●●●
●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●
●●
●

●●
●

●
●

●●
●
●

●

●●
●
●●
●●●

●

●●
●

●

●

● ●

●●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●●●●
●

● ●

●

●

●●●
● ●

●
●
●

●

●

●
●●●●

●
●

●

●●

●
●

●

●

●
●

●●●
● ●

●
●

●

●
●●

●

●

●

●
●

●

●●

●

●

●●

●
●●●

●

● ●
● ●

●

●●●
●

●●
●●

●
●●

●

●

●
●●

●●
●●

●●

●
●

●
●

●
●

●
●
●●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●●
●●●

●●●●●●
●

●●
●●●

●
●
●

●
●

●

●
●
●●●

●
●
●●●

●

●

●

●
●

●
●●
●●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●●

●
●

●
●

●
●●

●
●

● ●

●

●
●

●●

●●
●●

●

●

●●

●
●●

●

● ●●●●●
●

●

●
●●

●

●

●

●

●●●●
●

●
●●●●

●

●
●

●

●
●●●●●●

●

●●●●
●

●●●●●
●●●

●●

●

●●

●
●

●
●

●●
●
●●

●●
●

●
●
●●●

●●●
●●

●●

●
●●●●●●●

●●●
●●

●●●●
●

●

●●
●

●

●
●

●●
●

●●●
●●

●●●
●

●
●

●
●

●
●●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

● ●●
●
●

●

●

●

●

●
●

●
●

●●

●●
●

●●
●

●
●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●●●
●

●
●

●

●
●

●
●
●●

●●
●

●

●

●●
●●

●
●
●●

●

●●

●
●

●
●
●

●●
●

●

●

●

●

●

●

●

●●

●●

●●●●
●

● ●

●

●

●

●
●

●●
●●●

●
●

●

●
●

●

●
●

●
●●

●

●●

●

●●●

●

●●
●

●●●
●

●

●

●

●

●
●●●●●●●●

●●●
●●
●

●

●

●
●

●

●
●

●●●
●

● ●
●

●

●

●

●●●
●

●
●●

●
●● ●●

●

●
●

●
●●

●
●
●

●
●

●

●

●

●
●

●●
●

●
●

●
●

●●
●
●

●●
●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●●
●

●●

●●

●
●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●●
●
●

●●● ●

●●

●

●

●

●●●●

●●
● ● ●

●
●

●

●

●
●●●
●●●●

●
●

●

●

●

●

●●

●

●

●●●

●
●●
●

●●
●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●● ●

●

●

●

●
●●
●●●●●● ●

●●

●

●

●

●●● ●
●

●
●

●

●

●
●

●

●

●
●●
●
●●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●
●

●●●
●

●
●●

●
●●

●
●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●
●

●●●●●●
●

●

●

●
●

●

●
●

●
● ●

●

●
●

●
●

●●

●

●●

●

●

●

●

●●●●
●●●●

●

●
●● ● ●

●
●
●

●
●●

●
●●

●

●●

●
●

● ●●●

●●
●●

●

●
●●

●
●

●
●

●

●

●

●

●●●
●

●

●
●●
●●

●
●

●●

●●●

●
●
●●

●
●
●●

●●

●
●

●●●●
●

●

●

●

●

●

●

●

●●●● ●
●

●●

●

● ●

●

●●

●
●●●●

●
●●

●●
●

●●●
●

●
● ●

●●●

●
●

●●

●
●

●
●

●

●●
●

●

●
●

●●
●

●

●

●

●●

●●●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●●●●●

●
●●●

●●●●
●
●

●
●

●
●

● ●

●●

●
●

●
●
●

●
●

●

●

●
●

●

●

●●●
●●●

●
●

●

●●●

●
●

●
●●

●●
●

●
●●●

●
● ●

●●

●
●

●

●
●

●

●●
●

●
●
●

●●
●

●
●

●

●
●

●

●

●

●●●●●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●●

●
●

●●

●

●

●

●

●
●

●
●

●
●●● ●●

●

●

●
●●●●

●●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●●●
●●●

●
●

●
●●
●

●●

●
●

●●●
●

●●●
●●
●●
●● ●

●
●●

●
●

● ●
●

●●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●

●●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●●
● ●●●

●
●●
●
●●

●

●

●

●

●

●

●●●●●
●

● ●

●

●

●
●

●
●

●
●
●

●

●

●

●

●●
●

●

●●●
●●

●
●●

●

●

● ●

●
●●●

●
●●●

●

●●●
●●

●

●

●

●

●

●

●●●

●

●●
●
●

●

●

●
●●

●●
●●●●

●●●
●

●●
●

● ●

●

●

●

●

●

●

●

●● ●●
●●

●●
●●

●

●
●

●● ●
●

●●
●●●

●●●

●

●
●

●
●

●

●
●

●● ●
●●●●

●
●●●●●

●
●

●
●●

●●●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●●

●●
●

●

●

●●●●●●●
●●
●
● ●

●

●

●

●

●

●●

●

●
●●●●

●●
●

●
●

●●●

●●●

●●●●
●●

●
●

●

●

●

●

●

●●
●●

●●

●●

●
●
●

●

●
●

●
●

●●

●●●●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●
● ●

●
●

●

●

●●

●

●●●
●●●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●●
●

●
●●
●
●
●

●

●

●

●●●
●
●●

●
●
●●

●

●

●

●
●

●

●

●
●●

●
●●●● ●

●

●

●

●

●

●
●

●●●●

●
●● ●●

● ●●

●●●●
●●

●

●
●

●●
● ●

●

●

●

●

●

●

●
●●

●
●●

●●

● ●

●

●

●

●

●●

●

●
●

●
● ●

●

●
●●

●

●
● ●●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●●●●●●

●

●

●

●

●

●

●●

●

●
●●

●
●

●
●

●

●
●

●●

●

●●
●

●
●

●●●
● ●●●●●●●

●●

●
●

●
●●●●●

●
●

● ●●

●
●

●●● ● ●●
●

●

●

●●

●●●

●●
●

●●●
●

●
●

●

●

●

●●

●
●●

●●●●
●

●
●●● ●●●
●

●●
●

●

●
●●

●
●●

● ●●
●

●

●

●●
●●

●●●
●

● ●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●●

●●
●
●●

●
●●●

●●
●●●

●

●

●

●●●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●● ●●
●●● ●

●

●● ●●
●

●●
●●●

●
●
●

●
●
●●
●

●
●

●

●●

●
●

●

●

●
●

●

●

●●

●
●

●
●●

●●●●

●

● ●
●
●

●
●

●

●
●

●

●
●

●

●

●
●

● ●
●

●

●
●

●●

●
●

●
●

●
●

●
●

●●●●●

●●
●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●●●
●

●●
●

●

●●
●●

●
●●

●
●●

●
●
●●●●●

●

●
●

●●
●

●●●

●
●

●●
●● ●

●
●●●

●

●●
●
●

●

●

●

●

●●

●●

●
●

●●

●

●●●

●●

●
●

●

●

●

●
●

●●
●

●

●
●●

●●
●

●●
●

●●

●

●
●
●●

●●
●

●●

●

●

●

●
●

●●
●

●

●
●●

●

●

●

●

●●
●●●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●
●●

●
● ●
●●
● ●●

●
●

●●●

●
●

●

●

●

●
●

●

●●
●●●●●●

●

●

●

●●●●
●
●
●●●
●

●●●●
●●●

●

●

●●
●●

●●

●
●●●

●

●●
●

●
●●
●
●●

●●
●
●
●●

●

●

●

●
●●

●

●
●●●●●●

●●

●●●●●
●

●

●

●

●

●
●

●●●●●●
●

●●
●

●
●

● ●

●●●● ●

●
●● ●●●

●●●
●

●
●

●●

●
●

●

●

●

●

●●●

●●
●

●

●

●

●

●

●●
●

●●●●●
●●●
●

●●●

●
●●●●
●

●●●●●
● ●●●●

●●●

●●
●

●
●

●

●

●

●
●

● ●

●●

●
●●●

●
●●

●
●●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●
●
●●●●

●●
●●

●
●

●

●

●
●

●
●●●

●
●●

●●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●
●

●

●●●●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●●
●●

●

●

●
●

●
●●●●

●
●●
●
●●●●

●
●

●●● ●
● ●

●

●

●

●
● ●●●

●

●

●
●

●
●● ●

●

●

●
●●

●
●

●
●

●

●●

●
●

●
●●●●●●

●●●
●

●
●●

●●
●

●●●●
●●

●

●
●●

●●
●● ●

●
●●

●

●

●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●●

●

●

●

●

●
●●

● ●
●

●● ●

●
●

●

●●

●
●

●
●●

●
●●

●

●
●●●

●
●●

●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●
●
●●●●
● ●

●

●
●

●

●●

●

●●

●●●●
●

●
●

●●

●
●●

●

● ●

●●

●●
●

●●
●

●

●●
●●●

●
●●●●

●
●

●
●●●

●●
●●

●●
●

●

●
●●●

●

●

●
●

●

●

●●
●

●
●

●●
●●

●

●●
●●

●●

●
●

●

●●

●
●

●
●

●●●
●
●
●●

●

●

●

●
●

●
●●

● ●●●

●

●
●

●

●●
●

●
●

●

●●

●●

●
● ●

●
●●

●●●●●

●

●

●

●
● ●

●
●

●
●

●
●●
●

●

●

●●
●

●
●●●
●●

●

●●

●

●
●

●

●

●

●
●

●
●●●

●
●

●●●
●
●●●●

●●
●

●
●

●

●●
●
●

●●●
●

●

●●
●

● ●
●

●

●

●

●

●
●●

●●

●

●●●●●●●
●●●

●●
●●

●

●

●●

●
●

●●
●●

●

●●
●●●

●
●

●

●
●
●

● ●
●

●

●
●●

●
●●
●●

●●●●●
●●●●●

●●
● ●

●

●

●
●
●●

●
●

●
●

●

●
●

●
●

●
●

●●●
●

●

●
●●

●●●●
●●

●

●

●

●

●
●

●

●●●●

●

●●

●

● ●

●

●

●
●

●

●●
●●●●●●●●

●

●●
●

●
●

●

●●
●
●●

●
●

●

●
●

●

●
● ●

●
●● ●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●
●●●●

●●
●

●●
●●●●●

●●●
●

●
●

●
●

●

●

●

●● ●●
●●

● ●
●

●●
●●

●●

●
●

●
●●●●

●
●

●
●●

●

●
●●●

●
●●

●●●●

●

●

●

●

●

●

●
●●●

●
●●

● ●
●

●●

●
● ●

●
●

●●
●●

●
●

●

●●●●

●
●

● ●
●●●●●●●●

●
●

●
●●

●

●

●

●
●

●●
●●●
●

●
●

●
●

●
●●

●
●

●
●

●

●●
●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●●

●
●

●●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●●

●

●

●●
●

●

●●

●●
●

●●
●●

●
●●

●●●●● ●
●

●●
●

●●
●

●

●
●

●

●
●

●

●

●
●●

●●●
●

●
●

●●

●

●

●●
●

●●●●●●
●

●

●

●●●

●
●

●
●
●

●
●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●
●

●

●

●
●●●

●●● ●
●

●●●

●
●

●
●

●

●
●● ●

●

●

●

●

●●

●●●

●
●

●

●
●

●●

●
●●

● ●

●
●

●

●

●
●

●●●

●●

●

●

●

●●
●

●

● ●●●
●●

●

●

●
●●

●

●●● ●
●

●●●
●

●
●●

●

●
●
●●

●

●
●

●

●●●●●●
● ●

●
●

●●●

●
●●●
●

●●

●

● ●

●●

●

●●
●●

●●●
●

●●
●
●●

●
●

●●●●●

●●
●●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●●

●

●

●●●●●●
●

●

●
●
●●●

●
●

●

●●
●●

●
●

●
●●

●●

●

●
●●●●

● ●●●●●

●

●
●●●●●●●

●●
●●●

●●
●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●
●●

●●●●●
●●

●

●
●

●●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●● ●
●
●●
●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●
●
●
●
●

●
●●
●
●

●

●
●

●
●

●
●

●
● ●

●●●●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●●

●●
●

●
●

●●●
● ●●

●●

●
●
●●

●●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●
●●
● ●

●

●●
●●●●

●●●
●

●●

●
●
●

●

●

●●●
●

●

●
●

●

●
●

●

●

●

●●
●●

●●●
●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●
●

●●
●●

●
●●

●
●

●
●

●●
●
●
●

●
●

●
●

●●●●●
●

●

●

●

●
●

●

●

●

●
●

●●●
●●●●● ●

●●

●

●
●●●●●

●
●●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●●●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●● ●●
●●

