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Abstract 
 

Gamma camera systems are used in a variety of diagnostic applications to image and in 

some cases measure, the physiological uptake of a radioactive tracer within the body.  A 

number of factors, particularly attenuation and scatter of photons within the body tissues 

can cause degradation of image quality and inaccuracies in the measurement of tracer 

uptake.  Single photon emission tomography (SPECT) systems which incorporate an x-

ray computed tomography (CT) facility have enabled accurate transmission images of 

the patient to be obtained. These ‘attenuation maps’ can be used to correct the SPECT 

images for the effects of attenuation. 

 

The aim of this project was to investigate the use of an x-ray CT based attenuation 

correction (AC) system in SPECT gamma camera imaging. The use of AC with other 

physical parameters of the imaging process including scatter was firstly examined in 

order to determine the optimum imaging parameters required to maximise image quality. 

The influence of attenuation, scatter and other imaging parameters on the accuracy of 

absolute and relative quantitative measurements was then investigated. 

 

The methodology involved using the GE Millenium Hawkeye gamma camera system to 

obtain images of a range of phantoms filled with various concentrations of radioactivity; 

from simple point sources to phantoms which simulate organs of the body.  

An attempt was made to establish SPECT sensitivity values that would allow accurate 

determination of activity in a region of interest. These sensitivity values were applied to 

all subsequent measurements and a measure made of quantitative accuracy. 

 

The results showed that the sensitivity value used for quantitative SPECT 

measurements must reflect the reconstruction method and corrections used in the 

acquisition. Attenuation correction proved to be more significant than scatter correction 

in quantitative accuracy, with activity results being within 30% of expected values in all 

cases where AC was used.  
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Chapter 1 
 

Introduction 
 

 
1.1 Background 
 
Diagnostic nuclear medicine involves visualisation of both anatomy and 

physiological processes via the administration of a small amount of a 

radioactively labelled tracer to a patient. The labelled tracer is commonly 

known as a radiopharmaceutical and is, as the name implies, a 

pharmaceutical agent labelled with a radionuclide. The pharmaceutical 

chosen governs the body organ or system to be imaged through 

physiological uptake mechanisms e.g. methylene diphosphonate is 

absorbed onto the surface of bone via osteoblastic and vascular 

mechanisms. The radionuclide used for the majority of diagnostic studies 

is technetium Tc-99m, the properties of which will be discussed in section 

2.2. Gamma photons emitted by the decay of the Tc-99m within the 

patient are detected using a gamma camera, the detailed operation of 

which is described in Section 2.4. 

 

The distribution of the radiopharmaceutical, and hence the image that will 

be produced, depends entirely on its physiological uptake within the body 

and so will be different in a normal healthy state compared to a diseased 

state. For example, a cancerous tumour which has an increased rate of 

cell turnover may take up more of a radiopharmaceutical, than the 

surrounding healthy tissue. The difference in the number of detected 

gamma photons from abnormal and normal regions is what provides 
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contrast in nuclear medicine images. For this reason it is evident that 

nuclear medicine images provide physiological information as well as 

anatomical information, whereas imaging modalities such as x-ray 

computed tomography provide primarily anatomical information. As will 

be described later, modern developments in imaging technology have led 

towards multi modality imaging, where anatomical and physiological 

information is gained from different modalities in the same imaging 

procedure. 

 

1.2 Quantitation in nuclear medicine 

Due to its physiological nature, the ability to derive functional parameters 

from nuclear medicine images is a useful adjunct to visual interpretation. 

For example, in renography a sequence of images following the 

administration of the tracer may be analysed to give a number of indices 

of kidney function such as the rate of renal blood flow, the relative renal 

clearance rate and individual renal excretion. Furthermore, quantitation of 

images enables their interpretation to be more objectively based and 

therefore adds confidence and reproducibility to clinical reporting. 

 

In general, quantitative measurements may be classified into two groups, 

relative and absolute. In relative quantitation, the derived physiological 

parameters are based on the comparison of count rates in different parts 

of the image. For example, this approach may be used to derive the 

relative function of the left and right kidneys in renography. Absolute 

measurements of radiopharmaceutical uptake involve converting count 
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rate to activity, thereby enabling quantification of uptake as a fraction of 

the total amount administered to the patient. The conversion of countrate 

in an image region to an accurate measure of absolute uptake could be 

described as the ‘holy grail’ of nuclear medicine. This has particular 

application in targeted radiotherapy dosimetry (Fleming and Perkins, 

2000). Unfortunately, there are a number of factors which make accurate 

quantitation difficult as will be discussed. 

 

The basis of gamma camera imaging is the planar (projection) image, 

which is a two dimensional representation of the three dimensional 

distribution of radioactivity within the body. A major disadvantage of 

planar imaging is that there is no inherent depth information. This is a 

problem since radiation from an organ of interest will be attenuated 

(absorbed and scattered) by overlying tissues. Thus regions with similar 

radiopharmaceutical concentration closer to the surface of the body give 

a greater signal than those deeper within the body. Furthermore, activity 

in tissues underlying and overlying the organ of interest will contribute to 

the overall signal.  In other words, each pixel of a planar image can be 

considered as a projection of the counts due to activity in a rod of tissue 

through the patient.  

 

A simplistic approach to this problem is to acquire planar images in 

orthogonal views to give qualitative depth information. Where quantitation 

is required, an approximate correction for depth can be made by 

acquiring images in opposed views and taking the geometric mean of 
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background corrected counts in the relevant image region of interest. 

Careful thought needs to be given to the best method of background 

subtraction – for example, in dynamic planar renography correction needs 

to be made for both intra-vascular and extra-vascular activity. 

Background regions can be drawn manually or automatically (e.g. using 

edge detection techniques) and must be positioned so as to avoid other 

image regions for which the counts are not representative of the 

background for the organ of interest. 

 

Three dimensional imaging was made possible by the development of 

single photon emission computed tomography (SPECT), a concept 

applied to medical imaging by Shepp and Logan in 1974 (Shepp and 

Logan 1974). Essentially SPECT imaging involves the tomographic 

reconstruction of a set of two dimensional slice images from a series of 

projection images acquired at a sufficient number of positions around the 

object being imaged. The projection images are generally acquired along 

an arc spanning at least 180°. This reconstruction may be carried out 

using filtered back projection or iterative reconstruction techniques as 

described in section 2.5. The three dimensional images of activity 

distribution obtained in SPECT give the potential for more accurate 

quantification than planar imaging, because each voxel in the image 

provides an estimate of the activity at a specific spatial location. Accuracy 

of quantification, however, remains limited by physical factors including 

photon attenuation, photon scatter, the partial volume effect (finite spatial 

resolution) and depth dependant collimator response. These factors and 

 4  



methods for correcting for them within the SPECT reconstruction process 

will be discussed individually in sections 3.2 to 3.7. 

 

1.3 Aim 

In recent years, manufacturers of SPECT imaging systems have provided 

correction techniques for attenuation, scatter and, more recently, depth 

dependent spatial resolution. Whilst these systems have been shown to 

provide superior image quality and have thus been widely accepted into 

clinical practice, their influence on quantitation is less clear. For 

quantitative clinical applications as described, it is obviously necessary to 

obtain accurate quantitative results and so the efficacy and necessity of 

such corrections must be validated. The hypothesis to be tested by this 

project is “accurate attenuation correction is essential for 

quantitative gamma camera imaging”. 

In order to test this hypothesis,  the quantitative effects of attenuation and 

scatter on SPECT images acquired with the GE Hawkeye gamma 

camera system (GE Medical Systems) will be investigated by using a 

series of phantom measurements. All SPECT images will be 

reconstructed and analysed, in terms of derived quantitative parameters, 

both with and without manufacturer supplied corrections for attenuation 

and scatter. The parameters used will include image uniformity, image 

contrast, count rate sensitivity (in terms of cps/MBq) and a measure of 

absolute uptake. Measurements will be carried out on both single and 

double regions of activity within the image, so that absolute and relative 

quantitation can be investigated. Where applicable, planar images with no 

 5  



corrections applied will be analysed to assess the overall impact of 

SPECT imaging with and without corrections on quantification, when 

compared to the more simple planar case.  Finally, conclusions will be 

drawn on the relative impact of attenuation correction, scatter correction 

and a combination of both, on quantitative SPECT imaging. 

Recommendations for its clinical application, particularly in relative 

quantitative measurements (e.g. relative renal uptake) will be considered. 
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Chapter 2 
 

Planar and SPECT Gamma Camera Imaging 
 
 

2.1 Introduction 
 
Images of radiopharmaceutical distribution within the body are acquired 

using a gamma camera. Before understanding how this is achieved 

however, it is necessary to understand the fundamental processes by which 

gamma photons emitted from a radionuclide interact with matter both within 

the patient and the camera. The radionuclide used exclusively in this study is 

technetium 99m (Tc-99m), so this chapter begins with a description of its 

properties. The chapter then moves on to describe the processes by which 

gamma photons are absorbed and scattered in a material, with particular 

regard to photoelectric absorption and Compton scattering. Absorption and 

scattering together result in the attenuation of photons and it is this 

combined attenuation that is of relevance in later parts of this study. 

The operation of the gamma camera is then described and the way in which 

it may be used to produce two dimensional planar images and three 

dimensional SPECT images. The process of filtered back projection (FBP) 

for SPECT reconstruction will be described and the basis of iterative 

techniques introduced. 
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2.2 Technetium-99m (Tc-99m) 
 
A radiopharmaceutical used in clinical nuclear medicine comprises a 

pharmaceutical labelled with a radionuclide tracer. The radionuclide chosen 

to be this tracer should have several desirable properties;  

• it should be a pure gamma emitter, since alpha and beta particles are 

absorbed within a very short path length within tissue and would 

therefore be totally absorbed in the patient.  

• the gamma photons should have sufficient energy to pass through 

the patient and be detected by an external detector. 

• the half life of the radionuclide should be sufficiently long to allow 

physiological uptake and imaging to occur but short enough that the 

patient does not receive an unacceptably high radiation dose.   

• the radionuclide must be able to be chemically linked to a range of 

pharmaceuticals without altering their chemical properties.  

 

The radionuclide that best fulfils these criteria is technetium-99m (Tc-99m). 

This metastable isotope was isolated for the first time in 1938 by Segrẻ and 

Seaborg (Segrẻ and Seaborg 1938), but not used as a medical tracer until 

the 1960s (Sorensen et al. 1963, Herbert et al. 1965). Tc-99m is a pure 

gamma emitter of 140 keV photon energy and has a half life of 6.01 hours 

for its decay to Tc-99 via the process of isomeric transition, as shown in Fig. 

2.1. 
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Fig. 2.1 Tc-99m decay scheme, showing the decay of Tc-99m to Tc-99 via isomeric 

transition with a half life of 6.01 hours. 

 

 Tc-99m also has the advantage of being produced in a table top generator 

from its parent Mo-99 and so it is relatively cheap and readily available. In its 

chemically reduced form, it can combine with a wide range of compounds 

without altering their properties. As a result, Tc-99m is used for the vast 

majority of diagnostic nuclear medicine imaging studies and will be the 

radionuclide utilised in this project. 

 

2.3 Interaction of photons with matter 

In order to understand the physical processes that occur in gamma camera 

imaging, it is necessary to understand the underlying processes by which 

photons interact with an absorbing material, both within the patient and the 

gamma camera itself. There are four interactions that can occur; elastic 

scattering, the photoelectric effect, Compton scattering, and pair production, 

the probability of each being governed by the energy of the incident photons 
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and properties of the absorbing material. It is important to remember that the 

term scattering simply refers to the change in direction of the initial photon, 

whereas absorption refers to the transfer of energy from the photon to the 

absorbing material. A combination of scatter and absorption results in 

attenuation, that is a reduction in intensity of the incoming photons as shown 

in Eqn. 2.1. 

     I = I0 e-μx   Eqn. 2.1  (Dendy and Heaton 2012) 

where I0 and I are the incident and transmitted photon intensities and x the 

thickness of absorbing material. The parameter μ is the linear attenuation 

coefficient, which is a measure of the fraction of gamma rays that are lost in 

each centimetre of material. 

 

In theoretical ‘narrow beam’ conditions, it is assumed that the source and 

detector are small and so any scattered photons are undetected. For 140 

keV gamma photons in body tissue, this results in a theoretical attenuation 

coefficient of 0.15 cm-1. However, in nuclear medicine imaging the source is 

usually extended, referred to as ‘broad beam’ conditions, which means that 

some scattered photons are detected. This results in a lower measured 

value of the attenuation coefficient, dependent on the scatter conditions. 

Typical values for 140 keV photons in tissue are in the range 0.11 to 0.13 

cm-1.  
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At low energies, photons may be scattered without any absorption. This 

process is called elastic or coherent scattering and is caused by photons 

passing close to an atom causing resonance of bound electrons. The 

probability of elastic scattering increases with increasing atomic number of 

the scattering material (∝ Z2) and decreases as the energy of the photon 

increases (∝ 1/ hυ where h is Planck’s constant and υ is the frequency of the 

photon). Although a certain amount of elastic scattering occurs at all photon 

energies, it never accounts for more than 10% of the total interaction 

processes in nuclear medicine. Also, the very low energy scattered radiation 

is heavily absorbed in the patient, so the contribution to image formation is 

very low (less than 1%)(Dendy and Heaton 2012). For this reason elastic 

scattering will not be considered further here. 

 

Pair production occurs for photons with energies >1.02 MeV and results in 

the conversion of a photon to an electron and a positron. The positron then 

interacts with an electron in an annihilation reaction to produce two 511 keV 

photons which move apart at 180° to each other. Due to its energy 

requirement, pair production it is relevant to positron emission tomography 

(PET) imaging, but not standard gamma camera imaging and will not be 

considered further here. 

 

The two interactions that are most relevant to nuclear medicine imaging are 

the photoelectric effect and Compton scattering. 
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2.3.1 The Photoelectric effect 

In photoelectric interactions, the energy of the incident photon is completely 

absorbed by an atom and one of the atomic electrons, known as the 

photoelectron is released.(Fig. 2.2)  

 

Fig. 2.2 The photoelectric effect 

 

The kinetic energy of the electron is equal to the photon energy less the 

binding energy of the electron.  

 φυ −= hmv
2

2

Eqn. 2.2 (Dendy and Heaton 2012) 

where mv2/2 is the kinetic energy of the photoelectron, hυ is the energy of 

the incident photon and φ is the binding energy. 

 

The resultant gap in the electron shell is filled by an electron moving typically 

from the higher energy L shell. In moving from a higher to a lower energy 

shell the excess energy is radiated as a characteristic x-ray.    
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The probability of a photon undergoing a photoelectric interaction is 

proportional to the density of the absorbing material and highly dependent on 

its atomic number, being proportional to Z3. This interaction is also more 

likely to occur at low energies (< 0.2 MeV), as it is proportional to 1/E3. 

 

2.3.2 Compton scattering 

Compton scattering is an inelastic scattering process by which a photon 

scatters from a loosely bound atomic electron, resulting in a less energetic 

photon and a scattered electron as shown in Fig. 2.3. 

 

 

Fig. 2.3 Schematic representation of the Compton effect (Diagram physics for Diagnostic 

Radiology 3rd Ed Dendy and Heaton.) 

  

As in the photoelectric effect, a characteristic x-ray is emitted, as the 

vacancy in the electron shell is filled by an electron from a higher energy 

shell. The kinetic energy of the Compton electron is dissipated by ionisation 

and excitation and eventually as heat within the medium, whereas the 
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scattered photon emerges from the medium with a lower energy than the 

initial photon, or goes on to be fully absorbed by the photoelectric effect. 

 

The distribution of energy between the scattered and original photon is given 

by equation 2.3. 

 

)cos1)(/(1 2

'

ϕγ
γγ

−+
=

mcE
EE                        Eqn. 2.3  (Dendy and Heaton 2012)  

where Eγ is the energy of the original photon, E’γ that of the scattered 

photon, m is electron mass, c the speed of light and φ the angle by which the 

direction of the original photon is altered. 

 

As can be seen from the equation, the loss of energy of the scattered photon 

depends on the incident energy and the angle of scatter. For a 140 keV 

photon, the loss of energy corresponding to 30° scattering is only about 5 

keV, which makes scattered photons hard to distinguish from primary 

photons with the limited energy resolution of the gamma camera. Scattered 

photons carrying incorrect positional information are therefore detected, 

causing a loss of resolution and contrast in the projection images. In 

addition, it is possible for a photon to undergo several Compton interactions 

before being fully absorbed via the photoelectric effect, so photons with a 

range of energies from close to zero to the photopeak energy can be 

detected as shown in Fig. 2.4. 
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Compton band 

Photopeak 

Fig 2.4 Energy spectra showing Compton band and photopeak. Since pulse strength is 

proportional to photon energy, noise in the detection process results in a large peak 

recorded at very low photon energies. (For Tc-99m this peak occurs at energies less than 

40 keV and is often omitted from idealised spectra). (Diagram Physics for Diagnostic 

Radiology 3rd Ed. Dendy and Heaton).  

 

For free electrons, the probability of a Compton interaction decreases with 

photon energy ( ∝1/E), However in practice sufficient energy is required for 

electrons to break away from other atoms, so the probability of this 

interaction occurring remains essentially constant in the 10 -100 keV range 

and then decreases with energy above this. The variation in the probability of 

a Compton event occurring (expressed as the Compton cross-section area) 

is shown in Fig. 2.5 
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Fig 2.5 Variation of Compton cross section with photon energy (Diagram Physics for 

Diagnostic radiology 3rd Ed. Dendy and Heaton). 

 

Compton scattering is the predominant interaction within the patient for    

140 keV photons used for imaging in nuclear medicine.   

 

With regard to absorbing material, the Compton effect is almost independent 

of the atomic number. This is because the probability of the Compton effect 

occurring, defined as the Compton coefficient σ, is proportional to the 

number of electrons in the material. Therefore, if the Compton mass 

attenuation coefficient is defined as σ/ρ, where ρ is density, this will be 

proportional to electron density. For any material, the number of electrons is 

proportional to the atomic number Z and the density is proportional to atomic 

mass A. Hence σ/ρ ∝ Z/A. Z/A is almost constant for a wide range of 

elements. 
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2.4 Gamma camera image formation 
 
 The basic principles of using scintillation detectors to count and image 

radioisotopes were investigated in the 1960’s. Since that time 

instrumentation has developed through small collimated imaging devices 

and rectilinear scanners to the Anger type gamma camera (Anger 1958; 

Anger 1964) the components of which are outlined in Fig. 2.6. 

 

Computer with digital display 

Y

X

Digital Storage 

Analogue to Digital 
Converters 

Digital Processor 

MCA 

Z

Linearity 
Correction 

X,Y 

Energy 
correction 

PM Tube 
Array 

NaI(Tl) Crystal 

Collimator

Patient 

Fig 2.6 Components of an Anger gamma camera 
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2.4.1 The collimator 

Gamma rays emitted from the patient are formed into an image of the 

distribution of the radiopharmaceutical by use of a collimator.  The parallel 

hole collimator as used in this project, is a ‘honeycomb’ array of several 

thousand holes separated by lead septa. These septa absorb all gamma 

rays except those passing straight through the holes (subject to <1 % septal 

penetration for low energy collimators). The energy of gamma photon 

emission for which the collimator can be used is determined by the septal 

thickness. The properties of the collimator in terms of spatial resolution and 

sensitivity are determined by the diameter of the holes and the length of the 

septa. For a parallel hole collimator, the resolution is governed by the 

expression: 

Rc = d(1 + b/h)               Eqn 2.4 

where d is the hole diameter, h is the hole length and b is the distance from 

the radiation source to the face of the detector.  

It can be seen from this expression that for the best resolution, collimator 

holes should be long and of small diameter and the object to be imaged 

should be as close as possible to the gamma camera face. 

 For this project, a low energy, high resolution collimator was used; which 

has a septal thickness of 0.2mm a hole diameter of 1.5mm and a hole length 

of 35mm. 
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Fig 2.7 Magnified view of a parallel hole collimator. Hexagonal array. 

 

 2.4.2 The scintillation crystal 

Some of the rays that pass through the collimator interact with a large area 

crystal of sodium iodide doped with thallium (NaI(Tl)) to produce photons of 

light at a wavelength of 410 nm via the process of scintillation. In a modern 

camera the crystal is typically 9.5 mm thick and has dimensions of 600 × 405 

mm giving a field of view of about 550 × 400 mm. Desirable properties of the 

scintillation crystal are;   

• high efficiency for absorbing gamma photons.  

• attenuation of light should be minimal. 

• high conversion of gamma photon energy into light. 

• wavelength of light should match the response of the 

photomultiplier tubes. 

• crystal should be mechanically robust.  

• length of scintillation should be short.  
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The process of scintillation can be thought of in terms of energy levels within 

the crystal structure. Normally, electrons reside at the ground (lowest) 

energy state bound to the sodium and iodine atoms in the crystal. Photon 

interactions in the crystal transfer their energy to the bound electrons, 

causing them to jump and reside at the excited (highest) energy level. Light 

emission (scintillation) occurs when the excited electrons lose their energy 

and become bound once again. A pure crystal of NaI reabsorbs much of its 

own light emissions. To improve the efficiency of light emission, the NaI 

crystal is doped with Tl. This introduces activator (trapping) site for electrons 

of intermediate energy. When electrons that occupy the activator sites return 

to ground level, light emission also occurs.  Although the energy gap 

between the bound and excited state is 6 eV, it takes an average of 20 eV to 

create one excited electron. Approximately 7000 electrons become excited 

in the case of total absorption of a photon of 140 keV. With a concentration 

of 0.1% Tl however, the process of light emission in NaI (Tl) is only about 

10% efficient (Dendy and Heaton 2012). Thus for 7000 excited electrons, 

only 1050 light photons are emitted, most originating from the Tl activator 

sites. 

To maximise the efficiency of the transfer of light photons from the 

scintillation crystal to the photomultiplier tubes a light guide is used, in the 

form of a slab of Perspex (Lucite). Silicone grease is used to maintain good 

optical contact between the light guide and both the exit window of the 

detector and the entrance window of the photomultiplier tubes. 
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2.4.3 The photomultiplier tubes (PMTs) 

The light photons are converted into electrical signals by an array of 

photomultiplier tubes (PMTs), optically coupled via the light guide to the back 

of the crystal. For the crystal size discussed, ~60 PMTs are used to cover 

the area of the crystal. The photomultiplier tube is a vacuum tube that 

detects the very small amount of light produced in the scintillation.  The light 

energy releases electrons from a photocathode deposited as a thin layer on 

the inside of the entrance window. Inside the tube are a series of electrodes 

called dynodes that are held at increasing positive potential to each other by 

a high voltage supply.  The electrons are accelerated from the photocathode 

to the first dynode by the potential difference and gain kinetic energy, thus 

releasing further electrons.  

 

+1100V 

High voltage 
supply 

Fig 2.8 A photomultiplier tube. Its basic structure is an evacuated cylinder enclosed in glass, 

with a photocathode on one end, an anode at the other end and small curved dynodes in 

between. The electrical potential to the dynodes is what causes multiplication of the 

electrical signal created at the photocathode. 
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The electrical signal produced at the photocathode of each PMT tube, is 

magnified within the tube by a factor of 107 to give an electrical charge large 

enough for the subsequent electronics, although further amplification is still 

required.  

 

The amplification (gain) of a PMT, and hence the amount of charge 

produced at the anode, is strongly influenced by the high voltage.  In a 

gamma camera, the gain of each PMT must be matched to that of the other 

tubes in the array and this requires fine adjustment of the high voltage 

applied to each one.   

 

2.4.4 Signal processing 

In a modern gamma camera, the outputs from each PMT are digitised by 

use of an analogue to digital converter located after the preamplifier. For this 

reason scintillation crystal based gamma cameras cannot be described as 

truly digital, unlike solid state systems such as the GE Discovery  NM 530c 

dedicated cardiac camera (GE Healthcare, Haifa, Israel) (Esteves et al. 

2009). In solid state gamma cameras, semiconductors such as 

Cadmium-Zinc-Telluride (CZT) are used as the detector. Semiconductors 

directly produce electron current in response to gamma photons and so 

combine the functions of the scintillation crystal and photomultiplier tubes 

(Sharir et al. 2010).    
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In the scintillation crystal based gamma camera, once digitised the outputs 

from the PMTs are converted into three signals, two of which (X and Y) give 

the spatial location of the scintillation, while the third (Z) represents the 

energy deposited in the crystal by the gamma ray. Spatial information is 

obtained since the amount of light received by a particular PMT depends on 

the inverse square of the distance from the scintillation to that PMT. Once 

the electrical charge pulse has been converted to a voltage pulse by the pre-

amplifier, the distribution of pulse heights carries information about the 

position of scintillation in the plane of the crystal. Information about the 

energy of the interaction is obtained because the sum of pulse heights is 

proportional to the total amount of light produced and hence the energy 

absorbed from the gamma photon by the crystal.  

Suppose there are n PMTs and that any particular one is designated as i, 

with Xi,Yi being the position of the ith PMT. The X and Y co-ordinates of the 

scintillation are given by: 
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Eqn 2.5 (a) 
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Eqn 2.5 (b) 

where Vi is the height of the voltage pulse from the ith PMT (in volts).  Here 

Σ indicates a sum over all the PMTs i.e. from i=1 to i=n. The absorbed 

energy is proportional to: 
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Z =Σ Vi           Eqn 2.6 

 

The fact that Z appears in the denominators of the expressions for X and Y 

 means that their values do not depend on the gamma photon energy.  Thus 

a 140 keV photon and a 364 keV photon that are completely absorbed at the 

same position in the crystal generate different values of Vi and hence Z, but 

identical values of X and Y.  

 

2.4.5 Energy discrimination 

The value of Z measured, even for an isotope with a monoenergetic gamma 

photon emission such as Tc-99m, will not have a single value due to the 

nature of the photon interactions that occur within the crystal. As has already 

been discussed, the photon may interact via the photoelectric effect or 

Compton scattering. If it interacts via the photoelectric effect all of its energy 

is absorbed (through the photoelectron) whereas if the photon suffers one or 

more Compton interactions within the crystal (with the singly or multiply 

scattered photon escaping from the crystal) only part of its energy will be 

absorbed through the scattered electrons. A third possibility is that the 

photon undergoes one or more Compton interactions followed by a 

photoelectric interaction, in which case its full energy will again be absorbed. 

Therefore, even if all the gamma photons leaving the patient have the same 

energy, interactions within the crystal will produce different amounts of 

scintillation light and hence different Z values. Successive gamma 
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interactions produce a range of Z values from the very small to a maximum 

representing the total absorption of the gamma photon energy. As already 

shown in Fig 2.4 the photon energy spectrum is therefore comprised of a 

Compton ‘band’ and a narrow photopeak. Theoretically the photopeak 

should be very narrow, but because of various factors such as light 

production, transmission and detection this has a measurable width usually 

expressed as full width at half maximum (FWHM). As will be seen in chapter 

4, calculation of FWHM as a percentage of the energy of the photopeak is a 

measure of the energy resolution of the gamma camera which is tested 

routinely as part of a quality control programme. 

