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ABSTRACT

Aims. We introduce and test a new and highly efficient method for treating the thermal and radiative effects influencing the energy
equation in SPH simulations of star formation.
Methods. The method uses the density, temperature and gravitational potential of each particle to estimate a mean optical depth,
which then regulates the particle’s heating and cooling. The method captures – at minimal computational cost – the effects of (i) the
rotational and vibrational degrees of freedom of H2; (ii) H2 dissociation and Ho ionisation; (iii) opacity changes due to ice mantle
melting, sublimation of dust, molecular lines, H−, bound-free and free-free processes and electron scattering; (iv) external irradiation;
and (v) thermal inertia.
Results. We use the new method to simulate the collapse of a 1 M� cloud of initially uniform density and temperature. At first, the
collapse proceeds almost isothermally (T ∝ ρ0.08; cf. Larson 2005, MNRAS, 359, 211). The cloud starts heating fast when the optical
depth to the cloud centre reaches unity (ρC ∼ 7 × 10−13 g cm−3). The first core forms at ρC ∼ 4 × 10−9 g cm−3 and steadily increases
in mass. When the temperature at the centre reaches TC ∼ 2000 K, molecular hydrogen starts to dissociate and the second collapse
begins, leading to the formation of the second (protostellar) core. The results mimic closely the detailed calculations of Masunaga
& Inutsuka (2000, ApJ, 531, 350). We also simulate (i) the collapse of a 1.2 M� cloud, which initially has uniform density and
temperature, (ii) the collapse of a 1.2 M� rotating cloud, with an m = 2 density perturbation and uniform initial temperature, and
(iii) the smoothing of temperature fluctuations in a static, uniform density sphere. In all these tests the new algorithm reproduces the
results of previous authors and/or known analytic solutions. The computational cost is comparable to a standard SPH simulation with
a simple barotropic equation of state. The method is easy to implement, can be applied to both particle- and grid-based codes, and
handles optical depths 0 < τ <∼ 1011.
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1. Introduction

Smoothed Particle Hydrodynamics (SPH) (Lucy 1977; Gingold
& Monaghan 1977) is a Lagrangian method which invokes a
large ensemble of particles to describe a fluid, by assigning prop-
erties such as mass, mi, position, ri, and velocity, ui, to each par-
ticle, i. Intensive thermodynamic variables like density and pres-
sure (and their derivatives) are estimated using local averages
(for reviews see Benz 1990, 1991; Monaghan 1992, 2005).

Radiative transfer (RT) has only recently been included in
SPH codes (Oxley & Woolfson 2003; Whitehouse & Bate 2004,
2006; Whitehouse et al. 2005; Viau et al. 2005; Mayer et al.
2007). These SPH-RT codes use different simplifying assump-
tions in order to by-pass the full treatment of multi-frequency
radiative transfer in 3 dimensions (a task which is not possible
with current computing resources), but they still tend to be com-
putationally expensive. Indeed, even the treatment of full 3D ra-
diative transfer on a single snapshot during the evolution of a
simulation is computationally quite expensive (Stamatellos &
Whitworth 2005; Stamatellos et al. 2005).

More often, in SPH simulations of star formation, it is stan-
dard practice to use a barotropic equation of state, i.e. to put
P = P(ρ) (e.g. Bonnell 1994; Whitworth et al. 1995; Bate 1998).
The form of P(ρ) is chosen to mimic the thermodynamics of
star forming gas, as revealed by computations of the spherically

symmetric collapse of a single, isolated protostar (e.g. Boss &
Myhill 1992; Masunaga & Inutsuka 2000).

This is not an ideal situation. (a) A barotropic equation of
state is unable to account for the fact that the thermal history
of a protostar depends sensitively on its environment, geome-
try and mass; for example, low-mass protostars remain optically
thin to their cooling radiation to higher densities than high-mass
ones. Thus, the evolution of the density and temperature can-
not be approximated by a single barotropic equation for every
system. Even for the same system, the density and temperature
evolution away from the centre of the cloud does not follow the
corresponding evolution at the centre of the cloud (Whitehouse
& Bate 2006). (b) A barotropic equation of state is unable to cap-
ture thermal inertia effects (i.e. situations where the evolution is
controlled by the thermal timescale, rather than the dynamical
one). Such effects appear to be critical at the stage when frag-
mentation occurs (e.g. Boss et al. 2000).

One of the ultimate goals of star formation simulations is to
track the thermal history of star-forming gas. Strictly speaking,
this requires a computational method which can treat properly, in
3 dimensions, the time-dependent radiation transport which con-
trols the energy equation. However, this is computationally very
expensive, significantly more expensive than the hydrodynam-
ics. We have therefore developed a new algorithm which enables
us to distinguish the thermal behaviours of protostars of different
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mass, in different environments, with different metallicities, and
to capture thermal inertia effects, without treating in detail the
associated radiation transport. The method uses the density, tem-
perature and gravitational potential of each SPH particle (which
are all calculated using the standard SPH formalism) to estimate
a characteristic optical depth for each particle. This optical depth
then regulates how each particle heats and cools.

The paper is organized as follows. In Sect. 2, we present the
new algorithm we have developed to treat the energy equation
within SPH, also describing the aspects of SPH that are required
for a complete picture of the new method. In Sect. 3 we outline
the properties we adopt for the gas and dust in a star-forming
cloud, i.e. the composition, energy equation, equation of state,
and opacity. In Sect. 4, we present a simulation of the collapse
of a 1 M� molecular cloud; we describe in detail the different
stages of the collapse, and compare our results with those of
Masunaga & Inutsuka (2000). In Sect. 5, three additional tests
are presented: (i) the collapse of a 1.2 M� molecular cloud (Boss
& Myhill 1992; Whitehouse & Bate 2006), (ii) the collapse of a
rotating 1.2 M� molecular cloud, with an m = 2 density pertur-
bation (Boss & Bodenheimer 1979; Whitehouse & Bate 2006),
and (iii) the smoothing of temperature fluctuations in a static,
uniform-density sphere (Spiegel 1957). Finally, in Sect. 6, we
summarise the method and the tests performed, and discuss the
applicability of the new algorithm to simulations of astrophysi-
cal systems.

2. The method

The key to the new method is to use an SPH particle’s density,
ρi, temperature, Ti, and gravitational potential, ψi, to estimate
a mean optical depth, τ̄i, for the SPH particle. This mean opti-
cal depth then regulates the SPH particle’s radiative heating and
cooling; in other words, it determines the extent to which the
SPH particle is shielded from external radiation, and the extent to
which the SPH particle’s cooling radiation is trapped. (The grav-
itational potential is used here, purely because gravity is the only
particle parameter which is already calculated by the SPH code
but is not a local function of state. Therefore it should, in some
very general sense, represent the larger-scale environment sur-
rounding the SPH particle.)