●
●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●

●
● ●

●
●

●

●

●

●

●

●●●
●●●●

● ●
●

●●

●
●

●

●●
●●●
●●●●●●●

●●●
●

●

●●

●

●

●
●

●
●●
●

●

●

●
●●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●●

●
●

●
● ●●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
● ●
●

●●
●

●
●●●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●●

●
●●
●

●
●●

●

●
●

●

●●
●

●

● ●●●
●

●●●●
●

●●
●

●●●●

●●

●
●●●●

●
●●

●

●

●

●●

●●
●●

●●

●

●●

●
●

●●● ●●●●
●

●●●●●●●●●●●
●

●●●

●●
●

●

●
●

●●
●

● ●
●●

●
●

●

●

●●
●●●
●

●●
●

●

●●●●
●●

●
●

●
●●●●
●

●

●
●

●

●

●

●

●●
●●●●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●
●

●

●●
●●

●
●

●●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

●●●
●
●●

●●

●
●●

●

●

●

●

●

●
●●
●

●

●●●
●●

●●

● ●●●

●●
● ●●

●

●

●

●
●
●●●

●
●●
●●●

●

●●
●

●
●

●

●●

●
●●
●

● ●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●
●
●●

●

●

●●

●
●

●

●
●●●
●●

●●

●●●
●●

●
●

●
●

●
●

●
●●

●

●●

●

●

●●

●●●
●

●
●●●
● ●

●

●
●●

●

●
●

●

●

●

●

●

●
●
●●

●

●●●
●●

●
●

●●●
●

●
●

●
●●●●●

●

●

●

●

●

●

●

●
●

●
●●

●
●●

●●●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●
●

●

●
●
●●●

●
●

●

●

●

●

●
●

●
●

●

●

●●
●

●●
●

●●●

●●

●●

●●
●

●

●

●

●

●●●

●
●

●
●

●●●●●
●●●●

●●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●●
●●
●

●●
●

●

●

●●●
●●●●
●●

●●
●

●
●

●●
●●

●
●

●●
●●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●

●
●

●●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●●

●●●
●●●

●● ●

●●
●

●

●
●●

●
●●●

●

●

●
●
●●● ●

●
●●

●
●●●●

●●●●
●

●

●

●
●

●

●
●●●●●●●

●
●

●
●●

● ●

●

●

●
●●

●

●

●

●

●●
●

●●●●●
●

●

●

●

●●

●
●
●

●
●

●
●

●
●
●●
●

●

●

●

●
●●●

●
●●

●

●●

●
●

●
●●

●

●

●

●
●

●
●

●●●

●●●●●●●

●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●●

●
●

●●●
●

●

●
●

●

●

●

●

●

●
●●

●●●●

●
●

●●

●

●

●

●

●

●

●●

●●●● ●●
●

●
●●

●●
●●●

●●
●

●

●

●
●

●

●
●●
●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●●
●●
●●●

●●
●●

● ●●

●
●

●●
●

●

●
●

●●●

●●
●

●
●

●
●●

●●●●
●

●
●●●●

●

●

●●●
●

●●●
●●●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

● ●
●●●

●● ●

●
●

●● ●

●●

●●
●●

● ●

●

●

●

●

●

●

●

●●
●

●
●●●●

●
●

●●
●

●

●

●●● ●●

●

●

●

●●

●

●●
●

●●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●●
●

●

●

●

●●●
●●
●

●
●●

●
●

●
●
●●●●●●

●
●

●

●●●
●

●
●●

●
●●●

●●

●

●
●

●
●

●●●●
●●

●●●●
●

●
●

●

●

●●

●●

●●
●●

●

●
●●

●●●
●

●●
●

●
●●

●
●

●

●

●

●

●

●

●
●
●

●
●

●
●●

●

●
● ●●●● ●●●●●
●●

●●●

●

●●

●
●

●

●
●

●
●
●

●●
●

●
●●●●●

●●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●
●●●

●●
●

●

●
●

●●

●●●
●

●●●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●
●

●●●
●

●●
● ●

●●●●
●

●

●

●
●

●

●
●●

●●●
●●

●
●
●

●

●
●

●●●
●●●●
●

●
●

●
●

●

●
●

●

●

●

●●
●●●

●

●

●
●

●●

●
●
●●●●●
●●●●

●
●●
●●●
●●
●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●
●

●●

●●

●

●
●

●

●

●
●●

●

●
●●●●●

●
●●

●●

●
●●●
● ●●

●

●
●

●
● ●

●
●●

● ●
●

●
●

●
●

●●●
●●

●

●

●●●
●●●●
●

●
●

●
●●●

●
●●

●

●
●

●●●

●

●

●

●

●
●●●
●

●
●●

●
●●●●
●

●
●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●●●
●

●●
●

●
●

●
●●●

●

●

●
●

●
●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●●●●●●●
●

●

●●

●

●
● ●

●

●
●

●●
●●

●

●

●
● ●

●●
●
●

●
●

●
●●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●●●

●●
●●

●
●

●●●●
●

●

●

●●

●

●
●●

●●●
●

●●

●●
●

●●
● ●

●

●

●
●

●

●●●
●
●
●●●

●

●

●

●●
●●●●●●
●●●●
●●

●
●

●
●

●

●●●
●

● ●

●

●

●

●●●
●

●●
●

●

●●

●

●
●
●●

●
●

●●
●

●

●

●
●

●●●

●
●●

●●●
●

●●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●●●

●
●●

●
●

●

●

●

●
●
●●
●

●

●
●●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●●●
●

● ●

●

●

●●●● ●●●●

●●

●

●

●●●
●●●

●●●

●●
●●

●
●●●●

●●
●

●
●

●

●

●

●

●●●
●
●

●

●
●●●●

●
●●

●●

●

●●

●

●

●

●

●
●●

●●●
●●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●●
●●

●

●

●

●
●●

●

●

●●●

●
●

●
●

●●●●●
●

●

●

●●

●
● ●

● ●

●

●

●
●

●●
●

●
●

●

●●

●
●

●
●

●●
●

●

●

●●●
●

●
●

●
●

●

●
●

●

●

●
●
●

●
●

●
●●●●

●

●

●
●●

●

●

●

●

●

●

●
●●●
●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●●
●●

●●
●●●●

●

●

●
●

●

●
●●
●●

●
●●
●●●●●

●

●
●

●

●

●

●
●

●

●

●
●

●●●
●●

●

●
●

●
●●●●●●

●

●

●

●
●

●

●
●●

●●

●

●
●

●

●
●
●

●
● ●

●

●

●

●

●
●

●

●●

●●●
●

●●
●

●
●

●
●

● ●●●
●●

● ●

●
●

●
● ●

● ●

●

●

●

●

●●

● ●

●
●●

● ● ●

●●

●●

●●
●●●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●●●●
●

●
●

●

●

●
●

●
●● ●

●●●

●

●

●

●

●

●
●

●
●

● ●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●●
●●●
●●●●

●
●

●

● ●

●

●

●

●

●

●●
●
●●●

●●●●
●

●
●●

●●
●●●
●

●●●

●

●

●

●
●●●●

●

●●●
●

●

●
●
●

●
●

●

●
●

●●●
●

●

●

●
●●
●

●●
●

●
● ●●●

●●●●●
●

●●
●●

●
●

●
●
●
●●
●

●●

●
●
●

●
●

●

●

●
●●●●●

●
●

●
●●●●

●

●

●

●

●
●●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●

●
●

● ●
●

●

●●

●

●
●●

●

●
●

●●

●●

●

●

●
●

●

●●
●

●

●●●

●
●

●●
●

●

●
●●●

●
●●●● ●

●
● ●

●●●

●

●
●

●
●

●●
●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●
●●

●●
●
●

●

●●
●●●●

●
●●●

●
●●

●

●

●

●
●●

●
●●

●

●●

●●●
●

●●
●

●

●
●

●

●

●
●

●

●

●
●●

●

● ●

●

●●
●

●
●

●●

●● ●

●●
●●●●●

●
●●

●●
●

●

●

●

●
●●

●
●

●●
●

●

●
●

●

●
●

●●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●
●● ●

●
●●

●

●
●●

●●
●

●

●
●

●

●
●

●●

●●●

●

●●

●

●●● ●●
●

● ●
●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●●●

●
●

● ●
●

●

●
●

●
●●●
●●

●
●

●●●●●

●
●

●
●

●
●●●●●●●●

●●
●● ●●●

●
●●●

●●●●●
●

●●

●●
●
●
●●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●●●●●●●
●●●

●

●

●

●

●

●

●●●

●
●● ●●

●
●

●

●●●●

●●
●

●●
●
●

●
●

●
●

●

●

●

●
●

●
●

●●
●

●
●
●

●
●

●●● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●
●●●

●
●●●

●
●●●

●

●●

●●

●
●

●●●● ●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●
●

●

●●
●●

●●●●

●

● ● ●

●●

●

●

●●●
●●

●

●

●

●
●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●
●●

●●●
●

●
●●●

●●

●

●
●●
●

●●●●
●

●

●

●

●

●●
●
●

●

●

●
●

●

●
●

●●
●●●●

●

●●

●
●●●●●●●

●

●

●

●●
●

●
●

●
●

●

●
●
●

●
●●

●

●
●●

●●●●
●

●

●

●

●●

●

●●

●

●
●●

●●

●

●
●

●

●

●

●

●

●●●

●●●
●

●
●●

●

●●●
●●

● ●
●

●●

●●
●●
●

●

●

●

●
●

●

●

●●
●

●

●
●●

●
●●●

●

●

●

●
●

●
●
●●●

●

●●●●
●

●
●

●

●

●

●
●

●●
●

●
●

●
●

●
●●●

●
●●

●
●
●

●●
●

●● ●

●●
●

●

●●
●

●
●●

●

●
●

● ●
●●●●

●●
●
●

●

● ●
●

●

●

● ●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●

●●●●
●

●
●

●
●●●
●

●

●●

●●
●

●
●●

●

●

●●

●

●●● ●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●●●

●
●

●●

●●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●
●●●●

●

●

●

●●●●
●
●●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●●●

●●
●●●●

●●●●
●●

●

●●
●●●●
●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●

●
●●
●●●

●●
●

●

●

●

●

●
●●●●

●●●
●

●●

●
●●●

●
●●●●

●

●

●●
●●

●
●

●
●

●
●●

●

●
●

●

●●●

●●

●●● ●
●

●

●●
●● ●

●●

●
●●●

●

●

●

●

●

●

●●●

●
●

●●●

●
●

●●

●

●

●

●

●●
●●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●● ●●
●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●●●

●

●

●
●●●●

●●
●●

●

●
●

●●

●

●

●

●

●●●●
●●

●
●

●

● ●
●

●
●

●●●
●
●●●●

●

●

●

●

●

●

●
●

●●
●

●

●●●

●●

●

●

●●
●

●
●●

●

●
● ●

●

●

●
●●●●

●
●
●

●●

●

●

●

●

●

●

●●

●
●

●●
●

●
●

●●

●●●
●●

●●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●●●●
●●●●●

●

● ●

●

●

●

●

●
●
●●

●
●●●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●
●●●●

●

●

●
●

●

●●●●●●
●●●
●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●●●

●●
●

●
● ●●●●

●●
●

●

●

●
●

●

●●
●●

●
●●●

●
●

●

●
●●●●
●

●
●

●●●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●● ●
●●

●●●
●●

●
●

●●

●●

●●
●

●
●

●●

●●
●●

●●●

●●

●● ●
●

●

●
●●●●●●

●
●

●

●

●
●
●

●

●

●

●
●

●
●●

●●●●
●

●
●

●

●

●●

●●

●

●

●

●
●●●

●

●

●
●●●●

●
●

●
●
● ●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●●

●

●

●

●
●●

●●●
●

●●
●

●

●

●

●●
●

●

●

●
●●

●

●
●●

●
●

●●
●

●
●

●
●

●●●
●●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●
●

●
●

●●
●

● ●

●●

● ●

●
●●●
●

●●
●●

●

●●
●

●

●
●

●
●

●●
●●●●

●●●

●
●

●

●●

●
● ●

●
●

●
●

●

●
● ●

●●●●
●
●
●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●
●

●
●

●

●

●
●●

●
●●

●

●
●●

●

●●

●
●

●
●
●
● ●

●

●

●●

●

●

●●

●

●●
● ●●

●

●

●●●●●
●

●
●●

●
● ●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●●●● ●●
●●●

●

●●

●

●
●

●
●●●

●●
●

●
●

●

●●

●

●
●

●●

●●●
●

●
●

●

●
●

●

●

●

●
●●
●●

●●
●●●●

●●

●

●
●●

●●

●

●

●

●●

●
●●●

●● ●●

●

●

●●

●

●

●

●

●

●●

●
●●●●●●
●●
●●●●

●

●

●

●

●
●

●
●●●●●●

●●

●●● ●

●

●●

●

●
●
●

● ●

●

●

●

●
●●●

●

●●●

●

●●
●●

●

●

●
●

●
●
●

●

●
●

●
●●

●

●●●●●
●

●●●
●●

●●
●

●
●
●

●

●
●

●

●
●●●●

●
●

● ●

●

●
●●

● ●●

●●

●●●
●

●
●

●
●

●

●

●

●●●
●

●

●●

●

●

●●●●

●

●

●●●
●

●
●●
●

●●
●●●

●
●●●

●●

●
●●

●

●●

●
●●●●

●

●

●

●

●●
●
●●●

●
●●●

●

●
●●●

●●●

●●●●●
●

●

●

●

●
●

●

●●
●●
●●●

●

●

●●●●

●
●

●
●

●

●

●

●

●
●

●●
●

●●
●

● ●●●●●●●●●●

●●●●
●

●

●

●

●●●

●

●

●

●●

● ●

●

●

●

●
●● ●●●

●
●

●

●

●

●

●
●●

●●
●●

●●
●●●●●●
●●●

●

●

●
●

●

●

●
●

●●● ●●●
●

●

●

●

●

●

●

●
●

●

●●●

● ●
●

●

●●

●●

●

●●●●
●

●

●

●

●

●●

●

●

●

●●
●●

●
●●● ●●●

●
●●●●
●

●
●●●

●●
●

●

● ●

●

●

●

●

●
●

●●●
●

●

●
●●

●

●
● ●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●●
●
●●●

●
●

●
●

●
●
●

●●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●
●●

●
●
●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

● ●

●

●

●
●

●● ●

●●

●
●

●●●

●●
●

●
●

●

●●

●
●●●● ●

●

●●

●

●
●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●●●●

●
●

●

●●●

●
● ●

●
●●●
●●●

●

●
●

●
●●●●●●

●

●●

●
●

●●
●●●

●

●●●●
● ●●

●●

●
●

●

●

●
●
●

●

●●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

● ●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●● ●

●●●●●
●

●●

●●

●

● ●
●

●●

●

●

●●
●
●

●

●●●●

●

●
●

●

●

●
●

●
●

●
●●●

●●

●●
●●

●●
●

●

●
●

●

●
●

●
●

●●
●

●

●
●

●

●
●

●

●●●

●●
●

●
●

●
●●

●●

●

●

●

●

●
●

●
●● ●●
●● ●

●
●

●●

●

●

● ●
●●
●●

●●
●
●●●

●

●
●●●

●

●●

●

●

●●

●
●

●●●●
●

●

●●
●●●

●

●

●●

●

●

●

●

●
● ●

●

●
●

●●●
●●●
●

●●

●

●

●

●

●

●

●
●●

●●

●●
●

●

●
●●
●

●

●

●●●●●
●

●

●
●●

●

●

●

●

●

●●
●

●

●
●

●
●
●●●●●●

●
●

●
●

●

●
●

●●●
● ●●●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●●

●

●●●
●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●●●

●●

● ●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●
●

●
● ●

●

●
●●

●
●

●

●
●

●
●

●
● ●●

●
●

●
●

●●●
● ●

●●●

●

●

●

●

●

●

●

●
●
●

●
●●

●●
●●

●

●
●

●

●●
●

●
●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●●
●●

●
●●●●
●

●
●

●●●
●
●●

●
●

●
●

●

●●

●●
●

●

● ●●
●
●●

●
●

●

●

●

●

●

●

●●●●●

●●●●●●●●
●

● ●

●

●

●

●●●●●
●
●

●
●●●

●●
●
●●

●

●

●

●
●●
●●

●
●● ●

●
●●●

●
●

●
●
●

●●●
●

●

●
●

●
●●

●
●●●
●●●●●

● ●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●●●●

●
●

●
●

●
●●●●●

●
●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●●●

●
●●●●●●

●
●●● ●

●

●

●

●

●●
●
●

●
●

●●●●●●●

●●

●●●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●●●
●

●

●

●
●

●
●

●
●●

●

●

●

●

●●

●

●
●

●

●
●

●●●●

●
●

●
●●

●●
●

●
●

●
●

●

●●

●●●
●

●
●

●

●

●

●
●

●
●●●●

●●●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●●●

●●●

●
●●

●●●
●
●●● ●

●

●

●
●
●

●●

●

●

●

●

●●
●

●●
●

●

●

●

●

●●

●
●●

●
●

●●
●

●

●
●

●●

●
●

●

●
●●●

●
●●

●●

●●
●● ●●

●
●
●

●
● ●

●

●
●

●
●

●
●●
●

●

●
● ●●

●

●

●

●
●

●
●

●
●●
●●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●●
●
●●

●
●●

●
●

●●
●

●

●●
●●

●●●●●●
●

●●●

●

●
●

●

●
● ●

●

●
●●

●●

●

●

●

● ●●
●

●

●●

●
●

●●●●●●

●●●

●

●●
●

●

●

●
●

●

●●●
●

●●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●
●●
●

●

●

●

●●
●

●●
●

●

●
●●

●●●

●●
●●

●●●●
●

●
●

●

●

●

●

●

●
● ●

●●
●●

●
●

●

●

●

●

●●
●●●

●

●

●

●

●
●●

●

●

●

●●●

●●
● ●●

●
●

●

●

●

●

●

●●
●

●
●●●

●

●
●

●

●

●

●●●
●

●●
●

● ●

●●●
●

●
●

●●

●

●

●

●

●●

●

●
●

●
●●

●

●●
●

●●
●●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●●●
●●

●

●●
●●

●
●

● ●

●
●

●

●
●

●
●

●●
●●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●
●●
●●●●●

●

●

●

●
●

●
●

●●
●●
●
●

●
●

●

●

●

●
●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●●
●●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●●