 

For nuclear medicine imaging, the scattered photons are unwanted, since 

they degrade image quality. Therefore, in order to reject photons from the 

Compton band, the Z signal is passed through a multi-channel analyser 

(MCA), which tests whether the energy of the gamma ray is within the range 

of values expected for the photopeak of the particular radionuclide being 

imaged. Typically values within a 20% window (±10%) of the energy at the 

centre of the photopeak in the pulse height spectrum are accepted. More 

than one window may be used to accommodate isotopes with more than one 

gamma ray emission. If the signal has an acceptable value, then the system 

records that a gamma ray interaction has occurred at the position given by 

the X and Y signals.   
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2.4.6 Linearity, energy and sensitivity corrections 

Finally, before the image is produced, electronic corrections are made for 

linearity, energy and sensitivity. Spatial non-linearity is caused by systematic 

mispositioning of counts i.e. errors in the calculation of X and Y values.  In 

particular, the locations of individual counts tend to be shifted towards the 

centre of the nearest PMT. Thus a straight line source of radioactivity tends 

to give a wavy line image and there is an increased count density at the 

locations of the PMTs when a uniform source is used. Errors in 

measurement of energy may be caused by the Z value varying with position 

due to factors such as variation in light production, light transmission, light 

detection and residual PMT gain.  This can result in the fraction of counts 

rejected by energy discrimination varying from one area of the crystal to 

another. Positional variation in sensitivity (count rate per unit activity) may be 

due to manufacturing defects in the crystal and/or collimator. 

 

2.4.7 Image display 

Once these final corrections have been made, an image is built up of usually 

several hundred thousand detected interactions or counts. The signals are 

most commonly acquired in matrix mode, where the camera’s field of view is 

divided into a regular matrix of picture elements or pixels. This matrix is 

usually square with the number of locations along each edge being a power 

of 2 e.g. 256 x 256 (28 x 28); the maximum is usually 1024 x 1024 (210 x 210). 
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 Each pixel is assigned a unique memory location in the computer. The value 

stored in this location is the number of gamma photon interactions that have 

been detected in the corresponding location on the camera face. The array 

of numbers is then converted into a viewable image by a lookup table which 

links the number of counts to a specific value of displayed image intensity. 

Lookup tables may use monochrome or colour scales to display this 

intensity. 
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2.5 Single photon emission computed tomography (SPECT) imaging 

The basis of nuclear medicine imaging is the planar image, which is the 

projection of a three dimensional radionuclide emission distribution onto a 

two dimensional detector plane at one angle of view. This has the dual 

disadvantages that no information is available regarding the depth in the 

patient at which gamma photons are emitted and that activities originating 

from more than one structure can overlap with each other, resulting in a low 

contrast image. As elegantly described by Bruyant (2002), “With only 1 

projection image it is impossible to determine the activity distribution 

because an infinite number of distributions can yield the same projection. It 

is as difficult as to find 2 values knowing only their sum.” This situation is 

improved by acquiring projection images at a number of angles of view 

around the subject. In principle, if a sufficient set of projection images are 

acquired, it becomes possible to reconstruct the corresponding activity 

distribution. The principle of tomographic acquisition is shown in Fig 2.9 for 

the gamma camera in one angle of view.  From the dashed line it can be 

seen that photons emitted at different depths, but along the same direction 

can produce scintillations at the same point in the crystal, so several angles 

of view are required to build an image. 
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Fig 2.9  Principle of tomographic acquisition and geometric considerations. For each angle 

of acquisition (θ), g (s,θ) is the sum of radioactive counts recorded in any time interval at 

point s on the detector. The location of any scintillation onto the crystal allows one to find out 

the direction of the incident photon (dashed line) but not to know the distance between the 

detector and the emission site of the photon. 

 

 

In this representation g(s,θ) is the number of gamma photons detected at 

any location s along the detector, when the detector head is at an angular 

position θ. f(x,y) is the estimated number of photons emitted at any point 

(x,y) of the transverse slice in the field of view. The function g is the 

projection of f onto the crystal as allowed by the collimator. A common 

representation for the projection data g corresponding to a slice is the 
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sinogram Fig 2.10 This is a two dimensional image where the horizontal axis 

represents the location of the detected gamma photon on the detector and 

the vertical axis corresponds to the angular position of the detector.  

 

Fig 2.10 (Left) Shepp-Logan phantom slice (256× 256 pixels). (Right) Corresponding 

sinogram with 256 pixels per row and 256 angles equally spaced between 0° and 359°               

( Image Bruyant 2002). 

 

Therefore the problem to be solved by any reconstruction algorithm is “Given 

a sinogram g, what is the distribution of radioactivity f in the slice of interest?” 

 

2.5.1 Back projection and filtered back projection 

 Until recently, filtered back-projection was the most common method of 

SPECT reconstruction implemented on commercial nuclear medicine 

computer systems (Greaves, 2011). Before considering back projection, we 

must consider the projection operation (or forward projection operation). This 

gives the number of counts detected in any point of the line g(s,θ) as a 
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function of the number of counts f(x,y) emitted in any point of the field of 

view.  Mathematically this can be described by the Radon transform first 

described in 1917 (Radon 1917). 

g(s, θ) = ∫ f(s cosθ –u sinθ , s sinθ + u cosθ )du                        Eqn 2.7 

Essentially this means that g(s,θ) is the sum of values f(x,y)  along a line 

perpendicular to the profile (parallel to the holes of the collimator).  For this 

reason g(s,θ) is known as the ray-sum. The variable u defines the location of 

the points to be summed along the perpendicular line. 

 

Fig 2.11 shows a distribution of two point sources and their profiles for three 

positions of the camera. Each element in each profile represents the sum of 

values at that point of measurement (s) on the detector. (These points of 

measurement are sometimes referred to as bins – the total number of bins 

equals the number of points of measurement along the detector multiplied by 

the number of angles). 

 

Fig 2.11 Projection profiles for two sources of radiation at three gamma camera positions. 
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In order to reconstruct the object distribution from a known profile, the back 

projection operation is then used. This is known as the summation algorithm 

and is defined mathematically as: 

b(x,y) = ∫ g(s,θ )dθ             Eqn 2.8 

 

Essentially b(x,y) represents the summation of the ray-sums of all the rays 

that pass through a given point on the x,y plane. 

In ideal conditions (i.e. without attenuation) the projections acquired at 

angles between π radians (180° ) and 2π radians (360°) do not provide new 

information because they are symmetrical to the projections acquired at 

angles between 0 and π and so back projection can be carried out over 180°. 

Back projection of profiles leads to a rough image being built up, but with a 

lot of background and ‘star’ artefacts as shown in Fig. 2.12.  

 

 

Fig. 2.12 The process of back projection of line profiles leading to star artefacts  

 

These artefacts can be reduced by filtering each line of the sinogram and 

back projecting these filtered projections. In order to understand filtering, we 
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need to consider that an image can be described in terms of a combination 

of spatial frequency (cm-1) components that can be found using the Fourier 

transform. The effect of filtering is to alter the proportion of high and low 

spatial frequency components of an image e.g. to reduce the amount of high 

frequency ‘noise’ or low frequency ‘blur’. The filters themselves are also 

usually described in terms of spatial frequency. If described in terms of the 

profiles, the effect of filtering is to generate negative numbers adjacent to the 

positive numbers, so when back projected these cancel out some of the 

artefacts as shown in Fig. 2.13 

                            

Fig. 2.13 Filtered pr

image by a factor of 1/f 

here f is the spatial frequency. This causes unwanted smoothing of the 

 

ofiles showing a reduction in star artefacts 

 

The process of projection/back projection filters the 

w

image which is overcome by using a ramp filter which amplifies each 

frequency proportionally, as shown in Fig 2.14 up to the Nyquist frequency 

(0.5 cycles per pixel).  
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Fig 2.14 Frequency response of a practical SPECT filter; a) the ramp filter; b) a smoothing 

window; c) the practical filter which is the product of a) and b). (Greaves 2011). 

 

Unfortunately this leads to amplification of high frequency noise and the 

sharp cut off leads to ‘ringing artefacts’. This is solved by using a smoothing 

window to reduce the noise, but this also has the effect of reducing 

resolution. The product of the ramp filter and smoothing window is a practical 

SPECT filter that is a compromise between noise and resolution. A range of 

filters are available such as the Hanning filter (also known as the Hann or the  

Chesler filter (Chesler et.al. 1975)) and the commonly used Butterworth 

filters (Butterworth 1930). These allow parameters to be changed to alter the 

amount of smoothing such as the cut-off value, which is the frequency above 

which all spatial content is removed. Mathematically they are described by 

equation 2.9 (a) and (b) 

Hanning(f) = 0.5 + 0.5cos(π f/fc ) for f≤ fc 

                                                   = 0                             for f>fc     Eqn 2.9 (a) 

                    Butterworth(f) = 1/ [1 + (f/fc)2N]1/2                     Eqn  2.9 (b)   
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where fc is the cut-off frequency and N is a variable parameter called the 

order. By adjusting these parameters, the user may alter the range of 

frequencies allowed through the filter and therefore the amount of smoothing 

of the reconstructed images. The best filter to use in a given situation will 

depend on several parameters including the amount of fine detail required in 

the image, the number of counts in the image and operator preference, as 

discussed by Van Laere et al. (2001).  

 

2.5.2 Iterative reconstruction techniques 

Today the reconstruction algorithm of choice in SPECT is based on one of 

the statistical iterative methods (Bailey 2013). Iterative reconstruction works 

on the premise that during SPECT acquisition, what are actually measured 

are projection profiles. Therefore, if estimated profiles are generated by 

forward projecting an initial estimate of the image, these estimated profiles 

can be compared with the real profiles, to generate a profile error. By back 

projecting the profile errors, image errors can be generated to update the 

original image estimate. The process is then repeated until the best possible 

solution is reached.   

 

There are several types of iterative reconstruction algorithm available. A 

standard statistical method,  is the expectation maximization (EM) algorithm 

for computing maximum likelihood (ML) estimates of the radioactivity 

distribution(Shepp and Vardi 1982). The basis of this technique is the 
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Poisson model that allows one to predict the probability of a number of 

detected counts, given the mean number of disintegrations. This can be 

expressed as: 

!
]/[

c
rcprob re cr−

=                   Eqn. 2.10 

where c= count and r = expected measurement 

 

Using this Poisson model, the probability of acquiring the projection count 

distribution that was measured, P, given an estimated distribution of activity 

in the emission object f, can be represented by the product of probabilities 

for individual projection pixels. This term is the ‘likelihood’ L(P│f) and can be 

expressed as: 
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Mathematically we can say that maximising prob [P| f] provides the most 

likely distribution of emissions that represents the original activity distribution, 

given the measured projections. 

 

The algorithm is implemented in several stages. Firstly an estimate is made 

of the activity distribution in the patient (either uniform pixels or FBP image).  

This is then forward projected to estimate what the detectors would measure 

given the initial object i.e. estimate the corresponding projection images. In 

order for this to occur accurately, a model of the emission and detection 
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process must be incorporated, the ‘system matrix’ (aij) into which alterations 

for attenuation, scatter and loss of resolution with depth can be included. 

The estimated projections are then compared with the measured projections 

and any discrepancies in projection space are back-projected to give 

discrepancies in image space. These are used to update the estimated 

image. The process is repeated until the estimated and acquired projections 

agree with one another or until a fixed number of iterations have been 

achieved. 

 

The ML-EM algorithm can be summarised as shown in Fig. 2.15 
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 Fig. 2.15 Flow chart of a loop in the ML-EM iterative process 
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In simple terms : 
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This can be expressed mathematically as: 
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where aij is the system matrix. 

 

 

The system matrix (aij) essentially defines the probability of detecting an 

emitted photon originating from location j at any particular position i on the 

detector, which will depend upon many factors including detector geometry, 

attenuation and resolution. By altering values within the system matrix, the 

effects of attenuation and finite resolution can be modelled, allowing images 

to be reconstructed with these effects corrected for. A full description of the 

system matrix and its utilisation in correcting for attenuation, scatter and 

finite resolution within an iterative reconstruction algorithm will be given in 

section 3.6.  

 

In ML-EM each update involves BP and FP for all projections, which is a 

very slow process. An accelerated version of the EM algorithm is the ordered 

subsets EM (OSEM) algorithm. (Hudson and Larkin 1994) Here each update 

uses only a subset of projection angles, such that the total number of EM 
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iterations is the number of OS-EM iterations multiplied by the number of 

subsets e.g. 10 subsets ×2 iterations = 20 EM iterations. The choice of how 

many subsets and iterations to use is governed by speed and accuracy of 

convergence and noise considerations. Noise is proportional to signal in EM, 

so although theoretically the more iterations the more accurate the estimated 

image would be, in practice the image reaches an optimal visual quality at 

typically around 16EM iterations and appears noisy at higher numbers of 

iterations.  Clinically it is therefore common to use only a small number of 

iterations, but this runs the risk of reducing reconstruction accuracy. A better 

solution may be to use a larger number of iterations with post reconstruction 

smoothing to reduce the noise. 

 

2.6 Conclusions 

This chapter has outlined the underlying physical processes involved in the 

creation of planar and SPECT gamma camera images. Particular relevance 

has been placed on the gamma photon interaction processes of 

photoelectric absorption and Compton scatter, which combine to cause 

attenuation of photons. The next chapter will build upon this theory to 

describe the processes which influence quantitative accuracy in SPECT 

imaging which include; attenuation, scatter, the partial volume effect and 

depth dependent collimator resolution.  
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Chapter 3 

Corrections for Quantitative Gamma Camera Imaging 

 

3.1 Introduction 

Although simple quantitative measurements can be carried out on planar 

images, such as relative uptake measurements in static renal imaging, it is 

accepted that planar imaging is limited by its inherent lack of depth 

information and that for accurate quantitation three dimensional SPECT 

imaging is required. In this chapter, factors affecting the accuracy of SPECT 

quantitative gamma camera imaging, namely photon attenuation, scattered 

photons, the partial volume effect and depth dependent collimator response 

will be discussed, together with a review of methods of correcting for these 

effects from the earliest attempts to those used today. 

 

In many cases the application of these correction methods is dependent on 

the SPECT reconstruction algorithm being used, so this will also be 

described in some detail. Finally, the clinical applications for which correction 

techniques are used, particularly in SPECT imaging where quantitation is 

required, will be discussed. Although to date much of this work has been 

applied to nuclear cardiology, there are many other applications (targeted 

radiotherapy dosimetry), where accurate quantitation has been found to be 

of great clinical benefit. 
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3.2 Attenuation correction 

Some of the most basic calculated methods for SPECT attenuation 

correction assume uniform attenuation for a body contour defined either 

manually or by automatic edge detection methods. 

 

A widely used early method was the Chang (Chang 1978) method. This is a 

post processing method in which the transverse section is first reconstructed 

by filtered back projection and then corrected pixel by pixel using a 

correction matrix. This correction matrix is obtained by calculating the 

attenuation of a point source at each point in the matrix and requires 

knowledge of the body outline and the attenuation coefficient. It also 

assumes narrow beam conditions. This is “first order Chang”. Being based 

on the point source response, this method is limited for larger sources which 

will be over-corrected or under-corrected depending on their position in the 

image. To compensate for this, a second stage can be included where the 

first order correction image is re-projected to form a new set of profiles. 

These are subtracted from the original profiles to form a set of error profiles. 

Filtered back projection of this error set produces an error image that must 

be attenuation corrected as in first order Chang. The corrected error image is 

then added to the first order image to obtain the final image. 

 

Several methods of determining the body outline have been proposed 

including; using data acquired in the Compton scatter window (Ben Younes, 
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Mas et al. 1988; Wallis, Miller et al. 1995), directly from photopeak data only 

(Hosoba, Wani et al. 1986; Tomitani 1987; Herbert, Gopal et al. 1995) or by 

using both scatter and photopeak window emission images (Pan, King et al. 

1997). 

 

For clinical applications, none of the above methods are satisfactory due to 

the inhomogeneous nature of the human body and transmission images 

must be generated to accurately determine the attenuation map. Early work 

on simultaneous emission and transmission tomography was carried out 

using a radionuclide flood source of gadolinium-153 (Gd-153), attached to a 

rotating gamma camera (Bailey, Hutton et al. 1987). Scatter from the 

emission source into the transmission window (for Tc-99m emission) was 

removed by subtracting the predicted scatter distribution. Since that time a 

variety of radionuclide sources and geometries have been used. A major 

step was the development of the scanning Gd-153 line source (Tan, Bailey 

et al. 1993), a modification of which was the multiple line source array 

(Celler, Sitek et al. 1998), where 20 collimated Gd-153 line sources were 

used, with activity in the central lines higher than at the edges. In the same 

year, Beekman et al. used 2 Gd-153 point sources positioned to move along 

the focal lines of 2 half-fanbeam collimators on a dual headed gamma 

camera, with the heads at 90°. Using a gantry rotation of 180° they reported 

higher sensitivity, reduced noise, reduced downscatter and improved 

 42  



resolution compared with multiple line source methods (Beekman, Kamphuis 

et al. 1998) 

The most commonly implemented commercial configuration for external 

radionuclide transmission scanning proved to be the scanning Gd-153 line 

source, as implemented on the Philips Vantage system (Philips Medical). 

 

 

Fig. 3.1 Philips Vantage system (image Philips Medical ) Two collimated line sources of   

Gd-153 move across the field of view of each detector during SPECT acquisition. 

 

The next development in transmission imaging was the use of x-ray 

computerised tomography (CT) generated transmission images.” CT images 

can generate a patient specific attenuation map since they contain pixel 

values that are related to the linear attenuation coefficient (μ ) at that point in 

the patient, calculated for the mean energy of the x-ray photons used to 

generate the CT image.  At first CT images were acquired by scanning the 

patient in a separate scanner and then moving them to the gamma camera 

for the emission imaging. The two sets of images were registered using 
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external markers and image registration software (Fleming 1998; Hutton, 

Braun et al. 2002) More recently dual-modality imaging systems have been 

developed incorporating CT and SPECT or PET capabilities. Early results 

from a combined SPECT/CT system were presented by Bocher et al. in 

2000. Their system (GMAXT) was composed of an X-ray transmission 

system mounted onto the slip ring gantry of a GEMS Millennium VG gamma 

camera. The x-ray system comprised an x-ray tube and set of 384 cadmium 

tungstate detectors located on opposite sides of the gantry. This is the same 

configuration used by the Hawkeye scanner used in this project. The cross-

sectional anatomical transmission map is acquired as the system rotates 

around the patient in a manner similar to a third generation CT scanner. 

 

 

Fig. 3.2 GE Hawkeye Gamma camera  SPECT/CT system (image GE Medical Systems) 
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Since the linear attenuation coefficient  is calculated at the x-ray energy 

rather than the energy of the photon emitted by the radionuclide, a 

calibration curve is required to convert the linear attenuation coefficients 

obtained from the CT scan to those corresponding to the energy of the 

emission photons (Blackenspoor, Xu et al. 1996). This is done by taking CT 

scans of a phantom containing tissue equivalent calibration materials and 

plotting the measured CT number against the known attenuation coefficient 

at the photon energy of the radionuclide used in the emission study. This 

calibration means that CT scans can be used to correct emission images for 

a variety of different radiopharmaceuticals.  

 The other point to consider when using CT images is that CT has a higher 

spatial resolution and is reconstructed in a finer image matrix than SPECT, 

so the CT image must either be averaged to a coarser matrix, or the scanner 

must be designed with a lower spatial resolution specifically for attenuation 

and atomic mapping purposes. 

Currently, x-ray CT attenuation systems have replaced radionuclide line 

sources as the method of choice for the reasons shown in Table  3.1 

Advantages of x-ray CT compared 
with radionuclide sources 

Disadvantages of x-ray CT compared 
with radionuclide sources 

High count density transmission maps Sequential imaging- chance of 

malregistration 

No cross-talk compensation required High initial cost 

Replacement of source not required Need for room shielding 

Table 3.1 Relative advantages and disadvantages of x-ray CT compared with radionuclide 

sources for attenuation correction 
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O’Connor et al.(2002) compared the performance of several commercial 

systems for attenuation in cardiac SPECT and concluded that systems that 

generated high quality attenuation maps yielded the best results. 

 

The most recent generation of SPECT/CT hybrid systems can incorporate 

four or sixteen slice spiral CT or cone beam CT attenuation systems. The 

Philips Brightview XCT system for example incorporates a cone beam CT 

tube opposite a flat panel detector. This allows 140 ×1 mm thick slices to be 

acquired simultaneously, so that high resolution attenuation maps can be 

acquired quickly and with very low patient dose. 

 

 

Fig. 3.4 Philips Brightview XCT (image Philips Medical) 
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3.3 Scatter correction 
 
The physical principles of Compton scattering are described in chapter 2. As 

explained, the loss of energy for a Tc-99m photon scattered through 30° is 

only 5keV, which makes scattered photons difficult to differentiate from 

unscattered events, given the finite energy resolution of the gamma camera. 

For this reason, in most clinical situations scattered photons account for 30-

40% of the photons detected in the photopeak energy window of a SPECT 

system (Hutton et al. 2011).These photons, having originated at a spatial 

location within the object removed from the spatial location at which they are 

detected, have the effect of degrading image quality. Unfortunately, following 

the scatter history of each photon is implausible in practical terms due to the 

large number of parameters involved. These include; the emission energy of 

the radioisotope, the spatial distribution of the tracer, the composition and 

geometry of the object and features of the imaging system such as the 

thickness of the crystal, the density and geometry of the light guide and 

photomultiplier tubes and the distance between the collimator and the object.  

Several methods of correcting for scatter have been developed over the 

years. Although not all will be discussed here, those most commonly used 

can be grouped under the following sub-headings;  

1) limitation of detection of scattered photons  

2) compensation for effects of scatter 

3) elimination of scattered events.   
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1) Limitation of detection of scattered photons 

The most basic method of limiting the detection of scattered photons is the 

use of the standard 20% photopeak window, centred on the emission 

energy. This removes lower energy scattered photons, but due to the finite 

energy resolution of the camera, photons which have been Compton 

scattered once or even twice may still be detected. It is generally accepted 

that for a Tc-99m planar acquisition of a normal sized patient, 30% of the 

photons detected within the 20% window have been scattered at least once 

(Buvat 1994). This could be improved by narrowing the window, but with a 

corresponding drop in efficiency. A further improvement can be made by 

shifting the window towards higher energies, although the optimal shift is not 

standard, but is specific to the radioisotope and object being imaged. This 

method is also particularly sensitive to the electronic stability of the detector 

and the gain of the photomultiplier tubes.  

 

 Although the above methods have the advantage of simplicity, which makes 

them suitable for clinical practise, the proportion of removed scattered and 

unscattered photons is not estimated, so accurate quantitation is impossible.  

 

2) Compensate for effects of scatter  

If it is recognised that a percentage of detected events are due to scatter, 

different methods can be used to compensate for this. A crude method is 

multiplication of the image by a factor calculated from an estimate of the 
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mean scatter fraction, defined as the ratio of scattered to unscattered 

photons. This method may improve activity quantification, but does not solve 

the problem of the incorrect location of scattered events (Buvat 1994).  

 

A more commonly used method is based on taking scatter into account 

during attenuation correction. Although theoretically, the number of photons 

detected passing through a medium decreases by an exponential factor due 

to attenuation, in reality, scatter increases the number of photons that can be 

detected from a specific point, due to the contribution of photons not emitted 

at that point. This is known as the build-up function which is extremely 

difficult to determine since it depends on the same numerous parameters as 

scatter. The simplest approach to take this into account is to use an effective 

attenuation coefficient μeff measured for broad beam geometry i.e. including 

the detection of scattered events, rather than the theoretical value of  μ 

corresponding to a narrow beam geometry measurement. Typically, in water 

and for an energy equal to 140 keV,  μeff =0.12 cm-1 and μ = 0.15 cm-1  

Unfortunately this method may lead to significant errors(Jaszczak, Greer et 

al. 1984)  and so is not suitable for quantitation. It is also incorrect to use a 

single attenuation coefficient, especially in parts of the body such as the 

thorax which incorporates a variety of tissues of differing densities. A more 

accurate approach would be to  estimate the build-up function either 

experimentally(Wu and Siegel 1984; Siegel, Wu et al. 1985) or using Monte 

Carlo simulations (Dewaraja and Koral 2001).  
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Despite the above mentioned drawbacks of this method, the “use of effective 

attenuation correction coefficients in conjunction with Chang attenuation 

correction continues to be a commonly used approach in clinical practice to 

roughly correct for the apparent reduction in reconstructed activity from deep 

structures. It should also be noted that although this approach compensates 

for the effect of scatter, it cannot be considered a scatter correction 

technique as it does not remove photons that are at a wrong location. 

 

3) Elimination of scattered events: 

Another widely used methodology relies on estimation of the spatial 

distribution of the scattered photons in order to remove them from the 

acquired data. Several methods have been developed for doing this: 

Early work by Logan (Shepp and Logan 1974) was based on the proposal 

that the shape of the scatter spectra is essentially constant in the spectral 

range of the photopeak. Therefore the photopeak can be divided into two 

adjacent subwindows such that the number of scattered events detected in 

the two subwindows are the same. Simple subtraction of the two windows for 

each pixel can therefore yield the unscattered photons. Unfortunately, some 

unscattered photons are also removed from the image, which results in a 

loss of efficiency and prevents precise quantitation. In Logan’s study, about 

20% of unscattered photons were removed.  
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The method described by King et al. (1992) also divides the 20% photopeak 

window into two equal non-overlapping energy windows and then finds a 

regression relationship  between the ratio of the number of counts within 

these subwindows R(i) and the scatter fraction within the photopeak window 

SF(i). Early results in phantoms using this method were encouraging, 

although it is very susceptible to uniformity artefacts, and due to the noisy 

low count density nature of SF(i), pre-low pass filtering is required.  

 

A variation on this method is the channel ratio method (Pretorius, van 

Rensburg et al. 1993) where it is assumed that the “ratio of the number of  

unscattered photons detected in the two subwindows is constant as well as 

the ratio of the number of scattered photons ie: 

Ulw(i)/ Uuw(i) = k1 and Slw(i)/Suw(i) = k2    Eqn. 3.1 

 

where U and S stand for unscattered and scattered respectively and lw and 

uw stand for lower window and upper window respectively. The 

disadvantage of this method is that “ the experimental determination of k1 

and k2 is not easy, since Ulw(i), Slw(i), Uuw(i) and Suw(i)  are not directly 

measurable so further assumptions must be made. The method also fails for 

pixels containing only scattered photons and yields negative values in this 

instance. 
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A more familiar method is the dual energy window (DEW) method, where a 

fraction k of the events recorded in a secondary window is subtracted from 

the photopeak window. This method was first applied to planar images, 

before Jaszczak et al. (Jaszczak, Greer et al. 1984) developed the technique 

for scatter correction in SPECT. In their study a secondary energy window of 

92- 125 keV was used for Tc-99m. The value of k was first determined by 

comparing the integral of counts in a line source imaged in air using planar 

imaging i.e. non-scatter geometry, and in a water filled cylinder using SPECT 

imaging i.e. scatter geometry. SPECT images of the line source in water and 

air and placed both on and off axis were evaluated. The value of k that gave 

the best agreement between the non-scatter and scatter geometry counting 

rates was found to be k~0.5. This resulted in scatter geometry count rates 

within 10% of non-scatter geometry count rates. The second method of 

determining k was to use Monte -Carlo simulations which resulted in a value 

of 0.56. Jaszczak found that this method resulted in qualitative and 

quantitative improvements for the limited source geometries investigated. 

However, the value of k has been shown to depend on many factors, 

including the object, the acquisition geometry, the SPECT reconstruction 

algorithm used and whether projection images or reconstructed slices are 

subtracted, so although easy to implement, the quantitative accuracy of this 

method must be called into question. 
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A development of this technique is the Triple Energy Window (TEW) method 

(Ogawa et al 1991). This uses a narrow energy window placed on either side 

of the photopeak. The scatter estimate is obtained on a pixel by pixel basis 

using: 

 

SE = (Cl/wl +Cu/wu) × wp/2         Eqn 3.2 

where Cl and Cu are the pixel counts measured in the lower and upper 

energy windows respectively and wl, wu and wp are the window widths for the 

lower, upper and photopeak energy windows. 