Specifically, each SPH particle is treated as if it were em-
bedded in a spherically-symmetric pseudo-cloud (its personal
pseudo-cloud). The density and temperature profiles of the
pseudo-cloud are modelled with a polytrope of index n = 2, but
the pseudo-cloud is not assumed to be in hydrostatic balance.
(We will show later that the choice of n is not critical.)

The position of the SPH particle within its pseudo-cloud is
not specified; instead we take a mass-weighted average over
all possible positions (see Figs. 1 and 2). For any given posi-
tion of the SPH particle within the pseudo-cloud, the central
density, ρC , and scale-length, RO , are chosen to reproduce the
density and gravitational potential at the position of the SPH
particle. Similarly, the pseudo-cloud’s central temperature, TC

is chosen to match the temperature at the position of the SPH
particle. (Because the pseudo-cloud is not necessarily in hy-
drostatic equilibrium, we cannot – in general – write TC =
4πGm̄ρC R2

O
/(n + 1)kB , where m̄ is the mean gas-particle mass

and kB is Boltzmann’s constant.)
The optical depth, τi, is then calculated by integrating out

along a radial line from the given position to the edge of the
pseudo-cloud, i.e. through the cooler and more diffuse outer
parts of the pseudo-cloud. In this way, τi samples the different
opacity regimes that are likely to surround the SPH particle. This
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Fig. 1. Schematic representation of the pseudo-cloud around an
SPH particle.The location of the SPH particle inside its pseudo-cloud
is not specified.

Fig. 2. Density and temperature profiles for a polytropic pseudo-cloud
with n = 2. The SPH particle could be located anywhere in the cloud
(solid and dashed line circles).

accounts for the fact that, even if the opacity at the position of
the SPH particle is low, its cooling radiation may be trapped by
cooler more opaque material in the surroundings.

Finally, τ̄i is obtained by taking a mass-weighted average
over all possible positions within the pseudo-cloud.

2.1. Basic SPH equations

We use the dragon SPH code (Goodwin et al. 2004a,b).
dragon uses variable smoothing lengths, hi, adjusted so that
the number of neighbours is exactly NNEIB = 50; it is important
to have a constant number of neighbours to minimise numerical
diffusion (Attwood et al. 2007). An octal tree is used to collate
neighbour lists and calculate gravitational accelerations, which
are kernel-softened using particle smoothing lengths. Standard
artificial viscosity is invoked in converging regions, and multi-
ple particle time-steps are used.
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The density at the position of SPH particle i is given by a
sum over its neighbours, j,

ρi =
∑

j

⎧⎪⎪⎨⎪⎪⎩
m j

h3
i j

W

(
ri j

hi j

)⎫⎪⎪⎬⎪⎪⎭ , (1)

where m j is the mass of particle j, hi j = (hi + h j)/2, and W(s) is
the dimensionless smoothing kernel.

The equation of motion for SPH particle i is

dui
dt
=

∑
j�i

⎧⎪⎪⎨⎪⎪⎩m j

⎛⎜⎜⎜⎜⎜⎝ Pi

ρ2
i

+
P j

ρ2
j

+Πi j

⎞⎟⎟⎟⎟⎟⎠ ri j

h4
i jri j

W′
(

ri j

hi j

)⎫⎪⎪⎬⎪⎪⎭+
dui
dt

∣∣∣∣∣
GRAV

· (2)

Here, Pi and P j are the pressures at the positions of particles i
and j respectively; ri j ≡ ri− r j ; ri j ≡ |ri j| ; and W′(s) ≡ dW/ds.
Artificial viscosity is represented by the term

Πi j =

(
−αci jµi j + βµ

2
i j

)
ρi j

, (3)

with α = 1 , β = 2 , ci j ≡ (ci + c j)/2 (where ci = (Pi/ρi)1/2 is
the isothermal sound speed of particle i), ρi j ≡ (ρi + ρ j)/2,

µi j =

⎧⎪⎪⎨⎪⎪⎩
hi j ui j·ri j

(r2
i j+0.1h2

i j)
, if ui j · ri j < 0 ,

0, if ui j · ri j ≥ 0,
(4)

and ui j ≡ ui − u j.
The second term on the righthand side of Eq. (2) is the grav-

itational acceleration experienced by particle i, given by

dui
dt

∣∣∣∣∣
GRAV

= −
∑
j�i

⎧⎪⎪⎨⎪⎪⎩
Gm jri j

r3
i j

W�

(
ri j

hi j

)⎫⎪⎪⎬⎪⎪⎭ , (5)

where

W�(s) =
∫ s′=s

s′=0
W(s′) 4 π s′2 ds′. (6)

Similarly the gravitational potential at the position of particle i
is given by

ψi = −G
∑
j�i

{
m j

ri j
W��

(
ri j

hi j

)}
, (7)

where

W��(s) = W�(s) + s
∫ s′=∞

s′=s
W(s′) 4 π s′ ds′. (8)

In Eqs. (5) and (7), the sums are over all particles except i; the
terms W�(s) in Eq. (6) and W��(s) in Eq. (8) represent kernel
softening. In practice, the calculation of these gravitational terms
is rendered more efficient by using a tree structure to identify dis-
tant clusters of particles whose effect can be treated collectively
with a multipole expansion; this reduces an N2 process to an
N�n[N] process, whereN is the total number of SPH particles.

The energy equation for particle i is

dui

dt
=

1
2

∑
j

⎧⎪⎪⎨⎪⎪⎩m j

⎛⎜⎜⎜⎜⎜⎝ Pi

ρ2
i

+
P j

ρ2
j

+Πi j

⎞⎟⎟⎟⎟⎟⎠ui j · ri j

h4
i j ri j

W′
(

ri j

hi j

)⎫⎪⎪⎬⎪⎪⎭+
dui

dt

∣∣∣∣∣
RAD

. (9)

Here ui is the internal energy per unit mass. The first term on
the righthand side represents compressional and viscous heating.
The second term on the righthand side is the net radiative heating
rate; this paper is primarily concerned with the evaluation of this
term.

2.2. Calibrating the pseudo-cloud

Suppose that SPH particle i is embedded at radius R = ξR0 ,
in a pseudo-cloud with central density ρC , scale-length RO , and
polytropic index n (see Figs. 1 and 2). ξ is thus a dimensionless
radius, and ρC and RO are chosen so as to reproduce – at this
radius – the actual density and gravitational potential of the SPH
particle, i.e.