●●●
●●●●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●●

● ●
●

●
●●●●

●● ●●●
●●●

●
●●●
●
●●

●
●

●

●

●

●

●

●
●

●
●

●
●●
●

●
●

●

●

●

●

●
●

●
●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●
●●

●
●●

●●
●

●
●●
●●

●
●
●●●●●●●

●
●

●●
●

●●●●●
●●●●●●

●
● ●

●
●●

●
●

●
●●

●

●

●

●●●●●●

●
●●●

●
●

●
●

●●
●

●●

●
●●●

●●
●●

●
●●
●●●

●

●●●●
●●

●
●●●●

●
●

●

●
●
●

●
●●

●●●●
●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●
●

● ●

●

●●

●
● ●

●●

●
● ●

●

●
●

●●
●

●

●●
●

●●
●

●
●

●

●

●

●●
●

● ●
●●

●●●

●●

●

●●●
●●●

●●●
●

●

●
●

●

●●
●

●●●
●

●

●●
●

●●

●

●●

●

●
●

●
●●

●●

●●

● ●●

●

●●

●

●
●●●

●

●

●
●●
●

● ●
●●

●

●

●

●

●

●
●●

●●●
●●

●●●●

● ●

●

●

●

●

●●●●
●

●●

●●●
●

●

●
●

●●
●●

●

●

●●

●

●

●

●
●●●

●●●
● ●

●●●
●●●●

●●●
●

●●● ●●

●

●●
●●●
●●●

●
●

●

●

●●
●

●

●

●

●●●

●

●

●●
●●●●

●

●

●

●
●●●
●●
●●

●
●●●●

●

●●●●●
●

●

●

●

●

●
●●● ● ●●

●●
● ●

●

●

●

●

●

●●

●

●

●
●

●●
●●●●
●
● ●

●

●

●

●

●●
●

●●

●
●

●●●●
●

●●●

●
●

●

●

●●
●

●●
●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●

●●

●
●

●
●
●●●

●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●
●●

●
●●●

●
●
●
●
●

●

●
●●●

●
●
●

●

●
●●●● ●

●
●

●●●●●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●
●
●●●
●
●●

●
●●

●
●

●
●

●●●●
●

●

●
●●
●●●

●●●
●

●●
●

●●
●●
●

●
●

●● ●
●

●

●

●

●

●

● ●
●●

●
●●

●●●

●●

●●●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●●
●

●
●

●

●●●●
●●

●●●
●

●

●
●
●●
●

● ●

●●

●
●

●●●●

●
●●●

●●

●

●
●

●

●●

●

●
●

●

●●●

●
●

●

●●
●●

●●

●●

●
●●●

●
●

●●

●

●

●

●
●●●
●

●●
●●

●

●
●

●●
●

●
●

●

●
●
●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●

●

●●
●

●
●

●
●

●
●

●●
●

●

●
●●

●●

●●
●

●●
●

●

●
●●●●

●

●

●●●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●●●●●
●

●

●
●●

●
●● ●

●

●●
●

●●●●

●
●

●
●●

●
●●

●●
●

●●●
●●●

●
●

●

●●
●

●
●

●

●●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●
● ●●

●●
●●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●●●

●●●●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●
●●●

●●
●●●
● ●

●

●
●

●

●

●

●●

●
●
● ●●
●

●
●●

●●
●●●●●

●
●

●●
●

●●
●

●
●●●

●●

●● ●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●●
●
● ●

●
● ●

●

●
●●

●●●●

●

●

●

●

●

●●
●●●

●
●●●

●
●●

●●●●●
● ●

●
●

●●
●●●
●● ●●

●
●●●●●

●
●

●●
●
●●

●

●

●
●

●

●●
●

●
●

●●
●

●●
●

●
●

●

●
●●

● ●

●

●

●

●

●●●
●

●●
●

●
●●

●

●
●

●
●

●
●

●●

●

●

●●
●●

●●●
●●●●●

●●
●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

● ●

●

●

●

●

●
●●

●
● ●●

●●

●

●

●

●●
●

●
●

●
●

●

●●

●
●

●
●

●●●●●●
●

●
●
●

●
●●●

●●●●
●

●

●
●

●
●

●●●●
●

●
●

● ●
●

●
●

●
●

●
●●

●
●● ●

●●●●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●
●●

●
●

●

●
●

●
●

● ●

●

●●●●●
●

●
●

●

●

●

●

●●

●●

●

●●
●
●

●
●
●
●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●●

●

●
●

●
●●●

●

●●
●

●●●●
●

●●
●●●

●
●●●●●

●●●
●

●
●

●

● ●
●

●●●●●
●

●

●●

●

●●●
●●

●
●
●

●

●

●●

●●
●

●●

●●
●

●

●

●

●

●

●●

●●
●

●●●●
●●●●
● ●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●
●●

●
●●
●●●
●

●●

●●

●

●

●

●
●

●
●

●
●

●● ●●

●

●

●
●

●

●

●

●
●

●●●
●

●
●

● ●●●●

● ●●
●

●

●

●

●
●●

●

●
●●
●●

●●●●

●●
●
●

●●
●

●

●● ●
●●

●
●

●
●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●
●●

●
●●●

●

●

●

●

●
●●

●

●●● ●

●●
●●

●●
● ●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●
●●

●

●●●●

● ●

●●

●●
●●
●
●

●
●

●

●●●

●

●●
●

●
●●
●●●

●●●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●●●
●●●

●
●●

●●

●
●

●
● ●

●

●
●

● ●●●●●●
●●
●

●

●

●

●●
●

●●●
●●

●●●
●

●
●

●●●● ●

●

●

●
●

●

●

●●●●● ●●●●

●
●

●●
●

●

●
●

●

●
●
●●

●

●●
●

●
●

●
●

●●
●●

●●●
●●

●●
●

●

● ●
●●

●●●
●

●
●

●●●
●●●

● ●

●

●

●

●

●●

●

●

●
●

●
●●

●●
●●●

●
●●

●●
●

●●●

●●
●

●
●●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●
●●
●

●

●

●

●

●

●

●
●●●
●●●●

●
● ●

●
●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●●●
●●
●●
●●
●

●
●●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●
●

●●
●

●●●●

●

●●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●●●

●
●●

●

●
●

●●●●
●

●●
●●
●●

●
●
●

●
●

●

●
●

●●
●

●
●

●●
●

●

●
●

●
●●●
● ●

●

●●

●

●

●●
●

●

●●

●

●

●

●

●●

●
●●

●

●

●

●
●●●

●
●

●

● ●
●

●
●

●●
●

●
●

●●●●

● ●●●●

●

●
●●●●

●
●

●
●●

●
●

● ●
●

●
●●●●
●●

●

●
●

●

●
●

●
●
●

●
●

●●

●

●

●
●
●●●

●●●
● ●

●
●

●
●●

●●
●●●

●●●●
●●
●

●●

●
●
●

●

●

●

●

●●
●

●●

●

●

●

●

●●●
●●

●

●
●

●
●●●● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●
●●

●

●

●

●

●
●●

●
●

●

●
●●

●
●

●●
●

●
●

●
●

●
●

●

●● ●
●

●
●

●●●
●

● ●
●●

●
●

●

●

●●
●

●

●

●

●●
●

●
●●●● ●
●

●
●

●

●●●
●
●

●●● ●●●●
●

●

●

●
●
●

●

●

●

●●●●

●
●

●

●
●●●

●
●

●●

●

●

●

●

●

●
●

●●

●

●●

●
●

●●

●●●●●
●●●

●●

●●
●

●

●

●

●
●

●
●

●
●

●
●●

●
●

●

●●●

●

●
● ●

●

●

●
●

●
●
●

●

●●

●●●
●
●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●●

●
●

●
●

●

●●

●●

●
●

●
●●●

●
●

●

●●

●

●
●
●●●●

●

●
●

●

●●
●

●

●
●

●●

●

●

● ●
●

●
●●

●
●●

●

●
●●

●
●

●
●●

●

●●

●●

●
●

●
●

●

●●

●

●●
●

●●

●
●

●

●

●

● ● ●●
●●

●

●

●
●

●

●

●
● ●

●
●●

●

●
●●

●●●

●

●

●

●

●

●●

●
●

●
●

●●
●●

●
●
●●

●

●

●

●●

●

●●
●
●●

●

●●●

●
●

●●

●●

●

●

●

●
●●

●
●

●
●

●
●

●

●

●

●

●
●

●

●●
●
●●●

● ●

●
●

●
●●

●● ●

●
●

●
●

●

●●●
●

●
●●

●
●●

●
●

●

●

●

●

●●●●●
●

●●●
●

●

●

●

●

●

●

●●
●●

●●

●

●●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●●
●

●
●●

●
●●

●●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●

●
●●●

●
●●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●
●●●

●
●●●●

●
●

●
●●
●●

●
●

●
●

●
● ●

●

●
●

●

●
●

●

●
●

●●

●
● ●

●
●●

●
●

●●●
●●●●
●

●

●

●

●

●

●

●
●●●●

●
●

● ●

●
●

●
●

●
●●●

●●●
●●●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●●

●
●●

●
●

●●
●●

●●
●

●

●

●

●
●

●●●●●●●
●●●●
●

●●
●
●

●

●

●

●

0 5 10 15 20

0
5

10
20

0 min after UV

30
 m

in
 a

fte
r

U
V

15

C

Figure 7.11: Scatter plots of Abf1 peak changes: The relationships between
the peak heights in the untreated, 0 min after UV and 30 min after UV
datasets. The red line shows y = x. The general trend is for lower values in
the 30 min sample than the no UV or 0 min. The no UV and 0 min samples
are very similar.

313

CHAPTER 7 SECTION 7.3

0
5

10
15

20

B
in

di
ng

 V
al

ue
 (

lo
g2

)

−2000 Peak Centres +2000

A
0

5
10

15
20

B
in

di
ng

 V
al

ue
 (

lo
g2

)

−2000 Random Centres +2000

B

Figure 7.12: Abf1 peaks profile plot: All 4,369 detected peaks (A) and 4,369
random probes (B). All individual lines shown in black; trend line shown in
red. Data are averages of the three replicates. The detected peaks are clearly
visible, centred around the probe determined to be at the top of the peak.
The random probes show no pattern.

314

SECTION 7.3 CHAPTER 7

(Rhode et al., 1992).

7.3.4 Genomic binding site locations

The previous analysis of this Abf1 binding data by Leadbitter (2011) showed

that binding peaks occur preferentially in promoter regions of genes. This

analysis was undertaken using the genome location information provided

by Agilent in the results of the feature extraction files, which labels each

probe according to its relation to its nearest ORF(s). This enabled a genome

description of each peak to be extracted and analysed. Statistical analysis

showed a significant over-representation of peaks in promoter regions, which

was corroborated by visual analysis of the plots with respect to gene positions.

The analysis here improves on this with the use of the findGene func-

tion. This determines the genome position of each probe to return results

similar to those listed above, but taken from up to date annotation data and

alongside further positional information. This was used in conjunction with

the positionsPlot function to create Figure 7.13, which shows the positions

of the Abf1 binding sites relative to the start or end of the ORF they are

determined to be located at or near. It can be seen by the large peak in the

density plot around the ORF start position (0) that the majority of peaks

occur at this location, with another significant proportion in downstream

regions. Several peaks also occur inside ORFs, some several thousand nu-

cleotides into the gene. It is possible that many of the genuine binding sites

are in promoter regions but the limited resolution of ChIP-chip means that

those close to the ORF start are recorded as falling withing ORFs. The bar

chart shows ∼75% of the peaks occur in promoters or inside genes. Around

half of the promoter regions are divergent. The remaining ∼25% fall in down-

stream regions. A smaller proportion of these regions (∼25%) are divergent.

It appears from this graph that most of the larger peaks fall in intergenic

regions, and there is a trend for smaller peaks further into genes. There are

still however a number of small peaks around the ORF start and end sites.

The results were filtered to examine the PBRs most likely to contain

genuine Abf1 binding sites. Three strict criteria were used to extract only

315

CHAPTER 7 SECTION 7.3

the peaks most likely to be generated by strong Abf1 binding sites: peaks

must be present at the same probe in all three replicate datasets, increasing

the likelihood that the peak is centred around a genuine binding site; the

height of the peak must be greater than 5, meaning it represents a region of

reasonably high Abf1 binding; and the PBR length must be less than 200,

meaning it comes from a region of reasonably high probe coverage where the

data should be more reliable than regions covered by few probes. This left

160 peaks. The positional data of these is shown in Figure 7.14. As before,

most peaks are located around ORF start sites with some at ORF end sites.

The percentage of those inside ORFs has reduced while the percentage in

promoter regions has increased, maintaining the same proportion of divergent

at ∼50%. The percentage in downstream regions has remained approximately

the same. There are still some binding peaks several thousand nucleotides

into ORFs. Nearly all of the tallest peaks occur in intergenic regions and

once again the trend is for smaller peaks further into ORFs.

The method used to generate these results identifies the nearest ORF

to a binding site. Many of the intergenic sites labelled as downstream may

therefore be within promoter regions of other ORFs, the start sites of which

are further away. To remove these potential discrepancies, the plots were

created with only those sites labelled as divergent, for which this problem

does not apply. These are shown in “positionsPlots.pdf” in the electronic ap-

pendix (see Page 367), for total and filtered PBRs respectively, which show

a similar pattern to those in Figures 7.13 and 7.14. This shows that Abf1

binds throughout the genome, including inside ORFs and in non-promoter

intergenic regions, which are likely related to its functions aside from tran-

scriptional regulation.

7.3.5 Comparison with other datasets

Several previous studies have examined Abf1 binding genome wide. These

are summarised in Table 7.3 and described in Section 1.4.4.

The results of this study were compared with these previously published

data. It is immediately apparent that far more PBRs have been identified in

316

SECTION 7.3 CHAPTER 7
D

en
si

ty

0
5

10
15

20

Genome Position

P
ea

k
H

ei
gh

t

−6555.25 0 13110.5 +6555.25
Promoter Inside Downstream

Downstream

Inside

Promoter

Percentage

0 10 20 30 40

Figure 7.13: Abf1 binding site locations: All 4,369 Abf1 peak positions rela-
tive to their nearest gene. Top panel shows the density of the peak positions
and percentage of peaks falling into the three categories of promoter, inside
(an ORF) and downstream. The middle panel shows the peak positions plot-
ted against the peak heights. Position 0 indicates the ORF start. Position
13,110 indicates the ORF end; this is the furthest into an ORF a peak is
found. The bottom panel shows the percentage of probes falling into each
category; light shading indicates divergent regions.

317

CHAPTER 7 SECTION 7.3

D
en

si
ty

0
5

10
15

20

Genome Position

P
ea

k
H

ei
gh

t

−3139.25 0 6278.5 +3139.25
Promoter Inside Downstream

Downstream

Inside

Promoter

Percentage

0 10 20 30 40 50

Figure 7.14: Filtered Abf1 binding site locations: The 124 filtered Abf1 peak
positions relative to their nearest gene. Top panel shows the density of the
peak positions and percentage of peaks falling into the three categories of
promoter, inside (an ORF) and downstream. The middle panel shows the
peak positions plotted against the peak heights. Position 0 indicates the
ORF start. Position 6,278 indicates the ORF end; this is the furthest into
an ORF a peak is found. The bottom panel shows the percentage of probes
falling into each category; light shading indicates divergent regions.

318

SECTION 7.3 CHAPTER 7

this study than previously. This may be due to limited microarray resolution,

especially so with earlier studies, and/or the application of strict statistical

criteria causing the removal of many genuine binding sites. It is the case

in some studies that results were filtered on the basis of the presence of

the consensus binding sequence, potentially removing genuine binding sites

lacking this. Direct comparisons of the results of the studies is difficult, as

each presents their data in a different format. The earlier studies (Lee et al.,

2002; Harbison et al., 2004; Schlecht et al., 2008) report only a gene name

for each binding site, referring to the analysed promoters found to contain

peaks. Comparisons of gene names can be difficult for many reasons. Genes

can have multiple names (standard and systematic in the case of yeast) and

so the genes being compared must be in the same format. Gene names can

be changed in light of new findings, and so names reported in older studies

may not now be correct. Additionally, genes can be very long, potentially

with multiple binding sites associated with them, and so it may not be clear

to which site a name refers.

These limitations notwithstanding, comparisons were made between the

previous early datasets and the results from this study. The peaks found in

this study were assigned a gene name using the findGene function, based on

their closest ORF, which produced 3,589 unique gene names. Where neces-

sary, gene names were converted to systematic names using the YeastMine

tool on the SGD website (http://yeastmine.yeastgenome.org/yeastmine/

begin.do). These systematic names were then compared between the datasets,

with the resulting overlaps shown in Figure 7.15. Each dataset is represented

in a different oval, and the number of gene names found in each possible over-

lapping category is shown. There is surprisingly little similarity between the

datasets, with only 213 gene names appearing in all four. The overlaps be-

tween this study and those of Lee et al. (2002), Harbison et al. (2004) and

Schlecht et al. (2008) are all 59%. The significance of the overlaps between

the results of this study and the published three were determined by use of

the hypergeometric distribution. This found that all overlaps are significant,

with p values of 2.43 × 10−13 (Schlecht et al., 2008), 4.23 × 10−5 (Harbison

et al., 2004) and 1.14× 10−4 (Lee et al., 2002).

319

http://yeastmine.yeastgenome.org/yeastmine/begin.do
http://yeastmine.yeastgenome.org/yeastmine/begin.do

CHAPTER 7 SECTION 7.3

Study Number of Abf1 binding sites found

Lee et al. (2002) 458
Harbison et al. (2004) 468
Schlecht et al. (2008) 1428
Ganapathi et al. (2011) 1035

Table 7.3: Abf1 binding sites found in previous studies.

8 12 11 4

45 213 151 24

2 10 12 1

2688 611 408

This

study

Schlecht

H
a
rb

is
o

n

L
e

e

Figure 7.15: Previously published Abf1 comparisons: Diagram showing the
relatedness between 3 previously published Abf1 binding datasets (Lee et al.
(2002), Harbison et al. (2004) and Schlecht et al. (2008)) and this study.
Note areas are not representative of dataset sizes.

320

SECTION 7.3 CHAPTER 7

The results of this study were next compared with those of Ganapathi

et al. (2011), which report results as coordinates and provide all microarray

data, allowing a higher resolution comparison to be made. All data were

first compared visually with a scatter plot. Both sets of available data were

plotted against the data from this study: actual microarray values (Figure

7.16A) and calculated p-values (Figure 7.16B). These plots indicate no corre-

lations between either the microarray values or p-values, which is confirmed

with Spearman’s correlation coefficients of 0.05 and -0.04 respectively. In

this investigation Abf1 binding sites were measured indirectly, by analysing

nucleosome positions in the WT and temperature sensitive binding mutant

abf1-1. Significant changes in nucleosome positions between the two were

taken to be as a result of the loss of Abf1 binding and therefore indicative of

Abf1 binding sites. As the datasets are so different they may not be directly

comparable in this way which may explain the lack of any correlation.

The locations determined by the authors to be significant, and therefore

representative of Abf1 binding, were next compared to the PBRs determined

in this investigation. These locations are presented as coordinates, as are

the PBRs, allowing direct comparisons between the two. Of the 1,035 re-

gions provided by Ganapathi et al. (2011) in their list of significant sites, 446

(43%) overlap with probe positions on the Agilent microarray identified as

binding sites here, which is statistically significant by the hyper geometric

distribution with a p-value approaching zero. These points are highlighed

in the scatter plots of Figure 7.16 with large black dots. These are spread

randomly throughout the significant regions of the two datasets, with no

association between the two. Many of the sites have high p-values as de-

termined by Ganapathi et al. (2011) (Figure 7.16B), suggesting that the

mapping of values from the Affymetrix to Agilent datasets carried out here

may not be accurate. However, as with the previous analyses, there is a

statistically significant overlap between the Abf1 binding sites identified in

the two analyses.

It was shown in the investigation by Schlecht et al. (2008) that Abf1

binding sites can vary under different cellular conditions. It is also likely be

the case that they vary between different strains of S. cerevisiae. Some of the

321

CHAPTER 7 SECTION 7.3

0 5 10 15 20

−
1.

0
0.

0
1.

0
2.

0

Agilent Data

A
ffy

m
et

rix
 S

ig
na

ls

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

A

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Agilent Data

A
ffy

m
et

rix
 P

−
V

al
ue

s

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

● ●
●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

B

Figure 7.16: Ganapathi et. al.’s data: Scatter plots showing the relationship
between the data of Ganapathi et al. (2011) (Affymetrix data) and this in-
vestigation (Agilent data). A: values from the microarrays. B: calculated
p-values. Darker blue colours show more dense regions of points; isolated
single points are shown with small black dots. Large black dots show regions
determined to be statistically significant and therefore indicative of Abf1
binding sites.

322

SECTION 7.3 CHAPTER 7

discrepancies seen here may therefore be due to variations in the procedures

between the different laboratories performing the investigations. This would

mean that there are many more potential Abf1 binding sites in S. cerevisiae

than have Abf1 bound at any given time.

7.3.6 Sequences at binding sites

An analysis of the yeast genome was undertaken to find the total number

of occurrences of the consensus sequence RTCRYNNNNNACG. A script was

written in R to search the UCSC sacCer3 (April 2011) genome assembly using

tools from the Biostrings package (H et al.). This found 1,785 instances

of the consensus; less than half the number of peaks found. Even taking

into account the fact that some of the PBRs detected in this investigation

may not represent genuine Abf1 binding sites, it is likely that not all of

the Abf1 binding sites can contain the motif. An analysis of these regions

was therefore undertaken to determine if they contain any additional, novel

consensus sequences.

The sequences at PBRs were extracted, using the coordinates from the

peakList, and examined for consensus sequences with BioProspector. The

properties of the PBRs are shown in Table 7.4.

The sequences themselves were first examined for the presence of the

consensus motif. This found 1,034 instances of the motif in 927 of the PBRs,

detailed in Table 7.5. This shows that the majority of the PBRs (79%) do

not contain the consensus motif. Additionally, a large proportion of the total

motifs (42%) do not appear to be associated with an Abf1 binding peak. As

discussed above, it is possible that some or all of these sites have the potential

to be bound by Abf1, but are not under the conditions used here.

Position plots were created from the PBRs with and without the consen-

sus motif, which show a similar pattern to those in Figures 7.13 and 7.14

(shown in “positionsPlots.pdf” in the electronic appendix; see Page 367).

This shows that binding sites relative to ORFs are not associated with the

presence of the consensus motif, or lack thereof.

BioProspector was first run with only the 927 sequences known to contain

323

CHAPTER 7 SECTION 7.3

Median length Shortest length Longest length

307 159 9472

Table 7.4: Abf1 PBR lengths: statistical summaries of all detected Abf1
PBRs.

Number of motifs Number of sequences

0 3442
1 832
2 84
3 10
4 1

Table 7.5: Abf1 PBR motif counts: Numbers of detected Abf1 PBRs contain-
ing different numbers of the consensus motif sequence RTCRYNNNNNACG.

324

SECTION 7.3 CHAPTER 7

the consensus sequence, in order to test its performance. The top results of

these runs are shown in Figure 7.17. The top logo shows the best result when

not requiring the algorithm to find a motif in every sequence. The bottom

logo shows the best result when the algorithm is required to find the motif in

every sequence. These show that the program is reliable, since it is able to

discern these known motifs from the remainder of the sequence, with motif

scores of 4.444 and 4.415 respectively. There is little difference between the

appearance of the two logos, showing that in this case the program works

equally well with both settings. The remainder of the results (shown in “All

BioProspector motifs.pdf” the electronic appendix; see Page 367) also all

find the same motif.