 

This method has the advantage that it can be applied to situations where 

there is down scatter from higher energy emissions as well as the identified 

photopeak. (For isotopes with only single energy emission, the technique 

effectively simplifies to a dual window technique.) Once the scatter estimate 

has been determined, it is subtracted from the photopeak projection image 

on a pixel by pixel basis.  

This method has the advantage over the Jaszczak dual window method that 

the value of k does not have to be calculated, but the disadvantage that the 

low counts acquired in narrow energy windows lead to poor noise 

characteristics. 

 

The above methods of removing scattered events rely on the use of the 

photopeak. Another category of methods use data acquired in a wide energy 

 53  



window. The spectrum of the photons detected in each pixel is then 

analysed to deduce the contribution of scattered photon on either a pixel-by-

pixel, or global basis. Due to their relative computational complexity, these 

are not used clinically in favour of the simpler to implement TEW method. 

 
3.4 Correction for the partial volume effect 
 
The partial volume effect (PVE) is a consequence of the finite spatial 

resolution of the gamma camera due to detector blurring and non-ideal 

collimation. (The contribution of collimation effects will be discussed 

independently in section 3.5) The partial volume effect tells us that in 

SPECT, if an imaged object is smaller (in any of its three dimensions) than 

approximately two FWHMs of the system’s point spread function (PSF), the 

regional maximum counts per pixel in the resulting image will no longer 

represent a linear relationship with the radionuclide concentration at that 

location, but will vary with the size (or thickness) of the object. Objects small 

compared to the system resolution will appear to be less bright than larger 

objects, even if the tracer concentration is the same. In simple terms, objects 

smaller than the resolution volume will have all their counts detected but 

over a larger volume- the counts will be ‘spread out’ thus the recorded 

concentration of activity will be lower than the actual concentration. (Fig. 3.5) 

The ratio of these concentrations is the recovery coefficient.  
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Fig. 3.5  The partial volume effect. All of the counts in object volume A, where A is smaller 

than the voxel volume of the imaging system are detected in image voxel volume B. The 

count density measured in the voxel B, is therefore lower than that in the object volume A. 

  

The situation is further complicated by counts ‘spilling in’ from areas of 

neighbouring activity. The goal of partial volume correction (PVC) is 

therefore to be able to account for both the loss of signal due to the limited 

size of the object with respect to resolution and the signal contamination 

coming from the rest of the images. 

 

The need to correct for the partial volume effect was first noted in PET 

studies. Early work by Hoffman (Hoffman, Huang et al. 1979) into PVC  was 

based on the computation of resolution recovery coefficients from the known 

geometry of the objects being imaged and their position relative to the centre 

of a given PET slice. Since then it has been shown that the PVE is an 

important issue in clinical SPECT applications, for example in the 
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determination of myocardial wall thickness (Hutton 1998), in quantitative 

brain studies where activity concentrations in small structures may be 

underestimated (Soret et al. 2003) and in dosimetry for radionuclide therapy 

where uptake by small tumours may be important for accurate dose 

assessment (Dewaraja et al. 2001). 

 

 Early correction methods were based on physical phantom measurements. 

These empirical methods modelled the object (radioactivity distribution) by a 

series of simple geometric shapes (cylinders, spheres) to derive correction 

factors for actual anatomical structure that could be approximated by a 

simple shape or a linear combination of simple geometrical shapes. 

Jaszczak investigated using these techniques in SPECT(Jaszczak, Coleman 

et al. 1981). This approach has been applied to myocardial perfusion 

imaging and has been shown to be feasible for PET data down to ~ 1.5 

FWHM. 

 

A more widely accepted method of correction today is to use a 

reconstruction based technique. As will be discussed in section 3.6 the 

algorithm for ML-EM or OSEM iterative reconstruction, can model the 

imaging system by varying parameters in the system matrix. In this way 

account can be taken of attenuation, scatter and also the variation of the 

system’s point spread function (PSF) to account for limited resolution. As will 

be seen full 3D iterative reconstruction is required for effective correction. 
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3.5 Correction for depth dependent collimator response 

Another factor that limits resolution that is sometimes included in discussions 

of the partial volume effect is finite resolution due to collimator response. 

Gamma camera imaging relies on the use of collimators to limit the range of 

directions from which photons can reach the scintillation crystal and hence 

improve spatial resolution. However, due to the need for acceptable 

sensitivity, the angular range of photons accepted by each collimator hole 

obviously cannot be reduced to zero. This finite range of directions results in 

a finite resolution of the imaging system and hence causes blurring of the 

projection data and the final image. This spatial blurring is distance 

dependent as can be seen in Fig. 3.6. As the source moves further from the 

collimator, the fan-beam of photons that can pass through the collimator 

widens, resulting in  an increase of the full width half maximum (FWHM) of 

the line spread function. As with the partial volume effect described in 

section 3.4, the result of finite resolution is that the image of a small source 

is a larger but dimmer source. 

 

Fig 3.6 Effect on line spread function of distance from the collimator. 
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Fig 3.6 shows this effect in 1D, although the effect is actually in 3D.  This is 

illustrated beautifully by Soret et.al (2007) in their paper on the partial 

volume effect on PET tumour imaging. (Fig. 3.7) 

 

 

Fig. 3.7 Circular source (diameter of 10 mm) of uniform activity (100 arbitrary units) in 

nonradioactive background yields measured image in which part of signal emanating from 

source is seen outside actual source. Maximum activity is reduced to 85. (Soret et al. 2007) 

 

Standard filtered back projection reconstruction methods take no account of 

this ‘spreading’ of the line spread function or projected radiation profile; it is 

an implicit assumption that the projection rays are perfectly narrow. Another 

feature of the FBP algorithm is that it gives equal weight to all pixels along 

the projection ray irrespective of distance, whereas in fact gamma rays 

originating close to the camera contribute more information than those that 

originate from far away. Therefore, an early, approximate way of dealing with 

the deterioration of resolution with distance was to use a distance weighted 
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back projection (Nowak et. al 1986). In this method instead of placing back 

projected counts equally in all pixels along the projection ray, more emphasis 

is placed on pixels close to the camera. 

 

The next method of correcting for finite resolution in FBP that found more 

widespread use, was to use a resolution recovery filter such as the Metz or 

Weiner filter, during the FBP process. Since poor resolution results in a loss 

of fine detail in the image, resolution recovery requires an amplification of 

medium and high frequencies. However, in order to avoid amplification of 

noise, practical resolution recovery filters must be limited to amplifying 

medium frequencies and be rolled off at high frequencies.  Both the Metz 

and Weiner filters have a frequency response that starts with amplitude 1.0 

at low frequency and rises to a peak at medium frequencies before falling to 

zero at high frequencies. It must be remembered when using these filters 

that the collimator response changes as a function of distance so in  practice 

it is usual to use a collimator detector response for an average distance from 

the face of the collimator, for example equal to the radius of rotation.  

 

In modern camera systems, the effect of depth dependent collimator 

response can be more accurately modelled by incorporation into the system 

matrix of an iterative reconstruction algorithm, as described in section 3.6. 

This method allows for the probability of photons being detected in pixels 

adjacent to the pixel of interest. The contribution of each pixel needs to be 
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calculated from the known resolution of the camera and collimator 

combination at any given distance. Modification of the projection matrix in 

this way takes account of loss of resolution within each transaxial slice. 

However, loss of resolution also causes counts to be spread between slices 

as well as within slices, so use of a full 3D reconstruction algorithm as 

described in section 3.7 is required for accurate correction. 

 

In a study by Kalantari et al. (2012) a variety of digital phantoms were used 

to investigate the quantitative errors associated with poor SPECT resolution 

and the effects of 2D and 3D resolution recovery, by modelling system 

response during iterative image reconstruction. Gaussian functions of 

varying widths were used to model collimator detector response (CDR). The 

results showed that even with noise-free projections, the conventional OSEM 

iterative reconstruction algorithm provided limited quantitative accuracy 

compared to both 2D and 3D resolution recovery, especially when the size of 

the of the object was comparable with the spatial resolution of the system. 

The 3D resolution recovery gave superior results to the 2D in both visual 

quality and quantitative accuracy. 

 

Today, gamma camera manufacturers include Resolution Recovery 

packages on most modern systems. An example is the GE Evolution 

resolution recovery method (GE Healthcare) developed at UNC Chapel Hill 

and Johns Hopkins University and then optimised by GE Healthcare.  This 
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method uses 3D modelling of the CDR including the intrinsic system 

response and the collimator specific response. Accurate predictions of the 

geometric response function for various collimator designs had already been 

derived (Metz 1980, Tsui 1990) and penetration and scatter components of 

the CDR were obtained using Monte-Carlo simulation methods. In order to 

incorporate the obtained CDR into the reconstruction algorithm, the following 

information is then used: 

• Collimator design parameters: hole length and diameter, septal 

thickness 

• Detector characteristics: intrinsic resolution, crystal thickness, 

collimator-detector gap 

• Acquisition parameters: centre of rotation to collimator face distances 

for every projection view acquired. 

When in use, the collimator design parameters and detector characteristics 

are retrieved from a look-up table within the software, and the acquisition 

parameters are retrieved from raw projection data. 

 

3.6 Incorporation of corrections in iterative reconstruction 

In order to correct for attenuation, scatter and finite resolution within SPECT 

reconstruction, iterative reconstruction techniques are necessary. The most 

common iterative algorithm used is OSEM (Hudson and Larkin, 1994) as 

described in section 2.5.2. This allows physical characteristics of the 

acquisition process to be modelled in the system matrix (aij).  
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The system matrix defines the probability of detecting an emitted photon 

originating from location j at any particular position i on the detector, which 

will depend upon many factors including detector geometry, attenuation and 

resolution. In order to understand the system matrix, consider a simple 

image as a 3×3 array of pixels. If this is imaged at 8 angles, we have 8 1D 

line profiles, or 8 sets of 3 projection ’bins’ that can be arranged into a 

sinogram e.g. 3×8 bins. The system matrix, gives the probability of a given 

image pixel contributing to a given projection bin. 

 

Image

Projections 

Projection 
bins 

Fig.  3.8 Creation of an image sinogram for an image of 3×3 pixels imaged at 8 angles. 
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In this case, the system matrix would include (3× 3) × (3× 8) = 216 numbers. 

Fig. 3.9 shows a simplified system matrix for a 3×3 image with pixels labelled 

a to i. This is imaged at 4 angles labelled 1 to 4, with 3 projection bins at 

each angle, resulting in 12 bins labelled O to Z. The values in the system 

matrix represent the probabilities of a given pixel contributing to a given 

projection bin, which in this idealised case of no attenuation and scatter and 

perfect resolution, just represent geometry. 

 63  



 

 

Angle 4 X  

     

                                                                                        

   a b c d e f g h i 

Angle 1 O       1 1 1 

 P    1 1 1    

 Q 1 1 1       

Angle 2 R    0.8    0.8  

 S 1 0.2  0.2 1 0.2  0.2 1 

 T  0.8    0.8    

Angle 3 U 1   1   1   

 V  1   1   1  

 W   1   1   1 

Angle 4 X  0.8  0.8      

 Y  0.2 1 0.2 1 0.2 1 0.2  

 Z      0.8  0.8  

Fig. 3.9 System matrix with no corrections for a 3×3 image imaged at 4 angles with no 

attenuation or scatter and perfect resolution. The values in the matrix represent the 

probability of each pixel (a to i) contributing o each projection bin (O to Z) which in this case 

just represent geometry. 

Angle 2 T Angle 3 
Y 

S 
Z V U W 

R 

Q b ca

d e f 

gO

P 
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Image Angle 1 

Projections 
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However as mentioned, an advantage of the iterative technique is that 

corrections for attenuation, scatter and resolution can be incorporated. In the 

case of attenuation, the system is modelled by altering values of aij such that 

if a photon passes through a long distance of tissue its probability of 

detection and hence its’ weighting factor within the matrix will be lower.   The 

weighting factors are based on the attenuation map acquired using an 

external transmission source or CT. 

μ 

0.9
0 0 0.2 

0 
0 

0 
0 

 

Fig. 3.10 Incorporation of attenuation into the system matrix. 

 

This adjustment to the projection matrix only needs to be carried out once, 

before reconstruction starts. Since the forward-projection step now includes 

the effects of attenuation, the estimated projections will be attenuated. These 

are then compared with the measured projections which already include real 

attenuation, and so when the iteration completes, the final estimated image 

should be automatically corrected for attenuation (Greaves 2011). 

  

 65  



In a similar way, the imperfect resolution of the imaging system can be 

modelled, by allowing the probability of photons being detected in adjacent 

pixels to the pixel of interest as in Fig. 3.11. 

 

μ 

0.1 0.2 0.10 

0.1 
0.2

0.1 
0 

 

Fig 3.11 Incorporation of resolution model into the system matrix 

 

There are two ways in which scatter can be corrected for. Either by 

modification of the system matrix to include a model of scatter in a given 

body outline, or by measuring scatter data from a scatter window and either 

subtracting this from the observed projections or adding it to the estimated 

projections.  It has been found that adding the scatter contribution to the 

estimated projections helps to minimise noise and so is the preferred option 

(Greaves 2011). 
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3.7 Three dimensional (3D) reconstruction 
 
As previously mentioned, the loss of resolution of a gamma camera with 

distance of the object from the collimator, results in counts being spread 

between transaxial slices as well as within slices. For this reason, in order for 

this loss of resolution to be corrected for, full 3D reconstruction must be 

carried out- a process that deals with all slices simultaneously. 

 

Although this process is similar to 2D reconstruction, we now need to deal 

with a 3D set of projection bins (2D projection images at a range of angles) 

and a 3D set of reconstructed image voxels. This requires a 6 dimensional 

reconstruction matrix as opposed to the 4 dimensional matrix used in 2D 

reconstruction. 

 

The method of 3D resolution recovery is essentially an extension of the 

method described in 2D. As long as the point spread function of the camera 

is known then the projection matrix can be modified to take account of the 

probability that gamma rays originating from slightly off the projection ray can 

still reach a given projection bin. The PSF can be approximated by a 

Gaussian shaped profile with a given FWHM. This will increase with 

increasing distance from the collimator, but this can easily be measured or 

calculated if the parameters of the collimator (hole size and length etc.) are 

known. Therefore, as long as the properties of the collimator and the 

distance of the patient from the collimator are known, the projection matrix 
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can incorporate the actual image blurring caused by limited resolution. This 

means that the image can be reconstructed without this blurring appearing. 

 

In practice, this process is still limited by image noise particularly in studies 

with low counts per pixel.  A way of minimising the noise without affecting the 

resolution is to smooth the acquired projection images with a low-pass filter. 

The loss of resolution that this causes can be compensated for by including 

the same smoothing function during the forward projection step of iterative 

reconstruction. The projection matrix does not need to be modified, so it 

gives an estimate of the unsmoothed projection. This can then be smoothed 

and compared with the smoothed versions of the acquired projections. 

 

Until recently, full 3D iterative reconstruction was not commonly used due to 

the large amount of computing power required. However, today with more 

powerful computers available, 3D iterative reconstruction is available on 

commercial systems for routine nuclear medicine use.  
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3.8 Clinical applications of correction techniques 

Since the introduction of SPECT/CT hybrid imaging systems with iterative 

reconstruction techniques, their advantages of providing correction for 

attenuation, scatter, partial volume and depth dependant collimator response 

together with increased specificity and accurate localisation of disease have 

led to many clinical applications. In the area of oncological diseases alone 

SPECT/CT is now used to localise endocrine and neuroendocrine tumours, 

solitary pulmonary nodules and lung cancers, brain tumours, lymphoma, 

prostate cancer, malignant and benign bone lesions and infection (Bockisch 

et al. 2009; Mariani et al. 2010). These applications however, all rely on the 

ability of SPECT/CT to enable accurate image fusion rather than its 

capability for quantitative corrections and so will not be considered further 

here. 

 

In their recent review of quantitative SPECT imaging and potential clinical 

applications, Bailey and Willowson (2013) recognised that SPECT is often 

regarded as secondary to PET when it comes to absolute quantitation and 

also suffers from poorer sensitivity and spatial resolution. However, SPECT 

does have the advantages of utilising longer lived radionuclides that are 

readily available without close proximity to a medical cyclotron which makes 

SPECT/CT more readily available than PET/CT. Their group have carried 

out two studies using Tc-99m and SPECT/CT with in-vivo validation in a 

clinical setting. The first involved Tc-99m MAA lung imaging and will be 
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referred to in section 3.8.5. The second was in subjects undergoing left 

ventricular ejection fraction measurements using Tc-99m labelled 

erythrocytes. The activity concentration of Tc-99m in a peripheral venous 

whole blood sample at the time of the SPECT scan was measured in a 

gamma counter and compared with the concentration of the radiolabelled 

blood pool in the images reconstructed with CT based attenuation and 

scatter correction (Willowson et al. 2010). The average error in estimated 

activity concentration was + 1.3%, with a range of -6.3% to +4.9%. A further 

study by Zeintl et. al (2010) investigated the accuracy of quantitative Tc-99m 

SPECT measuring the activity concentration of urine in the bladder of 

subjects undergoing Tc-99m  methylene diphosphonate (MDP). Their 

reported average error was +1.1%.  

 

Tc-99m is not the only radionuclide that has been used in investigations of 

quantitative SPECT/CT. As will be seen, I-123 has been used in thyroid 

studies for diagnosis and dosimetry for targeted radionuclide therapy (TRT), 

as has I-131 and a range of more novel therapeutic radionuclides as 

described in section 3.8.1.  

 

In diagnostic nuclear medicine to date correction techniques have been 

utilised most widely in myocardial perfusion imaging (MPI), where image 

artefacts due to attenuation lead to the possibility of misdiagnoses being 

made. However, correction techniques are also finding a role in other areas 
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of diagnostic SPECT imaging including skeletal, renal, lung and brain 

studies, to improve quantitative accuracy and confidence in clinical reporting.  

 

3.8.1 Internal dosimetry for targeted radionuclide therapy 

An important field where there is a need for accurate quantitation of nuclear 

medicine images is dosimetry for targeted radionuclide therapy (TRT) (Loke 

et. al 2011). Absorbed dose calculations based on modelled bio-distribution 

data and serial planar quantitative imaging procedures have given 

unsatisfactory results in the past, with the consequence that TRT treatments 

today are still often based on empirical fixed administered activities, modified 

by clinical and/or pathological findings (Flux 2006). It is recognised that 

targeted radionuclide therapy ought to be based on patient specific 

dosimetry in a manner analogous to external beam therapy (Stabin et al. 

2008), but there are difficulties specific to internal radionuclide dosimetry 

such as: lack of radionuclide homogeneity within the tissues, tracer amounts 

of isotope used for uptake measurements  with different biokinetics to the full 

therapeutic dose and a lack of uniformity in the reporting of internal dose 

results (Meredith et al. 2006). As a result, errors in internal dosimetry 

calculations as high as 30-100% have been reported (Flux et al. 2006). 

Although biokinetic data is important, Flux stated that the most significant 

barrier to routine accurate dosimetry is that of image quantification, by which 

the counts recorded in an image may be converted to absolute values of 

activity. He listed the main corrections needed for absolute quantification as: 
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attenuation, scatter, collimator efficiency, detector sensitivity, septal 

penetration and high count rate. With the incorporation of these corrections 

and the customisation of the actual patient size and organ weight, the overall 

uncertainty of an organ dose estimate can be reduced to about ±30% (Fisher 

et al. 2000). 

 

A frequently used tool in dosimetry studies is Monte Carlo modelling 

(Tsougos et al. 2010). In general terms, Monte Carlo is a mathematical 

technique in which physical systems are simulated by statistical methods 

employing random numbers. A model is created as similar as possible to the 

real physical system of interest and interactions are created within that 

system based on known probabilities of occurrence, with random sampling 

of the probability density functions (PDFs) (Zaidi 2006). For simulation of 

imaging systems, radiation transport is simulated by the creation of charged 

particles or photons from a defined source region. These are tracked as they 

travel through the system with the PDFs of their interactions sampled to 

evaluate their trajectories and energy deposition at different points in the 

system. Importantly, the energy deposition during each interaction gives the 

radiation absorbed dose when divided by the appropriate values of mass, so 

with sufficient numbers of interactions, the mean absorbed dose at points of 

interest is given with acceptable uncertainties (Zaidi 2006). The overall 

technique for patient specific dosimetry can therefore be summarised in 

three steps: 
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i) SPECT images are reconstructed into transverse slices, to produce a 

count density map of source regions 

ii) The count density is converted to an activity map using the sensitivity 

derived from a calibration phantom 

iii) The activity distribution is converted to a dose map, either by 

convolving the activity distribution with dose point kernels or by direct 

Monte Carlo calculations. 

 

 The Monte Carlo approach has been used in several dosimetric studies and 

research continues in this area (Ljungberg et al. 2002; Ljungberg et al. 2003; 

Haidi et al. 2003; Ljungberg et al. 2011; Saeedzadeh et al. 2012). 

 

An example of targeted radiotherapy, where traditionally standard activities 

have been given (IPEM Report 83) is I-131 treatment for differentiated 

thyroid cancer. Several dosimetric studies have been carried out to establish 

a more patient specific method of treatment planning (Dewaraja 2009; Wong 

2011). In a recent study Saeedzadeh et al. (2012) used Monte Carlo 

modelling to carry out voxel-level radiation dosimetry for organ activities in 

an anthropomorphic phantom representing an I-131 treated thyroid cancer 

patient. This approach allowed incorporation of the size, shape and 

composition of organs and intra-organ and intra-tumour inhomogeneities in 

the activity distributions. The total activities of the tumours and their 

heterogeneous distributions were measured from SPECT images. The 
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results showed that due to the non-uniform distribution of tracer within the 

tumour, some areas of the tumour received a lower dose than others. In this 

case it would be misleading to quote the mean or maximum absorbed dose, 

because overall treatment response would be limited by the tumour volume 

that received low (i.e. non-lethal) doses. Saeedzadeh concluded that three 

dimensional radiation dosimetry and calculation of tumour dose-volume 

histograms could lead to the derivation of clinically reliable dose-response 

relationships and therefore may ultimately improve treatment planning as 

well as response assessment for radionuclide therapy. 

 

In recent years, further therapeutic radiopharmaceuticals have found clinical 

applications, necessitating dosimetric studies, either using tracer amounts of 

the therapeutic radiopharmaceutical to produce the count density map, or an 

alternative with a similar biodistribution. For example, tumour dosimetry 

based on quantitative analysis of Tc-99m macroaggregated albumin 

SPECT/CT images has been shown to be predictive of progression free 

survival and overall survival of patients with hepatocellular carcinoma treated 

with Y-90 microspheres (Diedonne et al. 2011; Garin et al. 2012). Other 

dosimetry studies that have been carried out involve I-131-tositumomab or 

Y-90-ibritumomab tiuxetan for treatment of non-Hodgkin lymphoma 

(Dewaraja et al 2010; Amro et al. 2010; Wiseman et. al 2003), I-131-MIBG 

therapies for metastatic neuroblastoma, phaeochromocytoma and 

paraganglioma (Sudbrock et al. 2010) and Sm-153 ethylene diamine 
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tetramethylene phosphonate (EDTMP) for palliative treatment of malignant 

bone disease (Vanzi et al. 2009).  

 

3.8.2 Myocardial perfusion imaging (MPI)  

It is widely recognised that the specificity of planar and SPECT myocardial 

perfusion imaging can be seriously affected by image artefacts. The most 

common causes of these artefacts include breast and ‘diaphragmatic’ 

attenuation, patient and respiratory motion, obesity, left bundle branch block 

and photon scatter from adjacent structures. Artefacts from breast and 

diaphragmatic attenuation are often suspected because of their typical 

locations and shapes relative to the heart. Fixed defects in the anterior and 

inferior walls may be distinguished from infarction by the identification of 

normal wall motion with gated SPECT imaging, but reversible defects are 

more difficult to interpret. In their review article, Corbett et al. (1999) stated 

that photon attenuation is the single most important variable in influencing 

the specificity of SPECT perfusion imaging, with references to other work 

which provided quantitative evidence for the contribution of attenuation to 

regional myocardial activity variations and reduced test specificity (Frey, Tsui 

et al. 1992; Jaszczak, Gilland  et al. 1993; Tan, Bailey et al. 1993). 

 

Patterns of attenuation in the thorax are highly variable from patient to 

patient, so although SPECT perfusion scans routinely show variable areas of 

breast, diaphragmatic and lateral attenuation in female, male and obese 
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patients respectively, their locations and magnitudes can be very different. 

This makes the clinical differentiation of artefacts from true perfusion defects 

difficult, so simply recognising the patterns that occur should not be relied 

upon.  Corbett and Ficaro (1999) refer to a multi- centre study carried out by 

the Cedars Sinai group  (Van Train et al. 1993, Van Train et al. 1994)  in 

which a sensitivity of 89% was achieved, but specificity was a poor 36%. 

 

Although the important role attenuation correction could play in SPECT 

myocardial perfusion imaging was recognised, early studies carried out with 

a variety of methodologies gave variable results. Such was the uncertainty 

and confusion surrounding attenuation correction systems that by 1996 

Ficaro and Fesler (1996) concluded that ‘At the present time it is unclear 

whether attenuation correction of cardiac SPECT will remain the emperor’s 

new clothes or will develop into a fashionable Armani suit. Until further 

progress has been made, one cannot recommend attenuation correction 

devices for routine clinical practice’. In 1999 an editorial was published in the 

Journal of Nuclear Medicine entitled ‘Attenuation correction, or the emperor’s 

new clothes?’ (Wackers 1999).  In an overview of experience with 

attenuation correction up to that date, he quoted the paper by Ficaro et al. 

(1996) as giving very encouraging results, where-as other papers, including 

work by Vidal and Buvat (1999), highlighted problems. In this particular 

study, the investigators tested a commercially available attenuation 

correction method in patients with documented coronary artery disease. In 
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the inferior wall, specificity was improved by >12% for detection of right 

coronary disease. However, in the anterior wall, attenuation correction 

resulted in a reduction in sensitivity of >20% for detection of left anterior 

descending coronary artery disease, with preserved specificity. This paper 

also stated that new learning is necessary to interpret attenuation corrected 

images. For example, on normal attenuation corrected images substantial 

apical defects may be present and should be ignored. The problem of ‘apical 

thinning’ on attenuation corrected images was reported as early as 1995 

when Stewart et al. (1995) described apical anterior defects in 16 of 18 

attenuation corrected SPECT studies in comparison with attenuation-

corrected PET studies. Another early study by Ficaro et al. (1996) concluded 

that after attenuation correction the apex and distal inferior segments had 

reduced counts compared with the rest of the myocardial segments. 

However, differences between male and female activity distributions were 

removed and the ratios of septal to lateral and anterior to inferior walls were 

approximately equal. Apical thinning has been investigated more recently by 

Okuda et al. (2011), who found that even in patients with normal myocardial 

perfusion, low apical activity is frequently observed after attenuation 

correction. They concluded that this in fact is not an artefact caused by AC 

processing, but the myocardial count is actually low based on the thinning of 

the myocardial apex. 
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A more difficult problem to allow for even on modern systems is that of mis-

registration of hybrid SPECT/CT images leading to artefactually reduced 

counts in the anterior and antero-septal walls. Tonge et al. (2006) reported 

that in a group of ninety-four patients (64 men, 30 women) where stress and 

rest MPI was carried out using CT attenuation correction, mis-registration 

could be classed as severe in 35% of cases. Where this mis-registration 

resulted in heart tissue being corrected by the attenuation coefficient of lung 

tissue, artefacts in the anterior and apical segments became likely. In 

previous work (Tonge et al. 2005) it had been shown that mis-registration by 

as little as 1 pixel can create a defect in the anterior or apical wall. Software 

to allow correction of mis-registration before attenuation correction is now 

becoming available to help combat this problem and has been seen to 

reduce the incidence of anterior/apical defects (Tonge et al. 2006). 