ρCθ
n(ξ) = ρi, (10)

− 4πGρCR2
O
φ(ξ) = ψi. (11)

Here θ(ξ) is the Lane-Emden Function for index n
(Chandrasekhar 1939),

φ(ξ) = − ξB

dθ
dξ

(
ξB

)
+ θ(ξ), (12)

and ξB is the dimensionless boundary of the polytrope (i.e. the
argument of the smallest zero of θ(ξ))

If we fix n (and hence the forms of θ(ξ) and φ(ξ)), and we
pick an arbitrary value for ξ (modulo that it must be within the
pseudo-cloud, i.e. ξ < ξB ), then we obtain

ρC = ρi θ
−n(ξ), (13)

RO =

[ −ψi θ
n(ξ)

4 πG ρi φ(ξ)

]1/2

. (14)

In an analogous manner we chose the central temperature of the
pseudo-cloud so as to reproduce – at radius R = ξRO – the actual
temperature of the SPH particle (see Fig. 2),

TC θ(ξ) = Ti, (15)

TC = Ti θ
−1(ξ). (16)

The column-density on a radial line from this radius to the
boundary of the pseudo-cloud is then given by

Σi(ξ) =
∫ ξ′=ξB

ξ′=ξ
ρCθ

n(ξ′) ROdξ′

=

[ −ψi ρi

4 πG φ(ξ) θn(ξ)

]1/2 ∫ ξ′=ξB

ξ′=ξ
θn(ξ′) dξ′. (17)

To obtain the pseudo-mean column-density, we take a mass-
weighted average of Σi(ξ) over all possible dimensionless radii,
ξ, i.e.

Σ̄i =

[
− ξ2

B

dθ
dξ

(ξB )

]−1 ∫ ξ=ξB

ξ=0
Σi(ξ) θn(ξ) ξ2dξ

= ζn

[−ψi ρi

4 πG

]1/2

, (18)

where
[
− ξ2

B

dθ
dξ (ξB )

]
is the total dimensionless mass of the poly-

trope, θn(ξ) ξ2dξ is the dimensionless mass element between ξ
and ξ + dξ, and

ζn =

[
−ξ2

B

dθ
dξ

(ξB )

]−1∫ ξ=ξB

ξ=0

∫ ξ′=ξB

ξ′=ξ
θn(ξ′)dξ′

[
θn(ξ)
φ(ξ)

]1/2

ξ2dξ. (19)

As an indication of how insensitive the results are to the choice
of n, we note that ζ1 = 0.376, ζ1.5 = 0.372, ζ2 = 0.368, ζ2.5 =
0.364, and ζ3 = 0.360. Since for protostars which are close
to equilibrium – for example those undergoing quasistatic (i.e.
Kelvin-Helmholtz) contraction – the polytropic exponent is
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likely to fall in the range 4/3 to 5/3, we adopt n = 2 (corre-
sponding to a polytropic exponent of 3/2).

We calculate the pseudo-mean optical depth in the same
way as the pseudo-mean column-density. If the Rosseland-mean
opacity is a function of density and temperature only, κR (ρ, T ),
the radial optical depth from radius R = ξRO to the boundary of
the pseudo-cloud is

τi(ξ) =
∫ ξ′=ξB

ξ′=ξ
κR

(
ρCθ

n(ξ′), TCθ(ξ
′)
)
ρCθ

n(ξ′) RO dξ′

=

[−ψi ρi θ
n(ξ)

4 πG φ(ξ)

]1/2

×
∫ ξ′=ξB

ξ′=ξ
κ

(
ρi

[
θ(ξ′)
θ(ξ)

]n

, Ti

[
θ(ξ′)
θ(ξ)

]) [
θ(ξ′)
θ(ξ)

]n

dξ′, (20)

and the mass-weighted pseudo-mean optical depth is

τ̄i =

[
− ξ2

B

dθ
dξ

(ξB )

]−1 [−ψi ρi

4 πG

]1/2 ∫ ξ=ξB

ξ=0

∫ ξ′=ξB

ξ′=ξ

κR

(
ρi

[
θ(ξ′)
θ(ξ)

]n

, Ti

[
θ(ξ′)
θ(ξ)

])
θn(ξ′)dξ′

[
θn(ξ)
φ(ξ)

]1/2

ξ2dξ. (21)

At first sight it might appear that the double integral in Eq. (21)
will have to be evaluated on-the-fly for every SPH particle, at ev-
ery time-step. In fact, we can define a pseudo-mean mass opacity

κ̄i =
τ̄i

Σ̄i
, (22)

which – once n has been fixed – is simply a function of ρi and Ti.
It can therefore be evaluated in advance, once and for all time,
and stored in a dense look-up table for subsequent reference and
interpolation. For the point (ρ, T ) in the table,

κ̄R (ρ, T ) =

[
− ζn ξ

2
B

dθ
dξ

(ξB )

]−1 ∫ ξ=ξB

ξ=0

∫ ξ′=ξB

ξ′=ξ

κR

(
ρ

[
θ(ξ′)
θ(ξ)

]n

, T

[
θ(ξ′)
θ(ξ)

])
θn(ξ′)dξ′

[
θn(ξ)
φ(ξ)

]1/2

ξ2dξ. (23)

The physical interpretation of this pseudo-mean opacity,
κ̄R (ρ, T ), is fundamental to the method. Although formally
κ̄R (ρ, T ) only depends on the local density and temperature,
when it is multiplied by the pseudo-mean column-density, Σ̄i,
it gives a pseudo-mean optical depth, τ̄i, which allows for the
fact that radiation absorbed or emitted by particle i has to pass
through surrounding material which will in general have differ-
ent density and temperature, and hence different opacity. For ex-
ample, an SPH particle whose local Rosseland-mean opacity,
κR (ρ, T ), is low because its density and temperature fall in the
opacity gap, will have a larger pseudo-mean opacity, κ̄R (ρ, T );
this simply reflects the fact that this SPH particle may still be
well insulated by cooler material in its surroundings which has
much higher opacity because it contains dust.

2.3. Radiative heating and cooling

The net radiative heating for SPH particle i is given by

dui

dt

∣∣∣∣∣
RAD

=
4σSB (T 4

O
(ri) − T 4

i )

Σ̄2
i κ̄R (ρi, Ti) + κ−1

P
(ρi, Ti)

, (24)

where σSB is the Stefan-Boltzmann constant, κ̄R (ρ, T ) is the
pseudo-mean opacity defined in Sect. 2.2, and κP (ρ, T ) is the
Planck-mean opacity.