The program was then run with all of the 4,369 PBRs to determine if

any motifs are identifiable in these total sequences. The top logos are shown

in Figure 7.18 and have scores of 4.346 and 2.162 respectively. This analysis

did not find the previously identified consensus Abf1 binding site with either

condition. All motifs found in this way contained variants of repeat TA

regions, likely to be caused by TATA boxes present in promoter regions, the

most common region of Abf1 binding. The remainder of the results (shown

in “All BioProspector motifs.pdf” in the electronic appendix; see Page 367)

show similar results, with no indication of any other motif(s) present in the

sequences.

It is possible that other binding motifs may be present in the PBR se-

quences, but the number of additional sequences without them present pre-

vents them being identified by this method. Of the 160 previously filtered

PBRs thought most likely to represent genuine binding sites, 29% contain

the motif (details in Table 7.6). All of these were therefore analysed for the

presence of other motifs. The top sequence logos are shown in Figure 7.19

and have scores of 2.600 and 1.911 respectively. These show the consensus

motif has been identified in this subset of sequences. The remainder of the

results (shown in “All Bioprospector motifs.pdf” in the electronic appendix;

see Page 367) repeatedly find the consensus, with no other motif identified.

This suggested that even at the sites selected here to represent strong Abf1

binding, some other factor(s), independent of sequence, is(are) influencing

325

CHAPTER 7 SECTION 7.3

WebLogo 3.3

0.0

1.0

2.0

b
it
s

G

A

C

TCGT
5

C

G

T

A

G

A

TC
G
A

10

G
A
C
TGACT

15

T

G

A

WebLogo 3.3

0.0

1.0

2.0

b
it
s

G

A

C

TCGT
5

T

C

G

T

A

G

A

T

T

C

G

A

10

G
A
C
TGACT

15

T

G

A

Figure 7.17: Sequence logos from PBRs containing the consensus: Results
where motif is not (top) and is (bottom) required to be present in every
sequence, created from 927 sequences known to contain the consensus Abf1
binding sequence RTCRYNNNNNACG.

WebLogo 3.3

0.0

1.0

2.0

b
it
s

C

T

G
A
C
A
T
C

G
A
A
C
T

5

AACTGTACATGTA
10

C
T
C

AACTGACT
15

A

WebLogo 3.3

0.0

1.0

2.0

b
it
s

G

T
A
G

A

T

C

C

T

G
A
C

A

G

T

5

G

C

T
A
A

T

C

T

C

G
A
T

C

A

C

T

G

A

10

C

G

A
T
G

T

C
A
G

T

A
C

C

T

G
A
G

A

C
T

15

T

G

C
A

Figure 7.18: Sequence logos from all PBRs: Results where motif is not (top)
and is (bottom) required to be present in every sequence, created from 4,369
sequences from every identified Abf1 PBR.

326

SECTION 7.3 CHAPTER 7

the binding.

Finally, sequences known not to contain the consensus motif were anal-

ysed, to see if any other motif(s) could be identified, without the presence

of the currently known consensus to confound the results. All 3,442 PBRs

were first analysed, and the logos (Figure 7.20 (scores of 4.165 and 2.312)

and “All BioProspector motifs.pdf” in the electronic appendix) show similar

results to those of the total sequences, in that only TATA box-like sequences

appear to have been identified. The procedure was also carried out allowing

a variable gap region between the two motif blocks, to allow any sequences of

variable lengths to be identified, which with respect to the consensus motif

would be in the format XRTCRY[N]3−7ACGXXX, where N represents a non-

conserved base and X a conserved base. (Figure 7.21 and “All BioProspector

motifs.pdf” in the electronic appendix). This method produced the highest

motif scores of all searches (5.063 and 4.439 respectively) but once again

consists of conserved A and T bases, appearing to be relate to the TATA

box.

The same analysis was carried out with the 113 filtered sequences with-

out the consensus motif (Figures 7.22 and 7.23 and “All BioProspector mo-

tifs.pdf” in the electronic appendix). The fixed width sequence logos (scores

of 2.305 and 1.866) show a high proportion of A/T nucleotides, but different

from the previous TATA box-like sequences. There is no indication of a novel

consensus. The sequence logos with variable gap regions (scores of 3.021 and

2.972) show more conservation at several sites, with many positions having

high bit scores. However, these are not as high as the results from the PBRs

containing the known motif, and although individual bases have high scores

there do not appear to be any novel consensus motifs.

It was investigated whether there is a relationship between the number

of motifs in a PBR and the height of the corresponding peak (Figure 7.24A).

The sequences with more motifs tend to come from PBRs with higher peaks,

as shown by the increasing positions of the box plots. However, there are

still a large number of sites with no or few motifs that have high peaks.

Adjusting for the length of the PBR (Figure 7.24B), to take account of the

increasing chance of multiple motifs appearing in longer sequences, reduces

327

CHAPTER 7 SECTION 7.3

Number of motifs Number of sequences

0 113
1 43
2 4

Table 7.6: Filtered Abf1 PBR motif counts: Numbers of filtered detected
Abf1 PBRs containing different numbers of the consensus motif sequence
RTCCTYNNNNNACG.

WebLogo 3.3

0.0

1.0

2.0

b
it
s

C

A

T

C

G
A
G
T
A

C
5

C

G
AT
C
A

C

G

T
A

C

A

T

10

C

T

G

A

T

G

C

AACTG
15

C

T

A
G

WebLogo 3.3

0.0

1.0

2.0

b
it
s

T

A

G

T

G
A
A

G
T

5

T

G

A

C
G
C
A
A
T
C
C

A

G

T

10

A
C
T
C

T

G

A AAGC
15

T

A
G

Figure 7.19: Sequence logos from filtered PBRs: Results where motif is not
(top) and is (bottom) required to be present in every sequence, created from
160 filtered PBRs thought most likely to represent genuine Abf1 binding
sites, showing the consensus Abf1 binding sequence RTCRYNNNNNACG
has been identified.

328

SECTION 7.3 CHAPTER 7

WebLogo 3.3

0.0

1.0

2.0

b
it
s

C

G
T
A
C
A
T
C
A
G

A

C
T

5

G
A
C
TAACTCGA

10

C
T
G
A
G

C

A
T
C

G
T
A
A

C
T

15

A

WebLogo 3.3

0.0

1.0

2.0

b
it
s

A

G
C
T
G

C

A
T

G

A

C
T

C

T

A
G

5

A

G
C
T
T
G
A

A

G

C
T
C

T
G
A
G

A
C
T

10

C

G

A
T
G

A

C
T
C

T

G
A
A

C

G
T
G
T
A

15

G

C

A
T

Figure 7.20: Sequence logos from PBRs without the consensus: Results where
motif is not (top) and is (bottom) required to be present in every sequence,
created from 3,442 sequences known not to contain the consensus Abf1 bind-
ing sequence RTCRYNNNNNACG.

WebLogo 3.3

0.0

1.0

2.0

b
it
s

C
ATAGTCT

5

G
A
G

A

C

T

10

TCGTAT
15

AC
T
G
A
T

WebLogo 3.3

0.0

1.0

2.0

b
it
s

A

C

T

T

C
A
C
T
G
C
T

5

TGA
10

C

T
C

T
15

C
A
T
C

G

A

TC
T

Figure 7.21: Sequence logos with variable gap regions from PBRs without
the consensus: Results where motif is not (top) and is (bottom) required
to be present in every sequence, allowing a gap region of 6–10 nt between
blocks, created from 3,442 sequences known not to contain the consensus
Abf1 binding sequence RTCRYNNNNNACG.

329

CHAPTER 7 SECTION 7.3

WebLogo 3.3

0.0

1.0

2.0

b
it
s

C

G

T
AG
AAA

5

AGAGAGACTA
10

T
A
G
A
G
T
A
T

G
A
T
A

15

G

A

WebLogo 3.3

0.0

1.0

2.0

b
it
s

C
A
C
G
A
T
G
A
T
A

5

T
G
A
T

C

G
A

G

T

C
A
C

T
A
T

G
A

10

C
A
T
G
A
T
G
A
C
G
A

C

T
A

15

T
A

Figure 7.22: Sequence logos from filtered PBRs without the consensus: Re-
sults where motif is not (top) and is (bottom) required to be present in
every sequence, created from 113 filtered sequences known not to contain the
consensus Abf1 binding sequence RTCRYNNNNNACG.

WebLogo 3.3

0.0

1.0

2.0

b
it
s

A

G

C
TTTAC

5

G
A
T
A
C
T

10

G
C
T
C
T
A
T

15

A
G
T
A

C
C
A
T

WebLogo 3.3

0.0

1.0

2.0

b
it
s

G

C
A
G
C
A
C

T
AT
G

5

AGA C
A
C
G
A

10

T
A
C

A
TA
G
G
A

Figure 7.23: Sequence logos with variable gap regions from filtered PBRs
without the consensus: Results where motif is not (top) and is (bottom)
required to be present in every sequence, allowing a gap region of 6–10 nt
between blocks, created from 113 filtered sequences known not to contain the
consensus Abf1 binding sequence RTCRYNNNNNACG.

330

SECTION 7.3 CHAPTER 7

this relationship, but the general trend is still apparent. This shows that the

PBRs containing motifs tend to contain peaks of greater height, but similar

peaks also exist in the absence of the motif.

It is possible that the PBRs calculated by the peak detection script are

too narrow, excluding some motif sites which contribute to Abf1 binding from

the analysed sequence. It was therefore investigated whether or not motif

sites close to, but maybe not within, PBRs have an influence on the peak.

For each peak, the gap between the probe at its centre and the nearest motif

site was calculated. These gap values are plotted against the peak heights in

Figure 7.25. This plot shows that there are a large number of peaks, some

with high binding values, far from a motif site. The 160 peaks determined

by the strict filtering applied earlier are highlighted in red and can be seen

to be scattered throughout the dataset, showing that many of these are also

situated far from a motif site. Taken together these results show that many

Abf1 PBRs do not contain the consensus motif, and this does not seem to

have a detrimental effect on the ability of Abf1 to bind the region.

These results suggest that there are not other sequence motifs causing

the binding of Abf1 in the regions examined. It also suggests that Abf1

binding is not influenced by another protein binding to its own consensus

sequence, as it is likely this would have been identified. Previous studies

have found Abf1 to bind to motifs similar, but not identical, to the consen-

sus. Schroeder and Weil (1998), for example, showed Abf1 to bind to the

sequence RTARYNNNNNACG, with the C changed to an A at the third

position. Analysing the PBRs without the consensus sequence for this mod-

ified sequence found 263 with at least one instance. If Abf1 is able to bind

to other sequences with a single base different from the consensus this will

not be visually detectable in the logos. In this case no true consensus se-

quence would exist, because the sequence would be degenerate, in which

every position could be any base, and so would be represented with an ‘N’.

The consensus provides the basis of this sequence. All possible combinations

of the degenerate sequence with single base changes were searched for, both

genome wide and within PBRs. Based on the fraction of the genome rep-

resented in PBRs, the expected number of these motifs in and out of PBRs

331

CHAPTER 7 SECTION 7.3

●
●●

●

●●●●

●

●●
●
●●
●
●

●●
●

●
●

●

●

●●
●●
●

●

●

●●

●

●

●
●

●

●

●
●
●●
●

●●

●
●
●●●
●

●
●●

●
●
●

●
●
●

●
●
●●

●

●
●●

●

●

●

●

●
●
●●
●

●●

●●

●

●
●●
●

●

●

●
●
●
●
●●
●

●
●
●●●●
●
●
●
●●

●

●
●
●●
●

●
●●●

●

●

0 1 2 3 4

5
10

15
20

Number of Motifs

P
ea

k
he

ig
ht

 (
lo

g2
) ●

A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●
●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

● ●

●

●

●
●

●

●

● ●

●
●
●●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●
●

●●●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

0.000 0.002 0.004 0.006 0.008 0.010 0.012

5
10

15
20

Number of Motifs / PBR length

P
ea

k
he

ig
ht

 (
lo

g2
)

B

Figure 7.24: Abf1 peak heights and numbers of motifs: Box plots (A) showing
the heights of peaks with different numbers of motifs present in their PBRs.
The width of the box plot is proportional to the number of peaks present
in the sample. For clarity the final box plot is highlighted with a red circle.
The same data is shown with an adjustment the for the length of the PBR
(B).

332

SECTION 7.3 CHAPTER 7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

0 5000 10000 15000 20000

5
10

15
20

Gap Between Peak and Nearest Motif

P
ea

k
H

ei
gh

t (
lo

g2
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Figure 7.25: Gaps between Abf1 peaks and motifs: Scatter plot showing the
size of gaps between Abf1 peaks and their nearest motif site against peak
heights. Red points indicate 159 peaks identified by a strict filtering as the
most likely to represent genuine binding sites.

333

CHAPTER 7 SECTION 7.4

was calculated. This was compared to the observed numbers with the Chi-

squared test. This showed that all sequences, as well as the complete motif,

are statistically significantly overrepresented in PBRs. By way of a com-

parison, random sequences in a similar format to the motif were generated,

searched for and tested in the same way. These did not produce statistically

significant results (data not shown).

7.4 Discussion

These datasets have previously been analysed to investigate the role of Abf1

in GG-NER (Leadbitter, 2011), where it was shown that Abf1 preferentially

binds at promoters, the Rad16 protein colocalises to these sites and Rad16

dependent UV-induced H3Ac occurs at these sites. Preliminary data also

suggest there may be changes in the DNA binding kinetics of Abf1 following

UV irradiation, and a number of sites showed reduced binding levels 30 min

after UV irradiation.

The investigation here used the same data to focus on Abf1 binding with-

out any UV treatment, and has shown that there are many more Abf1 binding

sites in the yeast genome than have previously been identified. Comparisons

of this data with previously published genome wide investigations of Abf1

binding (Lee et al., 2002; Harbison et al., 2004; Schlecht et al., 2008; Ganap-

athi et al., 2011) have shown statistically significant overlaps, albeit through

indirect comparisons, using either gene names, which may relate to different

binding sites over the length of the gene, or by the mapping of an Affymetrix

dataset onto the Agilent dataset created here, which may introduce errors

into the data. There are still numerous sites found uniquely in the differ-

ent investigations, suggesting that Abf1 binding is variable and dynamic,

with thousands of potential binding sites throughout the genome, mainly

in promoter regions but also within genes and in downstream regions, not

all of which are bound by Abf1 in the conditions analysed in the different

investigations.

Previous studies have shown that Abf1 is able to bind at sites other

than those containing the consensus binding motif RTCRYNNNNNACG,

334

SECTION 7.4 CHAPTER 7

(Schroeder and Weil, 1998; Ganapathi et al., 2011, for example). Analy-

sis of the sequences at binding sites in this investigation also showed that

many do not contain this motif. In fact, the number of consensus sites

in the whole genome is less than half of the number of peaks identified,

clearly suggesting that Abf1 is able to bind at sites other than those con-

taining this motif. No novel motif could be identified at the sites without

the consensus motif. There may be many possible reasons for this. One

is that a novel motif is present, but the BioProspector software used was

unable to identify it. This is unlikely, as the software was shown to be

able to correctly identify the current consensus sequence. The filtered se-

quences were also run through a second piece of software, MEME (http:

//meme.nbcr.net/meme/cgi-bin/meme.cgi; Bailey et al., 2009), which was

not able to identify any other motif (results shown in “meme.pdf” in the ac-

companying electronic appendix; see Page 367). Another is that there is no

novel motif, and a factor independent of sequence causes Abf1 binding. This

may be related to the TATA box, whereby proteins binding at these sites,

such as transcription factors, facilitate the binding of Abf1. Alternatively,

Abf1 may be able to recognise and directly bind TATA-box like sequences.

However, only ∼20% of yeast promoters have been shown to contain a TATA

box (Basehoar et al., 2004), which would not account for the numbers of

Abf1 binding sites identified here. Finally, Abf1 may be binding to varia-

tions of the consensus sequence, as has been previously shown at a small

number of sites. If Abf1 was able to bind at the consensus with a variation

at any position, this may not show up in the sequence logos as there will

not be any consistency accross the sequences. A statistical analysis of these

sequences in the PBRs suggests that they are overrepresented and therefore

may be having an influence on Abf1 binding. Visual analysis of the actual

sequences detected by BioProspector does not indicate that this is the case

in all PBRs, with many identified sequences varying from the consensus at

multiple positions.

As previously discussed, ChIP-chip is a hypothesis generating technology

whose results need to be confirmed by complementary techniques. Here the

hypothesis is that Abf1 is able to bind to DNA at sites other than those

335

http://meme.nbcr.net/meme/cgi-bin/meme.cgi
http://meme.nbcr.net/meme/cgi-bin/meme.cgi

CHAPTER 7 SECTION 7.4

containing its known consensus binding motif RTCRYNNNNNACG. In order

to gain evidence for this, binding at a number of these sites needs to be

confirmed by other methods. These other methods would also allow a higher

resolution analysis of the binding region to be determined, giving a better

indication of the DNA sequence bound. There is evidence that some proteins

are able to bind to degenerate binding sites bearing little resemblance to their

consensus sequence (for example, Baumruker et al., 1988) and change their

structural confirmation to fit different variations of their consensus sequence

(for example, Phillips and Luisi, 2000). It may be that Abf1 has a similar

propensity, which may account for its apparent ubiquitous binding profile

and the inability here to identify a novel consensus binding sequence.

In the context of GG-NER, Abf1 is hypothesised to act to locate the

Rad7/Rad16 complex at its binding sites in the absence of damage. The

alternative, previously held view was that the complex only associated with

DNA following the induction of damage. Having the complex bound to DNA

at all times theoretically increases the speed at which the cell can respond to

and repair damage. The complex may translocate from these binding sites

either a short distance, having a distant effect, or a long distance, possibly to

sites of damage, to initiate the repair process. Previous work suggests this is

unidirectional. In this scenario, it is advantageous for Abf1 to be bound reg-

ularly throughout the genome, positioning the GG-NER machinery to act at

any damage site. 20% of the genome is within 400 nt of an Abf1 binding site

identified here which, not taking into account the orientation of the binding

sites, means GG-NER over this proportion of the genome can be influenced

by the previously identified 400 nt window of repair unidirectionally from

an Abf1 binding site. It is possible that the domain of repair is longer than

400 nt at some Abf1 binding sites, increasing the proportion of the genome

accessible to repair by the complex.