 

Despite some seemingly negative results, attenuation correction does have 

a role in clinical diagnosis, particularly in ‘difficult’ groups such as women or 

obese subjects. Women with known or suspected coronary artery disease 

have traditionally been a difficult group to diagnose, partly due to the wide 

variability of breast attenuation and the increased frequency of relatively 

small heart sizes. Ficaro et al. (1996) studied 59 women, 43 with insignificant 

coronary artery stenoses. Although attenuation corrected studies showed no 

significant increase in sensitivity (0.93 vs 0.86, p=NS), they did show a 
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significant increase in specificity (0.88 vs. 0.68, p= 0.03) which would lead to 

improved confidence in clinical diagnoses in women. 

 

It is accepted that if attenuation correction is carried out correctly, there 

should be no difference between male and female activity distributions.  In a 

study by Grossman et al. (2004), a gender independent normal database 

was developed in an obese population. Attenuation correction was carried 

out using Gd-153 line sources. These studies were processed twice, once 

using conventional reconstruction and gender specific database 

quantification and a second time using attenuation correction and a gender-

independent attenuation-corrected normal database. As expected, when 

comparing attenuation corrected perfusion distributions of men and women, 

no statistically significant differences were found whereas significant 

differences were found in the same uncorrected studies. 

 

 A further adjunct to attenuation correction in the processing of myocardial 

perfusion studies has been physiological gating. This method uses the R 

wave of the patient’s electrocardiogram (ECG) to trigger each acquisition. 

Each heart beat is then acquired into 8 or 16 frames, so that by the end of 

the study a rough ‘beating’ image of the heart can be reconstructed. From 

these gated images, software can be used to calculate an estimated ejection 

fraction, and a cine loop of the images can be viewed to assess wall motion 

and thickening. An area of healthy myocardial tissue will move in phase with 
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the rest of the heart and thicken on contraction. Therefore if an area of 

seemingly reduced perfusion is seen to be moving and thickening normally,  

the reduction is likely to be artefactual. In a study by Heller et al. (2004), 90 

consecutive stress-only ECG gated Tc-99m methoxyisobutylisonitrile (MIBI) 

images were interpreted by 10 independent nuclear cardiologists. The 

studies were interpreted sequentially with myocardial perfusion imaging 

(MPI) alone, MPI plus ECG gated data and attenuation corrected MPI with 

ECG-gated data. Attenuation correction was carried out using Gd-153 line 

sources (VantagePro/ExSPECT II/ ADAC/Philips Laboratories). The studies 

were interpreted on a five point scale for diagnostic certainty (normal, 

probably normal, equivocal, probably abnormal, abnormal) and the 

perceived need for rest imaging. With stress MPI data alone, the 

interpretation categories were relatively equally divided across the 5 

categories. Only a small proportion of studies were interpreted as definitely 

normal or abnormal (37%, 41%) with a very high perceived need for rest 

imaging (77%). The addition of gating did not significantly alter the 

interpretations. However, attenuation-corrected gated data significantly 

increased the number of studies categorised as definitely normal or 

abnormal (84%, p<0.005) and significantly reduced the perceived need for 

rest imaging (43%, p<0.005). This study also investigated the effect of body 

habitus (obese or non-obese) on clinical interpretation. Results showed that, 

the percentage of definite interpretation with attenuation correction was high 

and independent of body habitus (86.5% vs 78.6%, p= NS). For both body 
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habitus groups, attenuation correction resulted in a significant increase in 

definite categorisation and a reduction in the need for rest imaging.  A more 

recent study by Giubbini et al. (2011) used gated SPECT with CT 

attenuation correction (Infinia VG Hawkeye or Infinia VG Hawkeye 4, 

General Electric Healthcare), to investigate the effect of AC on infarct size 

quantification in male patients with previous inferior myocardial infarct. 

Uncorrected and corrected SPECT images were analysed for perfusion 

using a 5 point segmental scoring scale as above and the summed stress 

score (SSS), summed rest score (SRS) and summed difference score (SDS) 

of the left inferior wall were determined and compared with the regional wall 

motion score from uncorrected gated SPECT images. The results showed 

that differences between SSS and SRS for the uncorrected and corrected 

groups were statistically significant, but not in the case of the SDS. From this 

it was concluded that the combination of diaphragmatic attenuation and 

inferior myocardial infarction leads to an artifactual overestimation of infarct 

size. The AC resting perfusion score (SRS) correlated well with the regional 

wall motion score, but other than this AC did not effect the detection and 

apparent size of residual ischaemia. 

 

Despite some promising results, by 2003 the British Nuclear Medicine 

Society was still cautious, concluding that “Although initial results are 

encouraging, each method behaves differently and none overcomes 

artefacts entirely, some even introducing new forms of artefact from 
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overcorrection. The effectiveness of these techniques in routine clinical 

practice is currently uncertain. They should be used only in experienced 

centres and preferably as part of a formal evaluation of their value. 

Corrected images should not be used without review alongside the 

uncorrected images” (Anagnostopoulos et al. 2003).  A joint statement 

issued the year previously by the Society of Nuclear Medicine (SNM) and the 

American Society of Nuclear Cardiology (ASNC) (Hendel et al. 2002) had 

been more optimistic concluding that “incorporation of attenuation correction 

in addition to ECG gating with SPECT myocardial perfusion images will 

improve image quality, interpretive certainty, and diagnostic accuracy. These 

combined results are anticipated to have a substantial impact on improving 

the effectiveness of care and lowering health care costs.” However, they 

stipulated that attenuation correction should be used in conjunction with 

motion correction, scatter correction and resolution recovery and also that 

physicians should view and interpret both uncorrected and corrected images. 

 

In recent years, worldwide problems with the supply of Tc-99m have led to 

an interest in using the improvement in image quality offered by resolution 

recovery software to allow myocardial perfusion imaging to be carried out 

with a reduced amount of administered activity. Armstrong et al. (2012) 

carried out a study where half-count SPECT data were derived from full 

count data sets for 53 stress and rest routine myocardial perfusion studies 

on a GE Infinia camera. Full count data were reconstructed using standard 
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non resolution recovery (RR) OSEM, whereas half-count data were 

reconstructed using GE Evolution RR software. Myocardial function values, 

image quality and clinical report outcomes of the full count and half count 

reports were compared. Sequential full-time and half-time myocardial 

SPECT acquisitions were also carried out for 15 stress and rest studies on a 

Siemens c.cam dedicated cardiac camera (Siemens Medical Solutions). 

Half-count data were reconstructed using Siemens Flash 3D RR software. 

The results showed that no degradation in image quality was found when 

comparing full-count and half-count studies from the Infinia. Ten percent of 

the half-count studies from the c.cam were considered slightly worse than 

the full count data. Statistically significant differences in some full count 

versus half-count functional values were found, but the actual mean 

differences were not considered clinically significant. 

 

3.8.3 Skeletal studies 

Case et al. (1999) carried out an early comparison of attenuation correction 

techniques in bone SPECT of the cervical spine, a region where variable 

attenuation in the head, neck and shoulders leads to an artefactual reduction 

in counts in the upper cervical and thoracic regions relative to the neck 

region. The methods they compared were: 

i) a downscatter method where the body outline was determined using 

a  combination of the photopeak and Compton scatter window 
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ii) the Chang method, where the body outline was determined from 

photopeak data 

iii) a transmission method using Gd-153 line sources and fan-beam 

collimators on a triple head gamma camera system.  

For the mathematically calculated methods, a uniform attenuation coefficient 

of μ = 0.15cm-1 was used.  The results were compared using the 

transmission corrected results (adjusted for truncation effects) as the ‘gold 

standard’. It was found that with no correction, cervical spine counts were 

overestimated by 30-50%. Chang AC led to an underestimation in cervical 

spine counts of the same amount, due to problems locating the patient 

boundary. The downscatter correction method gave count values ranging 

from 90% of the transmission method results to indistinguishable from the 

transmission method. It was concluded that in the cervical spine the most 

important factor in determining patient attenuation is the accurate estimate 

of the patient boundary, with variable attenuation within that boundary being 

less important. Clinically, patient studies using downscatter AC showed 

significant improvement in the uniformity of estimated cervical spine uptake 

in normal patients and of the lower back in obese patients. 

 

With regard to scatter correction however, a study by Stark et al. (2003) 

concluded that scatter correction using a 3 window technique did not 

improve the image quality in SPECT of the spine. They surmised that this 

was due to a lower signal to noise ratio in the scatter corrected images, 
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which contained 30-35% fewer counts than the non-scatter corrected 

images.  

 

Of particular interest in bone scinitgraphy has been the use of 3D resolution 

recovery. Stansfield et al. (2010) carried out a preliminary evaluation of 

image quality of paediatric Tc-99m MDP SPECT studies acquired on the 

Siemens ECAM (Siemens Medical Solutions) and reconstructed using Flash 

3D (Siemens Medical Solutions) OSEM-3D resolution recovery software. 

The aim of the study was to assess whether improvements with the use of 

this technique could lead to a reduction in patient dose or a shortening of 

imaging time. Fifty SPECT studies of the spine were evaluated with each 

data set having been reconstructed three times. The three methods of 

reconstruction were: FBP with data from two detectors, OSEM 3D with data 

from two detectors and OSEM 3D with data from a single detector to 

simulate half count data. To review the data, two nuclear medicine 

physicians assessed the images for image quality in four categories using a 

four point scale. The categories were: artefact detection, lesion detection, 

image noise and image sharpness. The results showed that compared with 

FBP, images reconstructed by using OSEM 3D with one or two detectors 

showed significant improvement in image quality with respect to lesion 

detection, image noise and image sharpness (p<0.02, 0.01 and 0.001 

respectively). With OSEM 3D no significant differences were observed when 

either one or two detectors were used. It was concluded that improved 
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quality of skeletal SPECT with either a 50% reduction in radiation dose or a 

50% reduction in acquisition time or a combination of the two can be 

achieved by using OSEM 3D reconstruction. 

 

3.8.4 Renal Studies 

An early SPECT technique for absolute quantitation of radiopharmaceutical 

in patients was derived by Front et. al (1987) This technique involved 

defining regions of interest using a thresholding technique. A threshold value 

of 43% of the maximum pixel, was found to give the most reliable results. 

Reconstruction was carried out using filtered back projection for this study, 

with no corrections made for attenuation, scatter or limited resolution. 

Results in phantoms were encouraging and the method was subsequently 

applied to quantitation of renal uptake using Tc-99m dimercaptosuccinic acid 

(DMSA) SPECT. Calibration results using kidney phantoms were applied to 

the assessment of renal uptake of Tc-99m DMSA in 25 normals, 16 patients 

with single normal kidney, 30 patients with unilateral nephropathy and 17 

patients with bilateral nephropathy. An excellent correlation was found 

between SPECT measured concentration and actual concentration in kidney 

phantoms.  

 

Kojima et al. (2000) later devised a method for accurately measuring renal 

activity by using a static emission image corrected for attenuation using 

transmission data from an external Tc-99m array line source and corrected 
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for scatter using a triple energy window method. In their idealised phantom 

study they found that accurate background correction taking into account 

attenuation and kidney volume, together with scatter correction, could give 

depth independent count rates and could estimate the true count rate with 

errors of <5% for all kidney to background activity concentrations. However if 

either background or scatter correction was performed alone, the absolute 

error increased to about 50% for the smaller concentration ratios. 

 

The use of resolution recovery in paediatric bone imaging has already been 

discussed in section 3.8.3 where it was seen to offer improved image quality 

even at lower counts. In 2009, the same group at the Children’s Hospital, 

Boston (Sheehy et al. 2009) compared reconstructing Tc-99m DMSA 

SPECT studies with FBP and with OSEM 3D in terms of improving image 

quality and reducing the radiopharmaceutical activity and radiation dose.  

Fifty paediatric patient Tc-99m DMSA studies of 98 kidneys were 

reconstructed using FBP and OSEM 3D with data from one detector to 

simulate half count data. Two nuclear medicine physicians scored the 

studies in terms of image quality, renal size, relative function and detection 

of renal cortical defects. The results showed that image quality was 

significantly enhanced with half count OSEM 3D resconstruction (p<0.001). 

Cortical defects were identified better on half count OSEM 3D images than 

on FBP images with four kidneys displaying defects with half count OSEM 

3D that were not seen with FBP. No significant difference in relative renal 
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function between the two methods was found.  It was concluded that OSEM 

3D resolution recovery in Tc-99m DMSA SPECT offers the potential for 

improved image quality with reduced radiation doses and/or reduced 

scanning time for patients.  

 

3.8.5 Lung Studies 

An area where quantitative nuclear medicine has a particular application is 

the assessment of the in vivo distribution of a drug administered by 

inhalation. In particular it has been used to assess the percentage of total 

deposition of activity in the lung. Early work used planar gamma camera 

imaging to visualise aerosol deposition (Dolovich et al. 1976). Subsequently 

planar imaging continued to be used to quantify aerosol deposition. In a 

study carried out on dogs, Itoh et al. (1985) investigated aerosol deposition 

in the lungs by 3 independent methods: 

i) tyndallometry (continuous concentration in the mouth) 

ii) planar gamma camera imaging 

iii) filter collection of exhaled aerosol. 

 

For the gamma camera images, counts were converted to deposited activity 

and correction was made for attenuation using a perfusion image derived 

calibration factor. The results showed close agreement between the gamma 

camera data and the other two methods. However, animal experiments may 

not always extrapolate to human studies and some early human studies 
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showed that uncorrected planar gamma imaging is inclined to slightly 

overestimate the amount of lung deposition when compared with 

independent pharmokinetic measurements (Borgstrom et al. 1992, Newman 

et al. 1995). In view of this finding, Pitcairn et al. (1997) investigated the use 

of attenuation correction applied to aerosol deposition studies and Lee et al. 

(2001) carried out a comprehensive investigation into the effect of scatter 

and attenuation correction on aerosol deposition as determined by gamma 

scintigraphy. Two methods of scatter correction were investigated: 

i) Jaszczak method 

ii) factor analysis. 

 

Scatter was shown to account for 20% of raw data in the whole lung, 20% 

in the oropharynx and 43% in the central airways and oesophagus. Three 

methods of attenuation correction (all utilising the geometric mean of 

anterior and posterior images) were investigated and compared: 

i) uniform attenuation correction 

ii) broad beam attenuation correction (with no a priori scatter 

correction) 

iii) narrow beam attenuation correction using fused CT image 

attenuation maps and a priori scatter correction. 

 

The three methods differed significantly, but all indicated that attenuation is 

a severe quantification problem. The narrow beam attenuation correction 
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with scatter correction showed that raw data underestimated tracer 

deposition by 44% in the lung, 137% in the oropharynx and 153% in the 

trachea/oesophageal region. 

 

In 2003, Fleming et al. compared planar imaging using quantitative 

methods for attenuation and scatter correction with SPECT imaging, where 

SPECT quantitation measurements were used as the gold standard. The 

planar attenuation methods used were thickness measurement and 

transmission measurement, with and without a priori scatter correction. The 

two scatter correction techniques investigated were reduced attenuation 

coefficient (i.e. broad beam assumption) and line source scatter function 

convolution subtraction. Thickness measurements for the planar 

corrections and the attenuation map for the SPECT attenuation correction 

were obtained from fused MR images. Activity in the right lung was 

calculated in terms of MBq, using a measured planar sensitivity factor. 

Results showed that when the thickness measurement and transmission 

techniques were applied with scatter compensation using a reduced 

attenuation coefficient, activity was systematically overestimated by 5% in 

both cases. Separate scatter correction reduced these systematic errors 

significantly to -1.5% and 2.7% respectively. All techniques provided 

assessment of total lung activity with an accuracy and a precision that 

differed by less than 10% compared to SPECT values, which led Fleming 
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to conclude that “Planar gamma camera imaging provides a good method 

of assessing  total lung deposition of inhaled aerosol”. 

 

More recently however, Nunez et al (2009) carried out a simulation study to 

evaluate the influence of AC on defect to normal ratios (D/N) for lung 

SPECT. Attenuation correction was carried out by use of a synthetic map 

derived from the emission data and the results compared with those 

obtained using a CT map. The role of attenuation correction in reprojected 

SPECT data (i.e. ‘planar- like’ images generated from the SPECT images) 

was also investigated. Phantom studies showed that AC markedly affects 

the D/N ratio. However, variations in μ values typical of those found in 

clinical studies resulted in relatively small changes in results. Clinical 

SPECT/CT data reconstructed with CT attenuation maps and simulated 

maps showed an excellent correlation between the two methods, implying 

that the use of a synthetic map in lung SPECT is feasible, avoiding the 

need for extra radiation dose to the patient. Planar-like images generated 

from the reprojected SPECT data were well matched to normal planar 

images provided that AC was performed. 

 

In the case of lung perfusion using Tc-99m MAA, Willowson et al. (2008) 

examined the accuracy of in vivo activity measured in the lungs using 

SPECT/CT, based on the assumption that 100% of the 

radiopharmaceutical is trapped in the lungs after intravenous injection of a 
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calibrated amount of the radiopharmaceutical. The total activity in 12 

subjects was estimated to be, on average, in error by -1% with a range of   

-7% to +4%. 

 

3.8.6 Thyroid Studies 

Quantitative gamma camera imaging with I-123 or Tc-99m pertechnetate is 

a sensitive and specific technique for the diagnosis of thyroid malignancy 

especially in diagnosis and risk stratification of spontaneous or iodine-

induced hyperthyroidism (Meller and Becker 2002). At present, a simple 

planar method of thyroid imaging is still recommended (Sharp 2005).  

Background corrected counts in a region of interest drawn around the 

thyroid are compared with an aliquot of known activity measured in a neck 

phantom, designed to give an approximation of the attenuation and scatter 

conditions found in the patient. Work remains to be done on the use of 

SPECT imaging incorporating accurate corrections for attenuation, scatter 

and partial volume in thyroid uptake values in thyroid uptake values. As 

seen with dosimetric studies, more accurate uptake values could lead to 

patient specific therapies for hyperthyroidism.  

 

In thyroid cancer patients, radioiodine has been used diagnostically and 

therapeutically for over 50 years on the basis of the ability of the thyroid 

gland to accumulate iodine through the sodium iodide (Na+/ I-) symporter. 

(Barwick 2012). Treatment for differentiated (follicular and papillary) thyroid 
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carcinoma in the majority of cases consists of total thyroidectomy, followed 

by radioiodine (I-131) ablation of thyroid remnants and thyroid-stimulating 

hormone (TSH) suppressive thyroid hormone therapy (British Thyroid 

Association 2007). The utilisation of quantitative SPECT imaging to 

improve individual patient treatment planning has been considered in 

section 3.8.1. with several studies having been carried out on accurate 

dosimetry in I-131 radionuclide therapy (Dewaraja 2009; Wong 2011, 

Saeedzadeh 2012). In one example, Dewaraja et al. used clinically realistic 

phantom simulations to model SPECT projections, using a Monte Carlo 

code. Within the model, SPECT reconstruction was performed using 

OSEM with the incorporation of corrections for attenuation, scatter and 3D 

detector response. Based on the SPECT image and a patient specific 

density map derived from CT, 3D dosimetry was performed using Monte 

Carlo modelling as previously described. Dosimetry was evaluated by 

comparing mean absorbed dose estimates calculated directly from the 

defined phantom activity map with those calculated from the SPECT image 

of the phantom. Finally, the 3D methods were applied to a real I-131 

therapy patient and the mean tumour absorbed dose from the new 

calculation was compared with that from dosimetry using conjugate view 

imaging. Overall the percentage error of the SPECT based absorbed dose 

estimates in the phantom was <12% for targets of volume down to 16 ml, 

but up to 35% for the smallest 7 ml tumour, due to partial volume effects. 

For the patient, the mean tumour absorbed dose estimate from the Monte 

 93  



Carlo calculation was 7% higher than that from conventional dosimetry, 

demonstrating the value of accurate 3D dosimetry in patient management 

(Dewaraja 2009).    

 

Post therapy, the use of combined SPECT/CT has been advocated only in 

the follow- up of patients defined clinically as at high risk of recurrence 

(Pacini et al. 2008). Barwick et al. (2012) recently carried out a review of 

the use of SPECT/CT in a range of differentiated thyroid cancer studies. 

These studies assessed:  

i) post ablation imaging 

ii) mixed post-first-ablation imaging and subsequent therapy 

iii) mixed post therapy and diagnostic imaging  

iv) diagnostic imaging either with I-131 or I-123.  

 

Overall, additional diagnostic information was provided by SPECT/CT over 

planar imaging for 34-74% of patients, with the wide spread of results 

attributed to varied patient selection and imaging times in the studies 

considered. This review however, only involved the use of SPECT/CT for 

improved localisation rather than measurement of absolute quantitation - 

corrections for attenuation, scatter and partial volume effect were not 

included. 
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3.8.7 Brain Studies 

SPECT imaging of the dopaminergic system using I-123 labelled ioflupane 

(DaTSCAN) has been found to have significant clinical benefit in the 

evaluation of Parkinsonian syndromes (Catafau et al. 2001; Vlaar et al. 

2007). Visual assessment alone has been used to evaluate the normality of 

DAT binding and has been found to be sufficient in differentiating 

Parkinsonism from essential tremor (Benamer et al. 2000). However, a semi-

quantitative approach using ROI comparisons with age-matched controls is 

now recommended for an objective measure of DAT binding in the striatum 

and striatal sub-regions (caudate, nucleus, pitumen) (Darcourt et al. 2009). A 

quantitative approach is particularly relevant for indications such as 

measurement of disease progression (Chouker et al. 2001) the assessment 

of Lewy body dementia (Walker et al. 2002) and the monitoring of 

neuroprotective treatments (Fahn et al. 2004; Schillaci et al. 2005). Several 

studies have shown that values from semi-quantitative analysis are strongly 

dependent on the corrections performed. A significant problem with accurate 

quantitation in this area is that the small size of the striata means that the 

partial volume effect (PVE) becomes significant. In I-123 brain SPECT, 

radioactivity concentration in the striata can be underestimated by more than 

50% if no correction for PVE is used (Buvat et al. 2000, Soret et al. 2003). 

Soret et al. (2003) investigated the combined effect of attenuation, scatter 

and partial volume effect corrections on quantitation using a Monte Carlo 

simulation and brain phantom experiments. SPECT scans were performed 
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using a triple headed camera, with Tc-99m line source attenuation 

correction. Scatter correction was carried out using a triple energy window 

method and partial volume correction (PVC) was performed by use of a 

method derived from the region-of-interest technique proposed by Rousset 

at al. (1993) for PET. Without any correction, brain activity was 

underestimated by at least 65% and absolute striatal activity measured in 

regions corresponding to the anatomic contours of the striate was 

underestimated by about 90%. With scatter and attenuation corrections only, 

estimated brain activity was accurate within 10%, but striatal activity 

remained underestimated by about 50%. When combined with AC and SC, 

anatomically guided PVC reduced the underestimation to about 10%, 

despite small errors in registering SPECT images with anatomic data or in 

segmenting the striata. 

 

3.9 Conclusions 

This chapter has reviewed the methods employed to improve the 

quantitative accuracy of gamma camera SPECT imaging by correcting for 

the physical processes of attenuation, scatter, partial volume effect and 

depth dependent collimator response. Some of the applications of these 

corrections in clinical nuclear medicine have been outlined, though the list 

considered is by no means exhaustive and there are likely to be further 

applications in the future. 
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This study will go on to consider two of these corrections in depth, namely 

attenuation correction and scatter correction and investigate their effect on 

the SPECT images acquired using the Hawkeye gamma camera system. 

Corrections for partial volume and depth dependent collimator response will 

not be included in this study, since the software for carrying out these 

corrections is not currently available on this system. However, inclusion of all 

four relevant corrections to ascertain their relative importance in accurate 

quantitative imaging will definitely be considered as further work in the 

future. 

 97  
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Chapter 4 
 

Baseline Characteristics of the Hawkeye Gamma Camera 
 
 
 

4.1 Introduction 
 
The Hawkeye gamma camera system (GE Medical Systems, Milwaukee) 

used in this study was installed in the Medical Physics department of the 

University Hospital of Wales in January 2003. The system comprises a dual 

headed large field of view VG Millennium gamma camera and a low dose CT 

scanner mounted onto a slip-ring gantry. The processing workstation is the 

GE eNTEGRA software version 2.5302. 

 

The gamma camera detector heads each contain a 9.5 mm thick, 600×500 

mm NaI(Tl) crystal, giving rise to a useful field of view of 540×400 mm. Both 

crystals are backed by 59 photomultiplier tubes, each connected to an ADC. 

The collimators used during this study were low energy, high resolution 

collimators with septal thickness 0.2 mm, hole diameter 1.5 mm and hole 

length 35 mm. 

 

The CT scanner comprises a X-ray tube operating at 140 keV, 2.5 mA, 

mounted opposite an array of 384 cadmium tungstate detectors. The X-ray 

tube aperture is mechanically collimated to a fixed slice thickness of 10 mm. 

 
Before investigating the influence of different factors on quantitation, it was 

important to establish the baseline performance characteristics of the 

Hawkeye gamma camera in planar and SPECT operation. Once baseline 
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performance had been established and verified as being within 

manufacturers specifications,  quality control (QC) tests were repeated on a 

regular basis throughout the duration of the study to ensure consistency of 

performance.  The performance of the SPECT reconstruction software on the 

eNTEGRA workstation was verified by comparing results with known data 

supplied by the Institute of Physics and Engineering in Medicine (IPEM) 

Nuclear Medicine Software group as part of a national audit in 2002 (Jarritt et 

al. 2002) as described in section 4.4. 

 

Quantitative SPECT performance was then further investigated using SPECT 

performance phantoms – namely a Jaszczak phantom and an 

anthropomorphic torso phantom (Data Spectrum) as described in section 4.5. 

  

4.2 Measurement of planar gamma camera performance 
 

Planar physical performance characteristics of the gamma camera include 

intrinsic uniformity, system uniformity, energy resolution, system spatial 

resolution and sensitivity.  These parameters were measured using the 

methods outlined below in order to establish baseline performance indices of 

the Hawkeye gamma camera. 
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4.2.1  Method 

4.2.1.1 Uniformity 

Uniformity refers to the ability of the gamma camera to record an equal 

number of counts in each pixel of the image, when irradiated with a uniform 

source of radiation.  

 

Two measures of uniformity are intrinsic and system uniformity. The intrinsic 

uniformity measurement was carried out with the collimators removed, so 

that the performance of the NaI(Tl) crystal and subsequent imaging system 

was tested. The test was carried out by placing a point source of 10 MBq   

Tc-99m at the centre of the field of view (FOV) of the gamma camera head at 

a distance of 2.5 m from the detector face. This distance is used to ensure   

that there is a less than 1% variation in radiation flux reaching the face of the 

camera (Bolster 2003). For establishment of performance, 30 M counts were 

acquired into a 256× 256 matrix. For system uniformity measurements, the 

gamma camera collimators were in place so that the overall performance of 

the gamma camera was tested.  This test was carried out using a Co-57 

flood source (376 MBq, reference date 09.10.06) with a gamma photon 

emission of 122 keV.  Again 30 M counts were acquired into a 256 ×256 

matrix. 

The integral  and differential uniformity were calculated as follows: 

Integral uniformity = max-min / max +min        Eqn 4.1 

where max = maximum pixel count in the image and min = minimum pixel 

count in the image (Bolster 2003); 

and 
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Differential uniformity = H + L / H – L               Eqn 4.2 

where H = maximum count in five consecutive pixels and L = minimum count 

in five consecutive pixels (Bolster 2003). 

Differential uniformity is measured in both the X and Y directions. 