The positive term in Eq. (24) – the one involving T 4
O
(ri) –

represents radiative heating due to the background radiation field
with effective temperature TO (ri). This term ensures that the SPH
particle does not cool radiatively below TO (ri). In a simulation
which includes stars – either pre-existing, or formed as an out-
come of the simulation; and with luminosities L� and positions
r� – we set

T 4
O
(r) = (10 K)4 +

∑
�

{
L�

16 πσSB |r − r�|2
}
· (25)

The negative term in Eq. (24) – the one involving T 4
i – repre-

sents radiative cooling of SPH particle i. If T 4
i 	 T 4

O
(ri), we can

neglect the heating term and consider two limiting regimes:
(i) If Σ̄2

i κ̄R (ρi, Ti) 
 κ−1
P

(ρi, Ti), we are in the optically thin
cooling regime and Eq. (24) approximates to

dui

dt

∣∣∣∣∣
RAD

� − 4σSB T 4
i κP (ρi, Ti), (26)

in exact agreement with the definition of the Planck-mean
opacity.

(ii) If Σ̄2
i κ̄R (ρi, Ti)	 κ−1

P
(ρi, Ti), we are in the optically thick

cooling regime and Eq. (24) approximates to

dui

dt

∣∣∣∣∣
RAD

� − 4σSB T 4
i

Σ̄2
i κ̄R (ρi, Ti)

= − c aSB T 4
i

Σ̄i τ̄i
, (27)

where c is the speed of light, aSB is the radiant energy density
constant, and we have obtained the second expression by substi-
tuting 4σSB = caSB and Σ̄i κ̄R (ρi, Ti) = τ̄i.

To see that this is just the diffusion approximation, suppose
that the pseudo-cloud has pseudo-mass M̄i and pseudo-radius
R̄i ∼ (3M̄i/4πΣ̄i)1/2. Equation (27) then reduces to

dui

dt

∣∣∣∣∣
RAD

∼ − Ūrad,i

M̄i t̄diff,i
, (28)

where Ūrad,i ∼ 4πR̄3
i aSB T 4

i /3 is the total radiant energy in the
pseudo-cloud and trad,i ∼ R̄iτ̄i/c is the timescale on which radia-
tion diffuses out of the pseudo-cloud (cf. Masunaga & Inutsuka
1999; Whitworth & Stamatellos 2006).

2.4. Quasi-implicit scheme

In order to avoid very short time-steps, we use the following
scheme to update the internal energy, ui. From SPH we know
the net compressive plus viscous heating rate,

dui

dt

∣∣∣∣∣
HYDRO

=
1
2

∑
j

m j

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝ Pi

ρ2
i

+
P j

ρ2
j

+Πi j

⎞⎟⎟⎟⎟⎟⎠ui j · ri j

h4
i j ri j

W′
(

ri j

hi j

)⎫⎪⎪⎬⎪⎪⎭ · (29)

We can therefore calculate (a) the equilibrium temperature Teq,i
for each particle from

dui

dt

∣∣∣∣∣
HYDRO

+
4σSB

[
T 4

O
(ri) − T 4

eq,i

]
Σ̄2

i κ̄R (ρi, Teq,i) + κ−1
P

(ρi, Teq,i)
= 0; (30)

(b) the equilibrium internal energy, ueq,i = u(ρi, Teq,i); and (c) the
thermalization timescale,

ttherm,i =
{
ueq,i − ui

} {
dui

dt

∣∣∣∣∣
HYDRO

+
dui

dt

∣∣∣∣∣
RAD

}−1

· (31)
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We then advance ui through a time step ∆t by putting

ui(t+∆t) = ui(t) exp

[ −∆t
ttherm,i

]
+ ueq,i

{
1 − exp

[ −∆t
ttherm,i

]}
· (32)

If ∆t 
 ttherm,i, we are in a situation where thermal inertia effects
are important, and Eq. (32) approximates to

ui(t + ∆t) � ui(t) +
[
ueq,i − ui(t)

] ∆t
ttherm,i

; (33)

i.e. in one dynamical timestep, ∆t, the gas can only relax a little
towards thermal equilibrium.

On the other hand, if ∆t 	 ttherm,i, Eq. (32) approximates to

ui(t + ∆t) � ueq,i; (34)

i.e. thermal processes are occurring much faster than dynamical
ones, and the gas is always close to thermal equilibrium. Using
the above procedure we capture thermal inertia effects, whilst
avoiding the use of very small timesteps.

2.5. Method implementation

The method is easy to implement. In practice we do the follow-
ing, for each SPH particle i, at each timestep:

1. Calculate the pseudo-mean column-density Σ̄i from the den-
sity, ρi and gravitational potential, ψi, using Eq. (18). (In a
simulation which includes stars, we must neglect their con-
tribution to ψi.)

2. Calculate the pseudo-mean opacity, κ̄R (ρi, Ti) and the Planck-
mean opacity, κP (ρi, Ti), by interpolation on a look-up table1.

3. Calculate the compressive plus viscous heating rate,
dui/dt|

HYDRO
, using Eq. (29), and the radiative heating rate,

dui/dt|
RAD

, using Eq. (24).
4. Calculate the equilibrium temperature, Teq,i, using Eq. (30)

and the thermalization timescale, ttherm,i, using Eq. (31).
5. Update the internal energy, ui, using Eq. (32); and hence also

advance the temperature, Ti.

2.6. Limitations of the method

Although the method is very efficient, it evidently has limita-
tions, in particular:

1. Because the diffusion approximation is applied here glob-
ally (to the whole pseudo-cloud), the method cannot capture
in detail the local nature of radiative heating and cooling in
the optically thick regime (i.e. the fact that in reality fluid
elements exchange heat directly with other fluid elements,
within a few photon mean-free-paths).

2. Because the pseudo-cloud Ansatz predicates a spherical
polytropic cloud, the method works best for configurations
which approximate to spherical symmetry. For example in
simulations of disc fragmentation it handles the condensa-
tions better than the background disc. Notwithstanding this,
even in an unperturbed disc the method is reasonably ac-
curate, as shown by its performance of the Hubeny test
(Stamatellos & Whitworth 2007).

1 Tabulated pseudo-mean opacities and internal energies (see next
section) can be obtained by contacting
D.Stamatellos@astro.cf.ac.uk.