336

Chapter 8

Conclusions and future work

Tools

The bioinformatic tools presented in Chapter 3 provide a way of loading and

analysing data in R. They are intended to provide a complete, integrated

set of tools for these procedures, allowing basic analyses to be undertaken

by people with little previous experience of bioinformatic data analysis or R,

whilst maintaining the scope for more advanced analyses. They have been

tested and used extensively in our laboratory, by people with a range of pre-

vious bioinformatic experience. The tools proved to be useful in generating

results that have been used in publications, PhD theses, both complete and

ongoing, and various other reports, posters and presentations. They have

shown themselves to be simple enough to allow their use, along with the

instructions, without significant additional support, thus achieving both of

their key objectives.

The next step is to create a single R package containing these tools and

present this as a publication, a draft manuscript for which has already been

completed. Combining all the functions into a new package has many ad-

vantages over their current state, which are currently in separate files which

have to be manually loaded into R. A single package can be easily down-

loaded and installed from, for example, Bioconductor, making the functions

more accessible to the wider research community. Having this single entity

makes maintaining and updating the functions easier and ensures that all

337

CHAPTER 8

users have all of the most up to date functions at all times. This also allows

new packages to use functions presented here in their processing, if required.

Normalisation

The normalisation method presented in Chapter 4 allows multiple ChIP-chip

datasets from different conditions to be processed so as to allow comparisons

to be made between them. Previously this was not possible and ChIP-chip

investigations tended to either examine a single condition at a time, to de-

termine where a factor of interest is present in a genome, or make limited

comparisons between datasets from different conditions which could only dis-

tinguish the complete loss or gain of the factor at a given location from one

condition to another. Normalising the data in the way described here allows

relative changes in the level of the factor to be examined, opening up a new

dimension of analysis.

Work is ongoing to further validate and refine the procedure with other

quantitative technologies, such as Q-PCR. So far, two sets of data have been

validated in this way, showing the normalisation to be robust. The Gcn5

protein binding dataset is currently undergoing this validation.

The alternative normalisation method, using spiked DNA samples of vary-

ing concentrations, is still under development. Several spike samples have

now been created and these have been applied to several microarrays in or-

der to optimise their concentrations and conditions (work primarily carried

out by Dr. Katie Evans). Following this, samples of a range of optimal con-

centrations will begin to be analysed alongside real ChIP-chip data to develop

a methodology for their use in normalisation.

Enrichment detection

The enrichment detection method presented in Chapter 5 was developed to

fill a gap in the currently available enrichment detection software. There is

no one method that is able to work with ChIP-chip data from any microarray

platform, which the method presented here can do. It can also be used to

detect either regions of enrichment or peaks, depending on the type of data

338

CHAPTER 8

being analysed. It is fully integrated with the other functions presented here

and has been optimised for fast performance, allowing for easy generation

and presentation of results.

It has been tested with previously published spike datasets, developed for

testing different aspects of ChIP-chip technology and data analysis. The cal-

culated sensitivity and specificity values from these tests showed the method

to outperform previously published enrichment detection methods tested on

the same datasets. It was also tested with simulated ChIP-chip datasets,

created here for this purpose, which also produced good sensitivity and speci-

ficity values.

Some problems with the available datasets for the testing of enrichment

detection algorithms, such as that presented here, have been highlighted.

There is only one published set of ChIP-chip data created for the purposes

of testing and validating ChIP-chip procedures (Johnson et al., 2008), which

was shown here to be inconsistent between repeats. A simulated dataset

was also created here for testing the algorithm, but this will not necessarily

accurately represent a genuine ChIP-chip dataset. It may be advantageous

therefore to develop new datasets, where all sites of enrichment are known,

possibly using spiked DNA samples, to enable the more accurate testing and

refinement of enrichment detection algorithms.

Damage prediction

The damage prediction method presented in Chapter 6 has been invaluable in

our laboratory for developing and testing a novel use of ChIP-chip technology,

to detect DNA damage. Without the ability to compare microarray results

with the predicted profiles, it would not be possible to determine whether or

not the technology is working correctly, and displaying the results of damage,

or displaying only random noise. The prediction has been used to validate

microarray datasets examining damage created by UV radiation and the

chemotherapeutic drugs cisplatin and oxaliplatin. The R function has been

further optimised since its publication in 2011 and is now able to create these

predictions in seconds, rather than the hours previously required.

339

CHAPTER 8

Abf1 binding

The tools presented in this thesis have been used extensively to examine a

range of ChIP-chip datasets generated in our laboratory. They were used

in Chapter 7 to normalise, detect peaks, extract sequence information and

create graphical displays from Abf1 binding datasets. This showed that Abf1

appears to bind at many more sites throughout the genome than have pre-

viously been identified. Many of these sites do not contain the current Abf1

binding consensus sequence RTCRYNNNNNACG.

As explained previously, ChIP-chip is a hypothesis generating technol-

ogy which needs to be validated with other techniques. Some binding sites

containing the consensus have previously been validated using PCR by Dr.

Matthew Leadbitter. Some sites without the consensus also now need to

be tested with a suitable technology, both to confirm the results of the mi-

croarrays and to determine the sequence(s) at which Abf1 is binding. This

will help to answer the questions posed here as to whether there is a novel

Abf1 binding motif or whether some other factor is able to influence Abf1’s

binding, which may have implications in all of the functions of Abf1. The

information can also be incorporated into the current model of the mecha-

nisms of GG-NER. Further tests can be carried out, both genome wide with

the use of ChIP-chip and by other technologies, to determine if and how the

various binding sites influence DNA repair.

The future

Several diverse but related projects in our laboratory are using the bioin-

formatic tools presented here to analyse data. These include clinical and

industrial projects, as well as ongoing basic research. An investigation into

the genome wide profile of damage induced by the platinating chemothera-

peutic agents cisplatin and oxaliplatin, along with cellular responses to these

drugs, is being undertaken to better understand the actions of the drugs, with

a view being able to provide treatment programs tailored to individual pa-

tients based on their responses to these DNA damaging agents. This requires

ways of analysing multiple large datasets, making comparisons between them

340

CHAPTER 8

and extracting significant data, which might, for example, predict how a pa-

tient will respond to treatment. The tools described here allow analyses of

this type. An investigation will begin shortly with industrial partners into un-

derstanding how histone deacetylase inhibitors, which affect the epigenome,

lead to genotoxicity. This will also require the tools presented here, to be

able to determine factors such as where the drugs localise, where they then

act, how long they remain bound, what responses they induce and how they

influence DNA repair rates. The previous methods of analysis, enabling only

sites of binding to be identified, would not be sufficiently informative to al-

low these analyses. The basic research being undertaken in our laboratory is

into the mechanisms of the GG-NER pathway. Multiple ChIP-chip datasets

have been produced as part of this research, including histone acetylation,

the chromatin binding of proteins involved in the repair process, and DNA

damage itself. Further investigations will be carried out in this vein, in the

context of newly generated genome wide datasets, to enable a model of the

process to be made at the genome wide level, rather than at the short ge-

nomic regions that have been analysed previously. An analysis of this type

has been published by Leadbitter (2011).

ChIP-seq (chromatin immunoprecipitation followed by next generation

sequencing) is a developing technology which is likely to replace ChIP-chip in

the coming years. ChIP-chip is currently more accessible to most laboratories

as it is cheaper and less labour intensive. Some ChIP-seq data of DNA

damage have been produced in our laboratory. The tools developed here can

and have been adapted to analyse this type of data and can continue to be

updated and modified to do so. There is an increasing focus on integrating

different types of ’omics data produced on different platforms to be able to

analyse them together (Cutts et al., 2012, provide a recent example). This is

something that the tools presented here could be adapted to facilitate, given

that they are already able to load data from any source.

It is anticipated that two publications will be created from the work pre-

sented here, in addition to the already published work from Chapter 6. The

first will present the R scripts as a complete package, which will be made

publicly available for others to use through a platform such as Bioconductor.

341

CHAPTER 8

There is currently no other method available for the normalisation of ChIP-

chip datasets from different conditions so as to allow relative comparisons

to be made between them and so it is hoped that the tools presented here

will allow the wider research community to perform this process on their

own data to expand the current uses of ChIP-chip to produce novel results.

The second will present the Abf1 binding data, which has implications in the

variety of fields that Abf1 plays a role, including transcriptional regulation,

genome partitioning, replication and GG-NER. Abf1 is an important general

regulatory factor in the yeast genome and this updated, comprehensive anal-

ysis of genome wide binding sites will be significant for understanding how

this protein functions in the cell.

Over the coming years bioinformatics will become increasingly important

as larger and more detailed biological datasets are generated, which will re-

quire ever evolving computational tools for their analysis (Pepke et al., 2009;

Ji, 2011). The tools presented in this thesis cannot be viewed as an end

point, rather the foundations on which further tools can be based as new

avenues of investigation are revealed. In this way the field of bioinformatics

will increase both in depth, as the focus of investigations becomes ever more

narrow, and breadth, as the number of types of investigation that can be

carried out grows (Park, 2009). It is therefore important that the role of the

bioinformatician is not simply to take over the analysis of data generated by

biologists carrying out wet laboratory work, but to become actively involved

in the design of experiments, having a say over what is investigated and how

this is carried out, and any follow-up studies, in order to maximise the po-

tential of any data generated. As genome wide technologies become more

prevalent and next-generation sequencing becomes more accessible, comput-

ers should be viewed as another weapon in the biologists’ arsenal, as essential

as pipettes or gel rigs, rather than a specialist tool operated by people sep-

arate from those working at the bench. Thus the analysis of large datasets

should become a routine and expected part of everyday experimental biology,

with the distinction between ‘biologist’ and ‘bioinformatician’ becoming less

and less defined.

342

Bibliography

M.E. Adriaens, M. Jaillard, L.M.T. Eijssen, C.D. Mayer, and C.T.A. Evelo.
An evaluation of two-channel ChIP-on-chip and DNA methylation microar-
ray normalization strategies. BMC genomics, 13(1):42, 2012.

Agilent Technologies Inc. Agilent SurePrint technology technical
overview, January 2003. URL http://www.chem.agilent.com/Library/

technicaloverviews/Public/5988-8171en.pdf.

Agilent Technologies Inc. Agilent microarray format technical overview (revi-
sion 1.0), January 2007. URL http://www.chem.agilent.com/Library/

technicaloverviews/Public/G4502-90001_MicroarrayFormat.pdf.

Agilent Technologies Inc. eArray custom CGH microarrays FAQ, March
2010a. URL http://www.chem.agilent.com/Library/brochures/

5990-5520en_lo.pdf.

Agilent Technologies Inc. Agilent Genomic Workbench Feature
Extraction (version 10.10), September 2010b. URL http:

//www.chem.agilent.com/Library/usermanuals/Public/G4460-

90035_FeatureExtraction_QuickStart.pdf.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molec-
ular Biology of the Cell, fourth edition. Garland Science, 2002.

D.G. Albertson, C. Collins, F. McCormick, J.W. Gray, et al. Chromosome
aberrations in solid tumors. Nature genetics, 34(4):369–376, 2003.

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic
local alignment search tool. Journal of molecular biology, 215(3):403–410,
1990.

S. Andrews. ChIPMonk: software for viewing and analysing ChIP-on-chip
data. BMC Systems Biology, 1(Suppl 1):P80, 2007.

343

http://www.chem.agilent.com/Library/technicaloverviews/Public/5988-8171en.pdf
http://www.chem.agilent.com/Library/technicaloverviews/Public/5988-8171en.pdf
http://www.chem.agilent.com/Library/technicaloverviews/Public/G4502-90001_MicroarrayFormat.pdf
http://www.chem.agilent.com/Library/technicaloverviews/Public/G4502-90001_MicroarrayFormat.pdf
http://www.chem.agilent.com/Library/brochures/5990-5520en_lo.pdf
http://www.chem.agilent.com/Library/brochures/5990-5520en_lo.pdf
http://www.chem.agilent.com/Library/usermanuals/Public/G4460-90035_FeatureExtraction_QuickStart.pdf
http://www.chem.agilent.com/Library/usermanuals/Public/G4460-90035_FeatureExtraction_QuickStart.pdf
http://www.chem.agilent.com/Library/usermanuals/Public/G4460-90035_FeatureExtraction_QuickStart.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

G. Badis, E.T. Chan, H. van Bakel, L. Pena-Castillo, D. Tillo, K. Tsui, C.D.
Carlson, A.J. Gossett, M.J. Hasinoff, C.L. Warren, et al. A library of
yeast transcription factor motifs reveals a widespread function for Rsc3 in
targeting nucleosome exclusion at promoters. Molecular cell, 32(6):878–
887, 2008.

T.L. Bailey, M. Boden, F.A. Buske, M. Frith, C.E. Grant, L. Clementi,
J. Ren, W.W. Li, and W.S. Noble. MEME SUITE: tools for motif discovery
and searching. Nucleic acids research, 37(suppl 2):W202–W208, 2009.

D.D. Bang, R. Verhage, N. Goosen, J. Brouwer, P. van de Putte, et al.
Molecular cloning of RAD16, a gene involved in differential repair in Sac-
charomyces cerevisiae. Nucleic acids research, 20(15):3925, 1992.

A.J. Bardwell, L. Bardwell, A.E. Tomkinson, and E.C. Friedberg. Specific
cleavage of model recombination and repair intermediates by the yeast
Rad1-Rad10 DNA endonuclease. Science, 265(5181):2082–2085, 1994.

C.L. Barrett, B.K. Cho, and B.O. Palsson. Sensitive and accurate identi-
fication of protein–DNA binding events in ChIP-chip assays using higher
order derivative analysis. Nucleic acids research, 39(5):1656, 2011.

D.P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell, 116(2):281–297, 2004.

A.D. Basehoar, S.J. Zanton, and B.F. Pugh. Identification and distinct reg-
ulation of yeast TATA box-containing genes. Cell, 116(5):699–709, 2004.

T. Baumruker, R. Sturm, and W. Herr. OBP100 binds remarkably degener-
ate octamer motifs through specific interactions with flanking sequences.
Genes & development, 2(11):1400, 1988.

R. Beinoravičiūtė-Kellner, G. Lipps, and G. Krauss. In vitro selection of
DNA binding sites for ABF1 protein from¡ i¿ Saccharomyces cerevisiae¡/i¿.
FEBS letters, 579(20):4535–4540, 2005.

P.K. Bhatia, R.A. Verhage, J. Brouwer, and E.C. Friedberg. Molecular
cloning and characterization of saccharomyces cerevisiae RAD28, the yeast
homolog of the human Cockayne syndrome A (CSA) gene. Journal of bac-
teriology, 178(20):5977–5988, 1996.

M. Bieda, X. Xu, M.A. Singer, R. Green, and P.J. Farnham. Unbiased
location analysis of E2F1-binding sites suggests a widespread role for E2F1
in the human genome. Genome research, 16(5):595, 2006.

344

BIBLIOGRAPHY BIBLIOGRAPHY

G. Bindea, B. Mlecnik, WH Fridman, F. Pagès, and J. Galon. Natural
immunity to cancer in humans. Current opinion in immunology, 22(2):
215, 2010.

B.M. Bolstad, R.A. Irizarry, M. Åstrand, and T.P. Speed. A comparison of
normalization methods for high density oligonucleotide array data based
on variance and bias. Bioinformatics, 19(2):185, 2003.

A.J. Brookes. The essence of SNPs. Gene, 234(2):177–186, 1999.

AR Buchman and RD Kornberg. A yeast ARS-binding protein activates tran-
scription synergistically in combination with other weak activating factors.
Molecular and cellular biology, 10(3):887–897, 1990.

A.R. Buchman, W.J. Kimmerly, J. Rine, and R.D. Kornberg. Two DNA-
binding factors recognize specific sequences at silencers, upstream acti-
vating sequences, autonomously replicating sequences, and telomeres in
Saccharomyces cerevisiae. Molecular and cellular biology, 8(1):210–225,
1988.

M.J. Buck and J.D. Lieb. ChIP-chip: considerations for the design, analysis,
and application of genome-wide chromatin immunoprecipitation experi-
ments. Genomics, 83(3):349–360, 2004.

M.J. Buck, A.B. Nobel, and J.D. Lieb. ChIPOTle: a user-friendly tool for
the analysis of ChIP-chip data. Genome Biology, 6(11):R97, 2005.

A. Butte. The use and analysis of microarray data. Nature reviews drug
discovery, 1(12):951–960, 2002.

J. Cadet, N.E. Gentner, B. Rozga, and M.C. Paterson. Rapid quantitation
of ultraviolet-induced thymine-containing dimers in human cell DNA by
reversed-phase high-performance liquid chromatography. Journal of Chro-
matography A, 280:99–108, 1983.

M.F. Carey, C.L. Peterson, and S.T. Smale. Chromatin immunoprecipitation
(ChIP). Cold Spring Harbor Protocols, 2009(9):pdb–prot5279, 2009.

S. Cawley, S. Bekiranov, H.H. Ng, P. Kapranov, E.A. Sekinger, D. Kampa,
A. Piccolboni, V. Sementchenko, J. Cheng, A.J. Williams, et al. Unbiased
mapping of transcription factor binding sites along human chromosomes
21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116
(4):499–509, 2004.

345

BIBLIOGRAPHY BIBLIOGRAPHY

M. Cesaroni, D. Cittaro, A. Brozzi, P.G. Pelicci, and L. Luzi. CARPET:
a web-based package for the analysis of ChIP-chip and expression tiling
data. Bioinformatics, 24(24):2918, 2008.

C.L. Chaffer and R.A. Weinberg. A perspective on cancer cell metastasis.
Science (New York, NY), 331(6024):1559, 2011.

D.I. Chasman, N.F. Lue, A.R. Buchman, J.W. LaPointe, Y. Lorch, and R.D.
Kornberg. A yeast protein that influences the chromatin structure of uasg
and functions as a powerful auxiliary gene activator. Genes & development,
4(4):503, 1990.

M. Chee, R. Yang, E. Hubbell, A. Berno, XC Huang, D. Stern, J. Winkler,
DJ Lockhart, MS Morris, and SP Fodor. Accessing genetic information
with high-density DNA arrays. Science (New York, NY), 274(5287):610,
1996.

Y. Chen, C.A. Meyer, T. Liu, W. Li, J.S. Liu, X.S. Liu, et al. MM-ChIP en-
ables integrative analysis of cross-platform and between-laboratory ChIP-
chip or ChIP-seq data. Genome Biol, 12:R11, 2011.