 

In order to discount edge effects, uniformity results were quoted for the 

central field of view (CFOV), which is 75% of the useful field of view (UFOV). 

 

4.2.1.2 Energy resolution 

For mono-energetic photons incident on the gamma camera crystal, the 

pulse height energy spectrum has the shape already seen in Fig. 2.4 with a 

broad Compton band and a narrow photopeak. Energy resolution is a 

measure of the width of the photopeak measured at half of the maximum 

amplitude, expressed as a percentage of the photopeak energy. This was 

measured on the Hawkeye gamma camera by acquiring a spectrum 

containing 300k counts using the pulse height analyser (PHA) facility, as 

shown in Fig. 4.1. This facility enables the calculation and display of the full 

width at half maximum of the photopeak on completion of acquisition. 
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 Fig 4.1 Pulse height energy spectrum used to measure energy resolution on the Hawkeye 

gamma camera. The X axis shows energy in keV and the Y axis shows number of counts. In 

this example, the energy resolution of Head 1 (upper spectrum) is 10.35% and the energy 

resolution of Head 2 (lower spectrum) is 9.75%. 

 

4.2.1.3 System spatial resolution 

System spatial resolution is a measure of the sharpness of the image 

produced by the gamma camera. 

 

A quantitative measurement of spatial resolution was made by imaging a 

capillary line source containing 40 MBq of Tc-99m, positioned on the camera 

collimator in both the X and Y directions.  The spatial resolution was 

measured as the full width at half maximum (FWHM) of a profile taken 

through the image, defined as the line spread function (LSF). The FWHM is 

equal to the minimum separation required between two line sources if they 

are just to be resolved.  
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4.2.1.4 Sensitivity 

Sensitivity is a measure of the proportion of gamma photons emitted from a 

radionuclide source which is detected within the photopeak of the collimated 

gamma camera. This was measured by imaging a 10×10 cm phantom 

containing 70 MBq of Tc-99m, for 300 seconds at a distance of 10 cm from 

the camera collimator. The sensitivity was expressed as counts per second 

per MBq (cps/MBq) after correction for background. 

 

4.2.2 Results   

The results of the planar baseline performance measurements are given in 

Table  4.1. 

 

Results Property 

Head 1 Head 2 

Intrinsic uniformity 

CFOV 30M counts  

Integral 2.38% 

X diff 1.69% 

Y diff 1.46% 

Integral 2.07% 

X diff 1.40% 

Y diff 1.43% 

Energy resolution 9.47% 9.48% 

System uniformity 

CFOV 30M counts 

Integral 3.14% 

X diff 1.48% 

Y diff 1.84% 

Integral 3.09% 

X diff 1.71% 

Y diff 1.65% 

System spatial resolution at 

10cm air 

X direction 

8.6± 1.1 mm 

Y direction 

7.8± 1.1 mm 

X direction 

7.9± 1.1 mm 

Y direction 

8.0± 1.1  mm 

Sensitivity 

phantom at 10cm air 

65.42±0.01 

cps/MBq 

65.27±0.01 

cps/MBq 

Table 4.1.  Planar baseline performance characteristics for the GE Hawkeye gamma camera 
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These results are all within the limits recommended by the British Nuclear 

Medicine Society (BNMS) for guidance when purchasing a gamma camera 

(BNMS 2004), manufacturer specifications (Millennium VG Operators manual 

2002) and  National Electrical Manufacturers Association (NEMA) standards 

(1980).  

 

4.2.3 Planar Quality control measurements 

4.2.3.1 Method 

Measurements of system uniformity (made by acquiring 4M counts) and 

energy resolution were carried out on each day that the camera was used, 

for the duration of this project as part of a routine quality control programme. 

The acceptable limit of system uniformity had been previously determined 

using the system uniformity measurements of the first 3 months use of the 

camera post installation. At this time the mean value of system uniformity 

was found for each head and limits of acceptable performance set at two 

standard deviations above this value. This gave a result of 4% for each head. 

Above this ‘action level’ corrective action would need to be taken to improve 

performance before the camera could be used. 

 

To ensure that the system uniformity of the camera remained stable and 

within the acceptable limit over the  time for which measurements were made 

for this study, trend analysis on daily uniformity results was carried out.  This 

was done for each head by plotting a sample uniformity result selected at 

random once a month for a 3 year time period and carrying out linear 

regression analysis on the resultant scatter plot. 
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Energy resolution was also measured and recorded daily as part of the 

routine quality control programme.  A scatter plot of these results, selected as 

for the daily uniformity measurements, was generated to ensure that the 

energy resolution was within the manufacturer’s specified limit at all times. 

 

Intrinsic uniformity and sensitivity were measured annually as part of the 

extended quality control programme.  

 

4.2.3.2 Results 

 The results of daily integral uniformity trend analysis are shown in Fig. 4.2 a) 

and b).  

Monthly Integral Uniformity Trend Analysis for Head 1

y = 0.0005x - 18.457
R2 = 0.1496
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Monthly Integral Uniformity Trend Analysis for Head 2

y = 0.0004x - 14.473
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(b) 

Fig. 4.2 Monthly integral system uniformity trend analysis for (a) head 1 and (b) head 2 on 
the Hawkeye gamma camera. 
 
 
The results show that despite daily variation, there is no significant linear 

degradation with time and all results are well within the action level set. 

 

The results of the daily energy resolution measurement are shown in Fig. 4.3 

(a) and (b) and show that the value remained lower than the manufacturer’s 

limit of 11% outlined in the Millennium VG Operators Manual (2002), for the 

duration of the study. 
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Daily Energy Resolution of Head 1
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Daily Energy Resolution of Head 2
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(b) 

Fig. 4.3 Daily energy resolution for (a) head 1 and (b) head 2 on the Hawkeye gamma 

camera. 



 108  

The results of the annual extended QC tests are shown in Table 4.2 and 

show that the results were all within manufacturer’s specified limits for the 

duration of the study and showed no degradation in performance from the 

measured baseline characteristics. 

  2008 2009 2010 

Intrinsic Uniformity (%) Head 1 

Head 2 

2.87 

3.33 

1.94 

2.17 

2.42 

1.99 

Sensitivity (cps/MBq) Head 1 

Head 2 

68.98± 0.01 

69.59± 0.01 

68.40± 0.01 

68.40± 0.01 

72.70± 0.01 

72.30± 0.01 

 

Table 4.2 Results of annual extended quality control tests for the Hawkeye gamma camera. 

 

4.2.4 Investigation of change in planar spatial resolution with source-
camera separation 
To investigate the effect of spatial resolution with distance from the 

collimated camera face, a capillary line source was filled with ~40 MBq Tc-

99m (concentration 100MBq/ml). Acquisitions were carried out with the line 

source placed centrally on the collimator in the x direction. The distance 

between the source and the camera head was increased sequentially to 

30cm. This was repeated for each camera head and for the line source 

placed in the y direction.  The line spread function was calculated as the 

FWHM of the profile across the centre of the line source image. The results 

are shown in Figs. 4.4 to 4.7. 
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Head 1 Line Source System Resolution X Direction
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Fig. 4.4 Head 1 line source resolution in air with line source in x direction 

Head 2 Line Source System Resolution X Direction
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Fig. 4.5 Head 2 line source resolution in air with line source in x direction 
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Head 1 Line Source System Resolution Y Direction
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Fig. 4.6 Head 1 line source resolution in air with line source in y direction 

 

Head 2 Line Source System Resolution Y Direction
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Fig 4.7 Head 2 Line source resolution in air with line source in y direction 

 

The mean spatial resolution at the camera face is 4.9±1.1 mm in the x 

direction and 4.8±1.1 mm in the y direction. At 10cm from the camera face, 

the values are 8.3±1.1 mm and 7.9±1.1 mm respectively which correspond 
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well with the measured baseline values. The relationship between resolution 

and distance is linear, given by the equations: 

y = 0.35x +4.97  x direction    

y = 0.34x + 4.80  y direction 

 

4.2.5 Conclusion  

The planar performance measurements show that the gamma camera was 

performing at an acceptable and consistent level with respect to image 

uniformity, energy resolution and camera sensitivity in line with BNMS 

guidelines (2004), NEMA standards (1980) and manufacturer specifications 

(GE 2002). The spatial resolution has been shown to vary linearly with 

distance in air, with FWHM varying at a rate of 0.35 mm/cm in the x direction 

and 0.34 mm/cm in the y direction.  

 

 

4.3 CT performance measurements 

4.3.1 Method 

Performance measurements were carried out on the CT component of the 

Hawkeye system as part of a routine quality control programme. Quality 

control tests were carried out using the manufacturer supplied water filled 

phantom and pre-set acquisition protocols. The phantom incorporates a 

uniform water section and the following tests patterns: 

• A range of water/plastic bar patterns placed diagonally across the 

phantom. The bar patterns represent spatial frequencies of 2.0, 2.5, 

3.0, 3.5 and 4.0 line pairs/cm. as shown in Fig. 4.8 
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• A slice width gauge consisting of four inclined rows of holes drilled at 

63.4 degrees to the horizontal. 

• A low contrast resolution test plate, consisting of a thin plastic plate 

with an image density 2.5% greater than water when imaged with a 10 

mm slice thickness. The plate has several holes of different diameter 

which are filled with water as shown in Fig. 4.9. 

 

Fig. 4.8 Alignment and resolution section (image GE Medical Systems Training in 

Partnership) 

 

Fig. 4.9 Low contrast section showing hole diameters (mm) (image GE Medical Systems 

Training in Partnership ) 

 

Daily QC tests were carried out by acquiring a single slice in the uniform 

water section of the phantom and carrying out the X-ray daily QC protocol 

provided on the workstation. This automatically assigns 6 ROIs to the slice: 
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centre, top, bottom, right, left and a large ROI covering the whole of the water 

area, as can be seen in Fig. 4.10.  Pixel values were expressed as the CT 

number plus 1000, so that air has a value of 0 and water 1000. The mean 

and standard deviation of the pixel values, was found for all of the ROIs and 

uniformity expressed as the difference between each small ROI average and 

the average of the large ROI i.e. the whole water slice.  

 

As part of the extended QC program, 3 CT slices were acquired: one in the 

uniform section, one encompassing the resolution bars and slice width 

gauges and one encompassing the low contrast test pattern. Analysis was 

carried out using the Weekly X-ray QC protocol provided on the workstation. 

 

4.3.2  Results 

An example of a set of Daily X-ray QC results is shown in Fig 4.10.  The 

quality control tests passed every day during the duration of this study. 

 

 
Fig 4.10 Daily X-ray QC results; showing the positions of the ROIs, reconstruction 

parameters, mean pixel values and uniformity values. 
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The results show that all of the mean pixel values were within the acceptance 

range of 990-1010 with a standard deviation <10. All of the uniformity values 

for the small circular ROIs were within 5% of the uniformity of the large 

circular ROI. 

 

An example of a set of extended X-ray QC results is shown in Figs. 4.11 to 

4.14. The extended tests passed throughout the duration of this study. 

 

 

Fig 4.11 X-ray CT slice thickness and alignment results 

 

 The left, right, top and bottom slice thicknesses are all within the acceptance 

range of 10±2 mm and the slice alignment values are all within the 

acceptance range of ≤3.5 mm. 
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Fig. 4.12  X-ray CT high contrast resolution results 

 

The results show that 3 bar sets can be resolved, which means that the high 

contrast resolution is 3.0 line pairs/cm which is within the acceptance range 

of ≤ 3 line pairs/cm. 

 

Fig. 4.13 X-ray CT density scale results 

 

The measured CT density for air lies between 0 and 10, that for water 

between 990 and 1010 and that for plastic between 1100 and 1140. 
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Fig. 4.14 X-ray CT low contrast detectability results             

 

The number of holes that can be detected is 7, corresponding to a diameter 

of 3 mm which is within the detectability acceptance limit of ≤ 3 mm . 

 

 

4.3.3  Conclusions  

The results of the uniformity, slice width and alignment, high and low contrast 

and CT density scale results show that the system was operating within the 

manufacturers specifications for the duration of the study. 

 

 

4.4 SPECT reconstruction software performance  

When a gamma camera and image processing system is used for SPECT 

imaging, an important part of performance evaluation, is that of the software 

used for image reconstruction. This is to ensure that quantitative errors are 

not introduced into SPECT images by the reconstruction process itself.  In 

2002 the software group of IPEM carried out a nationwide audit of 

quantitative characteristics of SPECT software using projection data from an 
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analytically generated software phantom and a measured line source (Jarritt 

et. al. 2002). The phantom consisted of three structures:  

(1) a uniformly filled cylinder labelled region A 

(2) a series of active cylindrical rods of various diameters in a background 

activity with a rod to background ratio of 2:1  

(3) a set of three concentric rings of activity in the ratio 1:0:1 labelled H, I 

and J.  

The uniform cylinder had a radius of 56 pixels and height of 42 pixels in a 

128×128 matrix. The rods were generated at equi-angular positions around 

the centre of the simulation at a radial distance of 27 pixels. Counting anti-

clockwise from the top centre of the reconstructed axial data, the rods were 

of radii 0.0, 1.0, 1.5, 3.0, 6.0 and 9.0 pixels. The concentric rings were 

created by generating a uniform cylinder of radius 56 pixels and height 42 

pixels, with an annular defect for which the inner and outer radii were 18 and 

36 pixels respectively. The phantom contained no added statistical noise and 

no attenuation was imposed on the data. The phantom was simulated with 

projection data at six different count densities as shown in Table 4.3. A single 

set of projections from a thin line source was also distributed.  

SPECT Dataset Count density 

1 0.898 

2 1.201 

3 2.567 

4 4.000 

5 5.000 

6 8.640 

 

Table 4.3. Count densities of simulated SPECT data sets. The count densities correspond to 

counts per voxel in a 128×128 matrix, before forward projection.  
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4.4.1 Method 

For evaluation of the reconstruction software supplied on the eNTEGRA 

workstation, the audit data were reconstructed using;  

1.  general SPECT FBP software, with and without filters 

2. iterative reconstruction Auto OSEM software with no corrections. 

The measurements carried out were; mean and standard deviation of counts 

in the uniform cylinder, maximum counts in each cylindrical rod and mean 

counts in regions placed within the concentric rings. The positions of the 

ROIs used for processing are shown in Fig. 4.15. For the line source, the full 

width at half maximum and peak pixel counts for a profile through the 

reconstructed line were measured. 

The results were then compared with the known true values. 

 

 

 
 

 

Fig 4.15 Analytical cross section images used to generate projection images for the 
software phantom, overlaid with region of interest placements required for data 
analysis.(1) uniform cylinder; (2) hot rods; (3) concentric rings. (Jarritt 2002). 

                 (1)                                      (2)                                      (3)                      



 119  

4.4.2 Results 
The results of analysing the data are shown below. 

 

4.4.2.1 Uniform cylinder 
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Fig . 4.16 Graph of mean counts in the uniform image against count density for varying 

reconstruction methods. 

 

The results show that the relationship between count density and 

reconstructed counts is linear as would be expected for all of the 

reconstruction methods investigated. 

 

4.4.2.2 Hot rods 

When the ratio of rod: background was compared to the true ratio of 2:1, the 

results showed that all reconstruction methods perform badly for the region of 

the smallest diameter rod. The ratio fell to 1.5 or below in 19/30 (63%) of 

cases. This could be due to the partial volume effect giving an 

underestimation of counts at small volumes. 
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With General SPECT ramp filter only, the ratio increased above 2.5 in 9/30 

(30%) of cases. This occurred in hot rods of all diameters. 

The reconstruction method that performed best was Auto OSEM FBP with 

filter, where the ratio was below 1.5 in 4/6 cases for the smallest diameter 

rod, but in all other cases was between 1.5 and 2.5. 

 

4.4.2.3 Concentric rings 
The true values for the ratios should be 1,0,1. The results shown in Table 4.4 

are for the mean ratio values of SPECT data sets 1 to 6. 

 

 H/A I/A J/A 

General SPECT 

Ramp Only 

1.048 0.035 0.999 

General SPECT 

with Filters 

1.047 0.034 1.008 

Auto OSEM FBP 

Ramp Only 

1.047 0.034 1.008 

Auto OSEM IRNC 

with Filter 

1.039 0.180 0.978 

Auto OSEM FBP 

With Filter 

1.047 0.035 1.007 

 
Table 4.4 Mean ratio results for concentric rings 

 

 

The results show that on average the Auto OSEM IRNC reconstruction 

method does not get as close to zero for the central ring as the other 

reconstruction methods do. Therefore the contrast between the rings is 

poorer. The best contrast is achieved with General SPECT with filters. 
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4.4.2.4 Spatial resolution with a line source 

Using General SPECT ramp filter only, the FWHM was 8.96 mm. This is less 

than the expected value of 9.5 mm based on the planar resolution of the 

gamma camera. The published NEMA standard for SPECT resolution is that 

the reconstructed resolution should be no greater than 110% of the planar 

value – the assumption being made that the SPECT resolution should not be 

lower than the planar.   

 

4.4.3 Conclusions 

Analysis of the analytically generated SPECT data sets showed that the 

General SPECT and Auto OSEM SPECT reconstruction packages provided 

on the eNTEGRA workstation were both able to generate a linear response 

between projection count density and reconstructed counts, as would be 

expected. When comparing the reconstruction method alone, with no 

modelling of attenuation or scatter, the best detection of the rods was 

achieved with iterative reconstruction. The best contrast between concentric 

rings was achieved with filtered back projection. This implies that the iterative 

reconstruction process itself results in images that are smoother or more 

‘blurred’ than images resulting from FBP even with the use of filters. 
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4.5 SPECT performance measurements 

Due to its more mechanically complex nature, there is a more stringent 

requirement for quality control in SPECT imaging than in planar imaging. In 

addition to the tests outlined in section 4.2.3, a centre of rotation offset 

measurement was carried out on a regular basis as outlined below. SPECT 

performance measurements in terms of uniformity and contrast were also 

carried out using a cylindrical performance phantom and an anthropomorphic 

phantom as described in sections 4.5.2  and 4.5.3 respectively. 

 

4.5.1 Centre of rotation offsets 

4.5.1.1 Method 

During SPECT imaging, the detectors rotate about a line in space called the 

axis of rotation. The reconstruction process assumes that a perpendicular 

line drawn from a location on the detector equivalent to a parameter called 

the centre of rotation (COR) should pass through the axis of rotation.  The 

COR is typically set to the X pixel location 32.5 in a 64×64 matrix and 64.5 in 

a 128×128 matrix. Where the perpendicular line does not pass through the 

axis of rotation, a COR offset is defined by the separation between them. 

COR measurements were made by positioning a point source of ~20 MBq  

Tc-99m in the centre of the field of view, offset by ~15 cm from the axis of 

rotation. Care was taken that the point source had a volume of no more than 

0.1 ml in a 1 ml syringe. As the camera rotates, the point source maps out a 

sinusoidal curve as given by the function: 

y = A + Bsin(θ+ φ)   Eqn  4.4 
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where A, B and φ are constants and θ is the angle of the detector head 

(Sharp 2005). 

 

 The ‘DROT’ processing package on the Hawkeye gamma camera measures 

the displacement A of the sine curve from its expected position in the centre 

of the matrix in the X and Y directions and plots these displacements as a 

function of the angle of rotation. 

 

4.5.1.2  Results 
 
A sample set of COR offset measurements is shown in Table 4.5. 
 
 Head1 Head 2 

COR offsets 0.18 mm 

 

0.32 mm 

 

Table 4.5  Centre of rotation offset results 

 

All results are well within the acceptance value of ±0.5mm.  

A review of COR offset measurements made during the duration of this 

study, showed that offsets remained within limits at all times as shown in Fig. 

4.17. 
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Monthly Centre of Rotation Offsets
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Fig 4.17  Monthly COR offset measurements for the Hawkeye gamma camera 

 

4.5.2 SPECT performance phantom measurements 

The phantom used for the establishment of SPECT performance for this 

study was the Jaszczak SPECT performance phantom (Data Spectrum) as 

shown in Fig. 4.18. 

 

Fig. 4.18 Jaszczak  SPECT performance phantom (photograph Data Spectrum) 
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This is a cylindrical water filled phantom (volume 6.5 litres) which can be 

used with or without a resolution pattern of rods and spheres of varying 

volumes. The dimensions are as shown in Fig 4.18.  

 

Fig 4.18 Jaszczak phantom rod and sphere inserts (image Data Spectrum) 

 

4.5.2.1 Conservation of counts measurements 

Using the Jaszczak phantom with no inserts (i.e. a uniform cylindrical 

phantom), a series of 12 acquisitions were carried out with activities in the 

phantom ranging from 94 MBq to 978 MBq corresponding to activity 

concentrations from 0.01MBq/ml to 0.15 MBq/ml. These concentrations were 

chosen to mimic those found in clinical practice. 

Projection data were reconstructed using the Auto OSEM iterative 

reconstruction package on the GE eNTEGRA processing system to yield 

sagittal, coronal and transverse data sets for: filtered back projection (FBP) 

(default Hann filter), iterative reconstruction with attenuation and scatter 

correction (IRACSC), iterative reconstruction with no correction (IRNC), 

iterative reconstruction with attenuation correction (IRAC) and iterative 

reconstruction with scatter correction (IRSC). 
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For each reconstruction method, total counts in the reconstructed image 

were determined from a composite image of the transaxial slices. To 

investigate the effect of the reconstruction process on projection counts, the 

projection data (120 frames) were summed to give total projection counts. 

 

 4.5.2.2 Effect of FBP filters on conservation of counts 

Using the same set of acquisitions as above, the projection data were 

reconstructed using filtered back projection with a varying filter. The filters 

used were:  

• ramp only 

• Butterworth (cut-off 0.25, 0.5, 1.0 power 10)  

• Metz (cut-off 1.0, power 3.0)  

• Weiner (cut-off 1.0, power 0.1).  

The effect of the filter on total counts was found by summing the transaxial 

slices. 

 

4.5.2.3 Cylindrical phantom uniformity measurements 

Using the same set of phantom data, composite images were generated of 

the uniform cylindrical phantom.  Integral uniformity was calculated from a 

circular region of interest on each composite image using Eqn 4.1. A circle of 

24 pixels diameter (80% full diameter) was chosen to avoid edge artefacts. 

Integral uniformity was also calculated in each case by generating count 

profiles across each composite image and finding the maximum and 

minimum count values. Uniformity measurements were repeated 5 times in 

order to carry out statistical analysis using the Student’s t test. 
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 4.5.2.4  Results 

The conservation of counts results in Fig. 4.20 show that with an activity less 

than 475 MBq in the phantom, the relationship between counts and activity is 

linear as would be expected. Above this activity, the curve becomes a 

plateau for the IRACSC and IRAC reconstruction methods, indicating count 

saturation. Compared with the projection data (P) attenuation correction 

increases counts by a factor of 2.2 with and without scatter correction.  This 

factor remains essentially constant over all activities below the plateau (Fig. 

4.21). Filtered back projection with the Hann filter, and iterative 

reconstruction with scatter correction reduce counts in the reconstructed data 

by a factor of 1.3. Iterative reconstruction with no corrections reproduces the 

number of counts in the projection data almost exactly. 
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Fig. 4.20 Graph of counts against activity in reconstructed images. Projection counts are 

shown for comparison. 
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Ratio Projection counts/Reconstructed Counts against Activity

y = -9E-06x + 1.3445
R2 = 0.0364

y = 4E-06x + 1.3209
R2 = 0.0263

y = 3E-06x + 1.0216
R2 = 0.0047

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900 1000

Activity (MBq)

R
at

io

P/FBP
P/IRACSC
P/IRAC
P/IRNC
P/IRSC
Linear (P/FBP)
Linear (P/IRSC)
Linear (P/IRNC)

 

Fig. 4.21 Graph of ratio of projection counts to reconstructed counts against activity. 

 

  There is no significant difference between counts in the data reconstructed 

with the range of Butterworth filters or the ramp filter (Fig. 4.22). This group of 

filters are also closest to the actual value of the projection reconstructed 

counts. The Weiner and Hann filter reduce the number of counts by factors of 

0.89 and 0.75 respectively.  
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Counts vs Activity for FBP FIlters
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Fig. 4.22 Graph of reconstructed counts against activity for a variety of FBP filters. Summed 

projection counts are shown for comparison. 

 

The results of the uniformity measurements are shown in Figs. 4.23 and 

4.24. With ROI analysis IRAC gives the best uniformity (mean 6.67%). Using 

the paired samples t test, there is a statistically significant difference between 

IRNC and FBP (P<0.001) with mean uniformities of 21.75% and 26.00% 

respectively. There is also a statistically significant difference between 

IRACSC and IRAC (P<0.001) with mean uniformities of 9.00% and 6.67% 

respectively. This suggests that adding scatter correction to attenuation 

correction does not improve uniformity. The results with profile analysis give 

the same overall pattern of uniformities, with IRAC giving the best and IRSC 

giving the poorest uniformity. I consider that the results using ROI analysis 

are the more reliable, since the profile analysis did not take edge effects into 

account. 
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Jaszczak Phantom Uniformity against Activity (ROI 24 pixels)
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 Fig. 4.23. Cylindrical phantom uniformity against activity using circular ROI. 

 

Jaszczak Phantom Uniformity against Activity (Profiles)
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Fig. 4.24 Cylindrical phantom uniformity against activity using profile measurements. 
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For a cylindrical phantom imaged in air, self attenuation towards the centre of 

the phantom does significantly degrade uniformity, whereas in the absence of 

an external scattering medium the effect of scatter on image uniformity is not 

significant. 

 

4.5.3 Anthropomorphic phantom measurements 
 
 
4.5.3.1 Method 

The anthropomorphic phantom (Data Spectrum) is shown in Fig.4.25. This 

phantom comprises a large, body shaped cylinder with lung, liver, cardiac 

and spine inserts. The lung inserts can be filled with polystyrene beads and 

water to simulate lung density and the liver insert can be individually filled so 

that background/liver activity ratios can be varied. The cardiac insert can also 

be filled individually, and additional inserts used to model cardiac defects. 

 

 

Fig. 4.25 The anthropomorphic phantom. (photograph Data Spectrum) 
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 For these measurements, the cardiac insert was filled with 23 MBq Tc-99m 

with no activity in liver or background. This activity was chosen to be of a 

similar order of magnitude to the activity in the myocardium during clinical 

myocardial perfusion imaging. A SPECT acquisition was carried out and 

images were reconstructed using FBP, IRNC, IRSC, IRAC and IRACSC as 

previously. A cardiac processing package on the eNTEGRA was used to 

generate the following slices: 

• horizontal long axis (HLA)  

• vertical long axis (VLA)  

• short axis (SA).  

Bull’s eye maps (BEM) (Garcia et.al. 1985) were generated from the SA 

slices (using in-house software) and used to assess uniformity. A bull’s eye 

map is a method of displaying all of the data from the short axis slices in one 

image. Each short axis slice was assumed to be annular in shape, so that the 

counts in each slice could be analysed radially. Thirty radii at 6° intervals 

were analysed and maximum count circumferential profiles generated and 

formed into a circular annulus. Starting with the apical slice, each of the 

generated annuli had an increasing radius so that they all fitted together 

concentrically with the apex in the middle and the data from the basal slice at 

the outer edge. The derivation of bull’s eye maps is shown diagrammatically 

in Fig. 4.26. 

 

 



 133  

 

Fig. 4.26 Derivation of the bull’s eye map based on the maximum radial values obtained from 

each short axis slice. The data are then plotted circumferential for each slice starting with the 

apex data at the centre.  

                       

In order to investigate contrast in the images, regions of interest were drawn 

over the wall and cavity of the cardiac short axis slices and contrast was 

calculated using the expression: 

Contrast = (wall counts – cavity counts)/ wall counts               Eqn 4.3 

 

4.5.3.2 Results 

The results of bull’s eye map uniformity and short axis wall to cavity contrast 

measurements are shown in Tables 4.6 and 4.7. 