Fig. 3. The variation of the mean molecular weight with density and
temperature. Isopycnic curves are plotted from ρ = 10−18 g cm−3 to ρ =
1 g cm−3, every two orders of magnitude (bottom to top).

3. Gas and dust properties

3.1. Gas-phase chemical abundances

Although metals make essential contributions to the opacity,
they make very little contribution to the equation of state.
Therefore, for the purpose of treating the gas-phase chemistry,
we assume that the gas is 70% hydrogen and 30% helium by
mass: X = 0.7, Y = 0.3, Z = 0 . At low temperatures, hydrogen
is molecular, but as the temperature increases it becomes disso-
ciated and then ionised. At low temperatures, helium is neutral
atomic, but as the temperature increass it becomes ionised, first
to He+, and then to He++. The relative abundances of these con-
stituents depend on the density, ρi, and the temperature, Ti, and
are calculated using Saha equations (e.g. Black & Bodenheimer
1975), with the simplifying assumption that the dissociation
of H2 is complete before ionization of Ho begins; and similarly,
that the ionization of Heo is complete before the ionization of
He+ begins.

3.2. The equation of state

If we define y = nHo/2nH2 to be the degree of dissociation of hy-
drogen, x = nH+/nHo to be the degree of ionization of hydrogen,
z1 = nHe+/nHeo to be the degree of single ionisation of helium,
and z2 = nHe++/nHe+ to be the degree of double ionisation of
helium, then the mean molecular weight is given by

µi = µ(ρi, Ti) =
[
(1 + y + 2xy)

X
2
+ (1 + z1 + z1z2)

Y
4

]−1

· (35)

Note that (x, y, z1, z2) must be evaluated afresh for each SPH par-
ticle; the index i has been dropped purely for simplicity. The
variation of the mean molecular weight with density and tem-
perature is shown in Fig. 3.

For densities up to ∼0.03 g cm−3 the ideal gas approximation
holds, and hence the gas pressure is

Pi =
ρi kB Ti

µi mH
· (36)
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Fig. 4. The variation of the specific internal energy with density and
temperature. Isopycnic curves are plotted from ρ = 10−18 g cm−3 to ρ =
1 g cm−3, every two orders of magnitude (from top to bottom). The ro-
tational degrees of freedom of H2 are excited around 100 to 200 K, H2

starts to be dissociated around 1000 to 10 000 K, and Ho starts to be
ionised around 4000 to 40 000 K.

3.3. Specific internal energy of the gas

The specific internal energy (energy per unit mass) of an SPH
particle i is the sum of contributions from molecular, atomic and
ionised hydrogen, atomic, singly ionised and doubly ionised he-
lium, and the associated dissociation and ionisation energies,

ui = uH2+uH+uHe+uH2DISS+uH ION+uHe ION+uHe+ION, (37)

where

uH2 = X(1 − y)

[
3
2
+ ci(Ti)

]
kB Ti

2mH
, (38)

uH = X y (1 + x)
3kBTi

2mH
, (39)

uHe = Y (1 + z1 + z1z2)
3kBTi

8mH
, (40)

uH2DISS = X y
DH2DISS

2 mH
, (41)

uH ION = X x y
IH ION

mH
, (42)

uHe ION = Y z1 (1 − z2)
IHe ION

4 mH
, (43)

uHe+ION = Y z1 z2
IHe+ION

4 mH
· (44)

Here, DH2DISS = 4.5 eV is the dissociation energy of H2;
IH ION = 13.6 eV, IHe ION = 24.6 eV and IHe+ION = 54.4 eV
are the ionisation energies of Ho, Heo and He+, respectively; and
the function

ci(Ti) =

(
TROT

Ti

)2

f (Ti) +

(
TVIB

Ti

)2 exp (TVIB/Ti)[
exp (TVIB/Ti) − 1

]2
, (45)

with TROT = 85.4 K and TVIB = 6100 K accounts for the rotational
and vibrational degrees of freedom of H2. The function f (Ti)
depends on the relative abundances of ortho- and para-H2; we
assume a fixed ortho-to-para ratio of 3:1. The variation of the
specific internal energy with density and temperature is shown
in Fig. 4.

Table 1. Opacity law parameters (from Bell & Lin 1994).

Dominant opacity component κ0 a b
or physical process

1 Ice grains 2 × 10−4 0 2
2 Evaporation of ice grains 2 × 1016 0 –7
3 Metal grains 0.1 0 1/2
4 Evaporation of metal grains 2 × 1081 1 –24
5 Molecules 10−8 2/3 3
6 H− absorption 10−36 1/3 10
7 bf and ff transitions 1.5 × 1020 1 –5/2
8 Electron scattering 0.348 0 0

3.4. Opacity

In the present work we do not distinguish between the
Rosseland-mean and Planck-mean opacities; we use the
parametrisation proposed by Bell & Lin (1994) for both, i.e.

κR (ρ, T ) = κP (ρ, T ) = κ0 ρ
a T b. (46)

Here (κ0 , a, b) are constants which depend on the dominant phys-
ical process contributing to the opacity in different regimes of
density and temperature (see Table 1 and Fig. 5).

The opacity at low temperatures is dominated by icy dust
grains. At T ∼ 150 K the ices evaporate and the opacity is due
to metal grains up to T ∼ 1000 K, when the metal grains start
to evaporate. The opacity drops considerably in the temperature
range from T ∼ 1000 K to T ∼ 2000 K, as it is too hot for dust to
exist, and too cool for H− to contribute, so the opacity is mainly
due to molecules; this region of low opacity is sometimes re-
ferred to as the opacity gap. The opacity starts to increase again
above T ∼ 2000 K due to H− absorption and then decreases
again above T ∼ 104 K, when free-free transitions take over. At
very high temperatures, electron scattering delivers an approxi-
mately constant opacity.

At low temperatures, T < 2000 K, the Bell & Lin parametri-
sation agrees well with the Rosseland-mean dust opacity calcu-
lated by Preibisch et al. (1993). Similarly, at high temperatures,
T > 2000 K, it agrees well with the Rosseland-mean gas opaci-
ties calculated by Alexander & Ferguson (1994) and Iglesias &
Rogers (1996).

Equation (46) gives local Rosseland- and Planck-mean opac-
ities. To calculate the pseudo-mean opacity used in Eq. (24), we
have to convolve this opacity with polytropic density and tem-
perature profiles according to Eq. (23). In Fig. 6 we present the
pseudo-mean opacity computed in this way, using a polytropic
index n = 2. We reiterate that the choice of n affects the com-
puted pseudo-mean opacities only weakly.