G. Cho, J. Kim, H.M. Rho, and G. Jung. Structure-function analysis of the
DNA binding domain of saccharomyces cerevisiae ABF1. Nucleic acids
research, 23(15):2980–2987, 1995.

H. Choi, A.I. Nesvizhskii, D. Ghosh, and Z.S. Qin. Hierarchical hidden
Markov model with application to joint analysis of ChIP-chip and ChIP-
seq data. Bioinformatics, 25(14):1715–1721, 2009.

S.W. Chua, P. Vijayakumar, P.M. Nissom, C.Y. Yam, V.V.T. Wong, and
H. Yang. A novel normalization method for effective removal of systematic
variation in microarray data. Nucleic acids research, 34(5):e38–e38, 2006.

W.S. Cleveland. Robust locally weighted regression and smoothing scat-
terplots. Journal of the American statistical association, pages 829–836,
1979.

A.R. Collins. The comet assay for DNA damage and repair. Molecular
biotechnology, 26(3):249–261, 2004.

C.R. Contopoulou, V.E. Cook, and R.K. Mortimer. Analysis of DNA dou-
ble strand breakage and repair using orthogonal field alternation gel elec-
trophoresis. Yeast, 3(2):71–76, 1987.

346

BIBLIOGRAPHY BIBLIOGRAPHY

C.T. Courcelle, K.H. Chow, A. Casey, and J. Courcelle. Nascent DNA pro-
cessing by RecJ favors lesion repair over translesion synthesis at arrested
replication forks in Escherichia coli. Proceedings of the National Academy
of Sciences, 103(24):9154–9159, 2006.

D. Coverley, MK Kenny, M. Munn, WD Rupp, DP Lane, and RD Wood. Re-
quirement for the replication protein SSB in human DNA excision repair.
Nature, 349(6309):538, 1991.

F. Crick and J. Watson. A structure for deoxyribose nucleic acid. Nature,
171(737-738), 1953.

G.E. Crooks, G. Hon, J.M. Chandonia, and S.E. Brenner. WebLogo: a
sequence logo generator. Genome research, 14(6):1188–1190, 2004.

R.J. Cutts, A.Z.D. Ullah, A. Sangaralingam, E. Gadaleta, N.R. Lemoine,
and C. Chelala. O-miner: an integrative platform for automated analysis
and mining of-omics data. Nucleic Acids Research, 40(W1):W560–W568,
2012.

W.L. De Laat, E. Appeldoorn, K. Sugasawa, E. Weterings, N.G.J. Jaspers,
and J.H.J. Hoeijmakers. DNA-binding polarity of human replication pro-
tein A positions nucleases in nucleotide excision repair. Genes & develop-
ment, 12(16):2598–2609, 1998.

F. Della Seta, I. Treich, JM Buhler, and A. Sentenac. Abf1 binding sites in
yeast RNA polymerase genes. Journal of Biological Chemistry, 265(25):
15168–15175, 1990.

M.F. Denissenko, J.X. Chen, M. Tang, and G.P. Pfeifer. Cytosine methyla-
tion determines hot spots of DNA damage in the human P53 gene. Pro-
ceedings of the National Academy of Sciences, 94(8):3893, 1997.

M. Dizdaroglu. The use of capillary gas chromatographymass spectrome-
try for identification of radiation-induced DNA base damage and DNA
baseamino acid cross-links. Journal of Chromatography A, 295:103–121,
1984.

J.H. Do, D. Choi, et al. Normalization of microarray data: single-labeled
and dual-labeled arrays. Molecules and cells, 22(3):254, 2006.

B.A. Donahue, S. Yin, J.S. Taylor, D. Reines, and P.C. Hanawalt. Transcript
cleavage by rna polymerase ii arrested by a cyclobutane pyrimidine dimer
in the DNA template. Proceedings of the National Academy of Sciences,
91(18):8502, 1994.

347

BIBLIOGRAPHY BIBLIOGRAPHY

T. Douki, S. Sauvaigo, F. Odin, J. Cadet, et al. Formation of the main
UV-induced thymine dimeric lesions within isolated and cellular DNA as
measured by high performance liquid chromatography-tandem mass spec-
trometry. Journal of Biological Chemistry, 275(16):11678–11685, 2000.

S. Durinck, Y. Moreau, A. Kasprzyk, S. Davis, B. De Moor, A. Brazma, and
W. Huber. BioMart and Bioconductor: a powerful link between biological
databases and microarray data analysis. Bioinformatics, 21(16):3439–3440,
2005.

AW Einerhand, W. Kos, W.C. Smart, A.J. Kal, H.F. Tabak, and T.G.
Cooper. The upstream region of the FOX3 gene encoding peroxisomal 3-
oxoacyl-coenzyme A thiolase in Saccharomyces cerevisiae contains ABF1-
and replication protein A-binding sites that participate in its regulation by
glucose repression. Molecular and cellular biology, 15(6):3405–3414, 1995.

M.M. Elkind and C.M. Chang-Liu. Repair of a DNA complex from x-
irradiated Chinese hamster cells. International Journal of Radiation Biol-
ogy, 22(1):75–90, 1972.

K. Erixon and G. Ahnström. Single-strand breaks in DNA during re-
pair of UV-induced damage in normal human and xeroderma pigmento-
sum cells as determined by alkaline DNA unwinding and hydroxylapatite
chromatography: Effects of hydroxyurea, 5-fluorodeoxyuridine and 1-β-d-
arabinofuranosylcytosine on the kinetics of repair. Mutation Research/-
Fundamental and Molecular Mechanisms of Mutagenesis, 59(2):257–271,
1979.

K.E Evans. A genome wide study of histone H3 acetylation and its role
in nucleotuide excision repair. PhD thesis, Cardiff University School of
Medicine, 2011.

P. Fardin, S. Moretti, B. Biasotti, A. Ricciardi, S. Bonassi, and L. Varesio.
Normalization of low-density microarray using external spike-in controls:
analysis of macrophage cell lines expression profile. BMC genomics, 8(1):
17, 2007.

C.R. Farthing, G. Ficz, R.K. Ng, C.F. Chan, S. Andrews, W. Dean, M. Hem-
berger, and W. Reik. Global mapping of DNA methylation in mouse
promoters reveals epigenetic reprogramming of pluripotency genes. PLoS
genetics, 4(6):e1000116, 2008.

348

BIBLIOGRAPHY BIBLIOGRAPHY

W.J. Feaver, W. Huang, O. Gileadi, L. Myers, C.M. Gustafsson, R.D. Korn-
berg, and E.C. Friedberg. Subunit interactions in yeast transcription/re-
pair factor TFIIH. Journal of Biological Chemistry, 275(8):5941–5946,
2000.

A.J. Fornace, K.W. Kohn, and H.E. Kann. DNA single-strand breaks during
repair of UV damage in human fibroblasts and abnormalities of repair in
xeroderma pigmentosum. Proceedings of the National Academy of Sciences,
73(1):39, 1976.

A.J. Fornace Jr. Measurement of M. luteus endonuclease-sensitive lesions by
alkaline elution. Mutation Research/Fundamental and Molecular Mecha-
nisms of Mutagenesis, 94(2):263–276, 1982.

G. Fourel, T. Miyake, P.A. Defossez, R. Li, and É. Gilson. General regulatory
factors (grfs) as genome partitioners. Journal of Biological Chemistry, 277
(44):41736–41743, 2002.

E. C. Friedberg, G.C. Walker, and W. Siede. DNA repair and mutagenesis,
second edition. ASM Press, 2006.

A. Fujita, J.R. Sato, L.O. Rodrigues, C.E. Ferreira, and M.C. Sogayar. Eval-
uating different methods of microarray data normalization. BMC bioin-
formatics, 7(1):469, 2006.

S. Fulda. Evasion of apoptosis as a cellular stress response in cancer. Inter-
national Journal of Cell Biology, 2010, 2010.

D.J. Galas and A. Schmitz. DNAase footprinting a simple method for the
detection of protein-DNA binding specificity. Nucleic acids research, 5(9):
3157–3170, 1978.

M. Ganapathi, M.J. Palumbo, S.A. Ansari, Q. He, K. Tsui, C. Nislow, and
R.H. Morse. Extensive role of the general regulatory factors, Abf1 and
Rap1, in determining genome-wide chromatin structure in budding yeast.
Nucleic acids research, 39(6):2032–2044, 2011.

M.M. Garner and A. Revzin. A gel electrophoresis method for quantifying
the binding of proteins to specific DNA regions: application to components
of the escherichia coli lactose operon regulatory system. Nucleic acids
research, 9(13):3047–3060, 1981.

Y. Gavrieli, Y. Sherman, and S.A. Ben-Sasson. Identification of programmed
cell death in situ via specific labeling of nuclear DNA fragmentation. The
Journal of cell biology, 119(3):493–501, 1992.

349

BIBLIOGRAPHY BIBLIOGRAPHY

R. Gentleman. Bioinformatics and computational biology solutions using R
and Bioconductor. Springer Verlag, 2005.

R.C. Gentleman, V.J. Carey, D.M. Bates, B. Bolstad, M. Dettling, S. Dudoit,
B. Ellis, L. Gautier, Y. Ge, J. Gentry, et al. Bioconductor: open software
development for computational biology and bioinformatics. Genome biol-
ogy, 5(10):R80, 2004.

F.D. Gibbons, M. Proft, K. Struhl, and F.P. Roth. Chipper: discovering
transcription-factor targets from chromatin immunoprecipitation microar-
rays using variance stabilization. Genome Biology, 6(11):R96, 2005.

E.F. Glynn, P.C. Megee, H.G. Yu, C. Mistrot, E. Unal, D.E. Koshland, J.L.
DeRisi, and J.L. Gerton. Genome-wide mapping of the cohesin complex
in the yeast Saccharomyces cerevisiae. PLoS biology, 2(9):e259, 2004.

A.J. Gossett and J.D. Lieb. Dna immunoprecipitation (DIP) for the deter-
mination of DNA-binding specificity. Cold Spring Harbor Protocols, 2008
(3):pdb–prot4972, 2010.

H.L. Govan III, Y. Valles-Ayoub, and J. Braun. Fine-mapping of DNA dam-
age and repair in specific genomic segments. Nucleic acids research, 18
(13):3823–3830, 1990.

P.A. Grant, L. Duggan, J. Côté, S.M. Roberts, J.E. Brownell, R. Candau,
R. Ohba, T. Owen-Hughes, C.D. Allis, F. Winston, et al. Yeast Gcn5
functions in two multisubunit complexes to acetylate nucleosomal histones:
characterization of an Ada complex and the SAGA (Spt/Ada) complex.
Genes & development, 11(13):1640–1650, 1997.

K.L. Gunderson, X.C. Huang, M.S. Morris, R.J. Lipshutz, D.J. Lockhart,
and M.S. Chee. Mutation detection by ligation to complete n-mer DNA
arrays. Genome research, 8(11):1142–1153, 1998.

S.N. Guzder, P. Sung, L. Prakash, and S. Prakash. Yeast DNA-repair gene
RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged
DNA. Proceedings of the National Academy of Sciences, 90(12):5433, 1993.

S.N. Guzder, P. Sung, L. Prakash, and S. Prakash. Nucleotide excision repair
in yeast is mediated by sequential assembly of repair factors and not by
a pre-assembled repairosome. Journal of Biological Chemistry, 271(15):
8903, 1996.

350

BIBLIOGRAPHY BIBLIOGRAPHY

S.N. Guzder, P. Sung, L. Prakash, and S. Prakash. Yeast Rad7-Rad16 com-
plex, specific for the nucleotide excision repair of the nontranscribed DNA
strand, is an ATP-dependent DNA damage sensor. Journal of Biological
Chemistry, 272(35):21665–21668, 1997.

S.N. Guzder, P. Sung, L. Prakash, and S. Prakash. Affinity of yeast nu-
cleotide excision repair factor 2, consisting of the Rad4 and Rad23 pro-
teins, for ultraviolet damaged DNA. Journal of Biological Chemistry, 273
(47):31541–31546, 1998.

Pages. H, P. Aboyoun, R. Gentleman, and S. DebRoy. Biostrings: String ob-
jects representing biological sequences, and matching algorithms. R package
version 2.22.0.

Y. Habraken, P. Sung, L. Prakash, and S. Prakash. Yeast excision repair gene
RAD2 encodes a single-stranded DNA endonuclease. Nature, 366(6453):
365, 1993.

Y. Habraken, P. Sung, S. Prakash, and L. Prakash. Transcription factor
TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision
repair factor 3: implications for nucleotide excision repair and Cockayne
syndrome. Proceedings of the National Academy of Sciences, 93(20):10718,
1996.

D. Hanahan and R.A. Weinberg. The hallmarks of cancer. cell, 100(1):57–70,
2000.

D. Hanahan and R.A. Weinberg. Hallmarks of cancer: the next generation.
Cell, 144(5):646–674, 2011.

C.T. Harbison, D.B. Gordon, T.I. Lee, N.J. Rinaldi, K.D. Macisaac, T.W.
Danford, N.M. Hannett, J.B. Tagne, D.B. Reynolds, J. Yoo, et al. Tran-
scriptional regulatory code of a eukaryotic genome. Nature, 431(7004):
99–104, 2004.

J.J. Harrington and M.R. Lieber. Functional domains within FEN-1 and
RAD2 define a family of structure-specific endonucleases: implications for
nucleotide excision repair. Genes & development, 8(11):1344–1355, 1994.

C.C. Harris. p53 tumor suppressor gene: from the basic research laboratory
to the clinic–an abridged historical perspective. Carcinogenesis, 17(6):
1187, 1996.

351

BIBLIOGRAPHY BIBLIOGRAPHY

M.J. Heller. DNA microarray technology: devices, systems, and applications.
Annual review of biomedical engineering, 4(1):129–153, 2002.

J.D. Hoheisel. Microarray technology: beyond transcript profiling and geno-
type analysis. Nature reviews genetics, 7(3):200–210, 2006.

P.P. Hsu and D.M. Sabatini. Cancer cell metabolism: Warburg and beyond.
Cell, 134(5):703, 2008.

W. Huang, WJ Feaver, AE Tomkinson, and EC Friedberg. The N-degron pro-
tein degradation strategy for investigating the function of essential genes:
requirement for replication protein A and proliferating cell nuclear antigen
proteins for nucleotide excision repair in yeast extracts. Mutation research,
408(3):183, 1998.

W. Huber, A. Von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron.
Variance stabilization applied to microarray data calibration and to the
quantification of differential expression. Bioinformatics, 18(suppl 1):S96–
S104, 2002.

K. Ito, S. Inoue, Y. Hiraku, and S. Kawanishi. Mechanism of site-specific
DNA damage induced by ozone. Mutation Research/Genetic Toxicology
and Environmental Mutagenesis, 585(1-2):60–70, 2005.

H. Ji and W.H. Wong. TileMap: create chromosomal map of tiling array
hybridizations. Bioinformatics, 21(18):3629–3636, 2005.

H. Ji, H. Jiang, W. Ma, D.S. Johnson, R.M. Myers, and W.H. Wong. An
integrated software system for analyzing ChIP-chip and ChIP-seq data.
Nature biotechnology, 26(11):1293–1300, 2008.

Hongkai Ji. Computational analysis of ChIP-chip data. Handbook of Statis-
tical Bioinformatics, pages 257–282, 2011.

F. Johannes, R. Wardenaar, M. Colomé-Tatché, F. Mousson, P. De Graaf,
M. Mokry, V. Guryev, H.T. Timmers, et al. Comparing genome-wide
chromatin profiles using ChIP-chip or ChIP-seq. Bioinformatics, 26(8):
1000, 2010.

D.S. Johnson, W. Li, D.B. Gordon, A. Bhattacharjee, B. Curry, J. Ghosh,
L. Brizuela, J.S. Carroll, M. Brown, P. Flicek, et al. Systematic evalua-
tion of variability in ChIP-chip experiments using predefined DNA targets.
Genome research, 18(3):393, 2008.

352

BIBLIOGRAPHY BIBLIOGRAPHY

J.M. Johnson, J. Castle, P. Garrett-Engele, Z. Kan, P.M. Loerch, C.D.
Armour, R. Santos, E.E. Schadt, R. Stoughton, and D.D. Shoemaker.
Genome-wide survey of human alternative pre-mRNA splicing with exon
junction microarrays. Science, 302(5653):2141–2144, 2003.

W.E. Johnson, W. Li, C.A. Meyer, R. Gottardo, J.S. Carroll, M. Brown, and
X.S. Liu. Model-based analysis of tiling-arrays for ChIP-chip. Proceedings
of the National Academy of Sciences, 103(33):12457, 2006.

C.J. Jones and R.D. Wood. Preferential binding of the xeroderma pigmen-
tosum group A complementing protein to damaged DNA. Biochemistry,
32(45):12096–12104, 1993.

A. Karpikov, J. Rozowsky, and M. Gerstein. Tiling array data analysis: a
multiscale approach using wavelets. BMC bioinformatics, 12(1):57, 2011.

W.J. Kent, C.W. Sugnet, T.S. Furey, K.M. Roskin, T.H. Pringle, A.M.
Zahler, and D. Haussler. The human genome browser at UCSC. Genome
Research, 12(6):996, 2002.

R.S. Kerbel. Tumor angiogenesis: past, present and the near future. Car-
cinogenesis, 21(3):505, 2000.

T.H. Kim, L.O. Barrera, M. Zheng, C. Qu, M.A. Singer, T.A. Richmond,
Y. Wu, R.D. Green, and B. Ren. A high-resolution map of active promoters
in the human genome. Nature, 436(7052):876–880, 2005.

K.W. Kohn and R.A. Grimek-Ewig. Alkaline elution analysis, a new approach
to the study of DNA single-strand interruptions in cells. Cancer Research,
33(8):1849–1853, 1973.

H. Kohzaki, Y. Ito, and Y. Murakami. Context-dependent modulation of
replication activity of Saccharomyces cerevisiae autonomously replicating
sequences by transcription factors. Molecular and cellular biology, 19(11):
7428–7435, 1999.

M.F. Kramer and D.M. Coen. Enzymatic amplification of DNA by PCR:
Standard procedures and optimization. Current Protocols in Toxicology,
2001.

S.K. Kurdistani, S. Tavazoie, and M. Grunstein. Mapping global histone
acetylation patterns to gene expression. Cell, 117(6):721–733, 2004.