 Uniformity % 

FBP 30.31± 5.49 

IRNC 29.68± 5.44 

IRSC 32.17± 5.75 

IRAC 15.30± 2.19 

IRACSC 15.74± 2.52 

Table 4.6  Bull’s eye map uniformity results 
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 Contrast % 

FBP 72.23± 10.53 

IRNC 59.57± 11.56 

IRSC 68.37± 10.77 

IRAC 58.51± 2.50 

IRACSC 64.99± 2.93 

Table 4.7 Short axis wall to cavity contrast results 

 

4.5.3.3 Conclusion 
For a cylindrical phantom imaged in air, attenuation correction increased 

counts in reconstructed images and provided the best uniformity results of 

the reconstruction methods investigated (an approximate 20% improvement 

on FBP). For the cardiac phantom bull’s eye maps (BEM), uniformity was 

also best with IRAC. 

Scatter correction reduced the counts in the reconstructed data as would be 

expected. In the absence of an external scattering medium scatter correction 

was not found to improve uniformity, which may be due to the lower counts 

giving poorer count statistics. Where no corrections were applied, iterative 

reconstruction was found to generate more uniform images than filtered back 

projection. For both Jaszczak and cardiac phantom, the order of uniformity 

values can be summarised as follows (a lower value indicates better 

uniformity): 

IRAC < IRACSC < IRNC < FBP <IRSC. 

 

For contrast measurements on the short axis cardiac phantom scatter 

correction was the most significant correction. The contrast with FBP was 



 135  

better than any of the iterative reconstruction data sets. The iterative 

techniques benefit image uniformity, but there is a slight trade off with respect 

to image contrast. 

 
 
4.6 Discussion    

These preliminary results have shown that both the hardware and software 

components of the Hawkeye gamma camera system used for this study were 

operating within national and local guidelines and performance remained 

consistent throughout the study. 

 

The SPECT performance phantom measurements showed that below an 

activity concentration of 0.07 MBq/ml, attenuation correction increased 

counts in the reconstructed images by a factor of 2.2 (increase of 120%) 

compared with the projection data, where-as scatter correction reduced 

counts by a factor of 1.3 (reduction of 23%).  

Attenuation correction alone provided the best uniformity results, with an 

approximate 20% improvement over FBP. Scatter correction alone offered no 

improvement in uniformity compared with FBP and in conjunction with 

attenuation correction gave poorer uniformity results than AC alone.  

 

The anthropomorphic phantom measurements showed that AC alone gave 

the best uniformity results for the bull’s eye maps of the cardiac insert, with 

an approximate 15% improvement over FBP. Scatter correction as with the 

Jaszczak phantom, offered no improvement in uniformity but gave the best 
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results for contrast, with an improvement of approximately 4% over FBP and 

10% over IRAC.  

 

These relative impacts of the applied corrections agree largely with data 

published by El Fahkri et al. (2000) who investigated bull’s eye map (BEM) 

uniformity and contrast between the left ventricular wall and cavity using both 

simulated data sets and real cardiac phantom data. In their study scatter 

correction was performed using: Jaszczak subtraction, the triple energy 

window method and a spectral factor analysis method. Attenuation correction 

was performed using a Chang correction combined with FBP and 

transmission imaging using a Gd-153 line source combined with an iterative 

reconstruction. Uniformity of the bull’s eye map was calculated by dividing 

each BEM into 9 regions. The calculated activity in each region was then 

normalised to the maximum value and a uniformity index was defined as the 

mean of these normalised values. Using this method, the ideal uniformity 

index is 100%. Contrast was calculated between two 3 dimensional volumes 

of interest (VOIs) drawn inside the LV wall and cavity. The mean number of 

counts mean1 and mean2 were calculated and the contrast expressed as 

100×(mean1-mean2)/(mean1+mean2). Using this method the ideal contrast is 

also 100%. The results showed that attenuation correction was the major 

correction effecting BEM uniformity: uniformity was 78% with FBP compared 

with 88% with Chang corrections and 89% with Gd-153 corrections i.e. a 

maximum improvement of 11%. Scatter correction alone significantly 

improved contrast from 60% with no corrections to 68% or 69% with scatter 

correction.  
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In contrast to the results of this study, El Fahkri found a small but systematic 

improvement of BEM uniformity when scatter correction was combined with 

attenuation correction compared with attenuation correction alone. This 

difference could be due to the different methodologies employed in these 

studies, in particular the method for calculation of uniformity. In this study 

uniformity was calculated by effectively using counts from just two pixels in 

the BEM (max and min) whereas El Fahkri used values from 9 segments to 

give a more globally representative value. 

 

In summary, attenuation correction added counts globally to reconstructed 

images, resulting in a significant improvement in uniformity. Scatter 

correction reduced counts in reconstructed images, which is probably the 

cause of its small but significant degrading of uniformity values. Scatter 

correction improved contrast, which would imply that the use of this 

correction is successful in removing scattered and therefore mispositioned 

counts from background areas such as the myocardial cavity modelled in this 

study. I therefore conclude that for the most accurate quantitative results in 

terms of uniformity and contrast in any clinical application, attenuation and 

scatter correction should be used together. 

 

 

 



Chapter 5 
 

Validation of Method 
 

5.1 Introduction 
 
Subsequent to the initial baseline characteristics of the imaging system 

being established, it was necessary to determine and validate the 

experimental set-up to be used for both relative and absolute quantitative 

measurements in later stages of this study. The experimental set-up in 

question was a phantom based approach, using two plastic bottles placed 

inside the cylindrical Jaszczak phantom (with inserts removed) to model 

organs within the body. Two volumes of bottles were investigated referred 

to as ‘source A’ and ‘source B’. The bottles were cylindrical with volumes 

of 50 ml (diameter 33.6 mm, height 56.4 mm) and 100 ml (diameter 43.0 

mm, height 68.9 mm) respectively without the neck of the bottle accounted 

for, and 56 ml and 112 ml respectively with the neck of the bottle included. 

These volumes were chosen to mimic the volumes of the paediatric and 

adult kidneys for renal studies. For an imaging system with a FWHM of 12 

mm at 20 cm, both sources were large enough to avoid partial volume 

effects. This simple phantom based approach was similar to that used by 

Shcherbin et al. (2008) who used two cylindrical bottles (diameter 26 mm, 

height 60 mm, volume 32 ml each) placed inside an anthropomorphic 

phantom (Data Spectrum) to model oncological tumours. 

Decisions to be made about this set-up included:  

• suitability of the use of a positioning jig for the phantom 

• determination of regions of interest (ROIs) on the reconstructed 

image 
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• establishment of errors to include the systematic and random errors 

inherent in the study  

• determination of the rotational orientation to position the phantom 

during later measurements.  

This chapter describes the measurements carried out in this validation 

process. 

 
 
 
5.2 Use of positioning jig 
 
For many of the measurements to be undertaken, in this study, the 

cylindrical Jaszczak phantom (Data Spectrum) was chosen, as described 

in chapter 4. For the purposes of this study, the resolution rods and 

spheres were removed from the phantom to give a uniform cylindrical 

phantom. This has a ‘lip’ (Fig 5.1) where the lid is attached to the body of 

the cylinder of depth 18 mm. In order to lie the phantom flat on the imaging 

couch in a reproducible position during acquisitions, there were two 

alternatives;  

i) use a specially constructed jig to position the phantom on  

ii) position the phantom slightly over the edge of the scanning couch, 

secured with a strap.  

The jig was constructed of polyethylene 8.5 mm thick. These two 

alternatives are shown in Figs 5.1 and 5.2.  SPECT acquisitions were 

carried out in both of these configurations to ascertain whether the 

inevitable attenuation caused by the jig itself, would have any effect on 

quantitative measurements carried out and whether this would contra-

indicate its use as a positioning aid for the rest of the study. 
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Lip 

Body of 
phantom 

Jig 

Fig 5.1 Position of cylindrical phantom with jig 

 

 

End of couch 

Fig 5.2 Position of cylindrical phantom without jig (strap not shown) 

 

5.2.1 Method 
 
In order to determine the most appropriate method of positioning the 

phantom, SPECT acquisitions of different phantom configurations were 

taken with and with out the jig. These were:  

a) source A (56ml) only in the centre of the uniform cylindrical phantom  

b)  source B (112 ml) only in the center of the uniform cylindrical phantom 

c) uniform cylindrical phantom only. 
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In all cases, acquisitions were carried out using autocontouring to keep the 

heads of the detector as close as possible to the object. This resulted in 

an elliptical orbit of maximum radius 20.8 cm and minimum radius 11.6cm. 

Based on measurements in chapter 4, an activity of approximately 180 

MBq was used in the cylindrical phantom to avoid count saturation 

occurring with attenuation corrected reconstructions. This gave an activity 

concentration of approximately 0.03 MBq/ ml. For sources A and B an 

activity concentration of approximately 0.1 MBq / ml was used, resulting in 

activities of approximately 5.6 and 11.2 MBq respectively.  The choice of 

activity concentration was based on the work of Yani et al. (2005). 

All geometries were acquired using H mode acquisition into a 128×128 

matrix with frame time 30s and zoom 1. Data for scatter correction were 

acquired using a ±10% energy window centered at 122 keV and a CT 

transmission image for use as an attenuation map was acquired 

immediately after the emission images. Tomographic slices were 

reconstructed using OSEM iterative reconstruction, resulting in FBP, 

IRNC, IRSC, IRAC and IRACSC data sets. These acquisition parameters 

were set as the standard parameters to be used for the remainder of the 

study, and are summarised in Table 5.1. 

 

Camera set up H mode 

Matrix 128 ×128 

Frame time 30s 

Zoom 1.0 

Reconstruction OSEM 2 iterations 16 sub sets 

Data sets FBP, IRNC, IRSC, IRAC, IRACSC 

Table 5.1 Standard SPECT acquisition parameters 
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Effective volumes of interest were generated by summing the slices 

containing the source of activity i.e. the ‘hot object’ and generating a 

region of interest (ROI) on the summed image in the transverse, sagittal 

and coronal reconstruction planes. For the phantom and source images, 

the ROI was drawn as a circle or rectangle just large enough to include the 

entire visible image. Results were expressed as counts per second per 

MBq, using an effective acquisition time of 3600 seconds.  

 

Planar posterior acquisitions were then acquired of the cylindrical phantom 

with and without the jig in place in order to calculate the attenuation due to 

the jig. Counts were acquired for 300s into a 128×128 matrix. The camera 

heads were brought in as close as possible to the phantom for these 

measurements. 

 

 5.2.2 Results  
 
The results of determining cps/MBq for sources A and B and the 

cylindrical phantom with and without the jig are shown in Figs 5.3 to 5.5. In 

all cases, results for the transaxial (Trans) sagittal (Sag) and coronal (Cor) 

reconstruction planes are shown for each of the five reconstruction data 

sets under consideration.  
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Source A Counts per Second per MBq with and without Jig
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Fig 5.3 Source A counts per second per MBq with and with out jig 
 
 

Source B Counts per Second per MBq with and without Jig
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Fig 5.4 Source B counts per second per MBq with and with out jig. 
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Jaszczak Counts per Second per MBq with and without Jig
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Fig 5.5 Cylindrical phantom counts per second per MBq with and without jig. 
 
 
 

When acquiring and reviewing the images of the phantom with the jig in 

place, it was evident that the effect of the jig was visible on the raw 

projection data as a reduction in counts on half of the projection images as 

shown in Fig 5.6.  However, the graphs of cps/MBq with and without the jig 

for the reconstructed images show that the results are within the error 

range of each other. (The error bars for these graphs of results were 

added retrospectively after the assessment of errors performed in section 

5.4)   

 

Fig 5.6 Projection image of cylindrical phantom showing the influence of the positioning 

jig. 
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 The results of acquiring posterior planar images with and without the jig 

are as shown in Table 5.2 

 With Jig Without Jig 

Counts per Second/ MBq 25.02 27.79 

Difference (cps/MBq) 2.77 

 

Table 5.2 Results of cps/MBq Measurements with and without jig for posterior planar 

images. 

 

Using the equation for linear attenuation: 

A = A0e- μt      Eqn  5.1 

where A is counts, A0 is original counts, μ is the linear attenuation 

coefficient and t is the thickness of material,  the attenuation factor due to 

the jig (e-μt) was calculated as 0.9. From these measurements, the linear 

attenuation coefficient of the polyethylene  is 0.12 cm-1 which agrees well 

with the published figure of 0.14 cm-1 (NISTR 1996) These results show 

that only 90% of the true count rate reaches the posterior head of the 

gamma camera in the 180° position, where the effect will be greatest.  It 

can be inferred that the jig will have some attenuation effect on the 

posterior head for all angles of acquisition excluding the true laterals. 

Although the SPECT acquisition results showed that overall this effect is 

not significant in SPECT once reconstruction has taken place, it was 

decided to acquire all future results without the jig present in order to 

exclude this potential for uncertainty. 
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5.3 Establishment of Region of Interest (ROI) 
 
In order to record counts from the ‘hot objects’ on the reconstructed 

images in a reliable way, with all of the relevant counts included, it was 

necessary to establish a reliable, consistent and reproducible method of 

drawing regions of interest around these objects. This was particularly 

pertinent in this study, since the ease with which the edge of the object 

could be defined, varied with the reconstruction method chosen. The 

shape of the bottles used as sources also meant that the narrow neck of 

the bottle which contained activity and therefore needed to be 

incorporated, was sometimes difficult to discern. An accurate and 

reproducible method of establishing ROIs has been recognised as an 

important step in accurate quantitation of activity and volume. Scherbinin 

et al. (2008) used a method of applying 3D threshold values to 

reconstructed SPECT images based on the maximum average over eight 

voxels in the volume of interest (VOI). The total activity was measured by 

integrating all counts inside the VOI determined by a threshold set at a 

level of 1%. In this way, all the counts from a given object were included. 

In clinical situations however, it is recognised that fixed thresholds cannot 

account for the variety of situations in which organs and tumours with 

different sizes and activities are surrounded by other tissues containing 

different levels of background activity (Grimes et al. 2012). Adaptive 

thresholding techniques have therefore been devised where a threshold is 

chosen that takes into account source-to-background ratio (SBR) of 

activity concentrations. Grimes et al. (2012) developed an iterative 

adaptive thresholding technique, where a semi-automatic background 

region was generated to allow reproducible and reliable measurements of 
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the SBR and hence the threshold for generation of the VOI. By applying 

this method they found that in phantom experiments source volumes and 

activities agreed with the true values to within 4%.  

 

For ease of application in this phantom study, where only two volumes of 

cylindrical sources were to be considered in a fixed geometry, advanced 

adaptive thresholding techniques were not considered necessary. The 

choices  considered were therefore: 

 (1) drawing a manual region of interest 

(2) using the auto-contour method offered by the eNTEGRA workstation 

(GE Medical Systems).  

The latter method finds the edge of an object by identifying pixel values a 

certain percentage of the maximum pixel count within the frame. 

 

 
5.3.1 Method 
 
The manual region was drawn as a circular region on the transaxial 

images and as a rectangular region on the sagittal and coronal images just 

large enough to encompass all of the cylindrical source image (including 

the neck of the source) such that the minimum count in the ROI fell to 

zero. In this way it could be guaranteed that all of the counts in the image 

were included. A size of ROI was established on the IRACSC images, 

where the edges were easiest to determine manually, and this region was 

applied to all subsequent images for all reconstruction methods. 
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5.3.2 Results  

The results of using the autocontour function are shown in Table 5.3 and 

indicate that even for the 10% contour, when compared with the 

rectangular, manually drawn ROI, the number of counts in each region is 

slightly underestimated. For a contour set to less than 10%, the system 

failed to define the edge of the object. 

 

 Auto-Contour 
 10% 15% 20% 25% 

FBP     
Trans 98.43 97.00 95.53 92.80 
Sag 97.36 96.04 95.47 93.04 
Cor 97.17 96.17 95.02 93.01 

IRNC     
Trans 96.02 92.68 88.99 87.08 
Sag 96.11 93.51 90.47 87.98 
Cor 94.95 92.48 89.23 87.21 

IRSC     
Trans 96.40 98.60 97.47 95.21 
Sag 98.18 97.60 96.11 94.71 
 Cor 98.54 97.87 96.30 94.46 
IRAC     
Trans 96.00 92.67 89.76 87.41 
Sag 96.42 93.70 90.27 88.87 
Cor 93.62 91.46 88.02 86.85 

IRACSC     
Trans 97.52 95.34 93.64 91.54 
Sag 97.26 95.75 94.25 91.41 
 Cor 97.38 96.16 95.06 99.75 

 

Table 5.3 Establishment of ROI. Results expressed as percentage of counts in manually 
drawn region  
 

Visually, the autocontour method identified the edges of the image of the 

main body of each source correctly, but was prone to error and 

inconsistency with the narrow neck of the bottle as can be seen in Fig 5.7 

For this reason it was decided to use the simpler manually drawn region of 

interest method for the remainder of this study.  Errors inherent in this 

approach are considered within the error analysis in section 5.4   
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10% threshold 
Manual  

20% threshold 15% threshold 

25% threshold 

 
Fig 5.7 Regions of Interest drawn on IRACSC images. The neck of the bottle is to the 
bottom of each image. 
 
 
 
5. 4 Repeat measurements for error analysis 
 
The potential sources of error when carrying out these acquisitions arise at 

all stages of the process. Principal areas of potential error are;  

• measuring the activity in the radionuclide calibrator  

• measuring volumes within the phantoms 

• accurate filling of the phantoms  

• positioning of phantoms on the scanning couch 

• drawing reproducible regions of interest on reconstructed images. 

 

For measurement of activity, a Capintec CRC 15-R radionuclide calibrator 

was used (Capintec Inc. NJ). This is an ionisation chamber, calibrated 

annually against a secondary standard calibrator (Fidelis), which is in turn 
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directly traceable to the primary standard calibrator at the National 

Physical laboratory (NPL). The Fidelis calibrator has been specifically 

designed to meet the requirements of the NPL Measurement Good 

Practice Guide No. 93 (Gadd, Baker et al. 2006) . The annual calibration 

results (using standard activities from NPL) have shown that all readings 

on the local calibrator are all within ±2% of the secondary standard, which 

is in turn within ±2% of the primary standard.  A repeat set of 20 

measurements on the local calibrator showed that the standard deviation 

was equivalent to a percentage error of 1.14%. Throughout this study, all 

activities were measured in standard 1ml or 2 ml syringes, held in a jig 

within the calibrator to minimise errors due to spatial positioning and 

residues remaining in the syringe once the activity had been used were 

measured and accounted for. 

 

The volumes of the phantoms and filling of the phantoms were measured 

using standard laboratory equipment.  

 

Positioning the phantom on the scanning couch and positioning the ROIs 

on the reconstructed images were both carried out manually. For this 

reason these are seen as the principal sources of error within this study 

and as sources of random error are difficult to quantify. It was therefore 

decided to use a percentage error approach to defining the errors in this 

study. 
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 5.4.1 Method 

Error analysis for this study was carried out by carrying out repeat 

measurements for the case of Source A only in the cylindrical phantom, 

with the entire process from measurement of activity to final image 

processing repeated. The standard error of these measurements was then 

found and expressed as a percentage of the measured counts. Error bars 

were added to graphs as ±2 SEM. 

 

5.4.2 Results 

The results of carrying out repeat measurements for establishment of 

percentage errors are shown in Table 5.4 

  Mean of 5 

measurements 

(cps/MBq) 

2* Standard 

Error 

2SEM as % 

of mean 

cps/MBq 

FBP Transverse 12.63 0.41 3.25 
 Sagittal 13.16 0.32 2.46 
 Coronal 12.98 0.36 2.74 
IRNC Transverse 15.32 0.34 2.20 
 Sagittal 16.51 0.33 2.01 
 Coronal 16.41 0.28 1.69 
IRSC Transverse 12.52 0.46 3.71 
 Sagittal 12.67 0.44 3.46 
 Coronal 12.63 0.44 3.50 
IRAC Transverse 61.61 1.37 2.23 
 Sagittal 65.69 1.47 2.24 
 Coronal 66.10 1.15 1.73 
IRACSC Transverse 50.39 1.93 3.83 
 Sagittal 51.04 1.86 3.65 
 Coronal 51.06 1.96 3.83 
 

Table 5.4 Establishment of errors 
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The results show that despite the manual processes inherent in this 

methodology, the percentage errors in the final values expressed in terms 

of cps/MBq range between 1.69% and 3.83% which were felt to be 

acceptable levels of error for this study. 

 

5.5 Determination of rotational orientation 

To enable relative quantitation measurements to be made at a later point 

in this study, more than one source was to be inserted into the cylindrical 

phantom. It follows that either one or both source inserts would need to be 

positioned towards the edge of the cylindrical phantom, rather than the 

centre. It was therefore necessary to establish whether the orientational 

positioning of the phantom on the scanning couch had an effect on the 

results and to establish which orientation should be used for further 

measurements. 

 

5.5.1 Method 

Further to the initial quantitation measurements that were made using the 

cylindrical phantom and single source inserts, the phantom was modified 

such that sources of volumes 56 ml (A) or 112 ml (B) could be inserted in 

central position 1 or symmetrically to each side of the centre in positions 2 

or 3 as shown in Fig 5.8. 
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Fig. 5.8 Cylindrical phantom with inserts in central or edge positions. 

 

For the first set of measurements, source A was imaged in positions 2 

and 3 shown in Fig 5.8 in a range of rotational orientations as shown in 

Fig 5.9 to establish whether quantitation has a positional dependence 

within the transverse plane, for the symmetrical case.  

 

LT                                                                                               RT 

 

1 2

17.6 cm 

8.8 cm 

3 

      Orientation (1)                    Orientation (2)                   Orientation(3)      Orientation(4) 

 

Fig. 5.9 Transverse view of orientations of source A for the symmetrical phantom        

 

For all SPECT acquisitions, the standard acquisition and reconstruction 

parameters were used as in Table 5.1. To avoid count saturation, an 

approximate concentration of 0.1 MBq per ml was used in each of the 

sources resulting in an activity of approximately 5.6 MBq. In all cases an 
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equal activity was used in each source, such that the true ratio of activities 

was 1:1 and no activity was present in the background. 

 

Planar acquisitions were also carried out on this set of measurements. 

With the camera in H mode, anterior and posterior images were acquired 

for 300s into a 128×128 matrix. Background corrected counts were 

obtained from ROIs  drawn on the anterior and posterior images and used 

to calculate anterior, posterior and the geometric mean of absolute and 

relative cps/MBq. 

 

Measurements were then carried out for symmetrical orientation (2) ie. a 

horizontal orientation, where the ratio of activities in the two sources was 

changed such that the ratio was 2:1. With the phantom in the same 

orientation, Source B (112 ml) was then placed in the edge position 3. The 

activity concentration in Source B was ~0.1 MBq/ml resulting in an activity 

of ~11 MBq. Finally, with Source A in both positions, the activity 

concentration of the background was increased from zero to 0.005 

MBq/ml. For all experimental arrangements planar images were also 

acquired as described above. All SPECT results were expressed in terms 

of (1) cps/MBq, (2) the ratio of cps/MBq in the two sources and (3) 

deviation from the expected activity, for FBP, IRNC, IRSC, IRAC and 

IRACSC reconstruction groups in the appropriate orthogonal planes. 

 

The phantom was then modified such that source A was in positions 1 and 

2 simultaneously. Once again a range of acquisitions were carried out, 

with the phantom at different rotational positions as shown in Fig 5.10. 
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Fig. 5.10 Transverse view of orientations of source A for the non-symmetrical phantom        

 

      
The set of experiments described above for the symmetrical case was 

repeated, with all ratios being expressed as counts at the edge;counts at 

the centre. For the change in activity concentration experiment, the higher 

activity concentration was positioned in the edge position and for the 

change in source volume experiment, source B was placed in the edge 

position. The results were expressed in the same way as the symmetrical 

results. 
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5.5.2 Results  –  Symmetrical phantom 

The results in cps/MBq of varying the orientation of the edge source 

between symmetrical orientations 1 and 4 are shown in Figs 5.11 to 5.14. 
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b) 

 

Fig 5.11 a) CT image showing orientation of sources  b) cps/MBq for sources in 

Orientation (1) 
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Orientation (2) 
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b) 

 

Fig 5.12 a) CT image showing orientation of sources b) cps/MBq for sources in 

Orientation 2 

 

 

 

 

 157  



Orientation (3) 
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b) 

 

Fig 5.13 a) CT image showing orientation of sources b)cps/MBq for sources in 

Orientation 3 
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Orientation (4) 
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b) 

 

Fig 5.14 a) CT image showing orientation of sources b) cps/MBq for sources in 

Orientation (4) 
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The results of finding the ratio of cps/MBq between ROI1 and ROI0 are 

shown in Fig 5.15. 
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Fig 5.15  Ratio of cps/MBq ROI 1: ROI 0 (edge:centre) 

 

A ratio close to 1.0 is found in all cases, with the horizontal orientation 

(orientation 2) achieving the most accurate results in the non attenuation 

corrected cases. This could be due to the attenuation correction 

magnifying the effect of a slight error in positioning the phantom. 

 

The effect of the rotational orientation is summarised for the transaxial 

reconstruction plane in Fig 5.16. Note that the results are expressed here 

as a function of the angle of rotation, with the 0 degree position being 

taken as the 12 o’clock position (orientation 1 as shown in Fig 5.9). 
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Variation in cps/MBq with Angle of Rotation
Symmetrical Orientation. Transaxial Images
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Fig 5.16 Variation in cps/MBq with orientation on transaxial images 

 

The planar results for the symmetrical orientations are shown in Table 5.5 

  ROI 0 cps/MBq ROI 1 
cps/MBq 

Ratio 1:0 

Orientation 2 Head 1 32.46 33.10 1.02 

 Head 2 30.63 30.83 1.01 

 Geometric 
mean 

31.53 31.94 1.01 

 

Orientation 3 Head 1 12.45 52.67 4.23 

 Head 2 49.30 11.58 0.23 

 Geometric 
mean 

24.77 24.70 1.00 

 

Orientation 4 Head 1 15.39 53.39 3.47 

 Head 2 46.55 13.28 0.29 

 Geometric 
mean 

26.77 26.62 0.99 

Table 5.5 Planar results for symmetrical orientations 2 to 4. 
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The addition of AC increases the cps/MBq measured by 2 to 3 times. As 

before, the addition of scatter correction reduces this by a small but 

statistically significant amount. The cps/MBq with and without scatter 

correction were compared and found to be significantly different using a 2 

tailed Students t test p<0.001 for ROI 0 and p<0.001 for ROI 1. The 

noticeable difference between this case and the non-symmetrical case is 

that there is very little difference (within experimental error) between the 

two sources even for the non AC corrected groups. The Students t test 

gives a value of p >0.1 for all reconstruction groups. This is as expected 

since in this geometry the two sources are an equal distance from the 

edge of the phantom and therefore subject to the same amount of 

attenuation. The ratio results confirm this finding, with all the results lying 

within experimental error of the true value of 1.0. The static results also 

show that for this phantom geometry, the simple method of using the 

geometric mean to calculate relative uptake can be used successfully. 
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5.5.3 Results – Non- symmetrical phantom 

The results in cps/MBq of varying the orientation of the edge source 

between non-symmetrical orientations 1 and 8 are shown in Figs 5.17 to 

5.24. 
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b) 

Fig 5.17 a) CT image showing orientation of sources b) cps/MBq for Sources in 

Orientation (1) 
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Orientation (2) 
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b) 

 

Fig 5.18 a) CT image showing orientation of sources b) cps/MBq for Sources in 

Orientation (2) 
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Orientation (3) 
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b) 

 

Fig 5.19 a) CT image showing orientation of sources b) cps/MBq for sources in 

Orientation (3) 
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Orientation (4) 
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b) 

 

Fig 5.20 a) CT image showing orientation of sources b) cps/MBq for sources in 

Orientation (4) 
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Orientation (5) 
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b) 

 

Fig 5.21 a) CT image showing orientation of sources b) cps/MBq for sources in 

Orientation (5) 
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Orientation (6) 
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b) 

 

Fig 5.22 a) CT images showing orientation of sources b) cps/MBq for sources in 

Orientation (6) 
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Orientation (7) 
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b) 

 

Fig 5.23 a) CT image showing orientation of sources b) cps/MBq for sources in 

Orientation (7) 
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Orientation (8) 
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b) 

 

Fig 5.24 a) CT image showing orientation of sources b) cps/MBq for sources in 

Orientation (8) 
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 The effect of the rotational orientation is summarized for the transaxial 

reconstruction plane in Fig 5.25. Note that the results are expressed as 

cps/MBq in the edge source as a function of the angle of rotation, with the 

0 degree position being taken as the 12 o’clock position.  