4. The collapse of a 1-M� molecular cloud

The first test of our new method for treating the energy equation
in SPH is to simulate the collapse of a 1 M� molecular cloud,
which initially is spherical with radius R = 104 AU and uniform
density ρ0 = 1.41 × 10−19 g cm−3. We set the background radi-
ation temperature to TO (r) = 5 K. This problem has been inves-
tigated by Masunaga & Inutsuka (2000) using a code that treats
the hydrodynamics in 1 dimension (i.e. assuming spherical sym-
metry) and the radiative transfer exactly in 3 dimensions (i.e. by
solving the angle-dependent and frequency dependent radiation
transfer equation). It therefore constitutes a stiff test for our new
method to reproduce their results. For the simulation presented
here we use 2 × 105 SPH particles.
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Fig. 5. The variation of the local Rosseland-mean opacity with density
and temperature. Isopycnic curves are plotted from ρ = 10−18 g cm−3 to
ρ = 1 g cm−3, every two orders of magnitude (from bottom to top). The
opacity gap is evident at temperatures ∼1000 to 3000 K, over a wide
range of densities.

4.1. Cloud collapse and the formation of the first
and second cores

The evolution of the cloud is followed up to density ρ ∼
10−3 g cm−3 and temperature T ∼ 104 K, i.e. a difference from
the initial conditions of about 16 orders of magnitude in density,
and 3 orders of magnitude in temperature.

As long as the density is below ∼ 10−12 g cm−3, the tempera-
ture increases slowly with increasing density. For 10−18 g cm−3 <∼
ρ <∼ 10−13 g cm−3 we can approximate this with

T � 5 K

[
ρ

10−18 g cm−3

]0.08

(47)

(cf. Larson 1973; Low & Lynden-Bell 1976; Masunaga &
Inutsuka 2000; Larson 2005).

The cloud core starts heating more rapidly when it becomes
optically thick. This continues until the the temperature reaches
T ∼ 100 K at density ρ ∼ 3 × 10−11 g cm−3, when the rotational
degrees of freedom of H2 start to get excited, and hence the
temperature increases more slowly with density (see the kink
around T ∼ 100 K in Fig. 7). As the temperature increases
further, the thermal pressure starts to decelerate the contrac-
tion, and the first core is formed (Larson 1969; Masunaga et al.
1998; Masunaga & Inutsuka 2000; Whitehouse & Bate 2006) at
t = 1.048 tffo, where tffo is the free-fall time at the start of col-
lapse, i.e. tffo =

[
3π/(32 G ρ0)

]1/2
= 1.781 × 105 yr (see Fig. 8).

The first core grows in mass, contracts, and heats up until
the temperature reaches T ∼ 2000 K, when H2 starts to disso-
ciate. Consequently the compressional energy delivered by con-
traction does not all go to heat the core; instead some of it goes
into dissociating H2, and the second collapse starts. This sec-
ond collapse proceeds until almost all of the molecular hydro-
gen at the centre has been dissociated. When the density reaches
ρ ∼ 10−3 g cm−3 and the temperature rises above T ∼ 10 000 K,
the collapse again decelerates and the second core (i.e. the pro-
tostar) is formed (Larson 1969; Masunaga & Inutsuka 2000) at
t = 1.052 tffo. At first, the second core pulsates (see Fig. 8 and
Larson 1969), but eventually it settles down into quasistatic con-
traction. Due to computational constraints, the evolution is not
followed further.

Fig. 6. The variation with density and temperature of the pseudo-mean
opacity. Isopycnic curves are plotted as in Fig. 5. For comparison the
local opacity at density ρ = 10−6 g cm−3 is also plotted (dashed line).

The evolution of the core in our simulation is very similar
to that obtained by Masunaga & Inutsuka (2000), as shown in
Fig. 7. Differences at densities >∼ 5× 10−6 g cm−3 are attributable
to the different opacities we use. The timescales in our simu-
lation are also very similar to those obtained by Masunaga &
Inutsuka (2000), as is shown in Fig. 8, where the evolution of
the density at the centre of the cloud is plotted against time. The
times computed from our simulation fit well with the times from
the Masunaga & Inutsuka (2000) simulation if we synchronise
the two simulations at density ρ = 4.34 × 10−13 g cm−3, to avoid
discrepancies due to small differences in the initial conditions at
the onset of the collapse.

4.2. Snapshots during the cloud collapse

In order to describe the evolution away from the centre of the
cloud, and to make a more detailed comparison with the results
of the Masunaga & Inutsuka (2000) simulation, we focus on
eight representative instants during the cloud evolution. Critical
parameters at these instants are listed in Table 2. The central den-
sities have been chosen so as to match those used by Masunaga
& Inutsuka (2000) for the same purpose (see their Fig. 1 and
their Table 1).

Figure 9 shows the run of temperature against density at
the instants defined in Table 2. During the early stages of the
collapse the variation of temperature with density mimics the
evolution of the central temperature and density (see the green
points in Fig. 9; points representing previous instants are over-
lapped). At later stages, the regions around the centre start heat-
ing at lower densities, as in the simulation of Whitehouse & Bate
(2006).

In Figs. 10 through 12 we present the density, temperature
and radial infall velocity profiles at different instants during the
evolution of the cloud. These profiles are very similar to those
reported by Masunaga & Inutsuka (2000). The velocity profiles
(Fig. 12) clearly show the formation of an accretion shock at the
boundary of the first core at radius R ∼ 3 to 5 AU. There is also
an accretion shock at the boundary of the second core, initially
at a radius of R ∼ 0.003 AU, but later expanding to R ∼ 0.01 AU
(cf. Larson 1969).
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Fig. 7. Evolution of the central density and central temperature of the collapsing cloud (thick red line). For comparison, the dashed black line shows
the Masunaga & Inutsuka (2000) simulation, and the dotted black lines delineate the different opacity regimes (see Fig. 5). The thin solid lines are
the loci for different degrees of H2 dissociation (bottom set of blue lines, y = 0.01, 0.2, 0.4, 0.6, and 0.8, respectively) and of Ho ionisation (top
green line, x = 0.01). The results of our model are very close to the simulation of Masunaga & Inutsuka (2000). Differences at high densities are
attributable to our using different opacities.

Fig. 8. Evolution of the central density with time, given in units of the initial free fall time tffo = 1.781 × 105 yr. The times of the formation of the
first and second core are also marked. The red squares correspond to the Masunaga & Inutsuka (2000) simulation.