353

BIBLIOGRAPHY BIBLIOGRAPHY

W.R. Lai, M.D. Johnson, R. Kucherlapati, and P.J. Park. Comparative
analysis of algorithms for identifying amplifications and deletions in array
CGH data. Bioinformatics, 21(19):3763, 2005.

M. Landfors, P. Philip, P. Rydén, and P. Stenberg. Normalization of high
dimensional genomics data where the distribution of the altered variables
is skewed. PloS one, 6(11):e27942, 2011.

R.F. Lascaris, E. De Groot, W.H. Mager, R.J. Planta, et al. Different roles
for abf1p and a T-rich promoter element in nucleosome organization of the
yeast RPS28A gene. Nucleic acids research, 28(6):1390–1396, 2000.

M. Leadbitter. A genome-wide study to investigate the organisation of global
genome nucleotide excision repair in Saccharomyces cerevisiae. PhD thesis,
Cardiff University School of Medicine, 2011.

T.I. Lee and R.A. Young. Transcription of eukaryotic protein-coding genes.
Annual review of genetics, 34(1):77–137, 2000.

T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K. Gerber,
N.M. Hannett, C.T. Harbison, C.M. Thompson, I. Simon, et al. Transcrip-
tional regulatory networks in Saccharomyces cerevisiae. Science’s STKE,
298(5594):799, 2002.

W. Lee, D. Tillo, N. Bray, R.H. Morse, R.W. Davis, T.R. Hughes, and C. Nis-
low. A high-resolution atlas of nucleosome occupancy in yeast. Nature
genetics, 39(10):1235–1244, 2007.

A.R. Lehmann and M. O’Driscoll. DNA repair: Disorders. Encyclopedia of
Life Sciences, pages 1–9, 2010.

R. Li, S.Y. David, M. Tanaka, L. Zheng, S.L. Berger, and B. Stillman. Ac-
tivation of chromosomal DNA replication insaccharomyces cerevisiae by
Acidic Transcriptional Activation Domains. Molecular and cellular biol-
ogy, 18(3):1296–1302, 1998.

S. Li and M.J. Smerdon. Rpb4 and Rpb9 mediate subpathways of
transcription-coupled DNA repair in Saccharomyces cerevisiae. The EMBO
journal, 21(21):5921–5929, 2002.

W. Li, C.A. Meyer, and X.S. Liu. A hidden Markov model for analyzing
ChIP-chip experiments on genome tiling arrays and its application to p53
binding sequences. Bioinformatics, 21(suppl 1):i274, 2005.

354

BIBLIOGRAPHY BIBLIOGRAPHY

X. Li, W. Gu, S. Mohan, and D.J. Baylink. DNA microarrays: their use and
misuse. Microcirculation, 9(1):13–22, 2002.

C.G. Liu, G.A. Calin, B. Meloon, N. Gamliel, C. Sevignani, M. Ferracin,
C.D. Dumitru, M. Shimizu, S. Zupo, M. Dono, et al. An oligonucleotide
microchip for genome-wide microrna profiling in human and mouse tissues.
Proceedings of the National Academy of Sciences of the United States of
America, 101(26):9740, 2004.

X. Liu, D.L. Brutlag, and J.S. Liu. BioProspector: discovering conserved
DNA motifs in upstream regulatory regions of co-expressed genes. In Pa-
cific Symposium on Biocomputing. Pacific Symposium on Biocomputing,
page 127, 2001.

X. Liu, D.M. Noll, J.D. Lieb, and N.D. Clarke. DIP-chip: rapid and accurate
determination of DNA-binding specificity. Genome research, 15(3):421–
427, 2005.

X.S. Liu, D.L. Brutlag, and J.S. Liu. An algorithm for finding protein–
DNA binding sites with applications to chromatin-immunoprecipitation
microarray experiments. Nature biotechnology, 20(8):835–839, 2002.

C.M. Loch, N. Mosammaparast, T. Miyake, L.F. Pemberton, and R. Li.
Functional and physical interactions between autonomously replicating
sequence-binding factor 1 and the nuclear transport machinery. Traffic,
5(12):925–935, 2004.

D.J. Lockhart, H. Dong, M.C. Byrne, M.T. Follettie, M.V. Gallo, M.S. Chee,
M. Mittmann, C. Wang, M. Kobayashi, H. Norton, et al. Expression
monitoring by hybridization to high-density oligonucleotide arrays. Nature
biotechnology, 14(13):1675–1680, 1996.

S. Loo, P. Laurenson, M. Foss, A. Dillin, and J. Rine. Roles of ABF1, NPL3,
and YCL54 in silencing in Saccharomyces cerevisiae. Genetics, 141(3):889,
1995.

I. Lucas, A. Palakodeti, Y. Jiang, D.J. Young, N. Jiang, A.A. Fernald, and
M.M. Le Beau. High-throughput mapping of origins of replication in hu-
man cells. EMBO reports, 8(8):770–777, 2007.

Y. Marahrens and B. Stillman. A yeast chromosomal origin of DNA replica-
tion defined by multiple functional elements. Science, 255(5046):817–823,
1992.

355

BIBLIOGRAPHY BIBLIOGRAPHY

J. Marmur and P. Doty. Determination of the base composition of deoxyri-
bonucleic acid from its thermal denaturation temperature. Journal of
molecular biology, 5:109, 1962.

C. Masutani, K. Sugasawa, J. Yanagisawa, T. Sonoyama, M. Ui, T. Enomoto,
K. Takio, K. Tanaka, PJ Van der Spek, D. Bootsma, et al. Purification
and cloning of a nucleotide excision repair complex involving the xeroderma
pigmentosum group C protein and a human homologue of yeast RAD23.
The EMBO journal, 13(8):1831, 1994.

M.N. McCall and R.A. Irizarry. Consolidated strategy for the analysis of
microarray spike-in data. Nucleic Acids Research, 36(17):e108, 2008.

RA McGrath and RW Williams. Reconstruction in vivo of irradiated Es-
cherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature,
212(5061):534, 1966.

R.D. Miller, L. Prakash, and S. Prakash. Defective excision of pyrimidine
dimers and interstrand DNA crosslinks in rad7 and rad23 mutants of Sac-
charomyces cerevisiae. Molecular and General Genetics MGG, 188(2):235–
239, 1982.

D.L. Mitchell, C.A. Haipek, and J.M. Clarkson. (6-4) photoproducts are
removed from the DNA of UV-irradiated mammalian cells more efficiently
than cyclobutane pyrimidine dimers. Mutation Research Letters, 143(3):
109–112, 1985.

D.L. Mitchell, J. Jen, and J.E. Cleaver. Sequence specificity of cyclobutane
pyrimidine dimers in DNA treated with solar (ultraviolet B) radiation.
Nucleic acids research, 20(2):225–229, 1992.

T. Miyake, C.M. Loch, and R. Li. Identification of a multifunctional domain
in autonomously replicating sequence-binding factor 1 required for tran-
scriptional activation, DNA replication, and gene silencing. Molecular and
cellular biology, 22(2):505–516, 2002.

T. Miyake, J. Reese, C.M. Loch, D.T. Auble, and R. Li. Genome-wide anal-
ysis of ARS (autonomously replicating sequence) binding factor 1 (abf1p)-
mediated transcriptional regulation in Saccharomyces cerevisiae. Journal
of biological chemistry, 279(33):34865, 2004.

P. Moore and BS Strauss. Sites of inhibition of in vitro DNA] synthesis in
carcinogen-and UV-treated phi X174 DNA. Nature, 278(5705):664, 1979.

356

BIBLIOGRAPHY BIBLIOGRAPHY

J. Morita, K. Ueda, S. Nanjo, and T. Komanol. Sequence specific damage of
DNA induced by reducing sugars. Nucleic acids research, 13(2):449–458,
1985.

S. Mukherjee, M.F. Berger, G. Jona, X.S. Wang, D. Muzzey, M. Snyder, R.A.
Young, and M.L. Bulyk. Rapid analysis of the DNA-binding specificities
of transcription factors with DNA microarrays. Nature genetics, 36(12):
1331–1339, 2004.

M.H. Myllyperkiö, T.R.A. Koski, L.M. Vilpo, and J.A. Vilpo. Kinetics of ex-
cision repair of UV-induced DNA damage, measured using the comet assay.
Mutation Research/Fundamental and Molecular Mechanisms of Mutagen-
esis, 448(1):1–9, 2000.

Y. Nakatsu, H. Asahina, E. Citterio, S. Rademakers, W. Vermeulen, S. Kami-
uchi, J.P. Yeo, M.C. Khaw, M. Saijo, N. Kodo, et al. XAB2, a novel tetra-
tricopeptide repeat protein involved in transcription-coupled DNA repair
and transcription. Journal of Biological Chemistry, 275(45):34931, 2000.

R.K. Newton, M. Aardema, and J. Aubrecht. The utility of DNA microarrays
for characterizing genotoxicity. Environmental health perspectives, 112(4):
420, 2004.

A. O’Donovan, A.A. Davies, J.G. Moggs, S.C. West, and R.D. Wood. XPG
endonuclease makes the 3’incision in human DNA nucleotide excision re-
pair. Nature, 371(6496):432, 1994.

OED. ”microarray, n.”. oed online. december 2011. oxford university press.
12 march 2012, December 2011. URL http://www.oed.com/view/Entry/

259001.

S. Oikawa. Sequence-specific DNA damage by reactive oxygen species: Impli-
cations for carcinogenesis and aging. Environmental health and preventive
medicine, 10(2):65–71, 2005.

P.L. Olive and J.P. Banáth. The comet assay: a method to measure DNA
damage in individual cells. Nature protocols, 1(1):23–29, 2006.

P.L. Olive, J.P. Banáth, and R.E. Durand. Heterogeneity in radiation-
induced DNA damage and repair in tumor and normal cells measured
using the” comet” assay. Radiation research, 122(1):86–94, 1990.

H Pages. BSgenome: Infrastructure for Biostrings-based genome data pack-
ages, 2012a. R package version 1.22.0.

357

http://www.oed.com/view/Entry/259001
http://www.oed.com/view/Entry/259001

BIBLIOGRAPHY BIBLIOGRAPHY

H. Pages. BSgenome: Infrastructure for Biostrings-based genome data pack-
ages, 2012b. R package version 1.22.0.

H. Pages, P. Aboyoun, R. Gentleman, S. DebRoy, and P.D.F.R.S.P.S. Align-
ments. String objects representing biological sequences, and matching al-
gorithms. Biostrings available at: http://www. bioconductor. org/pack-
ages/bioc/html/Biostrings. html, 2009.

C.H. Park, T. Bessho, T. Matsunaga, and A. Sancar. Purification and char-
acterization of the XPF-ERCC1 complex of human DNA repair excision
nuclease. Journal of Biological Chemistry, 270(39):22657–22660, 1995.

H.J. Park, K. Zhang, Y. Ren, S. Nadji, N. Sinha, J.S. Taylor, and C.H. Kang.
Crystal structure of a DNA decamer containing a cis-syn thymine dimer.
Proceedings of the National Academy of Sciences of the United States of
America, 99(25):15965, 2002.

P. J. Park. ChIP–seq: advantages and challenges of a maturing technology.
Nature Reviews Genetics, 10(10):669–680, 2009.

S. Peng, A. Alekseyenko, E. Larschan, M. Kuroda, and P. Park. Normaliza-
tion and experimental design for ChIP-chip data. BMC bioinformatics, 8
(1):219, 2007.

J. Penterman, D. Zilberman, J.H. Huh, T. Ballinger, S. Henikoff, and R.L.
Fischer. Dna demethylation in the Arabidopsis genome. Proceedings of the
National Academy of Sciences, 104(16):6752, 2007.

S. Pepke, B. Wold, and A. Mortazavi. Computation for ChIP-seq and RNA-
seq studies. Nature methods, 6:S22–S32, 2009.

D. Perdiz, P. Gróf, M. Mezzina, O. Nikaido, E. Moustacchi, and E. Sage. Dis-
tribution and repair of bipyrimidine photoproducts in solar UV-irradiated
mammalian cells. Journal of Biological Chemistry, 275(35):26732–26742,
2000.

AR Peterson, B.W. Fox, and M. Fox. Alkaline sucrose sedimentation studies
of DNA from P388F lymphoma cells treated with difunctional alkylating
agents. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein
Synthesis, 299(3):385–396, 1973.

D. Pettijohn and P.C. Hanawalt. Evidence for repair replication of ultraviolet
damage DNA in bacteria. Journal of molecular biology, 9:395–410, 1964.

358

BIBLIOGRAPHY BIBLIOGRAPHY

K. Phillips and B. Luisi. The virtuoso of versatility: POU proteins that flex
to fit. Journal of molecular biology, 302(5):1023–1039, 2000.

D. Pinkel and D.G. Albertson. Comparative genomic hybridization. Annu.
Rev. Genomics Hum. Genet., 6:331–354, 2005.

D. Pinkel, R. Segraves, D. Sudar, S. Clark, I. Poole, D. Kowbel, C. Collins,
W.L. Kuo, C. Chen, Y. Zhai, et al. High resolution analysis of DNA copy
number variation using comparative genomic hybridization to microarrays.
Nature genetics, 20:207–211, 1998.

D.K. Pokholok, C.T. Harbison, S. Levine, M. Cole, N.M. Hannett, T.I. Lee,
G.W. Bell, K. Walker, P.A. Rolfe, E. Herbolsheimer, et al. Genome-wide
map of nucleosome acetylation and methylation in yeast. Cell, 122(4):
517–527, 2005.

R. Ponzielli, P.C. Boutros, S. Katz, A. Stojanova, A.P. Hanley, F. Khosravi,
C. Bros, I. Jurisica, and L.Z. Penn. Optimization of experimental design
parameters for high-throughput chromatin immunoprecipitation studies.
Nucleic acids research, 36(21):e144, 2008.

L. Prakash. Defective thymine dimer excision in radiation-sensitive mutants
rad10 and rad16 of saccharomyces cerevisiae. Molecular and General Ge-
netics MGG, 152(2):125–128, 1977.

S. Prakash and L. Prakash. Nucleotide excision repair in yeast. Mutation
Research/Fundamental and Molecular Mechanisms of Mutagenesis, 451(1-
2):13–24, 2000.

L. Pray. DNA replication and causes of mutation. Nature Education, 1(1),
2008.

Y. Qi, A. Rolfe, K.D. MacIsaac, G.K. Gerber, D. Pokholok, J. Zeitlinger,
T. Danford, R.D. Dowell, E. Fraenkel, T.S. Jaakkola, et al. High-resolution
computational models of genome binding events. Nature biotechnology, 24
(8):963–970, 2006.

Y. Qiao, C. Wang, and L. Ma. Single cell DNA damage/repair assay using
HaloChip. Analytical Chemistry, 2011.

J. Quackenbush et al. Microarray data normalization and transformation.
nature genetics, 32(supp):496–501, 2002.

359

BIBLIOGRAPHY BIBLIOGRAPHY

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria,
2011. URL http://www.R-project.org/. ISBN 3-900051-07-0.

B. Ramanathan and M.J. Smerdon. Enhanced DNA repair synthesis in
hyperacetylated nucleosomes. Journal of Biological Chemistry, 264(19):
11026–11034, 1989.

R.E. Rasmussen and R.B. Painter. Evidence for repair of ultra-violet dam-
aged deoxyribonucleic acid in cultured mammalian cells. Nature, 203:1360,
1964.

R. Redon, S. Ishikawa, K.R. Fitch, L. Feuk, G.H. Perry, T.D. Andrews,
H. Fiegler, M.H. Shapero, A.R. Carson, W. Chen, et al. Global variation
in copy number in the human genome. Nature, 444(7118):444–454, 2006.

S.H. Reed. Nucleotide excision repair in chromatin: Damage removal at the
drop of a HAT. DNA repair, 2011.

S.H. Reed, M. Akiyama, B. Stillman, and E.C. Friedberg. Yeast au-
tonomously replicating sequence binding factor is involved in nucleotide
excision repair. Genes & development, 13(23):3052–3058, 1999.

B. Ren, F. Robert, J.J. Wyrick, O. Aparicio, E.G. Jennings, I. Simon,
J. Zeitlinger, J. Schreiber, N. Hannett, E. Kanin, et al. Genome-wide
location and function of DNA binding proteins. Science, 290(5500):2306,
2000.

P.R. Rhode, K.S. Sweder, K.F. Oegema, and J.L. Campbell. The gene en-
coding ARS-binding factor i is essential for the viability of yeast. Genes
& development, 3(12a):1926–1939, 1989.

P.R. Rhode, S. Elsasser, and JL Campbell. Role of multifunctional au-
tonomously replicating sequence binding factor 1 in the initiation of DNA
replication and transcriptional control in saccharomyces cerevisiae. Molec-
ular and cellular biology, 12(3):1064–1077, 1992.

C.J. Roberts, B. Nelson, M.J. Marton, R. Stoughton, M.R. Meyer, H.A.
Bennett, Y.D. He, H. Dai, W.L. Walker, T.R. Hughes, et al. Signaling and
circuitry of multiple MAPK pathways revealed by a matrix of global gene
expression profiles. Science, 287(5454):873, 2000.

S.J. Russell, S.H. Reed, W. Huang, E.C. Friedberg, and S.A. Johnston. The
19S regulatory complex of the proteasome functions independently of pro-
teolysis in nucleotide excision repair. Molecular cell, 3(6):687–695, 1999.

360

http://www.R-project.org/

BIBLIOGRAPHY BIBLIOGRAPHY

B. Rydberg, M. Löbrich, and P.K. Cooper. DNA double-strand breaks in-
duced by high-energy neon and iron ions in human fibroblasts. i. pulsed-
field gel electrophoresis method. Radiation research, 139(2):133–141, 1994.

P. Rydén, H. Andersson, M. Landfors, L. Näslund, B. Hartmanová, L. Noppa,
and A. Sjöstedt. Evaluation of microarray data normalization procedures
using spike-in experiments. Bmc Bioinformatics, 7(1):300, 2006.

P.C. Scacheri, G.E. Crawford, and S. Davis. [14] statistics for ChIP-chip
and dnase hypersensitivity experiments on nimblegen arrays. Methods in
enzymology, 411:270–282, 2006.

C. Schauber, L. Chen, P. Tongaonkar, I. Vega, D. Lambertson, W. Potts,
and K. Madura. Rad23 links DNA repair to the ubiquitin/proteasome
pathway. Nature, 391(6668):715–718, 1998.