Variation in cps/MBq with Rotational Orientation
Non-Symmetric. Transaxial Images

0

10

20

30

40

50

60

70

80

90

100

0 45 90 135 180 225 270 315 360

Angle

cp
s/

M
B

q

FBP IRNC IRSC IRAC IRACSC  

Fig 5.25 Variation with orientation for transaxial images 

 

The ratio of cps/MBq between the edge and centre sources in the on axis 

(orientations 1 to 4) and off axis (orientations 5 to 8) rotational orientations 

are shown in Figs 5.26 and 5.27. 
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Ratio of cps/MBq Edge;Centre for On Axis Positions
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Fig 5.26 Ratio of cps/MBq edge:centre for on-axis positions 

Ratio of cps/MBq Edge:Centre for Off Axis Positions
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Fig 5.27 Ratio of cps/MBq edge:centre for off axis positions 

 

Planar results are shown in Table 5.6 where ROI 0 refers to the centre 

region of interest, and ROI 1 that in the edge position. (Results are not 

shown for orientations 1 and 3 ie. the 0° and 180° positions, since planar 

 172  



anterior and posterior imaging cannot discern between the two sources in 

these orientations.) 

 

  Roi 0 cps/MBq Roi 1 cps/MBq Ratio 1:0 

Orientation 2 Head 1 18.28 33.01 1.81 

 Head 2 16.54 26.04 1.57 

 Geometric 
mean 

17.39 29.32 1.69 

 

Orientation 4 Head 1 17.98 28.91 1.61 

 Head 2 16.36 30.69 1.88 

 Geometric 
mean 

17.15 29.79 1.74 

 

Orientation 5 Head 1 17.47 13.07 0.75 

 Head 2 14.82 16.41 1.11 

 Geometric 
mean 

16.26 26.89 1.65 

 

Orientation 6 Head 1 16.43 18.21 1.11 

 Head 2 16.49 41.19 2.50 

 Geometric 
mean 

16.47 27.39 1.66 

 

Orientation 7 Head 1 18.30 48.58 2.65 

 Head 2 12.02 16.43 1.37 

 Geometric 
mean 

14.84 28.25 1.90 

 

Orientation 8 Head 1 17.84 44.09 2.47 

 Head 2 14.82 16.41 1.11 

 Geometric 
mean 

16.26 26.89 1.65 

 

Table 5.6 Results of planar imaging in phantom orientations 2,4,5,6,7and 8 
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For the non attenuation corrected reconstructions (FBP, IRNC and IRSC) 

there is little difference between the groups of results. A marked difference 

can be seen between the values for the two sources, with the source in 

the centre of the phantom consistently measuring fewer cps/MBq than the 

source at the edge of the phantom. This applies to all orientations and is 

expected due to the effects of attenuation. When correction for attenuation 

is applied a much higher value of cps/MBq is detected as expected 

(approx 70-80 cf. approx 15-30 cps/MBq) with this being reduced slightly 

by the addition of scatter correction. The difference between the IRAC and 

IRACSC groups is statistically significant, when measured using a 2 tailed 

Students T test p<0.05 for Roi 0 and p<0.01 for Roi 1.There is little 

difference between the values for the two sources with results being 

largely within experimental error.  

 

The ratio of cps/MBq for the two sources show that for SPECT the ratio 

varies from approximately 1.8 when no AC is used, to approximately 1.1 

when AC is used (true ratio 1.0). The best results were achieved for AC 

reconstructions without scatter, where a best result of 1.0 was achieved. 

There was very little variation in results between the positional orientations 

with all differences being within experimental error. 

 

For planar acquisitions, using the geometric mean method to take some 

account of depth dependence, the ratio of cps/MBq between the two 

sources (edge position:centre position) was found to be approximately 1.7.  
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5.6 Discussion 

For reasons described in sections 5.2 and 5.3 of this chapter, it was 

decided that for subsequent quantitative measurements, the simple 

methodology of placing the phantom directly onto the scanning couch 

during acquisitions and drawing a manual region of interest around the 

reconstructed images would be suitable to use. An analysis of the errors 

inherent in this approach proved that there was an acceptable level of 

reproducibility in the results obtained.  

 

There is a slight sinusoidal dependence on the angle of acquisition that is 

not eradicated with attenuation correction. By approximating a straight line 

fit to the results, the points that best fit the straight line were the horizontal 

orientations (orientations 2 and 4 in the non-symmetrical and orientation 2 

in the symmetrical case.) For this reason it was decided that for 

subsequent measurements the phantom should be positioned in a 

horizontal orientation.  
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Chapter 6 

 Quantitation Measurements 

 

6.1 Introduction 

As stated in chapter 1, one of the overall aims of quantitation in nuclear 

medicine is to convert the countrate (in cps) detected in an image into a 

measure of the radioactivity (in MBq) present in the object of interest. In 

planar imaging, a relatively straightforward measurement can be made of 

counts per second per MBq using a sensitivity phantom as shown in 

chapter 4. This sensitivity value can be applied to subsequent planar 

images once corrections for background have been made. 

In SPECT the situation is made more complicated by the difference in 

measured counts in an image caused by reconstruction method, volume 

of the object (as result of the partial volume effect) and its position within 

an attenuating medium. Given these differences, the question needs to 

be asked ‘Is determining a single sensitivity factor for SPECT imaging a 

valid method of quantitation or does a specific sensitivity factor need to 

be calculated for every acquisition geometry encountered, which would 

be difficult in clinical  practice?’ The aim of this chapter is to establish 

sensitivity values for FBP, IRNC, IRSC, IRAC and IRACSC reconstruction 

methods and to investigate the accuracy and validity of using these to 

quantify activity for a range of SPECT acquisitions. This will be 

investigated for a single source object and for two source object 

situations with varying positional geometry, activity ratios, object volumes 

and background activities. The results of these variations will be 

expressed in terms of cps/MBq and deviation from the expected activity 
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taken as that measured on the radionuclide calibrator. Absolute and 

relative quantitation between the two sources will be considered, to 

determine the most accurate method for quantitation in SPECT imaging, 

with particular consideration given to the effect of attenuation. 

 

6.2 Establishment of SPECT sensitivity 

In order to convert measured count rates into activity in MBq for the range 

of SPECT acquisitions to be carried out in this study, sensitivity values 

were established for each of the reconstruction methods and acquisition 

geometries considered. It was then possible to make a decision on the 

most appropriate sensitivity value or values to be used in later stages of 

this study. 

 

6.2.1 Method 

In order to establish SPECT sensitivity in terms of counts per second per 

MBq, four geometries were considered; 

• point source in air on and off centre of rotation, 

• Source A (56 ml) in a cylindrical phantom with no background 

activity,  

• Source B (112 ml) in a cylindrical phantom with no background 

activity,  

• cylindrical phantom containing uniform activity.  

 
The cylindrical phantom used was the Jaszczak phantom with no inserts. 

This has a volume of 6.5 litres as described in chapter 4. As before, for 

phantom acquisitions autocontouring was used. For the point source in 

air, a circular radius of 26 cm was used. 
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The point source was 0.1 ml of radioactive solution (activity 0.62 MBq) at 

the tip of a 1 ml syringe. This was imaged both at the centre of rotation 

and off axis by 7 cm. 

Sources A and B were filled with Tc-99m at an activity concentration of 

approximately 0.1MBq per ml, resulting in activities of approximately 5.6 

MBq and 11.2MBq respectively. Each source was imaged positioned at 

the centre of the cylindrical phantom. 

The cylindrical phantom alone was imaged containing approximately   

180  MBq in order to avoid count saturation, based on results found in 

chapter 4. 

 

All geometries were acquired and reconstructed using the parameters 

listed in Table 5.1 and listed again here for ease of reference (Table 6.1).  

These parameters were used as standard protocol throughout this study. 

 

Camera set up H mode 

Matrix 128 ×128 

Frame time 30s 

Zoom 1.0 

Reconstruction OSEM 2 iterations 16 sub sets 

Data sets FBP, IRNC, IRSC, IRAC, IRACSC 

Table 6.1 Standard SPECT acquisition parameters 

 

 Effective volumes of interest were generated by summing the slices 

containing the radioactive phantom insert and generating a region of 

interest (ROI) on the summed image. For the phantom and source 

images, the ROI was drawn as a rectangle just large enough to include all 
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of the visible image as described in chapter 5. For the point source, a 

circular region of interest centred on the centre of the source was used. 

For each geometry, the counts to activity conversion was determined by 

dividing the reconstructed counts per second within a ROI by the defined 

activity for that region.  

 

Each of these sensitivity values were then used to calculate an estimate 

of activity in each of the other phantoms. In other words, each sensitivity 

calculated from a particular geometry was applied to acquisitions carried 

out with a different geometry, to investigate the inaccuracy that this 

introduces. The aim of this was to answer the question posed in the 

introduction to this chapter, ‘is a single sensitivity value valid in SPECT 

imaging, or does a separate sensitivity value need to be found for every 

geometrical orientation encountered?’ These results were expressed in 

terms of percentage deviation form the ‘true’ or expected activity, defined 

as that measured in the radionuclide calibrator. 

 

6.2.2 Results 

The sensitivities calculated for the geometries described are shown in 

Table 6.2. The errors quoted are estimates based on the reproducibility 

measurements carried out for Source A (section 5.4) and are likely to be 

underestimations for the point source measurements where the relative 

error in activity measurement is high and conversely overestimations for 

the cylindrical phantom where the relative error in activity measurement is 

lower. 

 



 Sensitivity cps/MBq 
 Point 

source on 
axis 

Point 
source off 

axis 

Source A Source B Cylindrical 
phantom 

FBP 89.08±5.82 87.55±5.72 12.57±0.82 13.63±0.89 20.65±1.35 
IRNC 91.28±4.18 92.29±4.23 15.82±0.72 17.15±0.79 26.98±1.24 
IRSC 87.44±7.33 87.63±7.35 12.01±1.01 13.59±1.14 20.15±1.69 
IRAC 91.88±4.44 93.08±4.50 63.36±3.06 67.75±3.27 74.05±3.58 

IRSCAC 87.10±7.66 89.24±7.84 48.46±4.26 54.39±4.78 55.99±4.92 
 

Table 6.2  Sensitivity results for point source on and off axis, sources A and B and 
cylindrical phantom. 
 
 
The sensitivities for the point source found on and off axis were found to 

be within the error range and so for the remainder of this chapter the on-

axis sensitivities are used. 

 
 
6.2.3 Calculated activities using point source sensitivity 
 
The results of applying the point source sensitivity values to counts per 

second found from Sources A and B and the cylindrical phantom are 

shown in Figs 6.1 to 6.3. 

Activities in Source A using Point Source Sensitivity

-100.00%

-90.00%

-80.00%

-70.00%

-60.00%

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

%
 D

ev
ia

tio
n 

fr
om

 e
xp

ec
te

d 
ac

tiv
ity

Trans  Sag  Cor
Trans  Sag  Cor

Trans  Sag  Cor

Trans  Sag  Cor

Trans  Sag  Cor

FBP IRNC IRSC IRAC IRACSC  
 
 
Fig. 6.1 Calculated activity in Source A using sensitivity from point source 
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Activities in Source B using Point Source Sensitivity
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Fig. 6.2 Calculated activity in Source B using sensitivity from point source 
 

 
Activities in Cylindrical Phantom using Point Source Sensitivity
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Fig. 6.3 Calculated Activity in cylindrical phantom using sensitivity from point source 
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6.2.4 Calculated activities using  Source A sensitivity 
 
The results of applying the Source A sensitivity values to counts per 

second found from the point source, Source B and the cylindrical 

phantom are shown in Figs 6.4 to 6.6. 

Activities of Point Source using Source A Sensitivity
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Fig. 6.4 Calculated Activity in point source using sensitivity from Source A 
 

Activities in Bottle B using Bottle A Sensitivity 
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Fig. 6.5 Calculated Activities in Source B using sensitivity from Source A 
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Activities in Cylindrical Phantom using Bottle A Sensitivity
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Fig. 6.6 Calculated Activities in cylindrical phantom using sensitivity from Source A 
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6.2.5 Calculated activities using Source B sensitivity 
 
The results of applying the Source B sensitivity values to counts per 

second found from the point source, Sources A and the cylindrical 

phantom are shown in Figs 6.7 to 6.9. 

Activities of Point Source using Source B Sensitivity
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Fig. 6.7 Calculated activity in point source using sensitivity from Source B 
 

 
Activities in Source A using Source B Sensitivity
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Fig. 6.8 Calculated activities in Source A using Sensitivity from Source B 
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Activities in Cylindrical Phantom using Source B Sensitivity
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Fig. 6.9 Calculated activities in cylindrical phantom using Sensitivity from Source B 
 
6.2.6 Calculated activities using cylindrical phantom sensitivity 
 
The results of applying the uniform cylindrical phantom sensitivity values 

to counts per second found from the point source and Sources A and B 

are shown in Figs 6.10 to 6.12. 

Activity of Point Source using Cylindrical Phantom Sensitivity
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Fig. 6.10 Calculated activity in point source using sensitivity from cylindrical phantom 
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Activities in Source A using Cylindrical Phantom Sensitivity
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Fig. 6.11 Calculated activities in Source A using sensitivity from cylindrical phantom 
 

 
Activities in Source B using Cylindrical Phantom Sensitivity
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Fig. 6.12 Calculated activities in Source B using sensitivity from cylindrical phantom 
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6.2.7 Discussion on sensitivity values 

It could be argued that measurement of a point source in air is the ‘truest’ 

way to measure the performance of the gamma camera in terms of 

sensitivity. These results however show that calculating sensitivity for a 

point source in air is not directly applicable to the situation of an extended 

source in an attenuating medium. This is as would be expected, since in 

the absence of attenuation, the counts measured by the gamma camera 

per MBq are higher than where attenuation is present. Therefore, as 

these results show, applying these sensitivities to a condition where 

attenuation is present results in a gross underestimation of the activity 

present. (Conversely, applying sensitivities calculated with attenuation 

present, leads to a gross overestimation of activity in a point source in air, 

if AC is not applied).For the point source in air, there was little difference 

between the measured sensitivities using the different reconstruction 

techniques. However, this situation was not the same for the extended 

source measurements in an attenuating medium, where measured 

sensitivities were lower when no AC was used by a factor of 

approximately 4 times for sources A and B and 3 times for the cylindrical 

phantom. These results are specific to the geometry used in this 

experiment, and show clearly that for accurate quantitation, the amount of 

attenuation present must be taken into account. When corrections for 

attenuation and scatter are included in the reconstruction, using AC alone 

results in a sensitivity value closest to that found in air, although still lower 

by approximately 25% as shown in Table 6.3. 
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 Sensitivity cps/MBq 

Point Source IRAC 91.88 ± 4.44 

Source A IRAC 63.36 ± 3.06 

Source B IRAC 67.75 ± 3.27 

Cylindrical phantom IRAC 74.05 ± 3.58 

Table 6.3 Results of sensitivity measurements using IRAC 

 

In these calibration measurements, no background activity was placed in 

the phantom, so ‘in scatter’ from the background into the region of 

interest would not need to be corrected for. The inclusion of scatter 

correction in this instance has lowered the sensitivity values measured 

still further from those measured in air. 

 

The sensitivities measured for Sources A and B are very similar to each 

other as would be expected since the amount of attenuating material 

surrounding the source is similar in each case (9.25 cm vs 8.90 cm water). 

As a result, the most consistently accurately calculated activities when 

compared with the expected activity (i.e. that measured in the 

radionuclide calibrator) both with and without AC are those in sources A 

and B using sensitivities calculated for sources B and A respectively. 

For the cylindrical phantom, the measured sensitivity is higher than for 

the smaller sources, despite self attenuation towards the centre of the 

phantom. The results of comparing measured activities with expected 

activities show that without attenuation correction, this leads to an 

underestimation in calculated activity for sources A and B. However, once 

attenuation correction is applied, very good results are achieved using the 
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cylindrical phantom calculated sensitivities. A minimum deviation from the 

expected activity of -2.27 % is achieved for calculating the activity in 

Source B using IRACSC. The converse is also true- for the cylindrical 

phantom the expected activity is most accurately reproduced using the 

sensitivity from Source B with IRACSC, giving a minimum deviation of 

+2.70 %. 

In all cases, the results clearly show that there is little difference in using 

IR with no corrections or IR with scatter correction compared with using 

FBP, but that applying attenuation correction and using the corresponding 

sensitivity value, results in calculated activity measurements much closer 

to the expected value even for volumes as diverse as a point source or 

the 6.5 litre cylindrical phantom. 

 

From these results it can be concluded that either the sensitivities from 

Sources A or B would be most suitable to use for the remainder of this 

study. It was decided to use the Source A (56 ml) results as this was the 

source size used in the determination of errors in chapter 5 and was 

chosen to be the source size used in the orientation, ratio and 

background experiments.  



6.3 Effect of position on quantitation with a single phantom insert 

The sensitivity results so far in this chapter have all been established with 

either a uniform source of activity or with the active source placed in the 

centre of a uniform attenuating medium.  In order to investigate the effect 

of the depth of attenuating material on sensitivity, Source A was moved 

from the centre of the phantom to a position closer to the edge , where 

there would be an angular dependence on the amount of attenuating 

material for photons to pass through before reaching the camera during 

the SPECT acquisition. The lateral (lid to base) depth of the source was 

the same as for the central position.   

 

6.3.1 Method 

The effect of position on sensitivity was investigated by positioning 

Source A in Position 2 in the cylindrical phantom as shown in Fig 6.13. 

Based on the orientation measurements carried out in section 5.5, a 

horizontal orientation was used. An activity concentration of 

approximately 0.1 MBq per ml was used as previously, and images were 

acquired and reconstructed using the standard parameters in Table 6.1.  

 

 

10.5 cm 

11.0 cm 

2.2 cm 

 
 
 
 
 
 
 
 
 
Fig 6.13 Cylindrical phantom with single insert at position 1 (central) or position 2 (edge) 
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6.3.2 Results 
 
The results of calculating the sensitivity for Source A in positions 1 and 2 

and deviation from expected activity are shown in Figs 6.14 and 6.15. 

 
Positional Dependance of Sensitivity for Source A
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Fig. 6.14 Results of Calculating Sensitivity in Source A in Position 2  

 

Deviation from Expected Activity for Source A in Positions 1 and 2
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Fig. 6.15 Deviation from expected Activity for Source A in Positions 1 and 2. 
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Where attenuation correction is not used, the calculated activity is now 

overestimated by around 80%. The use of attenuation correction 

improves this, but calculated activities are still overestimated by 

approximately 10%. This implies that for SPECT imaging as well as for 

planar imaging, if accurate quantitation is required, the depth of an object 

within an attenuating material is highly relevant. The use of attenuation 

correction should therefore be recommended to minimise this effect. 
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6.4 Quantitation measurements with two sources 

For some applications of clinical nuclear medicine (e.g. Tc-99m DMSA 

renal imaging), absolute quantitation is not required, but rather a measure 

of relative uptake of radiopharmaceutical between two organs. Two 

sources were therefore inserted into the cylindrical phantom to model this 

situation, allowing measurements of absolute activity and relative activity 

to be made. Two cases were modelled- the symmetrical with both 

sources positioned equally from the mid-line, and the non-symmetrical 

with one source in the centre and the other towards the edge of the 

cylindrical phantom. 

Despite the widespread application of SPECT imaging, it is still routine 

practice to calculate relative renal Tc-99m DMSA uptake based on the 

geometric mean of planar anterior and posterior images. For this reason, 

planar anterior and posterior acquisitions were carried out for each 

phantom geometry and used to calculate relative activities based on the 

geometric mean. These were compared with the SPECT results with and 

without corrections for attenuation and scatter, to assess the impact of 

using SPECT imaging for relative quantitation measurements. 

 

6.4.1 Method 

The phantom was set-up as for the rotational orientation measurements 

in chapter 5 such that two sources could be inserted at positions 2 (edge) 

and 3 (edge) in the symmetrical case or positions 1 (centre) and 2 (edge) 

for the non-symmetrical case (See Fig 5. 8) SPECT acquisitions were 

carried out using the standard acquisition parameters as in Table 6.1, 

with the following variations: 
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• activity concentration ratio of Tc-99m between the sources 

changed to 2:1 with the higher activity concentration in position 2. 

Activity concentrations of approximately 0.2 MBq/ml and 0.1 

MBq/ml were used resulting in activities of approximately 112 MBq 

and 56 MBq. 

• relative volume of the sources changed by using Source B (112 

ml) in position 2 and Source A  (56 ml) in positions 3 for the 

symmetrical and  1 for non-symmetrical cases. An equal activity 

concentration of approximately 0.1 MBq/ml of Tc-99m was used in 

each case resulting in activities of approximately 112 MBq and 56 

MBq respectively. 

• background activity concentration changed to approximately 0.5% 

of Tc-99m resulting in an activity of approximately 32 MBq. Source 

A was used in both phantom positions for this measurement, filled 

with an activity concentration of 0.1 MBq/ml.  

In all cases, the acquisitions were reconstructed using OSEM iterative 

reconstruction to yield FBP, IRNC, IRSC, IRAC and IRACSC data 

sets in the transverse, sagittal and coronal planes. Regions of interest 

were drawn manually as described in section 5.3. Where two regions 

were drawn, in the symmetrical case ROI0 was in the 90 degree 

position and in the non-symmetrical case ROI0 was the central region 

and ROI1 the edge region. 

Planar images were also acquired as previously in the anterior and 

posterior positions.  

 

 



 

SPECT results were expressed in terms of cps/MBq and the ratio of 

cps/MBq between the two sources. Using the sensitivity calculated in 

Section 6.2, the results were then converted to an activity and 

expressed in terms of percentage deviation from the expected activity, 

defined as that measured in the radionuclide calibrator. The planar 

images were used to calculate the ratio of cps/MBq between the two 

sources in anterior and posterior projections and using the geometric 

mean. 

 

6.4.2 Results – Symmetrical phantom 

6.4.2.1 Variation in activity ratio 

The results of varying the activity ratio between sources to 2:1 with the 

sources in symmetrical orientation (2)  are shown in Figs 6.16 and 6.17. 
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Fig 6.16. cps/MBq for ratio of activities 2:1 
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Fig 6.17. Ratios of cps and cps/MBq for ratio of activities 2:1 

 

The planar results of changing the activity ratio are shown in Table 6.4 

 

 
 

Roi 0 cps/MBq Roi 1 cps/MBq Ratio 1:0 

Head 1 28.12 (46.34%) 32.56 (53.66%) 1.16 

Head 2 26.79 (46.89%) 30.34 (53.11%) 1.13 

Geometric mean 27.45 (46.62%) 31.43 (53.38%) 1.14 

Table 6.4 Planar results for activity ratio 2:1 

 

The results show that unlike the non-symmetrical case, ratios close to the 

true ratios of 1.0 for cps/MBq and 2.0 for cps can be achieved even 

without the use of AC. This is as would be expected, since both phantom 

inserts are an equal distance from the edge of the phantom and therefore 

subject to an equal amount of attenuation. The planar results show that 

relative cps/MBq results of 45 -55% can be achieved in the symmetrical 

case without the need for SPECT. (This figure is significant, since in 
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clinical nuclear medicine this is taken as the normal relative uptake range 

in renal studies.) 

 

The results of applying the calculated sensitivity values to these results 

are shown in Fig 6.18 

Symmetrical Horizontal Orientation. Ratio of Activities 2:1

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

D
ev

ia
tio

n 

Roi 0 Roi 1

FBP IRNC IRSC IRAC IRACSC

Trans      Cor
Trans      Cor

Trans      Cor

Trans      Cor Trans      Cor

 

Fig 6.18 Deviation from expected activity for ratio of activities 2:1  

 

The results show that as previously, the amount of activity is 

overestimated in groups where AC is not applied, due to the geometry of 

the phantom, but this effect is greatly reduced when AC is applied. For 

the lower activity source (ROI 0) the deviation is close to zero although in 

all cases the overestimation is slightly higher for the higher activity source 

(ROI 1).  
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6.4.2.2 Variation in volume of cylindrical sources 

The results of measurements made with sources of two different volumes 

(56 ml and 112 ml) are shown in Figs 6.19  and 6.20 
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Fig 6.19 cps/MBq for Sources A and B. 

Ratios for Sources A and B Symmetrical Orientation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
at

io

cps cps/MBq
FBP IRNC IRSC IRAC IRACSC

Trans         Cor Trans         Cor Trans         Cor Trans         Cor Trans         Cor

 

Fig 6.20 Ratios of cps and cps/MBq for Sources A and B. 
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The planar results for Sources A and B are shown in Table 6.5 

 Roi 0 cps/MBq Roi 1 cps/MBq Ratio B:A 

Head 1 34.25 (50.32%) 33.82 (49.68%) 0.99 

Head 2 28.35 (46.75%) 32.29 (53.25%) 1.14 

Geometric mean 31.16 (48.53%) 33.05 (51.47%) 1.06 

Table 6.5 Planar results for Sources A and B  

 

The results of applying the calculated sensitivity value to the SPECT 

results are shown in Fig 6.21 
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Fig 6.21 Deviation from expected activity for Sources A and B. Symmetrical Orientation. 

 

With the two sources in a symmetrical orientation i.e. both effectively at 

the edge of the phantom, there is a large overestimation in calculated 

activity for each source when AC is not applied. With the use of 

attenuation correction the calculated activities are within approximately 

30% of expected values in all reconstruction planes. 
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6.4.2.3 Variation in background concentration 

The effect of adding a background concentration to the symmetrical 

phantom in terms of cps/MBq is shown in Fig 6.22 
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Fig 6.22 Results of cps/MBq with 0.5% background activity 

 

 To establish the proportion of counts due to scattered photons, these 

results were compared with data from the orientation study in chapter 5  

(symmetrical orientation 2, Fig 5.12). For ease of comparison the results 

for ROI 0 were used. The results are shown in Table 6.6. 
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  No bgd 

cps/MBq 

0.5% bgd 

cps/MBq 

% Increase Proportion 

due to 

scatter (%) 

FBP Trans 26.74 30.33 13.43 11.84 

 Cor 27.11 34.46 27.11 21.33 

IRNC Trans 30.77 34.95 13.58 11.96 

 Cor 31.36 41.54 32.46 24.51 

IRSC Trans 26.74 30.33 13.43 11.84 

 Cor 26.78 34.02 27.04 21.28 

IRAC Trans 75.70 82.99 9.63 8.78 

 Cor 79.27 106.12 33.87 25.30 

IRACSC Trans 66.02 74.40 12.69 11.26 

 Cor 67.19 87.54 30.29 23.25 

 

Table 6.6 Results of cps/MBq for Roi 0 with and without background.  