4.3. Convergence

We repeat this simulation using different numbers of SPH par-
ticles, N , to check for convergence. We use N � 2 × 104, 5 ×
104, 105, and 2 × 105 (Fig. 13). The run of central temperature

against central density is almost identical for different numbers
of particles, and the results are fully converged up to densities
ρ ∼ 0.003 g cm−3 with N >∼ 105. Currently available supercom-
puting facilities allow SPH simulations of star formation with
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Table 2. Colour code, elapsed time (t, measured from the beginning
of the simulation and in units of the initial freefall time), central den-
sity (ρC ), and central temperature (TC ), for the instants illustrated in
Figs. 9 to 12.

Label Colour t/tffo ρ/g cm−3 T/K

1 – 5.22 × 10−2 3.16 × 10−19 5.0
2 black 8.43 × 10−1 1.68 × 10−18 5.7
3 green 1.03038936 5.93 × 10−16 8.0
4 cyan 1.04755301 1.09 × 10−10 140
5 magenta 1.04940519 1.59 × 10−9 440
6 black 1.05153974 1.00 × 10−7 1270
7 green 1.05155811 3.30 × 10−4 5530
8 red 1.05155816 2.31 × 10−3 10 210

Fig. 9. The run of temperature against density at different instants dur-
ing the cloud evolution (instants 2 to 8 in Table 2). The region around
the centre of the cloud heats at lower densities than the centre of the
cloud. The density increases as time evolves (black, green, cyan, ma-
genta, black, green, red). For reference, we also plot the evolution of
the temperature and density at the centre of the cloud in our simula-
tion (lower solid black line) and in the Masunaga & Inutsuka (2000)
simulation (dashed black line).

up to 3 × 107 particles, and so the convergence condition quoted
above can easily be met.

5. Additional tests

5.1. Boss & Myhill (1992)

The second test of our new method is to simulate the evolu-
tion of a 1.2 M� cloud with uniform initial density ρ = 1.7 ×
10−19 g cm−3, uniform initial temperature T = 10 K, and initial
radius R = 1.5 × 1017 cm, as originally investigated by Boss
& Myhill (1992). This problem has recently been revisited by
Whitehouse & Bate (2006), using SPH with flux-limited diffu-
sion. In our simulation we haveN � 1.5×105 SPH particles. The
evolution of the cloud is very similar to the evolution already de-
scribed in Sect. 4. Figure 14 compares the run of central temper-
ature against central density which we obtain, with that obtained
by Whitehouse & Bate (2006). There are three small differences.
(i) In our simulation, the cloud starts heating before it becomes
optically thick (as reported also by Masunaga & Inutsuka (2000)
in a similar test). In contrast, the Whitehouse & Bate (2006)
cloud remains strictly isothermal during this phase. (ii) In the

Fig. 10. Density profiles at different instants during the cloud evolution
(instants 2 to 8 in Table 2). The colour coding is the same as in Fig. 9.

Fig. 11. Temperature profiles at different instants during the cloud evo-
lution (instants 2 to 8 in Table 2). The colour coding is the same as in
Fig. 9.

Fig. 12. Radial infall velocity profiles at different instants during the
cloud evolution (instants 2 to 8 in Table 2). The colour coding is the
same as in Fig. 9.

Whitehouse & Bate (2006) simulation the centre of the cloud
heats up more rapidly at densities ρ ∼ 10−11 to 10−6 g cm−3, i.e.
at lower densities than in our simulation. However, Masunaga
& Inutsuka (2000) in a similar test also find lower tempera-
tures than Whitehouse & Bate (2006) in this regime. (iii) There
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Fig. 13. The run of central temperature against central density dur-
ing the evolution of a 1 M� molecular cloud, simulated using dif-
ferent numbers of SPH particles: N � 2 × 104 (green), 5 ×
104 (blue), 105 (cyan), and 2 × 105 (red). The results converge for
N >∼ 105. The black dashed line represents the Masunaga & Inutsuka
(2000) simulation.

are differences at densities ρ >∼ 5 × 10−6 g cm−3, which are at-
tributable to the use of different opacities. These differences are
small and the overall evolution of the cloud is similar in the two
simulations.

5.2. Boss & Bodenheimer (1979)

The third test of our new method is to simulate the evolu-
tion of a rotating 1.2 M� cloud; the cloud initially rotates as a
solid body with angular velocity Ω = 1.6 × 10−12 rad s−1, and
so the ratio of rotational-to-gravitational energy is β = 0.26;
the density includes an m = 2 perturbation, i.e. ρ = 1.44 ×
10−17 g cm−3 [1+0.5 cos (2φ)], where φ is the azimuthal angle in
the plane perpendicular to the axis of rotation; the initial radius
of the cloud is R = 3.2 × 1016 cm and the temperature is initially
uniform at T = 12 K; this problem was originally investigated
by Boss & Bodenheimer (1979), and has recently been revis-
ited by Whitehouse & Bate (2006). In our simulation we have
N � 1.5 × 105 SPH particles. Figure 15 compares the evolution
of the density and temperature of the densest part of the cloud in
our simulation, with that obtained by Whitehouse & Bate (2006).
The differences are again only small.

The result of the collapse is a binary with separation S ∼
500 AU. In Fig. 16 we plot the density and the temperature on
the xy-plane at three instants during the evolution. The com-
ponents of the binary system are connected by a bar which
subsequently fragments. If the collapse were isothermal, this
bar should not show any tendency to fragment (e.g. Truelove
et al. 1998; Klein et al. 1999; Kitsionas & Whitworth 2002).
However, Bate & Burkert (1997) show that if the gas is allowed
to heat, but the heating happens at sufficiently high densities,
ρ >∼ 0.3 × 10−13 g cm−3, then the bar does fragment. In our sim-
ulation, the gas in the bar starts to heat up rapidly only when
the density reaches ρ ∼ 7 × 10−13 g cm−3. Therefore the frag-
mentation of the bar is consistent with the predictions of Bate
& Burkert (1997). However, we note that Whitehouse & Bate
(2006) do not report any bar fragmentation.

Fig. 14. Evolution of the central density and central temperature for the
Boss & Myhill (1992) test problem. The dashed line corresponds to
the Whitehouse & Bate (2006) simulation, and the dotted lines define
the different opacity regimes (see Fig. 5). The results of our model are
very close to the simulation of Whitehouse & Bate (2006). Differences
at densities >∼ 5 × 10−6 g cm−3 are attributable to the use of different
opacities.

Fig. 15. Evolution of the density and temperature at the densest part of
a collapsing, rotating molecular cloud. The dashed line corresponds to
the Whitehouse & Bate (2006) simulation of the same problem. The
results of our simulation are very close to those of Whitehouse & Bate
(2006). Differences at densities ρ >∼ 5 × 10−6 g cm−3 are attributable to
different opacities.