M. Schena. Microarray analysis. John Wiley and Sons, 2003.

M. Schena, D. Shalon, R.W. Davis, and P.O. Brown. Quantitative monitor-
ing of gene expression patterns with a complementary DNA microarray.
Science, 270(5235):467, 1995.

U. Schlecht, I. Erb, P. Demougin, N. Robine, V. Borde, E. Van Nimwegen,
A. Nicolas, and M. Primig. Genome-wide expression profiling, in vivo DNA
binding analysis, and probabilistic motif prediction reveal novel abf1 target
genes during fermentation, respiration, and sporulation in yeast. Molecular
Biology of the Cell, 19(5):2193–2207, 2008.

S.C. Schroeder and P.A. Weil. Biochemical and genetic characterization of
the dominant positive element driving transcription of the yeast TBP-
encoding gene, SPT15. Nucleic acids research, 26(18):4186–4195, 1998.

A. Schulze and J. Downward. Navigating gene expression using microarraysa
technology review. Nature cell biology, 3(8):E190–E195, 2001.

P. Sestili, C. Martinelli, and V. Stocchi. The fast halo assay: an improved
method to quantify genomic DNA strand breakage at the single-cell level.
Mutation Research/Genetic Toxicology and Environmental Mutagenesis,
607(2):205–214, 2006.

R.B. Setlow and W.L. Carrier. The disappearance of thymine dimers from
DNA: an error-correcting mechanism. Proceedings of the National Academy
of Sciences of the United States of America, 51(2):226, 1964.

361

BIBLIOGRAPHY BIBLIOGRAPHY

J.W. Shay and S. Bacchetti. A survey of telomerase activity in human cancer.
European journal of cancer (Oxford, England: 1990), 33(5):787, 1997.

K. Shedden, W. Chen, R. Kuick, D. Ghosh, J. Macdonald, K. Cho, T. Gior-
dano, S. Gruber, E. Fearon, J. Taylor, et al. Comparison of seven methods
for producing Affymetrix expression scores based on false discovery rates
in disease profiling data. BMC bioinformatics, 6(1):26, 2005.

D. Shore, D.J. Stillman, A.H. Brand, and K.A. Nasmyth. Identification of
silencer binding proteins from yeast: possible roles in SIR control and DNA
replication. The EMBO journal, 6(2):461, 1987.

M.J. Smerdon, S.Y. Lan, R.E. Calza, and R. Reeves. Sodium butyrate stim-
ulates DNA repair in UV-irradiated normal and xeroderma pigmentosum
human fibroblasts. Journal of Biological Chemistry, 257(22):13441–13447,
1982.

G. Smyth. Limma: linear models for microarray data. Bioinformatics and
computational biology solutions using R and Bioconductor, pages 397–420,
2005.

G.K. Smyth and T. Speed. Normalization of cDNA microarray data. Meth-
ods, 31(4):265–273, 2003.

S. Solinas-Toldo, S. Lampel, S. Stilgenbauer, J. Nickolenko, A. Benner,
H. Döhner, T. Cremer, and P. Lichter. Matrix-based comparative ge-
nomic hybridization: biochips to screen for genomic imbalances. Genes,
chromosomes and cancer, 20(4):399–407, 1997.

J.S. Song, W.E. Johnson, X. Zhu, X. Zhang, W. Li, A.K. Manrai, J.S. Liu,
R. Chen, and X.S. Liu. Model-based analysis of two-color arrays (MA2C).
Genome Biol, 8(8):R178, 2007.

G. Speit and A. Hartmann. The comet assay: a sensitive genotoxicity test
for the detection of DNA damage and repair. Methods in molecular biology
(Clifton, NJ), 314:275, 2006.

J. Sram, S.S. Sommer, and Q. Liu. Microarray-based DNA re-sequencing
using 3’blocked primers. Analytical biochemistry, 374(1):41, 2008.

S.A. Stewart and R.A. Weinberg. Senescence: does it all happen at the ends?
Oncogene, 21(4):627, 2002.

362

BIBLIOGRAPHY BIBLIOGRAPHY

P. Sung, L. Prakash, and S. Prakash. Renaturation of DNA catalysed by
yeast DNA repair and recombination protein RAD10. Nature, 355(6362):
743, 1992.

P. Sung, P. Reynolds, L. Prakash, and S. Prakash. Purification and char-
acterization of the saccharomyces cerevisiae RAD1/RAD10 endonuclease.
The Journal of biological chemistry, 268(35):26391, 1993.

Y. Takagi, H. Komori, W.H. Chang, A. Hudmon, H. Erdjument-Bromage,
P. Tempst, and R.D. Kornberg. Revised subunit structure of yeast tran-
scription factor IIH (TFIIH) and reconciliation with human TFIIH. Jour-
nal of Biological Chemistry, 278(45):43897–43900, 2003.

P.K. Tan, T.J. Downey, E.L. Spitznagel Jr, P. Xu, D. Fu, D.S. Dimitrov,
R.A. Lempicki, B.M. Raaka, and M.C. Cam. Evaluation of gene expres-
sion measurements from commercial microarray platforms. Nucleic acids
research, 31(19):5676, 2003.

K. Tanaka, N. Miura, I. Satokata, I. Miyamoto, MC Yoshida, Y. Satoh,
S. Kondo, A. Yasui, H. Okayama, and Y. Okada. Analysis of a human
DNA excision repair gene involved in group A xeroderma pigmentosum
and containing a zinc-finger domain. Nature, 348(6296):73, 1990.

Y. Teng, S. Li, R. Waters, and S.H. Reed. Excision repair at the level of the
nucleotide in the saccharomyces cerevisiae MFA2 gene: mapping of where
enhanced repair in the transcribed strand begins or ends and identification
of only a partial rad16 requisite for repairing upstream control sequences1.
Journal of molecular biology, 267(2):324–337, 1997.

Y. Teng, H. Liu, H.W. Gill, Y. Yu, R. Waters, and S.H. Reed. Saccharomyces
cerevisiae Rad16 mediates ultraviolet-dependent histone H3 acetylation
required for efficient global genome nucleotide-excision repair. EMBO re-
ports, 9(1):97–102, 2007.

Y. Teng, M. Bennett, K.E. Evans, H. Zhuang-Jackson, A. Higgs, S.H. Reed,
and R. Waters. A novel method for the genome-wide high resolution anal-
ysis of DNA damage. Nucleic Acids Research, 39(2):e10, 2011.

J. Toedling and W. Huber. Analyzing ChIP-chip data using Bioconductor.
PLoS Computational Biology, 4(11):e1000227, 2008.

J. Toedling, O. Sklyar, and W. Huber. Ringo–an R/Bioconductor package
for analyzing ChIP-chip readouts. BMC bioinformatics, 8(1):221, 2007.

363

BIBLIOGRAPHY BIBLIOGRAPHY

S. Tornaletti and P.C. Hanawalt. Effect of DNA lesions on transcription
elongation. Biochimie, 81(1-2):139–146, 1999.

S. Tornaletti, D. Rozek, GP Pfeifer, et al. The distribution of UV photo-
products along the human p53 gene and its relation to mutations in skin
cancer. Oncogene, 8(8):2051, 1993.

J.J. Truglio, D.L. Croteau, B. Van Houten, and C. Kisker. Prokaryotic nu-
cleotide excision repair: The UvrABC system. Chemical Reviews, 106(2):
233–252, 2006.

C. Tuerk and L. Gold. Systematic evolution of ligands by exponential enrich-
ment: RNA ligands to bacteriophage t4 DNA polymerase. Science, 249
(4968):505–510, 1990.

K. Ueda, S. Kobayashi, J. Morita, and T. Komano. Site-specific DNA dam-
age caused by lipid peroxidation products. Biochimica et Biophysica Acta
(BBA)-Gene Structure and Expression, 824(4):341–348, 1985.

M.P.J. van der Loo. extremevalues, an R package for outlier detection in
univariate data, 2010. URL http://www.cran.R-project.org,http://

www.markvanderloo.eu. R package version 2.0.

A.J. van Gool, R. Verhage, SM Swagemakers, P. van de Putte, J. Brouwer,
C. Troelstra, D. Bootsma, and JH Hoeijmakers. RAD26, the functional S.
cerevisiae homolog of the Cockayne syndrome B gene ERCC6. The EMBO
journal, 13(22):5361, 1994.

R. Verhage, A.M. Zeeman, N. de Groot, F. Gleig, D.D. Bang, P. Van
De Putte, and J. Brouwer. The RAD7 and RAD16 genes, which are es-
sential for pyrimidine dimer removal from the silent mating type loci, are
also required for repair of the nontranscribed strand of an active gene in
Saccharomyces cerevisiae. Molecular and cellular biology, 14(9):6135–6142,
1994.

SS Walker, SC Francesconi, BK Tye, and S. Eisenberg. The OBF1 pro-
tein and its DNA-binding site are important for the function of an au-
tonomously replicating sequence in Saccharomyces cerevisiae. Molecular
and cellular biology, 9(7):2914–2921, 1989.

S.S. Walker, S.C. Francesconi, and S. Eisenberg. A DNA replication en-
hancer in Saccharomyces cerevisiae. Proceedings of the National Academy
of Sciences, 87(12):4665, 1990.

364

http://www.cran.R-project.org, http://www.markvanderloo.eu
http://www.cran.R-project.org, http://www.markvanderloo.eu

BIBLIOGRAPHY BIBLIOGRAPHY

J. Wang, G. Rivas, M. Ozsoz, D.H. Grant, X. Cai, and C. Parrado. Microfab-
ricated electrochemical sensor for the detection of radiation-induced DNA
damage. Analytical chemistry, 69(7):1457–1460, 1997.

J.F. Watkins, P. Sung, L. Prakash, and S. Prakash. The Saccharomyces
cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing
a ubiquitin-like domain required for biological function. Molecular and
cellular biology, 13(12):7757–7765, 1993.

J. D. Watson, T. A. Baker, S. P. Bell, A. Gann, M. Levine, and R. Losick.
Molecular Biology of the Gene, Fifth Edition. Benjamin Cummings, 5
edition, December 2003. ISBN 080534635X.

M. Weber, J.J. Davies, D. Wittig, E.J. Oakeley, M. Haase, W.L. Lam, and
D. Schübeler. Chromosome-wide and promoter-specific analyses identify
sites of differential DNA methylation in normal and transformed human
cells. Nature genetics, 37(8):853–862, 2005.

B.G. Wilson and C.W.M. Roberts. SWI/SNF nucleosome remodellers and
cancer. Nature Reviews Cancer, 11(7):481–492, 2011.

S.M. Wolf and P. Vouros. Application of capillary liquid chromatography
coupled with tandem mass spectrometric methods to the rapid screening
of adducts formed by the reaction of N-acetoxy-N-acetyl-2-aminofluorene
with calf DNA. Chemical research in toxicology, 7(1):82–88, 1994.

D.K. Wood, D.M. Weingeist, S.N. Bhatia, and B.P. Engelward. Single cell
trapping and DNA damage analysis using microwell arrays. Proceedings of
the National Academy of Sciences, 107(22):10008, 2010.

H. Wu and H. Ji. JAMIE: joint analysis of multiple ChIP-chip experiments.
Bioinformatics, 26(15):1864, 2010.

W. Yang. Structure and mechanism for DNA lesion recognition. Cell re-
search, 18(1):184–197, 2007.

A. Yarragudi, L.W. Parfrey, and R.H. Morse. Genome-wide analysis of tran-
scriptional dependence and probable target sites for Abf1 and Rap1 in
saccharomyces cerevisiae. Nucleic acids research, 35(1):193–202, 2007.

S. Yu, T. Owen-Hughes, E.C. Friedberg, R. Waters, and S.H. Reed. The
yeast Rad7/Rad16/Abf1 complex generates superhelical torsion in DNA
that is required for nucleotide excision repair. DNA repair, 3(3):277–287,
2004.

365

BIBLIOGRAPHY BIBLIOGRAPHY

S. Yu, J.B. Smirnova, E.C. Friedberg, B. Stillman, M. Akiyama, T. Owen-
Hughes, R. Waters, and S.H. Reed. ABF1-binding sites promote efficient
global genome nucleotide excision repair. Journal of Biological Chemistry,
284(2):966–973, 2009.

S. Yu, Y. Teng, R. Waters, and S.H. Reed. How chromatin is remodelled dur-
ing DNA repair of UV-induced DNA damage in Saccharomyces cerevisiae.
PLoS genetics, 7(6):e1002124, 2011.

Y. Yu, Y. Teng, H. Liu, S.H. Reed, and R. Waters. UV irradiation stimulates
histone acetylation and chromatin remodeling at a repressed yeast locus.
Proceedings of the National Academy of Sciences of the United States of
America, 102(24):8650, 2005.

Y. Zhang. Poisson approximation for significance in genome-wide ChIP-chip
tiling arrays. Bioinformatics, 24(24):2825, 2008.

Z.D. Zhang, J. Rozowsky, HY Lam, J. Du, M. Snyder, M. Gerstein, et al.
Tilescope: online analysis pipeline for high-density tiling microarray data.
Genome Biol, 8(5):R81, 2007.

M. Zheng, L.O. Barrera, B. Ren, and Y.N. Wu. ChIP-chip: Data, model,
and analysis. Biometrics, 63(3):787–796, 2007.

L. Zhou and J.F. Rusling. Detection of chemically induced DNA damage in
layered films by catalytic square wave voltammetry using Ru (Bpy) 32+.
Analytical chemistry, 73(20):4780–4786, 2001.

A. Zotter, M.S. Luijsterburg, D.O. Warmerdam, S. Ibrahim, A. Nigg, W.A.
Van Cappellen, J.H.J. Hoeijmakers, R. Van Driel, W. Vermeulen, and A.B.
Houtsmuller. Recruitment of the nucleotide excision repair endonuclease
XPG to sites of UV-induced DNA damage depends on functional TFIIH.
Molecular and cellular biology, 26(23):8868–8879, 2006.

366

Appendix A

Electronic Appendix Structure
DVD

Chapter 3 - R scripts
instructions.pdf .See Section 3.2
R scripts

. .All R script files
Chapter 4 - Normalisation

Gcn5 binding microarray datasets
. All Gcn5 binding data files

H3Ac microarray datasets
. All H3Ac data files

Spike probe information.pdf See Section 4.4.1
Kernel density estimates.pdfSee Section 4.2.4.2
Q-PCR probes.pdf .See Section 4.3.1

Chapter 5 - Enrichment Detection
Enriched regions (averaged).pdfSee Section 5.3.2.4
Enriched regions (combined).pdfSee Section 5.3.2.4
key.txt . Information on the plots

Chapter 6 - CPDs
CPD microarray datasets

. All CPD data files
CPD predicted and actual profile.pdf See Section 6.6
Cisplatin predicted and actual profile.pdf See Section 6.6.1
key.txt . Information on the plots

Chapter 7 - Abf1
Abf1 microarray datasets

check.pdf .See Section 7.3.1
. All Abf1 binding data files

Sequences at detected PBRs.fasta.See Section 7.2.7
positionPlots.pdf . See Section 7.3.4
All Bioprospector motifs.pdfSee Section 7.3.6
meme.pdf. .See Section 7.4

367

	List of Figures
	List of Tables
	List of R Scripts
	List of Abbreviations
	Introduction
	Microarrays
	Hypothesis generation
	Types of microarray
	RNA detection
	DNA detection
	Protein detection
	Other applications

	Normalisation
	Gene expression
	ChIP-chip

	ChIP-chip data processing
	Peak detection
	Making comparisons between datasets

	DNA damage
	DNA
	Structure
	Chromatin
	Replication

	DNA damage and repair
	Base modifications
	Structural alterations
	Strand breakages

	Consequences of defective DNA repair
	Congenital diseases
	Acquired diseases

	Measuring DNA damage
	Low resolution techniques
	High resolution techniques

	CPDs and NER: a paradigm
	Ultra violet radiation
	Cyclobutane pyrimidine dimers

	Saccharomyces cerevisiae as a model organism
	Nucleotide excision repair
	Lesion recognition
	Lesion repair

	The Abf1 protein
	Role in NER

	This study

	Technical Overview
	Microarrays
	Chromatin immunoprecipitation
	Amplification
	Fluorescent labelling and hybridisation
	Microarray processing
	Feature extraction
	Data analysis

	Creation of a collection of R scripts to process and interrogate ChIP-chip data
	Introduction
	The scripts
	Loading data
	Utilising limma
	The arrayData class
	Creating new arrayData objects
	Writing arrayData to external files
	The genomeAnnotation class

	Quality assessment
	Accessing data
	Manipulation of arrayData objects
	Displaying data
	Plotting data
	Genome plots
	Histograms, density and Q-Q plots
	Profile plots
	Rainbow plots

	Annotating data
	Positions plot
	Venn diagrams
	Extracting sequence information

	Discussion

	Development of a novel normalisation method
	Introduction
	Algorithm
	Expectations of the data
	Overview
	Preprocessing
	Removing irrelevant probe values
	Removing absent values

	Full processing
	Quantile normalisation
	Pseudo-modal shift and background scaling

	Application
	Validation

	Alternative process
	DNA spikes

	Discussion

	Development of a novel enrichment detection method
	Introduction
	Existing methods
	Motivation for creating a new method

	Algorithm
	Window determination
	Cutoff calculation

	Enrichment detection
	Peak detection

	Testing the performance of the algorithm
	Data
	Creating simulated ChIP-chip data
	Using spike datasets

	Optimisation of the algorithm
	Optimising the window size selection
	Optimising the FDRE value selection
	Optimising the scale value selection
	Summary

	Comparison with other methods

	Discussion

	Development of a method to predict sequence specific damage events
	Introduction
	Motivation
	Methodology
	Algorithm
	Alternative algorithm
	Application
	Comparisons
	Uses

	Discussion

	Genome wide analysis of the binding site locations of the Abf1 protein
	Introduction
	Methods
	Generation of data
	Data validation
	Data normalisation
	Peak detection
	Hypergeometric distribution
	Sequence extraction
	Sequence analysis
	Motif logo creation
	Ganapathi data

	Results
	Data validation
	Consequences of normalisation
	Peak detection
	Genomic binding site locations
	Comparison with other datasets
	Sequences at binding sites

	Discussion

	Conclusions and future work
	Bibliography
	Electronic Appendix Structure