 

With background, there is an increase in the number of cps detected as 

would be expected. The proportion of cps/MBq due to scattered photons 

ranges between 9% and 12% in the transaxial plane and 21% and 25% in 

the coronal plane. The addition of scatter correction to the reconstruction 

algorithm appears to have no effect on the proportion of scattered 

photons detected. 
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Fig 6.23 Ratio of cps/MBq edge:centre for background concentration 0.5% and no 

background 

 

As with previous results in the symmetrical orientation, the results are 

very close to the true ratio of 1.0. This has not been degraded by the 

addition of background activity. 

 

The planar results for the symmetrical orientation with background are 

shown in Table 6.7 

 Roi 0 cps/MBq Roi 1 cps/MBq Ratio 1:0 

Head 1 24.79 25.57 1.03 

Head 2 22.72 22.53 0.99 

Geometric 
mean 

23.73 24.00 1.01 

Table 6.7 Planar results for the symmetrical orientation with background 
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Once again ratios very close to 1.0 can be achieved with simple static 

acquisitions in the symmetrical orientation and this has not been affected 

by the addition of background activity. 

 

The results of applying the calculated sensitivity value to these results are 

shown in Fig 6.24.  
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Fig 6.24 Deviation from expected activity with 0.5% background 

 

The addition of background has exacerbated the overestimation of 

activity in all cases. As with previous results the addition of attenuation 

correction leads to the best results, but there is no improvement due to 

the addition of scatter correction alone. 
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6.4.3 Results – Non-symmetrical phantom 

6.4.3.1 Variation in activity ratio 

The results of varying the activity ratio between the Sources to 2:1 are 

shown in Figs 6.25 and 6.26 
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Fig 6.25 cps/MBq for activity ratio 2:1 
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Fig 6.26 Ratio of cps and cps/MBq for activity ratio 2:1  
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When attenuation correction is added to the method of reconstruction the 

number of cps/MBq recorded is ~5 times higher for the lower activity 

source and ~ 2.5 times higher for the higher activity source. Of more 

relevance here are the ratio measurements.  In terms of cps/MBq the true 

ratio is 1.0. The results show that when AC is not used, this ratio varies 

between 2.0 and 2.5, implying an overestimation of the proportion of 

counts in the source closer to the edge of the phantom, while when AC is 

used this ratio falls to 1.2. Again the results for IRAC are slightly better 

than those for IRACSC.  When expressed in terms of cps the true ratio is 

2.0. The results show that when AC is not used this ratio rises as high as 

5.0, whilst with AC although there is still some overestimation of the edge 

source, the ratio falls to 2.5.  

 

The planar results for varying the activity ratio are shown in Table 6.8 

 Roi 0 cps/MBq Roi 1 cps/MBq Ratio 

Roi1:Roi0 

Head 1 18.12 (34.40%) 34.56 (65.60%) 1.91 

Head 2 15.68 (34.39%) 29.92 (65.61%) 1.91 

Geometric 
mean 

16.86 (34.39%) 32.16 (65.61%) 1.91 

 

Table 6.8 Planar results for activity ratio edge:centre of 2:1  

 

A ratio of 1.91 was measured in the anterior, posterior and geometric 

mean cases, again implying that more counts are measured from the 

source at the edge, relative to that in the centre. 

 



The results of applying the calculated sensitivity values to these results 

are shown in Fig 6.27. 
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Fig 6.27 Deviation from expected activity for ratio of activities edge:centre of 2:1 

 

 

Once again it can be seen that a more accurate calculation of activity can 

be made using AC during reconstruction of the data and using a 

corresponding sensitivity factor, even for objects at different depths within 

the phantom and therefore subject to a varying amount of attenuation. 
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6.4.3.2 Variation in volumes of phantom inserts  

The results of imaging sources of two different volumes (56 ml and 112 

ml) are shown in Figs 6.28 and 6.29. 
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Fig 6.28 cps/MBq for Source A in the centre and Source B at the edge of the phantom 
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Fig 6.29 Ratios of cps and cps/MBq for Source A in the centre and Source B at the edge 

of the phantom. 
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When AC is used in the reconstruction, there is an approximately 

threefold increase in cps/MBq. It can also be seen that in the IRAC and 

IRACSC groups the values for both sources are within experimental error 

of each other, whereas when AC is not applied, higher cps/MBq are 

recorded for the source at the edge of the phantom, as would be 

expected from previous results. The ratio results show that when no AC is 

applied the ratio of cps/ MBq (true value1.0) approaches 2 (1.9 for the 

IRSC group), but a result of 1.0 is achieved with IRACSC. The ratio of 

cps which would be expected to be 2.0 given a linear response to activity, 

approaches 4 (3.9) for non-corrected groups but a ratio of 2.0 is achieved 

with IRACSC. These results again imply that the overestimation of counts 

at the edge of the phantom is greatly reduced by the use of AC. 

 

The planar results of varying the volume of the phantom inserts are 

shown in Table 6.9 

 Source A 
cps/MBq 

Source  B 
cps/MBq 

Ratio B:A 

Head 1 19.40 (35.52%) 35.21 (64.48%) 1.81 

Head 2 16.70 (35.49%) 30.36 (64.51%) 1.82 

Geometric 
mean 

18.00 (35.50%) 32.70 (64.50%) 1.82 

 

Table 6.9 Planar results for Sources A (centre) and B (edge) 

 

The ratio of 1.82 for planar imaging implies that there is a large 

overestimation in cps/MBq for the source at the edge of the phantom that 

is not corrected for by use of the geometric mean.  

 

 



The results of applying the calculated sensitivity values to the SPECT 

results are shown in Fig 6.30 
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Fig 6.30 Deviation from expected activity for Sources A and B 

 

As expected, there a gross overestimation in calculated counts for Source 

B (at the edge of the phantom) when no AC is applied, that is corrected 

for with AC.   
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6.4.3.3 Variation in background concentration 

The effect of adding a background concentration of 0.005 MBq/ml (0.5%) 

to the phantom, on the measured cps/MBq in the sources is shown in Fig. 

6.31. Source A was used in both positions for this measurement with an 

equal activity concentration ratio. 
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Fig 6.31 cps/MBq with 0.5% background. Non-symmetrical orientation. 

 

These results can be compared with the equivalent geometrical set-up 

with no background present that was used in the orientation study in 

Chapter 5 – Fig 5.18   For ease of comparison the cps/MBq figures for 

the central source with and without background are shown in Table 6.10 
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  No bgd 

cps/MBq 

0.5% bgd 

cps/MBq 

% Increase Proportion 

due to 

scatter (%) 

FBP Trans 14.32 18.69 30.52 23.38 

 Cor 14.70 24.01 63.33 38.78 

IRNC Trans 16.65 21.40 28.53 22.20 

 Cor 17.92 28.41 58.54 36.92 

IRSC Trans 13.82 17.78 28.65 22.27 

 Cor 13.99 24.82 77.41 43.63 

IRAC Trans 67.29 83.26 23.73 19.18 

 Cor 71.55 116.59 62.95 38.63 

IRACSC Trans 55.63 73.68 32.45 24.50 

 Cor 56.37 95.38 69.20 40.90 

Table 6.10 Comparison of cps/MBq in Roi 0 (centre) with and without background 

activity 

 

For SPECT images reconstructed into the transaxial plane, there is an 

increase of approximately 30% in measured cps/MBq caused by 

scattered photons due to background activity. Another way of expressing 

these results is as the proportion of the cps/MBq in the final image when 

background is present that are therefore due to scatter. The results in 

Table 6.10 show that for transaxial slices this figure varies between 22% 

and 25% and for the coronal slices, between 37% and 41%. These 

figures are in good agreement with the recognised figure of 30% of 

counts in a planar image being due to scattered photons. Perhaps 

surprisingly, the addition of scatter correction to the reconstruction 

process does not seem to reliably improve this figure. 

 

 



Fig 6.32   shows the edge;centre ratio of cps/MBq for both the non-

background and with background cases.   
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Fig 6.32 Ratio of cps/MBq edge:centre with and without background 

 

 In all cases, the ratio of cps/MBq between the source in the edge and 

that at the centre of the phantom is lower when background activity is 

present. This implies that scattered photons from the background activity 

have a proportionately higher influence on the source at the centre of the 

phantom to that at the edge. This is as would be expected, since the 

source at the centre is subject to a greater volume of surrounding 

background material than that at the edge.  Again these results show no 

significant improvement due to scatter correction. 
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The planar results for the phantom with background activity are shown in 

Table 6.11 

 

 ROI 0 cps/MBq ROI 1 cps/MBq Ratio 1:0 

Head 1 14.73 27.45 1.86 

Head 2 14.83 25.37 1.71 

Geometric 
mean 

14.78 26.39 1.79 

 

Table 6.11 Planar cps/MBq results for 0.5% background 

 

As with earlier planar results, the ratio of 1.79 implies an overestimation 

in cps/MBq for the source at the edge of the phantom that is not corrected 

for by use of the geometric mean. 

 

The results of applying the calculated sensitivity value to the SPECT 

results are shown in Fig 6.33  
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Fig 6.33 Deviation from expected activity with 0.5% background 
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There is a much larger deviation from the expected value than was found 

in non-background cases, even with the addition of attenuation and 

scatter correction. This is as may be expected due to the noted increase 

in measured cps due to scattered photons, which would translate into an 

increase in the calculated activity. 

 

There is also a noticeable variation in the results between the transverse 

and coronal planes for these results. The reason for this is not clear and 

would warrant further investigation in this area. 
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6.5 Discussion 

The aim of this chapter was to establish whether a single sensitivity value 

could be established for SPECT imaging in order to carry out accurate 

quantitation. As described in section 6.2 the sensitivity value calculated in 

terms of cps/MBq is dependent on the method of reconstruction, the 

volume of the source used and the amount of attenuation it is subject to. 

For this reason, it was shown that the use of attenuation correction (AC) 

is essential for accurate quantitation of a single source of differing 

acquisition geometries both in the establishment of the sensitivity value 

and the reconstruction of the data to which it is applied. The addition of 

scatter correction (SC) to AC has little effect and SC alone shows no 

improvement in quantitative accuracy over reconstructions using filtered 

back projection (FBP) and iterative reconstruction with no corrections 

(IRNC). 

 

The results of the two source measurements also clearly show the 

influence of attenuation on quantitative results. When no correction for 

attenuation was made, there was a gross overestimation of calculated 

activity for sources subject to less attenuation than that inherent in the 

sensitivity measurements. This would imply that without AC a separate 

sensitivity value would need to be found for every geometrical situation. 

Although only water was used as an attenuating medium in these 

experiments, it would also hold true that quantitative results would vary 

with differing values of attenuation coefficient as are found in clinical 

situations. With AC, the deviation in calculated activity measurements 
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was improved to ~20-30%, for all, activity ratios, phantom sizes and 

background concentrations investigated. 

 

The results of finding the ratios of cps/MBq for two sources in both 

symmetrical and non-symmetrical orientations showed that accurate 

results could be achieved in the symmetrical case even without the use of 

AC, since both sources were subject to the same amount of attenuation. 

In fact, in the symmetrical case accurate ratios (implying accurate relative 

counts) could be found using planar imaging and correcting for depth 

using the geometric mean. The same was not true in the non-symmetrical 

case where the two source were subject to a different amount of 

attenuation – a larger amount for that in the centre than for that at the 

edge. In this case, the use of AC was imperative in achieving accurate 

ratio results.  

 

These results are significant for renal uptake measurements using Tc-

99m DMSA where the standard method is to carry out planar imaging and 

calculate relative kidney uptake using the geometric mean method. These 

results show that if the kidneys are truly symmetrical in terms of being 

subject to the same amount of underlying and overlying tissue then this 

method is acceptable. However if there is a non-symmetrical distribution 

of attenuating background tissue then the use of SPECT with AC would 

give a more accurate measurement of relative uptake. 

 



Chapter 7 

Conclusions and Further Work 

 

7.1 Conclusions 

7.1.1 Introduction 

Due to their well documented beneficial effect on image quality (Bockisch et 

al. 2009; Mariani et.al 2010), the use of attenuation correction and scatter 

correction in SPECT has become widely used in clinical Nuclear Medicine. 

All major manufacturers now supply the facility for doing this on most gamma 

camera systems, with no necessity for the user to understand the effect of 

these corrections on the actual count rate being recorded. Whilst this may be 

acceptable in qualitative imaging, there is a growing appreciation of the 

potential for accurate quantitation in nuclear medicine (Bailey and Willowson 

2013), which requires a more thorough understanding of the effects of 

individual and combined corrections.  

 

In recent years, a number of physical phantom based studies have been 

carried out to investigate absolute quantitation in SPECT using a variety of 

isotopes, correction techniques and methods for determination of absolute 

activity. A selection of these were summarised by Shcherbinin et al. (2008) 

and are shown in table 7.1 reproduced from their paper. Their own study 

investigated quantitative accuracy of SPECT/CT imaging for Tc-99m, In-111, 

I-123 and I-131 isotopes using the GE Infinia Hawkeye 4 slice SPECT/CT 
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system and incorporating corrections for attenuation, scatter, collimator 

blurring and collimator septal penetration. They achieved activity estimates 

with error levels of 3-5% for all of the isotopes when all of the above 

corrections were combined. 

 

Study Radiotracer Camera Results of absolute 

quantitation 

He et al. (2005) In-111 GE Discovery 

VG/Hawkeye 

2-12% errors for 6 and 20 

ml spheres 

De Wit et al. 

(2006) 

Ho-166 ADAC Vertex MCD 1-13% errors for 220 ml 

cylindrical containers 

Du et al. (2006) I-123 Siemens E-cam 2% errors for regions of 

brain phantom 

Koral et al. 

(2007) 

I-131 Prism 3000 1-24% errors for 7-135 ml 

spheres 

Vandervoort et 

al. (2007) 

Tc-99m Siemens E-cam 4% errors for 18 ml heart 

chamber 

Table 7.1 Parameters and results of sample quantitative SPECT studies with physical 

phantoms. (Shcherbinin 2008) 

 

Due to the variety of gamma camera systems and methods of correction 

used in quantitative studies, the purpose of this project was to investigate a 

single SPECT/CT system – the GE Millennium VG Hawkeye gamma camera 

with single slice CT attenuation correction and dual window scatter 
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correction. The hypothesis to be tested was “accurate attenuation 

correction is essential for quantitative gamma camera imaging”. 

 

 The conclusions from this single system will support establishment of a 

more standard methodology for quantitative gamma camera imaging using 

any SPECT/CT system. 

 

7.1.2 SPECT performance phantom measurements 

 The first conclusion to be drawn was that: 

The addition of attenuation correction to SPECT images of a uniform 

SPECT performance phantom, increased the number of raw projection 

counts recorded by a factor of 2.2 (220%).  

 

This result is consistent with reconstructed images of the same phantom 

which clearly showed that without correction, self attenuation leads to a 

reduction in counts towards the centre of the phantom compared with the 

edges. The results of measuring the uniformity of the images reinforced this 

point, with the uniformity of reconstructions carried out with AC being far 

superior to those reconstructions without AC – deviation from measured 

activity of 6.67% IRAC compared with 26.00% FBP.  
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The next point found was : 

Scatter correction, removes counts from the raw data by a factor of 1.3 

(23%).  

 

In clinical planar imaging, it is accepted that ~30% of counts in a region of 

interest are due to scattered counts from outside the region (Hutton 2011). In 

this study, a lower figure was expected since scatter occurs only within the 

phantom in the absence of any external source of scattered photons. The 

lower count rate did prove to have an affect on image uniformity, with results 

for images reconstructed with scatter correction only (IRSC) being on 

average slightly worse than those reconstructed with FBP. (~27.0% vs. 

26.0%). The addition of scatter correction to attenuation correction also had 

a negative impact on uniformity, which may be a cause to question the use 

of scatter correction at all in nuclear medicine imaging. However, scatter 

correction was seen to have a positive impact in contrast measurements. 

The results of measuring the contrast between the myocardial wall and 

cavity in the cardiac insert of the anthropomorphic phantom, showed that 

scatter correction had more impact on the results than attenuation correction 

and led to an increase in contrast when added to AC alone (64.99% IRACSC 

vs. 58.51% IRAC). The best contrast measurements were found with FBP 

alone (72.23%). The results suggest that although AC has a significant and 

positive effect on uniformity which makes its use in quantitative studies 

essential, it has a detrimental effect on image contrast, which can to some 
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extent be compensated for by the use of scatter correction. These findings 

agree with those of El Fakhri et al (2000) who also found attenuation 

correction to be the most significant correction for uniformity, where-as 

scatter correction had the most impact on contrast measurements. It can be 

concluded that: 

The use an iterative reconstruction algorithm including attenuation 

correction and scatter correction is to be recommended for all SPECT 

imaging. 

 

7.1.3 Establishment of s SPECT sensitivity value 

The results of establishing a sensitivity value for use in quantitative SPECT 

imaging showed that: 

Unlike planar imaging, it is not feasible to calculate one sensitivity 

value in cps/MBq using a standard set of acquisition parameters and 

apply this to all imaging situations.  

 

Sensitivity values calculated in SPECT imaging are highly dependent on the 

volume of the source, due to the partial volume effect for small sources 

(diameter <2 times FWHM) and the effect of self attenuation for large 

sources such as the Jaszczak phantom. In this study, values varied from 

89.08 cps/MBq for a point source to 12.57 cps/MBq for source A, when no 

corrections were applied. Sensitivity values also varied hugely with the use 

of attenuation correction and to a lesser extent with scatter correction in the 
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reconstruction algorithm, as would be expected from the known effect that 

these corrections have on the number of counts recorded. For source A, 

values varied from 12.01 cps/MBq with scatter correction only, to 63.36 

cps/MBq with attenuation correction only.  

 

This method of establishing sensitivity values was similar to that used by 

Dewaraja et al. (2005) in their I-131 therapy dosimetry study. They 

considered three calibration geometries: a) a point source in air, b) an 

elliptical tank with uniform activity and c) a hot sphere centred in an elliptical 

tank with background activity. They found that quantitation with the sphere 

based sensitivity was superior to that using the uniform tank. Although there 

was little difference between results using the sphere and point source 

based sensitivity, results with the point source were very dependent on the 

size of ROI drawn around the reconstructed images and so the sphere 

based sensitivity value was chosen for the remainder of the quantitative 

study. In contrast, Zeintl et al. (2010) carried out an investigation into 

quantitative accuracy of Tc-99m SPECT/CT using a sensitivity value base on 

a large cylindrical phantom (diameter 216 mm, height 186 mm), whilst 

Shcherbenin et al. (2008) carried out their study using a sensitivity value 

found from planar images. Despite these differences in methodology, these 

authors were all able to report good quantitative accuracy when corrections 

for attenuation, scatter and collimator response were applied. 
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7.1.4 Quantitative Measurements 

In this present study, when the range of sensitivity values found for the 

different geometries were used for absolute quantitation, the dependence on 

attenuation correction was clear. Quantitative results were expressed in 

terms of percentage deviation of the calculated activity from the activity in 

the phantoms as measured on the radionuclide calibrator (referred to as the 

expected activity). Without attenuation correction, deviations reached >100% 

where-as when attenuation correction was included all deviations were 

<30%. The addition of scatter correction made only a small difference to 

these results - repeated measurements are now needed to establish the 

statistical significance of this difference. 

 

It can be concluded from these results that:  

The best way of achieving accurate quantitation in SPECT imaging is to 

reconstruct all images using an iterative reconstruction algorithm 

including attenuation correction and possibly scatter correction.  

 

Absolute activities should be calculated using a sensitivity value found using 

attenuation correction in the SPECT reconstruction of calibration phantom 

images where the phantom is large enough to avoid the partial volume 

effect. This calibration phase is essential for quantitation and should be 

carried out locally on any SPECT/CT system where quantitative results are 

required. 
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The dependence of accurate quantitation on attenuation correction is also 

clear from the results of the relative uptake measurements. It was found that: 

 For a completely symmetrical orientation i.e. when both bottles were 

subject to the same amount of surrounding attenuating medium, planar 

measurements in the anterior and posterior projections gave relative 

count rate results comparable with SPECT imaging when corrected for 

background and using the geometric mean method to compensate for 

depth.  For the non-symmetrical orientation i.e. when the two bottles 

are subject to differing amounts of attenuation, the most accurate 

relative count rate results were found using SPECT reconstruction with 

attenuation correction. 

 

7.1.5 Clinical applications of quantitation 

If these results are extended to a clinical situation where relative uptake is of 

importance, for example static renal cortex imaging using Tc-99m DMSA, it 

can be surmised that:  

If the kidneys are known to be lying symmetrically within the body (as 

shown by ultrasound for example), there is little to be gained from 

using SPECT with CT attenuation correction.  

 

The decision to use this would have to be weighed up against the longer 

scanning time for the patient and the extra radiation dose from the CT. The 

effective dose from an abdomen-pelvis scan using the Hawkeye has been 
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found to be 1.5 mSv (Sawyer et. al. 2008) although the exact figure would 

obviously depend upon the number of slices needed. Compared with the 

effective dose from a Tc-99m DMSA scan of 0.7 mSv however, it can be 

seen that the addition of CT to kidney imaging represents a significant 

increase in patient dose, which would be difficult to justify in the simple case, 

especially for paediatric patients. Current BNMS guidelines for renal cortical 

scintigraphy recommend the use of planar anterior and posterior views 

rather than SPECT imaging (BNMS 2011), citing a lack of consensus in 

current literature on the usefulness of SPECT, (with no corrections) in this 

application (EANM 2011, Piepsz et al. 1999, De Sadeleer et al. 1996).  

However, the results of this study have suggested that:  

If the kidneys are known or suspected to be in an abnormal position 

within the body, then SPECT with attenuation correction would give 

more accurate relative uptake results and the extra radiation burden to 

the patient may be justified.  

 

Brain imaging of the dopaminergic system using I-123 labelled ioflupane 

(DaTSCAN) is another area where relative uptake between the left and right 

striata could be a useful clinical indicator and further studies are required to 

investigate this. Here however, previous studies have found that because of 

the small size of the striata the partial volume effect becomes significant and 

correction for this must be included for accurate quantitation (Buvat et al. 

2000, Soret et al. 2003). 
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Despite the potential of quantitative SPECT imaging and the widespread 

availability of SPECT/CT systems, in their review of 2013 Bailey and 

Willowson concluded that “Few clinical applications of quantitative SPECT 

exist today because SPECT has generally been developed without routine 

application of corrections for attenuated and scattered radiation. The major 

application of attenuation correction in SPECT to date has been in the area 

of removing attenuation artefacts in SPECT myocardial perfusion imaging 

(Heller 2004) but the emphasis has not been on quantitative assessment” 

(Bailey and Willowson 2013). It is the opinion of the author that:  

With careful establishment of sensitivity calibration factors for the 

imaging system used and with application of corrections for 

attenuation and scatter in the SPECT reconstruction process, 

quantitation in nuclear medicine will prove to be accurate and reliable 

and its use in clinical applications, particularly dosimetry for targeted 

radionuclide therapy, will continue to grow. 

 

7.2 Further work 

7.2.1 Incorporation of resolution recovery 

This study used simple phantom measurements to investigate the 

quantitative effects of attenuation correction and scatter correction on 

images acquired using the GE Millenium Hawkeye gamma camera with 

single slice CT.  Attenuation and scatter are not the only factors affecting 

accuracy of quantitation, 3D resolution recovery (RR) also has a part to play 
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and several phantom studies have already been published with the inclusion 

of this (Shcherbinin et al. 2008, Zeintl et al.2010). In Shcherbinin’s study, 

resolution recovery was included in all reconstructions and corrections for 

attenuation and scatter were sequentially added. Errors in calculated activity 

of a source of Tc-99m placed centrally in an anthropomorphic phantom 

varied from 84.3% with RR and no other corrections to 21.4% with the 

addition of attenuation correction and 2.9% with the further addition of 

scatter correction (Shcherbinin et al. 2008). Zeintl’s group carried out a 

quantitative phantom study with corrections for attenuation, scatter and 

resolution recovery and then carried out an in vivo validation using 

SPECT/CT datasets from patients undergoing Tc-99m diphosphonate 

examinations of the pelvis including the bladder. The radioactivity in the 

patients’ urine served as the gold standard. Their results showed a mean 

accuracy of 3.6% (SE 8.0%) for the phantom studies and 1.1% for the 

patient studies (Zeintl et al. 2010).  Resolution recovery could not be 

included in this current study, as the facility is not available on the gamma 

camera system used. However, manufacturers are now making resolution 

recovery software available on many systems, so the first phase of follow on 

work from this study would be to carry out further phantom measurements, 

with the addition of resolution recovery. The relative impact of the three 

types of correction could then be established.  A further question to be asked 

is, ‘In a clinical setting, could the appropriate use of corrections lead to a 

lower amount of radiopharmaceutical being administered to the patient?’ 
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This may be particularly relevant in light of recent worldwide shortages of 

Mo-99. It should also be noted that the Hawkeye system used for this study 

utilises single, 10 mm thick CT slices, where-as the more recent SPECT/CT 

systems utilise 4 or more slice CT. The quantitative effect of using higher 

resolution attenuation correction maps also needs to be investigated. 

 

7.2.2 Use of Monte Carlo modelling 

This study was carried out using physical phantoms with a limited number of 

geometrical orientations. A more flexible way of modelling a wide variety of 

situations would be to use the statistical method of Monte Carlo modelling. 

This method has been applied to date in many areas of nuclear medicine 

including; detector modelling and systems design, image correction and 

reconstruction techniques, internal dosimetry and pharmokinetic modelling 

(Ljungberg 2002; Ljungberg 2003; Haidi 2003; Ljungberg 2011; Saeedzadeh 

2012). A detailed consideration of Monte Carlo modelling is outside the 

scope of this study, but a review of Monte Carlo techniques in nuclear 

medicine can be found by Zaidi (1999). 

 

7.2.3 Clinical studies 

From phantom measurements the benefit of SPECT imaging with 

attenuation and scatter correction for sources in a symmetrical geometry 

remains unclear. To investigate this in a clinical setting, a study could be 

carried out on patients undergoing static renal imaging using Tc-99m DMSA, 
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to assess relative kidney function. Results found using SPECT imaging with 

the addition of attenuation correction, scatter correction and where available 

resolution recovery, could be compared with results from the standard 

geometric mean method to assess whether there is a significant difference in 

results and whether this would have an impact on patient management. In 

terms of absolute uptake, quantitative results could be compared with the 

common laboratory criteria for kidney function: serum creatinine and 

creatinine clearance. In their work on individual kidney function, Groshar et 

al.(1991) found a good correlation between the uptake of Tc-99m-DMSA 

measured by quantitative SPECT with renal function measured by serum 

creatinine (r = 0.89) and creatinine clearance (r= 0.76) even though 

corrections for attenuation and scatter were not included.  

 

7.3 Summary 

In summary, this study has proved the hypothesis that:  

Accurate attenuation correction is essential for quantitative gamma 

camera imaging. 

 

Scatter correction and 3D resolution recovery also improve overall accuracy. 

Sensitivity values for conversion of cps into MBq should be found locally 

prior to beginning quantitative work, using the same acquisition parameters 

and corrections as to be used for the clinical study and using a phantom 

large enough to avoid the partial volume effect. In terms of relative 
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quantitation studies, the reliance on attenuation correction is less clear and 

further clinical studies are needed to establish the benefit of carrying out CT 

attenuation correction when weighed against the increased radiation dose to 

the patient.  The widespread availability of SPECT/CT gamma cameras now 

means that in addition to improved localisation capabilities leading to 

improved detection ability (Bockisch et al. 2009), accurate quantitation in 

nuclear medicine is now feasible and of benefit in an increasing number of 

clinical applications.  
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