5.3. Thermal relaxation

Finally, we test the time-dependence of our new method by
simulating the relaxation of temperature fluctuations in a static
sphere with uniform density ρ = 10−19 g cm−3 and radius
R = 10 000 AU. We assume an equilibrium temperature of
TO = 10 K and an initial temperature perturbation of the form
∆T = ∆TO sin (kr)/kr (Masunaga et al. 1998; Spiegel 1957),
where ∆TO = 0.15 K is the amplitude of the perturbation and
k = π/(2500 AU) is its characteristic wavenumber. Masunaga
et al. (1998) have shown that at subsequent times the tempera-
ture should be

T (r, t) = TO + ∆TO

sin (kr)
kr

e−ω(k)t, (48)
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Fig. 16. Three instants from our simulation of the Boss & Bodenheimer test problem, at t1 = 0.02315 Myr, t2 = 0.02343 Myr, and t3 = 0.025 Myr
(left to right). We plot the logarithmic density (top) and the logarithmic temperature (bottom), on the xy-plane, i.e. the plane perpendicular
to the rotation axis. The central densities and central temperatures of the southern condensation are ρ1S = 1.2 × 10−12 g cm−3, T1S = 25 K,
ρ2S = 1.6 × 10−10 g cm−3, T2S = 150 K, ρ3S = 3.8 × 10−3 g cm−3, T3S = 10 800 K. The corresponding central densities and central temperatures of
the northern condensation are ρ1N = 1.7× 10−13 g cm−3, T1N = 18 K, ρ2N = 2.4× 10−12 g cm−3, T2N = 35 K, ρ3N = 6.3× 10−10 g cm−3, T3N = 780 K.

where

ω(k) = γ
[
1 − κO

k
cot−1

(κO

k

)]
(49)

is the relaxation rate,

γ =
16 σSB κO T 3

0

ρ cV

, (50)

κO is the opacity at the equilibrium temperature, and cV is the
heat capacity of the material.

In Figs. 17 to 20 we present the radial temperature profiles at
different instants during the relaxation towards equilibrium for
spheres having different optical depths, τ = 0.1, 1, 10, and 100.
The simulation results approximate well to Eq. (48).

The relaxation rates are also reproduced well. In Fig. 21 we
present the dispersion relation, i.e. the relaxation rate ω(k) for
different values of the ratio κO/k. We plot the relaxation rates for
all the SPH particles that represent the uniform density sphere,
calculated at seven different snapshots during the temperature re-
laxation (dots that saturate to form lines). The theoretical values
(calculated from Eq. (49)) are also plotted (red line and squares).

6. Summary

We have developed a new method to treat the influence of ra-
diative transfer on the energy equation in SPH simulations of
star formation. The method uses the density, temperature and
gravitational potential of each particle to make an educated esti-
mate of the mean optical depth which regulates its heating and
cooling. It can treat both the optically thin and optically thick
regimes.

The energy equation takes account of heating by compres-
sion or cooling by expansion (i.e. PdV work); viscous dissi-
pation; external irradiation; and radiative cooling. In situations
where the thermal timescale is much longer than the dynamical
timescale, the resulting thermal inertia effects are captured prop-
erly. Conversely, where the thermal timescale is much shorter
than the dynamical timescale, we avoid very short timesteps, es-
sentially by assuming thermal equilibrium.

The equation of state and the internal energy take account
of (i) the rotational and vibrational degrees of freedom of H2,
and (ii) the different chemical states of hydrogen and helium (cf.
Black & Bodenheimer 1975; Boley et al. 2007)
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Fig. 17. Thermal relaxation of a static, uniform sphere of optical depth
τ = 0.1; seven instants are plotted, showing the temperature relaxing to
its equilibrium value Teq = 10 K.

Fig. 18. Same as Fig. 17, but for a sphere of optical depth τ = 1.

A simple parametrisation of the frequency averaged opacity
is used (Bell & Lin 1994), which reproduces the basic features
of more sophisticated opacity models (e.g. Preibisch et al. 1993;
Alexander & Ferguson 1994). This parametrisation accounts for
the effects of dust sublimation, molecules, H−, free-free transi-
tions, and electron scattering

To test the SPH-RT method we have examined the collapse
of a 1 M� molecular cloud of initially uniform density and uni-
form temperature. The collapse proceeds almost isothermally
until the density in the centre rises above ρ ∼ 10−13 g cm−3.
Then the temperature rises rapidly, the thermal pressure decel-
erates the collapse, and the first core is formed. The first core
grows in mass, and contracts quasistatically. When its tempera-
ture reaches T ∼ 2000 K, the H2 starts dissociating and the sec-
ond collapse starts, resulting in the formation of the second core,
i.e. the protostar. Our method reproduces well the results of the

Fig. 19. Same as Fig. 17 but for a sphere of optical depth τ = 10.

Fig. 20. Same as Fig. 17 but for a sphere of optical depth τ = 100.

detailed simulation of Masunaga & Inutsuka (2000): the first and
the second cores form at similar densities, having similar sizes,
and at similar times after the start of the collapse.

We have also performed the Boss & Myhill (1992) and Boss
& Bodenheimer (1979) tests, and obtained results very similar to
those of Whitehouse & Bate (2006). Finally, we have performed
the thermal relaxation test of Masunaga et al. (1998). The ge-
ometries treated in this paper establish the fidelity of the method
in treating both spherical and flattened geometries. Furthermore,
the method also performs well on the Hubeny (1990) test, which
deals with equilibrium discs, and hence it can also be applied
to disc simulations. We will discuss the Hubeny (1990) test,
and applications of this method to discs in a forthcoming paper
(Stamatellos & Whitworth 2007).

The new SPH-RT method performs very well, and most im-
portantly it is very efficient. The computational time is almost
the same as (only ∼3% longer than) an SPH simulation using



D. Stamatellos et al.: Radiative transfer and the energy equation in SPH simulations of star formation 49

Fig. 21. Dispersion relation for the thermal relaxation mode. The relax-
ation rates (in units of γ) of all SPH particles at seven different instants
are plotted against the ratio κO/k (dots that saturate to form lines). The
theoretical values (calculated from Eq. (49)) are also plotted (red line
and squares).

a barotropic equation of state. The method is inherently three
dimensional, and so it can be used to treat a variety of astro-
physical systems, where the radiative processes and thermal in-
ertia effects are important. We will report on applications of the
method in future publications.
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